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ABSTRACT 

 

This dissertation investigated the extension of the Integrated Production and 

Distribution Scheduling Problem (IPDSPP) using a variety of perishable products, 

applying the JIP principle and make-to-order strategy to integrate the production and 

distribution schedules. A single perishable product with a constant lifetime after 

production was used in the model discussed here. The objective of the problem was to 

find the solution that results in minimal system total transportation costs while satisfying 

customer demand within a fixed time horizon. In the solution, the fleet size, vehicle route 

and distribution schedule, plant production batch size and schedule were determined 

simultaneously. This research employed non-identical vehicles to fulfill the distribution; 

each allowed multiple trips within the time horizon. Both the single plant and multiple 

plant scenarios were analyzed in this research. For each scenario, the complexity 

analysis, mixed integer programming model, heuristic algorithms and comprehensive 

empirical study are provided. 
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CHAPTER ONE 

INTRODUCTION 

 

Given the current trends in globalization, many companies increasingly market 

their products worldwide. For many of them, success depends on producing items 

customized to the degree that they satisfy individual requirements but within a short 

period of time and at a low cost.  Over the past two decades, the means to accomplish 

these contradictory goals has placed an ever-increasing focus on the supply chain. As a 

result much research both in industry and in academia has focused on the integration of 

different functions in supply chains to simultaneously increase flexibility, reduce cycle 

time and keep costs low. This integration not only reduces the number of steps in the 

process but it also tends to eliminate the inherent obstacles between different functions so 

that optimization across larger segments of the supply chain can be realized. The research 

reported here is consistent with this trend, focusing on the integrated production and 

distribution scheduling problem associated with perishable products (IPDSPPP). 

While the initial definition of perishable product may reflect a limited set of 

items, primarily focusing on food, in reality many products are considered perishable 

when this property is interpreted in a broader sense. In general, a perishable product is 

one whose value or quality is closely related to the length of time between when it is 

ready to be sold and when it is consumed.  For example, products like designer clothes 

and computers that have a relatively long lifetime compared to fresh vegetables, milk and 

blood. The research reported here considers perishable products those which have full 
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utility and usefulness for a short, fixed period of time after which they are useless.  In the 

context of items that are produced, the item lifetime begins the moment production is 

complete, meaning they must be consumed before this fixed time span elapsed. It is 

assumed that the lifetime is much shorter than the planned time horizon. 

This short fixed lifetime has several implications. One is that implementing a 

make-to-order strategy for any phase of a production plan must be strategically planned 

because the time that a product is held in inventory plus the time spent in transit to the 

customer must be less than the lifetime. Therefore, creating flexibility and efficiency in 

this segment of the supply chain requires that the production and distribution schedules 

be highly integrated. Inefficiency in this integration could result in the product becoming 

unusable before delivery to the customer is complete or the inability to satisfy the 

customer demand before the deadline. The former will result in the waste of raw 

materials production capacity, power, and time and, sometimes a significant cost for 

safely salvaging the product. The latter leads to a failure to meet the consumer’s demand 

on time, resulting the loss of a customer or, at a minimum, the loss of good will. 

This research uses several approaches to conduct a detailed analysis of this 

integrated production and distribution problem. A two-echelon supply chain is considered 

with both one supplier and multiple suppliers satisfying demands from multiple 

customers, both situations being referred to as a supplier in this discussion. A single 

period is considered, for example, one day. The capacity of the supplier is assumed to be 

limited and fixed but sufficient to satisfy all customer demands within the specified time 

horizon. The supplier is also assumed to provide the distribution service for delivering the 
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product to the customer locations. In this research, it is assumed that the supplier 

determines the production and distribution schedules, renting a fleet of vehicles to 

implement them rather than using a third party logistics provider.   

To create the model, the production control strategy of the supplier is assumed to 

be make-to-order, meaning that customers place orders in advance. All customers are 

assumed to act independently and are geographically dispersed on a 2-dimensional space. 

Furthermore, each customer has a randomly assigned demand that must be satisfied 

within the time horizon.  Early delivery is not penalized, so the suppliers have a larger 

degree of freedom in this research scenario than they would if customers had precise 

windows during which the product had to be delivered. These assumptions mean that for 

a given time horizon (e.g. a given day), the supplier must schedule production to satisfy 

the deterministic demands of all customers within that time frame and sequence 

deliveries so that all customers are served within the time horizon with a product whose 

lifetime has not expired. Since the product has a constant life time after production is 

completed, the delivery schedule and the production schedule must be integrated to 

ensure these deadlines are met. These assumptions lead to the geographic restriction that 

all customers must be located no further than a vehicle can travel during one half of the 

time horizon because it is assumed that all vehicles must return to the supplier before the 

time horizon expires.   

In addition, the following practical assumptions are also made concerning the 

distribution: 1) mixed fleet is considered, i.e. all of the rented vehicles are assumed to be 

non-identical in capacity and cost. 2) each customer’s demand is fulfilled with one 



 4 

vehicle during one delivery, 3) vehicles can visit several customers in one trip, 4) each 

trip begins from the plant, goes through all customer in the trip and then returns to the 

plant, 5) the vehicle is allowed to carry less than a full load, and 6) after one vehicle 

finishes a trip, it can be reused to make another one if it can meet the requirements for 

delivery and return. 

The decisions the company must make include determining the number and type 

of vehicles, their departure time and routing schedule, and the related batch production 

schedules to minimize the total operating costs while satisfying all customer demands 

within the time horizon.  Since this research considers only a make-to-order strategy, the 

demand for every period is deterministic, meaning the total cost of production is fixed   

and only the delivery costs must be considered to minimize the total operating costs. The 

total distribution cost is composed of two components: 1) the fixed setup cost is the one- 

time cost paid to use each vehicle for the distribution of the deliveries over the fixed time 

horizon. For example, if the time horizon is one day, the fixed setup cost is the sum of the 

daily fee to rent each vehicle, plus such costs as  those for a driver that are incurred for 

the entire day regardless of the number of trips made or length of each trip. 2) The 

variable operating cost is dependent on the distance traveled which includes the cost of 

fuel plus the vehicle maintenance fee for the distance traveled. It is calculated by 

multiplying the variable cost of vehicle by the total distance traveled. Since this research 

uses non-identical vehicles for distribution, the calculation of the distribution cost is even 

more complex. Each type of vehicle has a unique capacity, fixed setup cost and variable 

cost. For example, different types of vehicles incur different rental fees, driver salaries, 
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and fuel efficiencies depending on size/capacity and fuel type, meaning different vehicle 

types have different variable costs for the same distance traveled. In addition to the 

system transportation cost, the feasible solution must include the routing schedule for 

each vehicle that meets all constraints such as vehicle capacity, product lifetime, and 

delivery before the end of the time horizon. At the same time, the batch production 

schedule in the solution should be consistent with the related delivery schedule. 

The problem addressed in this research is an extension of the classical Vehicle 

Routing Problem (VRP) which has been shown to fall within the class of 

nondeterministic polynomial-time hard problems (NP-hard problem). This means that all 

known algorithms that define an optimal solution require exponentially increasing 

computational time as the number of customers increase; therefore, heuristic methods 

which provide approximate solutions are justified and are required for realistic sized 

problems.  As such, mixed integer programming (MIP) is used for smaller sized problems 

and heuristics are employed to solve larger and more realistic sized problems.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

The integration of various functions in the supply chain is currently the focus of 

much supply chain management research, especially since it has proven profitable for 

such companies as Dell and Wal-Mart. Specifically, integrating production and 

distribution, two important functions in the supply chain, can be beneficial.  Some of the   

research on this integration focuses on a global perspective, providing such valuable 

reviews as those by Vidal and Goetschalckx (1997), Sarmiento and Nagi (1999), Erenguc 

et al. (1999) and Chen (2004). Vidal and Goetschalckx (1997) review the literature on the 

strategic production-distribution models, classifying them as domestic and international 

and focusing on the analysis of several mixed integer programming models to determine 

the relevant factors in the formulations. Owen and Daskin (1998) consider the 

transportation system in their review of the literature, focusing on the logistics and 

benefits of integration, while Erenguc et al. (1999) divide the integration of production 

and distribution into 3 stages, supply,  plant  and distribution, concluding that the 

decisions at each needs to be made jointly to optimize the network. Chen (2004) provides 

a detailed classification of the problem in three different dimensions, the decision level 

(tactical and operational level), the integration structure (inbound and outbound 

transportation), the problem parameters (single period, finite period and infinite period). 

The research reported focuses on finding an efficient algorithm for the integrated 

production and distribution problem with a perishable product. Thus, the relevant 
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literature is divided into 2 categories: (1) the traditional integrated production and 

distribution problem, and (2) the integrated production and distribution problem with a 

perishable product. The detailed discussion of these two areas is based on the decision 

level (tactical and operational level) for each function (production and distribution).  

 

Regular Integrated Production and Distribution Problem 

Much research has been conducted on the integrated production and distribution 

problem without considering the lifetime of the product. The integrated model reveals    

different levels of details for each of these functions depending on the level of decision 

making (strategic, tactical, or operational).  

For the strategic level integration model, the integrated production and 

distribution problem is considered under the explicit system, with the model analyzing 

only the strategic or tactical level decisions for both functions. This model usually 

integrates the production and distribution using a multiple plant and multiple customer 

scenario. The production cost for each plant, which is independent of the others, is 

usually represented by a concave function which is dependent on the amount of 

production at the plant. The distribution commonly uses a direct delivery strategy to 

transport the product from the plant to the customer, with the relative costs for one unit of 

product transported between the i
th

 plant and j
th

 customer being fixed. The total 

distribution cost changes based on the quantities assigned for the N plants and the M 

customers. The objective of this type of problem is to coordinate the production quantity 

in each plant and distribute the quantity between each plant and its customers to minimize 
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the total system cost, which is the sum of the total production and distribution costs. 

Palekar et al. (1990) investigated a branch and bound method to solve this integrated 

production and distribution problem with multiple plants and multiple customers. In this 

method, each plant has a limited capacity and the direct delivery and production costs 

between the i
th

 customer and the j
th

 plant are fixed. The system objective is to find the 

strategy that serves all customers while minimizing the total cost. Tuy et al. (1993) 

consider a similar problem using a 2 plant, M customer scenario. Unlike the previous 

research, the production cost is a concave function related to the amount of production at 

each plant. A polynomial time algorithm was proposed to solve the problem. In more 

recent research, Tuy et al. (1996) extended the previous model from two plants to 

consider a multiple plant scenario.  

Youssef and Mahmoud (1996) examined solution strategies for the production-

distribution problem by comparing several heuristic approximation algorithms, 

concluding that the trade-off between the transportation and production costs will lead the 

solution toward centralization. Kuno and Utsunomiya (2000) proposed a Lagrangian 

relaxation to generate improved bounds to accelerate the search for a solution using the 

branch and bound algorithm.  More details about this basic integrated model can be found 

in Vidal and Goetschalckx (1997) and Chen (2004). 

More recently, the research being conducted has included detailed production and 

distribution systems, some of which extends the production scheduling aspect by 

considering the classical Schedule Problem (SP) and the transportation component by 

considering an explicit system such as immediate direct delivery, fixed transportation 
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times or linear transportation costs. Potts (1980) provided a heuristic algorithm for a 

single machine scheduling problem with a fixed transpiration time, the objective being to 

minimize the total makespan (i.e. the latest time for all customer demand to be satisfied). 

Immediate direct delivery, infinite vehicle capacity and fixed transportation time were 

applied in this study. Similar models have been developed by various researchers using 

an explicit transportation system, for example, Hall and Shmoys (1992), Woeginger 

(1994, 1998), and Zdrzałka, (1995). Strusevich (1999) developed a heuristic algorithm 

for the two-machine, open-shop problem for minimizing the total makespan. The product 

transportation time between different machines is considered in this model, and the 

transportation decision is integrated into the production scheduling. Lee and Chen (2001) 

considered the transportation time both for production, which includes the time for the 

product to move between machines, and the distribution, which involves the delivery of 

the final product to the customer. A constraint limiting the capacity of the vehicles was   

applied in the model. Chang and Lee (2004) extend this research using three special cases: 

single machine, single vehicle and single customer; parallel machines, single vehicle and 

single customer; and single machine, single vehicle and two customers. They provided 

the heuristic algorithms and analysis of the worst case for each scenario. Li et al (2004, 

2005, 2006) and Zandieh and Molla (2009) investigated the issues involving 

synchronizing production and air transportation. Considering the capacity and time 

penalties, they modified the objective to minimize the total transportation cost rather than 

minimize the system makespan, but the transportation system remained explicit with 

direct delivery. 



 10 

Another focus of much research considers detailed scheduling of the distribution   

combined with the classical transportation Vehicle Routing Problem (VRP). In this 

scenario, the production is usually simplified by assuming either a fixed production rate 

for each period or instantaneous production. The production cost is commonly 

represented by the cost of the product and is often connected with the inventory and the 

out stock penalty costs. Chandra and Fisher (1994) considered a network with a single 

production center, multiple retailers, and several products. A fleet of vehicles was used to 

deliver the product to multiple retailers. For each period, the solution needed to determine 

the production quantity for each type of product and to schedule the vehicle routes for the 

entire fleet to meet all delivery demands. Multiple periods were considered in this 

research. The objective was to schedule the production and distribution to minimize the 

total cost of the production setup, transportation and inventory over multiple periods. 

Fumero and Vercellis (1999) extended this model by introducing limited production and 

distribution resources. They solved the problem using the Lagrangean relaxation method, 

comparing the integrated decision (a synchronized decision for the production and 

distribution schedule) and the separate decision (a sequential decision for the production 

and distribution schedule). Park (2005) extended this model to a multiple plant scenario, 

with a heuristic algorithm being provided for this integration problem with multiple 

plants, multiple items, multiple retailers and multiple periods. In addition, a sensitivity 

analysis was used to analyze the input variables. 

Detailed consideration of both the production and distribution result in the most 

complex combination of the integrated production and distribution problem. Given the 
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complexity of this problem, only a limited amount of research has been conducted in this 

area, most of it in the last few years. Garcia et al. (2004) investigated the integrated 

production and distribution problem using a multiple plant situation. Each plant had a 

fixed capacity and the product was delivered immediately once production was finished.  

The customers were separated geographically with independent orders associated with 

different profits and deadlines. A fixed number of vehicles were used to deliver the 

products among multiple customers and plants. The objective was to maximize the profit 

of the solution schedule considering both the profitable value of the served orders, the 

overdue penalty cost and the transportation costs. Chen and Vairaktarakis (2005) 

researched this integrated problem, applying it to the computer and food catering 

industries. A set of jobs were first produced in the production center and then delivered to 

the customer directly without holding intermediate inventory. The customer service level 

was measured by the amount of time needed to deliver the product to the customer. The 

purpose of the research was to find the solution schedule that optimized the objective 

function, which was the combined customer service level and transportation costs. 

Heuristic algorithms were developed and tested using several combination scenarios (i.e. 

single machine scenario and parallel machine scenario in production scheduling 

component and the maximum time or average time measurement for customer service 

level).  

 

Integrated Production and Distribution Problem with Perishable Product 
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Problems in this class are usually concerned with perishable products having a 

short lifetime. Most research in this area considers the loss cost of the perishable product 

in the inventory component, integrating the inventory decision into the system. The 

research reported here focuses on the integrated production and distribution problem 

without intermediate inventory consideration. The short lifetime requires that the 

production and distribution schedules be highly integrated, which, in turn, requires 

detailed consideration of each. A recent review by Chen (2009) describes this category as 

the most complex of the integrated production and distribution problems to model. 

Several recent researches on this problem had been conducted by Armstrong et al. 

(2008), Geismar et al. (2008) and Devapriya et al. (2008). 

Armstrong et al. (2008) considered a perishable item production and distribution 

problem with a single machine production and a single delivery vehicle serving multiple 

customers. All orders were delivered in a preplanned customer sequence, and the 

constraints included a constant lifespan for the perishable product and customer 

requirements regarding quantity and time windows within which the delivery was to be 

received. Since in this model all demands cannot be satisfied, the objective was to find 

the subset of the customers which could be served to maximize the demand that could be 

met. The authors showed that this problem is NP-hard, and a branch-and-bound search 

algorithm as well as a heuristic lower bound was developed. 

Similarly, Geismar et al. (2008) considered a system that includes a single 

machine and a single vehicle to produce and deliver the perishable product. The plant, 

which must satisfy all customer demands, has the flexibility to determine the sequence of 
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the production and distribution of each order. The customer does not have a time 

window, but the perishable product has a constant lifetime meaning every order must be 

delivered to the customer before it expires. The objective was to find the minimum time 

span that satisfied all customer orders. A two-phase heuristic method was proposed for 

this strong NP-hard problem.  

Devapriya et al. (2008) extended the work of Geismar et al. (2008) by considering 

a fixed time horizon and a limited fleet size of identical vehicles that can make multiple 

trips in a single planning horizon for distribution. As before, all orders must be satisfied 

within the time horizon. The objective was to determine the minimum fleet size, 

production and distribution schedules to minimize the total system distribution cost. The 

authors proposed two heuristics to solve this strong NP-hard problem. 

The research reported here extends Devapriya’s model in several aspects: first, it 

introduced non-identical vehicles into the model; with different types of vehicles 

(different capacity, fuel cost rate, rent fee), the model not only can find more optimal 

solutions but it is also closer to a real-world scenario. Second, the lower bound for the 

model was improved by considering the inner travelling distance in the vehicle travel trip. 

This improvement is significant as the number of customers increases. Third, the two- 

plant scenario was extended to a multiple plant scenario, which was found to be an NP 

problem even if the single plant scenario can be solved within the polynomial time. 

Fourth, several heuristic algorithms were developed to solve the problem and improve the 

efficiency and quality of the previous algorithm. Fifth, the model was analyzed using 
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scenario partition data. In addition, several suggestions for different scenarios are 

provided. 
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CHAPTER THREE 

SINGLE PLANT INTEGRATED PRODUCTION AND DISTRIBUTION SCHEDULE 

PROBLEM WITH A FIXED LIFETIME PERISHABLE PRODUCT 

 

Abstract 

The integrated production and distribution scheduling problem (IPDSP) is the 

generic name that has been attached to a class of make-to-order production problems in 

which the objective is to optimally coordinate the production scheduling and 

transportation routing problem so that costs are minimized.  This research adds the 

unique feature that the product is perishable. Specifically, products are assumed to be 

produced in batches and from the moment a batch is completed, there is a finite amount 

of time during which the product can be delivered to the customer and retain its 

usefulness. The objective is to determine the production scheduling and transportation 

routing (number of vehicles and routes for each) to satisfy a set of known customer 

demands distributed over a geographic region to minimize the total transportation cost.  

An integer programming model has been developed that includes the following practical 

assumptions: 1) there is a time horizon within which all demands must be satisfied, 2) 

several types of delivery vehicles are available to be used each with a unique capacity 

and cost, 3) vehicles may make multiple stops on a single trip and may make multiple 

trips within the time horizon. Small numerical examples with 7 customers or fewer are 

included that can be solved exactly with GUROBI, a commercially available optimization 

software. A lower bound is provided that considers the inner travelling distance between 
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customers and idle vehicle waiting time at the beginning of the time horizon. Finally, 

several heuristic algorithms are offered for larger problems (i.e. more than 7 customers) 

and their performance is compared to the optimal solution when possible and to each 

other for larger problems. 

 

Introduction 

Production, inventory, and distribution are three important topics in the design 

and control of a supply chain. Each of these is highly related to the others but, frequently, 

they are treated independently which can lead to high inefficiency in terms of excess 

inventory, long cycle times, and high total system cost. Integrating these decisions in the 

supply chain could simultaneously reduce the total cost of the supply chain; shrink the 

cycle time, and increase flexibility and efficiency. The Integrated Production and 

Distribution Schedule Problem (IPDSP)  not only integrates these two functions in the 

supply chain, it also implements a strategy of holding minimum inventory to simplify 

inventory decisions and makes the internal inventory operation of negligible cost when 

compared to the other items in the supply chain.  

This research focuses on the IPDSP problem but with the unique element that the 

product is perishable with a finite lifetime which we henceforth will refer to as IPDSPPP.  

This connection is motivated by the fact that a key feature of IPDSP is that the solution 

tends to reduce the total cycle time from production at a plant to delivery at the 

customer’s site and short cycle times have a significant impact on industries associated 

with perishable or time sensitive products. The value of the perishable product is 
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generally modeled in one of two ways: 1) a characteristic of the product is acceptable for 

a period of time during which is retains full value but after which it is unacceptable and 

must be scrapped, and 2) the characteristic’s quality degrades with time as does its value.  

Regardless, timely production and distribution is important in all industries but 

particularly so when perishable products are involved. 

Ghare and Schrader (1963) first introduced the perishable idea into the decay of 

inventory items. Since then, many papers have been published that include perishable 

products into the supply chain research area. According to Nahmias (1982), perishable 

products can be classified into two categories: fixed lifetime and random lifetime. Fixed 

lifetime products have a constant, finite interval of time after production during which 

time they can be used to satisfy customer demand. The lifetime is assumed to expire after 

this fixed time regardless of whether the product is held in inventory or in transit to the 

customer. The idea is that a product with age exceeding the lifetime possesses no value 

and cannot be used to satisfy customer demand. Random lifetime products perform 

exactly like fixed lifetime products except the lifetimes follow a probability distribution 

such as an exponential or Erlang, and the decays continuously and proportionally with 

time. In this case, the product expires and cannot be used to satisfy customer demand at 

different ages. 

IPDSPPP focuses on products with a short, fixed lifetime. Since the lifetime is 

limited, the production schedule and distribution plan must be highly integrated to ensure 

that all customer demand can be satisfied within the time horizon and all products can be 

delivered to the customer before it expires. Some decisions must be made to minimize the 
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total operation cost for the system such as the total number and type of the delivery 

vehicles to be used, the departure time of each delivery trip, the routing of each vehicle 

for every trip, and the plant production schedule and sequence. At the same time, the 

following practical assumptions are made to more closely model a real system: 1) there is 

a time horizon within which all demands must be satisfied, 2) there are multiple different 

types of vehicles used for delivery and each type has a unique capacity and cost structure, 

3) vehicles are allowed to make multiple stops on a single trip and make multiple trips 

within the time horizon. 

This research provides several significant features:  

 The non-identical vehicle assumption is considered in this research. Mixed fleet 

includes multiple types of vehicles (different capacities as well as different fixed costs 

and average cost per mile) are considered. 

 A new mathematical programming model is proposed that captures the IPDSPPP 

when vehicles with different capacities and costs can be used. 

 The lower bound of the solution has been improved by considering the inner 

travelling distance between customers and the vehicle idle time at the beginning of 

the time horizon. 

 A heuristic structure had been developed to solve the IPDSPPP problem. 

 Five heuristics algorithms have been developed to find approximate solutions to this 

problem. The performances of the heuristic algorithms have been compared. 

This chapter is organized as follow: section 2 is a brief literature review of the 

most relevant papers, section 3 provides details of the model, section 4 presents a few 
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numerical examples, and section 5 offers conclusions and recommendations for future 

work. 

 

Literature Review 

From the introduction it is clear that this research has a natural relationship with 

the vehicle routing problem (VRP) and its extensions. The VRP problem was first 

introduce by Dantzig, Fulkerson, and Johnson (1954) and has since received much 

attention. For example, Bodin (1975), Bodin and Golden (1981), Ronen (1988), Min, 

Jayaraman, and Srivastava (1998), Toth and Vigo (2002), Eksioglu, Vural and Reisman 

(2009) are reviews of papers in the VRP area. The first work to address multiple trips 

within the vehicle routing problem framework was Salhi (1987); this feature added 

significant realism and practicality to the basic problem. Later, Taillard et al. (1996) 

provide a tabu search algorithm to solve the vehicle routing problem with multiple trips 

using a bin packing algorithm to assign the routes into vehicles.  Brandao and Mercer 

(1998) consider a mixed fleet for the problem, a three phase heuristic (insertion, tabu 

search improvement, and restoring feasibility) to solve the problem. Petch and Salhi 

(2003) considered the problem with a fixed number of vehicles and an objective of 

minimizing the maximum tardiness for all vehicles. The vehicle routes are generated 

using a cost saving-based heuristic followed by local search to improve the solution. Jeon 

et al. (2007) present an adaptive, memory-based heuristic where “memory” is comprised 

of multiple route solutions.  
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In summary, this literature represents a wide range of models with differing 

parameters and scenarios as well as approaches to finding a solution.  It is important to 

note that all of these papers focus exclusively on transportation operations and do not 

integrate it with production scheduling.  As such, they provide valuable support for this 

work but the actual overlap in the research problem is minimal. 

The problem more closely related to this research is the IPDSP which has been 

the focus of some previous research. Vidal and Goetschalckx (1997), Sarmiento and Nagi 

(1999), Bilgen and Ozkarahan (2004) and Chen (2004, 2009) provide reviews of the 

research in this area. Since the problem is complex, earlier research tended to focus on 

the high level decisions for production and distribution as pointed out in the earlier 

review papers by Vidal and Goetschalckx (1997) and Sarmiento and Nagi (1999). Later 

research extended these ideas to a more detailed level for the production and distribution 

functions. It is noteworthy that most of the previous work does not focus on operational 

level decisions. Some consider only strategic or tactical level decisions for production 

and distribution while others have one part operational and the other tactical. Chen (2004, 

2009) points out that only a few papers consider the IPDSP with both parts at the 

operational level; the number is even smaller when considering a perishable product.  The 

most recent papers on IPDSPPP are contributed by Geismar et al. (2008), Armstrong et al 

(2008), and Devapriya (2008). 

Geismar et al. (2008) considered the problem with a single machine for 

production and a single capacity vehicle to deliver a single type of perishable product. 

The plant is assumed to have a fixed capacity and there is an unlimited time horizon to 



 21 

satisfy all customer demands. Customers do not have time windows for delivery but the 

perishable product has a fixed lifetime which restricts the distance that a vehicle can 

travel because the product must be delivered to customers before its lifetime expires. 

Beyond the travel time limitation for the delivery trip, the total quantity for one trip 

cannot exceed the vehicle capacity. The objective is to find the minimum time span to 

satisfy all customers’ demand. A two-phase heuristic method and lower bound are 

proposed for this strongly NP-hard problem. 

Armstrong et al. (2008) consider a similar scenario with a single machine, single 

delivery vehicle, multiple customers and a perishable product. The difference is that they 

assume that all orders are delivered in a preplanned sequence and the total customer 

demand is beyond the plant’s capacity. Also, the product, with a constant lifetime, needs 

to be delivered to the customer before it expires within their time windows. The objective 

is to find the subset of the customers which can be served to maximize the demand that 

can be met. The authors show that this problem is NP-hard and a branch-and-bound 

search algorithm as well as a heuristic lower bound is developed. 

Devapriya (2008) extended this research with a single machine, multiple vehicles, 

multiple customers and a fixed time horizon. He assumed that the vehicles used for 

distribution can make multiple trips as long as all orders are satisfied within the planning 

horizon. The objective is to determine the minimum fleet size, their route and the 

production schedule to minimize the total system distribution cost. Two heuristics are 

proposed to solve this strongly NP-hard problem. 
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Mixed Integer Programming Model for the IPDSPPP 

Mathematical Model 

The problem addressed in this research is a single-period, finite planning horizon 

scenario with a single production plant P that produces products which are delivered to n 

customers in a multi-customer, supply-dispatching network; hence, this problem is a 1-to-

n network. The following notation is used in the model: 

Indices: 

N’  = {1,…,n}  the set of n customers 

N   = {0,1,…,n} the set of n customers plus the single plant identified as 0 

S    = {1,…,s}  the set of s different types of vehicles 

T    = {1,2,…,H} time periods up to the planning horizon, H 

Parameters: 

r   = fixed plant production rate (units/unit time) 

H   = planning time horizon (unit time) 

B  = constant lifetime of the final product (unit time) 

qi  = the demand of customer i, where 'i N  (units) 

Cs  = capacity of the s
th

 type of vehicle,  s S (units) 

Fi  = fixed dispatch cost per s
th

 type of vehicle, s S ($/vehicle) 

Ri  = traveling cost per unit distance with s
th

 type of vehicle, s S ($/unit distance) 

,i j    = traveling time between customer/plant i and customer/plant j, , 'i j N  (time) 
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The plant produces the final product for customers and is responsible for 

delivering the product to each customer’s location. Production occurs in batches and the 

product is perishable which, in this case, means that the final product has a fixed lifetime 

that begins immediately after production of a batch is completed. The product can only 

be used to satisfy customer demand before expiration, and there is no salvage value for 

the expired product. Obviously, this implies that delivery of the product must be 

completed before the lifetime expires. It is further assumed that all customer demand 

must be satisfied before the end of the planning horizon and that the plant has a fixed 

production rate that is sufficiently large to satisfy all customers demand within the 

planning horizon. 

A fleet of non-identical vehicles is used to distribute product to customer 

locations and each vehicle must finish all delivery and return to the original plant within 

the time horizon. A vehicle’s trip begins at the plant P (location 0), visits every customer 

on the trip, and then goes back to the plant P at the end of the trip. Each customer’s 

demand is assumed deterministic and known. Split delivery is not allowed; that is, 

demand at each customer location must be accomplished by one vehicle during one stop. 

This implies that the demands at each customer are restricted to the capacity of the 

vehicle with the largest capacity, and it is also assumed that at least one customer has a 

demand small enough for the smallest capacity vehicle to satisfy it, i.e. min mins i
s S i N

C q
 

  

and max maxs i
s S i N

C q
 

 .  

Several additional assumptions are made related to the vehicles: 1) the time 

required to load and unload the product is not considered. 2) All vehicles travel at a 
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constant speed which is 1 unit distance/unit time.  Note that this assumption simplifies 

the computation examples but does not limit the generalizability of the model. 3) 

Vehicles can make multiple trips as long as all constraints can be met such as the delivery 

before product lifetime expires and the trip can be completed and the vehicle returned to 

the plant before the end of the planning horizon.  

The objective in this research is to minimize the total transportation cost while 

ensuring that all customers’ demands are satisfied. Intuitively, this will require 

simultaneously making decisions on the type and number of vehicles used to deliver the 

product and relative vehicles’ travel routes. At the same time, there are constraints on 

vehicle capacity, product lifetime, and the deadline of all deliveries accomplished within 

the time horizon. Hence, the model must simultaneously consider the production 

schedule, fleet size, type of vehicles in the fleet, route of each vehicle, and the sequence 

of the deliveries. 

The ability for all vehicles to make multiple trips within the time horizon adds 

complexity to the problem. Since the customer locations and demands are known a 

priori, the travel time from P to all possible first customers, 
0,i , 'i N , and the travel 

time from customer/plant i to customer/plant j,  
,i j , ,i j N , {0,1,2,..., }N n

 are known. 

A practical implication is that all customers’ demands must be met so a constraint is that 

it be possible for a truck to travel to each customer before the product lifetime expires, or 

0,i B  , 'i N  . Also, all customer demand must be produced within the time horizon, 

or 
'

/i

i N

q r H


 . Finally, after a vehicle delivers to the last customer in the route, it is 
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required to return to the plant before the end of the time horizon so there is another 

limitation related to the planning horizon, namely, 
0,

'
'

2min /i i
i N

i N

q r H




   . 

It is assumed without loss of generality that all vehicles keep a constant speed 

equal to 1 unit distance/unit time. With this assumption, different types of vehicles will 

use the same time but different variable cost to finish the same delivery trip. 

 

To formulate a mathematical model the following definitions are made: 

Decision variables: 

s i j k mX  = 1 if m
th

 vehicle of type s visits the customer j immediately after customer i on its 

k
th

 trip, 0 otherwise. , , , 'i j N and k m N   

k mtP  = 1 if the plant is producing for the k
th

 trip of m
th

 vehicle at time epoch t, 0 

otherwise. , , 't T and k m N   

s my  = 1 if the m
th

 vehicle in type s is used for delivery, 0 otherwise. ',m N s S   

s k mZ  = 1 if the m
th

 vehicle of  type s is used for k
th

 trip, 0 otherwise. , 'k m N  

d

s m tt  = Distribution start time of the k
th

 trip of the m
th

 vehicle of type s, , 'k m N  

d

s m tt  = Production start time of the k
th

 trip of the m
th

 vehicle of  type s, , 'k m N  

ie  = Arbitrary real numbers to eliminate sub-tours. 'i N  
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With these variables, the following model is proposed for the IPDSPPP problem: 

   
' ' '

s i j k m i j s s sm

s S i N j N k N m N m N s S

Min X R F y
      

       

:Subject to  

, ',s i j k m j s

i N j N

X q C k m N s S
 

           (1) 

' '

1 ',s i j k m

i N k N m N

X j N s S
  

           (2) 

' '

1 ',s i j k m

j N k N m N

X i N s S
  

           (3) 

0

' ' '

',s j k m s k m

j N k N k N

X Z m N s S
  

           (4) 

0

' ' '

',s i k m s k m

i N k N k N

X Z m N s S
  

          (5) 

, , ',s i j k m s jik m

i N i N

X X m k j N s S
 

          (6) 

 1 1 , , , ',i j s i j k me e n X i j k m N s S             (7) 

1 'ms

s S

y m N


           (8) 

, , , ',s i j k m s mX y i j N k m N s S          (9) 

, , , ',s i j k m s k mX Z i j N k m N s S          (10) 
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' '

1
, ',d p

s k m s k m s i j k m j s i j k m i j

i N j N i N j N

t t X q X B k m N s S
r


   

 
         
 

   (11) 

'

, ',d

s k m s i j k m i j

i N j N

t X H k m N s S
 

           (12) 

'

1
, ',p d

s k m s i j k m j s k m

i N j N

t X q t k m N s S
r  

          (13) 

1

'

, '\ { },d d

s k m s i j k m i j s k m

i N j N

t X t k m N n s S 

 

          (14) 

1

'

1
, '\ { },p p

s k m s i j k m j s k m

i N j N

t X q t k m N n s S
r



 

         (15) 

' '

1s k m t

s S k N m N

P t T
  

           (16) 

'

1
,s k m t s i j k m j

t T i N j N

P X q t T s S
r  

           (17) 

 1 , ', ,p

s k m s k m t s k m tt t P M P k m N t T s S            (18) 

'

1
, ', ,p

s k m s i j k m j s k m t

i N j N

t X q t P k m N t T s S
r  

           (19) 

0 , ',siik mX k m N i N            (20) 

Constraint (1) is the vehicle capacity constraint for each trip. Constraints (2) and 

(3) ensure the each customer will be visited once and only once. Constraints (4) and (5) 

force each vehicle to have the same number of entry plant time and leave plant time, 
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which is also equal to the complete trips time (i.e., leave plant  deliver product to one 

or more customers  return to plant) as the vehicle had been assigned to. Constraint (6) 

is the connection constraint for each trip, it ensures that there is no break inside of each 

trip. Constraint (7) is the sub-tour elimination constraint. Constraints (8), (9) and (10) 

restrict each vehicle to be of only one type and enforce this on the route-defining 

variables. Constraint (11) ensures that a delivery is finished before the product expires 

and (12) forces every delivery to be completed before the time horizon ends. Constraints 

(13) and (14) ensure that a delivery cannot begin before the product is ready and that the 

delivery truck cannot start a new trip until it has returned to the plant from its previous 

trip.  Constraint (15) forces production in the sequence of delivery and forbids 

preemption. This constraint forbids other high priority batch stop current production 

batch with low priority and produces the new batch with higher priority instead.  

Constraint (16) restricts the plant to only produce one batch at any given time period. 

Constraint (17) ensures the plant productivity level will not exceed it maximal 

productivity level. Constraints (18) and (19) together ensure the plant continues to 

produce one batch until the entire quantity required for a trip is completed. Constraint 

(20) prevents a vehicle to from cycling which means traveling does not begin and end at 

the same customer. 

 

Numerical Examples 

Even a cursory review of the model indicates that the number of variables and 

constraints will increase quickly as the number of customers increase. To explore this a 
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bit further with the goal of solving smaller problems to optimality, consider the decision 

variables, 
siik mX , that are used to determine the route of each vehicle for each trip. The 

total number of route decision variables will increased according to the customer number, 

n, with the rate of n
4
. For the constraints related with the route decision variable, such as 

s i j k m j s

i N j N

X q C
 

  , the total number of constraints will increase with the rate of n
2
. 

The IPDSPPP problem is an extension of the VRP problem; hence, the IPDSPPP problem 

is an NP-hard problem. Specifically, consider the problem when the product lifetime 

equals the time horizon and the plant production capacity is very large (i.e. compared to 

the transportation time, the production time is negligible).  In this case, the optimal 

solution for the IPDSPPP problem is the solution for the VRP problem with multiple trips.  

The added features of the IPDSPPP problem in this research do not impact this core 

observation so the model here is also NP-hard.  

To perform computational studies, it is possible to solve problems with a small 

number of customers to optimality using software, such as GUROBI and CPLEX. An 

experimental study was conducted to determine the maximum number of customers that 

could be included and have the model find an optimal solution with for a given hardware 

and software configuration. Examples were generated for 3, 4, 5, 6, 7, 8, 9 10, 15 and 20 

customers that consist of randomly generated customer demands and randomly generated 

locations on the 2-dimensional surface representing the feasible delivery area around the 

plant. This randomly generated data is checked to ensure all the basic assumptions are 

satisfied and subsequently modified if they are not. For example, the demand for each 

customer is restricted to be smaller than the maximum capacity of the largest truck so that 
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all demands can be satisfied in a single trip. Also, the total customer demand is less than 

the total capacity of the plant during a time period that allows deliveries to be made.  

There is one additional adjustment to the data that adds to the richness of the problem, 

namely, at least one customer has demand that can be satisfied by the smallest capacity 

vehicle. 

AMPL and Gurobi 3.0 were used to solve the integer program with a Dell 

workstation computer (Dell Optiplex 755; 2.33G Hz Intel Core 4 Duo CPU with 4096 

gigabytes dual channels memory). When the software is allowed to run until stopped by 

the default settings of the MIP gap being less than 0.0001 or some other interrupt such as 

out of memory, the ten examples took an average of 7 hours to find a solution or 

terminate. The MIP gap is computed as: 

        
                                                             

                             
 

These results are presented in Table 3.1. The ten examples were rerun using the 

same termination conditions and the additional condition of no more than an elapsed time 

of 1 hour.  The data from these runs are also shown in Table 3.1 and can be compared 

with the first set. Two figures are generated from this data - Figure 3.1 shows the total 

number of variables and constraints in the datasets and Figure 3.2 shows the MIP gap 

when forced to terminate in 1 hour (elapsed time) and when allowed to terminate on the 

internal default settings or interrupt (e.g. out of memory). Notice that the optimal solution 

can be found for problems with up to 7 customers; however, beyond this the optimization 

software terminates because of out of memory. 
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Figure 3.1: Number of Constraints/Variables of MIP Model of IPDSPPP for 10 Problems 

 

 

 

Figure 3.2: MIP Gaps with and without Time Limits for MIP Model of IPDSPPP for 8 
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Table 3.1: Computational Results for IPDSPPP with MIP Model for 10 Problems 

Number of 

Customers 

Planning 

Horizon 

Number 

of 

Variables 

Number 

of 

Constraints 

Gap % 

w/o Time 

Limit 

Soln. 

 

Time 

(sec) 

Gap % 

w/ 1hr 

Limit 

Soln. 

w/ 1hr 

Limit 

3 100 2170 4557 0 626.4 3 0 626.4 

4 150 5741 12036 0 680.0 11264 31.35 680.0 

5 150 9516 20217 0 580.0 37405 38.28 580.0 

6 150 14635 31634 0 675.3 8565 35.97 675.3 

7 150 21386 47115 0 774.5 99028 31.44 774.5 

8 150 34329 63408 39.18 1036.3 79388 51.58 1049 

9 150 48223 87254 42.03 1029.8 78693 43.02 1047.8 

10 150 63231 120182 46.37 1099.8 76324 83.60 1326.8 

15 250 262621 521172 n/a 
Out of 

Memory 
- n/a 

Out of 

Memory 

20 250 556061 1417112 n/a 
Out of 

Memory 
- n/a 

Out of 

Memory 

 

These numerical examples show us that the mixed integer programming model of 

the IPDSPPP problem can be solved for an optimal solution with the fleet size, vehicle 

type, routing sequence, delivery time schedule and plant production schedule. The MIP 

model sizes growth quickly when the number of customers increased. At the same time, 

the solving time for the optimal solution takes an approximate average 7 hours. Most 

important, the exactly optimal solution only can be found when there are 7 or less 

customers in the system under current software and hardware. Most real problems 

contain more than 8 customers and this issue is addressed in the next section. 

 

Heuristic Algorithms for the IPDSPPP  

Heuristic Approach Structure for the IPDSPPP 

Recall that the IPDSPPP problem falls within the class of nondeterministic 

polynomial-time hard problems (NP-hard problem). This means that all known 
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algorithms that define an optimal solution require exponentially increasing computational 

time as the number of customers increase; therefore, heuristic methods which provide 

approximate solutions are justified and are required for realistic sized problems.  In the 

previous section, it was shown that exact solutions to the MIP model can only be found 

for situations involving 7 or fewer customers and a feasible solution could not be found 

for 20 customers.  To extend this work to more realistic problems, several heuristic 

approaches are now proposed to find approximate solutions to IPDSPPP problem.  

 

Introductory Example 

It has been established that the optimal solution for the IPDSPPP problem needs 

to determine the production schedule and distribution schedule simultaneously, but this 

makes the problems extremely complex. Because of the perishable property of the 

product, it is clear that, in general, production of a batch of product will end relative near 

when distribution begins; however, production for customers located near the plant could 

take place in advance as long as the holding time at the plant plus the transportation time 

does not exceed the product lifetime. Since the production and distribution schedules are 

so tightly coupled, slightly changing the production sequence will dramatically affect the 

distribution schedule which can lead to dramatically different solutions. To illustrate the 

solution of IPDSPPP problem, consider the following example. 

 

Example 3.1:  Consider an IPDSPPP problem with 2 types of vehicles and 6 customers 

(n=6) with the following values of the model parameters: C1=10, C2=7, R1=1, R2=0.7, 
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B=9, H=35, r=1. Customer demands are q1=3, q2=3, q3=5, q4=2, q5=4, q6=3, and the 

travel time matrix is shown in Figures 3.3. 

Plant

Customer 1

Customer 2

Customer 3

Customer 4

Customer 5

Customer 6

4

7

6
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8
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8
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4

7

4

5

9

5

 

Figure 3.3: Travel Time Matrix for Example 3.1 

 

Figures 3.4 and 3.5 illustrate a feasible solution for the Example 3.1. To facilitate 

discussing this solution, define the following: 

Batch: It is assumed that the plant can combine the demand of one or more customers 

together for production as long as it does not exceed the plant’s capacity. This is a batch.  

The production time for a batch increases linearly with the demand. The lifetime of all 

products in a batch begins at the same time coinciding with the time that the last product 

in the batch is completed. All demands in one batch will be delivered with one vehicle 

with one route.  

Production Permutation (σ): This is the production sequence for customer orders in the 

plant and all orders, which represent the demand for one customer, must be produced in 

the order in which they appear in the production permutation. As such, a feasible 

production permutation for an n customer problem is an ordered list which includes 

numbers from 1 to n, and each number i represents the customer i. For instance, σ = <2, 
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4, 3, 1> is a feasible production permutation for the 4 customer problem. σ(i) is the i
th

 

customer in the production permutation, i.e. σ(1)=2. It is assumed that batches can be 

formed only using customer demands that are consecutive in the production permutation. 

To illustrate, consider the production permutation σ = <6, 3, 2, 4, 5, 1> from Example 

3.1.  This means that the demand for customer 6 is produced first, customer 3 second, and 

so forth. Further, customer 6, 3 and 2 can be combined together to be a batch. But the 

customer 6 and 2 are not able to be produced in one batch if the customer 3 is not 

included in that batch. Note that the total possible number of production permutations 

with n customer is n!.  

Trip: This is a delivery route executed by a single vehicle of a specific type.  It starts at 

the plant, delivers all customers product in the batch, and ends at the plant. The trip 

follows the sequence of customers in a product permutation. Hence, trips are generated to 

include the customers to be satisfied in the order specified by the product permutation 

and including the information on the required vehicle type. For example, identifying the 

plant as location 0, a trip for a type 1 vehicle in Example 3.1 with the production 

permutation σ = <6, 3, 2, 4, 5, 1> is 030. Type 2 vehicle with the same route 

030 is considered as another trip.  

Trip Delivery Time: The time duration beginning when the delivery vehicle departs the 

plant and ending when it delivered the product to the last customer in the trip. 

Trip Travel Time: The time duration beginning when the delivery vehicle departs the 

plant and ending when it finishes the route by returning to the plant. That is, it is the trip 

delivery time plus the travel time from the last customer to the plant.  
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Feasible Trip: A feasible trip is one that meets all of the requirements including the 

capacity constraint, lifetime constraint and delivery rules. That is, if the amount of 

product required for a trip exceeds the vehicle capacity or the trip delivery time is longer 

than the product lifetime, the trip is infeasible. 

Feasible Trip Set (φ): The set of all feasible trips from a given production permutation. 

Table 3.2 provides the feasible trip set for Example 3.1 with production permutation σ = 

<6, 3, 2, 4, 5, 1>. 

Table 3.2: Feasible Trip Set for Example 3.1 with Production Permutation σ = <6, 3, 2, 4, 

5, 1> 

Trip 

name 

Included 

customers 

Delivery 

Route 

Vehicle 

Type 

Vehicle 

Load 

Delivery 

Time 

A1 6 0→6→0 1 3 5 

B1 6,3 0→6→3→0 1 8 8 

C1 3 0→3→0 1 5 4 

D1 2 0→2→0 1 3 4 

E1 4 0→4→0 1 2 4 

F1 4,5 0→4→5→0 1 6 7 

G1 5 0→5→0 1 4 5 

H1 1 0→1→0 1 3 4 

 
 

    
A2 6 0→6→0 2 3 5 

C2 3 0→3→0 2 5 4 

D2 2 0→2→0 2 3 4 

E2 4 0→4→0 2 2 4 

F2 4,5 0→4→5→0 2 6 7 

G2 5 0→5→0 2 4 5 

H2 1 0→1→0 2 3 4 

 

Trail (ρ): A list of feasible trips from the feasible trip set with a fixed order that satisfies 

all demands within the time horizon. The trail must contain trips that cover all customers 
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once and only once. At the same time, the customer sequence delivered by trips in the 

trail match the customer sequence in the production permutation. To illustrate, a trail for 

Example 3.1 is ρ = <B1, D2, F1, H2> because B1 covers customers 6 and 3, D2 covers 

customer 2, F1 covers customers 4 and 5, and H2 covers customer 1. This can be seen in 

Table 3.2. Hence, this trail covers every customer once and only once and maintains the 

same customer sequence as in the production permutation, σ = <6, 3, 2, 4, 5, 1>.  

 

In closing this discussion about Example 3.1, note that Figures 3.4 and 3.5 

illustrate a feasible solution. The production permutation for the solution is σ = <6, 3, 2, 

4, 5, 1>. 6 customers are delivered using 4 trips in the trail ρ = <B1, D2, F1, H2>.  This 

trail uses 2 vehicles (one Type 1 vehicle and one Type 2 vehicle) and each vehicle makes 

2 trips within the time horizon. The batch production schedule along with the distribution 

time schedule and trip delivery routes are presented for this feasible solution in Figure 

3.5. The solution includes the production time schedule for each batch and its sequence, 

the delivery time schedule for each vehicle, their delivery trips in the horizon, the routing 

sequence in each trip and the type for each delivery vehicle. 
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Figure 3.4: Customer Locations and a Distribution Routes Plan for Example 3.1 
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Figure 3.5: A Feasible Solution for Example 3.1 

 

Notation and structure of the heuristic algorithm 

Figure 3.5 illustrates the important fact that feasible solutions to IPDSPPP have 

tightly coupled production and delivery schedules. Any change in the production 

schedule can not only affects the production batch size but also impacts the delivery route 

and dispatch time schedule, and eventually affect the final transportation cost. This 

observation motivates the main idea for the heuristic algorithms; namely, first create the 

initial production schedule, then generate the distribution routes based on the initial 
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production sequence, and finally generate the distribution schedule and refine the 

production schedule simultaneously. This approach is translated into a general structure 

that will be applied to develop heuristics that find approximate solutions for the IPDSPPP 

problem. Figure 3.6 shows the basic hierarchy of decisions in the heuristic algorithm for 

IPDSPPP problem. 

Initial Production 

Scheduling

Routing

Simultaneously refine 

production scheduling and 

build distribution schedule 

Step 1:

Assigning initial plant production 

schedule

Step 2:

Assigning customers to routes

Step 3:

Assigning routes to vehicles and 

refine the production schedule

IPDSPPP

 

Figure 3.6: The Basic Hierarchy of Decisions in the Heuristic Algorithm of IPDSPPP 

 

To implement the decision hierarchy shown in Figure 3.6, two elements need to 

be carefully designed: 

1) As shown in Figure 3.6, the solution of the IPDSPPP is generated from the production 

schedule. Hence, a search technique is needed in step 1 that effectively explores the 

possible outcome space of the initial production schedules to find improved solutions.  
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2) A way to interpret the initial production schedule to a result schedule (steps 2 and 3) is 

also required. Recall the feasible solution in Example 3.1, a feasible solution, in general, 

contains more information than just a production schedule. The initial production 

schedule must conform to all rules and constraints before it becomes a feasible solution. 

So, the way to interpret the initial production schedule is also very important. 

 From these ideas, a detailed heuristic algorithm decision flow chart for the 

IPDSPPP problem is shown in Figure 3.7. A production permutation is used as the initial 

production schedule. The classical approach “routes first, cluster second” is used to solve 

the distribution schedule.  

As shown in the Figure 3.7, the heuristic decisions are divided into 6 steps that 

can be grouped into 2 large parts: 1) the interpret part and 2) the random improvement 

part. The random improvement part focuses on the initial production scheduling decisions 

and it includes step 1, 5, 6 and the loop structure. The Interpret part focuses on the 

routing decision, refining the production schedule, and building distribution schedule 

decisions. It includes step 2, 3 and 4.  

The heuristic works in the following sequence. First, the random improvement 

part randomly generates a production permutation and passes it to the interpret part. By 

passing through steps 2, 3 and 4 in the interpret part, the production permutation is 

interpreted into a solution, possibly infeasible, for the IPDSPPP problem. Then the 

solution is sent back to the random improvement part to check the feasibility. The 

feasible solution will be compared with the current best solution and saved if it is better. 
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Then a new production permutation is generated to start another loop if the stop criteria 

had not been met.  

The next section introduces more details about the random improvement part and 

the interpret part. 
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Step 2:
    find all feasible trips from the permutation and 
build the feasible trips set

Step 3:
    find one trail by the permutation and the feasible 
trips set

Step 4:
    build the solution (production schedule and 
delivery schedule) from the chosen trail

Step 1:
    get a feasible production permutation

Meet the stop criteria?

No

FinishedYes

Is the solution feasible

Step 5:
    calculate the objective of final solution. Keep the 
current best solution.

Yes

Start

Step 6:
    get new product permutations from current 
product permutation.

No

Interpret
Part

Random Improvement 

Part

 

Figure 3.7: Heuristic Algorithm Decision Flow Chart for the IPDSPPP 
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Random Improvement Part with Simulated Annealing Algorithm 

The function of the random improvement part is to search for production 

permutations that can produce better feasible solutions by the interpretation process 

progresses. As mentioned previously, the total number of production permutations for an 

n customer system is n!, so complete enumeration would also require a nondeterministic 

polynomial amount of time. Hence, a search technique is justified to find a production 

permutation that might lead to a better solution from a previous iteration.  In this research, 

a simulated annealing (SA) search methodology is used.   

SA is a probabilistic based search technique inspired from the annealing of metals 

which uses heating followed by controlled cooling to improve some of the material’s 

properties such as strength and hardness. SA uses the concepts of states, temperature, 

energy, and cooling function to mimic some of the physical process of annealing. In 

general, the SA search wants to make a random movement searching for a minimum 

system energy level. At the very beginning, the system will have an initial state and 

temperature (T). Each movement will change the system from current state to another 

state. At the same time, each movement will consume heat and reduce the system 

temperature (T) by the cooling schedule T(k), where k is the total number of movements 

from the initial state. The whole search is stopped when the temperature is lower than 

then frozen temperature (Tf). The current state (s) saves the current state of the system. 

The energy function maps each state (s) to a system energy level (e), e=E(s). The 

objective of the SA algorithm is to find the minimum system energy level. To do so, the 

SA algorithm will first make a random movement to find a neighbor state (s’) from the 
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current state (s) by using the neighborhood function, s’ = N(s). A new system energy 

level (e’), e’=E(s’) is computed and the difference of two system energy levels (ΔE) is 

calculated, ΔE=e'-e. If the system energy level is reduced at the new state, i.e. ΔE<0, the 

system will accept the movement and save the new neighbor state (s’) as the current state 

(s). If the system energy level is not reduced, i.e. ΔE>0, there is still a possibility that the 

movement is accepted. This is controlled by P(e,e',T), the transition probability function 

which is a special feature of SA. Since the objective of the SA search is to seek the 

minimum system energy level, the transition probability allows the system accept a 

“worse direction”, that is, a movement that increases the system energy. This strategy 

helps the search avoid getting stuck at the local optimum. Although the immediate move 

with this method might not always beneficial, but it provides a chance to get better 

solution than current local optimum. For example, Figure 3.8 illustrates this idea because 

if the SA algorithm only accepts a movement from the current state to lower energy state 

such as the movement from s to s”, it will always reject the movement from s to s’ which 

provides the chance to reach the global optimum.  

Figure 3.9 is the pseudo code for the general concept of simulated annealing 

search algorithm, and the functions might vary in different implantations. 
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Figure 3.8: Example of State Movement for SA Algorithm 

 

Define an initial temperature T, a frozen temperature Tf. 

Define a cooling schedule T(k).  

Compute the objective value e=E(s) for current solution s. e.g. direct 

transportation 

k = 0 

while (T > Tf) { 

        randomly get one neighborhood s'=N(s) from current solution s 

        Compute the energy e'=E(s') for the solution and calculate the ΔE= e' - e 

        If (ΔE < 0) 

        Then 

                Accept the new solution s', do the transition 

        Else 

                Accept the new solution s' with probability P(e,e',T) 

         k = k + 1 

         T = T(k) 

} 

 

Figure 3.9: Pseudo Code of the Simulated Annealing Algorithm 
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In this research, system energy is the total system transportation cost. The 

production permutation encodes the system state. The interpret part is the calculation 

function for the system energy. In every iteration, a new production permutation will be 

generated from current production permutation. After the interpret part, the new 

production permutation will be accepted or discarded. For sure, if the new production 

permutation can create a feasible schedule and provide lower transportation cost, it will 

be accept immediately. Also, if the new production permutation leads to a infeasible 

schedule, the new production permutation will be discarded. Furthermore, if the new 

production permutation leads to a feasible schedule but increase the system total 

transportation cost, it will be accept will probability of P(e,e',T) and be discarded with 

probability of 1 - P(e,e',T). The accepted production permutation will replace the current 

production permutation, while the discarded production permutation is not been recorded. 

The new production permutation is always generated from current production 

permutation by randomly chosen neighborhood function.  

A neighbor of the current production permutation   is a new production 

permutation '  which has a minor difference from the current production permutation in 

some certain way, such as a different sequence of customer sequence. The neighborhood 

function, ( )N  , is the function that randomly generates a new production permutation '  

from current production permutation  , ' ( )N  . In this research, two neighborhood 

functions are used to identify neighbors: 1) swap, and (2) move. The swap function 

generates a neighbor of the current production permutation by swapping two customers in 

the original production permutation. The move function generates a neighbor of current 
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production permutation by moving the i
th

 position’s customer to the j
th

 position. The 

customers between i
th

 and j
th

 position will move forward or backward 1 position to fill the 

vacant positions created by moving the i
th

 customer. To ensure that a neighbor is 

generated randomly, the selection of neighborhood functions and relative parameters for 

each movement is random chosen. Figure 3.10 displays two neighbors for the production 

permutation σ = <6, 3, 2, 4, 5, 1>, one generated by each method. 

 

σ = <6, 3, 2, 4, 5, 1> σ' = <6, 5, 2, 4, 3, 1>
swap 2

nd
 and 5

th
 customer

σ" = <6, 5, 3, 2, 4, 1>σ = <6, 3, 2, 4, 5, 1>
move 5

th
 customer to 2

nd
 position 

 

Figure 3.10: Two Neighbors of Production Permutation σ = <6, 3, 2, 4, 5, 1> 

 

Interpret Part with Different Heuristic Algorithms 

The previous sections focused on the random improvement part use the SA 

algorithm and now attention is turned to the interpret part that converts the production 

permutation into a feasible solution including both the production schedule for the plant 

and distribution schedule for the delivery fleet. 

In general, all heuristics discussed in this section follow the decision flow chart 

shown in Figure 3.11. First of all, the feasible trips set will be built based on the 

production permutation. In this step, all customers will be divided into different trips. In 

each trip, the product lifetime constraint is satisfied, which means that if the product is 

delivered immediately after finishing production, every customer can get the qualified 



 48 

product in time. Also, the vehicle capacity constraint is guaranteed in each trip. Then, a 

trail will be selected which includes a group of feasible trips from the feasible trip set. 

This group of trips in the trail must cover every customer once and only once. Also, the 

production schedule for each trip must follow the sequence in production permutation. 

After that, the number of vehicles and the type for each will be estimated and all trips in 

the trail will be packed into these vehicles. By considering the basic rules, such as batch 

production must be finished before delivery can commence, the distribution routing and 

the production schedule are built simultaneously. Since we need to finish all delivery 

before the fixed time horizon, a refine process is followed to make the production and 

distribution schedule more compact without violating the product lifetime constraint. 

After that, a solution of the problem is created and the feasibility of the solution will be 

checked. A feasible solution means that all customer demand is delivered to customer 

place before product lifetime expired and all delivery vehicles return to the plant before 

the end of time horizon. If a feasible solution cannot be found with current estimated 

number of vehicles, the algorithm either increases the number of vehicles by 1 or 

indicates that there is no feasible solution. The latter is deduced by checking if the current 

number of vehicles is equal to n.  If it is, then no feasible solution exits for the production 

permutation because n customers cannot be delivered by n vehicles. Once a feasible 

solution had been find or no feasible solution had been conclude, the interpret part is 

finished. The result (feasible/Non-feasible solution) will be passed to the random 

improvement part. 
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Step 1:
    Find the feasible trip set from the production permutation.
   (ensure product lifetime constraint and capacity constraint)

Step 2:
    Find a trail by the permutation and the feasible trips set.

Step 3:
    Estimate used vehicle number of each type for the solution.

Step 4:
    Simultaneously build initial distribution schedule and 
production schedule.

Step 5:
    Refine distribution schedule and production schedule in 
step 4. Generate the a solution for the problem.

Is this solution feasible?

(check time horizon constraint)

Used vehicle number

 meet the UB of the

 vehicle number?

No

Finished with a infeasible solutionYes

Step 6:
        Increase the number of used vehicles.

No

Finished with a feasible solutionYes

Production permutation and other 

parameters input

 

 

Figure 3.11: Basic Hierarchy of the Decisions in Interpret Part 
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1.  Find the feasible trip set form the production permutation 

This is the first step in the heuristic. Recall the definitions; the production 

permutation is the production sequence for all customer orders in the plant. The feasible 

trip is a delivery route executed by a single vehicle of a specific type, follows the 

sequence of customers in a product permutation, and meets all requirement of capacity 

constraint, lifetime constraint and delivery rules. As such, the production permutation 

limits the delivery sequence for the trip; the lifetime constraint limits the length of the 

trip; the capacity constraint limits the load of the trip; and the delivery rule (i.e. direct 

delivery) limits some other properties of the trip. To better illustrate the progress, 

Example 3.2 is provided. 

 

Example 3.2: Consider a 3 customer problem with q1=1, q2=2, q3=2, customer and plant 

locations are shown in Figure 3.12, B=5, and H =8, two types of vehicle with different 

capacity C1=4, C2=3, variable cost R1 =1, R2=0.9. For this example, we only allowed 

direct delivery. Table 3.3 shows all trips for the production permutation σ =<3, 2, 1>. 
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Figure 3.12: Customers and Plant Location for Example 3.2 
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Table 3.3: All Trips List for Example 3.2 

Trip 

Name 

Included 

customers 
Delivery Route 

Vehicle 

Type 

Vehicle 

Load 

Delivery 

Time 

A1 3 0→3→0 1 2 3 

B1 2 0→2→0 1 2 2 

C1 1 0→1→0 1 1 1 

D1 3,2 0→32→0
*
 1 4 7

***
 

E1 2,1 0→21→0
*
 1 3 4.5 

F1 3,2,1 0→3→21→0
*
 1 5

**
 9.5

***
 

 
 

    
A2 3 0→3→0 2 3 3 

B2 2 0→2→0 2 2 2 

C2 1 0→1→0 2 1 1 

D2 3,2 0→32→0
*
 2 4

**
 7

***
 

E2 2,1 0→21→0
*
 2 3 4.5 

F2 3,2,1 0→3→21→0
*
 2 5

**
 9.5

***
 

Note: 
*
 indicates delivery rule violation, 

**
 indicates capacity constraint violation, 

***
 indicates 

lifetime constraint violation. 

 

Table 3.4: Feasible Trip Set for Example 3.2 with Production Permutation σ =<3, 2, 1> 

Trip 

Name 

Included 

customers 
Delivery Route 

Vehicle 

Type 

Vehicle 

Load 

Delivery 

Time 

A1 3 0→3→0 1 3 3 

B1 2 0→2→0 1 2 2 

C1 1 0→1→0 1 1 1 

 
 

    
A2 3 0→3→0 2 3 3 

B2 2 0→2→0 2 2 2 

C2 1 0→1→0 2 1 1 

 

As shown in Table 3.3, the trips D1, E1, F1, D2, E2, F2 violate the delivery rule; 

trips F1, D2, F2 violate the capacity constraint and trips D1, F1, D2, F2 violate the 

lifetime constraint. By removing all infeasible trips from the list, the feasible trip set for 

production permutation σ =<3, 2, 1> for Example 3.2 is shown in Table 3.4. 
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2. Find a trail by the production permutation and the feasible trip set 

Once the feasible trip set is built, the next step is to find a trail. Recall previous 

description, a trail contains several trips chosen from the feasible trip set that cover each 

customer once and only once. At the same time, the customer sequence delivered by trips 

in the trail match the customer sequence in the production permutation. The purpose to 

find a trail is to choose a group of feasible trips to perform the distribution function. Once 

a trail is determined, the total number of trips used in the distribution plan is fixed which 

implies that the total system variable cost is determined for the current distribution plan. 

For example, a feasible trail for Example 3.2 is ρ = <A2, B1, C1>, these 3 trips cover all 

3 customers in sequence <3, 2, 1> which matches the sequence of production permutation 

σ =<3, 2, 1>. Since the trail is determined, the trips used for distribution is determined 

(trip A2, B1 and C1), and the total variable cost for the distribution plan can be calculated 

as follows: 

Total variable cost = variable cost for trip A2 + variable cost for trip B1 

                               + variable cost for trip C1 

                              = 6*0.9 + 4*1 + 2*1 = 11.4  

 

3. Estimate used vehicle number of each type for the solution 

From previous step, it provides all trips used for the distribution. But the total 

number of used vehicle for each type is not determined. The number of vehicles used will 

determine the total system fixed cost, the fewer vehicles used in each type the less total 

fixed cost will be. The simplest way to estimate the used vehicle number is to assign one 
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vehicle for each trip. In this way, every vehicle will delivery only one trip during the time 

horizon. Although this method is easy to apply, none vehicle is reused in the time horizon 

and remain lots of idle time for every vehicle. In this research, a trial and error approach 

is used to find the used vehicle number for each type. One reason for using the trial and 

error approach is that the search is not extensive and can be well defined by a lower 

bound (LB) and upper bound (UB). Note that each trip is associated with a fixed type of 

vehicle. Tables 3.3 and 3.4 illustrated this. Trips are first divided into subsets according 

to the type of vehicle associated with them. If there are s types of vehicles, trips are 

divided into s subset. The UB and LB are then generated for each subset i as follows: 

UBi = number of trips in the subset i, and 

i

sum travel time of all trips using type i vehicle
LB

length of planning horizon

 
  
 

 

The feasible trail ρ = <A2, B1, C1> for Example 3.2 with production permutation 

σ =<3, 2, 1> uses three trips: 1 trip uses type 1 vehicle and 2 trips use type 2 vehicle. So, 

the LB and UB for this trail can be calculated, 
1

2 4
1

8
LB

 
  
 

, UB1=2 and 

2

6
1

8
LB

 
  
 

, UB2 = 1. 

  

4. Simultaneously build initial distribution schedule and production schedule. 

Though the trail information and number of vehicles to be used provide the 

general framework of a solution, the production and delivery schedule still need to be 

determined to ensure that there is no conflict leading to infeasibility. Specifically, 
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infeasibility can still be caused by bad coordination between production schedule and 

distribution schedules, such as trip starting delivery before its production finished, to start 

delivery causing product to expire. This part of the algorithm is designed to prevent this if 

it is possible. 

Once a trip is defined several items follow naturally. One is that the plant must 

complete production of the batch to be delivered prior to the trip beginning. In addition, 

since it is more cost effective for a vehicle to make multiple trips rather than multiple 

vehicles making one trip each, it is reasonable that production of the product for the 

“next” trip to be delivered by a vehicle occur while the current trip is underway if that is 

possible. Further, it is desirable for delivery to begin immediately after production or 

close to this time so that the maximum time possible is reserved for the delivery before 

the product lifetime expires. This problem has strong parallels to the two-machine, no-

wait, flow shop scheduling problem with limited makespan. Here, makespan is the 

elapsed time between starting production of a batch and completing production of that 

batch. No-wait means jobs are not allowed to wait between two successive machines 

which implies that the starting time of a job at the first machine has to be delayed to 

ensure that the job can go through the flow shop without having to wait for the second 

machine.  Think of the production process as analogous to the first workstation in a 

single, serial production line. The delivery process is the second workstation with 

multiple vehicles used to satisfy the distribution function. All delivery vehicles share the 

same plant and must guarantee they can finish their delivery within the time horizon to 

maintain feasibility of the solution. The trail that is generated in previous steps not only 
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gives the trips production time and delivery routes, it also provides the production 

sequence for each trip in the schedule. By applying the no-wait rule and the trips 

production sequence based on the trail, the initial integrated production schedule and 

distribution schedule can be built. For convenience, name the initial integrated production 

schedule and distribution schedule as no-wait schedule. Figure 3.13 illustrate an example 

for the no-wait schedule. There are 5 trips in the trail = <D, A, E, B, C>, all trips are 

using type 1 vehicle and the estimated used vehicle number for type 1 vehicle LB1=3. 

Lifetime B=8 and time horizon H=14. Each trip is immediately delivered after production 

is finished. 

 

Figure 3.13: Gantt Chart for No-Wait Schedule, B=8, H=14 

 

5. Refine distribution schedule and production schedule. 

The no-wait schedule ensures that all products are delivered immediately after 

production is completed without holding them in inventory.  This guarantees every trip 

delivers the product to meet the customer’s demand before the lifetime expires provided 

the problem is feasible in the first place. The solution, however, can still be infeasible 

because all vehicles do not have time to return to the plant before the end of the time 
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horizon. This is illustrated in Figure 3.13 where it can be seen that vehicle 2 cannot make 

the delivery and return to the plant within the time horizon. A more careful examination 

of Figure 3.13 suggests that a solution to the problem might be available. Notice that 

missing the delivery is actually caused by the fact that vehicle 2 must wait from time 

period 8 to 12 for its second batch to be produced. This wait was created by correct 

application of the no-wait rules to batch B. By itself, this is of limited help; however, 

Figure 3.13 also reveals that batch B has a short delivery time so its production might be 

able to occur earlier in the schedule. If this occurred, then it would be held in inventory 

for a short period of time but feasibility must be maintained so delivery of batch B to all 

its customers would still need to occur before the lifetime expires. Obviously, the 

cascading influence this has on the initial problem of batch C is that if feasibly can be 

maintained and production of batch B can be moved earlier by an amount that allows 

batch C production to complete in time for that delivery to be made, this trail is made 

feasible. This basic idea is formalized in this algorithm where the opportunity to 

“compress” the no-wait production schedule and distribution schedule is investigated to 

see if it will reduce the makespan of the entire production permutation and convert an 

infeasible schedule into a feasible one. Later, we will refer the refine the no-wait schedule 

as compressed schedule. Figure 3.14 is the compressed schedule for Figure 3.13 that 

graphically shows the adjustments do create a feasible solution. 
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Figure 3.14: Gantt Chart, compressed schedule for Figure 3.12, B=8, H=14 

 

Since the no-wait schedule initiates delivery immediately when production of a 

batch is completed, the compression process should start with the production schedule 

because, by definition, there are no gaps in the distribution schedule. If a production 

schedule is compressed, it means that the trip batch completion time has been moved 

earlier in time. This translates into the opportunity for the departure time of the trip 

carrying that batch to also be shifted to an early time to eliminate the induced gap of idle 

time created by earlier production. On the other hand, compression is not without 

potential problems. After the compression, a situation can be created in which the batch 

that initiates the production is so early that, after holding the product in inventory until its 

trip commences, delivery cannot be made before the lifetime expires. Clearly, creating a 

situation where one deadline is missed to resolve missing another is not acceptable.  To 

address this, recall that the trip delivery time is the time duration from when the vehicle 

departs the plant until the time the product is delivered to the last customer in the trip and 

the trip travel time is the sum of trip delivery time and the time it takes the truck to return 

to the plant from the last customer in the trip. Using these concepts, trip maximum wait 
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time is defined as product lifetime minus trip delivery time. The idea, then, is that after 

any compression, the waiting time for each trip must less or equal to its trip maximum 

wait time. Otherwise, the trip start production time must to be postponed, until a new 

schedule is generated that meets this criteria. 

The algorithm used to compress the no-wait schedule is now presented. To begin, 

define the following: 

i: Numbers the batches in a production schedule with i=1 designating the first batch 

produced. This also numbers the trips carrying the batches. The i
th

 trip in the production 

schedule is represented as trip i. 

ui: trip i’s batch starting production time 

vi: trip i’s batch starting distribution time 

di: trip delivery time for the trip i 

ti : trip travel time for the trip i 

pi : production time for the trip i 

ai: the trip maximum wait time for trip i 

K: the gap in the production schedule 

L: the gap in the distribution schedule 

Φ(i) : a function that identifies the previous trip’s identification number in the  

 distribution schedule for trip i ,(e.g. in Figure 3.13, Φ(C)=A). 

 

Using these definitions, the steps in the algorithm are now presented. 

Step 1: set i = number of trucks + 1 
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Step 2: if ui > ui-1 + pi-1 then go to step 3, else go to step 7. 

Step 3: get the production gap K = ui – (ui-1 + pi-1), find previous trip in distribution  

schedule j = Φ(i), and get the distribution gap L = vi – (vj + tj). And go to step 4. 

Step 4: if K > L then go to step 5 else go to step 6. 

Step 5: compress the production schedule, ui = ui – L – Min(K – L, ai), and compress the  

distribution schedule vi = vi – L. go to step 7 

Step 6: compress the production schedule, ui = ui – K, and distribution schedule  

vi = vi – K. go to step 7 

Step 7: i = i + 1, if i <= m then go to step 2, else compression finished. 

 

This strategy can be translated into the following pseudo code: 

i = 2 

While (i <= m) { 

        If ui > ui-1 + pi-1   then{ 

                K = ui – (ui-1 + pi-1) 

     j = e(i) 

                L = vi – (vj + tj) 

                If (K > L)  then { 

                      ui = ui – L – min(K – L, ai) 

                      vi = vi – L 

                } 

                else{ 

                      ui = ui – K  

                      vi = vi – K 

                } 

        } 

        i = i + 1 

}  

 

Figure 3.15: Pseudo Code to Compress the No-Wait Schedule  

 

6. Check the feasibility of the solution 
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After compressing the no-wait solution, a solution for the IPDSPPP problem is 

generated by the input production permutation. At this time, feasibility of the solution is 

still not guaranteed in general because everything has been based on an estimate of the 

number of vehicle for each type. So, in this step, a feasibility check needs to check 

whether every vehicle finishes all trips within the time horizon or not. For example, the 

Figure 3.14 displays a feasible solution while Figure 3.13 displays an infeasible solution. 

If the solution is feasible, the used vehicle number for each type is determined. At 

the same time, the integrated production and distribution schedule is built which implies a 

feasible solution for the input product permutation is created. Otherwise, the heuristic 

needs to increase the number of vehicles used to find a feasible solution for the given 

product permutation. 

 

7. Increase the number of used vehicles 

Recall the LB definition for the number of vehicle of each type 

i

sum travel time of all trips using type i vehicle
LB

length of planning horizon

 
  
 

, 

It might have lower estimation with following reasons: 1) did not include the idle time for 

the vehicle. This LB estimation is assumed that there is no idle time for the vehicle. 

Actually, this is not guaranteed. Such as shown in Figure 3.13, there is an idle time for 

vehicle 2 between delivery trip A and trip C. This can cause the lower estimation for the 

LB. 2) Might split the trips. For instance, suppose there are 3 trips A, B, C using type 1 

vehicle with travel time 4, 4, 4. The time horizon H=6. According to the formula, 
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LB1=(4+4+4)/6=2. With this estimation, 2 vehicles both have 2 unit times left when they 

finish the first trip delivery, and the last trip will be split delivered by these 2 vehicles.  

It is noted that the sequence of a trip in a trail has an important impact on the 

feasibility of the solution. Suppose a problem as shown in Figure 3.16, the trail = <A, B, 

C> requires 3 trips to build the solution and all trips are delivered by the same type of 

vehicle. The overlap problem is seen in Figure 3.17 where the only feasible sequence is 

to use the three trips in the order A, B and C. Even with the same trips and the same 

vehicles, one sequence of the trips in the trail is feasible and one is not. 

 

Figure 3.16: Solution with Trail = <A, B, C> 

 

Figure 3.17: Solution with Trail = <B, A, C> 
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For situations where the infeasibility is cause by sequence like the one in Figure 

3.17, adding more vehicles will not make it feasible. On the other hand, if the 

infeasibility of the solution is caused by a wrong estimation of the lower bound for each 

type of vehicle, such as illustrated in Figure 3.18, increasing the number of vehicles could 

fix the infeasibility problem as shown in Figure 3.19. 

 

Figure 3.18: Infeasible Solution with Trail = <B, A, C> 

 

Figure 3.19: Feasible Solution with Trail = <B, A, C> 

 

After previous steps, the interpret part could provide a solution based on the given 

production permutation (either feasible such as Figure 3.16 or infeasible such as Figure 

3.17). The next section will discuss some detailed heuristic based on the described 

heuristic structure. Each of the specific heuristics that are now described take different 

Plant  

B

Vehicle

1

0 1 3 5 8 9 11

C

B A C

time

A

Plant  

B

Vehicle

1

2

time

0 1 3 5 7 8

A

C

A C

B



 63 

approaches in some of these steps. Each has positive and negative features and there is 

not one algorithm that is best in all situations.  The first heuristic is presented beginning 

with the simplest one and as will be seen, each subsequent heuristic improves a weakness 

found in one or more of the previous ones. 

 

Direct Delivery with the Just Fit Vehicle Rule (H1) 

The first heuristic method proposed is the direct delivery with just fit vehicle rule 

(H1). This heuristic allows a solution to be found quickly by dramatically reducing the 

number of possible choices for the decision maker using a prescriptive approach. In H1, 

all customer demands are delivered directly from the plant (direct delivery) using a 

vehicle with minimum possible capacity (just fit vehicle).  All other options that could 

reduce cost, like using vehicles of larger capacity that would allow multiple stops, are not 

considered. Applying these two rules allows the vehicle type and routes to be quickly 

determined for each customer delivery.  The implementation of this algorithm is rather 

straightforward using the overall strategy previously discussed. 

 

1. Generating a feasible trip set 

Here, trips are feasible only when they can both successfully deliver product to 

the customer satisfying all constraints and use the smallest capacity vehicle that can 

achieve this. Furthermore, it needs to satisfy all other delivery rules. 

To implement the direct delivery rule, the decision maker only needs to know 

each customer’s demand to determine vehicle type and location to check for feasibility, 
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so that all feasible trips can be generated. Example 3.3 is used for the illustration. It has 

the same information with Example 3.1 except time horizon. 

Example 3.3: Considers an IPDSPPP problem with 2 types of vehicles and 6 customers 

(n=6) with the following values of the model parameters: C1=10, C2=7, R1=1, R2=0.7, F1 

=120, F2=100, B=9, H=31, r=1. Customer demands are q1=3, q2=3, q3=5, q4=2, q5=4, 

q6=3. Refer to Example 3.1 for plant and customer locations. 

The direct delivery rule is limited to trips that can deliver one customer in its 

route. Table 3.5 shows all feasible trips with production permutation σ = <6, 3, 2, 4, 5, 1> 

using direct delivery. 

The just fit vehicle rule uses vehicles with a capacity just sufficient to carry the 

customer’s demand; hence, the algorithm selects the vehicle with the smallest capacity 

from those that are feasible for each customer. For instance, suppose the demand of 

customer i is 11, qi = 11, and there are three different types of vehicles with the 

capacities, C1 = 8, C2 =12, C3 =15. According to the just fit rule, one type 2 vehicle will 

be used because it has the minimum acceptable capacity of 12. Table 3.6 shows the 

feasible trip set for the Example 3.3 using the H1 algorithm. 
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Table 3.5: Feasible Trip Set for Example 3.3 with Production Permutation σ = <6, 3, 2, 4, 

5, 1> Using Direct Delivery 

Trip name Route 
Vehicle 

Type 
Load 

Delivery 

Time 

Travel 

Time 

A1 0→6→0 1 3 5 10 

C1 0→3→0 1 5 4 8 

D1 0→2→0 1 3 4 8 

E1 0→4→0 1 2 4 8 

G1 0→5→0 1 4 5 10 

H1 0→1→0 1 3 4 8 

      A2 0→6→0 2 3 5 10 

C2 0→3→0 2 5 4 8 

D2 0→2→0 2 3 4 8 

E2 0→4→0 2 2 4 8 

G2 0→5→0 2 4 5 10 

H2 0→1→0 2 3 4 8 

 

 

 

Table 3.6: Feasible Trip Set for Example 3.3 with Production Permutation σ = <6, 3, 2, 4, 

5, 1> Using H1 Algorithm 

Trip name Route 

Vehicle 

Type Load 

Delivery 

Time 

Travel 

Time 

A2 0→6→0 2 3 5 10 

C2 0→3→0 2 5 4 8 

D2 0→2→0 2 3 4 8 

E2 0→4→0 2 2 4 8 

G2 0→5→0 2 4 5 10 

H2 0→1→0 2 3 4 8 
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2. Generating a trail 

To get the trail, the production permutation is partitioned into feasible trips. 

Because of the direct delivery and just fit rule, feasibility is guaranteed and there is only 

one feasible trail. Using the H1 method yields the feasible trail for this example 

 ρ = <A2, C2, D2, E2, G2, H2>. 

 

3. Determining the number of vehicle used for each type 

ρ = <A2, C2, D2, E2, G2, H2> uses 6 trips (A2, C2, D2, E2, G2 and H2) to 

perform the distribution. All these trips are using the type 2 vehicle. So, we can calculate 

the UB1=0, LB1=0 and UB2 = 6, 
2

10 8 8 8 10 8
2

31
LB

     
  
 

.  

 

4. Generating solution with no-wait schedule  

With the trail ρ = <A2, C2, D2, E2, G2, H2>, all trip information in Table 3.4, 

estimated vehicle number LB2=2, the no-wait schedule can be built. Figure 3.20 displays 

the no-wait schedule for the Example 3.3 for production permutation σ = <6, 3, 2, 4, 5, 1> 

using H1 Algorithm. 
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Figure 3.20: No-Wait Schedule for the Example 3.3 for Production Permutation σ = <6, 

3, 2, 4, 5, 1> Using H1 Algorithm 

 

 

5. Compressing the no-wait schedule  

As shown in the Figure 3.20, there are some gaps in the production schedule (i.e. 

the gap between trip C2 and D2, gap between D2 and E2, gap between E2 and G2). The 

compress process is to refine the no-wait schedule to get the compressed schedule. Table 

3.7 provides all trips maximum wait time which is the product lifetime minus trip 

delivery time. It used to measure how long the trip can keep in the temporary inventory 

before delivery without violating the lifetime constraint. By following the steps 

mentioned in previous. The compressed schedule for Figure 3.20 is displayed in Figure 

3.21:  

Table 3.7: All Trips Maximum Wait Time for the Example 3.3 with Production 

Permutation σ = <6, 3, 2, 4, 5, 1> Using H1 Algorithm 

Trip 

name 
Route 

Vehicle 

Type 
Load 

Delivery 

Time 

Travel 

Time 

trip maximum 

wait time 

A2 0→6→0 2 3 5 10 4 

C2 0→3→0 2 5 4 8 5 

D2 0→2→0 2 3 4 8 5 

E2 0→4→0 2 2 4 8 5 

G2 0→5→0 2 4 5 10 4 

H2 0→1→0 2 3 4 8 5 
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Figure 3.21: Compressed Schedule for Figure 3.20 

 

6. Checking the feasibility of the solution  

It is obvious that the solution shown in Figure 3.21 is not feasible since vehicle 2 

is not meeting the time horizon constraint. Its last trip delivery will finish after the time 

horizon.  

 

7. Increasing the number of used vehicles to a solution 

By increasing the lower bound for type 2 vehicle, it will get the new estimate used 

vehicle number for type 2 vehicle LB2=3. Repeat the previous processing, another 

solution can be found. The Figure 3.22 display the solution with LB2=3. 

Figure 3.22: Solution for the Example 3.2 with Production Permutation σ = <6, 3, 2, 4, 5, 

1> Using H1 Algorithm, LB2=3 
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The solution show in Figure 3.22 is a feasible solution which implies heuristic H1 

finds a feasible solution for the Example 3.2 with σ = <6, 3, 2, 4, 5, 1>. The total system 

transportation cost for the solution is: 

Total system transportation cost = Total fixed cost + Total variable cost 

= Type 1 vehicle fixed cost + Type 2 vehicle fixed cost + variable cost for trip A2 

    + variable cost for trip C2 + variable cost for trip D2 + variable cost for trip E2 

    + variable cost for trip G2 + + variable cost for trip H2 

= 0*0 + 3*100 + 10*0.7 + 8*0.7 + 8*0.7 + 8*0.7 + 10*0.7 + 8*0.7 

= 336.4 

 

Directly Delivery with Random Fit (H2) 

As shown previously, the H1 heuristic can find a unique trail for a given 

production permutation upon which a solution result can be built. The just fit vehicle rule, 

however, can lead to an imbalance in the utilization of the vehicles which makes 

solutions inefficient. Figure 3.23 provides an illustration. As shown in the figure, the 

customer delivered by trip B has a larger demand as evidenced by the fact that the plant 

takes longer to produce the product to satisfy it and its delivery requires a type 2 vehicle. 

All other trips are delivered by type 1 vehicles because the just fit vehicle rule is used to 

assign vehicles to routes. This creates a situation where vehicles 2 and 3 are both badly 

underutilized. Notice, however, if a type 2 vehicle was to be used for trip D as shown in 

Figure 3.24, only 2 vehicles would be needed for the trail. This improves the solution 

because even through the variable cost associated with delivering trip D is increased by 
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using a larger capacity vehicle, the overall cost is less because fewer vehicles are required 

and the fixed costs associated with these vehicles is saved. 

 

Figure 3.23: A Feasible Solution Provided by H1 Heuristic 

 

 

Figure 3.24: An Improved Solution of Figure 3.23 

 

To explore the possibility of improved solutions like the one shown in the Figure 

3.24, algorithm H2 is proposed that uses a random fit rule to generate the trail. The 

random fit rule uses a random number to determine the type of vehicle to assign when 

there is more than one type qualified for directly delivery. For example, Table 3.5 in 

Example 3.3 shows that the direct delivery trips A1 and A2 use the same delivery route 

but different vehicle types. The random fit rule will randomly assign the vehicle type 
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2 (type 2)
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timeB D

B C
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rather than the smallest capacity vehicle possible. The remainder function is used to map 

the random number to a feasible trip. The function Module(a, b) returns the remainder of 

a divided by b. Using the formula  

i = Module(random number, qualified vehicle type number) + 1, 

 the i
th

 qualified vehicle type is assigned to do the trip. For example, consider a route 

050 that can be delivered by 3 different types of vehicles, {2, 3, 4}. If the random 

number generated is 10, then i = Module(10,3) + 1 = 2 or the  2
nd

 type of qualified vehicle 

is selected which is type 3. The formula guarantees to map any positive integer number to 

a feasible vehicle type.  

 

Multi-Stop Delivery with Shortest Path Fit (H3) 

The H1 and H2 algorithms are both based on the directly delivery rule. In 

practice, the daily fixed cost for vehicles is typically quite high compared with variable 

cost so it is preferable for vehicles to deliver more than one customer demand in one trip, 

if possible, because it reduces the total system transportation cost. The H3 algorithm 

leverages this observation and generates routes based on the multi-stop delivery rule. 

 

1. Generating a feasible trip set 

a. All feasible trips for type s vehicle 

Without the delivery rule such as direct delivery, there will be more feasible trips 

that can be generate from a production permutation. To save all possible feasible trips 

generated from a production permutation   with a type s vehicle and only considering 



 72 

the lifetime constraint and capacity constraint, this research defined the feasible trip 

graph 
,sG . 

Definition 3.1: Given a production permutation  , ( )i  is the i
th

 customer in the 

production permutation, where i=1,…,n, a certain type of vehicle s, s S  and a set of 

vertices 
,( ) {0, (1),..., ( )}sV G n   , where 0 represents the plant. 

,( ) ( )si V G  , if the 

total demand of customers in the trip 0 ( ) ( 1)... ( ) 0i i j       is less than the 

truck capacity sC , ( i.e. ( )

j

k sk i
q C

 ), and all the demand on this trip could be 

delivered before product lifetime expires, (i.e.  
1

0, ( ) ( ), ( 1)

j

i k kk i
B   




  , where 

1 i j n   ), the arc ( 1) ( )i j    with weight 

1

( 1), ( ) 0, ( ) ( ), ( 1) ( ),0( )
js

i j s i k k jk i
W R       



 
     will be added into the feasible trip graph 

,sG , where 1 i j n   . 

Table 3.8 enumerates all feasible trips for permutation σ = <6, 3, 2, 4, 5, 1> in 

Example 3.3. Figures 3.25 and 3.26 provide the feasible trips graphs for vehicle type 1 

and vehicle type 2. Comparing Figure 3.25 and Figure 3.26, the former has an additional 

arc, B1. This is because the total demand of customers 6 and 3 (q6+q3=8) exceeds the 

capacity of vehicle 2 (C2=7). 
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Table 3.8: Feasible Trip Set for Production Permutation σ = <6, 3, 2, 4, 5, 1> for Example 

3.1 

Trip 

name 
Graph Arc Route Weight 

Vehicle 

Type 
Load 

Delivery 

Time 

A1 Gσ,1 0→6 0→6→0 10*1 1 3 5 

B1 Gσ,1 0→3 0→6→3→0 12*1 1 8 8 

C1 Gσ,1 6→3 0→3→0 8*1 1 5 4 

D1 Gσ,1 3→2 0→2→0 8*1 1 3 4 

E1 Gσ,1 2→4 0→4→0 8*1 1 2 4 

F1 Gσ,1 2→5 0→4→5→0 12*1 1 6 7 

G1 Gσ,1 4→6 0→5→0 10*1 1 4 5 

H1 Gσ,1 5→1 0→1→0 8*1 1 3 4 

 

 

      A2 Gσ,2 0→6 0→6→0 10*0.7 2 3 5 

C2 Gσ,2 6→3 0→3→0 8*0.7 2 5 4 

D2 Gσ,2 3→2 0→2→0 8*0.7 2 3 4 

E2 Gσ,2 2→4 0→4→0 8*0.7 2 2 4 

F2 Gσ,2 2→5 0→4→5→0 12*0.7 2 6 7 

G2 Gσ,2 4→5 0→5→0 10*0.7 2 4 5 

H2 Gσ,2 5→1 0→1→0 8*0.7 2 3 4 

 

3 2 4 5 160
A1

B1

C1 D1 E1

F1

G1 H1

 

Figure 3.25: Feasible Trips Graph ,1G  for Type 1 Vehicle with Production Permutation σ 

= <6, 3, 2, 4, 5, 1> for Example 3.3 

3 2 4 5 160
A2 C2 D2 E2

F2

G2 H2

 

Figure 3.26: Feasible Trips Graph ,2G  for Type 2 Vehicle with Production Permutation 

σ = <6, 3, 2, 4, 5, 1> for Example 3.3 
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b. All feasible trips for all types of vehicles 

 Each arc in the graph 
,sG  represents a feasible trip and the weight of the arc 

represents the total variable cost (e.g. fuel cost) for that trip. By using the same 

production permutation, a total of s graphs could be created. Each type of vehicle will 

generate one feasible trips graph 
,sG , where s S . Define G  as a combination of 

graphs that combines all graphs 
,sG , where s S . The vertices <σ(i), s> in the G , 

represent the i
th

 customer in the permutation which delivered by the s
th

 type vehicle. The 

vertices <0,s> represent the plant, where s S . Also, for convenience, two dummy 

points: start point (SP) and end point (EP) are added. So, it  has the, V(Gσ) = {SP, 

EP,…,<0,s>,<σ(1),s>, …,<σ(n),s>,…}, where s S . Also, set σ(0)=0. The graph G  is 

defined as follows: 

Definition 3.2: Given a permutation  , a group of graphs ,sG , where s S , and a set of 

vertices V(Gσ)={SP,EP,…,<σ(0),s>,<σ(1),s>,…,<σ(n),s>,…}, where σ(0)=0 represents 

the plant. s S  , if the arc ( 1) ( )i j    with weight ( 1), ( )

s

i jW   is exist in the graph 

,sG , where 1 i j n   , the arc ( 1), ( ),i s j s      will be added into the graph 

G with the weight ( 1), ( )

s

i jW  . Additional dummy arcs ( ), ( ), 1i s i s     ,

( ), 1 ( ),i s i s     , where 1 i n  , 1 1s S   , and (0),SP s  ,

( ),n s EP   where s S  will be added to the graph G  with weight 0. 

Figure 3.27 provides the feasible trips graph G  with permutation σ = <6, 3, 2, 4, 

5, 1> in Example 3.3. As shown in the figure, the arcs drawn by solid lines represent the 
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feasible trips and the arcs drawn by broken lines represent the dummy arcs which are 

used to connect the graph.  They carry value 0. 

<3,1> <2,1> <4,1> <5,1> <1,1><6,1><0,1>
A1

B1

C1 D1 E1

F1

G1 H1

<3,2> <2,2> <4,2> <5,2> <1,2><6,2><0,2>
A2 C2 D2 E2

F2

G2 H2

SP EP

dummy arc, arc weight is 0

solid arc , X is the trip name, Y 

is the weight of arc

X

SP
Dummy vertex, 

start point

EP
Dummy vertex,

end point

<i, j>
Graph vertex,

customer i delivered by type j vehicle

10

12

8 8 8

12

10 8

7 5.6 5.6 5.6

8.4

7 5.6

Y
<0, s>

Graph vertex,

Plant

 

Figure 3.27: Feasible Trips Graph G  with Production Permutation σ = <6, 3, 2, 4, 5, 1> 

for Example 3.3 

 

2. Generating a trail 

In the graph G , every solid arc represents a feasible trip. The path from the node 

SP to the node EP could generate a feasible trail to cover all customers. The weight of the 

path is the total system transportation variable cost which is calculated by summing all 

arcs weights in the path. So, the shortest path from node SP to the node EP will define the 

trail which covers all customers with the minimum total system transportation variable 

cost. By using the Dijkstra's algorithm, it is easy to find the shortest path in the graph G . 

For example, Figure 3.28 uses the thick line drawn as the shortest path in the Figure 3.27, 

which is SP<0,1><3,1><3,2><2,2><5,2><1,2>EP. This path generates 



 76 

a trail ρ=<B1, D2, F2, H2>, and the total weight of the path is = 12*1 + 7*0.8 + 12*0.7 + 

8*0.7 = 31.6.  

<3,1> <2,1> <4,1> <5,1> <1,1><6,1><0,1>
A1

B1

C1 D1 E1

F1

G1 H1

<3,2> <2,2> <4,2> <5,2> <1,2><6,2><0,2>
A2 C2 D2 E2

F2

G2 H2

SP EP

dummy arc, arc weight is 0

solid arc , X is the trip name, Y 

is the weight of arc

X

SP
Dummy vertex, 

start point

EP
Dummy vertex,

end point

<i, j>
Graph vertex,

customer i delivered by type j vehicle

10

12

8 8 8

12

10 8

7 5.6 5.6 5.6

8.4

7 5.6

Y
<0, s>

Graph vertex,

Plant

 

Figure 3.28: The Shortest Path from SP to EP in Figure 3.27 

 

3. Determining the number of vehicle used for each type 

With the trail ρ=<B1, D2, F2, H2> and all trips information in Table 3.8, the 

lower bound for each type of vehicle can be calculated. UB1=1 and
1

12
1

30
LB

 
  
 

. 

UB2=3 and 
2

8 12 8
1

30
LB

  
  
 

. 

 

4. Generating solution with no-wait schedule  

With the trail ρ = <B1, D2, F2, H2>, all trip information in Table 3.8, estimated 

vehicle number LB1=1, LB2=1, the no-wait schedule can be built. Table 3.29 shows the 

no-wait schedule for the Example 3.3 for production permutation σ = <6, 3, 2, 4, 5, 1> 

using H3 Algorithm. 
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Figure 3.29: No-Wait Schedule for the Example 3.3 with Production Permutation σ = <6, 

3, 2, 4, 5, 1> Using H3 Algorithm 

 

 

5. Compress the no-wait schedule to last solution in iteration 

As shown in the Figure 3.29, there are gaps in the production schedule (i.e. the 

gap between F2 and H2). The compress process is used to refine the no-wait schedule. 

The lifetime B=9 in Example 3.3. The refined integrated production and distribution 

schedule for Figure 3.30 is shown in Figure 3.29:  

 

Figure 3.30: Compressed Schedule for Figure 3.29 

 

6. Check the feasibility of the solution  

The solution shown in Figure 3.30 is a feasible solution for the Example 3.3 with 

σ = <6, 3, 2, 4, 5, 1>. The total system transportation cost for the solution is: 

Total system transportation cost = Total fixed cost + Total variable cost 

Plant  

Vehicle

1 (type 1)

2 (type 2)

time

0 3 8 31

D2 F2

H2

H2

28

B1 D2 F2

B1

11 15 16 17 21 24
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Vehicle

1 (type 1)

2 (type 2)

time

0 3 8 28 31

H2
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B1 D2 F2

B1

D2 F2 H2

11 15 16 17 24
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= Type 1 vehicle fixed cost + Type 2 vehicle fixed cost + variable cost for trip B1 

    + variable cost for trip D2 + variable cost for trip F2 + variable cost for trip H2 

= 1*120 + 1*100 + 12*1 + 8*0.7 + 12*1 + 8*0.7 

= 255.2 

 

Compared with the previous solution obtained by the H1 algorithm, the H3 

algorithm gets a feasible solution with much less transportation cost from the same 

production permutation σ = <6, 3, 2, 4, 5, 1> for Example 3.3. 

 

Multi-stop Delivery with Random Shortest Path Fit (H4) and Multi-stop Delivery with 

Random Fit (H5) 

In the H3 algorithm, the shortest path trail provides the minimum total system 

transportation variable cost which is a very important factor that reduces cost in the 

solution. On the other hand, there are still some observations that suggest that cost of the 

trail can be reduced further. Like the weakness of the H1 algorithm, the trail generated by 

the shortest path might cause lower utilization of the last vehicle for each type. That is, a 

trail could increase the variable cost by using a vehicle of greater capacity that could 

reduce the number of vehicles required to satisfy the distribution and avoid the fixed cost 

of the extra vehicles. The shortest path method can lead to a good solution but 

improvements can be made.  

Table 3.9 lists three possible trails generated by three paths. By sum all trips’ 

weight in each path, the length of each path can be calculated. The shortest one among 



 79 

these three is the path SEσ(2)σ(3)σ(4)EP and is represented by trail 3. It 

requires one trip with the type 1 vehicle and two trips with type 2 vehicle. When the time 

horizon is less than 7, i.e. H<7, the trip H and trip I are impossible to be assigned to one 

vehicle (violate the time horizon constraint) and the trail 3 needs 3 vehicles to make the 

delivery while the trail 2 might complete the delivery with only 2 vehicles (1 type 1 

vehicle and 1 type 2 vehicle). 

Table 3.9: Example of Three Paths in a Feasible Trips Graph, n=4 

Trail 

No. 

Paths from SP to EP Trip 

name 

Generated trip routes Weigh

t 

Vehicle 

type 

1 SP σ(1)  σ(2)  σ(3) 

 σ(4)EP 

A 0 σ(1)  0 2.8 1 

 B 0 σ(2)  0 2.8 1 

 C 0 σ(3)  0 2 2 

 D 0 σ(4)  0 1.4 1 

2 SP σ(1)  σ(3)  

σ(4)EP 

E 0 σ(1)  0 2.8 1 

 F 0 σ(2)  σ(3)  0 6 2 

 G 0 σ(4)  0 1.4 1 

3 SP σ(2)  σ(3)  

σ(4)EP 

H 0 σ(1)  σ(2)  0 5 2 

 I 0 σ(3)  0 2 2 

 J 0 σ(4)  0 1.4 1 

 

To explore possibilities such as this, two algorithms are proposed that use 

randomness in the path generation process.  These methods are: 1) random path heuristic 

(H5), and 2) two random shortest path heuristic (H4). 

The H4 and H5 algorithms are similar to the H3 algorithm except they use 

randomness when generating the paths. The H5 algorithm randomly generates n paths to 

create trails and pick the one with the best objective value to be the result. By the 

randomness property, the random trail is able to avoid the limitation of the shortest path 



 80 

trail and retain the possibility of finding an improved solution such as the one shown in 

Table 3.9. But the H5 algorithm also has its weakness. Since an undirected complete 

graph has n! random paths, the change for H5 find the best solution for current graph is 

not large (probability =1/(n-1)!) and the quality of the solution is unknown (compared to 

the solution get from H3 algorithm). Also, H5 algorithm needs much longer solving time 

than the H3 algorithm.  

The H4 algorithm combines some of the advantages of both the H3 and H5 

algorithms. It randomly locates an inner point (IP) in the feasible trips graph and 

combines two shortest paths: the path from SP to IP and the path from IP to EP to be the 

final path to generate a trail. With this design, the H4 will spend less computing time than 

the H5 algorithm and retain the possibility of getting better solutions than the H3 

algorithm.  

 

Lower Bound Approach for the IPDSPPP 

The lower bound discussed here is the lower bound of the minimization problem. 

Any feasible solution for the test problem will provide the objective value greater or 

equal to the LB value, no exception is allowed. So, this implies the best lower bound 

value for the test problem is the optimal solution. The lower bound approach is the 

method to calculate the lower bound value for a given problem (or a group of problems) 

by analysis of the basic information given by the test problem, such as customer location, 

demands, vehicle fixed cost and variable cost, etc. There are two important things for the 

LB approach: 1) provide the feasible LB, and 2) provide the LB value close to optimal 
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solution. First, the LB approach needs to guarantee that the LB it generated for each 

problem is feasible. Here the feasible means that the LB generated by the LB approach is 

less or equal to all feasible solutions. Second, the quality of the LB is measured by the 

difference between LB and optimal solution. The best LB is equal to the optimal solution. 

So, the better LB approach can provide the LB closer to the optimal solution. In our 

research, the objective is to minimize the total system cost. All LB should be smaller than 

the optimal solution, and the LB approach which provides higher LB will be the better 

LB approach. 

Devipriya et al. (2008) provided a lower bound approach on the objective 

function for IPDSPPP problem when the vehicles are identical. Estimations are made 

regarding the total number of vehicles required and travel distances within each trip to 

calculate the lower bound for the total cost of transportation. Estimating the number of 

vehicles allows for multiple trips and estimating the distance in each trip includes the 

distance between customers plus double the distance from the plant to the customer that 

is farthest from the plant. Here, an improved lower bound approach is proposed by 

considering not only the distance from the plant to customer but also the travel distance 

between different customers within the trip. 

Theorem 1：Consider an IPDSPPP problem with the follows attributes which: 

 Perishable product with fixed lifetime B 

 n customers with demands , 1,...,iq i n  and with known locations in a two dimensional 

plane 

 Known travel times between locations, , , 0 ,i j i j n   , where 0 represents the plant 
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 production rate of r  

 s different types of vehicles, {1,2,..., }S s  differentiated by capacity, variable cost and 

fixed cost , , ,i i iC R F i S , respectively 

Let G to be the set of 
'

maxi i
i S

i N

g q C




 
  
 
  customers which are closest to the plant. Then, a 

lower bound on the total transportation cost is: 

0, ,
'

1 '/
0, ,

'
'/

1
[( 1 ) ] 2 min

min 2 min min

L

i i i k
k N

i i G i N G
i i i k i

i S k N i S
i G i N G

L i q
r

LB R F
H

 

 


  

  
 

 
     

      
  
  

  
 

 

where 
0, ,

'
'/

2 mini i k
k N

i G i N G

L H 


 

  
   

  
   

Proof: The total transportation cost can be divided into two parts, variable and fixed 

costs. To address the variable cost, estimates of both the total number of trips required to 

deliver the product and the travel time for one trip are required. Each feasible trip covers 

a set of customers, { ,..., ,..., }A i k l , 1A  . The route will start from the plant, visit all 

customers once in pre-defined route order, and then go back to the plant to end of the 

route. Each route can be divided into intervals defined by the inner stop points (the plant 

and customer locations).  

Depending on the starting point for an interval, the trip intervals can be classified 

into 2 categories: (I) trip intervals that start or end at the plant, (II) trip intervals that both 

start and end at customer locations. See Figure 3.31 for an illustration. Each route must 
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deliver product to at least one customer which means all routes contain 2 type I intervals. 

Hence, each route requires at least 0,2min j
j A




 time units. For the rest of the customers, 

/ { }A j , the route must have 1A   intervals to connect rest customers in the sequence.  

This requires at least 
,

/{ }

min i k
k A

i A j






 , where 
0, 0,minj i

i A
 


 . In general, the total travel time 

units of one trip is 
0, ,

/{ }

2 minj i k
k A

i A j

 




  . The estimated total variable cost for one trip is 

min 0, ,

/{ }

2min mini i k
i A k A

i A j

R  
 



 
  
 

 , where 
0, 0,minj i

i A
 


 and 

min min i
i S

R R


 . 

...

0

1

n

2

3

n-1

Type II Trip interval

Type I Trip interval

 

Figure 3.31: Sub-Tour Routing Structure 

 

Now, by using the capacity restrictions on the trucks, it will take at least 

'

maxi i
i S

i N

g q C




 
  
 
  trips to successfully deliver all products before the end of the time 

horizon. Let the G to be the set of g customers that are located closest to the plant. The 

lower bound estimate for the variable cost = min 0, ,

'/

2 mini i k
k N

i G i N G

R  


 

 
  
 
   where 
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min min i
i S

R R


 . Note that, to ensure the feasibility of the approach, the maximal vehicle 

capacity is used to calculate the g value, while the minimum variable cost per mile is 

used to calculate the variable cost. 

Determining the contribution of the fixed cost requires an estimate of the total 

number of vehicles used to make deliveries. Note that an initial estimate of vehicles is   

0, ,
'

'/

2 mini i k
k N

i G i N G

L H 


 

  
   

  
  .  

From Figure 3.32, it is observed that that there are gaps when trucks are idle 

before their first trip, di represent the production time for vehicle i’s first trip. 

d1 d2 dL...

Vehicle 1 delivery schedule

Vehicle 2 delivery schedule

Vehicle L delivery schedule

...

Time Horizon

Plant

Vehicle 1

Vehicle 2

Vehicle L

 

Figure 3.32: Integrated Production Schedule and Distribution Schedule Assignment 

 

Let 'G  to be the set of the L smallest customer demands ( iq , 1,...,i L ) sorted in 

ascending order.  Then the modified estimate is 

0, ,
'

1 '/

1
[( 1 ) ] 2 min

'

L

i i i k
k N

i i G i N G

L i q
r

L
H
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 
  
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Finally, the total fixed setup cost = min 'i
i S

F L


  and the lower bound for the 

objective function is: 

0, ,
'

1 '/
0, ,

'
'/

1
[( 1 ) ] 2 min

min 2 min min

L

i i i k
k N

i i G i N G
i i i k i

i S k N i S
i G i N G

L i q
r

LB R F
H
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 


  

  
 

 
     

      
  
  

  
 

 

Numerical Analysis 

Structure of the analysis 

In the previous section, new heuristic algorithms and a lower bound were 

proposed. In this section, an experimental study with numerical examples is conducted to 

demonstrate the usefulness of the heuristics, compare performance of the heuristics as 

measured by the quality of the solutions they generate, and analyze the quality of the new 

lower bound approach method. 

 To analyze the performance of the new LB approach, a comparison analysis is 

performed that compares the LB value provide by the old approach and the new approach 

(A1). Since the feasibility of the LB approach had been proved, this analysis (A1) is used 

to check whether the new approach can provide a higher LB than the older approach. The 

analysis not only compares the value of the lower bound, it also compares each of the 

components of the lower bound: travel distance, which relates to the variable cost, and 

the used vehicle number which relates to the fixed cost. Since the old lower bound is 

restricted to identical vehicles, the comparison is made in the identical vehicle 

environment. 
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 Another comparison analysis is performed between the optimal solution, heuristic 

solutions and LB value (A2) for problems that are sufficiently small for optimal solutions 

to be found. In this research, that is 7 customers or less. The fact that IPDSPPP is NP-

hard justifies the use of heuristic algorithms to solve the problem but providing a measure 

of solution’s quality is important. At the same time, the LB quality is check for those 

problems. In order to reflect the quality of the heuristic solution and LB, three gaps are 

presented: 1) optimality gap. This is the gap between a feasible solution and the optimal 

solution. It is used to reflect the quality of the feasible solution. 

               
                                  

                
 

2) LB quality gap. This is the gap between the optimal solution and LB value generated 

by the LB approach. This gap is used to reflect the quality of the LB approach. The LB 

gap equal 0 means that the LB approach is very suitable for this problem and provides the 

best LB value (i.e. optimal solution). 

               
                            

                
 

3) LB Gap: this is the gap between the feasible solution and LB value. This gap has the 

similar function with the optimality gap which is used to reflect the quality of the feasible 

solution. The optimal solution is replaced by the LB value. Note that, this LB gap might 

not reflect the quality of the feasible solution accurately when the LB has a large 

deviation from the optimal solution.  
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In the A2 analysis, we will compare the optimality gap between the optimal solution and 

Best Heuristic Solution which is defined as the best heuristic solution among all solutions 

using all heuristics.  This comparison will provide the quality of the heuristic algorithms 

proposed in this research. Also, the LB quality will be checked by the LB quality gaps 

between optimal solution and LB value. In total, 15 problems are divided into 5 groups 

based on the number of customers in the problem (i.e., one group for each number of 

customers from 3 to 7). In each group, 3 problems are created with the same customer 

number, but random customer location and customer demand. The MIP solver with 

AMPL + GRUOBI is used to solve the optimal solution and 5 heuristics (H1, H2, H3, H4 

and H5) are used to get the Best Heuristic Solution. 

The experimental study to compare the performance of the heuristics consists of 

16 test problems that are divided into 2 categories and 5 heuristics (H1, H2, H3, H4 and 

H5).  There are 4 small size problems which include no more than 7 customers because 

this is the maximum number of customer for which the optimal solution to the MIP 

model could be found with the computing environment used in this research.  There are 

12 large size problems which have more than 7 customers.  Since the heuristics are 

affected by the random number used in the heuristic, the same input environment will 

likely generate different results so, for each problem in this analysis, 50 replications are 

used with each heuristic.  

To compare the quality of the solution produced by different heuristic algorithms, 

a comparison study is performed (A3).  Different from the A2 analysis, in the A3 analysis 

more detailed information is compared which includes the minimum, maximum and 
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average cost objective value considering all 50 runs for each problem. Statistical analysis 

is used to define which of the 5 heuristics performed best using the different measures. 

The first 3 analyses used test problems that were differentiated only by the 

number of customer in the system. This will certainly increase the total transportation 

cost because more customers must be served. There are, however, other factors that might 

affect the solution result, such as the ratio of the fixed and variable transportation costs, 

the product lifetime length, and the typical customer order size. The heuristic algorithms 

are compared relative to these parameters. Analysis (A4) explores the impact of input 

parameters on the heuristic’s performance. In particular, the product lifetime, the plant 

production rate, the fixed cost for each vehicle, the variable cost for each vehicle will be 

analyzed. 

 

Experimental Results 

1. A1 analysis. 

This A1 analysis compares the performance of the new LB approach with the old 

one. Recall from the previous section, the LB is the lower limit of solution objective 

value (i.e., the system transportation cost in IPDSPPP). For a minimization problem, the 

LB value will be less than or equal to the objective function value for all feasible 

solutions. The LB approach is used to provide the LB with 2 characteristics: 1) 

guaranteed to be less or equal to all feasible solution, and 2) as big as possible. The first 

characteristic is usually guaranteed when developing the approach, such as the new 

approach proposed in this research. The second characteristic is used to compare the 
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performance of the LB approach. The better approach will provide higher LB value. In 

this research, the LB value is the system transportation cost which is composed by 2 

parts: fixed cost and variable cost which are determined by the used vehicle number and 

vehicle travel distance. The new LB approach in this research changed in two ways in an 

effort to improve its performances: (1) the internal travel distance between customers was 

included rather than simply doubling the farthest customer traveling distance to calculate 

the travel distance for trips. (2) The waiting time for all available vehicles at the 

beginning of the time horizon was included to improve the accuracy of estimation for 

used vehicle number. In order to investigate if these changes actually improved the 

quality of the new LB, a group of 80 problems has been generated by varying the number 

of customers (16 levels) and randomly generating their locations (5 problems for each 

number of customers). The basic parameters for these problems are shown in Table 3.10. 

For the comparison to be “fair” with the old LB, only one type of vehicle is used for 

delivery since the old LB was developed based on this assumption. The time horizon is 

automatically adjusted to maintain the feasibility of the solution with the formula

/10 *100 200T N     , where N is the customer number in the system. The results in 

run order are displayed in the Appendix, Table A.1. 

Table 3.10: Input Parameters for A1 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Number of customer N 

Customer location range (x, y), 0≤x≤100, 0≤y≤100 

Plant location (50, 50) 

Plant production rate r=1 

Vehicle capacity C=15 
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Vehicle variable cost per unit distance R=1 

Vehicle fixed cost F=500 

Time horizon /10 *100 200N      

 

As described above, either criteria improvement (travel distance or used vehicle 

number) can make the LB value improved. To make the comparison, this analysis uses 

the data from the old approach as the benchmark and defines 3 test criteria: 1) LB value, 

2) used vehicle number and 3) travel distance. The improvement for each criterion is 

defined as the difference between the data (i.e. LB value, used vehicle number and travel 

distance) generated using the new LB approach and the data using the old one. Figures 

3.33, 3.34, 3.35 plot this data and show the improvement of three criteria across the 80 

test problems. As shown in these figures, most of the test problems have positive 

improvement for all three criteria, and only three test problems have the negative 

improvement in LB value and travel distance (these are problems 8, 11, and 14 in 

Appendix Table A.1).  This performance suggests that the new approach provides a better 

LB in most test problems. Also, we can see several cases have a significant improvement 

for the new LB in the figure 3.33. By going through figure 3.33 and 3.35 together, we can 

find that in all these cases with significant improvement, the new LB approach estimate 

the used vehicle number is larger than the old LB approach. In this research, the new LB 

approach had a better estimation of traveling distance and idle time for vehicle waiting 

time, which leads to a better estimation of number of used vehicles. So, when the number 

of used vehicle had a significant influence to the total transportation cost, the new LB 

approach will give a better performance.   
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Figure 3.33: Improvement of LB Value for 80 Test Problems 

 

Figure 3.34: Improvement of Travel Distance for 80 Test Problems 
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Figure 3.35: Improvement of the Used Vehicle Number for 80 Test Problems 
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LB approach are the same or not. The hypotheses tested are shown in Table 3.11. Minitab 

was used for testing and the results are shown in Figures A.5, A.6 and A.7. The p-values 

of all tests are less than 0.001 which means that there is sufficient evidence to reject the 

null hypothesis and conclude that the new approach produces better LB results in all three 

measures when compared to the old approach. 

Table 3.11: Hypotheses Table for All Tests in A1 

Improvement in 

LB value 

H0: median of the LB value provide by new approach and old approach 

are equal 

H1: median of the LB value provide by new approach is greater than old 

approach  

Improvement in 

used vehicle number  

H0: median of the used vehicle number provide by new approach and 

old approach are equal  

H1: median of the used vehicle number provide by new approach is 

greater than old approach  

Improvement in 

travel distance 

H0: mean of the travel distance provide by new approach and old 

approach are equal 

H1: mean of the travel distance provide by new approach is greater than 

old approach 

 

 

2. A2 Analysis 

The A2 analysis is used to check the quality of the heuristic solutions and LB 

given by the new approach. Recall that analysis A2 compares the 5 heuristics for small 

problems. 3 different problems have been generated for 5 different customer sizes (i.e., 

number of customers is 3, 4, 5, 6, and 7).  The problems for a given number of customers 

have locations and demands randomly generated. The rest of the input parameters 

settings are listed in Table 3.12.  Each of these problems can be solved to optimality with 

MIP model by using the current software and hardware. The heuristic solutions are 

generated by using 5 different heuristics (H1, H2, H3, H4 and H5). The best heuristic 
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solutions getting among the 5 heuristics are saved as Best Heuristic Solution. So the 

quality of the heuristic solution for this research is computed by the optimality gap: 

               
                                        

                
 

Also, the LB quality gap is used to compare the quality of the LB: 

               
                            

                
 

In this analysis, two different types of vehicles are used for distribution and all 5 

heuristic methods are applied to each problem. Each heuristic is applied to each problem 

50 times and the minimum cost solution of these 50 is the defined as the best solution for 

that heuristic. The minimum cost solution of the minimums from the 5 heuristics is 

defined as the Best Heuristic Solution for that problem and used to compute the gap.  

That is, the Best Heuristic Solution is the best solution from the 5 heuristics * 50 

applications of each = 250 total runs. The results for all runs are reported in Table 3.13. 

Table 3.12: Input Parameters for A2 Analysis 
 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Total Number of customer 3,4,5,6,7 

Customer location range (x, y), 0≤x≤100, 0≤y≤100 

Plant location (50, 50) 

Plant production rate r=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Time horizon 400
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Table 3.13: All Running Results for A2 analysis 

Problem 

Number 

Customer 

Number 

Optimal Solution Best Heuristic Solution LB 

Solution 
Time 

(s) 
Solution 

Time 

(s) 

Optimality 

gaps (%) 
LB 

LB quality 

gaps (%) 

1 3 680 3.9 680 0.84 0 640 6 

2 3 800.2 58.4 800.2 0.73 0 656 18 

3 3 911.3 5.9 911.3 0.78 0 696 24 

4 4 827 12861 827 1.03 0 676 18 

5 4 717 2130 717 0.89 0 702 2 

6 4 799 12711 799 0.94 0 702 12 

7 5 888 68904 888 1.21 0 706 20 

8 5 860.7 13049 860.7 1.02 0 680 21 

9 5 1010.3 1412 1010.3 1.13 0 766 24 

10 6 1534.4 35028 1534.4 1.35 0 840 45 

11 6 831 18675 831 1.48 0 702 16 

12 6 971.8 84302 971.8 1.40 0 716 26 

13 7 1652 96323 1652 1.43 0 1422 14 

14 7 1579.6 73686 1579.6 1.58 0 860 46 

15 7 1608.6 82835 1608.6 1.56 0 874 46 

Note: the solving time is measured in seconds. 

 

Figure 3.36, which uses the data from Table 3.13, compares the Best Heuristic 

Solution and LB to the optimal solution for the 15 problems. The comparison results of 

the optimality gaps show that at least 1 of the heuristics found the optimal solution in all 

cases as evidenced by a gap of 0 for each problem. This suggests that the heuristic 

algorithms perform well for small problems. The LB quality gaps result shows that the 

quality of the LB provided by the new LB approach is not stable. It provides a few good 

LB values, such as problem 5 only has the LB quality gap equal to 2%, while for some 

other problems the LB quality gaps are much larger, such as the problem 10, 14 and 15 

all have the LB quality gap greater than 45%. On average, the LB quality gap for the 15 
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problem is equal to 23%. There are many reasons for this; one is that the LB approach 

does not consider the lifetime constraint which can make some solutions infeasible. Also, 

the approach uses the maximal capacity vehicle to calculate the used vehicle number. The 

minimum variable cost and fixed cost to calculate the transportation cost may also be 

responsible for the gaps. 

 

Figure 3.36: Optimality Gaps and LB Quality Gaps for 15 Test Problems in A2 Analysis 
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2 seconds while the average solving time for the mixed integer programming model 

required several hours. Figure 3.37 shows the number of times each heuristic provided 

the Best Heuristic Solution which, in these runs, was the optimal solution. If two 

heuristics (or more) both provide the optimal solution, the “frequency” value in Figure 

3.37 for both heuristics will be increased by 1. Notice that the H5 algorithm provided the 

Best Heuristic Solution every time. This is because the H5 algorithm has no extra rule 

while building the feasible trip set and finding the trail, it is possible to generate more 

different solutions than other heuristics (i.e. H1, H2, H3 and H4). So the H5 heuristic has 

the possibility to enumerate all solutions, and it proved that works fine when problem 

size is small (≤ 7 customers).   

 

Figure 3.37: Times to Provide Best Heuristic Solution for Each Heuristic across 15 

Problems 
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Analysis A3 compares the 5 heuristic algorithms against each other. Different 

with the MIP method, the heuristic algorithms cannot be guaranteed to find the optimal 

solution. At the same time, every heuristic algorithm in this research applied randomness 

in the process, which means that the solution of heuristics cannot always be repeated in 

all iterations. So, for every case, m iterations will be applied for each heuristic algorithm. 

Three measure criteria are achieved from these m iterations: Minimum Objective Value 

(reflects best case), Maximum Objective Value (reflect worst case) and Average 

Objective Value (reflect average case). The comparison between different heuristics is all 

based on these three criteria. Since the objective is to minimize the total system 

transportation cost, for each criterion, the heuristic which provides the minimum value 

will be the best heuristic. In this analysis, a total of 16 problems are considered – 4 with 7 

customers or less that we henceforth refer to as small and 12 with 8 customers or more 

that we refer to as large.  Since the heuristics contain random features, each problem-

heuristic pair is replicated 50 times. The parameters used in this analysis are displayed in 

Table 3.14. The minimum cost, maximum cost and average cost of the 50 replications is 

recorded and reported in Tables 3.15, 3.16 and 3.17. The Best column saves the best 

result among 5 heuristic for the minimum cost, maximum cost and average cost. Also, the 

LB is added in each table, the quality of the Best result is reflected by LB gaps which 

compares between the LB and the best result. 
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Table 3.14: Input Parameters for A3 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Total Number of customer N 

Customer location range (x, y), 0≤x≤100, 0≤y≤100 

Plant location (50, 50) 

Plant production rate r=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Time horizon /10 *100 200N     

 

Note that the LB gaps in these 3 tables are large (94% on average). There are 2 reasons 

can cause this: 1) the quality of the heuristic solution is not good. 2) The LB quality is not 

good. Recall the LB quality analysis in A2 analysis. It shows that there are many place 

need to improve in the LB approach. So, later in this research, it will just use the absolute 

value comparison between heuristics to choose the best heuristics.  

Figures 3.38, 3.39 and 3.40 report the minimum cost, maximum cost and average 

cost determined by the 5 different heuristics for the 16 problems in the run order found in 

Table B.1, B.2 and B.3. The obvious trend in all three figures is that the total cost 

increases as the number of customers increases, an obviously correct conclusion. To 

better see the performance of the different heuristics, Figures 3.41, 3.42, and 3.43 show 

the number of times each heuristic had the best solution of the 5 for minimum cost, 

maximum cost and average cost, respectively. The H3 and H4 heuristic are best most 

often when performance the minimum cost, average cost, the maximum cost. One the 

other hand, H1 and H2 does not have any best record in any performance with these three 
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criteria. This suggests that H3 and H4 are better than H1 and H2. Attention is now turned 

to a statistical analysis of the data. 
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Table 3.15: All Running Result for A3 Analysis with Minimum Objective Value for 15 

Problems 

Problem 

Number 

Minimum Value 

Best LB LB gap H1 H2 H3 H4 H5 

1 764 890.4 751 751 751 751 651 15 

2 1326 1438.2 758 758 758 758 650 17 

3 2022 2260.4 1441 1438 1438 1438 738 95 

4 2069.2 1594 1467.9 1473.9 979.5 979.5 688 42 

5 2292 2299.4 1674.2 1680.3 1697 1674.2 875 91 

6 1586 1724.2 1480 1462 1571.9 1462 807 81 

7 2357.6 2492.4 1659.1 2272.3 1743.2 1659.1 882 88 

8 3635 3791 3485 2913.9 2941.9 2913.9 1790 63 

9 4999.8 5163 4023.4 3430.5 4236.1 3430.5 1956 75 

10 5798 5995 4847.6 4757.1 5111.7 4757.1 2448 94 

11 6536.8 6910.2 5956 5897.5 5733.5 5733.5 2520 128 

12 8099 8498.2 7086.7 7059.9 7549.1 7059.9 3563 98 

13 8519.6 8798.6 7412.4 7264.1 7793.4 7264.1 3766 93 

14 9090.2 9473.6 7603.2 7611.2 8143.4 7603.2 3261 133 

15 9685.4 10144 8012.8 7886.1 9049 7886.1 3176 148 

16 11753.8 12276.8 9587.3 10161.1 11108.8 9587.3 5185 85 
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Table 3.16: All Running Result for A3 Analysis with Maximum Objective Value for 15 

Problems 

Problem 

Number 

Maximum Objective Value 

Best LB LB gap H1 H2 H3 H4 H5 

1 764 890.4 751 751 755 751 651 15% 

2 1326 1438.2 758 760 1448.2 758 650 17% 

3 2022 2260.4 1441 1441 2198.3 1441 738 95% 

4 2069.2 1594 1467.9 1473.9 979.5 979.5 688 42% 

5 2292 2305.2 1680.3 1680.3 2252 1680.3 875 92% 

6 1586 1724.2 1480 1485 1724.7 1480 807 83% 

7 2357.6 2492.4 2272.3 2272.3 2453.8 2272.3 882 158% 

8 3635 3799.2 3485 3485 3251.6 3251.6 1790 82% 

9 4999.8 5172.4 4209.1 4179.4 4610.8 4179.4 1956 114% 

10 5798 6155.8 5516.2 5501.1 6015 5501.1 2448 125% 

11 6536.8 6921.2 6140.9 6132.6 6585.2 6132.6 2520 143% 

12 8099 8657.2 7737.2 7748.9 8509.1 7737.2 3563 117% 

13 8519.6 8948.2 8078.5 7645.6 8579.4 7645.6 3766 103% 

14 9090.2 9973.6 8290.6 8585.7 9428.7 8290.6 3261 154% 

15 9685.4 10357 8805.9 9020.4 9868.7 8805.9 3176 177% 

16 11753.8 12293.8 10961 11105.2 12095.3 10961 5185 111% 
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Table 3.17: All Running Result for A3 Analysis with Average Objective Value for 15 

Problems 

Problem 

Number 

Average Objective Value 

Best LB LB gap H1 H2 H3 H4 H5 

1 764.0 890.4 751.0 751.0 754.9 751.0 651 15% 

2 1326.0 1438.2 758.0 758.0 1434.4 758.0 650 17% 

3 2022.0 2260.4 1441.0 1440.3 2168.8 1440.3 738 95% 

4 2069.2 1594.0 1467.9 1473.9 979.5 979.5 688 42% 

5 2292.0 2300.7 1680.1 1680.3 2240.9 1680.1 875 92% 

6 1586.0 1724.2 1480.0 1475.8 1721.6 1475.8 807 83% 

7 2357.6 2492.4 2260.0 2272.3 2439.6 2260.0 882 156% 

8 3635.0 3796.9 3485.0 3029.4 3204.8 3029.4 1790 69% 

9 4999.8 5165.8 4127.4 3891.6 4592.6 3891.6 1956 99% 

10 5798.0 6104.3 5298.3 5010.4 5843.9 5010.4 2448 105% 

11 6536.8 6914.4 6051.6 6043.9 6485.0 6043.9 2520 140% 

12 8099.0 8600.0 7543.9 7515.6 8190.7 7515.6 3563 111% 

13 8519.6 8928.1 7608.8 7448.5 8258.0 7448.5 3766 98% 

14 9090.2 9753.0 7843.0 8049.9 8796.3 7843.0 3261 141% 

15 9685.4 10258.6 8307.3 8470.8 9545.8 8307.3 3176 162% 

16 11753.8 12280.0 10327 10536.0 11604.5 10327.4 5185 99% 
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Figure 3.38: Comparison of Minimum Objective Value of Heuristics for 16 problems in 

A3 Analysis 

 

 

Figure 3.39: Comparison of Maximum Objective Value of Heuristics for 16 problems in 

A3 Analysis 
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Figure 3.40: Comparison of Average Objective Value of Heuristics for 16 problems in 

A3 Analysis 

 

 

Figure 3.41: Frequency to Be the Best Minimum Objective Value among 5 Heuristics 

across 16 Problems 
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Figure 3.42: Frequency to Be the Best Maximum Objective Value among 5 Heuristics 

across 16 Problems 

 

 

Figure 3.43: Frequency to be the best Average Objective Value among 5 heuristics across 

16 problems 
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As before, the Anderson-Darling test is used to check the normality of the raw 

data that is reported in Tables B.1 through B.3 in Appendix B. The results as illustrated in 

the probably plots of Tables B.1, B.2 and B.3 indicate the data does not follow a normal 

distribution. As such, nonparametric statistical tests are required. 

Figure 3.38, 3.39 and 3.40 suggest that a linear relationship exists between the 

measures of solution quality and the number of customers in system.  It is also of interest 

to determine if measures of solution quality are dependent on the heuristics. As such, a 

Freidman test is performed to statistically explore these two observations. This test is 

similar to a two-way ANOVA but is nonparametric. 

The 5 heuristics are the first factor in the analysis and number of customers in the 

system is the second factor. The Freidman test ranks the heuristics for each test problem 

with the best performance heuristic being assigned rank 1, the second best rank 2, and so 

on. In case of ties, average ranks are assigned so, for example, if 2 heuristics are tied for 

rank 2, they will both be ranked 2.5 and next rank is 4. The three Freidman tests are 

conducted using the hypotheses shown in Table 3.18.  

Table 3.18: Hypotheses of Friedman Rank Sum Test for A3 Analysis 

A3 Test1 H0: median of the minimum cost is equal for all heuristics 

H1: at least one is median is different 

A3 Test2 H0: median of the maximum objective value of different heuristics are equal 

H1: not all median of the maximum objective value of different heuristics are equal 

A3 Test3 H0: median of the average objective value of different heuristics are equal 

H1: not all median of the average objective value of different heuristics are equal 

 

Appendix Figure B.4, B.5 and B.6 present the statistical result of the Freidman 

tests with R. All these tests provides very small p-value (<0.001) which means that there 
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is sufficient evidence to reject the null hypothesis and conclude that at least one median 

value is different for each of the three measures. The post-hoc test results in all three 

Freidman test results show that the H3 and H4 are significant different with the H1, H2 

and H5. As explained above, the lower rank represents the better solution. Table 3.19 and 

Figure 3.44 gather all heuristics sum of the rank for three Freidman tests. The H3 and H4 

have lower sum ranks than the rest three heuristics. Recall the post-hoc analysis results 

for three Freidman tests indicate the H3 and H4 are significant different with H1, H2 and 

H3, it can conclude that the H3 and H4 performance better than the other heuristics.  

Table 3.19: All Heuristics Summer Rank for Three Freidman Test 

 H1 H2 H3 H4 H5 

A3 Test 1 (Minimum Objective value) 65 79 31 26.5 38.5 

A3 Test 2 (Maximum Objective 

Value) 54 77 24.5 27.5 57 

A3 Test 3 (Average Objective Value) 59 79 26.5 24.5 51 

 

 

Figure 3.44: All Heuristic Sum Ranks for Three Freidman Test 
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4. A4 Analysis 

In the previous analyses (A1, A2 and A3), the test problems differed only in a few 

input parameters such as the planning time horizon, number of customers in the system, 

customer location and demand. The other input parameters were the same. Analysis A4 

investigates the sensitivity of the solution to changes in four of these: product lifetime, 

vehicle fixed cost, vehicle variable cost, and plant product rate. To perform this analysis, 

a problem with 60 customers is used as the base problem. The input parameters for this 

test problem are displayed in the Table 3.20. The problems that will be used to perform 

the sensitivity analysis are generated as follows: 1) Select the input parameter to be 

varied and fix other input parameters with their value used in the base case. 2) Generate a 

group of sub-problems by varying the test parameter from its base value. Each sub-

problem will vary the input parameter 10 percent from the base value. The range for the 

parameter under investigation is ±90% of base value. For example, if the product lifetime 

(B=150) is select as test input parameter, the other input parameter will use the base value 

in Table 3.20, and a group of 19 sub-problems will be generated. The first will have 

product lifetime = 150*(1-90%) = 15, the second will have product lifetime = 150*(1-

80%)=30,  and so on until get the last sub test problem has a lifetime =150*(1+90%)=285. 

The H4 heuristic is used to solve the problems and each problem will be replicated 50 

times. The sensitivity analysis running results for the 4 input parameters with the 60 

customer base problem are shown in Tables D.1 through D.3 in Appendix D. 
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Table 3.20: Base Input Parameters Value for A4 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Total Number of customer 60 

Customer location range (x, y), 0≤x≤100, 0≤y≤100 

Plant location (50, 50) 

Plant production rate r=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Product lifetime B=200 

Time Horizon H=800 
 

Figure 3.45 plots the data from Table C.1 to show the minimum objective 

function value of system transportation cost by changing 4 input parameters. As shown in 

the figure, the variable vehicle cost and the fixed vehicle cost have linear relationships 

with the system transportation cost. Plant production rate and product lifetime have no 

discernible relationship with transportation cost. To further explore this observation 

statistically, Analysis A4 uses a correlation analysis to test whether there is correlation 

between input parameters (variable vehicle cost and the fixed vehicle cost) and objective 

value. The raw data is checked for normality using Anderson-Darling test and the 

resulting probability plots are shown in Figures C.4 and C.5. These tests indicate that the 

data for variable vehicle cost and fixed vehicle cost are following a normal distribution 

(p-value>0.8). So, 2 Pearson Correlation Tests are conducted to test the correlation 

between input parameters and objective values. All the hypotheses are shown in Table 

3.21. 
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Figure 3.45: Graphing changes of the Minimum Objective value of System 

Transportation Cost by changing 4 input parameters  

 

Table 3.21: Hypotheses of Tests for A4 Analysis 

A4 Test1 

 

H0: the correlation between variable vehicle cost and system transportation cost is 0 

H1: the correlation between variable vehicle cost and system transportation cost is 

not 0 

A4 Test2 H0: the correlation between fixed vehicle cost and system transportation cost is 0 

H1: the correlation between fixed vehicle cost and system transportation cost is not 0 

 

Both Correlation Test results are shown in Appendix D. The test results indicate 

that the variable vehicle cost and fixed vehicle cost have a correlation with the system 

transportation cost (p-value<0.001). Furthermore, the correlation is a strong positive 

linear relationship (correlation >=0.99).  
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The linear relationship between the system transportation cost and 2 cost structure 

input parameters (variable vehicle cost and fixed vehicle cost) is obvious. Changing the 

fixed vehicle cost and variable cost will change the total system cost. The other 2 input 

parameters (plant production rate and product lifetime) are more control with the 

feasibility of the solution. The plant production rate determines whether all customer 

demand can be satisfied within the time horizon or not and the product lifetime 

determines the deliverable customer location range size. The Appendix Table C.1 shows 

that the test problem will not able to get feasible solution when the plant production rate 

lower than 60% of current base value or the product lifetime lower than 30% of current 

base value. 

 

Conclusions and Future Research 

The IPDSPPP problem had been explored from a number of perspectives in this 

chapter.  A mixed integer model was proposed but could only be solved to optimality for 

small number of customers because the underlying problem is NP-hard.  This fact 

justifies heuristic approaches for larger problems so several were developed and tested. 

Experimental results were obtained using the AMPL and GUROBI 3.0 on a Dell 

Optiplex 755 with 2.33GHz Intel Core 4 Duo CPU and 4096 gigabytes dual channel 

memory.  The mathematical programming model could be solved to optimality for 7 

customers but no more. As a transition to heuristic approaches, a new approach to get LB 

was proposed for the problem.  The new approach of the LB had been shown to be 

statistically superior to the existing one.  
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The heuristic approach taken to IPDSPPP in this work uses a simulated annealing 

search algorithm based structure. Several different versions within this basic structure 

were developed and applied to different scenarios of the IPDSPPP to find approximate 

solutions. A number of experimental comparisons were performed with interesting 

results. One was that the Multi-stop Delivery with Random Shortest Path Fit algorithm 

with the simulated annealing search method (H4) and Multi-stop Delivery with Shortest 

Path Fit algorithm with the simulated annealing search method (H3) are statistically 

superior to the other heuristic algorithms in all 3 test criteria (i.e. minimum cost, 

maximum cost and average value of the system transportation cost). Furthermore, the 

series of experiments for the sensitivity analyses of the rest input parameters (i.e. vehicle 

fixed cost, vehicle variable cost, plant production rate, product lifetime) show that the 

vehicle fixed cost and vehicle variable cost have the positive linear effect on the total 

system transportation cost. The product lifetime and plant production rate are more likely 

to control the feasibility of the solution rather than to affect the total system 

transportation cost. 

There are several interesting ways that the IPDSPPP problem can be expanded: 

1. There is obviously new ways that the customers capable of being served by multiple 

plants can be partitioned.  In addition to this, a practical aspect to explore would be 

comparing the additional computational burden of more complex procedures to the 

quality of the solution. 
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2. Split delivery should be investigated.  A first step would be to allow the demand at a 

single customer to be satisfied by 2 or more vehicles.  Then, 2 or more vehicles from 

different plants can be the topic of an interesting research project. 

3. Adding time windows when customers can accept shipments is another important 

feature that could be added which would increase the realism dramatically for many 

practical situations.  

 

  



 115 

CHAPTER FOUR 

MULTIPLE PLANTS INTEGRATED PRODUCTION AND DISTRIBUTION 

PROBLEM WITH SINGLE PERISHABLE PRODUCT  

 

Introduction 

In Chapter 3, a mathematical model is proposed for the single plant integrated 

production and distribution problem with a perishable product problem (IPDSPPP) with 

the objective of reducing system transportation cost while maintaining an acceptable 

level system performance. The model considered a network with one centralized plant 

and multiple geographically separated customers and the decisions were the production 

and distribution schedules to satisfy all customer demands within the product’s lifetime. 

All customers are located so that delivery within this time is possible with vehicles that 

are available (i.e., a feasible solution exists) and the research is based on single period. 

Optimal solutions were obtained for the problem with small datasets that included less or 

equal to 7 customers in the system and several heuristics were developed to find 

approximate solutions. 

The research reported in this chapter extends the basic idea from the previous 

chapter to multiple plants. This is certainly a reasonable extension from a practical 

viewpoint because two geographically separated plants not only provide additional 

capacity to serve customers in the region that they can both reach within the time horizon, 

but it also extends the sales region as well. Clearly, if several businesses have large-sized 

orders, the total customer demand could easily overwhelm the capacity of the single plant 
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capacity. The perishable property of the product along with the time horizon are not only 

important from a modeling perspective, they are genuinely restrictive in practice.  

Defining the plant’s deliverable range as the area that customer demand can be served by 

the plant with a product before the lifetime has expired, it is easy to think of the 

deliverable range as the area of a circle that has the plant located at the center and a 

vehicle’s maximum driving distance within the product lifetime as the radius. This 

correctly reflects the fact that the delivery range is proportional to the product lifetime 

and, as such, there are at least three ways to increase the deliverable range. The first 

would be to extend the product lifetime. Some types of perishable products will have a 

longer lifetime with different storage methods. For example, it is easy to visualize that the 

delivery range for some types of chemical or biological substances could be dramatically 

enlarged with refrigerated or pressurized transport.  Relative to this research, this 

approach violates a basic tenet, namely, that vehicles are readily available for hire in any 

quantity because these transporters are very specialized.  While this is a terrific option in 

practice for certain perishable products, it is not of interest in this research.  The second 

method would be to increase the speed of the vehicle.  Again, this is completely 

reasonable for certain types of perishable products but of no interest in this research.  The 

point is that there are clearly other techniques that could be used in practice to extend the 

range of a company delivery area; however, this research focuses on the situation where 

the choice is to open a second production facility. In addition to extending the range, this 

method can also decrease the average distance from the customer to the closest plant 

center which might lead to a reduction of the total delivery cost as well. 
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Literature Review 

The current problem with multiple plants could be considered an extension of the 

Multiple Depot Vehicle Routing Problem (MDVRP). After Clarke and Wright (1964) 

proposed the basic VRP problem in 1964, many extensions have been proposed. The 

MDVRP problem is motivated by economics and practicality. Laporte et al. (1988) used 

an appropriate graph representation and transformed the MDVRP problem into an 

equivalent constrained assignment problem. They provided a branch-and-bound method 

to solve the optimal solution up to 80 nodes in the system. Sumichrast and Markham 

(1995) developed a heuristic method to solve the MDVRP problem for distributing raw 

materials between multiple resources and multiple plants. They adapted the Clarke and 

Wright saving method (1964) to create their algorithm and measured its performance by 

comparing it with a lower bound. Several other heuristics have been proposed to solve 

the MDVRP. Renaud et al. (1996) adopted a tabu search that initially assigns all 

customers to their nearest plant then and improves the solution with tabu search. Salhi 

and Sari (1997) proposed a heuristic method with three levels that first constructed an 

initial feasible solution and, then, improved the routes from each depot in the next two 

steps alternative repeating applying the local search technique and different composite 

heuristic until hit the stop criteria. In more recent years, Ho et al. (2008) proposed a 

hybrid genetic algorithm for the MDVRP. The algorithm generates initial solutions by 

two methods: 1) randomly and 2) an adaptation of Clarke and Wright’s saving method 

(1964) and a nearest neighbor heuristic. All of these models assume that each vehicle 

makes only one trip in the planning horizon. The VRP in which vehicles can make 
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multiple routes during the planning horizon (or called multiple uses of vehicles) is 

another important extension of basic VRP. The first work to address multiple uses of 

vehicles into VRP problem was Salhi (1987); this feature added significant realism and 

practicality to the basic problem. Later, Taillard et al. (1996) provide a tabu search 

algorithm to solve the vehicle routing problem with multiple uses of vehicles.  It uses a 

bin packing algorithm to assign the routes to vehicles. Brandao and Mercer (1997) 

proposed a three-phase heuristic which starts with an insertion heuristic for initial 

solution, then the solution is improved using a tabu search by reinsertion and exchange of 

customers, feasibility of the solution is not considered in this phase. The third phase is to 

restore the search limit while only considering the feasible solution. In a second paper by 

Brandao and Mercer (1998), a more complex variant of the problem with maximum 

overtime constraints and a mixed fleet is considered. More recently, Petch and Salhi 

(2003) proposed a three-phase heuristic to solve a variant of the problem where, for a 

given number of vehicles, the objective is to minimize the maximum overtime. Their 

population-based approach first generates routes with a savings-based heuristic. These 

routes are then combined to form complete solutions which are finally improved with a 

local search heuristic. Olivera and Viera (2007) presented an adaptive memory-based 

heuristic, where the memory is made of multiple route solutions. 

The literature that considers multiple depots and multiple use vehicles is scarce. It 

is even less when considering the perishable product in the system. The only literature we 

could find in the similar area is the work of Devapriya (2008). He proposed the research 

with a single plant, multiple identical vehicles, multiple customers and a fixed time 

http://www.sciencedirect.com.libproxy.clemson.edu/science/article/pii/S0377221709004950#bib16
http://www.sciencedirect.com.libproxy.clemson.edu/science/article/pii/S0377221709004950#bib16
http://www.sciencedirect.com.libproxy.clemson.edu/science/article/pii/S0377221709004950#bib15
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horizon. The research assumed that the vehicles used for distribution can make multiple 

trips as long as all orders are satisfied within the planning horizon. The objective is to 

determine the minimum fleet size, their route and the production schedule to minimize 

the total system distribution cost. Two heuristics are proposed to solve this strongly NP-

hard problem.  

One difference between this research and that of Devapriya (2008) is the use of 

multiple types of non-identical vehicles for distribution. Each type of vehicle has the 

unique capacity, variable running cost and fixed running cost. Another is that this 

research considers multiple plants - it is the multiple plant integrated production and 

distribution schedule problem with single perishable product (MPIPDSPPP). 

In the following sections of this chapter, a mixed integer programming model of 

this problem is proposed as well as heuristic approaches to find approximate solutions to 

this NP-hard problem. Numerical examples are then presented to illustrate various 

features of the model and the heuristics. 

 

Problem Description 

The MPIPDSPPP problem is an extension of the previous research of the 

IPDSPPP problem. Here, more than one plant is available to supply the perishable 

product to customers that are geographically dispersed in an area. Each plant has a fixed 

production rate and is geographically separated from the other plants. Every plant uses its 

own fleet of vehicles to deliver the customer demands which means that all vehicles 

return to the same plant to which they are initially assigned for replenishment. The goal is 
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to satisfy all customer demands within the time horizon and product lifetime while 

minimizing the total system transportation cost. To achieve this goal, the delivery 

schedule and production schedule must be determined simultaneously which includes the 

partition of customers for each plant, number and type of vehicles for each plant, the 

delivery routes for each vehicle and their dispatch schedule, and each plant’s production 

schedule for each batch. The detailed assumptions for the problem are as follows: 

 The performance of the whole supply chain is considered within one planning 

horizon. 

 M different production centers (plants) serve all customers which are 

geographically separated and independent of each other. 

 All customer demands are deterministic and must be satisfied within the time 

horizon.  

 Every plant has an individual fixed production rate. 

 A single perishable product is produced and distributed to customers. 

 The product has a constant lifetime that begins immediately after the production. 

 Expired product cannot be used to satisfy the customer demand. Also, there is no 

salvage value for products after the lifetime has expired. 

 Every plant hires its own delivery fleet and vehicles are assigned to only one 

plant.  That is, a vehicle assigned to Plant 1 can never have any transactions with 

a plant other than Plant 1. 
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 The fleet is selected from a portfolio of non-identical vehicles which have 

different capacities, different unit distance travel costs, and different fixed setup 

costs. 

 There are an unlimited number of each type of vehicle from which the fleet can be 

selected. 

 For each vehicle, deliveries begin and end at the same plant. 

 Multiple trips for vehicles are allowed but it must be from the same plant. 

 If the vehicle finishes a delivery trip early, it can be assigned to another delivery 

trip as long as the second trip is feasible. 

 Loading and unloading times are not considered. 

 Split delivery is not allowed.  That is, demand at each customer must be satisfied 

by one vehicle during one stop; it cannot be satisfied by two or more vehicles or 

during multiple stops of one vehicle. 

 

In this research, multiple plants are considered. Because of the perishable 

property of the product, this work is fundamentally different with the traditional 

MDVRP. Figure 4.1 illustrates an simple example of the MPIPDSPPP problem with two 

plants. All customer demands can be satisfied by one or both of these two plants. Notice 

that neither plant in this figure can reach every customer which is a differentiating feature 

between this research and the classical MDVRP problem. This feature has an important 

conceptual implication as well. It means that all customers fit into one of three types: 

Type I - customers who can only be served by the plant 1, Type II - customers who can 
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only be served by the plant 2, and Type III - customers who can be served by plant 1 or 

plant 2. 

Note the special situation for the MPIPDSPPP where there are no Type III 

customers.  Although, this is technically a multi-plant situation, in reality it is simply two 

IPDSPPP. Since there are no customers located in the overlapping deliverable area, all 

customers in this scenario can only be served by Plant 1 or Plant 2, so, the current 

MPIPDSPPP problem can be simplified into 2 independent IPDSPPP problems and 

solved using the previous research results on IPDSPPP problem. The MPIPDSPPP 

problem to be addressed in this chapter is the scenario with customers located in the 

overlapped deliverable range. In the other words, problems must include Type III 

customers. 

 

1 2

i plant i customer deliverable range

Type I Type II
Type III

 
 

Figure 4.1: An Example of MPIPDSPPP Problem  
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Mixed Integer Mathematical Model for the MPIPDSPPP  

In this section, a mixed integer programming model is proposed for the 

MPIPDSPPP. Because all customer demands are deterministic and must be satisfied 

within the time horizon, the total number of products that need to be produced is 

predetermined and the raw material cost is fixed. Hence, the goal of the model is to 

minimize the total system transportation cost and the objective function has two major 

parts. The first part is the fixed cost that is analogous equivalent to a fixed rental fee plus 

fixed labor cost to operate the vehicle. It is assessed on each vehicle used to make 

deliveries and does not depend on distance traveled. The second part is the variable cost 

which is assessed based on the distance traveled by the vehicle during the delivery 

process.  

 

Mathematical Model  

Since the model needs to calculate both the travel time and travel distance for 

each trip, it is assumed that all vehicles maintain a constant traveling speed at 1 unit 

distance / unit time. With this assumption, the distance and travel time are the same in 

value between any two points yet this assumption does not restrict the generality of the 

model. Before presenting the model, the notation to be used is identified. 

 

Indices: 

V      = Set of all plants.  1,2,...,V m  

'N    = Set of all customers.  ' 1,..., 1N m m n   
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N     = Set of all customers and the plants.  1,2,..., 1N m n    

S      = Set of all type of vehicles.  1,2,...,S l  

 

Parameters: 

B      = Fixed lifetime of the product 

H     = Time horizon  

n       = Total number of customers. 

m      = Total number of plants. 

l        = Total number of types of vehicles. 

iq      = demand of customer i, 'i N  

vr       = production rate of the v
th

 plant. v V  

ij      = Travel time from customer i to customer j,  ,i j N  

sC     = Capacity of the s
th

 type truck, s S  

sF      = Fixed cost associated with the s
th

 type truck, s S  

sR     = ratio of traveling cost per unit time for s
th

 type of truck to the standard truck. 

where s S . 

 

Decision Variables: 

v

s i j k mX  = 1 if v
th

 plant’s m
th

 truck in s
th

 type visits customer j immediately after customer 

i in its k
th

 trip, 0 otherwise. , , , , , 'v V s S i j N k m N    . 
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v

sk mtL    = 1 if the v
th

 plant is producing for its k
th

 trip of m
th

 truck in s
th

 type at time epoch 

t, 0 otherwise. , , , ',v V s S k m N t T    . 

v

s my      = 1 if the v
th

 plant’s m
th

 truck in s
th

 type is used for delivery, 0 otherwise. 

, ',v V m N s S   . 

v

s k mZ     = 1 if the k
th

 trip of the v
th

 plant’s m
th

 truck in s
th

 type is used, 0 otherwise. 

, , , 'v V s S k m N   . 

v

s k md       = Distribution start time of the k
th

 trip of the v
th

 plant’s m
th

 truck in s
th

 type. 

, , , 'v V s S k m N   . 

v

s k mp       = Production start time of the k
th

 trip of the v
th

 plant’s m
th

 truck in s
th

 type. 

, , , 'v V s S k m N   . 

 

   
' ' '

v v

s i j k m s i j s sm

s S v V i N j N k N m N v V s S m N

Min X R F y
        

       

:Subject to  

, , , 'v

s i j k m j s

i N j N

X q C v V s S m k N
 

           (1) 

' '

1 'v

s i j k m

s S v V i N k N m N

X j N
    

          (2) 

' '

1 'v

s i j k m

s S v V j N k N m N

X i N
    

          (3) 

, , , , 'v v

s i j k m s ji k m

i N i N

X X v V s S m k j N
 

          (4) 

'

, , , 'v v

s v j k m s k m

j N

X Z v V s S m k N


          (5) 
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'

, , , 'v v

s i v k m s k m

i N

X Z v V s S m k N


          (6) 
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Constraint (1) limits the total customer demand in a given trip so that it cannot exceed the 

vehicle capacity. Constraints in (2), (3) and (4) ensure that each customer’s demand will 

be met and met only once. Constraints (5) and (6) ensure that every delivery trip begins 

and ends at the plant. Constraint (7) is a rather standard sub-tour elimination approach. 

Constraints (8), (9) and (10) restrict each vehicle to be of only one type and enforce this 

in the route-defining variables. Constraint (11) ensures that deliverer are completed 

before the product lifetime expires and (12) forces every delivery to be completed before 

the time horizon ends. Constraints (13) and (14) ensure that a delivery cannot begin 

before the product is ready and that the delivery truck cannot start a new trip until it has 

returned to the plant from its previous trip. Constraint (15) forces production in the 

sequence of delivery and forbids preemption.  Constraint (16) restricts the plant to 

produce for one trip in any time period and (17) ensures each plant produces with its 

fixed productivity. Constraint (18) and (19) together ensure the plant continues to 

produce one batch until the entire quantity required for a trip is completed. Constraint 

(20) prevents a vehicle delivery the product to itself. Constraints (21) and (22) ensure the 

vehicle always return back to the plant it start with. 

Table 4.1 and Figure 4.2 show the growth of the problem size as a function of an 

increasing number of the customers. 10 problems with 3 to 16 customers are conducted 
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for the comparison. Recall that the MIP Gap refers to the gap between the mixed integer 

lower bound given by the GUROBI and the current best integer solution, 

        
                                                             

                             
 

The default stopping criterion is to terminate the program when the MIP gap is less than 

0.0001. The testing is conducted using AMPL and Gurobi3.0 with a Dell workstation 

computer (Dell Optiplex 755; 2.33G Hz Intel Core 4 Duo CPU with 4096 gigabytes dual 

channels memory). 

Table 4.1: Growth of the Problem Size with the Number of Customers in MPIPDSPPP 

Problem 

Number 

Number of 

Customers 

Number of 

Variables 

Number of 

Constraints 

MIP 

Gap 

(%) 

Gurobi 

Solution 

Approximate 

Elapsed Time 

(sec) 

Stop Criteria 

1 3 7866 16416 0 736 10 Default 

2 4 14488 30362 0 800 5 Default 

3 5 23630 50132 0 1322 185 Default 

4 6 35748 77070 0 949.8 84902 Default 

5 7 51394 112808 0 1516 42929 Default 

6 8 67376 151330 36.7 1516.8 67881 Out of memory 

7 9 112158 251152 30.3 1479 46650 Out of memory 

8 10 142460 325362 n/a n/a 39900 Out of memory 

9 14 383460 920822 n/a n/a n/a Out of memory 

10 16 560224 1382778 n/a n/a n/a Out of memory 
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Figure 4.2: Growth of Problem Size of MPIPDSPPP with Number of Customers 

 

The MPIPDSPPP problem is an extension of MDVRP problem which had been 

proven to be an NP-hard problem, so the MPIPDSPPP inherits the complexity of 

MDVRP and is also NP-hard. As shown in the figures, even though AMPL and GUROBI 

can solve the mixed integer programming model for MPIPDSPPP optimally, the number 

of constraints and decision variables grow quickly when the number of customer in the 

system increased. The optimal solution only can be obtained when the problem has 7 or 

fewer customers in the system. 
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The MPIPDSPPP problem is NP-hard and the practical reality of this is reflected 

in the numerical examples of the previous section. Table 4.1 shows that finding the 

optimal solution for the MPIPDSPPP problem with 2 plants and 7 customers takes over 

several hours (elapsed time). Further, a feasible solution cannot be obtained when the 

problem size increases to 10 customers. The fact that MPIPDSPPP is NP-hard justifies 

heuristic approaches to find approximate solutions for larger problems.  Several heuristics 

are now proposed for the MPIPDSPPP problem.  

 

Structure of the Heuristic Algorithms 

Recall previous introduction, the MPIPDSPPP problem is an extension of the 

IPDSPPP problem that increases the number of plants in the planned area. As shown in 

the Figure 4.1, that MPIPDSPPP problem can be viewed as two IPDSPPP problems if the 

customers able to be served by either plant are assigned to one of the plants.  On an 

intuitive level, assigning customers then becomes the crux of any heuristic and it can 

have a dramatic impact on the solution.  With this thought, the basic heuristic algorithm 

decision hierarchy is presented in Figure 4.3. It can be seen that, first, the customers in 

the overlapping region are assigned to different plants (i.e. the customer allocation result 

is generated), then the IPDSPPP problem is solved for each plant (Step 3 to 5) separately, 

and the last solution result is found by adding the solutions together. This idea drives that 

basic structure of this heuristic: 

Step 1: Assign all customers to plants. 

Step 2: In each plant, assigning initial plant production schedule. 
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Step 3: In each plant, assigning customers to routes. 

Step 4: In each plant, assigning routes to vehicles and refine the production schedule.  

Step 5: Merge all plant production schedules and vehicle routes into a last solution. 

Allocating

Initial Production 

Scheduling

Routing

Simultaneously refine 

production scheduling and 

build distribution schedule 

Step 1:

Assigning customers to plants

Step 2:

Assigning initial plant production 

schedule

Step 3:

Assigning customers to routes

Step 4:

Assigning routes to vehicles and 

refine the production schedule

Plant 1 Plant n

Initial Production 

Scheduling

Routing

Simultaneously refine 

production scheduling and 

build distribution schedule 

Plant i

…

Customer Allocation 

Result

…

Merging

Customer Allocation 

Result

Step 5:

Merging all plants solutions into a 

final solution

SPIPDSPPP

 

Figure 4.3: The Basic Hierarchy of Decisions in the MPIPDSPPP 

 

The challenge is Step 1 because Steps 2, 3 and 4 comprise the work done 

previously on IPDSPPP and merging non-overlapping plants solutions (Step 5) is straight 

forward. The key is to determine how to assign customers of Type III to one of the two 
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plants because this places a bound on the quality of the solution.  If customers are poorly 

assigned, for example, a much larger number of direct deliveries are required than the 

other customers assignment; then the transportation cost of the solution can never bit the 

solution which had better customer assignment. Also important is the fact that 

inappropriate assignments are not correctable in the later steps. Simply stated, since it is 

assumed that each plant hires their own fleet for the delivery, if the initial partition 

assigns Customer A to Plant 1 and the optimal solution has Customer A assigned to Plant 

2, the solution can never reach optimality, or possibly be relegated to be rather poor and 

this is determined before any algorithm is used. So, the quality of the solution result is 

highly dependent on the initial assignments and resulting customer partitions. 

 

Complexity of Customer Allocation 

It has been argued that the effectiveness of customer allocation step will affect the 

quality of the MSIPDSPPP problem. This is different from the customer allocation in 

classical MDVRP problem because it might not be possible to assign all customers to any 

plant because of product lifetime or horizon constraints. The general impact this has on 

the heuristics is that the feasibility of the customer allocation should be guaranteed. The 

infeasible customer allocation always leads to an infeasible last solution result and cannot 

be fixed in later steps. To facilitate the discussion of the customer allocation problem, it 

is categorized into two cases: 1) Customer allocation when there is one overlapping 

region so all plants can serve every customer in the overlapping region (CL1) and 2) 
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Customer allocation when there are multiple overlapping regions so all plants cannot 

serve all customers in the overlapping regions (CL2). 

 

Customer Allocation When There Is One Overlapping Region So All Plants Can Serve 

Every Customer in the Overlapping Region (CL1) 

Example 4.1 is used to illustrate partitioning of customers when there is one 

overlapping region so that all customers in the overlapping region can be served by all 

plants. This is the only overlapping region for two plants as shown in Figure 4.4 but it 

can also be true for multiple plants as well. 

Define the following: 

A: a set of all customers 

Θ: a set of plants 

AΘ: disjoint service set; this is the set of customers that can be and only can be served by 

plants in the set Θ. In Figure 4.4, A{1,2} = {1,2,3} means the customer 1, 2 and 3 only can 

be served by either plant 1 or plant 2. 

Out(AΘ): It is the collection of all possible allocations of customers in set AΘ to plants in 

set Θ. 

CN(AΘ): total number of possible allocations in set Out(AΘ), it is |Out(AΘ)| 

CN(A): total number of possible allocations for customer in set A. 
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Example 4.1: Consider 6 customers and 2 plants in the planned area as shown in the 

Figure 4.4. The means that A{1}={4}, A{2}={5}, and A{1,2}={1,2,3}. 

1 2

1

i plant i customer deliverable range

2

3
5

i

4

 

Figure 4.4: Customers and Plants Location Graph for the Example 4.1 

 

As shown in Figure 4.4, customers 4 and 5 are in the non-overlapping region only 

can be served by one plant.  Their allocation is fixed and will not change with any 

allocation method. So customer allocation methods focus exclusively on the customers in 

the overlapping region or regions, in this example it is set A{1,2}. Define Ri as the set of 

customers in AΘ who are assigned to plant iΘ. In this example, we have R1 and R2 that 

will denote the customers in A{1,2} that are assigned to plants 1 and 2, respectively. Note 

that |A{1,2}| = |R1| + |R2|. Table 4.2 shows all possible allocation results for Out(A{1,2}) 

using the data in Example 4.1. The total number of possible allocations can be 

determined by combinatorics. Choose the customers for set R1 first and then, assign the 

rest of the customers to set R2. The number of customers that could be assigned to set R1 

ranges from 0 to |A{1,2}|=3 so the total number of allocations for the example is: 
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Table 4.2: All possible Allocation Result for AΘ for Example 4.1 

No. R1 R2 [| R1|,| R2|] 

1 ∅ {1,2,3} [0,3] 

2 {1} {2,3}  

[1,2] 3 {2} {1,3} 

4 {3} {1,2} 

5 {1,2} {3}  

[2,1] 6 {1,3} {2} 

7 {2,3} {1} 

8 {1,2,3} ∅ [3,1] 
 

 

Proposition 4.1: The number of customer allocations for the scenario with 2 plants and n 

overlapping customers is 2
n
. 

Proof: Generalizing the method for Example 4.1, we get the following expression for 

CN(A{1,2}) with |A{1,2}| = n. 

{1,2}( ) ...
0 1

n n n
CN A

n

     
        
     

     (23) 

This can be simplified using the binomial theorem formula 

0

( )
n

n n k k

k

n
x y x y

k





 
   

 
       (24) 

Setting x = 1 and y = 1 yields CN(A{1,2}) = 2
n
. 

 The result of Proposition 4.1 shows that the total number of allocations CN(AΘ) is 

dependent on the number of customers in the overlapping region, |AΘ| = n, and the 

number of plants available to serve these customers, |Θ| = m. So, define 

CN(n, m) = CN(AΘ), where |AΘ| = n, and |Θ| = m   (25) 
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to be the total number of allocations for the set of overlapping customers AΘ,. Clearly, 

CN(0, i) = 1, CN(i, 1)=1, where    . 

 

Proposition 4.2: The number of allocations for the scenario with m plants and n 

overlapping customers is m
n
. 

Proof: |A{1,2,…,m}| = n customers in set A{1,2,…,m} that are in one overlapping region must 

be assigned to m plants. Each plant is assigned customers in sequence,  R1 R2,…,Rm . 

Plant 1 is assigned i customers that are placed into set R1. The remaining problem is to 

allocate n-i customers to m-1 plants which is CN(n-i, m-1). The general number of 

allocation is: 

( , ) ( , 1) ( 1, 1) ... (0, 1)
0 1

n n n
CN n m CN n m CN n m CN m

n

     
               
     

      (26) 

Proof is by Mathematical Induction. 

1. CN(n, m) = m
n
 holds when m=1, n=1; that is, CN(1, 1) = 1. This is obvious since 1 

customer and 1 serviceable plant only has one allocation. 

2. Assume as the induction hypothesis CN(n, m) = m
n
.  

3. Prove that the hypothesis is true for CN(n+1, m) and CN(n, m+1). From (26) and (24), 

the following equations are generated: 

0 1 1 0

( , 1) ( , ) ( 1, ) ... (0, )
0 1

1 1 ... 1
0 1

( 1)

n n n

n

n n n
CN n m CN n m CN n m CN m

n

n n n
m m m

n

m



     
             

     

     
              
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 

                         (27) 
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          (28)
  

Equations (27) and (28) prove that the hypothesis is true for both CN(n+1, m) and 

CN(n, m+1) so it is concluded that 

CN(n, m) = m
n
      (29)

 

is true
 
for all cases where m, n ≥ 1. Table 4.3 shows an example of all allocation result for 

the case with 2 customers in an overlapping area served by 4 plants. 

Table 4.3: All Possible Allocations for the Set with 2 Customers into 4 Plants 

No. R1 R2 R3 R4 [| R1|,| R2|,| R3|,| R4|] 

1 ∅ ∅ ∅ {1,2} [0,0,0,2] 

2 ∅ ∅ {1} {2} 
[0,0,1,1] 

3 ∅ ∅ {2} {1} 

4 ∅ ∅ {1,2} ∅ [0,0,2,0] 

5 ∅ {1} ∅ {2} 
[0,1,0,1] 

6 ∅ {2} ∅ {1} 

7 ∅ {1} {2} ∅ 
[0,1,1,0] 

8 ∅ {2} {1} ∅ 

9 ∅ {1,2} ∅ ∅ [0,2,0,0] 

10 {1} ∅ ∅ {2} 
[1,0,0,1] 

11 {2} ∅ ∅ {1} 

12 {1} {2} ∅ ∅ 
[1,1,0,0] 

13 {2} {1} ∅ ∅ 

14 {1} ∅ {2} ∅ 
[1,0,1,0] 

15 {2} ∅ {1} ∅ 

16 {1,2} ∅ ∅ ∅ [2,0,0,0] 

 

1 0 1 0 1

1

1 1 1
( 1, ) ( 1, 1) ( , 1) ... (0, 1)

0 1 1
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0 1 1
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Customer Allocation When There Are Multiple Overlapping Regions So All Plants 

Cannot Serve All Customers in the Overlapping Regions (CL2) 

The partitioning problem becomes more complex when there are more than two 

plants and there are customers that can be served by some of the plants but not others 

because of the product lifetime or time horizon. Example 4.2 serves to illustrate this 

situation. 

Example 4.2 Consider 7 customers and 3 plants in the planned area as shown in the 

Figure 4.5, it has A{1}={5}, A{2}={6}, A{3}={7}, A{1,2}={2}, A{1,3}={3}, A{2,3}={4}, 

A{1,2,3}={1}, A = {1, 2, 3, 4, 5, 6, 7}. 

 

Figure 4.5: Customers and Plants Locations Graph for the Example 4.2 

 

Figure 4.5 shows that there are 7 mutually exclusive disjoint service sets in this 

example: A{1}, A{2}, A{3}, A{1,2}, A{1,3}, A{2,3}, A{1,2,3}. Each customer belongs to one 

disjoint service set. The customer allocation in each disjoint service set is independent to 
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others. For example, suppose the customer 3 in A{1,3} is assigned to plant 1, this fact will 

not affect any other disjoint service set allocation result. So with these characteristics, 

Example 4.2 can be separated into 7 sub-problems. By using equation (28) in Deduction 

4.2, the customer allocations number for each sub-problem are as follows: CN(A{1}) =1, 

CN(A{2}) = 1, CN(A{3}) = 1, CN(A{1,2})= 2, CN(A{1,3}) = 2, CN(A{2,3}) = 2, CN(A{1,2,3}) = 3. 

Table 4.4 shows all possible allocation result for each disjoin service set. 

Table 4.4: All Possible Out Coming Result, Out(AΘ), for All Disjoin Service Set, AΘ, in 

Example 4.2 

  Out(AΘ) 

AΘ Number R1 R2 R3 

A{1} 1 {5}   

A{2} 2  {6}  

A{3} 3   {7} 

A{1,2} 4 {2} ∅  

 5 ∅ {2}  

A{1,3} 6 {3}  ∅ 
 7 ∅  {3} 

A{2,3} 8  {4} ∅ 
 9  ∅ {4} 

A{1,2,3} 10 {1} ∅ ∅ 
 11 ∅ {1} ∅ 
 12 ∅ ∅ {1} 

 

Since the allocation result for each disjoint service set is independent of the others, 

the number of possible allocations for the set A={1,2,3,4,5,6,7} is the product of the  

number of allocations in each of the disjoint service sets, CN(AΘ). In Example 4.2,  

CN(A) = CN(A{1})*CN(A{2})*…* CN(A{1,2,3})=1*1*1*2*2*2*3=24. Table 4.5 shows all 

possible customer allocations result for Example 4.2. 
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Table 4.5: All Customer Allocations Results for Example 4.2 

No. 
Assigned to plant i 

R1 R2 R3 
A{1,2}={2} A{1,3}={3} A{2,3}={4} A{1,2,3}={1} 

1 1 1 1 1 {5,2,3,1} {6,4} {7} 

2 1 1 1 2 {5,2,3} {6,4,1} {7} 

3 1 1 1 3 {5,2,3} {6,4} {7,1} 

4 1 1 2 1 {5,2,3,1} {6} {7,4} 

5 1 1 2 2 {5,2,3} {6,1} {7,4} 

6 1 1 2 3 {5,2,3} {6} {7,4,1} 

7 1 2 1 1 {5,2,1} {6,4} {7,3} 

8 1 2 1 2 {5,2} {6,4,1} {7,3} 

9 1 2 1 3 {5,2} {6,4} {7,3,1} 

10 1 2 2 1 {5,2,1} {6} {7,3,4} 

11 1 2 2 2 {5,2} {6,1} {7,3,4} 

12 1 2 2 3 {5,2} {6} {7,3,4,1} 

13 2 1 1 1 {5,3,1} {6,2,4} {7} 

14 2 1 1 2 {5,3} {6,2,4,1} {7} 

15 2 1 1 3 {5,3} {6,2,4} {7,1} 

16 2 1 2 1 {5,3,1} {6,2} {7,4} 

17 2 1 2 2 {5,3} {6,2,1} {7,4} 

18 2 1 2 3 {5,3} {6,2} {7,4,1} 

19 2 2 1 1 {5,1} {6,2,4} {7,3} 

20 2 2 1 2 {5} {6,2,4,1} {7,3} 

21 2 2 1 3 {5} {6,2,4} {7,3,1} 

22 2 2 2 1 {5,1} {6,2} {7,3,4} 

23 2 2 2 2 {5} {6,2,1} {7,3,4} 

24 2 2 2 3 {5} {6,2} {7,3,4,1} 

 

In general, all customers can be assigned into one of N disjoint service sets so that

1 2 ... NA A A A   . The number of possible allocations in each disjoint service set, 

CN(AΘi), can be calculated with formula (28) shown in CL1. Since these allocations are 

independent, the total number of possible allocations for set A is to the product of all 

CN(AΘi) from the disjoin service sets: 

1

( ) ( )
N

i

i

CN A CN A



      (30) 
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Recall from equations (25) and (29), CN(n, m) = CN(AΘ) = m
n
, where |AΘ|=n and 

|Θ|=m. For each overlapping region, m ≥ 2, the number of allocation result will be greater 

than or equal to 2
n
 so CN(AΘ) ≥ 2

n
 when |Θ|≥2. Hence, if there are M customers in the 

overlapping region, the total number of possible partition will great than or equal to 2
M

. 

This means that allocating customers to different plants cannot be solved within 

polynomial time and this problem is also NP hard. It is not possible to use enumeration 

when the total number of customers that can be served by multiple plants is large so 

attention is now turned to presenting several heuristics for generating the partition that 

use two different strategies: (I) fixed allocation, and (II) random allocation. 

 

Heuristic customer allocation methods 

In the previous section, it was shown that allocating customers in the overlapping 

region to different plants is an NP hard problem; hence, the use of heuristic methods to 

make the assignments is justified and necessary for finding approximate solutions to 

larger problems. In this section, two different assignment strategies are proposed: (I) 

fixed allocation and (II) random allocation. Fixed allocation methods make the final 

assignment of customers to plants using only the basic information regarding customers 

and plants like location, demands and capacities. They always generate the same result as 

long as the basic information is unchanged. Recall the hierarchy of decisions in the 

MPIPDSPPP in Figure 4.3. This is an example of fixed allocation and the customer 

allocation from this approach will always be the same as long as the basic information 

remains unchanged. Random allocation methods, on the other hand, use the basic 
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information in fixed approaches but also introduce randomness in the process in the spirit 

of heuristic procedures like evolutionary algorithms. They can provide different customer 

allocation results even when the basic information remains the same. The following 

sections provide details about several specific approaches within each of these general 

types of methods. 

 

Fixed Allocation Methods 

Fixed allocation methods utilize basic information about the problem like 

customer and plant locations as well as demands, to make the assignment of customers to 

plants. As such, applying them to a situation multiple times will produce the same results 

unless the basic information changes. The advantages of fixed allocation methods are that 

they can typically be applied very quickly and the results are reproducible. The weakness 

is that these methods are typically designed based on data from problems with certain 

features; however, when they are applied to situations in which these features are 

different, they can produce solutions that are not very good. This should not be construed 

as implying that fixed allocation methods are not useful because they can certainly be 

excellent choices in practice when applied to problems similar to the ones from which 

they were designed; however, their limitations, especially those related to domain of 

applicability, need to be carefully noted. Three different fixed allocation methods are now 

proposed. 

 

Method 1: Distance Priority Method (M1) 
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The first method exploits a common sense approach by assigning each customer 

in the overlapping region to the nearest plant. In other words, customers will be assigned 

to the plant that requires the minimum variable travel cost for direct delivery. This 

method will obviously perform well when a large proportion of the deliveries are direct 

from plant to customer but might be less useful when customer locations are such that 

multiple stops on each trip are best. Example 4.3 provides an instance for the distance 

priority method. 

Note: For calculation convenience, the measurement unit for time and distance are unit 

time and unit distance. Also, it is assumed that the vehicle speed is constant = 1 unit 

distance / unit time. 

Example 4.3: Consider the case with two plants and three customers. The demand for the 

customers are q1=4, q2=4, q3=8. The product has a constant lifetime B=25 and the time 

horizon for each period H = 50. The production rate for the plants are r1=1, r2=2. There 

are two types of vehicles available for the delivery, with the capacity, fixed setup cost 

and unit distance cost are C1=8, F1=100, R1=1, C2=10, F2=110, R2=1.1. The location of 

the customers and plants are shown in Figure 4.6 as are the travelling distance between 

each customer and each plant. 
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Figure 4.6: Customers and Plants Locations Graph for the Example 4.3 

 

Applying the distance priority method, customer 2 is assigned to the plant 1 

because plant 1 is 10 units from the customer while plant 2 is 18 units. By enumerating 

all possible feasible solutions with this customer allocation result, the optimal solution is 

found to be one type 1 vehicle for plant 1 and one type 1 vehicle for plant 2 with the 

production lot size and the detailed schedule for production and distribution shown in 

Figure 4.7. In this figure, j = customer j, Pi = plant i, and dj = time to produce customer 

j’s demand. The best schedule generated by Method 1 (M1) for Example 3.3 is shown in 

Figure 4.7. The system total transportation cost with the schedule is: 

Total cost = Fixed cost for 2 type 1 vehicles + variable cost for plant 1  

  deliveries + variable cost for plant 2 deliveries 

      =  100 * 2 + 41*1 + 16* 1 = 257 
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Plant 1

0

Vehicle 1

(type 1)

Size: d1+d2

Route: P1→2→1→P1

8 25 5049

Plant 2

0

Vehicle 2

(type 1)

Size: d3

Route: P2→3→P2

4 25 5020

 

Figure 4.7: Best Solution for Example 4.3 When Allocating Customer 2 to Plant 1 

 

Method 2: Multi-Stop Delivery Priority Method (M2) 

The distance priority method is a simple method to implement as illustrated in 

Example 4.3; however, it is intuitive that this simplicity has a price which consists of 

some important limitations. For one, the distance priority method only considers the 

influence of direct delivery distance from each plant and ignores other important 

possibilities like multi-stop delivery. Obviously, delivering to multiple customers in one 

trip can reduce the variable cost of transportation compared to direct delivery in certain 

situations. Including this concept is the basis for the multi-stop delivery priority method. 

This heuristic adds the ability to assign customers to the plant where there is an increased 

possibility that they can be included in a more cost effective multi-stop delivery trip 

rather than direct delivery. A second limitation is that the distance priority method 

focuses exclusively on the variable cost associated with distance and ignores the special 

constraints of the problem such as the product lifetime constraint and vehicle capacity 

constraint. 
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This heuristic method includes both problem constraints and consideration of the 

possibility for a customer to be added to a multi-stop delivery trip. Define a “check 

customer” as a customer that can be served by multiple plants, a “check plant” is a plant 

can serve the check customer, a “feasible check trip” is a trip that starts its route at a 

check plant, delivers to n≥2 customers which includes check customers, and returns to 

the check plant while satisfying lifetime constraint and capacity constraint. By definition, 

each check customer j can be served by more than one check plant. In this heuristic, the 

assignment decision is based on the number of feasible check trips that each check plant 

can provide.  Specifically, customer j is assigned to the check plant that can serve it that 

has the highest number of feasible check trips. To find the number of feasible check trips, 

the following four-step process is used: 

(1) Find an arbitrary subset Q of A{p} which not include check customer j, i.e.
 

{ }pQ A  and j Q . Recall, the A{p} is the servable customer set for plant p 

(2) Add check customer j to the subset Q to be a new set Q’ 

(3) Check the capacity constraint to delivery all customer in Q’ with one multi-stop 

delivery. Record number of vehicles type can satisfy the capacity constraint as s, 

if s=0, then go to step 5, otherwise go to step 4 

(4) Check the lifetime constraint to delivery all customers in Q’ with one multi-stop 

delivery. If there are n feasible trips, the feasible check trip number increases by 

n*s. 

(5) Repeat the step (1) to (3) until all possible subsets are tested. 
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This process is short but the computations are complex. As shown in Kamke 

(1950), the possible number of subsets is 2
n
 when there are n elements in the set. To 

enumerate all possible subsets has a complexity of at least O(2
n
). Also, to find a possible 

trip in step 3 is similar to the TSP problem which has the complexity near O(n!).  

To simplify this process, this research only considers the multi-stop delivery with 

2 total customers which means that the heuristic only needs to consider all subsets with 1 

customer in A{p} in step 1. This assumption reduces the complexity of step 1 from O(2
n
) 

into O(n). Also, the complexity of step 3 is reduced from O(n!) to O(1). We now refine 

the idea of check trip by redefining a “pair trip”, Ti,j,p,s, to be the route that starts at plant 

p, visits customers i and check customer j, and then returns to the plant p using a vehicle 

of type s. To check the feasibility of a pair trip, the heuristic only need to check 2 

possible trips routes against the product lifetime constraint; namely, the heuristic must 

seek evaluate pi ij B    and pj ij B   , and the vehicle capacity constraint which is 

i j sq q C  . With the simplification and constraint checks, check customer j is assigned 

to the plant that can provide the greatest number of feasible pair trips. If there is a tie in 

the number of trips between multiple plants, the distance priority method will be used as 

the tie-breaking criteria. In Example 4.3, the heuristic must allocate check customer 2 to a 

plant. Plant 1 has 2 pair trips, T2,1,1,1 and T2,1,1,2 because check customer 2 can be 

delivered in the same route P121P1 with customer 1 and both vehicle types 1 and 

2 for this route, the other route P112P1 violates the lifetime constraint. Plant 2 has 

no feasible pair trips because neither vehicle type has sufficient capacity to deliver a 
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multi-stop route consisting of customers 2 and 3. Customer 2 is therefore assigned to 

plant 1. 

The pseudo code in Figure 4.8 is used to allocate a check customer k to a check plant p. 

where k   AΘ, p   Θ. Recall Θ is a set of plant. AΘ is a set of customers that can be and 

only can be served by the plants in the set Θ. 

While (not done) 

      Select a plant p from set Θ. 

      if ( 1  ) 

allocate customer k to plant p. Finished. 

      else 

for each ( customer i in A{p}, vehicle type s in S )  

      if ( trip Tk,i,p,s is feasible)  

      count[p] = count[p] + 1 

end for 

       if all plant in Θ had been selected 

  done = true 

       else 

  done = false 

 end while 

allocate customer k to the plant give the highest count, use distance priority  

method when there is a tie. 

 

Figure 4.8: Pseudo Code for the Calculation of Number of Feasible Trips  

 

Compared to the distance priority method, the multi-stop delivery priority tries to reduce 

the system cost by allocating check customers to the plant which can provide them with 

the greatest chance of being included in multi-stop delivery. It is more sensitive to the 

relative distance between customers and relative customer demands. Example 4.4 

illustrates some of the advantages of the multi-stop delivery priority method. 
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Example 4.4: Consider the same basic problem described Example 4.3 except that 

customer demand has been changed. The demands for customers are q1 = 8, q2 =4, q3 = 4. 

The remainder of the problem is the same: the product has a constant lifetime B = 25, the 

time horizon for each period H = 50, the production rate for the plants are r1= 1 and r2=2, 

there are two types of vehicles available for the delivery with capacity, fixed setup cost 

and unit distance cost of C1 = 8, F1 = 100, R1 = 1 and C2 = 10, F2 =110, R2 = 1.1. The 

location of the customers and plants are shown in Figure 4.9 with the distance between 

each customer and each plant also shown in the figure.  

1 2

1

i plant i

customer i

deliverable range

2

3

i

8

16

18
10

15

16

25 25

<di>

<8>

<4>

<4>

demand of customer i
 

Figure 4.9: Customers and Plants Locations Graph for the Example 4.4 

 

Comparison Solution 1 for Example 4.4: Solving Example 4.4 with the Distance Priority 

Method (M1) 

Example 4.4 is now solved with the Method 1. The only Type III customer that 

can be served by both plants is customer 2 and the distance priority method assigns it to 

plant 1 because the direct delivery cost for customer 2 via direct delivery is minimum 

with plant 2. This assignment, however, does not lead to the minimum system 
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transportation cost because assigning customer 2 to plant 2 allows customers 2 and 3 to 

be delivered in one trip which is less costly that the three direct deliveries that are 

required when customer 2 is assigned to plant 1. That is, it is not possible to combine the 

trips of customers 1 and 2 because their total demand exceeds the capacity of the largest 

vehicle so the best schedule for Example 4.4 using Method 1 (M1) (i.e. allocate customer 

2 to plant 1) is shown in Figure 4.10. The system total transportation cost with the 

schedule is: 

Total cost = Fixed cost for 3 type 1 vehicles + variable cost for plant 1  

         deliveries (trip 1 and 3) + variable cost for plant 2 deliveries (trip 7) 

      =  100*3 + 32*1 + 20*1 + 16*1= 368 

The best schedule was guaranteed by solving 2 IPDSPPP problems with MIP model 

using AMPL + GUROBI. 

Table 4.6: All Feasible Trips for Example 4.4 

No. Start Plant Vehicle Type Trip Route Trip Variable 

Cost 

1 1 1 P1C1P1 32 

2 1 2 P1C1P1 35.2 

3 1 1 P1C2P1 20 

4 1 2 P1C2P1 22 

     

5 2 1 P2C2P2 36 

6 2 2 P2C2P2 39.6 

7 2 1 P2C3P2 16 

8 2 2 P2C3P2 17.6 

9 2 1 P2C3C2P2 42 

10 2 2 P2C3C2P2 46.2 

 

 



 151 

 

Figure 4.10: Best Schedule for Example 4.4 with Method 1 

 

Comparison Solution 2 for Example 4.4: Solving Example 4.4 with Multi-Stop Delivery 

Priority Method (M2) 

To solve Example 4.4 using Method 2, the first requirement is to determine the 

check customers; in this case it is only customer 2. Then, for each plant i, it is necessary 

to count the total number of feasible pair trips that include customer 2. As shown in the 

comparison solution 1 for Example 4.4, it is not feasible to deliver both customer 1 and 

customer 2 in one delivery due to vehicle capacity restrictions so there are no feasible 

pair trips emanating from plant 1. For plant 2, there are 2 feasible pair trips: trip 9 and trip 

10 as seen in Table 4.6. The rule is then applied that allocates customer 2 to the plant 

with the most feasible pair trips which, in this case, is plant 2. The best schedule, then, is 

shown in Figure 4.11 and the system total transportation cost with the schedule is: 

Total cost = Fixed cost for 2 type 1 vehicles + variable cost for plant 1  

         deliveries (trip 1) + variable cost for plant 2 deliveries (trip 9) 

      =  100*2 + 32*1 + 42*1 = 274 

Plant 2

0

Vehicle 3

(type 1)

Size: 

d3

Route: P2→3→P2

2 25 5018

Plant 1

0

Vehicle 1

(type 1)

Size: d1

Route: P1→1→P1

8 25 5032

d2

Route: P1→2→P1
Vehicle 2

(type 1)

12 40
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Plant 1

0

Vehicle 1

(type 1)

Size: d1

Route: P1→1→P1

8 25 5040

Plant 2

0

Vehicle 2

(type 1)

Size: d2+d3

Route: P2→3→2→P2

4 25 5046

Figure 4.11: Best Schedule for Example 4.4 with Method 2\ 

 

In Example 4.4, the total cost for Method 2 is much less than the one obtained in 

Method 1. It saves the money by using the multi-stop delivery rather than direct delivery. 

 

Method 3: Minimal Multi-Stop Delivery Cost Priority Method (M3) 

Similar to Method 2, the minimal multi-stop delivery cost priority method also 

assigns customers to the plant where they have the greatest opportunity of being included 

in a multi-stop delivery trip to reduce transportation cost; however, this method makes 

the decision based on the minimum cost of the feasible pair trip variable transportation 

cost each plant can provide rather than including the total number of feasible pair trips 

from each plant. Since the objective is to reduce the total system transportation cost, 

allocating check customers to plants that provide the lower transportation cost seems a 

very natural way to partition. Method 3, then, allocates the selected check customer to the 

plant that provides the check customer with the minimum variable cost feasible pair trip. 

Example 4.5 illustrates the minimum delivery cost priority method. 
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Example 4.5: Consider a problem with the same basic structure as Example 4.3 but now 

with different customer demands and locations. The demands of the three customers are 

q1 = 5, q2 =4, q3 = 4. The product has a constant lifetime B = 25 and the time horizon for 

each period H = 50. The production rates for the plants are r1= 1, r2=2. There are two 

types of vehicles available for the delivery, with  capacity, fixed setup cost and unit 

distance cost equal to C1 = 8, F1 = 100, R1 = 1, C2 = 10, F2 =110, R2 = 1.1. The locations 

of the customers and plants are shown in Figure 4.12, the travelling distance between 

each customer and each plant are also shown in the figure.  
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Figure 4.12: Customers and Plants Locations Graph for the Example 4.4 

 

Comparison Solution 1 for Example 4.5: Solve Example 4.5 with Method 2, Multi-Stop 

Delivery Priority Method (M2) 

To provide a comparison later, this example is first solved using the using the 

minimal multi-stop delivery priority method which is the strategy in which each check 
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customer is assigned to the plant that provides the greatest number of potential pair trips.  

The logic is that this will maximize the chances that the customer can become part of a 

pair trip so delivery will cost less than direct delivery.  Table 4.7 enumerates all feasible 

trips for Example 4.5. From this table it can be seen that for plant 1, there is 1 pair trip, 

trip 5, and for plant 2 there are 2 pair trips, trips 10 and 11. Using the multi-stop delivery 

priority method, customer 2 will be allocated to plant 2 because 2 pair trips is more than 

1. The best schedule generated by Method 2 (M2) is shown in Figure 4.13 and the system 

total transportation cost is 

Total cost = Fixed cost for 2 type 1 vehicles + variable cost for plant 1  

         deliveries (trip 1) + variable cost for plant 2 deliveries (trip 10) 

       =  100*2 + 34*1 + 42*1 = 276.  

 

Table 4.7: All Feasible Trips for Example 4.5 

No. Start Plant Vehicle Type Trip Route Trip Variable 

Cost 

1 1 1 P1C1P1 34 

2 1 2 P1C1P1 37.4 

3 1 1 P1C2P1 20 

4 1 2 P1C2P1 22 

5 1 2 P1C2C1P1 41.8 

     

6 2 1 P2C2P2 36 

7 2 2 P2C2P2 39.6 

8 2 1 P2C3P2 16 

9 2 2 P2C3P2 17.6 

10 2 1 P2C3C2P2 42 

11 2 2 P2C3C2P2 46.2 
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Plant 1

0

Vehicle 1

(type 1)

Size: d1

Route: P1→1→P1

8 25 5040

Plant 2

0

Vehicle 2

(type 1)

Size: d2+d3

Route: P2→3→2→P2

4 25 5046

Figure 4.13: Best Schedule for Example 4.5 with Method 2 

 

Comparison Solution 2 for Example 4.5: Solve Example 4.5 with Minimal Multi-Stop 

Delivery Cost Priority Method (M3) 

This example is now solved using the minimal multi-stop delivery priority 

method. Recall that this method allocates check customers to plant that provides the 

feasible pair trip with minimum variable transportation cost. As shown in Table 4.7, there 

are 3 pair trips for check customer 2: 1) trip 5 which has a variable cost of 41.8, 2) trip 10 

with a cost of 42, and 3) trip 11 with a cost of 46.2. As such, check customer 2 is 

assigned to plant 1 because it that is the plant associated with trip 5 which has the 

minimum variable transportation cost of all feasible pair trips. Note that the minimal 

multi-stop delivery cost priority method makes a different assignment from the multi-stop 

delivery priority method. When the number of pair trips is considered, check customer 2 

is allocated to plant 2 whereas the minimum variable cost allocation is to the plant 1. The 

best schedule generated by Method 3 is shown in Figure 4.14 and the system total 

transportation cost is 
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Total cost = fixed cost for 1 type 1 vehicles + fixed cost for 1 type 2 vehicles 

              + variable cost for plant 1 deliveries (trip 5) + variable cost for plant 2 

                deliveries (trip 8) 

      = 100*1 + 110*1 + 41.8*1 + 16*1 = 267.8 

Plant 1

0

Vehicle 1

(type 2)

Size: d1+d2

Route: P1→2→1→P1

9 25 5047

Plant 2

0

Vehicle 2

(type 1)

Size: 

d3

Route: P2→3→2→P2

4 25 5016

Figure 4.14: Best Schedule for Example 4.5 with Method 3 

 

In Example 4.5, the total cost for Method 3 is less than the total cost for Method 

2. Furthermore, even though both methods use 2 vehicles for delivery, the schedule 

generated by Method 3 has much more idle time for vehicle 2 than the schedule 

generated by Method 2. This idle time allowed the plant 2 to get more trips without 

adding extra vehicles. 

 

 

Method 4: Average Multi-Stop Delivery Cost Priority Method (M4) 

As might be anticipated, Method 4 extends the idea of Method 3 by considering 

the average cost of all feasible pair trips rather than the minimum pair trips cost. This is 

motivated by the very real possibility that the vehicle paired with the check customer to 
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produce minimum variable cost might not be available because it is paired with another 

customer for greater saving. It is also possible that because multiple customers are 

allowed on a single trip, a larger variable trip cost could lead to more consolidation and 

the delivery fleet size could be smaller. Sometimes the savings of a smaller vehicle fleet 

size is of more beneficial than the variable costs of multiple larger vehicles. Also, this 

method does not restrict trips to include only 2 customers because adding a check 

customer to a route that eventually includes more than 2 customers could produce a better 

solution. This method, then, combines ideas in Methods 2 and 3 in that both all of the 

feasible pair trips are included as is the variable cost for each with the result of assigning 

check customers based on the average cost.  

 

Example 4.6: This example considers 5 customers and 2 plants in the system. The 

demands for the customers are q1 = 3, q2 =3, q3 = 6, q4 =1, q5 = 1. The product has a 

constant lifetime B = 25 and the time horizon for each period H = 50. The production 

rates for the plants are r1= 1, r2=1. There are two types of vehicles available for  delivery, 

with the capacity, fixed setup cost and unit distance cost equal to C1 = 8, F1 = 100, R1 = 

1, C2 = 12, F2 =110, R2 = 1.1. The location of the customers and plants are shown in 

Figure 4.15; the travelling distance between each customer and each plant is shown in the 

figure. 
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Figure 4.15: Customers and Plants Locations Graph for the Example 4.6 

 

Comparison Solution 1 for Example 4.6: Solving Example 4.6 with Multi-Stop Delivery 

Priority Method (M2) 

As before, several methods will be used to solve the problem and the solution 

results will be compared later. First method is using the multi-stop delivery priority 

method. As such, each check customer will be assigned to the plant that has the 

maximum number of feasible pair trips to offer. Table 4.8 provides all feasible trips for 

the Example 4.6. For plant 1, it could find 4 feasible pair trips: trip 7, 8, 9 and 10 (trip 11, 

12 and 13 are not pair trips). For plant 2, it could find 6 feasible pair trips: trip 20, 21, 22, 

23, 24 and 25 (trip 26, 27, 28 and 29 are not pair trips). So the customer 3 will assign to 

plant 2. The best schedule generated by Method 2 is shown in Figure 4.16 and the total 

system total transportation cost is 

Total cost = Fixed cost for 2 type 1 vehicles + variable cost for plant 1  

      deliveries (trip 11) + variable cost for plant 2 deliveries (trip 18 and 22) 

     =  100*2 + 31*1 + 32*1 + 12*1 = 275 
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Table 4.8: All Feasible Trips for Example 4.6 

No. Start 

Plant 

Vehicle 

Type 

Trip Route Trip Variable 

Cost 

Pair Trip 

1 1 1 P1C1P1 24  

2 1 2 P1C1P1 26.4  

3 1 1 P1C2P1 8  

4 1 2 P1C2P1 8.8  

5 1 1 P1C3P1 30  

6 1 2 P1C3P1 33  

7 1 2 P1C1C3P1 38.5 Y 

8 1 2 P1C3C1P1 38.5 Y 

9 1 2 P1C2C3P1 33 Y 

10 1 2 P1C3C2P1 33 Y 

11 1 1 P1C2C1P1 31  

12 1 2 P1C2C1P1 34.1  

13 1 2 P1C2C3C1P1 38.5  

      

14 2 1 P2C3P2 30  

15 2 2 P2C3P2 33  

16 2 1 P2C4P2 14  

17 2 2 P2C4P2 15.4  

18 2 1 P2C5P2 12  

19 2 2 P2C5P2 13.2  

20 2 1 P2C3C4P2 32 Y 

21 2 2 P2C3C4P2 35.2 Y 

22 2 1 P2C4C3P2 32 Y 

23 2 2 P2C4C3P2 35.2 Y 

24 2 1 P2C5C3P2 40 Y 

25 2 2 P2C5C3P2 44 Y 

26 2 1 P2C4C5P2 25  

27 2 2 P2C4C5P2 27.5  

28 2 1 P2C5C4P2 25  

29 2 2 P2C5C4P2 27.5  
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Plant 1

0

Vehicle 1

(type 1)

Size: d1+d2

Route: P1→2→ 1→P1

6 25 5034

Plant 2

0

Vehicle 2

(type 1)

Size:d3+d4

Route: P2→3→4→P2

1 25 50

d5

Route: P2→5→P2

6 20 4513
 

Figure 4.16: Best Schedule for Example 4.6 with Method 2 

 

Comparison solution 2 for Example 4.6: Solving Example 4.6 with Minimal Multi-Stop 

Delivery Cost Priority Method (M3) 

The second compared method is the Minimal Multi-Stop Delivery Cost Priority 

method. As such, each check customer will be assigned to the plant that provides the 

feasible pair trip with minimum variable transportation cost. As shown in Table 4.8, there 

are 10 feasible pair trips (trip 7, 8, 9, 10, 20, 21, 22, 23, 24, 25). The trip 20 and 22 which 

both provided by plant 2 give the minimum variable transportation cost equal to 32. As 

such, check customer 2 is assigned to plant 1. Note that the minimal multi-stop delivery 

cost priority method makes the same allocation with the multi-stop delivery priority 

method. So, for Example 4.6, minimal multi-stop delivery cost priority method and the 

multi-stop delivery priority method lead to the same best solution as shown in Figure 

4.16. The calculation of total transportation cost is also shown in comparison solution 1 

for Example 4.6. 
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Comparison solution 3 for Example 4.6: Solve Example 4.6 with Average Multi-Stop 

Delivery Cost Priority Method 

The average multi-stop delivery cost priority method considers both feasible pare 

trip number and its relative transportation cost. For each check customer, it calculates the 

average feasible pare trip cost for each plant, and allocate the check customer to the one 

which provides the minimum average feasible pare trip cost. As mentioned in comparison 

solution 1, the plant 1 has 4 feasible pare trips: trip 7, 8, 9 and 10 with average 

transportation cost = (38.5 + 38.5 + 33 + 33) / 4 = 35.75. The plant 2 has 6 feasible pare 

trips: trip 20, 21, 22, 23, 24 and 25 with average transportation cost = (32 + 35.2 + 32 + 

35.2 + 40 + 44) / 6 = 36.4. So the customer 2 will assign to the plant 1. Note that the 

Average Multi-Stop Delivery Cost Priority method makes a different assignment with 

previous 2 methods. The best schedule generated by Method 4 is shown in Figure 4.17, 

and the system total transportation cost is 

 Total cost = fixed cost for 1 type 1 vehicles + fixed cost for 1 type 2 vehicles 

              + variable cost for plant 1 deliveries (trip 13) + variable cost for plant 2 

                deliveries (trip 26) 

      = 110*1 + 100*1 + 38.5*1 + 25*1 = 273.5 
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Plant 1

0

Vehicle 1

(type 2)

Size: d1+d2+d3

Route: P1→2→3→1→P1

12 25 5047

Plant 2

0

Vehicle 2

(type 1)

Size: 

d4+d5

Route: P2→5→4→P2

2 25 5027
 

Figure 4.17: Best Schedule for Example 4.6 with Method 4  

 

In Example 4.6, 2 best schedules are generated by 3 different methods (Method 2 

and 3 generate the same best schedule), the best schedule generate by Method 4 has lower 

transportation cost than the other ones. Furthermore, Method 4 also generates a more 

compressed transportation schedule for vehicle 2 and saves the vehicle 2 lots of idle time. 

 

Random Allocation Methods 

Random allocation refers to methods that use both the basic information in fixed 

allocation methods and includes randomness in the assignment scheme. The motivation 

for using random allocation is to generate more than one customer allocation result from 

one method for each problem. One result is that that these methods can produce different 

check customer assignments for the same problem.  

 

Method 5: Equal Randomness Method (M5) 
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The first way that randomness is included in the assignment heuristic is the equal 

randomness method. Here, check customer j has an equal probability of being assigned to 

any of the n plants that can serve it. The advantage of this method is that it is simple and 

easy to implement. The weakness is that improvement using any insights based on the 

basic information is traded for a pure random strategy which does not intuitively seem to 

be a good tradeoff. Regardless, it is proposed as something of a base case for random 

allocation. 

 

Method 6: Balanced Productivity Method (M6) 

The equal randomness method provides each check customer with equal 

opportunity to be assigned to any feasible plant. One problem here is that the productivity 

of the plant is not considered so a check customer could be assigned to a plant where a 

feasible solution is not possible. Consider a system with 2 plants in which Plant 1 has a 

very high productivity and Plant 2 has low productivity. Assigning a check customer to 

Plant 1 could create a situation where the product for the check customer cannot be 

produced so delivery meets the constraints while Plant 2 has a plenty of capacity to server 

the check customer within the constraints. The balanced productivity method assigns 

check customers to plants based on probabilities that are tied to productivity so that plants 

with the lowest productivity, alternatively the highest idle time, have the greatest chance 

of being assigned a check customer. To implement this strategy, all check customers are 

randomly put in a list, suppose the first check customer in the list is customer j which has 
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n servable plants. Define the current utilization for servable plant i as, 

/
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, 

where Mi={all customers already assigned to plant i}. The idle time proportion for 

servable plant i is, 1i iw u  . So, each servable plant i has the change to be assigned 

check customer j with weight wi. By standard process, the weight can be changed to the 

probability

1

i
i n

i

i

w
p

w





. After the assignment of customer j finished, the utilization of the 

plant will be updated and the next check customer can start the assignment again. 

Example 4.7 illustrates the balanced productivity method. 

 

Example 4.7: There are 5 customers 2 plants in the system. The demand for the 

customers are q1 = 4, q2 =2, q3 = 6, q4 =8, q5 = 2. The product has a constant lifetime B = 

25 and the time horizon for each period H = 50. The production rate for the plants are r1= 

1, r2=2. There are two types of vehicles available for the delivery, with the capacity, fixed 

setup cost and unit distance cost are C1 = 8, F1 = 100, R1 = 1, C2 = 12, F2 =110, R2 = 1.1. 

The location of the customers and plants are shown in Figure 4.18, the travelling distance 

between each customer and each plant are also shown in the figure. 
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Figure 4.18: Customers and Plants Locations Graph for the Example 4.7 

 

As shown in the Figure 4.18, there are only 2 check customers: customers 2 and 3. 

Customer 1 can only be allocated to Plant 1 and customer 4, 5 can only be assigned to 

Plant 2. The idle time proportion for plant 1 is 1

4 /1
1 0.92

50
w     and for plant 2 it is

2

(8 2) / 2
1 0.9

50
w


   . Suppose a random list for check customer is <3, 2>. Then the 

customer 3 will be assign to plant 1 with probability 1

0.92
0.51

0.92 0.9
p  


, to plant 2 

with probability 1

0.9
0.49

0.92 0.9
p  


. Assume the customer 3 is assigned to plant 1. 

Then the plant 2’s idle time proportion will be updated, 1

(4 6) /1
1 0.8

50
w


    and 

2

(8 2) / 2
1 0.9

50
w


   . Check customer 2 will be assigned to plant 1 with probability 

1

0.8
0.47

0.8 0.9
p  


, to plant 2 with probability 2

0.9
0.53

0.8 0.9
p  


. 
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Method 7: Simulated Annealing Method (SA) 

The two previous random allocation methods can generate different customer 

allocation result for each application of the heuristic but both methods start with the 

original problem.  That is, neither has any type of learning involved so that sequential 

applications results in progressively improved solutions. The brief outline of the 

simulated annealing search method (SA) previously provided in Chapter 3 noted that it is 

a probability based search technique that seeks the global optimum in a solution space.  

While it is similar to local search in the sense that is moves the solution towards better 

solution, SA is also different because it uses a transition probability function to accept the 

movement to a solution that degrades the objective function value. The motivation behind 

this is to avoid trapping the algorithm at local optima. Figure 4.19 presents the flow chart 

of the SA method for MPIPDSPPP problem. 
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Initial current state by a 

random or given state, (s)

Input SA parameters

Such as initial temperature 

T0 and frozen temperature Tf.

Calculate and sum the transportation of 

several IPDSPPP which generated 

from current state (s),

saved as current energy, e=E(s)

Search Random neighbor of 

current state (s),

Save as new state, sn=N(s)

Calculate new energy of the new state 

(sn),

Save as new energy, en=E(sn) 

∆E= en – e < 0

Change current state by new 

state,

        e=en

        s=sn

Save current best record

Yes

Random number < P(e,en,T)

No

Yes

Update the iteration number,

k = k + 1

And update the temperature by 

cooling schedule

T = T(k)

No

T < Tf

Finish search

And report the best solution

Yes

No

 

Figure 4.19: Flow Chart of the SA Method for MPIPDSPPP Problem 
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There are three important elements to a SA search algorithm: 1) a method to 

encode the current state. 2) The neighborhood function to search for neighbor states, and 

3) a way to calculate the objective function value from state. The rest of the parameters 

required of the algorithm such as the initial temperature T and frozen temperature Tf are 

set once and remain static until the algorithm is restarted. Constructions of these three 

parts are illustrated by Example 4.8. 

 

Example 4.8: Consider a two plant 8 customers MPIPDSPPP problem. A{1}= {1, 2, 3}, 

A{2}={4, 5}, A{1,2}={6, 7, 8}.  

First of all, we need to encode the solution of the assignment of customers to 

plants. Different with the IPDSPPP problem, this must include both identification of the 

customer and the plant. To achieve this, a random production permutation to represent 

the customer is generated as in the IPDSPPP but here it is augmented with an ally 

permutation that represents the plant to which each customer is assigned.  

The two permutations have the same dimension so that the check customer in the i
th

 

location of the production permutation is assigned to the i
th

 plant in the ally permutation. 

Assume; for example, consider the encoding sequence in Figure 4.20. This means that 

check customers 6 and 7 are allocated to plant 1, and check customer 8 is allocated to 

plant 2.  
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ally permutation 2 2 1 2 1 1 1 1 

production permutation 4 5 3 8 2 7 6 1 

 

Figure 4.20: Encoding Representation of Customer Allocation 

 

At this stage the production permutation is separate into two production 

permutations based on the ally permutation, one for Plant 1 and the one for Plant 2 as 

shown in Figure 4.21. 

  

Figure 4.21: Decode Result for the Customer Allocation 

 

These two production permutations, one for each plant, can now be used as the 

initial solution for the IPDSPPP problem described in Chapter 3. Two IPDSPPP 

problems will be solved separately using the methods proposed in Chapter 3.  After 

solving these two IPDSPPP problems, the solutions are merged to get the initial solution 

for the MPIPDSPPP. 

 The next step is to find a random neighbor of the current customer allocation. As 

shown in Figure 4.22 and Figure 4.23, two swap operations are used on the encoded 

representations to randomly identify possible new neighbors. The swap operation has two 

stages: 1) two plants in the ally permutation trade places and 2) two customers in the 

production permutation trade places.  This is illustrated in Figures 4.22 and .4.23.  

production permutation for plant 1

1 1 1 1 1

3 2 7 6 1

production permutation for plant 2

2 2 2

4 5 8
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2 2 1 2 1 1 1 1

4 5 3 8 2 7 6 1

2 2 1 1 1 2 1 1

4 5 3 8 2 7 6 1
 

Figure 4.22: First Swap Operation, Just Swap Ally Permutation 

2 2 1 2 1 1 1 1

4 5 3 8 2 7 6 1

2 2 1 1 1 2 1 1

4 5 3 6 2 7 8 1
 

Figure 4.23: Second Swap Operation, Just Swap Production Permutation 

 

It is not hard to imagine that the swap operations can generate infeasible 

solutions. For example, customer 5 can only be served by plant 2 and customer 2 can 

only be served by plant 1 so any swap that does not maintain this assignment is 

infeasible.  This is illustrated in Figure 4.24  

2 2 1 2 1 1 1 1

4 5 3 8 2 7 6 1

2 1 1 2 2 1 1 1

4 5 3 8 2 7 6 1
 

Figure 4.24: Example of Infeasible Representation after Swap Operation 

 

To address this problem, a Value Encoding Method is used to encode the ally 

permutation. Each ally permutation position will be assigned a random number; the 

allocation plant will be calculated by a mapping function to map the random number to 

the customer feasible plant. Suppose the random number is n, SLj is the servable plant list 

of customer j, the mapping function is to choose the i
th

 plant in customer j’s servable 
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plant list, where i = (n Mod |SLj|) + 1. Mod is the function to get the reminder. Suppose 

we have a production permutation item with value 8, its ally permutation value is 3. We 

know that customer 8 can be served by plant 1 and plant 2. According the mapping 

function, we will choose the i
th

 plant in the servable plant list, where i = (3 Mod 2) + 1 = 

2. The customer 8 will be assign to plant 2. Figure 4.25 shows a full Encoded 

Representation of this example. 

2 2 1 2 1 1 1 1

4 5 3 8 2 7 6 1=
ally permutation 42 21 11 3 5 12 4 2

production permutation 4 5 3 8 2 7 6 1

Serviable plant list {2} {2} {1} {1,2} {1} {1,2} {1,2} {1}
 

Figure 4.25: An Encoding Representation of Example 4.7 

 

As illustrated in Figure 4.25 any random number in ally permutation can be 

transformed to a servable plant to the any customer with the value encoding method. This 

method prevents infeasible solutions. 

 Once the encoding and neighborhood function are determined and the allocation 

result obtained, the problem is reduced to multiple IPDSPPP problem could be solved by 

the heuristic provide in Chapter 3. 

 

Numerical Analysis 

Earlier in this chapter, several heuristics methods for customer allocation were 

proposed for separating one MPIPDSPPP into multiple IPDSPPP problems, subsequently 

solving each of the latter separately. This section analyzes the experimental study 

conducted using a numerical example to demonstrate the quality of the customer 
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allocation methods. The performances of these methods are compared with one another 

based on the objective value of the solution generated for the MPIPDSPPP problem. 

As discussed earlier, the heuristic allocation method only can assign the 

customers into plants. After the allocation, the newly generated IPDSPPP problems 

require the heuristics proposed in Chapter 3 to solve them. In this analysis, two 

algorithms from Chapter 3 were used to solve the IPDSPPP problem, i.e. the H4 + SA 

search heuristic was used to solve the IPDSPPP with a large size problem (customers>7), 

while the H5 + SA search heuristic was used to solve the IPDSPPP with a small size 

problem (customers≤7). Furthermore, because of the randomness of heuristic as 

discussed earlier, 50 replications were run for each heuristic algorithm. 

The first analysis (B1), which checked the quality of the customer allocation 

methods, is similar to the A2 analysis in Chapter 3. While the NP-hard complexity of the 

MPIPDSPPP justifies the use of a heuristic algorithm to solve the problem, providing a 

measure of the solution’s quality is also very important. As with the A2 analysis, the 

optimality gap was also used here to measure the quality of the heuristic allocation 

methods. 

               
                                        

                
 

The MIP model with current software and hardware was used to obtain the optimal 

solution, and the 7 customer allocation methods, for the heuristic solution. The best result 

from the 7 heuristics was named and saved as the Best Heuristic Solution. As discussed 

earlier, with current software and hardware can only support the optimal solution for the 

MPIPDSPPP with 7 or fewer customers in the system. In total, 15 test problems were 
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generated for this analysis, the customer number in the system being as the measure for 

creating 5 groups of test problems (i.e. customer number = 3, 4, 5, 6, 7). Each group 

included 3 test problems with the same customer number but random locations and 

demands. 

  The second analysis (B2), which was the performance comparison between 

different heuristic allocation methods, was similar to the A3 analysis in Chapter 3. Each 

heuristic allocation method ran 50 replications for each test problem to determine the 

minimum, maximum and average cost objective values. In total, 16 test problems 

involving different customer numbers were tested using the 7 allocation methods, the 

customer number in the test problem increasing from 10 to 160. The IPDSPPP problem 

in this analysis was solved using a simulated annealing search and the H4 heuristic 

algorithm. 

The third analysis (B3) explored the impact of input parameters on the heuristic 

performance. The product lifetime, the plant production rate, the fixed cost for each 

vehicle, and the variable cost for each vehicle were analyzed. For the MPIPDSPPP with 

multiple plants, each plant production rate was considered as an individual input 

parameter. This analysis considered a 2-plant scenario, the test input parameters being the 

product lifetime, Plant 1 production rate, Plant 2 production rate, the fixed cost for each 

vehicle and the variable cost for each vehicle.  

  

Experimental Results 

1. B1 Analysis 
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The B1 analysis, similar to the A2 analysis in Chapter 3, was used to investigate 

the quality of the heuristic customer allocation method. Its best solution by using 

heuristics, i.e. the Best Heuristic Solution, is the best one for all heuristics across all runs 

for the test problem; in this research, it was the best solution among 7 heuristics * 50 runs 

= 350 runs. The optimality gap used to measure the quality of heuristic solution is 

represented by  

               
                                        

                
 

The basic input parameters for the 15 test problems are given in Table 4.9. As described 

earlier, the optimal solution was generated by the MIP model with AMPL + GRUOBI. 

The heuristic solution was generated by different allocation methods + simulated 

annealing search with the H5 heuristic. The results for all runs are shown in Table 4.10. 

Table 4.9: Input Parameters for B1 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Total number of customer 3, 4, 5, 6, 7 

Customer location range (x, y), 0≤x≤300, 0≤y≤200 

Plant location (100, 100), (200, 100) 

Plant production rate r1=1, r2=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Time horizon 400
 

 

Figure 4.26, which contains data abstracted from Table 4.10, shows the optimality 

gaps for the 15 test problems. As can be seen in this figure, optimality gaps for all test 

problems are 0 which indicate that at least one of the heuristic allocation methods 
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provides the optimal solution when the customer size is small (customer number ≤ 7). 

However, Table 4.10 indicates that the difference in solving time between the optimal 

solution and the heuristic solution is significant:  the optimal solution requiring a few 

hours when the problem size increased to 5 customers, while the heuristic algorithm 

needed only a few seconds. Furthermore, the time for the heuristic algorithm is the total 

sum time for running 350 runs (7 heuristics * 50 runs per heuristic). 

Table 4.10: All Running Results for B2 Analysis 

Problem 

Number 

Customer 

Number 

Optimal 

Solution 

Solving Time 

(optimal) 

Best Heuristic 

Allocation 

Solving Time 

(heuristic) 

1 3 793 72 793 7.482 

2 3 982 50 982 9.296 

3 3 1176.4 38 1176.4 6.902 

4 4 1240.2 51 1240.2 10.268 

5 4 1651 94 1651 10.665 

6 4 1639.6 234 1639.6 8.970 

7 5 1571 72176 1571 13.104 

8 5 2096.8 82125 2096.8 13.041 

9 5 1730.8 62864 1730.8 9.636 

10 6 1744 50413 1744 13.338 

11 6 1888.6 126288 1888.6 12.954 

12 6 1732.8 93040 1732.8 13.551 

13 7 2017.3 78475 2017.3 15.662 

14 7 2711.8 131186 2711.8 14.066 

15 7 1556 128647 1556 13.631 

Note: the unit for solving time is seconds. 
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Figure 4.26: Optimality Gaps Between Optimal Solution and Best Heuristic Solution for 

15 Test Problems in B1 Analysis 

 

Figure 4.27 shows the number of times each allocation method provided the Best 

Heuristic Solution, indicating that the SA allocation method provided it every time while 

the fixed allocation methods (M1, M2, M3 and M4) provided it fewer than twice, 

probably because the structures of these heuristics are different. The fixed allocation 

method can only provide one customer allocation for each test problem. When this 

allocation does not fit the one that can lead to the optimal solution, fixed allocation 

methods never reach the optimal solution for that test problem. The remaining 2 random 

allocation methods (M5 and M6) do not include a learning strategy, meaning they have 

only 50 chances (i.e. 50 runs) to reach the best allocation solution for each problem. The 

SA allocation method, which uses a learning strategy to change the customer allocation 

within each run, can search more customer allocations to find the better solutions. Table 
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4.11 provides the detailed running time for each heuristic, while the pie chart in Figure 

4.28 illustrates the proportion of time needed for each algorithm to reach the Best 

Heuristic Solution, indicating that the SA method runs much longer than the other 

heuristics (≥80% of time). 

 

 

Figure 4.27: Frequency of Each Heuristic Providing the Best Heuristic Solution for 15 

Problems 
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Figure 4.28: Proportion of Solving Time Needed for Each Heuristic Solution While 

Solving Best Heuristic Solution  

Table 4.11: Running Times for All Customer Allocation Methods for the 16 Problems 

Problem 

Number M1 M2 M3 M4 M5 M6 SA 

Best Heuristic 

Solution 

1 0.090 0.345 0.240 0.285 0.240 0.255 6.027 7.482 

2 0.270 0.330 0.315 0.360 0.345 0.240 7.436 9.296 

3 0.255 0.360 0.225 0.315 0.270 0.240 5.237 6.902 

4 0.270 0.285 0.300 0.270 0.225 0.360 8.558 10.268 

5 0.390 0.285 0.360 0.435 0.225 0.210 8.760 10.665 

6 0.270 0.330 0.360 0.345 0.255 0.285 7.125 8.970 

7 0.390 0.390 0.300 0.240 0.330 0.240 11.214 13.104 

8 0.375 0.360 0.405 0.285 0.255 0.225 11.136 13.041 

9 0.315 0.255 0.270 0.285 0.270 0.315 7.926 9.636 

10 0.240 0.300 0.450 0.345 0.390 0.390 11.223 13.338 

11 0.225 0.285 0.345 0.300 0.360 0.300 11.139 12.954 

12 0.285 0.195 0.225 0.375 0.345 0.360 11.766 13.551 

13 0.510 0.285 0.360 0.360 0.360 0.210 13.577 15.662 

14 0.150 0.270 0.435 0.345 0.195 0.060 12.611 14.066 

15 0.210 0.375 0.480 0.480 0.480 0.180 11.426 13.631 

Sum 4.245 4.650 5.070 5.025 4.545 3.870 145.158 172.563 

Note: the time is measured in seconds. Each record shows the sum time of 50 runs. 
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2. B2 Analysis. 

Analysis B2, which is similar to the A3 analysis in Chapter 3, compared the 7 

customer allocation methods against one another based on the objective value of the 

solution of the MPIPDSPPP problem. In this analysis, a total of 16 problems were tested, 

each having different customer sizes, demands and locations. All test problems were 

large size problems (customer size > 7) with the number of customers increasing from 10 

to 160. The rest of the input parameters are shown in Table 4.12. Similar to the B1 

analysis, each heuristic ran 50 times for each problem to obtain the results. However, 

unlike for the B1 analysis, not only the minimum cost but also the average cost and the 

maximum cost for the 50 runs were recorded for comparison. 

Table 4.12: Input Parameters for B2 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Customer location range (x, y), 0≤x≤300, 0≤y≤200 

Plant location (100, 100), (200, 100) 

Plant production rate r1=1, r2=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Time horizon 1000
 

 

All running results are reported in Tables 4.13, 4.14 and 4.15, with Figures 4.29, 

4.30, 4.31 presenting their abstracted data, the results shown in the figures are ordered by 

problem number, which was also the order of the customer numbers in the system. When 

the problem number increased, the number of customers in the system increased with a 

constant rate. As these three tables show, all three costs (average, minimum and 
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maximum) are increased as the customer numbers increased. This observation is obvious. 

A logical conclusion for this observation is that more customers in the system require 

higher transportation costs. Form these figures, we could see that the methods M5 and 

M6 usually provider higher cost in all three criteria (average, minimum and maximum). 

The comparison for rest methods (M1, M2, M3, M4, SA) need more sophisticated 

statistical analysis.  

 

 Table 4.13: Running Result for the B2 Analysis with the Average Objective Value for 16 

Problems 

Problem 

Number 

Customer 

Number 

Average Objective Value 

M1 M2 M3 M4 M5 M6 SA 

1 10 3097.8 3587.6 2933.8 3107.2 4041.2 3877.8 2467.6 

2 20 5745.9 5900.5 5252.8 5238.6 6927.8 7835.6 5192.7 

3 30 7156.6 7504.6 6961.3 7221.9 9049.9 9673.0 6810.7 

4 40 8086.0 8487.5 8397.3 7966.2 12185.5 11760.2 8361.4 

5 50 11166.1 11643.8 11284.8 12044.5 16805.4 16460.6 10995.4 

6 60 12559.5 13113.6 13282.9 13138.1 19835.1 20884.0 11997.3 

7 70 14802.5 14958.3 15011.7 15318.7 22281.8 21277.6 14843.7 

8 80 16047.1 16072.8 16128.3 15877.5 22887.4 24423.7 15631.0 

9 90 19713.1 19660.0 19964.2 19656.3 29106.9 26152.4 19231.4 

10 100 18997.4 19365.3 19114.1 19200.4 30911.3 29363.6 19235.2 

11 110 21727.8 21596.2 21765.2 22280.8 36417.9 35122.1 21853.3 

12 120 25425.6 27249.1 27222.1 26309.0 37403.9 34423.4 25433.7 

13 130 25174.8 27572.6 25343.5 24261.6 36605.8 35417.3 24839.0 

14 140 27442.5 28343.8 27842.7 27626.1 43836.9 43143.5 27065.6 

15 150 29495.9 29766.1 28692.6 29538.8 43283.5 41817.0 28673.2 

16 160 33569.3 38005.2 34155.6 34117.8 50026.1 47664.5 33044.8 
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Table 4.14: Running Result for the B2 Analysis with the Maximum Objective Value for 

16 Problems 

Problem 

Number 
Customer 

Number 

Maximum Objective Value 

M1 M2 M3 M4 M5 M6 SA 

1 10 3109.2 3592.8 3197.0 3107.9 4313.2 3914.0 2706.4 

2 20 5874.8 5922.8 5269.8 5297.8 7921.5 8245.6 5297.5 

3 30 7194.2 7641.6 7092.1 7397.6 10369.0 9766.8 7043.0 

4 40 8402.0 8531.6 8455.8 8246.0 12639.5 12481.5 8892.8 

5 50 11618.6 12153.6 11512.5 12149.0 16956.4 17000.9 11370.7 

6 60 13360.9 13342.4 13703.2 13787.3 19979.6 21678.0 13324.7 

7 70 14959.0 15397.0 15210.5 15408.3 23300.6 21842.9 15113.9 

8 80 16881.2 16559.9 17003.2 15934.7 23933.3 24972.2 16074.2 

9 90 20295.2 19774.3 20450.7 20345.0 30262.1 27185.9 19570.3 

10 100 19425.6 19642.4 19501.1 19712.6 31798.0 30095.9 20315.0 

11 110 22178.1 22274.4 22178.1 22641.5 37108.2 35891.1 22404.0 

12 120 25745.6 27489.8 27356.7 27087.8 38627.4 39634.9 25883.4 

13 130 25727.8 28225.2 26182.4 24719.0 38480.5 38074.3 25207.5 

14 140 27719.9 28735.6 28148.5 29312.9 44963.9 44304.7 27454.6 

15 150 30394.5 30300.4 29469.8 30105.3 44030.1 42701.4 29534.9 

16 160 34440.5 39183.1 34853.7 35437.4 51069.6 48515.6 33862.0 
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Table 4.15: Running Result for the B2 Analysis with the Minimum Objective Value for 

16 Problems 

Problem 

Number 

Customer 

Number 

Minimum Objective Value 

M1 M2 M3 M4 M5 M6 SA 

1 10 3096.5 3577.0 3197.0 3107.9 4313.2 3914.0 2706.4 

2 20 5212.8 5272.7 5269.8 5297.8 7921.5 8245.6 5297.5 

3 30 6449.8 7067.6 7092.1 7397.6 10369.0 9766.8 7043.0 

4 40 7733.5 8408.0 8455.8 8246.0 12639.5 12481.5 8892.8 

5 50 10663.6 10777.6 11512.5 12149.0 16956.4 17000.9 11370.7 

6 60 12355.2 12565.6 13703.2 13787.3 19979.6 21678.0 13324.7 

7 70 14307.4 14553.9 15210.5 15408.3 23300.6 21842.9 15113.9 

8 80 15640.2 15758.9 17003.2 15934.7 23933.3 24972.2 16074.2 

9 90 18978.6 18964.0 20450.7 20345.0 30262.1 27185.9 19570.3 

10 100 18485.6 18819.4 19501.1 19712.6 31798.0 30095.9 20315.0 

11 110 20730.4 20915.3 22178.1 22641.5 37108.2 35891.1 22404.0 

12 120 24905.0 26023.6 27356.7 27087.8 38627.4 39634.9 25883.4 

13 130 24061.2 26847.4 26182.4 24719.0 38480.5 38074.3 25207.5 

14 140 27029.0 27796.3 28148.5 29312.9 44963.9 44304.7 27454.6 

15 150 28725.9 29139.3 29469.8 30105.3 44030.1 42701.4 29534.9 

16 160 32629.6 34917.8 34853.7 35437.4 51069.6 48515.6 33862.0 
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Figure 4.29: Comparison of the Average Objective Values of the Heuristics for 16 

Problems in the B2 Analysis 

 

Figure 4.30: Comparison of the Maximum Objective Values of Heuristics for 16 

Problems in the B2 Analysis 
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Figure 4.31: Comparison of the Minimum Objective Values of Heuristics for 16 

Problems in the B2 Analysis 
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Figure 4.32: Frequency for Providing the Best Average Objective Value among 7 

Heuristics across 16 Problems 

 

 

 

Figure 4.33: Frequency for Providing the Best Maximum Objective Value among 7 

Heuristics across 16 Problems 
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Figure 4.34: Frequency for Providing the Best Minimum Objective Value among 7 

Heuristics across 16 Problems 
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Table 4.16: Hypotheses for All Tests in B2 Analysis 

B2 Test1 H0: medians of the minimum cost are equal for all heuristics 

H1: at least one is median is different 

B2 Test2 H0: medians of the maximum objective values of different heuristics are equal 

H1: not all medians of the maximum objective values of different heuristics are 

equal 

B2 Test3 H0: medians of the average objective values of different heuristics are equal 

H1: not all medians of the average objective values of different heuristics are equal 

 

Appendix Figures B.4, B.5 and B.6 present the statistical results of the Freidman 

tests with R, all exhibiting a small p-value (<0.001) meaning there is sufficient evidence 

to reject the null hypothesis and conclude that at least one median value from each test is 

different from the others. The post-hoc test result indicates that the SA heuristic is 

significant different from the M2, M3, M4, M5 and M6 heuristics for all three tests. In 

addition, the SA is significantly different from M1 for the minimum objective value test, 

but not significantly different from M1 for the other two tests (average cost test and 

maximum cost test). The sum ranks of all heuristics for the three Freidman Test are 

abstracted in Table 4.17, with Figure 4.33 displaying these data indicating that the SA 

method does have the lowest sum ranks for all three criteria (minimum, average, 

maximum cost).  

Table 4.17: Sum Ranks of All Heuristic for the Three Freidman Test 

 

M1 M2 M3 M4 M5 M6 SA 

Avg 38 68 56 51 108 100 27 

max 41.5 64 47.5 54 107 101 33 

min 41 70 59 47 108 99 24 
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Figure 4.35: Sum Ranks of All Heuristic for the Three Freidman Test 
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production capacity are not as important as the direct distance when deciding customer 

allocation. 

 

3. B3 analysis 

In the previous analysis, the test problems differed only in the number of 

customers in the system, customer location and demand, the other input parameters 

remaining the same. The B3 analysis investigated the sensitivity of the solution to 

changes in product lifetime, vehicle fixed cost, vehicle variable cost, and plant production 

rate. Since the current problem involves multiple plants, each plant was treated 

separately, meaning the production rates for Plants 1 and 2 were considered as 2 separate 

factors. This analysis uses a 100 customers’ problem as the base problem. The base input 

parameters for this problem are shown in Table 4.18. The problem will be solved using 

the SA method. 

Table 4.18: Base Input Parameters for B3 Analysis 

Parameters Values 

Customer demand qi ~ U(1, 15)
 

Customer location range (x, y), 0≤x≤300, 0≤y≤200 

Plant location (100, 100), (200, 100) 

Plant production rate r1=1, r2=1 

Vehicle capacity C1=12, C2=15 

Vehicle variable cost per unit distance R1=1, R2 =1.1 

Vehicle fixed cost F1=500, F2 =600 

Time horizon 800
 

 

This analysis is similar to A4 in Chapter 3 for which each test input parameter 

generated a group of sub-problems by varying ±90% from the base value while the other 
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input parameters remained at the base value.  The sensitivity analysis running results are 

shown in Appendix E, Table E.1. 

Figure 4.36 plots the data from Table D.1 showing the minimum objective 

function value for the system transportation cost based on the 5 input parameters. As 

shown in this figure, the change in both plants’ production rates and product lifetimes 

exhibit no discernible relationship with transportation cost, and the fixed cost and 

variable cost appear to exhibit a linear relationship with the total system transportation 

cost. To confirm this finding, analysis A4 employed a correlation analysis to test whether 

there was a correlation between input parameters (variable vehicle cost and the fixed 

vehicle cost) and the total system transportation cost. The raw data were once again 

checked for normality using the Anderson-Darling test; resulting plots can be found in 

Appendix E.2 and E.3. The results indicate that the data for variable cost and fixed 

vehicle cost followed a normal distribution. As a result, two 2 Pearson Correlation Tests 

were conducted to examine the correlation between the input parameters and the 

objective values. The hypotheses are shown in Table 4.19. 

Table 4.19: Hypotheses of All Tests in B3 Analysis 

B3 Test1 

 

H0: the correlation between variable vehicle cost and system transportation cost is 0 

H1: the correlation between variable vehicle cost and system transportation cost is 

not 0 

B3 Test2 H0: the correlation between fixed vehicle cost and system transportation cost is 0 

H1: the correlation between fixed vehicle cost and system transportation cost is not 0 
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Figure 4.36: Changes in the Minimum Objective Value of System Transportation Cost in 

Relation to the Changes in the 5 Input Parameters 

 

Both correlation test results, which are shown in Appendices E.4 and E.5,  

indicate sufficient evidence to reject the null hypotheses, meaning the variables vehicle 

cost and fixed vehicle cost exhibit a correlation with the system total transportation cost. 

Furthermore, this correlation is a strong positive linear relationship (correlation >=0.99). 

The results of B3 statistical analysis are consistent with those from the A4 analysis: the 

variable vehicle cost and fixed vehicle cost exhibit a positive linear relationship with the 

system total transportation cost, as expected. The remaining input parameters, the 

production lifetime and the plant production rate, control the feasibility of the solution 

0

5000

10000

15000

20000

25000

30000

35000

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Sy
st

e
m

 t
o

ta
l t

ra
n

sp
o

rt
at

io
n

 c
so

t 

Parameters ( % change from base) 

Graphing changes of the Minimal Objective value of System 
Transportation Cost by changing 5 input parameters 

Fixed Cost Variable Cost Product Lifetime

Plant 1 Production Rate Plant 2 Production Rate



 192 

rather than the total system cost. As shown in Table E.1 in Appendix E, no feasible 

solution was found for the problem when the product lifetime was below 70% of the base 

value, the production rate of Plant 1 less than 60% of base value, or the production rate of 

Plant 2 rate less than 50% of base value. 

 

Conclusion and Further research 

The multiple plant integrated production and distribution scheduling problem was 

analyzed in this chapter. The key function, customer allocation method was discussed in 

detail, and the formula for calculating the total number of customer allocations was 

provided. In addition, both fixed and random customer allocation methods were 

developed. Based on the results from the statistical analysis, the Simulated Annealing 

method exhibited the best performance of the methods investigated, and the input 

parameter analysis indicated that the system total transportation cost exhibits a linear 

relationship with the vehicle fixed cost and variable cost, while the product lifetime and 

plant production rate control the feasibility of the solution. 

Further research could involve investigating practical extensions of the IPDSPPP 

problem. One such extension could apply MPIPDSPPP variables such as delivery 

involving a time window, stochastic customer demand, and split delivery in the 

transportation component.     

In addition, there are several unique extensions of the MPIPDSPPP problem, one 

being relaxing the constraint of not being able to share vehicles among plants in the 

multi-plant scenario.   It is usually more profitable to use a smaller fleet with longer 
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transportation times than a larger  fleet with less transportation time for the distribution 

function when the vehicle fixed cost is high (e.g. labor cost and vehicle rent cost). For 

example, if the planning horizon is one week and Plant 1 requires 2 vehicles for 3 days to 

complete distribution and Plant 2 requires 2 vehicles for 2 days, sharing the vehicles 

would involve using 2 vehicles to complete the distribution for both plants in 4 days. 

Using two fewer vehicles would result in fixed variable cost saving. Though the variable 

cost (travelling from Plant 1 to Plant 2) might increase, the saving in the fixed variable 

cost would still result in a lower total transportation cost. 

Another realistic extension for the multi-plant case is to relax the assumption that 

all vehicles must replenish the product at the plant where it begins delivery. Doing so 

would allow the vehicle to save variable cost by replenishing the product at the closer 

plant rather than returning to the original one. Furthermore, the system performance 

might improve. For instance, a vehicle from Plant 1 has completed a trip delivery and is 

near Plant 2 when it is ready to be replenished; at the same time, all the vehicles from 

Plant 2 are not yet ready to be replenished.  By replenishing at Plant 2, this vehicle can 

help finish one delivery trip for that plant, or it could replenish the product but continue 

distributing for Plant 1. While relaxing this assumption may improve performance, it 

increases the complexity of the problem significantly. 
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CHAPTER FIVE 

CONCLUSION 

 

The integrated production and distribution scheduling problem such as the one 

investigated here is an NP-hard problem. Specifically, this dissertation discussed a 

practical extension of the IPDSP considering the perishable product using both a single 

plant and a multiple plant situation. The mathematical models for both situations were 

developed and  solved optimally using the mixed integer programming model for small 

size problems (i.e. less or equal to 7 customers both in single plant situation and multiple 

plants situation); however, this programming model is not effective when the problem 

size increases; it does not result in a feasible solution when the problem size is more than 

20 customers in single plant situation and more than 15 customers in a multiple plant 

situation. Since an NP-hard problem was analyzed here, heuristic algorithms were 

implemented for both the single plant and multiple plant situations. The benefits of using 

heuristics include 1) the ability to solve a large problem which cannot be handled by the 

mixed integer programming model, and 2) the short computation time. A single plant 

problem with 100 customers was solved using the Multi-stop Delivery with Random 

Shortest Path Fit algorithm (H4) within 2 minutes.  

For the single plant situation, five heuristics were created as discussed in Chapter 

3 to solve the IPDSPPP problem. Furthermore, an improved LB was conducted for the 

problem, one that considered the internal traveling distance between customers to 

improve travel distance, and accumulating the waiting time for all available vehicles at 
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the beginning of the time horizon to improve used the vehicle number. The statistical 

analysis suggested that the new LB performance was better than the former one. In 

addition, the performance of the heuristics was analyzed. The heuristic algorithms 

resulted in the optimal or near optimal solution (i.e. gap between the solution and the 

optimal solution was less than 5%) for the small size problem (i.e. less than or equal to 7 

customers in the system). The statistical analysis indicated that H3 and H4 performance 

was better than the heuristics H1, H2 and H5.  In addition, the sensitivity of the objective 

value to the input parameters was also analyzed, the results showing that the fixed vehicle 

cost and variable vehicle cost exhibited a linear relationship with the system total 

transportation cost, while the product lifetime and plant production rate affected only the 

feasibility of the solution and had little effect on the total transportation cost.  

The six heuristic algorithms created to solve the multiple plants IPDSPPP 

problems were discussed in Chapter 4.  Furthermore, the customer allocation problem, 

the sub-problem of the MPIPDSPPP, was found to be an NP problem. The formula for 

calculating the total number of customer allocations is also provided. The performance of 

the heuristic algorithms for the multiple plants scenario was found to good, the statistical 

results indicating they provided the optimal solution or one with less than a 5% difference 

from the optimal solution. In addition, the performance among the various heuristic 

algorithms was compared, the results showing that the SA-based search heuristic (A6) 

performed better than heuristics A1, A2, A3, A4 and A5. 
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Future Research 

This study, however, is only the first in this research. Below are suggestions for 

future studies in this area.   

First the research could be extended by adding time windows for the distribution. 

This research assumed delivery could occur anytime within the time horizon. This is true 

for some customers, like the food industry where the vehicle can deliver the food to the 

restaurants anytime during the day. However, in other situations the customers have a 

distinct time window for accepting delivery, one depending on various other business 

requirements such as the space available in the parking lot or the schedule of the 

production line. The IPDSPPP problem could be extended to provide a distinct time 

window for each customer within the time horizon, thereby increasing the complexity of 

the problem significantly.  

Second, the research could be extended by allowing split delivery. In the research 

reported here, all customer demand was assumed to be satisfied by one vehicle within 

one trip.  However, it would be more practical to allow for split delivery, the demand of a 

customer being satisfied by 2 or more vehicles. By releasing this constraint, the 

transportation system could be reduced by using an increased number of full-truck load 

deliveries, resulting in better utilization of the vehicles and fewer of them.   

Third, the research could be extended by allowing vehicles to replenish at any 

plant, not being assigned to only one. This extension is specific to the multiple plant 

situation. This research assumed the fleet used by Plant A could not be used to satisfy the 

distribution for Plant B. In addition, the vehicle could replenish only at the plant it was 
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assigned to. However, since the multiple plants were all owned by the same decision 

maker, the fleets could work together. Releasing this constraint would allow a vehicle to 

make multiple trips because it could replenish at various plants as well as return to any 

one of them at the end of the planning horizon. This will provide more flexibility for the 

trip decisions, while the same time introducing more complexity into the distribution 

schedule for each vehicle and the relative production schedule for each plant. 

Forth, the heuristic vehicle routing and scheduling decisions developed in this 

dissertation were based on the route first cluster second heuristic concept. Other 

heuristics such as cluster first route second (Laporte et al 2000), constructive (Clarke and 

Wright 1964) and improvement methods (Potvin and Rousseau 1995) could also be used 

to make decisions for the vehicle routing and scheduling. Furthermore, other meta-

heuristic search methods could be applied in looking for the global optimum, including 

Genetic Algorithms (GA), Tabu Search (TS), and Ant Colony Optimization (ACO), 

among others. 

Furthermore, there are many assumptions can be released in the further work, 

such as include costs for setup between production batches, considering the inventory 

cost into the system total cost, considering multiple planning periods and infinite 

planning periods.  

Include inventory costs 

Have multiple planning periods 

Possibly finding approximate solutions using evolutionary algorithms of the 

MIP’s directly for larger problems  
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Appendix A 

Statistical Results: Running results for A1 analysis 

Table A.1: running result for A1 analysis 

Run 
Cust. 

# 

Plan 

Horizon 

Old Lower Bound New Lower Bound Difference (new - old) 

LB 
Vehicle 

# 

Travel 

Dist. 
LB 

Vehicle 

# 

Travel 

Dist. 

LB 

 

Vehicle 

# 

Travel 

Dist. 

1 4 300 685 1 185 686 1 186 1 0 1 

2 4 300 624 1 124 654 1 154 30 0 30 

3 4 300 734 1 234 777 1 277 43 0 43 

4 4 300 608 1 108 676 1 176 68 0 68 

5 4 300 642 1 142 675 1 175 33 0 33 

6 5 300 698 1 198 750 1 250 52 0 52 

7 5 300 782 1 282 1301 2 301 519 1 19 

8 5 300 718 1 218 711 1 211 -7 0 -7 

9 5 300 1400 2 400 1401 2 401 1 0 1 

10 5 300 660 1 160 750 1 250 90 0 90 

11 6 300 744 1 244 720 1 220 -24 0 -24 

12 6 300 714 1 214 1305 2 305 591 1 91 

13 6 300 756 1 256 1299 2 299 543 1 43 

14 6 300 1302 2 302 1296 2 296 -6 0 -6 

15 6 300 734 1 234 791 1 291 57 0 57 

16 7 300 1326 2 326 1337 2 337 11 0 11 

17 7 300 668 1 168 696 1 196 28 0 28 

18 7 300 746 1 246 1315 2 315 569 1 69 

19 7 300 1332 2 332 1365 2 365 33 0 33 

20 7 300 772 1 272 1335 2 335 563 1 63 

21 8 300 1408 2 408 1433 2 433 25 0 25 

22 8 300 750 1 250 1354 2 354 604 1 104 

23 8 300 1344 2 344 1376 2 376 32 0 32 

24 8 300 1316 2 316 1357 2 357 41 0 41 

25 8 300 1356 2 356 1422 2 422 66 0 66 

26 9 300 1384 2 384 1444 2 444 60 0 60 

27 9 300 1300 2 300 1328 2 328 28 0 28 

28 9 300 1360 2 360 1421 2 421 61 0 61 

29 9 300 1404 2 404 1466 2 466 62 0 62 

30 9 300 1336 2 336 1373 2 373 37 0 37 

31 10 300 1320 2 320 1382 2 382 62 0 62 

32 10 300 1448 2 448 1525 2 525 77 0 77 

33 10 300 720 1 220 771 1 271 51 0 51 

34 10 300 1306 2 306 1402 2 402 96 0 96 

35 10 300 1404 2 404 1463 2 463 59 0 59 

36 20 400 1620 2 620 1726 2 726 106 0 106 

37 20 400 2444 3 944 2478 3 978 34 0 34 

38 20 400 2450 3 950 2528 3 1028 78 0 78 

39 20 400 1690 2 690 2312 3 812 622 1 122 

40 20 400 1670 2 670 1759 2 759 89 0 89 

41 30 500 2492 3 992 2586 3 1086 94 0 94 

42 30 500 1930 2 930 2522 3 1022 592 1 92 
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43 30 500 1848 2 848 1972 2 972 124 0 124 

44 30 500 1868 2 868 2517 3 1017 649 1 149 

45 30 500 1918 2 918 2536 3 1036 618 1 118 

46 40 600 2048 2 1048 2194 2 1194 146 0 146 

47 40 600 2970 3 1470 3093 3 1593 123 0 123 

48 40 600 2172 2 1172 2778 3 1278 606 1 106 

49 40 600 2070 2 1070 2711 3 1211 641 1 141 

50 40 600 2894 3 1394 3026 3 1526 132 0 132 

51 50 700 3092 3 1592 3244 3 1744 152 0 152 

52 50 700 3142 3 1642 3260 3 1760 118 0 118 

53 50 700 3072 3 1572 3241 3 1741 169 0 169 

54 50 700 3216 3 1716 3336 3 1836 120 0 120 

55 50 700 2290 2 1290 2972 3 1472 682 1 182 

56 60 800 3856 3 2356 4482 4 2482 626 1 126 

57 60 800 3634 3 2134 3725 3 2225 91 0 91 

58 60 800 3842 3 2342 4455 4 2455 613 1 113 

59 60 800 3612 3 2112 3739 3 2239 127 0 127 

60 60 800 3360 3 1860 3557 3 2057 197 0 197 

61 70 900 2780 2 1780 3478 3 1978 698 1 198 

62 70 900 3756 3 2256 3946 3 2446 190 0 190 

63 70 900 3414 3 1914 3566 3 2066 152 0 152 

64 70 900 3398 3 1898 3584 3 2084 186 0 186 

65 70 900 3818 3 2318 3946 3 2446 128 0 128 

66 80 1000 4296 3 2796 5010 4 3010 714 1 214 

67 80 1000 3962 3 2462 4115 3 2615 153 0 153 

68 80 1000 4212 3 2712 4346 3 2846 134 0 134 

69 80 1000 4096 3 2596 4220 3 2720 124 0 124 

70 80 1000 3898 3 2398 4046 3 2546 148 0 148 

71 90 1100 4600 3 3100 4781 3 3281 181 0 181 

72 90 1100 4154 3 2654 4343 3 2843 189 0 189 

73 90 1100 3046 2 2046 3722 3 2222 676 1 176 

74 90 1100 4292 3 2792 4474 3 2974 182 0 182 

75 90 1100 4324 3 2824 4497 3 2997 173 0 173 

76 100 1200 4342 3 2842 4558 3 3058 216 0 216 

77 100 1200 5822 4 3822 5964 4 3964 142 0 142 

78 100 1200 4704 3 3204 4904 3 3404 200 0 200 

79 100 1200 4178 3 2678 4403 3 2903 225 0 225 

80 100 1200 4886 3 3386 5083 3 3583 197 0 197 
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Figure A.2: Anderson-Darling Normality Test Result for Improvement of Travel 

Distance of LB. Minitab result. 

 

 

Figure A.3: Anderson-Darling Normality Test Result for Improvement of Used Vehicle 

Number of LB. Minitab result. 
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Figure A.4: Anderson-Darling Normality Test Result for Improvement of LB Value. 

Minitab result. 
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Wilcoxon Signed Rank Test: Improvement of LB value  

 
Test of median = 0.000000 versus median > 0.000000 

 

                N for   Wilcoxon         Estimated 

             N   Test  Statistic      P     Median 

diff of LB  80     80     3227.0  0.000      142.0 

 

Figure A.5: Wilcoxon Signed Rank Test result for difference between LB values 

provided by new approach and old approach, improvement of LB value = (new approach 

value– old approach value), Minitab result 

 

 

 

Wilcoxon Signed Rank Test: Improvement of Used Vehicle Number 

 
Test of median = 0.000000 versus median > 0.000000 

 

                     N for   Wilcoxon           Estimated 

                  N   Test  Statistic      P       Median 

diff of vehicle  80     18      171.0  0.000  0.000000000 

 

Figure A.6: Wilcoxon Signed Rank Test result for difference between used vehicle 

number provided by new approach and old approach, improvement of used vehicle 

number = (new approach value– old approach value), Minitab result 

 

 

 

 
Paired T-Test and CI: New LB Travel Distance, Old LB Travel Distance  

 
Paired T for New LB Travel Distance - Old LB Travel Distance 

 

                         N    Mean  StDev  SE Mean 

New LB Travel Distance  80    1295   1075      120 

Old LB Travel Distance  80    1193   1023      114 

Difference              80  101.41  62.76     7.02 

 

 

95% CI for mean difference: (87.45, 115.38) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 14.45  P-Value = 0.000 

 

Figure A.7: Paired T-Test result for difference between travel distance provided by new 

approach and old approach, improvement of used vehicle number = (new approach 

value– old approach value), Minitab result 
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Appendix B 

Statistical Results: Running results for A3 analysis 

 

Figure B.1: Anderson-Darling Normality Test Result for Average Objective Value in A3 

analysis. Minitab result. 
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Figure B.2: Anderson-Darling Normality Test Result for Maximum Objective Value in 

A3 analysis. Minitab result. 

 

Figure B.3: Anderson-Darling Normality Test Result for Minimum Objective Value in 

A3 analysis. Minitab result. 

 

 

  

150001000050000-5000

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

Minimal Objective Value

P
e

rc
e

n
t

Mean 4612

StDev 3297

N 80

AD 2.935

P-Value <0.005

Probability Plot of Minimal Objective Value
Normal 



 206 

Study: Minimal Objective Value versus Heuristic blocked by number of customers 

  

Heuristics,  Sum of the ranks 

 

   ObjMin  replication 

1    65.0           16 

2    79.0           16 

3    31.0           16 

4    26.5           16 

5    38.5           16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 53.80064 

Pvalue chisq : 5.793588e-11 

F value : 79.12358 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 2.000298 

LSD       : 7.272029 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a        2         79  

b        1         65  

c        5         38.5  

d        3         31  

d        4         26.5 

 

Figure B.4: Freidman Test result for A3 Test1, Minimum Objective Value versus 

Heuristic blocked by number of customers, R result 
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Study: Maximum Objective Value versus Heuristic blocked by number of customers  

 

Heuristics,  Sum of the ranks 

 

   ObjMax  replication 

1    54.0           16 

2    77.0           16 

3    24.5           16 

4    27.5           16 

5    57.0           16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 49.02857 

Pvalue chisq : 5.75923e-10 

F value : 49.12214 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 2.000298 

LSD       : 8.866984 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a        2          77  

b        5          57  

b        1          54  

c        4          27.5  

c        3          24.5 

 

Figure B.5: Freidman Test result for A3 Test2, Maximum Objective Value versus 

Heuristic blocked by number of customers, R result 
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Study: Average Objective Value versus Heuristic blocked by number of customers  

 

Heuristics,  Sum of the ranks 

 

   ObjAvg   replication 

1    59.0           16 

2    79.0           16 

3    26.5           16 

4    24.5           16 

5    51.0           16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 52.80251 

Pvalue chisq : 9.372414e-11 

F value : 70.73348 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 2.000298 

LSD       : 7.716934 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a        2          79  

b        1          59  

c        5          51  

d        3          26.5  

d        4          24.5 

 

Figure B.6: Freidman Test result for A3 Test3, Average Objective Value versus Heuristic 

blocked by number of customers, R result 
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Appendix C 

Statistical Results: Running results for A4 analysis 

Table C.1: Changing of Minimum Objective Value of System Transportation Cost by 

changing 4 input parameters in A4 analysis 

  Minimum Objective Value of System Transportation Cost 

% change From 

base 

Fixed 

Cost 

Variable 

Cost 

Plant Production 

Rate 

Product 

Lifetime 

-90% 3800.1 2974.1 N/A N/A 

-80% 3990 3348.2 N/A N/A 

-70% 4272.4 3713.75 N/A N/A 

-60% 4630.6 4065.44 N/A 6197.9 

-50% 4854.3 4470.5 N/A 6226.3 

-40% 5141.1 4766.16 N/A 6150.4 

-30% 5427.4 5159.24 6298.4 6280.9 

-20% 5670.5 5606.8 6189.1 6114.1 

-10% 5955.8 5861.97 6183.2 6233.8 

0% 6181.5 6181.5 6181.5 6181.5 

+10% 6538.3 6580.46 6284.3 6218.9 

+20% 6731.5 6942.8 6246.3 6280.6 

+30% 6959.2 7339.83 6263.7 6239.4 

+40% 7208.8 7643.78 6257.6 6239.4 

+50% 7555.7 8088.75 6171.2 6168.3 

+60% 7853.3 8186.4 6264.3 6168.3 

+70% 8090.3 8651.53 6166.7 6168.3 

+80% 8382.5 9226.26 6270.2 6168.3 

+90% 8702.7 9442.53 6219.9 6168.3 
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Table C.2: Changing of Maximum Objective Value of System Transportation Cost by 

changing 4 input parameters in A4 analysis 

 

Maximum Objective Value of System Transportation Cost 

% change From 

base 

Fixed 

Cost 

Variable 

Cost 

Plant Production 

Rate 

Product 

Lifetime 

-90% 3955.8 3489.7 N/A N/A 

-80% 4225.8 3879.4 N/A N/A 

-70% 4758.3 4326.77 N/A N/A 

-60% 5224 4712.68 N/A 7159.6 

-50% 5465.2 5076.8 N/A 7089.2 

-40% 5759.6 5472.16 N/A 7146.9 

-30% 6149.5 5914.56 7103.4 7059.7 

-20% 6403.9 6262.88 7064.5 7131.2 

-10% 6774 6640.52 7124.5 7018.8 

0% 6994.9 6994.9 6994.9 6994.9 

+10% 7374 7475.37 7058.3 7068.5 

+20% 7719.5 7830.4 7058.3 6975.8 

+30% 7961.6 8070.45 7131.4 7068.5 

+40% 8307.9 8544.18 6880.5 7068.5 

+50% 8648.3 9011.45 7124.5 7016 

+60% 8957 9349.76 7029.5 7016 

+70% 9237.5 9733.57 7067.7 7016 

+80% 9548.6 10108 7303.1 7016 

+90% 9961.8 10645.5 7303.1 7016 
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Table C.3: Changing of Average Objective Value of System Transportation Cost by 

changing 4 input parameters in A4 analysis 

 

Average Objective Value of System Transportation Cost 

% change From 

base 

Fixed 

Cost 

Variable 

Cost 

Plant Production 

Rate 

Product 

Lifetime 

-90% 3841.022 3055.605 N/A N/A 

-80% 4149.755 3425.496 N/A N/A 

-70% 4508.543 3952.221 N/A N/A 

-60% 4812.355 4236.416 N/A 6854.761 

-50% 5107.539 4718.659 N/A 6606.616 

-40% 5378.904 5042.404 N/A 6519.384 

-30% 5677.765 5486.113 6861.413 6576.931 

-20% 5963.024 5887.608 6628.702 6530.865 

-10% 6196.392 6103.14 6553.414 6513.308 

0% 6463.014 6463.014 6463.014 6463.014 

+10% 6859.822 6934.422 6642.331 6506.91 

+20% 7198.527 7666.624 6565.635 6597.076 

+30% 7319.653 7492.58 6570.998 6604.424 

+40% 7781.951 7961.082 6428.951 6604.424 

+50% 7968.494 8542.466 6496.482 6530.437 

+60% 8330.484 8722.384 6475.071 6530.437 

+70% 8535.394 9095.265 6486.571 6536.606 

+80% 8886.241 9558.756 6499.588 6536.606 

+90% 9251.329 9882.395 6504.478 6536.606 
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Figure C.4: Anderson-Darling Normality Test Result of Minimum Objective Value by 

changing fixed vehicle cost. Minitab result. 

 

 

Figure C.5: Anderson-Darling Normality Test Result for Minimum Objective Value by 

changing variable vehicle cost. Minitab result. 
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Correlations: % change From base, Fixed Cost  

 
Pearson correlation of % change From base and Fixed Cost = 1.000 

P-Value = 0.000 

 

Figure C.7: Pearson Correlations Test Result for Minimum Objective Value with fixed 

vehicle cost. Minitab result. 

 

  

Correlations: % change From base, Variable Cost  

 
Pearson correlation of % change From base and Variable Cost = 0.998 

P-Value = 0.000 

 

Figure C.8: Pearson Correlations Test Result for Minimum Objective Value with variable 

vehicle cost. Minitab result. 
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Appendix D 

Statistical Results: Running Results for B2 Analysis 

 

Figure D.1: Anderson-Darling Normality Test Result for Average Objective Value in B2 

analysis. Minitab result. 
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Figure D.2: Anderson-Darling Normality Test Result for Maximum Objective Value in 

B2 analysis. Minitab result. 

 

Figure D.3: Anderson-Darling Normality Test Result for Minimum Objective Value in 

B2 analysis. Minitab result. 
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Study: Minimum Objective Value versus Heuristic blocked by number of customers  

 

Heuristics,  Sum of the ranks 

 

     ObjMin  replication 

M1       41            16 

M2       70            16 

M3       59            16 

M4       47            16 

M5      108            16 

M6       99            16 

SA       24            16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 75.53571 

Pvalue chisq : 2.975398e-14 

F value : 55.36649 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 1.986675 

LSD       : 11.57663 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a          M5         108  

a          M6         99  

b          M2         70  

b         M3   59  

c          M4        47  

c          M1         41  

d          SA         24 

 

Figure D.4: Freidman Test result for B2 analysis Test 01, Minimum Objective Value 

versus Heuristic blocked by number of customers; MINITAB output 
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Study: Maximum Objective Value versus Heuristic blocked by number of customers  

 

Heuristics,  Sum of the ranks 

 

     ObjMax  replication 

M1     41.5   16 

M2     64.0   16 

M3  47.5   16 

M4  54.0   16 

M5  107.0   16 

M6  101.0   16 

SA  33.0   16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 67.81006 

Pvalue chisq : 1.149081e-12 

F value : 36.08205 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 1.986675 

LSD       : 13.57965 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a          M5        107  

a          M6        101  

b          M2        64  

bc         M4        54  

c          M3        47.5  

cd         M1        41.5  

d          SA        33 

 

Figure D.5: Freidman Test result for B2 analysis Test 02, Maximum Objective Value 

versus Heuristic blocked by number of customers; MINITAB output 
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Study: Average Objective Value versus Heuristic blocked by number of customers  

 

Heuristics,  Sum of the ranks 

 

     ObjAvg  replication 

M1       38             16 

M2       68            16 

M3       56            16 

M4       51            16 

M5      108             16 

M6      100            16 

SA       27            16 

 

Friedman's Test 

=============== 

Adjusted for ties 

Value: 74.00893 

Pvalue chisq : 6.139533e-14 

F value : 50.48112 

Pvalue F: 0 

 

Alpha     : 0.05 

t-Student : 1.986675 

LSD       : 12.00071 

 

Means with the same letter are not significantly different. 

GroupTreatment and Sum of the ranks 

a         M5        108  

a          M6        100  

b          M2        68  

bc         M3        56  

c          M4        51  

d         M1        38  

d          SA        27 

 

Figure D.6: Freidman Test result for B2 analysis Test 03, Average Objective Value 

versus Heuristic blocked by number of customers; MINITAB output 
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Appendix E 

Statistical Results: Running Result for B3 Analysis 

Table E.1: Running result of B2 analysis. 

 

% change 

from base 

Minimum Objective Value of System Transportation Cost 

Fixed 

Cost 

Variable 

Cost 

Product 

Lifetime 

Plant 1 

Production Rate 

Plant 2 

Production Rate 

-90% 13630.8 9309.3 N/A N/A N/A 

-80% 14706.6 11109.4 N/A N/A N/A 

-70% 15417.6 11933.7 N/A N/A N/A 

-60% 15942.8 13730.8 N/A N/A N/A 

-50% 17026.5 15003.5 N/A N/A 21146 

-40% 18143.5 16372.3 N/A 21522.9 21491 

-30% 18599.2 17589.4 21998 20939 21521.8 

-20% 19801.5 18398.6 21569 20989.3 21553.7 

-10% 20583.9 20159.6 20906.8 21228.9 20977.2 

0% 20981.8 21520.7 21002.5 21152.6 21623.8 

+10% 21025.1 22741.3 20744.8 21435.6 20724 

+20% 22470.8 23655.2 20969.9 21459 21349.6 

+30% 23968.2 25295.4 21239 21427 20991 

+40% 24863 26375 20640.3 21460.9 20877.4 

+50% 24925 27799.4 20944.2 21052 20927.3 

+60% 25719.6 29161.1 20904.6 21154.1 20919.4 

+70% 27414.3 29895 20884.9 21361.8 20831 

+80% 27160.1 31208.2 20884.8 20622.9 21585.4 

+90% 27004.1 32549.5 20899.1 21182.8 20796 
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Figure E.2: Anderson-Darling Normality Test Result for fixed vehicle cost in B3 

analysis. Minitab result. 

 

 
 

Figure E.3: Anderson-Darling Normality Test Result for variable vehicle cost in B3 

analysis. Minitab result. 
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Correlations: Fixed vehicle cost, Changed Percentage  

 
Pearson correlation of Fixed vehicle cost and Changed Percentage = 0.994 

P-Value = 0.000 

 

Figure E.4: Pearson Correlations Test Result for Minimum Objective Value with fixed 

vehicle cost. Minitab result. 

 

 

  

Correlations: Variable Vehicle cost, Changed Percentage  

 
Pearson correlation of Variable Vehicle cost and Changed Percentage = 0.999 

P-Value = 0.000 

 

 

Figure E.5: Pearson Correlations Test Result for Minimum Objective Value with variable 

vehicle cost. Minitab result. 
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