
Clemson University
TigerPrints

All Dissertations Dissertations

5-2011

Tight Polyhedral Representations of Discrete Sets
Using Projections, Simplices, and Base-2
Expansions
Stephen Henry
Clemson University, smhenry@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Henry, Stephen, "Tight Polyhedral Representations of Discrete Sets Using Projections, Simplices, and Base-2 Expansions" (2011). All
Dissertations. 736.
https://tigerprints.clemson.edu/all_dissertations/736

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/736?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Tight Polyhedral Representations of Discrete Sets using
Projections, Simplices, and Base-2 Expansions

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Stephen M. Henry

May 2011

Accepted by:

Dr. Warren Adams, Committee Chair

Dr. Douglas Shier

Dr. Matthew Saltzman

Dr. Hervé Kerivin

Abstract

This research effort focuses on the acquisition of polyhedral outer-approximations to the

convex hull of feasible solutions for mixed-integer linear and mixed-integer nonlinear programs. The

goal is to produce desirable formulations that have superior size and/or relaxation strength. These

two qualities often have great influence on the success of underlying solution strategies, and so it is

with these qualities in mind that the work of this dissertation presents three distinct contributions.

The first studies a family of relatively unknown polytopes that enable the linearization of

polynomial expressions involving two discrete variables. Projections of higher-dimensional convex

hulls are employed to reduce the dimensionality of the requisite linearizing polyhedra. For certain

lower dimensions, a complete characterization of the convex hull is obtained; for others, a family

of facets is acquired. Furthermore, a novel linearization for the product of a bounded continuous

variable and a general discrete variable is obtained.

The second contribution investigates the use of simplicial facets in the formation of novel

convex hull representations for a class of mixed-discrete problems having a subset of their variables

taking on discrete, affinely independent realizations. These simplicial facets provide new theoretical

machinery necessary to extend the reformulation-linearization technique (RLT) for mixed-binary

and mixed-discrete programs. In doing so, new insight is provided which allows for the subsumation

of previous mixed-binary and mixed-discrete RLT results.

The third contribution presents a novel approach for representing functions of discrete vari-

ables and their products using logarithmic numbers of 0-1 variables in order to economize on the

number of these binary variables. Here, base-2 expansions are used within linear restrictions to

enforce the appropriate behavior of functions of discrete variables. Products amongst functions are

handled by scaling these linear restrictions. This approach provides insight into, improves upon,

and subsumes recent related linearization methods from the literature.

ii

Dedication

Once again to Toni. Your tireless passion for integer programming was an inspiration.

iii

Acknowledgments

The work presented in this dissertation was made possible by the support of many people.

Particularly, I would like to thank Dr. Douglas Shier, Dr. Matthew Saltzman, and Dr. Hervé Kerivin

for being such sharp, insightful, and helpful committee members. Most of all, I would like to thank

my advisor Dr. Warren Adams. Your incredibly hard work, guidance, and knowledge made this

research effort extremely rewarding and enjoyable. I can hardly believe that our long afternoon

meetings are coming to a close. Thank you so much.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1

2 On Polytopes Associated with Products of Discrete Variables 7
2.1 Linearization Background . 7
2.2 Reformulation-Linearization Constructs . 11
2.3 Projected Convex Hull Forms for One Variable . 17
2.4 Projected Convex Hull Forms for Two Variables . 28
2.5 Conclusions . 35

3 Exploiting Simplices in Computing Convex Hulls 39
3.1 Reformulation-Linearization Technique Background 40

3.1.1 Kronecker Products . 40
3.1.2 RLT for Mixed-Binary Programs . 41
3.1.3 RLT for Mixed-Discrete Programs . 43

3.2 Simplicial Structure . 46
3.3 Convex Hull Representations . 53
3.4 Insights for Classic RLT Results . 60

3.4.1 Insights for Mixed-Binary RLT . 60
3.4.2 Insights for Mixed-Discrete RLT . 62
3.4.3 Insights for Special Structure RLT . 65

3.5 Conclusions . 66

4 Base-2 Expansions for Linearizing Products of Functions of Discrete Variables . 68
4.1 Base-2 Representations of Discrete Variables and Functions 69
4.2 Base-2 Representations of Products of Discrete Functions 73
4.3 Comparison with Other Methods . 78

4.3.1 Li & Lu Approach 1 . 79
4.3.2 Li & Lu Approach 2 . 84

4.4 Conclusions . 90

v

List of Tables

2.1 Counts for the number of type-0 and type-1 facets of DP (0, d). 27

4.1 Variable types and counts in (4.16) and (4.18). 75
4.2 Variable types and counts in Approach 1 of [4]. 84
4.3 Variable types and counts in Approach 2 of [4]. 89
4.4 Summary of variable and constraint counts . 91

vi

List of Figures

1.1 A comparison of the continuous relaxation (left) and the convex hull (right). 2
1.2 A mixed-integer feasible region in R2 and its convex hull in R3 3

2.1 Polytope DP (0, 3) in (x,w2, w3) space for x ∈ S = {−2,−1, 0, 1, 2} with w2 =
{
x2
}
L

and w3 =
{
x3
}
L

. 25

2.2 Polytope DP (0, 2) in (x,w2) space for x ∈ S = {−2,−1, 0, 1, 2} with w2 =
{
x2
}
L

. . . 26
2.3 Number of facets of DP (0, d) for k = 21 and d ∈ {2, . . . , 19}. 27

3.1 The simplex in R2 associated with the points (2, 2), (3, 4) and (4, 1). 48
3.2 The projection of Ω onto the space (x1, x2, y1). 60

vii

Chapter 1

Introduction

Mixed-integer programs (MIPs) are a class of optimization problems having two sets of

decision variables: a discrete set restricted to realize integer values and a continuous set that can

take on a continuum of values. MIPs can be linear in the objective function and constraints, or they

can include nonlinear terms involving the decision variables. Such nonlinear problems are typically

referred to as mixed-integer nonlinear programs (MINLPs). While special problem instances are

readily solvable, general MIPs and MINLPs have proven notoriously difficult to solve due primarily

to the combinatorial explosion of feasible integer realizations.

This difficulty is unfortunate in light of the diverse contexts in which MIPs and MINLPs

naturally arise. Their applications include supply-chain optimization [4, 2, 9], chemical engineering

[6, 7, 5], transportation [1, 10], and portfolio management [8, 3], to name a few. While there exists

an equally diverse collection of solution techniques, the robustness of these algorithms tends to lag

behind real-world requirements, leaving many important industrial problems unsolved.

A critical component in the derivation of effective solution strategies is the acquisition of

tight polyhedral outer-approximations to the convex hull of feasible solutions. Convex hull represen-

tations are useful in that they allow difficult combinatorial optimization problems to be reduced to

much simpler linear programs. Tight approximations of the convex hull can provide superior bounds

within enumerative strategies over the integer variables and thereby allow entire subsets of candi-

date solutions to be implicitly disregarded. These approximations can appear in the original variable

space, a higher-dimensional variable space via the introduction of auxiliary variables, or an entirely

different variable space through suitable variable transformations. Obtaining such approximations

1

is the goal of a large number of discrete optimization techniques including cutting planes, coefficient

adjustment, reformulation-linearization, lift and project, constraint aggregation/disaggregation, and

variable redefinition.

To illustrate the concept of polyhedral outer-approximations, consider Figure 1.1 which

presents two such representations for an integer program having two variables. The feasible region

of the integer program is the collection of ten points that satisfy the five linear constraints. The

shaded region on the left is the typical continuous relaxation obtained by ignoring the integrality

restrictions. While simple to identify, a drawback to this outer-approximation is that it may be weak

and allow many non-integral extreme points. In contrast, the polyhedral set given by the shaded

region on the right has all integral extreme points and is the convex hull of the ten feasible points.

The convex hull is the strongest possible representation and, assuming a linear objective, reduces

the integer program to a linear program. A potential drawback, however, is that in general it may be

very difficult to explicitly characterize the convex hull. Moreover, the number of defining constraints

may be exponential in terms of the number of variables.

b

b

b

b

b

b

b

b

b

b

1

b

b

b

b

b

b

b

b

b

b

1

Figure 1.1: A comparison of the continuous relaxation (left) and the convex hull (right).

It is unfortunate that conciseness and strength, two very desirable properties of polyhedral

outer-approximations, are frequently in conflict. Consequently, researchers often seek approxima-

tions that balance the strength and size of the formulation. This dissertation presents three distinct

approaches for generating polyhedral outer-approximations with such a balance in mind.

A fundamental tool used throughout Chapters 2 and 3 is a methodology known as the

2

reformulation-linearization technique (RLT) which operates by recasting a discrete problem into

new, higher-dimensional regions so as to partially eradicate the discretizations, nonlinearities, and

non-convexities that complicate the original formulation. Figure 1.2 illustrates this underlying idea.

On the left is the feasible region of a two-dimensional mixed-discrete set given by

{(x, y) : 1 ≤ x ≤ 4− y, 3− y ≤ x ≤ 4, y ∈ {0, 2}}

which enforces that if y = 0 then 3 ≤ x ≤ 4 and if y = 2 then 1 ≤ x ≤ 2. The constraints defining

the polyhedron on the right are automatically generated by the RLT by multiplying the original

constraints by functional factors involving the discrete variable y, enforcing special simplifying iden-

tities, and introducing a new auxiliary variable w which represents the product xy. In this way, the

convex hull of the feasible solutions of the original set is captured, albeit in a higher-dimensional

space. For a more detailed description of general RLT methodology, see Sections 2.2 and 3.1.

b
b

(3, 0)
(4, 0) x

y

b
b (2, 2)

(1, 2)

1

w

b
b

(3, 0, 0)
(4, 0, 0) x

y

(1, 2, 2)

(2, 2, 4)
b

b

1

Figure 1.2: A mixed-integer feasible region in R2 (left) and its convex hull in R3 given by the RLT
(right).

The three main contributions of this work, which deal with distinct strategies for computing

polyhedral outer-approximations, appear in the next three chapters. To aid the reader, each chapter

is fully self-contained; the chapters may be read in any order or independently. A brief outline of

these chapter follows.

Chapter 2 focuses on optimization problems having quadratic expressions involving general

discrete variables. Traditionally, quadratic expressions of binary variables are often linearized by

3

defining an auxiliary variable for each quadratic term, and by then forming special polytopes which

enforce that the new variables equal their intended products at all extreme points. Such poly-

topes similarly formed for quadratic expressions of continuous variables enable global optimization

methods, and have sparked recent interest in characterizing associated convex hulls. A family of

related polytopes, for which little is known, arises via the RLT using special Lagrange interpolating

polynomials (LIPs) and can linearize products of general discrete variables. We study these poly-

topes, characterize desirable extreme point traits, establish fundamental properties relative to their

dimensions and facial structures, and project these higher-dimensional LIP polytopes onto lower-

dimensional subspaces in order to more efficiently express the linearization of these quadratic terms.

The nature of these projections yields linearized expressions that represent polynomial terms in the

two variables. In particular, for the special cases wherein one of the variables is binary and the

other is discrete, we completely characterize all facets of the convex hulls of the feasible realizations

in lower dimensions. For the more general case having the product of two discrete variables, these

same projections provide families of facets that partially describe the lower-dimensional convex hulls.

We also obtain new polytopes that allow for the linearization of polynomial expressions involving a

bounded continuous variable and a general discrete variable.

Chapter 3 extends the underlying RLT constructs to develop a much richer convex hull

theory. These extensions are developed using the facets of a special class of polytopes known as

simplices, which are formed as the convex hull of n + 1 affinely independents points in Rn. As

its name suggests, the RLT is composed of the two key steps of reformulation and linearization.

Given an MIP or MINLP, the reformulation step consists of multiplying the problem constraints by

product factors of the discrete variables, and employing a simplification that exploits the discrete

structure. The linearization step then transforms the problem into a higher-dimensional variable

space by substituting a continuous variable for each distinct nonlinear term. For the case in which

the discrete variables are binary, the product factors consist of products of the 0-1 variables with

their complements. For the general discrete case, special functions of these variables, known as

Lagrange interpolating polynomials, are instead used. Chapter 3 shows that all these products

factors are special cases of the more general simplices. Specifically, the simplicial product factors

generalize those from the LIPs, which in turn generalize the products of binary variables and their

complements. As such, the results of Chapter 3 can be envisioned as unifying and subsuming the

convex hull theory of the RLT.

4

Chapter 4 presents an approach for representing functions of discrete variables, and their

products, using logarithmic numbers of binary variables. In contrast to Chapters 2 and 3, this

chapter does not rely on RLT constructs to generate polyhedral outer-approximations. Instead,

it focuses concise binary transformations. Given a univariate function whose domain consists of

n distinct values, a typical binary representation employs n 0-1 variables, one for each value in

the domain, to model the function. In contrast, we employ a variable transformation that uses a

base-2 expansion to express the function in terms of dlog2ne binary and n continuous variables.

This approach is novel in that it requires fewer linear restrictions than related approaches in the

literature. The model relies on a simple observation relative to the unit hypercube which states that

a binary vector can be represented as a convex combination of a subset of distinct extreme points of

the unit hypercube if and only if the vector is itself one of these extreme points, with a single convex

multiplier equaling 1, and the remaining equaling 0. Furthermore, by employing this observation

we linearize products of m such functions by multiplying the linear restrictions associated with any

one function by a scaled version of the product of p− 1 remaining functions in an inductive fashion

from p = 2 to m. These representations are important for reformulating general discrete variables as

binary, and also for linearizing mixed-integer generalized geometric and discrete nonlinear programs,

where it is desired to economize on the number of binary variables. It provides insight into, improves

upon, and subsumes related linearization methods for products of functions of discrete variables.

5

Bibliography

[1] Abara, J., “Applying Integer Linear Programming to the Fleet Assignment Problem,” Interfaces
Vol. 19, No. 4, 20-28, 1989.

[2] Arntzen, B.C., Brown, G.G., Harrison, T.P., and Trafton, L.L., “Global Supply Chain Man-
agement at Digital Equipment Corporation,” Interfaces, Vol. 25, No. 1, 69-93, 1995.

[3] Bertsimas, D., Darnell, C., and Soucy, R., “Portfolio Construction Through Mixed-Integer
Programming at Grantham, Mayo, Van Otterloo and Company,” Interfaces, Vol. 29, No. 1,
49-66, 1999.

[4] Cohen, M.A. and Lee, H.L., “Resource Deployment Analysis of Global Manufacturing and
Distribution Networks,” Journal of Manufacturing and Operations Management, Vol. 2, 81-
104, 1989.

[5] Gounaris, C.E., Misener, R., and Floudas, C.A., “Computational Comparison of Piecewise-
Linear Relaxations for Pooling Problems,” Industrial and Engineering Chemistry Research,
Vol. 48, Issue 12, 5742-5766, 2009.

[6] Grossmann, I.E., “Mixed-Integer Optimization Techniques for Algorithmic Process,” Chemical
Engineering, Vol. 23, Process Synthesis, 171-246, 1996.

[7] Grossmann, I.E., Caballero, J.A., and Yeomans, H., “Advances in Mathematical Programming
for Automated Design, Integration and Operation of Chemical Processes,” Proceedings of the
International Conference on Process Integration, Copenhagen, Denmark (1999).

[8] Markowitz, H., Portfolio Selection: Efficient Diversification and Investments, John Wiley and
Sons, New York, 1959.

[9] Melachrinoudis, E. and Min H., “The Dynamic Relocation and Phase-Out of a Hybrid, Two-
Echelon Plant/Warehousing Facility: A Multiple Objective Approach,” European Journal of
Operational Research, Vol. 123, Issue 1, 1-15, 2000.

[10] Rushmeier, R., Homan, K., Padberg, M., Recent Advances in Exact Optimization of Airline
Scheduling Problems, Technical Report, Department of Operations Research and Operations
Engineering, George Mason University, 1995.

6

Chapter 2

On Polytopes Associated with

Products of Discrete Variables

2.1 Linearization Background

Polytopes associated with products of binary variables were introduced over fifty years ago

in the context of 0-1 quadratic programming. Given two binary variables x1 and x2, the papers

[11, 12] and later [13] substitute a continuous variable w12 for the product x1x2, and then use the

following four linear inequalities to enforce that w12 = x1x2 for all binary x1 and x2

w12 ≥ 0, w12 ≥ x1 + x2 − 1, w12 ≤ x1, w12 ≤ x2. (2.1)

It is straightforward to show that these four inequalities define the facets of the polytope

P (J) = conv
{

(xi, xj , wij) ∈ {0, 1}3 : wij = xixj
}
, (2.2)

where J ≡ {i, j} with i = 1 and j = 2, and where conv {•} denotes the convex hull of the set •.

Inequalities (2.1) allow for the linearization of unconstrained quadratic programs in 0-1

7

variables of the form

minimize

n∑
i=1

cixi +

n−1∑
i=1

n∑
j=i+1

Cijxixj : x ∈ {0, 1}n
 . (UQP)

Each product term xixj in the objective function is replaced with a distinct wij , and constraints of

the form (2.1) are enforced for each (i, j) pair with i < j. This allows Problem UQP to be equivalently

rewritten as the linearized quadratic program

minimize

n∑
i=1

cixi +

n−1∑
i=1

n∑
j=i+1

Cijwij : x ∈ {0, 1}n,

wij ≥ 0, wij ≥ xi + xj − 1, wij ≤ xi, wij ≤ xj ∀ (i, j), i < j

 . (LQP)

Linear and/or quadratic constraints can be included within UQP to form a constrained quadratic

program, and LQP will remain an equivalent form provided these same constraints are preserved,

with the substitution wij = xixj similarly applied. The continuous relaxation of LQP obtained by

relaxing the restrictions x ∈ {0, 1}n to x ∈ [0, 1]n has been studied. For the special case in which

every Cij is nonpositive, the first two families of inequalities are redundant at optimality, so that

[18] was able to solve this relaxation as a network and obtain an optimal binary solution to UQP.

For general Cij , UQP is NP-hard, but the relaxation of LQP (yielding potentially fractional extreme

points) can be transformed to a network, with concise forms found in [1, 23].

Generalizations of (2.2) have proven important in both discrete and continuous, nonconvex

optimization. The boolean quadric polytope in n binary variables x is defined as

BPn = conv
{

(x,w) ∈ {0, 1}n×
n(n−1)

2 : wij = xixj ∀ (i, j), i < j
}
,

which reduces to (2.2) when n = 2. This polytope was introduced in [17], and has since attracted

considerable interest, including [10, 22]. It has been shown equivalent [9], via a nonsingular linear

transformation, to the cut polytope [6].

The significance of BPn is that the binary optimization problem UQP reduces to the linear

program

minimize

n∑
i=1

cixi +

n−1∑
i=1

n∑
j=i+1

Cijwij : (x,w) ∈ BPn

 . (LP)

8

Consequently, an explicit description of BPn allows for the solving of UQP as a linear program.

It is instructive to note the difference between the feasible regions to Problem LP and the

above-mentioned continuous relaxation to LQP. The feasible region to this relaxation is equivalent,

by (2.2), to (x,w) ∈
⋂
J⊆N
|J|=2

P (J), where N ≡ {1, 2, . . . , n}. It is readily verified that
⋂
J⊆N
|J|=2

P (J) ⊆ BPn,

with equality holding if and only if n = 2. For the case in which n = 3, the paper [17] shows that

four additional “triangle inequalities” are needed to achieve equality.

A second generalization of (2.1) arises in global optimization relative to the approximation of

non-convex functions. Given the product x1x2 in continuous variables x1 and x2 with l1 ≤ x1 ≤ u1

and l2 ≤ x2 ≤ u2, we can construct the inequalities

w12 ≥ l2x1 + l1x2 − l1l2, w12 ≥ u1x2 + u2x1 − u1u2,

w12 ≤ u2x1 + l1x2 − l1u2, w12 ≤ l2x1 + u1x2 − u1l2, (2.3)

which reduce to (2.1) when l1 = l2 = 0 and u1 = u2 = 1. (These inequalities are motivated

in the next section from the perspective of a reformulation-linearization technique (RLT).) The

paper [16] notes that the first two inequalities of (2.3) give the convex envelope of the function

x1x2 when l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2. The work [4] uses this result, and also that x1x2 =

max{l2x1 + l1x2 − l1l2, u1x2 + u2x1 − u1u2} when either x1 or x2 is at its lower or upper bound, to

develop solution strategies for biconvex programs.

More recent investigations into the product x1x2 for continuous variables x1 and x2 include

the following two works. The paper [5] provides semi-definite inequalities for the polytopes

CPn = conv
{

(x,w) ∈ [0, 1]n×n
2

: wij = xixj ∀ (i, j), i ≤ j
}
,

and shows that these inequalities completely describe CPn if and only if n = 1 or n = 2. Furthermore,

they describe CP3 by forming a triangulation of the unit cube and applying simplicial results. The

contribution of [7] extends this study by focusing on the structure of CPn for general n ≥ 3, and by

examining connections with the boolean quadric polytope.

In this chapter, we explore a natural generalization of (2.2) arising in polynomial integer

optimization where the variables x1 and x2 are general discrete, as opposed to binary. Specifically,

suppose that x1 and x2 are restricted to realize one of the k1 and k2 values in the discrete sets

9

S1 ≡ {θ11, θ12, . . . , θ1k1} and S2 ≡ {θ21, θ22, . . . , θ2k2} respectively, where it is assumed without loss

of generality that the elements in each set are distinct and arranged in increasing order so that

θ11 < θ12 < · · · < θ1k1 and θ21 < θ22 < · · · < θ2k2 . Consider a polynomial function in these variables

of the form

p(x1, x2) ≡
d1∑
i=0

d2∑
j=0

aijx
i
1x
j
2, (2.4)

where each aij is a real number and where d1 and d2 denote the maximum degrees of x1 and x2

respectively in (2.4). Of interest are the cases having d1 + d2 ≥ 2 so that p(x1, x2) is nonlinear. For

these cases, we focus on the discrete polytope

DP (d1, d2) = conv

 (x1, x2,w) ∈ R(d1+1)(d2+1)−1 : x1 ∈ S1, x2 ∈ S2,

wij = xi1x
j
2 ∀ (i, j) 3 i+ j ≥ 2, i ∈ {0, . . . , d1}, j ∈ {0, . . . , d2}

 . (2.5)

Note here that the variable wij effectively records the product of xi1 and xj2 via the definition

wij = xi1x
j
2, as opposed to the product of the two variables xi and xj defined earlier by wij = xixj .

This polytope (2.5) relates to (2.4) in that the nonlinear discrete program to optimize p(x1, x2) over

x1 ∈ S1 and x2 ∈ S2 reduces to the linear program that optimizes this same function over DP (d1, d2)

under the substitution wij = xi1x
j
2.

Observe how DP (d1, d2) relates to (2.1) and (2.3) for the special case having k1 = k2 = 2

and d1 = d2 = 1 so that (2.4) simplifies to p(x1, x2) = a00 + a10x1 + a01x2 + a11x1x2. When S1 =

S2 = {0, 1}, then DP (1, 1) is defined by inequalities (2.1). When S1 = {`1, u1} and S2 = {`2, u2},

then DP (1, 1) is described by inequalities (2.3). Thus, DP (d1, d2) can be envisioned as motivating

a richer family of polytopes than either (2.1) or (2.3).

The concern of this study is to characterize the polytopes DP (d1, d2), which by definition

are expressed in terms of the original variables x1 and x2. This is in contrast to earlier works that

rely on higher-dimensional spaces expressed in terms of suitable binary expansions of x1 and x2. The

paper [8] focuses on the special cases of x1 and x2 having S1 = {0, . . . , k1−1} and S2 = {0, . . . , k2−1}

where, for simplicity, k1 = 2n1 and k2 = 2n2 for positive integers n1 and n2. In this manner, x1 and

x2 are integer variables satisfying 0 ≤ x1 ≤ k1 − 1 and 0 ≤ x2 ≤ k2 − 1. The product x1x2 is first

expressed as

x1x2 =

(
n1∑
i=1

2i−1λ1i

) n2∑
j=1

2j−1λ2j

10

where all such λ1i and λ2j are binary variables. Letting wij replace the quadratic term λ1iλ2j within

this expression for each (i, j), they then have that

x1x2 =

n1∑
i=1

n2∑
j=1

2i+j−2wij

by enforcing 4n1n2 inequalities of the form found in (2.1), one set of four for each (i, j) pair, as

wij ≥ 0, wij ≥ λ1i + λ2j − 1, wij ≤ λ1i, wij ≤ λ2j ∀ (i, j), i = 1, . . . , n1, j = 1, . . . , n2.

Alternate approaches that employ binary expansions to linearize products of discrete functions, and

consequently discrete variables, are found in [2] and [15].

The chapter is organized as follows. The next section briefly reviews the RLT methodology

for mixed-discrete problems. The RLT relies on special functions of x1 and x2, called Lagrange

interpolating polynomials (LIPs), which provide an explicit characterization of DP (k1 − 1, k2 − 1).

These LIPs allow us to establish a relationship between the parameters k1 and k2, and the degrees

of the variables x1 and x2 found within p(x1, x2) of (2.4); specifically, we can assume without loss of

generality that d1 ≤ k1−1 and d2 ≤ k2−1 in (2.4) and (2.5). Our study continues in Section 2.3 with

the cases where k1 = 1, so that d1 = 0 and only the variable x2 is present in (2.4) and (2.5). We obtain

an explicit characterization of the polytopes DP (0, d2), for each d2 ∈ {1, . . . , k2− 2}, via a suitably-

defined projection operation from the higher-dimensional space DP (0, k2 − 1). Included here is a

characterization of all facets. Section 2.4 identifies the sets DP (k1−1, d2) for any d2 ∈ {1, . . . , k2−1}

and any k1. This last result is particularly useful when x1 is binary and x2 is general discrete, so

that k1 = 2. In fact, convex hull representations are also obtained when the binary variable x1 is

relaxed to be continuous. For the most general case of DP (d1, d2), the convex hull is not obtained,

but families of facets are identified. Concluding remarks are found in Section 2.5.

2.2 Reformulation-Linearization Constructs

The paper [3] uses Lagrange interpolating polynomials (LIPs) to generalize a reformulation-

linearization technique [19, 20, 21] for mixed 0-1 polynomial programs so as to handle problems

containing general discrete variables. The LIP constructs play a critical role in our study of the

polytopes DP (d1, d2), and are therefore briefly summarized below.

11

As pointed out in [3], a crucial observation for extending (2.1) to handle discrete variables

x1 and x2 is that, given a binary variable xj , the expressions 1−xj and xj are Lagrange interpolating

polynomials. To explain, consider the two discrete variables xj , j ∈ {1, 2}, that can realize values

in the sets Sj = {θj1, θj2, . . . , θjkj} introduced in the previous section. Then there exist kj LIPs

associated with each xj , see [14], with every polynomial of degree kj − 1. The polynomials take the

following forms, where Kj ≡ {1, . . . , kj}.

Ljk(xj) =

∏
i∈(Kj−{k})

(xj − θji)∏
i∈(Kj−{k})

(θjk − θji)
k ∈ Kj (2.6)

These polynomials have the property that for each xj ∈ Sj ,

Ljk(xj) =

1 if xj = θjk

0 otherwise

k ∈ Kj , (2.7)

so that

xj =

kj∑
k=1

θjkLjk(xj), (2.8)

and

Ljk(xj)Lj`(xj) =

0 if ` 6= k

Ljk(xj) if ` = k

∀ (k, `), k ∈ {1, . . . , kj}, ` ∈ {1, . . . , kj}, ` 6= k. (2.9)

The property (2.7) implies the LIPs of (2.6) to be nonnegative for all xj ∈ Sj . This nonneg-

ativity can be expressed in matrix notation as Cjx
j ≥ 0, where Cj is a kj×kj matrix whose (k, q)th

element is the coefficient in Ljk(xj) on xq−1j , xj is a column vector in Rkj whose qth entry is xq−1j ,

and 0 is a column vector of zeros in Rkj . (Here, x0j ≡ 1.)

12

Example 2.1

Given a variable xj that can realize values in Sj = {0, 1}, the LIPs are as follows.

Lj1(xj) =
(xj−1)
(0−1) = 1− xj

Lj2(xj) =
(xj−0)
(1−0) = xj

Nonnegativity of these LIPs is expressed in matrix notation as

Cjx
j =

[
1 −1

0 1

][
1

xj

]
≥

[
0

0

]
.

Example 2.2

Given a variable xj that can realize values in Sj = {0, 1, 2}, the LIPs are as follows.

Lj1(xj) =
(xj−1)(xj−2)
(0−1)(0−2) = 1− 3

2
xj +

1

2
x2j

Lj2(xj) =
(xj−0)(xj−2)
(1−0)(1−2) = 0 + 2xj − x2j

Lj3(xj) =
(xj−0)(xj−1)
(2−0)(2−1) = 0− 1

2
xj +

1

2
x2j

Nonnegativity of these LIPs is expressed in matrix notation as

Cjx
j =

 1 − 3
2

1
2

0 2 −1

0 − 1
2

1
2

 1

xj

x2
j

 ≥
 0

0

0

 .

Relative to the product of two discrete variables, insight can be gained by reconsidering

the inequalities in (2.1), and by expressing these restrictions in terms of Kronecker products of

LIPs. Recall that, given two matrices A1 and A2, where A1 is m1 × n1 and A2 is m2 × n2, the

Kronecker product of A1 and A2, denoted by A1 ⊗ A2, is the m1m2 × n1n2 matrix defined as

A1 ⊗A2 =

 a11A2 . . . a1n1
A2

.

.

.
. . .

.

.

.

am11A2 . . . am1n1
A2

 , where aij represents the (i, j)th entry of A1. Then (2.1) can

13

be written using Kronecker products as follows[
1 −1

0 1

][
1

x1

]
⊗

[
1 −1

0 1

][
1

x2

]
≥

[
0

0

]
⊗

[
0

0

]
. (2.10)

This thought process for expressing (2.1) as (2.10) is extendable to general discrete variables.

Given such x1 and x2 associated with sets S1 and S2 respectively, compute the corresponding LIPs,

and express them in matrix notation as above to obtain C1x
1 ≥ 0 and C2x

2 ≥ 0. Here, C1 and C2

are of sizes k1×k1 and k2×k2 respectively, and the vectors xj for j ∈ {1, 2}, are columns in Rkj whose

qth entry is xq−1j . (Throughout the remainder of this chapter, we let 0 denote suitably-dimensioned

column vectors of zeros.) Following [3], and in the spirit of (2.10), compute the products of the LIPs

associated with x1 and x2, and set these products nonnegative to obtain

C1x
1 ⊗ C2x

2 ≥ 0⊗ 0. (2.11)

A property of Kronecker products is that, for any matrices A, B, C, and D such that the multipli-

cations AB and CD are defined, we have

AB ⊗ CD = (A⊗ C)(B ⊗D). (2.12)

Using this property, (2.11) can be rewritten as follows

(C1 ⊗ C2)
(
x1 ⊗ x2

)
≥ 0⊗ 0.

We linearize these inequalities by substituting a continuous variable for each distinct non-

linear term, adopting the notation of (2.5) that wij = xi1x
j
2 for all (i, j) such that i + j ≥ 2.

Consistent with [3], let
{
x1 ⊗ x2

}
L

denote the linearized form of x1 ⊗ x2 obtained by performing

such a substitution. The following polyhedral set P results:

P =
{{
x1 ⊗ x2

}
L

: (C1 ⊗ C2)
{
x1 ⊗ x2

}
L
≥ 0⊗ 0

}
. (2.13)

The set P is, in fact, the polytope DP (k1 − 1, k2 − 1) of (2.5). This equivalence was

established in a different setting in [3], but is stated formally below for completeness.

14

Theorem 2.1: Given any k1 ≥ 2 and k2 ≥ 2, the set P of (2.13) is the polytope DP (k1 − 1, k2 − 1)

of (2.5).

The argument in [3] for establishing Theorem 2.1 is the following. Identity (2.7) gives us that

each of the matrices C1 and C2 is invertible with, for j ∈ {1, 2}, C−1j = V Tj , where Vj represents

the kj × kj Vandermonde matrix whose (p, q)th entry is θq−1jp , for j ∈ {1, 2}. (We let 00 = 1 for

convenience.) Then (C1 ⊗ C2)−1 = V T1 ⊗ V T2 by (2.12) so that (2.13) can be rewritten as

P =
{{
x1 ⊗ x2

}
L

:
{
x1 ⊗ x2

}
L

=
(
V T1 ⊗ V T2

)
z for some z ≥ 0

}
,

where z is a column vector in Rk1k2 . As the first entry of
{
x1 ⊗ x2

}
L

is 1 and the first row of

V T1 ⊗ V T2 has all ones, the set P can again be rewritten as

P =
{(
V T1 ⊗ V T2

)
z : z ≥ 0, eTz = 1

}
, (2.14)

where e is a column vector of ones in Rk1k2 . Theorem 2.1 follows since the extreme points to

{z ≥ 0, eTz = 1} are the unit vectors in Rk1k2 . This gives us that each extreme point of the polytope

P of (2.14) has xj ∈ Sj for j ∈ {1, 2}, and wij = xi1x
j
2 for all i ∈ {0, . . . , d1} and j ∈ {0, . . . , d2}

with i+ j ≥ 2. Moreover, each inequality defining (2.13) is a facet.

The example below, taken from [3], illustrates this argument and demonstrates how the

columns of V T1 ⊗ V T2 correspond to the vectors x1 ⊗ x2 for all possible realizations of x1 ∈ S1 and

x2 ∈ S2.

Example 2.3

Consider discrete variables x1 and x2 that realize values in the sets S1 = {0, 1} and S2 = {0, 1, 2}

respectively. Then k1 = 2 and k2 = 3 with C1 =

[
1 −1

0 1

]
, C2 =

 1 − 3
2

1
2

0 2 −1

0 − 1
2

1
2

 , V T1 =

[
1 1

0 1

]
,

15

and V T2 =

 1 1 1

0 1 2

0 1 4

 . The polytope P of (2.13) is given by

P =

1

x2

x2
2

x1

x1x2

x1x
2
2

L

:

1 − 3
2

1
2 −1 3

2 − 1
2

0 2 −1 0 −2 1

0 − 1
2

1
2 0 1

2 − 1
2

0 0 0 1 − 3
2

1
2

0 0 0 0 2 −1

0 0 0 0 − 1
2

1
2

1

x2

x2
2

x1

x1x2

x1x
2
2

L

≥

0

0

0

0

0

0

,

which can be rewritten in the form of (2.14) as

P =

1 1 1 1 1 1

0 1 2 0 1 2

0 1 4 0 1 4

0 0 0 1 1 1

0 0 0 0 1 2

0 0 0 0 1 4

z1

z2

z3

z4

z5

z6

:

6∑
j=1

zj = 1, zj ≥ 0 for j = 1, . . . , 6

.

Given any k1 ≥ 2 and k2 ≥ 2, Theorem 2.1 gives P of (2.13) as an explicit description of

DP (k1 − 1, k2 − 1) from (2.5), with each defining inequality a facet. The special case for which

k1 = k2 = 2 has DP (1, 1) defined in Section 2.1 by (2.3) when θ11 = l1, θ1k1 = u1, θ21 = l2, and

θ2k2 = u2. But other polytopes DP (d1, d2) for general k1 and k2 are not known. This is unfortunate

since the degrees of the variables x1 and x2 in the polynomial p(x1, x2) of (2.4) can be far smaller

than k1 and k2 respectively, permitting a convex hull representation with far fewer variables. Such

smaller representations are the concern of this chapter.

Before proceeding to the next section, we make two observations. First, the result found in

Section 2.1 stating that the initial two inequalities of (2.3) define the convex envelope of the function

x1x2 over l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, as provided in [16], follows from the logic of the theorem

and its proof. Suppose we temporarily generalize our definition of the matrices C1 and C2 for this

case to be C1 =

[
u1 −1

−l1 1

]
and C2 =

[
u2 −1

−l2 1

]
, and we let x1 =

[
1

x1

]
and x2 =

[
1

x2

]
.

Then the set P of (2.13) takes the form[
u1 −1

−l1 1

][
1

x1

]
⊗

[
u2 −1

−l2 1

][
1

x2

]
≥

[
0

0

]
⊗

[
0

0

]
,

16

which is (2.2) with w12 = x1x2.As C−11 = 1
u1−l1

[
1 1

l1 u1

]
and C−12 = 1

u2−l2

[
1 1

l2 u2

]
, the proof of

the theorem gives us that the set {(x1, x2, w12) : (x1, x2, w12) satisfies (2.2)} is the polytope whose

extreme points are (l1, l2, l1l2)T , (l1, u2, l1u2)T , (u1, l2, u1l2)T , and (u1, u2, u1u2)T . Therefore, the

only linear inequalities under-approximating the function x1x2 over l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2

are the first two of (2.2), establishing the result.

Second, the properties of LIPs allow us to establish an upper bound on the parameters d1

and d2 defining p(x1, x2) of (2.4) in terms of the numbers of permissible realizations k1 and k2 for

x1 and x2 respectively. Consider the following lemma.

Lemma 2.1: Any polynomial p(x1, x2) of the form (2.4) with x1 ∈ S1 ≡ {θ11, θ12, . . . , θ1k1} and

x2 ∈ S2 ≡ {θ21, θ22, . . . , θ2k2} can be expressed so that d1 ≤ k1 − 1 and d2 ≤ k2 − 1.

Proof. Given j ∈ {1, 2}, the proof is to show that xpj for p ≥ kj can be written in terms of xij for

i ≤ kj −1. Toward this end, note that xpj =
[∑kj

k=1 θjkLjk(xj)
]p

=
∑kj
k=1 θ

p
jkLjk(xj), where the first

equality is by (2.7) and the second equality follows from (2.8) and (2.9). As each Ljk is of degree

kj − 1, the result follows.

By Lemma 2.1, we henceforth assume throughout the remainder of the chapter that (2.4)

has d1 ≤ k1 − 1 and d2 ≤ k2 − 1.

2.3 Projected Convex Hull Forms for One Variable

Given any k1 ≥ 2 and k2 ≥ 2, an explicit description of DP (k1−1, k2−1) from (2.5) is given

by P of (2.13). This section considers, the cases having k1 = 1 and general k2, and focuses on the

polytopes DP (0, d2) for which d2 ∈ {2, . . . , k2 − 2}. (Observe that by symmetry this is equivalent

to studying the polytopes DP (d1, 0) for d1 ∈ {2, . . . , k1 − 2}.) For such cases, the variable x1 is a

constant, so that only x2 is present. Less attention is given to the set DP (0, 1) as it is trivially

defined by θ21 ≤ x2 ≤ θ2k2 .

For simplicity of notation within this section, and since only the single variable x2 is being

considered, we suppress the subscript of 2 on x, S, k, d, and K, and the first subscript on θ. We

also suppress the superscript on the k-dimensional column vector x, the subscript on C, the first

subscript on the auxiliary variables w within DP (0, d), and let K ≡ {1, . . . , k}.

17

Thus, consider a single discrete variable x realizing values in S = {θ1, θ2, . . . , θk}, where

θ1 < θ2 < · · · < θk. Similar to the previous section, we compute the k LIPs associated with x, set

these expressions to be nonnegative, and then linearize by substituting a continuous variable for

each product term. The resulting polyhedral set DP (0, k − 1) is given by

DP (0, k − 1) = {{x}L : C{x}L ≥ 0} , (2.15)

where {x}L is the linearized version of x, and where the matrix C represents the LIP coefficients

as in (2.13) defined relative to a single x. The polytope DP (0, k − 1) was obtained by linearizing

polynomials of degree k − 1. As such, it inherits the property of Theorem 2.1 that there exists k

extreme points, with each extreme point {x}L equal to x evaluated at some θj .

The task of computing DP (0, d) for d ∈ {2, . . . , k − 2} is equivalent to defining projections

onto lower-dimensional spaces of DP (0, k−1). Specifically, to compute DP (0, d), we desire to project

DP (0, k − 1) onto the lower-dimensional space which corresponds to the first d+ 1 entries of {x}L,

for d ∈ {2, . . . , k− 2}. Denote the first d+ 1 entries of {x}L by {xd}L and the last k− d− 1 entries

by {x′d}L . We choose the notation {xd}L instead of {xd+1}L for its simplicity and since the leading

element of {x}L is the constant 1. This choice of notation conveniently enforces that {xd}L is a

vector holding the linearized forms of x raised to the nonnegative integer powers up to d. Formally,

the task is to compute the projection of C{x}L ≥ 0 onto the space of the variables {xd}L .

Such a projection, denoted by proj{xd}L {DP (0, k − 1)} , is defined to be the set of all {xd}L

for which there exists a {x′d}L so that {x}L ≡

{
xd

x′d

}
L

satisfies (2.15). Let us partition C defining

DP (0, k − 1) in (2.15) into

[
Cd C ′d

]
, where Cd represents the first d + 1 columns of C and C ′d

represents the remaining k − d− 1 columns. Then C{x}L ≥ 0 can be written as

[
Cd C ′d

]{
xd

x′d

}
L

≥ 0.

Now, consider the projection cone

Π =
{
π ∈ Rk : πTC ′d = 0, π ≥ 0

}
. (2.16)

It is well known that a linear inequality in the variables {xd}L is valid for proj{xd}L {DP (0, k − 1)}

18

if and only if it can be obtained as a linear combination of the inequalities C{x}L ≥ 0 using some

π ∈ Π. It is also well known that it is not necessary to consider every π ∈ Π to fully define the

projection; it is sufficient to examine only the extreme directions.

In general, it is not a simple task to compute the projection of a polyhedral set onto a lower-

dimensional subspace. The extreme directions of the projection cone may not be readily available,

and the number of such directions can be exponential. However, in this case, the set DP (0, k − 1)

has a special structure that allows for an explicit description.

Given the desired d ∈ {1, . . . , k − 2}, we introduce polynomial inequalities of degree d. To

do this, we form sets R having R ⊂ K and |R| = d. Then, given a binary v, these inequalities take

the form

(−1)v

∏
j∈R

(θj − x)

 ≥ 0. (2.17)

We begin by characterizing those sets R and binary v for which (2.17) is satisfied for all

x ∈ S. Define a matrix Ad in the following manner. Each row has k entries such that d entries are

value 1 and the remaining k − d entries are value 0. The matrix has a row for each binary vector

that satisfies one of the following two properties.

• Property 0. For every entry of value 0, there is an even number of entries of value 1 to the left.

• Property 1. For every entry of value 0, there is an odd number of entries of value 1 to the left.

A row of the matrix Ad that results from a binary vector satisfying Property 0 is called a type-0

row while a row that results from a binary vector satisfying Property 1 is called a type-1 row. An

inequality of the form (2.17) is generated for each row of Ad by letting R denote the index set of

row entries having value 1, and by setting the parameter v to value 0 for type-0 rows, and to value

1 for type-1 rows. See Examples 2.4–2.6 for instances of Ad with k = 5 and d equal to 3, 2, and 1.

Now consider the following lemma.

Lemma 2.2: A polynomial inequality of the type (2.17) is satisfied by all realizations of x ∈ S if

and only if it is generated by either a type-0 row of Ad with v = 0 or a type-1 row of Ad with v = 1.

Proof. The expression
∏
j∈R(θj − x) will be nonnegative (non-positive) for all x ∈ S if and only

if, for every u ∈ K − R, the set R′ ≡ {j ∈ R : θj < θu} has even (odd) cardinality. But since

19

θ1 < θ2 < · · · < θk, the set R′ has even (odd) cardinality if and only if the associated inequality

(2.17) is generated from a type-0 (type-1) row of Ad. The parameter v thus ensures that (2.17) is

satisfied.

Let E denote the number of rows of Ad and assume that the rows have been arranged so

the first Ẽ are type-0 rows and the remaining E − Ẽ are type-1 rows. We denote the index set of

row entries having value 1 in row e by Re for e = 1, . . . , E. Then, by Lemma 2.1, we can describe

the set of all polynomial inequalities of the type (2.17) that are valid for all realizations of x ∈ S as

follows:

∏
j∈Re

(θj − x) ≥ 0, e = 1, . . . , Ẽ, and −
∏
j∈Re

(θj − x) ≥ 0, e = Ẽ + 1, . . . , E. (2.18)

Now, in the same manner as was used to obtain (2.15) from Cx ≥ 0, let us linearize the E

inequalities in (2.18) by substituting a continuous variable for each nonlinear expression. Then, as

demonstrated by Theorem 2.2, the polyhedral set DP (0, d) is given by:

DP (0, d) =

{xd}L ∈ Rd+1 :∏
j∈Re

(θj − x)

L

≥ 0, e = 1, . . . , Ẽ,

−

∏
j∈Re

(θj − x)

L

≥ 0, e = Ẽ + 1, . . . , E

. (2.19)

Theorem 2.2: Given any d ∈ {1, . . . , k − 2}, we have DP (0, d) = proj{xd}L {DP (0, k − 1)} , with

each of the E inequalities of (2.19) defining a facet of DP (0, d).

Proof. The proof is established in three steps. First, we show that each extreme direction of the

projection cone (2.16) generates an inequality of the type found in (2.19). Second, we show that

every inequality of (2.19) can be generated from a direction of (2.16). Finally, we show that every

inequality defining (2.19) is a facet of DP (0, d).

To begin, consider any extreme direction π̂ of Π. Observe that the matrix C ′d has k rows

and k − d− 1 columns so that π̂ must have at least d entries of value 0. Also, it follows from (2.7)

for each j ∈ K, that the polynomial π̂TCx must realize value π̂j when x = θj . So π̂TCx equals 0

when x = θj for each of the (at least) d entries of π̂j that equal 0. Furthermore, since π̂ ∈ Π of

20

(2.16), the expression π̂TCx has degree at most d. This uniquely defines π̂TCx to be of the form

(−1)v
(∏

i∈R(θi − x)
)
. Thus, π̂TC{x}L ≥ 0 is of the form (−1)v

{∏
i∈R(θi − x)

}
L
≥ 0.

Now, consider any inequality defining (2.19): assume without loss of generality that it is

one of the first Ẽ inequalities of the form
{∏

i∈Re
(θi − x)

}
L
≥ 0. Define π̂j =

∏
i∈Re

(θi − θj) for

each j ∈ K. Each such π̂j is nonnegative by (2.18), with π̂TCx =
∏k
j=1 π̂jLj(x) =

∏
i∈Re

(θi − x),

where the first equality is by definition of the matrix C and the second is due to (2.7). Thus, π̂ ∈ Π

of (2.16), and π̂TC{x}L =
{∏

i∈Re
(θi − x)

}
L

. (The proof follows analogously for each of the last

E − Ẽ inequalities of (2.19) by defining π̂j = −
∏
i∈Re

(θi − θj) for each j ∈ K.)

Finally, to show that every inequality defining (2.19) is a facet, we first show that DP (0, d)

has dimension d. It cannot have dimension d + 1 since the first component of every feasible point

has value 1. Now, select any subset of K having cardinality d + 1, say the first d + 1 elements. By

construction of DP (0, d), the d+ 1 points {xd}L = xd evaluated at x = θi for i = 1, . . . , d+ 1, are

feasible to DP (0, d). Form the (d+1)×(d+1) Vandermonde matrix Vd+1 whose (i, q)th entry is θq−1i

so that the ith row is the transpose of xd at x = θi. The matrix Vd+1 is invertible with determinant∏d+1
1≤j<i(θi − θj) (see page 29 of [14]), so the d+ 1 points generating Vd+1 are affinely independent,

giving that DP (0, d) has dimension d. Now consider any e ∈ {1, . . . , E} and the linear expression{∏
i∈Re

(θi − x)
}
L

found in constraint e of (2.19). For e ∈
{

1, . . . , Ẽ
}
, this expression is positive at

all {xd}L = xd evaluated at x = θi for the k− d points having i /∈ Re. For e ∈
{
Ẽ + 1, . . . , E

}
, this

expression is negative when evaluated at the same points. In either case, it equals 0 for the d points

having i ∈ Re. Since these latter d points are affinely independent, we have that the associated

constraint in (2.19) is a facet of DP (0, d).

Three comments relative to the above theorem and proof are in order. First, the initial

assertion of the theorem stipulates that the projection of the set DP (0, k− 1) onto the space of the

variables {xd}L is defined by the inequalities of (2.19), while the latter shows that every inequality

of (2.19) is needed. Thus, no more concise representation exists. Second, the proof uses the fact that

every extreme direction π̂ of the projection cone Π in (2.16) has at least d entries of value 0, and

that each such entry corresponds to a root of π̂TCx. It also uses the fact that π̂TCx is of degree

no greater than d. Consequently, each extreme direction must have exactly d entries of 0 and π̂TCx

must be of degree d since the number of real roots of a polynomial is bounded above by its degree.

Lastly, it follows from the theorem that, given any {x̃}L ∈ DP (0, k − 1) of (2.15), the truncated

21

vector {x̃d}L is feasible to DP (0, d) of (2.19). Since DP (0, k−1) of (2.15) is bounded, it also follows

that every extreme point {x̃d}L of DP (0, d) can be obtained by projecting the extreme point {x̃}L

of DP (0, k − 1) onto the space of the variables xd, where {x̃}L = x̃ evaluated at x̃. However, we

have not shown that the projection of every extreme point {x}L of DP (0, k − 1) yields an extreme

point of DP (0, d); that is, that xd evaluated at x̃ is an extreme point of DP (0, d) for all x̃ ∈ S.

Theorem 2.3 proves this result for d ∈ {2, . . . , k−2}. We preface this theorem with Lemma 2.3 which

gives a further characterization of the set DP (0, 2) and is used in the proof of Theorem 2.3.

Lemma 2.3: Given any (1, x̃, w̃2)T ∈ DP (0, 2), it follows that w̃2 ≥ x̃2, where w̃2 = {x̃2}L.

Proof. Given any (1, x̃, w̃2)T ∈ DP (0, 2), select j ∈ K so that x̃ ∈ [θj , θj+1]. Then

w̃2 ≥ −{(θj − x̃)(θj+1 − x̃)}L + w̃2 = −(θj − x̃)(θj+1 − x̃) + x̃2 ≥ x̃2,

where {(θj − x̃)(θj+1 − x̃)}L is defined to be {(θj − x)(θj+1 − x)}L evaluated at (1, x̃, w̃2)T . The

first inequality follows from {(θj − x)(θj+1 − x)}L ≥ 0 being a restriction of DP (0, 2). The equality

is due to w̃2 = {x̃2}L. The second inequality holds since x̃ ∈ [θj , θj+1].

Theorem 2.3: Given any d ∈ {2, . . . , k − 2}, the point x̃d evaluated at x̃ for each x̃ ∈ S is an

extreme point of DP (0, d).

Proof. It is sufficient to show the result for d = 2 since, for each d ∈ {3, . . . , k − 2}, the set

DP (0, 2) is the projection of the set DP (0, d) onto the space of the variables {x2}L. Thus, let

d = 2 and consider x̃2 = (1, x̃, w̃2)
T

=
(
1, x̃, x̃2

)T
for any x̃ ∈ S. The linear function w2 − 2x̃x

has (1, x, w2)T =
(
1, x̃, x̃2

)T
as the unique minimum over {x̃2}L ∈ DP (0, 2). This follows since, for

(1, x, w2)T ∈ DP (0, 2), the inequality w2 ≥ x2 from Lemma 2.2 gives w2−2x̃x+x̃2 ≥ x2−2x̃x+x̃2 =

(x−x̃)2 ≥ 0. Thus, w2−2x̃x reaches its minimum of−x̃2 at the unique point (x,w2)T =
(
x̃, x̃2

)T
.

Theorems 2.2 and 2.3 combine to show that the sets DP (0, d) of (2.19), for d ∈ {2, . . . , k−2},

are the desired projections of the set DP (0, k−1) defined in (2.15). Recall from our earlier discussion

that the paper [3] establishes a one-to-one correspondence between the extreme points of the set

DP (0, k − 1) and the vectors x evaluated at θj for j ∈ K. We, on the other hand, show that for

each d ∈ {2, . . . , k − 2}, the set DP (0, d) is a projection of DP (0, k − 1) that preserves the same

correspondence, while requiring fewer variables.

22

Observe that Theorem 2.3 does not consider d ∈ {0, 1, k − 1}. For d = k − 1, no projection

emerges. For d = 0, the projection is trivial since the first entry of each {x}L is 1. The case for d = 1

is more interesting, as Theorem 2.2 holds but Theorem 2.3 does not. Examples 2.4 and 2.5 below

illustrate Theorems 2.2 and 2.3 by projecting a discrete variable allowed to realize k = 5 values onto

the set DP (0, 3) and DP (0, 2), respectively. Following this, Example 2.6 shows that Theorem 2.3

does not hold for DP (0, 1).

Example 2.4

Consider a variable x which takes on values in S = {−2,−1, 0, 1, 2}. Here, k = 5 so the inequalities

defining DP (0, k − 1) = DP (0, 4) of (2.15) are given by:

0 1

12 − 1
24 − 1

12
1
24

0 − 2
3

2
3

1
6 − 1

6

1 0 − 5
4 0 1

4

0 2
3

2
3 − 1

6 − 1
6

0 − 1
12 − 1

24
1
12

1
24

1

x

x2

x3

x4

L

≥

0

0

0

0

0

 .

Let d = 3 in order to project this polytope onto the space
{

1, x, x2, x3
}T
L

. The associated projection

cone of (2.16) is:

Π =

π ∈ R5 : [π1, π2, π3, π4, π5]

1
24

− 1
6

1
4

− 1
6

1
24

 = 0,π ≥ 0

.

This cone has six extreme points given by (π1, π2, π3, π4, π5)
T ∈ {(0, 0, 4, 6, 0), (24, 0, 0, 6, 0),

(24, 6, 0, 0, 0), (0, 0, 0, 6, 24), (0, 6, 0, 0, 24), (0, 6, 4, 0, 0)}. Surrogating the inequalities ofDP (0, 4) with

23

these directions yields:

{(−2− x)(−1− x)(2− x)}L ≥ 0,

{(−1− x)(0− x)(2− x)}L ≥ 0,

{(0− x)(1− x)(2− x)}L ≥ 0,

{−(−2− x)(−1− x)(0− x)}L ≥ 0,

{−(−2− x)(0− x)(1− x)}L ≥ 0, and

{−(−2− x)(1− x)(2− x)}L ≥ 0.

These inequalities are exactly the facets which define the polytope DP (0, 3) of (2.19) where the

first three inequalities are of type-0 and the last three are of type-1. Observe that we can avoid

characterizing the extreme directions of the projection cone Π and instead directly acquire these

facets by forming all the type-0 and type-1 rows of the matrix Ad for d = 3 given by

A3 =

1 1 0 0 1

0 1 1 0 1

0 0 1 1 1

1 1 1 0 0

1 0 1 1 0

1 0 0 1 1

.

Using the procedure of Lemma 2.2, this matrix gives rise to the same six inequalities defining

the facets of DP (0, 3). For example, the first row of A3 is of type-0, since every 0 entry has an

even number of 1’s to the left. The index set of the elements of this row equaling 1 is given by

R1 = {1, 2, 5}. Hence, this row of A3 gives rise to the constraint {(θ1 − x)(θ2 − x)(θ5 − x)}L =

{(−2− x)(−1− x)(2− x)}L ≥ 0 which is exactly the facet defined by projecting along the extreme

direction (0, 0, 4, 6, 0) of Π. The other five facets are formed in an analogous manner.

We plot the polytope DP (0, 3) in Figure 2.1 where the continuous variables w2 and w3

represent
{
x2
}
L

and
{
x3
}
L

, respectively. Note that the five extreme points of DP (0, 3) each have

(x,w2, w3) =
(
x, x2, x3

)
evaluated at x ∈ {−2,−1, 0, 1, 2}.

24

w2

b

b

b

b

b

(0, 0, 0)

(1, 1, 1)

(2, 4, 8)

(−1, 1,−1)

(−2, 4,−8)

x

w3

Figure 2.1: Polytope DP (0, 3) in (x,w2, w3) space for x ∈ S = {−2,−1, 0, 1, 2} with w2 =
{
x2
}
L

and w3 =
{
x3
}
L

.

Example 2.5

Again, let x realize values in S = {−2,−1, 0, 1, 2}. Let d = 2 so as to project the polytope DP (0, 4)

onto the space
{

1, x, x2
}T
L

. Theorem 2.2 ensures that the facets of the desired projection, given by

the set DP (0, 2), arise from the type-0 and type-1 rows of A2 given by:

A2 =

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

where the first four rows are type-0 and the fifth row is type-1. This matrix gives rise to the facets

of DP (0, 2) given by:

{(−2− x)(−1− x)}L ≥ 0,

{(−1− x)(0− x)}L ≥ 0,

{(0− x)(1− x)}L ≥ 0,

{(1− x)(2− x)}L ≥ 0, and

{−(−2− x)(2− x)}L ≥ 0.

25

Figure 2.2 plots DP (0, 2) where the continuous variables w2 represents
{
x2
}
L

. Note that, as proved

by Theorem 2.3, DP (0, 2) has five extreme points each satisfying (x,w2) =
(
x, x2

)
evaluated for

some x ∈ {−2,−1, 0, 1, 2}. Also observe that all (x,w2) ∈ DP (0, 2) have w2 ≥ x2 as proved by

Lemma 2.3.

b

b

b

b

b

w2

x
(0,0)

(1,1)

(2,4)

(-1,1)

(-2,4)

{(0− x)(1− x)}L ≥ 0

{(1− x)(2− x)}L ≥ 0

{(−1− x)(0− x)}L ≥ 0

{(−2− x)(−1− x)}L ≥ 0

{−(−2− x)(2− x)}L ≥ 0

1

Figure 2.2: Polytope DP (0, 2) in (x,w2) space for x ∈ S = {−2,−1, 0, 1, 2} with w2 =
{
x2
}
L

.

Example 2.6

Once again, let x realize values in S = {−2,−1, 0, 1, 2}. Let d = 1 so that we project the polytope

DP (0, 4) onto the {1, x}TL space. Theorem 2.2 gives that the facets of DP (0, 1) arise from

A1 =

[
0 0 0 0 1

1 0 0 0 0

]

and are given by:

{(2− x)}L ≥ 0, and {−(−2− x)}L ≥ 0.

These inequalities, simply stated as −2 ≤ x ≤ 2, demonstrate that the polytope DP (0, 1) has the

two extreme points corresponding to {x}L = x evaluated at x ∈ {−2, 2}. Thus, the one-to-one

correspondence between the extreme points of the projected polytope and the permissible values in

S has been lost, exhibiting that Theorem 2.3 does not hold for d = 1.

As a final observation for this section, we provide a count on the number of facets defining

DP (0, d) of (2.19) for any d ∈ {2, . . . , k − 2}. Due to the definition of the type-0 and type-1

constraints, these counts are dependent on the parity of d as shown in the Table 2.1.

26

Table 2.1: Counts for the number of type-0 and type-1 facets of DP (0, d).

d even d odd

type-0 facets

(
k − d

2
d
2

) (
k − 1− d−1

2
d−1
2

)
type-1 facets

(
k − 2− d−2

2
d−2
2

) (
k − 1− d−1

2
d−1
2

)

To lend intuition to these counts, recall that Example 2.4 has d = 3 and x ∈ {−2,−1, 0, 1, 2}

so that k = 5. Since d is odd, the number of type-0 or type-1 facets is

(
5− 1− 3−1

2

3−2
2

)
=

(
3

1

)
= 3

so that the total count is 6. Similarly, Example 2.5 has d = 2 and k = 5 so that the num-

ber of type-0 facets is

(
5− 2

2

2
2

)
=

(
4

1

)
= 4 and the the number of type-1 facets is given by(

5− 2− 2−2
2

2−2
2

)(
3

0

)
= 1 so that the total count is 5.

Interestingly, the combinatorial nature of these facet counts implies that if only a few or

almost all higher-dimensional product variables are projected out, then the number of facets defining

DP (0, d) is relatively small. The greatest number of facets are present when projecting to levels

roughly halfway between the quadratic level (d = 2) and the full level (d = k − 1). Figure 2.3

plots the number of facets defining each DP (0, d) for the case with a discrete variable taking on

21 realizations (k = 21) and d ∈ {2, . . . , 19}. Notice that DP (0, 12) is characterized by 7007 facets

while DP (0, 2) has only 21 facets.

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Projection Level (d)

Fa

ce
ts

 f
or

 D
P

(0
,d

)

Figure 2.3: Number of facets of DP (0, d) for k = 21 and d ∈ {2, . . . , 19}.

27

2.4 Projected Convex Hull Forms for Two Variables

As in Section 2.2, let us now consider two discrete variables x1 and x2 that realize values

in the sets S1 = {θ11, θ12, . . . , θ1k1} and S2 = {θ21, θ22, . . . , θ2k2}, respectively, and ordered so that

θ11 < θ12 < · · · < θ1k1 and θ21 < θ22 < · · · < θ2k2 . Recall that Theorem 2.1 characterizes the set P

of (2.13) as having k1k2 extreme points, with each extreme point defined by a column of the matrix

V T1 V
T
2 . Hence, P is equivalent to DP (k1−1, k2−1) and has the two properties that at each extreme

point the linearized vector
{
x1 ⊗ x2

}
L

= x1 ⊗ x2 with x1 ∈ S1 and x2 ∈ S2 and that there exists

a one-to-one correspondence between the extreme points of P and the possible realizations of x1

and x2. In particular, the first property gives us that element k2 + 2 of
{
x1 ⊗ x2

}
L
, say w11, has

w11 = x1x2 at all k1k2 realizations of x1 and x2. The challenge is to project P onto lower-dimensional

subspaces without losing these properties. In the previous section, we successfully defined a similar

projection for the linearized LIPs of a single variable via the polytope DP (0, d) in (2.19). This result

can be combined in a novel manner with results from [3] to obtain a desired projection of P .

With this in mind, rewrite DP (0, d) in matrix form by defining a matrix Dd so that

DP (0, d) = {{xd}L : Dd {xd}L ≥ 0} .

As in Section 2.3, let Cp {xp}L ≥ 0 represent the linearized LIPs associated with xp for p ∈ {1, 2}.

Then Dp
dp

{
xpdp

}
L
≥ 0 represents our projection of Cp {xp}L ≥ 0 onto the first dp + 1 entries of

{xp}L for p ∈ {1, 2}. We can now define a polytope DP (k1 − 1, d2) as:

DP (k1 − 1, d2) =
{{
x1 ⊗ x2

d2

}
L

:
(
C1 ⊗D2

d2

) {
x1 ⊗ x2

d2

}
L
≥ 0⊗ 0

}
. (2.20)

Observe that by symmetry the study of DP (k1− 1, d2) and DP (d1, k2− 1) are equivalent. Theorem

2.4 demonstrates that this new polyhedral set preserves the two desired extreme point properties

and that DP (k1 − 1, d2) is a projection of P onto a lower-dimensional space.

Theorem 2.4: DP (k1 − 1, d2) = proj{
x1⊗x2

d2

}
L

{P} for d2 ∈ {2, . . . , k2 − 2} and has k1k2 extreme

points given by
{
x1 ⊗ x2

d2

}
L

= x1 ⊗ x2
d2

evaluated at x1 ∈ S1 and x2 ∈ S2.

Proof. That DP (k1 − 1, d2) has k1k2 extreme points given by
{
x1 ⊗ x2

d2

}
L

= x1 ⊗ x2
d2

evaluated

at x1 ∈ S1 and x2 ∈ S2 follows directly from Theorems 2.2 and 2.3 and Theorem 3 of [3], since

28

this set is formed as the Kronecker product of the full linearized LIPs for x1 with a polytope that

preserves the desired extreme point properties for x2. To show equivalence between the two sets, we

demonstrate that each is a subset of the other. Begin by choosing any extreme point
{
x̃1 ⊗ x̃2

d2

}
L

of

DP (k1−1, d2). Then the completion of this point, given by
{
x̃1 ⊗ x̃2

}
L

= x1⊗x2 evaluated for some

x1 ∈ S1 and x2 ∈ S2 is certainly in P . Thus,
{
x̃1 ⊗ x̃2

d2

}
L
∈ proj{

x1⊗x2
d2

}
L

{P}. Since all extreme

points of DP (k1−1, d2) are in proj{
x1⊗x2

d2

}
L

{P}, then DP (k1−1, d2) ⊆ proj{
x1⊗x2

d2

}
L

{P}. Next,

choose any extreme point
{
x̃1 ⊗ x̃2

d2

}
L

of proj{
x1⊗x2

d2

}
L

{P}. Given the structure of the extreme

points of P , the point
{
x̃1 ⊗ x̃2

d2

}
L

must satisfy
{
x̃1 ⊗ x̃2

d2

}
L

= x1 ⊗ x2
d2

for some x1 ∈ S1 and

x2 ∈ S2. Thus
{
x̃1 ⊗ x̃2

d2

}
L

is also an extreme point of DP (k1 − 1, d2). Since all extreme points of

proj{
x1⊗x2

d2

}
L

{P} are in DP (k1 − 1, d2), then proj{
x1⊗x2

d2

}
L

{P} ⊆ DP (k1 − 1, d2).

Example 2.7

Let x1 and x2 take on values in S1 = {0, 1} and S2 = {0, 1, 2, 3} respectively. Then k1 = 2 and

k2 = 4 with C1 =

[
1 −1

0 1

]
and C2 =

1 − 11

6 1 − 1
6

0 3 − 5
2

1
2

0 − 3
2 2 − 1

2

0 1
3 − 1

2
1
6

. To form the polytope DP (1, 2),

project C2

{
x2
}
L

onto the
{

1, x, x2
}T
L

space so that D2
2 =

0 −1 1

2 −3 1

6 −5 1

0 3 −1

 . Then, DP (1, 2) is given

by:

DP (1, 2) =

1

x2

x2
2

x1

x1x2

x1x
2
2

L

:

0 −1 1 0 1 −1

2 −3 1 −2 3 −1

6 −5 1 −6 5 −1

0 3 −1 0 −3 1

0 0 0 0 −1 1

0 0 0 2 −3 1

0 0 0 6 −5 1

0 0 0 0 3 −1

1

x2

x2
2

x1

x1x2

x1x
2
2

L

≥

0

0

0

0

0

0

0

0

.

This polytope is bounded and has 8 extreme points given by
{

1, x2, x
2
2, x1, x1x2, x1x

2
2

}T
L
∈

{(1, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0), (1, 2, 4, 0, 0, 0), (1, 3, 9, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 1, 1, 1, 1, 1),

(1, 2, 4, 1, 2, 4), (1, 3, 9, 1, 3, 9)}. Thus, all extreme points correspond to
{
x1 ⊗ x2

2

}
L

= x1 ⊗ x2
2 eval-

uated at all x1 ∈ S1 and x2 ∈ S2.

A note regarding Theorem 2.4 is in order. P is a (k1k2 − 1)-dimensional polytope, but

29

DP (k1− 1, d2) preserves the characteristics of P in only (k1d2 +k1− 1) dimensions. It is prudent to

define x2 as the discrete variable which realizes the most values and then choose d2 ∈ {2, . . . , k2−2} as

small as possible. For example, if k1 = 10 and k2 = 100, then P = DP (9, 99) has 999 dimensions. Yet

if we let d2 = 2, then DP (9, 2) has only 29 dimensions. In this manner, the polytope DP (k1−1, d2)

can facilitate a substantial reduction in the number of requisite auxiliary variables.

As a further extension in the spirit of [3], it seems logical to individually project the LIPs for

both variables and then take the Kronecker product of these projections. This can be accomplished

via a new polyhedral set Pd1,d2 defined as:

Pd1,d2 =
{{
x1
d1 ⊗ x

2
d2

}
L

:
(
D1
d1 ⊗D

2
d2

) {
x1
d1 ⊗ x

2
d2

}
L
≥ 0⊗ 0

}
.

Whereas Theorem 2.2 characterized new polytopes DP (0, d) = proj{xd}L {DP (0, k − 1)} for a single

variable with d ∈ {2, . . . , k− 2}, we similarly desire that Pd1,d2 = DP (d1, d2) = proj{
x1

d1
⊗x2

d2

}
L

{P}

for two variables with d1 ∈ {2, . . . , k1 − 2} and d2 ∈ {2, . . . , k2 − 2}. However, this is not the case,

and Pd1,d2 6= DP (d1, d2) as Example 2.8 demonstrates.

Example 2.8

Let the discrete variables x1 and x2 both take on values in S1 = S2 = {0, 1, 2, 3} and form the

polytope P2,2. To accomplish this, we project the linearized LIPs for each individual variable onto

the
{

1, xj , x
2
j

}T
L

space so that d1 = d2 = 2 and D1
2 = D2

2 =

0 −1 1

2 −3 1

6 −5 1

0 3 −1

 . Then, the polytope

30

P2,2 is given by:

P2,2 =

1

x2

x2
2

x1

x1x2

x1x
2
2

x2
1

x2
1x2

x2
1x

2
2

L

:

0 0 0 0 1 −1 0 −1 1

0 0 0 −2 3 −1 2 −3 1

0 0 0 −6 5 −1 6 −5 1

0 0 0 0 −3 1 0 3 −1

0 −2 2 0 3 −3 0 −1 1

4 −6 2 −6 9 −3 2 −3 1

12 −10 2 −18 15 −3 6 −5 1

0 6 −2 0 −9 3 0 3 −1

0 −6 6 0 5 −5 0 −1 1

12 −18 6 −10 15 −5 2 −3 1

36 −30 6 −30 25 −5 6 −5 1

0 18 −6 0 −15 5 0 3 −1

0 0 0 0 −3 3 0 1 −1

0 0 0 6 −9 3 −2 3 −1

0 0 0 18 −15 3 −6 5 −1

0 0 0 0 9 −3 0 −3 1

1

x2

x2
2

x1

x1x2

x1x
2
2

x2
1

x2
1x2

x2
1x

2
2

L

≥

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.

This polytope is bounded and has 24 extreme points. The first 16 extreme points correspond to{
x1
2 ⊗ x2

2

}
L

= x1
2⊗x2

2 evaluated at all x1 ∈ S1 and x2 ∈ S2. Unfortunately, the remaining 8 extreme

points are fractional, indicating that P2,2 6= DP (2, 2) = proj{x1
2⊗x2

2}L
{P} .

The previous example illustrates that while all inequalities of Pd1,d2 are valid, they do not

completely characterize DP (d1, d2) = proj{
x1

d1
⊗x2

d2

}
L

{P} . An ongoing challenge is to find a closed

form for this characterization.

Interestingly, the above arguments can be generalized to accommodate polytopes which

linearize the product of a continuous variable x1 with a discrete variable x2. To see this, consider

the case where x1 ∈ {l, u} within P of (2.13) so that k1 = 2, θ11 = l, and θ12 = u. Then for

any d2 ∈ {2, . . . , k2 − 2}, Theorem 2.4 shows that the polytope DP (1, d2) of (2.20) characterizes

proj{
x1⊗x2

d2

}
L

{P} and that
{
x1 ⊗ x2

d2

}
L

= x1 ⊗ x2
d2

at each extreme point of DP (1, d2). Notably

for this case, these polytopes DP (1, d2) possess an even stronger result; provided any x1 ∈ [l, u] and

that
{
x2
d2

}
L

= x2
d2

evaluated at x2 ∈ S2, it follows that
{
x1 ⊗ x2

d2

}
L

= x1 ⊗ x2
d2
. This allows for

the variable x1 to realize any value in the interval [l, u] and yet still have a valid linearization of

polynomial terms amongst the two variables. To prove this generalization, we present the lemma and

theorem below. In keeping with previous notation, the the vector
{
x2
n−1
}
L

=
{

1, x2, x
2
2, . . . , x

n−1
2

}T
L
.

31

Lemma 2.4: Consider a linear expression of the form
{
x1
∏
i∈N (θi − x2)

}
L

having distinct realiza-

tions θi for i ∈ {1, . . . , n} ≡ N . If
{
x1 ⊗ x2

n−1
}
L

= x1⊗x2
n−1 evaluated at x2 = θj for some j ∈ N ,

then it follows that
{
x1
∏
i∈N (θi − x2)

}
L

= x1θ
n
j − {x1xn2}L.

Proof. Begin by re-expressing
{
x1
∏
i∈N (θi − x2)

}
L

in vector form as f
{
x1 ⊗ x2

}
L

where

f = [f0, f1, . . . , fn] and
{
x1 ⊗ x2

}
L

=
{
x1, x1x2, x1x

2
2, . . . , x1x

n
2

}T
L

and note that the inherent

structure of
{
x1
∏
i∈N (θi − x2)

}
L

gives that fn = (−1)n. Observe that the nonlinear expression

x1
∏
i∈N (θi − x2) equals zero if x2 = θj for some j ∈ N . This gives that f0x1 +

∑n−1
i=1 fix1θ

i
j =

−fnx1θnj = (−1)n+1x1θ
n
j . Thus, if

{
x1 ⊗ x2

n−1
}
L

= x1 ⊗ x2
n−1 evaluated at x2 = θj for some

j ∈ N , then f
{
x1 ⊗ x2

}
L

=
{
f0x1 +

∑n−1
i=1 fix1x

i
2 + fnx1x

n
2

}
L

=
{

(−1)n+1x1θ
n
j + (−1)nx1x

n
2

}
L

=

x1θ
n
j − {x1xn2}L.

Theorem 2.5: For S1 = {l, u}, S2 = {θ21, . . . , θ2k2}, and d2 ∈ {2, . . . , k2 − 2}, given any feasible

solution to DP (1, d2) having x1 ∈ [l, u] and
{
x2
d2

}
L

= x2
d2

evaluated at some x2 ∈ S2, then it follows

that
{
x1 ⊗ x2

d2

}
L

= x1 ⊗ x2
d2

.

Proof. Assume d2 ∈ {2, . . . , k2 − 2} and
{
x2
d2

}
L

= x2
d2

evaluated at some x2 = θ2j ∈ S2. Observe

that Theorem 2.4 implies that DP (1, d2) is a projection of the set DP (1, d2 + 1), since both of these

sets are projections of the higher-dimensional set P of (2.13). This guarantees that any valid impli-

cations made by the set DP (1, d2) automatically hold in the higher-dimensional space DP (1, d2+1).

Hence, this proof proceeds by induction on the value d2, beginning with d2 = 2. Then, in higher di-

mensions with d2 ∈ {3, . . . , k2−2}, it is assumed that the lower-dimensional product terms {x1x2}L

through
{
x1x

d2−1
2

}
L

equal their intended values and it is shown that
{
x1x

d2
2

}
L

equals its intended

value.

Base Case: Let d2 = 2. Since this case utilizes the projection of the LIPs for x2 onto the quadratic

space
{
x2
2

}
L

=
{

1, x2, x
2
2

}
L

, any θ2j ∈ S2 satisfies exactly one of two conditions regarding the set

DP (0, 2) of (2.19). The first condition is that the point
{
x2
2

}
L

=
(
1, θ2j , θ

2
2j

)T
lies on two type-0

facets. The second condition is that
{
x2
2

}
L

=
(
1, θ2j , θ

2
2j

)T
lies on one type-0 and one type-1 facet.

Proven below is the result that x1θ2j = {x1x2}L and x1θ
2
2j =

{
x1x

2
2

}
L

under both condition 1 and

condition 2.

32

Condition 1 : Assume
{
x2
2

}
L

=
(
1, θ2j , θ

2
2j

)T
lies on two type-0 facets. Judiciously choose four

of the constraints of DP (1, 2) given by

{(−l + x1)(θ2j−1 − x2)(θ2j − x2)}L ≥ 0,

{(u− x1)(θ2j−1 − x2)(θ2j − x2)}L ≥ 0,

{(−l + x1)(θ2j − x2)(θ2j+1 − x2)}L ≥ 0, and

{(u− x1)(θ2j − x2)(θ2j+1 − x2)}L ≥ 0

which, since
{
x2
2

}
L

= x2
2 evaluated at x2 = θ2j , reduce to

F1 ≡ {(x1)(θ2j−1 − x2)(θ2j − x2)}L ≥ 0,

F2 ≡ {(−x1)(θ2j−1 − x2)(θ2j − x2)}L ≥ 0,

F3 ≡ {(x1)(θ2j − x2)(θ2j+1 − x2)}L ≥ 0, and

F4 ≡ {(−x1)(θ2j − x2)(θ2j+1 − x2)}L ≥ 0.

Surrogating F2 and F3 with multiples of 1 results in the inequality

{(x1)(θ2j − x2)(θ2j+1 − θ2j−1)}L ≥ 0. (2.21)

Similarly, surrogating F1 and F4 with multiples of 1 results in the inequality

{(x1)(θ2j − x2)(θ2j+1 − θ2j−1)}L ≤ 0. (2.22)

Thus (2.21) and (2.22) enforce that 0 ≤ {(x1)(θ2j − x2)}L ≤ 0 so that x1θ2j = {x1x2}L as

desired. Now, since x1θ2j = {x1x2}L, Lemma 2.4 gives that the constraint F1 reduces to

x1θ
2
2j −

{
x1x

2
2

}
L
≥ 0 and F2 reduces to x1θ

2
2j −

{
x1x

2
2

}
L
≤ 0 so that x1θ

2
2j =

{
x1x

2
2

}
L

.

Condition 2 : Assume
{
x2
2

}
L

=
(
1, θ2j , θ

2
2j

)T
lies on one type-0 facet and one type-1 facet. This

implies that θ2j either equals θ21 or θ2k2 . Without loss of generality, assume that θ2j = θ21

33

and judiciously choose four constraints of DP (1, 2) given by

{(−l + x1)(θ21 − x2)(θ22 − x2)}L ≥ 0,

{(u− x1)(θ21 − x2)(θ22 − x2)}L ≥ 0,

{−(−l + x1)(θ21 − x2)(θ2k2 − x2)}L ≥ 0, and

{−(u− x1)(θ21 − x2)(θ2k2 − x2)}L ≥ 0.

Since
{
x2
2

}
L

= x2
2 evaluated at x2 = θ21, these constraints reduce to

F1 ≡ {(x1)(θ21 − x2)(θ22 − x2)}L ≥ 0,

F2 ≡ {(−x1)(θ21 − x2)(θ22 − x2)}L ≥ 0,

F3 ≡ {(−x1)(θ21 − x2)(θ2k2 − x2)}L ≥ 0, and

F4 ≡ {(x1)(θ21 − x2)(θ2k2 − x2)}L ≥ 0.

Surrogating F2 and F4 with multiples of 1 results in the inequality

{(x1)(θ2j − x2)(θ2k2 − θ22)}L ≥ 0. (2.23)

Similarly, surrogating F1 and F3 with multiples of 1 results in the inequality

{(x1)(θ2j − x2)(θ2k2 − θ22)}L ≤ 0. (2.24)

Thus (2.23) and (2.24) enforce that 0 ≤ {(x1)(θ21 − x2)}L ≤ 0 so that x1θ21 = {x1x2}L as

desired. Now, since x1θ21 = {x1x2}L, Lemma 2.4 gives that the constraint F1 reduces to

x1θ
2
21 −

{
x1x

2
2

}
L
≥ 0 and F2 reduces to x1θ

2
21 −

{
x1x

2
2

}
L
≤ 0 so that x1θ

2
21 =

{
x1x

2
2

}
L

as

desired.

Induction Step: Assume d2 ∈ {3, . . . , k2 − 2} and that
{
x1 ⊗ x2

d2−1
}
L

= x1 ⊗ x2
d2−1 evaluated at

x1 ∈ [l, u] and x2 = θ2j ∈ S2. Choose any two constraints of DP (1, d2) having the form

{(−l + x1)(θ2j − x2)(θ2j1 − x2) · · · (θ2jn − x2)}L ≥ 0, and

{(u− x1)(θ2j − x2)(θ2j1 − x2) · · · (θ2jn − x2)}L ≥ 0

34

where n = d2 − 1 and the the elements j1, j2, . . . , jn ∈ {1, . . . , k2} appropriately define the chosen

constraints. Since
{
x2
d2

}
L

= x2
d2

for x2 = θ2j ∈ S2, these constraints reduce to

{(x1)(θ2j − x2)(θ2j1 − x2) · · · (θ2jn − x2)}L ≥ 0, and

{(−x1)(θ2j − x2)(θ2j1 − x2) · · · (θ2jn − x2)}L ≥ 0.

Finally, since we assume
{
x1 ⊗ x2

d2−1
}
L

= x1 ⊗ x2
d2−1, Lemma 2.4 gives that these two inequalities

reduce to

x1θ
d2
2j −

{
x1x

d2
2

}
L
≥ 0, and

x1θ
d2
2j −

{
x1x

d2
2

}
L
≤ 0.

Thus, x1θ
d2
2j =

{
x1x

d2
2

}
L

as desired.

2.5 Conclusions

Given two discrete variables x1 and x2 that can realize k1 and k2 distinct values respectively,

this chapter focused on the construction of convex hull representations that can be used to model

polynomial functions of these variables. It was shown that, without loss of generality, such functions

can be assumed to have maximum degrees of k1−1 and k2−1 on x1 and x2 respectively. In order to

accurately model the polynomial expressions in such a function, the problem was recast in a higher-

dimensional variable space by defining a new continuous variable for each distinct nonlinear term.

Such polytopes naturally generalize known results relative to the product of two binary variables,

the product of a binary and continuous variable, and outer-approximations for the product of two

continuous variables.

The polytopes under study have two special properties. First, there is a one-to-one corre-

spondence between the set of extreme points and the k1k2 possible pairwise-realizations of x1 and

x2. Second, at every such extreme point, each of x1 and x2 realizes one of its permissible values, and

every auxiliary variable equals to its intended product. These properties are desirable since explicit

descriptions of such polytopes allow the motivating polynomial functions, through similar variable

substitutions, to be optimized as a linear program.

35

The theoretical foundation of our constructions is a special family of functions, known as La-

grange interpolating polynomials, that have previously been used to derive convex hull forms within

a reformulation-linearization technique (RLT). The novelty of this chapter is the projection of these

higher-dimensional RLT spaces onto lower-dimensional counterparts. We completely characterized

such projections for the case of a single variable, and in turn used this characterization to motivate

special projections for the two-variable case. Included here is the complete and explicit description

of all lower-dimensional spaces for the product of a discrete and binary variable (general k1 and

k2 = 2). The resulting polyhedral structure also allows for the representation of the product of a

discrete and bounded-continuous variable. Interestingly, for both of these latter cases, the number

of facets is only 2(k1 + 1) when the projected space has the variable x1 of degree at most 2. For the

general case in which k1 ≥ 3 and k2 ≥ 3, facets are provided but the convex hull representation is

not known.

Future research includes both an extension of the theory and the computer implementation

within solution algorithms. Relative to theory, the key challenge is the acquisition of the convex

hull representation for the general cases having k1 ≥ 3 and k2 ≥ 3. For these cases, the projection

operation is not fully defined. The insights gained from the special instances may shed light in this

regard. From a computational point of view, the known convex hull representations should give rise

to more efficient solution strategies. Such forms have been extensively used for the case of binary x1

and x2, and it is expected that similar successes may be realized for the discrete case. Of particular

interest here is the product of a discrete x1 and binary x2 where x1 has degree at most 2 since, as

mentioned above, the convex hull forms are available and concise in size.

36

Bibliography

[1] Adams, W.P. and Hadavas, P.T., “A Network Approach for Specially-Structured Linear Pro-
grams Arising in 0-1 Quadratic Optimization,” Discrete Applied Mathematics, Vol. 156, Issue 11,
2142-2165, 2008.

[2] Adams, W.P. and Henry, S.M., “Base-2 Expansions for Linearizing Products of Functions of
Discrete Variables,” Operations Research, submitted.

[3] Adams, W.P. and Sherali, H.D., “A Hierarchy of Relaxations Leading to the Convex Hull
Representation for General Discrete Optimization Problems,” Annals of Operations Research,
Vol. 140, No. 1, 21-47, 2005.

[4] Al-Khayyal, F.A. and Falk, J.E., “Jointly Constrained Biconvex Programming,” Mathematics
of Operations Research, Vol. 8, No. 2, 273-286, 1983.

[5] Anstreicher, K.M. and Burer, S., “Computable Representations for Convex Hulls of Low-
Dimensional Quadratic Forms,” Working Paper, Department of Management Sciences, Uni-
versity of Iowa, 2007.

[6] Barahona, F., “The Max-Cut Problem on Graphs Not Contractible to K5,” Operations Research
Letters, Vol. 2, Issue 3, 107-111, 1983.

[7] Burer, S. and Letchford, A.N., “On Non-Convex Quadratic Programming with Box Con-
straints,” SIAM Journal on Optimization, Vol 20, Issue 2, 1073-1089, 2009.

[8] Coppersmith, D., Lee, J., and Leung, J., “A Polytope for a Product of Real Linear Functions
in 0/1 Variables,” IBM Research Report RC21568, 1999.

[9] DeSimone, C., “The Cut Polytope and the Boolean Quadric Polytope,” Discrete Mathematics,
Vol. 79, Issue 1, 71-75, 1990.

[10] DeSimone, C., “A Note on the Boolean Quadric Polytope,” Operations Research Letters, Vol. 19,
Issue 3, 115-116, 1996.

[11] Fortet, R. “L’algèbre de Boole et ses Applications en Recherche Opérationelle,” Cahiers du
Centre d’Études de Recherche Opérationelle, Vol. 1, No. 4, 5-36, 1959.

[12] Fortet, R., “Applications de l’algèbre de Boole en Recherche Opérationelle,” Revue Française
d’Informatique et de Recherche Opérationelle, Vol. 4, No. 14, 17-26, 1960.

[13] Glover, F., “Improved Linear Integer Programming Formulations of Nonlinear Integer Pro-
grams,” Management Science, Vol. 22, No. 4, 455-460, 1975.

37

[14] Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press, New York, NY
10011, 1985.

[15] Li, H.L. and Lu, H.C., “Global Optimization for Generalized Geometric Programs with Mixed
Free-Sign Variables,” Operations Research, Vol. 57, No. 3, 701-713, 2009.

[16] McCormick, G.P., “Computability of Global Solutions to Factorable Nonconvex Programs: Part
I - Convex Underestimating Problems,” Mathematical Programming, Vol. 10, 146-175, 1976.

[17] Padberg, M., “The Boolean Quadric Polytope: Some Characteristics, Facets, and Relatives,”
Mathematical Programming, Vol. 45, 139-172, 1989.

[18] Rhys, J.M.W., “A Selection Problem of Shared Fixed Costs and Network Flows,” Management
Science, Vol. 17, No. 3 200-207, 1970.

[19] Sherali, H.D. and Adams, W.P., “A Hierarchy of Relaxations Between the Continuous and
Convex Hull Representations for Zero-One Programming Problems,” SIAM Journal on Discrete
Mathematics, Vol. 3, No. 3, 411-430, 1990.

[20] Sherali, H.D. and Adams, W.P., “A Hierarchy of Relaxations and Convex Hull Characterizations
for Mixed-Integer Zero-One Programming Problems,” Discrete Applied Mathematics Vol. 52,
No. 1, 83-106, 1994.

[21] Sherali, H.D. and Adams, W.P., “A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems,” Kluwer Academic Publishers, Norwell, MA, 1999.

[22] Sherali, H.D., Lee, Y., and Adams, W.P., “A Simultaneous Lifting Strategy for Identifying
New Classes of Facets for the Boolean Quadric Polytope,” Operations Research Letters, Vol. 17,
Issue 1, 19-26, 1995.

[23] Sun, X., “Combinatorial Algorithms for Boolean and Pseudo-Boolean Functions,” PhD Disser-
tation, Rutgers University, 1992.

38

Chapter 3

Exploiting Simplices in Computing

Convex Hulls

A fundamental challenge in optimizing mixed-integer programs (MIPs) is the procurement

of strong polyhedral outer-approximations to the convex hull of feasible solutions. These outer-

approximations can provide strong bounds in general enumeration strategies and greatly improve

computational performance. In this chapter, we focus on a method known as the reformulation-

linearization technique (RLT) which operates by recasting original problem descriptions into new,

higher-dimensional regions. In doing so, the RLT can partially or completely eliminate discretiza-

tions, nonlinearities, and non-convexities that complicate the original formulations.

Generally speaking, the RLT operates by performing the following two steps. First, the

reformulation step multiplies the constraints of the original problem by special “functional factors”

which vary depending on the nature of the discrete variables. Then, using the inherent structure of

these functional factors, certain “simplifying identities” can be applied where, again, the nature of

these simplifications depends on the nature of the functional factors. Second, the linearization step

replaces all nonlinear terms with new continuous variables. Depending on the manner in which the

constraints and functional factors are multiplied, the strength of the resulting higher-dimensional

polyhedron can range anywhere between the continuous relaxation and the convex hull.

The purpose of this chapter is to introduce new functional factors and simplifying identities

that subsume and generalize previous RLT results for mixed-binary and mixed-discrete programs

39

and give rise to richer convex hull theory. These generalizations are made by employing judiciously

scaled facets of a class of special polytopes known as simplices. The remainder of this chapter

is arranged as follows: Section 3.1 reviews RLT results for mixed-binary and mixed-discrete sets,

Section 3.2 introduces the simplicial structures that form the foundation for our new RLT results,

Section 3.3 develops novel convex hull proofs that generalize previous results, Section 3.4 relates our

new insights to classical RLT ideas, and Section 3.5 summarizes these results.

3.1 Reformulation-Linearization Technique Background

This section provides a brief survey of the RLT as it relates to mixed-binary and mixed-

discrete problems and introduces the underlying theoretic machinery. The RLT for binary and

mixed-binary programs was introduced over 20 years ago in [2, 3] and was only recently generalized

to mixed-discrete sets in [1]. These papers demonstrate that the RLT methodology provides the

ability to generate a hierarchy of successively tighter representations where the lowest level of this

hierarchy yields a continuous relaxation for the original problem and the highest level gives an

explicit convex hull representation of the feasible solutions. In this chapter, we are concerned with

the development of new convex hull representations which generalize the convex hulls obtained by

the RLT for mixed-binary and mixed-discrete sets. Hence, this section focuses on the highest level

of the RLT hierarchy and provides an overview of how this representation is formed.

3.1.1 Kronecker Products

We begin by examining a matrix operation known as the Kronecker product. This product

allows for an elegant description of the RLT machinery; its properties form the backbone of several

proofs that appear later in the chapter. The use of Kronecker products was first introduced in [1] for

generating RLT representations of mixed-discrete sets, but it can also be used to form the mixed-

binary RLT representations of [2, 3]. This product, denoted by ⊗, is defined as follows. Consider

an m× n matrix A and a second matrix B of any dimension. Then A⊗B ≡

 a11B · · · a1nB

.

.

.
. . .

.

.

.

am1B · · · amnB

where aij represents the (i, j)th element of A.

A useful interpretation of the Kronecker product as it relates to the RLT can be intuitively

observed when both A and B are column vectors. In this case, the resulting product A ⊗ B is a

40

column vector wherein every element of A is multiplied by every element of B. This interpretation

has application to the reformulation step of the RLT where we desire to multiply every constraint

of a fomulation by every functional product associated with the discrete variables.

Three important properties arise from the definition of the Kronecker product. Take a scalar

k and matrices A, B, C, and D with appropriate dimensions so that the standard products AC and

BD are defined and where A and B are invertible. Then we have:

Property 1: (A⊗B)(C ⊗D) = AC ⊗BD,

Property 2: (A⊗B)−1 = A−1 ⊗B−1,

Property 3: k(A⊗B) = kA⊗B = A⊗ kB.

Note that the invertibility of A and B plays no part in validity of Properties 1 and 3. Also, observe

that Property 1 can be applied recursively if the matrices A, B, C, and D are themselves formed as

the Kronecker product of matrices with appropriate sizes. The same is true for Property 2 if A and

B are composed of Kronecker products of invertible matrices.

3.1.2 RLT for Mixed-Binary Programs

We now demonstrate how the RLT generates convex hull representations for mixed-binary

programs. Begin by considering the set

XB ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, x ∈ {0, 1}} (3.1)

where only a single variable x is restricted to take on binary values and the remaining m variables of

y are continuous between 0 and 1. Assuming Ax+By ≥ d describes a system of p linear constraints,

observe that A ∈ Rp×1 since there is a single variable x but B ∈ Rp×m since y contains m variables.

We focus on this relatively simple case to clarify the RLT description and notation and to draw

more explicit parallels between this binary case and the new, more general convex hulls results

that appear in Section 3.3. In Section 3.4 we demonstrate how the RLT operates for mixed-binary

problems having more than one binary variable and how the work of this chapter generalizes those

results.

Since the variable x is restricted to be binary, we have that the inequalities 1 − x ≥ 0 and

x ≥ 0 are implicitly satisfied by any solution to XB . In fact, the expressions 1−x and x are exactly

the functional products used by the RLT for mixed-binary problems. They can be expressed in

41

vector form as the system

Px′ =

[
1 −1

0 1

](
1

x

)
≥

(
0

0

)
. (3.2)

For notational convenience throughout this chapter, given any column vector x we let x′ denote the

related vector

(
1

x

)
having a 1 appended to the beginning of the original vector. For the specific

case where x is scalar, then the notation x′, as in Px′ above, denotes the 2-dimensional vector(
1

x

)
.

Now that we have defined the functional products of the binary variable x in (3.2), consider

the associated simplifying identity which arises from the nature of x. Observe that since x is binary,

it naturally exhibits the idempotent property

x2 = x. (3.3)

This equality is exactly the simplifying identity used by the RLT for mixed-binary programs.

Using the functional products of (3.2) and the simplifying identity of (3.3), we now apply

the two steps of reformulation and linearization to generate a higher-dimensional polytope that

produces the convex hull for the original set XB . Begin by noting that since any solution to XB

implicitly satisfies Px′ ≥ 0, we can equivalently rewrite XB as

XB ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, Px′ ≥ 0, x ∈ {0, 1}} . (3.4)

Then, using (3.4), the two RLT steps operate as follows.

Step 1. Reformulation

Compute the Kronecker product of Px′ with the constraints Ax+By ≥ d and 0 ≤ y ≤ 1 of (3.4).

Then, enforce the simplifying identity x2 = x. Note that it is unnecessary to compute the Kronecker

product of functional products with themselves since Px′ ⊗ Px′ reduces to Px′ upon enforcement

of x2 = x. Hence, it is sufficient to enforce Px′ ≥ 0.

Step 2. Linearization

For each of the m distinct product terms in the vector x′ ⊗ y substitute a continuous variable and

denote the resulting linearized vector as {x′ ⊗ y}L. Notice that the single product term in x′ ⊗ x

42

can be substituted out of the problem via the identity x2 = x. Thus, enforcing {x′ ⊗ x}L = (x, x)T

removes the need to explicitly enforce x2 = x. By denoting the new linearized variables in {x′⊗y}L

by w and using Property 1 of Kronecker products, we have the resulting polyhedral set given by

ΩB =

(x,y,w) ∈ R × Rm × Rm :

(P ⊗A)(x, x)T + (P ⊗B){x′ ⊗ y}L ≥ (P ⊗ d)x′,

0 ≤ (P ⊗ Im){x′ ⊗ y}L ≤ (P ⊗ 1m)x′,

Px′ ≥ 0

where Im is a m×m identity matrix and 1m is a m× 1 vector of ones.

The paper [3] demonstrates that this set ΩB is a convex hull representation for XB . Specif-

ically, the paper proves:

1) for any (x,y,w) ∈ ΩB with x ∈ {0, 1}, then {x′ ⊗ y}L = x′ ⊗ y, and

2) conv {ΩB ∩ x ∈ {0, 1}} = ΩB

where conv {•} denotes the convex hull of the set •. These results allow the original binary space

XB to be equivalently modeled by the continuous linear space ΩB .

3.1.3 RLT for Mixed-Discrete Programs

Similarly to the previous subsection, here we demonstrate how the RLT generates convex

hull representations for mixed-discrete sets. Begin by considering the set

XD ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, x ∈ S} (3.5)

where x is restricted to realize discrete values in the set S = {θ1, θ2, . . . , θk}. As before, we con-

centrate on this relatively simple case having a single discrete variable in order to clarify nota-

tion/explanations and to enable easy comparison of these results with our more general results in

Section 3.3. Section 3.4 discusses convex hull representations of mixed-discrete problems having

more than one discrete variable.

Now, to form the set of functional products associated with the allowable values of the

discrete x, we turn to a special set of expressions known as Lagrange interpolating polynomials

(LIPs). Letting K ≡ {1, 2, . . . , k}, there are k distinct (k − 1)-degree LIPs, denoted Li(x) for each

43

i ∈ K, which are given by

Li(x) =

∏
j∈K−{i}

(x− θj)∏
j∈K−{i}

(θi − θj)
∀i ∈ K. (3.6)

These k LIPs are exactly the functional products used by the RLT for mixed-discrete programs. For

convenience, we can write this system of LIPs using matrix notation as

Cẋ ≥ 0 (3.7)

where the k × k matrix C has the (i, j)th entry given by the coefficient of xj−1 in Li(x) and the

k-dimensional vector ẋ has each element equal to the variable x raised to successively higher integer

powers, starting with power 0. Thus ẋ appears as ẋ = (1, x, x2, x3, . . . , xk−1)T .

Note that for any x ∈ S, the system (3.7) is naturally nonnegative since the LIPs are

constructed in such a way as to ensure that if x takes on the ith realization in S, then the ith LIP

will take on value 1 and the rest will take on value 0. Hence, for any x ∈ S we have the property

that

Li(x) = [C]iẋ =

 1 if x = θi

0 otherwise
∀i ∈ K, (3.8)

where [•]i denotes the ith row of the matrix •. As shown in [1], the LIP system Cẋ generalizes and

subsumes the functional products x and 1 − x for a binary variable x. Observe that if S = {0, 1},

then ẋ = (1, x)T so that [C]1ẋ = x−1
0−1 = 1− x and [C]2ẋ = x−0

1−0 = x. Thus the system (3.7) reduces

to the system (3.2) when x is binary.

The LIP property (3.8) ensures that if x ∈ S, then we have that

([C]iẋ)x = ([C]iẋ)θi ∀i ∈ K. (3.9)

These are exactly the simplifying identities used by the RLT for mixed-discrete programs. Stated in

words, the identities of (3.9) guarantee that whenever x ∈ S, then the ith LIP times x is equal to the

ith LIP times that single realization θi which causes the LIP to equal 1. Note that the identity x2 = x

44

of (3.3) for binary x is a special case of the identities (3.9), as can be observed when S = {0, 1}.

Using the functional products (3.7) and simplifying identities (3.9) above, we now apply

the two steps of reformulation and linearization to generate a higher-dimensional polytope which

yields the convex hull for XD. Since any solution to XD implicitly satisfies Cẋ ≥ 0, the set can be

equivalently rewritten as

XD ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, Cẋ ≥ 0, x ∈ S} . (3.10)

Using (3.10), the two RLT steps operate as follows.

Step 1. Reformulation

Compute the Kronecker product of Cẋ with the constraints Ax+By ≥ d and 0 ≤ y ≤ 1 of (3.10).

Then enforce the simplifying identities of (3.9). It is possible to simultaneously enforce all k of these

simplifying identities by defining

Cẋ⊗ x = θ∗ (3.11)

where θ∗ is a k-dimensional vector of the form θ∗ =

([C]1ẋ)θ1

.

..

([C]kẋ)θk

. Finally, observe that due to the

property (3.8) and identities (3.9), it is not necessary to compute the Kronecker product Cẋ⊗ Cẋ

since this equals Cẋ. Instead, it is sufficient to enforce Cẋ ≥ 0.

Step 2. Linearization

For each of the (k− 1)m distinct product terms in the vector ẋ⊗y substitute a continuous variable

and denote the resulting linearized vector as {ẋ⊗ y}L. Note that k− 1 product terms in ẋ⊗ x can

be substituted out of the problem in the reformulation step via (3.11). Thus it is only necessary to

linearize the k−2 nonlinear terms in ẋ. Denote this linearized vector as {ẋ}L. Then, using Property

1 of Kronecker products and by denoting the new linearized variables in {ẋ⊗ y}L and {ẋ}L by w

45

and z respectively, we have the resulting polyhedral set given by

ΩD =

(x,y,w, z) ∈ R × Rm × R(k−1)m × Rk−2 :

(Ik ⊗A)θ∗+(C ⊗B){ẋ⊗ y}L ≥ (C ⊗ d){ẋ}L,

0 ≤ (C ⊗ Im){ẋ⊗ y}L ≤ (C ⊗ 1m){ẋ}L,

C{ẋ}L ≥ 0

where Ik and Im are k × k and m×m identity matrices, respectively, and 1m is a m× 1 vector of

ones.

The paper [1] demonstrates that the set ΩD is a convex hull representation for XD. Specif-

ically, it proves:

1) for any (x,y,w, z) ∈ ΩD with x ∈ S, then {ẋ⊗ y}L = ẋ⊗ y, {ẋ}L = ẋ, and

2) conv {ΩD ∩ x ∈ S} = ΩD.

These results allow the original discrete space XD to be equivalently modeled by the continuous

linear space ΩD.

3.2 Simplicial Structure

In this section, we examine several properties of a class of special polytopes known as

simplices. These simplices and their associated properties form the basis for the RLT generalizations

presented in the next section. Geometrically, a simplex in Rn is the convex hull of n + 1 affinely

independent points. We define the collection of these n+ 1 points as

Θ ≡
{
θi ∈ Rn, i ∈ {1, . . . , n+ 1} : θi are affinely independent

}
. (3.12)

Then, we use elements of the set Θ to form the associated n-dimensional simplex as follows:

SP ≡
{
x′ ∈ Rn+1 : Fx′ ≥ 0

}
where F−1 =

[
(θ1)′ · · · (θn+1)′

]
(3.13)

where, as before, x′ denotes a column vector x with a 1 appended in the first position so that

x′ =

(
1

x

)
. Observe that the (n + 1) × (n + 1) matrix F−1 of (3.13) is invertible since the

46

vectors θ1, . . . ,θn+1 ∈ Θ are affinely independent. Thus, forming the simplex SP in this manner

appropriately scales the defining inequalities Fx′ ≥ 0 to ensure that if x takes on any value in Θ,

then one of the constraints will have a slack value equal 1 and the rest will have slacks of 0. That is,

if we let [•]i be the ith row of matrix •, then for x = θi ∈ Θ we have that [F]ix
′ = 1 and [F]jx

′ = 0

for all j 6= i. The extreme points of the polyhedral set SP are exactly the points θ1 through θn+1

given in Θ and the constraints Fx′ ≥ 0 are exactly the facets defining the convex hull of these

points. The example below demonstrates these properties for a two dimensional simplex.

Example 3.1

Consider the simplex in R2 with variables x =

(
x1

x2

)
defined by the three affinely independent

points θ1 =

(
2

2

)
, θ2 =

(
3

4

)
, and θ3 =

(
4

1

)
so that Θ =

{
θ1,θ2,θ3

}
. Then the matrix

F−1 =
[
(θ1)′ (θ2)′ (θ3)′

]
=

 1 1 1

2 3 4

2 4 1

 gives the simplex SP ≡
{
x′ ∈ R3 : Fx′ ≥ 0

}
of (3.13)

as

SP ≡

 1

x1

x2

 : Fx′ =

13
5 − 3

5 − 1
5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 1

x1

x2

 ≥
 0

0

0

 .

Figure 3.1 plots this simplex and labels the defining facets. Note that by the definition of F , these

facets have been automatically scaled so that each slack variable takes on value 1 when x realizes

the extreme point not lying on that facet and value 0 when x realizes one of the other two extreme

points. For example, if x =

(
2

2

)
, then we have that

Fx′ =

13
5 − 3

5 − 1
5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 1

2

2

 =

 1

0

0

since

(
2

2

)
lies on the second and third facets but not the first.

Using the formulation (3.13), we prove the following two lemmas regarding simplicial struc-

47

b

b

b

(2, 2)

(3, 4)

(4, 1)

− 2
5
+ 2

5
x1 − 1

5
x2 ≥ 0

13
5

− 3
5
x1 − 1

5
x2 ≥ 0

− 6
5
+ 1

5
x1 + 2

5
x2 ≥ 0

x1

x2

1

Figure 3.1: The simplex in R2 associated with the points (2, 2), (3, 4) and (4, 1).

tures. These lemmas will be used in the next section for establishing our convex hull results.

Lemma 3.1: Given any system Fx′ ≥ 0 defined in (3.13), we have that 1TFx′ = 1 where 1 ∈ Rn+1

is a vector of ones.

Proof. This result follows directly from the definition of F−1 in (3.13), as the first entry of each

vector (θi)′ is 1, for i ∈ {1, . . . , n+ 1}.

Lemma 3.2: For Fx′ ≥ 0 and θi ∈ Θ for i ∈ {1, . . . , n + 1} as defined above, it follows that∑n+1
i=1 ([F]ix

′)θi = x.

Proof. By the definition of F−1 in (3.13) we have that
[
(θ1)′ · · · (θn+1)′

]
Fx′ = x′. Eliminating the

first equations gives the desired result.

We now come to the main result of this section. Consider two full-dimensional simplices

in disjoint variables given by SP1 ∈ Rn1 and SP2 ∈ Rn2 whose extreme points are given by the

sets Θ1 and Θ2 from (3.12) and with the facets defining these simplices given by F1

(
x1
)′ ≥ 0 and

F2

(
x2
)′ ≥ 0 as in (3.13). Apply the RLT steps of reformulation and linearization as follows. In the

reformulation step, compute all pairwise products of the n1 + 1 facets defining the first simplex with

the n2 + 1 facets defining the second. In the linearization step, substitute a continuous variable for

48

each distinct product term. Then the new polyhedral set in R(n1+1)(n2+1)−1 is defined in terms of

(n1 + 1)(n2 + 1) inequalities.

The main result of this section, embodied by Theorem 3.1, is that this higher-dimensional

region is itself a simplex, and has the desirable property that there exists a one-to-one correspondence

between its extreme points and the extreme points of the original sets S1 and S2, with the linearized

product variables equal to their intended products at each such point. That is, any extreme point in

this higher-dimensional region has the form
{

(x1)′ ⊗ (x2)′
}
L

=
(
θ1,i
)′⊗ (θ2,j)′ where θ1,i ∈ Θ1 for

i ∈ {1, . . . , n1 +1} and θ2,j ∈ Θ2 for j ∈ {1, . . . , n2 +1}. In fact, as shown in Theorem 3.1, this same

extreme point property will hold for any finite number m of such simplices. As will be explained in

the following section, this simplicial structure gives rise to important linearization consequences for

mixed 0-1 and mixed-discrete polynomial programs.

Theorem 3.1: Given any integer m ≥ 1, for each j ∈ M ≡ {1, . . . ,m}, let SPj denote an nj-

dimensional simplex in variables xj ∈ Rnj defined as the convex hull of nj + 1 affinely independent

points θj,1, . . . ,θj,nj+1 ∈ Θj of (3.12) and whose facets are given by Fj(x
j)′ ≥ 0 as in (3.13). Then,

for each J ⊆M,

SPJ ≡
{{
⊗j∈J(xj)′

}
L
∈ R

∏
j∈J (nj+1) :

{
⊗j∈JFj(xj)′

}
L
≥ 0

}
(3.14)

defines the
(∏

j∈J(nj + 1)− 1
)

-dimensional simplex whose extreme points are given by the columns

of the
∏
j∈J(nj + 1)×

∏
j∈J(nj + 1) matrix ⊗j∈JF−1j , less the first row.

Proof. To begin, for any chosen J ⊆M, the convex hull of the columns of the matrix ⊗j∈JF−1j , less

the first row, forms a simplex because ⊗j∈JF−1j is invertible by property 2 of the Kronecker products

of matrices, and the first row consists entirely of ones by the definition of Kronecker products. To

show that the columns of this truncated matrix constitute the extreme points of the set SPJ of

49

(3.14), observe that

SPJ =
{{
⊗j∈J(xj)′

}
L

:
{
⊗j∈JFj(xj)′

}
L
≥ 0

}
=
{{
⊗j∈J(xj)′

}
L

:
{
⊗j∈JFj(xj)′

}
L

= λ for some λ ≥ 0
}

=
{{
⊗j∈J(xj)′

}
L

: ⊗j∈JFj
{
⊗j∈J(xj)′

}
L

= λ for some λ ≥ 0
}

=
{{
⊗j∈J(xj)′

}
L

:
{
⊗j∈J(xj)′

}
L

= ⊗j∈JF−1j λ for some λ ≥ 0
}
,

where the first equation is by definition of SPJ , the second equation follows trivially, and the

third and fourth equations follow from the stated properties 1 and 2, respectively, of the Kronecker

products of matrices. As the first entry of
{
⊗j∈J(xj)′

}
L

is 1 and the first row of ⊗j∈JF−1j consists

entirely of ones, the result follows.

A useful consequence of Theorem 3.1 is that, for each J ⊆M, the set SPJ defined in (3.14)

characterizes the convex hull of the region ⊗j∈J
(
xj
)′

when
(
xj
)′

is restricted to have
(
xj
)′ ∈ SPj

for all j ∈ J. A formal statement is given below.

Corollary 3.1: Given any integer m ≥ 1 and any J ⊆M, let SPJ be as defined in (3.14) and let

TJ ≡
{
⊗j∈J(xj)′ ∈ R

∏
j∈J (nj+1) : (xj)′ ∈ SPj for all j ∈ J

}
. (3.15)

Then conv {TJ} = SPJ .

Proof. We have conv {TJ} ⊆ SPJ since every point feasible to TJ is by construction also feasible to

SPJ , and since SPJ is a convex set. Also, conv {TJ} ⊇ SPJ since Theorem 3.1 shows SPJ to be a

polytope whose extreme points are given by the columns of the
∏
j∈J(nj +1)×

∏
j∈J(nj +1) matrix

⊗j∈JF−1j , with each column of this matrix a feasible point to TJ since, for each j ∈ J, every column

of the matrix F−1j is by definition in the set SPj .

Observe that since conv {TJ} = SPJ , and these polytopes are bounded, then they must

have the same set of extreme points; namely, the columns of the matrix ⊗j∈JF−1j .

We illustrate Theorem 3.1 and Corollary 3.1 with an example.

50

Example 3.2

For m = 2, let SP1 denote the 1-simplex in the variable x1 =
(
x11
)
∈ R1 defined as the convex

hull of the two affinely independent points θ1,1 = (2) and θ1,2 = (3), and let SP2 denote the

two-simplex in the variables x2 =

(
x2
1

x2
2

)
∈ R2 defined as the convex hull of the three affinely

independent points θ2,1 =

(
0

0

)
, θ2,2 =

(
2

1

)
, and θ2,3 =

(
1

2

)
. Then F−11 =

[
1 1

2 3

]

with F1 =

[
3 −1

−2 1

]
, and F−12 =

 1 1 1

0 2 1

0 1 2

 with F2 =

 1 − 1
3 − 1

3

0 2
3 − 1

3

0 − 1
3

2
3

 . Now, letting J =

{1} and then J = {2}, we obtain that SP1 ≡

{(
1

x1
1

)
:

[
3 −1

−2 1

](
1

x1
1

)
≥

(
0

0

)}
and

that SP2 ≡

 1

x2
1

x2
2

 :

 1 − 1
3 − 1

3

0 2
3 − 1

3

0 − 1
3

2
3

 1

x2
1

x2
2

 ≥
 0

0

0

 , defining the respective simplices as

desired. Next, letting J = M = {1, 2}, we obtain that

SPJ =

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

:

[

3 −1

−2 1

](
1

x1
1

)
⊗

 1 − 1
3 − 1

3

0 2
3 − 1

3

0 − 1
3

2
3

 1

x2
1

x2
2

L

≥

0

0

0

0

0

0

=

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

:

[

3 −1

−2 1

](
1

x1
1

)
⊗

 1 − 1
3 − 1

3

0 2
3 − 1

3

0 − 1
3

2
3

 1

x2
1

x2
2

L

=

λ1

λ2

λ3

λ4

λ5

λ6

, λ ≥ 0

=

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

:

3 −1 −1 −1 1
3

1
3

0 2 −1 0 − 2
3

1
3

0 −1 2 0 1
3 − 2

3

−2 2
3

2
3 1 − 1

3 − 1
3

0 − 4
3

2
3 0 2

3 − 1
3

0 2
3 − 4

3 0 − 1
3

2
3

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

=

λ1

λ2

λ3

λ4

λ5

λ6

, λ ≥ 0

=

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

:

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

L

=

1 1 1 1 1 1

0 2 1 0 2 1

0 1 2 0 1 2

2 2 2 3 3 3

0 4 2 0 6 3

0 2 4 0 3 6

λ1

λ2

λ3

λ4

λ5

λ6

, λ ≥ 0

,

51

where λ = (λ1, λ2, λ3, λ4, λ5, λ6)
T
. Observe in the last expression that the 6× 6 matrix F−11 ⊗ F−12

has the first row consisting entirely of ones, thus providing the 5-dimensional simplex whose 6

extreme points are given by the columns of this matrix, less the first row. Each such extreme point

has
{
x11x

2
1

}
L

= x11x
2
1 and

{
x11x

2
2

}
L

= x11x
2
2, as desired. Moreover, and relative to Corollary 3.1, for

J = {1} and J = {2}, it follows directly from (3.15) that TJ = SPJ , giving conv {TJ} = SPJ . For

J = M = {1, 2}, (3.15) gives us that

TJ =

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

:

[
3 −1

−2 1

](
1

x1
1

)
≥

(
0

0

)
and

 1 − 1
3 − 1

3

0 2
3 − 1

3

0 − 1
3

2
3

 1

x2
1

x2
2

 ≥
 0

0

0

,

with conv {TJ} = SPJ by Corollary 3.1.

The simplicial structure of the sets SPj for j = {1, . . . ,m} used in Theorem 3.1 ensures

that each extreme point of the higher-dimensional polytopes SPJ have all the linearized variables

equal to their intended products. It is important to note that this extreme point property is not

necessarily true when the sets SPj are general polyhedra rather than simplices, as demonstrated in

Example 3.3.

Example 3.3

For m = 2 and j ∈ M, temporarily define SPj ≡

{(
xj
1

xj
2

)
: 0 ≤ xj1 ≤ 1, 0 ≤ xj2 ≤ 1

}
or, equiva-

lently, SPj ≡

 1

xj
1

xj
2

 :

1 −1 0

0 1 0

1 0 −1

0 0 1

 1

xj
1

xj
2

 ≥
 0

0

0

 . Note that the sets SPj for j ∈ {1, 2}

define unit squares in R2, which are not simplices. The set J = M = {1, 2} gives

SPJ =

1

x2
1

x2
2

x1
1

x1
1x

2
1

x1
1x

2
2

x1
2

x1
2x

2
1

x1
2x

2
2

L

:

1 −1 0

0 1 0

1 0 −1

0 0 1

 1

x1
1

x1
2

⊗

1 −1 0

0 1 0

1 0 −1

0 0 1

 1

x2
1

x2
2

L

≥

0

0

0

0

0

0

0

0

0

.

52

This polytope can be verified to have 24 extreme points, with one such point given by{
1, x21, x

2
2, x

1
1, x

1
1x

2
1, x

1
1x

2
2, x

1
2, x

1
2x

2
1, x

1
2x

2
2

}
L

=
(
1, 12 ,

1
2 ,

1
2 ,

1
2 , 0,

1
2 ,

1
2 ,

1
2

)
. Observe that this point does

not have the linearized product terms equal to their intended products as, for example,{
x11x

2
1

}
L

= 1
2 6=

1
4 = x11x

2
1.

Theorem 3.1, Corollary 3.1, and Example 3.2 addressed properties associated with products

of disjoint simplices, while Example 3.3 showed that these properties are not shared by general

polyhedral sets.

3.3 Convex Hull Representations

In this section, we generalize the convex hull representations for mixed binary and mixed-

discrete programs obtained by the highest level of the RLT hierarchy. In doing so, we generalize

the identities x2 = x of (3.3) from the 0-1 case where x is binary and ([C]iẋ)x = ([C]iẋ)θi of

(3.9) from the discrete case where x ∈ {θ1, . . . θn}. To accomplish this, we employ the defining

constraints Fx′ ≥ 0 of (3.13) which form facets of the n-dimensional simplex associated with the

affinely independent points in Θ =
{
θ1, . . . ,θn+1

}
of (3.12). As discussed in the previous section,

these constraints are defined in such a way that for each x ∈ Θ we have

[F]ix
′ =

 1 if x′ =
(
θi
)′

0 otherwise
(3.16)

where, again, [•]i is the ith row of the matrix •. Hence, for each x ∈ Θ we have the important

identity

([F]ix
′)x = ([F]ix

′)θi ∀i ∈ {1, . . . , n+ 1}. (3.17)

An insightful interpretation of (3.17) is that, given SP of (3.13), the product of any facet [F]ix
′ of

SP with any vector x that realizes an extreme point of SP is equal to the product of [F]ix
′ with

that single extreme point θi that does not satisfy [F]ix
′ = 0. The example below demonstrates

these simplifying identities.

53

Example 3.4

Consider the two-dimensional simplex from Example 3.1 having variables x =

(
x1

x2

)
with extreme

points θ1 =

(
2

2

)
, θ2 =

(
3

4

)
, and θ3 =

(
4

1

)
. The matrix F−1 =

 1 1 1

2 3 4

2 4 1

 yields the

appropriately scaled facets of this simplex which are given by the system

Fx′ =

13
5 − 3

5 − 1
5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 1

x1

x2

 ≥
 0

0

0

 .

Using these facets, the simplifying identities of (3.17) are given by

(
13

5
− 3

5
x1 −

1

5
x2

)(
x1

x2

)
=

(
13

5
− 3

5
x1 −

1

5
x2

)(
2

2

)
,

(
−6

5
+

1

5
x1 +

2

5
x2

)(
x1

x2

)
=

(
−6

5
+

1

5
x1 +

2

5
x2

)(
3

4

)
, and

(
−2

5
+

2

5
x1 −

1

5
x2

)(
x1

x2

)
=

(
−2

5
+

2

5
x1 −

1

5
x2

)(
4

1

)
.

As demonstrated later, the identities of (3.17) generalize the simplifying identities of (3.3)

and (3.9) for binary and discrete problems, respectively. In fact, the functional products x and

1 − x for the binary case and LIPs for the discrete case can be viewed as facets of the form [F]ix
′

for specially structured simplices. For now, though, we turn or attention to the development of

generalized convex hull arguments using the new identity (3.17).

To begin, consider a mixed-discrete region with variables x ∈ Rn and y ∈ Rm and where x

is restricted to realize values in a set Θ ≡
{
θ1, . . . ,θn+1

}
with θ1 through θn+1 affinely independent

points in Rn as described in (3.12). This region is given by

X ≡ {(x,y) ∈ Rn × Rm : Ax+By ≥ d,0 ≤ y ≤ 1,x ∈ Θ} . (3.18)

Because X enforces that x is discrete and lies in the set Θ and since the inequalities Fx′ ≥ 0 define

the facets of the convex hull of these points, these facets are redundant to X. Thus, X can be

54

equivalently written as

X ≡ {(x,y) ∈ Rn × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, Fx′ ≥ 0,x ∈ Θ} (3.19)

where Fx′ ≥ 0 is explicitly yet redundantly enforced. Using (3.19), we present a new, generalized

RLT methodology which appears as follows.

Step 1. Reformulation

Compute the Kronecker product of Fx′ with the constraints Ax + By ≥ d and 0 ≤ y ≤ 1 from

(3.19). Since, by (3.16) when x ∈ Θ, the expressions [F]ix
′ are binary for i ∈ {1, . . . , n+ 1} so that

([F]ix
′) ([F]ix

′) = ([F]ix
′) and ([F]ix

′) ([F]jx
′) = 0 whenever i 6= j, it is unnecessary to compute

the Kronecker product of Fx′ with itself and is instead sufficient to enforce Fx′ ≥ 0. The identities

(3.17) for all i ∈ {1, . . . , n+ 1} can be enforced using

Fx′ ⊗ x = θ∗ (3.20)

where θ∗ is a
(
n2 + n

)
-dimensional vector of the form θ∗ =

 ([F]1x
′)θ1

.

.

.

([F]n+1x
′)θn+1

.

Step 2. Linearization

For each of the n ×m product terms in the vector x′ ⊗ y substitute a distinct continuous variable

and denote the resulting linearized vector as {x′ ⊗ y}L. Note that all product terms in the vector

x′⊗x are substituted out in the reformulation step by enforcing (3.20) since θ∗ contains no products

amongst the variables of x. Hence, letting w refer only to the linearized product terms in {x′⊗y}L,

we have the resulting polyhedral set given by

Ω =

(x,y,w) ∈ Rn × Rm × Rnm :

(In+1 ⊗A)θ∗ + (F ⊗B){x′ ⊗ y}L ≥ (F ⊗ d)x′,

0 ≤ (F ⊗ Im){x′ ⊗ y}L ≤ (F ⊗ 1m)x′,

Fx′ ≥ 0

(3.21)

where In+1 and Im are identity matrices in Rn+1,n+1 and Rm,m, respectively, and 1m is a vector of

ones in Rm.

55

We now show that the polyhedral set Ω of (3.21) produced by our new RLT procedure is

exactly the convex hull of the discrete set X of (3.18) in a higher-dimensional space. We demonstrate

this in the following two theorems. Theorem 3.2 proves that the new auxiliary variables w in Ω take

on their intended product values whenever the discrete variables x take on one of the realizations

in Θ. Then Theorem 3.3 shows that Ω is equivalent to the convex hull of the set of points where

(x,y) ∈ X together with w = x′ ⊗ y. This characterization allows the mixed-discrete set X to be

equivalently modeled by the continuous linear region Ω.

Theorem 3.2: Every solution to Ω with x ∈ Θ must have {x′ ⊗ y}L = x′ ⊗ y.

Proof. Consider a single variable yj of the vector y where j ∈ {1, . . . ,m}. The constraints

0 ≤ (F ⊗ Im){x′ ⊗ y}L ≤ (F ⊗ 1m)x′ of (3.21) involving yj can be written as

0 ≤ {Fx′ ⊗ yj}L ≤ Fx
′. (3.22)

For a single facet, say [F]ix
′ ≥ 0 for some i ∈ {1, . . . , n + 1} the constraints of (3.22) include the

specific constraint

0 ≤ {[F]ix
′ ⊗ yj}L ≤ [F]ix

′. (3.23)

By Lemma 3.1 which gives 1TFx′ = 1, we can surrogate the remaining constraints of (3.22) not

including (3.23) to obtained the redundant restriction

0 ≤ {(1− [F]ix
′)⊗ yj}L ≤ 1− [F]ix

′

which can equivalently be written as

0 ≤ yj − {[F]ix
′ ⊗ yj}L ≤ 1− [F]ix

′. (3.24)

Now, if a solution to Ω has x = θi ∈ Θ, then by the property (3.16) we have [F]ix
′ = 1 so that (3.24)

gives {[F]ix
′ ⊗ yj}L = yj . On the other hand, if x = θk ∈ Θ where k 6= i, then we have [F]ix

′ = 0

so that (3.23) gives {[F]ix
′ ⊗ yj}L = 0. In either case, it follows that {[F]ix

′ ⊗ yj}L = [F]ix
′ ⊗ yj

56

for all i ∈ {1, . . . , n+ 1} and j ∈ {1, . . . ,m} which gives

(F ⊗ Im){x′ ⊗ y}L = (F ⊗ Im)(x′ ⊗ y).

Since F is invertible by construction and by property 2 of Kronecker products, left-multiplying this

system by F−1 ⊗ Im results in {x′ ⊗ y}L = x′ ⊗ y which completes the proof.

Theorem 3.3: The set Ω of (3.21) satisfies conv
{

Ω ∩ {(x,y,w) : x = θi ∀ θi ∈ Θ}
}

= Ω.

Proof. If Ω = ∅, then the proof is trivial. Assume Ω 6= ∅ and arbitrarily select (x̃, ỹ, w̃) ∈ Ω. Let

α = F x̃′ and note that α ≥ 0 and
∑n+1
i=1 αi = 1 since x̃′ satisfies Fx′ ≥ 0. Let E = {i = 1, . . . , n+1 :

αi > 0}. Then, for each i ∈ E, define xi = θi, yi = {([F]ix
′)y}L

αi
evaluated at (ỹ, w̃), andwi = xi⊗yi.

Then it remains to show that (xi,yi,wi) ∈ Ω such that
∑
i∈E αi(x

i,yi,wi) = (x̃, ỹ, w̃).

We first show that for each i ∈ E, (xi,yi,wi) is feasible to Ω. Since wi = xi⊗yi, proving feasibility

reduces to showing that (x̃, ỹ) ∈ X of (3.19). Towards this end, remember that [F]ix̃
′ = αi so that

B{([F]ix
′)y}L ≥ αi(d − Aθi) and 0 ≤ {([F]ix

′)y}L ≤ αi1 for {y,w}L = (ỹ, w̃). Dividing both

inequalities by αi gives B {([F]ix
′)y}L

αi
≥ d − Aθi and 0 ≤ {([F]ix

′)y}L
αi

≤ 1 for {y,w}L = (ỹ, w̃).

Hence, we have Axi+Byi ≥ d and 0 ≤ yi ≤ 1 so that (xi,yi) is feasible to X. Thus (xi,yi,wi) ∈ Ω.

Now it remains to show that (x̃, ỹ, w̃) is a convex combination of the points (xi,yi,wi). First, by

construction of the α and E, we have
∑
i∈E αi = 1 and

∑
i∈E αix

i = x̃. For {y}L = ỹ we have

∑
i∈E

αiy
i =

∑
i∈E
{([F]ix

′)y}L

=

n+1∑
i=1

{([F]ix
′)y}L

=

{(
n+1∑
i=1

[F]ix
′

)
y

}
L

= {(1TFx′)y}L

= ỹ.

Here, the first equality follows from the construction of yi and the second since {([F]ix
′)y}L = 0

for all i 6= E. The third is due to the nature of linearization operations where, given polynomial

expressions Ψ1 through Ψn, we have
∑n
i=1{Ψi}L = {

∑n
i=1 Ψi}L. The fourth equality holds by

57

definition and the fifth by Lemma 3.1 and since {y}L = ỹ. Finally, for {w}L = w̃ we have

∑
i∈E

αiw
i =

∑
i∈E

αi

(
xi ⊗ {([F]ix

′)y}L
αi

)
=
∑
i∈E

xi ⊗ {([F]ix
′)y}L

=

n+1∑
i=1

xi ⊗ {([F]ix
′)y}L

=

n+1∑
i=1

{(([F]ix
′)xi)⊗ y}L

=

{
n+1∑
i=1

(([F]ix
′)xi)⊗ y

}
L

= {x⊗ y}L

= w̃.

The first equality follows from the definition of wi and yi. The second is due to Property 3 of

Kronecker products. The third holds since {([F]ix
′)y}L = 0 for all i 6= E. The fourth again

follows from Property 3 of Kronecker products since [F]ix
′ is scalar. The fifth is given since∑n

i=1{Ψi}L = {
∑n
i=1 Ψi}L as seen above for polynomial expressions Ψi. The sixth equality is

due to Lemma 3.2 since xi = θi. Lastly, the seventh equality follows since {w}L = w̃. Thus, we

have
∑
i∈E αi(x

i,yi,wi) = (x̃, ỹ, w̃), which completes the proof.

Example 3.5

Consider the discrete three-dimensional set where variables (x1, x2, y1)T are all bounded between

values 0 and 5 and where (x1, x2)T are further restricted to realize one of the affinely independent

points in the set Θ =

{(
2

2

)
,

(
3

4

)
,

(
4

1

)}
. In the manner of (3.18), this set can be expressed

as

X =

 x1

x2

y1

 : Ax+By =

1 0

−1 0

0 1

0 −1

(

x1

x2

)
≥

0

−5

0

−5

 = d, 0 ≤ y1 ≤ 5,

(
x1

x2

)
∈ Θ

 .

From Example 3.1, we have that the facets defining the convex hull of the points in Θ are given

58

by Fx′ =

 13
5 − 3

5 − 1
5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 1

x1

x2

. Thus, letting w11 and w21 represent the linearized products

x1y1 and x2y1, respectively, then the linear system Ω given in (3.21) appears as

Ω =

(x1, x2, y1, w11, w21) ∈ R5 :

1 0 0 0 0 0

−1 0 0 0 0 0

0 1 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 −1 0

0 0 0 0 0 1

0 0 0 0 0 −1

(
13
5 −

3
5x1 − 1

5x2

)
2(

13
5 −

3
5x1 − 1

5x2

)
2(

− 6
5 + 1

5x1 + 2
5x2

)
3(

− 6
5 + 1

5x1 + 2
5x2

)
4(

− 2
5 + 2

5x1 − 1
5x2

)
4(

− 2
5 + 2

5x1 − 1
5x2

)
1

≥

0 0 0

−13 3 1

0 0 0

−13 3 1

0 0 0

6 −1 −2

0 0 0

6 −1 −2

0 0 0

2 −2 1

0 0 0

2 −2 1

 1

x1

x2

 ,

 0

0

0

 ≤
 13

5 − 3
5 − 1

5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 y1

w11

w21

 ≤
 13 −3 −1

−6 1 2

−2 2 −1

 1

x1

x2

 ,

 13
5 − 3

5 − 1
5

− 6
5

1
5

2
5

− 2
5

2
5 − 1

5

 1

x1

x2

 ≥
 0

0

0

.

This system has 6 extreme points given by (x1, x2, y1, w11, w21) ∈ {(2, 2, 0, 0, 0), (3, 4, 0, 0, 0),

(4, 1, 0, 0, 0), (2, 2, 5, 10, 10), (3, 4, 5, 15, 20), (4, 1, 5, 20, 5)}. Notice that each extreme point satisfies

w11 = x1y1 and w21 = x2y1. If we project Ω onto the set of the three original variables, then the

resulting polyhedron appears as the shaded region in Figure 3.2. As shown, this region is exactly

the convex hull of (x1, x2) ∈ Θ together with y between 0 and 5.

As a final observation on the results of this section, notice that the RLT constructs and

Theorems 3.2 and 3.3 employ only a single simplex. While this greatly simplifies the notation and

proofs, it is not restrictive. As Theorem 3.1 from the previous section demonstrates, the Kronecker

product of any family of simplices in disjoint variables is itself a simplex. Hence, by first computing

the Kronecker product of a family of simplices and then treating the resulting product as a single

simplex, the results of this section can be employed to produce the desired polyhedral region.

59

y1

b

b

b

b

b

b

(4, 1, 0)

(4, 1, 5)

(3, 4, 0)

(3, 4, 5)

(2, 2, 0)

(2, 2, 5)

x1

x2

1

Figure 3.2: The shaded region represents the projection of Ω onto the space (x1, x2, y1).

3.4 Insights for Classic RLT Results

In this section, we directly relate the mixed-binary and mixed-discrete RLT results from

Section 3.1 to the new convex hull results from Sections 3.2 and 3.3. We demonstrate how the

functional products x and 1 − x for binary and the LIPs for discrete cases can be equivalently

interpreted as special simplicial facets. We show that the simplifying identities x2 = x of (3.3) and

([C]iẋ)x = ([C]iẋ)θi of (3.9) are special cases of the more general identities ([F]ix
′)x = ([F]ix

′)θi

of (3.17). Using Theorem 3.1 from Section 3.2, which gives that the Kronecker product of disjoint

simplices is itself a simplex, we illustrate how convex hull results for sets having multiple binary or

discrete variables are also special cases of the convex hull proofs established in Section 3.3.

3.4.1 Insights for Mixed-Binary RLT

Reconsider from Section 3.1.2 the mixed-binary set (3.1) containing a single binary variable

x. For ease of reading, this set is restated here:

XB ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, x ∈ {0, 1}}.

60

Using the machinery developed in the previous section, we show how the functional products Px′ =[
1 −1

0 1

](
1

x

)
≥ 0 of (3.2) and the simplifying identity x2 = x of (3.3) naturally arise via

the facets of a particular 1-dimensional simplex. Adopting the notation of (3.12) and (3.13), this

simplex, not surprisingly, is formed using the affinely independent, 1-dimensional points in the set

Θ = {θ1, θ2} = {0, 1} which gives the associated matrix F−1 =

[
1 1

0 1

]
. Hence, the resulting facets

of this simplex are given by Fx′ =

[
1 −1

0 1

](
1

x

)
≥ 0 which, since F = P , exactly produces the

functional products of (3.2).

Since the system Px′ ≥ 0 defines the appropriately-scaled facets of a simplex, it follows

that the equalities (3.17) are enforced so that if x ∈ {0, 1} then

([P]ix
′)x = ([P]ix

′)θi ∀i ∈ {1, 2}.

Substituting the values of [P]ix
′ and θi for i ∈ {1, 2}, these equalities appears as (1−x)x = (1−x)0

and (x)x = (x)1, respectively, and reduce to the single equality x2 = x which is the simplifying

identity (3.3). Thus, the convex hull representation ΩB from Section 3.1.2 is a special case of our

more general convex hull representation Ω.

Now, suppose we redefine the set XB so that instead of having a single binary variable x,

it instead contains n binary variables in the vector x. Then XB appears as

XB ≡ {(x,y) ∈ Rn × Rm : Ax+By ≥ d,0 ≤ y ≤ 1,x ∈ {0, 1}n}.

In this case, letting N = {1, . . . , n}, the RLT for mixed-binary programs yields a convex hull

representation by forming functional products as ⊗i∈NPix′i (the Kronecker product of the functional

products of the individual variables) and by enforcing the simplifying identities x2i = xi for all i ∈ N .

As shown below, this case can also be viewed as a special case of our simplicial facet results

from the previous section. Since, for each xi, the associated system of functional products Pix
′
i =[

1 −1

0 1

](
1

xi

)
≥ 0 forms a simplex, it follows by Theorem 3.1 that the system {⊗i∈NPix′i}L ≥ 0

defines a (2n−1)-dimensional simplex whose 2n extreme points are given by the columns of ⊗i∈NP−1i

less the first row. The structure of ⊗i∈NP−1i ensures that every extreme points has each xi binary

with each linearized product term equaling the product of the individual variables. Thus, if we define

the matrix F = ⊗i∈NPi and the vector x′ = ⊗i∈N{x′i}L, then the functional products ⊗i∈NPix′i

61

for the mixed-binary RLT are exactly equivalent to the facets Fx′ for all binary realizations of x.

Finally, it remains to show that the general identities (3.17) result in the mixed-binary RLT

identities x2i = xi for all i ∈ N . To accomplish this, for any i ∈ N consider the vector of facets

{xi ⊗j∈N−{i} Pjx′j}L. By Theorem 3.1, the system {⊗j∈N−{i}Pjx′j}L ≥ 0 gives the facets of a

simplex. Lemma 3.1 states that the surrogation of these facets results in the scalar value 1. Hence,

it follows that

1T {xi ⊗j∈N−{i} Pjx′j}L = {xi}L = xi. (3.25)

Judiciously choosing the appropriate identities of (3.17) for this problem gives

{xi ⊗j∈N−{i} Pjx′j}L · (xi) = {xi ⊗j∈N−{i} Pjx′j}L · (1). (3.26)

Applying (3.25) to (3.26) results in the identity xi(xi) = xi(1) exactly as desired for each i ∈ N .

Therefore, the convex hull results for the mixed-binary RLT are a special case of our more general

results for simplicial facets.

As a final remark for this subsection, notice that for x ∈ Rn the realizations x ∈ {0, 1}n

do not define a set of affinely independent points. Instead, they define the extreme points of a

n-dimensional hypercube, which is clearly not a simplex. However, the set {⊗i∈NPix′i}L ≥ 0 is a

simplex in higher dimensions and yet preserves that x ∈ {0, 1}n at all extreme points. Thus, we

can view the highest level of the mixed-binary RLT as an elegant method of lifting the original

realizations x ∈ {0, 1}n into a higher- dimensional space so as to achieve affine independence and

hence acquire a convex hull via the resulting simplicial facets.

3.4.2 Insights for Mixed-Discrete RLT

Recall from Section 3.1.3 the mixed-discrete set (3.5) having a single discrete x. For conve-

nience, this set is restated below:

XD ≡ {(x,y) ∈ R × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, x ∈ S}

where S = {θ1, θ2, . . . , θk} defines the realizations of x. As in the previous subsection, we show how

the machinery of Section 3.3 can be used to generate an equivalent, linearized version of the LIP

62

functional products Cẋ ≥ 0 of (3.7) and the associated simplifying identities ([C]iẋ)x = ([C]iẋ)θi

of (3.9) via the facets of a particular k-dimensional simplex.

Begin by noting that if k = 2 then the points in S are affinely independent so that the

associated LIPs naturally form a 1-dimensional simplex. However, if k ≥ 3, meaning that x realizes

3 or more values, then the 1-dimensional points in S are certainly not affinely independent. Thus,

we are tasked with “lifting” these points into a higher-dimensional space so that they acquire affine

independence. One natural way to accomplish this is by defining a related set

Θ = {θ1,θ2, . . . ,θk} =

θ1

θ21

.

.

.

θk−1
1

 ,

θ2

θ22

.

.

.

θk−1
2

 , . . . ,

θk

θ2k

.

.

.

θk−1
k

 (3.27)

in k−1 dimensions where the “extra” dimensions represent the original realizations raised to higher

powers. In the manner of (3.12) and (3.13), the set Θ can be used to form the k × k inverse matrix

F−1 =

 1 1 · · · 1
θ1 θ2 · · · θk
.
.
.

.

.

.
. . .

.

.

.
θk−1
1 θk−1

2 · · · θk−1
k

, which has the structure of a transposed Vandermonde matrix.

As shown in [1], the inverse of this Vandermonde matrix has the form of C of (3.7).

Now, recall that ẋ = (1, x, x2, . . . , xk−1)T is a vector containing nonlinear terms. Thus, the

LIP functional products Cẋ ≥ 0 of (3.7) are also nonlinear and hence are not facets. However,

by defining the set of affinely independent points Θ as in (3.27), we have formed an associated

(k− 1)-dimensional simplicial system Cx′ ≥ 0 such that at every extreme point we have x′ = ẋ for

ẋ evaluated at some x ∈ S. Thus, these facets are the linearized LIP functional products of (3.7).

It remains to show that the LIP simplifying identities ([C]iẋ)x = ([C]iẋ)θi of (3.9) are

equivalent to the identities ([C]ix
′)x = ([C]ix

′)θi of (3.17) for general simplices. To see this,

remember that at each of the k extreme points of the simplex we have x′ = ẋ for ẋ evaluated

at some x ∈ S. We also have that the first element of each θi is equal to the original θi ∈ S.

Hence, the simplifying identities (3.9) naturally result from (3.17) when the simplex is defined using

(3.27), implying that the LIP functional products and simplifying identities are special cases of our

simplicial facets results.

Next, suppose we redefine the set XD so that instead of having a single discrete variable

x, it instead contains n discrete variables in the vector x. Then, given N = {1, 2, . . . , n} and

63

Sj = {θj1, . . . , θjkj} for all j ∈ N , XD appears as

XD ≡ {(x,y) ∈ Rn × Rm : Ax+By ≥ d,0 ≤ y ≤ 1, xj ∈ Sj ∀j ∈ N}.

In this case, the RLT for mixed-discrete programs yields a convex hull representation by forming

functional products as ⊗j∈NCjẋj (the Kronecker product of the LIP functional products of the

individual variables) and by enforcing the simplifying identities ([Cj]iẋj)xj = ([Cj]iẋj)θji for all

i ∈ Kj = {1, . . . , kj} and j ∈ N .

This case can also be viewed as a special case of our simplicial facet results from the previous

section. Since, for each xj , the associated system of LIP functional products Cjẋj ≥ 0 is equivalent

to the simplex Cjx
′
j ≥ 0, it follows that the functional products ⊗j∈NCjẋj ≥ 0 are equivalent to

the system {⊗j∈NCjx′j}L ≥ 0 which, by Theorem 3.1, defines a (
∏
j∈N kj − 1)-dimensional simplex

whose
∏
j∈N kj extreme points are given by the columns of ⊗j∈NC−1j less the first row. The structure

of ⊗j∈NC−1j ensures that every extreme points has each xj ∈ Sj with each linearized product term

equaling the product of the individual variables. Thus, if we define the matrix F = ⊗j∈NCj and

the vector x′ = ⊗j∈N{x′j}L, then the simplicial facets Fx′ are equivalent to the linearized form of

the functional products ⊗j∈NCjẋj for the mixed-discrete RLT.

Finally, it remains to show that the general identity (3.17) inherently gives rise to the

mixed-binary RLT identities ([Cj]iẋj)xj = ([Cj]iẋj)θji for all i ∈ Kj and j ∈ N . To accomplish

this, pick any j ∈ N and i ∈ Kj . Then consider the vector of facets {([Cj]ix′j) ⊗`∈N−{j} C`x′`}L.

By Theorem 3.1, the system {⊗`∈N−{j}C`x′`}L ≥ 0 is itself a simplex and Lemma 3.1 states that

the surrogation of the facets of this simplex results in the scalar value 1. Hence, it follows that

1T {([Cj]ix′j)⊗`∈N−{j} C`x′`}L = {[Cj]ix′j}L = [Cj]ix
′
j . (3.28)

Judiciously choosing the appropriate identities of (3.17) for this problem gives

{([Cj]ix′j)⊗`∈N−{j} C`x′`}L · (xj) = {([Cj]ix′j)⊗`∈N−{j} C`x′`}L · (θji). (3.29)

Applying (3.28) to (3.29) results in the identity ([Cj]ix
′
j)(xj) = ([Cj]ix

′
j)(θji) exactly as desired for

each i ∈ Kj and j ∈ N . Via the equivalence of Cjẋj ≥ 0 and Cjx
′
j ≥ 0, we have established that

the convex hull for the mixed-binary RLT is a special case of Ω of (3.21).

64

3.4.3 Insights for Special Structure RLT

As a final insight, we briefly turn our attention to the work of [4]. Here, the goal was to

develop a new, unifying hierarchy for mixed-binary problems by utilizing explicit and/or implicit

valid inequalities in the binary variables. In particular, the paper focused on a mixed-binary set

XSS = {(x,y) ∈ Rn × Rm : Ax+By ≥ d,0 ≤ y ≤ 1,1Tx ≤ 1,x ∈ {0, 1}n}.

The paper demonstrated that by taking functional products of the form 1 − 1Tx ≥ 0 and xi ≥ 0

for all i ∈ N = {1, . . . , n}, and enforcing the simplifying inequalities x2i = xi for all i ∈ N , then the

convex hull of the set XSS could be obtained. Note that this yields a much more efficient convex hull

description than the original binary RLT where, as described in Section 3.4.1, the product factors

are formed by taking the Kronecker product of the products factors of every individual variable.

This, too, can be viewed as a special case of our simplicial facets results in the following

manner. Observe that, given binary x, the constraint 1Tx ≤ 1 allows at most only a single xi to

realize value 1 while the rest must be 0. In the spirit of (3.12), these n+ 1 feasible points are given

by the set

Θ =

0

0

.

.

.

0

 ,

1

0

.

.

.

0

 ,

0

1

.

.

.

0

 , · · · ,

0

0

.

.

.

1

 (3.30)

and are trivially affinely independent. Using the set (3.30), the associated simplex description of

(3.13) is given by SP = {x′ ∈ Rn+1 : Fx′ ≥ 0} where F =

1 −1 −1 · · · −1

0 1 0 · · · 0

0 0 1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · 1

. Hence, the

simplicial facets are of exactly the form 1 − 1Tx ≥ 0 and xi ≥ 0 for all i ∈ N = {1, . . . , n}. In

the same manner as the previous two subsections, it can be shown that the simplifying identities

x2i = xi for all i ∈ N result from the more general simplifying identities of the form (3.17). Thus,

we can view these special structure RLT results from [4] as an implicit exploitation of the facets of

a standard orthogonal simplex.

65

3.5 Conclusions

This chapter presents a new mechanism for generating convex hull representations of mixed-

discrete sets where certain variables are restricted to realize a set of affinely independent vectors.

This methodology hinges on the novel use of appropriately-scaled facets of a class of polytopes known

as simplices. Given a set of n affinely independent realizations of the discrete variables, a simplex

is the (n− 1)-dimensional convex hull of these realizations. A convenient way to acquire the scaled

simplicial facets is to form a n×n matrix, F−1, whose columns consist of the n affinely independent

realizations together with the value 1 appended in the first element. Then, the coefficients of the

desired facets can be obtained from the rows of the inverse matrix F .

The procedure for generating convex hulls mirrors the approach of the mixed-binary and

mixed-discrete RLT. Here, the simplicial facets described by F are used as functional products in a

manner analogous to x and 1 − x for the binary RLT and Lagrange interpolating polynomials for

the discrete RLT. These facets enable strengthened representations via simplifying identities that,

in essence, state that a facet times a discrete variable is equal to the facet times the value of the

variable in that single discrete realization not lying on the facet. This property arises due to the

scaling and structure of the simplicial facets which ensures that at every discrete realization a single

facet has a slack value of 1 while all others have 0 slack. This property also holds for x and 1 − x

and the LIPs, implying that these structures can be viewed as special cases of the simplicial facets.

While this chapter subsumes and extends classic RLT results, it also provides new insights

into the machinery promoting the older convex hull proofs. For example, the highest level of the

mixed-binary RLT hierarchy provides a convex hull for x ∈ {0, 1}n despite the realizations of this

set not being affinely independent for n > 1. In essence, the binary RLT operates by using product

terms amongst the binary variables to lift the original realizations into the exact higher-dimensional

space needed to achieve affine independence so that simplicial facets can be employed to obtain the

convex hull. In a similar manner, the LIPs for a discrete variable operate by lifting a set {θ1, . . . , θk}

into higher dimensions by taking successively higher integer powers of the original realizations so

that affine independence is achieved. Thus, it is this affine independence of the realizations, and

the accompanying invertibility of the matrix F−1, that gives rise to the convex hull representations

afforded by the RLT.

66

Bibliography

[1] Adams, W.P. and Sherali, H.D., “A Hierarchy of Relaxations Leading to the Convex Hull Repre-
sentation for General Discrete Optimization Problems,” Annals of Operations Research, Vol. 140,
No. 1, 21-47, 2005.

[2] Sherali, H.D. and Adams, W.P., “A Hierarchy of Relaxations Between the Continuous and
Convex Hull Representations for Zero-One Programming Problems,” SIAM Journal on Discrete
Mathematics, Vol. 3, Issue 3, 411-430, 1990.

[3] Sherali, H.D. and Adams, W.P., “A Hierarchy of Relaxations and Convex Hull Characterizations
for Mixed-Integer Zero-One Programming Problems,” Discrete Applied Mathematics Vol. 52,
No. 1, 83-106, 1994.

[4] Sherali, H.D., Adams, W.P., and Driscoll, P.J., “Exploiting Special Structures in Constructing a
Hierarchy of Relaxations of 0-1 Mixed Integer Problems,” Operations Research, Vol. 46, Issue 3,
396-405, 1998.

67

Chapter 4

Base-2 Expansions for Linearizing

Products of Functions of Discrete

Variables

Consider a discrete variable x that can realize values in the finite set S = {θ1, θ2, . . . , θn}.

It is well known that x can be expressed in terms of n binary variables λT = (λ1, λ2, . . . , λn) as

x =

n∑
j=1

θjλj , λ ∈ Λ, (4.1)

where

Λ ≡

λ ∈ Rn :

n∑
j=1

λj = 1, λj binary for j = 1, . . . , n

 . (4.2)

Moreover, given that x is an integer with θj = θj−1 + 1 for j = 2, . . . , n, then x can be alternately

defined as in [6] by

x = θ1 +

dlog2ne∑
k=1

2k−1uk, x ≤ θn, uk binary for k = 1, . . . , dlog2ne. (4.3)

Of course, if dlog2ne = log2n, then the inequality x ≤ θn of (4.3) is not needed. (Throughout this

chapter, we find it convenient to denote sums from 1 to n using the index j and sums from 1 to

68

dlog2ne using the index k.)

An obvious difference between (4.1) and (4.3) is that the former requires n binary variables

whereas the latter uses only dlog2ne . In this study, we represent functions of discrete variables in

terms of logarithmic numbers of binary variables, and use these representations to linearize products

of such functions. A recent work [4] has contributed two such linearizations by defining auxiliary

continuous variables and linear constraints. The methods vary in their construction. This raises

the following two-part question. Given a discrete variable x that can realize a finite number of

values in some arbitrary set S, how can x be most economically represented, and how can such a

representation be used to linearize products of discrete functions?

We use a simple observation relative to the unit hypercube to address this question so as

to efficiently represent x and any associated function f(x), and ultimately to represent products

of such functions. As a consequence, we are able to improve upon the contributions of [4] relative

to the linearization of monomial terms of discrete variables, as well as to mixed-integer generalized

geometric programs. This chapter is in the spirit of [5], which presents an interesting study on the

use of logarithmic numbers of binary variables to model disjunctive constraints, focusing on SOS1

and SOS2 type restrictions.

4.1 Base-2 Representations of Discrete Variables and Func-

tions

In this section, we represent a discrete variable x ∈ S = {θ1, θ2, . . . , θn} in terms of dlog2ne

binary variables, n nonnegative continuous variables, and dlog2ne + 1 linear equality restrictions.

The representation is then shown to extend to functions of this variable, as well as to the product

of such functions with a nonnegative variable. The study relies on the following elementary obser-

vation, stated without proof due to its simplicity.

Observation

Given any positive integer p, a binary vector u ∈ Rp can be represented as a convex combination

of a select subset of n ≤ 2p distinct extreme points of the unit hypercube in Rp if and only if the

vector u is itself one of the selected extreme points, with a single convex multiplier equaling 1, and

the remaining n− 1 multipliers equaling 0.

69

For our purposes, a useful implementation of this observation is the following. Consider

the n extreme points vj , j ∈ {1, . . . , n}, of the unit hypercube in Rdlog2ne, defined as follows. Each

vector vj ∈ Rdlog2ne is the base-2 expansion of the number j − 1 where the entry i corresponds to

the value 2i−1. Let λ ∈ Rn serve as convex multipliers of these points vj . Then the observation gives

us, with p = dlog2ne, that λ ∈ Λ of (4.2) if and only if there exists a vector u ∈ Rdlog2ne so that

(u,λ) ∈ Λ′, where

Λ′ ≡

(u,λ) ∈ Rdlog2ne × Rn :

n∑
j=1

λj = 1,

n∑
j=1

vjλj = u, u binary, λ ≥ 0

 . (4.4)

Consequently, (4.4) provides a mechanism for replacing the restrictions λ ∈ Λ of (4.2) in n binary

variables with (u,λ) ∈ Λ′ in dlog2ne binary variables. This gives us that x described in (4.1) and

(4.2) can be expressed with dlog2ne binary variables u, n nonnegative continuous variables λ, and

dlog2ne+ 1 equality constraints from (4.4) in λ and u as

x =

n∑
j=1

θjλj , (u,λ) ∈ Λ′. (4.5)

It is instructive to note cases of S for which (4.5) can be simplified so as to not include the

λ variables. Define the (dlog2ne+ 1)× n matrix V whose jth column is given by

[
1

vj

]
so that the

equations of Λ′ can be written as

V λ =

[
1

u

]
. (4.6)

Now suppose that the vector θT = (θ1, θ2, . . . , θn) can be written as a linear combination of the rows

of V using multipliers αT ≡ (α0, α1, . . . , αdlog2ne) so that αTV = θT . Then (4.5) simplifies to

x = α0 +

dlog2ne∑
k=1

αkuk, u binary, (u,λ) ∈ Λ′. (4.7)

As x in (4.7) is described entirely in terms of u, the variables λ simply ensure that the u vector is a

column vj corresponding to the binary expansion of some integer between 0 and n− 1. Then (4.7)

70

can be rewritten as

x = α0 +

dlog2ne∑
k=1

αkuk,

dlog2ne∑
k=1

2k−1uk ≤ n− 1, u binary. (4.8)

Similar to (4.3), if dlog2ne = log2n, then the last inequality is unnecessary. For the special case

where x is integer with θj = θj−1 + 1 for j = 2, . . . , n, we have α0 = θ1 and αk = 2k−1 for

k = 1, . . . , dlog2ne , reducing (4.8) to (4.3).

Example 4.1

Let x ∈ S ≡ {2, 3, 5, 7, 8} so that n = 5, dlog2ne = 3, and θ = (2, 3, 5, 7, 8)T . Arranging the vectors

(1,vj)
T as the columns of V, we obtain that (4.5) can be written as

x = 2λ1 + 3λ2 + 5λ3 + 7λ4 + 8λ5, (u,λ) ∈ Λ′

where

Λ′ =

(u,λ) ∈ R3 × R5 : V λ =

1 1 1 1 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

λ1

λ2

λ3

λ4

λ5

 =

1

u1

u2

u3

 , u binary, λ ≥ 0

.

There exists no α with αTV = θT and hence the λ variables cannot be removed. If, however,

S = {2, 3, 5, 6, 8}, then αTV = θT for αT = (2, 1, 3, 6) and we can obtain (4.8) with

x = 2 + u1 + 3u2 + 6u3, u1 + 2u2 + 4u3 ≤ 4, u binary.

Now, observe that (4.5) can be extended to express any function f(x) of the discrete variable

x, as well as the product of x and/or any such f(x) with a nonnegative variable κ, in terms of the

same dlog2ne binary variables u. Relative to the function f(x), define a variable, say y, and include

the linear equation

y =

n∑
j=1

f(θj)λj (4.9)

in (4.5). This equation forces y to equal f(x) for binary u. The products xκ and f(x)κ for nonneg-

71

ative κ rely on a modification of (4.4). Suppose that each restriction in Λ′ (exclusive of u binary)

is multiplied by the nonnegative κ to obtain the system Γ(κ) below, where we use variables γ to

denote the scaled λ.

Γ(κ) ≡

(u,γ) ∈ Rdlog2ne × Rn :

n∑
j=1

γj = κ,

n∑
j=1

vjγj = uκ, u binary, γ ≥ 0

 . (4.10)

Then, since (4.10) is a scaling of the equations in (4.4), we have for any nonnegative realization of κ

that the expressions
∑n
j=1 θjγj and

∑n
j=1 f(θj)γj , which are scaled versions of that found in (4.5)

and (4.9) respectively, will equal the products xκ and yκ.

A drawback of (4.10) is that dlog2ne of the equations contain quadratic terms, as found in

the vector uκ. These terms can be linearized via a procedure of Glover [2] that replaces uκ with a

vector of continuous variables w, and enforces w = uκ using the 4 dlog2ne inequalities below. Here

κ− and κ+ are lower and upper bounds on the permissible values of κ, and 1 represents a vector of

ones in Rdlog2ne.

κ−u ≤ w ≤ κ+u and κ1− κ+(1− u) ≤ w ≤ κ1− (1− u)κ− (4.11)

For each k ∈ {1, . . . , dlog2ne}, if uk = 0, the left-hand inequalities enforce wk = 0 and the right-

hand inequalities are redundant, while if uk = 1, the right-hand inequalities enforce wk = κ and the

left-hand inequalities are redundant.

We denote the linearized version of Γ(κ) where w is substituted in (4.10) for uκ using (4.11)

by Γ′(κ), as given below.

Γ′(κ) ≡

(u,γ,w) ∈ Rdlog2ne × Rn × Rdlog2ne :∑n

j=1 γj = κ,
∑n
j=1 vjγj = w, u binary, γ ≥ 0,

κ−u ≤ w ≤ κ+u and κ1− κ+(1− u) ≤ w ≤ κ1− (1− u)κ−

 (4.12)

Concise representations of the form given by (4.7) that do not require any variables λ

can also be obtained for special cases of f(x), and concise representations that do not require any

variables γ can be similarly obtained for special cases of the functions xκ and f(x)κ. Observe that

xκ can be expressed in such a concise form if and only if x can be so represented; that is, if and

only if θT can be expressed as a linear combination of the rows of V. In an analogous manner,

72

f(x) and f(x)κ can be expressed without variables λ and γ respectively if and only if the vector

fT = (f(θ1), f(θ2), . . . , f(θn)) can be expressed as a linear combination of the rows of V. Of course, if

it is desired to express either both x and f(x) without variables λ and/or both xκ and f(x)κ without

variables γ, then both vectors θT and fT must be able to be expressed as linear combinations of the

rows of V.

4.2 Base-2 Representations of Products of Discrete Func-

tions

The strategy of (4.4) and (4.10) to transform the n binary λ and the n binary γ to non-

negative continuous variables through the defining of dlog2ne new binary u, combined with the

linearization of the expressions uκ of (4.10) via (4.11) to obtain (4.12), can be used to construct

concise mixed 0-1 linear representations of products of functions of discrete variables. This construc-

tion yields representations that dominate the two methods of [4] in terms of numbers of constraints,

while affording improved relaxation strength relative to the first approach and equivalent strength

relative to the second.

Consider m functions f`(x`), ` ∈ {1, . . . ,m}, where x` ∈ S` ≡ {θ`1, θ`2, . . . , θ`n`
} and where

n` denotes the number of realizations of x`. Here, we subscript the function f(x), the variable x,

the set S, and the multiplier κ of the previous sections with the index ` to denote the m different

functions. Also, we let θ`j denote the jth realization of the variable x`. We further construct sets

Λ′` and Γ′`(κ`) of the form (4.4) and (4.12) respectively, one corresponding to each function f`(x`),

and accordingly apply the subscript ` to the variables u, λ, γ, and w, as well as to the vectors vj ,

to obtain the sets, for each ` ∈ {1, . . . ,m}, given as

Λ′` ≡

(u`,λ`) ∈ Rdlog2(n`)e × Rn` :

n∑̀
j=1

λ`j = 1,

n∑̀
j=1

v`jλ`j = u`, u` binary, λ` ≥ 0

 ,

73

and

Γ′`(κ`) ≡

(u`,γ`,w`) ∈ Rdlog2(n`)e × Rn` × Rdlog2(n`)e :

n∑̀
j=1

γ`j = κ`,

n∑̀
j=1

v`jγ`j = w`, u` binary, γ` ≥ 0,

κ−` u` ≤ w` ≤ κ+` u` and κ`1− κ+` (1− u`) ≤ w` ≤ κ`1− (1− u`)κ−`

(4.13)

where κ−` and κ+` denote lower and upper bounds on the values of κ`.

By the logic of the previous sections, for each ` ∈ {1, . . . ,m}, the variable x` and function

f`(x`) can be expressed as in (4.5) and (4.9) by

x` =

n∑̀
j=1

θ`jλ`j and y` =

n∑̀
j=1

f`(θ`j)λ`j , (u`,λ`) ∈ Λ′`, (4.14)

where y` = f`(x`), and the products x`κ` and f`(x`)κ` can be expressed by

x`κ` =

n∑̀
j=1

θ`jγ`j and f`(x`)κ` =

n∑̀
j=1

f`(θ`j)γ`j , (u`,γ`,w`) ∈ Γ′`(κ`). (4.15)

If desired, the products x`κ` and f(x`)κ` can each be replaced in (4.15) by continuous variables.

We now focus on a representation of the product
∏m
j=1 fj(xj) using the sets Λ′` and Γ′`(κ`)

from above. To begin, for each ` ∈ {2, . . . ,m}, we represent the product f1(x1)f2(x2) by a contin-

uous variable y12, the product f1(x1)f2(x2)f3(x3) by a variable y123, and so on up to the product

f1(x1)f2(x2) · · · fm(xm) by a variable y12···m. For ease of notation, for each ` ∈ {1, . . . ,m}, let

J` = 1 · · · ` denote consecutive subscript indices so that
∏`
j=1 fj(xj) is represented by the variable

yJ` (with y1 = yJ1). As additional notation, for each ` ∈ {1, . . . ,m−1}, denote computed lower and

upper bounds on the product
∏`
j=1 fj(xj) by f−J` and f+J` respectively. Continue by constructing Λ′`

and expressing the variables x` and y` as in (4.14) for each ` ∈ {1, . . . ,m}. Then compute Γ′`(κ`) of

(4.13) for each ` ∈ {2, . . . ,m} with the nonnegative scalar κ` given by κ` =
∏`−1
j=1 fj(xj)−f

−
J`−1

. Such

κ` have lower and upper bounds of κ−` = 0 and κ+` = f+J`−1
−f−J`−1

respectively. The resulting system

follows where, for each ` ∈ {2, . . . ,m}, we have included explicit restrictions that κ` = yJ`−1
−f−J`−1

,

74

with yJ`−1
substituted for the linearized version of

∏`−1
j=1 fj(xj).

x` =

n∑̀
j=1

θ`jλ`j , y` =

n∑̀
j=1

f`(θ`j)λ`j , (u`,λ`) ∈ Λ′` ∀ ` = 1, . . . ,m (4.16)

κ` = yJ`−1
− f−J`−1

∀ ` = 2, . . . ,m (4.17)

yJ` =

n∑̀
j=1

f`(θ`j)γ`j + y`f
−
J`−1

, (u`,γ`,w`) ∈ Γ′`(κ`) ∀ ` = 2, . . . ,m (4.18)

Note that the u` binary restrictions for ` ∈ {2, . . . ,m} are found in both (4.16) and (4.18) but need

only be stated once.

Upon substituting κ` = yJ`−1
− f−J`−1

for each ` ∈ {2, . . . ,m} from (4.17) into (4.18) and

then removing (4.17), the counts on the types and numbers of variables in (4.16) and (4.18) are

summarized in Table 4.1. Summing relevant entries, Table 4.1 gives that (4.16) and (4.18) have a

total of 3m− 1 +n1 + 2
∑m
`=2 n`+

∑m
`=2 dlog2(n`)e continuous variables and

∑m
`=1 dlog2(n`)e binary

variables.

Table 4.1: Variable types and counts in (4.16) and (4.18).

Variable name Variable type Number of such variables

x` continuous m
y` continuous m

yJ` , ` 6= 1 continuous m− 1
λ` continuous n` for each ` ∈ {1, . . . ,m}
γ` continuous n` for each ` ∈ {2, . . . ,m}
w` continuous dlog2(n`)e for each ` ∈ {2, . . . ,m}
u` binary dlog2(n`)e for each ` ∈ {1, . . . ,m}

Relative to the number of constraints in (4.16) and (4.18), a count is as follows. Each set

Λ′` of (4.16) has dlog2(n`)e + 1 restrictions, while each set Γ′`(κ`) of (4.18) with κ` as defined in

(4.17) has 5 dlog2(n`)e+ 1 restrictions. Including the additional 2m equalities defining x` and y` of

(4.16) and the m − 1 equalities defining yJ` for ` 6= 1 of (4.18), the total number of constraints is

5m− 2 + dlog2(n1)e+ 6
∑m
`=2 dlog2(n`)e .

The numbers of variables and constraints can be reduced, depending on the structure of

the problem and the desired form of the resulting linearization. Four reduction strategies are listed

below.

1. Since κ−` = 0 for each ` ∈ {2, . . . ,m}, the inequalities κ−` u` ≤ w` of (4.13) become nonneg-

75

ativity on w`, reducing the number of constraints by
∑m
`=2 dlog2(n`)e . If some κ` is defined

which allows for a strengthening of κ−` from 0 to a positive value, then a transformation of

variables w′` = w` − κ−` u` (see [1, 3]) can be used.

2. If desired, the variables x`, y`, and yJ` can all be substituted from the linearization (as well

as any encompassing optimization problem) by using the definition of variables in terms of

λ`j and γ`j found in (4.16) and (4.18). This substitution reduces the number of variables and

constraints by 3m− 1 each.

3. Each of the sets Λ′` and Γ′`(κ`) can be reduced in size by dlog2(n`)e+ 1 variables via a trans-

formation that changes the equality restrictions to inequality. To see this, consider Λ′1. As the

defining linear system of equations is of full rank (choose the columns corresponding to λ11

and λ1(2p−1+1) for each p ∈ {1, . . . , dlog2(n1)e}), a basis for Rdlog2(n1)e+1 can be obtained in

terms of a subset of the columns of the defining system. Then the dlog2(n1)e + 1 basic vari-

ables can be expressed in terms of the nonbasic variables and subsequently eliminated from

the formulation. Performing such a reduction on each Λ′` and Γ′`(κ`) reduces the formulation

by 2m− 1 + dlog2(n1)e+ 2
∑m
`=2 dlog2(n`)e continuous variables.

4. The order in which the functions are numbered and subsequently linearized affects the variable

and constraint counts. The set Γ′1(κ1) of (4.13) does not appear in (4.18), nor do the associated

variables γ1 and w1. Therefore, selecting f1(x1) so that n1 = max{n` : ` = 1, . . . ,m} can yield

a smaller formulation.

The lower and upper bounds f−J` and f+J` on the products
∏`
j=1 fj(xj) for ` ∈ {1, . . . ,m−1}

used in the construction of (4.16)–(4.18) can be computed in different ways. For each ` ∈ {1, . . . ,m},

lower and upper bounds f−` and f+` on the function f`(x`) are readily obtained as f−` = min{f`(θ`j) :

j = 1, . . . , n`} and f+` = max{f`(θ`j) : j = 1, . . . , n`}. Next consider the values f−J` and f+J` for

` ∈ {2, . . . ,m − 1}. If f−j ≥ 0 for all j ∈ {1, . . . , `}, then we can use f−J` =
∏`
j=1 f

−
j and f+J` =∏`

j=1 f
+
j . If, however, f−j < 0 for some such j, then various options exist, including using f+J` =∏`

j=1 max{|f−j |, |f
+
j |} and f−J` = −f+J` .

Three additional remarks relative to (4.16)–(4.18) are warranted. First, products of discrete

variables (as opposed to products of functions of discrete variables) can be readily handled by having

f`(x`) serve as identity functions so that f`(θ`j) = θ`j for all ` ∈ {1, . . . ,m} and j ∈ {1, . . . , n`}.

76

Then the first equation in (4.16) defining x` can be removed for each ` ∈ {1, . . . ,m}, as x` = y`.

Second, the linearization process that produces (4.16)–(4.18) does not depend on x1 being discrete.

This allows us to accommodate the expression
∏m
j=1 fj(xj) when the function f1(x1) is continuous.

In this case, restrictions (4.16) with ` = 1 are not used. Third, the approach of (4.16)–(4.18) does

not make use of the product f1(x1)κ1, so the value κ1 and set Γ′1(κ1) of (4.13) is not found in (4.18).

Similarly, the lower and upper bounds f−Jm and f+Jm on
∏m
j=1 fj(xj) are not needed.

We conclude this section with an example demonstrating the use of (4.16) and (4.18) in

linearizing the monomial x31x
1.5
2 .

Example 4.2

Consider the m = 2 functions f1(x1) = x31 and f2(x2) = x1.52 , where x1 ∈ S1 ≡ {−1, 2, 5, 7} and

x2 ∈ S2 ≡ {2, 4, 8}, so that n1 = 4 and n2 = 3. The restrictions (4.16) and (4.18) have the continuous

variables y1, y2, and y12 replacing f1(x1), f2(x2), and the product f1(x1)f2(x2) = x31x
1.5
2 respectively.

Using matrices to simplify notation where possible, (4.16) is given by

x1 = −1λ11 + 2λ12 + 5λ13 + 7λ14, y1 = (−1)3λ11 + 23λ12 + 53λ13 + 73λ14, (u1,λ1) ∈ Λ′1,

where

Λ′1 =

(u1,λ1) ∈ R2 × R4 :

1 1 1 1

0 1 0 1

0 0 1 1

λ11

λ12

λ13

λ14

 =

1

u11

u12

 ,u1 binary,λ1 ≥ 0

,

and

x2 = 2λ21 + 4λ22 + 8λ23, y2 = 21.5λ21 + 41.5λ22 + 81.5λ23, (u2,λ2) ∈ Λ′2,

where

Λ′2 =

(u2,λ2) ∈ R2 × R3 :

1 1 1

0 1 0

0 0 1

λ21

λ22

λ23

 =

1

u21

u22

 ,u2 binary,λ2 ≥ 0

 .

Since f−J1 = f−1 = (−1)3, we have κ2 = x31 − (−1)3 = y1 + 1, with κ−2 = 0 and

77

κ+2 = f+1 − f
−
1 = 73 − (−1)3 = 344. Then (4.18) becomes

y12 = 21.5γ21 + 41.5γ22 + 81.5γ23 − y2, (u2,γ2,w2) ∈ Γ′2(y1 + 1),

where Γ′(y1 + 1) of (4.13) is expressed in matrix form as

Γ′2(y1 + 1) =

(u2,γ2,w2) ∈ R2 × R3 × R2,γ2 ≥ 0 : 1 1 1

0 1 0

0 0 1

 γ21

γ22

γ23

 =

 y1 + 1

w21

w22

 ,
[

0

0

]
≤

[
w21

w22

]
≤ 344

[
u21

u22

]
,

[
y1 + 1

y1 + 1

]
− 344

[
1− u21

1− u22

]
≤

[
w21

w22

]
≤

[
y1 + 1

y1 + 1

]

,

with u2 binary not explicitly listed as it is found in Λ′2 above. Now, suppose that we change the

problem so that the variable x1 is redefined to be continuous in the interval [−1, 7], and it is desired

to have y12 represent the product of the continuous function x31 having −1 ≤ x1 ≤ 7 with the

discrete-valued function x1.52 having x2 ∈ S2; that is, y12 = x31x
1.5
2 . Explicitly define y1 to be x31

via y1 = x31, and treat y1 as a continuous function with y1 ∈ [−1, 343]. In this case, none of the

restrictions associated with (4.16) having ` = 1 are needed (including Λ′1) and the values f−1 = −1,

f+1 = 343, κ−2 = 0, and κ+2 = 344 are unchanged so that the set Γ′2(κ2) remains the same.

4.3 Comparison with Other Methods

The size and relaxation strength of the system (4.16)–(4.18) compares favorably with alter-

nate approaches. While there is considerable literature dealing with the linearization of nonlinear 0-1

programs and the representation of discrete variables in terms of binary variables, little attention has

been given to modeling functions of discrete variables, and their products, in terms of logarithmic

numbers of binary variables. We focus attention here on the two methods from Li and Lu [4], one per

subsection below. These methods were reportedly designed for solving mixed-discrete generalized

geometric programs.

78

4.3.1 Li & Lu Approach 1

Given a discrete variable x that can realize values in the set S = {θ1, θ2, . . . , θn} and a

function f(x) defined in terms of x, the first approach of [4] linearizes f(x) using dlog2ne binary

variables and 2n + 1 linear inequalities, plus a single continuous variable y to represent f(x). We

temporarily adopt the notation of Section 4.1 that suppresses the subscript ` on the variable x, the

function f(x), the set S, the parameter n, the values θj for j ∈ {1, . . . , n}, and the vectors u, λ, and

vj since a single function of a discrete variable is initially considered.

This approach of [4] can be explained in terms of ours as follows. It uses the same binary

variables u ∈ Rdlog2ne as (4.4) with (4.9), but in an altogether different manner. While not defining

vectors vj or variables λ, it can be envisioned as also enforcing that y = f(θj) when u = vj .

(For now, we focus attention on the function f(x) and later explain how the discrete variable x

can be similarly handled. This method is unique in that it requires separate families of restrictions

to handle each of x and f(x).) For every j ∈ {1, . . . , n}, it defines a linear function Aj(u) of the

binary variables u so that Aj(u) = 0 if u = vj and Aj(u) ≥ 1 if u 6= vj . For each such j, this

is accomplished by adding to the sum
∑dlog2ne
k=1 uk, the expression 1 − 2ui for all i having the ith

component of vj as 1. These functions can be computed using matrix multiplication as follows.

Define the (dlog2ne + 1) × (dlog2ne + 1) invertible, symmetric matrix B whose (i, j)th element,

denoted Bij for all i, j ∈ {1, . . . , dlog2ne+ 1}, is given by

Bij =

1 if (i = 1 and j 6= 1) or (i 6= 1 and j = 1)

−2 if i = j 6= 1

0 otherwise

(4.19)

so that [
1

u

]T
B

[
1

vj

]
= Aj(u) =

[
1

vj

]T
B

[
1

u

]
∀ j ∈ {1, . . . , n}. (4.20)

The left-hand equality becomes clear upon observing that the row vector

[
1

u

]T
B ∈ Rdlog2ne+1

has its first entry as
∑dlog2ne
k=1 uk, and its ith entry as 1− 2ui−1 for each i ∈ {2, . . . , dlog2ne+ 1}. The

right-hand equality follows from

[
1

u

]T
B

[
1

vj

]
being a 1× 1 matrix, with B symmetric. Letting

M = f+ − f− with f− ≡ min{f(θ1), . . . , f(θn)} and f+ ≡ max{f(θ1), . . . , f(θn)}, this formulation

79

of [4] is as follows.

P ≡

(u, y) ∈ Rdlog2ne × R :

f(θj)−MAj(u) ≤ y ≤ f(θj) +MAj(u) ∀ j ∈ {1, . . . , n},
dlog2ne∑
k=1

2k−1uk ≤ n− 1,

u binary

The restrictions of P operate so that, given any binary u satisfying

∑dlog2ne
k=1 2k−1uk ≤ n−1, the single

Aj(u) equaling 0, say Ap(u), will have the two inequalities f(θp)−MAp(u) ≤ f(x) ≤ f(θp)+MAp(u)

enforcing y = f(θp), and the remaining 2(n− 1) inequalities with Aj(u) ≥ 1 being redundant.

Observe that P contains no variables λ; it has a single continuous y and dlog2ne binary u.

However, it requires 2n + 1 inequalities. In contrast, Λ′ of (4.4) has n continuous λ and dlog2ne

binary u, but only dlog2ne+ 1 constraints. Recall, though, that reduction strategy 3 of Section 4.2

allows us to reduce the number of variables λ in Λ′ by dlog2ne + 1. Thus, in summary, Λ′ and P

require the same number of binary variables, but the former uses 2n− dlog2ne fewer constraints at

the expense of n− dlog2ne − 2 more continuous variables.

An important consideration when expressing any function of a discrete variable in terms of

new binary variables in a mixed 0-1 linear form is the strength of the continuous relaxation. Let

Λ̄′ and P̄ denote, respectively, the continuous relaxations of Λ′ and P obtained by relaxing the u

binary restrictions to 0 ≤ u ≤ 1. (Note that these 2dlog2ne inequalities are not needed in the set Λ̄′,

as they are implied by the other restrictions.) The theorem below shows that the set Λ̄′ with (4.9)

provides at least as tight a polyhedral representation, in terms of permissible values of y, as does P̄ .

Theorem 4.1: Given any (û, λ̂) ∈ Λ̄′ of (4.4), we have (û, ŷ) ∈ P̄ , where ŷ =
∑n
j=1 f(θj)λ̂j .

Proof. Let (û, λ̂) ∈ Λ̄′ with ŷ =
∑n
j=1 f(θj)λ̂j . Since for each j ∈ {1, . . . , n}, u = vj satisfies∑dlog2ne

k=1 2k−1uk ≤ n − 1, and since Λ̄′ expresses û as a convex combination λ̂ of the vectors vj , it

follows that
∑dlog2ne
k=1 2k−1ûk ≤ n− 1. Thus, the proof reduces to showing that

f(θj)−MAj(û) ≤ ŷ ≤ f(θj) +MAj(û) ∀ j ∈ {1, . . . , n}. (4.21)

Toward this end, arbitrarily select any p ∈ {1, . . . , n} and consider (4.21) for j = p. Surrogate the

80

equations of Λ̄′, represented in matrix form as in (4.6), using the multipliers

[
1

vp

]T
B, and set

(u,λ) = (û, λ̂), to obtain

n∑
j=1
j 6=p

λ̂j ≤
n∑
j=1

Aj(vp)λ̂j =

[
1

vp

]T
BV λ̂ =

[
1

vp

]T
B

[
1

û

]
= Ap(û). (4.22)

The inequality follows from the nonnegativity of λ̂ and because the function Aj(vp) is defined to

have Ap(vp) = 0 and Aj(vp) ≥ 1 for j 6= p. The first equality is due to the left-hand equation of

(4.20) with u = vp, applied once for each j ∈ {1, . . . , n}. The middle equality is the surrogation

of the restrictions in Λ̄′, and the last equality follows from the right-hand equation of (4.20) with

j = p. Now, add the nonnegative multiple (f+ − f(θp)) of the inequality
∑n
j=1,j 6=p λ̂j ≤ Ap(û) of

(4.22) to the multiple f(θp) of the equation
∑n
j=1 λ̂j = 1 from (4.4) to obtain

n∑
j=1

f(θj)λ̂j +

n∑
j=1
j 6=p

(f+ − f(θj))λ̂j ≤ f(θp) + (f+ − f(θp))Ap(û)

which, by the nonnegativity of (f+ − f(θj))λ̂j for all j 6= p and the defining of ŷ =
∑n
j=1 f(θj)λ̂j ,

establishes the right-hand inequality of (4.21) for j = p because f+ − f(θp) ≤ f+ − f− = M.

Similarly, add the nonpositive multiple (f−−f(θp)) of the inequality
∑n
j=1,j 6=p λ̂j ≤ Ap(û) of (4.22)

to the multiple f(θp) of the equation
∑n
j=1 λ̂j = 1 from (4.4) to obtain

n∑
j=1

f(θj)λ̂j +

n∑
j=1
j 6=p

(f− − f(θj))λ̂j ≥ f(θp) + (f− − f(θp))Ap(û)

which, by the nonpositivity of (f− − f(θj))λ̂j for all j 6= p and the defining of ŷ =
∑n
j=1 f(θj)λ̂j ,

establishes the left-hand inequality of (4.21) for j = p since f− − f(θp) ≥ f− − f+ = −M. This

completes the proof.

Note that the proof of Theorem 4.1 suggests a strengthening of the bound M used within

P and P̄ . For each j ∈ {1, . . . , n}, we can use M j = f(θj) − f− and M j = f+ − f(θj) to redefine

81

the set P as

P ≡

(u, y) ∈ Rdlog2ne × R :

f(θj)−M jAj(u) ≤ y ≤ f(θj) +M jAj(u) ∀ j ∈ {1, . . . , n},
dlog2ne∑
k=1

2k−1uk ≤ n− 1,

u binary

. (4.23)

The set P remains unchanged with this adjustment but P̄ is potentially tightened.

The representation of a discrete variable x, as opposed to a function f(x), proceeds in an

identical manner to the above. This is readily seen by defining f(x) so that f(x) = x. The set

P of (4.23) will then replace each f(θj) with θj , and each occurrence of y with x. If it is desired

to represent both f(x) and x, then 4n + 1 associated inequalities are needed in the dlog2ne binary

variables u, as the equation
∑dlog2ne
k=1 uk ≤ n− 1 need not be repeated.

It is important to note that the converse of Theorem 4.1 is not true, even when the set

P̄ uses the improved values M j and M j as in (4.23). That is to say, there can exist a point

(û, ŷ) ∈ P̄ for which there exists no λ̂ having (û, λ̂) ∈ Λ̄′ and ŷ =
∑n
j=1 f(θj)λ̂j . An example

illustrating Theorem 4.1 and the failure of its converse is below. For simplicity of presentation, we

have y = f(x) = x so that only one family of restrictions is required.

Example 4.3

Consider f(x) = x with x ∈ S ≡ {1, 3, 5} so that n = 3, dlog2ne = 2, f− = 1, and f+ = 5. Then

(4.9) with the relaxed set Λ̄′ is given by

y = λ1 + 3λ2 + 5λ3, (u,λ) ∈ Λ̄′,

where

Λ̄′ =

(u,λ) ∈ R2 × R3 : V λ =

 1 1 1

0 1 0

0 0 1

 λ1

λ2

λ3

 =

 1

u1

u2

 ,λ ≥ 0

 .

82

The set P̄ , adjusted for the strengthened M j and M j as in (4.23), is

P̄ =

(u, y) ∈ R2 × R :

1 ≤ y ≤ 1 + 4(u1 + u2)

3− 2(1− u1 + u2) ≤ y ≤ 3 + 2(1− u1 + u2)

5− 4(1 + u1 − u2) ≤ y ≤ 5

u1 + 2u2 ≤ 2

0 ≤ u1 ≤ 1

0 ≤ u2 ≤ 1

.

For ûT = (û1, û2) = (1, 12), every ŷ satisfying ŷ ∈ [2, 4] will have (û, ŷ) ∈ P̄ . However, there exists no

λ with (û,λ) ∈ Λ̄′ since the restrictions of Λ̄′ enforce that the nonnegative λ must have λ2 = û1 = 1,

λ3 = û2 = 1
2 , and λ1 + λ2 + λ3 = 1.

The paper [4] extends this approach to products of univariate functions. Again consider the

m functions f`(x`), ` ∈ {1, . . . ,m}, where x` ∈ S` ≡ {θ`1, θ`2, . . . , θ`n`
} and n` denotes the number

of realizations of x`. Then the linearization of
∏m
`=1 f`(x`) using our strengthened bounds of (4.23)

is accomplished in two steps. First, for each ` ∈ {1, . . . ,m}, form the set P` in the same manner as

(4.23) to represent f`(x`) as the variable y` using the binary variables u` ∈ Rdlog2(n`)e. Here, for each

such ` and for every j ∈ {1, . . . , n`}, the linear functions A`j(u`) are defined in the same manner as

Aj(u), and the bounds M `j and M `j replace M j and M j respectively so that M `j = f`(θ`j)− f−`
and M `j = f+` − f`(θ`j), with f−` ≡ min{f`(θ`1), . . . , f`(θ`n`

)} and f+` ≡ max{f`(θ`1), . . . , f`(θ`n`
)}.

In addition, each P` has the restriction
∑dlog2ne
k=1 2k−1u`k ≤ n` − 1.

The second step is based on the following observation: for any given `, by multiplying

the functional values f`(θ`j) found within P` by a variable, say ζ, the 2n` inequalities involving

f`(θ`j) will enforce y` = ζf`(x`) provided that for each j ∈ {1, . . . , n`}, the values M `j and M `j are

adjusted so that the associated inequalities are redundant when A`j(u`) ≥ 1; it is sufficient to have

ζf`(θ`j)− ζf`(x`) ≤ M `j and ζf`(x`)− ζf`(θ`j) ≤ M `j for all possible realizations of ζ and f`(x`).

Now, using this observation and the notation from Section 4.2 that J` = 1 · · · `, we can inductively

have yJ` =
∏`
j=1 fj(xj) for ` ≥ 2, beginning with y12 = f1(x1)f2(x2) = y1f2(x2) and sequentially

progressing to yJm = f1(x1)f2(x2) · · · fm(xm) = yJm−1
fm(xm). The variable y12 is computed by

forming a new set P12 using ζ = y1 within P2 to obtain y12 = y1y2. Then the variable y123 is

computed by forming P123 using ζ = y12 within P3 to obtain y123 = y1y2y3. Continuing up to Jm,

83

the variable yJm is computed by forming PJm using ζ = yJm−1 within Pm to obtain yJm =
∏m
j=1 yj .

Here, each set PJ` has the same number (2n` + 1) of constraints and the same variables u` as P`,

but includes yJ` and yJ`−1
instead of y`.

In the spirit of the above discussion, for each PJ` with ` ≥ 2, it is sufficient to have the

adjusted M `j and M `j , denoted MJ`j
and MJ`j respectively, satisfy ζf`(θ`j)− ζf`(x`) ≤MJ`j

and

ζf`(x`)− ζf`(θ`j) ≤MJ`j for all possible realizations of ζ = yJ`−1
=
∏`−1
j=1 fj(xj) and f`(x`). These

values can be computed in various ways. One method is to have MJ`j
= MJ`j = f+J` − f

−
J`

where,

as in Section 4.2, the terms f+J` and f−J` are upper and lower bounds on the product
∏`
j=1 fj(xj).

Different possibilities for these bounds exist. Again as in Section 4.2, if f−j ≥ 0 for all j ∈ {1, . . . , `},

then we can use f−J` =
∏`
j=1 f

−
j and f+J` =

∏`
j=1 f

+
j . If f−j < 0 for some j, then we can instead

use f+J` =
∏`
j=1 max{|f−j |, |f

+
j |} and f−J` = −f+J` . Strengthened values for MJ`j

and MJ`j can be

computed based on problem structure and expended effort.

The size of the formulation is as follows. A count on each variable type is given in Table 4.2.

Including the m original variables x`, there are 3m − 1 continuous and
∑m
`=1 dlog2(n`)e binary

variables. Relative to constraints, each set P` for ` ∈ {1, . . . ,m} has 2n` + 1 restrictions and each

set PJ` for ` ∈ {2, . . . ,m} has 2n` additional restrictions. Also, 2n` more inequalities are needed to

handle the variables x`. The total number of constraints is then m+ 4n1 + 6
∑m
`=2 n`.

Table 4.2: Variable types and counts in Approach 1 of [4].

Variable name Variable type Number of such variables

x` continuous m
y` continuous m

yJ` , ` 6= 1 continuous m− 1
u` binary dlog2(n`)e for each ` ∈ {1, . . . ,m}

4.3.2 Li & Lu Approach 2

The second approach of [4] also represents functions of discrete variables, and their products,

using logarithmic numbers of binary variables. For simplicity in presentation, we again begin by

examining a single discrete variable x ∈ S ≡ {θ1, θ2, . . . , θn} and function f(x) so that we can

temporarily drop the subscript `.

While completely different in form and structure, this approach can be viewed as a blending

of the first method of [4] that makes use of the linear functions Aj(u) of (4.20) for binary u ∈ Rdlog2ne

84

with our method that employs a vector of nonnegative, continuous variables λ ∈ Rn summing to

unity. It operates by creating a nonlinear equation in λ and u to enforce that λ is binary for

u binary, and then sets x = θj and y = f(θj) for that single λj = 1. The nonlinear equation is

subsequently linearized using [2]. Notably, our study will show that the resulting formulation allows

for a substantial simplification that is achieved by identifying inequalities that can be set to equality,

removing extraneous variables, and deleting redundant constraints. These simplifications render

both the functions Aj(u) and the linearization of [2] wholly unnecessary. In fact, the restrictions of

the simplified form are directly obtainable by multiplying the equations V λ =

[
1

u

]
of (4.6) found

in Λ̄′ by the invertible matrix B of (4.19), thus establishing an equivalence between the resulting

sets.

To begin, recall from the first approach of [4] in the previous section that the linear functions

Aj(u) of (4.20) were defined so that, for each j ∈ {1, . . . , n}, Aj(u) = 0 if u = vj and Aj(u) ≥ 1

if u 6= vj . Also recall for each such j that the vector vj denotes the base-2 expansion of j − 1,

where entry i corresponds to the value 2i−1. In this manner, Aj(u) is defined for every binary u

satisfying
∑dlog2ne
k=1 2k−1uk ≤ n − 1. The second approach of [4] defines a vector of nonnegative,

continuous variables λ ∈ Rn that is restricted to have
∑n
j=1 λj = 1, and uses the nonlinear equation∑n

j=1Aj(u)λj = 0 to ensure that the single j ∈ {1, . . . , n}, say p, having Ap(u) = 0 must also have

λp = 1. Then the equations

x =

n∑
j=1

θjλj and y =

n∑
j=1

f(θj)λj , (4.24)

which are identical to those found in (4.5) and (4.9), enforce x = θp and y = f(θp). The system is

below.

Q ≡

(u,λ) ∈ Rdlog2ne × Rn :∑n
j=1 λj = 1,∑n
j=1Aj(u)λj = 0,∑dlog2ne
k=1 2k−1uk ≤ n− 1,

u binary, λ ≥ 0

The paper [4] linearizes the quadratic equation with the same method of [2] that was used

to rewrite the nonlinear restrictions of (4.10) as (4.11). The first step is to factor the variables uk

85

from λ. Expressing this factorization in terms of earlier notation, by (4.20) we obtain

n∑
j=1

Aj(u)λj =

[
1

u

]T
BV λ,

where the matrix B is as defined in (4.19). For each k ∈ {1, . . . , dlog2ne+ 1}, denoting the kth row

of the vector BV λ by gk−1(λ) so that

g0(λ)

...

gdlog2ne(λ)

 = BV λ, (4.25)

the equation
∑n
j=1Aj(u)λj = 0 in Q becomes

g0(λ) +

dlog2ne∑
k=1

gk(λ)uk = 0.

For each k ∈ {1, . . . , dlog2ne}, the method of [2] substitutes a continuous variable δk for the product

gk(λ)uk, and uses four inequalities to enforce δk = gk(λ)uk at binary u. Using the fact that each

such gk(λ) is lower and upper bounded by −1 and 1 respectively (since the coefficient on every λj in

each function is −1, 0, or 1 and the sum of the λj equals 1), the formulation is as given below. The

paper [4] does not include the restriction
∑dlog2ne
k=1 2k−1uk ≤ n− 1 of Q; it can be shown redundant

in the presence of the remaining constraints.

Q′ ≡

(u,λ, δ) ∈ Rdlog2ne × Rn × Rdlog2ne :∑n
j=1 λj = 1

g0(λ) +
∑dlog2ne
k=1 δk = 0

gk(λ)− (1− uk) ≤ δk ≤ gk(λ) + (1− uk) ∀ k = 1, . . . , dlog2ne

−uk ≤ δk ≤ uk ∀ k = 1, . . . , dlog2ne

u binary, λ ≥ 0

(4.26a)

(4.26b)

(4.26c)

(4.26d)

While not noted in [4], the structure of Q′ allows for a simplification that significantly

reduces the numbers of variables and constraints. Consider the theorem below.

86

Theorem 4.2: Every point (û, λ̂, δ̂) with λ̂ ≥ 0 and 0 ≤ û ≤ 1 that satisfies (4.26a)–(4.26d) has

−ûk = δ̂k = gk(λ̂)− (1− ûk) for all k ∈ {1, . . . , dlog2ne}.

Proof. It is readily verified that the matrix B defined in (4.19) has the first row of B−1, say

ρT ∈ Rdlog2ne+1, with 2
dlog2ne

in the first entry and 1
dlog2ne

elsewhere. Consequently,

n∑
j=1

λj = ρTBV λ =
2

dlog2ne
g0(λ) +

1

dlog2ne

dlog2ne∑
k=1

gk(λ), (4.27)

where the first equality recognizes the first row of V λ from (4.6) as
∑n
j=1 λj , and the second equality

follows from (4.25). Now, sum 2
dlog2ne

times the equation in (4.26b) with 1
dlog2ne

times the sum of

the left-hand inequalities in (4.26c) and (4.26d) and invoke (4.27) to obtain

n∑
j=1

λj ≤ 1. (4.28)

But (4.26a) enforces this restriction with equality for all (u,λ, δ) ∈ Q′. Then the left-hand inequal-

ities of both (4.26c) and (4.26d) must also hold with equality for all (u,λ, δ) ∈ Q′. This completes

the proof.

The above theorem allows us to equivalently rewrite Q′ with the left-hand inequalities of

(4.26c) and (4.26d) satisfied with equality so that δk = gk(λ) − (1 − uk) and δk = −uk for each

k ∈ {1, . . . , dlog2ne}. This makes the right-hand inequalities redundant due to 0 ≤ u ≤ 1. Then we

can substitute δk = −uk throughout the problem so that the variables δ and restrictions (4.26d) are

no longer needed. The resulting reduced version of Q′ is RQ′ below.

RQ′ ≡

(u,λ) ∈ Rdlog2ne × Rn :∑n
j=1 λj = 1

g0(λ) =
∑dlog2ne
k=1 uk

gk(λ) = 1− 2uk, ∀ k = 1, . . . , dlog2ne

u binary, λ ≥ 0

Denoting the continuous relaxations of Q′ and RQ′ where the binary restrictions on u are

replaced with 0 ≤ u ≤ 1 by Q̄′ and R̄Q
′

respectively, it directly follows that a point (û, λ̂, δ̂) ∈ Q̄′

if and only if δ̂ = −û and (û, λ̂) ∈ R̄Q′. Thus, ¯RQ′ can be viewed as an economical representation

87

of Q̄′ that is obtained by setting a subset of the inequalities to equality, and by removing redundant

constraints and unnecessary variables.

The proof of Theorem 4.2 shows that RQ′ can be further reduced in size by removing any

one of the dlog2ne+ 2 equality restrictions. This follows from (4.27), as each such restriction can be

expressed as a linear combination of the others, with no multipliers of value 0.

Interestingly, the set ¯RQ′ provides exactly the same polyhedral region as Λ̄′. This equivalence

is addressed in the theorem below.

Theorem 4.3: A point (û, λ̂) ∈ ¯RQ′ if and only if (û, λ̂) ∈ Λ̄′.

Proof. Multiply the restrictions V λ =

[
1

u

]
of Λ̄′ by the invertible matrix B of (4.19). Then (4.25)

and the structure of B gives that the equation BV λ = B

[
1

u

]
yields the last 1+ dlog2ne equations

found within ¯RQ′. As noted above, the restriction
∑n
j=1 λj = 1 is implied by the remaining equations

of ¯RQ′, completing the proof.

Example 4.4

As in the previous Example 4.3, consider f(x) = x with x ∈ S = {1, 3, 5}, so that again n = 3

with dlog2ne = 2. The set Λ̄′ in three nonnegative continuous variables λ, two binary variables u,

and three equality constraints is given in Example 4.3 where V λ =

 1 1 1

0 1 0

0 0 1

 λ1

λ2

λ3

 . By (4.25),

 g0(λ)

g1(λ)

g2(λ)

 =

 λ2 + λ3

λ1 − λ2 + λ3

λ1 + λ2 − λ3

 = BV λ with B =

 0 1 1

1 −2 0

1 0 −2

 so that the representation of [4]

using Q̄′ is

Q̄′ =

(u,λ, δ) ∈ R2 × R3 × R2,λ ≥ 0 :

λ1 + λ2 + λ3 = 1

λ2 + λ3 + δ1 + δ2 = 0

λ1 − λ2 + λ3 − 1 + u1 ≤ δ1 ≤ λ1 − λ2 + λ3 + 1− u1

λ1 + λ2 − λ3 − 1 + u2 ≤ δ2 ≤ λ1 + λ2 − λ3 + 1− u2

−u1 ≤ δ1 ≤ u1

−u2 ≤ δ2 ≤ u2

0 ≤ u1 ≤ 1

0 ≤ u2 ≤ 1

.

Theorems 4.2 and 4.3 ensure that every point (u,λ, δ) ∈ Q̄′ must have δ = −u, and that a point

88

(u,λ) ∈ Λ̄′ if and only if (u,λ,−u) ∈ Q̄′. However, the form of Q̄′ is larger than Λ̄′. It uses the extra

variables δ1 and δ2 and, not counting the lower bounds of 0 on u1 and u2, requires two equality and

ten inequality constraints. To illustrate Theorem 4.2 that the four left-hand inequalities restricting

δ1 and δ2 must hold with equality, sum the second constraint with 1
2 times each of these four

inequalities to obtain λ1 +λ2 +λ3 ≤ 1, as (4.28) was computed from (4.27). The first equation of Q̄′

then establishes the result. The representation of f(x) (equivalently x for this example) is achieved

using (4.24).

The paper [4] notes that this approach can be combined with their first method to handle

products of univariate functions. Given m functions f`(x`) where x` ∈ S` ≡ {θ`1, θ`2, . . . , θ`n`
}

for ` ∈ {1, . . . ,m}, the product
∏m
`=1 f`(x`) is linearized in an identical fashion to the previous

section with the following exception. For each ` ∈ {1, . . . ,m}, a set Q′` in the variables u`, λ`, and

δ` is formed as in (4.26a)–(4.26d) so that x` and f`(x`) can be expressed as in (4.24). Then the

representations Q′` replace the sets P`. For each ` ∈ {2, . . . ,m}, the set PJ` remains unchanged,

having the variable yJ` represent the product
∏`
j=1 fj(xj).

Relative to the number of constraints, for each ` ∈ {1, . . . ,m} the set Q′` and the correspond-

ing expressions in (4.24) contain 4 dlog2(n`)e+4 restrictions (noting that 0 ≤ u ≤ 1 is implied). For

` ∈ {2, . . . ,m} the set PJ` has 2n` additional restrictions. In total, 4m+4
∑m
`=1 dlog2(n`)e+2

∑m
`=2 n`

constraints are required. (This is a savings beyond the first method in [4] of 4n` − 4 dlog2(n`)e − 3

constraints for each ` ∈ {1, . . . ,m}.) As for variables, Table 4.3 gives the names, types, and numbers

required. Summing, there are 3m−1+
∑m
`=1(n`+dlog2(n`)e) continuous and

∑m
`=1 dlog2(n`)e binary

variables.

Table 4.3: Variable types and counts in Approach 2 of [4].

Variable name Variable type Number of such variables

x` continuous m
y` continuous m

yJ` , ` 6= 1 continuous m− 1
λ` continuous n` for each ` ∈ {1, . . . ,m}
δ` continuous dlog2(n`)e for each ` ∈ {1, . . . ,m}
u` binary dlog2(n`)e for each ` ∈ {1, . . . ,m}

89

4.4 Conclusions

This chapter presents a strategy for expressing functions of discrete variables, and their

products, in terms of logarithmic numbers of binary variables. The fundamental idea is an observa-

tion for writing a binary vector as a convex combination of extreme points of the unit hypercube.

This observation allows us to treat n binary variables as continuous by defining a smaller number

of dlog2ne binary variables. Such collections of binary variables naturally arise in modeling general

discrete variables, and functions thereof.

Our strategy provides a unifying perspective for two published approaches that are designed

to use logarithmic numbers of binary variables. It compares favorably, in terms of the strengths of the

continuous relaxations and formulation sizes, to both methods. We show for the case of a function

f(x) having x a discrete variable, that our continuous relaxation dominates one such method, and

is theoretically equivalent to the other. For both competing approaches, our forms use markedly

fewer constraints. Our proofs provide insight into relationships of the alternate approaches with each

other, and improve upon the second by identifying (previously unnoticed) families of unnecessary

constraints and extraneous variables.

Given a collection of m functions f`(x`) for ` ∈ {1, . . . ,m}, where each discrete variable

x` can realize n` distinct values, Table 4.4 summarizes the numbers of continuous variables and

constraints required to linearize the product
∏m
`=1 f`(x`) for each of the three approaches. The first

row of the table is the proposed method of Section 4.2, while rows two and three are the approaches

of Sections 4.3.1 and 4.3.2. For readability, we let N =
∑m
`=1 n` and L =

∑m
`=1 dlog2(n`)e . Since all

three approaches employ the same L binary variables, this count is not included in the table.

We also posed four reduction strategies based on variable substitutions and transformations.

In order to perform more transparent comparisons, these strategies are not reflected in Table 4.4.

However, it is interesting to note that, in addition to the proposed method, they can be selectively

applied to the other two approaches. The substitution of variables w′` = w` − κ−` u` in the first

strategy for positive κ−` is applicable to the second approach of [4], although it becomes unnecessary

in light of Theorem 4.2. The second reduction strategy to eliminate the variables x` and y` is

applicable to the second approach of [4]. But all variables in the first approach of [4], and the yJ` in

the second approach, must be kept. The third reduction strategy that converts equality restrictions

to inequalities can be applied to the second approach of [4], but will only save two variables, due to

90

only two equality restrictions. Finally, the fourth reduction strategy dealing with the order of the

functions considered can potentially reduce all formulations, though to different extents.

Table 4.4: Summary of variable and constraint counts

Continuous Variables Constraints

Proposed Method 3m− 1− n1 + 2N + L− dlog2(n1)e 5m− 2− 5 dlog2(n1)e+ 6L
Li & Lu 1 [4] 3m− 1 m+ 6N − 2n1

Li & Lu 2 [4] 3m− 1 +N + L 4m+ 4L+ 2N − 2n1

This study is theoretical in nature, focusing on representation size and relaxation strength, as

well as establishing equivalences between, and improvements to, known techniques. Future research

includes computational studies to determine the practical benefits made possible by reduced numbers

of binary variables in concise model representations.

91

Bibliography

[1] Adams, W.P. and Forrester, R.J., “A Simple Recipe for Concise Mixed 0-1 Linearizations,”
Operations Research Letters, Vol. 33, Issue 1, 55-61, 2005.

[2] Glover, F., “Improved Linear Integer Programming Formulations of Nonlinear Integer Pro-
grams,” Management Science, Vol. 22, No. 4, 455-460, 1975.

[3] Glover, F., “An Improved MIP Formulation for Products of Discrete and Continuous Variables,”
Journal of Information and Optimization Sciences, Vol. 5, Issue 1, 469-471, 1984.

[4] Li, H.L. and Lu, H.C., “Global Optimization for Generalized Geometric Programs with Mixed
Free-Sign Variables,” Operations Research, Vol. 57, No. 3, 701-713, 2009.

[5] Vielma, J.P. and Nemhauser, G.L., “Modeling Disjunctive Constraints with a Logarithmic
Number of Binary Variables and Constraints,” Mathematical Programming, Series A, DOI
10.1007/s10107-009-0295-4.

[6] Watters, L.J. “Reduction of Polynomial Programming Problems to Zero-One Linear Program-
ming Problems,” Operations Research, Vol. 15, No. 6, 1171-1174, 1967.

92

	Clemson University
	TigerPrints
	5-2011

	Tight Polyhedral Representations of Discrete Sets Using Projections, Simplices, and Base-2 Expansions
	Stephen Henry
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	On Polytopes Associated with Products of Discrete Variables
	Linearization Background
	Reformulation-Linearization Constructs
	Projected Convex Hull Forms for One Variable
	Projected Convex Hull Forms for Two Variables
	Conclusions

	Exploiting Simplices in Computing Convex Hulls
	Reformulation-Linearization Technique Background
	Kronecker Products
	RLT for Mixed-Binary Programs
	RLT for Mixed-Discrete Programs

	Simplicial Structure
	Convex Hull Representations
	Insights for Classic RLT Results
	Insights for Mixed-Binary RLT
	Insights for Mixed-Discrete RLT
	Insights for Special Structure RLT

	Conclusions

	Base-2 Expansions for Linearizing Products of Functions of Discrete Variables
	Base-2 Representations of Discrete Variables and Functions
	Base-2 Representations of Products of Discrete Functions
	Comparison with Other Methods
	Li & Lu Approach 1
	Li & Lu Approach 2

	Conclusions

