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ABSTRACT 

 

 

This dissertation presents two applications of discrete-event simulation (DES) to 

represent clinical processes: (1) a model to quantify the risk of the maternal obese and 

diabetic intrauterine environment influence on progression to adult obesity and diabetes, 

and (2) a model to evaluate health and economic outcomes of different smoking cessation 

strategies. The first application considers the public health impact of the diabetic and 

obese intrauterine environment‘s effect on the prevalence of diabetes and obesity across 

subsequent generations. We first develop a preliminary DES model to investigate and 

characterize the epidemiology of diabetes during pregnancy and birth outcomes related to 

maternal obesity and diabetes. Using data from the San Antonio Heart Study (SAHS), the 

1980 Census and the NCHS we are able to verify a simplified initial version of our 

model. Our methodology allows us to quantify the impact of maternal disparities between 

different racial/ethnic groups on future health disparities at the generational level and to 

estimate the extent to which intrauterine exposure to diabetes and obesity could be 

driving these health disparities. The populace of interest in this model is women of child-

bearing age. 

The preliminary model is next modified to accommodate data and assumptions 

representing the United States population. We use a mixed-methods approach, 

incorporating both statistical methods and discrete event simulation, to examine trends in 

weight-gain over time among white and black women of child-bearing age in the US 

from 1980 to 2008 using United States Census projections and National Health and 

Nutrition Examination Survey (NHANES) data. We use BMI as a measure of weight 
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adjusted for height.  We establish an underlying population representative of the 

population prior to the onset of the obesity epidemic. Assessing the rate of change in 

body mass index (BMI) of the population prior to the obesity epidemic allows us to make 

―unadjusted‖ projections, assuming that subsequent generations carry the same risk as the 

initial cohort. Unadjusted projections are compared to actual trends in the US population. 

This comparison allows us to quantify the trends in weight-gain over time. This model is 

interesting as a first step in understanding the trans-generational impact of obesity during 

pregnancy at the population level. 

The aim of the second application is to understand the impact of different 

pharmacologic interventions for smoking cessation in achieving long-term abstinence 

from cigarette smoking is an important health and economic issue. We design and 

develop a clinically-based DES model to provide predictive estimates of health and 

economic outcomes associated with different smoking cessation interventions. 

Interventions assessed included nicotine replacement therapy, oral medications 

(bupropion and varenicline), and abstinence without pharmacologic assistance. We 

utilized data from multiple sources to simulate patients‘ actions and associated responses 

to different interventions along with co-morbidities associated with smoking. Outcomes 

of interest included estimates of sustained abstinence from smoking, quality adjusted life 

years, cost of treatment, and additional health-related costs due to long-term effects of 

smoking (lung cancer, chronic obstructive pulmonary disease, stroke, coronary heart 

disease). Understanding the comparative effectiveness and intrinsic value of alternative 
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smoking cessation strategies can improve clinical and patient decision-making and 

subsequent health and economic outcomes at the population level. 

This dissertation contributes to the field of industrial engineering in healthcare. 

US population-level data structures are not always available in the desired format and 

there is not one method for managing the data. The key element is to be able to link the 

mathematical model with the available data. We illustrate various methods (i.e. bootstrap 

techniques, mixed-effects regression, application of probability distributions) for 

extracting information from different types of data (i.e. longitudinal data, cross-sectional 

data, incidence rates) to make population-level predictions. Methods used in cost-

effectiveness evaluations (i.e. incremental cost-effectiveness ratio, bootstrap confidence 

intervals, cost-effectiveness plane) are applied to output measures obtained from the 

simulation to compare alternative smoking cessation strategies to deduce additional 

information. While the estimates resulting from the two models are topic-specific, many 

of the modules created for these studies are generic and can easily be transferred to other 

disease models. It is believed that these two models will aid decision makers in 

recognizing the impact that preventative-care initiatives will have, and to evaluate 

possible alternatives. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Disease prevention and control remains a crucial health issue and as costs 

associated with providing health care services spike, patient choices and care become 

more limited. In recent years mathematical modeling of disease dynamics has been used 

to answer health care questions. Integrating analytical techniques into public health 

research, policy, and practice can help lead clinicians and health policy decision makers 

to make recommendations and identify appropriate public health actions to help prevent 

disease, improve patient health, and manage rising health care costs. In this dissertation 

we provide two examples of predictive models for disease management: (1) a model to 

predict the impact of maternal obesity during pregnancy on the prevalence of obesity in 

subsequent generations at the population level across different racial and ethnic groups 

and to identify health disparities among these groups, and (2) a model to provide 

predictive estimates of health and economic outcomes associated with different smoking 

cessation interventions. 

1.1 Background 

Costs of health care have continued to increase for many years. ―Expenditures in 

the United States on health care surpassed $2.3 trillion in 2008, more than three times the 

$714 billion spent in 1990, and over eight times the $253 billion spent in 1980.‖ [Kaiser] 

Health care costs associated with treating chronic diseases in the United States are an 

estimated 75 percent of national health expenditures. [CDC1] Approximately one in two 

adults in the US (133 million individuals) in 2005 had at least one chronic illness [Wu 
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and Green, 2000]. With an increase in the prevalence of chronic illness comes the 

increasing need for understanding of disease and persistent management and treatment of 

disease.  

Mathematical models of disease provide both understanding and prediction of 

disease in a population. Modeling of disease dynamics has been used to choose the most 

effective interventions for preventing and treating disease, understand population 

robustness to disease threats, understand the clinical effectiveness and comparative value 

of different treatment strategies, screen an at-risk population for early signs of a disease, 

understand infectious disease transmission, understand the impact of individual behavior 

and decision making on population-level disease outcomes, predict the future population 

with a given disease, guide resource allocation decisions in health care (e.g., distributing 

funds, allocating organs for transplantation), and influence insurance coverage decisions 

(refer to Section 1.2). Information provided by analytical health care models contributes 

to informed decision-making of public policies impacting human life and health. Small 

increases in the efficiency of the health care system not only lead to improved patient 

outcomes but contribute to tremendous cost savings. 

1.2 Research Aims 

This dissertation presents two applications of discrete-event simulation (DES) to 

estimate long-term epidemiologic and economic consequences of disease processes. 

Thereby, this dissertation is compiled of work from two separate projects which are 

similar in their methodological approach.  
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For application one, we will first create a base simulation model to predict the risk 

of exposure to maternal obesity and diabetes during pregnancy on obesity and diabetes 

prevalence in future generations and to examine trends over time. The model will be 

verified using data for a single cohort. To enable the utilization of cross-sectional 

NHANES data (a nationally representative sample) we will apply bootstrap statistical 

methods and mixed-effects regression models. We then validate our method for modeling 

changes in attributes over time. We begin with an initial cohort and predict prevalence 

rates at baseline. Because we will use cross-sectional data to infer incidence rates, we will 

compare predicted values within an age group to actual values in that age group at 

baseline. That is, we will validate that individuals take on age appropriate characteristics 

according to the baseline cross-sectional values. We model the population prior to the 

onset of the obesity and diabetes epidemic. Using input data from different racial and 

ethnic groups we will quantify health disparities between groups at the population-level 

over time.  

Regarding application two, we will describe the development and verification of a 

simulation to estimate US population-level health and economic outcomes of smoking 

cessation interventions. We will describe how we characterize smoking-related disease 

based on the available data. Analyses to understand the comparative effectiveness and 

intrinsic value of alternative smoking cessation strategies that can improve clinical and 

patient decision-making and subsequent health and economic outcomes at the population-

level will be explained. 
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1.3 Literature Review 

This section discusses health care modeling methodologies and applications 

regarding cost-effectiveness analysis, statistical procedures (logistic regression analysis 

and Bayesian analysis), decision trees, Markov structures (Markov cohort models and 

Markov decision processes), and discrete-event simulation (DES) techniques. Motivation 

behind the DES modeling approach selected for our models is discussed. Since the 

models presented in this dissertation are the first applications of DES to maternal obesity 

and smoking cessation treatment/smoking-related disease risks, DES models applied to 

other diseases are reviewed.  

1.3.1 Cost-effectiveness analysis 

 Cost-effectiveness analysis combines information on monetary costs and health 

benefits (refer to Chapter 5.3) of medical interventions to provide a relative comparison 

of two or more treatment strategies. Health policy-makers use this information to make 

informed decisions about allocating resources. Different modeling methods can be 

applied to perform economic evaluations. Treatment strategies for a broad array of 

diseases including cervical cancer [Mandelblatt et al, 2002], colorectal cancer [McMahon 

et al., 2001], psoriatic arthritis [Bansback et al., 2006], depression [Pyne et al., 2010], 

morbid obesity [Campbell et al., 2010], mental illness [Dixon et al., 2002], prostate 

cancer [Hövels et al., 2009; Ito et al., 2010], HIV [Simpson et al., 2004], and sleep 

apnoea-hypopnea [Sadatsafavi et al., 2009], among many others, have been assessed 

using cost-effectiveness analysis. Chapter 4.1 provides a detailed review of modeling the 

cost-effectiveness of smoking cessation strategies.  
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1.3.2 Statistical procedures 

Chhatwal et al. (2009) developed two logistic regression models to facilitate early 

breast cancer diagnosis where the probability of cancer is the outcome measure in each 

model. These logistic regression models used mammographic features to make breast 

cancer risk predictions which suggest that more accurate decisions may be made using 

the probability of cancer estimated in the two models. However, the results do not 

recommend when the decision should be made to biopsy a particular patient based on 

their risk of breast cancer, and do not consider how patient‘s risks and decisions change 

when individual patient attributes (e.g. age) are taken into account. 

Many authors have been successful at creating prognostic models of disease using 

Bayesian structures to quantify the probability of a disease based on epidemiologic, 

demographic, and clinical information. Bayesian models of disease risk for breast cancer 

[Burnside et al., 2009; Velikova et al., 2009], prostate cancer [Smith et al., 2009], and 

end-stage renal disease [Dimitrov et al., 2003] have been proposed. A predictive model of 

patients with carcinoid was developed by van Gerven et al. (2008) using Bayesian 

inference. Models of survival prediction [Jayasurya et al., 2010] and prediction of local 

failure [Oh et al.; 2011] in lung cancer patients have adopted the Bayesian approach. 

Bayesian networks of gene interactions have been constructed by Armañanzas et al. 

(2008) and Chen et al. (2006).    

Medical data is often hard to accumulate and Bayesian networks are efficient 

when information is lacking in comparison with other modeling methods. Nonetheless, to 

define probabilistic relationships between diseases and symptoms, Bayesian models 
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assume a simple representation of attributes where each problem instance revolves 

around predefined attributes. This is insufficient for medical applications in which patient 

attributes are uncertain, cannot be defined in advance, and change over time. 

Interdependencies among related entities cannot be specified in advance. Because of the 

complex nature of disease, clinical models often require a large state space. In Bayesian 

network modeling the size of the model space is large when few variables are included 

and increases exponentially when variables are added. 

1.3.3  Markov structures 

Previous models of disease most frequently used Markov structures. Sonnenberg 

and Beck (1993) provide an overview of Markov modeling to inform medical decisions. 

Markov models have been used to conceptualize Alzheimer‘s disease [Macdonald and 

Pritchard, 2000], depression [Le Lay et al, 2006], sepsis [Bauerle et al, 2000], human 

papillomavirus (HPV) infection and cervical carcinogenesis [Myers et al, 2000; Dasbach 

et al, 2006], HIV [Simpson et al, 2009], and Type 2 diabetes [The CDC Diabetes Cost-

effectiveness Group, 2002].  

A review of Markov models for coronary heart disease (CHD) interventions is 

discussed in detail in Cooper et al (2006). Decision tree analysis was typically used to 

model acute or short-term CHD interventions and Markov models represented chronic or 

long-term CHD interventions. While the majority of CHD studies evaluated the cost-

effectiveness of treatment strategies, models were also developed to predict the 

prevalence of heart disease on the future population.  
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The Markov approach describes the transition of a homogeneous cohort of 

patients through health states over time. That is, portions of the cohort of patients move 

through the model from one event to another based on the likelihood of moving between 

states. Markov modeling does not represent and evaluate individuals progressing through 

the model. Markov models require mutually exclusive branches or rigidly defined health 

states which must signify every aspect of the disease and transition at fixed cycles. Since 

the individual can only be in one state at a given time, multiple distinct states are required 

to represent all combinations of patient characteristics. The following examples are 

adapted from Caro (2005). At least four states must be defined to represent the 

combination of obese (yes/no) and diabetic (yes/no) using Markov models. In some 

instances it is required that a continuous characteristic (e.g. weight-gain) be modeled as 

discrete (yes or no versus how much weight gained). A large number of states would be 

required to attempt to capture the continuous nature of the weight-gain attribute. Consider 

a change in weight of ±40 pounds which would require almost 20 states to reflect 

changes in weight in five pound increments. This problem is exacerbated if new states are 

generated over time. For example, week one after treatment represents one state, week 

two after treatment represents another state, and so forth. Similarly, the state space 

increases if the course of a disease is influenced by the individual‘s history (e.g. history 

of an event such as a stroke). Markov models may not be suitable in tracking a patient‘s 

disease history properly as they are too limited to consider multiple patient-specific 

demographic and health characteristics in a single model. Restrictions arise with high 

state-space complexity because as the size of the state space increases, the problem 
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becomes harder to solve and can lead intractable solutions. Additionally, Markov chains 

are not compatible when a decision needs to be made at multiple points in time. 

Health care models involving medical treatment decisions have been formulated 

as Markov decision processes (MDPs) to help patients/clinicians design individualized 

treatment strategies which provide optimal clinical outcomes. Schaefer et al (2004) 

provides a good overview of MDP methodology and summarizes the MDP framework in 

terms of medical decision making. Schaefer et al (2004) also summarize several MDP 

applications to medical treatment decisions including the optimal control of an epidemic 

[Lefevre, 1981], a drug infusion plan for dispensing anesthesia [Hu et al., 1996], kidney 

transplantation [Ahn and Hornberger, 1996], mild hereditary spherocytosis treatment 

[Magni et al., 2000], ischemic heart disease (IHD) interventions [Hauskrecht and Fraser, 

2000], breast cancer screening and treatment options [Chhatwal et al, 2010], and liver 

transplantation [Alagoz et al, 2002]. Pneumonia-related sepsis (Kreke et al., 2008), 

ventricular septum defect [Peek, 1999], HIV therapy [Shechter et al., 2008], type 2 

diabetes treatment [Denton et al, 2009], and liver transplantation [Alagoz et al., 2004, 

2007a, 2007b; Sandikci et al., 2008] are also among the studies in this area. 

MDPs encompass similar limitations of standard Markov models but comprise 

additional challenges. Transition probabilities and rewards could vary based on each 

decision made therefore for every possible description of patient health and decision 

enough observations must exist to accurately estimate the transition probabilities. For 

example, the information contained in the state could be a state-action pair for which no 

clinical observations were taken. Therefore, MDPs are more data intensive than other 
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stochastic modeling techniques and the limitations regarding available data may make the 

state space larger and unfavorable. 

1.3.4  Discrete-event simulation 

In recent years, discrete-event simulation (DES) has emerged as the preferred 

method to characterize clinical processes [Caro 2005; Caro et al., 2010; Karnon and 

Brown, 1998]. Le Lay et al. (2006) reviewed Markov models of depression to identify 

methodological weaknesses. A DES of major depression was developed to illustrate the 

benefits of DES in representing disease progression. The performance of a published 

Markov model of HIV was compared to a new DES model of HIV in Simpson et al. 

(2009). The authors summarize the strengths and weaknesses of the Markov approach 

and DES approach in estimating the cost-effectiveness of two antiretroviral HIV 

treatments. Caro et al. (2010) discuss issues with the Markov cohort approach applied to 

treatment for heart disease. Furthermore, Ramwadhdoebe et al. (2009) explain when DES 

is the appropriate modeling technique and how to apply DES to health care modeling 

using pediatric ultrasound screening for hip dysplasia as an example. The authors discuss 

the DES model building process and explain the use of the model for informing health 

care policy makers. 

  DES modeling provides a comprehensive evaluation of patients progressing 

through the model, based upon individual-level demographic and health attributes (e.g. 

age, gender, body-mass index). Patients with differing attributes move from one event to 

another in sequential order while simultaneously taking into account important risk 

factors such as age, gender, disease history and a patient‘s attitude towards treatment, 
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together with any disease-related events (e.g. adverse/acute events such as a stroke or 

heart attack). Probabilities of transitioning between health states can be functions of the 

clinical and demographic measures and can therefore be dependent upon these 

background attributes. For example, gender and age could be assigned independently but 

the patient‘s body mass index (BMI) could depend on the gender and age attributes. 

Individual-based modeling allows different entities to experience different events, and the 

system behavior is a summary of each patient‘s unique clinical history, allowing for 

examination of health and economic outcomes at both the individual and population 

levels. Since DES modeling allows individual attributes to be included in the model, 

compound health states do not have to be defined thus improving the model precision [Le 

Lay et al., 2006; Cooper et al., 2006; Simpson et al., 2009].  

  Entities in a DES model can interact and compete with one another [Shechter et 

al., 2005]. Timing of interactions can be independent of fixed length Markov cycles or 

completely stochastic. Each interaction between individuals can generate a change in the 

state of the system. The path that each participant follows is not necessarily known a 

priori therefore it can be influenced by random local events or changes in the system 

caused by entities moving through the system. The chance for each of the different 

pathways can be assigned by stochastic distributions or fixed probabilities. Since DES 

draws random samples from distributions to variations around the mean, information 

regarding the effect of statistical uncertainty in model input(s) is provided. It is possible 

that a patient re-enters or follows the same pathway in the same run. DES is useful in 
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modeling recursive or random events and is a good approach if one has a very large state 

space to model.  

DES models allow for the creation of lifetime scenarios even though data only 

exists for shorter durations. DES has better long-term predictive validity compared to 

Markov models as DES has the capability to predict more detailed outcomes, thereby 

representing the course of a disease more naturally with few limitations. DES allows 

evaluation of multifaceted stochastic systems and for consideration of probable changes 

in those systems due to different sources of variation. The user can easily perform 

probabilistic sensitivity analysis to study variation in the mean simulation output(s) of a 

model as one or more input parameters are varied. Thus, practitioners can identify the 

most important factors in a large discrete-event simulation. Additionally, the probabilistic 

element of DES allows one to plot the relationships between significant model outputs to 

gain an understanding of how different model predictions correlate.  

DES has been applied to conceptualize HIV/AIDS progression. Bishai et al 

(2007) address allocation decisions for antiretroviral treatment (ART) in developing 

countries by comparing eight treatment strategies including pharmacologic treatment and 

laboratory monitoring. Costs and health outcomes for a cohort of 10,000 HIV-infected 

individuals were obtained. The model ran for 10 years (with the possibility of death) and 

was updated on a 6 month basis. Multiple data sources were used including the 

Multicenter AIDS Study (MACS) and the Women's Interagency HIV Study (WIHS), 

published literature, and parameters from clinical studies to characterize the progression 

of disease prior to ART initiation and after ART initiation. Quantification of the 
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incremental impact and cost-effectiveness of the interventions was presented. A DES 

model of HIV by Linas et al (2009) compared outcomes of two policies to determine 

AIDS Drug Assistance Programs (ADAPs) standards to minimize morbidity, mortality, 

and costs. The progression of HIV-infected patients on and off ART was conceptualized. 

Data from the Massachusetts ADAP in 2004 established a baseline cohort and five-year 

clinical outcomes and program utilization measures were compared. Rauner et al (2005) 

developed a DES describing mother-to-child transmission of HIV in sub-Saharan Africa. 

Two HIV/AIDS interventions were evaluated to identify potential benefits: (1) anti-

retroviral treatment (ART), and/or (2) bottle-feeding strategies. The POST methodology 

was implemented. This model is unique in that mothers and babies were linked (by 

pointers in the entity structure) to one another (i.e. a mother could trace her own mother 

in addition to her offspring). To provide an example of why this is useful, if a mother 

advanced to AIDS while breastfeeding her child, the likelihood of the child developing 

HIV could be altered. A warm-up period of 12 years was required to establish the 

baseline population and model outcomes were evaluated after an additional 12 years. A 

cost-effectiveness analysis was performed to compare scenarios. Results were sensitive to 

assumptions regarding HIV prevalence and baseline infant mortality rate, both dependent 

on local conditions and the efficacy of ART.  

DES models of coronary heart disease (CHD) have been developed for several 

purposes. Babad et al (2002) model prevention strategies for CHD where the baseline 

population consists of healthy individuals (i.e. individuals without CHD). Healthy 

individuals are simulated until they experience their first coronary event. 
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Demographic/clinical attributes included age, sex, systolic blood pressure, total 

cholesterol, and smoking. Adverse CHD events included the onset of stable angina, 

unstable angina, myocardial infarction (MI), and sudden cardiac death. Mortality from 

other cardiovascular disease, stroke, cancer, and all-cause reasons were modeled. Davies 

et al (1993) POST methodology was applied. Input measures were taken from three main 

sources: (1) The Health Survey for England (HSE), (2) The Framingham study, and (3) 

The British Regional Heart Study. This model is referred to in the literature and will be 

further identified as the Prevention model. Cooper et al (2002) model CHD progression, 

prevention, and intervention strategies for a baseline population of sick individuals (i.e. 

individuals with CHD). Individuals in this model experience who an acute coronary event 

(e.g. MI, unstable angina) are followed through treatment until reach stable 

symptomatic/asymptomatic states or death. Patient characteristics include age, sex, 

history of previous events, and the degree of coronary artery vessel disease. Risks in the 

model change following different treatment strategies. The POST modeling approach was 

used to construct the model. The model by Cooper et al (2002) is referred to in the 

literature and will be further identified as the Treatment model. Davies et al (2003) linked 

the models of Babad et al (2002) and Cooper et al (2002) to provide a complete structure 

of prevention and treatment within the population. The purpose of the model was to 

evaluate current and possible future treatment options for the population of England and 

Wales. Cooper et al (2008) extended the Treatment model [Cooper et al, 2002] to 

perform a cost-effectiveness analysis when drugs are given to patients with CHD to help 

prevent adverse coronary events (i.e. myocardial infarction, death).  
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Shechter et al (2005) modeled End-Stage Liver Disease (ESLD) using DES to 

evaluate the effects of possible changes in liver allocation policies in the US. Data from 

the United Network for Organ Sharing (UNOS) and quality-of-life estimates from the 

literature populated the model. Longitudinal data from patient data records of the 

University of Pittsburgh Medical Center was used to assign an individual‘s clinical 

attributes. DES was the chosen methodology to allow individual ESLD patients to 

compete for donor organs. Markov structures cannot generate queues or represent 

individual patients and patient interactions. Disease-specific Cox proportional hazards 

models provided estimates of post-transplant survival (survival estimates for the 

likelihood of death by the patient and organ rejection/loss). Outcomes obtained from the 

simulation were compared with actual UNOS measures to validate the model.  

Davies et al (2004) developed two models of diabetic retinopathy (one for Type 1 

diabetes and another for Type 2 diabetes) to evaluate the ideal setting, screening 

technique, and frequency of screening for early signs of diabetic retinopathy. The model 

was constructed using the POST modeling approach (Davies et al, 1993) and populated 

with data from the Wisconsin Epidemiologic Study of Diabetic Retinopathy to represent 

the untreated progression of disease. Alternative screening and treatment policies of the 

United Kingdom were assessed using cost data from the National Health Service (NHS) 

in 2001. Outcomes indicated differences between policies only regarding the cost-

effectiveness for screening.  

 



 15 

A DES of gastric cancer using the POST modeling approach was developed and 

used to evaluate the benefits of screening for Helicobacter pylori infection (Davies et al, 

2002). The target population consisted of individuals age 40 and older in the year 2000. 

Sources of input data to represent the general United Kingdom population were multiple 

including published databases and literature. Discounted and undiscounted output 

measures were obtained for costs, morbidity, deaths prevented, and years of life saved. 

Results favored a screening program for Helicobacter pylori infection. Roderick et al 

(2003) used DES modeling to perform a cost-effectiveness analysis in which population 

screening for Helicobacter pylori in preventing gastric cancer and peptic ulcer disease 

were compared with no screening. The population of England and Wales was represented 

and the POST modeling approach was applied. The authors concluded that Helicobacter 

pylori screening may be cost-effective over a time period greater than 25 years. 

Gestel et al (2010) applied DES to conceptualize the progression of ocular 

hypertension in glaucoma patients and evaluated treatment decisions and effects. Health 

state utility values and costs associated with disease status were modeled. Health and 

economic outcomes were validated and three treatment strategies were compared using 

cost-effectiveness analyses. 

1.4 Dissertation Organization  

 

The remaining chapters of this dissertation are organized as follows. Material for 

the first application is presented in Chapters 2 and 3. In Chapter 2 we focus on the 

development and verification of the obesity and diabetes simulation model. Chapter 3 

presents our approach for handling cross-sectional US population-level data structures 
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and modifies this simulation to accommodate this data. The material for topic two is 

presented in Chapters 4 and 5. The development and verification of the DES model to 

compare therapeutic options for smoking cessation is described in Chapter 4. In Chapter 

5 the base case results of the smoking cessation simulation are discussed and sensitivity 

analysis results are presented. Each chapter provides background information and 

associated literature relevant to the chapter, in addition to discussing conclusions and 

future research opportunities. The dissertation is concluded with Chapter 6 in which we 

summarize the contributions of our research. 
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CHAPTER TWO 

A DISCRETE-EVENT SIMULATION MODEL TO PREDICT LONG-TERM 

IMPACTS OF INTRAUTERINE EFFECTS ON DIABETES AND OBESITY 

PREVALENCE  

 

 

This chapter introduces a discrete-event simulation (DES) model to investigate 

the impact of the maternal diabetic and obese intrauterine environment influence on the 

diabetes and obesity prevalence in subsequent generations. First, we discuss the 

methodology and present a description of the model. We next present and discuss the 

verification of the model and provide an example of the type of results that can be 

obtained from our model. 

2.1 Model Introduction 

 

The goal of this research is to provide quantification of the impact of maternal 

disparities between different racial/ethnic groups at the population level on health 

disparities affecting the populace in the future, where the populace of interest is women 

of child-bearing age. To this end we develop a DES model to predict the affects of 

exposure to maternal obesity and diabetes during fetal life on the prevalence of diabetes 

in subsequent generations to examine trends over long periods of time. The central 

hypothesis is that a mother‘s health influences the health of her offspring which in effect 

characterizes the health of the population, thereby influencing the health of future 

generations. Understanding the impact of fetal exposure to maternal diabetes and obesity 

on future generations will allow estimates to be made regarding the degree to which these 

exposures could be influencing health disparities.  
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The prevalence of obesity and diabetes continues to increase by epidemic 

proportions. A study conducted by the Centers for Disease Control and Prevention (CDC) 

between 1991 and 2001 observed an increase in the incidence of diabetes in the American 

population by 61% and an increase in the incidence of obesity by 74% [CDC2]. An 

analysis performed by the CDC from 2006 to 2008 revealed that the prevalence of 

obesity in African Americans was 51% higher when compared with Caucasians and the 

prevalence of obesity in Hispanics was 21% higher [CDC3].  

As the incidence and prevalence of diabetes continues to escalate, women of 

reproductive age have an increased chance of becoming diabetic while pregnant. Diabetes 

is unique to women because the disease not only affects the mother‘s health but also 

impacts the health of the unborn child [Cowie et al., 2006]. Intrauterine exposure to 

maternal diabetes may contribute to the worldwide diabetes epidemic. Obesity during 

pregnancy predisposes a woman to develop diabetes. Offspring exposed to maternal 

diabetes during gestation may be at higher risk of obesity and diabetes than offspring not 

exposed to the intrauterine diabetic environment, which means this exposure may be 

driving the obesity and diabetes epidemics. Therefore, understanding the 

transgenerational epidemiology of diabetes due to intrauterine programming is important. 

2.2 Model Description and Assumptions 

This section describes the discrete-event simulation (DES) model to investigate 

the impact of intrauterine exposure to diabetes and obesity on the prevalence of diabetes 

and obesity in future generations. The underlying assumptions of the simulation are 

presented.  
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2.2.1 Structure of the simulation 

The simulation model was developed using Arena 13.5 (a product of Rockwell 

Automation Technologies, Inc.) DES software, which allows for fast execution and 

incorporates special purpose features to enhance the modeling of dynamic processes. 

Four modules are included in the simulation:  (1) creation of individuals, (2) disease 

progression, (3) population progression, and (4) statistics. Figure 2.1 provides a 

simplified depiction of how individuals flow through the model. The simulation starts 

with an underlying population and allows for the creation of new individuals each 

successive year. Demographic characteristics are initialized upon entry to the simulation. 

Once the individual has reached childbearing age, health measures [i.e. body mass index 

(BMI), diabetes status] are updated on an annual basis. Individuals meeting specified 

conditions are eligible to reproduce. The offspring appear in the simulation model upon 

reaching childbearing age to feed the birth rates and represent the change in population 

demographics over time. Once pre-determined standards have been realized, the 

individual is removed from the simulation. Output measures are calculated as the 

simulation progresses. Various run conditions and input parameters may be modified 

such as the number of replications, the run length, characteristics of individuals, and the 

number of times an individual can produce offspring. A detailed description of each 

module follows. 
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Figure 2.1: Top-level schematic of flow through the simulation. 

 

2.2.2 Creation of individuals  

The creation module initializes the underlying population and these individuals 

can take on attributes according to the characteristics of the population demographics. A 
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discrete number of individuals enter the simulation according to one arrival which 

represents a single cohort sampled from a chosen population. Upon entry into the 

simulation model, demographic characteristics (i.e. age) and pregnancy attributes (i.e. 

pregnancy status, number of pregnancies) are initialized. The age structure of the 

underlying population was constructed using 1980 US Census data. Since we only 

evaluate women of childbearing age, the age range of individuals in the simulation was 

restricted. All individuals entering the simulation at baseline are females who are not 

pregnant and who are considered to have no previous pregnancies. Baseline BMI is 

determined in the disease progression module. 

 Each individual is also assigned a subset of attributes taking on the characteristics 

of the mother. These attributes include clinical information routinely collected at delivery 

including maternal age, BMI, diabetic status, and obesity status. The maternal attributes 

for the underlying cohort represent the characteristics of a healthy individual. A healthy 

individual is characterized as neither diabetic nor obese. In other words, individuals in the 

starting population are assumed to not have been exposed to diabetes or obesity in utero. 

 Transition probabilities are dependent upon these background attributes. For 

example, age is assigned independently but the patient‘s BMI (used to determine obesity 

status) depends on age and ethnicity. Probabilities of developing diabetes are dependent 

on the mother‘s diabetic status, and the individual‘s obesity status and age. 

2.2.3 Disease progression  

  Each year in the system, individuals travel through the disease progression 

module which consists of two sub-modules: diabetes disease and body mass index (BMI). 
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The diabetes disease sub-module updates a patient‘s diabetic status (diabetic/not 

diabetic). The diabetes disease sub-module can consider different types of diabetes (type 

I and type II diabetes mellitus) according to the available dataset. Once a patient becomes 

diabetic, we assume that the patient remains diabetic until leaving the system. Gestational 

diabetes mellitus (GDM) is taken into consideration in the population progression module 

as a diagnosis of GDM occurs during pregnancy and does not mean that an individual 

had diabetes before conception, or that the individual will have diabetes after giving 

birth.  

  The BMI sub-module assigns starting BMI values in addition to assigning cyclic 

changes in BMI. BMI values are updated annually by age group according to a specified 

distribution. The model can consider BMI with respect to specific population estimates 

for the patient‘s race/ethnic background and gender. A patient‘s BMI can either increase 

or decrease each year in the system. BMI values and annual changes in BMI may be 

restricted based on what is clinically feasible. BMI levels determine obesity status where 

a BMI of 30 kg/m
2
 or greater classifies an individual as obese. 

  Fetal exposure to maternal diabetes was considered present if the mother was 

diagnosed as diabetic before delivery and absent if the mother was not diagnosed as 

diabetic. Transitions from healthy to diabetic are dependent on maternal attributes for 

exposed/not exposed to diabetes in utero, as well as the individual‘s obesity status and 

age. Offspring are not at risk to become sick (diabetic or obese) until they reach 

childbearing age. Upon reaching childbearing age, the offspring are assigned a starting 

BMI value based on the same data used to initialize BMI for the underlying cohort.  
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2.2.4 Population progression  

  The population progression module allows individuals to reproduce. Pregnancies 

were determined based upon probabilities drawn from NCHS natality files [CDC5]. The 

number of pregnancies per individual was restricted to a maximum of eight pregnancies. 

Two conditions define the eligibility to become pregnant. An individual must be of 

childbearing age and the maximum number of allowable pregnancies must not be 

attained. An individual who is not of childbearing age or who has exceeded her 

maximum number of pregnancies continues to cycle through the simulation with a chance 

of getting sick, but with no possibility of getting pregnant. Pregnancy status is adjusted 

with respect to demographic and clinical attributes. The likelihood of getting pregnant is 

evaluated with respect to age; however, pregnancy status can be determined according to 

the individual‘s race/ethnic group. Pregnant women acquire GDM based on age specific 

probabilities and are only considered diabetic for the duration of the pregnancy.  

Table 2.1: Birth rates (births per 1,000 women in specified group), by age. 

Age cohort Birth rate 

18 - 19 73.2 

20 - 24 111.1 

25 - 29 113.8 

30 - 34 61.2 

35 - 39 18.8 

40 - 44 3.5 

 

  We assume that a pregnancy results in one live birth and the offspring is created 

(enters the simulation) the next iteration or simulated year through the system. The health 

of an infant is dependent on the mother‘s health. The offspring‘s clinical and 

demographic attributes are initialized and the offspring takes on the mother‘s 

race/ethnicity. A subset of attributes reflecting the mother‘s attributes is assigned when 
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the offspring enters the simulation. That is, the offspring carries intrauterine environment 

information into the future. Once the offspring is created the mother progresses through 

the model as usual and could become pregnant again in the future. We assume that forty-

eight percent of offspring are female (based on US Census figures), and the male progeny 

are disposed from the system. Female offspring progress through the model and can 

procreate. 

  An accounting sub-module is embedded within the population progression 

module to update the age attribute. Since we are only interested in the prevalence of 

obesity and diabetes in women of childbearing age, the simulation updates the age of 

individuals within the childbearing age limits. When an individual reaches the upper limit 

of childbearing age, the individual is removed from the simulation. Upon leaving the 

simulation, attributes of the individual are output to a file and the individual‘s maternal 

family history can be viewed. 

2.2.5 Statistics  

 

The statistics module updates model outcomes. At any point in time, a cross 

sectional analysis can be made of individuals currently in the cohort to provide a 

prevalence-based measure of the effect of exposure to a disease. The model can 

accumulate population statistics including prevalence rates for obesity, type I and/or type 

II diabetes mellitus, and GDM. These prevalence rates can be viewed annually and 

cumulatively according to different patient attributes (e.g. age group). Additionally, the 

distribution for BMI of individuals in the system can be observed. 
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2.3 Model Verification 

Several measures were taken to verify the model. To ensure conceptual 

verification of the model during the developmental stages, we collaborated with the 

Division of Biostatistics and Epidemiology in the Department of Medicine at the Medical 

University of South Carolina (MUSC). The model was verified by comparing simulated 

measures with data from the 1980 United States Census, the National Center for Health 

Statistics (NCHS), and results from the San Antonio Heart Study (SAHS) [Mitchell et al., 

1991, Stern et al., 1984]. Because we desire an initial population that is representative of 

the population before the inception of the diabetes and obesity epidemic, numbers were 

obtained from the results of the San Antonio Heart Study (SAHS) to provide starting 

inputs for BMI values and type I diabetes mellitus status. Estimates of the prevalence of 

maternal diabetes during pregnancy were abstracted from population-based literature 

[Hunt and Schuller, 2007]. Estimates for the initial cohort represented women ages 18 to 

44 years. 

The SAHS was an 8-year longitudinal study of diabetes and cardiovascular 

disease. The SAHS cohort consists of 5158 men and non-pregnant women between the 

ages of 25 and 64 years. Households from three types of San Antonio neighborhoods 

were randomly sampled including low-income, inner city which is made up of 

approximately 100 percent Mexican Americans, middle-income, and high-income 

districts [Mitchell et al., 1991, Stern et al., 1984]. Data from the SAHS baseline and 

follow-up for females ages 25 to 44 was used as inputs to the model. Since we did not 

have data available for females between the ages of 18 to 24 years, this information was 
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deduced using data from participants ages 25 to 29 years. The sample size of females 

between the ages of 18 and 44 years was assumed to be 358. Data from the SAHS 

provided inputs for two important components of the simulation, the diabetes disease 

sub-module and the obesity disease sub-module.  

SAHS data provided the diabetes incidence rates for the diabetes disease sub-

module. Prevalence of diabetes in the SAHS cohort at baseline over all ages was 1.98 

percent. At baseline, obese individuals are assumed to be 6.6 times more likely to 

develop diabetes than individuals who were not obese. We derive that at baseline 7.38 

percent of obese individuals develop diabetes and 1.09 percent of non-obese individuals 

develop diabetes. Annual probabilities of developing diabetes consider obese individuals 

to be 10.7 times more likely to develop diabetes than individuals who are not obese. 

Using incidence of diabetes over the 7.5 year SAHS period, we derive the annual 

likelihood of diabetes based on obesity status using the cumulative geometric distribution 

(refer to Appendix A for computations).  

Table 2.2: Probability of diabetes mellitus, by age and obesity status. 

Age cohort Not obese Obese 

< 30 0.0009 0.0094 

30 – 34 0.0018 0.0211 

35 – 39 0.0028 0.0329 

40 – 44 0.0026 0.0314 

*BMI of 30 kg/ m
2
 or more is considered obese 

 

SAHS statistics also provided data for the obesity sub-module. Because of the 

small sample size, all distributions for BMI were treated as a truncated normal 

distribution. A lower and upper bound of (µ-1.5σ) and (µ+5σ) respectively was 

established for baseline BMI. Lower and upper bounds for the change in BMI were -σ 

and +2σ, respectively. Numbers from the SAHS demonstrate that 13.7% of women ages 



 27 

25 to 44 are obese at baseline. These numbers were used to initialize starting BMI values 

for the underlying population in the simulation. Yearly change in BMI was based on 

statistics for the change of BMI in the SAHS at baseline and at follow-up 7.5 years later.  

Table 2.3: Input parameters for baseline BMI (kg/m
2
) in the simulation. 

Age cohort Mean St Dev 

< 30 23.4683 5.0056 

30 – 34 23.6806 4.4092 

35 – 39 25.1876 6.6825 

40 – 44 25.2332 5.7084 

 

Table 2.4: Change in BMI (kg/ m
2
) over 7.5 years. 

Age cohort Mean St Dev 

< 30 2.5956 2.8653 

30 – 34 2.4881 3.3886 

35 – 39 2.4119 2.6218 

40 – 44 1.5767 2.1411 

 
Table 2.5: Probability of developing GDM, by age. 

Age cohort 
Annual probability 

of  GDM 

< 30 0.01 

30 – 34 0.03 

35 – 39 0.05 

40 – 44 0.08 

 

2.4 Results 

 In this section we substantiate model performance computationally. We show by 

comparison of system measures and predicted measures that results obtained from the 

model closely represent those obtained from the system. Subsequently, we test different 

assumptions regarding the effects of the obese intrauterine environment on the prevalence 

of diabetes in the population over the long-term. 

2.4.1 Verification results 

 A cohort of 10,000 individuals was simulated over an eight year horizon. The 

childbearing age range was 18 years to 44 years and the age structure was taken from the 

1980 US Census. We measured average BMI, prevalence of obesity, and prevalence of 
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diabetes to verify accurate representation of disease progression. These output variables 

appeared to produce sufficiently small 95% confidence interval (CI) half-widths (HW) 

after 15 replications. The model was implemented using Rockwell‘s Arena Software 

version 13.5.   

First, average BMI and obesity prevalence from the simulation were compared to 

SAHS data. Average BMI measured in the simulation at baseline and follow-up was 24.8 

kg/m
2 

and 26.9 kg/m
2
 (95% CI HW of 0.03 and 0.03, respectively) and data from the 

SAHS gave a mean BMI of 24.5 kg/m
2
 and 26.7 kg/m

2
 at baseline and follow-up, 

respectively. Our model predicts obesity prevalence of 13.8% (95% CI HW of 0.23) at 

baseline compared to 13.7% obese at baseline in the SAHS. Prevalence of obesity in the 

simulation at follow-up measured 24.7% (95% CI HW of 0.27) and 24.3% of the SAHS 

population was obese at follow-up. Next we verified prevalence of diabetes in the 

simulation. Projected diabetes prevalence at baseline was 1.95% (95% CI HW of 0.06) 

compared to 1.98% in the SAHS at baseline. The simulation measured diabetes 

prevalence at 5.86% (95% CI HW of 0.13) and 5.79% of the SAHS population was 

diabetic at follow-up. 

Table 2.6: Verification of performance measures. 

Performance Measure 

Measure 

Baseline  Follow-up 

Simulation SAHS  Simulation SAHS 

Average BMI (kg/m
2
) 24.8 (0.03) 24.5   26.9 (0.03) 26.7  

Obesity prevalence (%) 13.8 (0.22) 13.7   24.2 (0.24) 24.3  

Diabetes prevalence (%) 1.98 (0.08) 1.98   5.86 (0.13) 5.79 

Note: Values in parentheses are 95% CI half-widths 

 

Since the CI half-widths of the simulated performance measures capture the 

SAHS numbers, we are 95% confident that the simulation projections and SAHS 

measures are statistically the same. Projected measures closely correspond to data from 
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the SAHS therefore we believe that our model accurately predicts the outcome of one 

cohort. The performance of the model is assumed to be both a verified implementation of 

the system in addition to a valid representation of the system. We believe that our model 

can realistically forecast other measurements of interest. 

2.4.2 Prevalence of diabetes in future generations 

 Using SAHS data as simulation inputs we tested different assumptions regarding 

the effects of the intrauterine environment on the prevalence of diabetes over the long-

term. A cohort of 10,000 individuals progressed through the simulation for 100 years. 

Output variables were assessed in 5-year intervals. The rate of change in BMI in the 

SAHS population was assumed to remain the same over time. 

First, projections of diabetes prevalence were reported without maternal affects 

(base case). That is, we assume that future generations carry the same risk of disease as 

the underlying population. Next, we projected prevalence of diabetes accounting for 

maternal affects. Maternal affects is characterized as an increased risk of disease because 

of exposure to maternal disease in-utero. We assume an increased risk of diabetes to the 

child if exposed in-utero to maternal obesity to demonstrate the type of estimates that can 

be obtained from our model. Projections can also be made assuming an increased risk of 

diabetes due to intrauterine exposure to maternal diabetes or both maternal obesity and 

diabetes. We focus on the influence of exposure to maternal obesity during fetal life 

because obesity is considered a dominant trait driving America‘s diabetes epidemic 

[CDC4]. 
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We considered different levels for risk of diabetes in individuals exposed to 

maternal disease. Risk factors for diabetes if exposed to maternal obesity during fetal life 

were 1.5-, 2.0-, 2.5-, and 3.0-fold. For example, a relative risk of 1.5 means that an 

individual who was exposed to an obese intrauterine environment has a 50 percent higher 

risk of diabetes than someone not exposed. 

 Regarding base case projections, after 13 years in the simulation individuals less 

than 30 years of age who entered the simulation have matured, and after 18 simulated 

years individuals who entered the simulation at age 34 or younger have aged. After 23 

simulated years all individuals from the underlying population have aged such that 

remaining individuals from the initial cohort are between ages 40 and 44 years. Offspring 

of the underlying population have entered the model and are less than 30 years of age. 

After 30 simulated years none of the base population remains in the simulation, and the 

offspring from this base population are still less than age 30. After 35 simulated years the 

offspring have matured but do not exceed 34 years of age. After 40 simulated years the 

offspring and their offspring have matured but do not exceed 39 years of age. After 45 

simulated years the offspring of the initial population and their offspring exist across all 

age groups and a steady flow of patients continues through the model. 

Prevalence of obesity in the base model without maternal affects does not 

incorporate any additional risk to the offspring if the mother was diabetic while pregnant. 

As the underlying population ages, we can see a steady increase in the prevalence of 

diabetes. Diabetes prevalence steadily increases during the 18 year time period before 

any offspring enter the model. The prevalence of diabetes begins to decline at year 18 and 
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drops to 3.49 percent after 30 years as the young offspring enter the simulation. As the 

children begin to age the prevalence of diabetes climbs to a peak of 11.3 percent after 45 

years. The prevalence of diabetes declines to 8.4 percent after 55 years and then slightly 

increases again to 9.3 percent after 65 years. Diabetes prevalence begins to stabilize after 

65 years reaching a minimum of 8.45 percent and a maximum of 9.56 percent between 

years 65 and 100. We observe an increase in the prevalence of diabetes over time even 

without consideration of maternal affects. 

Figure 2.2 illustrates sensitivity and the expected increase in diabetes prevalence 

for individuals age 18 to 44 years. Considering an increased risk of 1.5 for offspring 

exposed to maternal obesity in-utero, the prevalence of diabetes begins to stabilize after 

65 years at 10.06%. Considering a risk factor of 2 for intrauterine exposure to obesity, the 

prevalence of diabetes begins to stabilize after 65 years at 10.51%. Considering an 

increased risk of 2.5 for offspring exposed to maternal obesity in-utero, the prevalence of 

diabetes begins to stabilize after 65 years at 10.85%. Considering a risk factor of 3 for 

intrauterine exposure to obesity, the diabetes prevalence begins to stabilize after 65 years 

at 12.19%. We observe that intrauterine exposure to maternal obesity leads to an 

intergenerational
 
acceleration in the prevalence of diabetes in the pediatric population. 
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Figure 2.2: Diabetes prevalence (age 18 to 44 years) for increased risk of diabetes due to intrauterine 

exposure to maternal obesity. 

 

In Figures 2.3, 2.4, 2.5, and 2.6 we show trends in the prevalence of diabetes by 

age cohort over time. Observing results across different age groups and across the risk 

factors tested, we notice a more considerable change from each age group at baseline in 

the prevalence of diabetes with respect to the risk factors tested. Among individuals less 

than 30 years of age, predictions were not substantially different from the baseline output. 

The prevalence of diabetes for individuals ages 30 and 34 actually experienced a decrease 

from the prevalence of diabetes at baseline. The prevalence for diabetes of individuals 

age 35 to 39 slightly increased when compared to the base model. We observe the largest 

increase in diabetes prevalence of individuals age 40 to 44. Observing prevalence of 

diabetes by age cohort, we notice a positive correlation between age and diabetes 

prevalence. 
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Figure 2.3: Diabetes prevalence (age 18 to 29 years) for increased risk of diabetes due to intrauterine 

exposure to maternal obesity. 
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Figure 2.4: Diabetes prevalence (age 30 to 34 years) for increased risk of diabetes due to intrauterine 

exposure to maternal obesity. 
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Figure 2.5: Diabetes prevalence (age 35 to 39 years) for increased risk of diabetes due to intrauterine 

exposure to maternal obesity.  
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Figure 2.6: Diabetes prevalence (age 40 to 44 years) for increased risk of diabetes due to intrauterine 

exposure to maternal obesity. 
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2.5 Conclusions 

In conclusion, we developed a simulation model to predict the impact of exposure 

to maternal obesity and diabetes during fetal life on the prevalence of obesity and 

diabetes in subsequent generations and to examine trends over long periods of time. We 

made projections of diabetes prevalence assuming an increased risk of diabetes in 

offspring exposed to maternal obesity in-utero to provide an example of the type of 

projections that can be obtained from our model. Projections could also be made 

assuming an increased risk of diabetes due to intrauterine exposure to maternal diabetes 

or both maternal obesity and diabetes. Studies have assessed the additive effect of fetal 

exposure to both obesity and diabetes but the degree to which adverse effects have on the 

developing fetus has not been quantified [Hunt and Schuller, 2007].  

These three alternatives for taking into account in-utero exposures (increased risk 

of diabetes due to intrauterine exposure to obesity, diabetes, and both obesity and 

diabetes) are considered mutually exclusive cases. Since we are analyzing sensitivity with 

respect to the same risk factors and obesity prevalence is higher than diabetes prevalence 

at baseline, we would expect to notice the largest increase in the prevalence of diabetes 

with consideration to intrauterine exposure to maternal obesity. The underlying 

prevalence of diabetes is smaller at 1.98% diabetic. We would expect to notice less of an 

impact due to the influence of fetal exposure to maternal diabetes than exposure to 

obesity during gestation. Since we are assessing the same risk factors for each case and 

the percentage of the population that is both diabetic and obese is the smallest, we would 

expect to observe a nominal impact over the long-term as a result of exposure to both 
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diabetes and obesity in-utero. We speculate that the risk factors associated with maternal 

exposure to disease in reality are not the same across the three scenarios. 

Verification efforts showed that our model accurately predicts the outcome of one 

cohort. However, extrapolation from the SAHS data is not ideal for three reasons. First, 

the sample size is small, consisting of a maximum and minimum of 575 and 250 samples 

respectively across age categories; second, the SAHS population is not representative of 

the national population and does not include African Americans; and third, obesity and 

diabetes incidence rates in San Antonio were already relatively high in the early eighties 

when the SAHS was initiated. Thus we would like to use baseline data which is large, 

accurate, and captures the population before the prevalence of obesity and diabetes 

increased. 

In this chapter we only look at a specific cohort, however this simulation model 

can easily be modified to accommodate different data structures and assumptions. Future 

simulations representative of the US population will model subsequent generations 

among different racial and ethnic groups and will incorporate information on intrauterine 

exposure to obesity and diabetes in determining an individual‘s adult obesity and diabetes 

status. Chapter 3 aims to extend this simulation to quantify the impact of maternal 

disparities between different racial and ethnic groups at the US population-level on health 

disparities affecting the populace in the future. 
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CHAPTER THREE 

TRENDS IN WEIGHT-GAIN AMONG WHITE AND BLACK WOMEN OF 

CHILDBEARING AGE IN THE UNITED STATES 

 

 

3.1 Introduction 

The prevalence of overweight and obesity among US adults have increased by 

epidemic proportions since 1980. Over the past 30 years the percentage of the US adult 

population that is obese has doubled with approximately 34 percent of adults age 20 years 

and over being obese (BMI ≥30 kg/m
2
) and an additional 34 percent of adults age 20 

years and over being overweight (30 kg/m
2
>BMI ≥25 kg/m

2
) in 2007-2008 [CDC7]. In 

contrast, the prevalence of obesity was relatively stable between 1960 and 1980; 

however, there is a noted shift in the early 1980s as can be observed by a striking increase 

in the prevalence of obesity between the second and third NHANES (i.e., from 1976-

1980 to 1988-1994) [CDC9, Flegal et al., 1998]. Additional increases in the prevalence of 

obesity occurred in the 1990s [CDC9, Flegal et al., 2002]. The prevalence of obesity 

varies by racial and ethnic group with minority populations having a higher prevalence of 

obesity as well as more severe obesity [Flegal et al., 2010, Ogden et al., 2006].   

 The causes of the obesity epidemic are not completely understood.  Early life 

exposures are emerging as potentially important risk factors for adult diseases including 

obesity and diabetes. The ―fetal origin of disease‖ hypothesis proposes that gestational 

programming may critically influence adult health and disease [Barker, 1995]. As the 

prevalence of obesity increases, its impact on childbearing women and their infants also 

increases; therefore, the obese in-utero environment may be a cause as well as a result of 
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the obesity epidemic. Moreover, trans-generational effects, because of their long term 

implications, may also play a role in the perpetuation of the epidemic. Trans-generational 

effects include genetic information, shared environment and behaviors passed from one 

generation to the next as well as in-utero exposures which may impact gestational 

programming. Moreover, if intrauterine exposure to maternal obesity contributes to 

initiation or perpetuation of the obesity epidemic, then the prevalence of obesity will not 

only increase across all populations, but will disproportionately affect racial/ethnic 

groups with a higher initial prevalence of obesity. Hence, understanding the trans-

generational impact of obesity may be one key to understanding health disparities. 

Because it would take decades to conduct trans-generational studies at the 

population level, we instead use a mixed-methods approach, incorporating both statistical 

methods and discrete-event simulation (DES), to determine the trans-generational impact 

of maternal obesity across multiple racial and ethnic groups at the population level. 

Specifically, we examine trends in weight-gain over time among black and white (non-

Hispanic) women of child-bearing age in the US between 1980 and 2008. This approach 

will enable us to model the trans-generational impact of maternal obesity during 

pregnancy. While substantial increases in the prevalence of overweight and obesity 

among women of reproductive age in the US have occurred over the past several decades, 

the mechanisms underlying the obesity epidemic and its contributing factors are not fully 

understood. In this chapter, we establish an underlying population representative of the 

population prior to the onset of the obesity epidemic and develop a simulation model to 

make projections assuming that subsequent generations carry the same risk as the initial 
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cohort. We compare the simulation projections to actual trends to estimate the increased 

risk in weight-gain over time. Our model uses data obtained from the US Census and the 

National Health and Nutrition Examination Survey (NHANES). We use body mass index 

(BMI in kg/m
2
) as a measure of weight adjusted for height.  

While the prevalence of overweight and obesity over the past two decades has 

been well documented among US adults [Flegal et al., 1998, Flegal et al., 2002, Flegal et 

al., 2010, Ogden et al., 2006], few studies specifically focus on women of childbearing 

age or on disparities between racial/ethnic groups. In one study, Chu et al. (2009) 

estimate the prevalence of prepregnancy obesity in 2004-2005 by analyzing Pregnancy 

Risk Assessment and Monotoring System (PRAMS) data. The work we present here goes 

beyond estimates of past and current trends; with a simulation model we forecast trends 

in weight gain. Several methods exist for conducting projections. Projections can be 

made using statistical models applied to population estimates. For example, Kelly et al. 

(2008) use prevalence data from 2005 and apply it to population projections to estimate 

overweight and obesity prevalence in adults worldwide in 2030.  They make two 

estimates, one assumes that the prevalence of overweight and obesity remained constant; 

the other assumes an increased trend. Our methodology differs from this in that in 

addition to estimating actual trends in weight gain from past data and population 

estimates, we examine ―unadjusted‖ weight-gain in the population over time assuming 

the rate of change in BMI with age of the US population had remained the same as in 

1980.  We do this by using a simulation model. Other methods used to make projections 

include Markov models, such as that used by Honeycutt et al. (2003) to forecast the 
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prevalence of diabetes in the US from 2000 to 2050. We choose to use simulation over a 

Markov model to model BMI trends for several reasons. First, if we wish to capture BMI 

directly (not just prevalence of obesity and overweight), which is dependent on age; the 

state space of such a model would be prohibitively large [BMI is a continuous variable 

while diabetes was modeled as binary variable in Honeycutt et al. (2003)]. It is important 

to be able to capture both BMI and risk by age because risk attributed to diseases of 

interest (e.g. diabetes) vary by BMI and the rate of change of BMI is different between 

age groups. Secondly, the simulation model allows the rate of change in BMI to vary 

over time, and can easily incorporate additional independent variables. This will be 

important in later work, where we attempt to explain the difference in the estimated 

values between actual trends and predicted trends by assigning risk to the children of 

women depending on the BMI level they experienced during pregnancy.    

In this chapter we (1) develop a statistical model to assess the change in BMI as a 

function of age using data obtained through a cross-sectional study design and (2) 

develop and present validation methods for a DES model that examines trends in average 

BMI over generations at the population level. The structure of the chapter is organized as 

follows. In §3.2, we describe the statistical model and present the results of the data 

analysis. In §3.3 we model trends in population weight-gain over time based on the 

statistical analysis. We use a simulation model in §3.4 to model weight-gain trends and 

provide the validation of the simulation model. The chapter is concluded with a 

discussion in §3.5 where future research directions are also presented. 

 



 41 

3.2 A Model of the Population Prior to the Onset of the Obesity Epidemic  

In this section we describe a method to enable the utilization of cross-sectional 

data to make estimates of change in attributes of individuals over time. We apply our 

method to US population-level National Health and Nutrition Examination Survey 

(NHANES) BMI data. Our method allows us to characterize weight-gain in white and 

black women of childbearing age in the US population prior to 1980 (i.e. before the onset 

of the obesity epidemic). The rate of change in weight-gain prior to 1980 was less than 

the rate of change in weight-gain between 1980 and 2008. Using the rate of change in 

weight-gain before 1980 we model BMI in this population to estimate what the 

population would have looked like if the rate of change in weight-gain had not increased. 

This model will allow us to quantify the increase in weight-gain by comparing the 

simulated population to the actual population over time. 

3.2.1 NHANES data 

The NHANES program, part of the National Center for Health Statistics (NCHS), 

Centers for Disease Control and Prevention involves a sequence of cross-sectional health 

examination surveys beginning in 1960 which concentrate on different population groups 

and health issues.  Each NHANES survey provides a nationally representative sample of 

the US non-institutionalized civilian population obtained using a complex, stratified, 

multistage probability cluster sampling design [CDC8]. Study periods include three 

NHANES surveys (NHANES I, 1971-1974; NHANES II, 1976-1980; and NHANES III, 

1988-1994) and continuous NHANES which began in 1999.  Beginning in 1999 
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NHANES became a continuous surveillance system releasing data in two-year periods 

(1999-2000, 2001-2002, 2003-2004, 2005-2006, and 2007-2008). 

3.2.2 Method for utilization of cross-sectional data  

 We apply mixed-effects regression analysis and bootstrap techniques to make 

inferences about change in trends in BMI over time using cross-sectional data. Here we 

discuss the general steps required to enable the utilization of cross-sectional data to 

estimate change in some dependent variable of interest (in our case BMI) over time. Data 

is divided into cohorts (in our case defined by birth year) based on two key criterion: (1) 

number of available data points of the dependent variable for each possible value of the 

independent variable(s) within the cohort, and (2) fit of the regression model. Every 

cohort should contain enough data points to constitute a representative sample. 

Regression analysis is then performed separately for each cohort. Plots of the best fit 

regression line are created for each cohort and the graphs are superimposed. The form of 

the overlaid plot should approximate a straight line. If the slopes of the superimposed 

lines do not approximate a straight line, cohorts are re-grouped and the process repeats 

(regression analysis and evaluation of superimposed graphs).  

 Linear mixed-effects regression analysis is performed separately for each cohort 

to estimate the rate of change in the value of the dependent variable (e.g.. BMI) that 

results from changes in the independent variable(s) (e.g. age). A bootstrap resampling 

approach is applied to the data for each cohort separately. The size of the bootstrap 

sample is determined based on the total number of data points available for each cohort 

and the bootstrap sample size is the same across all cohorts. Bootstrapped data points are 
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collected over 100 iterations. Bootstrapping provides a sample representative of the 

original sample of uniform sample size across all cohorts. Linear mixed-effects 

regression models are fit to the bootstrapped sample drawn in each of the 100 replications 

thereby providing 100 regression equations. A random effect term accounts for error in 

the bootstrap samples which are not consistent across samples. Obtaining multiple 

equations allowed us to build a probability distribution around the expected value of the 

dependent variable (i.e. BMI) at the intercept, as well as around the rate of change of the 

dependent variable according to the independent variable (i.e. age). 

3.2.3 Statistical analysis of BMI data 

 

In this section, we apply our method to enable the utilization of cross-sectional 

NHANES data to estimate the rate of change in BMI of individuals over time. The 

NHANES I and II studies provide large data sets that capture the population before the 

prevalence of obesity increased [CDC9].  To obtain the BMI data, NHANES collected 

weight and height measurements that were taken through physical examination by trained 

health technicians and were conducted in a mobile examination center using standardized 

measuring techniques and equipment. Body mass index (BMI) was expressed as weight 

in kilograms divided by height in meters squared (kg/m
2
) [CDC8]. 

We use linear mixed-effects regression models to estimate age and birth year 

cohort effects on BMI values of women ages 15 to 44 years in the US measured during 

NHANES I and NHANES II. We assess the relationship between BMI and age to gain 

insights into the change in BMI over time when the data is obtained through a cross-

sectional study design. To avoid cohort effects, data from NHANES I and II surveys were 
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concatenated into one data set. The combined NHANES I and II data set was divided into 

groups of white women and black women based on birth year. Birth year cohorts were 

selected based on the number of available data points from the NHANES I and II surveys 

and based on the fit of various regression models evaluated. In our analysis, at least 30 

BMI data points for each age represented in a birth year cohort were required to provide a 

representative sample. Data for white women was divided into five birth year cohorts: 

1955 to 1959, 1950 to 1954, 1940 to 1949, 1935 to 1939, and 1930 to 1934. Data for 

black women was divided into two birth year cohorts: 1945 to 1959 and 1925 to 1944.  

Regression analysis was performed separately for each birth year cohort to 

estimate the rate of change of BMI values stratified by age using SAS version 9.2 

(sample SAS code for white women born between 1955 and 1959 is provided in 

Appendix C). Sampling weights were included in the regressions to control for unequal 

probabilities of selection in the sample design, lack of responsiveness, and areas under 

covered so that the numbers represented the US population. Analyses were conducted 

using the bootstrap approach to collect repeated random samples from the combined 

NHANES I and II dataset where the sampling was done with replacement. A sample of 

500 BMI data points was collected from the combined NHANES I and II dataset over 

100 iterations. The size of the bootstrap sample was determined based on the number of 

NHANES I and II data points available for each birth year cohort, see parameters in 

Figures 3.1 and 3.2.  Regression analysis was used to fit a model to the bootstrapped BMI 

data points sampled in each of the 100 replications thereby providing 100 regression 

equations. Obtaining multiple equations allowed us to build a probability distribution 
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around the expected mean value of BMI at the intercept, as well as around the rate of 

change of BMI values according to age.  The resulting distributions are shown in Tables 

B.1 and B.2 in the appendix.  

3.2.4 Statistical analysis results 

The table inserts shown in Figures 3.1 and 3.2 provide the age span for each birth 

year cohort, the number of available NHANES I and II data points, the size of the 

bootstrap sample, and the regression equations for white and black women, respectively. 

We note that the age span for different birth year cohorts overlaps in several cases. The 

plots shown in Figures 3.1 and 3.2 display the regression results of BMI versus age 

according to birth year cohort for white and black women, respectively.  The regression 

results for all birth year cohorts are overlaid onto one graph. For white women (Figure 

3.1) we see that the estimated BMI for a particular age does not vary significantly by 

birth year cohort.  The exception occurs over the age span 32 to 37 years. For black 

women on the other hand (Figure 3.2), we see that there is a significant difference in the 

Beta values associated with the two birth year cohorts. How these differences are handled 

is discussed in Section 3.4.4. 

These results provide us with a characterization of weight-gain in the population 

prior to the onset of the obesity epidemic. The next section describes how the regression 

estimates are used to make projections about BMI trends of this population after 1980, if 

their risk for weight-gain had not changed over time.  
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1955-1959 15-23 957 21.54 0.1652 

1950-1954 17-28 1259 22.02 0.1456 

1940-1949 22-37 2825 22.67 0.1518 

1935-1939 32-42 1107 24.12 0.1044 

1930-1934 37-47 1089 24.62 0.1198 

 

 

Figure 3.1: Plot of BMI (kg/m
2
) vs. Age by birth year cohort for white women, regression parameters and 

results shown in table insert. 
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Figure 3.2: Plot of BMI (kg/m

2
) vs. Age by birth year cohort for black women, regression parameters and 

results shown in table insert. 

 

3.3 Unadjusted Population Weight-Gain Projections 

 

In this section we recreate the population using the BMI estimates (stratified by 

age and race/ethnicity) obtained from the regression analysis in which risk of weight-gain 

is the risk in 1980. These ―unadjusted‖ BMI projections reflect trends in this population if 

the rate of change in average BMI between 1980 and 2008 remained the same as it was in 

the 1980s (i.e. if the rate of change in BMI had not increased after 1980). We compare 

differences in BMI from 1980 to 2008 among white and black women of childbearing 

age in the US between NHANES BMI estimates (representing the actual population) and 

our unadjusted weight-gain projections. We expect the NHANES BMI trends for 1980 to 

be statistically the same as the unadjusted projections. We expect NHANES BMI trends 
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after 1980 to be higher than the unadjusted projections. The NHANES estimates 

(representative of the actual population in a given year) are higher because substantial 

increases in the prevalence of overweight and obesity among women of reproductive age 

in the US have occurred since 1980 and continue to occur [CDC7]. Comparison of 

unadjusted projections and actual trends in weight-gain in the US population allow us to 

quantify the increase in incidence rate over time which is not due to change in 

demographics over time. 

3.3.1 Generation of the unadjusted BMI projections 

To make unadjusted projections of this population over time we apply the 

regression estimates of BMI to the US Census age distributions according to 

race/ethnicity using Arena 13.5 software (a product of Rockwell Automation 

Technologies, Inc.). First, the age distribution is assigned using population characteristics 

for white and black women ages 15 to 44 years obtained from the US Census [1980, 

1990, 2000, and 2008 (Census 2008 values are projected based on Census 2000 

numbers)]. Next, age-specific BMI is assigned (independent of birth year cohort) 

according to the normal distribution. Age-specific estimates of BMI from the regression 

analysis provide the mean value of the distribution. The standard deviation is that of the 

actual concatenated NHANES I and II data set. Table B.1 in the appendix provides a 

detailed list of the BMI values (mean and standard deviation) by age and race. Arena was 

run in eight separate scenarios (for white women and black women in 1980, 1990, 2000, 

and 2008) and average BMI was computed for the population age range (15-44) and by 

age groups (15-19, 20-24, 25-29, 30-34, 35-39, and 40-44). 
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In Figure 3.1 we observe overlaps in the different age cohort regression lines for 

white women. When more than one point existed we used the average of the points to 

assign mean BMI. For example, in Figure 3.1 two data points exist for white women age 

17 years, a point estimated from the regression equation for birth year cohort 1955 to 

1959 and a point estimated from the regression equation for birth year cohort 1950 to 

1954. BMI for women age 17 years are taken as the average of estimates for birth year 

cohorts 1955 to 1959 and 1950 to 1954 from the regression analysis.  

  3.3.2 Comparison of average BMI 

Comparison of unadjusted projections and actual trends in weight-gain among 

white and black women of childbearing age in the US population allow us to quantify the 

increase in BMI over time not due to age and race/ethnicity. We compare our unadjusted 

BMI projections to NHANES BMI data representative of the actual population in 1980, 

1990, 2000, and 2008. NHANES estimates are not based on birth year; that is, NHANES 

estimates include all individuals between 15 and 44 years of age in the NHANES 

datasets. The NHANES dataset(s) most closely corresponding to the projected year was 

used as the comparison group. In some instances, more than two years of data were 

needed to have adequate sample sizes for analysis therefore NHANES datasets were 

combined to provide additional data points. Table 3.1 provides a summary of the specific 

NHANES datasets used to obtain BMI values representing the actual population in 1980, 

1990, 2000 and 2008.  
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Table 3.1: Data sources used to obtain numbers representing the actual population. 

Census Year Comparison BMI 

1980 NHANES I and II 

1990 NHANES III 

2000 NHANES 1999-2002 

2008 NHANES 2005-2008 

 

Tables 3.2 and 3.3 show the average unadjusted BMI projections and average 

BMI estimates obtained from the NHANES population by age cohort and year. 

Parentheses define 95 percent confidence interval half-widths. The projections for 1980 

provide a verification of our statistical model. The 95 percent confidence intervals for the 

projected numbers and the actual NHANES numbers overlap (shown in Figure 3.6), 

therefore we conclude that our projections and actual NHANES numbers are statistically 

the same. In other words, the projected population in 1980 (developed from our 

regression model) adequately represents the 1980 population of the NHANES data; 

furthermore, each age cohort is adequately represented in terms of average BMI. 

Furthermore, we can see that beyond 1980, the projected BMI values are less than the 

NHANES values; this is true for all age cohorts and for both black and white women. 

Furthermore, for the overall population (women ages 15-44) the difference in average 

BMI is increasing with time for both black and white women.  
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Table 3.2: Average BMI (kg/m
2
) of white women of childbearing age. 

Age 

Cohorts 

 1980  1990 

 Unadjusted 

Projections 
NHANES I & II 

 Unadjusted 

Projections 
NHANES III 

15 - 19  21.94 (0.08) 21.88 (0.22)  21.94 (0.08) 22.69 (0.56) 

20 - 24  22.67 (0.07) 22.74 (0.22)  22.70 (0.06) 23.59 (0.71) 

25 - 29  23.40 (0.07) 23.33 (0.25)  23.46 (0.07) 24.28 (0.63) 

30 - 34  24.23 (0.08) 24.29 (0.29)  24.15 (0.11) 25.46 (0.72) 

35 - 39  24.61 (0.10) 24.68 (0.31)  24.64 (0.09) 26.59 (0.81) 

40 - 44  25.17 (0.11) 25.13 (0.33)  25.20 (0.12) 26.29 (0.77) 

15 - 44  23.48 (0.03) 23.62 (0.11)  23.75 (0.03) 24.82 (0.28) 

Age 

Cohorts 

 2000  2008 

 Unadjusted 

Projections 

NHANES 1999-

2002 

 Unadjusted 

Projections 

NHANES 2005-

2008 

15 - 19  21.89 (0.08) 23.55 (0.56)  21.90 (0.09) 23.64 (0.60) 

20 - 24  22.74 (0.07) 26.06 (1.09)  22.73 (0.05) 26.22 (1.23) 

25 - 29  23.47 (0.08) 26.69 (1.03)  23.43 (0.08) 27.30 (1.23) 

30 - 34  24.14 (0.10) 26.73 (1.07)  24.14 (0.13) 27.95 (1.06) 

35 - 39  24.63 (0.08) 27.40 (1.18)  24.65 (0.08) 27.92 (1.10) 

40 - 44  25.21 (0.12) 27.71 (1.11)  25.20 (0.12) 28.90 (1.03) 

15 - 44  23.80 (0.04) 25.91 (0.40)  23.69 (0.04) 26.68 (0.42) 

Note: Values in parentheses are 95% CI half-widths. 

 

 

 
Table 3.3: Average BMI (kg/m

2
) of black women of childbearing age. 

Age 

Cohorts 

 1980  1990 

 Unadjusted 

Projections 
NHANES I & II 

 Unadjusted 

Projections 
NHANES III 

15 - 19  22.96 (0.11) 22.81 (0.58)  23.01 (0.10) 24.71 (0.67) 

20 - 24  24.36 (0.09) 24.20 (0.59)  24.38 (0.08) 26.19 (0.68) 

25 - 29  25.87 (0.09) 25.70 (0.71)  25.84 (0.08) 27.24 (0.78) 

30 - 34  27.03 (0.13) 27.13 (0.90)  27.10 (0.13) 29.05 (0.89) 

35 - 39  27.78 (0.16) 28.35 (0.87)  27.77 (0.12) 29.44 (0.81) 

40 - 44  28.69 (0.12) 28.37 (0.82)  28.65 (0.16) 30.61 (0.91) 

15 - 44  25.59 (0.04) 25.80 (0.31)  26.02 (0.05) 27.78 (0.33) 

Age 

Cohorts 

 2000  2008 

 Unadjusted 

Projections 

NHANES 1999-

2002 

 Unadjusted 

Projections 

NHANES 2005-

2008 

15 - 19  23.00 (0.09) 25.67 (0.81)  22.98 (0.09) 26.69 (0.86) 

20 - 24  24.36 (0.08) 29.05 (1.90)  24.38 (0.07) 29.96 (2.03) 

25 - 29  25.88 (0.09) 30.11 (2.02)  25.84 (0.08) 30.66 (1.85) 

30 - 34  27.06 (0.14) 31.29 (1.92)  27.09 (0.15) 31.42 (1.56) 

35 - 39  27.81 (0.11) 30.10 (1.50)  27.78 (0.12) 32.08 (1.85) 

40 - 44  28.65 (0.15) 32.73 (2.00)  28.68 (0.15) 30.75 (1.61) 

15 - 44  26.15 (0.05) 28.44 (0.62)  26.01 (0.05) 29.26 (0.61) 

Note: Values in parentheses are 95% CI half-widths. 
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3.3.1 Comparison of average BMI across age groups 

We are interested in the difference between the average BMI of women based on 

NHANES (which represents the actual population and trends) and the unadjusted BMI 

estimates. Figures 3.4 and 3.5 provide these results by age cohort, for white and black 

women respectively. These figures show the differences in average BMI of the NHANES 

population and the projected population by age cohort in 1990, 2000, and 2008. For 

example, consider the difference in average BMI of white women 20 to 24 years of age in 

1990 (0.88 kg/m
2
). Average BMI computed from the NHANES III dataset represents the 

actual population 20 to 24 years of age in 1990 (23.59 kg/m
2
). Projected average BMI of 

individuals age 20 to 24 years in 1990 is 22.70 kg/m
2
) was obtained by applying our 

regression estimates to the Census 1990 age distribution. The difference between the 

actual NHANES value and the predicted value (i.e., average BMI of individuals age 20 to 

24 computed from the NHANES I and II dataset minus unadjusted average BMI 

projections) for individuals age 20 to 24 years in 1990 is 0.88 kg/m
2
. 

Refer to Figure 3.4 for a discussion regarding the difference in average BMI for 

white women. The difference in average BMI in 1990 is fairly low (i.e., less than 1 

kg/m
2
) in half of the six groups. In 1990, the difference in average BMI for age cohorts 

15 to 19, 20 to 24, and 25 to 29 was comparable ranging from 0.75 kg/m
2
 to 0.88 kg/m

2
. 

The age group with the largest discrepancy between the simulated and NHANES BMI 

values in 1990 were women in age cohort 35 to 39 (1.95 kg/m
2
). In 2000, the difference 

in average BMI across all age cohorts escalated. The difference in average BMI of age 

cohort 15 to 19 was the smallest across all age cohorts (1.66 kg/m
2
). Age cohorts 20 to 24 
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and 25 to 29 hold the largest difference in average BMI in 2000 (3.32 kg/m
2 

and 3.22 

kg/m
2
, respectively). In 2008, we observe a difference in average BMI greater than 3 

kg/m
2
 across all age cohorts except age cohort 15 to 19 (1.73 kg/m

2
). Difference in 

average BMI of age cohorts 15 to 19 and 20 to 24 began to level off between 2000 and 

2008.  
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Figure 3.3: Difference in average BMI (NHANES-unadjusted projections) by year and age cohort of white 

women. 

 

In contrast to white women, the difference in average BMI of black women across 

the various age cohorts in 1990 is high (Figure 3.5), ranging from 1.40 kg/m
2
 to 1.96 

kg/m
2
 (compared to 0.75 kg/m

2 
to 1.95 kg/m

2
 for white women). Individuals age 40 to 44 

have the largest difference in average BMI (1.96 kg/m
2
) in 1990. Between 1990 and 2000 

the difference in average BMI spikes, particularly among age cohorts 20 to 24 and 25 to 
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29, followed by age cohorts 30 to 34 and 40 to 44. In 2000, the difference in average 

BMI rises to more than 5 kg/m
2
 in one age cohort (20 to 24). The difference in average 

BMI begins to level off between 2000 and 2008 among individuals age 30 to 34. 

Interestingly, between 2000 and 2008 the difference in BMI for black women age 40 to 

44 actually decreases by almost 2 kg/m
2
. This result differs greatly from white women 

age 40 to 44, where the difference in average BMI increased considerably between 2000 

and 2008.  
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Figure 3.4: Difference in average BMI (NHANES-unadjusted projections) by year and age cohort of black 

women. 

 

3.3.2 Comparison in trends over time for black and white women of all ages 

 Next we examine trends in BMI over all ages. In particular, Figure 3.6 compares 

average BMI of women of childbearing age (ages 15 to 44) computed from the NHANES 
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data sets to projected average BMI of women of childbearing age at baseline (1980) and 

for projections in years 1990, 2000, and 2008. NHANES values represent the actual 

population each year while the projections show average BMI of the population if the rate 

of change in BMI had remained stable (i.e. no additional risk since 1980). The 95 percent 

confidence intervals of average BMI for actual NHANES values and unadjusted 

projections are displayed. Average BMI of white and black women computed from the 

NHANES data sets and the projected values are displayed in one panel to show racial 

disparities in average BMI and the rate of change in BMI among white and black women 

of childbearing age. 

The first important result is that the 95 percent confidence intervals about the 

projected numbers and actual NHANES numbers for white and black women age 15 to 

44 years do not overlap in years 1990, 2000, and 2008; therefore the projected numbers 

and actual NHANES numbers are statistically different for years 1990, 2000, and 2008. 

This is true for both white and black women. 
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Figure 3.5: Unadjusted projections vs. NHANES for white and black women of childbearing age. 

 

In 1980 black women of childbearing age had a higher baseline BMI level than 

white women of childbearing age, with actual average BMI of black women at 25.80 

kg/m
2
 compared to actual average BMI of white women at 23.62 kg/m

2
, a difference of 

approximately 2 kg/m
2
 (Figure 3.6). Not only did black women start out with a higher 

baseline BMI value, but the rate of change in average BMI increased faster in black 

women of childbearing age versus white women. Observing actual average BMI of 

individuals age 15 to 44 years (i.e. NHANES), we notice that both white and black 

women experience a steady increase in average BMI between 1980 and 2008. However, 

the rate of change in average BMI of black women increased more rapidly between 1980 

and 1990 compared to the rate of change in average BMI of white women during this 
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time period. A change in average BMI of 1.98 kg/m
2
 in black women compared to 1.2 

kg/m
2
 in white women. Between 1990 and 2000, the rate of change in average BMI of 

white women was higher than the rate of change in average BMI of black women. White 

women experience a change in average BMI of 1.09 kg/m
2
 compared to 0.66 kg/m

2
 in 

black women. The rate of change in average BMI of black women between 2000 and 

2008 again accelerated faster when compared to white women, with a change in average 

of 0.82 kg/m
2
 in black women and 0.77 kg/m

2 
in white women. Overall, the actual change 

in average BMI between 1980 and 2008 was slightly greater among black women of 

childbearing age compared to white women (a change in average BMI of 3.46 kg/m
2
 for 

black women and a change in average BMI of 3.06 kg/m
2
 for white women).  

3.4 Simulation Parameters and Results 

 In this section we use discrete-event simulation (DES) to examine weight-gain 

trends in the US population over time. The simulation model is important because it will 

allow us (in future research) to make projections of weight-gain in this population after 

2008. The simulation model presented in Chapter 2 is modified to make projections 

regarding the rate of change in BMI in the US population if substantial weight-gain had 

not occurred in the 1980s. The reader should refer to Section 2.2 for a complete 

explanation of the simulation structure and assumptions. Our method for validating 

average BMI simulation projections from 1980 to 2008 is described.  

3.4.1 Input data 

Simulation projections were made to assess the ability of the model to forecast 

BMI. The bounds on childbearing age range adapted for the population-level model are 
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age 15 to 44 years. The starting population consisted of 10,000 women ages zero to 44 

years, however, average BMI was only recorded for women of childbearing age (i.e. age 

15 to 44 years). Incorporating these individuals into the simulation at baseline ensures 

that individuals will reach age 15 on an annual basis. NCHS natality files [CDC5] to 

estimate pregnancies and US life tables [CDC6] to estimate mortality allowed us to 

capture changes in age distribution of the US population over time. Model projections 

were made after zero years, 10 years, 20 years, and 28 years, with age structure 

representing the US population in 1980, 1990, 2000, and 2008, respectively. The 

regression analysis provided two key input measures for the BMI sub-module in the 

simulation: (1) age-specific baseline BMI values, and (2) age-specific change in BMI. 

Since there is an overlap in the slopes for certain ages, baseline BMI and updates to BMI 

for women were taken as the average of estimates from the regression analysis (refer to 

Section 3.2 for explanation). The individual‘s baseline BMI was assumed to be normally 

distributed (Table B.1 in the appendix). Table B.2 provides the BMI updates (annual 

change in BMI) used in the simulation model, by age and race; these are also assumed to 

be normally distributed.  

3.4.2 Simulation projections 

 Projections for zero years represent our underlying population of 1980. Baseline 

BMI was used to make projections independent of the individual‘s birth year representing 

the population in 1980. Age-specific baseline BMI was assigned to individuals in the 

starting population and statistics were collected for average BMI with no time elapsing in 

the simulation. To further test the model, projections for average BMI were made over 
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time using age-specific baseline BMI and age-specific BMI updates independent of the 

individual‘s birth year. Average BMI was projected over time to provide estimates for the 

years 1990, 2000, and 2008. The results for all model projections were reported in terms 

of age cohort percentages average BMI according to age cohort (age 15 to 19 years, age 

20 to 24 years, age 25 to 29 years, age 30 to 34 years, age 35 to 39 years, age 40 to 44 

years, and age 15 to 44 years). We implemented common random numbers (CRN) for 

three parameters: (1) baseline age distribution, (2) baseline BMI, and (3) annual change 

in BMI.  

The half-width of average BMI was assessed to determine a sufficient number of 

replications [Law, 2007]. The 95 percent confidence interval half-width was pre-specified 

to be no larger than 0.15 kg/m
2
. Fifteen replications led to a sufficiently small half-width 

confidence interval for the output measure average BMI for all model scenarios. 

Increasing the number of replications did not produce smaller confidence intervals. 

3.4.3 Simulation validation 

We present two methods for validating our simulation model: (1) validation of 

population age distribution, and (2) validation of average BMI estimates. Method one 

compares the percentage age distribution of the US Census to our simulated age structure 

for 1980, 1990, 2000, and 2008. We consider age structure to be an important validation 

criterion because other performance measures (such as BMI) are influenced by the age 

attribute. Age structure results for white women are provided in Table 3.4. 

Referencing Table 3.4, we validate our1980 and 1990 age percentage estimates 

across all age cohorts with 95% confidence interval half-widths in the range of 0.19% to 
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0.36%. In 2000, the difference in mean percentage of women ages 25 to 29 and 30 to 35 

is very low (0.02% and 0.04%, respectively). This is substantial because women of these 

ages are more likely to get pregnant and will therefore have a greater influence on the 

population age structure in future generations. Women ages 15 to 19 and 40 to 44 

maintain the lowest birth rates and will in turn have less affect on the overall population 

structure. Options for improving our simulation projections follow.  

First, some input parameters did not assume standard errors, including the natality 

data and the mortality estimates. We could build a probability distribution around these 

input measures and conduct sensitivity analysis. Second, we could update mortality rates 

every year. Age-adjusted death rates in the US have experienced an overall downward 

trend [CRS, 2006] since 1980. Older individuals have higher risk of death and reducing 

the number of individuals age 40 to 44 will help iron out the distribution and shift the 

percentage towards age 15 to 19. Third, we do not assess variability in the Census 

estimates. Error and undercount of 44.2 million in the Census 2000 count was reported by 

the Accuracy and Coverage Evaluation (A.C.E.) [Census1]. The net undercount for non-

Hispanic whites was 0.6%. An error of 0.51% and 0.10% for age cohorts 15 to 19 and 40 

to 44 respectively in the Census age distribution would validate our simulation. 

For 2008 Census age characteristics we note that the percentages are based on 

Census 2000 numbers. Population projections of the US for 2008 were based on 

assumptions of births, deaths, and immigration [Census2]. Therefore, we have more 

confidence in our projections because our numbers are based on actual natality data 

between 2000 and 2008. 
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Table 3.4: Comparison of the Census and simulation age distributions for white women. 

Age 

Cohorts 

 1980  1990 

 Census (%) Simulation (%)  Census (%) Simulation (%) 

15 - 19  19.38 19.39 (0.36)  14.17 14.12 (0.24) 

20 - 24  20.04 20.00 (0.19)  15.56 15.57 (0.24) 

25 - 29  18.53 18.43 (0.22)  18.00 18.22 (0.30) 

30 - 34  16.96 17.15 (0.27)  18.87 18.77 (0.24) 

35 - 39  13.65 13.65 (0.19)  17.51 17.29 (0.23) 

40 - 44  11.44 11.38 (0.26)  15.88 16.03 (0.25) 

Age 

Cohorts 

 2000  2008 

 Census (%) Simulation (%)  Census (%) Simulation (%) 

15 - 19  15.50 14.70 (0.30)  16.82 16.65 (0.20) 

20 - 24  14.40 14.57 (0.22)  16.57 15.86 (0.31) 

25 - 29  15.00 15.01 (0.27)  16.66 16.26 (0.29) 

30 - 34  16.51 16.55 (0.29)  15.42 15.25 (0.30) 

35 - 39  19.13 19.35 (0.28)  16.83 17.19 (0.25) 

40 - 44  19.46 19.82 (0.26)  17.69 18.79 (0.27) 

Note: Values in parentheses are 95% CI half-widths. 

 

In method two, model validation is achieved when the simulation reproduces 

actual average BMI for the starting cohort (1980 projections) and our hypothetical 

population over time (1990, 2000, and 2008 projections). For all years we consider our 

unadjusted average BMI projections to be the comparison group (representing actual 

population BMI). In Section 3.3 we statistically validated 1980 unadjusted BMI 

projections against average BMI estimates obtained from the NHANES I and II dataset. 

Simulation projections and unadjusted BMI projections (obtained using the regression 

estimates) are compared by age cohort. Average BMI results for white women are 

summarized in Table 3.5.     

Refer to Table 3.5 for a comparison of average BMI unadjusted and simulation 

projections. In 1980 and 1990 we are 99% confident that we capture the true population 

average BMI.  For 2000, simulation projections of average BMI validate for all age 

cohorts except 35 to 39. More importantly average BMI of the overall population (age 15 

to 44 years) validates in comparison to unadjusted BMI projections. Average BMI of the 
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simulated population is driven by the projections of age structure in the simulation. We 

believe that although our 2000 estimates do not capture the actual estimate from the 

Census 2000 for age cohorts 15 to 19 and 40 to 44, if we model random variation in some 

of the input measures (e.g. birth rates, death rates) then our projections will capture the 

true value. In 2008, all age cohorts validate for the performance measure average BMI.  

Table 3.5: Average BMI unadjusted and simulation projections for white women. 

Age 

Cohorts 

 1980  1990 

 Unadjusted 

Projections 

Simulation 

Projections 

 Unadjusted 

Projections 

Simulation 

Projections 

15 - 19  21.94 (0.11) 21.96 (0.07)  21.94 (0.11) 21.84 (0.08) 

20 - 24  22.67 (0.09) 22.70 (0.05)  22.70 (0.08) 22.63 (0.08) 

25 - 29  23.40 (0.09) 23.45 (0.13)  23.46 (0.09) 23.49 (0.09) 

30 - 34  24.23 (0.11) 24.17 (0.11)  24.15 (0.14) 24.19 (0.05) 

35 - 39  24.61 (0.13) 24.70 (0.13)  24.64 (0.12) 24.87 (0.13) 

40 - 44  25.17 (0.14) 25.17 (0.12)  25.20 (0.16) 25.44 (0.12) 

15 - 44  23.48 (0.04) 23.50 (0.05)  23.75 (0.04) 23.81 (0.04) 

Age 

Cohorts 

 2000  2008 

 Unadjusted 

Projections 

Simulation 

Projections 

 Unadjusted 

Projections 

Simulation 

Projections 

15 - 19  21.89 (0.11) 21.85 (0.08)  21.90 (0.12) 21.87 (0.09) 

20 - 24  22.74 (0.09) 22.63 (0.09)  22.73 (0.07) 22.61 (0.08) 

25 - 29  23.47 (0.11) 23.38 (0.09)  23.43 (0.11) 23.42 (0.08) 

30 - 34  24.14 (0.13) 24.14 (0.11)  24.14 (0.17) 24.14 (0.09) 

35 - 39  24.63 (0.11) 24.87 (0.11)  24.65 (0.11) 24.76 (0.09) 

40 - 44  25.21 (0.16) 25.42 (0.07)  25.20 (0.16) 25.40 (0.07) 

15 - 44  23.80 (0.05) 23.86 (0.04)  23.69 (0.05) 23.74 (0.04) 

Note: Values in parentheses are 99% CI half-widths. 

 

3.4.4  Sensitivity analysis  

We performed sensitivity analysis on the BMI updates for white individuals age 

32 to 37 years due to the large difference in the slopes for this age range obtained from 

the regression analysis. Five different scenarios were tested for years 1980, 1990, 2000, 

and 2008. The base case scenario (scenario one), was the average of the slopes for birth 

year cohorts 1940 to 1949, 1935 to 1939, and 1930 to 1934. Scenario two involved 

averaging the points from birth year cohort 1935 to 1939 and 1930 to 1934. Scenario 
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three involved using the slope for birth year cohort 1940 to 1949. BMI updates for 

scenario four involved taking the average of scenarios one and two, and BMI updates for 

scenario five involved taking the average of scenarios one and three. The sensitivity 

analysis showed that average BMI was not sensitive to the BMI updates for individuals 

age 32 to 37 years.  Tables A.3 and A.4 in the appendix show the input parameters (i.e. 

baseline BMI and BMI updates, respectively) used in the sensitivity analysis. Results of 

the sensitivity analysis are provided in Table B.5 in the appendix. 

3.5 Discussion 

The unadjusted projections provide an estimate of the population given that the 

rate of change in average BMI of white and black women of childbearing age in the 

1980s had remained the same between 1980 and 2008. In the unadjusted projections we 

observe similar trends in average BMI for white and black women. In the unadjusted 

projections average BMI of both black and white women of childbearing age increases 

from 1980 to 1990 (a change in average BMI of 0.43 kg/m
2
 for white women and 0.27 

kg/m
2
 for black women) and again slightly from 1990 to 2000 (white women experienced 

a change in BMI of 0.05 kg/m
2
 and black women experienced a change in BMI of 0.13 

kg/m
2
). In the unadjusted projections the biggest change in average BMI occurs between 

1980 and 1990 for both racial groups (0.43 kg/m
2
 for white women and 0.27 kg/m

2
 for 

black women). Average BMI slightly decreases between 2000 and 2008 among both 

white and black women of childbearing age (a change in average BMI of -0.11 kg/m
2
 for 

white women and -0.14 kg/m
2
 for black women).  
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 The 95 percent confidence intervals in Figure 3.6 show a statistical difference in 

average BMI between the actual population and the projected population for years 1990, 

2000, and 2008 for white and black women of childbearing age. The difference in 

average BMI each year is larger for black women compared to white women. For 

example, in 1990 actual average BMI of white women of childbearing age (i.e. obtained 

from the NHANES III data set) is 24.82 kg/m
2
 and predicted average BMI is 23.75 

kg/m
2
, a difference of 1.07 kg/m

2
. The difference in actual average BMI (27.78 kg/m

2
) 

and predicted average BMI (26.02 kg/m
2
) for black women of childbearing age in 1990 is 

1.76 kg/m
2
. The difference in actual average BMI versus projected BMI is greater among 

black women versus white women in 1990, 2000, and 2008. 

In terms of health disparities, the results show two key findings. First, NHANES 

shows that black women not only started out with higher average BMI (25.80 kg/m
2
) as 

compared to white women (23.62 kg/m
2
) in 1980, before the onset of the obesity 

epidemic, but their weight gain between 1980 and 2008 was also higher.  Resulting in an 

average BMI of 29.26 kg/m
2
 (an increase of 3.46 kg/m

2
 over 28 years) for black women 

as compared to 26.68 kg/m
2
 (an increase of 3.06 kg/m

2
 over 28 years) for white women 

over all ages (15-44). The disparity in average BMI between black and white women of 

childbearing increased by 0.4 kg/m
2
 from 1980 to 2008.  Secondly, the unadjusted 

projections show that this difference cannot be solely explained by the weight gain trends 

that were taking place in 1980; that is, the disparity has worsened.  Our unadjusted 

projections predict that if weight gain trends from 1980 had prevailed the disparities 

between these groups would not have increased, rather the difference in BMI between 
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black and white women in 2008 would be 2.32 kg/m
2
, which is not significantly different 

that the disparity seen in 1980. 

The results we provide here are fundamentally different than what is currently 

available in the literature in that we base our unadjusted projections on the population 

previous to the onset of the obesity epidemic. Using cross-sectional data from NHANES I 

and II we determine the change in BMI due to age among white and black women of 

childbearing age. Based on the baseline population, our unadjusted projections show that 

the average BMI among women of childbearing age would be stable from 1980-2008. 

Instead, we find (as do many other studies) that the actual weight gain has increased over 

time. While the reasons for this could be many, understanding the difference between the 

baseline population and the current population is a first and key step to understanding the 

potential causes that could be behind the accelerated weight-gain seen over the past two 

decades, and that will drive longer term projections. 

Lastly, we point out that other studies that make projections on the trends of 

diseases (most of these are done with respect to diabetes) begin with prevalence estimates 

in 2000 or later.  At this point the obesity (and also diabetes) epidemics had already taken 

place; resulting in very high estimates. Wang et al. (2008) use NHANES 1976-1980 to 

2003-2004 to calculate the average annual increase in the prevalence of obesity and 

overweight and apply this using a linear regression model to make projections through 

2030, resulting in an estimated 87% of all adult women being overweight or obese. Other 

examples of projection studies which begin with data after the onset of the ―diabesity‖ 

epidemic include: diabetes projections for the US population through 2031 [Mainous et 
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al., 2007] and through 2050 [Boyle et al., 2001], obesity projections for South Australia 

through 2013 [Dal Grande et al., 2005], and global diabetes projections through 2030 

[King et al., 1998].  In this paper we considered the weight gain trends associated with 

NHANES I and II (1971-1974 and 1976-1980) and find that these trends would have 

resulted in stable average BMI levels compared to actual BMI trends over time. 

As discussed in Section 3.4.3 (Tables 3.4 and 3.5), our simulation projections at 

baseline, 1990, and 2008 validate statistically for two measures (age structure and 

average BMI). In 2000, we validate average BMI across all age cohorts except 35 to 39. 

We believe that by incorporating random variation in birth and death estimates and 

accounting for Census errors, we can validate our 2000 estimates for age cohort 35 to 39. 

We are confident in our simulation projections for one generation of one cohort (white 

women of childbearing age). However, we acknowledge that our simulation has 

limitations.  

 In terms of limitations, first, a key limitation is that the Census 2000 data set 

contains an enormous amount of errors (many more than the Census 1990) [U.S. Census 

Monitoring Board, 2001]. This not only affects simulation projections (in terms of 

simulation validation), but also impacts the unadjusted BMI projections over time. Next, 

pregnancy probabilities are not subject to random variation. Registered births occurring 

in the US are not 100% accurate and may be influenced by non-sampling errors (i.e. the 

mother‘s age or race may be mistakenly documented) [CDC10]. Similarly, US life table 

errors (i.e. errors in death rates) such as mistakes in recording age on the death certificate 

may distort age-adjusted death counts. Under-registration of deaths is not assumed to be 
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significant for reasons including burial permit requests, acquirement of insurance 

benefits, and estate settlements. Last, reasons other than births or deaths shape the 

population (e.g. immigration) [Bell and Miller, 2005].  

We are currently making attempts to address the limitations of our data sources. 

Sensitivity analysis will assess how robust the simulation is to these input measures. With 

the release of Census 2010 estimates our projections will be updated and age 

characteristics validated against actual Census estimates (rather than Census projections 

of 2008). 

Future research will be conducted to test different models for attributing increased 

risk in weight-gain over time. Various epidemiologic models for increased risk will be 

evaluated to determine which model projections most closely resemble the actual data of 

the US population. The results will be used to predict effects due to the obese intrauterine 

environment. Once the risk factor is established, projections will be made regarding 

weight-gain and the prevalence of obesity over a longer time period (e.g. 100 years). 

These projections will demonstrate the extent to which these affects may be exacerbated 

over time. We seek to quantify the impact of intrauterine exposure to maternal obesity 

across multiple generations in different race/ethnicity groups at the population level 

thereby allowing estimations to be made regarding the extent to which intrauterine 

programming could be influencing health disparities. This research will aid decision 

makers in recognizing the impact of preventative-care initiatives as well as in the 

evaluation of possible alternatives. 
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CHAPTER FOUR 

 

A DISCRETE-EVENT SIMULATION MODEL TO ESTIMATE HEALTH AND 

ECONOMIC OUTCOMES OF SMOKING CESSATION TREATMENTS 

 

 

This chapter focuses on the development and verification of a DES model to 

estimate health and economic outcomes associated with smoking cessation interventions.  

4.1 Model Introduction 

  According to the US Surgeon General, active cigarette smoking remains a major 

public health problem, despite numerous health warnings, FDA regulation, highly 

publicized litigation efforts against major tobacco companies, and a bevy of accumulated 

epidemiologic evidence chronicling the health risks of smoking [US Department of 

Health and Human Services, 2004]. Countless studies have demonstrated that ―smoking 

is the single greatest cause of avoidable morbidity and mortality in the United States‖ 

[US Department of Health and Human Services, 2004]. However, smoking prevalence 

remains quite high, and despite the fact that 70% of smokers want to quit, long-term 

smokers have considerable difficulty breaking the habit and overcoming addiction to 

nicotine [CDC11].   

Multiple smoking cessation therapies and interventions have been developed 

since the early 1960s to aid smokers who desire to quit; however, more than 46 million 

adults in the United States continue to smoke cigarettes and even with pharmacologic 

intervention, recidivism remains extremely high [CDC12].  Smokers who desire to quit 

often try numerous unsuccessful pharmacotherapies, which may be costly and generally 

ineffective, resulting in economic hardship and feelings of failure or guilt [Ranney et al., 



 69 

2006].  Considering the significant health and economic burden of smoking and the 

unavailability of a tried and true ―magic bullet‖ for smoking cessation, comparative 

effectiveness studies are needed to compare different smoking cessation options and 

corresponding outcomes.   

Although the effectiveness of smoking cessation therapies has been low, smoking 

cessation, when successful, has been shown to be highly cost-effective. Studies have 

compared placebo to different pharmacologic interventions for smoking cessation 

[Jackson et al., 2007; Neilson and Fiore, 2000]. Studies have compared the nicotine patch 

to smoking-cessation counseling [McGhan and Smith, 1996; Fiscella and Franks, 1996; 

Cromwell et al., 1997] and nicotine gum to smoking-cessation counseling [Cromwell et 

al., 1997]. Gilbert et al. (2004) included five pharmacological treatments including 

nicotine gum, patch, nasal spray, inhaler and bupropion in which the control group 

received smoking-cessation counseling and the treatment cohort was given counseling in 

addition to pharmacological treatment. Howard et al. (2008) compared varenicline, 

bupropion, nicotine replacement therapy, and unaided smoking cessation where the main 

objective of the study was to assess the cost-effectiveness of varenicline. 

Cost-benefit studies of smoking cessation therapies that require decision making 

under uncertainty have employed decision tree analysis [Fiscella and Franks, 1996; 

McGhan and Smith, 1996; Nielsen and Fiore, 2000; Jackson et al., 2007] and Markov 

structures [Orme et al., 2001 (in Reifsnider, 2011); Gilbert et al., 2004; Gilbert et al., 

2006 (in Reifsnider, 2011); Howard et al., 2008] to provide a simplified description of a 

complicated clinical problem which aids decision makers in understanding the risks and 
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benefits of various clinical options. To our knowledge, discrete-event simulation (DES) 

has not been employed to compare therapeutic options for smoking cessation and related 

health outcomes. Because individuals have varying levels of nicotine dependence and 

smoking intensity, and because of significant heterogeneity in treatment response, we 

believe the DES approach is a potentially more meaningful way to conceptualize the 

problem of smoking cessation. 

The remaining chapter is organized as follows. In §5.2, a description of the data 

and assumptions of the simulation is provided. In §5.3, measures of health and economic 

evaluation are described and the simulation verification is described in §5.4. The chapter 

is concluded with §5.5, in which we discuss limitations of the model and future research 

directions.  

4.2  Model Assumptions and Data 

4.2.1 Simulation structure 

We developed a DES model using Arena 13.5 software. The simulation consists 

of four main modules: creation of smokers, smoking cessation treatment, disease 

progression, and accounting (Figure 5.1). The accounting sub-module periodically 

updates patient attributes and population statistics. In terms of the progression of the 

model, first, individuals are created and all individuals are assumed to be smokers. Next, 

the smoker begins treatment and the model evaluates, according to trial-based efficacy 

evidence, whether or not the treatment was successful. If treatment is successfully 

completed, then the patient enters the non-smoker state; otherwise, the patient remains a 

smoker with no additional attempts at treatment. A periodic update of patient disease 
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progression, aggregate quality adjusted life-years (QALY), health utilities, costs, age, 

mortality, and statistical accumulation occurs annually regardless of the patient‘s 

smoking status. A detailed description of the operations of each sub-module follows. 

 
Figure 4.1: High-level schematic of simulation flow. 

 

4.2.2 Creation of smokers 

The creation module creates smokers and allows the administrator to input 

background demographic and clinical information of the underlying population. A 

discrete number of patients enter the system representing a single cohort sampled from a 
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chosen population. The initial cohort consists of 10,000 individuals made up of males and 

females ages 18 to 70 years, assigned according to 2008 US Census population tables 

[Census2] and US smoking prevalence estimates taken from the 2008 National Health 

Interview Survey (NHIS) [NCHS, Table 4.1]. Refer to Appendix table D.1 for the 

calculated distribution of smokers. No additional entities enter the simulation; however, 

individuals may exit the model due to death. Demographic and clinical attributes are 

assigned to each individual in the simulation at baseline including gender, age, and 

quality of life (refer to Section 4.3.1). Quality of life numbers were drawn from the 

literature [Fiscella and Franks, 1996; Stewart et al, 2009 (in Reifsnider, 2011)] and are 

assigned based on individual demographic attributes. For example, gender and age are 

assigned independently but utilities or quality of life associated with certain health states 

depend upon the gender and age attributes. Probabilities of transitioning between health 

states are also dependent upon these background attributes. All patients enter the model 

as smokers and are considered ―healthy‖ at baseline. A healthy patient is characterized as 

a smoker with no serious smoking-related co-morbidities of interest [i.e., lung cancer, 

chronic obstructive pulmonary disease (COPD), stroke, coronary heart disease (CHD)]. 

Table 4.1: Smoking prevalence among adults in the US. 

Age Group Male Female 

18 - 44 0.254 0.203 

45 - 64 0.246 0.205 

65+ 0.106 0.082 

 

4.2.3 Smoking cessation treatment 

Smoking cessation alternatives considered in this model include nicotine 

replacement treatment (NRT) interventions, bupropion, varenicline, and non-
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pharmacologic-assisted cessation. The four NRT products considered in this model 

(patch, inhalator, gum, and nasal spray) are known to have different costs, adherence, and 

outcomes; hence, average statistics across the four NRT products are input into the 

simulation to represent the NRT treatment option. We run the simulation in five 

scenarios, one scenario for each of the four strategies (NRT, bupropion, varenicline, and 

non-pharmacologic-assisted) and one for no treatment. 

Upon entry into the simulation, 100 percent of smokers make one attempt at 

treatment. Duration of active treatment is 12 weeks for all interventions of interest 

[AMA, 2000] and individuals are assumed to adhere to treatment for the full duration. 

Intervention-specific efficacy rates are applied at the end of year one at which time 

individuals either successfully quit smoking or remain smokers. Reported efficacy rates 

for smoking cessation are highly variable, therefore we performed a meta-analysis of the 

efficacy of smoking cessation strategies to obtain an estimate of the summary effect size 

across studies. A review of the medical literature identified 6 studies for NRT, 6 studies 

for bupropion, 5 studies for varenicline, and 4 studies for non-pharmacologic-assisted 

(Table 4.2). Results across studies per strategy were combined to provide a single pooled 

result quantifying how much each intervention is beneficial. The mid-point value was 

considered our baseline probability of treatment success.  
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Table 4.2: Efficacy rates (defined as treatment-specific, CO
2
-verified, continuous abstinence rate over a 

one-year time period, i.e. during trial follow-up). 

Cessation alternative Proportion Abstinent Reference* 

NRT 0.13 (0.06-0.20) 

Aubin et al, 2008; Bohadana et al, 2000; Jorenby et al, 

1999; Nielson and Fiore, 2000; Silagy et al,  2002; 

Raw, McNeill, and West, 1998 

Bupropion 0.225 (0.15-0.30) 

Jorenby et al, 2006; Fossati et al, 2007; Jorenby et al, 

1999; Nides et al, 2008; Silagy et al, 2002; Gonzales 

et al, 2006 

Varenicline 0.215 (0.18-0.25) 
Niaura et al, 2008; Garrison et al, 2008; Rigotti et al, 

2010; Gonzales et al, 2006; Nides et al, 2008 

Non-pharmacologic-

assisted 
0.05 (0.03-0.07) 

Hughes et al, 2004; Raw, McNeill, and West, 1998; 

Foulds et al, 2004; Fiore, 2000 
NRT = Nicotine Replacement Therapy 

* Refer to Reifsnider (2011). 

 

Successful quitters are referred to as former smokers and are at risk of relapse 

(refer to Section 4.2.5 for more explanation) as they move through the disease 

progression and accounting modules each year. Individuals who did not successfully quit 

smoking loop through the disease progression and accounting modules each year until 

death. 

4.2.4 Disease progression 

Although smoking is a risk factor for numerous non-communicable diseases, we 

chose to focus on lung cancer, chronic obstructive pulmonary disease (COPD), stroke, 

and coronary heart disease (CHD), for two reasons. First, these four diseases represent 

significant epidemiologic and economic burdens to American society [US DHHS, 2004] 

and second, good data exist on the probabilities and outcomes for these disease states in a 

smoking population. Diseases are either present/absent with the possibility of acute 

exacerbation or improvements in condition. Individuals may develop one or more 

smoking-related condition. Estimates of lung cancer, COPD, stroke, and CHD were 

determined by the literature and considered to be dependent upon demographic attributes 
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(age and gender) and the individual‘s smoking status - current smoker or former smoker. 

The disease progression module updates the individual‘s health state annually. The health 

state not only takes account of diagnoses of chronic conditions (and corresponding health 

utilities), but also considers incident complications associated with each co-morbidity, 

such as a COPD exacerbation. 

An individual may develop different levels of COPD (mild, moderate, or severe). 

In the absence of good data about COPD transitions between mild, moderate, and severe 

disease, we assumed that people diagnosed with COPD were diagnosed with mild, 

moderate, and severe disease according to proportions in the literature and that they 

remained in those ―states‖ until death. Baseline utility values are assigned to individuals 

who have COPD (Table 4.9 of Section 4.3.1). Individuals living with COPD are at risk of 

COPD exacerbations (minor or major). Refer to Table 5.3 for estimates of COPD.        

Annual incidence of COPD exacerbation is modeled for each COPD level by 

applying the binomial probability distribution. For example, the exacerbation rate per 

annum for mild disease of 0.79 is converted to an annual probability of 0.5462 [1-e
(0.79)

]. 

We assume a maximum of 4 possible COPD exacerbations annually. Since the expected 

value, E(x), of a binomial distributed random variable is the product of the number of 

trials [(n); 4] and the proportion of success [(p), COPD exacerbation] we compute the 

likelihood of independent COPD exacerbations to be 0.1366. The probability table is 

given in Table D.2 of the Appendix. Next, we determine how many major exacerbations 

occurred using the binomial distribution formula and given the annual number of COPD 

exacerbations and the percentage of minor exacerbations (refer to Appendix Table D.3 
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for computed probabilities). COPD utility values are weighted based on the number and 

type of COPD exacerbations. COPD exacerbations lower the baseline COPD utility 

values for a period of 3 months. 

Table 4.3: Lifetime probability of developing COPD, by gender and smoking status. 

Risk of developing COPD
a
 Cumulative/lifetime probability of COPD** 

      Current smoker  

            Male 0.32 

            Female 0.32 

      Former smoker/non-smoker*    

            Male 0.13 (0.12-0.14) 

            Female 0.13 (0.12-0.14) 

Severity of COPD
b
 Proportion in each severity category 

      Mild disease  70.34% (68-73%) 

      Moderate disease 19.33% (19-20%) 

      Severe disease 10.33% (8-13%) 

COPD exacerbation
c
 Exacerbation frequency (per annum) 

      Mild disease  0.79 

      Moderate disease 1.22 

      Severe disease 1.47 

Minor exacerbation
c
  

      Mild disease 94% 

      Moderate disease 93% 

      Severe disease 90% 

COPD = chronic obstructive pulmonary disease 

*We assume a former smoker carries the same risk as a non-smoker 

** Lifetime probability calculated by converting lifetime rate to annual probability using sex-

specific life expectancy tables for smokers at 50 years; former smokers group denominator 

calculated using the average LE between current smokers and general population 

(a) Reference is Pelkonen et al. (2008), (b) Reference is Wilson, Devine, and So (2000), (c) 

Reference is Spencer et al. (2005) [(refer to Reifsnider (2011)] 

 

 Individuals are at risk of multiple stroke exacerbations over their lifetime. 

Estimates of stroke are provided in Table 4.4. Stroke utility values are weighted to reflect 

the two month period following the first stroke event. Subsequent strokes result in a 

permanent decrement in the stroke utility value. Utility values for stroke are shown in 

Table 4.9. 
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Table 4.4: Age-standardized rate of stroke per 100,000 person-years, by gender and smoking status. 

 Current smoker Former smoker* 

      Male 656.6 496.4 

      Female 565.6 506.7 

* We assume a former smoker carries the same risk as a 

non-smoker 

 

 

 

 

 

 

 

 
Table 4.5: Risk of lung cancer, by smoking status.* 

Current smoker
**

  Incidence rate 

      Age < 55 years***  0.0000 

      Age 55-64 years  6.0000 

      Age 65-74 years  7.5000 

      Age 75-84 years  8.1667 

      Age > 84 years  8.1667 

* Incidence rate of lung cancer among nonsmokers, 

in person years (100,000) 

**Current smoker = averaged 1pack/day and 2 

packs/day for 25 years, 40 years, and 50 years 

 ***We assume that individuals less than 55 years of 

age do not develop lung cancer 

Former smoker: relative risk = 10 

Reference: in Reifsnider (2011) 
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Table 4.6: Age-specific, ten-year rate of CHD, by gender, age, and smoking status. 

Current smoker                           Incidence rate Former smoker*                     Incidence rate 

      Male        Male  

            Age < 30 years** 0.0000             Age < 30 years** 0.0000 

            Age 30-34 years 0.0336             Age 30-34 years 0.0200 

            Age 35-39 years 0.0504             Age 35-39 years 0.0300 

            Age 40-44 years 0.0672             Age 40-44 years 0.0400 

            Age 45-49 years 0.0672             Age 45-49 years 0.0400 

            Age 50-54 years 0.1008             Age 50-54 years 0.0600 

            Age 55-59 years 0.1176             Age 55-59 years 0.0700 

            Age 60-64 years 0.1512             Age 60-64 years 0.0900 

            Age 65-69 years 0.1848             Age 65-69 years 0.1100 

            Age 70-74 years 0.2352             Age 70 years 0.1400 

            Age > 74 years** 0.2352             Age > 74 years** 0.1400 

      Female        Female  

            Age < 30 years** 0.0000             Age < 30 years** 0.0000 

            Age 30-34 years 0.0074             Age 30-34 years 0.0050 

            Age 35-39 years 0.0147             Age 35-39 years 0.0100 

            Age 40-44 years 0.0294             Age 40-44 years 0.0200 

            Age 45-49 years 0.0441             Age 45-49 years 0.0300 

            Age 50-54 years 0.0735             Age 50-54 years 0.0500 

            Age 55-59 years 0.1029             Age 55-59 years 0.0700 

            Age 60-64 years 0.1176             Age 60-64 years 0.0800 

            Age 65-69 years 0.1176             Age 65-69 years 0.0800 

            Age 70-74 years 0.1176             Age 70-74 years 0.0800 

            Age > 74 years** 0.1176             Age > 74 years** 0.0800 

CHD = coronary heart disease 

* We assume a former smoker carries the same risk as a non-smoker 

**We assume that individuals less than 30 years of age do not develop  CHD 

***We assume the risk for CHD in the oldest age group is equal to the next closest age group 

Reference: in Reifsnider (2011) 

 

Improvements in condition are taken into account by allowing the health state 

utility to be modified for post-exacerbation improvements over time, which is relevant 

for acute events such as stroke and COPD exacerbations. For example, patients who have 

suffered a stroke are considered to have a history of stroke, which is an improvement 

over the actual stroke event itself, and patients who have suffered more than one stroke 

are considered to have a history of multiple strokes. An individual who experiences a 

stroke has a corresponding utility of 0.425 for the event itself (in this case, we assume 

quality of life is seriously affected for two months) [Wolf et al., 1992 (in Reifsnider, 

2011)].  After two months, the individual‘s condition improves but still has an average 
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utility considerably worse than perfect health, 0.725, reflecting stroke-related disability 

[Howard et al., 2008]. If the same person has an additional stroke, the utility drops 

substantially because we assume that multiple strokes lead to significant 

disability/morbidity. 

Individuals are at risk for disease-specific mortality per annum. We model two 

causes of death - disease-specific mortality and all-cause mortality - which allows both 

deaths from smoking-related diseases of interest and death from natural causes to be 

taken into account. Deaths due to lung cancer, COPD, stroke, and CHD complications are 

accrued within the disease progression module. Mortality from all causes is determined in 

the accounting module.  

Case fatality rates are used to estimate disease-specific risk of mortality (Table 

4.7). Case fatality rates are specific to those people who have already been diagnosed 

with a disease; that is the proportion of individuals with a disease who die from the 

disease during a given time period. Information is not available for smoking status-

adjusted case fatality rates. Since the incidence rates for disease have been adjusted by 

smoking status, there is no reason to think that once diagnosed with the disease of 

interest, smokers should have differential risk of death than non-smokers. So, once 

individuals have the disease of interest, we assume their prognosis is similar.  
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Table 4.7: Case fatality rates over the time period of interest. 

Co-morbidity Case fatality rate Reference 

CHD   

      At 1 year 44.5% MacIntyre et al, 2000 

      At 5 years 76.5%  

      At 10 years 87.6%  

Stroke (exacerbation)   

      1 year overall 35% (32-38%) Nieuwkamp et al, 2009; Feigin et al, 2003 

Lung Cancer   

      At 5 years 85% Parkin et al, 2002 

COPD   

      After at 1+ major exacerbation  15.6% Hoogendoorn et al, 2010 

CHD = coronary heart disease; COPD = chronic obstructive pulmonary disease 

 

We assume the case fatality rate of CHD and lung cancer to increase linearly over 

time. COPD-related death is possible if at least one major exacerbation occurred, 

regardless of the level of disease (mild, moderate, or severe). A case fatality rate of 35 

percent is assumed if an individual experiences at least one stroke annually. 

4.2.5 Accounting module 

The accounting module serves several purposes. First, patient attributes including 

age and health utilities and QALYs (refer to Section 4.3.1) are periodically updated. 

Next, non-disease-specific all-cause mortality is determined in the accounting module 

and recidivism after successful treatment. Outcomes are measured to draw insights into 

the long-term health and economic effects of smoking cessation. 

We used life tables from the Centers for Disease Control and Prevention 

(CDC)/National Center for Health Statistics (NCHS) on age-specific, gender-specific, all-

cause mortality in the American population [Rogers and Powell-Griner, 1991 (in 

Reifsnider, 2011)] to determine non-disease-specific death. The CDC/NCHS data on all-

cause mortality in the American population includes deaths from diseases we are 

interested in tracking in the model (i.e. lung cancer, COPD, stroke, CHD) but will include 
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―healthy‖ nonsmokers as a potential balance. We expect the incidence of death due to 

lung cancer, COPD, stroke, and heart disease to be lower in the healthy, nonsmoking 

population, which may help counter some of the possible/theoretical double counting of 

deaths in the model. It is unclear how to fully separate these risks at this time since we do 

not have a measure for ―all-cause mortality, excluding deaths from lung cancer, COPD, 

stroke, and heart disease‖. 

Using the published literature, we estimated the probability of recidivism after 

successful treatment (Table 4.8). Former, successfully treated, smokers can be assumed 

to relapse according to annual probability, which is based upon the total time abstinent; 

that is to say, the longer a former smoker has remained abstinent from smoking, the more 

likely he/she is to continue to refrain. There is no time period after which a former 

smoker has no risk of relapse. Gilpin, Pierce, and Farkas (1997; in Reifsnider, 2011) 

established in their cohort study of 1449 former smokers that even after 10 years of 

abstinence from smoking, there was no time period after which former smokers had no 

risk of relapse. Therefore, although the risk of relapse diminishes significantly over time, 

no former smoker is ever completely immune to the potential for relapse. Recidivism 

rates depend on the number of years abstinent and are not treatment specific. 

 

 

 

 

 



 82 

Table 4.8: Probability of recidivism after 12 months continuous abstinence (defined as non-treatment-

specific, prolonged abstinence beyond 12 months). 

Time period  

Proportion relapsed 

(among those who 

were continuously 

abstinent at 12 mos) 

Reference* 

Years 1-2 0.165 (0.09-0.24) 
Hughes et al, 2008; Gilpin, Pierce and Farkas, 1997; Wetter et al, 

2004 

Years 2-5 0.097 (0.024-0.17) Wetter et al, 2004; Hughes et al, 2008; Krall et al, 2002 

Years 5-10 0.0425 (0.005-0.08) Wetter et al, 2004; Krall et al, 2002; Hughes et al, 2008 

Years 10+ 0.0055 (0.001-0.01) Cromwell et al, 1997; Krall et al, 2002 

* Refer to Reifsnider (2011) 

 

In addition to updating patient characteristics, the model generates statistics on 

smoking prevalence, incidence of relapse, average QALYs gained due to an intervention 

(i.e. effectiveness), death from smoking-related conditions, smoking cessation treatment 

costs, and costs associated with managing a smoking-related chronic disease or 

exacerbation (refer to Section 4.3.2 for cost information). Epidemiologic and economic 

outcomes can be viewed annually or cumulatively.  

4.3 Health and economic measures 

4.3.1 Quality of life 

Quality-adjusted life year (QALY) is a measure of disease burden on both quality 

and quantity of life and can account for morbidity and mortality on quality of life. A 

QALY can be thought of as a year of life quantified by the quality of life or value of 

living in a particular state of health. The quality of life element is measured in terms of 

health utilities. The basic concept behind a QALY is that the amount of time spent in a 

particular health state is weighted by a health state utility score which attempts to reduce 

multi-dimensional health outcomes to a single representation or measure of health. Health 

state utility scores represent the severity of a disease relative to perfect health and are 

scaled between 0 (indicating death) and 1 (indicating perfect health). QALYs provide a 
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common measurement to compare treatment options in terms of health related quality of 

life by quantifying how much someone‘s life could be extended or improved by an 

intervention.  

Health state utilities, as a measure of quality of life associated with particular 

conditions, were drawn from the peer-reviewed literature (Table 4.9). We incorporated 

gender- and age-specific utility values, where possible. We assumed that smokers in good 

health had a slightly lower utility than former smokers in good health and that quality of 

life decreased with age, in accordance with the literature (Table 4.10). 

Table 4.9: Health state utility values for smoking-related co-morbidity. 

Co-morbidity Utility Reference* 

CHD 
0.645  

(0.50-0.79) 

Gold et al, 1998; Sullivan and 

Ghushchyan, 2006; Barton et al, 2008 

Stroke   

      Months 0-2 after first stroke event 
0.425  

(0.33-0.52) 

Wolf et al, 1992; Hoerger et al, 2004; 

Sturm et al, 2002; Tengs and Lin, 2003 

     Months 2+ after first stroke event  

     (improvement after rehabilitation) 

0.725  

(0.55-0.90) 

Tengs et al, 2001, 2003; Duncan et al, 

2000; Howard et al, 2008; Barton et al, 

2008; Mittmann et al, 1999; Tengs and 

Lin, 2003 

      After subsequent/second stroke  

      (lasting disability) 

0.24  

(0.15-0.33) 

Howard et al, 2008; Tengs and Lin, 

2003 

Lung Cancer 
0.50  

(0.39-0.61) 
Gold et al, 1998; Trippoli et al, 2001 

COPD   

      Baseline mild disease 
0.82  

(0.81-0.83) 

Spencer et al, 2005; Rutten-van Molken 

et al, 2006 

      Baseline moderate disease 
0.775  

(0.72-0.83) 

Spencer et al, 2005; Rutten-van Molken 

et al, 2006 

      Baseline severe disease 
0.70  

(0.67-0.73) 

Spencer et al, 2005; Rutten-van Molken 

et al, 2006 

      Minor exacerbation (3 mos) mild disease 0.72 Spencer et al, 2005 

      Minor exacerbation (3 mos) moderate 

disease 
0.658 Spencer et al, 2005 

      Minor exacerbation (3 mos) severe disease 0.475 Spencer et al, 2005  

      Major exacerbation (3 mos) mild disease 0.52 Spencer et al, 2005 

      Major exacerbation (3 mos) moderate 

disease 
0.45 Spencer et al, 2005 

      Major exacerbation (3 mos) severe disease 0.41 Spencer et al, 2005 

CHD = coronary heart disease; COPD = chronic obstructive pulmonary disease 

* Refer to Reifsnider (2011) 
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Table 4.10: Health state utility values for current and former smokers.  

Current smokers Female utility value Male utility value 

Age 24 and younger* 0.91 0.93 

Age 25 - 29 0.89 0.91 

Age 30 - 34 0.87 0.88 

Age 35 - 39 0.84 0.86 

Age 40 - 44 0.82 0.83 

Age 45 - 49 0.80 0.81 

Age 50 - 54 0.78 0.78 

Age 55 - 59 0.76 0.76 

Age 60 - 64 0.74 0.74 

Age 65 - 69 0.72 0.71 

Age 70 and older* 0.70 0.69 

Former smokers Female utility value Male utility value 

Age 24 and younger* 0.94 0.95 

Age 25 - 29 0.92 0.93 

Age 30 - 34 0.9 0.93 

Age 35 - 39 0.89 0.92 

Age 40 - 44 0.87 0.9 

Age 45 - 49 0.86 0.89 

Age 50 - 54 0.84 0.87 

Age 55 - 59 0.82 0.85 

Age 60 - 64 0.79 0.83 

Age 65 - 69 0.77 0.8 

Age 70 and older* 0.75 0.78 

* Assumption; Note: quality of life expressed as mean, where 1.0 is equal to 

optimum health and 0.0 is equal to death 

Refer to Reifsnider (2011) 

 

Incorporating concepts from financial analyses and the health state utilities leads 

to the development of the QALY equation. A common practice in economic evaluations 

is to discount both future costs and benefits. Discounting in the context of economic 

evaluations deals with time preference and implies that costs and benefits occurring at 

different points in time are valued differently. That is, individuals prefer to enjoy benefits 

in the present while postponing any negative effects. For example, taking into account the 

opportunity cost of investing now rather than in the future would mean that future costs 

must be discounted. Discounts are applied on an annual basis. Expenses sustained during 

the first year would not be discounted. Let us assume that a standard annual discount rate 

of 3.0 percent is applied for all economic outcomes. Expenses sustained during the 
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second year would then be discounted by 3.0 percent which means that these expenses 

would be divided by 1.03. Expenses acquired during the third year would be divided by 

1.03
2
 and each consecutive year would be discounted by an additional 3.0 percent. 

Therefore the discount factor is given by equation (2) where r is the annual discount rate 

and t is time in years. 

                                                  Discount factor =  (4.1) 

 

Similarly, this economic concept of discounting is utilized in health care management. 

Annual discount rates are applied to health outcomes to account for the fact that health is 

worth more now than later. 

Equation (1) was used to calculate the aggregate quality of life-years over the 

patient‘s lifetime and is the sum of all QALYs associated with different health states over 

the natural lifetime of the patient (i.e. for each year of life in each health state, the 

relative/weighted value (utility) of that year in that health state). We define t as the time 

in years in which the patient is cycling through the simulation model.  The health state 

utility during year t is defined by Ut and represents an annual assessment of quality of 

life. Ut can be thought of as the ―expense‖ to the patient of living in a certain health state 

during year t. We define T as the total number of years the patient cycles through the 

simulation model until death, and r is the annual discount rate applied for all economic 

and health outcomes. A standard annual discount rate of 3.0 percent was applied for all 

economic and health outcomes [Gold et al., 1996]. For example, person A is healthy in 

year 1 (utility value = 1), has a stroke in year 2 (utility value = 0.5), goes through 

rehabilitation and attains some functional recover in year 3 (utility value = 0.75), and dies 
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at the beginning of year 4 (utility value = 0). This person‘s QALY over the 4 year period 

of time is 1 + 0.485437 + 0.706947 + 0 = 2.19238. 

  (4.2) 

 

4.3.2 Costs 

 We use 2010 costs of co-morbidities and smoking cessation products. Treatment 

is paid for upfront; if a patient dies during year one then the total cost of treatment has 

been incurred. Costs of pharmacological interventions are summarized in Table 4.11. 

Zero cost is associated with the non-pharmacologic-assisted option. Cost for each co-

morbidity and event costs (2010 values, $US) were derived from multiple sources and are 

shown in Table 4.12.   

Table 4.11: Costs (2010 values, $US) of pharmacological treatment. 

Treatment 
Annual cost in 

2010 US$ 
Reference 

NRT $485.29 Howard et al, 2008 

Bupropion $348.69 Red Book: Pharmacy‘s 

Fundamental Reference 2010 

Varenicline $430.53 Red Book: Pharmacy‘s 

Fundamental Reference 2010 

Non-pharmacologic-assisted $0.00  

NRT = Nicotine Replacement Therapy 
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Table 4.12: Cost (2010 values, $US) of treating co-morbidity and event costs. 

Co-morbidity/Event 
Annual cost in 

2010 $US 
Reference* 

Cost of treating CHD   

      First year after diagnosis $8,930 Tsevat et al, 2001; 

Howard et al, 2008 

      Subsequent years after diagnosis $4,239 Tsevat et al, 2001; 

Howard et al, 2008 

Cost of treating stroke   

      First year after diagnosis $41,391 Taylor et al, 1996 

      Subsequent years after diagnosis $17,688 Taylor et al, 1996 

Phase-specific cost of treating lung cancer   

      Initial treatment phase (5.7 mos) $13,759 Kuticova et al, 2005 

      Secondary treatment phase (7.4 mos) $4,468 Kuticova et al, 2005 

      Terminal treatment phase (5.6 mos) $11,249 Kuticova et al, 2005 

      % receiving terminal treatment only (no initial 

treatment) 

9% 

Kuticova et al, 2005 

      % receiving secondary treatment after failing initial    

treatment 

29% 

Kuticova et al, 2005 

      % receiving terminal treatment immediately after failing 

initial treatment  

27% 

Kuticova et al, 2005 

Annual cost of treating COPD $5,369 Halpern et al, 2003 

CHD = coronary heart disease; COPD = chronic obstructive pulmonary disease 

* Refer to Reifsnider (2011) 

 

We seek to assess the gains in health relative to the costs of different health 

interventions, therefore annual discounting was also applied to total costs (i.e. treatment 

cost, costs of co-morbidity, co-morbidity event costs). Discounting of costs assumes that 

a dollar in the present is worth more than a dollar in the future. Let  represent the total 

cost incurred during year t. Equation (2) was used to calculate the sum of all costs over 

the lifetime of the patient. 

  (4.3) 

 

4.4 Model Accreditation 

Integrated practices were employed during the model development process to 

ensure the credibility of the model. First, the assumptions underlying the conceptual 

model were established based upon consultations that took place with clinicians during 
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the formative stages of the simulation model. Additionally, discussions with clinicians 

established that the model structure and causal relationships reasonably represent the 

actual system. During the implementation stages of the model, testing verified that the 

logic and mathematical correlations behind the simulation model operate according to 

model specifications. In addition to the interactions of the aggregate model, each sub-

module was evaluated to determine the appropriate level of detail. Next, input data and 

performance of output measures were assessed during the modeling building process to 

substantiate model accuracy in accordance with the models intended purpose. Clinicians 

performed both qualitative and quantitative analysis of output behaviors to confirm that 

the predicted values were of reasonable magnitude. 

4.5 Conclusions 

We developed a discrete event simulation model to explore comparative 

effectiveness of various smoking cessation options available to smokers in a US 

population. Recognizing that smoking has significant health impacts in terms of 

morbidity and mortality from smoking-related diseases, this model expands upon the 

current literature by (1) simultaneously comparing multiple pharmacologic and non-

pharmacologic options for smoking cessation, which many clinical trials have failed to 

do, and (2) using an innovative modeling approach, discrete event simulation, which 

allows for individual-level variation in smoking intensity, risk, treatment adherence, and 

relapse to be taken into account in assessing the effectiveness of various smoking 

cessation strategies. 
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In terms of limitations and ongoing research needs, we identified a need for better 

smoking-related disease risk data by pack-years. Much of the available data on health 

risks from smoking is reported according to general categories of ―never smoked‖, 

―former smoker‖, ―light current smoker‖ and ―heavy current smoker‖, the latter two of 

which are not well defined and not well validated. Additionally, recognizing that smoking 

status and disease risk are both heavily dependent on socioeconomic and socio-

demographic characteristics, it would be useful in future models to incorporate additional 

information about race/ethnicity, education, income/wealth, and occupation, provided 

good data are available. These individual-level factors have been shown in the literature 

to be important confounders or mediators affecting the causal relationship between 

smoking and disease incidence.  Another limitation of this work is that we did not 

consider geographic or environmental factors related to smoking and disease risk; future 

work could compare risk of recidivism based on location (e.g., different states, urban 

versus rural) or environment (e.g., occupational environment, including other 

environmental exposures such as asbestos or atmospheric pollution). 
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CHAPTER FIVE 
 

ESTIMATING COST-EFFECTIVENESS OF ALTERNATVE SMOKING 

CESSATION STRATEGIES 

 

 

 The purpose of this chapter is to evaluate and analyze the results of the simulation 

model presented in Chapter 4. We introduce our key statistic for assessing cost-

effectiveness. A detailed comparative and sensitivity analysis of smoking cessation 

alternatives is presented and we discuss potential health policy impacts associated with 

the predictions of the model. 

5.1 Incremental cost-effectiveness ratio 

In this section we introduce analytical methods for comparing alternative 

treatment strategies. The incremental cost-effectiveness ratio (ICER) is a standard 

measure used to compare the cost-effectiveness of two treatment options. ICERs provide 

a common unit of measurement to estimate the additional cost and health outcome 

(measured in QALYs, refer to Chapter 5.3.1) obtained through an intervention. The ICER 

is computed by dividing the incremental cost (difference in average cost associated with 

two interventions) by the incremental health benefits (difference in average QALY of two 

interventions). Comparing different treatments in this manner answers questions about 

whether an intervention is efficient and comparatively efficient. Mathematically, the 

ICER is represented as follows: 

 
(5.1) 
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We let  and  signify the expected cost of the investigated treatment (  and the 

expected cost of the control treatment ( , respectively. Similarly, the expected health 

effectiveness of  and the expected health effectiveness of are denoted by  and 

, respectively.  

 In this dissertation, the parameters for the ICER are estimated from the simulation 

model (presented in Chapter 4) and therefore the true population cost and effectiveness is 

unknown with certainty. We can easily obtain confidence intervals (CIs) around the 

sample costs and effects, however in cost-effectiveness analysis we care about the 

uncertainty surrounding the ICER. This is not straightforward because when  and  

are two normal random variables (each variable is associated with a mean and variance) 

then the ratio has a standard Cauchy distribution. A Cauchy distributed variable does not 

have a theoretical mean and variance however it is characterized by its mode and median 

values. Therefore methods have been introduced to calculate CIs of Cauchy distributed 

ICERs including nonparametric bootstrapping [Hunink et al, 1993; Briggs, 1997; 

Campbell and Torgerson, 1999], Fieller‘s method [Chaudhary and Stearns, 1996], and the 

delta method [O‘Brien et al., 1994]. We focus on the use of nonparametric bootstrapping 

for significance testing of the ICER. 

 Black (1990) first introduced the incremental cost-effectiveness plane (Figure 5.1) 

to explain the comparative cost-effectiveness of bootstrap ICER estimates. The horizontal 

axis measures the incremental effectiveness of  and the incremental cost of  is 

measured by the vertical axis. Each of the four quadrants implies a different level of cost-

effectiveness. Points that imply an intervention is more effective while saving money 
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(dominant) fall in the south east (SE) quadrant. The north east (NE) quadrant indicates 

cost-effectiveness where health effect is positive at higher cost. If points lay in the north 

west (NW) quadrant, higher cost is associated with lower effectiveness and the 

intervention is excluded. When both cost and effect are low, points sit in the south west 

(SW) quadrant, and it is questionable whether a treatment is cost-effective compared to 

the control treatment.  

Δ Cost [(C), $US]  

 

NW 

 

Excluded 

(ΔE<0, ΔC>0) 

 

NE 

 

Cost-Effective 

(ΔE>0, ΔC>0) 

 

 

 

 

 

 

 

 

 

Δ Effect [(E), QALY] 

 

 

 

Questionable 

(ΔE<0, ΔC<0) 

 

SW 

 

 

 

 

Dominant 

(ΔE>0, ΔC<0) 

 

SE 

 

 

Figure 5.1: Incremental cost-effectiveness plane (NE = northeast quadrant; NW = northwest quadrant; SE = 

southeast quadrant; SW = southwest quadrant; QALY = quality adjusted life year). 

 

The cost-effectiveness plane helps answer questions about sampling uncertainty 

(e.g. what is the probability  is cost-effective relative to ). Estimates of treatment 

cost-effectiveness are important to health decision-makers who make determinations such 

as whether or not a treatment should be reimbursed. General rules for deciding which 

treatment (  or ) to choose are given in Table 5.1 [Cohen and Reynolds, 2008]. 
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Table 5.1: Implications of the cost-effectiveness plane. 

Quadrant Implication 

NE (+)  (investigated treatment) is cost-effective – cost-increasing tradeoff 

SE (-)  (investigated treatment) is dominant – choose  

SW (-)  (investigated treatment) is questionable – cost-reducing tradeoff 

NW (+)  (control treatment) is dominant – choose  

 

We acknowledge that there are limitations with using the ICER statistic. When 

significant uncertainty exists about the sign of the ICER it is difficult to interpret CIs 

around the ICER. ICERs located in the NE and SW quadrants (both yielding positive 

values) are hard to distinguish, as are ICERs falling in the NW and SE quadrants (both 

having negative values). Different quadrants indicate very different conclusions about the 

cost-effectiveness of the investigated treatment ( ). For example, ICERs located in the 

SE quadrant indicate that  is dominated by  and ICERS sitting in the NW quadrant 

indicate opposite results, that  is dominant. Therefore, reasonable caution should be 

taken when interpreting cost-effectiveness studies. 

5.2 Base-case analyses 

 This section presents the base case results of the simulation model to estimate 

health and economic outcomes of alternative smoking cessation strategies. Results of a 

cost-effectiveness analysis on base-case estimates are provided. 

5.2.1 Simulation parameters 

A cohort of 10,000 individuals was followed annually over a horizon of 1 year, 10 

years, 30 years, and lifetime with output measures observed over five scenarios, one 

simulation run for each intervention of interest and one simulation run with no treatment 

attempt. Cost of treatment options and smoking-related disease and health utility values 
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are summarized in Chapter 4.3. All costs and QALYs were discounted at an annual rate 

of 3%. 

To obtain tighter 95% confidence intervals around our performance values, 75 

replications were carried out leading to sufficiently small half-widths for most output 

variables. Common random numbers (CRNs) were applied to reduce stochastic variation 

between runs. CRNs are particularly important in disease modeling when comparing 

different treatment arms [Stout and Goldie, 2008].  

5.2.2 Base-case results 

The reader should refer to Table 5.2 for results of smoking prevalence over time. 

Among smokers attempting to quit smoking, 2 year recidivism rates among those alive at 

follow-up were the following: nicotine replacement treatment, 89.13%; bupropion, 

81.14%; varenicline, 81.98%, and non-pharmacologic-assisted, 95.84%. Nicotine 

replacement treatment, bupropion, varenicline, and non-pharmacologic-assisted had a 

recidivism rate of 93.67%, 89.07%, 89.55%, 97.58% among those alive at 30 years, 

respectively. 

Table 5.2: Smoking prevalence among those alive at follow-up. 

 2 years 10 years 30 years Lifetime 

NRT 89.13 93.42 93.67 N/A 

Bupropion 81.14 88.60 89.07 N/A 

Varenicline 81.98 89.10 89.55 N/A 

Non-pharmacologic-assisted 95.84 97.49 97.58 N/A 

No Treatment 100.00 100.00 100.00 N/A 
NRT = Nicotine Replacement Therapy; N/A = not applicable  
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Table 5.3: Prevalence of smoking-related disease. 

 2 years 10 years 30 years Lifetime 

NRT     

      CHD 1.04 5.95 20.07 31.78 

      At least one stroke 1.17 5.55 13.38 17.44 

            One stroke 1.17 5.45 12.72 16.13 

            Multiple strokes 0.00 0.10 0.66 1.32 

      Lung Cancer 0.04 0.23 0.96 1.73 

      COPD 0.81 3.81 9.18 12.07 

      At least one co-morbidity 3.03 15.03 39.81 54.65 

Bupropion     

      CHD 1.00 5.78 19.71 31.31 

      At least one stroke 1.16 5.58 13.34 17.43 

            One stroke 1.16 5.48 12.69 16.13 

            Multiple strokes 0.00 0.09 0.65 1.31 

      Lung Cancer 0.03 0.22 0.92 1.69 

      COPD 0.79 3.66 8.92 11.72 

      At least one co-morbidity 2.96 14.74 39.22 53.96 

Varenicline     

      CHD 1.02 5.83 19.76 31.32 

      At least one stroke 1.17 5.59 13.41 17.50 

            One stroke 1.17 5.49 12.74 16.19 

            Multiple strokes 0.00 0.10 0.67 1.31 

      Lung Cancer 0.03 0.23 0.92 1.68 

      COPD 0.78 3.67 8.94 11.79 

      At least one co-morbidity 2.98 14.83 39.35 54.10 

Non-pharmacologic-assisted     

      CHD 1.05 6.03 20.31 32.09 

      At least one stroke 1.19 5.62 13.55 17.64 

            One stroke 1.18 5.53 12.87 16.30 

            Multiple strokes 0.00 0.09 0.68 1.34 

      Lung Cancer 0.04 0.26 1.01 1.83 

      COPD 0.82 3.90 9.37 12.31 

      At least one co-morbidity 3.07 15.28 40.34 55.25 

No Treatment     

      CHD 1.06 6.11 20.48 32.27 

      At least one stroke 1.21 5.66 13.55 17.62 

            One stroke 1.20 5.56 12.87 16.29 

            Multiple strokes 0.00 0.10 0.68 1.33 

      Lung Cancer 0.04 0.27 1.05 1.88 

      COPD 0.83 3.99 9.56 12.48 

      At least one co-morbidity 3.12 15.48 40.67 55.56 
NRT = Nicotine Replacement Therapy; CHD = coronary heart disease; COPD = chronic obstructive 

pulmonary disease 
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Table 5.4: Prevalence of mortality. 

 2 years 10 years 30 years Lifetime 

NRT     

      CHD 0.58 5.09 18.80 30.47 

      Stroke 0.41 1.96 4.93 6.59 

            After one stroke 0.41 1.93 4.69 6.10 

            After multiple strokes 0.00 0.03 0.24 0.49 

      Lung Cancer 0.01 0.14 0.70 1.33 

      COPD 0.01 0.12 0.75 1.46 

      All-causes 0.78 4.96 24.46 60.15 

      Total 1.78 12.28 49.64 100.00 

Bupropion     

      CHD 0.56 4.95 18.46 30.01 

      Stroke 0.41 1.99 4.92 6.60 

            After one stroke 0.40 1.96 4.67 6.11 

            After multiple strokes 0.00 0.03 0.25 0.49 

      Lung Cancer 0.01 0.13 0.67 1.29 

      COPD 0.01 0.12 0.74 1.43 

      All-causes 0.78 4.96 24.61 60.67 

      Total 1.76 12.15 49.41 100.00 

Varenicline     

      CHD 0.57 4.98 18.51 30.05 

      Stroke 0.41 1.98 4.93 6.61 

            After one stroke 0.41 1.94 4.69 6.12 

            After multiple strokes 0.00 0.03 0.25 0.49 

      Lung Cancer 0.01 0.14 0.68 1.29 

      COPD 0.01 0.13 0.74 1.43 

      All-causes 0.78 4.92 24.62 60.62 

      Total 1.77 12.13 49.48 100.00 

Non-pharmacologic-assisted     

      CHD 0.60 5.14 19.03 30.81 

      Stroke 0.42 2.01 4.98 6.66 

            After one stroke 0.42 1.98 4.73 6.15 

            After multiple strokes 0.00 0.04 0.25 0.50 

      Lung Cancer 0.01 0.16 0.74 1.38 

      COPD 0.01 0.13 0.77 1.50 

      All-causes 0.78 4.91 24.28 59.65 

      Total 1.81 12.35 49.80 100.00 

No Treatment     

      CHD 0.59 5.22 19.18 30.95 

      Stroke 0.41 2.01 5.00 6.68 

            After one stroke 0.41 1.98 4.76 6.19 

            After multiple strokes 0.00 0.04 0.24 0.50 

      Lung Cancer 0.01 0.16 0.77 1.44 

      COPD 0.01 0.13 0.78 1.51 

      All-causes 0.78 4.94 24.36 59.41 

      Total 1.80 12.46 50.09 100.00 
NRT = Nicotine Replacement Therapy; CHD = coronary heart disease; COPD = chronic obstructive 

pulmonary disease 
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Results of the base-case analysis found that on average bupropion was most 

effective at reducing prevalence of lung cancer, COPD, stroke, and CHD. Without 

intervention on average 55.56% of smokers will develop at least one smoking-related 

condition over the lifetime of the simulation. Bupropion was also found on average to 

reduce mortality prevalence the most. Compared with the non-pharmacologic-assisted 

cessation option, all pharmacologic treatments (varenicline, NRT, and bupropion) prevent 

smoking-related disease and death. 

Base-case estimates of average cost and effect are summarized in Figure 5.2. The 

average discounted QALYs a cohort of 10,000 former smokers could accumulate over a 

lifetime is 15.14 (95% CI half-width of 0.01). Average QALYs attained over a lifetime 

when smokers make no attempt at quitting is 14.48 (95% CI, 14.47-14.49) at an average 

cost of $28626 (95% CI, $28464-$28788). The high cost associated with the no treatment 

option is attributable to costs incurred from smoking-related disease.  

  No statistically significant differences were found in the average lifetime costs or 

effects (QALYs) of bupropion (average cost between $28004-$28391, average effect 

between 14.70-14.72) and varenicline (average cost between $28240-$28573, average 

effect between 14.69-14.71). Bupropion was more effective and less costly than NRT. No 

statistical differences were found in cost of bupropion and non-pharmacologic-assisted 

cessation, however effectiveness increases with bupropion by 0.16 QALYs. Average cost 

of varenicline was not statistically different from the other four treatment arms, however 

it was statistically more effective than NRT, non-pharmacologic-assisted, and no 

treatment. The population could increase their average effect over a lifetime by 0.14 
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QALYs with NRT and 0.07 QALYs with non-pharmacologic-assisted cessation with no 

statistical difference in average cost. All options to assist smoking cessation improved 

health outcomes compared with no treatment, however only bupropion did so at lower 

average cost. 

 
Figure 5.2: Average discounted cost and effect of the five treatment arms (with 95% CIs). 

  

  Cost-effectiveness analyses were performed after 2 years, 10 years, 30 years, and 

lifetime and were measured using the ICER statistic (refer to Section 5.1). We first 

calculate ICERs by comparing each treatment option (NRT, bupropion, and varenicline, 

non-pharmacologic-assisted) to no intervention. ICERs The results of the analysis are 

presented in Table 5.5. 

 Regarding NRT, bupropion, and varenicline in reference to no treatment we 

observe that cost-effectiveness improves over time. Costs in year 2, primarily attributable 



 99 

to treatment expense, are high and the health benefits are small. However, over a lifetime 

smoking-related disease and mortality are less, and in turn costs are reduced because cost 

of prevented disease is not accumulated and QALYs are higher. The ICER for bupropion 

versus no treatment is the smallest (-$1857.71) followed by varenicline (-$1005.64). 

Although the incremental cost of NRT is very low compared to bupropion and 

varenicline, it is also less effective by 0.09 and 0.10 QALYs, respectively. 

We have to take caution in assessing the non-pharmacologic-assisted option 

compared to no treatment. This is a case where the negative ICER value is misleading. 

Consider year 10 for example in which the incremental cost is negative (-$102.11), 

however the incremental health effect is zero. Money is saved because incidences of 

smoking-related conditions are reduced however, QALYs are not substantially impacted.  

Table 5.5: Smoking cessation strategies compared to no treatment. 

Treatment 2 years 10 years 30 years lifetime 

NRT 
          Incremental cost $459.98 $316.34 $40.15 -$16.82 

      Incremental effect 0.01 0.04 0.10 0.13 

      ICER $76,663.33 $7,869.15 $389.05 -$124.68 

Bupropion         

      Incremental cost $316.56 $114.36 -$317.76 -$428.76 

      Incremental effect 0.01 0.07 0.18 0.23 

      ICER $30,733.98 $1,636.05 -$1,773.21 -$1,857.71 

Varenicline         

      Incremental cost $399.77 $247.51 -$105.78 -$219.33 

      Incremental effect 0.01 0.07 0.17 0.22 

      ICER $40,792.86 $3,688.67 -$621.50 -$1,005.64 

Non-pharmacologic-assisted         

      Incremental cost -$15.52 -$102.11 -$198.29 -$180.78 

      Incremental effect 0.00 0.02 0.05 0.07 

      ICER N/A -$6,462.66 -$4,157.02 -$2,760.00 

 

We next analyzed ICERs over a lifetime horizon by comparing the four smoking 

cessation strategies to each other (NRT, bupropion, varenicline, non-pharmacologic-

assisted) in a successive stepwise manner based on costs incurred and effects (measured 
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in QALYs) achieved. The four competing smoking cessation interventions were ranked 

in order of increasing effectiveness and we compared cost-effectiveness of each strategy 

to the strategy with the next highest QALY [Hallinen et al., 2010]. We want to determine 

how available interventions compare to one another by obtaining maximum effect before 

taking account of cost. Tables 5.6-5.8 show the results of the incremental analysis.  

 In Table 5.6 the negative ICER for varenicline means that by adopting varenicline 

instead of NRT effect is increased and cost is reduced. NRT is dominated by varenicline 

because it is more expensive and less effective and is therefore excluded. The ICERs are 

recalculated (Table 5.7) for the three remaining treatment options. We observe from 

Table 5.7 that non-pharmacologic-assisted is dominated by varenicline and is the next 

alternative excluded. Table 5.8 compares bupropion versus varenicline to show that 

bupropion is the dominant option.  

Table 5.6: Stepwise comparison of smoking cessation interventions – step one. 

Treatment 
Mean Cost 

(C) 

Mean 

Effect* (E) 

Incremental 

Cost (ΔC) 

Incremental 

Effect (ΔE) 

ICER 

(ΔC/ΔE) 

Non-pharmacologic-assisted $28,445.29 14.55 $28,445.29 14.55 $1955.37 

NRT $28,609.25 14.62 $163.95 0.07 $2359.63 

Varenicline $28,406.74 14.70 -$202.50 0.08 -$2436.19 

Bupropion $28,197.31 14.71 -$209.44 0.01 -$16452.10 

* Effect is measured in QALYs 

 
Table 5.7: Stepwise comparison of smoking cessation interventions – step two. 

Treatment 
Mean Cost 

(C) 

Mean 

Effect* (E) 

Incremental 

Cost (ΔC) 

Incremental 

Effect (ΔE) 

ICER 

(ΔC/ΔE) 

Non-pharmacologic-assisted $28,445.29 14.55 $28,445.29 14.55 $1955.37 

Varenicline $28,406.74 14.70 -$38.55 0.15 -$252.62 

Bupropion $28,197.31 14.71 -$209.44 0.01 -$16452.10 

* Effect is measured in QALYs 

 
Table 5.8: Stepwise comparison of smoking cessation interventions – step three. 

Treatment 
Mean Cost 

(C) 

Mean 

Effect* (E) 

Incremental 

Cost (ΔC) 

Incremental 

Effect (ΔE) 

ICER 

(ΔC/ΔE) 

Varenicline $28,406.74 14.70 $28,406.74 14.70 $1932.45 

Bupropion $28,197.31 14.71 -$209.44 0.01 -$16452.10 

* Effect is measured in QALYs 
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5.3 Uncertainty Analyses 

 To allow for uncertainty in the economic evaluation, we first perform a 

probabilistic sensitivity analysis on certain base-case estimates. Next, key parameters are 

varied in univariate and multivariate sensitivity analyses to estimate the influence of 

different parameters on the results. Various factors influence the choices of health policy 

decision-makers, therefore we assess the sensitivity, acceptability, and efficiency of the 

results obtained from the simulation.  

 5.3.1 Stochastic uncertainty in comparing costs and effects 

 Probabilistic sensitivity analysis was performed to confirm the validity of the 

base-case incremental cost-effectiveness ratios (ICERs) for bupropion compared to 

varenicline. In Section 5.2.2 we explained the uncertainty for the average cost and effect 

and observed no statistical difference between bupropion and varenicline. Comparison of 

bupropion to varenicline (Table 5.8) showed varenicline is dominated by bupropion. In 

this section we assess the uncertainty for the incremental cost and effect ratio of 

bupropion in reference to varenicline.  

We applied the nonparametric bootstrap method using the cost and effect 

estimates of the two treatment strategies obtained from the simulation to estimate a 

confidence interval (95%) for the ICER. Four steps were required to produce a bootstrap 

distribution for the ICER. First, paired cost and effect estimates from the simulation for 

bupropion were sampled with replacement. The sample size was that of the original 

sample [the number of replications in the DES model (i.e. 75)]. We obtain a new estimate 

for average cost and effect with bupropion. Second, cost and effect pairs for the control 
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treatment (i.e. varenicline) were sampled with replacement 75 times and a new estimate 

for average cost and effect with the control treatment was attained.  Next, the ICER of the 

bootstrapped re-samples was computed. Sampling and calculation of the ICER was 

performed 1000 times [Briggs et al., 1997; Campbell and Torgerson, 1999]. Construction 

of the 95% confidence interval (CI) for the bootstrapped ICERs was achieved using the 

percentile method [Briggs et al., 1997; Campbell and Torgerson, 1999]. ICER estimates 

were ranked from smallest to largest and the lower and upper bounds of the CI were 

represented by the 25
th

 and 976
th

 observations, respectively.  The results of bootstrapping 

to compare bupropion to varenicline are provided in Table 5.9. 

Table 5.9: Incremental costs and effects (QALY) of 1,000 bootstrapped comparisons of Bupropion vs NRT. 

Bupropion versus varenicline Mean (CI) 
Median ICER 

[(ΔC/ ΔE), bootstrap CI] 
 

    Incremental Cost (ΔC) -208.86 -13738.83 

(-208723.42, 14518.98) 

 

    Incremental Effect (ΔE) 0.01  

 

 The 1000 ICER estimates were plotted on the cost-effectiveness plane (Figure 

5.3) allowing us to evaluate uncertainty of our bootstrapped ICERs. In the base-case 

analysis bupropion was found to dominate varenicline (indicated by the square in Figure 

5.3). Although the estimates cover all four quadrants, indicating some uncertainty about 

whether bupropion is dominant or cost-effective, the scatter plot shows bupropion to be 

the dominant (more effective and less costly) treatment strategy with a high probability of 

0.849. This supports the results of our base-case analysis. All four quadrant probabilities 

are summarized in Table 5.10.  
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Figure 5.3: Scatter plot of the 1,000 bootstrap pairs presented on the cost-effectiveness plane of bupropion 

vs. varenicline. 

 
Table 5.10: Quadrant probabilities of bupropion vs. varenicline. 

Quadrant Probability 

NE (bupropion is cost-effective) 0.055 

NW (varenicline dominates) 0.006 

SW (bupropion is questionable) 0.090 

SE (bupropion dominates) 0.849 

    

5.3.2 Sensitivity analysis 

 Multiple one-way sensitivity analyses were performed on the lifetime ICER to 

assess the robustness of the simulation when key input parameters are varied. These 

parameters include all health state utility values of the smoking-related diseases, discount 

rate on costs and QALYs, abstinence rates, and treatment costs. Holding other variables 

constant, we varied the group of recidivism rates at a low and high value (refer to table 

4.8) in a multi-way sensitivity analysis. Finally, sensitivity analysis is restricted to subsets 

of the base-case population (e.g. assessing a group of all females).  
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First, health state utilities were altered one at a time at the low value and high 

value presented in Table 4.9. The discount rate (on both costs and QALYs) was adjusted 

to 1% and 5% [Weinstein et al., 1996]. Results show that our model is strong in that none 

of the incremental costs and incremental effects resulting from multiple univariate 

sensitivity analyses on health state utilities differed from our base-case estimate. Base-

case ICER for bupropion versus varenicline ( -$16452.10 per QALY saved) was sensitive 

to the discount rate at 1% and 5% with a percent change to the base-case ICER of 29% 

and -30%, respectively.   

Next, we evaluated the efficacy rates (percent who stop smoking after the first 

year) for bupropion and varenicline over the range obtained from our meta-analysis 

(Table 4.2; Bupropion: 15%-30%, Varenicline: 18%-25%) using a step size of 1%. 

Figure 5.5 shows the impact of the abstinence rate on cost per QALY for two treatments, 

bupropion and varenicline. Then, we examined implications of treatment cost of 

bupropion and varenicline when the price of treatment is $0 to $800 with step size $100. 

Figure 5.6 shows the impact of varying the cost of bupropion and varenilcline. We 

observe in Figure 5.5 that if the treatment efficacy of bupropion and varenicline are 

equal, the cost per effect ($/QALY) is less for bupropion. Figure 5.6 shows that if cost 

treatment for bupopion and varenicline are the same, cost per effect ($/QALY) is always 

less for bupropion. Treatment efficacy is higher for bupropion in reference to varenicline, 

therefore the QALY value (denominator) is always higher for bupriopion and the cost per 

effect ratio is smaller. Therefore, bupropion is not only less expensive, but also more 

effective. 
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Figure 5.4: One-way sensitivity analysis of treatment efficacy of bupropion and varenicline. 
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Figure 5.5: One-way sensitivity of treatment cost of bupropion and varenicline. 
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  Multi-way sensitivity analysis of recidivism rates was performed at low and high 

values (Table 4.8). Refer to Table 5.11 for a summary of these results. Results of the 

multi-way sensitivity analysis at low recidivism rates place the ICER in the NE (cost-

effective) quadrant. When recidivism is high, we find that the incremental cost of 

bupropion compared to varenicline is -$317.86 compared to -$209.44 in the base-case. 

Incremental effect is much smaller (0.0007 QALYs) than the base-case estimate (0.01 

QALYs). 

Table 5.11: Multi-way sensitivity analysis of recidivism rates. 

Recidivism rate Incremental Cost (ΔC) Incremental Effect (ΔE) ICER (ΔC/ΔE) 

Low value $31.45 0.0228 $1,379.43 

High value -$317.86 0.0007 -$454,083.14 

 

ICERs of bupropion in reference to varenicline of an all female and all male 

population are evaluated. Very different results are estimated for an all female cohort 

versus an all male cohort (Table 5.12). For an all female population, bupropion is less 

costly (-$68.33) and slightly more effective (0.0203 QALYs) with an ICER of -$3371.  

When the same simulation is run for an all male population, money is saved (-$92.77), 

however health benefits are also lost (-0.0026). The ICER for an all male cohort is 

$35,914 and a cost-reducing tradeoff must be made in choosing bupropion. 

Last, costs and effects of a young cohort of all 18-year olds and individuals all 50 

years of age at baseline (older age group) are estimated. Among both age groups cost is 

saved while health benefits are gained (Table 5.12). Bupropion is dominant in 

comparison to varenicline in both cases with ICERs of -$49,158 and -14,852 for 

individuals 18 years of age and 50 years of age, respectively. 
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Table 5.12: Sensitivity analysis by subset of the base-case population. 

Parameter Incremental Cost (ΔC) Incremental Effect (ΔE) ICER (ΔC/ΔE) 

Sex    

      Female -$68.33 0.0203 -$3,371.00 

      Male -$92.77 -0.0026 $35,914.44 

Age    

      18 years of age -$169.20 0.0034 -$49,158.22 

      50 years of age -$207.01 0.0139 -$14,852.23 

 

5.4 Discussion 

In this study, we used estimates of cost and QALY from the simulation presented 

in Chapter 4 of smokers attempting pharmacologic smoking cessation treatment (NRT, 

bupropion, and varenicline), non-pharmacologic-assisted cessation, and no treatment. 

Cost effectiveness was estimated using the incremental cost-effectiveness ratio (ICER) 

statistic. We first assessed the cost-effectiveness of the alternative treatment strategies by 

comparing all treatment options to no treatment. Next a stepwise comparison of the 

treatments was performed where decisions must be made between choosing bupropion 

and varenicline. We found burpropion to be the dominant treatment for smoking 

cessation.  

Probabilistic sensitivity analysis confirmed the base-case findings for bupropion 

versus varenicline and nonparametric bootstrapping showed that bupropion was dominant 

with probability 84.9%. Our simulation was robust to changes in health state utility 

values in our one-way sensitivity analysis. For all female versus all male populations 

cost-effectiveness results differed greatly. In fact, the only case where bupropion was 

cost-reducing resulted when the simulation was run for an all male population. This 

implies that limited health care dollars are better off helping females versus males. 
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Our results differ from previous cost-effectiveness studies of smoking cessation 

therapies where varenicline was found to dominant in comparison to bupropion [Howard 

et al., 2008]. One major difference between these studies and our research is that there 

efficacy rates rely on a single clinical efficacy study. We obtain measures through a 

meta-analysis of studies that investigate the efficacy of smoking cessation strategies. The 

midpoint of the range is used as our base-case estimate of treatment efficacy. We perform 

sensitivity analysis over the range of efficacy rates for bupropion and varenicline. In 

future research, we will examine how the results change when the sample-size-weighted-

average for each treatment efficacy rate is applied.  

In conclusion, we have shown that using discrete-event simulation is a powerful 

tool with which we can examine comparative effectiveness of smoking cessation 

strategies in a diverse patient population. We have further demonstrated that the long-

term benefits of smoking cessation at a younger age significantly accrue over a patient‘s 

lifetime. As such, it is critical for policymakers and insurers to encourage and consider 

providing incentives for smoking cessation as early as possible and for clinicians and 

patients to engage in shared decision making about which treatment strategy would be 

best for the patient in terms of long-term abstinence, overall resources invested, and 

cumulative health risks avoided over time.  
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CHAPTER SIX 

 

CONTRIBUTIONS  

 

 

Chapter 2 introduced a discrete-event simulation (DES) model to quantify the 

public health impact of the maternal obese and diabetic intrauterine environment on 

obesity and diabetes prevalence in subsequent generations. The model was verified using 

longitudinal data and we provided examples of the types of predictions our model can 

generate. This dissertation is the first to apply discrete-event simulation to estimate the 

impact of maternal obesity and diabetes on obesity and diabetes prevalence. 

In Chapter 3 we used a mixed-methods approach, incorporating both statistical 

methods and discrete-event simulation, to examine trends in weight-gain over time 

among white and black women of child-bearing age in the US from 1980 to 2008 using 

United States Census projections and National Health and Nutrition Examination Survey 

(NHANES) data. We addressed the question of how to update changes in clinical 

characteristics over time using data obtained through a cross-sectional study design. We 

responded by developing a method to gain insights into the processes of change of 

attributes using bootstrapping principles and mixed-effects regression models. This was 

used to determine the change in BMI due to age in the simulation model allowing us to 

examine trends in average BMI over generations at the population-level. Our results are 

different than what is currently available in the literature in that our simulation 

projections are based on the population prior to the onset of the obesity epidemic. 

 In Chapter 4 we constructed the first DES model to estimate the cost-effectiveness 

of different smoking cessation strategies available to smokers in the US population. 
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While previous models for comparing therapeutic smoking cessation options use efficacy 

of treatment derived from a single study, we contribute to the literature by combining 

results of different studies to model treatment efficacy. We described the data and model 

assumptions and verification. 

 Chapter 5 provided results of the base-case model to evaluate smoking cessation 

treatments. A sensitivity analysis was performed to understand the comparative 

effectiveness and intrinsic value of four alternative smoking cessation strategies that can 

improve clinical and patient decision-making and subsequent health and economic 

outcomes at the population level. We provided examples of different analyses that can be 

done using results of our model. 

This dissertation contributes to the area of industrial engineering in healthcare by 

providing two US population-level DES models to inform health policy decisions. US 

population-level data structures require special handling and assumptions due to the 

availability of medical data and the nature of the study design. The key element is to be 

able to link mathematical models with the available data. Input measures are important 

because the models are only as strong as the data and assumptions upon which they are 

built. Data taken from multiple sources (United States Census, National Health and 

Nutrition Examination Survey (NHANES), Centers for Disease Control and Prevention 

(CDC)/National Center for Health Statistics (NCHS), and the literature) is not obtainable 

in the desired format, and there is not one method for managing the data. Preparing a 

valid representation of the data is crucial. We illustrate various methods for extracting 

information from the data to make population-level predictions. Specifically,  
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In Chapter 2, data from a longitudinal study was utilized to update attributes (i.e. BMI 

level, diabetes status) of individuals in the simulation. Extracting necessary information 

from this data involved different types of methods. 

 Using the mean and variance of the difference in average BMI (kg/m
2
) at baseline 

and follow-up of the longitudinal study, annual changes to BMI were computed. 

Updates to BMI values per year were approximated by a normal distribution. 

 Baseline estimates of diabetes prevalence taken from the longitudinal study and 

information on increased likelihood of diabetes in obese versus not obese 

individuals were used to derive baseline estimates of diabetes adjusted by obesity 

status. 

 Annual probabilities of developing diabetes over time based on obesity status 

were deduced using (a) baseline prevalence of obesity and (b) diabetes incidence 

rates follow-up from the longitudinal study, and (c) the increased risk of diabetes 

known to obese versus non-obese individuals. This was accomplished by applying 

the cumulative geometric distribution. 

 Validating BMI and diabetes characteristics over a short time period (i.e. 8 years) 

allowed us to make projections of diabetes prevalence accounting for obese 

individuals having a different/higher risk of diabetes than non-obese individuals. 

 Furthermore, incorporating births into our model and keeping record of an 

individual‘s mother‘s BMI and diabetes characteristics, allowed us to make 

projections of diabetes prevalence over time when children of obese and/or 
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diabetic women had an increased risk of diabetes from children not exposed to 

obesity and/or diabetes during pregnancy. 

In Chapter 3, cross-sectional data of the National Health and Nutrition Examination 

Survey (NHANES) provided US population-level information on BMI. 

 We developed a method for extracting information from the cross-sectional data 

set which allowed us to make US population-level estimates of change in 

attributes (i.e. BMI) over time. This technique combined bootstrap statistical 

methods and mixed-effects regression models. We described how we handled 

cases of missing or insufficient data. This method allowed us to characterize the 

change in weight-gain of white and black women of childbearing age in the US 

prior to the onset of the obesity epidemic. 

 A method for validating our baseline (i.e. 1980) unadjusted average BMI 

projections was presented. 

 Unadjusted projections of average BMI over a 28-year time period were made. 

These projections of average BMI between 1980-2008 are fundamentally 

different from what is currently available in the literature in that we make 

projections of the population before the obesity epidemic took place. Previous 

studies formulate projections on trends of diseases based on population data in 

2000, at which time the obesity (and also diabetes) epidemics had already 

initiated. 

 Estimates of baseline BMI and change in BMI over time from the statistical 

analysis provided population-level estimates for the simulation model (presented 
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in Chapter 2). We proposed two methods for validating that individuals in the 

simulation take on age appropriate characteristics (according to baseline cross-

sectional values): (1) validation of the Census age distribution, and (2) validation 

of average BMI. We demonstrated these methods for projections of white women 

of childbearing age. 

In Chapter 4, information was extracted from data of multiple sources, presenting in 

many different formats. Various statistical methods were applied to represent the data. 

 Disease incidence (for lung cancer, stroke, and CHD) required conversions from 

rates of disease per annum to annual probabilities. For example, given the case rate 

of stroke over a time period, we computed the probability of an individual having a 

stroke in any given year. The cumulative exponential distribution function was 

used in this computation. 

 In other cases (number of COPD exacerbations) where more than one occurrence 

was possible in a year the binomial probability distribution was used to estimate 

annual incidence. 

 Similarly, the number of exacerbations (out of the total annual COPD 

exacerbation) that were major exacerbations was determined using the binomial 

distribution formula.  

In Chapter 5, we apply statistical methods to deduce information from the output 

measures of the simulation (presented in Chapter 4). 

 We introduced the incremental cost-effective ratio (ICER) as a statistic for 

quantifying cost-effectiveness of one treatment relative to another. 
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 Two different methods for comparing costs and health effects (QALYs) of the 

alternative smoking cessation strategies using the ICER were provided. First, we 

made separate comparisons of each treatment option (NRT, bupropion, 

varenicline, and non-pharmacologic-assisted) to the no treatment control group to 

quantify incremental cost per incremental health effect (QALY). Next, the four 

treatment strategies were compared to each other in a successive stepwise manner 

to gain information about how treatments perform in comparison to each other. 

 Like any statistical measure the ICER point estimate is associated with some 

degree of uncertainty. Non-parametric bootstrap procedures allowed us to 

estimate an uncertainty range for the ICER of two treatment options (bupropion 

versus varenicline). We computed the 95% confidence interval for the 

bootstrapped ICERs using the percentile method. Information about the 

uncertainty of cost-effectiveness of a treatment option (bupropion) from the base-

case estimations was provided. 

 Bootstrap estimates were analyzed using the cost-effectiveness plane method 

which allowed us to address questions about the probability of cost-effectiveness 

when comparing two treatment options (bupropion in reference to varenicline). 

While the estimates resulting from the two models are topic-specific, many of the 

modules created for these studies are generic and can easily be transferred to other 

disease models. It is believed that these two models will aid decision makers in 

recognizing the impact that preventative-care initiatives will have, and to evaluate 

possible alternatives. 
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Appendix A 

 

Conditional Probability of Diabetes 

 

 

Diabetes incidence rates taken from the SAHS study are provided in Table A.1. 

 
Table A.1: Incident diabetes rates over the 7.5 year period. 

Age cohort Incidence 

< 30 1.59 

30 – 34 3.41 

35 – 39 5.10 

40 – 44 4.90 

 

Prevalence of obesity in the SAHS population at baseline was 13.7 percent. Obese 

individuals are assumed to be 10.723 times more likely to develop diabetes than 

individuals who were not obese. The calculations are the following: 

P(diabetes) = P(diabetes|obese)P(obese) + P(diabetes|not obese)P(not obese) 

P(diabetes) = P(diabetes|obese)P(obese) + P(diabetes|not obese)(1-P(obese)) 

We know that:  P(diabetes|obese) = (10.723)[P(diabetes|not obese)] 

P(diabetes) = (10.723)(P(diabetes|not obese))P(obese)  

          + P(diabetes|not obese)(1-P(obese)) 

 

For example, the derivation for the probability of diabetes for individuals less than 30 

years of age given obesity status is provided. 

0.0159 = (10.723)(P(diabetes|not obese))(0.137 ) + P(diabetes|not obese)(1-0.137) 

Rearrange the terms: 

0.0159 = P(diabetes|not obese)((10.723)(0.137) + (1-0.137)) 

P(diabetes|not obese) = 0.0068 

P(diabetes|obese) = (10.723)(0.0068) = 0.0729 
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This is the conditional probability of diabetes over 7.5 (round to 8) years. We want the 

annual probability of developing diabetes given obesity status. We use the cumulative 

distribution function (CDF) of a geometric random variable to determine the probability 

of developing diabetes given obesity status in one year.  

The CDF of a geometric random variable X is: 

 

F(x) = P(X ≤ x) = 1 – (1-p)
k
  k = 1, 2, … 

 

where p is the probability of succeeding on one try. 

If we make independent attempts over and over, the geometric random variable counts 

the number of attempts needed to obtain the first success. The CDF can be interpreted as 

the probability of succeeding within k attempts. 

Referring to the example, the probability of diabetes mellitus given obesity status for individuals 

less than 30 years of age is the following: 

P(diabetes|non-obese) = 1 – (1 – 0.0068)
(1/7+1)

 = 0.0009 

 

P(diabetes|obese) = 1 – (1 – 0.0731)
(1/7+1)

 =  0.0094       

 

Note that a potential drawback of using the geometric distribution is that it satisfies the 

memoryless property.  



 118 

Appendix B 

DES Distribution Input Parameters and Sensitivity Analysis Results 

 

 
Table B.1: Distribution parameters for unadjusted BMI (kg/m

2
) projections and baseline BMI in the 

simulation model. 

  White Women  Black Women 

Age  Mean SD  Mean SD 

15  21.5433 3.4282  22.4345 4.7431 

16  21.7085 3.8278  22.7072 4.8048 

17  21.9470 4.4140  22.9800 5.5909 

18  22.1024 3.6399  23.2527 3.9708 

19  22.2578 3.9704  23.5254 6.4735 

20  22.4132 4.1106  23.7982 4.8807 

21  22.5686 3.7814  24.0709 5.6945 

22  22.7081 4.0617  24.3437 7.6422 

23  22.8623 4.8443  24.6164 4.6313 

24  23.0097 5.4161  24.8891 4.8132 

25  23.1584 4.6566  25.1619 5.8713 

26  23.3071 3.9366  25.4346 5.1306 

27  23.4558 5.1977  25.7074 6.6887 

28  23.6045 5.5674  26.4814 4.9856 

29  23.7392 5.3541  26.6371 7.2702 

30  23.8911 5.3520  26.7927 7.8335 

31  24.0429 5.4873  26.9484 7.2204 

32  24.1591 6.2145  27.1041 6.4911 

33  24.2872 5.6085  27.2598 6.3269 

34  24.4154 4.8513  27.4154 7.1926 

35  24.5435 5.7674  27.5711 6.0806 

36  24.6716 4.7902  27.7268 7.4565 

37  24.7398 5.3306  27.8825 6.9395 

38  24.7448 5.6666  28.0382 6.4886 

39  24.8569 5.5871  28.1938 7.2594 

40  24.9690 5.7611  28.3495 5.2604 

41  25.0811 5.0280  28.5052 7.9332 

42  25.1932 6.0894  28.6609 5.9704 

43  25.3384 5.7728  28.8165 6.5386 

44  25.4582 5.8072  28.9722 5.9604 
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Table B.2: Distribution parameters for BMI (kg/m

2
) updates (annual change in BMI) in the simulation 

model. 

  White Women  Black Women 

Age  Mean SD  Mean SD 

15  0.1652 0.6857  0.2727 0.7316 

16  0.1652 0.6857  0.2727 0.7316 

17  0.1554 0.4935  0.2727 0.7316 

18  0.1554 0.4935  0.2727 0.7316 

19  0.1554 0.4935  0.2727 0.7316 

20  0.1554 0.4935  0.2727 0.7316 

21  0.1554 0.4935  0.2727 0.7316 

22  0.1542 0.3998  0.2727 0.7316 

23  0.1542 0.3998  0.2727 0.7316 

24  0.1487 0.4921  0.2727 0.7316 

25  0.1487 0.4921  0.2727 0.7316 

26  0.1487 0.4921  0.2727 0.7316 

27  0.1487 0.4921  0.2727 0.7316 

28  0.1487 0.4921  0.1557 0.6049 

29  0.1518 0.6816  0.1557 0.6049 

30  0.1518 0.6816  0.1557 0.6049 

31  0.1518 0.6816  0.1557 0.6049 

32  0.1281 0.5886  0.1557 0.6049 

33  0.1281 0.5886  0.1557 0.6049 

34  0.1281 0.5886  0.1557 0.6049 

35  0.1281 0.5886  0.1557 0.6049 

36  0.1281 0.5886  0.1557 0.6049 

37  0.1253 0.5283  0.1557 0.6049 

38  0.1121 0.7154  0.1557 0.6049 

39  0.1121 0.7154  0.1557 0.6049 

40  0.1121 0.7154  0.1557 0.6049 

41  0.1121 0.7154  0.1557 0.6049 

42  0.1121 0.7154  0.1557 0.6049 

43  0.1198 1.0612  0.1557 0.6049 

44  0.1198 1.0612  0.1557 0.6049 
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Table B.3: Sensitivity analysis baseline BMI (kg/m
2
) for age 32 to 37 years. 

  Scenario 1  Scenario 2  Scenario 3 

Age  Mean SD  Mean SD  Mean SD 

32  24.1591 0.3381  24.1235 0.3836  24.1947 0.5568 

33  24.2872 0.3381  24.2279 0.3836  24.3466 0.5568 

34  24.4154 0.3381  24.3323 0.3836  24.4984 0.5568 

35  24.5435 0.3381  24.4368 0.3836  24.6502 0.5568 

36  24.6716 0.3381  24.5412 0.3836  24.8021 0.5568 

37  24.7398 0.2573  24.6327 0.2674  24.9539 0.5568 

  Scenario 4  Scenario 5    

Age  Mean SD  Mean SD    

32  24.1413 0.2556  24.1769 0.3257    

33  24.2576 0.2556  24.3169 0.3257    

34  24.3739 0.2556  24.4569 0.3257    

35  24.4901 0.2556  24.5969 0.3257    

36  24.6064 0.2556  24.7369 0.3257    

37  24.6862 0.1856  24.8468 0.3067    

 

 

Table B.4: Sensitivity analysis updates to BMI (kg/m
2
) for age 32 to 37 years. 

  Scenario 1  Scenario 2  Scenario 3 

Age  Mean SD  Mean SD  Mean SD 

32  0.1281 0.5886  0.1044 0.9597  0.1518 0.6816 

33  0.1281 0.5886  0.1044 0.9597  0.1518 0.6816 

34  0.1281 0.5886  0.1044 0.9597  0.1518 0.6816 

35  0.1281 0.5886  0.1044 0.9597  0.1518 0.6816 

36  0.1281 0.5886  0.1044 0.9597  0.1518 0.6816 

37  0.1253 0.5283  0.1121 0.7154  0.1518 0.6816 

  Scenario 4  Scenario 5    

Age  Mean SD  Mean SD    

32  0.1163 0.5629  0.1400 0.4503    

33  0.1163 0.5629  0.1400 0.4503    

34  0.1163 0.5629  0.1400 0.4503    

35  0.1163 0.5629  0.1400 0.4503    

36  0.1163 0.5629  0.1400 0.4503    

37  0.1187 0.4447  0.1386 0.4312    
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Table B.5: Sensitivity analysis results for average BMI (kg/m
2
) by age cohort and year. 

Year  Age Cohort  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

1980 

 15 - 19  21.93 21.93 21.93 21.93 21.93 

 20 - 24  22.71 22.71 22.71 22.71 22.71 

 25 - 29  23.44 23.44 23.44 23.44 23.44 

 30 - 34  24.15 24.11 24.18 24.13 24.16 

 35 - 39  24.70 24.63 24.80 24.67 24.75 

 40 - 44  25.21 25.21 25.21 25.21 25.21 

 15 - 44  23.50 23.48 23.52 23.49 23.51 

1990 

 15 - 19  22.42 22.42 22.42 22.42 22.42 

 20 - 24  23.20 23.20 23.20 23.20 23.20 

 25 - 29  23.47 23.47 23.47 23.47 23.47 

 30 - 34  24.21 24.19 24.22 24.20 24.21 

 35 - 39  24.84 24.74 24.96 24.79 24.90 

 40 - 44  25.38 25.23 25.55 25.31 25.47 

 15 - 44  23.97 23.92 24.02 23.94 23.99 

2000 

 15 - 19  22.40 22.40 22.40 22.40 22.40 

 20 - 24  23.17 23.17 23.17 23.17 23.17 

 25 - 29  23.97 23.97 23.97 23.97 23.97 

 30 - 34  24.69 24.68 24.71 24.69 24.70 

 35 - 39  24.83 24.71 24.94 24.77 24.89 

 40 - 44  25.43 25.30 25.58 25.37 25.51 

 15 - 44  24.20 24.15 24.25 24.18 24.23 

2008 

 15 - 19  22.41 22.41 22.41 22.41 22.41 

 20 - 24  23.16 23.16 23.16 23.16 23.16 

 25 - 29  23.93 23.93 23.93 23.93 23.93 

 30 - 34  24.66 24.65 24.68 24.65 24.67 

 35 - 39  25.37 25.27 25.49 25.31 25.42 

 40 - 44  25.72 25.59 25.87 25.65 25.79 

 15 - 44  24.28 24.24 24.33 24.26 24.30 
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Appendix C 

Sample SAS Code 

 

Libname nh1 "M\BMI by Birth Year"; 

data allw; 

  set nh1.nh0123; 

  where race='W'; 

  newid=left(trim(id))||left(trim(seqn)); 

  run; 

 

/*numbers in dataset name correspond to birth years*/ 

/*age is centered to that the intercept is the lowest age 

of the category*/ 

data w5559; 

  set allw; 

  where yob>='1955' and yob<'1959' and age>=15 and age<=23; 

  agec=age-15;  

  run; 

***************************************************** 

*regression example 5559 birth year -- 1955 and 1959* 

***************************************************** 

; 

%let itnum=100; 

%let sampsize=500; 

*SRS means Simple Random Sampling; 

proc surveyselect data=w5559 method=SRS n=&sampsize 

reps=&itnum seed=40070 out=r5559;          

run; 

proc sort data=r5559; by replicate; run; 

*** Full: With Random and method=REML ***  ; 

**NOTE: this includes the main effect of agecat ; 

ods graphics on; 

proc mixed data=r5559 method=REML noclprint=2 empirical; 

  class newid; 

  model bmi=agec/cl solution covb ddfm=res 

outpm=output5559;  

  by replicate ; 

  random intercept/ subject=newid; 

  ods output SolutionF=betaparms;  

run;  

ods select fitstatistics; 

proc reg data=output5559; 



 123 

 model bmi=pred; 

* by replicate; 

run; 

quit; 

ods graphics off; 

proc contents data=betaparms; run; 

*NOTE: First open the output data file betaparms_mix and 

see if the effect columns correspond to what I have used 

below; 

* summary of parameter estimates*********; 

data nh1.betaparms5559 (keep=replicate inter vinter tvinter 

dfinter pvinter b1 vb1 tvb1 dfb1 pvb1); 

retain inter tvinter dfinter b1 vb1 tvb1 dfb1 pvb1; 

set betaparms; 

by replicate; 

if effect eq 'agec' then do;  

 b1 = estimate; vb1=StdErr; tvb1=tvalue; pvb1=Probt; 

dfb1=df; end; 

if effect eq 'Intercept' then do;  

    inter=estimate; vinter=StdErr; tvinter=tvalue; 

pvinter=probt; dfinter=df; end; 

 if last.replicate then do; 

    output; 

  end; 

  else delete; 

run; 

proc means data=nh1.betaparms5559; 

  var b1 inter; 

  run; 
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Appendix D 

Computations for the Smoking Cessation DES Inputs 

 
 

Table D.1: Age distribution of smokers. 

   Male  Female 

Age 

 
Number in 

the US 

Number 

of 

Smokers 

P(age|smoke) 

 
Number in 

the US 

Number 

of 

Smokers 

P(age|smoke) 

18  2,282,042 579,639 0.024  2,162,940 439,077 0.022 

19  2,224,534 565,032 0.023  2,112,751 428,888 0.021 

20  2,188,236 555,812 0.023  2,086,884 423,637 0.021 

21  2,155,654 547,536 0.022  2,062,647 418,717 0.021 

22  2,162,386 549,246 0.022  2,068,296 419,864 0.021 

23  2,154,443 547,229 0.022  2,060,702 418,323 0.021 

24  2,134,690 542,211 0.022  2,039,250 413,968 0.021 

25  2,159,241 548,447 0.022  2,058,541 417,884 0.021 

26  2,157,349 547,967 0.022  2,083,273 422,904 0.021 

27  2,174,226 552,253 0.023  2,125,979 431,574 0.021 

28  2,155,475 547,491 0.022  2,106,378 427,595 0.021 

29  2,070,323 525,862 0.021  2,019,348 409,928 0.020 

30  2,016,724 512,248 0.021  1,968,179 399,540 0.020 

31  1,974,327 501,479 0.020  1,930,843 391,961 0.019 

32  1,945,812 494,236 0.020  1,910,458 387,823 0.019 

33  1,974,872 501,617 0.020  1,939,809 393,781 0.020 

34  1,926,499 489,331 0.020  1,905,546 386,826 0.019 

35  1,962,294 498,423 0.020  1,949,570 395,763 0.020 

36  2,046,138 519,719 0.021  2,037,513 413,615 0.021 

37  2,154,037 547,125 0.022  2,154,393 437,342 0.022 

38  2,205,790 560,271 0.023  2,186,689 443,898 0.022 

39  2,091,135 531,148 0.022  2,088,056 423,875 0.021 

40  2,039,111 517,934 0.021  2,046,859 415,512 0.021 

41  2,037,007 517,400 0.021  2,056,617 417,493 0.021 

42  2,094,378 531,972 0.022  2,114,992 429,343 0.021 

43  2,229,898 566,394 0.023  2,249,584 456,666 0.023 

44  2,251,737 571,941 0.023  2,294,963 465,877 0.023 

45  2,243,116 551,807 0.023  2,294,799 470,434 0.023 

46  2,250,985 553,742 0.023  2,303,860 472,291 0.023 

47  2,263,325 556,778 0.023  2,329,012 477,447 0.024 

48  2,309,119 568,043 0.023  2,359,664 483,731 0.024 

49  2,215,240 544,949 0.022  2,284,705 468,365 0.023 



 125 

50  2,206,404 542,775 0.022  2,280,669 467,537 0.023 

51  2,151,695 529,317 0.022  2,237,945 458,779 0.023 

52  2,088,599 513,795 0.021  2,180,369 446,976 0.022 

53  2,085,043 512,921 0.021  2,169,687 444,786 0.022 

54  1,979,014 486,837 0.020  2,082,836 426,981 0.021 

55  1,912,892 470,571 0.019  2,024,202 414,961 0.021 

56  1,847,781 454,554 0.019  1,959,188 401,634 0.020 

57  1,774,943 436,636 0.018  1,892,368 387,935 0.019 

58  1,769,416 435,276 0.018  1,886,571 386,747 0.019 

59  1,693,399 416,576 0.017  1,820,005 373,101 0.019 

60  1,692,209 416,283 0.017  1,823,349 373,787 0.019 

61  1,665,640 409,747 0.017  1,800,563 369,115 0.018 

62  1,356,184 333,621 0.014  1,481,887 303,787 0.015 

63  1,271,328 312,747 0.013  1,399,272 286,851 0.014 

64  1,254,678 308,651 0.013  1,394,030 285,776 0.014 

65  1,244,631 131,931 0.005  1,396,116 114,482 0.006 

66  1,123,417 119,082 0.005  1,274,736 104,528 0.005 

67  1,021,173 108,244 0.004  1,172,433 96,140 0.005 

68  971,772 103,008 0.004  1,124,069 92,174 0.005 

69  919,903 97,510 0.004  1,073,613 88,036 0.004 

70  877,737 93,040 0.004  1,036,312 84,978 0.004 
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Table D.2: Probability tables for COPD exacerbations 

COPD Level x f(x,p,n) 

Mild
a
 

  
 0 0.5558 

 1 0.3516 

 2 0.0834 

 3 0.0088 

 4 0.0003 

Moderate
b
 

  
 0 0.4606 

 1 0.3940 

 2 0.1264 

 3 0.0180 

 4 0.0010 

Severe
c
 

  
 0 0.4251 

 1 0.4054 

 2 0.1450 

 3 0.0230 

 4 0.0014 

a. Exacerbation frequency (per annum) = 0.79 

b. Exacerbation frequency (per annum) = 1.22 

c. Exacerbation frequency (per annum) = 1.47  
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Table D.3: Probability tables for minor COPD exacerbation 

Mild COPD
a
  Moderate COPD

b
  Severe COPD

c
 

n x f(x,p,n)  n x f(x,p,n)  n x f(x,p,n) 

4 
  

 4    4   

 0 0.0000   0 0.0000   0 0.0001 

 1 0.0008   1 0.0013   1 0.0036 

 2 0.0191   2 0.0254   2 0.0486 

 3 0.1993   3 0.2252   3 0.2916 

 4 0.7807   4 0.7481   4 0.6561 

3 
  

 3    3   

 0 0.0002   0 0.0003   0 0.0010 

 1 0.0102   1 0.0137   1 0.0270 

 2 0.1590   2 0.1816   2 0.2430 

 3 0.8306   3 0.8044   3 0.7290 

2 
  

 2    2   

 0 0.0036   0 0.0049   0 0.0100 

 1 0.1128   1 0.1302   1 0.1800 

 2 0.8836   2 0.8649   2 0.8100 

1 
  

 1    1   

 0 0.0600   0 0.0700   0 0.1000 

 1 0.9400   1 0.9300   1 0.9000 

a. P(minor exacerbation | COPD exacerbation event) = 0.94 

b. P(minor exacerbation | COPD exacerbation event) = 0.93 

c. P(minor exacerbation | COPD exacerbation event) = 0.90 
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