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Abstract 

Biomaterials widely used in biomedical applications still face biocompatibility issues 

arising from non-specific protein adsorption on the foreign surface, and the consequent 

undesired cell response. Emerging evidence suggests that imparting specific bioactivity to the 

biomaterial’s surface to elicit favorable response from cells, (like osseointegration of joint 

implants and endothelialization of stents) can yield much better biocompatibility results when 

combined with passive prevention of protein adsorption. In more complex diseases like spinal 

cord injury and cardiomyopathy, specific biomolecules are required to elicit desired cell 

responses for successful regeneration. However, for success of such biomolecule-based 

strategies, the effects of various parameters (type of molecule, concentration, spatial and 

temporal distribution) on the behavior of target cells need to be thoroughly investigated. 

Surface-initiated photoiniferter-mediated polymerization (SIPMP) was selected for this 

study, because it: 

1. can graft protein-resistant polymer (like poly(ethylene glycol) (PEG), poly(hydroxyethyl 

methacrylate) (HEMA)) on any biomaterial surface. 

2. provides excellent control over the amount of polymer grafted. 

3. allows covalent immobilization of biomolecules on the polymer chains, and 

4. allows creation of spatial patterns and concentration gradients of biomolecules by spatially 

controlling polymer grafting.  

As the first step, poly(methacrylic acid) (pMAA) grafting via SIPMP was used to 

systematically control the hydrophilicity and the concentration of attached molecules on 

polyurethane surfaces by varying the iniferter concentration, monomer concentration, UV 

intensity and UV exposure time. In the next step, covalent conjugation of a hormone 
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noradrenalin (NA) to pMAA and pHEMA chains grafted on glass surfaces was achieved as a 

means to develop a novel anti-marine biofouling surface. Accessibility and bioactivity of 

conjugated NA was confirmed by its deleterious effects on viability and cell structure of oyster 

hemocytes. Finally, thickness gradients of pMAA and pHEMA chains were created on glass 

surface as a means to create protein concentration gradients and study their effects on 

gradient-dependent cell behaviors. Preliminary experiments for controlling cell adhesion by 

conjugating proteins to homogeneous pHEMA layers remain inconclusive, warranting further 

investigation. In summary, the results obtained in this study highlight the versatility of SIPMP for 

high throughput analysis of cell behavior on surfaces with a wide variety of bioactive 

functionalities. 
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1. Introduction 

All metals, ceramics and polymers, natural or synthetic, have a specific set of bulk (like 

strength, toughness, hardness, elasticity, plasticity, porosity) and surface (wettability, adhesion, 

friction, roughness, wear resistance, corrosion resistance) properties. Ideally, the right 

combination of bulk and surface properties can be designed for optimal performance of the 

material in the targeted application. In reality however, such combinations are rare, and due to 

practical and economic reasons, it becomes very difficult to develop an entire new material that 

has the right combination. Usually the bulk material with desired mechanical properties is first 

developed, followed by some form of surface treatment to improve or impart desired surface 

properties. This has led to development of a plethora of “surface modification” (SF) techniques 

applicable to a wide variety of bulk materials to improve one or more surface properties.  

Chapter 2.1 discusses various SF techniques as used in common non-biomedical 

applications. Briefly, metals are extensively used for applications requiring good mechanical 

properties like strength, toughness and elasticity. However they are also very prone to corrosion 

at the surface, which eventually reduces their life span. Numerous techniques such as 

electroplating, ion implantation (II), ion-beam assisted deposition (IBAD), plasma-assisted 

deposition (PAD), chemical vapor deposition (CVD), etc are extensively used improve corrosion 

resistance of metal surfaces.[1-3] IBAD, PAD and other film deposition techniques are also 

commonly used to improve wear resistance of metal and ceramic surfaces[2, 3], and in some 

specialized applications like optical coatings[4]. The microelectronics industry almost entirely 

depends on numerous SF techniques like metallization, CVD, PAD and lithography for 

manufacturing of a wide variety of integrated circuits, diodes, printed circuit boards, fiber optic 

cables, etc. [5-7] 
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Paints and specialized cross-linked polymer coatings are now ubiquitously used to 

protect buildings from wear and erosion, metal surfaces like vehicles and machinery from 

corrosion, and in some highly specialized applications like anti-biofouling coatings[8] for the 

shipping industry fleet. PTFE-based coatings applied to cookware to prevent adhesion, and to 

metal, plastic and paper food containers to prevent toxic chemical reactions are another 

example of the widespread use of polymer-based SF.[9-11] Polymer grafting, has emerged as 

the technique of choice to graft nanometer-scale fouling-resistant polymer brushes on the 

surface of micro- and nano-porous filtration membrane, without affecting their 

performance.[12] 

Metallic, ceramic and polymeric biomaterials are under intense research for 

replacement, augmentation and regeneration of diseased tissues in human. Biomaterials are 

already used to completely replace heart valves, joints, intro-ocular lenses, pacemakers, etc, and 

support limited regeneration of some tissues like bones, cartilage and skin. The two primary 

requirements of any biomaterial are suitable mechanical properties and biocompatibility. It may 

not always be possible to obtain the right combination of various mechanical properties, 

(strength, modulus and wear resistance) for a specific application. Even if meticulous and 

expensive designing helps meet all the mechanical requirements, biocompatibility may suffer. 

Therefore, SF for biomedical applications is usually targeted towards improving the mechanical 

properties and/or biocompatibility of the biomaterial. In fact, many of the SF techniques used 

for non-medical applications discussed above have also been adapted for biomedical 

applications (Chapter 2.2). The poor wear, abrasion and corrosion resistance properties of 

widely used titanium implants[13-16] are now routinely improved using several techniques like 

nitrogen ion implantation, plasma nitriding[15, 16], laser-annealed nitriding[16], IBAD and 
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CVD[16]. Similarly, plasma bombardment is used to improve wear resistance of UHMWPE joint 

sockets[17] This has lead to significant improvements in the biocompatibility and usable life-

span of such implants. 

SF for improving mechanical properties of biomaterials is largely restricted to  

load-bearing implants. Almost all other SF strategies target improving biocompatibility, either by 

reducing non-specific protein adsorption to prevent undesired cell responses, or impart specific 

bioactivity to the surface to elicit useful cell responses (like osseointegration of joints, and 

endothelialization of coronary stents[18]). For some complex diseased conditions, implantation 

of devices like joints and stents is not sufficient, but instead regeneration of the diseased tissue 

is required. This is especially true for tissues with intrinsically low regeneration potential such as 

cardiac myocytes, blood vessels and central nervous system neurons. In these cases, specific 

signaling molecules need to be provided to stimulate the desired regenerative response from 

native cells. For this strategy to be successful, effects of various parameters like the specific  

biomolecule, its concentration, its spatial distribution and its temporal distribution on the target 

cell’s behavior need to be thoroughly investigated.  

Numerous SF strategies have been developed to improve the surface biocompatibility 

and/or impart specific bioactivity to the surface, including plasma treatment and deposition of 

alkylthiol or alkylsilane self-assembled monolayers (SAMs).[19-22] These treatments typically 

involve creation of hydrophilic functional groups like hydroxyl, carboxyl, amine and thiol on the 

surface, which can control protein adsorption on the surface, and can also be used to covalently 

couple specific biomolecules to elicit desired cellular interactions.[23, 24] Some researchers 

have combined SAM deposition techniques with patterning techniques like microcontact 

printing[25, 26] or photochemical coupling[27] to create patterns and gradients of biomolecules 
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on the surface. Such patterns provide excellent spatial control over cell adhesion.[26, 27] 

However, these techniques are prone to surface defects, molecule detachment, or undesired 

chemical reactions that cause loss of surface activity.[28] Redundant molecules are not present 

on the surface to compensate for such losses. Additionally, the movement/rotation of 

conjugated biomolecules becomes highly restricted, which can limit access to cell receptors and 

prevent formation of focal adhesion clusters resulting in poor cell responses. 

Grafting of flexible polymer brushes with functional groups on the surface seems to be 

the most promising technique, which overcomes most, if not all of these limitations (Chapter 

2.3). Polymer brushes can be created on a surface by either the “grafting to” or the “grafting 

from” approach. In a “grafting to” approach, pre-formed end-functionalized polymer molecules 

react with reactive groups on the surface to form polymer brushes. The bond formed between 

surface and polymer chain makes the polymer brushes robust and resistant to common 

chemical and environmental conditions. “Grafting to” is typically achieved either by depositing 

SAMs of thiolated/silanated polymer chains[29, 30], or by covalently coupling the polymer 

chains to functional groups on the surface[31-34]. PEG and PEG-based hydrophilic polymers 

grafted to gold[29, 30], glass, silicon, polymer[31-33] and metal[34, 35] surfaces are able to 

significantly reduce protein adsorption, and cell or platelet adhesion. Unfortunately, “grafting 

to” is either restricted to using commercially available pre-synthesized polymers, or requires 

custom polymer synthesis. Furthermore, increasing diffusion barriers created by chains already 

grafted on the surface prevent more chains from reaching the surface, resulting in a low grafting 

density and low polymer layer thickness.[28, 36, 37] 

The “grafting from” approach utilizes reactive species on the material surfaces to initiate 

the polymerization of monomers from the surface outwards. Therefore, the aforementioned 
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limitations do not exist as the small monomer molecules are not as prone to diffusion 

barriers[37], and any molecule that can be potentially polymerized can be used. The most 

versatile and convenient “grafting from” method is surface initiated radical polymerization 

(SIRP), which can either be uncontrolled or controlled. Surface-initiated uncontrolled radical 

polymerization has been used to graft various hydrophilic polymers from a wide variety of 

biomaterials, to control protein adsorption and platelet adhesion, or facilitate covalent 

conjugation specific biomolecules to control cell behavior.[38-50] However, SIURP techniques 

produce high polydispersity (PD) on the same surface, which will cause an uncontrolled variation 

in concentration of the biomolecules, and hence in cell behavior.  

This limitation of SIURP can be overcome by using surface-initiated controlled radical 

polymerization (SICRP) techniques, where the radicals undergo repetitive and reversible 

initiation-termination so that polymerization progresses in a very “controlled” manner. This 

provides excellent control over the amount of polymer and hence the concentration of 

conjugated biomolecules on the surface. Several SICRP techniques such as atom transfer radical 

polymerization (ATRP)[51, 52], nitroxide-mediated polymerization (NMP)[53, 54], reversible 

addition-fragmentation chain transfer polymerization (RAFT), and photoiniferter-mediated 

polymerization (PMP)[55-57] have been used for biomedical applications, with ATRP and PMP 

being the most prominent. ATRP offers low PD and excellent control over the amount of grafted 

polymer. However, the creation of spatial patterns[58] and/or gradients[59] on the surface 

requires extremely elaborate procedures.  

Photoiniferter-mediated polymerization (PMP) uses UV light to graft polymer chains. By 

controlling the UV location, intensity and exposure time across the surface, complex spatial 

patterns and gradients of grafted polymer chains can be created on the surface. Grafting via 
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PMP is much faster (minutes rather than hours), can be performed at room temperature with or 

without solvent (pure monomer), requires no catalyst/ligand system, and is compatible with a 

wide range of vinyl monomers. Surface-initiated PMP (SIPMP) depends on the presence of 

special dithiocarbamate-derived iniferter (INItiator-transFER agent-TERminator) molecules on 

the surface, which generate reversibly terminable radicals on UV exposure to graft polymer 

chains. Such concentration gradients of biomolecules can also be used to quantitatively analyze 

other gradient dependent cell behaviors like growth and migration. Furthermore, gradients can 

be also combined with patterned photomasks to create multiple sets of gradients with different 

profiles on the same surface. Such versatile surfaces can be used to study cell behavior on 

different gradient profiles in an extremely high throughput manner. 

Therefore, the central hypothesis of this study was that SIPMP can be used to  

1. modify surface properties of different materials,  

2. covalently attach biomolecules to the polymer chains,  

3. create gradients on the surface, and 

4. maintain accessibility and bioactivity of the immobilized biomolecules. 

The surface modification of PU substrates is discussed in Chapter 3. Specifically, SIPMP 

was made possible by incorporating the iniferter tetraethylthiuram disulfide (TED) into a 

photocrosslinked PU network. The goal was to improve the hydrophilicity of the PU surfaces, 

and provide a means to attach small molecules on the surface. It would also be advantageous if 

the level of hydrophilicity and amount of biomolecule attached on the surface can be easily 

altered for specific applications. To achieve these goals, the amount of hydrophilic polymer 

poly(methacrylic acid) grafted on the surface was systematically varied using four parameters, 

TED concentration, monomer concentration, UV intensity and exposure time. The effect of 
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polymer grafting on substrate hydrophilicity was monitored by water contact angle 

measurements. As proof of principle, the ability to attach small biomolecules was simulated 

using electrostatic attachment of the positively charged dye toluidine blue. The change in 

amount of dye attached was monitored by spectrophotometric measurements. 

Chapter 4 describes the covalent conjugation of noradrenalin (NA) to homogeneous 

pMAA and pHEMA layers using two different conjugation chemistries. The goal was to develop 

novel bioactive surfaces that prevent fouling by marine organisms. NA conjugation was verified 

by measuring the post-conjugation thickness increase using AFM as well as XPS scans to detect 

formation of the amide bond. Finally, the bioactivity and accessibility of NA was verified by 

oyster hemocyte culture on NA conjugated surfaces. Appropriate controls were included to 

confirm that only immobilized NA, and not the polymer itself, was responsible for any observed 

change in cell behavior. 

Finally, Chapter 5 presents preliminary studies in creating well-defined concentration 

gradients of substrate-immobilized proteins as a means to control gradient-dependent cell 

behaviors. Creation of pMAA and pHEMA thickness gradients was confirmed by AFM, while 

pMAA gradients were visualized by the covalently conjugated fluorescent dye dansylcadavarine. 

Some preliminary experiments were conducted to covalently conjugate either fibronectin or L1 

neural cell adhesion molecule to homogeneously grafted pHEMA chains. NIH3T3 fibroblasts and 

B35 neuroblastoma cells were cultured on these surfaces to verify conjugation, bioactivity and 

accessibility of the proteins. Appropriate controls were included to confirm that only conjugated 

proteins, and not non-specific protein adsorption was responsible for observed cell attachment. 
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2. Significance of Surface Modification and Available Techniques 

Every material, natural or synthetic, has a specific set of surface properties such as 

wettability, adhesion, friction, charge, hardness, toughness, roughness, porosity, wear 

resistance and corrosion resistance, which can have a significant impact on the material’s 

performance. For optimal performance of any material, both its bulk and surface properties 

need to be carefully designed. Ideally, the same material selected for its desirable bulk 

properties should also have the requisite surface properties. Unfortunately, such combinations 

are rare, and due to practical and economic reasons, it is very difficult to develop an entirely 

new material that fulfills both these requirements. This has led to research and development of 

numerous surface modification technologies that can suitably modify surface properties of 

metals, ceramics, and polymers, which comprise most of the commercially used materials. There 

are a plethora of techniques already in commercial use, with others under development to 

address yet unmet requirements. It is also important to realize that selection of the right surface 

modification technique will depend not only on the surface property desired, but also on the 

base material and its final application. Sometimes only one particular technique will fulfill all the 

requirements, whereas it is very likely multiple techniques will be applicable for other 

applications. The following literature review, briefly discusses some of the commercially 

important surface modification techniques. The first part focuses on non-biomedical 

applications, while the second part focuses on biomedical applications.  

2.1 Surface Modification Techniques in Non-Biomedical Applications 

2.1.1 Paints 

One of the oldest examples of surface modification is coating walls of buildings to 

improve aesthetics and provide protection from the elements such as water, temperature and 
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wind. The early coatings probably consisted of thick layers of naturally available materials like 

animal dung and some form of mud. These thick natural coatings have eventually progressed 

into thin layers of specialized paints, which not only improve aesthetics, but also keep water 

out, are tough enough to withstand erosion, are flexible enough to withstand temperature 

variations, and in extreme cases can even withstand fires. Besides large scale use on buildings, 

paints are now extensively used to protect metallic surfaces such as machinery, vehicles and 

ships from corrosion. Specifically for ship hulls, special toxic paints are currently used to prevent 

biofouling by marine organisms.[60] Such anti-biofouling paints save the shipping industry 

billions of dollars in fuel, dry-docking, cleaning and recoating costs every year.[60] The 

detrimental environmental effects of these toxic paints is a primary cause for them to be slowly 

phased out.[60] This has created tremendous pressure for the development of environmentally 

benign anti-biofouling coatings. New polymeric materials as well as application technologies are 

being developed to meet this challenge.[60] Some of these advancements are discussed further 

below under polymer films. 

2.1.2 Electroplating and Metallization 

Besides paints, electrodeposition and electroless deposition have long been used to 

plate a thin layer of a desired secondary metal onto the primary bulk metal surface. These 

techniques are primarily used for corrosion resistance, like nickel or zinc plating of copper and 

steels to prevent oxidation.[1] The multibillion dollar construction industry depends on coating 

all the steel cables, wires and rods used in reinforced concrete with zinc to prevent long term 

corrosion. Electroplating is also used to improve wear resistance, conductivity and aesthetic 

appeal.[1] Gold, platinum and palladium plating of jewelry, furniture and decorative items to 

improve their appearance are some common examples.[1] Lately plating of such noble metals is 
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being used to improve performance of electrical connectors, battery electrodes and electronic 

components.[1] 

Metallization has been widely used over the past 40 years to coat a layer of metal on 

non-conductive materials. Metallization probably started with manufacturing of mirrors by 

coating a thin layer of silver on glass to obtain a reflective surface. In modern times, besides 

mirrors, metallization is used to combine the good properties of plastics/polymers (cost, 

moldability, dielectrics and weight) with those of metals like conductivity, polish and 

strength.[5] Metallization has found numerous applications in the automotive and aerospace 

components, toys, furniture, electronic appliances and other hardware items. Manufacturing of 

printed circuit boards (PCBs) is another success story of the use of metallization on a large 

scale.[5]  

2.1.3 Ion Implantation 

An alternate approach to the physical application of paint and metal layers is direct 

alteration of the materials chemistry and/or composition at the surface to improve desired 

properties. Ion implantation (II) is one such technique which allows alloying virtually any 

elemental species into the near-surface region (outermost micron) of any substrate by 

bombarding it with highly energetic ions.[2] Besides preservation of bulk properties, it does not 

suffer from adhesion problems since there is no interface, sample dimensions are not changed, 

and it provides precise control over the implantation area.[3] It is extensively used to implant 

nitrogen, titanium or carbon into metal surfaces tools, gears, bearings, injection molding 

nozzles, screws and other industrial components to significantly reduce wear.[2] Similarly, 

implantation of chromium (Cr), Cr plus phosphorus, or Cr plus molybdenum can virtually 
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eliminate corrosion of steel components, even those subjected to extreme chemical and 

temperature environments.[2, 3] 

Ion implantation has also been used to improve surface properties of ceramics. For 

example, aluminum (Al) implantation increases the fracture toughness (up to 50%) and surface 

hardness (up to 25%) of Yttria-stabilized zirconia, an important electrolyte coating for several 

solid-state electrochemical devices such as fuel cells and oxygen sensors.[2] Similarly, the 

surface hardness of aluminum oxide, the natural protective layer on all aluminum components, 

can be increased by up to 40% by Cr implantation.[2] Implantation of nitrogen ions into silicon 

carbide (SiC) surfaces helped reduce the friction coefficient from 0.049 to 0.024 resulting in 

excellent tribological properties in water.[61] Such water-based lubricating technologies are 

under heavy investigation to bypass the environmental pollution problems posed by oil-based 

lubrication systems.[61] 

Even polymers have benefited from the ion Implanation technique. Implantation of ions, 

specifically Si ions, has made possible manufacturing of organic thin-film transistors on 

poly(methyl methacrylate) (PMMA) and other flexible polymer films, now extensively used in 

liquid crystal displays and radiology capture devices.[62] Wetting property (hydrophilicity) of 

polymers is important because it can affect their paintability, colorability, anti-electrostatic and 

anti-fogging properties.[63] Oxygen ion bombardment is being used to convert hydrophobic 

nature of some bulk polymers to a hydrophilic nature by creating functional groups on the 

surface.[63, 64] 

2.1.4 Metal and Ceramic Films 

While ion implantation has found commercial success, sometimes the amount of ions 

implanted is insufficient to improve the surface properties.[65] In such cases, deposition of 
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thicker films may solve the problem. At the same time, it is imperative that such deposited films 

have excellent adhesion with the surface so that it is not dislodged over time. Plasma-assisted 

deposition (PAD), ion-beam-assisted deposition (IBAD) and their derivatives are commonly used 

techniques to deposit robust films on a variety of surfaces. PAD is frequently used to deposit 

yttrium-stabilized zirconium as a heat-protection coating for turbine blades and liners (valves, 

inner walls) of jet combustion chambers.[66] Similarly, deposition of robust chromium oxide 

films on steel surfaces using IBAD results in excellent protection from alkali and acid based 

corrosion.[3] Magnesium fluoride films exhibiting excellent structural integrity and optical 

properties have been deposited using IBAD.[2] Such optical coatings are used to coat surfaces of 

glass lens to compensate for focal and chromatic aberrations in a much easier and economical 

way than improving the glass itself. Additionally, special abrasion resistant hard coatings have 

been developed that provide protection to the lenses, while anti-reflective (AR) coatings 

drastically improve image quality. Newly emerging plastic optics are coated worldwide with AR 

films using plasma-assisted evaporation processes.[4] Optical coatings have also made possible 

manufacturing of high quality wavelength, intensity and polarization filters at significantly lower 

costs. These filters have significantly improved the function of consumer products like UV 

protective glasses and digital cameras, as well as scientific instruments like microscopes, 

spectrophotometers, ellipsometers and FTIR spectroscopes.  

A special mention must be made of diamond-like carbon (DLC) coatings which exhibit 

excellent chemical inertness, high wear and corrosion resistance, have low friction and can be 

modified to withstand extreme temperatures.[11, 64, 67] Such coatings can be produced on 

metal, ceramic and polymer surfaces using modified versions of the PAD or IBAD techniques.[11, 

64, 67] DLC coatings, especially the ones modified with fluorine, are being used to make non-
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stick cookware and protective optical coatings.[11] DLC-based coatings are also under 

investigation for preventing paraffin deposition inside oil pipelines[11], reducing calcium scale 

formation inside heat exchanger coils[11], and producing aluminum components with low 

friction and high corrosion resistance for the automotive industry.[64]  

Chemical vapor deposition (CVD) is another technique used since the last 40-50 years to 

deposit thin layers of metals on surfaces, conducting or otherwise.[6] In its simplest form, CVD 

involves passing a precursor gas or mixture of gases to be deposited into a chamber where the 

object to be coated has been heated. Chemical reactions occur on the surface, leading to 

deposition of a homogeneous thin metal film. Improvements have taken place in the CVD 

process over the years that make use of plasma, ions, photons, lasers, hot filaments, etc. to 

increase deposition rates and/or help bring working conditions to more acceptable 

temperatures and pressures.[6] The early applications of CVD were mainly for corrosion 

prevention, but since the above mentioned improvements, it is also used extensively to create 

surfaces which have specific active functions. CVD is the method of choice to deposit highly 

purified and ordered layers of semiconductor materials (like doped Si) and conductive 

microscopic interconnects (like tungsten, gold) in the microelectronics industry for large scale 

manufacturing of integrated circuits, diodes, light emitting diodes (LEDs), fiber optic cables, and 

more recently microelectromechanical structures (MEMS).[6] Some other applications of CVD 

include deposition of DLC coatings discussed above, hard carbonitride coatings and insulating 

ceramic films.[6] 

2.1.5 Polymer Films 

Advances in polymerization techniques as well as synthesis and characterization of 

novel polymeric materials have lead to the development of polymer-based coatings to improve 
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surface properties of materials. The plethora of polymer types (like PTFE, PU), their structures 

(like chain length, linear, branched, hyperbranched, crosslinked), functional groups (like -OH, -

COOH, -NH2, CH3) and various deposition techniques (like dip coating, spraying, plasma/ion-

assisted deposition, crosslinking, grafting) provide a level of control over surface properties not 

possible with metal or ceramic films. In fact, polymer-based materials can now match the 

mechanical properties of metals and ceramics while possessing much better chemical inertness, 

and frictional and non-fouling (non-stick) properties.  

Polymer films can be deposited by techniques similar to the ones used to deposit metal 

and ceramic films. For example, thermal- and plasma-assisted CVD, also known as chemical 

vapor polymerization (CVP) is an emerging technique to polymerize coatings directly on the 

surface. CVP is now being exploited for microelectronics (for dielectric insulating layers), 

insulation (mini-transformers, motors), optical devices (LEDs), and corrosion resistance and 

protective coatings (o-rings, hoses, diaphragms). 

Additionally, polymers are amenable to deposition by much milder techniques such as 

dip coating, spraying, crosslinking and advanced surface-initiated polymerization approaches. 

This is very important for applications where the bulk or coating material cannot be subjected to 

the extreme pressures, temperatures and radiation involved in the metal and ceramic film 

deposition techniques. Most commercial paints applied by simple spray-on techniques now 

contain pre-synthesized acrylic acid, urethane, epoxy or other polymers, which are responsible 

for the excellent durability, wear resistance and smooth textures. More recently, a 

polyurethane-based paint containing polytetrafluoroethylene (PTFE) polymer and silicon resin 

provides resistance against graffiti and adhesive materials.[11] Upon application, the silicon 

resin and PTFE segregate to the surface, and become interlocked with the polyurethane (PU) to 
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provide excellent durability and mechanical properties.[11] Temperature and wear resistant 

PTFE-based coatings ubiquitous on cookware to prevent adhesion, as well as on metal, plastic 

and laminated paper food storage containers to prevent toxic chemical reactions, are applied by 

simple spray-on and curing techniques.[9-11] PTFE and other PTFE-like polymers are also under 

investigation for anti-corrosion applications. Perfluoroalkoxy alkane (PFA) and 

perfluoroethylenepropylene (FEP) coatings on steel prevented corrosion even when submerged 

extreme pH solutions.[11] 

There is a possibility that the polymer chains deposited by simple spray-on technique 

will start separating and eroding off after prolonged exposure to extreme environmental 

conditions. This is overcome by crosslinking the polymer chains, which results in creating a 

uniform covalently interconnected polymer layer on the surface. Such coatings are typically 

deposited by reacting a precursor solution on the surface. In a recent study, crosslinked coatings 

composed of epoxy powder and polyaniline (PANI) applied to steel surfaces exhibited self-

healing properties on scratching and prevented rust formation even after prolonged exposure to 

saline conditions.[68] Addition of PANI increased the crosslinking density that decreased 

penetration of corrosion causing liquids, and also served as a radical scavenger to prevent 

corrosion of the underlying metal.[68] Similarly, crosslinked perfluorinated oxazoline-based 

copolymer films coated on steel panels performed much better than over 100 other commercial 

anti-biofouling coatings in long-term ocean water immersion tests.[11] There are numerous 

other crosslinked polymeric materials, mostly containing silicone and/or fluorine groups, under 

development as anti-biofouling coatings for marine applications.[11] As discussed earlier, they 

are being developed to overcome the environmental challenges posed by the toxic paints 

currently used for marine anti-biofouling applications. 
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Photo-curing is gaining ground to speed up the crosslinking process and allow usage of 

materials which otherwise do not react with each other (like examples above).[8] This is made 

possible by introducing acrylate groups that can be crosslinked using extremely fast radical 

polymerization (curing in seconds to minutes) into monomers and macromers with desirable 

properties.[8] UV-cured polyurethane-acrylate coatings having excellent wear, scratch, light, 

water and heat resistance are now very commonly used to protect outdoor materials like 

fences, boats, water tanks, wood floors and metal sheets.[8] All optical fibers are now coated 

with special optical-quality photocrosslinked polymer layers to protect the delicate glass core 

from external forces.[69] 

In addition to accelerated cure times, use of UV light allows easy control over the 

location of polymerization on the surface. Advanced lithography techniques using high 

resolution photomasks and highly focused light beams have been widely adopted by the 

electronics industry to fabricate integrated circuits.[7] The circuits are etched out from special 

highly flat and ordered semiconducting layers deposited using CVD as discussed earlier. The size 

scale of these integrated circuits keeps shrinking with advancements in both the light source and 

surface materials from which the components are etched.[7]  

Polymer chain grafting is another technique that has received considerable attention 

during the last two decades for surface modification. Polymer chain grafting typically involves 

creation of a nanometer-scale brush-like polymer layer on the surface wherein each polymer 

chain is attached to a single site on the surface. These attachment sites can be created on the 

surface by various techniques like self-assembled monolayers (SAMs), plasma treatment, ozone 

exposure and radiation. Grafting does not create tough polymer layers on the surface, and 

therefore has evolved mainly to change the surface chemistry of the bulk material such as 
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hydrophilicity, polarity, charge and functional groups, rather than improve mechanical 

properties. However, it does provide very precise control over the surface chemistry, in many 

cases on the molecular level. 

 As an example, microporous membranes are becoming the method of choice for 

filtration of fluids, especially water, as they do not involve any complex physical or chemical 

treatments. Most membranes are made from hydrophobic polymers like PTFE, nylon, 

polysulfone, polyethersulfone, polypropylene, polyethylene, polyvinylidenefluoride (PVDF), etc, 

due to their good mechanical properties and excellent chemical stability. Unfortunately, these 

materials are prone to rapid fouling by salts, proteins and/or microorganisms, thus quickly 

degrading the membranes performance.[70] Controlled grafting of nanometer-scale polymer 

brushes is becoming the method of choice to improve non-fouling properties of the membranes, 

without changing their pore size and hence performance. In a recent study, poly(sulfobetaine 

methacrylate) (pSBMA) chains were grafted on the surface of PVDF membranes using atom 

transfer radical polymerization (ATRP) by attaching the ATRP initiator molecules to functional 

groups created on the membrane surface by ozone treatment.[12] This pSBMA grafting 

improved the surface hydrophilicity and dramatically reduced bovine serum albumin (BSA) and 

γ-globulin adsorption, even beyond three filtration cycles, which was the normal usable limit of 

the unmodified PVDF membranes.[12] Such grafting techniques are also being used to prepare 

stimuli responsive gated membranes which allow control over the filtration rate depending on 

specific environmental conditions.[71] For example, pH and temperature changes were used to 

control the filtration rate of polypropylene membranes by grafting poly(acrylic acid) (PAA) and 

poly(N-isopropyl acrylamide) (pNIPAAM) chains respectively using reversible addition-

fragmentation chain transfer (RAFT) polymerization.[71] At pH values below the pKa of the PAA 
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chains, the chains coiled down to open the pores, while at pH values higher than the pKa, the 

carboxylic acid groups dissociated, extending the chains and closing the pores.[71] Similarly, at 

temperature values below the Lower Critical Solution Temperature (LCST) of pNIPAAM, the 

chains collapsed to open the pores, while at temperature values higher than the LCST, the 

chains extended resulting in closing of the pores.[71] A more detailed discussion of various 

polymer grafting techniques can be found later in this chapter. 

Many of the materials used for non-biomedical applications discussed above, and 

numerous others, are used as biomaterials for biomedical applications. Expectedly, they too 

face problems in achieving the right combination of various mechanical and surface properties. 

Biomaterials face an additional requirement of biocompatibility, which almost entirely depends 

on cell behavior at the biomaterial surface. Many of the aforementioned surface modification 

techniques have been adapted to improve mechanical and surface properties of biomaterials. 

For example, ion implantation, IBAD and CVD are used to improve mechanical and corrosion 

resistant properties. Others like plasma treatment, SAMs and various forms of polymer grafting 

have been suitably adapted to address biocompatibility requirements. The following section 

discusses such techniques as applicable to improving surface properties of biomaterials. 

2.2 Surface Modification Techniques in Biomedical Applications 

Development of biomaterials for tissue replacement, augmentation and regeneration 

has been in the forefront for the past few decades. The main driving force has been the 

widening gap between the ever growing need for replacement tissues and organs, and the 

decreasing availability of allogenic replacements. Biomaterials have been able to cover this 

shortfall to some extent, with complete replacement of heart valves, joints, intro-ocular lenses, 

pacemakers, etc., and limited regeneration of some tissue types like bones, cartilage and skin. 
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These successful developments have come with, and still present, considerable challenges to 

meet the unique requirements of the human body. The primary requirements for any 

biomaterial to be successful are biocompatibility (minimal toxicity, minimal inflammatory 

reactions, minimal tissue damage), suitable mechanical properties (strength, elasticity, 

hardness, toughness, wear resistance, roughness, friction), reasonable cost, and ease of 

production, handling, sterilization and storage. The bulk properties of a biomaterial can be 

tuned to a large extent, but obtaining the right combination of modulus, strength, frictional 

properties, wear resistance, corrosion resistance, and chemical inertness is still a challenge. 

Meticulous and expensive designing may help meet all the mechanical requirements, but at the 

cost of biocompatibility. For example, if the bulk material has good biocompatibility, small 

molecules can leach out, or wear particles can be generated, which can trigger inflammatory 

responses inside the body. This is especially true for implants involving movement and friction 

like artificial joints, and needs to be addressed to prevent adverse systemic reactions. 

Biocompatibility reflects the interaction of the material surface with the biological 

environment which includes adsorbed blood proteins, the extra-cellular matrix (ECM), and most 

importantly cells.[72] As soon as a foreign material comes in contact with body tissue and fluids, 

proteins start adsorbing on its surface. Any cell response, favorable or otherwise depends on the 

molecular level interactions between receptors on their membranes and chemical cues present 

in the environment. In case of biomaterials, chemical cues are provided by the inevitable non-

specific protein adsorption on their surfaces. Protein adsorption on surfaces of biomaterials 

leads to conformational changes in the protein structure that alters their bioactivity.[72] This 

altered bioactivity is thought to contribute to undesired cell responses like fibrous encapsulation 

of implants[15], acute or chronic inflammatory response, and/or thrombus formation via 
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platelet activation[18]. These adverse responses can lead to failure and rejection of the 

implanted device, requiring complex and painful surgical procedures to remove and replace the 

implant. Since these interactions originate on the surface where proteins adsorb, early attempts 

at improving biocompatibility involved rendering the surface bioinert to prevent protein 

adsorption altogether. Coating surfaces with hydrophilic polymers like poly(ethylene glycol), and 

(PEG) poly(hydroxyethyl methacrylate) (pHEMA) has been successful in dramatically reducing 

protein adsorption.[18] However, protein adsorption in the long-term is inevitable leading to 

expected biocompatibility issues. Therefore, more recent efforts have focused on imparting 

specific bioactivity to the surface to generate more favorable cellular responses such as bone 

tissue integration and endothelialization.[18] 

As discussed, it can be a very complex and expensive affair to develop entirely new 

biomaterials with bulk properties which fulfill all these requirements. An advantageous 

approach is to just modify the surface properties of biomaterials already approved for clinical 

use, to retain their good bulk properties but significantly improve their performance inside the 

body. Therefore, surface modification for biomedical applications is usually targeted towards 

improving the mechanical properties and/or biocompatibility of the biomaterial. Some examples 

highlighting the need for surface modification of biomaterials are briefly discussed below.  

2.2.1 Surface Modification Examples of Metallic Biomaterials 

Metals and their alloys have long been used in biomedical applications due to their good 

mechanical and machining properties.[16] They are commonly used in orthopedic surgery, 

craniofacial surgery, dental implantology, and plastic and reconstructive surgery for load-

bearing, and bone-replacing/contacting applications.[73] Some common examples are, stainless 

steels used to manufacture fracture plates, screws, hip nails and total-hip replacement (THR) 
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stems; cobalt-based alloys used in dentistry casting and load-bearing components of total-joint 

replacements (TJRs); and titanium-based alloys used in THRs and nails.[16] Metals are also used 

for some non-load-bearing implants like coronary stents and pacemaker casings. Unfortunately, 

these materials have exhibited tendencies to fail after long-term use due to various reasons 

such as, high modulus compared to that of bone, low wear and corrosion resistance, fibrous 

encapsulation, inflammatory responses, and lack of osseointegration.[15] 

Mismatch of the modulus between the implant metal and bone, and corrosion were 

major problems associated with stainless steel and cobalt alloys. Hence, they are being rapidly 

replaced with titanium-(Ti)-based alloys as their modulus can be tailored to closely match that of 

native load-bearing tissue.[13] Additionally, Ti alloys provide a high strength-to-weight ratio, 

good corrosion resistance and good biocompatibility.[14] However, Ti alloys have poor wear and 

abrasion resistance, which not only reduces the implants’ service life, but also produces wear 

debris that causes a serious inflammatory response in the body.[14] Though much better than 

other metals, Ti alloys do suffer from corrosion in the long-term which can have toxic effects in 

the body.[15, 16] Nitrogen ion implantation and plasma nitriding of Ti alloys can produce a 

significant increase in corrosion and wear resistance.[15, 16] Similarly, oxygen diffusion 

hardening (ODH) has been shown to drastically improve wear resistance and frictional 

properties of Ti alloys.[15] 

Laser surface treatment is gaining ground for metal implants because of the relatively 

rapid rate of processing, ease of automation, ability to operate at atmospheric pressure, and the 

ability to treat selective areas.[16] Furthermore, laser treatment can produce much more 

homogeneous layers on the surface and up to much greater depths. In most cases it involves 

annealing the metal surface in the presence of a gas to permit ion implantation to improve 
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surface properties. For example, wear resistance and hardness of titanium alloys improved after 

laser surface melting in a nitrogen gas atmosphere which created a hard TiN layer on the 

surface.[16] Similarly, ceramic coatings such as hydroxyapatite and calcium have also be 

deposited using a pulse laser deposition technique in order to improve corrosion resistance of 

titanium surfaces.[16] 

Other common techniques like IBAD, CVD, and physical vapor deposition (PVD) have 

also been used to deposit ceramics (like zirconia), noble metals and TiN films on the surface to 

improve wear and corrosion resistance.[16] However, these films suffer from delamination in 

long-term physiological applications, thus limiting use of these techniques for biomedical 

applications.[16] DLC films discussed previously, have recently started gaining attention as 

coatings on metallic biomaterials.[14, 15] DLC films have been able to provide excellent 

corrosion and wear protection and improved frictional properties.[14, 15] More importantly, 

biocompatibility tests conducted on DLC films have yielded excellent results, with absence of 

cell cytotoxicity and inflammation.[15] Studies are currently under way to improve the adhesion 

strength of DLC films to metals as well as long-term hemocompatibility.[14] 

2.2.2 Surface Modification Examples of Polymeric Biomaterials 

Several polymeric materials have also found widespread use in biomedical devices due 

to their low production cost, availability in high volume, ease of molding into any shape and size, 

ease of sterilization and considerable shelf life. Polymers such as poly(methylmethacrylate) 

(PMMA), Dacron polyester, poly(tetrafluoroethylene) (PTFE), high-density polyethylene (HDPE), 

polyurethanes (PU), poly(lactic acid) (PLA) and poly(glycolic acid) (PGA). have undergone 

extensive clinical testing and found use in several biomedical applications including joints, 

intraocular lenses, contact lenses, large diameter vascular grafts, heart valves, electrodes and 
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catheters. Designing polymers with specific mechanical properties is not a problem, with various 

polymer types and their blends possible to meet the requirements. However, selecting 

polymer(s) with the combination of best mechanical properties and biocompatibility is a very 

difficult undertaking. For example, initial investigations resulted in manufacturing of artificial 

joint sockets from ultra-high molecular weight polyethylene (UHMWPE) due to its good 

mechanical strength, frictional properties and tolerance in the body. Unfortunately, unmodified 

UHMWPE has poor wear resistance, which leads to the formation and release of micron-sized 

wear particles, triggering inflammatory reactions around the implantation site, and wherever 

the particles migrate in the patient’s body. Additionally, UHMWPE is also extremely 

hydrophobic, which leads to fouling by proteins and cells causing biocompatibility issues and 

degradation of frictional properties. γ-irradiation was used to crosslink the UHMWPE chains, 

increasing its hardness and hence wear resistance.[17] However, crosslinking also made the bulk 

material brittle causing fracture and failure of the material under dynamic loading conditions of 

joints.[17] The solution was to restrict the crosslinking reaction to the surface to obtain wear 

resistance while preserving the original strength.[17] Recent studies have demonstrated up to 

three fold increase in wear resistance by bombarding the surface of medical grade UHMWPE 

with energetic ions (Ar+ or He+).[17, 74] Unlike ion implantation in metals, ion bombardment 

leads to crosslinking of UHMWPE chains on the surface which increases its hardness and wear 

resistance.[74, 75] This increase in hardness is also attributed to formation of an oxide layer on 

the UHMWPE surface, which remains stable for years.[17] There is also a possibility that plasma 

treatment can increase the hydrophilicity of the UHMWPE surface, which can help reduce 

protein fouling and improve biocompatibility. 
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2.2.3 Surface Modification Examples to Control Cell Behavior 

Some biomedical devices like pacemaker leads, electrodes, biosensors, catheters and 

ocular lenses suffer from fouling by protein and cells which adversely affects their 

functionality.[76-78] Similarly, polyurethanes (PUs), which are extensively used in biomedical 

applications such as heart valves and catheters due to their tunable mechanical properties, 

often suffer from calcification and thrombogenic biocompatibility issues that lead to long-term 

failure of the PU device.[79] In such cases, the surface of the biomaterial needs to made 

‘bioinert’ to prevent such non-specific interactions. 

In case of some biomedical devices, promoting cell adhesion and controlling their 

behavior can provide better clinical outcomes than preventing it. Osseointegration of load-

bearing metallic implants by promoting tissue ingrowth and matrix deposition is absolutely 

critical to providing mechanical stability and preventing implant loosening.[15] Most metal 

implants now have some level of surface porosity to permit osseointegration. However, 

osteoblasts need to be stimulated to deposit bone matrix by presentation of specific physical as 

well as chemical cues. Cells adhesion, proliferation and growth has been shown to be partly 

dependent on the surface morphology. Hence, methods like machining, grinding, polishing, 

blasting, acid or alkali etching and anodization were used to increase the surface roughness and 

topography of metal implants.[73] Studies reported increased bone growth activity on such 

textured metal implant surfaces.[15, 73] In addition to providing physical cues, attempts are 

being made to impart bioactivity to the implant surfaces to further improve osseointegration. 

Inorganic calcium phosphate (CaP)-based coatings have been deposited on metal surfaces using 

dip coating, spin coating, and plasma-assisted techniques due to their similarity to native bone, 

which may promote bone formation and hence osseointegration.[15, 73] Numerous studies 
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have demonstrated improved bone formation activity on metal surfaces coated with CaP 

films.[15, 73] Studies are currently in progress to improve the adhesion strength, thickness and 

homogeneity of CaP films on metal implant surfaces.[73]  

Stainless steel coronary stents have been used since the 1980s to open arteries 

occluded by plaque formation to restore blood supply to the heart and prevent infarction. 

Unfortunately, they have long encountered problems with thrombotic vascular occlusion and 

intimal hyperplasia (IH) leading to failure of the device.[80] Coating the stent material with 

antiproliferative agents has yielded limited long-term success.[80] The focus has therefore 

shifted to promote endothelialization as the most promising solution, since the native 

endothelium actively functions to prevent thrombosis inside healthy blood vessels.[81, 82] 

Endothelialization however, requires attaching certain signaling molecules to the stent’s surface 

which can recruit neighboring endothelial cells to adhere, proliferate and form a healthy layer 

over stent’s surface that will last the patient’s lifespan.[81, 82] For example, a recent study 

reported enhanced attachment, adhesion and growth of endothelial cells on 316 stainless steel 

surfaces by grafted with a synthesized mussel adhesive polypeptide via PEG spacer chains 

compared to unmodified steel surfaces.[81] Another example is the commercial use of expanded 

polytetrafluoroethylene (ePTFE) and polyethylene terephthalate (Dacron) to make large 

diameter vascular grafts since they match the mechanical properties of native blood vessels. 

Unfortunately, their thrombogenic surface shortens their lifespan and prevents their usage as 

grafts for small diameter (<5mm) blood vessels.[82] Similar to the stent problem discussed 

above, current studies are investigating the immobilization of signaling molecules on the graft’s 

surface to trigger successful endothelialization after it has been implanted in the body. Some 

studies have shown increased endothelial cell (EC) adhesion and proliferation when vascular 
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grafts are coated with peptide sequences like RGD and YIGSR, or whole ECM proteins like 

laminin.[82] 

Before such strategies can yield clinical success, effects of various parameters like which 

biomolecule, its concentration, and its spatial and temporal distribution on the behavior of 

target cells need to be thoroughly studied. Axonal guidance for spinal cord regeneration 

exemplifies this need. A considerable amount of evidence points towards the need to control 

the spatial distribution of trophic factors presented to stimulate axonal regrowth.[83] This idea 

stems from the fact that axonal growth cones can be guided by concentration gradients of 

growth factors.[84, 85] Therefore, it has become imperative to study how gradients of different 

trophic factors and different concentration profiles will affect axonal guidance and growth. 

Diffusion gradients have been attempted to stimulate axon growth, both in vitro and in vivo, but 

they suffer from procedural complexities and potential to cause systemic effects.[86] A number 

of immobilization approaches have also been tested to create concentration gradients, such as 

differential evaporation and microfluidics to overcome limitations of the diffusion 

technique.[85, 87] However, evaporation depends on a myriad of environmental conditions, 

thus resulting in little control over the gradient profile. Microfluidics does allow very precise 

control over the gradient profile. However, they are restricted by small dimensions and require 

at least two proteins to form the gradient. Furthermore, microfluidics can only create linear 

parallel patterns, so combining gradients with complex spatial patterns is very difficult, if not 

impossible, to achieve.  
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2.2.4 Available Surface Modification Techniques to Improve Biocompatibility and Control Cell 

Behavior 

Taking all the aforementioned factors into consideration, a technique is required that, 

1. facilitates modification of surface properties to prevent non-specific interactions, 

2. facilitates surface modification of polymers, ceramics as well as metals, 

3. facilitates covalent attachment of any biomolecule to elicit specific responses, 

4. maintains accessibility and bioactivity of the attached biomolecule, and 

5. facilitates creation of concentration gradients where required.  

A very important point to note is that all cellular behaviors including adhesion, 

proliferation, differentiation, migration, protein expression, extra-cellular matrix (ECM) 

production and even apoptosis depend on the interaction of receptors on the cells surface with 

biochemical cues present in the environment. Since these interactions take place on the 

molecular level, the surface modification technique should also allow precise control over the 

concentration of any biomolecule attached on the surface. 

2.2.4.1 Changing the Bulk Material Composition 

One approach to render a surface bioinert, to prevent protein adsorption, or bioactive, 

to control cell behavior, is to change the bulk polymer composition. For example, blending PEG-

containing copolymer into the polymer bulk can potentially result in highly protein repellant 

surfaces due to diffusion of PEG chains to the surface.[88] Although this may be an easy 

method, there is a possibility of the PEG chains leaching out causing serious issues with long-

term usability of this material. This can potentially be addressed by covalently linking the PEG 

chains to the bulk polymer backbone.[89] Similarly, biomolecules can be mixed with the 

biomaterial during fabrication.[90] Some biomolecules will be present on the scaffold’s surface 
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that the cells will recognize, thus producing desired responses. This strategy has met 

considerable success with many commercial products currently available, including Xelma skin 

grafts (ECM proteins in propylene glycol alginate gel) and Extracel bone/cartilage grafts (bovine 

and porcine gelatin, and porcine heparin in PEG-hyaluronic acid gels).[91] The most important 

limitation of this technique is that it is largely restricted to polymeric materials, and nearly 

impossible to achieve with ceramics and metals. Furthermore, blending of bulk synthetic 

polymers with additive polymers or biomolecules can adversely affect mechanical properties. 

Additionally, it has the potential to denature or degrade the biomolecule during the fabrication 

process.[90] Blending is also very specific, so the material to be added, the amount to be added, 

and the blending technique to be used will change with the targeted bulk material and 

application.[92-94]  

2.2.4.2 Plasma Treatment 

These limitations highlight the need for a surface modification technique that is 

restricted to the surface of the biomaterial. Protein adsorption on surfaces is a very complex 

phenomenon, which depends on multiple factors including surface hydrophilicity, surface 

energy, surface charge, protein size, protein charge and protein concentration. In many cases it 

has been observed that creation of hydrophilic functional groups like hydroxyl, carboxyl, amine, 

and thiol on a surface can reduce non-specific protein adsorption.[95] Plasma treatment of 

materials by nitrogen, oxygen, methane and other gases has been investigated as a potential 

technique to introduce such hydrophilic groups on the surface. Plasma treatment has the added 

advantage of excellent penetration allowing modification of complex shapes and structures. 

Treatment of fluorocarbon polymers with plasma of oxygen or nitrogen-containing gases can be 

used to vary the surface hydrophilicity due to generation of polar groups on the surface, thus 
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controlling protein adsorption and cell adhesion.[19] Polystyrene (PS) surfaces treated with NH3 

plasma adsorb far less protein than untreated PS surfaces.[20] In some cases, increasing the 

hydrophilicity of the surface tends to promote cell proliferation, probably because the structure 

and hence the bioactivity of the adsorbed protein is preserved better on hydrophilic surfaces. 

Adhesion and proliferation of human endothelial cells is significantly increased on ePTFE 

vascular grafts due to creation of oxygen-based polar groups on the surface by H2/H2O plasma 

treatment.[20] In another recent study, hydrophobicity of PLA and PLGA scaffolds was 

significantly reduced by creation of N-containing groups on the surface by plasma 

treatment.[21] This increased hydrophilicity and positively charged N-containing groups on the 

surface helped improve infiltration of human skin fibroblast cells into the scaffold for TE 

applications.[21] Surfaces with extremely low surface energies like perfluoroalkyl groups also 

seem to prevent protein adsorption, or at least help rapid removal by low-force liquid flow.[20] 

For example, creation of fluorine groups on cellulose membranes used for hemodialysis by 

tetrafluoromethane (CF4) plasma treatment reduced protein adsorption, leukocyte adhesion as 

well as complement activation.[20] Similarly, protein adsorption and the consequent 

inflammatory cell adhesion and debris production was significantly reduced on PMMA intra-

ocular lenses by CF4 plasma treatment.[20]  

Functional groups created on the surface by plasma treatment can be used to 

immobilize biomolecules[95], which can then be used to stimulate cells to produce very specific 

responses. Several studies have reported enhanced adsorption of biomolecules on surfaces with 

functional groups created by plasma treatment. This is especially true when charged groups like 

amine (-NH2) and carboxylic acid (–COOH) that can immobilize proteins due to electrostatic 

interactions. Alves et al. demonstrated increased BSA, Fn and vitronectin (Vn) adsorption and 
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bioactivity preservation by creating carbon-oxygen-based polar groups on PLA surfaces using 

oxygen plasma treatment.[96] Primary fetal rat calvarial cells showed increased adhesion on 

protein adsorbed plasma-treated surfaces compared to untreated non-protein adsorbed PLA 

surfaces.[96] The authors proposed that such protein treatment can be used to enhance bone 

matrix deposition in PLA-based bone graft substitutes.[96] In a similar study, hydrophilicity of 

PMMA surfaces was improved by creation of carbon-oxygen-based polar groups using oxygen 

plasma treatment.[97] This treatment enhanced adsorption of the antimicrobial peptide histatin 

5 resulting in lowering of C. albicans bacterial colonization compared to untreated PMMA.[97] 

Such antimicrobial treatments can find applications in ocular lenses, biosensors and other 

biomedical implants. However, as with any physical adsorption technique, there is no control 

over the amount and location of the immobilized biomolecules. Furthermore, lack of covalent 

binding can lead to loss of biomolecules and hence bioactivity in a physiological environment. As 

an alternative, special crosslinking chemistries can be used to covalently couple the functional 

groups on the material’s surface with those on biomolecules like proteins, peptides and drugs. 

In some studies, ammonia-based plasma treatment was used to introduce primary amine (-NH2) 

groups on surfaces of PTFE and polyethylene substrates.[23, 98] In one study, fibronectin (Fn) 

was covalently immobilized to the PTFE surface using the crosslinker glutaric anhydride 

(GA).[23] Covalent coupling of Fn was confirmed by XPS measurements and radiolabeling assay, 

while bioactivity was confirmed by adhesion and proliferation of bovine aortic endothelial cells 

(BAECs) and ELISA.[23] Vascular grafts made from ePTFE can benefit from such protein coupling 

for successful endothelialization. In another study, an anti-horseradish peroxidase antibody was 

attached to PE surfaces using glutaraldehyde as the crosslinking agent.[98] Though bioactivity 

tests were not performed, such antibody immobilization on polymer surfaces can find 
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applications in biosensors and surface-bound assays like ELISA. Similar to –NH2 groups created 

on the surface, -COOH groups have been used to covalently couple RGD-based peptides, 

collagen, anticoagulants like thrombomodulin and heparin, while –OH groups have been also 

been used to covalently attach heparin, glucose isomerase, etc.[99] 

2.2.4.3 Monolayers 

A step further from using functional groups on the material’s surface for anti-fouling or 

biomolecule immobilization is creation of self-assembled monolayers (SAMs). SAMs can be 

considered to be the most elementary form of surface-bound organic thin-films. SAMs are 

composed of numerous short-chain molecules densely packed to homogeneously cover the 

surface. Each of these molecules consists of three parts: an active head group that binds 

strongly with the surface, an alkyl chain giving stability to the assembly by van der Waals 

interactions, and ω-functionality that is exposed to the environment. SAMs have attracted more 

attention lately because of the observation that they seem to be much better at controlling 

protein adsorption, even elimination in some cases, compared to functional groups created 

directly on the surface. This is because the molecules used in SAM formation provide much 

better surface coverage and can be engineered to fine tune hydrophilicity and surface energy.  

Densely packed monolayers of alkanethiol short-chain molecules can be created on gold 

surfaces due to the high affinity of thiols for gold, a process known as chemisorption. The free 

terminal group can be any functional group like hydroxyl, carboxyl, amine and methyl, which can 

control protein adsorption, or can be further used to covalently couple specific biomolecules. 

Alkanethiol monolayers obviously require a thin layer of gold to be deposited on the bulk 

material. Gold is not really used as a biomaterial to be implanted inside the human body[37], 

but alkanethiol monolayers on gold films deposited on silicon, quartz, glass or metal surfaces are 
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extensively used to study the interaction of proteins with surface functional groups.[100] The 

flat and defect-free nature of gold films and the resulting SAMs permit the use of highly-

sensitive surface characterization technique like contact angle, ellipsometry, surface plasmon 

resonance (SPR) spectroscopy and circular dichroism to study protein-surface interactions.[100] 

The ability to control and characterize the surface chemistry is particularly important from the 

biocompatibility point of view, since as discussed earlier, the cellular response depends on how 

proteins adsorb on the biomaterial’s surface. Results from these studies are being used to 

engineer the type, concentration and structure of functional groups on the biomaterial’s surface 

for better biocompatibility.[100] For example, it has been observed that SAMs prepared from 

alkanethiols terminated in short oligomers of the ethylene glycol group 

[HS(CH2)11(OCH2CH2)nOH: n = 2 – 7) resist the adsorption of several model proteins, as measured 

by both ellipsometry and SPR spectroscopy.[95] Even SAMs that contain as much as 50% methyl-

terminated alkanethiols mixed with oligo(ethylene glycol)-terminated alkanethiols, resist the 

adsorption of protein.[95] Elaborate screening studies have shed light on the type of functional 

groups that are best to resist protein adsorption[101], their characteristics being: 

1. they contain hydrogen bond acceptor groups but not hydrogen bond donor groups, 

2. their overall charge is neutral, and 

3. they are polar. 

However, investigations by Mrksich have led to the discovery that mannitol-terminated 

SAMs resist protein adsorption and can block cell adhesion even longer than ethylene glycol-

based SAMs.[101, 102] Since mannitol has already been approved and used as a drug in 

humans, developing protein resistant surfaces using mannitol can speedup regulatory clearance. 

A recent study by McClary et al. extended the formation of alkanethiol SAMs on gold coated 
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poly(ethylene terephthalate) (PET) discs.[103] The SAMs presented either methyl or carboxylic 

groups on the surface and were tested for their interaction with Fn. It was observed that protein 

bioactivity was better preserved on hydrophilic carboxylic surfaces compared to the 

hydrophobic methyl surfaces, as confirmed by enhanced cell attachment and spreading along 

with increased formation of focal adhesion points and stress fibers.[103] Besides studying 

protein-surface interactions, alkanethiol SAMs can also provide an excellent platform to control 

the bioactivity of surfaces and use it to understand cell behavior. Roberts et al.. synthesized 

novel short-chain alkanethiol molecules that contained the RGD cell adhesion peptide 

sequence.[104] Attachment of bovine capillary endothelial cells was tested on mixed RGD and -

OH presenting SAMs, and fibronectin and RGD adsorbed positive controls. It was discovered that 

cell adhesion strength, proliferation and matrix deposit on RGD SAMs was significantly different 

in magnitude and time scale from that on fibronectin or RGD adsorbed surfaces.[104] More 

recently, alkanethiol SAMs are being used to develop drug eluting 316L stainless steel (SS) 

surfaces, the main material used to manufacture coronary stents.[105] Hydroxyl-terminated 

SAMs were formed by covalent coupling of the thiol group with hydroxyl groups created on the 

SS surface by oxygen plasma treatment. The hydroxyl groups on the SAM were then used to 

covalently attach the drug ibuprofen via an esterification reaction under mild conditions.[105] 

Short-term controlled release of ibuprofen (21 days) was obtained via hydrolytic cleavage of the 

ester bond between the drug molecule and the SAM.[105] Beyond 21 days, the thiol groups 

start desorbing from the surface resulting in a reduction in the drug release rate.[105] 

The alkane-thiol SAMs on gold discussed above are based on affinity and not covalent 

coupling. Therefore, while alkane-thiol SAMs are very useful to study protein-surface and 

protein-cell interactions, and possibly short-term drug release, their long-term use as 
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biosensors, or on implant materials is limited due to eventual detachment and loss of surface 

activity. Unlike chemisorption of thiols to gold or hydroxyl groups, silane end-groups on 

alkoxysilane molecules can react with hydroxyl groups to form a stable silicon oxide bond. This 

chemistry is also used to form SAMs on any surface which can present hydroxyl groups on the 

surface. Silane-based SAMs have a better potential for use on implanted biomaterials since most 

materials, including metals, ceramics and polymers can be modified to directly exhibit hydroxyl 

groups on the surface without deposition of a metal layer. The already discussed plasma 

treatment is universally applicable to all material types to create hydroxyl groups on the surface, 

but chemical treatments like acid washes can also produce similar results. A comprehensive 

study by Faucheux et al. created methyl (CH3), hydroxyl (-OH), carboxyl (-COOH) and amine (-

NH2) terminated alkoxysilane SAMs on glass surfaces.[22] Hydroxyl groups for the silane 

reaction were created on the glass surface by treatment with a strong oxidizing piranha solution 

(3:1 sulfuric acid:hydrogen peroxide). As expected, –OH terminated SAMs were the most 

effective in resisting protein adsorption, as indicated by SDS-PAGE analysis.[22] Primary human 

fibroblasts culture followed the protein adsorption results wherein, cell adhesion, spreading and 

matrix formation was enhanced on CH3, -COOH and –NH2 SAMs compared to weak results on –

OH SAMs.[22] Besides controlling protein adsorption, alkoxysilane SAMs have also been used to 

directly control cell behavior, with or without further immobilization of biomolecules. As an 

example of using unmodified SAMs, Bain and Hoffman demonstrated that adhesion, glucose 

consumption, lactate production and subsequent insulin secretion by insulinoma cell line βG 

I/17 can be tuned by controlling the ratio of diamine to trifluoropropyl endgroups of 

alkoxysilane SAMs deposited on glass surfaces.[106] A surprising discovery was made that SAMs 

with higher F3 surface concentration were most suitable for growth of cells and insulin 
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production.[106] This study has opened up the possibility of creating cell support scaffolds for 

artificial pancreas to be implanted in diabetic patients. Alternatively, alkoxysilane molecules 

were covalently pre-coupled with Hyaluronan (Hyal) to create Hyal monolayer on glass 

surfaces.[24] Hyal was selected as it is one of the most studied polysaccharides and has the 

ability to bind to cell membranes to potentially control their behavior. This can be especially 

useful since some polysaccharide coatings have been shown to have non-fouling 

characteristics.[24] It was observed that this Hyal-SAM was very smooth and hydrophilic, and 

was very effective In preventing human fibroblast cell adhesion.[24] In a similar but more 

practical example, Hyal or RGD peptide-derivatized Hyal was covalently immobilized onto epoxy-

terminated silane SAMs deposited on stainless steel surfaces. The Hyal-coated surfaces were 

able to prevent human plasma platelet adhesion, indicating improvement in 

biocompatibility.[107] On the other hand, Hyal+RGD-coated surfaces did promote platelet 

adhesion, a result which points towards controlling adhesion of other cell types.[107] These 

results indicate that SAMs can be used to tune the bioactivity of metal surfaces to control cell 

behavior, something that can be very beneficial for cell contacting metallic implants like on 

vascular stents and orthopedic implants.[107] 

SAMs have also received attention for development of highly sensitive biosensors since 

minute quantities of both the reacting enzyme on the substrate, as well as the biomolecule to 

be detected are sufficient for successful detection.[108] Additionally, SAMs can be easily 

constructed on metals used in the electrode, which in turn facilitates direct contact with the 

underlying electrochemical transduction mechanism for quantitative measurements.[108] Both 

of these factors allow considerable miniaturization of the biosensors, an ideal feature for 

diagnostic applications in clinics and laboratories. A wide variety of biosensors have been 
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successfully constructed by coupling functional end-groups of alkanethiol SAMs with enzymes 

such as horseradish peroxidases to detect hydrogen peroxide in ELISA, glucose oxidase to detect 

glucose, urease to detect urea, and acetylecholinesterase to detect acetylcholine. [108] Use of 

alkoxysilane SAMs for biosensor construction has been rather limited, probably because they 

cannot be used on gold, platinum and silver, the most common electrode metals. However, 

investigations into other electrode materials like indium tin oxide (ITO) and other metals, has 

made it a possibility. Surface hydroxyl groups necessary for silane SAM formation can be create 

as discussed above by plasma or chemical treatment. A recent study by Moore et al.. 

demonstrated the use of alkoxysilane SAMs to covalently attach complimentary DNA molecules 

to ITO films.[109] Oxygen plasma treatment was used to create –OH groups on the ITO film 

surface. These immobilized complimentary DNA molecules were able to hybridize with the 

target DNA molecule to produce fluorescence on the surface.[109] The transparent nature of 

ITO will allow spotting of the target DNA on one side, and imaging through the other side.[109] 

Furthermore, since ITO is conductive, both optical and electrochemical measurements can be 

performed for simultaneous qualitative and quantitative analysis. A novel impedimetric 

antibody sensor was prepared by depositing a 3-aminopropyl-triethoxysilane on silicon nitride 

surfaces, a new material under investigation for biosensors.[110] The anti-rabbit IgG antibody 

was covalently immobilized to the SAM’s amine end-groups using glutaraldehyde as the 

crosslinker.[110] The binding between antibody and antigen (Rabbit IgG) was monitored by 

measuring the impedance variation of the SAM, and the sensor could detect antigen 

concentrations as low as 50 ng/ml.[110] 
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2.2.4.4 Surface Patterning 

Some very simple derivatives of direct surface coupling, SAMs and physical adsorption 

have been developed to restrict deposition of anti-fouling molecules/polymers or bioactive 

molecules to certain areas on surfaces. This type of surface patterning is particularly useful to 

study the interactions of anchorage-dependent cells with their environment, and eventually 

utilize engineered patterns to control cell behaviors like adhesion, spreading and migration. For 

example, it can be used to create cell arrays for high-throughput monitoring of the effects of 

toxins and drugs on cell behavior.[111] Cell patterning is also observed in vivo, especially during 

fetal development to control cell growth, migration and differentiation.[112] Lately, spatial 

control of cell behavior has been found to be important in wound healing where a cascade of 

signals involving chemotactic gradients, electric field gradients, and cell adhesion receptors is 

tightly controlled in time and space.[112] The need for patterns and gradients of growth factors 

to guide neurons for spinal cord regeneration as discussed earlier is one such example.  

Microcontact printing (μCP), a soft lithography technique, is one of the most widely 

used methods to deposit patterns on surfaces. It involved synthesis of an elastomeric stamp 

which is formed by casting a liquid pre-polymer solution (typically poly(dimethylsiloxane) over a 

microstructured master (usually silicon photoresist).[111] After curing and hardening, the 

elastomeric stamp’s surface will have the negative image of the master’s surface topography. 

Since the master is made by exposing silicon photoresists to UV light, extremely high resolution 

patterns down to a few micrometers can be created. Next, the stamp is “inked” by dipping in a 

solution of alkanethiols, alkoxysilanes, a polymer or the biomolecule itself. The “ink” is then 

transferred to the surface only where the stamp’s topographical projections make contact with 

the surface. Typically, the non-inked areas of the surface are backfilled with a second molecule, 
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using solution of another alkanethiol, alkoxysilane, a polymer or a biomolecule. As an example, 

μCP was used to stamp square and circular island patterns of hydrophobic methyl-terminated 

SAMs onto gold surfaces.[113] The non-stamped regions were then backfilled with a 

oligo(ethylene glycol) (OEG)-terminated alkanethiol SAM.[113] After immersion in a solution of 

a ECM protein, the protein adsorbed only to the hydrophobic methyl-terminated regions, but 

not on the OEG terminated regions.[113] As expected, bovine and human endothelial cell 

attachment and spreading was restricted to the square islands where protein adsorption 

occurred, but was absent on OEG regions for periods of several days even when cultured in the 

presence of serum.[113] But for cells to be restricted to these islands, they need to be separated 

by at least 20-40μm depending on the cell type. Another very interesting observation made was 

that progressively restricting endothelial cell spreading by culturing them on smaller and smaller 

micropatterned adhesive islands transformed their behavior from growth to apoptosis. This 

result confirmed the significant role of cell shape on its function.[113] 

For a more controlled and permanent presentation of bioactive molecules on the 

surface, the biomolecule can be pre-coupled to the SAM forming molecules used for stamping 

or backfilling. Zhang et al.. first created patterns of OEG-terminated alkanethiol SAMs on gold-

coated glass coverslips.[114] Next, alkanethiol molecules containing the cell adhesion peptide 

sequence RADS were used to backfill the non-stamped regions.[114] These patterned surfaces 

produced very well-defined alignment of human epidermoid carcinoma cells, NIH3T3 mouse 

fibroblasts as well as transformed primary human embryonic kidney 293 cells, thus allowing 

creation of specific cell arrays and patterns.[114] Use of μCP to create patterns of alkylsilane 

SAMs to control protein adsorption for biomedical applications has been very limited. However 
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some studies have been conducted to spatially control protein adsorption and cell adhesion on 

glass and metal surfaces.[25] 

Direct deposition of biomolecules using μCP is also possible by replacing the SAM 

molecules in the ink with the biomolecule. In this case, the biomolecules can be stamped on a 

homogeneous SAM or directly on the surface by eliminating the SAM layer. For example, 

endothelial and other cell types have been patterned on surfaces by using fibronectin as the 

ink.[111] Similarly, neuronal networks have been created on surfaces by directly adsorbing 

patterns of laminin or any of the neuron-binding peptide sequences of laminin.[111] Klein et al.. 

demonstrated creation of hippocampal neural networks which remained functional for over a 

week by printing patterns of laminin or the IKVAV-containing peptide sequence PA-22-2.[115] 

The neurons remained restricted to lines as narrow as 3μm. These patterns were also able to 

trigger differentiation of human neuroblastoma cells SH-SY5Y as well as PCC7-Mz1 stem cells 

into a neuronal phenotype.[115] Instead of adsorption, covalent coupling of biomolecules 

directly stamped on the surface can be obtained by linking them to either functional groups on 

the surface, or on the pre-deposited SAMs. In a study by Scholl et al.., first an aminosilane SAM 

was deposited on glass surfaces.[26] The heterobifunctional crosslinker 

N-g-Maleimidobutyryloxy]sulfosuccinimide ester (sulfo-GMBS) was then coupled to the amine 

groups of the SAM via its sulfohydroxysuccinimide functionality.[26] Finally, line and grid 

patterns (3μm to 15μm wide, with 15μm or 500μm spacing) of the peptide PA-22-2 were 

stamped on the surface, resulting in a covalent linkage of the peptide’s thiol group to the 

maleimide group on the sulfo-GMBS.[26] Presence and bioactivity of PA-22-2 was confirmed by 

labeling with a fluorescent antibody.[26] The PA-22-2 patterns resulted in formation of 

hippocampal neuron patterns within 3 hours of cell seeding, and within 1 day were able to elicit 
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action potentials.[26] Both the above examples demonstrate a simple technique that can be 

used to unravel the mechanisms driving neuron growth, guidance and synapse formation for 

regenerative applications, and to develop novel neural biosensors. 

Another method to create patterns of bioactive molecules on the surface is 

photochemical coupling. In this case, special bioconjugate molecules need to be synthesized 

which have the desired biomolecule attached to one end, and a photosensitive group at the 

other end. On exposure to light, the photoactive group will react with specific functional groups 

on the surface thus covalently attaching the biomolecule to the surface. Again, functional 

groups can be present directly on the surface, or on pre-deposited SAMs. The advantage of this 

technique over μCP is that the entire stamp synthesis process is eliminated. Since light is used 

for covalent coupling, custom-designed photomasks can be used to create spatial patterns, 

including immobilized concentration gradients. Hypolite et al.. synthesized a novel photoactive 

heterobifunctional crosslinker which had an N-hydroxysuccinimide group for biomolecule 

coupling and a photoreactive benzophenone (BP) group for selective coupling to the 

surface.[116] For proof of principle, the crosslinker was first conjugated to a fluorescent protein 

R-phycoerythrin, followed by immobilization of the crosslinker-protein conjugate to polystyrene 

surfaces by laser irradiation.[116] It was observed that the amount of protein immobilized on 

the surface can be controlled by changing the laser irradiation time. This principle was used to 

create concentration gradients of R-phycoerythrin on the surface.[116] The same research 

group also demonstrated coupling of a photoactive bioconjugate containing the RGD peptide 

sequence to oligo(ethylene glycol)-terminated alkanethiol SAMs on gold surfaces using laser or 

UV lamp irradiation.[27] It was advantageous to have a SAM as the base layer as it prevented 

non-specific adsorption. Fibroblast morphology (round or elongated) was controlled by seeding 
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them on RGD dot patterns or RGD line patterns respectively.[27] Similar to previous 

observations, the concentration of RGD immobilized on the surface was controlled by varying 

the irradiation time. Correspondingly, the number of fibroblasts adhering gradually increased 

from the lower end to the higher end of the RGD gradient on the surface.[27]  

As discussed earlier, the focus is now shifting more and more towards controlling cell 

responses, and in fact using them to improve integration and/or functioning of the implanted 

device. Load-bearing orthopedic implants, coronary stents and vascular grafts are just few 

examples of devices requiring control over specific cell responses. Therefore, the need for 

surface modification techniques that offer ways to control biomolecule immobilization on the 

surface has reached a critical stage. Techniques like microfluidics, plasma treatment, monolayer 

formation, μCP, and photochemical coupling discussed above can potentially achieve this, and 

have no doubt found numerous applications where they can help obtain the desired results. 

Nevertheless, these techniques as a whole and individually have highlighted some very 

important limitations that need to be addressed.  

First, they all create only a monolayer of functional groups and/or biomolecules on the 

surface. A monolayer of non-fouling functional groups created on the surface can be easily 

altered due to partial or complete detachment, or unexpected chemical reactions, leading of 

change of surface chemistry and loss of anti-fouling properties.[28] In the case of a monolayer of 

immobilized biomolecules, few molecules may get detached from the surface leading to loss of 

bioactivity in that area.[28] In both these cases, there are no redundant functional groups or 

biomolecules present on the surface to compensate for the loss. 

Second, small surface defects frequently occur, especially in case of SAMs, which can 

either expose the bulk materials surface, or change the surface chemistry in a particular 
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area.[28] This can significantly alter the interaction of proteins and/or cells with the surface 

affecting the experimental outcome. Such defects can cause even bigger biocompatibility 

problems on the surface of any medical device that is implanted inside a patient’s body. 

Third, in all these techniques since very short or no spacer chains are used to immobilize 

any biomolecule, movement and/or rotation of the biomolecules will be restricted, limiting 

proper access by cell receptors. This restricted movement can also prevent formation of focal 

adhesion clusters, which are very important for controlling cell adhesion and other responses. 

Fourth, techniques like microfluidics and μCP involve too many procedural complexities, 

and are not very amenable for non-flat contoured surfaces. SAMs by themselves cannot create 

patterns or gradients, requiring incorporation of other procedures. μCP can create complex 2 

dimensional spatial patterns directly on surfaces or on SAMs, but it cannot create gradients. On 

the other hand, microfluidics can create gradients, but only in a linear and parallel fashion. 

Photochemical coupling of biomolecules is very quick, can be automated, can be modified easily 

for 3D applications, forms covalent linkages, and can create complex patterns and gradients on 

the surface. However, it still depends on functional groups on the materials surface or SAMs to 

immobilize the biomolecules, limitations of which are already highlighted above. 

Finally, gradients created by any of these techniques will have its upper concentration 

value limited to the saturated monolayer value, thus restricting the range of slopes possible. 

2.2.4.5 Physical Adsorption on Surfaces 

A simple approach to overcome the above limitations is to physically adsorb polymer 

chains to the bulk material surface, which can be universally applied to all material types. 

Functional groups on this polymer layer can in turn be used to attach biomolecules to impart 

specific bioactivity to the surface. Simple physical coating of PEG on PU, polysulfone, PMMA and 
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polylactide surfaces has been shown to be very effective in reducing non-specific protein 

adsorption.[76, 94, 117] In a similar manner, bioactive molecules can be adsorbed on the bulk 

material’s surface to impart bioactivity. However, long term stability is questionable as the 

physically coated polymer layer can be easily dislodged and lost permanently. A solution to this 

problem is to permanently attach the polymer chains to the surface. This has led to 

development and use of various polymer “grafting” techniques. 

2.3 Techniques and Applications of Surface Graft Polymerization for Biomedical Applications 

Polymer grafting which involves creating a brush-like layer of polymer chains on the 

materials surface seems to be the most promising technique, which can overcome most, if not 

all, limitations discussed above. First, the flexibility of long polymer chains attached to the 

surface will allow them to coil and collapse resulting in much higher surface area coverage per 

chain. This means that even if minor defect sites are present on the surface, the neighboring 

polymer chains can compensate by coiling and covering up the defect sites. This will prevent 

exposure of the bulk material surface to proteins and cells. Second, the surface density of 

functional groups will be significantly higher due to use of polymers with specific sidegroups. As 

a result, the concentration of immobilized biomolecule on the surface can be much higher. This 

will also considerably increase the upper concentration limit of gradients well beyond 

monolayer concentrations, thus significantly expanding the range of gradient slopes possible. 

Third, the wide variety of polymer types, chain lengths (molecular weight), chain structure 

(linear, branched, hyperbranched), chain densities (surface packing), and sidegroups will allow 

precise tuning of the surface chemistry and bioactivity. As discussed earlier, this level on control 

is very important because all protein and cell interactions take place on the molecular level. 

Besides their inherent genetic predisposition, cell behaviors like adhesion, growth, proliferation, 
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migration, differentiation, matrix production, protein/antigen/antibody expression and 

apoptosis entirely depend on the signals their receptors receive from the environment. 

Polymer brushes can be created on a surface by either the “grafting to” or the “grafting 

from” approach. In either case, it involves two steps, surface activation followed by polymer 

chain grafting. Since chemically reactive functional groups are typically absent on many 

biomaterial surfaces, surface activation is needed to create such groups on the surface to 

continue the grafting process. Such reactive groups can be generated on the surface by chemical 

reactions (acid, alkali, etc), plasma treatment, ozone treatment, ion or election bombardment, 

γ-irradiation and SAM formation. In a “grafting to” approach, pre-formed end-functionalized 

polymer molecules react with reactive groups on the surface to form polymer brushes. On the 

other hand, the “grafting from” approach utilizes reactive species on the material surfaces to 

initiate the polymerization of monomers from the surface outwards. The bond formed between 

surface and polymer chain makes the polymer brushes resistant to common chemical and 

environmental conditions. In the next section, some important polymer grafting techniques and 

their use for surface modification in biomedical applications are discussed. 

2.3.1 Surface Modification Using The “Grafting to” Approach 

The main advantage of the “grafting to” technique is that the required preformed 

polymers can be synthesized with a narrow molecular weight distribution using living anionic, 

cationic, radical, group transfer and ring opening metathesis polymerizations. Surface 

modification via the “grafting to” approach has found some applications in the biomedical field. 

Surprisingly, studies using the “grafting to” technique for surface modification predominantly 

use PEG chains for grafting, which will be evident from the examples described below. There are 

two main reasons for this occurrence: 
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1. Numerous studies have demonstrated the excellent protein- and cell-resistant properties of 

PEG. 

2. PEG chains of different molecular weights (MW) in unmodified form and with reactive 

functional end-groups are commercially available, thus eliminating the need to synthesize 

polymers for grafting. 

The most commonly used “grafting to” techniques along with their biomedical 

applications are briefly discussed below. 

2.3.1.1 Self-Assembled Monolayers 

The technique to form polymer SAM is exactly as described earlier, the only difference 

being that the short-chain alkylthiol and alkoxysilane molecules are replaced by much larger 

polymer chains having the thiol or silane end-groups for attachment to the surface. The 

advantage is that the limitations associated with SAMs (like detachment, defects) described 

earlier can be easily compensated by neighboring polymer chains on the surface.[28] Just like 

short-chain SAMs, polymer-based SAMs can be used to not only prevent non-specific protein 

adsorption, but also to impart bioactivity to the surface by coupling specific biomolecules.  

Xia et al. synthesized a novel copolymer containing methoxy-terminated PEG chains 

grafted onto a polysiloxane backbone.[29] This copolymer possessed dialkyl disulfide sidechains 

which allowed it to form a SAM on gold surfaces and was able to resist protein adsorption.[29] 

However, when the PEG methoxy groups were replaced with NHS groups, the copolymer was 

actually able to covalently bind significant amounts of protein.[29] Such protein-resistant and 

protein-binding PEG SAMs have potential applications in biosensor construction. In a similar 

study by Bearinger et al.. synthesized a special triblock copolymer PEG17-b-PPS25-b-PEG9.[118] 

The disulfide groups in the poly(propylene sulphide) (PPS) block chemisorbed to gold surfaces to 
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form a SAM of the copolymer.[118] This copolymer layer reduced adsorption of serum proteins 

by as much as 95%, and resisted cell adhesion by >97%.[118] Emmenegger et al.. took a slightly 

different approach, wherein a –COOH terminated SAM was first deposited on gold 

surfaces.[119] These –COOH groups were then used to couple the –NH2 groups on the PEG chain 

ends using a NHS-based crosslinker.[119] This PEG grafting to the SAMs was able to significantly 

reduce adsorption of plasma proteins.[119] However, an interesting observation was made that 

if the plasma solution contained a protein with MW greater than 350,000 Da, it itself adsorbed 

on the PEG surface or initiated deposition of other plasma proteins.[119] 

The silane-based SAM formation route has been used to attach polymer chains to 

surfaces presenting –OH groups. Guo et al.. derivatized PEG chains of different molecular 

weights with alkoxysilane groups by reaction with 3-isocyanatopropyltriethoxysilane.[30] SAMs 

of these PEG-silane chains were then deposited on silicon and glass surfaces. These PEG-silane 

SAMs were very stable, and did not detach or show any change in surface contact angle for up 

to 4 weeks. They were able to significantly prolong the activated partial thromboplastin time 

(APTT), prothrombin time (PT), and thrombin time (TT), all of which are important measures of 

the blood coagulation pathway. Similarly, platelet adhesion was also significantly reduced for up 

to 3 hours, the time duration in this study.  

In addition, some alternatives to PEG have been reported. For example, Wyszogrodzka 

and Haag created SAMs of polyglycerol dendrons on gold surfaces, with the understanding that 

a branched architecture will provide much better resistance to protein adsorption.[120] It was 

observed that dendrons with lesser branch generations (hence lower MWs), were best at 

resisting protein adsorption.[120] In fact, SAMs made from 426 g/mol MW dendrons were able 

to resist protein adsorption for 24 hours, the duration of this study.[120] Lower MW dendrons 
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with lesser generations formed better and more defined SAMs, while inconsistent coverage by 

higher generation dendrons allowed smaller proteins to penetrate and reach the gold 

surface.[120] These polyglycerol dendrons can be an excellent alternative to PEGylation of 

surfaces to prevent protein adsorption. Furthermore, each polyglycerol dendron provides 

multiple –OH groups for coupling of biomolecules to impart bioactivity to the surface. 

2.3.1.2 Chemical Grafting 

Typically in chemical grafting, a highly unstable reactive group is introduced either on 

the surface or on the polymer chains, which reacts with another stable functional group to form 

covalent linkages. For example, Archambault et al.. converted the hydrophobic nature of PU-

urea (PUU) surfaces by covalently attaching PEG chains (550, 2000 and 5000MW) using a two-

step coupling process.[31] A highly reactive crosslinker 4,4’-methylenebis(phenylisocyanate) 

(MDI) was used, due to the high reactivity of its isocyanate groups with primary and secondary 

amines. Accordingly, MDI was first covalent attached to free -N-H groups present on the PUU 

surfaces. This was followed by a reaction between amine groups on the PEG chains to the free 

isocyanate groups of MDI to form an extremely stable urethane bond. It was observed that 

adsorption of myoglobin, concanavalin A, albumin, fibrinogen and ferritin from single protein 

solutions was significantly reduced compared to unmodified PUU surfaces, with a maximum 

reduction of 90% seen with the PEG2000.[31] Similar results were obtained for fibrinogen 

adsorption from blood plasma, which is more significant because fibrinogen is one of the most 

important factors responsible for coagulation and thrombus formation on biomaterial surfaces. 

However, even with the PEG2000, adsorption of plasma proteins was not completely 

eliminated.[31] In fact, the concentration of all proteins was well above few ng/cm2, which is the 

detection limit of most detection techniques like SPR.[28] This study clearly highlights the 
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limitations of the “grafting to” approach in creating sufficiently high surface densities of polymer 

chains to eliminate protein adsorption. In a similar chemical grafting procedure for an 

immediate clinical application, diisocyanate crosslinkers were reacted with –OH groups on the 

surface of commercially available poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) 

(pHEMA-MMA) intraocular lenses.[32] The surface bound isocyanate groups were then used to 

covalently link PEG chains via their –OH end-groups to form stable urethane bonds. PEG grafting 

resulted in a decrease of the surface water contact angle from 66° for an unmodified lens to 47°, 

44° and 40° for 1100, 2000 and 5000 MW PEG chains respectively. The transparence as well as 

refractive power of the lenses remained unchanged after PEG grafting. Non-specific adsorption 

of green fluorescent protein decreased with PEG MW, and was undetectable on lenses grafted 

with PEG 5000.[32] Culture of lens epithelial cells, which are the main cells involved in cataract 

formation, showed  decreasing adhesion on the lenses with increasing PEG MW, and were 

completely absent on PEG 2000 and 5000.[32] While these results are indeed very promising, 

long-term tests need to be conducted because IOLs remain implanted in the patient’s eyes for 

years to decades. In another study by Harris et al., poly(acrylonitrile-co-vinyl chloride) 

(PAN/PVC) ultrafiltration membranes were derivatized with PEG by chemical grafting.[33] 

PAN/VC membranes are important because they are used for encapsulation of living cells which 

release bioactive products to treat serious diseases and/or disabilities like type 1 diabetes, 

Parkinson’s diseases and chronic pain.[33] First, the nitrile groups on the PAN/VC fibers were 

converted to -COOH by treatment with concentrated acid.[33] Finally PEG-NH2 chains were 

covalently linked to the –COOH groups using the crosslinker N-3-dimethylaminopropyl 

carbodiimide to form stable amide bonds. In vitro tests showed that PEG grafting did not alter 

the permeability of the membrane, but did reduce non-specific BSA adsorption by up to 
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70%.[33] PEG grafting also lead to improvement of in vivo biocompatibility on implantation in 

rat brains for 4 weeks.[33] 

Metallic biomaterials do not normally present functional groups on the surface, and 

need to be generated on the surface before chemical grafting. One way to achieve this is to first 

coat the metal surface with another polymer with functional side-groups, as was done by Caro 

et al.. to chemically grafted PEG chains on SS surfaces to prevent protein adsorption and 

bacterial biofilm formation.[121] The SS surfaces were first coated with a physically adsorbed 

layer of poly(ethyleneimine) which provided –NH2 groups on the surface. PEG chains were then 

covalently coupled to these –NH2 groups via reductive amination with reactive aldehyde groups 

present at the end of the PEG chains. This PEG grafting reduced BSA adsorption by 97%, while 

bacterial adhesion was reduced by 96% compared to bare SS.[121] 

2.3.1.3 Plasma/Glow Discharge-Assisted Grafting 

Physically coating the surface with another polymer that provides functional groups has 

long-term performance issues as the polymer can delaminate leading to loss of any surface 

modification that was carried out. As discussed earlier, plasma treatment can also be used to 

deposit polymer films on metal surfaces. These films tend to be much more robust because of 

possible covalent linkages created between the metal surface and the polymer film created the 

plasma treatment. For example, in a study by Gombotz et al.. amine groups were created on 

poly(ethylene terephthalate) (PET) films by depositing films of polyallylamine by exposing them 

to plasma glow discharge.[122] The amine groups were then activated with cyanuric chloride, 

followed by covalent conjugation of NH2-PEG-NH2. Even though gravimetric analysis indicated 

that the films grafted with the low-molecular weight PEG contained many more PEG molecules, 

the high-molecular weight PEG surfaces exhibited greater wettability (lower water contact 
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angles) and hence less protein adsorption than the low-molecular weight PEG surfaces.[122] In 

fact, adsorption of albumin and fibrinogen to the PEG surfaces decreased with increasing PEG 

molecular weight up to 3500.[122] These results shed light on how the interaction of water with 

the larger PEG molecules creates an excluded volume of the hydrated polymer coils, which may 

be an important factor in reducing protein adsorption.[122] A similar technique was used to 

graft PEGylated hyaluronan (PEG-HA) chains to Nitinol (NiTi) alloy surfaces.[123] Nitinol is a 

shape-memory alloy, which is under intense investigation for development of next generation of 

vascular stents. However, like any other stent material, it needs improvement in bio- and hemo-

compatibility to prevent thrombus formation and intimal hyperplasia. Amine groups were 

introduced on the NiTi surface by depositing films of polyallylamine by exposing them to plasma 

glow discharge.[123] Finally, the carboxylic acid groups on the PEG-HA chains ends were 

covalently coupled to the surface primary amine groups using a solution of 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form stable 

amide bonds.[123] The advantage of this method is that using a PEG spacer improved HA 

surface binding and created smooth and highly hydrated surfaces. As a result, these surface 

reduced human blood platelet adhesion by as much as 62% compared to bare metal.[123] 

However, long-term studies are warranted for successful application on clinically relevant 

Nitinol stents. 

Plasma treatment can also be used to create functional groups directly on the metal 

surface. In a study by Alcantar et al.., the concentration of hydroxyl (silanol) groups on the 

surface of silica was increased by water plasma treatment.[34] These silanol groups were 

reacted with hydroxyl groups on PEG chains to graft the PEG chains on the surface via stable Si-

O-C linkages.[34] Water plasma treatment combined with PEG grafting improved the surface 
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wettability (lower water contact angle values) and decreased the surface roughness by 88%, 

compared to untreated silica.[34] This resulted in a significant reduction in BSA adsorption on 

the surface, as observed by negligible fluorescence on the PEG grafted surface.[34] 

2.3.1.4 Radiation-Assisted Grafting 

Instead of creating functional groups on the surface using plasma to tether polymer 

chains, electromagnetic radiation, like γ-rays and light, is typically used to directly trigger bond 

formation between polymer chains and the surface. For example, Kidane et al. covalently 

attached chains of the Pluronic PEG-poly(propylene oxide)-PEG (PEG-PPO-PEG) triblock 

copolymer to glass and Nitinol surfaces using γ-irradiation.[35] First, a SAM of vinylsilane was 

deposited on the glass and Nitinol surface to present acrylate groups on the surface. Next, PEG-

PPO-PEG readily adsorbed on the surface due to the hydrophobic interactions between the 

vinylsilane and the PPO cbock of the copolymer. Upon γ-irradiation, the double bond converted 

to radicals and reacted with each other to covalently bond the copolymer to the glass and 

Nitinol surface.[35] In vitro studies revealed that copolymer grafting reduced fibrinogen 

adsorption by over 95% on glass surfaces and by 88% on Nitinol surface, compared to 

unmodified controls.[35] Similarly, platelet adhesion on glass and Nitinol surfaces was 

significantly reduced by copolymer grafting.[35] 

Photochemical bonding, discussed earlier can be used to directly coupling a molecule to 

the surface via a photoactive group. This strategy has also been adapted to couple whole 

polymer chains to the surface by incorporating photoactive groups either in the polymer chains 

or on the surface. One important point to note here is that these polymers were attached to 

surfaces as flat films, and not brushes. However, since examples of brush formation via 

photochemical coupling could not be found, this discussion has been included to highlight the 
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possibility. It is very much possible to create brushes via photochemical coupling simply by 

having the photoactive group only at the polymer chain end, rather than throughout the 

polymer chain as was the case with the aforementioned examples. As an example of introducing 

photoactive groups on the surface, Adden et al. first deposited a SAM of the photoactive 

molecule 4-3’-chlorodimethylsilyl)propyloxybenzophenone on glass or silicon surfaces.[124] 

These surfaces were then spin coated with one of 22 different polymers, like pHEMA, PEG, 

pMAA, to name a few. Upon UV exposure, a biradical is created at the benzophenone moiety on 

the SAM, which reacts with any C–H group and binds polymers covalently to the surface.[124] 

The idea was to find the polymers which are most suitable for adhesion and differentiation of 

mesenchymal progenitor stem cells (MPSCs) to improve osseointegration of titanium-based 

orthopedic implants. Three polymers pMAA, poly(diethyl(p-vinylbenzyl) phosphonate) and 

poly(4-acetoxystyrene) were found to be as good as tissue culture polystyrene in promoting 

MPSCs adhesion and proliferation.[124] As the alternate approach, To et al. synthesized a novel 

PEG-based polymer with photoactive 4-azidobenzene side-groups.[125] This study also 

demonstrated the patterning advantage provided by using light to initiate 

reactions/polymerizations. Polyester, glass and titanium surfaces coated with the PEG-based 

photoreactive polymer were exposed to UV light with or without a patterned photomask.[125] 

Formation of patterns was confirmed by AFM scans, which indicated that the PEG layer was 

several hundred nanometers thick. Though the exact bond formation between the 

photoactivated azidobenzene groups and the surface was not elucidated, the authors proposed 

that the photolyzed aryl azide intermediates underwent ring expansion to create nucleophile-

reactive dehydroazepines that reacted with functional groups on the surface to form covalent 

bonds.[125] Protein adsorption on PEG-grafted regions was significantly reduced down to 
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almost undetectable level.[125] This resulted in absence of any cell adhesion in the PEG-grafted 

regions, confining the cells only to the PEG-free regions of the grafted pattern.[125] Such a 

grafting technique can be potentially used to coat specific regions of polymeric and metallic 

implants to control cell adhesion and behavior. 

In spite of the studies and applications of the “grafting to” approach discussed above, 

the “grafting to” approach does have its limitations. This approach is largely limited to the small 

number commercially available pre-synthesized polymers. If some specialized polymer is not 

available, an extra step of custom-synthesis is added before actual grafting to the surface. 

Furthermore, it has been experimentally proven that the “grafting to” approach allows only a 

small amount of polymer to be immobilized onto the surface.[28, 36] This is because the 

macromolecular chains must diffuse through the existing polymer chains to reach the reactive 

sites on the surface.[28, 36, 37] This barrier becomes more pronounced as the density of 

tethered polymer chains increases on the surface.[28, 36, 37] Thus, the polymer brush obtained 

has a low grafted-chain density and low thickness.[28, 36, 37] 

2.3.2 Surface Modification Using The “Grafting from” Approach 

The limitations faced by the “grafting to” approach do not exist in the “grafting from” 

approach, as the small monomer molecules are not as prone to diffusion barriers as the larger 

preformed polymer chains.[37] “Grafting from” results in polymer brushes with a much higher 

chain density and thickness.[37] Since the polymer chains are actually synthesized from the 

surface using monomers, there is no dependence on commercially available polymers and 

opportunities exist for using essentially any molecule that can be polymerized. Furthermore, the 

need to pre-synthesize them before grafting is completely eliminated as the polymer chains 

form directly on the surface to be modified. Expectedly, the biomedical applications of the 
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“grafting from” approach keep increasing at a phenomenal pace, with new polymers and new 

initiation techniques being rapidly developed. “Grafting from” requires the introduction of 

specific reactive groups called “initiators” on the surface which can initiate the polymerization of 

monomers from the surface. These techniques usually make use of cationic, anionic, ring-

opening or radical initiators.[37] The most versatile and convenient method is radical initiated 

polymerization because it can be used to polymerize any of the thousands of available vinyl 

monomers. Complex procedures requiring matching of special initiators and monomers are not 

required. Additionally, grafting of copolymers is as easy as mixing two or more vinyl monomers 

together during the grafting process. For better organization and simplicity, the discussion about 

radical polymerization has been divided into two groups. In the first group, free radicals are 

generated on the surface to initiate “uncontrolled” polymerization of monomer on the surface. 

In this case, the polymerization continues until the monomer is consumed or removed, or the 

radicals are terminated by external means. The second group is where the radicals undergo 

repetitive and reversible initiation-termination so that polymerization progresses in a very 

“controlled” manner. In this case, polymerization can be terminated by simply removing the 

energy, like light, heat or chemical that triggers initiation. 

2.3.2.1 Polymer Grafting From Surfaces via Uncontrolled Radical Polymerization 

Surface-initiated uncontrolled radical polymerization (SIURP) depends on creation of 

free radicals on the surface to initiate the uncontrolled polymerization of monomers present 

near the surface. Such free radicals can be generated directly on the materials surface by 

methods like plasma treatment, ozone treatment, γ-irradiation and UV irradiation. In indirect 

methods, special “initiator” molecules are first attached to the surface followed by exposure to 

plasma, some form of radiation or heat. This triggers radical production by the initiator 
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molecules, which then initiates polymerization from the surface. A few examples highlighting 

the use of SIURP for polymer grafting from biomaterials are discussed below. 

2.3.2.1.1 Plasma/Glow Discharge-Induced Uncontrolled Grafting From Surfaces 

Since plasma contains highly energetic species like ions and radicals, it can transfer 

these radicals to pendent carbon, hydrogen, oxygen and other such atoms in the polymer chain. 

Plasma bombardment also leads to polymer chain scission, which also can create radicals on the 

surface. If such plasma treatment is done in the presence of oxygen, peroxide radicals can be 

created on the surface. As discussed earlier, plasma treatment is pervasive, so it can be used to 

treat samples with complex structures and porosity. For example, exposing medical grade 

silicone rubber to argon plasma followed by introduction of oxygen gas led to creation of 

peroxide radicals on the surface.[38] When this activated rubber was immersed in a solution of 

acrylic acid, polyacrylic (pAA) chains were grafted from the surface. The amount of pAA grafted 

on the surface was varied by changing the polymerization time. Surface wettability increased 

significantly as demonstrated by decrease in water contact angle from about 105° to about 45°. 

This increased wettability should have reduced protein adsorption and hence cell adhesion. 

Unfortunately, corneal epithelial cell adhesion was observed indicating significant protein 

adsorption. Collagen was also covalently linked to the –COOH groups on the pAA chains using 

the carbodiimide chemistry. Cell adhesion was obviously observed on the collagen conjugated 

surfaces, but it cannot be attributed only to conjugated collagen due to possible adsorption. 

Interestingly, the amount of collagen on the surface did increase with increase in amount of 

grafted pAA. However, this may have also resulted from increased protein adsorption. The 

authors did not include controls that were washed to remove such adsorbed protein, in which 

case cell growth would be only due to conjugated collagen. In a study closer to a potential 
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clinical application, ePTFE microporous membranes, often used as vascular grafts, were treated 

with hydrogen plasma to produce free radicals on the surface.[42] These radicals were used to 

graft PEG methacrylate (PEGMA) brushes from the surface, as a means to improve 

hemocompatibility. The amount of PEGMA grafted on the surface was controlled by changing 

the plasma intensity or treatment time, which was attributed to higher grafting densities on the 

surface.[42] Correspondingly, the surface wettability (measured by water contact angle) 

decreased with increasing amount of PEGMA on the surface. This increased wettability resulted 

in a decrease in non-specific protein adsorption from single production solutions of γ-globulin, 

human fibrinogen, and human albumin, with the amount of adsorbed fibrinogen and albumin 

going well below 10% of control membranes.[42] Protein adsorption from whole human plasma 

also decreased to 40% of controls.[42] All ePTFE membranes grafted with different amounts of 

PEGMA were able to completely resist platelet adhesion, which is an excellent result for reduced 

thrombogenicity.[42] 

Similar to ePTFE, plasma/glow discharge induced grafting is very frequently used to 

modify the surface properties of PET, a polymer extensively used in various biomedical 

applications like sutures and vascular grafts due to its suitable mechanical properties. Surface 

modification is required as PET has poor hemocompatibility preventing endothelialization which 

leads to thrombus formation. In one study, pAA was grafted from PET surfaces via radicals 

created by argon plasma treatment. Next PEG-NH2 chains were covalently attached to the 

-COOH groups on the pAA chains using the carbodiimide chemistry.[126] This was probably 

done as the pAA chains would provide far more sites for PEG chain attachment than directly 

grafting PEG chains from the surface. This would not only improve surface coverage, but also 

provide higher number of sites for conjugation of biomolecules compared to directly grafted 



57 

 

PEG. The PEG grafting led to a significant reduction in thrombus formation compared to 

unmodified PET films and pAA grafted PET films, which was attributed to the observed reduction 

in albumin and fibrinogen adsorption on PEG-grafted surfaces.[126] This protein adsorption was 

further reduced by covalently coupling heparin to the PEG chains.[126] Jingrun et al. went a step 

further and attempted to improve endothelialization of PET surfaces.[39] pAA was again grafted 

from PET films using plasma treatment, but in this case it was assisted with UV radiation to 

speed up the grafting process.[39] Finally, gelatin (Gel) was covalently conjugated to the –COOH 

groups on the pAA chains using the EDC-NHS chemistry.[39] It was observed that the PET-Gel 

surfaces promoted human umbilical vein endothelial cell (HUVEC) adhesion and proliferation, 

compared to unmodified PET.[39] HUVECs had in fact completely covered the Gel surface and 

had completely spread on the surface with cytoplasmic extensions.[39]  

2.3.2.1.2 Ozone-Induced Uncontrolled Grafting From Surfaces 

Besides creating radicals on the surface, plasma bombardment also results in unwanted 

etching and erosion of the surface. This changes the surface topography and/or increases the 

roughness in an uncontrolled manner, which can have undesired effects on both protein 

adsorption as well as cell adhesion. Ozone treatment is a very good alternative that is equally 

pervasive as plasma. Ozone, due to its inherent instability and extremely strong oxidizing ability, 

readily reacts with pendent hydrogen atoms on polymer chains to generate peroxide radicals. 

These radicals can be immediately used to initiate polymerization from any polymer surface. 

Ozone treatment does not alter the surface topography in any way and is emerging as a quick 

and simple procedure to modify polymer surfaces. The Sicong Lin group has conducted 

numerous studies using this technique to improve biocompatibility of various polymer types. It 

was shown that depending on the polymer that is subjected to ozone treatment, the peroxide 
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radical concentration reaches a plateau after exposure to ozone for a certain amount of time. 

For example, silicone and poly(ether urethane) reached a plateau after  30 minutes[45, 46], 

while light density polyethylene (LDPE) reached a plateau after 90 minutes. Silicone surfaces 

were grafted with two different polymers, a 2-methacryloyloxyethyl phosphorylcholine (MPC)-

based polymer [44] and a N,N-dimethyl-N-methacryloyloxyethyl-N-(3-sulfopropyl) ammonium 

(DMMSA)-based polymer[45]. Grafting of these polymers on silicone surfaces reduced blood 

platelet adhesion and aggregation to extremely low levels even after immersion in platelet rich 

plasma (PRP) for 180 minutes.[44, 45] DMMSA is a zwitterionic polymer, which was also 

successfully grafted on PU and poly(ether urethane) (PEU) surfaces using ozone-induced 

polymerization.[46, 47] Yet again, platelet adhesion and aggregation was extremely low on 

zwitterionic polymer grafted PU and PEU surfaces. A similar zwitterionic polymer based on 

N,N-dimethyl(methacryloylethyl)ammonium propane sulfonate (DMAPS) was grafted on LDPE 

films to again obtain excellent platelet resistant surfaces.[49]  

Moving away from zwitterionic polymers, Ko et al. grafted PEG monomethacrylate 

(PEGMA) and sulfonated PEG monomethacrylate (SO3-PEGMA) from ozone activated PU, PMMA 

and PE surfaces, all of which are important biomaterials.[43] As with the previous studies, the 

concentration of peroxide groups on the surface increased with increasing ozonation. Blood 

platelet adhesion tests revealed that platelet adhesion decreased with increasing ozonation 

time, pointing towards increasing amount of PEG on the surface.[43] Specifically, sulfated PEG 

exhibited the lowest platelet adhesion, possibly due to its negative charge.[43] 

2.3.2.1.3 Radiation-Induced Uncontrolled Grafting From Surfaces 

UV and higher energy gamma (γ) radiation can also generate radicals on polymer 

surfaces to initiate grafting. Noh et al. described a novel though elaborate UV-induced polymer 
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grafting technique to improve the wettability of PTFE surfaces. On exposure to UV light, 

benzophenone (BP) and sodium hydride (NaH) produced reducing agents like diphenyl ketyl 

radical anions and benzhydrol anions, which rapidly reduced carbon-carbon bonds in the PTFE 

chains to produce unsaturated groups on the surface.[127] On re-exposure to UV radiation in 

the presence of the photoinitiator benzil dimethyl ketal (BDMK), the BDMK molecules converted 

to free radicals, which were transferred to the unsaturated bonds on the PTFE surface.[40, 127] 

These surface-bound radicals in turn caused grafting of pAA, poly(acrylamide) and PEG brushes 

from the PTFE surfaces.[40] Contact angle measurements reveals a significant improvement in 

hydrophilicity of the PTFE surfaces, with PEG grafting reducing the contact angle from 120° of 

unmodified PTFE to 11°.[40] Protein adsorption and cell adhesion tests are warranted to check if 

this increase in hydrophilicity can indeed improve biocompatibility of PTFE used in medical 

implants. Additionally, the functional groups provided by pAA, pHEMA and PEG grafting can be 

used to covalently conjugate specific biomolecules from the surface to control cell behavior. For 

example, endothelialization of ePTFE vascular grafts can be enhanced. 

UV-induced grafting requires addition of a reducing agent and/or initiator to produce 

radicals on the surface, and these added chemicals can have toxic effects once the polymer is 

inside the body. γ-irradiation on the other hand, can produce radicals on the surface without 

addition of reactive chemicals, due to their highly energetic interactions with polymer bonds. In 

a recent study, pAA was grafted onto surfaces of biodegradable poly(L-lactide-co-ε-

caprolactone) (PLCL) films as a means to later immobilize gelatin on PLCL surfaces.[41] PLCL-

based materials are often used as scaffolds to repair bone defects by stimulating osteogenic 

activity, but the process usually takes months to years and is even slower in older patients. 

Attempts are being made to increase bone formation in and around such scaffolds. In one study, 
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PLCL films were immersed in AA monomer solution followed by γ-irradiation using a cobalt 60 

(60Co) source for 1-3 hours to graft pAA chains from the PLCL surface. The amount of pAA 

increased with increase in exposure time, which was confirmed by peak shifts in ATR-FTIR scans 

and increases in the amount of electrostatically attached toluidine blue. Gelatin (Gel) was then 

covalently attached to the pAA chains using EDC-NHS chemistry. Proliferation, spreading and 

cytoskeletal structure of human mesenchymal stem cells (HMSCs) was significantly better on 

PLCL-pAA-Gel films compared to unmodified PLCL and PLCL-pAA films, and approached that on 

tissue culture polystyrene.[41] Alkaline phosphatase activity, an indicator of osteogenic 

differentiation, of HMSC on PLCL-pAA-Gel films was more than twice that on PLCL-pAA films, 

and more than 7 times on unmodified PLCL films.[41] Such gelatin immobilized PLCL can help 

improve outcomes of PLCL-based bone grafts.[41] 

One common side-effect of γ-irradiation is polymer chain scission on the surface and 

deeper layers which can significantly degrade mechanical properties of the scaffold. On the 

other hand, grafting via γ-irradiation is much slower requiring hours if not days, unlike UV which 

takes minutes. Therefore, depending on the specific biomaterial and application, either UV-

induced grafting with added chemicals or γ-irradiation-induced grafting with potential change in 

mechanical properties will have to be selected for best physiological outcomes. 

2.3.2.1.4 Chemical/Heat-Induced Uncontrolled Grafting From Surfaces 

No published records of using plasma, ozone or radiation treatment for grafting polymer 

brushes from metal surfaces could be found. This is probably because neither can produce the 

required radicals on metal surfaces to initiate polymerization. A chemical treatment-based 

method has been recent described by Hélary et al. to graft poly(sodium styrene sulfonate) 

(pNaSS) from titanium surfaces.[50] The authors indicated that the charged nature of pNaSS can 
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improve osseointegration of titanium-based orthopedic implants by enhancing osteoblast 

activity. Titanium surfaces were first immersed in sulfuric acid followed by hydrogen peroxide to 

produce a thin film of titanium hydroxide and titanium peroxide on the surface. On heating, 

these groups produced peroxide radicals on the surface, which were used to initiate 

polymerization of NaSS monomer from the surface. The amount of polymer on the surface, 

measured by toluidine blue attachment, was found to be directly dependent on the 

temperature, polymerization time and monomer concentration. Adhesion strength and 

spreading of MG63 osteoblast-like cells was significantly better on Ti-pNaSS surfaces, compared 

to unmodified Ti.[50] ALP activity of cells on Ti-pNaSS was 19% higher compared to unmodified 

Ti.[50] Calcium deposition by osteoblasts, an important requirement of bone matrix formation, 

was also enhanced on Ti-pNaSS surfaces, compared to unmodified Ti.[50] 

Chemical/Heat-induced grafting from polymer surfaces usually involves using heat to 

convert initiator molecules into free radicals, which in turn react with pendent atoms or 

unsaturated groups on the polymer surface to produce surface tethered macroradicals. For 

example, Jiang et al. first introduced acrylate groups on surface of PU films by covalently 

coupling unpolymerized AA or HEMA molecules using hexamethylene diisocyanate (HDI) as the 

crosslinker.[48] These films were then heated to 60°C in a solution of 2,2’-azobisisobutyronotrile 

(AIBN) and N,N’-dimethyl (methacryloylethyl) ammonium propanesulfonate (DMAPS) 

monomer.[48] On heating, AIBN molecules converted to free radicals, which were transferred to 

the acrylate groups of AA and HEMA on the surface. These surface tethered radical then 

initiated grafting of DMAPS from the PU surface.[48] Similar to DMAPS grafting using ozone 

discussed earlier, DMAPS grafting using heat reduced platelet adhesion and aggregation to 

extremely low levels compared to unmodified PU.[48]  
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There are two major limitations associated with the aforementioned SIURP techniques 

for biomedical applications: 

1. The uncontrolled nature of radical generation, initiation, propagation and termination leads 

to large variations in the MW of the polymer chains grafted on the same surface. This may not 

be a major problem if simple coating of the surface is sufficient to prevent undesired cell 

responses by prevent protein adsorption and denaturation on the surface. However, as 

discussed earlier, better biocompatibility, integration and functioning of the implanted device 

can be achieved by eliciting specific responses from cells surrounding the implant. A high 

polydispersity (PD) on the surface will cause an uncontrolled variation in concentration of the 

biomolecule on the surface, which will cause uncontrolled variation in cell response on the same 

surface. 

2. Most of the aforementioned techniques have been restricted to polymer surfaces, while 

many biomaterials fall into the metal and ceramic categories. With the exception of the acid 

treatment to generate peroxide on metals discussed above, there are no reports of easily 

modifying metals and ceramics for SIURP.  

2.3.2.2 Polymer Grafting From Surfaces via Controlled Radical Polymerization 

Surface-initiated controlled radical polymerization (SICRP) techniques have generated 

immense interest in the biomedical field. SICRP usually results in grafted-polymer chains with 

very low polydispersity (Mw/Mn<1.3)[128], which provides excellent control over the 

concentration of functional groups on the surface. Several SICRP techniques such as atom 

transfer radical polymerization (ATRP)[51, 52], nitroxide-mediated polymerization (NMP)[53, 

54], reversible addition-fragmentation chain transfer polymerization (RAFT), and photoiniferter-

mediated polymerization (PMP)[55-57] provide excellent control over the MW of the grafted 



63 

 

polymer chains using various polymerization parameters. Additionally, initiators used for these 

techniques are easily modified to contain reactive groups (like alkoxysilane, acid bromides and 

acid chlorides) that can covalently couple to functional groups on the surface. Fortunately, 

biomaterials either already have functional groups on the surface (like polymers), or can be 

easily modified (metals, ceramics and polymers) by various techniques (like plasma, ion, ozone, 

acid and alkali) to create functional groups on the surface. Of these SICRP techniques, ATRP and 

PMP are the predominant ones used to modify surfaces of biomaterials and therefore are the 

focus of the following discussion.   

2.3.2.2.1 Polymer Grafting From Surfaces via Atom Transfer Radical Polymerization 

An ATRP system consists of an organic alkylhalide initiator (R-X), a catalyst (L-M-X) made 

of a transition metal (M) halide (X) complexed with some organic ligand (L), and vinyl monomer 

(P).[129, 130] Figure 2.1 depicts the typical polymerization mechanism. Briefly, first the catalyst 

L-M-X abstracts the halogen atom X from the organic halide R-X, to form the oxidized species L-

M-X2, and the carbon radical R’ (‘ = radical). This radical R’ initiates polymerization by reacting 

with vinyl monomer P, with the formation of the 

intermediate radical species, R-P'. The reaction 

between L-M-X2 and R-P reversibly terminates R-

P’ to form R-P-X, and regenerates the catalyst L-

M-X. The catalyst L-M-X can again abstract the 

halogen X from R-P-X to form the propagation 

species R-P’ which can react with another vinyl 

monomer P to extend the chain R-P-P’. This 

R-X   +   L-M-X R +   L-M-X2 

R +
P

P1

Initiation: 

Pn-X   +   L-M-X Pn +   L-M-X2 

+
P

Pn+1 

Propagation:

Pn 

Termination: 

+ Pn+m Pn Pm

Figure 2.1 The ATRP mechanism. 
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reversible transfer of the halogen atom X between the catalyst and polymer chain continues till 

the monomer is consumed/removed or the radicals are artificially terminated. Copper-based 

halides (Cl or Br) are most commonly used as catalysts, but Ni, Pd, Ru, Fe and other transition 

metal halides have also been used.[129, 130] Ligands are mostly organic bases and derivates of 

2,2’-bipyridine and 2-iminopyridine.[129] To graft polymer brushes from surface, the initiator 

needs to be covalently linked to functional groups on the surface. From the biomedical 

perspective, ATRP carries the following advantages in addition to its ability to graft polymer 

chains with low PD values.  

1. ATRP initiators with different reactive groups can be synthesized to facilitate attachment to 

any biomaterial surface. 

2. The length of the polymer chains (degree of polymerization or number of repeat units) 

grafted from the surface can be easily controlled by adding a sacrificial initiator into the 

monomer solution along with the catalyst and ligand. Depending on the concentration of 

the sacrificial initiator, it consumes part of the catalyst and ligand molecules available to 

propagate the chains in solution. As a result, higher the concentration of sacrificial initiator 

in the solution, slower will be the propagation on the surface, resulting in lower chain 

lengths. 

3. Since ATRP does not depend on an external energy source like light, but uses chemical 

interactions in solution to initiate and propagate polymerization, ATRP can potentially graft 

polymer wherever the solution can reach. This can be very useful to modify surfaces of 

scaffolds with complex 3D structures and porosity.  

ATRP has been used to modify surfaces of a wide variety of biomaterials, to graft 

protein-resistant polymers like PEG and pHEMA to prevent cell adhesion, as well as for covalent 
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conjugation of biomolecules via the grafted polymer chains to control cell behavior. Jin et al. 

subjected PU surfaces to oxygen plasma to generate peroxide and hyperoxide groups on the 

surface.[51] The ATRP initiator 2-bromoisobutyryl bromide (BIBB) was then covalent reacted 

with these species via its acid bromide group. The initiator-immobilized PU surfaces were 

immersed in a solution of copper bromide (CuBr, catalyst), 2,2’-bipyridyl (bpy, ligand) and 

PEGMA (MW 300, 475 or 1000) to initiate grafting of PEG from the surface by ATRP.[51] The 

length of grafted PEG chains on the surface was varied by changing the sacrificial initiator 

concentration. The water contact angle values reduced from about 85° to about 60°-30° 

depending on the PEG chain length. Fibrinogen and lysozyme adsorption on PEG-grated surfaces 

reduced by 84-98% and 67-91% respectively, compared to the unmodified PU surface.[51] An 

interesting observation was made that lysozyme adsorption increased as the MW of the PEG 

monomer used increased.[51] This was possibly due to decreasing graft density as monomer 

size and footprint on the surface increase.[51] Hoshi et al. covalently conjugated the same ATRP 

initiator BIBB to -OH groups on the surface of a polyethylene-poly(vinyl alcohol) (PE/PVA) 

composite plates.[131] The plates were then immersed in a solution of methacryloyloxyethyl 

phosphorylcholine (MPC) in the presence of CuBr and bpy for 24 hours to graft polyMPC brushes 

from the PE/PVA surface. The surface hydrophilicity (measured by contact angle) increased with 

increase in the grafted pMPC chain length.[131] It was argued that the shorter poly(MPC)-

grafted chains did not cover the hydrophobic domains, while the longer grafted chains did. As a 

proof of principle study, non-specific adsorption of BSA was tested. pMPC grafted surfaces 

reduced protein adsorption by over 80% compared to unmodified PE/PVA surfaces.[131] 

ATRP has also been used to graft polymer chains from metal surfaces. This has been 

very useful for titanium surfaces since Ti-based implants, though widely used, suffer from poor 
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osseointegration and implant-associated infections. Polymer brushes have been grafted from 

titanium surfaces using ATRP followed by biomolecule conjugation to prevent bacterial 

infections as well as promote osteoblast adhesion and bioactivity. To achieve this, a SAM of a 

specially synthesized ATRP initiator is deposited on the surface. For example, Zhang et al. 

converted the titanium oxide groups present on titanium films to hydroxyl groups by heating at 

120°C overnight.[132] These hydroxyl groups were then used to deposit a covalently attached 

SAM of the ATRP initiator trichloro(4-(chloromethyl)phenyl)silane on the surface. This was 

followed by grafting of pHEMA chains from the surface in the presence of ligand and copper-

based catalyst. The hydroxyl groups on these pHEMA chains were converted into carboxyl or 

amine groups to allow the coupling of gentamicin, penicillin, or collagen via carbodiimide 

chemistry. The covalently immobilized antibiotics almost completely inhibited growth of the 

bacteria Staphylococcus aureus. On the other hand, collagen immobilization significantly 

enhanced osteoblast adhesion. Centrifugation of unmodified TI surfaces covered will a 

monolayer of osteoblasts resulted in detachment of most cells. However, no cell detachment 

was observed from collagen conjugated Ti surfaces.[132] In another such study by Raynor et al., 

a SAM of α-bromo ester terminated dimethylchlorosilane was deposited on titanium films via 

surface –OH groups.[37] This ATRP initiator was used to graft PEGMA chains form the surface. 

These PEGMA grafted Ti surfaces resisted MC3T3-E1 osteoblast-like cell adhesion for up to 56 

days.[37] However, when a polypeptide containing the collagen sequence GFOGER was 

covalently coupled to the terminal –OH groups on PEG, cell were now able to adhere, spread 

and proliferate on the surface. Similar results were obtained when a RGD containing peptide 

sequence or a recombinant fragment of fibronectin FNIII7-10 was covalently coupled to the PEG 

chains.[37] The authors also tested for levels of focal adhesion kinase (FAK) Y397 and Y567 
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phosphorylation, which are indicators of osteoblast differentiation. Increased level of 

phosphorylated FAKs were observed on cells growing on FNIII7-10 conjugated surfaces indicating 

increased osteoblast differentiation.[37] These excellent in vitro results were then translated to 

in vivo studies by the same group. Instead of films, ATRP grafting of PEGMA was conducted on 

clinical grade Ti cylinders.[37] These PEGMA grafted cylinders, with and without covalent 

conjugation of FNIII7-10, were implanted into the proximal tibial metaphyses of mature Sprague-

Dawley rats. Ti cylinders with FNIII7-10 had 70% more bone tissue around their surface compared 

to unmodified Ti, the current clinical standard orthopedic implant material.[37] Improved 

osseointegration was further confirmed by the significantly higher force required to pull out 

FNIII7-10 conjugated cylinders, compared to unmodified Ti or PEGMA-grafted Ti without FNIII7-

10.[37] 

Studies have shown that pHEMA does not promote cell adhesion due to its highly 

protein resistant nature. Due to its excellent biocompatibility, it is being used to fabricate tissue 

engineering scaffolds to support tissue regeneration. However, due to its bioinert nature, it is 

unable to elicit any response from desired cells. In a very interesting study by Zainuddin et al., 

ATRP was used to graft polymer chains from surface or pHEMA hydrogels to improve their cell 

adhesion properties.[133] In the study, the ATRP initiator BIBB was covalently coupled to the –

OH groups on the pHEMA hydrogel surface. Next, poly(mono(2-methacryloyloxyethyl) 

phosphate) (pMMEP) chains were grafted from the surface using the standard ATRP procedure. 

It was observed that the charged phosphate groups of pMMEP promoted attachment, spreading 

and growth of human corneal limbal epithelial cells, to a level comparable to tissue culture 

polystyrene.[133] However, it should be noted that this is uncontrolled growth of cells, and 
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most tissue engineering applications will require specific control over cell behavior. This is 

where controlling the presentation of specific biomolecules becomes significant. 

The solution dependent nature of ATRP does have the advantage of being able to graft 

on surfaces with complex 3D structures and porosity. At the same time, the only way to control 

the thickness of polymer chains grafted by ATRP is by varying the temperature, solution 

composition and polymerization time. Thus, its use in creating surfaces with complex spatial 

distributions such as gradients, thickness patterns with different levels of minima and maxima, 

and even simple striped patterns is limited. Simple linear gradients may be achieved by slowly 

increasing the immersion level of the surface into the ATRP solution. Li et al. were able to graft 

thickness gradients of the thermoresponsive polymer poly(N-isopropylacrylamide) using an 

elaborate experimental set up involving fluid pumps.[59] Creation of patterns requires even 

more complex methods to be devised, like prior patterning of the initiator via μCP, 

photolithography, or restricted polymerization using microfluidics. As an example of procedural 

complexity, Chen et al. first deposited a SAM of hexamethyldisilazane (HMDS) on silicon 

wafers.[58] Next a layer of photoresist was spin coated on the HMDS SAM. Then UV lithography 

involving photomask was used to remove the photoresist in specific spatial patterns exposing 

parts of the HMDS layer. The sample was then subjected to oxygen plasma treatment to convert 

the methyl groups of exposed HDMS to hydroxyl groups. These –OH groups were then used to 

immobilize the ATRP initiator (4-chloromethyl)phenyltrichlorosilane, which assembled 

selectively onto the exposed regions of the silicon wafer. This elaborate procedure resulted in a 

surface patterned with regions of initiator ATRP and regions of photoresist.[58] Finally, PMMA 

brushes were grafted from the surface using a standard ATRP procedure, followed by removal of 

the leftover photoresist from the surface.[58] A microfluidics-based patterning procedure, as 
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developed by Sun et al., is equally complex.[134] Furthermore, as with any microfluidic device, 

only certain patterns are possible and the dimensions have to be very small, usually microns to 

millimeters. ATRP also suffers from extremely slow polymerization kinetics, thus requiring hours 

to days to obtain polymer layer thickness of a few hundred nanometers. ATRP procedures have 

to be performed in a solvent system, and require the catalyst/ligand, which in most cases is 

organic in nature. This can be very detrimental for biomaterials, especially polymer substrates, 

as these chemicals can leach out and produce toxic and/or inflammatory reactions in the body. 

2.3.2.2.2 Polymer Grafting From Surfaces via Photoiniferter-Mediated Polymerization 

Photoinifeter-mediated polymerization (PMP) to graft polymer chains from the surface 

offers a number of advantages, especially for biomedical applications. Spatial patterns can be 

easily achieved by simply controlling the location of light exposure across the surface. In fact, 

PMP allows grafting with the same spatial micropatterning resolution as achievable with 

traditional photolithographic techniques. It also allows creation of gradients with nanometer 

scale resolution in polymer layer thickness, simply by varying the light intensity or exposure time 

across the surface. Grafting via PMP is much faster, usually providing thicknesses of hundreds of 

nanometers in few minutes. Additionally, PMP can be performed at room temperature with or 

without solvent (pure monomer), requires no catalyst/ligand system, and is compatible with a 

wide range of vinyl monomers.  
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Surface-initiated PMP (SIPMP) depends on presence of special dithiocarbamate-derived 

iniferter (INItiator-transFER agent-TERminator) molecules on the surface. This iniferter molecule 

has a photo-labile carbon-sulfide or disulfide bond, which reversibly splits on UV exposure to 

create reactive radicals that initiate polymerization of vinyl monomers. Once the UV light is 

turned off, a carbon-sulfide bond is reformed to terminate the polymerization. However, just 

like the original iniferter molecule, this carbon-sulfide can be split again under UV light, to 

reinitiate polymerization and create block copolymers. Figure 2.2 shows two such iniferters, 

tetraethylthiuram disulfide (TED) and N,N-Diethylamino)-dithiocarbamoylbenzyl 
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(trimethyoxy)silane (SBDC), which can initiate controlled polymerization via a reversible 

termination process. 

Controlled photopolymerization in solution using these iniferters was first developed by 

Otsu in the early 1980s. It was first adopted by the Matsuda group for grafting polymer brushes 

from surfaces. In the first study by Nakayama and Matsuda, the iniferter benzyl N,N-

dithiocarbamate was used to synthesize polystyrene (PST) chains in solution using UV light.[135] 

The styrene chains were end-caped with a DTC group containing a carbon-sulfide bond which 

can split under UV to create a carbon radical. These DTC derivatized PST chains were either 

crosslinked to form films, or were cast onto PET films. PST or PET-PST films were then immersed 

in monomer solutions and exposed to UV light to graft either pMAA, poly(N,N-

Dimethylacrylamide) (pDMAAm) or poly(N-[3-(Dimethylamino)propyl]acrylamide) (pDMAPAAm) 

chains from the surface. This study highlighted how exposure time and UV intensity can be used 

to very easily control the amount of polymer on the surface. For example, it was observed that 

contact angle of both PST and PET-PST films decreased with increasing UV exposure time, 

indicating that the amount of polymer can be controlled by simply controlling the exposure 

time. Metal photomasks were placed in the light path, to block certain regions from UV 

exposure. Dye staining was observed only on the exposed regions indicating that pMAA and 

pDMAPAAm was grafted only in the regions exposed to UV light. Patterns with a resolution of 

60μm were created in this study, but their resolution is only limited by the resolution of the 

photomask. Next, metal photomasks were combined with a gradient neutral-density filter, to 

gradually increase the UV intensity from one end of the strip to the other. In this case, the dye 

staining intensity increased with UV intensity, indicating the amount of pMAA and pDMAPAAm 

grafted on the surface increase with intensity. AFM measurements further confirmed formation 
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of these patterns and gradients. The most important result came with cell culture experiments. 

When bovine aortic endothelial cell adhesion were seeded onto pDMAAm patterned PET-PST 

films, cells adhesion was restricted to the 60μm non-grafted hydrophobic regions, but were 

completely absent on pDMAAm grafted regions.[135] This was attributed to the hydrophilic 

nature of the pDMAAm regions which were very effective in preventing non-specific protein 

adsorption.  

The versatility of SIPMP was further demonstrated by the same group, by grafting 

adjacent strips of 5 different polymers on the same PET-PST film.[136] First a small strip was 

exposed to UV for 10 minutes under the one monomer. Next, the film was washed and an 

adjacent strip was exposed to UV under the second monomer for 10 minutes. This process was 

repeated to graft strips of five different polymers, pMAA, pDMAAm, pHEMA, poly(N-[3-

(dimethylamino)propyl]acrylamide methiodide) (DMAPAAmMeI), poly(3-sulfopropyl 

methacrylate) (pSMAK), adjacent to each other. Surface wettability significantly increased on all 

5 regions compared to the hydrophobic ungrafted film. The polyDMAAm and polyHEMA caused 

significant reduction in bovine aortic endothelial cell (EC) adhesion, which can be attributed to 

their uncharged hydrophilic nature. The pDMAPAAmMeI and pMANa regions promoted EC 

adhesion and growth, which was most likely due to their ionic nature. Even though pSMAK 

regions are ionic as well, EC adhesion markedly decreased over time. The authors went a step 

further and created thickness gradients of pDMAAm, pDMAPAAmMeI and pMANa by slowly 

increasing the area under UV exposure. Interestingly, EC adhesion and proliferation gradually 

decreased with increasing polyDMAPAAmMeI and polyMANa grafted-layer thickness. In 

contrast, EC adhesion on the polyDMAAm gradient ceased abruptly above a certain graft 

thickness. While explanations for the observed cell behavior on different polymers and polymer 
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gradients were not provided, this study clearly demonstrated the high throughput nature of 

SIPMP to easily and very quickly compare cell response to different surface chemistries. 

While the above studies used passive interaction of different polymers and different 

concentrations of a polymer, it is also possible to create patterns and concentration gradients of 

biomolecules on the surface by covalently attaching them to functional groups on the polymer. 

Such a study was conducted by Harris et al., where a concentration gradient of the cell adhesion 

peptide sequence RGD was created on silicon surfaces.[55] To achieve this, first a SAM of a 

silane-based DTC iniferter was deposited on the silicon surfaces. This iniferter SAM immersed in 

MAA monomer solution and the area of the surface exposed to UV was slowly reduced by 

moving an opaque photomask at a constant velocity over the surface. In essence, the exposure 

time gradually increased from one end of the surface to the other. This resulted in a thickness 

gradient of grafted pMAA chains on the surface, which was confirmed by ellipsometry 

measurements. The concentration of –COOH groups on the surface depends on the amount of 

pMAA on the surface, and in this case will follow the gradient profile. As a result, covalent 

coupling of RGD containing peptide sequence GRDGS to these –COOH groups should result in a 

concentration gradient of RGD across the surface. The increase in thickness post-RGD 

conjugation used to determine the RGD concentration across the gradient verified that it 

followed the polymer layer thickness. This gradually increasing RGD concentration translated 

into a gradual increase in the surface density of adhered NIH3T3 fibroblasts. In fact, it was 

possible to determine the absolute RGD concentration along the gradient and quantitatively 

correlate it to cell attachment behavior on the surface. 

If such concentration gradients of biomolecules can be used to quantitatively analyze 

cell adhesion, it should also be possible to analyze other gradient dependent cell responses like 



74 

 

growth and migration. Furthermore, biomolecule concentration gradients with different 

baseline values and slopes can be created by simply adding a delay in mask movement and 

adjusting the mask velocity respectively. In an earlier study, Harris et al. have demonstrated the 

ability to graft pMAA gradients with different slope values.[56] Additionally, like studies by the 

Matsuda group, gradients can be also combined with patterned photomasks to create multiple 

sets of gradients with different slopes on the same surface. Such versatile surfaces can be used 

to study cell behavior on different gradient profiles in an extremely high throughput manner. 

For example, different gradient sets of neurotrophic factors can be used to determine the best 

gradient profile for axonal growth and guidance. Earlier it was discussed that successful spinal 

cord regeneration will require creation of concentration gradients of growth factors. Once the 

best gradient profile has been identified, 3D scaffolds can be fabricated that present such a 

gradient profile for in vivo testing in animal injury models. In short, the SIPMP technique can 

significantly accelerate the development of therapeutic regimes for tissue regeneration. 

There are two main limitations associated with grafting via SICRP that need to be 

addressed. First, all radical polymerization are extremely sensitive to presence of atmospheric 

oxygen, which is a strong radical scavenger and can react in an uncontrolled manner with the 

radicals present on the surface. As a result, the polymerization process becomes uncontrolled, 

leading to PD in the grafted chains, or even preventing grafting from the surface. The first step 

to avoid this problem is degassing the monomer solution to remove all dissolved oxygen. 

Freeze-thawing the monomer solution under vacuum is the quickest methods to achieve this, 

and has become a standard procedure.[56, 57] To avoid dissolution of atmospheric oxygen 

during the polymerization procedure, samples are typically placed in custom-designed airtight 

chambers completely purged with an inert gas like nitrogen or argon. The above steps allow the 



75 

 

polymerization to proceed in the desired controlled manner. This added procedure does not 

pose a major hurdle for smaller samples, and is routinely done for most SICRP experiments. 

However, placing larger medical devices in such chambers is not always practically possible. An 

alternative is to add oxygen scavengers to the monomer solution, which rapidly react with and 

consume any oxygen that enters the monomer solution during the polymerization 

procedure.[137] 

Second, the high surface grafting density and large size of some biomolecules like 

proteins can hamper covalent conjugation of the biomolecule to the polymer chains. Small 

biomolecules like RGD can diffuse deeper into the polymer brush layer for conjugation, even at 

relatively high polymer grafting densities. However, larger biomolecules like proteins will find it 

more and more difficult to diffuse deeper as the grafting density increases. It may so happen 

that the concentration of conjugated protein starts decreasing after a certain polymer layer 

thickness is reached due to excessively tight packing of polymer chains (extremely high grafting 

density). This limitation essentially puts a limit on the maximum allowable grafted polymer layer 

thickness, and gradients cannot have an upper value higher than this maximum allowable 

thickness. This limitation is not unique to SIPMP, but is valid for any surface initiated 

polymerization technique, and therefore needs to be addressed. Fortunately, SIPMP does 

provide a solution, as the biomolecules can themselves be acrylated and directly grafted from 

the surface like any other monomer. This is difficult to achieve with other techniques like ATRP, 

RAFT and NMP, because they involve use of organic solvents and chemicals which can easily 

denature and damage proteins. The highly reactive peroxide radical generated in plasma- and 

ozone-induced grafting techniques can easily cause oxidative damage to the protein. 
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One may argue that UV exposure during SIPMP can also damage the protein. Exposure 

time is not a problem as grafting via SIPMP is typically accomplished in a few minutes. 

Furthermore, UV intensity can also be reduced by increasing the monomer concentration up to 

saturation levels of the protein. Also, the radicals generated in the SIPMP technique are much 

less reactive, especially sulfide radicals generated from splitting of iniferter disulfide bonds. This 

approach has already been successfully attempted by Sebra et al., who grafted acrylated 

collagen from PU surfaces using SIPMP.[138] To achieve this, collagen was covalent coupled via 

its primary amine to NHS terminated PEG acrylate (NHS-PEG-Acy, PEG MW 3400). Since this 

coupling was carried out in an aqueous buffer, the protein bioactivity was preserved as verified 

by ELISA. DTC derivatized crosslinked PU substrates were synthesized by mixing TED into the PU 

precursor solution and exposing it to UV light for 500 seconds. Either PEG acrylate (MW 375), or 

collagen-PEG-Acy was grafted from these PU surfaces by exposure to 45 mW/cm2 UV light for 

900 seconds. Patterns of grafted PEG or PEG-collagen were created by placing a photomask in 

the light path. Successful collagen grafting was confirmed by ELISA. On seeding NIH3T3 

fibroblasts on patterned PEG grafted surfaces, cells adhered only to the bare PU regions without 

PEG grafting. However, when cells were seeded on PEG-collagen grafted surfaces, cells adhered 

to the grafted regions as well. This clearly indicates that bioactivity of collagen needed for cell 

adhesion was preserved even after the acrylation and photografting procedure.[138] 

To conclude this literature review, a myriad of techniques are available for surface 

modification of the plethora of biomaterials already under use clinically and under development 

for biomedical applications. It is possible that multiple techniques can achieve the desired 

surface modification, and the same surface modification technique can be used for different 

applications. In some cases, only one particular technique will be best suited for the targeted 
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surface modification. In yet other cases, the surface may have to be subjected to multiple 

techniques to yield the desired results. In short, careful consideration of the specific biomedical 

application as well as pros and cons of various surface modifications techniques will be required 

to select the most suitable one. Specifically from the bioengineering perspective, SIPMP seems 

to the most promising technique to quickly analyze cell behavior under a wide variety of 

conditions. This is required because unraveling how various extra-cellular factors affect cell 

behavior holds the key to developing successful long-term tissue regenerative therapies. 
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3. Systematic Variation of Surface Properties of Polyurethane Substrates Using 

Surface-Initiated Photoiniferter-Mediated Graft Polymerization 

3.1 Introduction 

Polymers have found widespread use in biomedical devices due to their low production 

cost, availability in high volume, ease of molding into any shape and size, ease of sterilization 

and considerable shelf life. A myriad of polymers such as poly(methylmethacrylate) (PMMA), 

Dacron polyester, poly(tetrafluoroethylene) (PTFE), high-density polyethylene (HDPE), 

polyurethanes (PU), poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) have undergone testing 

and many have found extensive uses in biomedical applications including joints, artificial lenses, 

large diameter vascular grafts, heart valves, electrodes and catheters. Designing polymers with 

specific mechanical properties is relatively easy, with various polymer types and their blends 

possible to meet the requirements. However, selecting polymer(s) with the best mechanical 

properties does not always come with the best biocompatibility. Biocompatibility reflects the 

interaction of the material surface with the biological environment which will includes adsorbed 

blood proteins, the extra-cellular matrix (ECM), and most importantly cells.[72] As soon as a 

foreign material comes in contact with body tissue and fluids, proteins start adsorbing on its 

surface. Depending on which proteins have adsorbed, the amount of protein adsorbed, and the 

conformation of the adsorbed proteins, the cells may trigger a favorable or unfavorable 

response.[72] Since these interactions originate on the surface where proteins adsorb, several 

attempts have been made to alter the surface chemistry to either prevent protein adsorption 

altogether, or somehow control the state of the adsorbed protein to generate more favorable 

cellular responses such as bone tissue integration and endothelialization.[18] For example, 

devices made from PMMA such as contact lenses, intraocular lenses and biosensors suffer from 
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protein fouling, which adversely affects their functionality.[76-78] Surface modification that 

alters only surface properties, but not bulk properties can potentially address this issue.[76, 78] 

In other cases, certain biomolecules can be directly attached to the polymer surface to elicit 

specific responses, rather than relying on non-specific protein adsorption.[18, 139] For example, 

polyurethanes are extensively used in biomedical applications such as heart valves and 

catheters, due to their tunable mechanical properties. But they often suffer from calcification 

and thrombogenic biocompatibility issues, which lead to failure of the PU device in the long 

term.[79] Surface modification is being used to reduce these undesirable reactions by 

controlling non-specific protein adsorption as well as incorporation of anti-calcification and anti-

thrombotic agents like 2-hydroxyethanebisphonic acid (HEBP), heparin and ε-lysine on the 

surface.[79, 80]  

One approach to alter the surface chemistry is by changing the polymer type, structure 

and composition. For example, blending poly(ethylene glycol)-containing (PEG) copolymer into 

the polymer bulk, can potentially result in highly protein repellant surfaces due to diffusion of 

PEG chains to the surface.[88] Although this may be an easy method, there is a possibility of the 

PEG chains leaching out causing serious issues with long-term usability of this material. This can 

potentially be addressed by covalently linking the PEG chains to the bulk polymer backbone.[89] 

Although blending of bulk synthetic polymers with additive polymers can influence surface 

properties, they can adversely affect mechanical properties. Furthermore, blending is very 

specific, so the material to be added, the amount to be added, and the blending technique to 

use will change with the targeted bulk material and application. [92-94] 

A better and easier approach would be to change the surface chemistry of the bulk 

polymer without altering the bulk properties. Such a technique can then be universally applied 
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to most if not all polymer types. The simplest of these approaches is physical coating of a 

protein resistant polymer, such as PEG, to the bulk material surface. Simple coating of PEG on 

PU, polysulfone, PMMA and PLA surfaces has been shown to be very effective in reducing non-

specific protein adsorption.[76, 94, 117] However, long term stability is questionable as the 

physically coated polymer layer can be easily dislodged and lost permanently. One solution to 

this problem is to permanently attach the polymer chains to the surface. The two most 

commonly used techniques are “grafting to” and “grafting from”, both of which create polymer 

brushes on the surface. Besides changing the surface chemistry, the grafted polymer chains can 

be used to attach biomolecules to the surface as a means to control specific cell behaviors. For 

the “grafting to” technique, reactive groups are introduced on the material surface and used to 

attach polymer chains using appropriate conjugation chemistries. The covalent bond formed 

between surface and polymer chain makes the polymer brushes robust and prevents their 

removal. Reactive groups can be directly incorporated during the bulk polymer synthesis, as was 

done by Archambault et al. to attach PEO chains to PU substrates, which reduced protein 

adsorption by up to 70%.[31, 140] In another study by Shoichet et al., PEO chains were attached 

to poly(acrylonitrile-co-vinyl chloride) (PAN/VC) membranes, which reduced protein adsorption 

by up to 70%.[33] Plasma/Glow discharge treatment can also be used to introduce reactive 

groups on the surface followed by attachment of polymer chains.[34, 141] Attachment of PEG 

chains to silica surfaces activated by plasma treatment resulted in a significant decrease in 

adsorption of bovine serum albumin. However, it is difficult to achieve high grafting densities 

with “grafting to” approach because as chains attach to the surface, it becomes more and more 

difficult for subsequent chains to diffuse through the layer and reach the surface.[36] This may 

result in incomplete coverage of the surface and potentially allow protein molecules to diffuse 
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through and adsorb on the polymer surface.[122, 142] This limitation of the “grafting to” 

technique can be overcome with the “grafting from” approach to obtain higher grafting density, 

since monomer units that build individual polymer chains are less susceptible to steric hindrance 

than preformed polymer chains.[37] The most versatile “grafting from” approach is 

surface-initiated radical polymerization since a vast pool of vinyl monomers can be used to alter 

the surface properties as well as introduce reactive functional groups on the surface. This 

obviously requires introduction of initiator molecules on the polymer surface, which can be 

realized using plasma treatment, ozone oxidation, γ-irradiation, UV-irradiation, electron beam 

and laser treatment.[143-147] 

At this stage, most of the problems associated with modifying the surface properties 

using polymer grafting have been addressed. However, there is an inherent limitation associated 

with the aforementioned free radical polymerization-based “grafting from” technique. Free 

radical polymerization produces grafted chains with high polydispersity.[128] As mentioned 

earlier, improvement in biocompatibility will also require eliciting specific responses from cells 

by attaching biomolecules to the surface. A high polydispersity on the surface will cause an 

uncontrolled variation in concentration of the biomolecule on the surface, which will cause 

uncontrolled variation in cell response on the same surface. This is why controlled surface-

initiated polymerization (CSIP) techniques have generated immense interest in the biomedical 

field. Controlled surface-initiated polymerizations usually result in grafted-polymer chains with 

very low polydispersity (Mw/Mn<1.3)[128], which provides excellent control over the 

concentration of functional groups on the surface. Several CSIP techniques such as atom 

transfer radical polymerization (ATRP)[51, 52], nitroxide-mediated polymerization (NMP)[53, 

54], reversible addition-fragmentation chain transfer polymerization (RAFT), and photoiniferter-
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mediated polymerization (PMP)[55-57] provide excellent control over the amount of polymer 

grafted by changing parameters like polymerization time and monomer concentration. 

However, not all are amenable to creation of complex spatial patterns and thickness gradients 

of grafted polymer, especially on polymer substrates. The ability to create patterns and 

gradients of biomolecules is gaining importance as they can be used to direct cell behaviors 

beyond simple adhesion, like migration and growth. Since PMP uses UV light for graft 

polymerization, photomasks can be introduced to create spatial patterns[135, 148], while a 

gradual increase in exposure time can be used to create gradients[55, 56, 136]. Polymerization 

via PMP is also very quick, with relatively thick layers obtained in minutes. PMP requires the 

presence of photoiniferter on the material surface to initiate polymerization, which can be 

synthesized to allow modification of metallic, ceramic and polymeric surfaces. The iniferter 

molecules also have the unique ability to reinitiate (mechanism explained later), thus allowing 

block copolymers to be grafted from the surface.[149]  

Polyurethane substrates (PU) were selected as a model surface to graft polymer chains 

using PMP since they are extensively used for biomedical applications, but suffer from 

biocompatibility issues as described above. The goal was to convert the hydrophobic nature of 

the PU surfaces to a more hydrophilic nature, and at the same time provide a way to control the 

degree of hydrophilicity of the surface. It would also be advantageous to demonstrate that small 

molecules can be attached to these surfaces with potential applications in drug delivery, antigen 

presentation, biosensing, antifouling, etc. To achieve these goals the iniferter tetraethylthiuram 

disulfide (TED) was incorporated into the crosslinked PU substrates as a means to graft polymer 

chains from the surface. Though this type of graft photopolymerization from PU substrates has 

already been demonstrated [148, 150, 151], a systematic variation of and control over the 
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amount of polymer grafted on PU surfaces using PMP has not. Four parameters were tested for 

this purpose, substrate iniferter concentration, UV intensity, monomer concentration and 

polymerization time. Methacrylic acid was selected as the monomer as it would provide 

carboxylic acid –COOH functional groups on the surface after grafting. The –COOH groups will 

not only increase the hydrophilicity of the surface, but should also allow electrostatic or 

covalent attachment of molecules on the surface. In this study, a positively charged dye, 

toluidine blue, was electrostatically attached to the negatively charged –COO¯ groups on pMAA 

chains [152]. The study demonstrates that by altering polymerization conditions, the 

hydrophilicity of PU substrates and the concentration of an attached molecule can be 

systematically and reproducibly altered as required. 

3.2 Materials and Methods 

3.2.1 Synthesis of Polyurethane Substrates 

Hexafunctional urethane acrylate (CN975, Sartomer, PA), crosslinker triethylene glycol 

dimethacrylate (TGD, Sigma, MO), photoiniferter tetraethylthiuram disulfide (TED, Sigma, MO), 

and photoinitiator Irgacure 2959 (Ciba, NY), were mixed together in a weight ratio of either 

49:49:1:1 or 48:48:3:1 to give either 1 w/w % or 3 w/w % of TED respectively in the mixture. This 

mixture was sonicated for about 30 minutes to obtain a homogeneous yellow colored precursor 

solution. This solution was injected between two clean and transparent glass slides separated by 

a 1mm thick Teflon spacer, taking care not to introduce any air bubbles. Each side of the glass 

slide sandwich was exposed to 365nm UV light at 25mW/cm2 for 5 minutes to form a 

crosslinked PU substrate. The cured substrate was gently detached from the glass slides and 

washed with copious amounts of ethanol (≥99.5%, Fisher, PA) and acetone (≥99.5%, Fisher, PA) 
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to remove any debris and unreacted chemicals. These substrates were cut into 12mm x 10mm 

samples, which were used for graft photopolymerization. 

3.2.2 Graft Photopolymerization of Methacrylic Acid 

Graft photopolymerization was carried out under a Mask Aligner system (OAI, CO) which 

provided collimated 365nm UV light at a constant intensity of 25mW/cm2. The cut 12mm x 

10mm samples were attached to a glass plate using double-sided adhesive tape. A viton o-ring 

(AS568A #017, McMaster, GA) was placed on the glass plate around each substrate using a 

minimal amount of vacuum grease. The plate with the attached substrates was placed on the N2 

gas-based floating platform of the mask aligner. 

Either a 15% v/v or 50% v/v solution of methacrylic acid (Sigma, MO) monomer in 

deionized (DI) nanopure water was degassed by subjecting it to three freeze-vacuum-thaw 

cycles in a glass Schlenk tube sealed with a rubber septum. A long steel needle attached to a 5ml 

glass syringe was introduced through the septum into the Schlenk tube to aspirate out 

monomer solution. Enough monomer solution was added inside the o-ring area so as to 

completely submerge the sample. The mask aligner hatch was immediately closed over the 

platform to form a chamber which was continuously purged with N2 gas to prevent oxygen from 

entering the system. The platform was raised slowly until the o-rings completely contacted the 

transparent glass window of the hatch. This helped maintain a uniform spacing between the 

sample surface and the bottom surface of the window, and form an airtight seal to prevent 

oxygen from dissolving into the monomer solution. Substrates were exposed to UV light for 5, 

10, 20, 30, 45, and 75 minutes to graft poly(methacrylic) acid (pMAA) chains from the surface. 

To study the effect of UV light intensity, samples were exposed at an intensity of either 

25mW/cm2 or 6.25mW/cm2. The higher intensity was obtained by exposing the samples directly 
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to the mask aligner light, while the lower intensity was obtained by introducing a neutral density 

filter in the light path. After exposure the polymer grafted samples were rinsed with copious 

amounts of pure ethanol and sonicated in pure ethanol for 60 minutes to remove any unreacted 

monomer and untethered polymer chains. Samples were dried using a N2 gas blowgun and 

stored at room temperature (RT) in sealed test tubes until further use. Table 3.1 summarizes the 

polymerization conditions and values that were tested. 

Parameter 

Tested 
Values Exposure Times (min) Other Constant Parameters 

TED 

Concentration 

1% and 3% 

w/w 

5, 10, 20, 30, 45, 75 

Monomer Concentration = 50% v/v; 

UV Intensity = 25 mW/cm2 

Monomer 

Concentration 

15% and 50% 

v/v 

TED Concentration = 3% w/w; 

UV Intensity = 25 mW/cm2 

UV Intensity 
6.25 and 25 

mW/cm
2
 

Monomer Concentration = 50% v/v; TED 

Concentration = 3% w/w 

Table 3.1 Values of various parameters varied for graft photopolymerization of pMAA from PU 

surfaces. 

3.2.3 Water Contact Angle Measurement of PMAA Grafted Surfaces 

Static water contact angles of the pMAA grafted PU surfaces were measured via the 

sessile drop technique using a Kruss DSA10 goniometer equipped with a digital camera and drop 

shape analysis software. Control samples consisted of unmodified PU substrates without 

polymer grafting. A 3μl drop of HPLC grade water was placed onto the sample surface and 

allowed to equilibrate for about 15 seconds before the contact angle was measured using the 

drop shape analysis software. Three measurements were taken per sample at different locations 

and three samples were measured for every polymerization condition. Thus, nine contact angle 

values per polymerization condition were used to calculate a mean for data analysis. 
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3.2.4 Dye Adsorption Measurement of PMAA Grafted Surfaces 

The amount of dye adsorbed to the pMAA grafted PU samples was determined by 

measuring the absorbance using a BioTek μQuant Microplate spectrophotometer. Controls 

consisted of PU substrates without polymer grafting. For dye binding, pMAA grafted and control 

samples were soaked in 0.1M pH 8.0 phosphate buffer for one minute. The buffer was quickly 

wicked off from the edges using Kimwipes and the samples were immediately placed in a 50mM 

solution of toluidine blue in pH 8.0 phosphate buffer for 15 minutes. The samples were then 

rinsed with 5ml of DI water three times to remove excess toluidene blue solution. Samples were 

dried under a N2 gas flow and placed in a 24-well plate. The plate was placed in the 

spectrophotometer chamber and the absorbance was measured at 570nm. The absorbance 

value of the control samples was subtracted from that of the pMAA samples to give absorbance 

values of only the adsorbed dye. Dye absorbance of three samples polymerized under the same 

conditions was measured to give a mean for data analysis. 

3.2.5 Statistical Data Analysis 

For every polymerization condition tested, contact angle and dye absorbance values of 

three samples were measured for every exposure time value. These three values for every 

exposure time value were used to calculate the mean and standard deviation. In all the data 

figures, data points represent these mean values, while the error bars represent the 

corresponding ± one standard deviation. 
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3.3 Results and Discussion 

3.3.1 Synthesis of Polyurethane Substrates 

When the precursor mixture of CN975 (urethane), TGD (crosslinker), TED 

(photoiniferter) and Irgacure (photoinitiator) was exposed to UV light, the photoinitiator 

molecule initiated free radical polymerization and hence crosslinking of the CN975 and TGD 

(figure 3.1). While this was happening, the disulfide bond in the TED molecules added to the 

precursor solution split creating two diethylthiocarbamoyl disulfide (DTCS) groups with low 

reactive sulfide radicals (figure 3.1). When the UV light was turned off, these low reactive DTCS 

radicals reacted with the prorogating carbon radicals to terminate the crosslinked polymer 

UV 
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Figure 3.1 Crosslinking of CN975 and TDM under UV light using photoinitiator Irgacure in the presence 

of photoiniferter TED. TED molecules on the surface of PU substrates then initiate graft polymerization of 

monomer under UV light. 
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chains. The carbon-sulfide bonds thus formed at the chain ends can split again on exposure to 

UV light to initiate another polymerization reaction. Some of the diethylthiocarbamoyl disulfide 

groups capping the polymer chains will be present at the surface of the substrate (figure 3.1). 

The carbon-sulfide bond of these end-caps will split again on exposure to UV light and in the 

presence of any vinyl monomer will initiate grafting of polymer chains from the PU surface 

(figure 3.1). This method was used to graft poly(methacrylic acid) (pMAA) chains from PU 

surfaces. 

3.3.2 Graft Photopolymerization of Methacrylic Acid 

In this study, four parameters (exposure time, iniferter concentration, UV light intensity 

and monomer concentration) were used to control the amount of polymer grafted on the PU 

surface. To get a comprehensive picture of how exposure time will affect the amount of pMAA 

grafted, the exposure time was varied from 5 minutes to 75 minutes for every variation of the 

remaining three parameters. The amount of polymer grafted on a surface can increase in the 

form of MW of the polymer chains, or by an increase in the grafed-chain density.[56] Iniferter-

based graft photopolymerization has been shown to be psuedo-living, which means the MW of 

the grafted polymer chains remains essentially constant with exposure time.[56] However the 

number of iniferter molecules initiated per unit area increases with time, resulting in more 

polymer chains per unit area or higher grafting densities at longer exposure times.[56] On the 

other hand, increasing the monomer concentration does increase the MW of the grafted chains 

with other polymerization conditions kept same.[56] 

3.3.3 Contact Angle and Dye Absorbance Measurements of PMAA-Grafted PU Substrates 

Since pMAA chains are hydrophilic due to presence of the carboxylic acid groups, 

grafting of pMAA should cause an increase in the hydrophilicity of the surface (figure 3.2A).[151] 
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This variation in hydrophilicity was measured using water contact angle measurements. At lower 

grafted-chain density and/or polymer chain MW, the PU surface will not be completely covered 

causing the water drop to interact with both the PU surface and polymer chains. As a result, the 

measured contact angle will be between that of unmodified PU and pure pMAA. As the amount 

of grafted pMAA on the surface increases, more and more of the PU surface will be covered 

causing the contact angle to shift from that of PU towards pure pMAA (<20°) (figure 3.2A) [149, 

153].  

Along similar lines, the carboxylic acid –COOH groups on the pMAA chains dissociate at 

acidic pH thus creating negative –COO¯ charges on the pMAA chains. The concentration of 

negative charges will obviously increase with an increase in the amount of polymer grafted on 

the surface. A positively charged molecule will electrostatically attach to these negative charges 

on the pMAA chains, the concentration of the molecule will follow the amount of polymer 

grafted. For this study, the positively charged dye toluidine blue was attached to the surfaces by 

electrostic binding with 

the negative charges on 

the pMAA chains[152] 

which resulted in a purple 

coloration of the PU 

substrates (figure 3.2B). 

The intensity of this color, 

which should follow the 

amount of dye attached, 

A B 

Figure 3.2 Effect of amount of polymer from PU surface on (A) 

hydrophilicity and contact angle, and (B) on dye attachment and 

corresponding light absorbance. 

Water 

Drop 
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was determined by light absorbance measurements at 570nm using a spectrophotometer. Such 

electrostatic coupling can be used to attach and present small positively charged signaling 

molecules to cells. If long term presentation is required, drugs or other biomolecules such as 

peptides, proteins or antibodies can be covalently attached to the carboxylic acid groups using 

one of the well known conjugation chemistries such as N-hydroxysuccinimide and 

carbonyldiimmidazole. In short, this grafting technique will not only allow alteration of multiple 

surface properties (hydrophilicity and charge as in this study) but also provide a way to attach 

molecules to make the surface bioactive. 

The first parameter tested was TED concentration, with pMAA grafted on substrates 

synthesized with either 1% w/w or 3% w/w TED. The UV light intensity was kept consant at 

25mW/cm2 while the monomer concentration was fixed at 50% v/v. As seen in figure 3.3A, the 

contact angle values on 3% TED substrates were lower than those of 1% TED. Similarly, figure 

3.3B shows that dye absorbance values of 3% TED substrates were lower than those of 1% TED. 

Figure 3.3 Effect of increasing TED concentration from 1% w/w to 3% w/w on surface properties. Contact 

angles values (A) are much lower, while dye absorbance values (B) are much higher for pMAA grafted 

surfaces with 1% w/w TED (�,�) than 3% w/w TED (�,�). (UV intensity = 25mW/cm
2
; Monomer 

concentration = 50% v/v; n = 3 for each time point; Error bars = ± Std. Dev.) 
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A higher TED concentration means a higher density of iniferter sites on the PU surface, which 

means more polymer chains grafted from 3% TED substrates compared to 1% TED substrates 

under the same conditions. Also seen in figures 2.3A and B is a decrease in contact angle values 

and increase in absorbance values respectively with exposure time. As explained earlier, longer 

exposure times resulted in higher chain grafting densitites thus lowering the contact angle and 

increasing the amount of attached dye. 

The second parameter tested was monomer concentration, with pMAA grafting done 

with 15% v/v and 50% v/v monomer solutions. UV light intensity was kept consant at 

25mW/cm2 while the TED concentration was fixed at 3% w/w. As seen in figure 3.4A, the 

contact angle values on substrates grafted with 50% v/v monomer solution were lower than 

those grafted with 15% v/v monomer solution. Similarly, figure 3.4B shows that dye absorbance 

values of substrated grafted with 50% v/v monomer solution were higher than those grafted 

with 15% v/v monomer solution. Harris et al. have explained earlier that increasing the 
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Figure 3.4 Effect of increasing monomer concentration from 15% v/v to 50% v/v on surface properties. 

Contact angles values (A) are much lower, while dye absorbance values (B) are much higher for pMAA 

grafted surfaces with 50% v/v monomer (�,�) than 15% v/v monomer (�,�). (TED concentration = 3% 

w/w; UV intensity = 25mW/cm
2
; n = 3 for each time point; Error bars = ± Std. Dev.). 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

C
o

n
ta

ct
 A

n
g

le
 (

d
e

g
)

Exposure Time (min)



92 

 

monomer concentration causes the MW of the grafted polymer chains to increase but keeps the 

chain grafting density constant with other conditions kept the same.[56] This is what most likely 

happened, wherein higher monomer concentration of 50% v/v caused grafting of higher MW 

pMAA chains on the PU surfaces compared to 15% v/v monomer solution. Figures 2.4A and B 

also show a decrease in contact angle and increae in dye absorbance values with exposure time. 

As explained earlier, longer exposure times resulted in higher chain grafting densitites thus 

lowering the contact angle and increasing the amount of attached dye. 

The third and final parameter tested was the UV light intensity with pMAA grafted on 

PU surfaces at either 6.25mW/cm2 and 25mW/cm2. The TED concentration was kept constant at 

3% w/w while the monomer concentration was fixed at 50% v/v. As seen in figure 3.5A, the 

contact angle values on substrates exposed at 25mW/cm2 were lower than those exposed with 

6.25mW/cm2. Similarly, figure 3.5B shows that dye absorbance values of 3% TED substrates was 

lower than those of with 1% TED. Increasing the UV intensity from 6.25mW/cm2 to 25mW/cm2 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

C
o

n
ta

ct
 A

n
g

le
 (

d
e

g
)

Exposure Time (min)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 60 70 80

D
y

e
 A

b
so

rb
a

n
ce

Exposure Time (min)

Figure 3.5 Effect of increasing the UV intensity from 6.25mW/cm
2
 to 25 mW/cm

2
 on surface properties. 

Contact angles values (A) are much lower, while dye absorbance values (B) are much higher for pMAA 

grafted surfaces with 25mW/cm
2
 (�,�) than 6.25 mW/cm

2
 (�,�). (TED concentration = 3% w/w; 

Monomer concentration = 50% v/v; n = 3 for each time point; Error bars = ± Std. Dev.). 
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increased the rate at which iniferter molcules are initiated, resulting in higher grafting densities 

under same conditions. Figures 2.5A and B also show a decrease in contact angle and increae in 

dye absorbance values with exposure time. As explained earlier, longer exposure times resulted 

in higher chain grafting densitites thus lowering the contact angle and increasing the amount of 

attached dye.  

Contact angle and dye absorbance values of samples containing 3% TED grafted with an 

intensity of 25mW/cm2 and monomer concentration of 50% v/v were further used to compare 

contact angle and dye absorbance values of samples grafted under different conditions. 

Interestingly, contact angle and dye absorbance values reached a plateau beyond an exposure 

time of 45 minutes for samples containing 3% TED grafted using an intensity of 25mW/cm2 and 

monomer concentration of 50% v/v (� and � in figures 3.3, 3.4 and 3.5). This mostly likely 

happened because by 45 minutes all the iniferter sites on the surface had been consumed to 

initiate chain growth, with none available to graft more polymer chains. Expectedly, since 1% 

TED surfaces contain less amount of iniferter molecules, the plateau was reached much earlier 

at 30 minutes (� and � in figure 3.3), compared to 45 minutes for the 3% TED samples. On the 

contrary, for samples grafted at a lower UV intensity of 6.25mW/cm2 no such plateau in the 

contact angle and dye absorbance values was observed (� and � in figure 3.5). The most 

plausible explanation is that the lower UV intensity reduced the initiation rate of iniferter 

molecules on the surface. As a result, even at the maximum exposure time of 75 minutes used 

in this study, all the iniferter sites had not been consumed to initate chain growth. It is likely that 

a plateau could be eventually reached at a longer exposure time. Finally, no specific trend could 

be concluded from the results of samples grafted at a lower monomer concentration of 15% v/v. 
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3.4 Conclusions 

In conclusion, by grafting pMAA to PU substrates its hydrophobic nature was converted 

to hydrophilic. Additionally, the degree of hydrophilicity can be varied by controlling the amount 

of polymer grafted from the surface. This study demonstrates that this can be achieved using 

one or more of the four parameters tested, exposure time, photoiniferter concentration, 

monomer concentration and UV light intensity, showing the tremendous flexibility of the 

grafting technique. While this study involved the use of PU substrates with one set of 

mechanical properties, the same grafting technique can be used for substrates made with other 

precursor materials, urethanes or otherwise [154-156], having the desired mechanical 

properties. TED can be either incorporated during synthesis of these substrates, as 

demonstrated by this study and those by other researchers [150, 155-157], or different kinds of 

photoiniferter can be attached to the surface [56, 57, 151]. A positively charged dye was also 

electrostatically attached to the polymer chains in this study, but covalent coupling is very much 

possible, as other studies have demonstrated.[55] Such coupling can be used for drug delivery 

applications or to render the surface of a PU based biomedical device bioactive. Covalent 

tethering of the polymer chains to the surface provides durability, and will prevent loss of the 

altered surface properties and attached biomolecules for long term usage. Furthermore, the 

flexibility of the polymer chains, especially in biological liquids, can provide suitable mechanical 

properties and better accessibility of attached biomolecules to probing cells. Though beyond the 

scope of this study, polymers with functional groups other than –COOH can be grafted to 

facilitate the use of other conjugation chemistries.[158] Just like the degree of hydrophilicity can 

be controlled, the amount of biomolecule attached to the surface can be varied by controlling 

the amount of polymer grafted from the surface. Furthermore, since light was used for 
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polymerization, spatial patterns and gradients of grafted polymer chains can be created. All 

together, it is possible to create spatial patterns or concentration gradients of biomolecules on 

the surface. Spatial patterns can be used to promote or prevent cell adhesion in certain areas, 

while concentration gradients can find applications in cell guidance, such as neuron guidance for 

spinal cord regeneration.  
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4. Noradrenalin Conjugated Grafted-Polymer Surfaces As A Novel Anti-Biofouling 

Strategy 

4.1 Introduction 

Ships have long been coated with special marine paints to prevent corrosion from the 

elements.[159] At the same time, these paints keep the surface smooth by preventing 

biofouling, which is the unwanted accumulation of bacteria, algae, plants and marine animals on 

submerged structures in marine environments [60]. Besides negatively impacting aesthetics, 

biofouling increases the ships’ surface roughness[159]. This translates into higher frictional 

resistance, which combined with the increased weight reduces the ships’ speed and 

maneuverability.[160] This has been estimated to increase fuel consumption by 40% resulting in 

an increase in the cost of the voyage by up to 77%.[60] Biofouling can also degrade the existing 

protective coating leading to corrosion. As a result, ships need to be dry-docked to remove the 

biofouling and recoat the ships’ surface with the protective layer. This leads to unnecessary 

service time and monetary loss as well as the need to dispose of the hazardous waste generated 

by the cleaning and re-painting process.[60] On the ecological front, biofouling can introduce 

non-native species to new geographical regions leading to unfavorable and unbalanced 

competition, and even extinction of native species. 

The history of combating marine biofouling is as old as ships themselves. Covering hulls 

with copper and lead sheathing or coating them with wax, asphalt, pitch, tar, brimstone and 

tallow, have all been attempted as antifouling coatings since a millennium.[60, 159] Prior to the 

1960s, organometallic paints containing toxic pigments based on copper, mercury, tin, arsenic 

and others were used to kills and dislodge attaching marine organisms.[159] This ultimately led 

to extensive use of triorganotin-based paints as antifoulants (AF). In the absence of any better 
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antifouling agent, the use of tributyltin (TBT) incorporated in marine coatings as an effective and 

broad spectrum antifouling agent became widespread since the 1960s. Besides research on the 

effectiveness of TBT itself, considerable progress was made in developing paint materials which 

incorporated TBT. The most commonly used technique became self-polishing coats (SPC) which 

contain special acrylic copolymers that slowly degrade in seawater. The TBT groups were 

bonded to the main polymer chains via ester bonds, and were released slowly upon contact with 

seawater.[159] After immersion, the polymer itself starts degrading and dissolving leaving a 

fresh area of the coat containing TBT.[159] This SPC technology extended dry-docking intervals 

up to 5 years, saving the shipping industry billions of dollars every year. In fact, in 1999 it was 

estimated that 70% of all commercial ships were protected by them, leading to direct savings of 

close to US$ 2400 million a year.[60, 159] Unfortunately, TBT-SPC paints were found to have 

disastrous effects on the marine ecosystem, especially around docks and ports. TBT leaching out 

of paints caused deformities in marine organisms, weakened fish immune systems and 

accumulated in mammals that consumed marine biota. Consequently, manufacturing of TBT 

containing antifouling coats was banned in January of 2003, with complete removal from all ship 

surfaces to be completed by January of 2008.[60, 159]  

Since the ban on TBT, copper and other organometallic co-biocides are now 

incorporated into most currently used antifouling paints.[60, 159] The application methods have 

remained largely the same, SPCs being the most effective. However, the total release rate of 

copper from all such coated ships has been estimated to be around 3000 tons per year.[159] 

The ever-increasing global trade combined with increased ship sizes is only going to increase the 

amount of copper released, and is an impending environmental disaster. For example, copper-
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coated vessels can aid the transport and establishments of copper tolerant non-indigenous 

species to new habitats.[161] 

Environmental regulations worldwide are becoming increasingly stringent, forcing paint 

manufacturers to intensify research in the development of environmentally friendly antifouling 

coatings. This has shifted the focus to investigating fouling-release (FR) coatings, which reduce 

the adhesive strength of organisms to the ship’s hull. These coatings do not prevent fouling, but 

facilitate easy removal of the organisms by washing or movement of the ship in the sea. The FR 

characteristics of these coatings have been attributed to three properties, viz. surface energy, 

elastic modulus and coating thickness.[160] Fluoropolymers and silicones seem to best fulfill 

these requirements and are foci of intense research to tailor their properties for the best FR 

effect. Even though silicones have been demonstrated to have good FR properties, widespread 

use is limited due to the high speed (>22 knots) required to achieve complete FR, restricting 

their use to high speed vessels.[159] Furthermore, these FR coating are sensitive to mechanical 

damage, and are not as effective as biocidal paints in spite of being 2 to 7 times more expensive 

than biocidal paints.[159]  

More recently, research efforts are focusing on altering the settlement and attachment 

mechanisms used by fouling organisms as an environmentally friendly antifouling strategy.[60, 

162] Studies are being conducted to identify and isolate secondary metabolites in marine 

organisms and bacterial extracts that can disrupt the settlement process.[60, 163] Specific to the 

focus of this study, catecholamines, adrenoreceptor agonists and antagonists have been shown 

to inhibit larval settlement in a wide variety of marine organisms. [164-171] The well known 

hormone noradrenaline (NA), which is an adrenoreceptor agonist, was selected for this study. 

For a more detailed explanation about selection of NA and its effect on the settlement process 
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of marine organisms, please refer to “Development Of A Novel Fouling Deterrence Strategy By 

Understanding The Effect Of Noradrenaline On The Cells Of Eastern Oyster, Crassostrea Virginica 

And Cypris Larvae Of The Striped Barnacle, Balanus Amphitrite”, Gohad NV, 2008, Ph.D. 

dissertation.[172]  

The goal of this study was to present unfavorable bioactive signals to the invertebrate 

larvae exploring the surface as a means to deter their settlement on the surfaces. To achieve 

this goal, NA needed to be immobilized on the surface while fulfilling the following 

requirements: 

1. immobilization needs to be covalent so that surface bioactivity is retained, 

2. immobilized NA needs to be accessible to the larvae, 

3. immobilized NA needs to retain its bioactivity to deter larval settlement, and 

4. concentration of NA on the surface needs to be high enough for AF effect. 

Loss of NA from the surface, either due to dissolution or internalization by cells, needed 

to be prevented, so physical adsorption as an immobilization technique was ruled out. Self-

assembled monolayers (SAMs) presenting reactive groups for coupling are a common method to 

immobilize biomolecules.[37, 173] However, the concentration of NA on the surface would be 

extremely low [37] and accessibility would be a concern, especially for larvae, because of the 

stiffness and high packing density of the short SAM chains. Attaching molecules to polymer 

chains grafted on surfaces is another prominent method to render a surface bioactive.[37] 

Flexibility of such grafted polymer chains will aid in maintaining accessibility. Various “grafting 

to” and “grafting from” techniques are available to graft polymer chains with reactive functional 

groups on surfaces, and covalently attach biomolecules to these chains.[37] The “grafting from” 

approach was selected as it can provide much higher grafting densities, and hence, complete 
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surface coverage to prevent access of untreated surface area to cells.[122, 142] Within the 

various “grafting from” approaches, surface-initiated photoiniferter-mediated polymerization 

(SIPMP) is an extensively studied and versatile technique, which provides excellent control over 

the amount of polymer grafted on the surface.[55-57] Studies have also demonstrated the 

ability to covalently attach small peptides like RGD to poly(methacrylic acid) (pMAA) chains 

grafted from silicon surfaces.[55] The accessibility as well as bioactivity of the immobilized RGD 

peptide was maintained and a high enough surface concentration was obtained to promote 

fibroblast adhesion on the surface.[55] Therefore, this technique was selected to graft pMAA or 

poly(hydroxyethylmethacrylate) (pHEMA) chains from glass surfaces, which provide –COOH and 

–OH functional groups respectively for covalent conjugation of NA. NA was conjugated using 

two chemistries suitable for linking the –COOH or –OH groups to the primary amine –NH2 group 

on NA molecules. As a preliminary study, the accessibility and bioactivity of such immobilized NA 

molecules was tested using adhering hemocytes of the Eastern Oyster Crassostrea virginica. 

Oysters constitute a major portion of the biofouling fauna, and studies have already 

demonstrated that NA added to seawater triggers apoptosis in oyster hemocytes [171, 174-

176]. 

4.2 Materials and Methods 

4.2.1 Synthesis of Photoiniferter N,N-(Diethylamino)dithiocarbamoylbenzyl(trimethyoxy) 

silane (SBDC) 

SBDC was synthesized by adapting the protocol as described by de Boer et al..[177] The 

synthesis step was done in a glove-box to eliminate moisture which will react with and degrade 

the silane groups. All glassware used for synthesis was dried in a vacuum oven at 100°C 

overnight. 3.123 grams of sodium diethyldithiocarbamate trihydrate (NaDTC, Sigma) was 
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dissolved in about 30ml of anhydrous tetrahydrofuran (aTHF, 99.9%, Acros) in a 100ml round 

bottom flask, and stirred on a magnetic stir plate. In a separate pear flask, 3ml of p-

chloromethylphenyltrimethoxy silane (pCPTS, Gelest Inc., 95%) was dissolved in about 5ml of 

aTHF. The silane solution was added dropwise to the NaDTC solution using a Pasteur pipette 

while being stirred. The reaction flask was sealed with a rubber septum, and a 25 gauge needle 

was introduced through the septum to prevent pressure buildup due to evaporation of aTHF. 

After overnight reaction, the solution as filtered through 0.2µm Teflon syringe filters to remove 

the sodium choride salt, and obtain a clear yellow colored SBDC solution in aTHF. The SBDC 

solution was transferred to a dry 25ml round bottom flask and the aTHF was evaporated using a 

Kugelrohr distillation apparatus under vacuum, and by slowly raising the temperature to 160°C. 

The purified SBDC, a highly viscous and amber-colored liquid, was diluted with appropriate 

amounts of anhydrous toluene (aTol, Acros, 99.9%) to facilitate removal using a microliter 

syringe. The SBDC solution was transferred to a dry 5ml round bottom flask, sealed with a 

rubber septum and parafilm, and stored in a dessicator to prevent exposure to moisture. 

4.2.2 Formation of SBDC Photoiniferter Monolayers on Glass Substrates 

Borosilicate glass substrates (1cm x 1cm) were cleaned by treatment with freshly 

prepared piranha solution (3:1 volume ratio of sulfuric acid (96%, Acros) and hydrogen peroxide 

(30%, Fisher)) for 1.5 hours. The substrates were then rinsed with copious amounts of deionized 

(DI) water, followed by pure ethanol (99.9%, Fisher) and finally dried with a N2 gas blowgun. The 

substrates were individually placed in clean, dry test tubes and sealed with rubber septa. Each 

test tube containing the cleaned substrate was flame dried under vacuum to eliminate moisture 

which can degrade the SBDC silane groups and prevent monolayer formation. Two hundred 

microliters of SBDC solution was aspirated out using a gastight microsyringe and dissolved in 



102 

 

56ml of aTol in another clean and dry pear flask. 3ml of this final SBDC solution in aTol was 

added to each test tube containing the flame dried glass substrates. The monolayer deposition 

was allowed to continue at RT under N2 gas purging for 16-18 hours. After monolayer formation, 

the substrates were rinsed with copious amount of pure toluene and sonicated in pure toluene 

for 40 minutes to remove unreacted SBDC and reaction byproducts. After sonication, substrates 

were again rinsed with pure toluene, dried using a N2 gas blowgun and placed in clean and dry 

test tubes. The samples were baked in a vacuum oven at 100°C for 1 hour to complete the SBDC 

silane linking to the glass surface. Finally, test tubes were cooled and sealed with rubber septa 

and stored at RT until polymer grafting. 

4.2.3 Graft Photopolymerization of Poly(Methacrylic acid) and Poly(2-Hydroxyethyl 

methacrylate) 

A 100% v/v solution of either methacrylic acid (MAA, Sigma) or 

2-hydroxyethylmethacrylate (HEMA, Sigma) was degassed by subjecting it to three freeze-

vacuum-thaw cycles in a glass Schlenk tube sealed with a rubber septum. Four SBDC 

monolayer-deposited glass substrates were placed in a custom designed Teflon exposure cell. A 

viton o-ring (McMaster, GA) was placed around the samples, followed by a round soda lime 

glass window. The glass window was sealed against the o-ring by clamping down using steel 

plates with screws and nuts. The degassed monomer solution was then injected into the sealed 

reaction cell using a glass syringe. The assembly of the exposure cell and injection of monomer 

solution was carried out in a N2 environment glovebox to prevent introduction of oxygen into 

the system. The prepared exposure cell was removed from the glovebox and placed under a 

Mask Aligner system (OAI, CO). Substrates were exposed to collimated 365nm UV light at a 

constant intensity of 25mW/cm2 UV light for 5-15 minutes to graft poly(methacrylic) acid 
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(pMAA) or poly(2-hydroxyethylmethacrylate) (pHEMA) chains from the surface. After exposure 

the polymer-grafted samples were rinsed with copious amounts of pure ethanol and sonicated 

in pure ethanol for 40 minutes to remove any unreacted monomer and untethered polymer 

chains. Samples were dried under N2 gas flow and stored in clean, dry test tubes sealed with 

septa until further use. 

4.2.4 Conjugation of Noradrenalin to Grafted PMAA and PHEMA Chains 

NA was covalently conjugated to –COOH groups of pMAA using carbonylimidazole (CDI) 

chemistry, while it was covalently conjugated to –OH groups of pHEMA using the CDI or  

disuccinimidylcarbonate (DSC) chemistry. A 10mg/ml solution of 1,1’-carbonyldiimidazole (CDI, 

97%, Acros) or N,N-disuccinimidyl carbonate (DSC, ≥95%, Sigma) in anhydrous dimethylsulfoxide 

(aDMSO, 99.9%, Fisher) or anhydrous dimethylformamide (aDMF, 99.9%, Fisher) respectively, 

was prepared in an oven dried round bottom flask. Specifically for the DSC chemistry, an 

equimolar quantity of 4-(dimethylamino)pyridine (DMAP, ≥99%, Sigma) was added to the 

solution. Polymer samples were individually placed in oven-dried scintillation vials and 3ml of 

the CDI or DSC solution was added to each vial. The vials were sealed with caps and parafilm to 

prevent entry of moisture. The activation was allowed to proceed on an orbital shaker at 

250rpm, for 16 hours for the CDI chemistry, and 7 hours for the DSC chemistry. After activation, 

the samples were rinsed with 60ml of DI water and placed in wells of a 24-well tissue culture 

plate. One milliliter of 1mg/ml NA solution in pH 7.4 phosphate buffer was added to each well. 

The plate was sealed with parafilm and the conjugation was allowed to proceed at RT on an 

orbital shaker at 250rpm for 16-18 hours. After conjugation, the samples were rinsed with 

copious amounts of DI water and sonicated in pH 7.4 phosphate buffer for 30 minutes to 

remove unconjugated NA and reaction byproducts. Samples were rinsed again with DI water, 
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dried using a N2 gas blowgun and stored in sealed test tubes at 4°C in dark until further use. NA 

conjugated pMAA samples and NA conjugated pHEMA samples will hereafter be referred to as 

pMAA-NA and pHEMA-NA, respectively. 

4.2.5 Measurement of Polymer Layer Thickness Pre- and Post-NA Conjugation 

 The thickness of the polymer layer was measured 

using a Veeco Instruments Dimension 3100 Atomic Force 

Microscope (AFM). Measurements were performed in air, 

in contact mode using a silicon nitride cantilever (DNP, 

Veeco Probes). Before AFM scanning, a narrow strip (about 

200µm wide) of grafted polymer was mechanically 

removed to expose the glass surface (see figure 4.1). For 

the AFM scans, the cantilever was moved perpendicular to 

the strip from the bare glass onto the polymer layer (see 

figure 4.1). Since the sample surface and AFM platform 

were not perfectly flat on the nanometer scale, the raw height data was processed using a 

flattening algorithm to compensate for such errors. The difference between the raw height 

values of the glass and polymer surface was used to calculate the absolute thickness of the 

polymer layer. Three measurements taken at different locations on each sample (figure 4.1) 

were used to calculate a mean for data analysis. All polymer grafted samples were scanned 

before NA conjugation to eliminate samples with excessively thin or thick polymer layers. Three 

pMAA and pHEMA samples were re-scanned after NA conjugation to determine the increase in 

thickness post-conjugation. 

4.2.6 XPS Characterization of NA-Conjugated PHEMA Grafted Surfaces 

Scan 1 

Scan 2 

Scan 3 

Polymer 

Glass 

Figure 4.1 Location and direction 

(brown arrows) of AFM scans on 

polymer grafted (green) glass 

surfaces. White band depicts the 

strip where polymer was 

mechanically removed. 
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Two experimental sample groups were used for X-ray photoelectron spectroscopy (XPS) 

characterization, A) pHEMA-NA samples conjugated using DSC chemistry, and B) pHEMA-NA 

conjugated using CDI chemistry. Control samples consisted of pHEMA surfaces subjected to the 

entire DSC or CDI conjugation procedure but without addition of NA. XPS characterization was 

performed by Dr. Joan Hudson at the Clemson University Electron Microscopy Laboratory. 

4.2.7 Oyster Hemocyte Seeding on Polymer Grafted Surfaces 

Experimental samples consisted of pMAA-NA and pHEMA-NA. Control samples 

consisted of unmodified pMAA and pHEMA grafted surfaces, as well as pMAA and pHEMA 

grafted surfaces taken through the entire conjugation procedure without addition of NA. All the 

above samples were tested for their effect on oyster hemocytes by Dr. Neeraj Gohad in Dr. 

Andrew Mount’s laboratory in the department of the Biological Sciences at Clemson University. 

Hemocytes obtained from the eastern oyster Crassostrea virginica were added on the 

aforementioned surfaces and analyzed using various cell biology assays, optical microscopy and 

scanning electron microscopy. For detailed cell culture procedures and results please refer to 

“Development Of A Novel Fouling Deterrence Strategy By Understanding The Effect Of 

Noradrenaline On The Cells Of Eastern Oyster, Crassostrea Virginica And Cypris Larvae Of The 

Striped Barnacle, Balanus Amphitrite”, Gohad NV, 2008, Ph.D. dissertation.[172] The procedures 

are briefly discussed below with permission from Dr. Neeraj V. Gohad and Dr. Andrew Mount. 

4.2.8 Viability Assay 

Oyster hemocytes seeded on polymer samples were treated with calcein-AM 

(Invitrogen) and counter stained with 4′-6-diamidino-2-phenylindole dihydrochloride (DAPI, 

Invitrogen). Calcein-AM is a fluorophore coupled with an acetoxymethyl (AM) ester and is not 

fluorescent in the calcein-AM form. However, living cells possessing esterase enzymes take up 
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the dye and cleave the AM moiety rendering the dye fluorescent [178]. Samples were analyzed 

using a Carl Zeiss Axiovert-135 (Carl Zeiss, Inc.) inverted microscope and a Nikon Eclipse TiE 

microscope with appropriate filter sets for Calcein-AM and DAPI, and equipped with a 40X oil 

immersion objective. Images were taken using a CoolSnap HQ2 (Roper Scientific) camera for the 

Nikon TiE microscope, and a Carl Zeiss Axiocam MRC-5 camera for the Zeiss Axiovert-135 

Microscope. 

4.2.9 Cytoskeletal Assay 

Oyster hemocytes seeded on experimental and control samples were fixed with a 4% 

paraformaldehyde solution. Cells were permeabilized with a 0.1% Triton-X 100 solution followed 

by treatment with FITC-phalloidin (Sigma-Aldrich). Cells were counterstained with DAPI, and 

fluorescence microscopy was performed as described in the viability assay. 

4.2.10 Apoptosis Assay 

Samples were prepared as described in the cytoskeletal assay. Samples were analyzed 

using the Vybrant Apoptosis Assay Kit #11 (Invitrogen). Cells were first treated with the 

mitochondrial dye MitoTracker Red followed by incubation with Alexa Fluor 488 Annexin-V in a 

annexin binding buffer. Fluorescence microscopy was performed as described previously. 

4.2.11 Analysis of Cell Structure by Scanning Electron Microscopy 

Hemocytes seeded on experimental and control samples were prepared for SEM 

analysis and imaged using Hitachi Field Emission S4800 and Hitachi S3400 scanning electron 

microscopes. 

4.2.12 Anti-Noradrenalin Antibody Treatment 

To determine if the covalently conjugated NA molecules are indeed responsible for 

inducing apoptosis in adhering hemocytes, pHEMA-NA substrates were incubated with anti-
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noradrenalin antibody (Advanced Targeting Systems). This was followed by seeding oyster 

hemocytes and analysis using the viability assay described previously. Control samples consisted 

of unmodified pHEMA substrates, and pHEMA substrates taken through both the CDI and DSC 

conjugation procedure without addition of NA. 

4.3 Results 

4.3.1 Formation of SBDC Monolayer on Glass 

Instead of physisorption, the SBDC iniferter was covalently attached to the glass surface 

using  silane chemistry. Polymer chains that are initiated by these iniferter molecules will also be 

covalently tethered to the surface, thus facilitating sonication to remove unreacted monomer 

and untethered chains. More importantly, this allowed sonication after the NA conjugation 

procedure to remove unconjugated NA molecules, which could produce false positive results 

during cell culture. 

4.3.2 Graft Photopolymerization of PMAA and PHEMA 

Oxygen is a very powerful radical scavenger, which can drastically slow down or even 

halt radical polymerization reactions.[179] To prevent this from occurring, dissolved oxygen was 

removed from the monomer by subjecting it to four freeze-vacuum-thaw cycles, a very effective 

method to remove gases dissolved in liquids.[180] Furthermore, assembly of the airtight Teflon 

exposure cell and monomer injection was carried out in a glovebox where the oxygen 

concentration was maintained at less than 30ppm. 

On exposure to UV light the disulfide bond of the SBDC iniferter molecules tethered to 

the glass surface split to create a reactive carbon radical on the surface and a less reactive 

floating dithiocarbamate (DTC) radical.[57] In the presence of acrylated monomer the surface 

tethered carbon radical initiates free radical polymerization to graft polymer chains from the 
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surface.[55-57, 149] Figure 4.2 shows a 

schematic of this grafting process, with a 

large number of such chains simultaneously 

growing from the surface to form the 

polymer layer.[57] For this study, the 

acrylated monomers used were MAA and 

HEMA which resulted in grafting of pMAA 

and pHEMA chains respectively from glass 

surfaces. Crosslinking and ensuing gel 

formation on the surface was never observed 

at the exposure times used for grafting. This 

most likely happened because both MAA and 

HEMA have limited susceptibility to chain transfer. In contrast, preliminary studies with 

acrylated poly(ethylene glycol) (PEG) consistently resulted in crosslinking and gelation (data not 

shown).[154, 181] 

4.3.3 Measurement of Grafted Polymer Layer Thickness Using AFM 

Previous studies have shown that polymer layer thickness can be controlled by changing 

several parameters including exposure time and monomer concentration.[55, 56] Even though 

photopolymerization was carried out under controlled conditions keeping all variables constant, 

initial studies revealed that inconsistencies in the polymer thickness were introduced due to 

human and experimental errors. Therefore, thickness measurements needed to be carried out 

to screen samples and discard ones with inconsistent thickness values. The upper and lower 

limits for usable polymer layer thickness were set to 30nm and 100nm respectively. Ellipsometry 
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is the most commonly used technique to measure surface layer thickness in the nanometer 

range because of its non-destructive nature. Unfortunately, the transparent and non-reflective 

nature of glass prevented use of ellipsometry for thickness measurement. Therefore, AFM was 

chosen, as it provides equal, if not better, accuracy in measurement of surface layer thickness in 

the nanometer scale. For determination of absolute thickness of any surface layer using AFM, 

the difference between the raw height values of the upper and lower surface level is required. 

Since glass surfaces were completely covered with polymer chains, it was necessary to remove 

polymer from a small region to facilitate measurement of raw height values of the lower glass 

level and the higher polymer level. Removal of polymer was restricted to a thin strip of about 

200µm to preserve the remaining area covered with polymer chains for further processing 

and/or cell culture. 

4.3.4 Conjugation of NA to Grafted PMAA and PHEMA Chains 

MAA and HEMA were selected as the monomers for graft photopolymerization as they 

provided carboxylic acid (–COOH) and hydroxyl (–OH) functional groups for covalent conjugation 

of the primary amine –NH2 on NA molecules using suitable chemistries. Other studies have 

successfully demonstrated covalent conjugation of small molecules to functional groups of 

polymer chains grafted from a surface.[55, 158] Accordingly, NA was conjugated to pMAA using 

CDI chemistry (figure 4.3A), and to pHEMA using either the CDI (figure 4.3B) or the DSC 

chemistry (figure 4.3C).[182] 

It should be noted that CDI and DSC molecules themselves, as well as the activated 

states of –COOH and –OH groups are prone to hydrolysis.[182] Exposure to moisture was 

minimized by using anhydrous organic solvents for the activation step, and drying all glassware 

and tools in a vacuum oven at 100°C prior to use. Coupling of –COOH to –NH2 using CDI lead to 
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formation of the very stable amide bond, while coupling of –OH to –NH2 using either CDI or DSC 

lead to formation of the very stable urethane bond.[182] Before further characterization or 

oyster hemocyte experiments, all samples were sonicated for 30 minutes to ensure removal of 

any unconjugated NA molecules from the surface.  
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4.3.5 Measurement of Polymer Layer Thickness After NA Conjugation Using AFM 

As has been demonstrated previously, conjugation of small molecules to grafted 

polymer chains leads to an increase in thickness of the polymer layer due to added steric 

hindrance.[55, 158] A similar effect was seen on conjugation of NA to grafted pHEMA chains 

using the DSC and the CDI conjugation chemistry (figure 4.4). However, when NA was not added 

during the DSC conjugation procedure, a very 

small increase in thickness was observed 

(figure 4.4). A similar result was obtained for 

the CDI conjugation procedure without 

addition of NA (data not shown). Ideally, this 

increase in thickness would be absent since 

nothing was added to couple to the polymer 

chains activated by DSC. It is possible 

contaminants were introduced during the 

conjugation procedure, which caused the slight increase in thickness. However, this 

contamination did not seem to have any effect on the oyster hemocytes, and was evident from 

the cell culture results on control samples discussed below. This was the first piece of evidence 

that NA had been successfully conjugated to the grafted pHEMA chains.  

4.3.6 XPS Characterization of PHEMA-NA Surfaces 

Conjugation of NA to polymer was further confirmed by XPS analysis, which provided 

elemental analysis of the sample surface. A nitrogen peak was observed in the XPS spectra of 

only pHEMA-NA surfaces using either the CDI (figure 4.5A) or DSC (figure 4.5B) chemistry. This 

nitrogen peak was absent in XPS spectra of control surfaces from both CDI (figure 4.5A) and DSC 

Figure 4.4 AFM thickness measurements of pHEMA 

layers before and after NA conjugation using CDI and 

DSC.  
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(figure 4.5A) sample 

groups. The polymer 

backbone of pHEMA 

does not contain any 

nitrogen atoms, only 

carbon, oxygen and 

hydrogen which was 

confirmed by their peaks 

in the XPS spectra of all 

samples (figure 4.5). The 

only way nitrogen could 

have been introduced 

into the polymer chains 

was via successful 

coupling of the –NH2 

group of NA molecules to 

functional groups on 

pHEMA (figure 4.3). 

The AFM and XPS 

measurements above verified conjugation of NA to pMAA and pHEMA chains. However, 

verification was required that the conjugated NA molecules were accessible and bioactive to 

produce a response from cells. To test this, NA conjugated and control samples were given to 

Dr. Neeraj Gohad in Dr. Andrew Mount’s laboratory. The obtained results are described in brief 

A 

Figure 4.5 XPS characterization of NA conjugated substrates. Comparison 

between XPS spectra of the samples from the (A) CDI chemistry group, and 

(B) DSC chemistry group. In both cases, nitrogen peak (inset oval) was only 

observed on the NA-conjugated surfaces and was absent from all the 

control surfaces. 
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below with permission from Dr. Neeraj Gohad and Dr. Andrew Mount. For an in-depth analysis 

of the effect of NA-conjugated surfaces on oyster hemocytes please refer to “Development Of A 

Novel Fouling Deterrence Strategy By Understanding The Effect Of Noradrenaline On The Cells 

Of Eastern Oyster, Crassostrea Virginica And Cypris Larvae Of The Striped Barnacle, Balanus 

Amphitrite”, Gohad NV, 2008, Ph.D. dissertation.[172]  

4.3.7 Viability Assay of Hemocytes on NA-Conjugated Polymer Surfaces 

DAPI can only enter and label nuclei of cells with compromised membranes. On the 

other hand, only live cells with active esterases can cleave calcein-AM into its fluorescent form 

after internalization. Since hemocytes adhering to the control surfaces labeled positive for 

calcein-AM and failed to label for DAPI (figure 4.6A), unmodified polymer did not exert any 

deleterious effects on the adhering cells. Hemocytes adhering to pMAA-NA and pHEMA-NA did 

not exhibit any fluorescence from calcein-AM, but labeled positive for DAPI indicating NA-

conjugated surfaces negatively affect the viability of hemocytes.[172] 

4.3.8 Cytoskeletal Assay of Hemocytes no NA-Conjugated Polymer Surfaces 

Structure of the cytoskeleton is a very good indicator of the cell’s health and viability. A 

very diffuse pattern of actin filaments without fragmentation was observed in hemocytes 

seeded on control samples (figure 4.6B). On the other hand, fragmentation of actin filaments 

and disruption of the cell structure was observed in hemocytes seeded on pMAA-NA and 

pHEMA-NA surfaces (figure 4.6C). Loss of nuclei from some hemocytes was also observed 

indicating an advanced degree of cytoskeleton degradation.[172] These results show that 

pHEMA-NA and pMAA-NA polymer surfaces induce significant cytoskeletal degradation in 

adhering hemocytes. 
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4.3.9 Apoptosis Assay of Hemocytes on NA-Conjugated Polymer Surfaces 

The calcein-AM and DAPI results above indicated that NA-conjugated surface have 

destructive effects on hemocyte viability, but it was necessary to confirm the trigger of 

apoptosis in these cells. MitoTracker red stains mitochondria in live cells and is an indicator of 

Figure 4.6 Representative micrographs of the effects of NA-conjugated polymer surface on the viability 

and cytoskeletal structure of hemocytes. A) Hemocytes incubated on control surfaces labeled with 

calcein-AM  (green fluorescence) but not DAPI indicating they are healthy and viable. B) Hemocytes 

incubated on control surfaces and labeled with FITC-phalloidin (green fluorescence) show a very diffused 

cytoskeletal structure. C) Hemocytes incubated on pHEMA-NA polymer surfaces and labeled with FITC-

phalloidin and DAPI (blue fluorescence) showed pronounced cytoskeletal fragmentation with abnormal 

morphologies (arrows). D) SEM micrograph of hemocytes incubated on pMAA-NA surfaces showing

pronounced structural disintegration. Scale bars: A and C = 15μm; B = 10μm. Images reproduced with 

permission from Dr. Neeraj Gohad and Dr. Andrew Mount in the department of Biological Sciences at 

Clemson University. 
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mitochondrial activity, which would be absent in apoptotic cells. On the other hand, apoptosis 

results in the translocation of the membrane phospholipid phosphatidylserine (PS) from the 

inner to the outer leaflet of the plasma membrane. This exposed PS can bind Annexin V with a 

high affinity. Similar to the calcein-AM results, intense red staining was observed in hemocytes 

seeded on control surfaces indicating mitochondrial activity.[172] These cells further failed to 

label for Annexin-V indicating an absence of apoptosis. MitoTracker labeling was absent, while 

intense Annexin-V labeling was observed in hemocytes seeded on pMAA-NA surfaces indicating 

that the cells had undergone apoptosis.[172] Since cells were healthy and viable on unmodified 

polymer surfaces, the observed apoptosis can only be attributed to interaction of hemocytes 

with NA-conjugated to the polymer chains. Similar results were obtained for hemocytes 

incubated on pHEMA-NA surfaces (data not shown). 

4.3.10 Analysis of Cell Structure by Scanning Electron Microscopy  

Just like fragmentation of the actin cytoskeleton, the cell membrane will also undergo 

structural disintegration in apoptotic cells. To visualize and verify this disruption of cell 

membranes and cell structure, hemocytes seeded on NA-conjugated and control samples were 

analyzed using scanning electron microscopy. Hemocytes incubated on pMAA-NA surfaces 

exhibited abnormal morphology, with disintegration or blebbing of the cell membranes towards 

the periphery of the cells (figure 4.6D). Cells incubated on pHEMA-NA surfaces exhibited similar 

effects.[172] Conversely, hemocytes seeded on control surfaces exhibited a normal morphology, 

with intact cell membranes and cells spreading over the surface. [172] 

4.3.11 Effect of Anti-Noradrenalin Antibody Treatment on Hemocyte Viability 

All the above results have indicated a direct and extremely adverse effect of NA-

conjugated polymer surfaces on hemocytes. It was required to verify that the bioactivity of 
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conjugated NA was the only factor responsible for the observed effects on hemocytes. If 

NA-conjugated surfaces are treated with an anti-NA antibody, the antibody should bind to the 

NA molecules thus blocking their bioactivity. When pHEMA-NA surfaces were treated with an 

anti-NA antibody, adhering hemocytes displayed calcein-AM staining but lack of DAPI staining, 

indicating they were viable.[172] These cells did not show fragmentation of the actin 

cytoskeleton and had intact cell membranes.[172] These results were similar to those obtained 

on control surfaces with unmodified polymer, but exactly opposite of the results on 

NA-conjugated surfaces. Conversely, pHEMA-NA surfaces not treated with the anti-NA antibody 

resulted in absence of calcein-AM labeling but presence of DAPI labeling, indicating that the cells 

were not viable and had compromised cell membranes.[172] These cells also exhibited an 

abnormal morphology with fragmentation of the actin cytoskeleton as well as disintegration and 

blebbing of the cell membrane.[172] 

4.4 Conclusions 

The conjugation chemistries used in this study were very effective in immobilizing NA to 

pMAA and pHEMA chains grafted from glass surfaces. The significant increase in height 

measured using AFM and detection of the nitrogen peak in XPS scans for NA-conjugated 

samples, but not control samples clearly indicated successful conjugation of NA. When oyster 

hemocytes were seeded onto NA-conjugated surfaces, they underwent apoptosis as observed 

by absence of calcein-AM staining and the apoptosis assay. The apoptosis was further 

associated with significant cytoskeletal degradation as observed by phalloidin staining and SEM 

analysis. None of the control surfaces without NA were able to produce such destruction, with 

the cells remaining healthy and viable. These cell-based assays demonstrate that the 

accessibility and bioactivity of immobilized NA was retained, and the surface concentration was 
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high enough to produce such pronounced results. Furthermore, all NA-conjugated samples were 

sonicated and extensively washed before cell culture. This proved the robustness of the grafted 

polymer layer, excellent stability of covalent conjugation bonds, and absence of nonspecifically 

bound NA that could have produced false positive results. Studies are currently in progress to 

assess the effect of these NA conjugated polymer surfaces on oyster and barnacle larvae as the 

next step to develop a non-toxic and environmentally friendly antifouling strategy. 
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5. Controlling Cell Behavior Using Bioactive Polymer-Grafted Surfaces  

5.1 Introduction 

One of the goals of biomedical engineering is to restore functioning of or regenerate 

biological tissues and organs to alleviate debilitating and/or deadly disease conditions such as 

myocardial infarction, spinal cord injury, osteoarthritis, osteoporosis, diabetes, liver cirrhosis 

and retinopathy. In some cases, implantation of a device inside the body can completely or 

partially restores the tissue or organ function. For example, coronary stents have been used 

since the 1980s to open arteries occluded by plaque formation to restore blood supply to the 

heart and prevent infarction. Unfortunately, the stainless steel stents used in this strategy have 

long encountered problems with thrombotic vascular occlusion and intimal hyperplasia (IH) 

leading to long-term failure of the device.[80] Coating the stent material with antiproliferative 

agents has yielded limited success.[80] The focus has therefore shifted to promote 

endothelialization, since the native endothelium actively functions to prevent thrombosis inside 

healthy blood vessels.[81, 82] Endothelialization however, requires attaching certain signaling 

molecules to the stent’s surface, which can recruit neighboring endothelial cells to migrate, 

adhere, proliferate and form a healthy endothelium over the stent’s surface, which will last the 

patient’s lifespan.[81, 82] For example, a recent study reported enhanced attachment, adhesion 

and growth of endothelial cells on 316 stainless steel surfaces grafted with a synthesized mussel 

adhesive polypeptide via PEG spacer chains, compared to unmodified steel surfaces.[81] 

However, some complex tissue functions cannot be restored by simple means like the 

one mentioned above, requiring regeneration of the diseased organ, an elaborate process 

commonly known as tissue engineering (TE). One current area of focus is the implantation of a 

biomaterial scaffold which provides the appropriate physical structure and incorporates 
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mechanical and biochemical cues to recruit endogenous cells. These cells can then deposit the 

required extra-cellular matrix, express the required proteins and assume the desired phenotype 

to regenerate the diseased tissue. The desired structure and mechanical properties can be 

obtained by selecting the appropriate material and fabrication technique. In fact, in some cases 

appropriate design of these two aspects is sufficient for successful tissue regeneration. The 

success story of Smith & Nephew’s TRUREPAIR line of bioabsorbable bone graft substitutes 

(BGS) is one such example.[183] The BGS are made with poly(lactic acid) subjected to a special 

fabrication process and achieve excellent bone and cartilage tissue integration without addition 

of any bioactive agent.[183] Another regenerative pathway being aggressively pursued is 

recruiting resident stem and progenitor cells, which due to their multipotent nature can 

differentiate into multiple phenotypes and regenerate the diseased tissue. For example, 

injecting alginate or hyaluronic acid gels into a space between the tibia and the periosteum, 

stimulated bone and cartilage formation from resident progenitor cells in the inner layer of the 

periosteum.[184] In this case, the stem cells obtained all the required physical and biochemical 

cues from the surrounding tissue to convert into the regenerative phenotype. 

Unfortunately, such simple strategies are not universal, especially in case of tissues with 

intrinsically low regeneration potential such as cardiac myocytes, blood vessels and central 

nervous system neurons. Even stem cells directly injected into infarcted heart muscle of mice 

did not differentiate into myocytes.[185] In these cases, a scaffold incorporating specific 

signaling molecules which can stimulate the desired regenerative response from native cells 

needs to be provided. The simplest approach is to mix biomolecules with the biomaterial during 

fabrication.[90] Some of these biomolecules will be present on the scaffold’s surface, which the 

cells will recognize and produce desired responses. This strategy has met with considerable 
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success and many commercial products are currently available.[91] However, this technique is 

largely restricted to polymeric materials, and nearly impossible to achieve with ceramics and 

metals. Additionally, such bulk modification can adversely affect the mechanical properties of 

the scaffold, and has the potential to denature or degrade the biomolecule during the 

fabrication process.[90] An alternative approach is to attach the biomolecules to the scaffold’s 

surface after fabrication. Since this approach will be restricted to the surface, the scaffold’s bulk 

properties will be preserved. Furthermore, bioactivity of the biomolecules can be preserved by 

using well established protein conjugation techniques. In fact, some growth factors function 

better when covalently tethered compared to their soluble form.[91] A potential application is 

treatment of expanded polytetrafluoroethylene (ePTFE) and polyethylene terephathalate 

(Dacron) commercially used to make large diameter vascular grafts since they match the 

mechanical properties of native blood vessels. Unfortunately, their thrombogenic surface 

shortens their lifespan and prevents their usage as grafts for small diameter (<5mm) blood 

vessels.[82] Similar to the stent problem discussed above, efforts are under way to incorporate 

signaling molecules on the graft’s surface which can trigger successful endothelialization after it 

has been implanted in the body. Some studies have been able to show increased endothelial cell 

(EC) adhesion and proliferation when vascular grafts are coated with specific peptide sequences 

like RGD and YIGSR, or whole ECM proteins like laminin.[82] 

Before such strategies can yield clinical success, effects of various parameters like which 

biomolecule, its concentration, and its spatial and temporal distribution on the behavior of 

target cells need to be thoroughly studied. Axonal guidance for spinal cord regeneration 

exemplifies this need. A considerable amount of evidence points towards the need to control 

the spatial distribution of trophic factors presented to stimulate axonal regrowth.[83] This idea 
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stems from the fact that axonal growth cones can be guided by concentration gradients of 

growth factors.[84, 85] Therefore, it has become imperative to study how gradients of different 

trophic factors and different concentration profiles will affect axonal guidance and growth. 

Diffusion gradients have been attempted to stimulate axon growth, both in vitro and in vivo, but 

they suffer from procedural complexities and potential to cause systemic effects.[86] A number 

of immobilization approaches have also been tested to create concentration gradients, such as 

differential evaporation and microfluidics to overcome limitations of the diffusion 

technique.[85, 87] However, evaporation methods are very crude with little control over the 

gradient profile, while microfluidics techniques are restricted by small dimensions and require at 

least two proteins to obtain the gradient. 

Development of such versatile bioactive surfaces will first require making the surface 

bioinert, so that the observed cell response can be attributed to only the attached biomolecules. 

This requires prevention of non-specific adsorption of biomolecules on the surface that have the 

potential to affect cell behavior and alter the results. Various polymers like poly(ethylene glycol) 

(PEG) and poly(hydroethyl methacrylate) (pHEMA) when coated on surfaces, have 

demonstrated excellent resistance to protein adsorption. Furthermore, they themselves do not 

possess any bioactivity, and in fact prevent any form of cell adhesion. Therefore, it will be 

advantageous to first create a layer of such bioinert polymers on the surface. Next, the 

functional groups on the polymer chains can be used to covalently couple biomolecules for 

analyzing cell behavior. Additionally, some procedure will have to be adopted to control the 

location and amount of polymer on the surface and in turn that of the covalent coupled 

biomolecule. 

Taking all the aforementioned factors into consideration, a technique is required that, 
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1. facilitates modification of surface properties to prevent non-specific interactions, 

2. facilitates surface modification of polymers, ceramics as well as metals, 

3. facilitates covalent attachment of any biomolecule to elicit specific responses, 

4. maintains accessibility and bioactivity of the attached biomolecule, and 

5. facilitates creation of concentration gradients where required. 

A very important point to note is that all cellular behaviors including adhesion, 

proliferation, differentiation, migration, protein expression, extra-cellular matrix (ECM) 

production and even apoptosis depend on the interaction of receptors on the cells surface with 

biochemical cues present in the environment. Since these interactions take place on the 

molecular level, the surface modification technique should also allow precise control over the 

concentration of any biomolecule attached on the surface.   

For reasons explained previously in sections 2.1 and 3.1, surface-initiated photoiniferter-

mediated polymerization (SIPMP) was selected as the surface modification technique for this 

study. Besides being able to create homogeneous polymer layers, thickness gradients can be 

easily created by varying the exposure time along the surface area.[55, 56] The goal of this study 

was to graft polymer layers on glass surfaces with homogeneous and gradient thickness profiles. 

Two polymers, pMAA and pHEMA were grafted from glass surfaces, and their thickness profiles 

were analyzed using atomic force microscopy (AFM). The hydrophilic nature of the pMAA and 

pHEMA chains will help reduce non-specific protein adsorption, as well as provide carboxylic 

acid –COOH and the hydroxyl –OH functional groups respectively for covalent attachment of 

molecules. In this study, covalent conjugation of a fluorescent dye allowed visualization of 

polymer thickness profile on the surface. NIH3T3 and B35 cell culture was carried out on 

unmodified pHEMA surfaces to test their ability to block nonspecific cellular interactions. 
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Preliminary attempts were also made to covalently conjugate the ECM protein fibronectin (Fn) 

and the neural cell adhesion protein L1 to homogeneous pHEMA layers. Fn was selected as it is a 

ubiquitous ECM protein containing several peptide sequences such as RGD, which can modulate 

cell behavior, and is extensively used for tissue regenerative applications.[186, 187] L1 was 

selected to eventually develop L1 gradients to guide axonal growth in scaffolds designed for 

spinal cord regeneration. L1 has some unique advantages over other biomolecules capable of 

guiding axonal growth. L1 is expressed on axons and growth cones, and stimulates axon growth 

and provides guidance via homophilic binding to L1 expressed on other cells.[188, 189] L1 also 

prevents adhesion and proliferation of non-neuronal cells such as astrocytes, meningeal cells 

and fibroblasts, all of which are present in at any spinal cord injury site and are associated with 

inhibition.[190, 191] Bioactivity and accessibility of Fn was tested by NIH3T3 fibroblast and B35 

neuroblastoma cell culture, while that of L1 was tested by B35 and primary chick forebrain 

neuron culture. The results, limitations encountered, and alternate approaches are also 

discussed. 

5.2 Materials and Methods 

5.2.1 Synthesis Of Photoiniferter SBDC 

SBDC was synthesized by adapting the protocol previously developed and tested by de 

Boer et al.[177] and is already described in detail in section 4.2.1. Briefly, the synthesis step was 

done in a glovebox to eliminate moisture which will react with and degrade the silane groups. 

Three milliliters of p-chloromethylphenyltrimethoxy silane (pCPTS, Gelest Inc., 95%) was 

dissolved in 5ml of anhydrous tetrahydrofuran (aTHF, 99.9%, Acros) and added drop wise to a 

solution containing 3.123g of sodium diethyldithiocarbamate trihydrate (NaDTC, Sigma) 

dissolved in 30ml of aTHF in a 100ml round bottom flask. After overnight stirring, the solution 
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was filtered through 0.2µm Teflon syringe filters to remove the sodium chloride salt and obtain 

a clear yellow colored SBDC solution in aTHF. The SBDC was purified by evaporating the aTHF 

using a Kugelrohr distillation apparatus under vacuum and by slowly raising the temperature to 

160°C. The highly viscous amber colored SBDC was diluted with appropriate amounts of 

anhydrous toluene (aTol, Acros, 99.9%), and stored in a dessicator to prevent exposure to 

moisture that would degrade the methoxysilane groups. 

5.2.2 Formation Of SBDC Photoiniferter Monolayers on Glass Substrates 

A monolayer of SBDC photoiniferter was deposited on glass substrates as described 

previously in section 4.2.2. Briefly, 1cm x 1cm borosilicate glass substrates were cleaned with 

freshly prepared piranha solution for 1.5 hours. After washing with DI water and pure ethanol, 

substrates were dried and individually placed in clean and dry test tubes and sealed with rubber 

septa. The test tubes were flame dried under vacuum to eliminate moisture. Three milliliters of 

the SBDC solution made by dissolving 200µl of SBDC stock solution in 56 ml of aTol was added to 

each test tube. After monolayer deposition for 16-18 hours, the substrates were rinsed in pure 

toluene followed by sonication in pure toluene for 40 minutes. The washed and dried substrates 

were baked in a vacuum oven at 100°C for 1 hour to complete the SBDC silane linking to the 

glass surface. After cooling, samples were stored in clean, dry and sealed test tubes at RT until 

polymer grafting. 

5.2.3 Graft Photopolymerization of PMAA and PHEMA 

Assembly of the exposure cell, injection of the degassed monomer solution, and use of 

the mask aligner system has already been described in detailed in section 4.2.3. Homogenously 

grafted polymer surface were created as described previously. For creation of polymer thickness 

gradients, prior to UV exposure an opaque photomask attached to a syringe pump was aligned 



125 

 

to one of the substrate’s edges. The syringe pump movement and UV exposure were started 

simultaneously so that the mask slowly moved over the substrate gradually covering more and 

more of the substrate’s surface. The speed of the syringe pump was set so that the mask moving 

over the sample would completely cover it at the end of the desired exposure time of 5-15 

minutes. After exposure, the polymer-grafted samples were rinsed with copious amounts of 

ethanol and sonicated in ethanol for 40 minutes to remove any unreacted monomer and 

untethered polymer chains. Samples were dried under N2 gas flow and stored in clean, dry test 

tubes until further use. 

5.2.4 Characterization of Grafted PMAA and PHEMA Layers Using AFM 

The thickness was the polymer layer was measured using a Veeco Instruments 

Dimension 3100 Atomic Force Microscope (AFM). Measurements were done in air in contact 

mode using a silicon nitride cantilever (DNP, Veeco Probes). The sample preparation, scanning 

and data analysis procedure has been described previously in section 3.2. Figure 5.1 shows the 

scan locations for homogeneous and gradient polymer samples. In case of gradients, the first 

scan was done 1mm from the lower end of the gradient, followed by scans at intervals of 2 mm 

thereafter till the opposite edge of the 

sample was reached (figure 5.1). All 

polymer grafted samples were scanned 

before conjugation to eliminate samples 

with excessively thin or thick polymer 

layers. 

Scan 1 

Scan 2 

Scan 3 

Glass 

Figure 5.1 Location and direction (brown arrows) of 

AFM scans on homogeneous and gradient polymer 

grafted glass surfaces. White band depicts the strip 

where polymer was mechanically removed. 

Homogeneous Layer Gradient Layer 
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The mean thickness values of several homogeneous samples grafted under identical 

conditions were subjected to a one-way ANOVA with the significance cutoff set to p < 0.05. This 

was done to determine the reproducibility of the SIPMP technique. Similarly, mean thickness 

values at each exposure time obtained from several gradient samples grafted under identical 

conditions were subjected to a one-way ANOVA with the significance cutoff set to p < 0.05. This 

verified if polymer thickness gradients were indeed created on the surface. 

5.2.5 Covalent Conjugation of Dansylcadavarine to Visualize Homogeneous and Gradient 

PMAA Layers  

The fluorescent dye dansylcadavarine (DCAD) was conjugated to the carboxylic acid 

-COOH groups on the pMAA chains using acyl-halide chemistry, illustrated in figure 5.2. 

Homogeneous or gradient pMAA grafted samples were individually placed in oven dried test 

tubes, sealed with rubber septa and kept under N2 gas purging. A 3% w/v solution of 

phosphorus pentachloride (PCl5, ≥98%, Sigma) was prepared in anhydrous dichloromethane 

(aDCM, 99.5%, Acros) and 3ml of this solution was added to each test tube containing the 

sample. The conversion of carboxylic acid groups of pMAA to acid chloride was allowed to 

continue for 3 hours at RT. 

The samples were then 

rinsed with copious 

amounts of pure DCM and 

sonicated in aDCM for 15 

minutes to remove unused 

PCl5 and reaction 
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byproducts. Samples were then individually placed in clean oven dried test tubes, sealed with 

rubber septa and purged with N2 gas. Three milliliters of 1mg/ml DCAD solution in aDCM was 

added to each test tube and allowed to react for 16-18 hours in dark. The samples were then 

rinsed with copious amounts of pure DCM and sonicated in pure DCM for 30 minutes in dark to 

remove reaction byproducts, and DCAD molecules physically adsorbed on the surface. The 

samples were dried with a N2 blow gun and stored in dark to prevent photobleaching of the 

conjugated DCAD molecules. 

DCAD conjugated homogeneous and gradient pMAA grafted samples were observed 

using a Nikon SMZ-1500 dissection microscope equipped with a suitable filter for excitation (λex 

= 335nm) of DCAD and visualizing the emitted light (λem = 508nm). Images were taken using a 

digital color camera attached to the microscope. 

5.2.6 Covalent Conjugation of Proteins to PHEMA-Grafted Surfaces 

One of two proteins, fibronectin (from bovine plasma, 1mg/ml, in 0.5 M NaCl, 0.05 M 

Tris, pH 7.5, Sigma) or recombinant human L1 (expressed and purified in our lab as described by 

Cribb et al., 2008 [192]) was covalently conjugated to grafted pHEMA using two different 

chemistries. The first one was the DSC chemistry, which couples primary amines –NH2 on the 

protein molecules to the hydroxyl –OH functional groups on the pHEMA chains (figure 5.3A). 

The second one was thiol-acrylate chemistry, which couples thiol –SH groups on reduced protein 

molecules to acrylate groups created on the pHEMA chains (figure 5.3B). Prior to use, all 

glassware and equipment used for the conjugation procedure, like scintillation vials, caps, 10ml 

glass syringe, steel needle and spatula were sterilized by autoclaving at 121°C for 60 minutes. 

After the sterilization procedure, the autoclaved packet was placed in a vacuum oven at 100°C 
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for at least 1 hour, taking care not to damage the packet which would have resulted in loss of 

sterility. 

The following procedure was carried out under aseptic conditions in a biological safety 

cabinet right until the vials were sealed and placed on the orbital shaker, which was outside the 

hood. For DSC conjugation, a 10mg/ml solution of N,N’-disuccinimidyl carbonate (DSC, ≥95%, 

Sigma) in anhydrous dimethylformamide (aDMF, 99.9%, Fisher) was prepared in an oven dried 

round bottom flask. An equimolar quantity of 4-(dimethylamino)pyridine (DMAP, ≥99%, Sigma) 

was also added to the solution. For acrylate-thiol conjugation, a 5μl/ml solution of acryloyl 

chloride (AC, 97%, Sigma) in aDMF was prepared in an oven dried round bottom flask. An 

equimolar quantity of triethylamine (TEA, 99.7%, Acros) was also added to the solution. pHEMA 
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samples were individually placed in oven dried scintillation vials and 3ml of the DSC or AC 

solution was added to each vial. The vials were sealed with caps and parafilm to prevent entry of 

moisture. The activation was allowed to proceed on an orbital shaker at 250rpm at room 

temperature (RT) for 6 hours for DSC activation, and for 4 hours for AC activation. After 

activation, the vials were again taken into the biological safety cabinet to maintain aseptic 

conditions. The samples were removed from the vials and rinsed with 60ml of deionized (DI) 

nanopure water to wash away the organic solvent, excess reagents and reaction byproducts. 

The samples were placed in wells of a 24-well . 

For DSC conjugation the proteins were used in their normal condition. Fibronectin or L1 

was dissolved in sterile pH 7.4 50mM phosphate buffer (PB) at a concentration of 25μg/ml. Six 

hundred microliters of the protein solution was added to each well containing the sample. The 

lid was placed on the plate and it was sealed with parafilm. The reaction was allowed to proceed 

on an orbital shaker at 230rpm at RT for 16-18 hours. For acrylate-thiol conjugation, the 

disulfide bonds in the protein molecules needed to be reduced to obtain free thiol –SH groups, 

which could react to the acrylate groups present on the pHEMA chains after activation. First, a 

solution of D,L-1,4-dithiothreitol (DTT, ≥99%, Acros) was prepared at a concentration of 

3.9mg/ml in sterile PB. About 4μl of the DTT solution was added for every 100μl of protein 

solution to be reduced. The reduction was allowed to proceed at RT on an orbital shaker for 1 

hour. The reduced protein solution was then purified by passing it through a spin desalt column 

(for <130μl, ZEBA 0.5ml column, Pierce; for >130μl, PD-10 column, GE) in a centrifuge at 1000g 

for 1-2 minutes and collected in a 1.5ml microcentrifuge tube. 75μl of this reduced protein 

solution was transferred to a UV transparent 96-well plate. Light absorbance of the solution was 

measured at 280nm using a spectrophotometer. The obtained absorbance value was compared 
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to a pre-determined standard concentration curve to determine the concentration of the 

purified reduced protein solution. Finally, the protein was diluted in sterile PB to a final 

concentration of 25μg/ml. 600μl of the protein solution was added to each well containing the 

sample. The lid was placed on the plate and it was sealed with parafilm. The reaction was 

allowed to proceed on an orbital shaker at 230rpm at RT for 16-18 hours. 

After conjugation, the protein solution was removed and each sample was rinsed three 

times with 1ml of sterile PB. The samples were then washed in 1ml of sterile PB on an orbital 

shaker at 230rpm for 10 minutes. The above rinsing and washing procedure was repeated one 

more time. Finally, the samples were stored in sterile 1x PBS until further use. 

5.2.7 Control Samples 

To verify that only the protein conjugated to pHEMA was responsible for any observed 

cell adhesion, a set of controls were prepared with both the DSC and the acrylate-thiol 

chemistry. Table 5.1 shows all the control samples prepared and used for cell culture analysis 

(Detailed description of the samples is provided in Results and Discussion below). 

Table 5.1 List of control samples that were prepared for cell culture analysis by subjecting pHEMA 

grafted surfaces to DSC or thiol-acrylate conjugation procedure under various conditions. 

Sample 

Label 
Details Activation

1
 Conjugation

2
 Challenge

3
 Washing

4
 

HaF/HaL pHEMA+a
5
Fn/aL1 - - Fn or L1 - 

HD pHEMA+DSC DSC PB - - 

HDaF/HDaL pHEMA+DSC+aFn/aL1 DSC PB Fn or L1 - 

HDaFT pHEMA+DSC+aFn+Triton DSC PB Fn or L1 Yes 

HA pHEMA+AC AC PB - - 

HAaF pHEMA+AC+aFn AC - 
Unreduced 

Fn
6
 

- 

HAaFT pHEMA+AC+aFn+Triton AC - Unreduced Fn Yes 

HAM pHEMA+AC+ME
7
 AC ME - - 

HAMaF pHEMA+AC+ME+aFn AC ME Unreduced Fn - 

HAMaFT pHEMA+AC+ME+aFn+Triton AC ME Unreduced Fn Yes 
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1 Activation was done as described in previously; 

2 Conjugation step was done for 16-18 in PB as described previously, with or without addition of ME; 

3 Non-specific protein adsorption test. Samples treated with protein solution for 6 hours; 

4 Samples washed in 0.1% triton-X 100 solution on an orbital shaker at 230 rpm for 2 hours; 

5 a: Polymer surface challenged with protein adsorption; 

6 Fn was not reduced, so –SH groups were absent; 

7 ME: Mercaptoethanol, which couples to acrylate groups via its –SH group 

 

5.2.8 Seeding of NIH3T3 Fibroblasts and B35 Neuroblastoma Cells  

All cell culture procedures were carried out under aseptic conditions in a biological 

safety cabinet to prevent contamination. Experimental and control samples were already sterile 

after treatment with aDMF during the conjugation procedures. Any samples used for cell culture 

but not subjected to the conjugation procedure were sterilized by immersing in 70% ethanol for 

1 hour followed by rinsing with sterile DI water three times. The samples were transferred to 

wells of a sterile 24-well tissue culture polystyrene (TPS) plate for cell seeding. 

NIH3T3 fibroblasts or B35 cells used for seeding were grown in 75cm2 TPS T-flasks in 

Dubelco’s Modified Eagle Medium-Ham’s F-12 Mixture (DMEM/F12, Mediatech) with 

L-glutamine, and supplemented with 10% v/v of bovine growth serum (BGS, HyClone) and 1% 

v/v of penicillin-streptomycin solution (50x, Mediatech). Cells were passaged once a week, and 

used prior to the 16th passage. The cells were detached using 4ml of trypsin solution (0.05% 

with 0.53mM EDTA in HBSS without sodium bicarbonate, calcium and magnesium, Mediatech) 

and the trypsin-cell suspension was centrifuged at 1000rpm for 5 minutes to obtain a cell pellet. 

The supernatant trypsin solution was slowly aspirated out taking care the cell pellet was not 

removed as well. The cell pellet was disassociated and cells were resuspended in 10ml of fresh 

media. The cell concentration was determined using a hemocytometer and cells were seeded at 
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a concentration of 15,000 cells per sample per ml. The plate was placed in a sterile CO2 

incubator at 37°C to allow cells to adhere to the sample surface. 

For fixation, the samples were carefully removed using sterilized forceps and gently 

placed in another well containing 4% paraformaldehyde solution in 1x PBS. Cells were fixed for 1 

hour and then rinsed thrice with staining media (1x PBS with 5% BGS and 1% sodium azide). 

Samples were incubated in 0.1% triton X-100 (Sigma) solution in 1x PBS for 3 minutes followed 

by washing thrice with staining media. Samples were then placed in a rhodamine phalloidin 

(Invitrogen) solution for 60 minutes in the dark to label the actin filaments in the cell 

cytoskeleton. Samples were washed trice with staining media and placed in DAPI (Invitrogen) 

solution for 3 minutes to stain the cell nuclei. Samples were finally rinsed thrice with staining 

media and stored under staining media. Cells were observed using a Nikon AZ-100 microscope 

and a Nikon LV-UDM upright microscope, both equipped with filters suitable for visualizing 

rhodamine phalloidin and DAPI. Imaged were obtained using a Nikon DS-Ri1 digital color camera 

attached to the microscopes. 

5.2.9 Seeding of Chick Forebrain Neurons 

Forebrain neurons were isolated from day 8 white leghorn chicken embryos as 

previously described[193] and seeded on unmodified pHEMA surfaces, and pHEMA surfaces 

conjugated with L1 using the DSC and the thiol-acrylate chemistry. The neurons were seeded at 

a density of 120,000 cells per sample in Basal Medium Eagle (BME, Gibco) supplemented with 6 

mg/mL glucose (Sigma), 1% of antibiotic/antimycotic 100x stock solution (Gibco), 10% of fetal 

bovine serum (FBS, Invitrogen), and 2mM L-glutamine (Hyclone). Cells were fixed at 24 or 48 

hours in 4% paraformaldehyde for 1 hour. Presence of neuron adhesion and neurite outgrowth 

was analyzed using a Zeiss Axiovert optical microscope in phase contrast mode. 
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5.3 Results and Discussion 

5.3.1 Grafting of Homogeneous and Gradient PMAA and PHEMA Layers 

Oxygen is a very powerful radical scavenger which can drastically slow down or even 

halt radical polymerization reactions.[179] To prevent this from occurring, dissolved oxygen was 

removed from the monomer by subjecting it to four freeze-vacuum-thaw cycles, a very effective 

method to remove gases dissolved in liquids.[180] Furthermore, assembly of the airtight Teflon 

exposure cell and monomer injection was carried out in a glovebox where the oxygen 

concentration was maintained at less than 30ppm. The mechanism of polymer grafting via SBDC 

on UV exposure has already been described in section 4.3.2. For this study, the acrylated 

monomers were MAA and HEMA which resulted in grafting of pMAA and pHEMA chains, 

respectively, from glass surfaces. Crosslinking and ensuing gel formation on the surface was 

never observed at the exposure times used for grafting. This most likely happened because both 

MAA and HEMA have limited susceptibility to chain transfer, which is a major cause of 

unwanted crosslinking and gelation. In contrast, preliminary grafting studies with acrylated PEG 

consistently resulted in crosslinking and gelation (data not shown).[154, 181] 

By exposing entire substrates uniformly with UV light, a homogeneous layer of pMAA or 

pHEMA was grafted on the glass surface. Figures 5.5A and B show AFM thickness measurements 

of homogeneously grafted pMAA and pHEMA samples respectively. Every sample grafted with 

one particular polymer was photopolymerized under the same conditions. One-way ANOVA 

revealed no significant difference (p>0.05) between the homogeneously grafted samples of each 

polymer type, demonstrating the reproducibility of SIPMP.   
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To create polymer thickness gradients an opaque photomask was moved over the 

sample surface at a constant velocity. In other words, the polymerization time increased from 

one edge of the sample to the opposite, resulting in a polymer thickness gradient in the 

direction of photomask movement. Figures 5.6A and B show AFM thickness measurements of 

pMAA and pHEMA gradients respectively, again the conditions were kept constant for all 

samples grafted with a particular polymer. In this case a one-way ANOVA indicated a significant 

difference (p<0.05) between thickness values at successive positions (or exposure times) 

measured along the surface, verifying creation of a thickness gradient. As described in section 
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3.2.2, increasing exposure time results in an increase in the grafted-chain density on the surface, 

and not MW. Thus, the thickness gradients created in this study resulted from such an increase 

in grafted-chain density from the lower to higher exposure time edge of the sample. At lower 

grafting densities, the polymer chains have more room to coil and collapse resulting in lower 

measured thickness values. As the grafting density increases, individual polymer chains begin to 

stretch out providing more space to accommodate more and more chains in the same unit area. 

These stretched chains result in higher measured thickness values. 

pMAA and pHEMA grafted surfaces provided –COOH and –OH groups respectively for 

covalent conjugation of various biomolecules. While AFM measurements provided physical 

proof of the polymer thickness on the glass surfaces, it was imperative to show that that 

concentration of available functional groups follows the amount of polymer on the surface. 

Therefore, a small fluorescent dye, dansylcadavarine (DCAD) was covalently conjugated to the 

-COOH groups of pMAA chains grafted from the glass surface. DCAD was conjugated using the 

highly efficient acid-halide chemistry using phosphorus pentachloride (PCl5) to activate the 

-COOH groups. On 

homogeneously grafted pMAA 

samples, the concentration of –

COOH groups on the entire 

sample surface should also be 

homogeneous. This was 

demonstrated by the uniform 

fluorescent intensity observed 

1 mm 

B 

Figure 5.7 Fluorescence microscopy images of dye 

dansylcadaverine conjugated to (A) homogeneous, and (B) gradient 

pMAA layers. Black line in center of A and B is the strip with polymer 

removed for AFM measurements. The fluorescent intensity remains 

constant for homogeneous pMAA sample (A), while increases with 

thickness for the gradient sample (B). 

1 mm 
A 
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on the surface (figure 5.7A). On the other hand, on gradient pMAA samples, the concentration 

of –COOH groups on the sample surface should increase from lower polymer thickness to higher 

polymer thickness. This was demonstrated by the increase in fluorescent intensity observed on 

the surface (figure 4.7B). The black line seen in the center of figure 4.7A and B is the strip where 

polymer was removed for AFM measurements. Lack of any fluorescence in this region 

demonstrates that DCAD was covalently conjugated to the polymer chains, and not covalently 

attached or physically adsorbed to the glass surface. These results verify that SIPMP can be used 

to create surfaces with precise control over the location and concentration of a covalently 

conjugated molecule on the surface. Patterns and/or concentration gradients of a specific 

protein can be created on the surface which in turn can modulate cell behavior.  

5.3.2 Protein Conjugation and Cell Culture 

pHEMA grafted surfaces were selected for protein conjugation studies since pHEMA has 

been shown to very effectively prevent non-specific protein adsorption and hence cell 

attachment.[194] For this study only homogeneously grafted pHEMA samples were used. As 

expected, unmodified pHEMA surfaces prevented non-specific protein adsorption and hence 

adhesion of fibroblasts (figure 5.8A) and B35 cells (figure 5.8B) on the surface. On bare glass, 

represented by the AFM measurement strip, protein adsorbed freely resulting in uncontrolled 

cell adhesion and proliferation (figure 5.8A & B). Next, Fn or L1 was conjugated to pHEMA using 

the DSC chemistry as described above. Fibroblasts and B35 cells were observed to adhere to 

pHEMA surfaces conjugated with Fn (figure 5.9A) and L1 (figure 5.9B) respectively. 
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It was important to verify that conjugated protein was the only factor responsible for cell 

attachment, and the conjugation procedure did not alter the surface chemistry and permitted 

non-specific protein adsorption resulting in cell adhesion. In case of the DSC chemistry, under 

ideal circumstances all pHEMA control samples subjected to the DSC conjugation procedure 

without addition of Fn, should revert back to the original hydroxyl groups due to hydrolysis of 

A 

Figure 5.8 Fluorescent micrographs of (A) NIH3T3 fibroblast and (B) B35 cell culture on unmodified 

homogeneous pHEMA surfaces. (Cell density = 15,000 cells per sample; Fixed on day 4; Cell 

cytoskeleton is stained with rhodamine phalloidin and nucleus with DAPI; Scale bar = 500μm) 

Unmodified pHEMA 

Glass Glass

Unmodified pHEMA B 

A 

pHEMA+Fn pHEMA+L1 

B 

Figure 5.9 Fluorescent micrographs of (A) NIH3T3 fibroblast on Fn conjugated, and (B) B35 cells on L1 

conjugated to homogeneous pHEMA surfaces. (A) is also a representative image for NIH3T3 culture on 

control samples HAM, HAMaF and HAMaFT. (B) is also a representative image for B35 culture on 

control samples HD, HDaF, HDaFT, HA, HAaF and HAaFT. (Cell seeding density = 15,000 cells per 

sample; Fixed on day 4; Cell cytoskeleton is stained with rhodamine phalloidin and nucleus with DAPI; 

Scale bar = 500μm) 
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the hydroxysuccinimide groups.[182] As a result, these surfaces should again resist non-specific 

protein adsorption, and hence cell adhesion. To verify this, controls were prepared by subjecting 

them to the entire DSC conjugation procedure, but without addition of Fn. One set (HD) was 

used as is for B35 culture, while another set (HDaF) was challenged with Fn adsorption followed 

by B35 culture. In case protein adsorption did take place, another set (HDaFT) was challenged 

with Fn adsorption and washed in a 0.1% triton X-100 solution in PBS for 2 hours to remove the 

adsorbed protein via surfactant action. Unexpectedly, seeded B35 cells adhered to all the 

control samples tested (figure 5.9B represents these results). One possibility is that 

contaminants were introduced into the solution during the conjugation procedure, which 

covalently attached to the activated –OH groups thus changing the surface chemistry. This 

change in surface chemistry possibly resulted in the failure to prevent protein adsorption, either 

from cell culture medium or the direct Fn adsorption challenge, resulting in cell adhesion and 

proliferation. It is also possible that not all of the activated pHEMA –OH groups were hydrolyzed 

in 24 hours, the time for which control samples were immersed in protein-free buffer solution. 

Serum protein could have conjugation to the pHEMA chains via these leftover activated groups, 

resulting in cell adhesion. It will be worthwhile to allow the hydrolysis to proceed to completion 

by leaving the samples in buffer for 48 hours or longer, and re-testing cell adhesion.  

On the other hand, –OH groups converted to acrylate groups by acryloyl chloride for the 

thiol-acrylate chemistry will not revert back to –OH as this activation is not prone to hydrolysis. 

The hydrophobic acrylate groups will allow protein adsorption and hence cell adhesion and 

proliferation. To test this, one sample set (HA) was used as is for B35 culture. Similar to DSC 

control samples, one set (HAaF) was challenged with Fn adsorption. In case protein adsorption 

did take place, another set (HAaFT) was challenged with Fn adsorption and washed in a 0.1% 
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triton X-100 solution in PBS for 2 hours to remove the adsorbed protein via surfactant action. 

Again, seeded B35 cells adhered to all the control samples tested (figure 5.9B represents these 

results). To prevent protein adsorption, control samples (HAaFM) were therefore treated with 

mercaptoethanol (ME) to covert the acrylate groups back to hydrophilic –OH groups. Another 

set was treated with ME as well as washing with triton (HAaFMT). NIH3T3 fibroblasts adhered to 

both these sample sets (figure 5.9A represents these results) indicating that ME treatment was 

not able to restore the non-fouling property similar to unmodified pHEMA surfaces. These cell 

culture results on control samples indicate that any deviation from the original pHEMA surface 

changes the surface chemistry in such a way that the surface is no longer prevents protein 

adsorption. Thus, it is impossible to conclude from these results if conjugated protein was 

indeed responsible for cell adhesion and proliferation. 

When chick forebrain neurons were seeded on unmodified homogeneous pHEMA 

surfaces no cell adhesion was observed, similar to the results with NIH3T3 fibroblasts and B35 

cells mentioned above. Since L1 is known to promote neural adhesion and neurite outgrowth via 

homophilic binding, chick forebrain neurons were also seeded on homogeneous pHEMA 

surfaces conjugated with L1 using either the DSC or thiol-acrylate chemistry. However, neurons 

did not adhere and survive on these L1-conjugated surfaces. The bioactivity of L1 would be in 

question, but neurons did adhere and extended neurites on the exposed glass surface (strip for 

AFM) where non-specific L1 adsorption had occurred. It is possible that L1 did conjugate to the 

pHEMA chains, but underwent conformational and structural changes making it unrecognizable 

by the neurons. Further tests, such as ELISA, are required to prove that L1 was indeed present 

on the pHEMA surface, either conjugated or adsorbed as described earlier. 
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5.4 Conclusions 

SIPMP is a very versatile technique to graft homogeneous as well as gradient polymer 

layers from a surface. The successful grafting of pMAA and pHEMA from glass surfaces and 

covalent conjugation of NA demonstrated in the previous study, was used as the basis to 

develop protein concentration gradients to control cell behavior for tissue engineering 

applications. SIPMP allowed grafting of pMAA and pHEMA layers from the surface with 

homogeneous and gradient thickness profiles, which was verified by AFM thickness 

measurements. Since the concentration of functional groups should follow the polymer 

thickness, covalent conjugation of dansylcadavarine yielded homogeneous and gradient 

fluorescent intensity profiles for the corresponding polymer layers. NIH3T3 fibroblasts failed to 

adhere on unmodified pHEMA-grafted surfaces, but attached on bare glass, verifying the 

protein-resistant nature of pHEMA. 

It seemed that covalent conjugation of Fn to pHEMA using the DSC chemistry promoted 

NIH3T3 and B35 cell adhesion. Similar results were obtained with B35 cells on L1-conjugated 

surfaces. Unfortunately, cell culture on control samples also promoted cell adhesion and 

proliferation, making it impossible to attribute cell adhesion to successful protein conjugation. 

This indicated protein adsorption due to deviation from the original pHEMA surface chemistry. 

Even if it were assumed that protein conjugation did occur, non-specific protein adsorption due 

to a change in surface chemistry after DSC treatment would negate the gradient effect. Taking 

extra care to eliminate impurities during DSC conjugation, and hydrolyzing leftover activated 

groups may help partly alleviate this problem. Retesting by seeding cells will be required to 

verify if this procedure is enough to prevent the undesired protein attachment to the pHEMA 

chains. The thiol-acrylate chemistry used as an alternative to the DSC also suffered from non-
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specific protein adsorption due to the hydrophobic nature of the acrylate groups. Furthermore, 

since the acrylate groups cannot be cleaved quickly enough, regaining the original pHEMA 

surface chemistry is not a possibility with the thiol-acrylate procedure. Changing the acrylate 

groups to –OH by conjugating mercaptoethanol was not able to restore the protein resistant 

properties exhibited by unmodified pHEMA surfaces, resulting in cell adhesion and proliferation. 

Finally, primary chick forebrain neurons seeded on L1 conjugated pHEMA surfaces failed to 

adhere and survive. The bioactivity of L1 would be in question, but neurons did adhere and 

extended neurites on the exposed glass surface (strip for AFM) where non-specific L1 adsorption 

had occurred. It is possible that L1 did conjugate to the pHEMA chains, but underwent 

conformational and structural changes making it unrecognizable by the neurons. 

The delicate nature of proteins prevents usage of sonication, a very effective technique 

to remove adsorbed molecules. An alternative approach would be to use peptides sequences 

which can have the same or similar effects on cells behavior, but can be subjected to sonication 

without the fear of denaturation. If use of whole proteins cannot be bypassed, acrylate groups 

can be attached to the protein molecules via polymer spacers. The proteins can then be directly 

grafted from the surface via these acrylate groups eliminating the need for 

post-functionalization of the grafted polymer chains. However, this entails exposing the protein 

to UV radiation, which may damage its structure and adversely affect its bioactivity. Some 

recent studies show successful grafting of acrylated antibodies from polymer surfaces without 

loss of bioactivity[150], so a possibility does exists to extend this technique to other proteins of 

interest. Irrespective of whether acrylated proteins are grafted or peptides are used for 

functionalization post-polymer grafting, SIPMP still remains an excellent technique to modify 

surface properties. Non-specific protein adsorption can be prevented and specific bioactivity can 
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be imparted to the surface as a homogeneous or a gradient layer and anything in between. In 

summary, with improvements in the protein immobilization procedure this technique carries 

tremendous potential for biomedical applications. 
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6. Conclusions, Limitations and Recommendations 

The overall goal of this project was to develop a technique that, 

1. facilitates modification of surface properties to prevent non-specific interactions, 

2. facilitates surface modification of polymers, ceramics as well as metals, 

3. facilitates covalent attachment of any biomolecule to elicit specific responses, 

4. maintains accessibility and bioactivity of the attached biomolecule, and 

5. facilitates creation of concentration gradients where required. 

To achieve this goal, the well documented SIPMP technique was selected for surface 

modification. SIPMP allows usage of virtually any vinyl monomer for grafting, and it was 

exemplified in these studies by grafting of poly(methacrylic acid) (pMAA) and poly(hydroxyethyl 

methacrylate) (pHEMA) from surfaces. Additionally, selection of an appropriate iniferter will 

allow modification of polymer, ceramic and metal substrates. This was successfully 

demonstrated by grafting polymer chains from polyurethane (PU) (chapter 3) and glass surfaces 

(chapter 4 and 5) by using iniferter molecules suitable for each substrate type. Besides 

homogeneous polymer layers (chapters 3, 4 and 5), it also facilitates creation of patterned and 

gradient (chapter 5) polymer layers by using appropriate photomasks. An easy method to create 

polymer thickness gradients was developed and successfully used to create gradients of both 

pMAA and pHEMA on glass surfaces (chapter 5). 

Polymers with hydrophilic functional groups were selected for this study because they 

facilitate attachment of biomolecules and have the potential to protect the surface from non-

specific protein adsorption. The ability to attach molecules to the grafted polymer chains was 

successfully verified by electrostatic coupling of a colored dye toluidine blue (chapter 3) and 

covalent coupling of a fluorescent dye dansyl cadavarine (chapter 5), both to –COOH groups on 
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pMAA. The ability to attach a bioactive molecule was also demonstrated (chapter 4) by covalent 

conjugation of noradrenalin (NA) to –COOH groups on pMAA and –OH groups on pHEMA chains. 

Oyster hemocyte culture further verified that the accessibility and bioactivity of the conjugated 

NA was preserved (chapter 4). However, results from protein conjugation and subsequent cell 

culture experiments (chapter 5) remain inconclusive. From the biomedical perspective, pMAA 

grafting from PU surface was able to significantly improve its hydrophilicity, but protein 

adsorption and cell adhesion tests were not performed in this preliminary study. However, 

preliminary experiments with pMAA grafted on glass surfaces revealed that it was not able to 

resist protein adsorption (chapter 5, data not shown), which is why pHEMA grafted samples 

were used for all the protein conjugation and cell culture experiments in chapter 5. Unmodified 

pHEMA surfaces demonstrated an excellent ability to prevent protein adsorption and hence 

attachment of both NIH3T3 mouse fibroblasts and B35 neuroblastoma cells. However, activation 

of pHEMA –OH groups for covalent conjugation appears to facilitated nonspecific interactions, 

making it difficult to validate that cell adhesion and growth on the substrates was solely 

attributable to covalently conjugated biomolecules. 

6.1 Translational Limitations of SIPMP 

The preceding discussions in the literature review and the last three research chapters 

highlight the versatility and control SIPMP provides to easily and rapidly modify surface 

properties of a wide variety of materials. Additionally, it facilitates creation of spatial patterns, 

concentration gradients and their combinations, of biomolecules on surfaces to study their 

effect on cell behavior in a high-throughput manner. These aforementioned advantages can 

greatly speed up testing and validation of new technologies for a variety of bioengineering 
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applications like biocompatibility, tissue regeneration and anti-biofouling, exemplified in the 

previous chapters. 

However, SIPMP has some limitations that can make it unsuitable for specific 

applications. Two such limitations have already been discussed at the end of Chapter 2. 

Preventing exposure to atmospheric oxygen is going to be a challenge for surfaces with large 

areas typically found in real life applications like biomedical implants and ship hulls. Degassing 

the monomer solution and using airtight chambers is possible, but can become cumbersome 

and expensive. Therefore, alternative approaches like adding oxygen scavengers (like 

carbohydrazide) may be more suitable for large surface areas and large-scale manufacturing 

operations. Another limitation highlighted earlier was the diffusion problem faced by larger 

biomolecules at high polymer chain grafting densities, preventing conjugation at greater depths 

in the polymer layer. This will require keeping the grafting density below a certain level, which in 

turn will require restricting the maximum polymer layer thickness. This thickness limit will put 

restrictions on the number of biomolecule concentration slopes that can be created on the 

surfaces to study cell behavior. However, as cells are able to probe depths of only few tens of 

nanometers even with the flexible nature of the polymer chains, conjugation at greater depths 

will carry limited practical value. Nevertheless, as suggested earlier, biomolecules can be 

acrylated and grafted directly from the surface to overcome the diffusion limitation.  

Since SIPMP uses UV light, the pathlength can affect the light intensity and in turn 

polymerization kinetics. Therefore, all studies done using SIPMP, including the ones discussed in 

this dissertation, use flat surfaces to keep the thickness of the monomer solution layer and thus 

the pathlength uniform across the surface. However, most if not all surfaces used in real-life 

applications, like biomedical implants and ship hulls, are not flat. Therefore, special transparent 
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windows that conform to the curvature of the surface will have to be fabricated and used to 

keep the thickness of the monomer layer uniform. Fabricating such windows, albeit complex 

and expensive, is possible for surfaces with simple topographies, like ship hulls, ocular lenses 

and pacemaker casings, but will become difficult for surfaces with complex topographies like 

artificial joint implants. In fact, grafting using SIPMP will be impossible from surfaces with 3D 

topographies like porous joint surfaces, thus requiring use of alterative grafting techniques like 

ATRP. 

The polymer chains covalently attached to the surface via SIPMP do have limitations on 

their mechanical and chemical stability. The grafted chains can be easily damaged or removed 

by an external mechanical force. Similarly, harsh chemical environments involving extreme 

temperatures, pH values and ionic strength can potentially damage, degrade or cleave the 

grafted polymer chains. Therefore, usability of surfaces with grafted polymer via SIPMP needs to 

be thoroughly tested by simulating the conditions of their real-life application. For example, 

even though SIPMP is aiding development of novel bioactive anti-fouling strategies, such grafted 

polymer will not survive the extreme marine environment. However, the knowledge gained 

from the anti-fouling experiments involving biomolecule conjugation using SIPMP can be utilized 

to develop more robust surface modification techniques that can survive the extreme marine 

environment. Similarly, the mechanical forces involved with artificial joint implants can quickly 

erode any grafted polymer chains on their surface. Even if SIPMP becomes the technique of 

choice for certain biomedical implants, careful handling will be required by the surgeon to 

prevent inadvertent damage to the grafted polymer chains. Additionally, appropriate 

sterilization procedures will have to be adapted that do not damage the polymer grafted 
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surfaces. Sterilization by immersing in 70% ethanol solutions will be a much safer alternative to 

autoclaving, ethylene oxide treatment or gamma exposure.  

Finally, the financial costs involved in using SIPMP to modify surfaces needs to be taken 

into consideration. Costs will be relatively low when common monomers (like HEMA and PEG), 

and surfaces with small areas and simple topographies are involved. Any deviation involving use 

of special monomer types, and/or developing contoured windows and UV light sources, can 

quickly escalate the costs. Conjugating biomolecules will further add to the costs, since the 

custom synthesis and purification procedures involved make most biomolecules very expensive. 

For example, NA currently used for developing anti-fouling surfaces is purified from animals, 

making it very difficult and expensive to obtain in large quantities. Therefore, synthetic analogs 

that can be economically synthesized in large quantities need to be developed for application on 

ships. Similar steps may need to be taken for biomolecules like peptides, proteins, hormones, 

growth factors and enzymes required to modify surfaces of biomedical implants. 

The three applications discussed in this dissertation, surface modification of PU 

surfaces, development of anti-fouling surfaces, and development of protein gradients, face 

specific limitations along with many of those mentioned above. These limitations, ways to 

overcome them, and possible future experiments to improve outcomes, are briefly discussed 

below. 

6.2 Conclusions, Limitations and Recommendations for Surface Modification of PU  

Polyurethane substrates were chosen as the model polymer for surface modification 

using SIPMP. In this case, the goal was to convert the hydrophobic nature of PU surfaces to 

hydrophilic and provide a means to couple a biomolecule to the surface. TED was easily 

incorporated into the PU substrates during their synthesis, and used to graft pMAA chains from 
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the surface. Furthermore, SIPMP being a controlled polymerization technique, provided 

tremendous flexibility in controlling the amount of pMAA grafted on the surface. In this study, 

good control over PU hydrophilicity was obtained by systematically varying four parameters, PU 

TED concentration, monomer concentration, UV light intensity and UV exposure. Increase in the 

value of any of these parameters resulted in decrease of the water contact angle. Increase in 

amount of polymer on the surface resulted in better coverage of the exposed hydrophobic PU 

surface, resulting in increased surface hydrophilicity. Control over the amount of pMAA grafted 

was further corroborated by the increase in absorbance values of electrostatically attached 

toluidine blue with increase in values of any of the four variables. Such fine control over 

hydrophilicity and biomolecule concentration can be very useful to control cell interactions with 

biomedical implants synthesized from PUs. 

TED is just one of the many possible iniferter molecules that can be used for polymer 

grafting. TED or another iniferter type can be used to expand this grafting technique to other 

polymers commonly used as biomaterials, as has been demonstrated by studies from the 

Peppas[195], Anseth[196, 197] and Matsuda groups[135, 136]. PUs themselves can provide a 

wide variety of materials with tunable mechanical properties. Sometimes, iniferter molecules 

cannot be incorporated into the polymer matrix as they can change the mechanical properties. 

In such a scenario, silane-based iniferters can be attached to –OH groups created on the bulk 

polymer surface by plasma treatment. While pMAA was selected for this proof of concept study, 

other vinyl monomers like acrylic acid, HEMA, PEG, and N-isopropylmethacrylamide, (NIPAM) 

can be as easily grafted from polymer surfaces. Polymers like pMAA, which responds to pH 

changes, and polyNIPAM, which responds to temperature changes, can be grafted to develop 

stimuli sensitive surfaces for tissue engineering, anti-fouling or drug delivery applications.[149] 
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A very important limitation encountered in this study was the inability to accurately 

quantify the amount of polymer grafted and the molecule attached to on the bulk polymer 

surface. Ellipsometry was ruled out because polymer surfaces are not reflective, while AFM was 

not possible due to the micron scale surface roughness. FTIR-based chemical analysis was not 

possible as signals from the bulk polymer would overshadow those from the grafted polymer. 

Other surface specific analytical techniques like XPS and Auger electron microscopy are a 

possibility, especially to verify successful conjugation of a molecule, but they come with their 

specific limitations. For example, XPS cannot probe deeper than 10nm, which Auger required 

the sample to be made conductive, and both are destructive and only semi-quantitative at best. 

Cleaving of the polymer chains from the surface for any type of analysis was impractical as a 

very large sample area would be required to collect enough grafted polymer chains for reliable 

analysis. Therefore, getting accurate quantification is going to be a major challenge. 

Nevertheless, direct surface modification of polymeric medical devices by this technique can be 

used to generate empirical cell culture data and develop a clinically relevant modification 

procedure. 

Based on the conclusions and limitations discussed above, there is tremendous scope 

for development on this technique for surface modification of polymeric biomaterials. Here are 

a few recommendations for possible future studies. 

1. Dye absorbance measurements only provided semi-quantitative analysis of the amount of 

molecule attached to the surface. More quantitative measurements are required, especially 

if this technique will be used to modify surfaces of polymeric scaffolds. This can be done by 

dissociating the TB molecules from the pMAA chains by treatment with dilute acetic acid 

solution. The absorbance of this dissociated TB in solution can be compared to a TB 



150 

 

concentration standard curve to obtain a fairly accurate estimate of the concentration of TB 

on the surface. This quantification method will work for any positively charged molecule as 

long as it has a 1:1 association with each –COOH group. 

2. For other biomolecules, gravimetric analysis can provide accurate quantitative data. 

Accurate measurement of the change in weight of the sample after polymer grafting and 

after biomolecule attachment can be used to determine the exact amount of polymer and 

biomolecule on the surface. A study done by the Matsuda group has successfully 

demonstrated the use of the quartz crystal microbalance technique for such gravimetric 

measurements.[198] 

3. Electrostatic attachment of biomolecules can be used as a drug delivery platform, as is 

commonly done by associating positively charged growth factors with negatively charged 

polysaccharides like heparin sulfate and heparin.[199] Such a drug delivery platform can be 

stimuli sensitive; pH in case of acidic monomers like pMAA and poly(acrylic acid). The 

release profiles can be easily tuned by changing various parameters like pH, grafted-chain 

density and chain MW. The effect of drug or biomolecule release can be tested by in vitro 

cell culture and in vivo experiments. Appropriate controls will be required and should 

consist of ungrafted PU substrates and unmodified polymer-grafted PU substrates to 

confirm that the PU substrate and the grafted polymer itself is not responsible for the 

observed cell behavior. 

4. One of the main reasons for making the PU surface hydrophilic is to prevent non-specific 

protein adsorption. Therefore, a protein adsorption test using one or several ECM proteins 

like albumin, fibronectin or vitronectin followed by ELISA will prove the efficacy of grafted 

pMAA chains in preventing protein adsorption. Preliminary cell culture experiments must 
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be conducted using NIH3T3 fibroblasts, since even minimal amounts of adsorbed protein, 

undetectable by ELISA, might be enough for cell attachment. 

5. If ELISA detects protein on the surface, or cell attachment occurs, it is probably because the 

charged nature of pMAA chains caused proteins to adsorb via electrostatic interactions. In 

such a scenario, grafting of a uncharged hydrophilic polymer like PEG or pHEMA can be 

attempted for better anti-fouling properties. 

6. Possibility of covalent attachment of molecules must also be examined by attachment of a 

fluorescent dye molecule to the grafted polymer chains by using an appropriate 

conjugation chemistry. For example, if pMAA is the grafted polymer, N-hydroxysuccinimide 

(NHS) or carbonyldiimidazole (CDI) chemistry can be used, and if PEG or PHEMA is the 

grafted polymer, the CDI or dissucinimidyl carbonate (DSC) chemistry can be used to couple 

an amine-based dye. 

7. If covalent attachment of the fluorescent dye is successful, further experiments can be 

conducted to attach bioactive molecules like drugs, hormones, peptides and proteins. 

Successful conjugation of the biomolecule can be verified by a general surface analytical 

technique like XPS, or ELISA in case of proteins. Finally, the accessibility and bioactivity of 

the conjugated biomolecules must be verified by their effect on cells which are known to 

respond that biomolecule. 

8. Since UV-based grafting allows the use of photomasks, patterns and gradients of grafted 

polymer can be created. Visualization with a covalently conjugated fluorescent dye will 

provide the best proof of formation and fidelity of these patterns and gradients. 

Quantification of these gradients will not be possible with dye dissociation or gravimetric 

analysis described earlier. In this case, the PU surface roughness will have to be reduced to 
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a few nanometers, either by improving the crosslinking procedure or by polishing the 

surface after crosslinking. 

9. Finally, patterns and gradients of conjugated biomolecules can be created, and then tested 

in vitro to study their effects on cell behavior. 

6.3 Conclusions, Limitations and Recommendations for Creation of Anti-Biofouling Surfaces 

Moving forward with the results obtained in the previous study, pMAA and pHEMA 

were grafted on glass surfaces to covalently immobilize noradrenaline (NA) in order to develop 

bioactive anti-biofouling surfaces for marine applications. This was successfully achieved by 

using suitable conjugation chemistries to covalently link the primary amine on NA molecules to 

the –COOH and –OH groups on pMAA and pHEMA chains, respectively. By immobilizing NA, 

leaching into water was prevented, a must for the ever stringent environmental norms put forth 

for anti-biofouling strategies. Additionally, immobilization ensured that the bioactivity was 

permanently maintained on the surface for long-term fouling deterrence.  

Successful NA conjugation was verified by the significant increase in polymer layer 

thickness measured by AFM, and detection of a nitrogen peak in XPS scans, which were absent 

for control samples. Oyster hemocytes seeded onto NA-conjugated surfaces, underwent 

apoptosis, cytoskeletal degradation and structural disintegration. None of the control surfaces 

without NA were able to produce this destruction, with the hemocytes remaining healthy and 

viable. These cell-based assays demonstrated that accessibility and bioactivity of immobilized 

NA was retained, and the polymer itself did not have any effect on cell viability. Additionally, the 

concentration of conjugated NA was high enough to produce such pronounced results. 

Furthermore, sonication and extensive washing of all NA conjugated samples verified the 
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robustness of the grafted polymer layer, excellent stability of covalent conjugation bonds, and 

absence of nonspecifically bound NA which could have produced false positive results. 

There are two limitations that need to be addressed. First, even though conjugation of 

NA was verified by AFM and XPS, the absolute concentration of NA on the surface was not 

determined. It would be advantageous to know the minimum NA concentration required to 

produce the observed cell apoptosis. This way, incorporation of excessive NA can be prevented 

in the next generation of bioactive marine coatings, to prevent or reduce potential ecological 

repercussions. 

Second, effectiveness of immobilized NA to cause apoptosis in hemocytes is good as a 

proof of principle study, but carries little practical value. Preventing settlement of larvae of 

oysters, barnacles and other fouling animals carries more practical significance. Fortunately, it 

has already been proven that NA added in solution very effectively prevents larval settlement. 

The next logical step is to prove this with covalently immobilized NA. 

Finally, bacterial biofilm formation is an important factor that assists in the larval 

settlement process. Therefore, the ideal anti-fouling surface should also prevent biofilm 

formation on the surface. Based on the above discussion, here are a few recommendations for 

future studies. 

1. Determine the minimum concentration of immobilized NA required to induce apoptosis. To 

do this, create polymer thickness gradients and conjugate NA to create a concentration 

gradient of NA. Use the increase in thickness post-conjugation to determine the absolute 

NA concentration across the gradient. Seed hemocytes and use the NA concentration data 

to determine the minimum concentration of immobilized NA required to induce apoptosis. 
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2. Also determine the minimum concentration of NA required in solution to produce 

apoptosis. This value can be compared with the minimum immobilized NA concentration, 

to determine whether the immobilization procedure enhances or suppresses the biological 

effects of NA.  

3. It is absolutely critical to test if immobilized NA can prevent larval settlement of marine 

biofouling organisms. Therefore initial anti-fouling tests should at least include oyster, 

barnacle and tube worm larvae, the most common foulers. Once these initial studies are 

successful, the test can be expanded to include other less common fouling organisms.  

4. Effectiveness of unmodified hydrophilic pMAA and pHEMA brushes in reducing or 

eliminating bacterial growth can be tested. If not effective, then anti-bacterial agents like 

quaternary ammonium groups or magainin I[200] can be conjugated to the polymer chains 

along with NA, and tested for bacterial growth. Covalent immobilization will prevent 

leaching of the antibacterial molecules into water. 

5. If this is not effective, special polymers with anti-bacterial properties like poly[2-

(Methacryloyloxy)ethyl]trimethylammonium chloride[201] or poly(methacryloxylethyl 

benzyl dimethyl ammonium chloride)[202] can be grafted and tested for bacterial growth. 

Functional groups on these polymers can then be used to conjugate NA and tested for 

combined prevention of bacterial growth and larval settlement. 

6. As described earlier in this chapter, practical limitations introduced by the sensitivity of 

SIPMP to atmospheric oxygen will make it difficult to graft polymers from surface areas as 

large as ships. Adding oxygen scavengers to the monomer solution prior to grafting from 

the ships surface may help solve this problem. 
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6.4 Conclusions, Limitations and Recommendations for Creation of Protein Gradients to 

Control Cell Behavior 

The successful grafting of pMAA and pHEMA from glass surfaces, and covalent 

conjugation of biomolecules demonstrated in the previous study was used as the basis to 

develop protein concentration gradients to control cell behavior for tissue engineering 

applications. SIPMP allowed grafting of pMAA and pHEMA layers with homogeneous and 

gradient thickness profiles from a surface, which was verified by AFM thickness measurements. 

Since the concentration of functional side-groups should follow the polymer thickness, covalent 

conjugation of dansylcadavarine yielded homogeneous and gradient fluorescent intensity 

profiles for the corresponding polymer layers. NIH3T3 fibroblasts failed to adhere on unmodified 

pHEMA grafted surfaces, but did attach on bare glass, verifying the protein-resistant properties 

of pHEMA. It appeared that covalent conjugation of Fn to pHEMA using the DSC chemistry 

promoted NIH3T3 and B35 cell adhesion. Similar results were obtained with B35 cells on L1 

conjugated surfaces. Unfortunately, even control samples promoted cell adhesion and 

proliferation, making it impossible to attribute cell adhesion to successful protein conjugation. 

This indicated protein adsorption due to deviation from the original pHEMA surface chemistry. 

Even if it were assumed that protein conjugation did occur, non-specific protein adsorption due 

to a change in surface chemistry after DSC treatment would negate the gradient effect. Taking 

extra care to eliminate impurities during DSC conjugation, and allowing complete hydrolysis of 

leftover activated groups may help partly alleviate this problem. The thiol-acrylate chemistry 

used as an alternative to the DSC also suffered from non-specific protein adsorption due to the 

hydrophobic nature of the acrylate groups. Furthermore, since the acrylate groups cannot be 

cleaved quickly enough, regaining the original pHEMA surface chemistry is not a possibility with 
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the thiol-acrylate procedure. Changing the acrylate groups to –OH by conjugating 

mercaptoethanol was not able to restore the protein resistant properties exhibited by 

unmodified pHEMA surfaces, resulting in cell adhesion and proliferation. The delicate nature of 

proteins prevents usage of sonication, a very effective technique to remove adsorbed 

molecules. 

Finally, primary chick forebrain neurons seeded on L1 conjugated pHEMA surfaces failed 

to adhere and survive. The bioactivity of L1 would be in question, but neurons did adhere and 

extended neurites on the exposed glass surface (strip for AFM) where L1 adsorption had 

occurred. It is possible that L1 did conjugate to the pHEMA chains, but underwent 

conformational and structural changes making it unrecognizable by the neurons. 

Based on the above discussion, here are some recommendations for future studies. 

1. It is important to determine if incomplete hydrolysis of DSC activated –OH groups was 

responsible for the attachment of serum proteins on the pHEMA surface. Hydrolysis of the 

leftover activated groups should be allowed to proceed to completion by leaving the 

samples in buffer for 48 hours or longer. Retesting by seeding cells will verify if this 

procedure is enough to prevent the undesired protein attachment to the pHEMA chains. 

2. Instead of using L1, peptide sequences that have the same or similar effects on neurons 

(like KYSFNYDGSE from NCAM[203], VFDNFVLK from tenascin[204], and YIGSR and SIKVAV 

from laminin) can be conjugated to the polymer chains. They can be subjected to sonication 

to remove non-specifically adsorbed peptide molecules without the concern of loss of 

peptide bioactivity. Such a technique was recently demonstrated by Harris et al., who 

created a concentration gradient of RGD and studied its effect on fibroblast adhesion.[55] 
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3. If use of whole proteins cannot be bypassed to produce the desired cell behavior, acrylate 

groups can be covalently coupled to the protein molecules via PEG-based spacers. These 

acrylated protein molecules can then be directly grafted from the surface. Some recent 

studies have successfully shown grafting of acrylated proteins and antibodies from polymer 

surfaces without loss of bioactivity using SIPMP [138, 150], thus eliminating the need for 

conjugation post-polymer grafting. A similar procedure can be attempted with proteins of 

interest to this study, like L1 for axonal guidance. 

4. Once the protein conjugation procedure has been sorted out, gradients of L1 with different 

slopes and baseline values can be created. This can help identify the profile or group of 

profiles which are best for guiding and stimulating axonal growth. 

Irrespective of whether acrylated proteins are grafted or peptides are conjugated, 

SIPMP still remains an excellent technique to modify surface properties. Where just prevention 

of protein adsorption is necessary, unmodified polymer layers can be used. Finally, with 

improvements in the protein immobilization procedure, homogeneous, patterned, gradient, and 

other complex concentration profiles of biomolecules can be created on the surface to control 

cell behavior. 
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Appendix A.  

A.1 Epilogue 

The focus of this dissertation is the use of SIPMP for surface modification of various 

biomaterials. One group of such biomaterials are degradable hydrogels, which are under intense 

investigation as tissue culture scaffolds as well as controlled drug delivery vehicles. PEG is the 

polymer of choice for synthesizing these hydrogels due to its hydrophilic nature and versatility in 

chain structure and MW. Short PLA and/or PGA chains are added into the crosslinked PEG 

matrix to make the chains hydrolytically degradable. Additionally, since PEG, PLA and PGA are all 

FDA approved, using these polymers to synthesize degradable hydrogels for biomedical 

applications quickens the development process and reduces expenses. However, just like any 

biomaterials, even PEG and PLA face long-term biocompatibility problems due to non-specific 

protein and cell interactions. Therefore, reducing protein adsorption and imparting bioactivity to 

the hydrogels surface to control cell behavior is required to improve clinical outcomes. Just like 

surface modification of PU surfaces discussed earlier, an iniferter like TED can be incorporated 

into PEG-PLA matrices crosslinked using UV light. A recent study has already demonstrated this 

by grafting crosslinked blocks of PEG hydrogels on top of a TED containing base PEG layer.[156, 

195] This can be extended to graft polymer chains and use them to covalently conjugate 

biomolecules to control cell behavior. The following study is a preliminary step in understanding 

the degradation kinetics of such photo-crosslinked PEG-PLA hydrogels under various conditions 

and potentially developing statistical models that can be used to quickly develop hydrogels with 

specific properties. Future work can involve using SIPMP to improve surface properties of these 

hydrogels and possibly conjugating biomolecules to the surface before testing them for tissue 

engineering and drug delivery applications. 
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A.2 Influence of Network Structure on the Degradation of Photo-Cross-Linked 

PLA-b-PEG-b-PLA Hydrogels 

A.2.1 Introduction 

Hydrogels based on the free-radical polymerization and crosslinking of acrylated or 

methacrylated poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-b-PEG-b-PLA) 

macromers were designed to maintain all the advantages of a PEG-based material while also 

permitting tunable degradability.[205]  As the utilization of PLA-b-PEG-b-PLA gels has increased, 

this characteristic of tunable degradability has become extremely useful in the biomedical field 

to eliminate the need for physical removal of PLA-b-PEG-b-PLA implants as well as to modulate 

the delivery rates of drugs or growth rates of cells encapsulated within crosslinked PLA-b-PEG-b-

PLA matrices. Therefore, it is important to understand the factors controlling the degradation 

behavior of chemically crosslinked PLA-b-PEG-b-PLA hydrogels.   

According to previously developed degradation models, there are two main parameters 

that affect the form and rate of network degradation for chemically crosslinked PLA-b-PEG-b-

PLA macromers.[206-208] The first is the hydrolysis kinetics of PLA ester bonds within the 

crosslinked hydrogels. The second is the physical structure of the gel. These two parameters are 

interdependent, making the entire gel degradation process very complex. Sawhney et al..[205] 

showed that increasing the molecular weight of the PEG segment decreases the crosslinking 

density (structural effect), which in turn increases the water content of PLA-b-PEG-b-PLA gels. 

Increases in water content increase the rate of hydrolysis of PLA ester bonds (kinetic effect) and 

the overall gel degradation rate.[205]  

The ability to tailor hydrogel crosslinking density can also be used to control network 

mesh size and diffusivities of encapsulated solutes. Lu et al..[209] have shown that the initial 
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mesh size of the hydrogel network as well as the degradation rate affect the drug release 

profile. Faster degradation rates result in faster increases in mesh size and more rapid drug 

release. Metters et al..[208] demonstrated that changing the macromer weight percent during 

polymerization also affects the crosslinking density and the resulting water content of the 

degradable gel. Lowering the macromer content during gel fabrication lowers the crosslinking 

density of the hydrogel while increasing both its water content and degradation rate.[209-211] 

In addition to its crosslinking density, water content, and elastic modulus, the chemical 

nature of a degradable PLA-b-PEG-b-PLA hydrogel also changes with degradation. For example, 

as PLA-b-PEG-b-PLA gels degrade, acidic species are generated along the backbone chains of the 

network. These immobilized anionic groups should make the swelling and degradation behavior 

of the resultant gels sensitive to changes in solution pH and ionic strength. Since previous 

studies of PLA-b-PEG-b-PLA hydrogel degradation behavior have been conducted at constant pH 

and ionic strength[205-209, 211-214], the results obtained from these investigations cannot 

provide insight as to how alterations in pH or ionic strength affect the kinetics of ester bond 

degradation or the nanoscopic architecture of the gel. To better understand the behavior of 

photo-crosslinked PLA-b-PEG-b-PLA hydrogels and to evaluate their potential as environmentally 

responsive biomaterials, the sensitivity of their degradation behavior to local changes in pH and 

ionic strength needs to be understood. 

To help unravel the dependence of PLA-b-PEG-b-PLA hydrogel degradation behavior on 

macromer chemistry versus network structure, the goal of this work is to compare the pseudo 

first-order degradation kinetics of soluble PLA-b-PEG-b-PLA macromers to those of identical yet 

crosslinked macromers contained within insoluble, highly swollen gels. For this study, gels were 

synthesized from PLA-b-PEG-b-PLA macromers by photopolymerization and their hydrolytic 
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degradation was compared to the degradation of the same unpolymerized macromers in 

buffered solutions as a function of time. Mass-transfer effects are minimized in both cases due 

to the low macromer concentrations of the chosen solutions and highly swollen nature of the 

gels investigated.[208, 213] Degradation of uncrosslinked macromer in solution eliminates 

association of neighboring chains or gel structure. Therefore, any significant differences in 

degradation behavior between the soluble and insoluble systems can be attributed to the 

supramolecular character of the crosslinked gel. Such a direct comparison should provide a 

better understanding of the complex set of parameters controlling the process of hydrogel 

degradation, and enable one to independently design hydrogel chemistry and structure for 

specific applications. 

A.2.2 Materials and Methods 

A.2.2.1 Macromer Synthesis and Characterization 

The detailed procedure for the synthesis of the PLA-b-PEG-b-PLA diacrylate macromer 

has been described previously.[205] Briefly, it was synthesized by first reacting 20gm of dry PEG 

4600Da (Aldrich; Mn = 4600) with 3.13gm of D,L-lactide (Polysciences Inc., PA; MW=144.1Da) at 

130°C to give PLA-b-PEG-b-PLA through a ring-opening polymerization. In the second step, this 

triblock macromer was dissolved in a minimum amount of dichloromethane (Fluka; Purity ≥ 

98%) and end capped with acrylate functionalities by reaction with 2.83ml of acryloyl chloride 

(Aldrich; Purity > 98%) and 5.33ml of triethylamine (Aldrich; Purity = 99.5%) under vigorous 

agitation at room temperature for 4 hours. The synthesized macromer was then purified by 

precipitation in ice-cold ether followed by filtration. Remaining solvent was removed by drying 

the purified product under vacuum at room temperature for 48 hours. All materials were used 

as received. 
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H1 NMR (Bruker 300) analysis of the synthesized macromers dissolved in deuterated 

chloroform (Aldrich; Purity = 99.9%) was used to determine the number of lactic acid groups (j) 

added to each end of the 4600Da PEG chain and the percent acrylation of the final triblock 

macromer. The number of lactic acid groups j is also the number of ester bonds at each end of 

the 4600Da PEG chain. Characteristics of the three batches of PLA-b-PEG-b-PLA macromer 

synthesized for the current study are given in Table A.1. 

Table A.1 H
1
 NMR Characterization of PLA-b-PEG-b-PLA macromers 

Macromer 
Number of LA units per end 

group (j) 
Percent Acrylation (%) 

PEGPLA1 3.1 83 

PEGPLA2 2.8 96 

PEGPLA3 2.7 86 

 

A.2.2.2 Hydrogel Polymerization 

Hydrogels were synthesized by solution photopolymerization of PLA-b-PEG-b-PLA 

diacrylate macromer in deionized water. In brief, the macromer was dissolved in deionized 

water to form 7.0, 10, 20 or 30 wt% solutions by weight, which correspond to water contents of 

93, 90, 80 and 70 wt%. Photoinitiator, Irgacure 2959 (Ciba, NY), was added to the solution at a 

final concentration of 0.5 wt%. This solution was then injected between two glass slides 

separated by 0.8mm Teflon® spacers. Photopolymerization and gel formation was initiated by 

exposure of this solution to 365nm UV light of intensity ~8.5mW/cm2 for 10 minutes (Black-Ray: 

B 100 AP, Upland, CA, USA). Identical disk-shaped gel samples having a volume of ~160µl were 

then cut for subsequent degradation studies using a 5/16th inch hollow punch. 

A.2.2.3 Hydrogel Degradation 
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To measure the effect of buffer pH on the rate of gel degradation, identical undegraded 

gel samples synthesized from a 30 wt% PLA-b-PEG-b-PLA macromer (PEGPLA3) solution were 

placed in a large excess of 50mM buffer (approximately 3 ml) at pH 2, 3, 4, 5 or 7.4 and allowed 

to degrade at a constant temperature of 37°C. The pH 2 and 3 buffer solutions were made using 

phosphoric acid (Sigma), the pH 7.4 buffer solution was made using sodium phosphate dibasic 

(Riedel-de Haën, Germany), while the pH 4 and 5 buffer solutions were made using acetic acid 

(Aldrich). Sodium chloride (Sigma-Aldrich) was added to all buffers to maintain a constant ionic 

strength of 0.135M. To measure the effect of ionic strength on the rate of gel degradation, 

additional gel samples synthesized from 30 wt% macromer (PEGPLA1) solution were placed in 

7.4 pH buffer solutions with ionic strengths of 0.135M, 0.4M, 0.7M, 1M and 1.5M. Finally, to 

study the effect of water content on the rate of gel degradation, gel samples were synthesized 

from solutions of 7.0, 10, 20 and 30 wt% macromer (PEGPLA2) and allowed to degrade in 7.4 pH 

buffer with an ionic strength of 0.135M.  

For each degradation experiment, gels were first allowed to equilibrate in buffer 

solution for 48 hours. After equilibration, the swollen weights of all gel samples were measured. 

Some gels were dried in vacuum for 2 days to provide corresponding dry weights. The ratio of 

the swollen gel weight before drying (Sw) to the polymer weight after drying (Dw) provided the 

mass swelling ratio (Qm) and the percent initial water content by mass (IWC) for each gel as 

shown by Equations 1 and 2, respectively: 
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where, Qm,0 is the initial, equilibrium mass swelling ratio measured after 48 hours in 

buffer. It should be noted that the hydrogel IWC may differ from that of the macromer solution 

used to make it due to swelling (or deswelling) during equilibration. The swollen weights of the 

remaining gels were measured at regular intervals during the degradation experiment. 

Additional gel samples were dried at regular intervals to obtain the characteristic mass loss 

profile for the experiment.  

It has been previously established that the change in gel swelling ratio with time is 

related to the degradation rate of the PLA-b-PEG-b-PLA hydrogels and can be used to calculate 

the pseudo first-order degradation rate constant of the ester bonds present in the crosslinks of 

the highly swollen networks.[206-208, 210-217] This relation is based on the assumption that 

the water concentration and pH inside the gel remain approximately constant during 

degradation. This assumption is reasonably valid for highly swollen gels degraded in an excess of 

buffer. The Flory-Rehner equation relates the dynamic mass-swelling ratio of this degrading 

system to the time-dependent crosslinking density of the gel, as given by Equations 3 and 4 

below[212, 215, 218]:  
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where υc is the gel crosslinking density, Q is the volumetric swelling ratio, ν2 is the 

polymer volume fraction in the hydrogel, υ1 is the specific volume of water (1.006 cm3/g at 37 

°C), υ2 is the specific volume of dried PEG (0.92 cm3/g at 37 °C), χ12 is the Flory-Huggins 
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interaction parameter for a PEG-H2O system (0.45[215, 219]), and fA is the functionality of the 

PLA-b-PEG-b-PLA macromers (fA = 4 for all divinyl macromers used in the current studies). 

Assuming pseudo first-order degradation kinetics, the time-dependent decrease in PLA-

b-PEG-b-PLA crosslinking density can be expressed mathematically as 

2 '

0[A]geljk t

c eυ −=   Equation 5 

where, k’gel is the pseudo first-order degradation rate constant in hr-1, 2j is the number 

of ester bonds per macromer, t is the degradation time in hours, and [A]0 is the initial 

concentration of PLA-b-PEG-b-PLA diacrylate molecules in the system.[215]  

Values of k’gel were obtained by quantitatively matching theoretical and experimental 

values of υc. Equations 3 and 4 were first used to calculate experimental values of the 

crosslinking density υc from the gel mass swelling ratios (Qm) obtained with Equation 1. Using 

the solver function in Microsoft® Excel the values of k’gel and [A0] were then independently 

adjusted until the residual error between the experimental υc values and those predicted by 

Equation 5 were minimized. The solver used a quasi-Newtonian iteration algorithm with linear 

interpolation and forward differentials.  

A.2.2.4 Solution Degradation 

To measure the effect of buffer pH and water content on the degradation rates of 

soluble PLA-b-PEG-b-PLA, unpolymerized macromer was dissolved in buffer solutions at the 

same pH and ionic strengths as the previously described gel samples. 10 ml of macromer 

(PEGPLA1 or PEGPLA2) solutions  at concentrations of 5.0, 10, 15 and 20 wt% were then allowed 

to degrade at 37°C. These solutions correspond to IWC of 95, 90, 85 and 80 wt%, respectively. 

Unlike the hydrogel measurements, the bulk water contents of these macromer solutions 
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remain constant throughout the degradation period. To measure the effect of ionic strength on 

the degradation rate of unpolymerized PLA-b-PEG-b-PLA, macromer (PEGPLA2) solutions at a 

concentration of 6.7 wt% (IWC = 93.3 wt%) were prepared and allowed to degrade in 7.4 pH 

buffer solutions at ionic strengths of 0.135M, 0.7M and 1.5M at 37°C.  

Soluble macromer degradation was observed by the formation of lactic acid, a well-

known degradation product of PLA-b-PEG-b-PLA hydrolysis. The time-dependent increase in 

lactic acid concentration of each solution was measured with a sensitivity of 0.01 g/L using a YSI 

2700 SELECT Biochemistry Analyzer (YSI Inc., OH, USA).  This analytical sensitivity is sufficient for 

this study, since 0.01g/L corresponds to only 0.2 % degradation for the 5 wt% macromer 

solution or just 0.03 % degradation for the 20 wt% solution. The change in lactic acid 

concentration with time was used to calculate the degradation rate constant for the linear 

macromer in solution by assuming pseudo first-order reaction kinetics. This is a valid assumption 

since both buffer pH and water content are constant during the experiment. A single molecule 

of lactic acid is produced from the diacrylated PLA-b-PEG-b-PLA macromer only upon cleavage 

of two adjacent ester bonds. According to previously published pseudo first-order kinetic 

models for PLA-b-PEG-b-PLA degradation[206-208, 214, 215], the statistical fraction of 

hydrolyzed or degraded ester bonds (PEster) is described by Equation 6: 
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where [E]t is the ester bond concentration at time t, [E]0 is the maximum ester bond 

concentration at time t = 0, t is the degradation time, and k’ is the pseudo first-order 

degradation rate constant. Release of one lactic acid molecule requires cleavage of two ester 
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bonds.  Therefore, the pseudo first-order rate constant for degradation can be related to the 

growing concentration of lactic acid in solution by Equation 7: 
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 Equation 7 

where [LA]t is the lactic acid concentration in the solution at time t, [LA]max is the final 

lactic acid concentration after the macromer is completely degraded, and k’soln is the pseudo 

first-order degradation rate constant. 

A.2.3 Results and Discussion 

A.2.3.1 Macromer Degradation 

It is well established that hydrolysis of ester bonds is acid as well as base catalyzed.[220] 

Equation 8 represents the generalized kinetic equation for acid and base catalyzed hydrolysis of 

ester bonds such as those present within solubilized or crosslinked PLA-b-PEG-b-PLA 

macromers:  

2 2

[E]
[H ][H O][E] [ OH][H O][E]

H OH

d
k k

dt
+ −

+ −= − −  Equation 8  

where, kH+ is the kinetic rate constant for acid-catalyzed hydrolysis, k-OH is the kinetic 

rate constant for base-catalyzed hydrolysis, [E] is the concentration of ester bonds in the PLA 

segments at time t, [H2O] is water concentration, and [H+] is the hydronium ion concentration 

and [-OH] is the hydroxyl ion concentration.  

In the current study, [H+] and [-OH] remain essentially constant during the degradation 

of both the macromer solutions as well as hydrogels due to the use of excess buffer solutions to 

maintain a constant pH. Assuming no localized variations, [H2O] also remains constant during 

degradation of solubilized macromers. [H2O] does change as Q increases during hydrogel 
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degradation. However, for the highly swollen hydrogels used in the current study with large 

initial water contents, this change is relatively minor. For example, the water content within a 

gel with an initial Q = 5 (equivalent to an initial water content of 80 wt%) will increase, at most, 

by 20%. Likewise, gels with an initial Q > 10 will experience changes in water concentration of 

less than 10% over the entire course of degradation. Assuming these variations are acceptable 

for the current analysis Equation 8 can be simplified for the degradation of both soluble and 

crosslinked macromers to the following pseudo first-order kinetic equation[206-208, 213, 221]:  

[E]
'[E]

d
k

dt
= −   Equation 9 

where, k’ is the pseudo first-order rate constant equal to (kH+[H2O][H+] + k-OH[H2O][-OH]).  

Previously published studies on the degradation behavior of PLA oligomers and networks have 

clearly established the acceptance of using a pseudo first-order kinetic mechanism to accurately 

describe PLA hydrolysis kinetics under experimental conditions similar to those used in the 

current work.[222-226] 

Equation 9 illustrates that although k’ is constant during pseudo first-order macromer 

degradation, the degradation rate (d[E]/dt) varies with time. As the macromer degrades, the 

ester bond concentration and the degradation rate decrease. These changes make it difficult to 

quantitatively compare the degradation behavior of gels synthesized with various ester bond 

concentrations or degraded under different conditions. However, under the proper conditions 

discussed above (constant pH and high initial gel swelling) the pseudo first-order degradation 

rate constant (k’) remains constant throughout the degradation process, making it a useful tool 

for assessing and comparing the characteristic degradation behavior of various systems. The 

impact of important system parameters (e.g., pH, water concentration) on the gel structure and 
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ester bond hydrolysis kinetics can be readily observed by monitoring apparent changes in k’. 

Furthermore, this analysis is applicable for comparing macromer degradation in solution and in 

highly swollen gels since k’ is equivalent to both k’soln and k’gel in the appropriate environment. 

A.2.3.2 Effect of pH 

During degradation of soluble macromer, cleavage of the PLA ester bonds takes place 

through hydrolysis leading to the formation of PEG, lactic acid and polyacrylic acid as 

degradation products. For a single lactic acid molecule to be released, two adjacent ester bonds 

along the macromer chain must be broken. Therefore, as macromer degradation proceeds, the 

lactic acid concentration in solution increases in a sigmoidal fashion as shown in Figure A.1a. The 

value of k’soln for a given set of degradation conditions is obtained by fitting Equation 7 to the 

data, which provides a very good fit to the measured data, as shown in Figure A.1a. Additionally, 

the shift in the degradation curves shown in Figure A.1a demonstrate that the degradation rate 

of soluble macromer and the calculated value of the pseudo first-order rate constant (k’soln) 

depend strongly on the pH of the surrounding buffer solution. 

Alternatively, degradation of PLA-b-PEG-b-PLA hydrogels takes place by cleavage of 

ester bonds located within the network crosslinks. In these gels, only one PLA ester bond needs 

to be cleaved to break a crosslink. However, the release of lactic acid from a degrading network 

can be a complex function of hydrolysis kinetics and mass transfer limitations. Therefore, for gel 

degradation it can be difficult to determine the degradation rate constant k’gel by direct 

measurement of degradation products such as lactic acid (LA). Instead, the change in mass 

swelling ratio with time is used to calculate k’gel using Equations 3-5[207, 208, 213, 215]. The 

time-dependent exponential growth in the mass swelling ratio of the gels produced by these 

equations provides a good fit to the experimental data as shown in Figure A.1b. Similar to the 
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soluble degradation experiment, comparison of the multiple data sets in Figure A.1b 

demonstrate that the rate of gel degradation and the measured value of k’gel also depend 

strongly on buffer pH.  

The effects of pH on k’soln and k’gel are summarized in Figure A.2. As buffer pH is 

increased from a value of 2.0 to 4.0, the calculated value of k’soln decreases. The k’soln then 

continually increases with buffer pH above 4.0. A minimum in k’soln is therefore observed to 

occur at pH 4, close to the pKa of lactic acid (pKa = 3.85). This pH-dependent minimum for the 

degradation rate constant is consistent with observations made by Schliecker et al..[222] and de 

Jong et al..[227] during the degradation of pure PLA networks. In these previous studies, a 

degradation rate minimum was observed for pure PLA at a buffer pH of 4.0. This minimum was 

hypothesized to occur due to the hydrolysis of PLA being both acid as well as base-catalyzed. 

According to degradation mechanisms provided by de Jong et al..[227] and Shih[228], at pH 

values below the pKa of lactic acid, proton catalysis dominates due to protonation of the acid 

Figure A.1 Experimental measurements of hydrolytic degradation of PLA-b-PEG-b-PLA macromer at 

constant pH.  Points show experimental data, while solid and dashed lines indicate model predictions. (a) 

Change in lactic acid concentration with time as soluble PLA-b-PEG-b-PLA macromer is hydrolytically 

degraded. (b) Mass swelling ratios of PLA-b-PEG-b-PLA gels as functions of degradation time. [(�,  -

) pH 2; (, ) pH 3; (�,- - -) pH 4; (�,  ) pH 5; (�,  - -  )) pH 7.4, For all data: Solution: 10 

wt% PEGPLA1, Gel: 30 wt% PEGPLA3; Ionic strength = 0.135M; n=3, error bars = ± std. dev.] 

a b 
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hydroxyl group leading to subsequent attack by H2O and hence degradation.  Similarly, at pH 

values above the pKa hydroxyl catalysis dominates due to nucleophilic attack by the hydroxyl 

end group on the second carbonyl group, also known as back-biting.[227, 229] Though the 

current gel networks are not pure PLA systems, obtaining similar trends in degradation behavior 

can be expected because of the PLA-mediated degradation of the PLA-b-PEG-b-PLA macromers.  

Degradation of both crosslinked and soluble macromers occurs through hydrolysis of 

PLA ester bonds. As a result, the measured pseudo first-order rate constants for hydrogel 

degradation agree reasonably well with those obtained for the soluble system, even though the 

two kinetic parameters were calculated using different methods (Figure A.2). In addition, the 

range of values obtained in the current study 

for both degradation rate constants agrees 

with previously published results[208, 210].  

The values for k’gel show a similar 

dependency on pH when compared to k’soln 

with a minimum occurring between pH 2 and 

7.4 (Figure A.2). However, some differences 

do occur between the two data sets. The 

values of k’gel are consistently lower than 

those of k’soln at corresponding pH. One 

reason for this is that the initial water 

contents of the gels (79 wt% ± 1.5%) are lower than those of the macromer solutions (90 wt%) 

used in this experiment. In addition, the minimum value for k’gel is shifted to a lower pH value 

compared to that of k’soln. This shift of the observed minimum to a lower pH value is not 

Figure A.2 Experimentally determined 

degradation rate constants for PLA-b-PEG-b-PLA 

macromers in solution (�; k’soln) and in gels (�; 

k’gel) as functions of pH. For all data: Solution: 10 

wt% PEGPLA1, Gel: 30 wt% PEGPLA3; Ionic 

strength = 0.135M; n=3, error bars = ± std. dev.] 
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consistent with pKa differences between linear and crosslinked polymers. Previous studies 

indicate the acidity of carboxy groups in hydrogels to be much lower than linear polymers of 

identical composition.[230]  In other words, the apparent pKa’s of carboxy groups in hydrogels 

are higher than those of linear polymers of the same composition. For example, the pKa’s of 

poly(acrylic acid) hydrogels have been measured at pH values much higher than 5.0 compared 

to a value of 4.7 for soluble poly(acrylic acid)[231].  If the location of the k’gel minimum is simply 

a function of acid-group pKa, then it would be expected to shift to higher pH values in Figure 

A.2.   

To understand why the pH dependence of k’soln and k’gel differ requires an analysis of 

the hydrogel structure and degradation kinetics. According to Equation 8, any change in the 

water content of crosslinked PLA-b-PEG-b-PLA networks will alter the local environment of the 

hydrolytically labile ester bonds and affect k’gel. While a non-degraded PLA-b-PEG-b-PLA gel is 

considered to be relatively non-ionic, the water content of partially degraded PLA-b-PEG-b-PLA 

networks varies strongly with pH due to ionization of weakly acidic pendant groups created 

during ester bond cleavage[232]. Scheme A.1 illustrates the impact of buffer pH and ionic 

strength on the swelling ratio (Q) and degradation rate constant (k’gel) of a partially degraded 

PLA-b-PEG-b-PLA gel network.  

After hydrolysis of some fraction of PLA ester bonds in the crosslinks, network-

immobilized acid groups are created – lactic acid groups at the ends of cleaved crosslinks and 

acrylic acid groups along the backbone chains. Polyacrylic acid has a pKa of 4.7[231] compared 

to a value of 3.85 for lactic acid. Therefore, in buffer solutions of pH greater than or equal to 

approximately 3.85 a significant portion of network-immobilized acid functionalities will be 

deprotonated, i.e. ionized. This ionization can alter the water content of the gel through two 
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distinct mechanisms. First, the immobilized negative charges repel one another, causing the 

crosslinked polymer chains to stretch to a higher degree and increased gel swelling to 

occur[233-236] ((B) in Scheme A.1).  In addition, the excess negative charge inside the gel 

attracts positive counter-ions from the buffer into the swollen gel environment. The ionic 

concentration inside the gel becomes greater than the surrounding buffer. Transport of water 

from the surrounding solution into the hydrogel then occurs to balance the osmotic pressure 

difference.[232, 237] The end result is that the swelling of the partially ionized gel increases 

until the elastic forces of the stretched polymer network are in equilibrium with the increased 

osmotic forces.[238]  

Therefore, while the water content of a single-phase macromer solution is fixed during 

degradation, the water concentration within a partially degraded PLA-b-PEG-b-PLA gel depends 

on local pH. Below the pKa of lactic acid (pH = 3.85) negligible ionization of network-immobilized 

lactic acid as well as poly(acrylic acid) groups occurs (part A in Scheme A.1). However, above pH 

3.85 the degree of ionization and the amount of water transported inside the gel continuously 

increases. As a result, the values of k’gel  at pH values greater than 3.85 are increased compared 

to what they would be if ionization and additional water transport did not occur. This 

preferential increase in k’gel values at higher pH adds to the inherent complexity of PLA 

degradation kinetics already observed in solution and results in shifting the pH at which the 

minimum kinetic constant value is observed from pH 4 to pH 3  (Figure A.2). 

A.2.3.3 Effect of ionic strength 

As depicted in Scheme A.1(C), if ionization does occur inside the gel network, then it 

should be possible to nullify the increased swelling of partially degraded PLA-b-PEG-b-PLA gels 

observed at higher pH by increasing the ionic strength of the surrounding buffer solution. As the 
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ionic strength of the buffer solution is raised, the osmotic pressure and degree of gel swelling 

should decrease.[232, 237] In addition, the excess negative charges produced in the hydrogel 

will be screened or masked by the increased concentration of positive ions in the buffer, thus 

reducing the repulsive forces and further decreasing gel swelling. As shown by Equations 8 and 

9, this decrease in gel water content will ultimately lower the gel degradation rate and the 

observed k’gel. 

To verify that the ionization of acid species within PLA-b-PEG-b-PLA hydrogels affects gel 

swelling and degradation behavior as described above, gels fabricated from 30 wt% macromer 

solutions were degraded in pH 7.4 buffer solutions of varying ionic strength. Within the range of 

pH values investigated, pH 7.4 represents the value where maximum ionization of the acrylic 

acid and lactic acid groups inside the partially degraded gel network occurs. Figure A.3 shows 

that under these conditions the initial water content of the hydrogels decreases with an 

increase in buffer ionic strength up to 1.5M. The relatively small decrease in gel water content 

of approximately 11% leads to a rather large 75% decrease in the measured degradation rate 

constant k’gel. This observed decrease in k’gel is much greater than the effect predicted by the 

pseudo first-order relationship that assumes k’gel to be directly proportional to gel water 

content (Equation 9).   
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Contrary to what is observed with crosslinked macromer, no decrease in the 

degradation rate constant for the macromer solutions (k’soln) is observed when the solution 

ionic strength is increased except for a slight decrease at the highest ionic strength of 1.5M 

Scheme A.1 Sensitivity of PLA-b-PEG-b-PLA hydrogel swelling to solution pH and ionic strength:  Partial 

hydrolysis of PLA ester bonds creates an anionic network (A) Network-immobilized acrylic acid and lactic 

acid species do not deprotonate at low pH (< pKa). (B) At high pH values (> pKa), these acid species 

deprotonate, leading to increased water contents, gel swelling ratios (Q), and kinetic rate constants 

(k’gel). (C) Increased buffer ionic strength at high pH shields any charged groups present and leads to gel 

deswelling and lower values of k’gel. (D) Increased buffer ionic strength at low pH has no effect on gel 

swelling or k’gel due to absence of ionized acid species. 
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(Figure A.3). This result is expected since no difference in osmotic pressure can be created in the 

single-phase soluble system and any repulsion between adjacent macromer molecules is 

minimized due to their high degree of mobility. Furthermore, when identical experiments were 

conducted in pH 2 buffer solutions where 

negligible ionization of the lactic or acrylic 

acid species occurs, increasing ionic strength 

had no significant effect on gel swelling or the 

degradation rate constants for the gel or 

solution-based systems (data not shown). 

These results indicate that ionic repulsion and 

osmotic pressure effects are significant only 

within crosslinked hydrogels at buffer pH 

values greater than the pKa of the network-

immobilized acid species.   

A.2.3.4 Effect of macromer concentration 

The bulk water contents of the two-component macromer solutions are determined 

solely by their macromer concentrations.  Therefore, to directly observe the effect of water 

content on the degradation rate constant of soluble macromers (k’soln), PLA-b-PEG-b-PLA 

solutions with macromer weight percents  of 5, 10, 15 and 20 wt%, corresponding to water 

contents of  95, 90, 85 and 80 wt% were prepared and allowed to degrade in a well defined 

buffer solution (pH 7.4 and ionic strength 0.135M) at 37°C. As described above, the degradation 

rate constant k’soln was calculated by measuring the change in lactic acid concentration over 

time. The open symbols in Figure A.4 show the increase in k’soln with increase in water content. 

Figure A.3 Dependence of kinetic rate constants 

for PLA-b-PEG-b-PLA macromer degradation on 

buffer ionic strength: k’gel (�) and water content 

(�) for crosslinked gels. k’soln (�) and water 

content (�) for macromer in solution. [For all 

data: Solution: 6.7 wt% PEGPLA2, Gel: 30 wt% 

PEGPLA1; pH = 7.4; n=3, error bars = ± std. dev.] 
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Extrapolating from the experimental data point at 80% water content (k’soln = 8.2 x 10-4 hr-1), 

measured values of k’soln increase proportionately with water content as predicted by the 

pseudo first-order kinetic assumption (dashed line). Similar values of k’soln are obtained using a 

second macromer, indicating that within the range of macromers tested (see Table A.1), 

variations in percent acrylation and PLA block size have no significant effect on the k’soln of 

macromer solutions with relatively high water contents (open triangles and open circles in 

Figure A.4).  

Buffer ionic strength affects gel water 

content as shown previously in Figure A.3. Gel 

water content can also be varied by altering 

macromer concentration in the prepolymer 

solution. A lower macromer concentration 

during network formation leads to lower 

crosslinking densities due to a greater degree 

of macromer cyclization and relaxation of the 

backbone polymer chains.[208, 212-215, 239] 

As described by the Flory-Rehner 

equation[218] (Equation 3 and 4), lower 

crosslinking densities lead to higher gel 

swelling ratios and water contents. Therefore, to systematically vary the water content 

experienced by the PLA ester bonds during degradation while maintaining a constant pH and 

ionic strength, gels with initial water contents of 93, 91, 84, and 81 wt % were prepared using 7, 

10, 20 and 30 wt % macromer solutions. As shown by the solid squares in Figure A.4, the values 

Figure A.4 Dependence of kinetic rate constants 

for PLA-b-PEG-b-PLA macromer degradation on 

water content:  k’soln for two soluble PLA-b-PEG-b-

PLA macromers (�, PEGPLA1; �, PEGPLA2);  k’gel

of crosslinked PLA-b-PEG-b-PLA macromer (�, 

PEGPLA2); Predicted behavior of k’soln (- - -) and 

k’gel (— - —) according to pseudo first-order 

kinetics of ester bond degradation. [All data at pH 

7.4, Ionic Strength 0.135M, n=3, error bars = ± std. 

dev.] 
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of k’gel increase more rapidly with initial water content than the measured k’soln values. This 

dramatic increase results from a corresponding decrease in macromer concentration during 

network formation and is similar to the trend seen in Figure A.3 as ionic strength is decreased. 

The data in Figure A.4 indicate an decrease in water content of ~12% results in a significant 71% 

decrease in k’gel (from 1.2 x 10-3hr-1 to 4.1 x 10-3hr-1). Therefore, in gel form the pseudo first-

order kinetic constant for hydrolysis is much more sensitive to water content than predicted by 

the kinetic theory or seen in soluble systems. Furthermore, the increased sensitivity of the 

degradation kinetics to changes in the local water concentration is independent of whether 

those changes are due to variations in ionic strength (environmental parameter) or macromer 

concentration (structural parameter). 

A.2.4 Conclusions 

Degradation behavior of PLA-b-PEG-b-PLA macromers in soluble form and insoluble, 

photocrosslinked form was compared by direct examination of the respective degradation 

kinetic constants, k’soln and k’gel. The time-dependent production of lactic acid from aqueous 

solutions of PLA-b-PEG-b-PLA was used to quantify k’soln, while k’gel was estimated from the 

change in the mass swelling ratio of photocrosslinked PLA-b-PEG-b-PLA gels with degradation 

time. Kinetic constants obtained from both systems under a variety of degradation conditions 

ranged from 1.7 x 10-4 to 4.1 x 10-3 hr-1 and were similar to one another and to previously 

reported values. Close examination of these kinetic constants demonstrates that network 

structure definitively influences macromer degradation behavior. Specifically, the apparent 

degradation kinetic constants of macromers assembled into crosslinked hydrogels are more 

sensitive to fluctuations in macromer chemistry as well as pH, ionic strength, and water content 

of the bulk environment compared to those of soluble macromers. Degradation of soluble 
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macromer was observed to be a complex function of pH, displaying a minimum value of k’soln at 

pH 4, similar to previous observations of pure PLA systems. However, this minimum was shifted 

to pH 3 during degradation of crosslinked macromers. Increasing buffer ionic strength 

counteracted the charge repulsion and osmotic pressure effects occurring inside crosslinked 

PLA-b-PEG-b-PLA gels at high pH, decreasing gel swelling and k’gel. However, increasing the 

buffer ionic strength had no effect on values of k’soln and the rate of soluble macromer 

degradation. These experiments indicate that the difference between the pH-dependent 

degradation behavior of soluble versus crosslinked PLA-b-PEG-b-PLA macromers results from 

ionization of network-immobilized lactic acid and acrylic acid species that increases the water 

content of crosslinked PLA-b-PEG-b-PLA networks in all but strongly acidic solutions.  

The results of the current studies also indicate the rate of PLA-b-PEG-b-PLA macromer 

degradation in a buffered solution at constant pH and temperature to be primarily a function of 

water content. For soluble macromer solutions, water content was shown to be a function of 

macromer concentration but not to vary to any significant extent with changes in ionic strength 

or pH. When the soluble macromer concentration was decreased, k’soln increased linearly and in 

proportion to the corresponding increase in water content as predicted by the pseudo first-

order kinetic equation. This behavior was independent of macromer chemistry within the range 

of macromers studied. However, increasing gel water content by decreasing macromer 

concentration during photocrosslinking of PLA-b-PEG-b-PLA hydrogels lead to an approximately 

six-fold greater increase in k’gel than predicted by the pseudo first-order kinetic equation. The 

similar increases in k’gel observed with a decrease in either ionic strength (environmental 

parameter) or macromer concentration (structural parameter) indicate that k’gel for a given 

macromer is dependent on the absolute gel water content and independent of whether this 
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water concentration is manipulated by changes in solution or network properties. Unlike the 

soluble system, measured values of k’gel vary significantly with slight changes in macromer 

chemistry. While water transport is identical in the highly swollen, crosslinked networks, slight 

differences in crosslinking density and network structure most likely affect the rates at which 

ionic degradation products are released from the gels. Differences in the concentration of ionic 

species within the degrading networks affect the response of the local gel environment to bulk 

solution conditions. Therefore, the results of this study indicate that the crosslinking of PLA-b-

PEG-b-PLA macromers affects the rate and sensitivity of their hydrolytic degradation to bulk 

solution conditions such as water concentration, pH and ionic strength. These differences must 

be taken into account when designing crosslinked degradable gels for clinical applications and 

indicates their sensitivity to external stimuli as well as their potential as stimuli-responsive 

materials. 
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