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Abstract

The excitations occurring at a solid surface due to slow highly charged

ion (HCI) impacts are interesting from the perspective of fundamental processes

in atomic collisions and materials science. This thesis focuses on two questions:

1) How much HCI potential energy deposition is required to form permanent

surface modifications?, 2) How does the presence of a thin dielectric surface

film change the classical over-the-barrier picture for neutralization above a clean

metal?

I describe a measurement of craters in thin dielectric films formed by XeQ+

(26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers

were used to amplify the effect of charge-dependent cratering through the ex-

ponential dependence of tunneling conductance on barrier thickness. Electrical

conductance of a crater σc(Q) increased by four orders of magnitude (7.9× 10−4

μS to 6.1 μS) as Q increased, corresponding to crater depths ranging from 2 Å

to 11 Å. According to a heated spike model, the energy required to produce

the craters spans from 8 keV to 25 keV over the investigated charge states. Con-

sidering energy from pre-equilibrium nuclear and electronic stopping as well as

neutralization, we find that at least (27± 2)% of available projectile neutralization

energy is deposited into the thin film during impact.

Additionally, an extension of the classical over-barrier model for HCI neu-
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tralization above dielectric covered metal surfaces is presented. The model is used

to obtain the critical distance for the onset of neutralization above C60/Au(111),

Al2O3/ Co, and LiF/Au(111) targets. The model predicts that for thin films with

low electrical permittivity and positive electron affinity, the onset of neutraliza-

tion can begin with the electrons in the metal, and at further ion-surface distances

than for clean metals. The model describes three distinct over-the-barrier regimes

of “vacuum limited” capture from the metal, “thin film” limited capture from the

metal, and capture from the insulator. These regimes are detailed in terms of

charge state, target material parameters and film thickness.
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Chapter 1

Introduction

1.1 Ion - surface interactions

The interaction of atoms and ions with solids plays an important role in

both fundamental science and technology. A wide variety of physical phenomena

can be observed when atoms and ions impinge on a surface. These phenomena

range from quantum mechanical diffraction effects at thermal energies of a few

meV [9], up to track formation via atomic displacements at high energies of MeV

[10]. At all energies, ion-surface interactions are inherently complex due to the

many-body nature of a solid state target. To model the complexity of ion-surface

interactions, a common general approach is to consider the target as being com-

posed of two distinct but coupled systems of nuclei and electrons.

Ion-surface collisions are almost always accompanied by inelastic processes

(e.g., charge exchange or excitation of the target/projectile). These processes occur,

in part, due to the potential energy associated with the ionization energy required

to strip their electrons. It has been known since the 1920s that this potential energy

can manifest itself in inelastic excitations during an ion-surface interaction [11, 12]
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including enhanced electron emission (potential emission). Hagstrum’s work in

the 1950s laid the foundation [13] for the contemporary theoretical description of

charge exchange mechanisms that occur via Auger processes [14]. Since then, con-

siderable progress has been made toward quantitative understanding of charge

transfer in ion-surface interactions (see reviews in Refs. [15, 16, 17]).

In this thesis, the focus is on highly charged ion (HCI) interactions with

solids in the so-called low energy regime where kinetic energies are of order

100 keV. HCIs of these velocities are often referred to as “slow” in the liter-

ature where slow is defined as projectile velocities less than a Bohr velocity:

vp < 2.19× 106 m/s (or kinetic energies less than 25 keV/u) [8, 18]. In this veloc-

ity regime, the timescale for electron motion is short compared to the timescale for

ion motion. This provides time for above-surface electron capture and relaxation

processes, and means that the ion will neutralize rapidly near the surface. This

is in contrast to swift heavy ions where neutralization occurs over much longer

length scales, within a solid [19, 20]. General reviews of slow highly charged ion-

surface interactions have been given by Arnau, et. al., [18], Schneider, et. al., [21],

Schenkel. et. al., [8], and H. P. Winter, et. al., [22].

A dramatic increase in the initial charge state of an impinging ion opens

up many new pathways for inelastic energy transfer. The electronic potential

energy is the neutralization energy defined as the sum of the binding energies of

the electrons removed during ionization. For example, Xe44+ releases 51 keV of

potential energy upon neutralization at a surface and this energy is available for

inducing a variety of inelastic processes at the surface. This includes the formation

of irreversible surface modifications even at low kinetic energies. Neutralization

energy is deposited into a nanometer-scale area in <100 fs, creating an interaction

with power density of order 1017 W/m2.
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Figure 1.1: Schematic representation of a slow HCI impact on a surface: (i) The
HCI induces a dielectric response in the target. (ii) formation of the “hollow
atom” by electron capture into excited states, (iii) the hollow atom is screened by
the target e− gas, (iv) below-surface relaxation.

The general neutralization scenario is depicted in Fig. 1.1 and is summa-

rized in Ref. [22]. Stages (i) and (ii) represent the neutralization scenario described

by the classical over-the-barrier model [23]. In Fig. 1.1 (i), the ion induces a dielec-

tric response in the target, and gains kinetic energy from image acceleration. At a

critical distance for the onset of neutralization, the ion captures multiple electrons

resonantly into high-n Rydberg states to form a neutral “hollow atom”(ii) [24].

Above the surface, electrons in Rydberg states electrons relax to fill inner-shell

vacancies and emit Auger electrons. As the ion comes in close proximity with

the electrons in the target, the remaining excited electrons will be screened and

“peeled off”(iii) [23, 25], leading to re-ionization and formation of a sub-surface

hollow atom. In the final stage of neutralization, efficiency of the energy relax-

ation process from photons becomes comparable to that of Auger relaxation (iv)
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[24]. For insulator targets, the neutralization process leads to potential energy

induced sputtering, and the formation of permanent material defects.

At this point, there is no general picture of the excitation and modification

of a material induced by HCIs [26]. An important step toward developing such a

picture is to quantify the amount of potential energy deposited into the material

as opposed to the amount re-radiated into the vacuum. Schenkel and co-workers

have reported that as much as 40 % of the neutralization energy from Xe52+ pro-

jectiles is delivered into a Si detector target [27], where the remainder is emitted

to the vacuum through Auger electrons and photons. The experiments described

in this thesis were designed to study the surface modifications that result from

HCI impacts, with particular emphasis on a quantitative assessment of the poten-

tial energy that goes into surface modification. Within this ≈ 40 % of deposited

neutralization energy, there is a smaller fraction that plays a direct role in defect

formation [1]. In Ch. 3 we describe an experiment using tunnel junctions with

HCI irradiated barriers to measure this quantity.

The amount of energy deposited into a solid during an ion surface inter-

action is of particular importance in practical applications. Sputter damage from

singly charged ions, for example, is governed by kinetic energy loss to target

nuclei and electrons along the ion’s path [28]. Accurately predicting this loss

channel, which can be achieved over a wide incident energy range through semi-

empirical models [29], is a key input for many ion-based processing techniques,

such as ion milling, ion track formation/etching, lithography, and implantation

[28, 30, 31].

For HCIs, there is no such framework with which to predict inelastic en-

ergy deposition for a given projectile and material. The role of neutralization

energy in surface modification is poorly understood when compared to defect
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formation through kinetic energy loss. The ability to harness this pathway in

materials processing [32, 33] and mitigate its role in important erosion processes

such as in fusion reactors [34] requires charge state dependent measurements of

energy deposition into a material. Additionally, (as will be discussed in Ch. 3)

increasing the projectile charge state also enhances the kinetic energy loss to the

target material during electronic equilibration [35, 36].

A number of systematic investigations of HCI induced nanofeatures have

been performed with scanning probe microscopy (SPM). The general approach is

to irradiate a sample with HCIs and subsequently measure surface topography

with AFM or STM. HCIs induce individual permanent nanoscale surface mod-

ifications on materials including Au, HOPG, Si, KBr, CaF2, BaF2, TiO2, PMMA,

mica and LiF [37](and references therein). The density of surface features typi-

cally corresponds to the flux density of the HCI beam, i.e. each ion forms a single

nanofeature. A variety of nanofeature geometries emerge in the topographic mea-

surements including raised “hillock” structures and lowered “pits” or “craters”.

One challenge while performing a SPM based study of nanofeature sizes

is acquiring good statistics. In practice, scanning probe measurements require

topographic data to be acquired in a single scan frame at a time. The standard

deviation of the mean nanofeature size decreases as 1/
√

n where n is the number

of measurements [38]. To establish the standard deviation of the mean nanofea-

ture size within 1 % of the statistical uncertainty of an individual measurement, at

least n ≈ 104 measurements are required. This means that hundreds of scanning

probe micrographs are needed to locate and measure the sizes of the members

in a sufficiently large ensemble of HCI induced nanofeatures. Also, due to the

statistical nature of ion irradiation, there is an inherent width to the histogram of

nanofeature sizes.
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The fact that SPM studies measure nanofeatures one scan frame at a time

may also pose a problem when considering time dependent surface relaxation

processes. Nanofeatures measured immediately after irradiation will have had

less time to undergo coarsening than a nanofeature measured in later scans. In

this way, time-dependent surface processes may distort the statistical distribution

of measured nanofeature sizes. For Au(111), the timescale for observable sur-

face coarsening of HCI induced nanofeatures can be measured in hours at room

temperature, even in ultra high vacuum [39]. For insulators, the timescale for

coarsening may be longer. However, the observed defect agglomerations formed

by ion impacts [40, 41] are clearly not in their lowest structural energy configura-

tion, and will relax in time due to thermal energy.

Another practical challenge present in scanning probe studies is to measure

nanofeature sizes with high accuracy. If the radius of a nanofeature is comparable

to the tip radius, sample-tip convolution effects can increase the apparent width

of the feature (e.g., [42, 43]). This challenge can be overcome on crystalline tar-

gets where the defect size in a scan can be directly compared to periodic lattice

structure of an unirradiated region of the sample. Another possibility is to fabri-

cate (and characterize) atomically sharp tips with a higher aspect ratio than the

nanofeature of interest.

Our measurements of HCI induced nanofeatures within tunnel junctions

were motivated, in part, by the challenges associated with the scanning probe

based measurements. As will be described in Ch. 3, tunnel junctions allow the

simultaneous measurement of a large number of HCI induced modifications with

a single conductance measurement of a tunnel junction. After a tunnel barrier is

irradiated with HCIs, depositing the top electrode onto the irradiated interface

stops time-dependent surface processes [1]. Within the tunnel junction, all of the
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HCI induced modifications experience the same history between irradiation and

measurement. In addition to changes in surface topography, tunnel junctions can

also detect modifications formed within the barrier. Electrical measurements of

tunnel junctions are sensitive to both spatial and electronic properties through the

entire thickness of the barrier.

1.2 Objectives

The two primary questions that will be addressed in this thesis can be

summarized as follows:

1. What fraction of deposited HCI potential energy goes into the formation of

a permanent material defect?

2. What effect does placing a thin dielectric film on a metal target have on the

initial charge transfer between the target and ion?

1.3 Outline

• Chapter 2: Fabrication process for tunnel junction devices used to measure

HCI induced surface modifications is described with special emphasis on

Al2O3 barrier formation by plasma oxidation. Measurement techniques and

tunneling models are introduced. Tunneling conductance (dI/dV) data are

presented and analyzed.

• Chapter 3: Results are presented on a measurement of HCI induced “craters”

embedded within tunnel junctions [1]. Charge-dependent crater depths are
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extracted and analyzed with a heated spike model. The concepts of potential

energy deposition and pre-equilibrium kinetic energy loss are discussed.

• Chapter 4: A model for the onset of neutralization for HCIs above metals

covered with thin dielectric films is described. The model is constructed by

extending the classical over-the-barrier model for above-surface neutraliza-

tion, using classical potentials. Comparisons to the experimental systems

Al2O3/Co, C60/Au(111) and LiF/Au(111) are presented.

• Chapter 5: A summary of the main scientific results is presented.

• Chapter 6: Finally, two experimental proposals are mentioned. These in-

clude a high precision calorimetry experiment and a measurement of pre-

equilibrium stopping using tunnel junctions.
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Chapter 2

Fabricating tunnel junctions in

ultra-high vacuum

2.1 Context

A tunnel junction is an electronic device with a non-linear current-voltage

characteristic where the dominant transport mechanism through the device is

quantum tunneling [44]. One way to realize a tunnel junction device is to sand-

wich a thin dielectric film between two conducting electrodes. The thin dielectric

film introduces a potential barrier between electrons in the “top” and “bottom”

electrodes. The measured resistance of this device depends sensitively on both the

height and width of the potential barrier formed by the dielectric. These proper-

ties are determined by the film thickness and band gap. Small changes in either

of these quantities can be detected through electrical measurements of a device.

The sensitivity of tunneling resistance to the barrier height and width is used in a

wide variety of tunneling spectroscopy techniques, including scanning tunneling

microscopy and inelastic electron tunneling spectroscopy [44].
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For the experiments described in this thesis, we exploit the fact that dielec-

tric materials are susceptible to potential sputtering and surface modifications

during HCI irradiation, due to their low free electron density [32]. This means

that the electrical measurements of tunnel junctions with HCI irradiated barriers

can probe the surface modifications formed during irradiation. Additionally, be-

cause the tunnel barriers are thin compared to the charge equilibration length of a

slow HCI, the modifications are formed during the pre-equilibrium stage of HCI

relaxation [45].

The application of tunnel junctions as sensors of ion induced surface mod-

ifications is relatively new and complements previous measurements of surface

modification [1, 46, 47, 48, 49]. Studying material modification induced by HCIs

with tunnel junctions presents practical challenges involved with completing mi-

croelectronic device fabrication in surface science chambers. One goal of the study

was to grow and irradiate tunnel junctions entirely within ultra-high vacuum

(UHV) to avoid contamination of the surface. Within the chambers, it is possible

to keep a surface “clean” throughout the fabrication steps described here. For

example, given a base pressure of 10−11 Torr, the time required for a monolayer

of air to condense on the surface at room temperature is about 69 hours, based on

the Langmuir formula, assuming a unity sticking probability [50]. After the bar-

rier is formed, a tunnel junction can be irradiated and finished within less than 30

hours. Statistically, this means that the majority of defects will never be exposed

to any reactive species.

The devices described here have magnetic electrodes where the tunneling

occurs through Co/Al2O3/Co layers. Details of the unirradiated devices are dis-

cussed in this chapter and the fabrication steps can be briefly summarized as

follows. Each tunnel junction device was grown on an oxidized silicon substrate
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with the layer structure (in nm): bottom contact and antiferromagnet pinned layer

[2 Co + Ox / 21 Co], tunnel barrier [1.1 Al + Ox], magnetic free layer and top con-

tact [10 Co / 40 Cu / 3 Au]. Slight variations from this layer structure, will be

noted in the text as they occur. All layers were deposited by electron beam evap-

oration where +Ox indicates exposure to oxygen plasma after growth. Shadow

masks were used to define the sizes and positions of the thin film electrodes.

For the tunnel junctions with HCI modified barriers, irradations were per-

formed in situ before deposition of the top layer, [10 Co / 40 Cu / 3 Au]. Once

devices with irradiated barriers have been completed, by the deposition of a top

electrode, they can be removed from the vacuum chamber and measured. The

defects are encapsulated in the metal from the top electrode, and are physically

and chemically stable on the timescale of years [49]. Details of the HCI irradiation

step and measurement of irradiated devices is reserved for Ch. 3.

This chapter gives an overview of the experimental apparatuses and the

process for growing tunnel junctions used in this experiment. Here we overview

sample preparation, formation of the device layer structure and the resistance

measurements. The final resistance of a tunnel junction depends critically on

the parameters of the plasma oxidation step. At the end of the chapter dI/dV

measurements are shown as a function of oxidation time. Additionally, dI/dV

data are fit with a WKB tunneling model, to show how barrier height and width

evolve with oxidation time. In the final section, an oxidation scenario consistent

with the fits to our dI/dV measurements is proposed.
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2.1.1 Constraints

An original purpose for studying HCI modified tunnel junctions was to

investigate the possibility of using potential sputtering [32] to trim the resistance-

area (RA) product of magnetic tunnel junctions [33]. These studies were moti-

vated by the desire to decrease the RA product within a device demonstrating

tunneling magnetoresistance as a path to improve hard drive read head technol-

ogy.

While the experiments in this thesis focus on measuring ion energy de-

position instead of the technological applications, we have maintained the same

layer structure of the devices from the previous work. Specifically, the tunnel

junctions described here are magnetic tunnel junctions, grown by electron beam

evaporation, in crossed-wire geometry. The electrical measurements presented

below were taken with no applied magnetic fields.

When fabricating devices for the experiment, reproducibility of device re-

sistance is critical. Random resistance fluctuations from device to device in the

unirradiated control devices need to be be smaller than measurable resistance

changes due to the HCI impacts. Systematic effects that affect device resistance,

such as variation of device area on a single chip, can be corrected.

2.2 Experimental apparatus

Fabricating devices in UHV is incompatible with high-throughput process-

ing techniques that would normally take place in a clean room. Instead, de-

vices need to be grown in an environment compatible with UHV (surface science)

chambers. This requires integrating the deposition, oxidation and target chamber
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setups into a single system. Samples must be moved between the vacuum cham-

bers by magnetically coupled transfer rods and the sample size is constrained

by the diameter of the ports connecting the chambers. This means many of the

process steps are completed one chip at a time, as opposed to fabricating many

junctions simultaneously on a wafer.

Figure 2.1: Schematic of UHV chamber system

The experiments were conducted within a network of connected UHV

chambers, so that materials could be grown and irradiated in situ (schematic top

view shown in Fig. 2.1). Samples are introduced in the load lock (LL) through a
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hatch with a Viton o-ring seal. Once samples are loaded into one of four positions

on the sample sled on the magnetic transfer rod in the load lock the chamber can

be pumped out via a small turbo pump to a typical base pressure of 10−8 Torr.

The LL is equipped with an electrical feedthrough and mesh so that one sample

at a time can be cleaned with oxygen plasma.

The LL opens directly to the target chamber (TC) where samples can be

exposed to beams of highly charged ions from the EBIT beamline. The TC is

evacuated with an ion and Ti sublimation pumps. For beam analysis, the TC is

equiped with a Faraday cup, and microchannel plate beam viewer. Base pressure

of the TC is typically 10−10 Torr.

To the left of the TC in Fig. 2.1 is the main chamber. The main chamber

houses a STM/AFM (not used in these experiments) as well as a resistive sample

heater, sputter gun, residual gas analyzer, e- beam heater, sputter gun and mag-

netic transfer rod with 12 slots to store samples. The main chamber is kept at base

pressure 10−10 Torr using a turbo pump (Varian TV551), ion pump and titanium

sublimation pump.

The deposition chamber has a 3 kW electron beam evaporator, with 5 pock-

ets for evaporant materials (Thermionics Inc.). The chamber has feedthroughs for

liquid nitrogen cooling of a metal shroud above the sources, chilled water for reg-

ulating the e- gun hearth temperature, and thermocouples for monitoring tem-

perature of the shroud. A deposition monitor, consisting of a commercial quartz

crystal microbalance (QCM) is mounted above the sources. The QCM measures

the thickness of material deposited onto the surface of the quartz crystal. A pneu-

matic shutter (controlled by set points on the QCM controller) opens/shuts the

opening in the shroud between the sample and evaporation source. A magnetic

transfer rod holds a single chip above the evaporation source for growth of thin
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film samples. The distance between the source and chip is about 20 cm. A linear

feedthrough for shadow masks enters the deposition chamber at the same height,

but parallel to the magnetic transfer rod that holds the samples (not shown in

Fig. 2.1).

2.2.1 Sample preparation

The samples consisted of rectangular pieces of oxidized silicon with di-

mensions 13 mm x 20 mm and total thickness of 0.5 mm. The chips were diced

from 100 mm wafers, where one wafer yielded 24 chips (four of the chips have

slightly chamfered corners). The samples discussed here were lightly p-doped

with approximately 100 nm of thermally grown oxide. The doping level, doping

type, and oxide thickness of the substrates are not critical. The primary purpose

of the oxidized silicon is to provide a flat and electrically insulating substrate for

the device layers. The chips were sonicated in distilled water for at least 10 hours

after dicing, to remove dust or dirt from the dicing process. After being removed

from the distilled water bath, a chip was dried off with pressurized nitrogen gas

and mounted to a 12 mm wide stainless steel rectangular platen (by Omicron

GmbH), with colloidal silver (by EBS Inc.). The chips were then baked in an oven

at approximately 150◦C overnight to allow the solvent in the colloidal silver to

evaporate. Typically, four chips were mounted and baked simultaneously. The

chips were removed from the oven and immediately (<5 min) loaded into the

four sample slots in the LL.
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2.2.2 Thin film growth

Thin films were grown in the UHV deposition chamber shown at the bot-

tom of Fig. 2.1. The deposition chamber is kept at 10−9 Torr with a Varian (TV301)

turbo pump (pumping speed 300 L/s). One sample at a time can be brought into

the deposition chamber via a magnetic transfer rod.

UHV is not normally a strict requirement for electron beam evaporation

chambers. Though, for better vacuum pressures, fewer impurities will be incor-

porated into the thin film during growth. At 10−6 Torr, a monolayer of impurity

atoms can form within one second, assuming a unity sticking probability [50].

This rate also affects the cleanliness of the source materials, which can absorb

impurities from residual gas in the deposition chamber. In addition to preventing

impurities from being incorporated into the film, the UHV deposition chamber

allows us to directly transfer samples to the UHV main chamber.

The deposition chamber was equipped with a five-pocket RCL series elec-

tron beam evaporation gun by Thermionics Inc. where the evaporation sources in

the hearth are translated linearly [51] . The e- gun hearth is cooled with a contin-

uous flow of chilled (14 ◦C) water. Typically, the pockets were filled with Au, Cu,

Co, Al and Nb metals. Solid metal pellets or shot sit within each of the five pock-

ets in the copper evaporator hearth. Each of the pockets have nominal volume of

2 cm3. To decrease heat transfer between the evaporant and hearth, crucible liners

can be placed within the hearth. Crucible liners can provide improved uniformity

and control of the deposition rate.

The power required for evaporation depends on the radiant heat loss, the

latent heat of evaporation, and the conductive heat loss to the hearth. Funda-

mentally, the magnitudes of emission current needed for evaporation (shown in
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Table 2.1) are governed by the temperature where evaporation exceeds the radia-

tion and conductive losses. Electron beam power required to meet this level was

empirically determined, by monitoring evaporation rate as a function of electron

beam power. At a critical temperature, the vapor pressure of the source increases

and the source metal evaporates. Table 2.1 includes the temperature at which the

evaporant material has a vapor pressure greater than 0.1 mTorr [52, 53].

Cobalt can be evaporated efficiently even without a crucible liner. Typical

conditions for evaporation of Co are P = 50 mA × 5.36 kV (Table 2.1). The power

required to evaporate aluminum can be reduced by placing an alumina disk be-

tween the evaporant and hearth. The disk reduces conductive heat losses to the

hearth, and enhances evaporation rate. Similarly, gold and copper are placed

within carbon (FireRiteTM) crucible liners, to limit conductive heat losses and re-

duce the electron beam power needed to achieve the desired evaporation rate. Nb

is a refractory metal with a high melting point, and is most easily evaporated in

a BN crucible. Characteristics of e- beam evaporation of Au, Cu, Co and Al have

been described in detail in the literature [52, 53].

The deposition thicknesses were monitored by an Inficon XTM/2 QCM

system [54]. The parameters are shown in Table 2.2. The QCM controller also

controls a pneumatic shutter that can block the path between the evaporation

source and sample. The primary QCM input parameters are the density of the

evaporant material, z-ratio, and tooling factor. Z-ratio depends on both the den-

sity and shear modulus of the deposited film. Tooling is a geometric correction.

Z-ratio for Co, Au, Al, Cu and Nb sources were set from the values given by In-

ficon [54]. Tooling was determined by comparing profilometry measurements of

the actual film thickness (tm) on the substrate to the thickness measured by the
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Source Tm T(pvap > 0.1 mTorr) crucible liner nominal rate VHV
C◦ C◦ Å/s @ mA (kV)

Al 660 1010 Al2O3 disk 0.2 @ 175 -4.94
Co 1495 1200 none 0.5 @ 50 -5.36
Cu 1083 1017 C 2.0 @ 60 -5.31
Au 1064 1130 C 0.2 @ 50 -5.37
Nb 2468 2287 BN 0.1 @ 220 -4.8

Table 2.1: Electron beam evaporation parameters for Al, Co, Cu, Au and Nb
[52, 53].

Source Z-ratio ρ(g/cm3) Tooling

Al 1.080 2.7 110%
Co 0.343 8.9 100%
Cu 0.437 8.930 100%
Au 0.381 19.30 100%
Nb 0.492 8.578 100%

Table 2.2: Quartz crystal monitor settings. Further details on Z-ratio, tooling and
density are provided in Ref. [54]

QCM (tx). Tooling is defined as:

Tooling(%) = TFi
tm

tx
, (2.1)

where TFi is the initial tooling factor at the beginning of the calibration. For Co,

Co, Au, and Nb tooling was set at 100 %. For an Al films, tooling was set at 110 %;

the QCM is offset radially from the sample by several centimeters.

Power deposited into the evaporation source material is proportional to

the current emitted from the filament as P = I f il VHV . However, VHV from the

power supply tends to drop slightly with increasing I f il. The voltage output

corresponding to each I f il during a deposition is included as the far right column

18



in Table 2.1. Generally, recording the electron current emitted from the filament

during the evaporation is a good metric for comparing the total power deposited

into the source material from one deposition to another.

The distribution of electrons emitted from the e-gun filament determines

the width of the electron beam spot size. Therefore, in order to achieve a tightly

focused beam the power supply should minimize ripple. The e- gun power supply

used was model 150-0040 by Thermionics Inc [51]. Slight modifications were

made to the supply in order to decrease the ripple of the high voltage output.

The circuit sketched in the manual was modified by replacing the resistor R109 (1

kW; 100W), with a short and by placing a 150 Ω (100 W) resistor in parallel with

the control rectifier CR103.

The pneumatic shutter is opened or closed with a switch in the QCM con-

troller that can be actuated by film thickness set points. A typical deposition

was performed as follows. With the shutter closed, the e- gun filament current

is increased slowly (1 mA s−1) to a value of approximately 50% of the filament

current used during evaporation, to warm up the source. The current was then

increased to approximately the values in Table 2.1, to achieve the desired evapora-

tion rate for a particular source material. When this evaporation rate is achieved,

the shutter is opened manually via the the QCM controller. The final film thick-

ness is set within a predefined QCM program. When the set point is reached, the

shutter closes. The electron beam power is never adjusted during deposition on

the sample.

The metal shroud in the deposition chamber is cooled with liquid nitrogen

to regulate the deposition chamber temperature during prolonged e-beam heating

of the source materials. Additionally, the nitrogen cooled shroud acts as a sorption

pump for residual gases. A typical deposition chamber pressure of 5 × 10−10
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Torr is reached at shroud temperature -160◦C, even when the electron beam is

on. Pressure can also decrease during an evaporation, as the evaporated metal

particles effectively getter residual gas in the chamber. This is observed mostly

with the Co source, where the pressure drops by several tenths of nTorr at the

onset of evaporation.

2.2.3 Shadow masks

2.2.3.1 Overview

During the course of the experiments, two designs of shadow masks were

developed. The first and second generation masks will be referred to as G1 and G2

masks respectively. For both sets of masks, a cut pattern in (2.5× 2.5) cm2 sheet

of metal defines the position of the crossed wire electrodes used to form either

the top or bottom electrodes of the tunnel junctions. Our fabrication method is

in contrast to the method of lithographically patterning devices into a layered

wafer: a technique that is often performed in a clean room setting. Here, metals

are evaporated through mask slits of a few hundred microns in width, to deposit

material on a chip within an ultra high vacuum chamber.

2.2.3.2 First generation masks (G1)

The first generation of shadow masks produced chips with four devices.

The mask patterns were electric discharge machined into stainless steel shim stock

with thickness 254 μm. The mask patterns are shown in Fig. 2.2(a) and (b). A chip

produced with the G1 masks is shown in Fig. 2.3(a). In the figure, the chip has

dimensions 13 mm × 20 mm. The four tunnel junctions on the chip are arranged

in a crossed wire geometry. The first mask defines the lead running parallel to
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Figure 2.2: G1 mask set. The top cross leads are defined in (a) and bottom long
lead is defined in (b). Each square has side length 2.5 cm.

the long side of the rectangular chip (bottom electrode). After deposition of this

long lead, an aluminum layer is deposited and plasma oxidized so that the barrier

material covers the entire chip area. Subsequently the top electrodes are evapo-

rated through a second mask, running perpendicular to the bottom electrode to

define the top cross leads. The barrier material that coats the chip is sandwiched

between two electrodes at each of the four intersections in Fig. 2.3.

Each tunnel junction is connected to four electrical leads, so that four point

resistance measurements can be performed (to eliminate contact resistance caused

by the interface between a measurement probes and device wire). The four re-

sulting crossed wire devices are indexed A through D. In Fig. 2.3, the A device

is shaded in red. Figure 2.3(b) shows the micrograph of the A device, where the

scale is indicated by the white arrows. These dimensions are representative of

a device fabricated with the G1 mask set. Approximate device area is 100 μm2,

where the bottom lead is slightly wider than the top leads. For the typical layer
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Figure 2.3: Tunnel junction devices fabricated with the G1 mask set. (a) The long
lead is the bottom electrode, while the cross leads are top electrodes. Devices
are formed at the four intersections. Devices can be probed by contacting the 10
circular contact pads. (b) Micrograph of A, where the scale is indicated by the
arrows.

structure, a cross lead resistance (probes placed on opposite contact pads of a sin-

gle cross lead in Fig. 2.3(a)) is approximately 100 Ω. The resistance of cross leads

cannot be measured with four points. A typical long lead resistance is approxi-

mately 1500 Ω.

2.2.3.3 Second generation masks (G2)

The second generation (G2) masks were developed to make the following

improvements:

• Decrease device area (to increase resistance)

• Increase the number of devices on each chip
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• Implement “test patterns” for measuring the sheet resistance (Ω/�) of both

the top and bottom electrodes with a four point measurement

Devices with higher resistance increase dynamic range in the measurement

of HCI modified devices. The second generation of shadow masks were manu-

factured by Tecan Inc. (http://www.tecan.co.uk). During the mask fabrication

process, features were etched into hardened nickel with photolithography. The

thickness of the nickel medium was 300 μm, and reduced to 50 μm around the

features. The width of both the top and bottom feature sizes were specified to be

20 μm with an accuracy of ±2 μm. A technical drawing of the masks is shown in

Fig. 2.4. The masks for the bottom and top electrodes are shown in Fig. 2.4(bot-

tom) and (top) respectively. Patterns for the contact pads on the mask are spaced

at 0.1”, so that the finished devices are compatible with the spacing of pins on a

standard printed circuit board.

G2 masks produce chips with 8 devices, and two test patterns. Test patterns

allow independent, four-point measurements of both the top and bottom leads,

to extract the resistance per square (R/�) for the electrode materials. The test

patterns are shown in Fig. 2.4 on the right side of both the top and bottom masks.

Three magnified views of the masks are shown at the right in Fig. 2.4.

A device fabricated with the G2 mask set is shown in Fig. 2.5 along with

four-point resistance measurement setup. The numbers on the leads correspond

to the pin index marks on the printed circuit measurement board.

2.2.4 Plasma chamber

The final resistance of a tunnel junction is determined, largely, by the ox-

idation step. Design of a new plasma chamber was motivated by two primary
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Figure 2.5: Tunnel junction micrograph with R4pt measurement schematic. The
four-point resistance is obtained R4pt = ΔV/I.
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concerns:

• Remove instabilities in the electrostatic environment surrounding the chip.

• Minimize the total time required for oxidation.

The normal chamber pressure is 5× 10−9 Torr when not in use. The plasma

chamber is evacuated by a Pfeiffer-Balzers TMU 260 turbo pump (260 L/s), backed

by a Agilent SH110 scroll pump. The plasma chamber is a cylindrical stain-

less steel chamber with a volume of approximately 5 L. Annotated photos of the

plasma chamber are presented in Appendix A. A 24” magnetic transfer rod, with

a sample sled attached to the end, is used to bring chips to and from the main

chamber. The sled has three sample positions and docks into a cut-out that runs

along the diameter of the bottom plasma electrode ring (Appendix A; Fig. 4). In

normal operation, the sled is in direct electrical contact with the grounded plasma

electrode. A negative DC bias is applied to the top electrode to start a plasma dis-

charge.

2.2.4.1 Pumping

The pumping system on the plasma chamber was designed for quickly in-

troducing and evacuating O2 gas, for fast oxidation and pump out after oxidation.

A gate valve separates the turbo pump and chamber so that the port to the turbo

pump can be closed and O2 gas can be leaked into the chamber for plasma ox-

idation through a valve on the top flange. Closing the gate valve allows O2 gas

to be introduced without having to spin down the turbo pump. A stainless steel

tube connects the (99.99% pure) oxygen tank to the leak valve. After an oxidation,

a backing valve is opened between the chamber and backing scroll pump. The
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scroll pump reduces the pressure in the chamber to around 50 mTorr. At this

point, the backing valve can be closed, and the gate valve can be opened, to bring

the chamber back to its base pressure (10−9) Torr. The pressure of the O2 gas

during oxidation is low (100 mTorr), so that the turbo pump remains at full speed

when pumping out the plasma chamber after oxidation.

2.2.4.2 Plasma electrodes

The plasma setup consists of parallel circular electrodes. The top and bot-

tom electrodes are concentric with radii of approximately r = 10 cm and 14 cm

respectively with a separation distance d = 9.6 mm. A DC glow discharge can

be ignited by applying negative bias to the top (cathode) ring in a background of

oxygen gas [55]. Kapton coated wire connects the vacuum side of a feedthrough

on the top cluster flange of the chamber, to the cathode. A high voltage supply

(Kepco BWK-1000, 1 kV, 200 mA) provides a timed, negative output bias, in con-

stant current mode. The power supply is operated in fast mode and has built-in

control over the time duration of the plasmas. Rise time of the bias output, to

reach the current set point is less than 1 ms.

2.3 Plasma characteristics

2.3.1 Pressure, power, and optical emission

The primary plasma probe during oxidation for the experiment was a pho-

todiode (ThorLabs SM1PD1B) mounted to a glass viewport and directed at the

space between the anode and cathode. The distance between the photodiode and

center of the plasma electrodes was approximatly 13 cm. Voltage signal from the
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photodiode is proportional to the incident light power from the plasma. Voltage

readout (Vph) from the photodiode (in passive, unbiased mode) was recorded with

a Tektronix Oscilloscope (TDS2000). The photodiode can measure incident light

with wavelengths between approximately 300 nm and 1100 nm with a maximum

responsivity peak of 0.65 A/W at 950 nm (Appendix B). By choosing a photodi-

ode with a spectral response peaked in the low infrared, the detector is sensitive

to the manifold of strong emission lines at 777 nm line in oxygen that produces

O* radicals, which are considered to be the most important species in the plasma

oxidation of aluminum [56]. Therefore, intensity of photovoltage signal (Vph)

gives a qualitative indicator of oxidation rate for samples in our experiments. The

intensity of the light plasma is proportional to the number of excited O* species.

A representative photovoltage signal is shown in Fig. 2.6. The power sup-

ply (in constant current mode) was set at 40 mA for a programmed time tox =

3.3 s. Pressure in the chamber was initially 120 mTorr. In Fig. 2.6(a), at t < 0 s,

the background photovoltage Vph = 50 mV is due to ambient light in the labo-

ratory incident on the photodiode through plasma chamber viewports. As the

power supply turns on to ignite the discharge, the scope is triggered at t = 0 s, by

the rise in photovoltage from plasma optical emission. When the discharge is on

(0 s < t < 3.29 s), the measured photovoltage remains nearly constant at an aver-

age value Vph = 239.9 mV with standard deviation 0.8 mV. Scope traces in Fig. 2.6

were taken at sampling frequency 0.5 kHz. As the power supply turns off, pho-

tovoltage signal drops exponentially with a e−1 decay time τ = 1.74± 0.02 ms.

After the oxidation, the pressure measured on the Convectron gauge drops to 119

mTorr.

We use the photovoltage signal to compare plasma discharges created with

different pressures and powers. Plasma discharges created at given pressures and
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Figure 2.6: Photovoltage at the (a) beginning and (b) end of a plasma discharge.
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powers give very reproducible Vph signals from run-to-run, even when the runs

are performed on different days.

The plasma itself is charge neutral, but contains both positive and nega-

tive atomic and molecular ions, and free electrons [56]. Additionally, the plasma

contains neutral excited oxygen species (O*) that are highly reactive, and critical

in the oxidation process. At higher pressure, O* have a shorter mean free path,

collide and thermalize with background constituents of the plasma, before reach-

ing the sample. On the other hand, at low pressures excited oxygen radicals have

a longer mean free path and are more likely to collide with the substrate before

colliding with other gas particles. Kuiper and co-workers observed no change

in the oxidation rate when reversing the bias between the sample and opposite

electrode. This indicates that O* are the main species in the oxidation process

[56]. The transition in oxygen that produces O* radicals emits lines at 777 nm.

Therefore the overall population of O* species is proportional to the Vph signal

during the discharge.

Representative spectra from plasmas at three different powers are shown

in Fig. 2.7. The scans (a), (b) and (c) in Fig. 2.7 were acquired with different

integration times 23.5 s, 13.2 s and 23.3 s respectively using the BWTEK model

BRC112P-V spectrometer. Oxygen pressure was constant at 120 mTorr. During

these measurements, the plasma chamber was shielded from ambient light. We

find that the photoemission spectra from the DC discharges are similar to those

in Ref. [56]. Specifically, most of the light intensity originates from the lines at 777

nm. We observe that the ratio of the intensities between the 555 nm (molecular

ions) line and the 777 nm (radicals) line decreases with increasing plasma power.

Therefore, increasing the plasma power has a similar effect on the optical emission

spectra as decreasing the pressure [56].
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The Kepco BWK-1000 can dynamically change voltages to maintain con-

stant current for loads that have time-varying resistance. This is important for

igniting and maintaining a DC plasma. Impedance between the two plasma elec-

trodes is the largest before breakdown occurs. Once enough bias has been applied

between the plates to start breakdown, Z drops. To maintain constant current,

the applied bias must drop accordingly. This process happens at the microsecond

timescale at t < 0 s in Fig. 2.6(a). Thus, one requirement for the power supply

driving the plasma, is that it can handle dynamic loads. Details on the hysteretic

behavior of I-V characteristics are given in Ref. [55]. In practice, DC power sup-

plies should have faster than millisecond rise times for resistive loads of greater

than 30 kΩ. After overcoming the initial high impedance between the electrodes,

the resistance drops to a nearly constant value V during the discharge. Between

0 s < t < 3.29 s, in Fig. 2.6, the voltage applied to the top electrode was V = -528 V

in order to maintain the constant current set point of 40 mA. This means that the

average applied power during the discharge was 21 W.

To demonstrate how pressure and applied power affect the intensity of

the light power of the plasma, Fig. 2.8 plots the photovoltage Vph signal (after

subtracting the contribution from ambient light) as a function of pressure and

power. The inset in Fig. 2.8(a) plots the the average plasma impedance, Z during

the discharge. In Fig. 2.8(a) the photovoltage-power relationship is shown for

plasmas at constant pressure (100 mTorr). Here, each Vph point is the average

value of the photovoltage step height during a programmed 30 s discharge. Each

point corresponds to a single Iset value. Current set points were varied from 3 mA

to 90 mA in Fig. 2.8(a). As power increases, the total light intensity of the plasma

increases.

The inset of Fig. 2.8(a) shows the impedance of the plasma [Z(t)], dur-
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ing times t > 0 s. As pressure increases, plasma impedance drops exponentially.

Here, the impedance is defined as Z = V/Iset. The plasma becomes more conduc-

tive as the amount of oxygen between the electrodes increases. An exponential

decay model empirically describes the decrease [Z = Z0 + Z1 exp(p/p0)], with fit

parameters Z0 = 17kΩ, Z1 = 50kΩ, and a characteristic pressure p0 = 17.3 mTorr.

This fit allows extrapolation of plasma electrical characteristics to different pres-

sures and powers. For example, the inset and fit parameters allows one to predict

the maximum power supply voltage setting needed for a given Iset and oxygen

pressure. For the plasmas in Fig. 2.8(a), impedance was Z = 25 kΩ.

Fig. 2.8(b) plots Vph as a function of pressure. As the pressure increases, the

plasma impedance Z decreases according to the trend shown in the inset of (a).

As Z decreases with increasing pressure, the voltage drop required to maintain a

given Iset drops as well. The star is plotted at 100 mTorr to show where the data

in (a) fall, within the pressure trend shown in (b). Plasma light intensity decreases

linearly with increasing pressure. The line in Fig. 2.8(b) plots this measured linear

decrease in photovoltage with increasing pressure, with slope -0.20 mV / mTorr.

2.4 Device characteristics

2.4.1 Resistance measurements

For each measurement, chips were held in a custom jig where spring pins

electrically contacted the on-chip pads. Typical resistance measurements were

done at small bias voltages. A HP 3468B multimeter was setup in four-point

resistance measurement mode. The multimeter sourced a constant DC current (1

mA or less) through the devices by applying positive bias to the top electrode. A
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Keithley 2000 multimeter, connected in series, monitors the source current flowing

through the device. Then, the voltage difference induced by the source current

can be sensed across the other device electrodes that are connected to the sense

terminals of the multimeter. Placement of the leads for sourcing current and

sensing voltage is depicted in Fig. 2.5, where I is the source current, and ΔV is

the voltage drop measured across the sense terminals.

The differential conductance (dI/dV) measurements were obtained simi-

larly, using a Keithley 2612 system source meter interfaced via GPIB to a computer

with Labview. In this case, the bias between the source and drain was modulated

to change the current flowing through device, while simultaneously the voltage

drop across the device at each source current value was measured. First current-

voltage data were recorded. These data were then numerically smoothed, and

differentiated to obtain dI/dV as a function of bias voltage.

2.4.2 Negative resistance artifacts and measurements limits

Four point resistance measurements avoid the problem of contact resis-

tance that is present in a two-point measurement. However, there is a “negative

resistance” artifact that causes the measured four-point resistance (R4pt) to be

smaller than the actual device resistance (Rdev) [57, 58]. For devices with small

resistance compared to the measurement leads, this effect can result in a large

relative error in the resistance measurement [57]. The “negative resistance” er-

ror is non-linear, i.e., it affects low resistance devices, more than it affects high

resistance devices. However, it is systematic and can be corrected for based on

measurements of device geometry and lead resistances. Figure 2.9 shows voltage

contour plots during four point resistance measurements, taken from Ref. [57]. On
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the top of Fig. 2.9, (Rdev = 100 Ω), and the equipotential lines (spaced at 1/100

of the difference between the source and drain voltage) are perpendicular to the

electrodes. The four point measurement principle is to apply a voltage between

leads Vs and Vd, causing a current It to flow from Vs on the top lead, through

the device, and to Vd on the bottom lead as shown in Fig. 2.9. The four-point

resistance of the device can be obtained by measuring the voltage drop (VH −VL)

that It induces, so that R4pt = (VH −VL)/It.

For high resistance devices, most of the voltage drop caused by It occurs

over the device itself, and so the measurement of (VH −VL) is hardly affected by

the current flowing through the device (top of Fig. 2.9). However, for devices with

resistances that are much less than the leads, a significant portion of the voltage

drop can occur in the regions surrounding the device, causing the voltage profile

around the device to become distorted as can be seen from the equipotential lines

in Fig 2.9 (bottom). This causes Vh ≈ Vs and the voltage measurement is no longer

independent of the source-drain current. For the parameters shown in Fig. 2.9 and

discussed in Ref. [57] (rectangular leads W > H, with resistances of 100 Ω), this

effect causes the 0.1 Ω resistor to be measured as R4pt = −0.13 Ω. The effect is

also present for higher resistance devices, but results in a much smaller relative

error.

The correction procedure requires the following set of equations [57],

ΔR∞ =
1
6

(
R�t

W
H

+ R�b
H
W

)
(2.2)

R4pt =
√

6(ΔR∞ + ΔR0)Rdev

sinh(
√

6(ΔR∞ + ΔR0)/Rdev)
+ ΔR0. (2.3)

Here, ΔR0 is the resistance of a device with no barrier, ΔR∞ is an upper
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Figure 2.9: Voltage contour plots for the measurement of (top) Rdev = 100 Ω and
(bottom) 0.1 Ω devices (from Ref. [57])
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limit on the error, and Rdev is the actual device resistance. In order to perform

the correction, the resistance per square R�i for leads must be known, where i

corresponds to either the top or bottom electrode. This quantity is determined by

measuring the resistance of top and bottom leads, and dividing the resistance by

the number of squares in the length of the wire. Then, with a measurement of

R4pt, one can solve for the root Rdev which is the corrected resistance in Eq. 2.3.

The difference between R4pt and Rdev changes with the actual RA product of the

device.

One motivation for developing the G2 mask set was that the smaller de-

vice areas provide higher resistances. Therefore, the “negative resistance” artifact

constitutes less relative error in the measurement of R4pt than for a low resistance

device. Figure 2.10 shows relative error due to the negative resistance as a func-

tion of Rdev A. The red and black lines plot (as a percentage) −|R4pt − Rdev|/Rdev,

against the actual RA product of the device for the G1 and G2 devices respectively.

In both the red and black lines, material properties of the leads is assumed

to be exactly the same. The square resistance of the top electrode is approximately

R�t = 1.77 Ω/� and the bottom electrode is approximately R�b = 15.4Ω/�. The

G1 device has an area ≈ 11 times larger than the G2 device, meaning that its

resistance is reduced by the same factor. Both devices have a slightly rectangular

shape (H �= W), where (H x W) = 88 μm × 96 μm for G1 and (H x W) = 33 μm ×
28 μm for G2.

The smaller area of devices fabricated with the G2 cause these devices

to suffer relatively less “negative resistance” error at a given RA than the G1

devices. In other words, the smaller mask set allows measurement of devices

with lower RA products, with less relative error due to the artifact. The dashed

line in Fig 2.10 shows where the relative error of the R4pt measurement is 10 %
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Figure 2.10: Relative four-point resistance error −|R4pt − Rdev|/Rdev as a function
of the actual device RA from two different mask sets.
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of the actual device resistance. For the G2 device, this line intersects with the

relative error plot at 3.03 × 106 Ω μm2. Devices with RA products greater than

2.95 ×104 Ω μm2 have less than 10 % error due to the negative resistance. On the

other hand, with the G1 devices, RA products greater than 2.22 ×105 Ω μm2 meet

this condition. The relative magnitude of negative resistance errors is reduced (at

constant RA), when using a smaller mask set.

The percent relative error plotted in Fig. 2.10 is the error in R4pt before

applying the correction outlined in Eqs. 2.2. For the devices with less than -10 %

error in Fig. 2.10, the correction procedure can be used to establish Rdev within

about ±0.1 Ω accuracy.

2.4.3 Oxidation time

Fig. 2.11 shows resistance of tunnel junctions as a function of oxidation

time for three different applied powers. All devices shown here were deposited

using the G2 mask set, making each device area approximately (30 μm)2. The dif-

ferent applied powers during oxidation 15 W, 21 W, 27 W correspond to Iset values

of 30 mA, 40 mA and 50 mA respectively. All oxidations were completed in 120

mTorr of oxygen pressure. For the 21 W oxidation, device resistance follows an

exponential increase with time. The time constant extracted from an exponen-

tial growth (the solid line), was τ = 0.28± 0.02 s, where the uncertainty is the

standard error of the fit.
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2.5 Modeling the tunneling resistance

Rowell describes three basic characteristics of good tunnel junctions [59]:

1) resistance is exponentially dependent on thickness, 2) differential conductance

curves have a parabolic shape, and 3) the junctions have an insulator-like temper-

ature dependence. If all three criteria are satisfied, it is reasonable to assume that

tunneling is the dominant transport mechanism. The most rigorous test is proba-

bly (3) because devices with pinholes can demonstrate (1) and (2). In the following

section, we focus on the current-voltage characteristics of our junctions. Regard-

ing Rowell’s third criterion, an insulator-like resistance-temperature dependence

for a G1 device is shown in Appendix C.

The current density (current per device area) can be expressed by the inte-

gral [6],

J(V) =
4πme

h3

∫ Em

0
ρ(Ex, V)D(Ex)dEx. (2.4)

In this expression, m is the mass of the electron, e is the elementary charge, h is

the Planck constant, Em is the maximum energy of an electron in an electrode,

Ex is the energy associated with the momentum of an electron perpendicular to

the barrier and D is the tunneling probability. The total current flowing through

the device depends on the device area, I(V) = A[J(V)]. The supply function ρ is

derived from the Fermi-Dirac distribution [60]:

ρ(E, V) = ρ1(E)ρ2(E− eV)[ f (E)− f (E− eV)] (2.5)

where ρ1 and ρ2 are the density of states in each electrode. For the Co/Al2O3/Co

tunnel junctions at low bias, we assume that the densities of states at the Fermi

energies are identical on each side of the barrier (ρ1(E) = ρ2(E) ≡ ρ̄) . In the
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absence of external magnetic fields, the magnetizations of the electrodes will be

parallel due to exchange interaction between the electrodes. Therefore, at low bias

voltages, the density of states on each side of the barrier is approximately equal.

This assumption would break down at high bias voltages or if the magnetizations

of the electrodes were anti-parallel [61].

The WKB approximation gives the following expression for the tunneling

probability [6, 44, 62]:

D(Ex) = exp

{
−4π(2m)1/2

h

(∫ x2

x1

[φ(x) + EF − Ex]
1
2 dx

)}
. (2.6)

Here EF is the Fermi level of the negatively biased electrode. The potential bar-

rier between the two electrodes is produced by the energy band gap within the

dielectric barrier material. The height of the barrier is approximately equal to

the difference between the Fermi level in the metal electrodes, and the bottom of

the conduction band within the dielectric (shown schematically in Fig. 2.12). The

exact barrier height and shape [φ(x)] is a complex function that depends on work

functions of the metal electrodes, electron affinity of the insulator, image forces,

dielectric constant, and applied bias [6]. There are a number of physical reasons

for deviation of the actual barrier shape, from rectangular (discussed below).

An energy diagram for this system is shown in Fig. 2.12. When a bias is

applied between the two layers, electrons pass from one electrode to the other

via quantum mechanical tunneling processes, through the barrier formed by the

energy gap within the dielectric material. Electron transmission probability de-

pends exponentially on the barrier thickness. Therefore, resistance depends ex-

ponentially on the width or thickness of the barrier. Angstrom-scale decreases in

barrier thickness results in a large reduction in device resistance. Tunneling can
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Figure 2.12: The asymmetric barrier tunneling model (from Ref. [6])
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be used as a mechanism to electrically detect small changes in length.

The points x1 and x2 define the barrier width and are the limits of the in-

tegral in Eq. 2.6. These are the classical turning points, within the formalism of

WKB. One should note that the WKB expressions for calculating tunneling prob-

ability are only valid in the limit that the classical turning points (x1, x2), are not

too close together compared to the tunneling electron’s wavelength. Another cri-

terion for validity is that the energy of the electron is not too close to a maximum

of the potential in the tunneling region. This means that the WKB approximation

is valid for relatively thick and high barriers. These mathematical criteria of WKB

are discussed in detail in Ref. [62].

In general, the integral in Eq. 2.6 has no closed form solution. Therefore,

a common approach is to rewrite φ(x) as a rectangular or trapezoidal barrier

in order to arrive at a tractable expression for modeling experimental I-V data

[6, 44, 60, 63]. These models express the actual barrier as having and effective

height φr and width Δx = x2 − x1. The fits to I-V data in this thesis use the

trapezoidal barrier model from Ref. [6]. The primary advantage to using this

model is that fitting the data with φ1 �= φ2 captures the asymmetry of the I-V

curve about zero bias. Assuming that φ(x) has a trapezoidal form, the integral:

φr21 =
1

Δx

{∫ x2

x1

[φ(x)]
1
2 dx

}
(2.7)

can be solved to yield an analytical solution for the barrier height. The φr21 ex-

pression used in the fits in thesis dissertation comes from Eq. (16) in Ref. [6]:

φr21 =
4

[
φ1/2

2 − (φ1 − eV)3/2
]2

9(φ2 − φ1 + eV)
. (2.8)
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Equation 2.8 defines φ1 and φ2 such that the positive bias is applied to the left elec-

trode, as can be seen in Fig. 2.12. The “21” notation means that electrons tunnel

from electrode 2 through the trapezoidal barrier to electrode 1, during positive

bias on electrode 1 (Fig. 2.12). This expression is valid for the low bias regime

where, 0 ≤ V21 ≤ φr21/e. At higher bias values, the Fermi level on electrode 1 can

drop below φ1 causing Fowler-Nordheim tunneling (not discussed here).

Substituting Eq. 2.8 as the barrier height expression φ(x) in Eq. 2.6 and

inputting the resulting tunneling probability expression into Eq. 2.4 gives [6],

J =
3e(2m)1/2

β(hΔx)2

{
φr exp

[
−βΔxφ1/2

r

]
− (φr + eV) exp

[
−βΔx(φr + eV)1/2

]}
.

(2.9)

In the previous expression, it is convenient to group some of the fundamental

constants together, in units of eV and Å:

β =
4π(2m)1/2

h
≈ 1.025 eV−1/2Å

−1
. (2.10)

The partial derivative of J with respect to bias voltage defines the areal conduc-

tance density g (with dimensions of [Ω−1m−2]). For the most part, devices dis-

cussed in this thesis are operated in the low bias limit (V → 0). The derivative of

Eq. 2.9 as V → 0 is the low bias areal conductance

g =
3G0

8π(Δx)2

(
βs
√

φr

2
− 1

)
exp(β

√
φrΔx). (2.11)

The conductance quantum is defined as G0 = 2e2/h = 77.4809 . . . μS. The conduc-

tance of a device ∂I(V)/∂V is then,

∂I(V)
∂V

= G(V) = A(∂V J). (2.12)
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Sample name tox s φ1 φ2 R0 A
(s) (Å) (eV) (eV) (Ω) (μm2)

111209-14B 3.0 14.54± 0.06 0.722± 0.007 0.94± 0.01 37.4 840
111213-02B 3.3 15.30± 0.06 0.739± 0.007 0.91± 0.01 77.5 840
111024-05B 3.5 15.59± 0.05 1.12± 0.01 0.876± 0.007 397.9 840
110908-03F 4.0 17.0± 0.2 1.08± 0.04 1.07± 0.04 3170.6 1090

Table 2.3: Parameters of I-V fits shown in Fig. 2.13

The total conductance of the device G(V) scales linearly with the device area

A. For this reason, resistance-area is a useful concept for comparing different

devices. Two tunnel junctions composed of identical materials, but with different

areas will have the same RA product. From the previous equation, the corrected

four-point resistance discussed in the previous section, is simply [G(V → 0)]−1

and the resistance-area product can be modeled as A/G(V → 0).

Figure 2.13 displays conductance (∂I(V)/∂V) as a function of bias volt-

age for four different oxidation times (t=3.0 s, 3.3 s, 3.5 s, 4.0 s). The barriers

were formed by plasma oxidation (21 W, 120 mTorr) of 1.1 nm of aluminum. In

these plots, for V > 0, positive bias is applied to the top electrode, i.e., electrons

tunnel from the bottom electrode to the top. As described in the literature, the

conductance is flat at very low biases around V = 0 and has an approximate

V2 dependence at higher voltages (below the Fowler-Nordheim regime). Each

∂I(V)/∂V spectrum was fit using Chow’s model, to extract barrier heights φ1, φ2

and thickness s. Results of the fit are shown in Table 2.3.

Two identical electrodes separated by an ideal square and uniform barrier

would yield φ1 = φ2, when fitting with Chow’s model. Additionally, the barrier

height would be equal to the difference in energy between EF and the conduction

band minimum of the barrier material (neglecting the image force). However, in

real systems, some degree of asymmetry in the barrier heights is always observed.

The minima of the parabolas are offset from V = 0 due to asymmetry in the
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Figure 2.13: dI/dV as a function of bias voltage.
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barrier height at each metal-insulator interface. Two main factors can contribute

to barrier asymmetry. These inculde work function differences between the two

electrodes, and non-uniformity of the chemical composition of the barrier. The

values of φ1 and φ2 yielded from a fit are likely a convolution of both barrier

parameters and relative alignments of the Fermi energies in the electrodes.

Figure 2.14 plots the fit parameters (s, φ1 and φ2) from Chow’s model,

as a function of oxidation time. Four devices were measured to make this plot.

Multiple values of the fit parameters at single oxidation times, represent fits from

different dI(V)/dV measurements performed on the same device.

In Fig. 2.14(a) the extracted barrier thickness increases linearly from about

14 Å to 17 Å as oxidation time increases from 3.0 s to 4.0 s. A linear fit describes

the data well, with a growth rate of 2.6 Å s−1 (blue line). Assuming a bulk atomic

density for crystalline Al2O3 of 11.7× 1022 cm−3 [56], a 11 Å thick Al film would

expand to 14 Å. Thicknesses larger than 14 Å can be interpreted as either super-

stoichiometric concentration of oxygen in the barrier material, oxidation of the

Co electrode underneath the barrier, or uncertainty in the thickness of the intially

deposited Al film.

For tunneling magnetoresistance (TMR) measurements, it has been shown

that a nearly stoichiometric concentration of oxygen in the aluminum oxide, re-

sults in the optimum %TMR [56]. In our experiment, growing devices at this

optimum oxidation state is not critical. The most important factor is the repro-

ducibility of the barrier thickness, over many different chips. Devices with higher

initial resistance (R0) allow a greater dynamic range of HCI dose. Of the devices

shown in Fig. 2.14, the tox = 3.3 s samples were selected for use in the experiments

with HCIs.

Fig. 2.14(b) plots the fitted barrier heights on each side of the barrier (mod-
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Figure 2.14: Thicknesses (a) and barrier heights (b) extracted from fits to dI/dV
curves in Fig. 2.13.
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eled as trapezoidal). As described above, when V > 0 the applied positive bias

pulls electrons to the top electrode. Within the formalism of Fig. 2.12, the top

electrode is on the left, meaning that φ1 and φ2 refer to the barrier heights at the

top and bottom interface of the tunnel junction, respectively. When the bias is re-

versed (V < 0), electrons tunnel to the bottom electrode. However the expression

that defines the trapezoidal barrier remains Eq. 2.8.

For the data shown in Fig. 2.14, φ1 is less than φ2 for oxidation times less

than 4.0 s. For t = 3.0 s and t = 3.3 s, both barrier heights remain relatively

constant, and asymmetric. As oxidation time increases beyond 3.3 s, both φ1 and

φ2 increase, as the barrier asymmetry decreases. At t = 4.0 s, the barrier is nearly

square. The barrier heights φ1 and φ2 converge at a value of approximately 1.1 eV.

The two heights extracted from the I-V fits (φ1 and φ2) represent a convo-

lution of inhomogeneity in the barrier chemical profile and the difference in the

Fermi energies between the right and left electrodes.

2.5.0.1 Oxidation process

The data shown in Fig. 2.13 are consistent with the following scenario for

oxidation. Initially, as ≈100 mTorr oxygen is introduced into the plasma chamber,

a small amount of oxygen is immediately incorporated into the aluminum film, to

start thermal oxidation. Within seconds, the bias is applied between the plasma

electrodes to form an oxygen discharge. The discharge is composed primarily of

oxygen ions (O+,O+
2 ) and excited radicals (O*). Positive ions are accelerated away

from the sample, toward the negatively biased top electrode. The bias direction

during oxidation rules out ions as being the dominant species in the oxidation

process. At pressures around 100 mTorr, the mean free path for O* atoms (≈ 1 cm)

is of the same order as the spacing between the plasma electrodes. O* particles
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can transit, without undergoing collisions, to the aluminum surface.

Previous studies of both plasma and thermal oxidation point to aluminum

as the moving species during oxidation [56, 64]. Aluminum in the film diffuses to

the surface to react with the O* continuously supplied by the discharge. During

this phase, oxide film thickness increases with increasing oxidation time. Even-

tually, all of the aluminum is consumed and oxygen atoms diffuse into the alu-

minum oxide matrix film [56]. The resulting amorphous aluminum oxide barrier

is comprised of Al-O clusters where three- and four-coordinated aluminum atoms

are the most energetically favorable structure [65, 66].

The oxide barriers shown in Fig. 2.11 were most likely created during the

initial phase of plasma oxidation where the aluminum oxide thickness increases

with increasing oxidation time. This leads to the exponential increase in device

resistance with oxidation time shown in Fig. 2.11.

In Fig. 2.13 and Table 2.3, we observe that the barrier height at the bottom

interface (φ2) is greater than the top barrier height at the top interface (φ1) for the

shortest oxidation times. Increasing the oxidation time leads to more symmetric

junctions, by increasing both φ2 and φ1. This behavior is in apparent contradiction

to the assertion that Al as the moving species during plasma oxidation. Specif-

ically, if the top of the barrier is oxidized first, one would expect the top of the

barrier (φ1) to be higher than bottom of the barrier (φ2) for the shortest oxidation

times.

This inconsistency can be resolved if we consider excess oxygen clusters

to remain on the surface after oxidation. In this case, the excess oxygen clusters

are absorbed by Co after deposition of the top electrode. The result is that an

oxidized cobalt layer diminishes the barrier height at the top interface (φ1) with

respect to φ2. Empirically, we have measured cobalt oxide to have a much smaller
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tunnel barrier height than aluminum oxide. Another possibility is that O* diffuses

through grain boundaries in the Al film and stops at the Al/Co interface, to

efficiently oxidize the bottom of the barrier at early oxidation times.

2.5.0.2 Dusting layer

To gain more information about junction barrier height asymmetries, sam-

ples were prepared with a very thin “dusting” layer of aluminum deposited onto

the aluminum oxide, immediately after plasma oxidation. If excess oxygen clus-

ters were present on the surface, we expect these to react with the excess alu-

minum from the dusting layer causing a dramatic change in the fit parameters

yielded by Chow’s model. Nominal layer structure was chosen for these devices,

with barriers formed in a 120 mTorr DC plasma (15 W), for an oxidation time of

5.0 s. The results are shown in Fig. 2.15 and fit parameters are shown in Table 2.4.

Two different thicknesses of dusting layers were applied 2 Å (b) and 4 Å (c). At

the top, in Fig. 2.15(a) is, the dI/dV with no dusting layer. In (a), as expected, the

minimum of the conductance parabola occurs at a negative bias. This corresponds

to the same direction and magnitude (φ1 < φ2) of asymmetry as previously dis-

cussed (positive bias must be applied the bottom electrode in order to measure at

the conductance minimum).

In Fig. 2.15, the minimum conductance value is indicated in (a), (b) and

(c). As the dusting layer thickness increases, the position of the conductance

minimum shifts to more positive bias voltages, i.e., the barrier heights become

more symmetric. Both barrier heights decrease after deposition of a dusting layer.

However, the fits shown in Table 2.4 for the devices with 2 and 4 Å dusting

layers yield unphysical parameters. In particular, both the 2 and 4 Å dusting

layers nearly double the extracted barrier thickness. The uncertainties expressed
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Sample name tox s φ1 φ2 R0 A dusting layer
(s) (Å) (eV) (eV) (Ω) (μm2) (Å)

110824-06B 5.0 17.03± 0.03 0.841± 0.003 0.938± 0.004 673.5 938 none
110824-11A 5.0 33.6± 0.3 0.184± 0.004 0.224± 0.004 913 870 2
110824-13C 5.0 27.0± 0.2 0.159± 0.003 0.190± 0.004 16.4 1044 4

Table 2.4: Parameters of I-V fits shown in Fig. 2.15 (Al dusting layer).

in Table 2.4 represent the standard errors of the fits.

Qualitatively, the dramatic change in extracted barrier thickness suggests

that there are excess oxygen clusters at the surface, that react with aluminum in

the dusting layer upon deposition. Excess aluminum at the top of the barrier

provides a diffusion pathway for weakly bound oxygens in the film. Diffusion of

oxygen out of the film and into the dusting layer would form a thicker barrier with

a more uniform concentration of oxygen. However, the Chow model likely breaks

down in this case because there is no abrupt interface between the top electrode

and barrier. Thus, adding excess aluminum at the top of the barrier decreases

both φ1 and φ2 and increases s, though the numerical values in Table 2.4 are

questionable.

In a Al/Al2O3/Co junction with sharp interfaces, one would expect to

observe the asymmetry (φ1 < φ2), because the vacuum work function of Al is

approximately 1 eV smaller than for cobalt. Floyd and Walmsley present an inter-

esting study of asymmetry in barrier heights for the case of metal-insulator-metal

tunneling structures with dissimilar electrodes [67, 68].

2.6 Chapter summary

In summary, this chapter presents an overview of the experimental appa-

ratuses needed to grow tunnel junctions in UHV for the experiment with HCIs.
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layer. The position of the conductance minimum is indicated on each curve
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The smaller G2 shadow masks allow measurement of lower RA devices, with a

less initial error contribution from “negative resistance”. Differential conductance

measurements show the characteristics of good tunnel junctions as described by

Rowell [59], with asymmetries about zero bias of a few mV about zero bias. The

asymmetry (φ1 > φ2) present in almost all of the junctions can be fit with Chow’s

model. Increasing oxidation time, or adding a dusting layer, makes more sym-

metric barriers. An oxidation process consistent with the conductance data was

described, where oxygen is the moving species. We found that oxidation time is

the most critical parameter, in determining the final resistance of a tunnel junc-

tion. In fact, for the pressure-power parameters we used, barrier thickness in-

creases linearly with plasma oxidation time. This leads to an exponential increase

in device resistance.
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Chapter 3

Measuring charge dependent HCI

energy deposition with tunnel

junctions

3.1 Overview

Data discussed in this chapter have previously been published in Refs. [1,

69]. The primary set of data discussed is composed of G1 devices (Fig. 2.3) dosed

with XeQ+ (26 ≤ Q ≤ 44). The objective of the experiment was to investigate

charge state dependent surface modifications by HCI impacts. Ions were extracted

at kinetic energies (KE) of approximately (8×Q) keV.

At the end of the chapter, we present some measurements of G2 devices

(Fig. 2.5) irradiated at a slightly lower extraction bias of 5 kV, giving projectiles

KE of (5× Q) keV. The primary purpose of lowering the kinetic energy was to

investigate the stopping power enhancement predicted in Ref. [35]. Data analysis

in Appendix E is shown for three of these devices.
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In section 3.2, the beamline apparatus and experimental procedure is de-

scribed. In section 3.3 tunnel junction conductance data as a function of dose and

charge state are shown. Section 3.4 outlines the analysis used to determine the

average conductance per ion impact [σc(Q)]. Sections 3.5 and 3.6 discuss the ex-

traction of crater depths as well as extraction of crater formation energies. Finally,

crater formation energy is partitioned into kinetic and potential contributions. Ex-

perimental data for G2 devices irradiated at < 8 kV extraction voltage are also

shown. Section 3.7 provides a brief summary.

Throughout the chapter, “charge state” expresses the integer number of

electrons Q stripped from the neutral atom, i.e., the ionization state of the pro-

jectile. Therefore, the magnitude of charge (in SI units) that this quantity corre-

sponds to would be Qe, where e is the elementary charge in Coulombs. Through-

out the chapter, kinetic energy is expressed in terms of the EBIT extraction voltage

and the charge of the ion as KE = UQe. Multiplying the charge of the ion Qe (in

units of e) by the potential drop during ion extraction (in units of kV) gives the

kinetic energy. For example, if an ion of charge state Q were extracted from the

EBIT at electric potential U = 8 kV, it has kinetic energy KE = (8×Q) keV.

3.2 Experiment

3.2.1 EBIT beam line

The NIST EBIT beam line is detailed in Refs. [7, 70]. A beam line schematic

is shown in Fig. 3.1. The ions leave the EBIT vertically, extracted at an electric

potential U toward the ceiling of the EBIT laboratory. One of the first elements

in the beam line is an electrostatic bender that redirects the beam by 90◦ (first
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Figure 3.1: EBIT beamline schematic (from Ref. [7])
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element after the EBIT in Fig. 3.1). Past the bender, two sets of electrostatic de-

flectors align and steer the beam. Einzel lenses focus the beam into a 4 jaw slit

that defines the entrance of the analyzing magnet. Along the path of the beam

Faraday cups (FC) can be inserted to monitor beam current. When the ions reach

the analyzing magnet they are bent again into the 2-jaw slit, bringing the beam

into the target chamber. Below the analyzing magnet, the beam is charge filtered.

After passing through the analyzing magnet, the beam goes through an electro-

static deflector, and is focued by two sets of einzel lenses, before it impinges on

the sample. A final FC measures beam current in the region where samples are ir-

radiated. The final FC can be manually translated out of the way, so that a sample

can be positioned in its place, during an exposure.

Ions of all charge states produced within the EBIT are extracted at a poten-

tial U, so that kinetic energy of the particles increases with charge state as Qe×U.

The fields within electrostatic lenses exert stronger forces on particles with higher

charge state. However, the constant acceleration voltage means that the higher

charge state projectiles have commensurately higher velocities as they enter these

electrostatic elements. The result is that all charges are affected equally by the

electric fields, and there can be no charge selection by deflectors or einzel lenses.

This means that the various charge states in the beam are lensed equally by the

electrostatic elements. As described above, the result is that upstream from the

analyzing magnet, all charge states produced within the EBIT are present in the

beam.

Unlike the electrostatic lens elements, the analyzing magnet can select par-

ticles by Q/m ratio. The magnetic field required to deflect an ion with a given
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Figure 3.2: Current on Faraday cup while sweeping the analyzing magnet field.
Peaks correspond to charge states of XeQ+ for Q = 44 to Q = 19.

charge to mass ratio by 90◦ is

B ∝
1
R

√
2Um
Qe

(3.1)

where, where R is the radius of the analyzing magnet (approximately 20 cm). Ions

with the desired Q/m can be selected by changing B. Ions with a higher Q/m

than the desired ratio will be over-steered >90◦ into the walls of the beam line,

and ions with lower charge to mass ratio will not make the 90◦ bend. Note that

when changing the EBIT extraction voltage, the magnetic field must be scaled by
√

U, to obtain the same Q/m ratio after the analyzing magnet. Due to isotopic
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(mass) variation of the ions in the beam, the Q/m ratio does not uniquely define

the charge state. For example, 132Xe44+ and 129Xe43+ both have Q/m = 1/3. To

increase selectivity of a particular charge state, a source gas enriched with a rare

isotope (136Xe) is used, e.g., the ratio Q/m < 1/3 for 136Xe44+ is distinguishable

from the previous isotopes [7].

Figure 3.2 shows the current measured on the FC downstream from the

analyzing magnet. As the magnetic field is swept, distinct peaks in the beam

current appear. These correspond to the individual Q/m values within the beam.

The magnet scan shows peaks corresponding to 136XeQ+ for the range Q = 44 to

Q = 19. During an experiment, the magnet is set to a fixed value, i.e., B = 1168 G

for Xe44+.

Below the final Faraday cup and sample position, a microchannel plate

beam viewer (Colutron Research, model: BIS-1) is mounted at the bottom of the

target chamber. The illumination area of the beam viewer is monitored by a

camera directed toward the fiber optic vacuum feedthrough output of the beam

viewer. This illumination area can be used to determine the shape of the beam

incident on the sample, and is needed for a measurement of the transverse beam

dimension. A measurement of the beam flux requires both the FC and beam

viewer (discussed below).

3.2.2 Exposing samples to HCIs

3.2.2.1 Alignment

A camera mounted at the top of the target chamber (TC), looks down onto

the sample. A halogen fiber light illuminates the sample through a viewport

nearly parallel with the sample in the target chamber. The TC camera outputs
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to a monitor that can also be toggled to display the beam viewer output signal.

After the beam enters the target chamber, the display is set to the beam viewer

output signal. A mark is drawn on the screen of the monitor at the center of the

beam spot. The mark on the screen then provides a reference point between the

beam viewer signal and TC camera outputs. After the mark is set, the TC camera

view can be used to align individual devices on a chip with the center of the beam

spot. The beam can be turned on or off (to start or stop a HCI exposure in the TC)

by inserting or removing the pneumatic Faraday cup directly above the bending

magnet, from the path of the beam (Fig. 3.1).

3.2.2.2 Determining the ion dose

Ion dose is calculated as follows. The total beam current (IFC) is measured

on the final FC. The beam viewer system is used to measure the shape of the

beam, within the target chamber. The magnetic transfer rod in the LL is attached

to an XYZ manipulator. The sample sled has two bored holes (approximately 1 cm

in diameter) centered at the sample positions. Small elliptical pieces of stainless

steel shim stock with drilled apertures (diameters d = 0.689 mm) are fit into each

hole in the sample sled. HCIs emit a high yield of secondary electrons within

the FC. This necessitates a negatively biased (-10 V) suppressor plate at the FC

entrance, to improve the accuracy of the beam current measurement.

During the measurement procedure, the sample sled is translated so that

the beam spot is visible in the beam viewer through the aperture. Then, the

sample sled is translated in the X and Y directions (in the plane of the sample),

to find the positions in the transverse beam direction where the beam is blocked.

These positions correspond to x1, x2, y1 and y2.

Accounting for the diameter of the aperture itself, the transverse dimen-
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sions of the beam are r1 = Δx− d and r2 = Δy− d. The area of the approximately

elliptical beam spot is Aspot = πr1r2. If we assume that the charged particles in

the beam are uniformly distributed within the radius of the beam (due to space

charge interactions), the flux of incident ions is

F =
IFC

QeAspot
, (3.2)

where Q is the charge state of an ion and e is an elementary charge. The total ion

dose on each sample, N, depends linearly on the sample size A and dosing time

t,

N =
IFC

Qe
A

Aspot
t. (3.3)

A is determined from micrographs of the finished devices. In the exeriment

A/Aspot ≈ 10−3 (for the G2 devices). Numerical values in Eq. 3.3 depend on EBIT

parameters, beam tuning and charge state. However in normal operation for

Xe44+, I ≈ 5 pA, Aspot ≈ 1 mm2, A ≈ 103μm2 (for the G2 mask set). Within one

minute of exposure, a dose of order 105 HCIs impacts the sample.

3.3 Data

Tunnel junctions were prepared with the G1 mask set (4 devices on each

chip) as described in Ch. 2. The bottom electrodes [2 Co+Ox/21 Co] and tunnel

barrier [1.1 Al+Ox] were formed first, for eight chips. HCI irradiation typically

occurred >24 hours after oxidation of the Al layer. The tunnel junction devices

were prepared and irradiated entirely in situ with base vacuum pressure 10−10

Torr. Each tunnel junction device was grown on a Si oxide substrate with the layer
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structure (in nm): bottom contact and anti-ferromagnet pinned layer [2 Co+Ox/21

Co], tunnel barrier [1.1 Al+Ox], magnetic free layer and top contact [10 Co/40

Cu/3 Au]. All layers were deposited by electron beam evaporation where +Ox

indicates exposure to oxygen plasma after growth. Shadow masks were used to

define the sizes and positions of the thin film electrodes so that each Si oxide chip

had 4 devices arranged in crossed wire geometry. After plasma oxidation the Al

expands to thickness s0 = (14± 1) Å [47, 56].

As a control, one device per chip was left unirradiated. Charge filtered

XeQ+ were extracted for 26 ≤ Q ≤ 44 with kinetic energy E = 8 keV × Q onto

the Al2O3 barriers near normal incidence. Subsequently the magnetic free layer

and top contact were deposited onto the irradiated surface. When devices were

completed, the area (≈ 104μm2) of each was measured with optical microscopy.

Four-point probe differential resistance measurements were obtained at low bias

and corrected for the negative resistance artifacts [57]. The inverse of the corrected

resistance measurement is then device conductance G = R−1
dev.

The time between irradiation and deposition of the top electrode does not

critically influence either the control or irradiated devices, as long as the devices

are kept in ultrahigh vacuum. For capping times between 15 min and 70 hr at

1× 10−10 Torr, we found no systemic change in the irradiated or unirradiated

device conductance. However, exposure of a chip to air will increase the resis-

tance of both the control and irradiated devices by approximately an order of

magnitude and make the influence of the highly charged ions unmeasurable.

Figure 3.3(a) depicts a schematic representation of the experiment. In

Fig. 3.3(b) we show the conductance of many devices as a function of ion dose

for representative charge states Q = 34, 40, 44. These chips were grown with the

G1 mask set. The devices in Fig. 3.3(b) were dosed with ions extracted at 8 kV,
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(kinetic energy: 8 keV ×Q). Each point is the conductance of one tunnel junction

modified by N discrete ion impact sites. G increases linearly as a function of

ion dose and each ion creates an individual feature in the barrier during irradia-

tion. We model the increase in conductance, for a particular charge state, due to

individual ion impacts with the equation,

G(N) = Gi + σcN (3.4)

where G is the conductance of an irradiated device, Gi is the conductance of the

device with a pristine barrier as determined from the unirradiated control device,

σc is the slope of the conductance increase, and N is the ion dose. In the low dose

regime, σc is expected to be independent of N and represents a statistical aver-

age for the conductance through each defect formed by a HCI. Ion impact sites

increase the conductance of the tunnel junctions and the goodness of the linear

fits to G(N) is noteworthy. Linearity in G(N) implies an approximate one-to-one

mapping between ion dose and the formation of localized surface modifications.

Figure 3.4 shows dI/dV data for an irradiated and unirradiated device.

Parameters of the HCI dose are given in the caption. Note that the polarity of

the leads has been switched, with respect to the plots in the previous Chapter. In

Fig. 3.4, positive bias causes electrons to tunnel to the bottom electrode. Therefore,

the asymmetry of barrier heights has the same behavior as previously discussed,

but appears reversed from Fig. 2.13. For HCI irradiated tunnel junctions, The fit

parameters for the unirradiated device was, s = 16.0, φ1 = 0.97 eV, φ2 = 0.76

eV. For the device dosed with Q = 32 ions, s = 14.7, φ1 = 1.02 eV, φ2 = 0.83

eV. Further discussion of dI/dV spectra of irradiated junctions can be found in

Ref. [48].
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Figure 3.3: (a) Schematic representation of neutralization and heated spike for-
mation scenario for relaxation of a HCI above a metal surface covered with a
thin dielectric film [23, 71]. The heated spike leading to crater formation occurs
during sub-surface neutralization. (b) Electrical conductance of a tunnel junction
increases linearly with the number of ion impacts. The slope of each line (σc)
increases with increasing Q [1].
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Figure 3.4: dI/dV curves for both irradiated and unirradiated devices. For the
irradiated device: G1 masks, Xe32+, N ≈ 107 ions [69].

68



The data in Fig. 3.4 are typical for a device that has been irradiated. We

find that dI/dV measurements of irradiated devices indicate that impacts do not

cause a significant decrease in barrier height φ [44]. Qualitatively, the conduc-

tance maintains the same parabolic shape, before and after irradiation. Tunneling

remains the dominant transport mechanism, within the irradiated junctions in

Fig. 3.4. Irradiated junctions also maintain insulator-like resistance dependence

on temperature [33].

The unirradiated barrier thickness s0 = 1.4 nm agrees with the expected

value for the stoichiometric expansion of a 1.1 nm aluminum film (Al → Al2O3).

The assigned uncertainty in s0 of ±0.1 nm reflects the measurement accuracy

of the initial thickness of the Al film, as measured by the QCM. To confirm s0,

transmission electron micrographs were obtained [46]. Additionally, the extracted

fit parameters of dI/dV were consistent with the s0 measurements.

3.3.1 Statistics of defect formation

One reason that Eq. 3.4 is a good description of the G(N) data is because

of the relatively low ion doses used in this experiment. For example, a dose

of 3 × 105 ions on the G1 devices corresponds to an areal number density of

about 1 per (100 nm)2. Deviation from linear behavior could be expected for

very high fluxes or long exposure times, where the radii r of the surface defects

would overlap. We can approximate the onset of the nonlinear regime, using

the statistical analysis from Ref. [72], which assumes that the ion irradiation is a

Poisson process.

In the model, the ion impact sites are Poisson distributed within the device

area A. Above a certain dose threshold, the probability that the entire surface area
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is irradiated, approaches unity. In this high dose regime, increasing the dose does

not lead to the formation of “new” surface modifications. Instead, new impact

sites overlap with the previous impact sites.

Following the approach from Ref. [72], we can determine the dose regime

where the number of distinct surface modifications increases linearly with the

total ion dose. The number of distinct ion impacts sites within the area A depends

on dose N as,

Nf =
A

πr2{1− exp[−πr2(N/A)]} (3.5)

where r is the average radius of a defect. The results are plotted in Fig. 3.5.

The solid (blue) line plots the model derived from Poisson statistics, in Eq. 3.5.

The dashed (black) line plots the equation Nf = N, i.e., each ion creates exactly

one distinct modification. For the calculation shown in the figure, the radius of

a defect was set to r = 3 nm, and the area was set to A = 30 × 30 μm2 (the

approximate size of a device fabricated with the G2 mask set).

With these parameters, the Poisson model predicts that below N ≈ 107,

it is reasonable to assume that the number of individual surface modifications

increases linearly with the ion dose. Above this threshold, the probability that an

ion will impact an already irradiated area of the sample increases substantially.

At very high doses, ≈ 108 ions, the entire area of the sample has been irradiated.

The ion impact sites overlap, and increasing the dose does not increase the irra-

diated area. In practice, this high flux regime could not be measured on a G(N)

plot, because the devices would have an immeasurably low resistance (high con-

ductance). The non-linear threshold is at even greater N value for the G1 devices,

because of their large area – all of the G(N) data discussed in this thesis, are in

the low N, linear regime.

70



overlapping sites

device area: 30 μm x 30 μm
defect radius: 3 nm

1 100 104 106 108 1010
1

100

104

106

108

1010

ion dose �N�

di
st

in
ct

irr
ad

ia
tio

n
si

te
s

�N

Figure 3.5: Model based on Poisson statistics for the number of distinct features
created in the barrier with increasing ion dose. At low doses the number of
features scales with N. At high doses, the features overlap.
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Figure 3.6: σc(Q) increases by four orders of magnitude for charge states between
Q = 26 and Q = 44. Electrical conductance of each ion impact site increases due
to a decease in barrier thickness after charge-dependent crater formation. Right
axis displays the barrier thickness s corresponding to each conductance value.

3.4 Analysis

3.4.1 Extracting of σc and uncertainties

The data shown in Fig. 3.6 were analyzed in the following way. A σc mea-

surement can be extracted from each device. By rearranging Eq. 3.4 and express-

ing the results in terms of measured resistances, we write

σc =
1
N

(
1

Rdev
− A

R0A

)
. (3.6)

The number of ions incident on each device was determined with Eq. 3.3.

The first term in Eq. 3.6 is derived from the corrected resistance measurement

72



of the device. The second term in Eq. 3.6 is device conductance due to the esti-

mated conductance of an unirradiated device. This estimated initial conductance

(Gi = R−1
0 ) is derived from the measurement of the on-chip control device, and

a pattern correction function that accounts for systematic variations in resistance

between the devices on a single chip. For the G1 devices, on-chip control was the

D device, while for the G2 devices A, F and H were left unirradiated as the on-chip

control devices. The difference between the first and second term in Eq. 3.6 di-

vided by the number of ion impacts represents the average conductance increase

per ion. Propagation of error in σc can be computed directly from the function

Eq. 3.6, if uncertainties in N, Rdev, A and R0 are quantified. Within Fig. 3.6, error

bars correspond to experimental uncertainty on the normalized conductance (left)

axis.

3.4.1.1 Device resistance, Rdev

Using the correction procedure in Eq. 2.2, the corrected resistance Rdev was

obtained. The procedure requires resistance measurements of a device with no

barrier (ΔR0), and measurements of the R� resistances for the top and bottom

electrodes. The square resistance of a thin film wire is defined as the resistance of

the wire times normalized by the number of “squares” in the wire R� = (w/l)R,

where l and w are the length and width of the wire. Two thin films with identical

resistivity and thickness, will have the same R� regardless of area. The G2 masks

produce on-chip test patterns for measuring R� with four probes.

In order to correct for the “negative resistance” error [57], spatial measure-

ments of the wires are required. Optical micrographs of each chip were recorded

and analyzed by plotting line profiles perpendicular to the wires. The profiles

were then fit with Gauss error functions to quantify the width between the steps,
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and the width of the step edges themselves. The procedure for fitting the line

profiles is shown in Appendix D.

3.4.1.2 Pattern correction (determining the initial resistance, R0)

Ideally, each device on a chip would have exactly the same resistance (or

resistance-area product). The ability to determine the conductance added to a

device by the ion impacts requires knowing the starting resistance. In reality, not

all devices on a chip have the same resistance. There is typically a systematic re-

sistance pattern. This pattern is likely caused by spatial variations in the plasma

intensity over the area of the chip during the oxide formation. The pattern is

also determined by the exact position of the chip during plasma oxidation. Ad-

ditionally, small variations in the sizes (A) of the devices can cause the initial

resistances of the devices to vary (<10 %) on a chip. The area depends on the

relative alignment of the tunnel junction wires, and the position of the mask with

respect to the chip during deposition.

Unirradiated chips that were fabricated immediately prior to the EBIT run

allow us to measure systematic resistance variations between the unirradiated

devices on a single chip. An example of the systematic resistance variation is

shown in Fig. 3.7 for devices grown with the G2 masks.

Barriers of the devices in the figure were produced in a plasma with pa-

rameters t = 3.3 s, P = 21 W, 120 mTorr. For the devices 111221-7, 111221-8,

111221-9 and 111221-10 in Fig. 3.7, there was a linear increase in resistance from

A to F and a linear decrease from F to H. The vertical axis is the device resis-

tance divided by the on-chip resistance of the F device. The systematic resistance

change for the devices across a single chip is well described by two lines with

different slopes. A positive slope describes A-F, while a negative slope describes
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F-H. The dashed purple lines are a fit to the normalized resistance trend for chip

9. The blue lines show a similar fit, for devices on chip 8. The resistance of device

H on chip 10, clearly lies outside the trend (RH 
 RF), and can be ignored for

the estimation of B, C, D, E and G.

This pattern was observed in many chips prior to the EBIT run. During

the run, only devices B, C, D, E, G were dosed with HCIs, leaving A, F, H as

unirradiated control devices. Then, the resistance slope between A and F and the

slope between F and H could be used to estimate the initial device resistances for

B, C, D, E and G, before the irradiation. With a measurement of the resistances

of A and F, the resistances of B, C, D, E and G can be estimated. For example

on 9C, measurement of only A and F constrain RC/RF = 0.69± 0.09 with 95 %

confidence. Therefore, even if C had been irradiated by highly charged ions, its

original value before the irradiation could have been interpolated with acceptable

accuracy.

The normalized resistances on chips 7, 9, 10 are grouped closely together

while, for chip 8 the A-F resistances have a different slope. From this observation,

we conclude that the angular alignment during plasma oxidation was different

between chips 7, 9, 10 and chip 8. However, all resistance values can be estimated

accurately because of the reproducibility of the linear resistance variation. Even

if the systematic resistance pattern were left uncorrected, the variation in the ini-

tial resistances shown in Fig. 3.7 would not introduce unacceptable error into a

measurement of HCI induced conductance. Since conductance is the inverse of

resistance, small fluctuations in the initial resistance of undosed devices result in

negligibly small fluctuations in the initial conductance. Therefore, increased con-

ductance induced by the HCIs can be measured even in a case where there is a

large (e.g. factor of 2) systematic variation in the initial resistances across a chip.
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Figure 3.7: Normalized resistances on four unirradiated control chips grown with
G2 masks. The dashed lines show the systematic-linear resistance patterns for
chips 111221-08 and 111221-09.
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This remains true as long as the initial device resistances are large with respect to

the final resistance of the HCI dosed devices. As described in Ch. 2, devices with

higher starting resistance provide more dynamic range in the experiment.

3.4.1.3 Uncertainty analysis

In order to propagate error in σc, we substitute N from Eq. 3.3 into Eq. 3.6,

and simplify the result:

σc =
QeAspot

IFC At

(
1

Rdev
− 1

R0

)
. (3.7)

Error propagation is carried out from Eq. 3.7 as,

Δσc =
[
(∂Aspot σc)2(ΔAspot)2 + (∂Aσc)2(ΔA)2 + (∂tσc)2(Δt)2+

(∂IFC σc)2(ΔIFC)2 + (∂R0σc)2(ΔR0)2 + (∂Rdev σc)2(ΔRdev)2
]1/2

(3.8)

Here, ∂x refers to the partial derivative with respect to an independent variable

x within Eq. 3.7, and Δx is the experimental uncertainty in that quantity. Using

Eqs. 3.8 and 3.7, σc is extracted for each irradiated device. Thus, we have a mea-

surement and uncertainty value for σc from irradiated device at a given charge

state.

From measurements of σc on n different devices, we find the most probable

value of σC, by instrumentally weighting the measurements according to their

uncertainties [38]:

σ̄c(Q) =
∑n

i=1 σci/Δσ2
ci

∑n
i=1 1/Δσ2

ci
(3.9)
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The accompanying uncertainty (variance of the weighted mean) for σ̄c(Q)

is

Δσ̄c(Q) =

[
n

∑
i=1

1
Δσ2

ci

]−1

. (3.10)

Uncertainty in IFC arises because the beam current can change gradually during

an exposure. The beam current (IFC) is measured before and after the devices on

a chip are dosed with HCIs. The uncertainty in the beam current is the average

of these measurements and is typically ΔIFC = 0.1 pA. We assign Δt = 1 s uncer-

tainty to the HCI exposure interval, which is timed manually with a stopwatch.

Uncertainty in device area A arises from the sloped edge of the tunnel junction

wires (see Appendix D), and the accuracy of the microscope length measurement

calibration. A conservative estimate for this uncertainty is ΔA/A = 20 %. The

pattern correction function (e.g. the lines in Fig. 3.7) can be used to determine

the uncertainty in the initial device resistance before irradiation. The accuracy of

the measured device resistance can be established within ΔR = 0.1 Ω, after the

“negative resistance” correction [57]. In addition to the terms written explicitly

in Eq. 3.8, a dose uncertainty term ΔN is added in quadrature to account for the

possibility of non-uniformity of flux within the beam spot. This correction has

relative magnitude ΔN/N = 10 %. An example of the full uncertainty analysis, is

shown in the tables in Appendix E, for three chips of type G2.

3.5 Results

3.5.1 Conductance through the impact sites

As indicated by the representative data in Fig. 3.3(b) and Fig. 3.16, σc is

always positive. The left axis in Fig. 3.6 displays σc values for charge states
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26 ≤ Q ≤ 44 at 8 kV extraction. As discussed below, the increase in conductance

is due to a reduction of the barrier thickness through charge-dependent cratering.

In some cases, the experimental uncertainty expressed by the error bars is smaller

than the symbol size. We describe the decreased barrier thickness s(Q) = s0 − d

as a function of ion charge state Q, where s is the barrier thickness at the bottom

of a crater after a XeQ+ impact, s0 is the initial barrier thickness and d is the depth

of a crater (Fig. 3.3). The craters subsequently become filled with the Co of the

top electrode during completion of the device.

Each defect forms a distinct channel of increased conductance within the

barrier. As barrier thickness within the channel decreases toward zero (d ≈ s0; s ≈
0), the conductance should vary smoothly from the tunneling regime to the metal-

lic point contact regime [73, 74]. As s decreases, conductance through the channel

will increase exponentially, and then saturate at approximately a quantum of con-

ductance, G0.

In general, the conductance through a single narrow channel is one con-

ductance quantum (G0) times the probability that an electron will be transmitted

through the channel [73, 74, 75]. In the case of tunneling, the transmission prob-

ability is exp[−sβ
√

φ]. Therefore, we model the conductance through each ion

impact site as σc = G0 exp[−s
√

φβ] and invert the equation to find s in terms

of the measured conductance values using Eq. 3.11. This expression avoids the

unphysical divergence present in Eq. 2.11, in the limit of s → 0. In the tunneling

regime, conductance of each crater depends exponentially on the barrier thickness

as,

σc(s) � G0 exp[−β
√

φs], (3.11)

where G0 = 2e2/h ≈ 77.5 μS and β ≈ 1.025 Å−1eV−1/2. Electric current flows

79



through the thinnest parts of the barrier. This means that transmission through

a crater is highly localized to the bottommost point of each crater. Tunneling

amplitudes through regions surrounding the bottom of the crater are exponen-

tially suppressed. Instead of the “width” or “area” the appropriate quantity to

describe the absolute magnitude of conductance through such a narrow channel

is the conductance quantum G0, that appears in Eq. 3.11.

From Eq. 3.11, s can be expressed in terms of the measured tunnel conduc-

tance through each ion impact site,

s(σc) � − 1
β
√

φ
ln [σc/G0] . (3.12)

In the limit that s approaches the thickness of a single atom (d ≈ s0), con-

ductance through the crater saturates at G0 and the site behaves as a quantum

point contact. The four decade span of σc(Q) with no saturation in conductance

demonstrates that charge state dependent cratering decreases the barrier thick-

ness and drives a tunneling conductance increase. Additionally, all magnitudes

of σc shown in Fig. 3.6 are below the typical conductance thresholds for the onset

of metallic transport through a narrow channel [73, 74].

3.5.2 Craters versus hillocks

Scanning probe measurements of slow HCI impacts on some insulators

have revealed topographically raised “hillock” features [40, 41]. However, any

explanation of our conductance data (e.g. Fig. 3.6) requires that the ions form

areas of reduced thickness within the aluminum oxide film (craters). In theory,

the tunnel junction conductance data do not exclude “hillocks” from coexisting

with the craters. The tunnel junction measurement is sensitive to the formation
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of lowered as opposed to raised regions, because electric current in the tunnel

junction flows preferentially through the thinnest parts of the barrier. An increase

in thickness at localized areas of the barrier is not detectable.

One possibility is that the “hillocks” measured by other groups are the

same features that we measure embedded within the tunnel junctions. In this

scenario, the hillocks are composed of agglomerations of atomic defects, that be-

come filled with cobalt from the top electrode, to increase tunneling efficiency at

each ion impact site. This possibility would result in an increase in the tunnel

junction conductance. However, the means of the conductance increase would be

different than crater formation. Defect agglomerations within the barrier would

increase the number of defect states within the energy gap of the aluminum oxide,

to effectively reduce φ. Increase in the conductance by reduction of barrier height

(φ) is distinguishable from a reduction of (s) because of its separate power law

(exp[φ1/2] versus exp[s−1]). In our measurements, irradiated devices maintain

φ ≈ 1 eV.

In our devices, there is no measurable lowering of φ after HCI irradiation

[48]. On the other hand, there is always a reduction in s. We interpret a crater

as a volume at the surface where material has been ejected to the vacuum so that

all of the removed atoms are replaced by vacancies. This type of “pit”, “crater”,

or “caldera” formation has also recently been observed with scanning probes on

KBr [41], Si[76], and TiO2 [77] target materials.

3.5.3 Crater depths

Using Eq. 3.11, the barrier thickness that corresponds to each measured

σc value is extracted. These values are included as a linear scale along the right
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Figure 3.8: The average crater depth grows from 2 Å to 11 Å as charge state
increases from Q = 26 to Q = 44, (kinetic energy [8 ×Q] keV).
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vertical axis of Fig. 3.6, with s decreasing from 12 Å to 3 Å as Q is increased

from 26 to 44. This decrease in barrier thickness represents Q-dependent crater

formation and we obtain the crater depth d as the difference between s0 and s at

each at each ion impact site. The range of crater depths obtained is 2 Å to 11 Å

(Fig. 3.8).

Formation of a crater implies the removal of material. In some sense, mea-

suring crater depth is an inverse measurement of the particles removed by poten-

tial energy sputtering. We find that our crater depths are consistent with sputter

yields on other insulators [8]. Figure 3.9, compiles potential energy induced sput-

ter yields reported for CsI, LiF, SiO2, UO2 and GaAs targets. The Al2O3 points

(extrapolated from the conductance data in Fig. 3.6), are superimposed as red

stars (charge states Q = 26, 36, 44).

In order to make a comparison between the tunnel junction and sputter

yield measurements, the following assumptions were made. First, the shape of the

craters is hemispherical with volume V = (2/3)πd3, where d = s0 − s. Also, the

atomic density of the aluminum oxide was taken as the bulk, stoichiometric value

of 11.7 ×1022 atoms cm−3 and aluminum and oxygen atoms are removed at the

same rate. The extrapolated sputter yield data follow the trend of the measured

potential sputtering data, and agree within an order of magnitude. At Q = 44 (51

keV of potential energy), around 300 atoms are removed. Kinetic energy between

the data sets was varied, but is on the order of 102 keV (see Ref. [8] for details).

From this comparison we conclude that our conductance data are in qualitative

agreement with sputter yield measurements with HCIs.
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Figure 3.9: Comparison with sputter yield from Ref. [8]

3.6 Discussion

3.6.1 Heated Spike Model

3.6.2 Crater depth from the heated spike model

Using the heated spike model from Sigmund [78, 79, 80, 81], we can derive

an expression for crater depth as a function of crater formation energy. Each

measurement of the decrease in barrier thickness within Fig. 3.6 can be mapped

to a charge-dependent crater formation energy Edep(Q).

Within the model, Edep(Q) is necessarly less than the total energy depo-

sition. Edep(Q) represents a fraction of the total deposition that goes into the

formation of the “crater” defect. Deposited energy can also contribute to sub-

threshold heating of the lattice that does not lead to the formation of defects.
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Additionally, the energy deposited into an insulator cannot be converted to heat

with perfect efficiency [78].

Within the heated spike model, the ion collision forms a non-equilibrium

temperature profile that cools simultaneously through heat conduction to the

solid and evaporative heat loss. In particular, it is the temperature dependent

evaporation of near-surface atoms from the semi-infinite cylindrical spike around

a projectile’s trajectory which gives rise to crater formation. After cooling, the

final depth of a given crater can be expressed as

d(Edep) =
ηEdep(kT0)1/2

Us0
exp[−U/(kT0)], (3.13)

where k is the Boltzmann constant, Edep is the total energy deposited in the length

s0, η = k(4
√

2π3/2M1/2Λ)−1 (Λ is the thermal conductivity of the target and M

is the mass of a target atom), T0 is the initial temperature of the spike and U

is the surface binding energy per evaporated atom. The heated spike has initial

thermal energy kT0 = (2/3)Edep [79]. In applying this model to high Q projectiles,

both sub-surface neutralization (potential) energy deposition and pre-equilibrium

nuclear and electronic stopping contribute to spike formation.

Within the heated spike model, we consider heat dissipation through con-

duction to occur primarily through the Co layer, given its high thermal conduc-

tivity compared to the Al2O3 thin film. Therefore the thermal conductivity was

taken to be the nominal value for Co of Λ = 100 W K−1 m−1 [82]. The target mass

M was a weighted average between the masses of the Al and O species in stoi-

chiometric Al2O3, and the surface binding energy was set at the experimentally

determined aluminum displacement threshold of 20 eV [83]. Eqs. 3.12 and (3.13)

are connected by the unperturbed barrier thickness s0 as, s(σc) + d(Edep) = s0.
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For each charge state, Edep was obtained using the measured σc value as shown

in Fig. 3.15 (discussed below). For the spike parameters described here, we find

that Edep increases from approximately 8 keV to 25 keV as the projectile charge

state increases from Q = 26 to Q = 44.

3.6.2.1 Derivation of the crater formation energy expression

We start with Sigmund’s heated spike model [78, 79, 80, 81]. Beginning

with Eq. (43) in Ref. [78] crater depth is,

d =
CU

Nk(dE/dz)
Y, (3.14)

where C is the heat capacity per volume, k is the Boltzmann constant, U is the

binding energy of the target atoms, N is the number density of target atoms,

dE/dz is the total projectile energy deposited per depth and Y is the yield of

atoms evaporated from the spike. Evaporation yield was derived from the evap-

orated particles per unit time per area in Eq. (24a), the effective sputter time in

Eq. (31), effective sputter radius in Eqs. (32) and (33), and a material constant

in Eq. (39b) (equations from Ref. [78]). After substituting these equations (that

also have dependences on U, C, N, and dE/dz) into the crater depth formula and

simplifying the result, we obtain

d =
(dE/dz)k

4πΛU

(
kT0

2πM

) 1
2

exp[−U/(kT0)], (3.15)

where T0 is the initial temperature of the spike, M is the mass of the target atoms,

Λ is the thermal conductivity of the target material.

To obtain Eq. 3.13, we define the total energy deposited within the depth
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of the film s0 as Edep = (dE/dz)s0 and substitute Edep into the previous equation,

d(Edep) =
ηEdep(kT0)1/2

Us0
exp[−U/(kT0)]. (3.16)

From kinetic gas theory we calculate the initial thermal energy of the spike [79].

To obtain the Edep values corresponding to the observed craters, we find the roots

of the equation d(Edep) + s(σc) = s0, by inserting the σc values measured for each

charge state Q in Fig. 3.6. The first and second terms on the left hand side of the

equation below are d(Edep) and s(σc) respectively,

√
2
3

η

Us0
E3/2

dep exp

[
− 3U

2Edep

]
− 1

β
√

φ
ln

[
σc

G0

]
= s0. (3.17)

The results of Edep(Q) from the s(σc) data in Fig. 3.6 are plotted in Fig. 3.15.

Now Eq. 3.17 provides a means of going from a measurement of the tunnel con-

ductance σc to the corresponding crater formation energy Edep, based on the

known parameters φ, U, s0 and constants G0, β. If we input these known pa-

rameters and the measured σc(Q) values from Fig. 3.6, we can obtain the crater

formation energy at each charge state Edep(Q). Thus, Eq.3.17 provides a means

of going from each measurement of σc to Edep based on known parameters, as a

function of charge state Q. Error bars in Fig. 3.15 also include the propagation

of uncertainty for the value ΔG0 = 5 μS, to account for non-idealities in trans-

port such as reflection. However, the results in Fig. 3.15 are only logarithmically

dependent on G0.
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3.6.3 Potential energy

The total amount of potential energy available is determined by atomic

binding energies (ionization energies), i.e., the energy cost for removing an elec-

tron from a neutral or partially ionized atom. For XeQ+, these energies are plotted

in Fig. 3.10, as compiled by Saloman [84]. The total potential energy, or neutraliza-

tion energy (EQ), for each charge state is equal to the sum of the ionization energies

of the removed electrons. The ionization energy is defined as the energy required

to increase the charge state from Q to Q + 1. As an ion regains Q electrons during

neutralization, it lowers its total potential energy by EQ. In Fig. 3.10, EQ and the

ionization energy for each charge state are plotted with blue and red points re-

spectively. The labels in the figure indicate the shell from which an electron was

removed. For example, at Q < 18 electrons are removed from the O shell during

ionization and Xe18+ is Kr-like. Xe44+ (a frequently used ion in the experiments)

has its remaining electrons in filled K,L shells and is Ne-like. The neutralization

scenario for HCIs at a surface has been discussed in detail previously [23] and is

shown schematically in Fig. 3.3(a). A more detailed discussion of above-surface

electron capture by HCIs above thin dielectric films, is presented in Chapter 4 of

this thesis. In general, as the ion approaches a critical distance of a few nanome-

ters from the surface, electrons from the metal are captured into highly excited

states of the projectile forming a neutral “hollow atom”. Only a small fraction

(< 10%) [85, 27] of the neutralization energy can be dissipated above the sur-

face through Auger electron and x-ray emissions, even for the case of slow HCIs

(v < vbohr). Upon entering the solid the evolving HCI is re-ionized through the

“peeling off” of excited electrons [23, 25], and the ion remains far from charge

state equilibrium. In the following discussion of sub-surface charge equilibration,
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we shall assume that the projectile is completely re-ionized upon penetrating the

solid. This means that the ion regains its initial charge state Q, after captured

electrons in outer shells are screened by the electrons in the solid.

Deposition of EQ into a solid occurs in connection with neutralization, as

the ion’s charge equilibrates. The timescale of charge equilibration determines

the rate at which potential energy deposition can occur. Additionally, the charge

equilibration timescale in relation to the ion drift timescale determines how far

the ion travels within the target material, before neutralizing. For these reasons,

it is necessary to consider the charge equilibration timescale in the thin film ex-

periment.

3.6.4 Charge equilibration timescale

As the ion penetrates the target, electrons in Rydberg states are “peeled

off” and a more compact cloud of target electrons screens the highly excited pro-

jectile, forming a sub-surface “hollow atom”[18]. After this process, the re-ionized

projectile regains its initial charge Q below the surface.

Starting with the Bohr stripping criterion, the equilibrium charge state is

[86]:

Qeq = Z1/3
ion × (v/v0) (3.18)

Variations of Eq. 3.18 appear throughout the literature. This formula expresses

the condition for which ionic bound electrons are lost in a collision, with target

nuclei and electrons, when their velocity is below v. Therefore, it approximates

the equilibrium or mean charge state Qeq of an ion traversing a lattice at speed v.

v0 is the Bohr velocity (v0 = a0EH/h̄ ≈ 2.187× 106 m/s from Appendix G), and

Zion is the atomic number of the ion.
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As the ion neutralizes below the surface of a solid, its charge state decays

toward the equilibrium value Qeq. Empirically, this subsurface charge evolution

follows a time-dependent exponential decay function [87]:

Q(x) = Qeq + (Qi −Qeq)e−α(x/v). (3.19)

Here, Qi is the initial charge state, and Q(x) is the ion’s charge state after it has

traveled a distance x within the solid. De-excitation proceeds via Auger and ra-

diative transitions, as Q approaches the equilibrium charge state. Below, two pre-

vious measurements of sub-surface relaxation are mentioned, to provide context

for equilibration timescales in our experiment.

Ref. [88] reports relaxation timescale measurements based on X-ray emis-

sion of both the front and back side of a Ta foil target for PbQ+ for 53 ≤ Q ≤ 58.

In these experiments, velocities of the ions were 0.30 a.u. ≤ v ≤ 0.31 a.u. By

detecting the x-rays emitted during M-shell filling, the authors concluded that the

relaxation times varied between 68± 10 fs for Q = 53, and 22± 4 fs for Q = 58.

Ref. [45] reports velocity dependent measurements of the exit charge state

of Xe44+ ions, after they have traveled a distance x = 5 nm through a carbon

film. Fitting these Q(x = 5 nm) data as a function of v to the exponential

model in Eq. 3.19, a charge equilibration time constant α = 4.7 × 1014 s−1 is

extracted. The authors conclude that on average, a highly charged xenon equili-

brates within approximately 7 fs. The range of velocities in this experiment was

0.24 a.u. ≤ v ≤ 0.45 a.u.

Based on these measurements, full relaxation requires at least 7 fs to 68

fs. The primary question in the HCI experiment is whether or not all of the

ion’s potential energy can be deposited within the thickness of the thin film. For
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the data shown in Fig. 3.6, the slowest projectiles have nominal perpendicular

velocities v = 576 km s−1 (neglecting image acceleration) and pass through the

14 Å surface film within 2.5 fs. This means that the craters formed in the film are

the result of sub-surface pre-equilibrium energy deposition within a short (< 2.5

fs) time window.

Applying the analysis of Ref. [45] and using its measured time constant,

charge state as a function of penetration depth is plotted in Fig. 3.11. Here Q(x)

is shown for XeQ+ for Q = 18, 36, 44 with kinetic energies (8 × Q) keV. The

thickness of the film is shaded in the region x < s, where s = 1.4 nm. Based on

the exponential model, projectiles with the initial charge states Q= 26, 36, and 44

decay to Q(x = s) = 8, 14 and 18 upon penetrating the thickness of the film. Each

of these charge states pass through the film within less than 2.5 fs, and there is

insufficient time for full relaxation of the subsurface hollow atom. In contrast, the

Qeq for each of the charge states is a penetration depth of about 10 nm.

The charge equilibration rate determines the amount of time available for

deposition of EQ into the solid, because potential energy is released in connection

with neutralization.

In Fig. 3.12, the total potential energy for each charge state is represented

in filled symbols (EQ). As described previously, EQ is the total potential energy

difference between the ion of charge state Q, and a neutral atom. This potential

energy is deposited along a charge equilibration length (approximately 10 nm),

as the ion captures its missing electrons. At penetration depths smaller than the

charge equilibration length, electron vacancies remain.

So, the amount of potential energy that can be deposited within a penetra-

tion depth x is,

E f ilm
Q (x) = EQ[Q(0)]− EQ[Q(x)]. (3.20)
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Figure 3.11: Exponential model for charge state equilibration. Initial charge states
44, 36, 26 relax toward equilibrium charge state Qeq as the ion penetrates the solid.
The shaded region indicates the thickness of the film.

Here, Q(0) is the initial charge state of the ion, and Q(x) is the charge state

after the projectile has traveled through a distance x in the target (taken from

Fig. 3.11). E f ilm
Q (x = s) is plotted with open symbols in Fig. 3.12, and comprises

more than 90 % of EQ. The quantity E f ilm
Q (x = s), can be considered the amount of

potential energy deposited within the thickness of the film. It is difficult to assign

a “potential energy” to the moving ion, in an excited state. However E f ilm
Q (x)

allows the assignment of an upper bound on the total potential energy deposited

within depth x. It is clear that the projectile will not fully equilibrate to deposit

the full amount EQ within a surface film of thickness s = 1.4 nm. Decreasing the

velocity of the ion, would increases the fraction of EQ that is released while the

ion is within the film.
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Figure 3.13: SRIM calculated nuclear (red) and electronic (black) kinetic energy
loss rates for Xe1+ on Al2O3.

3.6.5 Kinetic energy

3.6.5.1 SRIM

SRIM/TRIM provides a semi-empirical model that gives a good starting

place for estimating the stopping ranges and energy loss rates for a wide variety

of projectile species, incident energies, and target materials [29]. Figure 3.13, dis-

plays the SRIM prediction for average kinetic energy loss per path length (dE/dz)

as a function of kinetic energy, for Xe1+ incident on Al2O3 in the energy regime

from 1 keV to 1000 keV. As can be seen from the figure, the nuclear stopping

power, i.e., momentum transfer between the ion and target nuclei is the dominant
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energy loss mechanism. The position of the maximum of the nuclear stopping in

Fig. 3.13 is a direct result of the mass ratio between Xe and Al/O. In comparison

to the nuclear stopping, energy transfer from the Xe to the target electrons is rel-

atively inefficient. Electronic and nuclear stopping powers are (dE/dz)el = 0.09

keV Å−1 and (dE/dz)nuc = 0.37 keV Å−1 for Xe+ at 350 keV in aluminum oxide.

The total stopping power (dE/dz)t is the sum of the nuclear and electronic con-

tributions. Assuming that the ion undergoes constant deceleration in the target

(continuous slowing down approximation), there is simple relationship between

kinetic energy loss rate and average stopping range:

R̄p =
∫ E

0

[
dE(z)

dz

]−1

t
dE. (3.21)

For Xe1+ at 350 keV, the expected average stopping range Rp is approx-

imately 80 nm. Note that this is about an order of magnitude larger than the

charge equilibration length shown in Fig. 3.11. The ion neutralizes long before it

stops.

3.6.6 Charge dependent stopping power

For low energy HCIs (KE < 1 MeV) nuclear stopping power remains the

dominant kinetic energy loss mechanism, as it is for singly charged ions. In

fact, the high Q can further amplify nuclear stopping power [27, 35]. Especially

in insulator target materials, where free electrons cannot provide any screening

of the projectile, the projectile’s Coulomb interaction reaches beyond its nearest

neighbors. The amount of momentum transferred from the projectile to the target

nuclei is proportional to 1) the radius of interaction divided by the projectile

velocity and 2) the number of target atoms within that interaction radius. Both
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1) and 2) increase dramatically for slow highly charged ions. This means that a

significant enhancement of kinetic energy transfer is predicted in the ion’s track,

before it equilibrates. Ref. [35] predicts that this effect will be especially strong

for, e.g., Xe44+ in SiO2 at E < 300 keV. The stopping enhancements may even

be strong enough to lead to a decrease in the average stopping range of slow

HCIs in insulators (via Eq. 3.21). When Sb+ and Sb25+ were implanted at 120

keV, the mean depth of the Q = 25 ions was significantly compressed [89]. This

compression effect becomes observable for low kinetic energies and high charge

states as the charge equilibration length increases with respect to the stopping

range.

The model in Ref. [35] expresses the nuclear stopping term (Sn) (energy

loss per path length):

P̌ =
QZ∗2 e2

2E/(1 + μ)

√
γE
Ť
− 1 (3.22)

Sn = n
∫ P̌

0
2πPdP =

πμn
E

(QZ∗2 e2)2 ln(γE/Ť) (3.23)

where P are the impact parameters, μ = M1/M2 is the mass ratio between pro-

jectile and target atoms, Q is the ion charge state, Z∗2 is the charge of the target

nuclei, γ = 4μ/(1 + μ)2, Ť is the minimum transferable energy, and n is the

atomic density. These formulas are valid for γE ≥ Ť [35]. The salient feature

in this function is its rapid increase of nuclear stopping power at low kinetic en-

ergies. In the model, stopping power increases asymptotically as kinetic energy

decreases as Sn ∝ Q2/E.

Ref. [35] also derives a prediction for the electronic stopping, from the

“effective charge” approach. Screening length of the ion nucleus by the non-
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stripped electrons is:

Λ1 = a0
2(Z1 −Q)2/3

Z1 − (Z1 −Q)/7
(3.24)

where a0 is the Bohr radius, Z1 is the projectile nuclear charge. This makes (Z1 −
Q) the number of remaining non-stripped electrons.

The effective charge[90, 29] can be obtained assuming that the electron

distribution surrounding the nucleus has the form,

ρ(r) =
(Z1 −Q)

4πΛ2
1

e−r/Λ1

r
. (3.25)

Integrating with target electrons at all separations, and averaging over all

impact parameters yields the effective charge:

ξ = Q +
Z1 −Q
2v f /v0

ln

[
1 +

(
2

v f

v0

Λ1

a0

)2
]

. (3.26)

Here, v f is the Fermi velocity of electrons in the target, and v0 is the Bohr

velocity. The electronic stopping power varies as ξ2 ([dE/dz]el(Q) ∝ ξ2). Effec-

tive charge squared ξ2 is plotted in Fig. 3.14. This parameter shows the relative

increase in electronic stopping as a function of charge state. In Fig. 3.14, ξ2 less

than doubles as charge state increases from Q = 21 to 41.

The magnitude of electronic stopping is small compared to nuclear stop-

ping for low energy ions. In order to assign actual numerical stopping power

values using the model, the electronic stopping power was anchored by the Q = 1

value from SRIM, and extrapolated to higher charge states, going as ξ2. In order

to determine the numerical values of stopping power, the constant α1 was found
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by inputting the (dE/dz)el from SRIM and ξ2, for Q = 1:

dE
dz el

= α1ξ2(Q) (3.27)

For our experimental parameters the proportionality constant between stopping

power and squared effective charge turns out to be α1 = 1× 10−3.

To summarize, the electronic stopping described by Eq. 3.27 has a smaller

magnitude than the nuclear stopping described by Eq. 3.22 for a slow HCI im-

pinging on aluminum oxide. Additionally, electronic stopping from Eq. 3.27 has

weaker dependences on charge state and kinetic energy than does the nuclear

stopping. For slow HCIs, nuclear stopping remains the dominant stopping mech-

anism, according to the model [35].

3.6.7 Energy Accounting

The tunneling conductance measurements in the experiment are sensitive

to modifications of the dielectric barrier. Therefore, we consider the potential and

kinetic energy deposited into the thickness of the ultrathin film s0. Kinetic energy

deposition can be calculated by multiplying the nuclear and electronic energy loss

rates by the film thickness.

In the low kinetic energy regime (E ≈ 300 keV), nuclear stopping is the

most significant kinetic energy loss term for singly charged ions, and its magni-

tude is further increased when Q 
 1. This increase arises from the enhancement

of long range Coulomb interactions which transfer small amounts of energy to

large numbers of target atoms. Electronic stopping also increases with Q, but its

value makes up only 7 % of the total kinetic energy loss for the E and Q described

here.
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Given the Q = 1 stopping powers from stopping range data [91] and the

SRIM code [29] as well as the predicted functional dependence of electronic and

nuclear stopping on Q and E at higher charge states [35], we find that the to-

tal (nuclear and electronic) kinetic energy loss per length (dEn/dz + dEe/dz) in-

creases from 0.5 keV Å−1 to 0.8 keV Å−1 as the charge increases from Q = 26

to Q = 44. This equates to deposition of 7 keV to 12 keV kinetic energy into

the thickness of the film (En + Ee). Both En and Ee as well as their combined

contributions to the energy deposition are plotted in Fig. 3.15.

The validity of SRIM is often questioned for slow heavy ions stopping in

insulators. Therefore, we compared the SRIM value to a stopping range exper-

iment for 200 keV Xe ions in aluminum oxide [91]. Using the measured ranges

[91], and the continuous slowing down approximation we inverted Eq. 3.21 to

find the total stopping rate of dE/dz = 0.398 keV Å−1. In comparison, SRIM

gives dE/dx = 0.453 keV Å−1. After multiplying this stopping rate times s0, the

experimental kinetic energy deposition at Q = 1 is plotted as the open triangle in

Fig. 3.15. The SRIM value is also plotted as the open circle. The experimental and

SRIM values agree within 12 %.

The crater formation energies Edep in Fig. 3.15, are supplied by both the

kinetic and potential energy of an impacting ion. Therefore, we seek to parti-

tion the contributions between the kinetic (energy loss through stopping) and

potential (energy loss through neutralization) to gain insight in to the elastic and

inelastic loss processes that HCIs undergo. In addition to the large amount of

potential energy, high Q projectiles also experience enhanced stopping power via

Eqs. 3.22,3.26. In order to partition Edep, we use the functional dependence of

stopping on Q and E for low energy ions from Refs. [35] and [36].

The crater formation energies (Edep(Q)) increase much more rapidly than
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Figure 3.15: Each point represents the energy required to form a crater, deter-
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the total kinetic energy loss (En + Ee) as Q increases. Clearly, neutralization energy

must be considered in order to account for the Edep values. First, we estimate the

amount of neutralization energy lost by the ion as it traverses the thickness of the

film. Invoking an exponential charge state decay model [92, 86], we calculate the

charge state for a given ion that has traveled s0 using the measured time constant

from Ref. [45]. We then subtract the corresponding neutralization energies for

this charge state and the initial charge state from one another to estimate the

neutralization energy (Efilm
Q ) lost while the ion is within the film. Efilm

Q represents

the available neutralization energy that can contribute to heating the spike within

the thickness s0 and comprises more than 90 % of EQ as is displayed in Fig. 3.10.

A fit to the data with the solid line Edep = En + Ee + f Efilm
Q in Fig. 3.15 gives the

fraction of available neutralization energy that contributes to formation of a crater

to be f = 0.27± 0.02.

The uncertainty on this fraction, represents the standard error of the fit.

Uncertainty in f does not include a quantitative assessment of the error from the

model in Ref. [35]. The f Efilm
Q values are considered lower bounds on the total

neutralization energy required to form the craters we observe in the Al2O3. In

extracting f from the fit we assume that Ee and En are completely converted to

heat in the collision spike. However for insulating materials, conversion of the

electronic excitation to heat is not perfectly efficient [78], and its value will be

smaller than the electronic stopping power integrated over the film thickness. It

is important to note that the charge dependent stopping powers in Ref. [35] were

derived as bounds and that the numerical value of f depends on the stopping

power model.
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3.6.8 Comparison with previous measurements

Schenkel and co-workers have reported that as much as 40 % of the neu-

tralization energy from Xe52+ projectiles is delivered into a Si detector target [27],

where the remainder is emitted to the vacuum through Auger electrons and pho-

tons. We expect our measured fraction to be smaller than the result of Ref. [27], be-

cause craters only record the energy deposition that results in irreversible change

of the material. Heated regions of the spike below the energy threshold for evap-

oration will quench and remain solid. The energy required for this subthreshold

heating is transfered to the solid, but not represented in the measurement of a

crater depth. Therefore, regarding the total energy deposited to the material, f

quantifies the role that neutralization energy plays in the creation of irreversible

defects.

3.6.9 Decreased kinetic energy

In an attempt to measure the dramatic increase in kinetic energy deposition

predicted in Eq. 3.22, we began an experiment with the G2 devices using lower

ion extraction voltages. Initially, we have decreased the kinetic energy by about

40 %, from (8× Q) keV to (5× Q) keV. G2 devices were irradiated with xenon

ions with charge states Q = 36 and Q = 41 at (5×Q) keV.

Figure 3.16 shows a representative plot of device conductance as a function

of ion dose, for the 5 kV extraction voltage, using the G2 masks. The solid (red)

points are from sample 111222-04, dosed with Q = 41 ions, and the open (blue)

points are from the sample 111222-14, dosed with Q = 36 ions. The model of

Eq. 3.4 describes the data well. Fits to the conductance measurements on individ-

ual chips give slopes of 1.83 ± 0.02 μS/ion, and 84± 6 nS/ion for Q = 41 and
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Q = 36 respectively in Fig. 3.16. As with the previous case, the slope of G(N)

increases with increasing ion charge state. Each line is a fit to the conductance

of devices on a single chip. Increased device resistance in G2 devices provides a

greater range of measurable resistances, and smaller error bars in Fig. 3.16. For

devices with higher resistances, the uncertainty on Rdev and G are smaller for G2

than for G1 devices. Note that in Fig. 2.10, we see that the G2 masks can measure

devices with smaller RA, before running into the negative resistance problem.

We determine that the most probable average conductance per ion values

(from a set of 7 chips) are σc = 86± 4 ns and σc = 1.43± 0.09 μS for charge states

Q = 36 and Q = 41 respectively. In comparison to previous data obtained at

(8× Q) keV for Q = 41, σc(Q = 41) for the slower ions is greater by a factor

of ∼10. Further kinetic energy dependent studies are required to assess whether

this increase is due to enhancement of stopping power. For three of these devices,

data analysis is shown in Appendix E.

3.7 Chapter Summary

In this chapter, I presented a basic overview of the EBIT and beamline

used to carry out the HCIMM experiments. Additionally, I outlined a method

of irradiating tunnel junctions with HCIs in order to detect modifications to the

oxide barrier via a measurement of tunnel conductance. The HCIs form individ-

ual nanoscale crater-like defects in the thin film barrier. For sufficiently low ion

doses, conductance of the devices increases linearly with the number of ions that

impact the barrier.

We reported ion induced crater depths in the ultrathin dielectric films as

a function of projectile charge state. From the depth scaling of the craters with
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charge state, we determine the energy deposited into the thin film in HCI-surface

impact increases from 8 keV to 25 keV as Q increases from 26 to 44 by invok-

ing a heated spike model from Sigmund. With this approach we inverted Sig-

mund’s expression for d(Edep) to arrive at crater formation energy as a function

of crater depth, for each charge state in the experiment. Accounting for both

pre-equilibrium kinetic energy loss and neutralization energy, we measure that at

least (27± 2) % of the available neutralization energy contributes to crater forma-

tion. This result represents a lower bound for the fraction of HCI neutralization

energy required to form a permanent material defect.

Looking forward, it may be possible to further decrease the kinetic energy

of the HCIs and observe greater pre-equilibrium enhancement of stopping power

as the ion deposits its energy within the thin film. Enhancement of stopping

for ions in pre-equilibrium charge states has been observed in energy loss mea-

surements using thin foils [8], and stopping ranges measurements [89]. Counter-

intuitively, Ref. [35] predicts that slower ions may result in even higher kinetic

energy deposition by HCIs.
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Chapter 4

Classical over-the-barrier model for

neutralization of highly charged ions

above thin dielectric films

4.1 Introduction

Slow highly charged ion (HCI) interactions with solids continue to be an

active area of research at the interface of condensed matter and atomic physics.

Due to the complex interaction between projectiles with charge states Q 
 1 and

the multitude of target electrons involved in the neutralization process, a com-

plete picture for electron capture, emission and the formation of material defects

remains challenging outside of a few specific target materials, i.e., bulk metals

[23] and bulk ionic crystals [93, 94]. For these cases, the classical over-the-barrier

(COB) model gives quantitative predictions that are in good agreement with elec-

tron emission statistics [95, 96], X-ray spectra [24] and ion image acceleration

measurements [97, 98]. The foundation of COB is that the first electronic trans-
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mission from target to ion, occurs in a classically allowed region and populates

high n states in the ion. For HCIs, filled levels in the metal become resonant

with the high n states at a distance of a few nanometers outside the surface.

Thus initial charge transfer takes place predominantly via fast transitions over

the top of the vacuum potential barrier from the target to the projectile. Once

captured by the projectile, these electrons decay to fill inner shell vacancies and

promote the emission of Auger electrons and photons. The critical distance for

first charge transfer (Rc) can be well approximated using classical potentials, due

to the “point charge”-like nature of the ion at a relatively far distance from the

target electrons. Rc sets a characteristic timescale (τ ≈ Rc/vp) for above-surface

electronic processes, before ion impact. The importance of Rc is that it describes

the distance between the ion and solid at the onset of the ion neutralization pro-

cess.

Within COB, the basic material properties that govern the onset of above-

surface neutralization are electron binding energy (work function) W, energy

band gap EG and permittivity ε. Deposition of a thin dielectric film on a metal

surface introduces new W, EG and ε for the surface layers without modifying the

bulk. Thus, deposition of a thin film is an experimental means of changing the

electronic structure of the surface, in order to test the role of surface versus bulk

material properties during HCI neutralization. This approach was used to mea-

sure above-surface emission of Auger electrons as a function of LiF film coverage

on Au(111) up to 1 ML in order to decouple the role of target binding energy

and band gap in K-shell filling [2, 3]. The authors remark that even for a single

monolayer of LiF coverage, the high binding energy of the LiF results in a sup-

pression K-shell filling, suggesting that for LiF/Au(111), the target takes on the

W characteristics of the thin film rather than bulk material.
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In some cases however, dielectric thin film covered targets retain the metal-

lic character of the bulk substrate. Recent results on HCI interactions with thin

films show electron emission yield as a function of C60 film thickness on Au(111)

[4]. Here, it is shown that there is a measurable increase in the total potential

emission yield relative to clean Au(111) with increasing C60 film thickness. The

film enhances rather than suppresses the efficiency of Auger relaxation relative to

a clean metal surface. Within a measurement of the electron emission spectrum,

the target produces high electron yields even after the deposition of approxi-

mately 5 ML of dielectric material.

These seemingly contradictory results motivate an application of COB to

model electron capture by HCIs above metal surfaces covered with thin dielectric

films. Until now, above-surface charge exchange for HCIs interacting with thin

films has not been treated systematically with COB. In this chapter, we describe

application of COB to the initial charge exchange between HCIs and target elec-

trons in solids covered with thin films. We develop a simple physical model that

describes the crossover from the thin film to bulk target regimes as a function of

the film electronic properties and thickness. Adding a thin film to a bulk surface

leads to new boundary conditions in the construction of the electronic potential

energy landscape, and modifies the critical distance at which electrons can be

captured by the ion. For the case of a metal surface covered with a thin dielectric

film, we calculate ion capture distances and compare these results to bulk metal

and insulator targets. New studies of highly charged ion interactions with thin

films will require this type of predictive model to gain insight into the role of bulk

versus surface electrons during neutralization.

The chapter is organized as follows. First, we introduce the basic frame-

work and assumptions of the existing COB picture for electron capture by HCIs
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above bulk metal and insulator targets (Sect. 2). Then, using the framework from

Sec. 2, we describe how the potential of an “active electron” in the first stage of

above surface neutralization is modified by the presence of a thin dielectric film

at the surface (Sect. 3). In Sect. 3 we derive thickness dependent critical distances

starting with parameters for ultrathin C60 thin films on Au(111). The dependence

of critical distance on film permittivity, band gap and metal work function are

then discussed. In Sect. 4, we discuss comparisons between the model and three

experimental systems C60/Au(111), LiF/Au(111) and Al2O3/Co. Finally, the re-

sults are summarized in Sect. 5.

This chapter presents the revised version of a previously published model

[71]. The main improvement in the model presented here is in calculation of

the ion’s image potential. The model contained in this chapter solves Poisson’s

equation exactly for the metal-dielectric-vacuum system, matching the boundary

conditions at both the metal and dielectric surfaces. The previously published ver-

sion did not include the electric field boundary constraint at the dielectric-vacuum

interface. As will be shown below, both versions of the model demonstrate the

same qualitative behavior when calculating electron capture distances. However,

some numerical results change when discussing the Al2O3/Co system.

4.2 Bulk targets

To define the basic framework and assumptions from COB, it is instruc-

tive to first consider the case of a HCI with initial charge state Q, at a distance

R outside of an ideal metal surface following the approach and notation from

Refs. [99, 16, 23]. The potential energy for an “active electron” in the region be-

tween the surface and ion has three terms: attraction between the electron and the
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ion (Vp,e), attraction between the electron and its self-image (Vim
e ), and repulsion

between the electron and the target dielectric response induced by the ion (Vim
p,e ).

The last term can be considered the HCI’s image charge. The potential energy for

the “active electron” in the region between the ion and surface is the sum of these

three terms (in atomic units, defined in Appendix G),

V(z) = Vim
e (r) + Vp,e(r, R) + Vim

p,e(r, R). (4.1)

If the target medium has finite electric permittivity the image terms are modified

by a factor β = (ε− 1)/(ε + 1),

Vp,e(r, R) = − Q
|r−R| (4.2)

Vim
p,e(r, R) =

βQ
|r + R| (4.3)

Vim
e (r) = − β

4z
. (4.4)

In these equations, the origin is set at the surface of the bulk, directly in front of

the ion where r and R are position vectors for the test charge and ion, respectively.

These are classical potentials in the asymptotic limit and are valid when

the ion moves slowly with respect to the Fermi velocity of the target electron

and when the ion is far from the surface. For Q 
 1, capture distances are

much greater than the dynamic screening length, and classical potentials are a

reasonable approximation.

In Fig. 4.1(a) we plot the potential for the active electron within the vacuum

region along two dimensions. The ion has charge Q = 26 and is positioned near

the critical distance R = 2 nm from the metal surface. A shallow minimum along

x forms a saddle point in the potential between the ion and target electrons. The
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critical distance (Rc) is defined as the ion’s position where the highest value of

the vacuum potential between the ion and surface falls below the Fermi level in

the target (dashed line in Fig. 4.1(a)). Classical charge transfer from the metal to

the ion occurs through the saddle point.

Due to the small width of the saddle, charge transfer takes place in the

coordinate normal to the surface, z. Figure 4.1(b) shows a one dimensional slice

of the potential profile along z. Electronic states in the target are filled up to Fermi

level (EF), and the work function (W) separates EF from the vacuum level. As the

ion moves from R = 6 nm to R = 2 nm, the maximum in the potential drops

below EF and classical charge transfer is allowed. From Eqs. 4.2, 4.3 and 4.4 the

critical distance is [99],

RC ≈
√

2Qε(ε− 1)
W(ε + 1)

+
ε− 1

4W(ε + 1)ε
. (4.5)

Rc has an approximate square root dependence on charge state, and inverse

dependence on W. Fig. 4.1 represents the ideal metal case (β → 1) and the critical

distance reduces to Rc ≈
√

2Q/W.

4.3 Dielectric thin films on metals

In the following section, we obtain critical distances for metals covered

with thin dielectric films. In comparison to the clean metal case, the presence of a

dielectric thin film adds a new metal-dielectric interface and requires additional

boundary conditions to be satisfied. Following the framework and assumptions

introduced in the previous section, we construct the potential for an “active elec-

tron” in a metal/dielectric/vacuum system.

113



Figure 4.1: (a) 2D potential for a Q = 26 ion at the critical distance (Rc = 2 nm)
outside a metal surface. The dashed line is the constant z where the saddle point
minimum falls below EF = 5 eV. (b) 1D potential at ion positions R = 6 nm and
2 nm. The work function is W = Evac − EF = 5 eV. Initial charge transfer occurs
through the saddle point, over the vacuum barrier.
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The potential is constructed as shown in the schematic in Fig. 4.2(a). The

system requires an infinite series of image charges [100], to satisfy boundary con-

ditions at both the metal-dielectric and dielectric-vacuum interfaces. As depicted

in Fig. 4.2(a), both the ion and active electron induce dielectric responses within

the target. For the ion, the series of image charges is denoted as Q′, placed behind

the metal surface. The active electron also experiences attraction due to self-image

charges denoted by e′ and e′′ in the dielectric and vacuum respectively.

In Fig. 4.2(b), the potential energy for an active electron is plotted along z,

for an ion position R, that is far from the surface. The potential is the sum of the

terms Vint, Vi, Vsi depicted schematically in Fig. 4.2(a). As shown in Fig. 4.2(b),

the potential goes as approximately 1/R in the vicinity of the ion. Near the

surface, electron self-image forces, and film permittivity determine the shape of

the potential (discussed below).

4.3.1 Ion potential

4.3.1.1 Boundary conditions

We seek the potential energy of an electron in the dielectric, and vacuum

regions as an ion of charge Q approaches the surface. To construct the potential

for the test charge, we first consider the potential only due to the ion and its

dielectric response in the target (neglecting the electron’s self-image term). The

general approach is to modify Eqs. 4.3 and 4.4 to account for the presence of a thin

dielectric film. Obtaining this modified potential landscape requires a solution to
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Figure 4.2: (a) Point charge representation of an active electron e−. The potential
is constructed from the superposition of interaction, self-image and electron-”ion-
image” terms (Vint, Vsi(ε), Vi(ε)). (b) Energy profile along the normal coordinate
z when the ion is >50 nm from the metal surface. The parameters are s = 2.4 nm
for a C60 film on an Au(111) substrate with ε = 4, Eg = 2.5 eV, W = 5.3 eV, φ = 0.5
eV and ion charge state Q = 24.
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Poisson’s equation with the following general boundary conditions [100, 101],

V = 0, at the metal surface (4.6)

ΔE|| = 0 and ΔD⊥ = 0, at the thin film surface . (4.7)

As in the clean metal case, the potential energy of an electron vanishes at the

surface of the metal. ΔE|| and ΔD⊥ are the differences in electric field parallel

to the surface and electric displacement normal to the surface at the interfaces.

Solutions to Poisson’s equation that match the boundary conditions in Eqs. 4.6

and 4.7, for metal-insulator-vacuum systems can be obtained using integral rep-

resentations with the proper boundary conditions in Eqs. 4.6 and 4.7 [102]. The

codes used to calulate the potentials are printed in Appendix F.

The ion’s potential is constructed by solving Poisson’s equation with the

appropriate boundary conditions. Following the approach of Refs. [103, 102],

we solve Poisson’s equation in cylindrical coordinates. z is the normal (axial)

coordinate and ρ, is the transverse (radial) coordinate. The electrostatic potential

has the form

vvac = Q
∫ ∞

0
{exp[−m|z|] + A(m) exp[mz]J0(mρ)} dm (4.8)

v f ilm =
Q
ε

∫ ∞

0
{B(m) exp[−mz] + C(m) exp[mz]J0(mρ)} dm (4.9)

vmetal =
Q

εmet

∫ ∞

0
D(m) exp[−mz]J0(mρ)dm (4.10)

where vvac, v f ilm, vmetal are the electrostatic potentials in the vacuum, film and

metal regions, respectively. These electric potentials are expressed in atomic units

where the dielectric constant is set at e(4πε0)−1 = 1 a.u. (see Appendix G).

Note that in this derivation, the origin is set at the ion’s position within
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the vacuum region, and z > 0 defines positions closer to the surface. However,

with a geometric transformation, the results of Eqs. 4.8 - 4.10 can be applied to the

previously considered coordinate system where the origin is the metal surface. J0

is a Bessel function of the first kind and the co-efficients A, B, C, D are determined

from boundary conditions:

(
vvac − v f ilm

)
z=s = 0,

(
ε

∂vvac

∂z
− ε0

∂v f ilm

∂z

)
z=s

= 0 (4.11)

(
v f ilm − vvac

)
z=zmet

= 0,
(

ε
∂v f ilm

∂z
− εmet

∂vmet

∂z

)
z=s

= 0 (4.12)

where s is the position of the dielectric - vacuum interface and zmet is the position

of the dielectric-metal interface. In practice, Eqs. 4.8-4.10 are substituted into

Eqs. 4.11 and 4.12 and solved symbolically. Then, the limit ε → ∞ is taken,

causing vmet → 0 at the surface of the metal. Physically, this means that the

electric potential of a test charge goes to zero in a perfect conductor and that

electric field lines are excluded (via Eqs. 4.11-4.12).

From the electrostatic potential, the potential energy of the active electron

with charge e can be obtained:

V(z) =
∫ e

0
v(z)de. (4.13)

The potential energy is referenced with respect to the vacuum energy Vvac = 0.

The potential profile from the ion and its image terms is shown in Fig. 4.3. Here,

the potential due to the ion (not including electron self-image), is plotted along

the normal coordinate z for film thickness s = 1.6 nm and charge state Q = 26.

The lines plot a range of permittivity values in the thin film from ε = 1 (vacuum)

to ε = 106 (ideal conductor). As described above, the displacement vector is con-
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Figure 4.3: Potential that a test charge experiences when a Q = 26 ion is at
position R = 5.8 nm outside the metal surface covered with s = 1.6 nm thick film.
ε changes the field within the film.

tinuous across the insulator-vacuum interface at z = s and the potential vanishes

at the metal surface.

The slope of the ion’s potential in the film (0 < z < s), i.e.. the electric

field, decreases with increasing ε. For ε = 1, the dielectric region has the same

permittivity as the vacuum region, and there is no change to the slope of the

potential within the film with respect to the vacuum region. In the limit that

ε → ∞, the film behaves as an ideal conductor, and the potential vanishes at z = s

satisfying Eq. 4.6.

Dielectric materials have intermediate values of permittivity between these
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limits. As shown in Fig. 4.3, the permittivity of the film affects the height of

the potential barriers between the target electrons and the ion. To account for

time dependent effects, ε can be replaced with a frequency dependent dielectric

function ε(ω) [93]. In the discussion below, we work in the adiabatic limit and

set ε(ω) equal to the static permittivity.

4.3.2 Electron self-image

In measurements of electrons trapped in image potential states, it has been

observed that the net result of a dielectric slab on a metal surface is that there

can be localization of extra electrons near the dielectric film’s surface. Addi-

tionally, electrons at the dielectric surface are trapped with considerably larger

binding energy than occurs in the absence of the metal substrate. To explain

this phenomenon, Cole developed an electrostatic model for image potentials at

the surfaces of dielectric films on metals [104]. The system is treated with classi-

cal electrostatics for a thin homogeneous dielectric slab lying on a metal substrate.

This approach is called the dielectric continuum model (DCM). The DCM appears

in various forms throughout the literature [105, 106, 107, 108].

Here, we use the dielectric continuum model to determine an electron’s

self-image (Vsi in Fig. 4.2(a)). Due to the discontinuity in ε across the dielectric-

vacuum interface, the image potentials are defined piecewise between the vacuum

region outside the film, and inside the film. In the vacuum region, the image

potential is:

Vout(z, s) =
−βe2

4(z− s)
+

1− β2

4β

∞

∑
n=1

(−β)n

z− s + ns
. (4.14)

The first term is the image potential outside a semi-infinite dielectric, and the sum

expresses the series of corrections due to presence of the metal substrate, and the
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finite thickness of the film.

Inside the dielectric, the image potential is screened by the dielectric media

as ε−1. Additionally, within the film, the reference energy becomes the conduction

band minimum of the film Ecbm instead of the vacuum level:

Vin = Ecbm − e2

4εz
. (4.15)

Ecbm is related to the electron affinity (EA) of the dielectric material by Ecbm −
Evac = −EA. In our application of the DCM, we make the additional assumption

that electrons in the valence band of the dielectric are also influenced by their

image attraction to the metal. Therefore, the top of the valence band has energy

Evbm = Vin − Eg.

In Fig. 4.2(b), the potential energy profile is plotted along z for an ion at

distance >50 nm from the surface. At this distance the energy levels in the target

are unperturbed by the ion’s electric field. The surface of the metal is located at

z = 0. The metal (in the region z < 0) is parametrized as a continuum of filled

states up to the Fermi energy EF. The vacuum work function W is the difference

between the Fermi energy (EF) and the vacuum level.

The thin film (in the region 0 < z < s) is represented by a continuum of

filled states up to the valence band maximum (Evbm). Above the valence band, the

energy gap Eg separates the valence band from the conduction band minimum

Ecbm. As described within the DCM, image forces pull down the bands in the

dielectric film in close proximity to the metal surface.
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4.3.3 Evaluating the critical distance, R′c

Starting with the potential diagram in Fig. 4.2(b), we pose the question

whether electrons in the dielectric or metal transit first, as the ion moves toward

the surface. The metal has filled levels up to EF, but is buried underneath the

dielectric film. On the other hand, the surface of the dielectric film is exposed to

the vacuum but contains more tightly bound electrons than in the metal (Evbm <

EF).

Figure 4.2(b) displays the two relevant energy barriers between metal target

electrons and the ion. First, the barrier of approximate height φ = Ecbm − EF,

and width s defines an energy gap within the dielectric material. This barrier is

defined by the portion of the dielectric’s band gap that extends higher than EF.

Second, a vacuum barrier with approximate height W and width (R− s) exists in

the region outside the dielectric film (z > s).

As the ion approaches the surface, its electric field decreases the heights

of both of the barriers until they fall below EF and transport from electrons in

the metal becomes classically allowed. The ion’s position outside the target when

this classical transport condition is met, is the critical distance R′c for the onset of

neutralization. Alternatively, electrons in the dielectric film could be captured by

the ion from the valence band when the height of the vacuum barrier falls below

Evbm in the film. The energy barrier preventing the first electron from escaping

the dielectric is the binding energy (Evac − Evbm). In the thick film limit, the

target behaves as a bulk insulator, and the first electron will be captured from the

valence band of the dielectric thin film.

The critical distance for a given charge state, therefore, will depend on

the initial width and height of the barriers in the film and vacuum regions (for
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electrons in either the film or metal). The physical parameters that set the initial

height and width of these barriers are the film thickness, film permittivity, and

relative alignment of Evbm, Ecbm, EF with respect to the vacuum level. As shown

below, these parameters will also determine whether the first electron will be

captured from the metal, or the thin film.

Figure 4.4(a)-(c) shows the evolution of the barrier heights in the vacuum,

and in the dielectric regions, as the ion (Q = 24) approaches the surface. The

metal’s Fermi level is plotted as a straight line in each of the plots. The valence

band maximum of the dielectric, is plotted as a dotted line. The energy gap in the

dielectric, and the non-conducting region of the vacuum, are denoted as white

space. The continuum of filled states in the metal and dielectric valence bands is

shown in dark gray, and the unoccupied states in the conduction bands are filled

in light gray.

Figure 4.4(a)-(c) plots the potential profile in the vacuum and dielectric

regions as the ion approaches the target and reaches distances from the metal

surface of R = 10.5 nm, R = 7.3 nm and R = 5.2 nm. Parameters are chosen for

a s = 2.4 nm thick C60 film deposited on Au(111). The energy levels were taken

from Refs. [4, 109].

Ultrathin C60 films have a highest occupied molecular orbital / lowest un-

occupied molecular orbital gap of approximately Eg = 2.5 eV and the Fermi en-

ergy of Au(111) substrate lies within the band gap (EF = −5.3 eV) of the dielectric

film making φ = Ecbm − Ef = 0.5 eV [109]. The position of the valence band max-

imum in the absence of an external field is Evbm = -7.3 eV. Electric permittivity of

the film is taken to be ε = 4 [110, 111].

As the ion approaches the surface, a maximum in the potential energy

profile along z develops in the vacuum (s < z < R) due to competition between
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the ion’s electric field and the electron’s attraction toward the image plane at the

surface of the film (z = s). This behavior is qualitatively similar to the saddle point

in front of a clean metal target seen in Fig. 4.1. In Fig. 4.4, there exists a second

potential maximum, that develops within the dielectric material (0 < z < s)

due to the electron’s image attraction toward z = 0. As the ion approaches the

surface, we evaluate whether classical transport will be allowed first from the

valence band of the thin film, or metal. As discussed below, the first classically

captured electron comes from the metal, for the parameters plotted in Fig. 4.4.

For an ion distance at R = 10.5 nm, in Fig. 4.4(a), the ion’s electric field

decreases the height of the vacuum barrier, and bends the bands in the dielectric

film to decrease the height of φ. At this position, electrons in the metal behind

the dielectric film are still blocked by the energy gap depicted as the small white

area within the film, above EF. Additionally, a much higher and thicker barrier

in the vacuum prevents classical transport from the metal. Electrons at the top of

the valence band in the dielectric, are also blocked by the vacuum barrier and no

classical transport is allowed.

At the distance of R = 7.3 nm (Fig. 4.4(b)), the top of the barrier φ within

the film has dropped to the energy EF. Here, only the vacuum barrier prohibits

classical transport from electrons in the metal, into the vacuum. Electrons at

the top of the valence band in the dielectric, are blocked by the vacuum barrier.

Again, no classical transport is allowed.

As the ion arrives at R = 5.2 nm in Fig. 4.4(c), the barriers in both the

vacuum and dielectric have fallen below EF. The first electron to be captured by

the ion originates from the metal. Electrons at energy Evbm in the valence band of

the dielectric cannot escape. This distance is R = R′c, i.e., the critical distance for

electron capture by highly charged ions outside a metal covered with a dielectric
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Figure 4.4: Potential profiles for an ion (Q = 24) at distances (a) R = 10.5 nm, (b)
R = 7.3 nm and (c) R = 5.2 nm away from the metal surface. Film parameters
are s = 2.4 nm, ε = 4, Eg = 2.5 eV, initial φ = 0.5 eV and EF = −5.3 eV (dashed
line in (a),(b) and solid line in (c)). The valence band maximum of the dielectric
is plotted in each panel (dotted line). Critical distance R = R′c = 5.2 nm is in (c).
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thin film.

It is instructive to compare R′c to the expected critical distance for a clean

metal from Eq. 4.5 in the metallic limit (β → 1). For a dielectric covered metal

surface we find that R′c = 5.2 nm is greater than the result expected for a clean

metal of Rc = 1.9 nm. For this set of parameters, the thin dielectric film enhances

the critical distance by more than a factor of 2 compared to a clean metal. In

the next sections, we investigate the experimental parameters that lead to the

enhancement of critical distance with the deposition of a thin film (R′c > Rc). As

will be discussed below, some thin dielectric films can suppress, or completely

block classical transport from the metal.

A noteworthy observation about the progression shown in Fig. 4.4, is that

the barrier within the dielectric film (φ) drops below EF, before the barrier in

the vacuum drops below EF, as the ion approaches the surface. Therefore, at ion

distances slightly greater than R′c, classical capture is limited only by the height of

the vacuum barrier. The thin film parameters plotted in Fig. 4.4 lead to a regime

of “vacuum limited” capture.

For thicker films, higher barrier φ, or higher film permittivity, over-the-

barrier transport of an electron in the metal could also be limited by the barrier

within the dielectric film (“film limited”). In the “film limited” regime, the vac-

uum barrier falls before the vacuum barrier, as the ion approaches the surface.

The “vacuum limited” regime always leads to an enhancement of critical distance

with respect to a clean metal target. The “film limited” regime can lead to either

enhancement or suppression of R′c.

To investigate material parameters of the thin film that influence the height

of the potential maximum within the dielectric region, we vary ε in Fig. 4.5 for

a constant ion position R = 6 nm. For comparison, the initial barrier height
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φ = Ecbm − EF (when the ion is far from the surface) is plotted as the black solid

line. The valence bands within the dielectric have been removed from the plot for

clarity. Inside the film (0 < z < s), the ion bends the conduction band, lowering

the barrier φ from its initial height. The magnitude of the band bending depends

inversely on the ε of the film material. In the vacuum region outside the film, the

potential maximum also varies inversely with ε. In this way, the ε of the thin film

controls the barrier heights in both the thin film and vacuum regions.

The dashed orange line in Fig. 4.5 plots the potential using the same per-

mittivity and gap parameters as those plotted in Fig. 4.4. However, in Fig. 4.5,

the film thickness has been increased to s = 4 nm. For the dashed orange line in

Fig. 4.5, the ion position is equal to the critical capture distance R = R′c and the

ion can classically capture an electron from the metal.

The blue dotted line in Fig. 4.5 plots the potential inside and outside of

the film for ε = 10. Increasing the permittivity weakens the electric field within

the film as shown in Fig. 4.3, and increases the height of the barrier in the region

(0 < z < s). Therefore, the position R = 6 nm is greater than the critical distance.

The solid green line shows the potential for ε = 3, which decreases the barrier

heights inside the film and in the vacuum. At R = 6 nm, classical transport from

an electron in the metal could have been observed at R > 6 nm. The trend is

that decreasing the permittivity of a dielectric film increases the critical capture

distance. For a constant set of target material properties and film thickness we

see qualitatively from Fig. 4.5 that R′c(ε = 10) < R′c(ε = 4) < R′c(ε = 3).

To show more explicitly how the critical distance (R′c) depends on the film

permittivity (ε), Fig. 4.6 plots R′c(ε) for film thickness s = 3.2 nm and charge

Q = 36 over the range ε = 3 to ε = 10. As expected, the general trend is that

R′c decreases as ε increases from 3 to 10. In the regions of the plot labeled i and
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Figure 4.6: R′c(ε) for Q = 36, W = -5.3 eV, φ = 0.5 eV, s = 3.2 nm and Eg = 2.5 eV.
The three distinct slopes represent regimes i, ii, iii (discussed below).

ii, the first captured electron originates from the metal. As permittivity increases,

the electric field needed to pull down the barrier in the film (φ) also increases.

This means that an ion of a given charge state must be in closer proximity to the

target before it can exert the electric field required to pull down the barrier, φ. In

Fig. 4.6, this is the reason that R′c decreases with increasing ε. In the region of the

plot in Fig. 4.6 labeled iii, the first captured electron comes from the filled states

in the dielectric film. The three capture regimes (i, ii, and iii) are discussed in

detail within Sec. 4.3.4.

Recall that in Fig. 4.4(c), electron capture from the metal was “vacuum

limited”, i.e., the last potential barrier to fall below EF before reaching the critical
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distance was in the vacuum. Upon increasing the film thickness from s = 2.4 nm

to s = 4 nm, the ε = 4 line in Fig. 4.5 demonstrates “film limited” capture from

the metal. This means that for ion distances slightly greater than R′c, the potential

maximum in the vacuum has already fallen below EF. At this instant the only

barrier limiting capture is within the dielectric film. The regimes of vacuum and

film limited transport become significant in understanding capture distance as a

function of film thickness R′c(s).

4.3.4 Critical distance as a function of film thickness

The critical distance with respect to the metal surface depends on film

thickness. Figure 4.7 shows R′c(s) for different charge states in (a) and film per-

mittivity values in (b). In both panels of Fig 4.7, the band gap, φ barrier, and

metal work function are the nominal values for C60 on Au(111). The solid orange

line in both (a) and (b) plots critical distance as a function of film thickness for

ε = 4 at Q = 24.

Vertical intercepts of the lines in Fig. 4.7 represent the clean metal limit

where no film is deposited. Eq. 4.5 describes this limit when β → ∞. Thus

increasing the charge state increases the metal target capture distance R′c(s = 0)

in front of a clean metal as
√

Q in Fig. 4.7(a).

At each charge state in Fig. 4.7(a), the R′c(s) lines follow similar qualitative

behavior, and possess distinct regimes labeled i, ii, iii. Specifically, R′c grows

in a sublinear manner up to a transition thickness labeled s∗1 on the Q = 36 line

(regime i). This regime (0 < s < s∗1) is characterized by “vacuum limited” capture

of an electron in the metal. In regime ii (s∗1 < s < s∗2), the slope of R′c decreases

compared to region i. Regime ii corresponds to “film limited” capture of metal
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electrons. Regime iii is the thick film regime where s > s∗2. Here, the dielectric

begins to behave as a bulk rather than a thin film because the first electron is

captured directly from the valence band of the dielectric material. In region iii,

R′c grows linearly as ∝ s, due to the extension of the surface toward the ion. The

vertical intercept of the lines in regime iii is also given by Eq. 4.5, where β is

determined by the permittivity of the thick film. In region iii, the classical over

the barrier model for bulk insulators is applicable [93].

The transition between vacuum limited (i) and film limited (ii) capture of

an electron in the metal at s∗1 can be interpreted in the following way. For a

constant R, increasing the film thickness will decrease the distance between the

ion and image plane at the surface of the film (z = s). The strength of the

image attraction in Vout (Eq. 4.14) scales approximately as −1/z, and asymptotes

at z = s. This means that the magnitude of the image potential grows rapidly as

the distance between the ion and the image plane (z = s) is decreased. The result

is that increasing the film thickness will diminish the vacuum barrier at greater R

values. At the thicknesses greater than s∗1, the film has been extended a sufficient

amount such that Vout pulls the maximum of the barrier in the vacuum below EF,

before barrier φ can be pulled below EF by the ion’s electric field.

Within Fig. 4.7, critical distance is defined as the distance between the metal

surface and ion when the first electron is captured over the barrier. For the regime

iii (s > s∗2) the electron comes from the valence band maximum in the dielectric

as opposed to the metal. Therefore, the quantity (R′c − s) is constant during

regime iii, even as s increases. In regime iii, the film has been extended such

that the image potential in the vacuum region (Vout) pulls the maximum of the

barrier in the vacuum below Evbm, before barrier φ can be pulled below EF by the

ion’s electric field. Electrons in the metal are blocked, when transport from the
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dielectric is classically allowed.

The transition thickness s∗2 is a prediction for the film thickness at which

there is equal probability of classical capture of an electron from either the metal

or dielectric film. At thicknesses greater than s∗2, electrons will be captured from

the valence band of the dielectric, over the vacuum barrier, while electrons in the

metal are blocked by the energy gap φ within the dielectric film. For Q = 24 in

Fig. 4.7, the bulk dielectric transition thickness is s∗2 = 5.1 nm.

To understand the permittivity dependence of R′c(s), it is instructive to

compare Fig. 4.7(b) to Fig. 4.5. In Fig. 4.5, we show the permittivity dependence

of the potential maximums in the vacuum and dielectric, at a constant thickness

s = 4 nm and ion position R = 6 nm. Increasing the permittivity from ε = 4 to

ε = 10 leads to a decrease in R′c by increasing the heights of potential barriers for

a constant ion position R. Decreasing the permittivity from ε = 4 to ε = 3 allows

an increase in critical distance. This permittivity dependent behavior is evident

by looking at R′c for a fixed s value in Fig. 4.7(b). The transition thicknesses s∗1
and s∗2 also have strong dependences on the permittivity of the layer, as shown in

Fig. 4.7(b). Both s∗1 and s∗2 decrease with increasing permittivity.

Another implication of Fig. 4.7(b), is that for high ε values (ε > 10 in

Fig. 4.7(b)), the s∗1 thickness becomes much smaller than a typical atomic unit

cell. This means that for any continuous film, s > s∗1, there will be no “vacuum

limited” regime for electron capture from the metal. An example of this behavior

will be discussed below, for the case of Al2O3 film on Co.

Consider the film thickness of s = 3.4 nm within Fig. 4.7(a). At this thick-

ness, the regime of R′c will depend on the charge state of the ion. For example,

Q = 9 is in regime iii, Q = 24 is in regime ii and Q = 54 is in regime i. We plot

the potential profiles for each of these charge states in Fig. 4.8.
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Figure 4.8: Potential plots at R′c for charge states (a) Q = 9, R′c = 4.0 nm (regime
iii), (b) Q = 24, R′c = 6.0 nm (regime ii) and (c) Q = 54, R′c = 8.5 nm (regime i).
The target is C60/Au(111) with a film thickness of s = 3.4 nm.

134



For Q = 9 in Fig. 4.8(a), the first captured electron originates from the

valence band of the dielectric at a distance R′c = 4.0 nm from the metal. There

remains a small energy gap in the dielectric blocking classical tranport from an

electron in the metal, while classical transport from Evbm is classically allowed.

Fig. 4.8(b), exemplifies “film limited” transport from the metal. This means that

at distances slightly larger than R′c = 6.0 nm, the barrier height in the vacuum

is less than EF so that the only limiting energy barrier lies within the thin film.

Fig. 4.8(c) shows “vacuum limited” transport from the metal. Here, the barrier

in the dielectric falls below EF before the barrier in the vacuum falls below EF

and an electron is captured from the metal at an ion distance of R′c = 8.5 nm. The

panels (a), (b) and (c) give representitive positions of the potential maximums in

the vacuum and dielectric for each of the regimes.

4.3.5 Work function dependence

To further illustrate the difference between the “vacuum limited” (regime

i) and “film limited” (regime ii) behaviors, we plot R′c(s) for a range of metal

work functions between 4 eV and 7 eV in Fig. 4.9, leaving the barrier height and

the dielectric parameters unchanged. In order to keep the height of φ constant,

Ecbm changes with the metal work function. Changing the work function of the

metal and leaving all other parameters constant allows a clear demonstration that

only the barrier within the film limits transport from the metal in the regime ii

where s∗1 < s < s∗2. For film thicknesses below s∗1, the vertical intercept of R′c

has a relatively strong (1/W) dependence on work function. Additionally, s∗1
increases by approximately 2 nm as W increases from 4 eV to 7 eV. In the region

ii (s∗1 < s < s∗2), critical distance is independent on the metal work function. The lines
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plotted with different work functions are indistinguishable. The barrier height φ,

permittivity and charge state determine the R′c(s) in region ii. The transition s∗2
(to capture from the dielectric) has a weak dependence on work function, i.e., it

increases by only a few Angstroms as W increases from 4 eV to 7 eV.

4.4 Comparison with experiment

4.4.1 C60/Au(111): Electron emission yield

Critical distance may be correlated with an experimental observable such

as electron emission yield, assuming that the total potential emission per inci-

dent ion is proportional to the above-surface interaction time (τ′ = R′c/vp). R′c

determines the onset of neutralization and may be proportional to the total yield

of Auger electrons emitted above the surface, before impact. The experiment in

Ref. [4] reports measurements of electron emission yields for Xe24+ incident on

C60 covered Au(111) at an incidence angle of 40◦ at 70 keV. Yield due to kinetic

emission is negligible in the measurement. Figure 4.10(a) is taken directly from

Ref. [4]. In Fig. 4.10(a), the relative secondary electron yield is plotted as a func-

tion of C60 film thickness Θ, in monolayers (ML). Here, relative secondary electron

yield is defined as

γrel(Θ) =
γC60(Θ)

γAu(Θ = 0)
(4.16)

where γ is the number of secondary electrons emitted per incident ion, and Θ =

s/tML. The thickness of a C60 monolayer is in the range of tML ≈ 0.7 to 0.8 nm

[4]. In Fig. 4.10(b), we plot the critical distance normalized by critical distance at

s = 0 nm (R′c/Rc) from 0 to 6 ML. The thickness of a single monolayer of C60 was

taken to be tML = 0.75 nm. The quantity (R′c/Rc) is proportional to the relative
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Figure 4.10: (a) Relative emission yield measurements for Xe24+ incident on C60
covered Au(111) taken from Ref. [4]. (b) Film thickness dependent critical distance
(R′c) normalized by the critical distance for a clean metal. The horizontal axis in
(b) is determined by Θ = s/tML where tML = 0.75 nm.
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increase in interaction time due to the thin film (τ′/τ). The charge state in both

Fig. 4.10 (a) and (b) is Q = 24.

Again, the knee in the line in Fig. 4.10(b) corresponds to the transitions

between regimes i and ii at s∗1 = 3 nm (4 ML). Comparing panels (a) and (b) in

Fig. 4.10, we make several observations. First, for the film thicknesses used in the

experiment, the model predicts that the first captured electron originates from

the metal and not the C60 film. All thicknesses shown in Fig. 4.10(a) are below

the thickness s∗2 = 5.1 nm (6.8 ML) calculated for Xe24+. Second, based on the

model, we expect enhanced critical distances for thicknesses below s∗2 = 5.1 nm.

These thin film enhanced critical distances shown in (b) follow the behavior of

the increase in relative yield observed in the data in (a). One possibility is that

enhanced capture distances lead to enhanced yields by increasing above-surface

interaction time. Third, the saturation in relative yield shown in (a) occurs at

thicknesses (s ≈ 2 nm or 2.7 ML) that are close to the calculated s∗1. For Q = 24,

the transition from the “vacuum limited” to the “film limited” regimes occurs at

s∗1 = 3 nm (4 ML). It is plausible that the saturation in relative yield in the data in

(a) occurs near s∗1 due to this transition.

In Fig. 4.11 we plot modeled R′c(s) for charge states Q = 9, 24, 36 and 54.

These are the same charge states as those plotted in Fig. 4.7(a). At thicknesses

greater than s∗1, the enhancement ratio R′c(s)/Rc levels off at approximately 3

for all charge states. This behavior mimics the charge-independent saturation

in relative emission yield reported in Ref. [4]. The gray line in Fig. 4.10(a) is

an exponential gain curve with a characteristic thickness Θch that saturates at a

nearly charge independent value γ∞
rel = 1.35. If γrel goes with R′c/Rc, then the Θch

should depend on Q. Specifically, we predict that higher charge states would

lead to higher characteristic thicknesses in the fit to an exponential gain curve.
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Additionally, if R′c/Rc were related to γrel, a drop-off in relative emission yield

would be expected for films with s > s∗2, as the target gains the properties of a bulk

dielectric. For Q = 24, the model predicts this transition to occur at s∗2 > 5.1 nm

(at least 7 ML).

4.4.2 LiF/Au(111)

Lithium fluoride in bulk is an ionic crystal with a large band gap Eg = 14

eV and binding energy (Eb = Evac − Evbm = 12 eV). In bulk its conduction band

exists in the positive continuum, above the vacuum level. In the formalism of our

model, the presence of a large band gap means that electrons in the metal would

be blocked by an initial barrier φ whose height exceeds the typical vacuum work

function of a metal.

The above-surface KLL Auger electron spectra during neutralization of

O6+ and N7+ in Refs. [2, 3] imply a strong suppression of R′c even after only 1 ML

of LiF growth. The authors concluded that 1 ML of LiF is sufficient to effectively

“shield” the Au substrate during the neutralization sequence. Thin LiF films cause

a delay in the onset of first capture and decrease the rate of above-surface neutral-

ization [2]. However, the large gap observed in bulk LiF develops [2, 3] only after

thicknesses of about 5 monolayers (LiF has a lattice constant a = 0.402 nm [112]

with cubic structure). In contrast to the bulk band gap, LiF develops the high

binding energy of bulk LiF (Vvac − Evbm = 12 eV) even at sub-monolayer thick-

nesses. Thus, the authors concluded that the large binding energy (and not the

band gap) was the limiting factor in determining the onset of above-surface neu-

tralization. In short, the binding energy of an electron in the thin dielectric film

was held primarily responsible for the observed suppression in the above-surface
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component in the Auger spectra.

To analyze this scenario using the model, we plot the distance between the

ion and surface at the onset of neutralization (R′c), as a function of film thickness

for a Q = 7 projectile outside the surface of LiF/Au(111). The LiF films are

parametrized as having permittivity ε = 9 and binding energy (Evac− Evbm) = 12

eV. The solid lines in the plot represent the expected capture distances from Eq. 4.5

in the bulk metallic, and bulk dielectric limits. To investigate the role of the band

gap in the suppression of electron capture, we varied the band gap of the LiF

films between the bulk value Eg = 14 eV and a reduced value of Eg = 6 eV. The

results for Eg = 14 eV, Eg = 7.5 eV and Eg = 6 eV are plotted in Fig. 4.12. In our

model, we reference the barrier in the dielectric film to the Fermi energy of the

metal as φ = Eb + Eg − EF. Therefore the band gaps Eg = 14 eV, Eg = 7.5 eV and

Eg = 6 eV correspond to barrier heights in the dielectric of φ = 7.3 eV, φ = 0.8 eV,

and φ = −0.7 eV respectively.

For the smallest band gap Eg = 6 eV, the barrier within the dielectric film

vanishes (φ < 0) eV, and the dielectric film facilitates the capture of electrons in

the metal. Increasing the band gap to Eg = 7.5 eV, the model shows capture of

electrons from the metal behind the ultrathin (s < 0.5 nm) LiF film. However, the

film suppresses the capture of metal electrons below s < 0.5 nm. The onset of

capture is delayed for film thicknesses comparable to 1 ML of LiF, as seen in the

experiment. Finally, for the full band gap Eg = 14 eV we observe an even stronger

suppression of R′c. The first captured electrons come from the valence band of

the LiF, and not the metal. This leads to decreased capture distances compared to

a clean gold target (Fig. 4.12; short blue dashes). Consequently, the blue dashed

line converges to the capture distance given in Eq. 4.5.

For comparison, the bulk dielectric and bulk metal limits for R′c are shown
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as solid black lines in Fig. 4.12. These were obtained using Eq. 4.5 with permit-

tivities of ε → ∞ for the metal and ε → 9 for the LiF film. The effective “work

function” for the dielectric is its binding energy Eb = Evac − Evbm. Again, the R′c

are plotted in Fig. 4.12 with respect to the surface of the metal at z = 0. This

means that the distance between the ion and the metal surface at the position of

capture grows linearly with s when the electron originates from the dielectric.

The most realistic scenario is the presence of a non-zero yet reduced band

gap Eg = 7.5 eV. The presence of a non-zero, yet reduced band gap in ultrathin LiF

film is supported by measurements [113, 114]. On the other hand, LiF possesses

the high binding energy (Eb = 12 eV) at sub-monolayer coverages. In the context

of our model, it is difficult to explain the experimentally observed suppression

of the onset of capture without the existence of an energy gap in the thin film.

Delaying the onset of capture requires a non-zero energy barrier φ in order to

block resonant capture of electrons from the metal. Entirely removing the φ or

band gap in the model leads to an enhancement of R′c via “vacuum limited”

capture of an electron from the metal (in contrast to Ref. [2]).

To summarize our comparison between the model and data we make the

following comments. Suppression of the onset of above-surface neutralization is

expected at coverages of approximately 1 ML of LiF given a reduced (but non-

zero) band gap. Even a dramatically reduced LiF band gap (Eg = 7.5 eV; solid red

line in Fig. 4.12) is sufficient to suppress the onset of neutralization. If no band gap

is present in the LiF, we model an increase in the electron capture distance; there

is no barrier φ to limit classical transport of electrons in the metal (dashed-dotted

gray line in Fig. 4.12). Enhancement of R′c at 1 ML coverage is in disagreement

with the measured above-surface KLL Auger spectra for O7+ [2, 3]. The complete

absence of a band gap within the LiF film causes an inconsistency between the
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model and experiment.

A scenario consistent with both model and experiment is that even for

ultrathin LiF films (around 1 ML) there exists a non-zero band gap, that is reduced

with respect to the band gap in bulk LiF. In this case, above-surface neutralization

begins with over-the-barrier capture of an electron from the metal, and not the LiF

film. The limiting factor determining the onset of neutralization (from capture of

metal electrons) is then the height of the barrier φ which is based on the relative

alignment of EF in the metal and Ecbm in the LiF film. This scenario involving

initial capture of metal electrons, is different than the one proposed in the Refs. [2,

3], wherein the binding energy (Eb = Evac− Ecbm) was the limiting energy barrier.

Here, we propose that the capture of electrons from the metal behind the LiF film

remains consistent with delayed onset of neutralization observed in the Auger

spectra.

4.4.3 Al2O3/Co

Thin aluminum oxide films on cobalt were the experimental system stud-

ied in Ch. 3 and Ref. [1]. Al2O3 is considered a “high-k dielectric” with static

permittivity of approximately ε = 8 (for plasma oxidized thin films [115]). The

nominal band gap of bulk aluminum oxide (Eg = 9.9 eV) is smaller than that

of bulk lithium fluoride. As with all materials fabricated as ultrathin films, the

electronic properties are sensitive to preparation conditions, e.g., band gap differ-

ences may occur depending on whether plasma oxidation, thermal oxidation or

atomic layer deposition are used [116]. For plasma oxidized barriers, the energy

difference between the metal Fermi energy and dielectric conduction band mini-

mum was found to be φ = 1 eV. This quantity can be determined by performing
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tunneling spectroscopy measurements of Co/Al2O3/Co junctions (cf. Ch. 2). The

Fermi energy lies within the band gap of the dielectric.

Fig. 4.13 plots critical distance as a function of aluminum oxide film thick-

ness, given the target parameters Eg = 9.9 eV, ε = 8, φ = 1 eV, W = 5 eV. The

charge state in the plot is Q = 44 (the highest charge state used in Ref. [1]). The

two distinct slopes in the R′c(s) line are regions ii (film limited capture from the

metal) and iii (capture from the dielectric). The transition s∗2 occurs at a thickness

of 1.3 nm.

Capture from the metal limited by the vacuum barrier does not occur

within the range of thicknesses plotted. This means that the distance of first

capture does not depend explicitly on the work function of the metal substrate in

ultrathin films (when s < s∗2). Instead, the significant quantity limiting capture of

metal electrons is the relationship between Ecbm and EF. The barrier in the dielec-

tric φ serves as the barrier limiting the capture of electrons from the metal. Also,

for all s > 0 nm, critical distance is suppressed compared to a clean Co target.

Rc for the clean Co (W = 5 eV; W = 44) from Eq. 4.5 is indicated at s = 0 nm in

Fig. 4.13.

Although, the capture distance is suppressed due to the presence of the

film, the first captured electron does originate from the metal substrate behind

the exposed dielectric film at thicknesses up to 1.3 nm. At thicknesses greater

than 1.3 nm, the target begins to take on the properties of a bulk aluminum oxide

target. Specifically, capture is limited by the high vacuum barrier between the

valence band electrons in the aluminum oxide layer, and the ion. Target electrons

in the dielectric have an effective binding energy of (Evac − Evbm) = 13.9 eV.

In the context of material modifications experiments [1], the prediction of

above-surface capture of an electron from the metal may provide insight into dam-
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Figure 4.13: Thickness dependent critical distances for Q = 44 interacting with
Al2O3 films on Co. Vacuum limited transport from the metal (i) does not occur
at any s due to relatively high φ and ε parameters. Instead, barrier φ limits the
capture of metal electrons and suppresses the capture distances R′c (ii). The target
behaves as a bulk dielectric beyond s∗2 = 1.3 nm.

age mechanisms. For example, the Coulomb explosion scenario [117] describing

destabilization of a dielectric material via rapid charging, would not be consis-

tent with initial removal of free charge in the metal substrate. Rather, if charge

is removed from the metal instead of the dielectric film during above-surface

neutralization, this suggests that modification of the thin film occurs upon ion

impact. A more likely scenario is that the film suffers most damage via emis-

sion of sub-surface Auger electrons that couple to phonons in the film material

to cause heating. Another possibility is that after initial capture from the metal,

above-surface Auger electrons are re-radiated toward the target to deposit energy.
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4.5 Summary

The results of the model for the three material systems discussed in the

previous section are summarized in Table 4.1 at film thickness s = 1 nm, and

Q = 36. For C60 on Au(111), the 1 nm film increases the distance for the onset of

neutralization. Neutralization starts with electrons in the metal (in the “vacuum

limited” regime i) . The relative enhancement of capture distance compared to

the metal is R′c/Rc = 1.8. In the Al2O3/Co system, capture still proceeds from the

metal at 1 nm thickness, but the film slightly suppresses the capture distance by

a factor R′c/Rc = 0.8. The s = 1 nm film induces a “film limited” capture regime

(regime ii). Here, R′c is limited by the barrier φ, within the dielectric and not the

vacuum work function (W). In LiF/Au(111), a film thickness s = 1 nm blocks

capture from the metal. The first captured electron comes from the valence band

of the LiF film. In this case (region iii) the captured electron starts within the target

at the position closer to the ion at a position s. Therefore, the distance between the

ion and captured electron is (R′c − s). In comparing capture from the dielectric

film to capture from the clean metal, we examine the ratio (R′c− s)/Rc = 0.4. The

asterisk in the second row of Table 4.1 denotes this R′c → (R′c − s) correction that

accounts for the initial position of the captured electron. In this calculation, we

assume that the full bulk band gap Eg = 14 eV is present within the dielectric at

all thicknesses. As discussed previously, the presence of a non-zero band gap is

required to explain the delayed onset of neutralization observed in the experiment

[2].

In this chapter we presented an extention of the classical over the barrier

model [23] to examine the first stage of neutralization for HCIs outside dielectric

thin films on metals. Classical electrostatics were used to construct the potential
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film / substrate regime R′c (nm) Rc (nm) R′c/Rc note

C60 / Au(111) i 4.0 2.3 1.8 enhancement
LiF / Au(111) iii 0.9* 2.3 0.4 suppression; *origin is z = s
Al2O3 / Co ii 1.9 2.4 0.8 suppression

Table 4.1: Summary of critical distances at Q = 36 and s = 1 nm for three ex-
perimentally studied systems [1, 2, 3, 4]. The regimes correspond to, i: electron
capture from the metal (vacuum limited), ii: electron capture from the metal (film
limited), and iii: electron capture from the dielectric film. Parameters for each
material system are displayed in the previous figures.

profile for an “active electron” in a metal-dielectric-vacuum system in the pres-

ence of a HCI. The inclusion of a dielectric thin film leads to a significant modifica-

tion of boundary conditions. Electron self-image was treated with the well-known

dielectric continuum model. Over the barrier capture distances as a function of

film thickness were obtained. We find that the first resonantly captured electron

can be captured over-the-barrier either from filled states in the metal or dielectric,

depending on the permittivity, band gap and thickness of the film. Additionally,

the thin film can either enhance or suppress the onset of neutralization. Within

an R′c(s) plot we observed the following qualitative structure:

1. Regime i (vacuum limited): first captured electron comes from the metal.

The onset of neutralization is enhanced with respect to the clean metal. This

regime occurs for ultrathin films s < s∗1 for low barrier heights φ and low

permittivity values ε.

2. Regime ii (dielectric film limited): First captured electron comes from the

metal. The onset of neutralization can be either enhanced or suppressed,

depending on φ and ε. R′c is independent of the metal’s vacuum work

function, and instead depends on the barrier φ = Ecbm − Ef . Regime ii
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occurs for thicknesses (s∗1 < s < s∗2).

3. Regime iii (capture from dielectric): The dielectric film blocks the capture of

metal electrons and suppresses the onset of neutralization when s > s∗2. The

film shields the metal electrons and the target behaves as a bulk dielectric as

described in Ref. [93].

Quantitative values of the transition thicknesses s∗1 and s∗2 are given for var-

ious high charge states in the systems C60/Au(111), Al2O3/Co and LiF/Au(111).

The behavior of R′c(s) closely resembled the measured thickness-dependent en-

hancements in the relative emission yield reported in [4]. Agreement with the

observed suppression in the onset of neutralization from the LiF/Au(111) ex-

periment [2] required including a non-zero, reduced band gap in the model of

Eg = 7.5 eV. It was found that even a reduced band gap was sufficient to model

the suppression in above-surface Auger data from the experiment. A comparison

between the model and the Al2O3/Co system from Ref. [1], showed that for thin

films (s ≈ 1 nm), the first captured electrons originate from the metal.
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Chapter 5

Conclusions

5.1 Summary of results

5.1.1 Energy deposition

In chapter 3, we reported the ion induced crater depths in ultrathin dielec-

tric films as a function of projectile charge state. From the depth scaling of the

craters with charge state, we determine the energy deposited into the thin film

in HCI-surface impact increases from 8 keV to 25 keV as Q increases from 26 to

44. Accounting for both pre-equilibrium kinetic energy loss and neutralization

energy, we measure that at least f = (27± 2) % of the available neutralization

energy contributes to crater formation. This result represents a lower bound for

the fraction of HCI neutralization energy required to form a permanent material

defect.

We emphasize that the uncertainty assigned to the result f does not include

any propagation of uncertainty in the stopping power model from Ref. [35]. This

model represents an upper bound for the pre-equilibrium kinetic energy deposi-
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tion. Our approach was to bound the expected kinetic energy loss by measured

values from experiment and SRIM for Q = 1 and extrapolate to higher charge

states using Biersack’s model. Comparison to the limited experimental data for

highly charged Xe penetrating C foils, shows that the extrapolation is reasonable

in terms of the magnitude of energy loss enhancement [45].

Stopping during slow (<25 keV / u) HCI-solid interactions represents a

mechanism for kinetic energy deposition which is distinct from the observed be-

havior of either swift HCIs or slow singly charged ions. For swift heavy ions,

most kinetic energy of the projectile is lost to the electrons in the target [29]. For

slow singly charged ions, kinetic energy is transfered through a series of quasi-

binary collisions that propagate momentum between adjacent target nuclei in a

cascade.

However, in the case of slow HCIs, the binary collision approximation

breaks down, as the Q 
 1 projectile’s Coulomb interaction reaches beyond its

nearest neighbors. This Coulomb interaction radius is expected to be especially

large in insulator targets, where there are no free charges to screen the ion [35].

The momentum transferred to the nuclei within this interaction radius is propor-

tional to the ion’s interaction time with these atoms (inversely proportional to

the velocity of the ion) [35]. The result is that momentum transfer to the nuclei

becomes increasingly efficient and long range at lower incident energy.

Though enhancement of pre-equilibrium stopping has been observed as an

enhanced loss of KE in foil transmission experiments [45, 118], increased damage

due to this increased energy loss has never been measured. Tunnel junction based

measurements may be an ideal way to detect pre-equilibrium stopping power that

occurs within an insulating barrier layer thinner than the charge equilibration

length. By keeping Q constant in an experiment while changing KE, it would be
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possible to tune only the kinetic energy deposition while keeping EQ constant.

5.1.2 Electron capture

Chapter 4 presents a classical model for understanding the initial charge

transfer between the target and ion for metal substrates covered with thin di-

electric films. We found that using the parameters from recent experiments (e.g.

s < 5 ML; C60 / Au(111) ), the first captured electron comes from the metal behind

the thin film. Also, the presence of a thin film enhances the distance at which the

ion can capture electrons classically. As film thicknesses increase we find three

distinct regimes for the onset of above-surface neutralization:

i. Charge transfer from the metal (limited by the vacuum barrier).

ii. Charge transfer from the metal (limited by the thin film barrier).

iii. Charge transfer from the valence band of the dielectric.

The model is consistent with the observation of increased electron emission yield

for the target C60 covered Au(111), relative to clean Au(111) [4]. In the context

of our model, we attribute the enhanced yield to an increase in above-surface

interaction time, after first capture. The increase in interaction time enhances the

yield of emitted Auger electrons.

Applying the model to LiF / Au(111), we find that the thin film suppresses

the onset of neutralization even for very small thicknesses. Using a reduced band

gap, we predict that a single monolayer of LiF gives first electron capture from the

metal limited by the barrier within the film, and that capture distance is reduced

relative to the clean substrate. This prediction is consistent with the experiments

[2, 3]. The model predicts that the reduced band gap present for very thin (1

ML) films leads to first capture from the metal (not the dielectric). Therefore, we
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suggest that the limiting factor in neutralization is not the LiF binding energy as

proposed in Refs. [2, 3], but is instead the barrier φ determined by the relative

alignment of the metal Fermi energy with the conduction band minimum in the

dielectric.

We also suggest that by depositing thicker films, one should observe a

transition corresponding to thickness s∗2 (transition to bulk dielectric), where the

above-surface component of the electron emission yield would decrease. For

C60/Au(111) using charge state Q = 24 the transition to bulk dielectric behav-

ior occurs around s = 7 ML.

154



Chapter 6

Proposals for future experiments

6.1 Calorimetry

One method of measuring energy deposition by ion impact is through a

measurement of target’s increase in temperature during irradiation. This tech-

nique has been employed previously for a measurement of deposited energy from

ArQ+ incident on Cu, for charge states up to Q = 9 [119].

Calorimetry is a direct measurement of the total energy deposition because

excitations occurring in the solid after an ion impact are eventually converted to

heat. The total input power to the target is,

Pt =
ΔEkin + ΔEQ

Qe
I (6.1)

where ΔEkin and ΔEQ are the deposited fraction of the kinetic and potential en-

ergy, for each ion impact and the beam current incident on the detector is I. The

relative retained fraction of kinetic energy ΔEkin/Ekin was observed to be indepen-

dent of the ion kinetic energy [119] for ArQ+ (1 ≤ Q ≤ 9) with kinetic energies
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below 2.2 keV.

A single Xe44+ projectile carries 51 keV of total potential energy, and 365

keV of kinetic energy (for parameters described in Ch. 3). Assuming that ions are

delivered to the target at a rate 5× 105 s−1, this would add up to a total possi-

ble input power of Pmax = 32 nW. The amount retained within the solid will be

smaller. To resolve a 5 % decrease in the deposited fraction of ΔEQ, the calorime-

ter needs resolution of around 200 pW (given constant kinetic energy). Addition-

ally, a simultaneous measurement of ion current incident on the calorimeter (I) is

required, to count the total number of ions impinging on the target. Recent de-

velopments in ultra-sensitive calorimetry make this a feasible measurement [120].

The primary advantage of calorimetry-based measurements is that they

can detect the deposited fraction of potential energy that is converted to heat

in the target that does not cause a permanent modification. Relying on energy

measurements from Refs. [1, 27], we deduce that around 13 % of potential energy

per ion impact goes into reversible heating. With a calorimetry measurement, this

fraction would be directly measurable.

By using heavier ions with higher charge states than the Ar9+ beams in

Ref. [119], ultra-sensitive calorimetry would allow for an investigation of the de-

pendence of the fraction of deposited energy on projectile atomic structure. One

could measure the fraction of potential energy retained in the target, as a function

of the number of inner-shell vacancies. K, L and M shell vacancies, for example,

may open up pathways for x-ray relaxation that decrease the fraction of potential

energy deposited into the solid. It is plausible that “shell effects” will become

apparent within the measurement of energy deposition.

If the calorimetry measurement were accompanied by simultaneous pho-

ton or secondary electron spectroscopy, a much more detailed view of how atomic
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relaxation processes affect the deposited energy might be realized. In such a

measurement, kinetic energy and charge state could be tuned to determine the

optimum values where energy deposition is maximized.

6.2 Measurement of pre-equilibrium stopping with tun-

nel junctions

An understanding of pre-equilibrium stopping enhancements at the quan-

titative level remains a challenge in the field [121]. This is especially true for slow

HCIs stopping in insulators.

Future kinetic energy dependent measurements with HCI modified tunnel

junctions may provide an indirect measurement of these pre-equilibrium stop-

ping magnitudes. The tunnel junction technique described in Ch. 3 is capable

of detecting the damage within ultrathin barrier films, where film thickness s is

smaller than the charge equilibration length, for HCIs. Modifications within the

barrier are formed during pre-equilibrium stopping. Biersack’ s model [35] pre-

dicts an exponential increase in kinetic energy transfer to the target nuclei with

decreasing kinetic energy. If this picture is correct, energy deposition within s will

increase exponentially as kinetic energy decreases, leading to deeper craters and

higher σc values. Preliminary data shown at the end of Ch. 3 indicate that a 40 %

reduction in kinetic energy leads to an order of magnitude increase in the average

conductance through the impact sites (σc). Further data are needed to establish

the quantitative dependence of σc on kinetic energy.
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Appendix A Plasma Chamber

Figure 1: Sideview of the plasma chamber.
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Figure 2: Top cluster flange of the plasma chamber. The laser beam spot illu-
minates one of the alignment marks, after being reflected from the sample in
the chamber. Angular position of the sample can be adjusted with the magnetic
transfer rod.
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Figure 3: Plasma chamber through the 6” viewport. The plasma electrodes are
separated by alumina standoffs.
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Figure 4: Schematic drawing of the bottom flange, bottom electrode and sled
assembly. The top electrode and magnetic transfer rod are not shown. Each chip
is 13 mm x 20 mm.
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Appendix B Measuring light intensity of the discharge

with the photodiode

The following procedure can be used to estimate the total light power in-

cident on the photodiode, during the discharge. We read photovoltage from an

unbiased photo diode (thorlabs SM1PD1B

http://www.thorlabs.com/Thorcat/14000/14001-S01.PDF) directly into an oscil-

loscope with input impedance 1 MΩ.

Total incident light power is P = V0/(Rλ × Rl), where V0 is the measured

voltage on the oscilloscope, Rλ is the wavelength dependent responsivity [A/W]

(Fig. 5) of the photodiode, and Rl is the input impedance of the scope.

To calculate an upper bound on the incident light power during the time

the plasma is on, assume that all the light comes from λ = 550 nm peak. This

choice leads to an upper bound for P because, this wavelength corresponds to a

relatively low responsivity value Rλ = 0.3 A/W. This results in an upper bound

on the power because, a large fraction of the incident light power comes from

higher wavelengths that are more efficiently converted to the measured signal.

The plasma has a violet color Fig. 6.

When the plasma is on, the photovoltage on the scope reads V0 = 240 mV

which is P = 800 nW of incident light power if all of the light were λ = 550 nm

peak. When the plasma is off, V0 = 84 mV.
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Figure 5: Specifications for wavelength dependent responsivity of the ThorLabs
SM1PD1B photodiode (from the datasheet).
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Figure 6: Photograph of an oxygen discharge at Iset = 40 mA, 120 mTorr, with
negative bias on top electrode.
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Appendix C Resistance of a tunnel junction during

warm up (77 K to 300 K)
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Figure 7: Resistance as a function of temperature for a tunnel juntion (sample
090225-14D)
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Appendix D Fitting a micrograph line profile

Micrograph line profiles were fit with the following function,

f (z) = A1Erf
[

1
ew(z− el)

]
× Erf

[
− 1

ew(z− er)

]
+ A2 + mz. (2)

The distance between the left and right edges of the wire (in pixels) shown in the

line scane is w = er − el. For the micrograph shown in Fig. 8, the parameters of

the fitted line are ew = 8.76 , el = 60.09, er = 170.49, A1 = 35.5, A2 = 141.9, m =

-6.2E-3. The slope of the step edges is captured in ew. This slice came from a wire

on a device grown with the G1 maskset.

Based on a systematic study using focused ion beam cuts, it was found

that the width of the wire that carries electrical current is typically within a few

percent of er − el + 2ew.
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Figure 8: Micrograph line profile. The vertical axis is the arbitrary intensity of
the microscope colorscale. The scale factor is 1.02 pixel μm−1, making the width
between the edges el and er arrows w = 125 μm.

168



Appendix E Data analysis

The following tables give an overview of the data analysis from three chips

(111223-3, 111223-13 and 111223-14). Ion beams were extracted from the EBIT

at an acceleration voltage of approximately 5 kV, giving ions kinetic energy 5×
Q keV. The data analysis is divided into three tables: 1) “negative resistance”

correction (Table 1), 2) determining ion dose N (Table 2), and 3) calculation of

the most probable values of σc on each chip (Table 3). The full data set for this

particular EBIT run consisted of seven chips dosed with Q = 36 and Q = 41. A

single value of σ̄c was calculated for each charge state.

The data plotted in Fig. 3.6, were analyzed with a similar method to the

one shown here. However, these chips were fabricated with the G1 mask set and

only had four devices per chip. Only one device per chip was left unirradiated.
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Appendix F Potential definitions and algorithms for

calculating R′c

The package “num-funcs.m” defines solutions to Poisson’s equation, for a

charge outside of two dissimilar dielectric media using Mathematica MathKernel.

Here, we consider the solution in one dimension, in the coordinate z, normal to

the surface. The problem is treated in cylindrical coordinates, so that z is the

axial coordinate (normal to the surface). ρ is the radial coordinate, and is set

to zero in the calculation. Details of the derivation of the potential, boundary

conditions and the general integral form of the solution are provided in [102]. In

the follwing code, these integrals are computed with Mathematica’s NIntegrate

function. Image potentials were derived as shown in Ref [103]. The potentials

use atomic units. Throughout this calculation, the origin is set at the position of

the ion. b is the distance between the ion and the metal surface. a is the distance

between the ion and the vacuum-film interface, i.e., s = b− a.

(* ::Package:: *)

Clear[a,b,b1,eps1,eps2,eps3,m,q,s];

(* Boundary conditions constrain coefficients A1, B1, C1, D1.*)

A1[a_,b_,eps1_,eps2_,eps3_]:=

(E^(-2 a m) (E^(2 a m) (eps1+eps2) (eps2-eps3)+

E^(2 b m) (eps1-eps2) (eps2+eps3)))/(E^(2 a m) (eps1-eps2)

(eps2-eps3)+E^(2 b m) (eps1+eps2) (eps2+eps3));
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B1[a_,b_,eps1_,eps2_,eps3_]:=

(2 E^(2 b m) eps1 (eps2+eps3))/(E^(2 a m)(eps1-eps2)(eps2-eps3) +

E^(2 b m) (eps1+eps2) (eps2+eps3));

C1[a_,b_,eps1_,eps2_,eps3_]:=

(2 eps1 (eps2-eps3))/(E^(2 a m) (eps1-eps2) (eps2-eps3)+

E^(2 b m) (eps1+eps2) (eps2+eps3));

D1[a_,b_,eps1_,eps2_,eps3_]:=

(4 E^(2 b m) eps1 eps2)/(E^(2 a m) (eps1-eps2) (eps2-eps3)+

E^(2 b m) (eps1+eps2) (eps2+eps3));

(*electrostatic potential*)

v1[q_,a_,b_,eps1_,eps2_,eps3_]:=

(q/(eps1))*NIntegrate[(Exp[-m*Abs[z]]+

A1[a,b,eps1,eps2,eps3]*Exp[m*z]),

{m,0,\[Infinity]}]

v2[q_,a_,b_,eps1_,eps2_,eps3_]:=

(q/(eps1))*NIntegrate[(B1[a,b,eps1,eps2,eps3]*Exp[-m*z]+

C1[a,b,eps1,eps2,eps3]*Exp[m*z]),

{m,0,\[Infinity]}]

v3[q_,a_,b_,eps1_,eps2_,eps3_]:=
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(q/(eps1))*Integrate[(D1[a,b,eps1,eps2,eps3]*Exp[-m*z]),

{m,0,\[Infinity]},Assumptions->z>0&&z>b];

v123[q_,a_,b_,eps1_,eps2_,eps3_]:=

-Piecewise[{{v1[q,a,b,eps1,eps2,eps3],0<z<a},

{v2[q,a,b,eps1,eps2,eps3],a<z<b},

{v3[q,a,b,eps1,eps2,eps3],z>b}}]

(* Reflection coefficients for the electron self-image term*)

k1=.;

k1[eps1_,eps2_]:=(eps2-eps1)/(eps2+eps1)

(*third region is a conductor*)

k2=-1;

sivac[a_,b_,eps1_,eps2_]:=

-(1/(2*eps1))*

Sum[(k1[eps1,eps2]*k2)^n*(-k1[eps1,eps2]/(2*z-(2*a)-(2*n*(b-a)))+

k2/(2*z-(2*b)-(2*n*(b-a)))),

{n,0,\[Infinity]}]

(*image potential outside the thin film. this is the same as

sivac, but it is pre-evaluated to make calculation faster *)

sivacfinal[adist_,bdist_,ep1_,ep2_]:=
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-(1/(4 (adist-bdist) ep1 (ep1+ep2) (bdist-z)))

(bdist ep1

HurwitzLerchPhi[(ep1-ep2)/(ep1+ep2),1,(-adist+z)/(adist-bdist)]

-bdist ep2 HurwitzLerchPhi[(ep1-ep2)/(ep1+ep2),

1,(-adist+z)/(adist-bdist)]-

ep1 z HurwitzLerchPhi[(ep1-ep2)/(ep1+ep2),

1,(-adist+z)/(adist-bdist)]+

ep2 z HurwitzLerchPhi[(ep1-ep2)/(ep1+ep2),

1,(-adist+z)/(adist-bdist)]+

adist ep1 Hypergeometric2F1[1,

-(bdist/(adist-bdist))+z/(adist-bdist),adist/(adist-bdist)

-(2bdist)/(adist-bdist)+z/(adist-bdist),(ep1-ep2)/(ep1+ep2)]-

bdist ep1 Hypergeometric2F1[1,

-(bdist/(adist-bdist))+z/(adist-bdist),adist/(adist-bdist)-

(2 bdist)/(adist-bdist)+z/(adist-bdist),(ep1-ep2)/(ep1+ep2)]+

adist ep2 Hypergeometric2F1[1,

-(bdist/(adist-bdist))+z/(adist-bdist),adist/(adist-bdist)

-(2 bdist)/(adist-bdist)+z/(adist-bdist),(ep1-ep2)/(ep1+ep2)]

-bdist ep2 Hypergeometric2F1[1,-(bdist/(adist-bdist))+

z/(adist-bdist),adist/(adist-bdist)-(2

bdist)/(adist-bdist)+z/(adist-bdist),

(ep1-ep2)/(ep1+ep2)])

sifilm[b_,eps2_,Ecbm_]:=Ecbm-(1/(4*eps2*(-z+b)))
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(* Potential energy in the vacuum and dielectric regions,

including the self image term. *)

vacuum[Q_,a_,b_,eps1_,eps2_,eps3_]:=

-v1[Q,a,b,eps1,eps2,eps3]+sivacfinal[a,b,eps1,eps2]

film[Q_,a_,b_,eps1_,eps2_,eps3_,Ecbm_]:=

-v2[Q,a,b,eps1,eps2,eps3]+sifilm[b,eps2,Ecbm]

The potentials defined in “num-funcs.m” can be implemented in loops to

find the critical distance as a function of various parameters. The following loop

function finds the critical distance as a function of film thickness, for a series of

charge states. In the loop, the ion steps incrementally toward the surface. At

each step, we evaluate the heights of the potential maxima within the film and

vacuum. If the potential in the vacuum drops below Evbm then the first captured

electron comes from the insulator. If the potential maxima in the film and in the

vacuum drop below EF, then the electron comes from the metal. The variable

“flag” indicates whether the electron comes from the insulator or metal.

(* use the numerically integrated potentials*)

<<num_funcs.m

(* define the metal work function, film permittivity,

conduction band minimum and band gap in atomic units *)

(* 1 E_H = 27.211 eV*)
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W = -(5.0/27.211);

ep = 6;

Eg = (3/27.211);

Ecbm = -(4/27.211)

(* Film thickness limits and step size *)

sinit = 1

sfin = 160

ds = 1

(* initialize the ion position arrays*)

rclist = {};

rlist = {};

Clear[s];

Clear[flag];

Clear[b1];

(* sets the spacing between successive energy points

within a single potential plot, V(z)*)

dz = 0.1;
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(* initial and final charge states,

and the charge steps * )

qinit = 26;

qfin = 44;

dq = 1;

Do[

(* a value greater than the critical distance,

to start searching. *)

bguess = Sqrt[2*q1]/Abs[W]+3;

Do[

(* starting from bguess, step the ion toward the

surface by 0.1 a.u increments. For each step,

add the ion’s distance from the metal to rlist.

R’c will be the last value in rlist, after the

While loop returns False. *)
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b1 = bguess;

While[(Max[Table[vacuum[q1, b1 - s, b1, 1, ep, 10^6],

{z, 1, (b1 - s) - 0.1, dz}]] > W ||

Max[Table[film[q1, b1 - s, b1, 1, ep, 10^6, Ecbm],

{z, (b1 - s), b1 - 0.1, dz}]] > W) &&

Max[Table[vacuum[q1, b1 - s, b1, 1, ep, 10^6],

{z, 1, (b1 - s) - 0.1, dz}]] >

(Table[film[q1, b1 - s, b1, 1, ep,10^6, Ecbm],

{z, b1 - s, b1 - s,dz}][[1]] - Eg),

AppendTo[rlist, b1];

(* move the ion 0.1 a.u. forward *)

b1 = b1 - 0.1]

(* Print whether the first captured electron comes

from the metal, or insulator*)

If[(Table[film[q1, b1 - s, b1, 1, ep, 10^6, Ecbm],

{z, b1 - s, b1 - s,0.1}][[1]] - Eg) >

Max[Table[vacuum[q1, b1 - s,b1, 1, ep, 10^6],

{z, 1, (b1 - s) - 0.1, 1}]],
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flag="insulator wins",flag="metal wins"];

(* Print the film thickness, R’c,

whether the metal/insulator won, and the charge state.*)

Print[ToString[s]<>"\t"<> ToString[Last[rlist]]

<>"\t"<>flag<>"\t"<>ToString[q1]];

(* list of critical distances *)

AppendTo[rclist, {s,Last[rlist],flag,q1,Eg,ep}];

(* clear the variables after finding R’c *)

Clear[flag];

Clear[condition];

Clear[b1];

Clear[bguess];

bguess = Last[rlist] + 3;

rlist = {};,

{s, sinit, sfin, ds}

]
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(* Write results to a text file.*)

Export["q" <> ToString[q1]<>"_"<>"Rc_s"<>ToString[sinit]<>

"-"<>ToString[sfin]<>"_"<>"ep"<>ToString[ep]<>"_"<>

"Eg"<>ToString[NumberForm[Eg,2]]<>"W"<>ToString[NumberForm[W,2]]<>

"_"<>"phi"<>ToString[NumberForm[Ecbm-W,2]]<>".txt",rclist,"Table"]

Clear[rclist];

rclist={};,

(* do for all charge states *)

{q1, qinit, qfin, dq}

]

We can also plot the exact, analytically calculated potentials using Mathe-

matica’s Integrate[] function. The drawback when using these potentials to find

the critical distance is that exact integration increases calculation time.

(* Analytical potential calculation

(using Integrate[] instead of NIntegrate[]*)

Clear[a,b,b1,eps1,eps2,eps3,m,q,s];

A1[a_,b_,eps1_,eps2_,eps3_]:=

(E^(-2 a m) (E^(2 a m) (eps1+eps2) (eps2-eps3)+

E^(2 b m) (eps1-eps2) (eps2+eps3)))/
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(E^(2 a m) (eps1-eps2) (eps2-eps3)+E^(2 b m) (eps1+eps2) (eps2+eps3));

B1[a_,b_,eps1_,eps2_,eps3_]:=

(2 E^(2 b m) eps1 (eps2+eps3))/

(E^(2 a m) (eps1-eps2) (eps2-eps3)+

E^(2 b m) (eps1+eps2) (eps2+eps3));

C1[a_,b_,eps1_,eps2_,eps3_]:=

(2 eps1 (eps2-eps3))/

(E^(2 a m) (eps1-eps2) (eps2-eps3)+E^(2 b m) (eps1+eps2) (eps2+eps3));

D1[a_,b_,eps1_,eps2_,eps3_]:=

(4 E^(2 b m) eps1 eps2)/(E^(2 a m) (eps1-eps2) (eps2-eps3)+

E^(2 b m) (eps1+eps2) (eps2+eps3));

(*electrostatic potential*)

v1[q_,a_,b_,eps1_,eps2_,eps3_]:=

(q/(eps1))*Integrate[(Exp[-m*Abs[z]]+A1[a,b,eps1,eps2,eps3]*Exp[m*z]),

{m,0,\[Infinity]},Assumptions->z>0&&z<a]

v2[q_,a_,b_,eps1_,eps2_,eps3_]:=

(q/(eps1))*Integrate[(B1[a,b,eps1,eps2,eps3]*Exp[-m*z]+

C1[a,b,eps1,eps2,eps3]*Exp[m*z]),

{m,0,\[Infinity]},Assumptions->z>0&&z<b&&z>a]
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v3[q_,a_,b_,eps1_,eps2_,eps3_]:=

(q/(eps1))*Integrate[(D1[a,b,eps1,eps2,eps3]*Exp[-m*z]),

{m,0,\[Infinity]},Assumptions->z>0&&z>b];

v123[q_,a_,b_,eps1_,eps2_,eps3_]:=

-Piecewise[{{v1[q,a,b,eps1,eps2,eps3],0<z<a},

{v2[q,a,b,eps1,eps2,eps3],a<z<b},

{v3[q,a,b,eps1,eps2,eps3],z>b}}]

(*self-image potential*)

(* defin the reflection coefficients k1, k2*)

k1=.;

k1[eps1_,eps2_]:=(eps2-eps1)/(eps2+eps1)

(*k2=(eps2-eps3)/(eps2+eps3)*)

(*third region is a conductor*)

k2=-1;

E1[a_,b_,eps1_,eps2_,Ecbm_]:=

Piecewise[{{-(1/(2*eps1))*

Sum[(k1[eps1,eps2]*k2)^n*(-k1[eps1,eps2]/(2*z-(2*a)-(2*n*(b-a)))+

k2/(2*z-(2*b)-(2*n*(b-a)))),{n,0,\[Infinity]}],z<a},

{Ecbm-(1/(4*eps2*(-z+b))),a<z<b}}]

V[q_,a_,b_,eps1_,eps2_,eps3_,Ecbm_]:=

E1[a,b,eps1,eps2,Ecbm]+
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v123[q,a,b,eps1,eps2,eps3]

The following script exports potentials for plotting (in a text file and as

portable network graphics) using the analytically calculated potentials. This script

is used to view the potential for any set of parameters. To change the coordinate

system to the conventional z = 0 at the surface and ion at +R, make the transfor-

mation z′ → (−1× z + Max(z)) to the first column of the .txt file when plotting.

The energies stay the same.

(*Needs[Context[],Directory[]<>"/pot_funcs.m"];*)

<<pot_funcs.m

s=10;

q1=10;

W=-(5.3/27.211);

ep = 8;

Eg = (9.5/27.211);

Ecb = -(4/27.211)

b1=.;

Do[

Clear[p1,p2];

p1=V[q1,(b1-s),b1,1,ep,10^6,Ecb];

p2=Piecewise[{{p1-Eg,(b1-s)<z<b1}}];

pl1=
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Plot[{p1,p2,W},{z,0,b1},

PlotRange->{-1,0},Frame->True, FrameStyle -> AbsoluteThickness[1.5],

PlotRangePadding-> None, ImageSize -> {800,600},

PlotStyle -> {Directive[Blue, Thick],Directive[Blue,

Thick],Directive[Red,Dashed]},

LabelStyle -> {Black, 20,FontFamily -> "Helvetica"}];

Export[Directory[]<>"/"<>"q"<>ToString[q1]<>"_"<>"s"<>ToString[s]<>

"_"<>ToString[ep]<>"_"<>"b"<>ToString[b1]<>".png",pl1]

Export[Directory[]<>"/"<>"q"<>ToString[q1]<>"_"<>"s"<>ToString[s]<>

"_"<>ToString[ep]<>"_"<>"b"<>ToString[b1]<>".txt",

Table[{z,p1//N,p2//N},{z,1,b1,0.1}],"Table"]

Print[b1];

,{b1,s,100,10} ];
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Appendix G Atomic units
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