
Clemson University
TigerPrints

All Dissertations Dissertations

12-2008

'Fabrication and Characterization of Polymer
Blends and Composites Derived from
Biopolymers'
Suraj Sharma
Clemson University, ssharma@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Materials Science and Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Sharma, Suraj, "'Fabrication and Characterization of Polymer Blends and Composites Derived from Biopolymers'" (2008). All
Dissertations. 290.
https://tigerprints.clemson.edu/all_dissertations/290

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/290?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 
 
 
 
 
 
 

FABRICATION AND CHARACTERIZATION OF POLYMER BLENDS AND 
COMPOSITES DERIVED FROM BIOPOLYMERS 

 
 
 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
Materials Science and Engineering  

 
 
 
 

by 
Suraj Sharma 

December 2008 
 
 
 
 

Accepted by: 
Dr. Igor A. Luzinov, Committee Chair 

Dr. Gary C. Lickfield  
Dr. Philip J. Brown 
Dr. Bogdan Zdyrko 

  

 i    



ABSTRACT 
 
 

This research focuses on fabricating blends and composites from natural polymers 

especially from proteins and natural epoxy, and describing the properties of plastics made 

from them. Specifically, plastic samples from partially denatured feathermeal and 

bloodmeal proteins, derived from the animal co-products (rendering) industry, were 

successfully produced through a compression molding process. The modulus (stiffness) 

of the material obtained was found to be comparable with that of commercial synthetic 

materials, such as polystyrene, but was found to have lower toughness characteristics, 

which is a common phenomenon among plastics produced from animal and plant 

proteins. Therefore, this study explored blending methods for improving the toughness. 

Plastic forming conditions for undenatured animal proteins such as chicken egg whites 

albumin and whey, used as a model, were established to prepare plastics from their 

blends with animal co-product proteins. The resultant plastic samples from these 

biomacromolecular blends demonstrated improved mechanical properties that were also 

compared with the established theoretical models known for polymer blends and 

composites. Moreover, plastics from albumin of chicken egg whites and human serum 

have demonstrated their potential in medical applications that require antibacterial 

properties.  

Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed 

oil, showed significant potential to replace petroleum-derived resins for use as a matrix 

for composites in structural applications. Moreover, the research showed the benefits of 

ultrasonic curing, which can help in preparing the out-of-autoclave composites.
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CHAPTER 1 
 

INTRODUCTION 
 

Biodegradable materials from natural resources have become an intense research 

topic because of their availability from renewable resources. Though this research in 

general has become widespread, studies pertinent to plastics from animal co-product 

proteins (partially denatured) are limited. Therefore, this research is primarily focused on 

understanding the fundamental concepts involved in the fabrication and preparation of 

plastics and composites form these proteins. This research explored the potential of 

feathermeal and bloodmeal, animal co-product proteins to prepare plastics with 

characteristics that make these proteins suitable for various technical applications, where 

biodegradability is important. The study also extends to plastics from undenatured animal 

and human proteins since they are used as a model for these investigations and 

demonstrated first time their potential in medical applications, which requires increased 

biocompatibility. This study could open avenues for preparing typically non-recyclable 

articles, such as golf tees, flower pots, hunting bullets and discs, and in developing and 

modifying various medical devices, including, stents, and artificial arteries. 

The depleting resources of fossil oils are also adversely affecting the thermoset 

resins, especially epoxy system used in high-performance applications. Therefore, 

biodegradable natural epoxy from modified vegetable oils can play a significant role to 

replace traditional epoxy system used mainly as matrix for composites. A literature 

review associated to protein plastics and epoxy systems (both natural and model) is 
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presented in Chapter 2. The general experimental procedures followed for most of the 

research reported here are discussed in Chapter 3.  

In Chapter 4, model undenatured animal proteins were used to understand the 

fundamentals of plastic fabrication through a compression molding process. Albumins 

from chicken egg whites and human serum produced plastics with antimicrobial and 

shape memory characteristics, which are important for bioimplants and drug delivery 

devices. Unresolved issue of protein plastics, such as increased stiffness on storage, was 

specifically addressed through polymer blending in the following chapter.  

In Chapter 5, blending technology was explored to develop plastics of desired 

properties, which is difficult to achieve using single component. Therefore, to address the 

issue of toughness, polymer plastic samples were prepared from the blends of 

undenatured chicken egg albumin and whey proteins, and from the blends of whey 

protein and natural rubber latex, through the compression-molding process. 

Natural rubber latex, stabilized by protein in suspension, was used to produce 

polymer blends. The addition of dispersed rubber particles improved the toughness of the 

protein plastics. Thermal and mechanical characterizations were conducted to study the 

effect of blending. Moreover, protein-protein blends, which utilize their complimentary 

properties, were prepared to develop plastics of desired properties. The results were 

compared using “mixing rule” for polymer blends. Moreover, protein sequencing was 

used to determine reactive functional groups, such as amino, carboxylic and hydroxyl, of 

the amino acid residues. 
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Excessive availability of animal co-product (or rendered) proteins on a renewable 

basis has forced rendering industries to explore alternative uses, such as fuel, fertilizers, 

and plastics  in addition to the traditional use as an ingredient for animal feed. Based on 

the investigations in Chapters 4 and 5 with undenatured, animal proteins as a model for 

preparing plastics, a different approach was studied to prepare plastics from partially 

denatured, feathermeal protein as described in Chapter 6. This research explored the 

animal co-product protein, feathermeal, which is mostly used as a feeding ingredient in 

animal feed, to develop plastic. This partially denatured protein exhibited strong potential 

for various technical applications, which are difficult to recycle. 

Feathermeal protein exhibited thermoplasticity and produced plastics having 

lower tensile strength and elongation properties, but higher stiffness than undenatured, 

protein plastics. In addition, stiffness (Young’s modulus) was found to be comparable or 

more than that of commercial plastics, such as polystyrene and polycarbonate. To address 

plastic weaknesses, polymers blends were prepared using undenatured proteins, such as 

chicken egg whites albumin and whey, and a synthetic rubbery polymer, for example 

poly (glycidyl methacrylate)-co-(butyl methacrylate) copolymer. Moreover, these 

mechanical properties were compared with well-established, theoretical models for 

polymer blends and composites. 

In Chapter 7, another co-product protein, bloodmeal, which is primarily used as 

an ingredient in animal feed, was successfully first time, transformed into plastics 

through the compression-molding process. The approach here involves direct 

compression molding of bloodmeal without adding any additional water. Detailed 
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investigations, including modeling of the mechanical properties, were conducted to 

prepare polymer blends using bloodmeal and undenatured whey and chicken egg whites 

albumin proteins to address the issue of toughness. In addition, whey modified natural 

fiber, hemp, was used to prepare biocomposites.  

The research in Chapter 8 reports that vegetable oil-based epoxy, especially 

epoxidized linseed oil, showed significant potential to replace petroleum-derived resins to 

be used as a matrix for composites in structural applications. Moreover, the research 

showed the benefits of ultrasonic curing, which can help in preparing the out-of-

autoclave composites. 

Thus, thermal and ultrasonic curing of vegetable oil based epoxy systems such as 

epoxidized linseed and epoxidized soybean oils, along with model one-part epoxy 

system, are investigated. In these natural epoxy systems, the addition of a latent curing 

agent, BPH (Benzylpyrazinium Hexafluoroantimonate), assisted in a full curing and 

developing a formulation with increased shelf life. In addition, ultrasonic curing, a non-

traditional curing method, was studied to accelerate the curing process that may have 

potential in developing out-of-autoclave composites at low cost. Moreover, to investigate 

the thermal curing process, and the non-thermal and thermal effects of ultrasonic curing 

process, a model one-part epoxy system was used. An application of ultrasonic curing in 

preparing composites from carbon/epoxy prepreg system is illustrated in Appendix I, 

which details the possibilities and limitations of using Solidica’s ultrasonic consolidation 

machine. 
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Therefore, this research adds to the existing knowledge about the fabrication of plastics 

from undenatured and partially-undenatured proteins, and natural epoxy system. 
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CHAPTER 2 

LITERATURE REVIEW 
 
 

This research focuses on fabricating blends and composites from biopolymers, 

with a particular emphasis on proteins and natural epoxies. Therefore, an overview of the 

theoretical considerations of creation of biodegradable materials from these biopolymers 

and the current methods practiced to fabricate plastics and composites is presented. In 

addition, the research pertinent to traditional epoxy-based composites and their 

fabrication using ultrasonic curing is also discussed. 

 

2.1: Biodegradable plastic 

Synthetic polymers, for example polyethylene and polypropylene, are not 

biodegradable and persist in the environment for many years after their disposal.1 Their 

environmental impact is exacerbated by their extensive use in packaging materials, 

industrial products, medical devices, coatings and hygiene products. The issue becomes 

what to do with articles made from these materials once they are no longer useful.2 

Incineration represents one solution, but this process releases toxic substances into the 

environment. Another solution is recycling; poly(ethylene terephthalate) and high-density 

poly(ethylene) bottles, for example, can be recycled, e.g., as fibers for stuffing and as 

plastic lumber.  

However, the dwindling availability of landfill sites, in addition to rising oil 

prices, has necessitated the development of biodegradable materials as substitutes for 

non-degradable plastics. Polymers from agricultural by-products1 are especially attractive 
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as replacements for synthetic polymers,3 the most important of these natural polymers 

being carbohydrates (starch, cellulose), proteins, and nucleic acids (DNA, RNA).2 This 

third solution to the disposal or pollution problem arising from synthetic material is 

challenging because it is often the durability of plastics that makes them so useful.2 

Biopolymers degrade, through the enzymatic action of bacteria, fungi, algae and 

other living organisms, into carbon dioxide, methane, water, inorganic compounds, or 

biomass and therefore do not persist in the environment. These types of biopolymers can 

be classified into three categories:4 

• Those directly extracted from biomass; 

• Those produced through chemical synthesis from biomass monomers; 

• Those, such as microbial polymers, produced directly by natural or genetically 

modified organisms.  

These categories are schematically presented in Figure 2.1. As this figure shows, 

biodegradable and green polymers can be converted into various forms including neat 

polymers, blended products, and composites.1 For example, natural biopolymers have 

been employed for use in the manufacturing of plastic containers, exemplified by the use 

of a PHB (poly(3-hydroxybutyrate))-PHV(poly(3-hydroxyvalerate)) copolymer 

(BIOPOL) in the manufacturing of shampoo bottles.2 

Bioplastics can be made using either a dry or a wet process.5 The wet-process, 

which requires biopolymer dispersion in a film-forming solution, has been successfully 

applied to produce edible or biodegradable films and coatings. The dry-process, 

capitalizing on the thermoplastic properties of various biopolymers(primarily starch and 
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protein under lower water content conditions), has also been successfully applied to 

produce edible and/or biodegradable materials using such common melt processing 

technologies as extrusion, molding or rolling mill procedures. Since the use of solvents in 

the wet-process is not environmentally friendly, the dry-process of making plastics from 

starch, protein and lactic acid polymers is receiving increased attention. 

 

Biobased 

 

Figure 2.1. Schematic of biopolymers based on their origin and method of production.4 
 

In particular, much research has been conducted that focuses on plastics made 

from lactic acid polymer. For example, Hermann et al.6 used lactic acid derivatives to 

produce biodegradable composites with mechanical properties comparable to the more 

common glass-fiber reinforced ones, offering new materials for anisotropic and light-

weight structural parts. In addition, Hu and Lim7 developed polylactic acid composites 

Plant 

Category 2Category 1 Category 3 

Polymers produced directly by natural Polymers directly extracted from Classical polymers synthesized  
or genetically modified organismsbiomass from bioderived monomers

Proteins Lipids Polysaccharides 

Animal Polylactates 

Whey 

Collagen/ 
gelatins

Casein 

Cross-
linked 
triglycerides

Soy 

Gluten 

Starches: 
potato, corn, 
wheat, rice 
derivatives

Celluloses : 
cotton, 

wood, and 
other

Gums:  Guar gum, 
locust bean, alginate, 
carrageenan, pectin, 
derivatives 

Chitosan / 
Chitin 

PHA 

Bacterial Zein 
celluloses
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reinforced with biodegradable hemp fibers that showed improved mechanical properties. 

They also observed that alkali-treated hemp fibers produced composites of increased 

tensile and flexural strengths. In a similar study, Huda et al.8 developed polylactic acid 

laminates, reinforced with kenaf fiber, having good mechanical and thermo-mechanical 

properties. However, the process for synthesizing lactic acid is costly, an expense that 

will probably continue to rise given the emphasis on corn as an alternative fuel. 

A second area of research has focused on the development of thermoplastic 

starches (TPS) from maize, wheat, potato, or tapioca, which is subjected to a 

destructurization of intermolecular hydrogen bonding.9 However, TPS-based bioplastics 

have significant disadvantages including inferior mechanical properties and high water 

absorption. To address these concerns, Carvalho et al.10 mixed starch with natural rubber 

blends, developing a biodegradable starch-based plastic that had notably improved 

toughness. 

One of the most important areas of current research involves using natural 

polymer proteins from animal and plants. These bioplastics have significant advantages 

over traditional plastics, especially in such areas as packaging. For example, soy protein 

has become an alternative to petroleum polymers in the manufacture of adhesives, 

plastics, and binders.11,12 Studies have shown that plastics and polymer blends made 

from this protein exhibit increased strength and improved biodegradability. In addition, 

proteins are very versatile materials, originating from many sources, and because of the 

possible modifications, can exhibit a wide range of tuneabilities, allowing them to be 

easily tailored to fit a specific application. As a result, it is important to investigate the 

 9



development of material made from animal proteins, a renewable resource, especially 

abundant currently because of the outbreak of Bovine Spongiform Encephalopathy (BSE) 

or Mad Cow Disease. 

A non-biodegradable synthetic polymer, epoxy is one of the most important 

petroleum-based thermoset polymers, and is widely used as a binder for high 

performance fiber-reinforced composites and laminates in various structural applications. 

However, processing of these is time consuming and expensive, requiring intensive 

research to substitute or partially replace them with natural epoxy originating from plant-

based oils and to process them using unconventional methods, specifically ultrasonic 

curing. 

 

2.2: Protein plastic 
 
2.2.1: Protein denaturing and structurization of plastic 

Protein, a group of complex organic compounds (heteropolymers), consists of 

combinations of polar and apolar amino acids in peptide linkages.13 These amino acid 

residues are able to form numerous intermolecular bonds and interactions, resulting in a 

broad range of potential functional properties. 14 The amino acid sequence is the primary 

structure of the polypeptide protein chain, forming alpha helices and beta sheets, 

constituting the secondary structure. The three-dimensional conformation formed by a 

polypeptide chain is sometimes referred to as the tertiary structure, and if a particular 

protein molecule is formed as a complex of more than one polypeptide chain, then the 

complete structure is designated as a quaternary structure.  
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Proteins can be unfolded or denatured from their higher order structures when the 

disulfide bonds and weak non-covalent interactions holding the folded chain are 

broken.15,16 Hawley17 developed a thermodynamic description of the phase boundary of 

protein unfolding  and was able to calculate the Gibbs free energy difference (ΔG) 

between the denatured and the native state of the protein, leading to an elliptical second 

order curve18 for the given denaturating conditions (ΔG=0), as shown in Figure 2.2.  

 

 

Figure  2.2.  Schematic representation of the elliptic phase diagram of proteins. 
Where p--pressure, h--heat, and c--cold denaturations.18 

 

This phase diagram can be divided into denatured and native regions. When the protein is 

in its native state, the effects of pressure and temperature result in an elastic (reversible) 

change, while at high pressure and high temperature, cooperative changes in the 

secondary structure produce a plastic or conformational effect, resulting in a change in 

the thermal expansion, the compressibility and the heat capacity of the proteins.19 

 11



The secondary structures, which are critical determinants in plastic formation, can 

be analyzed using FTIR and Raman spectroscopic techniques. For proteins distinct from 

synthetic polypeptides, the amide-I band is generally a broad composite, consisting of 

overlapping components of vibrational transitions associated with these secondary 

structures. It has been found that the intensity distribution across the amide-I bands 

(1700-1620cm-1) of the IR can be resolved into components using Fourier deconvolution, 

correlating with the percentages of α-helices, β-structure, turns or any other type of 

secondary structure present.20 The deconvoluted components can be classified based on 

an empirical comparison with the spectra arising from proteins known to contain only 

one major component (e.g., the α-helix of hemoglobin). Previous FTIR studies of various 

proteins confirmed that the deconvoluted amide-I band is comprised of a 1638 cm-1 and a 

1687cm-1 band because of its β-sheet structure, a 1655 cm-1 band of α-helix  or random 

coil structures, a 1670 cm-1 band of β-turns and a 1615 cm-1 band of intermolecular β-

sheets due to protein aggregation.21 

It has been found that higher order structures of proteins play an important role 

in the structurization of resulting plastics formed through thermal processing. During 

the heating of undenatured proteins, bonds of these higher order structures are 

weakened, resulting in a more flexible structure. If heating ceases at this stage, the 

protein should be able to readily refold, returning to its native structure. As heating 

continues, some of the cooperative hydrogen bonds that stabilize the helical structure 

will begin to break, and hydrophobic groups become exposed. The protein minimizes 
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its free energy by hiding the hydrophobic groups and exposing the polar groups at high 

temperatures, weakening the short-range interactions responsible for initial protein 

folding, and leading to a conformation different from the native protein. Moreover, the 

resulting structure of aggregated macromolecules resulting from cooling may not be of 

the lowest possible free energy because of kinetic barriers. Therefore, exposure of most 

proteins to high temperatures results in an irreversible denaturation. 

 

2.2.2: Thermoplasticity of proteins 
 

Proteins at approximately 100°C can be processed in the presence of a large 

amount of water or glycerol for  such applications as coatings/films, adhesives and 

surfactants, or under low water contents through extrusion.22 Water, low molecular-

weight polyols, and oligosaccharides have been extensively used as plasticizers in the 

processing of protein plastics. Water, because of its high dielectric constant and 

capability of strong interactions with other polar molecules via hydrogen bonding, is 

important for the plasticizing effect, resulting in a reduction in the viscosity of the 

biopolymer-water mixtures and the fracture strength and elastic modulus of the 

bioplastic. These plasticizers shield the inter- and intra-molecular interactions, facilitate 

segmental molecular motion, and decrease internal friction in biopolymer materials.23 

This plasticization effect results in a reduction in the shaping or molding temperature of 

the thermoplastic process, imparts flexibility to the final material, and influences the 

functional properties as well.24 Protein itself also contains plasticizing groups, the 
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efficiency of which is calculated using the Plasticizer equation introduced by Barone et 

al. 25 (Equation 2.1). 

( )
C

YTSPE ++
=          (2.1) 

where S, T, Y, and C represent the  weight % of amino acids serine, threonine, tyrosine, 

and cysteine, respectively, in such cysteine-containing proteins as the keratin found in 

avian feathers and feathermeal. This PE, which should be at least 2.5 to promote faster 

plasticization during thermal processing, signifies the number of mobile sites (i.e., S, T 

and Y amino acid residues) relative to the immobile sites (i.e., C amino acid residue) in 

protein macromolecules.  

After plasticization, these proteins can be crosslinked using chemicals, heat and 

pressure to achieve the desired mechanical properties, through the formation of disulfide 

linkages, hydrogen bonds, hydrophobic interactions, and intra- and inter-molecular amine 

crosslinks.14 Several plant and animal proteins, such as wheat and corn gluten, soy, pea, 

potato, casein, whey, collagen and keratin are available for producing plastic films. These 

proteins have good processability, both in the aqueous and melt media; good film 

forming properties; good mechanical properties in the resulting films, good adhesion to 

various substrates (coatings, adhesives), high resistance to UV, oils and organics, high 

barrier properties for O2 and CO2 gases, and good surface active properties.26,27 Soy 

protein has been considered recently as an alternative to petroleum polymers in the 

manufacture of adhesives, plastics, and various binders.11,28  

Paetau et al.11 studied the preparation and processing conditions of soy plastic 

using compression molding. The strength of the plastic produced was comparable to 
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commercial polystyrene plastic. Based on their findings, it was observed that moisture, 

temperature and pressure were important factors in determining the mechanical and water 

resistance properties of this plastic. However, they could not resolve the problem of 

increased stiffness during storage and the lack of long-term stability, especially in the 

presence of water. Mo and Sun29 studied the effects of storage time on the properties of 

soybean protein-based plastics. These plastics lost their toughness and became stiff and 

brittle over time. Sue and Jane30 investigated the mechanical behavior of high protein 

content engineered soy plastics and compared these to commonly utilized petrochemical 

engineered plastics. They observed that the ductility and dimensional stability of soy 

plastics strongly depended on the level of moisture content or the level of plasticizer.  

Figure 2.3 shows the dynamic mechanical spectra of various soy plastics compared to 

other engineered plastics. 

Orliac et al.31 developed biodegradable thermoplastics of suitable mechanical 

properties from sunflower protein isolates plasticized with glycerol and water through an 

injection molding process. Jerez et al.32 developed bioplastics from hen egg whites and 

wheat gluten proteins for non-food applications through the compression molding 

process. In addition, they studied the effect of thermo-mechanical processing on the 

rheological properties of dough produced from egg white/glycerol and wheat 

gluten/glycerol, observing significant changes in the microstructure of the resulting 

plastics. According to their AFM study, an increase in pressure produced larger 

aggregates of macromolecules in a preferential direction, providing for the formation of 

higher molecular weight polymers through enhanced intermolecular crosslinking. 
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(a) 

 

(b) 

Figure  2.3.  Dynamic mechanical spectroscopy (DMS) of polycarbonate, epoxy, and 
various forms of soy plastics: (a) Storage modulus, (b) Tan δ. Note: Soy protein 
(Glycerol): with 25 wt% of glycerol; Soy protein (Dry): with 5% moisture content; Soy 
protein (Moisturized): with 10% moisture content. (Reprinted with permission from 
Elsevier publications). 
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2.2.3: Modification of protein plastics 

Different ways of modification have been studied to improve the mechanical and 

water stability of protein plastics. These modifications include: use of denaturants; 

plasticizers (e.g., glycerol and polyols); thermal processing variables, such as molding 

temperature and pressure; blending; fiber or filler reinforcement. For example, Mo and 

Sun33 modified soy-protein with different concentrations of urea, a denaturing agent. 

They observed that the plastic from 2M urea-modified soy protein demonstrated an 

improved elongation, toughness fracture and water resistance. Figure 2.4 shows the 

stress-strain curve at various urea concentrations. 

Schilling et al.34  used varying concentrations of glycerin, a plasticizer, to produce 

compression-molded plastics from soy protein. In general, they observed that raising the 

glycerin concentration increased the elongation and reduced the tensile strength, 

hardness, and elastic modulus. 

Paetau et al.11 studied the effect of preparation (for example, acid treatment) and 

processing conditions (such as molding temperature and moisture content) on the 

mechanical properties and water absorption of compression-molded plastics from soy 

protein. They observed that molding the material at 140°C resulted in soy plastic with 

higher tensile strength compared with those molded at lower temperatures. In addition, a 

moisture content greater than 10% resulted in plastic samples of increased extensibility. 
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Figure  2.4.  Mechanical properties of soy protein isolate (SPI) plastics molded at 120°C, 
5.6MPa for 3 min from 0U: unmodified SPI; 1U: 1M urea-modified SPI; 2U: 2M urea-
modified SPI; 8U: 8M urea-modified SPI. (Reprinted with permission from Springer 
publications). 
 

To improve the toughness and water resistance properties of these protein plastics, 

blending and reinforcing have been found to be important methods that are receiving 

increased attention. The blends may combine the advantages of both components, 

exhibiting better characteristics than either component. In general, the blends can be 

divided into homogeneous (miscible, single phase) and heterogeneous (more than one 

phase). In a homogeneous blend, the components of the blend virtually lose a portion of 
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their identity.  The final properties of a miscible blend usually follow the “mixing rule” 

(the arithmetical average of blend components). In a phase-separated blend, the 

properties of all blend components are present, and the final performance of the blend is 

dependent on the size of the structural elements and their adhesion. In general, a majority 

of immiscible blends are incompatible, demonstrating a negative deviation from the 

“mixing rule” because of gross phase morphology. These blends are in many ways 

useless if they are not compatibilized.35. Salmoral et al.36 explored the compression 

molding process in preparing plastic exhibiting acceptable properties from blends 

containing chickpea proteins. Zhong and Sun37 studied blends of soy protein isolate (SPI) 

and polycaprolactone (PCL) along with a compatibilizer, finding improved mechanical 

and water resistance properties. Figure 2.5 shows the stress-strain curves of SPI/PCL 

blends with a 2 wt% of the compatibilizer. The SPI alone plastic showed brittle fracture, 

while ductile fractures were observed with an increased content of PCL. 

Moreover, these researchers observed a water absorption of 165% at room 

temperature for 26 h study on pure SPI plastic. Addition of compatiblizer reduced the 

water absorption of SPI-only plastics to 74%, due to crosslinking reactions, while 

increasing the PCL content to 50% reduced the water absorption to 12%. 

Wang et al.38 developed plastics having mechanical properties similar to 

commercial thermoplastics such as polystyrene from the blends of soybean/poly 

(hydroxyl ester ether), a bisphenol A ether-based synthetic biodegradable thermoplastic 

polymer, and wheat gluten/poly(hydroxyl ester ether). Woerdeman  et al.39 studied blends 
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of wheat gluten protein and thiol-terminated, star branched (poly(ethylene glycol)) in the 

preparation of biodegradable plastics. 
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Figure  2.5.  Typical stress-strain curves of the SPI/PCL blends with 2 wt% MDI. 
(Reprinted with permission from Elsevier publications). 
 

Aithani et al.40 developed injection-molded biodegradable plastics for packaging 

from the blends of corn gluten meal (a byproduct of the ethanol industries) and a 
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synthetic biodegradable polymer poly (ε-caprolactone). They used a combination of 

glycerol (plasticizer), ethanol (for processing), and guanidine hydrochloride (denaturant) 

to produce extrusion molded plastics of increased toughness. 

Another method for improving mechanical and water resistance properties is by 

attaching various alkylating agents to these proteins, resulting in increased crosslinking.  

For example, Lens et al.41 used caproaldehyde and lauraldehyde to attach hydrophobic 

groups to the amino groups of proteins, primarily from lysine, resulting in a strong gluten 

film with a swelling rate comparable to synthetic nylons. Bräuer et al.42 used palmitic 

acid chloride and alkenyl-substituted succinic anhydrides to modify such proteins as 

wheat gluten, soy, corn zein and pea to become fusible and suitable for thermoplastic 

shaping. In addition, they found that 10wt.-% of plasticizing glycerol produced a flexible 

biodegradable material with reduced hydrophobicity. 

Various reinforcements or fillers have also been explored to develop 

biocomposites with improved toughness and water resistance. For example, Wu et al.43 

developed inexpensive corn gluten meal composites of improved toughness, reinforced 

with wood fiber, by using compression and an injection-molding process. However, the 

wood fiber content did not affect the water resistance of these composites. In addition, 

Wang et al.44 fabricated soy protein plastic reinforced with such fillers as chitin whisker, 

kraft lignin and hydroxypropyl lignin, exhibiting increased flexibility and improved water 

resistance. 

Fillers, such as partially denatured proteins from animal co-products, available 

renewably at low cost, can play a significant role in the development of bio-based 
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plastics. However, limited studies have been conducted on these proteins. For example, 

Garcia et al.45 developed plastics from the blends of meat-and-bone-meal and functional 

sodium caseinate. These plastics exhibited the characteristics of an amorphous 

hydrophilic polymer and, under different relative humidity, produced a range of materials 

of varying stiffness due to changes in the glass-transition temperature, a range similar to 

that showed by amorphous plastics produced from soy, wheat gluten, and gelatin 

proteins. In addition, plastic samples having more than 15% moisture exhibited higher 

elongation, and one with moisture less than 15% showed brittleness similar to that of a 

glassy material.  

Moreover, various organic and inorganic fillers have been extensively used in the 

development of epoxy-based composites. These traditional thermoset polymers, 

frequently used for structural composites in aerospace, marine and transportation 

domains, are also derived from dwindling fossil fuels. Therefore, vegetable oil-based 

epoxies are receiving increased attention as more environmentally sound replacements. 

 

2.3: Plastics from natural epoxy 
 

Biodegradable materials are receiving increased attention due to their availability 

on a renewable basis and their environmental advantages. Depletion of non-renewable 

resources and dependence on petroleum-based polymers is causing a growing urgency to 

develop and commercialize new, environmentally compatible biobased polymers.46 In 

this context, natural oils from agricultural resources, such as linseed oil and soybean oil, 

are useful in polymer material synthesis.47 These natural oils can be functionalized by 
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epoxidation with organic peracids or H2O2 (hydrogen peroxide) and are considered as an 

inexpensive renewable material for the generation of thermoset epoxy.48  

Thermoset composites from epoxy resins are often used in high-performance 

structural applications because they generally possess excellent properties, such as 

toughness and dimensional stability.49,50. These resins are generally used as the binding 

agent, offering attractive combinations of strength, ease of processing, and cost. For 

example, epoxy resin is widely used as the binder in the composites reinforced with 

carbon fibers used in aerospace applications.51 

 

2.3.1. Epoxy resins 

Typically, epoxy resins contain a characteristic oxirane structure or epoxide 

structure, as shown in Figure 2.6 that can be converted into a cross-linked structure 

through a curing reaction. This curing can be achieved using anhydrides of carboxylic 

acids; compounds with active hydrogen such as polyamines, polyphenols, polyalcohol, 

polycarboxylic acids and polythiols; or catalysts such as Lewis acids and t-amines.52 

During the crosslinking process, two important phenomena of gellation and vitrification 

occur. The sudden and irreversible transformation from a viscous liquid to an elastic gel 

is called the gel point, the time at which the polymer no longer flows and, thus, is no 

longer processable. This gel point depends on the functionality, reactivity and 

stoichiometry of the reactants. For example, the gel point of a difunctional epoxy cross-

linked with a stoichiometric amount of tetrafunctional amine having all hydrogens of 

equal reactivity is calculated to be α=0.577 (Flory, 1953).  
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Figure  2.6.  Chemical structure of an epoxy prepolymer. Note: nX (of this compound) is 
= q+3. Compounds with q= 0.1-0.6 are liquid, those with q-2-12 are solids. 

 

The second phenomenon, which may occur at any stage during cure, is the 

vitrification of the growing chains or network. This transformation from a viscous liquid 

or elastic gel to a glass begins to occur as the glass transition temperature becomes 

coincidental with the cure temperature. Vitrification has the potential to bring curing to 

an abrupt halt. However, it is a reversible transition, and curing can be resumed by 

heating epoxy to devitrify the partially cured thermoset. The onset of vitrification exhibits 

a shift from the chemical control to the diffusional control of the reaction and may be 

observed in the gradual decay of the reaction rate. Therefore, one-part epoxy is widely 

used for developing structural composites as these contain latent curing agents, activating 

the reaction at higher temperatures, allowing significant curing before vitrification. For 

example, a one-part epoxy system comprised of diglycidyl ether of bisphenol A 

(DGEBA), dicyandiamide (DDA) and accelerator Monuron has been extensively studied 

in the development of high-performance composites. 

DDA has been used as a curing agent for epoxy resin in applications ranging from 

adhesives to composites and from printed circuit boards to powder coatings.53  The most 

stable isomer of dicyandiamide has the cyano group on the imine nitrogen 
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The DGEBA/DDA system can be cured at approximately 180ºC-200ºC. Moreover, the 

addition of such accelerators as aryldimethyl urea compounds (Figure 2.7) monuron (a), 

diuron (b), fenuron (c) and TDI-uron (d) results in a lowering of the curing temperature to 

approximately 130ºC. These compounds give the latency at room temperature necessary 

to formulate this single-component system.  

R1

R2 NH CO N(CH3)2

 

a: R1=Cl, R2=H; b: R1=Cl, R2=Cl; c: R1=H, R2=H; d: R1=CH3, R2=NH-CO-N (CH3)2 

Figure  2.7.  Different aryldimethyl urea compounds 

 

The synergistic effect of dicyandiamide and Monuron was investigated by Laliberte et 

al.54 using DSC. The activation energies of these mixtures--epoxy resin+DDA, epoxy 

resin+DDA/Monuron, and epoxy resin+Monuron-- were found to be 39, 22, and 19 

kcal/mol, respectively. The by-product of the resin+Monuron reaction is dimethyl amine. 

It was found that dimethylamine is able to dramatically enhance the reactivity of DDA. In 
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subsequent research, Barwich et al.55 proposed the possible curing pathways of 

DGEBA/DDA/monuron system represented in Figure 2.8. 
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Figure  2.8. DGEBA/DDA curing pathways. 
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2.3.2: Ultrasonic curing 
 

Another important aspect of these epoxy systems is the availability of a curing 

method at a minimum processing cost for the development of desired material. The 

traditional curing processes include oven heating, hot presses and platens, autoclave, 

infrared heating, and heating by electrical resistance heaters.56 These conventional 

thermal energy processes, which conduct heat from the outside to the inside of the 

composite, can be hindered by the sample geometry and the relatively low thermal 

conductivity of the epoxy itself. The primary disadvantages of these processes, 

prohibitive in many technical applications, include high energy consumption, the time 

required to raise the temperature (slow heating), and the time needed to cool to a safe 

handling temperature.  

Research has been conducted to investigate several unconventional epoxy curing 

methods for accelerating the curing process and reducing the total time of cure.57 These 

processes can be classified as radiation curing using UV, gamma rays and electron 

beams; induction curing; dielectric curing using radio frequency and microwaves; and 

ultrasonic curing.  For example, Crivello et al.58 used high-energy radiation in the form of 

electron beam irradiation to develop carbon/epoxy laminates and wood-reinforced 

composites. Microwave heating has been the most common method studied because of its 

exceptional high heating rate; though a non-uniform electric field distribution in the 

material produces hot spots, which may degrade the material. The ultrasonic process 

cures the epoxy system from the inside of the bulk material, preventing hot spots and 

allowing uniform curing of composites.59,60 
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Ultrasound, generally considered to be approximately 20 kHz and higher, is 

propagated via a series of compression and rarefaction waves induced in the molecules of 

the medium through which it passes.61 At sufficiently high power, the rarefaction cycle 

may exceed the attractive forces of the molecules in the liquid and lead to the formation 

of cavitation bubbles. These bubbles grow over a few cycles, taking in vapor or gas from 

the medium (rectified diffusion) until it reaches equilibrium size, matching the frequency 

of the bubble resonance to that of the applied ultrasound. This acoustic field experienced 

by the bubble is not stable due to the interference of other bubbles, resulting in a sudden 

expansion to an unstable size before collapsing violently and generating intense local 

heating and high pressures of approximately 5000°C and 1000 atm at heating and cooling 

rates of more than 1010 K/s.62 These hot spots are responsible for producing the heat, 

which drives the high-energy chemical reactions. This behavior is schematically shown in 

Figure 2.9.  
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Figure  2.9. Schematic of cavitation effect. 
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Traditionally, heat and pressure are used to impregnate the reinforcement with 

matrix resin, thereby obtaining high quality prepegs, to consolidate their multi-layers of 

the prepegs, to debulk and deaerate the consolidated body, and to cure them.63 These 

processing conditions for curing fiber-reinforced thermoset polymer composites can be 

provided by autoclaves of appropriate size, which are expensive and difficult to schedule. 

In contrast, the out-of-autoclave ultrasonic curing method generates both pressure and 

heating through viscoelastic dissipation.64 Research has shown the benefits of using sonic 

energy in place of the traditional curing process of direct heating under pressure. These 

advantages include (1) the resin viscosity is reduced at a given temperature, producing 

better consolidation without resin advancement; (2) the time of resin curing is reduced by 

at least a factor of two, causing an increase in the manufacturing throughput; and (3) the 

sonic energy absorption tends to be self-limiting as curing advances, reducing the risk of 

over-curing and damage to the composites.63 

The interaction of sonic energy with the uncured resins can produce both thermal 

and non-thermal effects due to micro-mixing, lower viscosity and higher diffusion rates. 

For example, the DSC technique in dynamic and isothermal modes has been used to 

study the kinetics of epoxy curing.65 If the curing reaction is the only thermal event, then 

the rate of heat released during curing, ⎟
⎠
⎞

⎜
⎝
⎛

dt
dH , can be directly proportional to the rate of 

reaction, 
dt
dc , based on Equation 2.2: 

⎟
⎠
⎞

⎜
⎝
⎛

Δ
=

dt
dH

Hdt
dc 1            (2.2) 
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where c represents the extent of the reaction.  

Therefore, the DSC technique can be used to determine the curing kinetics of epoxy 

curing, representing by the nth order (Equation 2.3) or the autocatalytic form (Equation 

2.4), respectively: 

( )nck
dt
dc

−= 1          (2.3) 

( ) mn cck
dt
dc

−= 1          (2.4) 

 

According to nth order, the reaction rate is maximum at the time t=0 while for the 

autocatalytic form, it is maximum at some intermediate conversion, but the initial rate is 

zero. A study by Kamal66 showed that, during the isothermal curing of epoxy system, the 

curing reaction showed a marked autocatalytic behavior. Kwan and Benatar67 stated that 

the high and rapidly changing heat rate produced by ultrasonic curing makes the heating 

profile impossible to simulate by conventional heating methods. Therefore, they 

developed a chemical model through isothermal studies in DSC to determine the thermal 

effect on the reaction kinetics of epoxy.  

In addition, Liu et al.68 observed that the non-thermal effect of ultrasound 

streaming action accelerates the movement of epoxy resin molecules, enhancing the 

wettability between aramid fibers and epoxy resin. This effect markedly improved the 

interfacial shear strength and tensile strength of the epoxy-based composites reinforced 

with high-performance aramid fibers. 
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Roylance et al.69 developed numerical simulation methods to understand the ultrasonic 

debulking or ultrasonic staging processes. According to the authors, insonification can 

induce very rapid localized heating, achieving temperatures well above the standard cure 

temperature in seconds, but the advancement of the cure may be slight. Therefore, 

ultrasonic curing, an out-of-autoclave process, has the potential to manufacture fast and 

inexpensive epoxy-based composites.  

 

2.3.3: Natural epoxy 

It has been shown that vegetable oils, containing a triglyceride structure with 

unsaturated fatty acid side chains, are considered one of the most important classes of 

renewable sources in the production of biobased plastics and composites.70 

Functionalized vegetable oils, for example epoxidized soybean oil (ESO), acrylated 

epoxidized soybean oil, linseed oil monoglyceride maleate, epoxidized linseed oil (ELO), 

epoxidized canola oil, and epoxidized castor oil, have been synthesized to prepare 

plastics and composites.71,72,73,74 In addition, these natural epoxy have been blended with 

traditional epoxy resins to reduce the brittleness and the cost of conventional epoxy-based 

composites, currently being used in high-performance applications.74,75 

The degree of unsaturation of vegetable oils and the types of curing agents play 

decisive roles in the development of plastics or composites with the required 

characteristics while still exhibiting biodegradability. For example, Xu et al.76 studied the 

curing of ESO using the hardening agents, triethylene glycol diamine (TGD) and 

triethylene tetraamine (TETA), and found that the ESO/TETA system exhibited 
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viscoelastic properties similar to such synthetic plastics as polystyrene, polyethylene and 

polymethylmethacrylate. In addition, Miyagawa et al.75studied the diglycidyl ether of 

bisphenol F (DGEBF)/ELO system using the curing agent methyltetrahydrophthalic 

anhydride (MTPHA) to develop a flexible matrix system without phase separation. In a 

similar study, using the MTPHA curing agent, Boquillon fabricated an ELO-based 

composite reinforced with hemp fibers having mechanical properties appropriate for 

various technical applications. In addition, their findings were scaled up using such 

technologies as resin transfer molding (RTM) or beta-staged prepregs.77 Wool and Lu78 

also synthesized bio-based thermosetting epoxy resins from linseed oil, the most 

molecularly unsaturated of all plant oils, resulting in properties comparable to the 

unsaturated polyesters used in sheet molding composites. 

In summary, natural epoxies have shown the same potential as traditional epoxies 

for developing structural material. However, intensive research is required to mirror the 

properties of epoxy resins, which have been extensively used in prepegs and composite 

materials because of their versatile chemical structures, low volatility during curing, 

limited shrinkage, excellent adhesion, and chemical resistance.79  
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CHAPTER 3 

EXPERIMENTAL 
 
 

The common experimental procedures followed in this research are presented 

here in this chapter, including a list of the chemical reagents, polymers, protein materials 

and epoxies used. The basic instrumentation techniques and general experimental 

procedures are also discussed. 

 

 3.1: Chemical Reagents 

3.1.1: Methyl ethyl ketone (MEK):  

MEK was obtained from Acros Organics.  The MSDS name is 2-butanone, 99+%  

ACS grade. The catalog numbers are 14967-0000, 14967-0010, 14967-0025, and 14967-

0250. The CAS number is 78-93-3. 

3.1.2: Toluene:  

Toluene was obtained from Acros Organics.  The MSDS name is toluene,  

Reagent ACS. The catalog numbers are 424500-0000, 42455-0010, 42455-0250, and  

42455-5000. The CAS number is 108-88-3. 

3.1.3: Hexane:  

Hexane was obtained from Mallinckrodt Chemicals. The MSDS name is hexane,  

ACS grade. The catalog numbers are AC2924, BPH292RS-115, H292500LC, and  

S800322MF. The CAS number is 110-54-3. 

3.1.4: Ethanol:  

Ethanol was obtained from Mallinckrodt Baker Inc. The MSDS name is reagent  
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alcohol, ACS. The catalog numbers are 5911, 6183, 7006, and 7019. The CAS number is 

64-17-5. 

3.1.5: Aerosil R805: 

Aerosil ®R 805 was obtained from Evonic Degussa Corp. The MSDS name is 

aerosil® R 805. The CAS number is 92797-60-9. 

3.1.6: Pyrazine: 

Pyrazine was obtained from Sigma-Aldrich. The MSDS name is pyrazine, 99+%. 

The catalog number is P5603. The CAS number is 290-37-9. 

3.1.7: Benzyl bromide: 

Benzyl bromide was obtained from Sigma-Aldrich. The MSDS name is benzyl 

bromide. The catalog number is B17905. The CAS number is 100-39-0. 

3.1.8: Sodium hexafluoroantimonate: 

Sodium heaxafluroantimonate was obtained from Sigma-Aldrich. The MSDS 

name is sodium hexafluoroantimonate, tech. The catalog number is 237981. The CAS 

number is 16925-25-0. 

3.1.9: Calcium chloride 

Calcium chloride was obtained from Acros Organics. The MSDS name is calcium 

chloride, anhydrous, irregular granules 95%. The catalog number is 3000380010. The 

CAS number is 10043-52-4.   

3.1.10 Natural rubber latex  

Natural rubber latex was obtained from Chemionics Corp. The catalog number is 

P60CX7330.   
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3.2: Polymers Used   

3.2.1: Poly (glycidyl methacrylate) [PGMA]-co- poly (butyl methacrylate) [PBMA] 

copolymer (Structure 3.1 for constituting monomers):  

Random copolymer of GMA (glycidyl methacrylate) and BMA (butyl 

methacrylate), P(GMA-co-BMA) was synthesized in our lab. From proton NMR, the 

molar ratio of GMA and BMA was calculated as 2:1.07. This procedure was developed 

and carried out by Dr. V. Klep, School of Materials Science and Engineering, Clemson 

University.    

O
C
H

CH2C
H2

CH2

CH3

O
O

        

CH2

CH3

O
O C

H2

CH33

              (S.3.1) 

(Glycidyl methacrylate)                        (Butyl methacrylate)  

 

3.3: Epoxy and curing agent used 

3.3.1: One-part epoxy: 

One-part epoxy adhesive system 2214 was supplied by 3M. This resin mainly 

composed of the bi-functional epoxy diglycidyl ether of bisphenol-A (DGEBA), the 

curing agent dicyandiamide (DDA) and the accelerator 3-(p-chloro phenyl)-1,1-dimethyl 

urea (Monuron). 

3.3.1: Epoxidized soybean oil: 

Epoxidized soybean oil, Vikoflex® 7170 was obtained from Arkema, Inc. The 

MSDS name is vikoflex® 7170 epoxidized soybean oil. The CAS number is 8013-07-8. 
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3.3.2 Epoxidized linseed oil: 

Epoxidized linseed oil, Vikoflex® 7190 was obtained from Arkema, Inc., MN and, 

was supplied by Arkema, Inc. The MSDS name is vikoflex® 7190 epoxidized linseed oil. 

The CAS number is 8016-11-3. 

3.3.3. N-Benzylpyrazinium Hexafluoroantimonate (BPH): 

BPH, a latent curing agent, was synthesized by a known literature method.1 Dr. 

Viktor Klep helped during the synthesis process. 

3.3.4. Carbon/epoxy prepreg 

The prepreg tape (DA409U/G35) was supplied by APCM Company. It contained 

42% of unidirectional carbon fiber and 58% of one-part epoxy system 

(DGEBA/DDA/Diuron). 

 

3.4: Protein material used 

3.4.1. Animal co-product proteins: 

Animal co-product proteins feather meal and blood meal were supplied by Fats 

and Proteins Research Foundation (FPRF), VA. Table 3.1 shows the general composition 

of these proteins, including their amino acid compositions.  

3.4.2. Whey Protein: 

The whey protein isolate (BiProTM) was obtained from Davisco Foods Intl. It 

contained 91% protein. 
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Table 3.1. Nutrient Composition of Animal Proteins.1 

Item Blood meal2
 Feathermeal 

Crude Protein, % 88.9 81.0 

Fat, % 1.0 7.0 

Calcium, % 0.4 0.3 

Phosphorus, % 0.3 0.5 

Amino acids   

Methionine, % 0.6 0.6 

Cystine, % 0.5 4.3 

Lysine, % 7.1 2.3 

Threonine, % 3.2 3.8 

Isoleucine, % 1.0 3.9 

Valine, % 7.3 5.9 

Tryptophan, % 1.3 0.6 

Arginine, % 3.6 5.6 

Histidine, % 3.5 0.9 

Leucine, % 10.5 6.9 

Phenylalanine,% 5.7 3.9 

Tyrosine, % 2.1 2.5 

Glycines, % 4.6 6.1 

Serine, % 4.3 8.5 

 

                                                 
1 National Research Council, 1994 
2 Ring or flash dried 
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3.4.3. Chicken egg white albumin: 

Albumin was obtained from Sigma-Aldrich. The MSDS name is albumin from 

chicken egg white, grade II. It contained at least 90% protein. The catalog number is 

A5253. The CAS number is 9006-59-1. 

3.4.4. Human serum albumin: 

The solution of Human serum albumin (HSA), contained 25% of HSA in 

phosphate buffer saline (PBS) (Source: Greiner Bio-One GmbH), was provided by Dr. 

Wen in Department of Bioengineering at Clemson University. HSA solution was freeze-

dried for plastic fabrication. 

 

3.5. Fiber used 

3.5.1. Hemp fiber: 

Hemp fiber was obtained from Hempline, Inc. The MSDS name is hemp fiber. 

 

3.6: General Experimental and Characterization Techniques  

3.6.1: Differential Scanning Calorimetry: 

Differential Scanning Calorimentry (DSC) analysis was conducted using a TA 

Instrument (Model 2920) to determine the denaturing temperature (Tden) and the safe 

processing temperature window of the protein materials at a heating rate of 20°C min-1. 

Data was analyzed using TA Instruments Universal Analysis 2000 version 3.9A software. 

The samples (6-8 mg in standard aluminum hermetic pans) were initially equilibrated at -

60 °C and finally heated to 250 °C, a temperature below onset degradation. The glass 
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transition temperatures were obtained as the inflection point of the step transition. 

Temperature values of the endothermic peak maxima’s were considered as the denaturing 

temperature. 

3.6.2: Thermal Gravimetric Analysis: 

Thermal Gravimetric Analysis (TGA) was conducted using a TA instrument Hi-

Res TGA 2950. Data was analyzed using TA Instruments Universal Analysis 2000 

version 3.9A software. Samples were heated at a rate of 20°C min-1 from room 

temperature to 400 °C under a nitrogen purge(40 mL min-1). 

3.6.3: Dynamic Mechanical Analysis: 

Dynamic Mechanical Analysis (DMA) was performed using a DMS 210 Tensile 

Module (Seiko Instruments Inc., Japan) with specimen dimension of 40 mm × 10 mm and 

an effective gauge length of 20 mm. Samples were analyzed over a temperature range of 

50°C to 225 °C at a heating rate of 2 °C min-1, a frequency of 1 Hz and a deformation 

amplitude of 10 μm. Data were analyzed using EXSTAR6000 version 5.5 software. 

3.6.4. Thermal Mechanical Analysis: 

Thermal mechanical analysis of the cured samples were conducted using a TMA 

instrument (Model SS350, Seiko Instruments, Japan) at a compression load and a heating 

rate of 500mn and 2°Cmin-1, respectively. Data were analyzed using EXSTAR6000 

version 5.5 software. 

3.6.5: Fourier Transform Infrared (FTIR) Spectroscopy: 

FTIR spectroscopy was conducted using a Thermo-Nicolet Magna - IR™ 550 

spectrometer (Thermo Nicolet, Waltham, MA) equipped with a Thermo Spectra-Tech 
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Foundation Series Endurance diamond attenuated total reflectance (ATR) accessory. 

Sample spectra were collected by performing 32 scans at a resolution of 4 cm-1
 from 4000 

cm-1
 to 525 cm-1

 and were ratioed against background spectra collected in the same 

manner. Data was analyzed using OMNIC E.S.P. v 7.2 software. 

3.6.6: Scanning Electron Microscopy (SEM): 

Scanning electron microscopy (SEM) images of fracture surfaces of plastic were 

obtained on Hitachi S3500N (Hitachi High-Technologies, Japan) microscope at an 

accelerating voltage of 20 kV. A Hummer®6.2 (Anatech Ltd., Hayward, CA) sputter 

coater was used to pre-coat the samples with a 4-5 nm layer of platinum for 

approximately 2 minutes with the pressure and voltage set to 70 milli-torr and 15 milli-

amperes, respectively. 

3.6.7. Static Mechanical Testing: 

Tensile stress, percent strain-at-break, and Young’s modulus were measured using 

the Instron testing system (Model 1125) from Instron Corp. Data were analyzed using 

Bluehill 2 version 2.4 software. The test was performed under controlled environment 

(20°C, 65% RH) according to the standard test method for tensile properties of plastics 

(ASTM D638-86) at 5 mm min-1 crosshead speed with a static load cell of 100 kN.  

3.6.8: Moisture Testing : 

A Sartorius MA50 moisture analyzer was used to analyze the moisture. For 

moisture testing, the samples were ground using liquid N2. Moisture Content (MC) was 

determined by Equation 3.1: 

( ) 100]/[ 000 ×−= WWWMC d         (3.1) 
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where  represents the initial weight of specimen; the weight of specimen after 

drying. 

0W dW0

3.6.9. Preparation of plastics from animal co-product proteins and blends:  

The feathermeal protein, as received, was mixed with hexane, stirred for 15 

minutes, and filtered to extract soluble fatty and objectionable contents; this process was 

repeated three times. The defatted protein was then left overnight in a fume hood to dry 

and was later dried under vacuum at a temperature of 50°C for one hour, so as to ensure 

the complete evaporation of any residual solvent. The dried defatted feathermeal was 

manually ground and sieved using a stack of sieves (0.4 inch, 600 micron, and 300 

micron pore opening). The received bloodmeal protein did not require fat removal 

process.  

The proteins’ moisture content was analyzed prior to molding. For whey or 

albumin/feathermeal and whey or albumin/bloodmeal blends, protein powders were 

mixed using a mechanical stirrer while adding water drop by drop to adjust the moisture 

content. 

For feathermeal/rubbery copolymer blend, feathermeal powder was mixed with 

PGMA-co-PBMA polymer solution in MEK solvent and ultrasonicated for 60 min at 

60°C, followed by rotary evaporation of solvent under nitrogen. The blend was left 

overnight in a fume hood. Finally, the sample was dried in an oven at 50°C or one hour 

under nitrogen environment to ensure complete evaporation of any residual solvent. The 

final modified protein powders was found to have bonded moisture content of 13%, 

which was appropriate for developing plastics. 
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Type I specimens (ASTM standard D638-03) were molded from 3.6g of 

feathermeal protein powder at 150°C and 3.6g of bloodmeal powder at 180°C in a hot 

press (Carver 60 Ton Economy Motorized Press). The mold and compression molding 

press are shown in Figure 3.1. The mold was at room temperature during material filling. 

After the molding, the mold and specimens were cooled to ≤ 70°C under pressure before 

they were taken off and allowed to cool further at ambient conditions. The pressure 

during molding was calculated on the basis of picture frame mold’s area in contact with 

both top and bottom cover plates. This approach of calculating pressure experienced by 

the samples has been used by many researchers to prepare protein plastics.2,3,4,5,6  

Moreover, a picture frame mold, itself produce a uniform hydrostatic pressure.6 Flash 

was removed by sanding the edges of the specimen with a grade-320 abrasive sandpaper. 

For whey/feathermeal and albumen/feathermeal blends, the samples were also molded at 

150°C for 5 minutes, and were then cooled to ≤ 70°C under pressure before being taken 

off and allowed to cool further at ambient conditions. Bloodmeal composites reinforced 

with hemp fibers were processed at the similar processing conditions of neat bloodmeal 

plastic. 

3.6.10. Preparation of plastics from undenatured animal and human proteins and blends.  

3.6.10.1. Plastic from chicken egg white albumin, whey and HSA proteins: 

The moisture content of the protein material was analyzed and adjusted prior to 

molding whey, albumin, or HSA by adding water drop by drop while mixing with a 

stirrer. Type-I specimens (ASTM standard D638-03) and DMA specimens were molded 

from 3.6g  and 1.4g, respectively of these undenatured protein powders at 150°C and a 
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pressure of 20MPa for five minutes in a hot press (Carver 60 Ton Economy Motorized 

Press). The picture frame mold was at room temperature during material filling.  

 

          

Figure  3.1. Picture frame mold and compression molding press. 

 

3.6.10.2. Plastic from blends of chicken egg white albumin and whey proteins: 

Whey and albumin proteins were dry-blended using a mechanical stirrer; water 

was then added to the mixture (up to 25% on dry weight of albumin and whey proteins) 

drop by drop. The mixture was kept overnight for equilibration with water. Samples were 

molded from these mixtures at 150°C and a pressure of 20MPa for five minutes in a hot 

press (Carver 60 Ton Economy Motorized Press), followed by ambient cooling and 

subsequent annealing overnight in an oven at 50°C. The picture frame mold used was at 

room temperature during material filling. 

3.6.10.3. Plastic from blends of whey and natural rubber latex: 
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Whey and the natural rubber latex were mixed and stirred manually. Water was 

added until it reached 105% per protein weight. This mixture was then blended in a DSM 

microblender with a co-rotating twin screw extruder at an rpm of 100. Samples were 

molded with modified molding conditions of temperature--120°C, pressure--20MPa, 

holding time--5 minutes followed by ambient cooling and subsequent annealing in an 

oven at 70°C for 3 days.  

3.6.10.4. Bacterial growth: 

One colony of bacteria (S. aureus; Source: ATCC, VA; Cat.# ATCC-29213) was 

taken from a stock plate, placed in 5 ml of tryptic soy broth (Source: BD, NJ; Cat.# 

211822), and incubated in a test tube for 18 hrs at 37°C with agitation. Subsequently, 1 

ml aliquot of broth was centrifuged for 5 minutes at 1200 rpm, and then supernatant was 

aspirated. The pellet of bacteria was resuspended in 1 ml sterilized PBS (Source: 

Mediatech, Inc.,VA; Cat.# MT21-040-CV) and later added to 49 ml of PBS. Plastic 

samples were immersed in 5 ml of the bacteria suspension (2×107 bacteria/ml) and 

shaken at 100 rpm at 37°C. After 3 hrs, the samples were gently rinsed with sterile PBS 

three times. The viability of adherent bacteria on these plastic surfaces was investigated 

by staining them with 30 µl of SYTO 9 (Source: Invitrogen Corp., CA; Cat.# S-34854) at 

room temperature in the dark for 15 minutes and subsequently analyzing them under a 

Leica laser confocal microscope. The number of viable adherent S. aureus on each 

sample surface was counted and expressed relative to the surface area of the sample 

(CFU/cm2). These bacterial growth experiments were conducted by Dr. Wen’s research 

group in the Bioengineering Department at Clemson University. 

 49



3.6.11. One-part epoxy sample preparation: 

Prior to curing, the epoxy adhesive, stored in a freezer, was allowed to warm to room 

temperature. For thermal curing, epoxy was cured in an oven at the desired temperatures. 

According to manufacturer, any of the following cure cycles would result in their full 

cure: 

• 40 min @ 250°F (121°C) 

• 10 min @ 300°F (149°C) 

• 5 min @ 350°F (177°C) 

However, epoxy should be cured at a slow heating rate (1-5°C/min) to prevent the 

thermal gradient in the cured parts, which results in stress-concentration; this is 

responsible for the early failure of the composite part.7 

Figure 3.2 shows the schematic of the experimental setup for the ultrasonic 

curing process. It comprises a copper block, a Teflon insert, a thermal heater and thermo-

controller, and thermocouples (TC). A Branson Ultrasonifier was used to generate the 

pulsed-ultrasound (0-100% pulse duration; one pulse of one second) of certain amplitude 

(20-40micron) at a constant frequency of 20 kHz. Epoxy samples, filled to a height of 5 

mm, were subjected to pulsed-ultrasonic vibrations by immersing an ultrasonic horn a 

few millimeters into the resin. The temperature during epoxy curing was monitored with 

a thermocouple (TC) through a CALCOMMSTM interface (CAL Controls Ltd., UK). 

3.6.12. Thermal and Ultrasonic curing of ESO and ELO: 

The required amount of curing agent BPH was dissolved in acetone and then 

epoxidized vegetable oil (ESO or ELO) was added, stirred for 10 min, and degassed for 
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60 min. The BPH was found to completely soluble in epoxy resins at room temperature. 

The formulated mixture was then poured into a Teflon mold to prepare samples for 

thermal and mechanical characterization. For thermal curing method, samples were cured 

at a temperature of 90°C for 1 hour, followed by a temperature of 180°C for 12 hours in 

an oven. For ultrasonic curing method, the required amount of BPH was dissolved in 

acetone and then ELO and 10wt.-% of Aerosil R805, a thixotropic agent, were added and 

hand mixed to produce a homogeneous viscous paste. Subsequently, this mixture was 

degassed for 60 min to remove acetone and entrapped air bubbles. The formulated 

mixture was then poured into a Teflon mold and covered with aluminum 3003 foil and 

cured using stationary ultrasonic horn producing a pulsed (50% pulse duration) 

ultrasound of an amplitude 40 micron at a preheating temperature of 100°C.  

 

Ultrasound Horn 

Figure  3.2.  Schematic of ultrasonic curing. Note: TC--thermocouple. 
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3.6.13. Thermal, spectral and mechanical characterization of epoxy samples: 

A TA instrument differential scanning calorimeter (DSC 2920) was used to 

monitor the exothermic crosslinking reaction. The total heat of the reaction ( ) for 

the uncured sample and the residual heat of the cured samples (

THΔ

rHΔ ) were measured 

from an individual dynamic scan running from 25ºC to 300ºC at a heating rate of 

10ºC/min. The degree of conversion was calculated by Equation. 3.2:  

Degree of cure (%) = 1001 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

−=
T

r

H
H

α      (3.2)  

where represents the residual heat (J/g); and rHΔ THΔ the total heat for the uncured 

sample (J/g). 

From the dynamic run of the uncured epoxy system between 25ºC and 300ºC at a 

heating rate of 10ºC/min, isothermal temperatures of 100ºC, 115ºC, 125ºC and 135ºC 

(also observed during ultrasonic curing) were selected for developing a chemical model 

from the interval defined between 20ºC below the onset of curing and a point midway to 

the peak, maximum approximately 20-30ºC above the onset temperature of curing. The 

DSC cell was heated to the isothermal temperature, followed by the loading of the sample 

and the initiation of the curing. The typical isothermal curing curve comprises an initial 

baseline, an exothermic peak, and a final baseline (refer Figure 8.13). 

Fourier Transform Infrared (FTIR) scans were collected using a Nicolet Magna 

550 FTIR spectrometer equipped with a Nicolet Nic-Plan FTIR microscope. Samples 

were rolled out with a stainless steel rolling tool into the films on ZnSe IRtran plates, and 

16 scans at a resolution of 4 cm-1 were collected for each sample. The dynamic 
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mechanical properties of the cured samples were analyzed using a DMTA instrument 

(Model DMS 210, Seiko Instruments). Dynamic mechanical analysis was conducted on 

the samples using a tensile fixture at a frequency of 1 Hz with a heating rate of 2°Cmin-1. 

Thermal mechanical analysis of the cured samples was conducted using a TMA 

instrument (Model SS350, Seiko Instruments) at a compression load and a heating rate of 

500 mN and 2°Cmin-1, respectively. 
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CHAPTER 4 

BIODEGRADABLE PLASTICS FROM UNDENATURED PROTEINS:   

ANIMAL AND HUMAN 
 

 
4.1: Introduction 
 
          The importance of natural renewable based eco-friendly/biodegradable materials 

and the depleting sources of fossil fuels have led to the development of polymers from 

plant and animal by-products.1 True biodegradable plastics can be reduced to single 

compounds by microorganisms and an important way of producing these plastics is by 

using natural polymers based on starch, proteins, and cellulose.2 For example, soy protein 

has been recently considered as an alternative to petroleum polymers in the manufacture 

of adhesives, plastics, and various binders.3,4 Proteins are very versatile materials, both in 

terms of their possible sources and their broad capacity for modification to meet the 

diverse requirements of specific applications.  

Proteins can be a viable source of polymers for fiber, molded plastics, films, and 

an array of products currently supplied by the synthetic polymers industry. The major 

advantages are that proteins are derived from a sustainable resource, can be processed in 

much the same way as conventional synthetic polymers, are biodegradable, and are 

available at relatively low cost. Many researchers have developed plastics and 

biocomposites from animal and plant proteins and confirmed the benefits of these 

materials. For example, Paetau et al.3 studied the preparation and processing conditions 

for making soy-plastics through a compression molding process. In another study, 

Salmoral et al.2 developed plastic materials with acceptable properties by the 
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compression molding of blends containing either protein isolates or the defatted whole 

flour of chickpeas. In a study by Wang et al.,5 plastic having properties similar to the 

commercial polystyrene thermoplastic was developed from blends of cereal proteins 

(soybean and wheat gluten) by using commercial extrusion and molding equipment. 

Similarly, biodegradable thermoplastics with improved mechanical properties were 

developed by Orliac et al.,6 made from sunflower protein isolates with glycerol and water 

using an injection-molding process. In addition, Aithani and Mohanty7 developed plastics 

out of corn gluten meal and its blends. Moreover, animal-based proteins, such as chicken 

egg whites,8 whey,9 feather keratin,10 fish myofibrillar,11 and meat-and-bone meal12 

have also been used to develop plastics. 

It is common that bioplastics from protein biopolymers demonstrate low 

toughness and water stability. Extensive research is required to resolve these challenges 

and barriers. In this endeavor, studies have been conducted to utilize biomass-based 

plasticizer and various fillers, such as natural fibers13,14 (e.g., hemp, pineapple leaf), 

natural rubber latex,15 and basalt fiber16 to improve the mechanical properties of 

bioplastics to make them comparable with petroleum-based plastics for their future 

substitution. 

The primary objectives of this phase of research reported here were to develop 

plastics from animal proteins, such as albumin from chicken egg whites and whey, 

substituting them for synthetic plastic materials that are difficult to recycle, and to 

develop plastic from human serum albumin for bioimplants and drug delivery devices 

that would promote minimal bacterial growth and yield better wound healing response. 
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Another important objective was to investigate the thermal and mechanical characteristics 

of these plastics in order to understand the fabrication process, including the issues 

involved such as low toughness. 

 

4.2: Materials 

Protein materials from whey, albumin, and human serum albumin were used to 

develop biodegradable plastics. The whey protein isolate (BiPro, Davisco Foods Intl.) 

and albumin from chicken egg whites (A5253, Sigma-Aldrich) contained 91% and at 

least 90% proteins, respectively. The albumin and whey powders, as received, had a 

moisture content of 5.2% and 7.9%, respectively, which was primarily composed of 

bonded water. According to the supplier, the egg white protein was composed of 77% 

ovalbumin and 16% beta-Globulin. Ovalbumin has a molecular weight of 43 kD 

including 385 amino acid residues; beta globulin has a molecular weight of 76 kD 

including 686 amino acid residues.17 Whey protein is composed of 50-55% Beta 

lactoglobulin (18 kD with 185 amino acid residues) and 20-25% alphalactalbumin (14 kD 

with 123 amino acid residues).17 Natural rubber latex (70% solid, plus 30% water; pH: 

10.8) samples were supplied by Chemionics Corp. The solution of Human serum albumin 

(HSA), which contained 25% HSA in phosphate buffer saline (PBS) (Source: Greiner 

Bio-One GmbH), was provided by Dr. Wen in the Department of Bioengineering at 

Clemson University. After freeze drying, the HSA (molecular weight~ 66,500D) was 

found to contain approximately 4% bonded water.  
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4.3: Results and discussion 

4.3.1: Plastics from albumin and whey proteins 

4.3.1.1 Fabrication of plastics           

To achieve the first objective of developing plastics from undenatured animal 

proteins, whey and albumin proteins were studied to understand the general process of 

plastic fabrication. These two proteins are currently used in various technical 

applications, such as adhesives and coatings,18,19 and are usually produced through the 

spray drying process. This process20 transforms the feed from a fluid state (a solution, a 

suspension/slurry, or a thixotropic paste or melt) into a dried particulate form (powder, 

granules, or agglomerates) by spraying (“atomization”) the feed into a hot drying 

medium. The spray is dried until the desired moisture content in the particles is obtained 

for the required form (as spheres, hollow spheres or cenospheres, fines, and 

agglomerates). The resulting product is then recovered from the air medium.  

In addition to its use for whey and albumin, this process is widely used to produce 

other vegetable-based proteins, including soy beans, wheat gluten, peanuts, sunflower 

seeds, leaves, forage crops, and potato tubers, as well as animal-based proteins, such as 

bloodmeal, fishmeal, whey, and casein. SEM analysis was conducted to determine the 

particle size and shape of the spray dried whey and albumin used in this work. The SEM 

micrographs from Figure 4.1 reveal the particle size of censospheres of approximately 20 

microns.  
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Figure 4.1.  Scanning electron microscopy (SEM) micrographs of albumin (left) and 
whey  protein (right) powders. 
 
 

The albumin and whey powders, as received, had a moisture content of 5.2% and 

7.9%, respectively. DSC measurements provide important information about the nature 

of water incorporated into these proteins. DSC and TGA thermographs for these proteins 

are shown in Figure 4.2. In fact, an endothermic peak around 0°C, which would 

correspond to the melting of crystallizable (unbound) water, was not observed. Thus, it 

was concluded that the water molecules situated in these biopolymers were bound to the 

protein macromolecules.21  

The DSC thermograms in Figure 4.2(a) indicate that the albumin and whey 

proteins start denaturing at a temperature of 47°C and 78°C, respectively. The 

endothermic denaturing peak was observed at a temperature of 135° and 132°C for 

albumin and whey proteins, respectively. However, these temperatures are clearly not the 

degradation one, which onsets around 245° and 260°C for albumin and whey proteins, 

respectively, as can be seen in Figure 4.2(b).       
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Figure 4.2. Thermal analysis of albumin and whey proteins powder: (a) DSC 
thermographs; (b) TGA thermographs. 
 
 

Extensive previous research has found that to produce a plastic with acceptable 

performance from undenatured proteins, water or other molecules of low molecular 
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weight should be added to act as a plasticizer to improve the processability and 

thermoplasticity of the protein during molding.3,22,23 25 It was observed that as received 

whey and albumin proteins used in this research did not produce plastic samples when 

compression molded. This can be seen from the SEM micrograph of brittle “white” 

albumin material shown in Figure 4.3.  It was observed that some fusion of the protein 

particles occurred. However, it appeared that protein material has very high viscosity and, 

therefore, pressure and time of the compression molding in our experiment was 

insufficient to prepare plastic. The result indicates the importance of water as a plastisizer 

for developing bioplastics from these proteins. 

 

                                                           

Figure  4.3.  SEM micrograph of white brittle albumin material molded at a temperature 
of 150°C and a pressure of 20 MPa for 5 minutes. 
 
 

Indeed, previous research has shown that at least 25-30% moisture content is 

necessary to make thermoplastics from plant- and animal-based proteins.2,9 Therefore, 

trials to develop plastics from whey and albumin proteins were conducted at moisture 
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contents of 25% and higher. Table 4.1 shows how increasing the water content beyond 

this optimal amount affects the processability and plastic forming ability. 

 

Table  4.1.  Effect of moisture content on plastic forming ability. 

Moisture Content Consistency Molding material 

25% water Granular Plastic 

35% water Agglomeration of 

granules 

Difficult to make plastic 

40% water More viscous Foam 

50% water Less viscous Brittle foam 

 

To further optimize the molding process, trials were conducted at pressures of 15, 

20, 30, and 40 MPa while keeping the temperature constant at 150°C, and temperatures 

of 130°, 150°, 160°, and 180°C while keeping the molding pressure constant at 20 MPa. 

Many researchers have found that a pressure of approximately 20 MPa2,3,26 is optimal for 

the development of plastics from these proteins. These temperatures cover the possible 

extent of denaturing (50% and higher) before degradation, as confirmed by the DSC 

thermographs of these proteins shown in Figure 4.2(a). The corresponding mechanical 

properties are shown in Figure 4.4 (a,b), which leads to an optimal pressure and 

temperature of 20 MPa and 150°C, respectively based on tensile testing. 

It was observed that the samples produced at temperatures of 130°C and 150°C exhibited 

a slightly yellow color, while the sample at 160°C had a brown color, indicating thermal 

degradation. Moreover, the samples produced at 180°C were dark orange, lacking 
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integrity. Molding pressures below 20 MPa were not sufficient to produce a plastic with 

acceptable mechanical properties. Other researchers have also found this pressure of 

approximately 20 MPa2,3,26 and processing time of approximately of 5 min3,4 optimal for 

the development of plastics from these proteins. Therefore, albumin and whey protein 

powders with 25% w/w of water were compression molded into dogbone and DMA 

samples at a temperature of 150°C and a pressure of 20 MPa for 5 minutes, followed by 

ambient cooling. The resulting plastic samples are shown in Figure 4.5. 
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Figure  4.4(a).  Mechanical properties of plastics produced from albumin protein, 
molded for 5 minutes, followed by ambient cooling: (a) variable pressures and a constant 
temperature of 150°C; (b) variable temperatures and a constant pressure of 20 MPa. 
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Figure  4.4(b).  Mechanical properties of plastics produced from albumin protein, 
molded for 5 minutes, followed by ambient cooling: (a) variable pressures and a constant 
temperature of 150°C; (b) variable temperatures and a constant pressure of 20 MPa. 
 
 

                 
                   

 Figure  4.5.  Dog bone sample from whey (left) and albumin (right) proteins. 

 

It was observed that samples left for conditioning at room temperature 

(~27°C)showed an increase in modulus and stress-at-break and a decrease in strain-at-

break over time due to the evaporation of the residual water content from the molded 
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samples. This behavior is attributed to the decrease in volume occupied by plasticizing 

water, resulting in the densification of the structure. The drying phenomenon and 

corresponding change in mechanical properties are illustrated in Figure 4.6(a,b). After 

two days of an exponential drop in moisture content, the drying approached a steady state 

moisture content of approximately 7-8%.  
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Figure  4.6 (a).  Effect of conditioning at room temperature (~27°C) under fume hood on 
the moisture content of albumin sample molded at a temperature of 150°C and pressure 
of 20 MPa for 5 minutes. 
 
 

Since the change in mechanical properties and moisture content of plastics during 

drying were dynamic events, it was hypothesized that this behavior might be due to the 

dynamic state of conformational change in the secondary protein structures. DSC 

experiments on these samples at different time intervals (one to five days) show some 
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evidence of these structures, as change in heat flow between 95° and 185°C can be seen 

in Figure 4.7(a). After two days in this temperature range, heat flow does not change, 

indicating a more stable structure. In addition, this behavior of densification, which 

probably leads to compact beta sheets, is supported by slow evaporation of water, as 

shown from the TGA thermograph in Figure 4.7(b).  
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Figure  4.6 (b).  Effect of ambient conditioning on the mechanical properties of albumin 
sample molded at a temperature of 150°C and a pressure of 20 MPa for 5 minutes. 
 
 

During ambient drying, it was also observed that plastic samples began curling 

when left unconstrained, and Figure 4.8(a) shows out-of plane curling of unconstrained 

albumin plastic after two days. To prevent this, samples were constrained between glass 

plates. However, instead of out-of-plane curling, in-plane distortion of the constrained 

samples was observed after 14 days, as illustrated in Figure 4.8(b). 
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Figure  4.7.  Effect of ambient conditioning on thermal properties of albumin 
plastic, molded at a temperature of 150°C and a pressure of 20 MPa for 5 
minutes: (a) DSC thermogram, (b) TGA thermogram. 
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It is necessary to highlight that the albumin plastics showed a certain yellow color. It was 

suggested that, it occurred due to oxidation during molding process at high temperature. 

 

                            

b 

Curling 
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 Figure  4.8.  Effect of ambient conditioning on albumin sample: a) Out-of-plane curling 
after two days of unconstrained sample; b) In-plane bending after 14 days of constrained 
sample. 
 

 
To accelerate the drying rate, kinetic experiments for moisture evaporation were 

performed using TGA at various isothermal temperatures, as shown in Figure 4.9. The 

residual moisture content of the plastic samples immediately after molding was 22% 

compared to 25% water content in the initial protein material. In addition, the drying rate 

(slope of curves) increased with an increase in isothermal temperature, as could be 

anticipated. The drying rate was 0.1% per minute at temperature of 50°C compared to 

0.2% per minute at 120°C, assuming a linear drying. 

However, when a sample was dried at 50°C for 4 hours in an oven, its residual 

moisture content was 7.4% compared to 3.7% using TGA. This difference was the result 

of the controlled, higher air flow in the TGA instrument compared to the air flow in oven 
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drying. To standardize the drying conditions, all plastic samples produced from 

undenatured proteins were subsequently annealed overnight at 50°C. In addition, all 

samples were left inside the molds during drying to prevent distortion. This drying 

procedure resulted in a residual water content of approximately 7.9% and 7.2% for whey 

and albumin plastic samples, respectively after overnight drying. 
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Figure  4.9.  Effect of isothermal drying on moisture loss of albumin sample in TGA. 

 

4.3.1.2. Mechanical properties 

For mechanical measurements, samples were prepared under optimal conditions: 

molding temperature of 150°C, molding pressure of 20 MPa, holding time of 5mins, 

followed by ambient cooling and overnight drying in an oven at 50°C. For these samples, 

the stress-at-break, strain-at-break, and modulus were measured to be 19 MPa, 5.8%, and 

1.4GPa for the whey plastics, and 16.7 MPa, 2.8%, and 2.4 GPa for the albumin plastics.   
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Figure 4.10(a) shows the typical stress-strain diagram and fracture micrograph 

for the tested dogbone samples made from the albumin plastic, indicating a ductile 

fracture. The first region, where stress (σ ) increases linearly with strain (ε ), is a region 

of elastic deformation; it is followed by plastic yield and strain hardening regions. This 

phenomenon of bond breakage in the yield region is reversible in nature, as can be 

observed from the cyclic loading testing of plastic samples in Figure 4.10(b). It appears 

that prior to the break, the biomacromolecules constituting the sample fold back when the 

sample is unloaded. This original mechanism of dissipating energy can be extremely 

useful if the plastic is subjected to a cycling loading during use. 

Figure 4.11 shows the dynamic mechanical analysis of plastics made from these 

proteins. DMA technique27 is used to measure the deformation of a material in response 

to vibrational or oscillating forces and determine the storage modulus (E’, stiffness), the 

loss modulus (E”), and the mechanical damping or internal friction (Tanδ or loss factor). 

The loss tangent (
'
"

E
ETan =δ ), called internal friction or damping, is the ratio of energy 

dissipated per cycle to the maximum potential energy stored during a cycle. Metallic 

materials have small internal friction (0.001-0.004), while amorphous viscoelastic 

polymers (internal friction 0.1-0.3) are good damping materials that decrease undesirable 

vibration to safe limits by converting it into heat, which is dissipated within the damping 

materials rather than being radiated as airborne noise.  
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Figure 4.10 (a). Stress-strain curve for the compression molded albumin plastic, molded 
at a temperature of 150°C, and a pressure of 20 MPa for 5 minutes, followed by ambient 
cooling and then annealing overnight at temperature of 50°C. 

 

Both albumin and whey plastics showed viscoelastic characteristics of an 

amorphous hydrophilic polymer. Hence, they have the ability to lose energy as heat 

(damping) and the ability to recover from deformation (elasticity). Moreover, whey 

plastic is stiffer than albumin plastic, as confirmed from the higher storage modulus 

(Figure 4.11(a)) over a temperature range of measurement and higher glass-transition 

temperature (peak of Tanδ curve in Figure 4.11(b)). 
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Figure 4.10(b). Cyclic loading testing of the albumin samples, molded at a temperature 
of 150°C, and a pressure of 20 MPa for 5 minutes, followed by ambient cooling and then 
annealing overnight at temperature of 50°C. 
 

As scientific literature shows, protein plastic samples are very stable under room 

conditions and do not show significant degradation or other detrimental effects during 

storage. For example, previous research by Ye et al.28 demonstrated the absence of 

bacterial development on wheat gluten plastic before it was put into soil. However, under 

favorable soil and water conditions, protein plastic surfaces showed growth of 

microorganisms whose number increased exponentially with time at the beginning of the 

degradation. In addition, the study conducted by Domenek et al.29 observed that 

bioplastics from wheat gluten protein degraded after 36 days under aerobic fermentation 

and within 50 days under farmland soil.  
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Figure 4.11.   (a) Storage modulus; (b) Loss factor or Tan δ of the albumin and whey 
plastic samples, molded at a temperature of 150°C and a pressure of 20 MPa for 5 
minutes, followed by ambient cooling and then annealing overnight at temperature of 
50°C. 
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Therefore, in this research, plastics from undenatured animal proteins were 

expected to be biodegradable. During a short water absorption testing, albumin plastics 

demonstrated approximately 57% swelling in 24 hours and 59% in 48 hours. This 

swelling may result in favorable conditions for microorganisms to attack amide groups to 

cause biodegradation.  

 

4.3.2: Plastics for medical implants and drug delivery 

Protein plastics from various molding processes have a significant potential to 

impact the development of biomaterials for medical applications due to their benign 

properties. Past studies have shown the importance of blood-biomaterial interaction for 

medical devices like catheters, cannuales, guide wires, stents, shunts, vascular grafts, 

heart valves, heart and ventricular assist devices, oxygenators, and dialyzers.30 It is 

important that these devices be biocompatible. If they are not, serious complications may 

result, including thrombosis, thromboembolism, the activation of circulating hemostatic 

blood elements, and the activation of inflammatory and immunologic pathways. 

Biocompatibility avoids these complications by allowing the host to respond 

appropriately to provide an improved healing response.  

Research has found that interfacial reactions involving a physiochemical process 

such as protein adsorption occur with most biomaterials.31 Specifically hydrophilic 

polymers, such as poly(vinyl alcohol), acrylic and methacrylic polymers and copolymers 

exhibit variable thrombogenicity but little capacity to retain the adherent thrombus. 

Surface grafted hydrogels have also been found to improve thromboresistance; as a 
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result, they can improve catheter lubricity and act effectively as reservoirs for drug 

delivery. Like hydrogels, in-vitro studies of hydrophilic polymer poly (ethylene oxide) 

surfaces indicate that they have reduced interaction with blood proteins and cells. Various 

biological and bioactive molecules used as coatings, such as phospholipids and heparin, 

also have been clinically shown to improve thromboresistance. However, the sterilization 

process required before implantation may cause deleterious effects to the coating. 

To address the issue of biocompatibility, the research reported here produced 

plastic samples from chicken egg white albumin and human serum albumin to study their 

interaction with bacteria, which otherwise may produce inflammatory response.  

 

4.3.2.1: Plastic from albumin 

Plastic samples were prepared from egg white protein following the same 

protocol for molding used for egg white and whey proteins. These plastic samples were 

then sonicated for 10 minutes each in a bath of hexane, toluene, and alcohol to check 

their surfaces. It was observed that these solvents did not harm the samples. This cleaning 

process ensured that the samples were free of contaminants and pathogens. Subsequently, 

these samples were sent to Dr. Wen’s research group in the Bioengineering Department 

at Clemson University for observation of bacterial growth during in-vivo and in-vitro 

experiments. The results of initial in-vitro study are reported in Figure 4.12, showing the 

absence of bacterial adhesion after the samples were immersed in a bath of bacterial 

solution for 3 hours compared to a control sample of titanium, which is the typical 

material used for implants. 
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Figure  4.12.  Bacteria cultured on albumin plastic sample (left) and titanium control 
sample (right). 
 
 

One possible explanation of this finding could be the hydration around the 

material, which inhibits the bacterial adhesion. In addition, it has been found that albumin 

possesses good antibacterial activity over many bacterial strains, such as S. aureus, S. 

epidermidis, E coli, S. mutans, and S. mitis.32 According to Tang et al.33 and Kinnari et 

al.34, this may be attributed to the fact that the albumin is an acidic protein with a net 

negative surface charge and reduced surface hydrophobicity and thus promoting 

repulsion between bacteria and surface.  

 

4.3.2.2: Plastics from human albumin 

A similar procedure for developing plastics from egg albumin and whey proteins 

was used to fabricate plastics made from human serum albumin protein. Plastic samples 

were prepared from a 25% human serum albumin (HSA) in phosphate buffer saline 

(PBS), which was purified and freeze dried, resulting in a residual bonded water content 
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of 5%. This non-crystallizable bonded water was not observed in the DSC thermograph at 

0°C (Figure 4.13 (a)). However, this water was observed in the TGA measurement 

shown in Figure 4.13 (b). In addition, DSC thermograms show the protein denaturing or 

unfolding at approximately 130-150°C. This is clearly not the degradation temperature, 

which occurs at approximately 250°C as can be seen from TGA thermographs. Based on 

these results, HSA powder with 25% w/w of added water was compression molded at a 

temperature of 150°C and a pressure of 20MPa for 5 minutes, followed by ambient 

cooling and overnight drying in an oven at 50oC.  

During the preparation of the plastic samples, the protein macromolecules 

denatured due to combined effect of heat, pressure, and time. HSA starts denaturing at a 

temperature of 86°C. In fact, the original endothermic peak due to the denaturation 

(150°C) was not detected for the plastic samples obtained (Figure 4.13(a)). The result 

may indicate that another type of folded structure is formed during the plastic 

preparation. TGA results showed that a different weight loss pattern was observed for the 

plastic samples (Figure 4.13(b)) in comparison to the original HSA material. 

Specifically, the first water weight loss occurred over a more extended temperature 

range: from room temperature to approximately 250°C. The slowdown of the water loss 

can be explained by the denser structure of the plastic sample as compared with the 

protein powder. The onset temperature of degradation (260°C), however, was virtually 

unaffected by the compression molding. 

The mechanical properties of plastics produced from human serum albumin were 

compared to those of plastics produced from chicken egg white albumin, as shown in 
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Figure 4.14. HSA plastic exhibited increased strength, elongation, and modulus 

compared to egg white plastic. Past research has found that protein-based plastics are 

composed of a thermoset network, resulting from such factors as interaction due to 

hydrogen bonding in beta-sheets35 and the formation of crosslinks36 through the amino 

groups reaction. These crosslinks on thermal heating may form amide and ester links 

because of the reaction between the COOH and NH2 side groups and the COOH and OH 

side groups of amino acid residues, respectively. The free COOH groups are primarily 

found in amino acids, such as aspartic and glutamic acid, while the OH groups are found 

in serine, threonine, and tyrosine amino acids; the NH2 side groups are found in arginine 

and lysine amino acid residues. In addition, higher molecular weight of HSA protein 

suggests better mechanical properties than egg albumin. 

However, the comparison of storage modulus (E’) and loss factor (ratio of loss 

modulus to elastic modulus) of these plastics, as seen in Figure 4.15, did not demonstrate 

a significance difference. However, lower values of the loss factor between room 

temperature and 150°C, as well as the higher peak temperature (or glass-transition 

temperature) of HSA plastic may suggest a stronger network structure than egg whites 

plastic, probably because of the formation of multiple crosslinks.  

Moreover, it was observed that HSA plastics swelled to 83% when immersed in 

DI water for 24 hours, becoming a flexible gel. If left under ambient conditions, HSA 

plastic sample returned to a dry state over a period of time. 
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Figure 4.13.  Thermal analysis of HSA protein powder and its plastic: (a) DSC 
thermographs; (b) TGA thermographs. 
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Figure 4.14.  Mechanical properties of plastics produced from human serum albumin and 
egg white proteins, molded at a temperature of 150°C and pressure of 20 MPa, followed 
by ambient air cooling and annealing overnight at 50°C. 
 

To observe the swelling kinetics in water within 24 hours period, TMA setup 

involving a quartz probe in compression mode was used as in Figure 4.16. As Figure 

4.17 indicates the initial swelling rate was fast, slowing until eventually approaching a 

steady state. This characteristic swelling, similar to that of hydrogels and poly (ethylene 

oxide) surfaces30, may help in designing medical devices having an improved 

thromboresistance and biocompatibility while at the same time being flexible and 

biodegradable. 
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Figure  4.15.  Dynamic mechanical properties of plastics produced from human serum 
albumin and egg white proteins, molded at a temperature of 150°C and a pressure of 20 
MPa, followed by ambient air cooling and annealing overnight at 50°C: (a) Storage or 
elastic modulus, (b) Loss factor or internal friction. 
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Figure 4.16.  Experimental setup of swelling kinetics of HSA plastics using 
thermomechanical analyzer.  
 
 

To examine the change in modulus during swelling, the TMA setup shown in 

Figure 4.16 was used. The change in the lateral deformation of a sample over time is 

shown in Figure 4.18. First, the depth of penetration of the dry sample was measured 

under a 50mN compression load. Subsequently, water was added to the Petri dish and the 

sample was allowed to swell without any load on the probe for approximately two hours. 

The depth of penetration of the resulting gelled material was measured at the same 

compression load of 50mN. The temperature during the entire process was the room 

temperature. The Young’s modulus of this material was determined using Equation 4.1, 

as Yanni et al.37 demonstrated there was a correlation between the data using TMA and 

the data from the accepted ASTM methods.38 

Dd
FE

4
3

=  or 
d
aE =            (4.1) 

where: E represents the modulus, MPa; F the force, N; D the diameter of a circular, flat 

tipped probe, mm; and d the penetration depth, mm. Note: a represents the constant. 
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According to them, Young’s modulus of a material may be determined as a function of 

temperature by following the penetration of a weighted probe into a sample as the sample 

is heated at a uniform rate. However, this is not an absolute method, which requires 

calibration for any material of interest. 
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Figure  4.17.  Swelling deformation measured during the swelling kinetics of plastics 
produced from human serum albumin protein, produced at a temperature of 150°C and 
pressure of 20 MPa, followed by ambient cooling and annealing overnight at 50°C. 
 

The initial Young’s modulus was 3.13 GPa, and the constant (a) was 18.3. As 

Figure 4.18 shows, after being subjected to a swelling deformation, the modulus of the 
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plastic determined by Equation 4.2 is reduced due to gelation. This trend continues until 

the gel system collapses after eight hours, reaching a stable gel system state. 
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Figure 4.18.  Modulus of plastics produced from human serum albumin protein, 
produced at a temperature of 150°C and a pressure of 20 MPa, followed by ambient 
cooling and annealing overnight at 50°C. 
 

 

To modify the degree of swelling, calcium ions were added as a crosslinking 

agent. Calcium ions can interact with carboxylic units present in aspartic and glutamic 

amino acids residues and form ionic bridges between different chains of protein material. 

This method to modify mechanical properties and behavior of polymers containing 

carboxylic groups employing Ca2+ ions is known and used, for example, to alternate 

properties of alginate fibers.39 
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During one of the swelling experiments using the TMA probe, calcium ions 

(0.25%w/v of CaCl2 solution) were injected, and as Figure 4.17 shows, the system 

shrank as water molecules were replaced by calcium ions forming crosslinks with 

carboxylic units. To substantiate this effect of calcium ions on crosslinking, one sample 

of HSA plastic was swelled under water for two hours and then transferred to a calcium 

chloride solution (0.25%w/v) overnight. The sample was then dried under ambient 

conditions for three days before their swelling was measured using the TMA setup 

described earlier. There was found to be a significant drop in swelling, as can be seen in 

Figure 4.17, which is attributed to the new crosslinks formed by calcium ions. Thus, it is 

possible to vary the concentration and treatment time of calcium ions to alter the water 

resistance properties of these plastics. 

 

4.4: Conclusion 

Plastic samples made from pure, undenatured animal proteins of chicken egg 

whites, whey, and human serum albumin were successfully produced through the 

compression-molding process. These plastics were prepared under the optimal 

conditions: molding temperature of 150°C, molding pressure of 20 MPa, holding time of 

5mins, followed by ambient cooling and overnight drying in an oven at 50°C. The water 

content in the protein material during thermal processing played a vital role in the 

development of these plastics. In addition, ageing (water evaporation) during storage lead 

to an increase in the plastic’s mechanical properties of strength and stiffness (modulus). 

A reversible stress-strain property over the yield region was observed. These plastics 
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showed viscoelastic characteristics of an amorphous polymer. In addition, significant 

swelling of these plastics in water may produce favorable conditions for microorganisms 

to attack. 

Plastic samples produced from chicken egg white albumin and human serum 

albumin demonstrated no bacterial adhesion when cultured with S. aureus bacteria. HSA 

plastics exhibited increased strength, elongation, and modulus compared to egg white 

plastics. There was found to be a significant drop in swelling of HSA plastics due to 

modification with calcium ions as crosslinks. 
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CHAPTER 5 

BIODEGRADABLE PLASTICS FROM BLENDS 

OF UNDENATURED PROTEINS 
 

 
5.1: Introduction 

One of the most efficient routes for obtaining plastics with enhanced properties is 

polymer blending, in which two or more polymers are combined in one polymeric 

material. For instance, blends of synthetic and natural polymers (e.g., polysaccharide, 

proteins) have been used to produce totally and partially degradable blends.1 For a 

polyblend, a weakness in one component can, to a certain extent, be camouflaged by the 

strength in the remaining parts.2 In a homogeneous blend, the components of the blend 

lose part of their identity. The final properties of a miscible blend usually follow the so-

called “mixing rule” (the arithmetical average of blend components) (Figure 5.1).   

In a phase-separated blend, the properties of all blend components are present, 

and the final performance of the blend is very dependent upon the size of structural 

elements and their adhesion at the interface.2 In general, the majority of immiscible 

blends are incompatible and demonstrate negative deviation from the “mixing rule” 

because of gross phase morphology and low interfacial adhesion. These blends are in 

many ways futile if they are not compatibilized. In a few exceptional cases, some 

properties of a compatible blend may be better than those of the individual components.  

Namely, a synergistic effect, which is sometimes difficult to predict, is observed. The 

cartoon of mechanical performance of polymer blends is represented in Figure 5.1.  
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Figure  5.1. Mechanical performance of polymer blends. 

 

Salmoral et al.3 studied compression molding processes to prepare plastic with 

acceptable properties from the blends containing chickpea proteins, starch, and glycerol. 

In addition, Wu et al.4 developed plastics from the blends of soy meal and natural rubber 

pellets of improved toughness and water resistance. 

The blending of proteins with synthetic biodegradable polymers has also been 

studied to address the issues of water resistance and flexibility. For example, Zhong and 

Sun5 prepared plastics with improved mechanical and water resistance properties from 

the blends of soy protein and synthetic biodegradable polycaprolactone, along with 
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methylene diphenyl diisocyanate (MDI) as a compatibilizer. Moreover, they used another 

synthetic polymer poly(ethylene-ethyl-acrylate) along with MDI to produce plastic with 

better properties than those demonstrated by the blends of soy protein and 

polycaprolactone.6 In addition, Aithani et al. 7 developed injection-molded biodegradable 

plastics from the blends of corn gluten meal (a byproduct of ethanol industries) and 

polycaprolactone for packaging. Similarly, Mungara et al.8 studied the blends of soy 

protein and biodegradable polyester along with polyvinylpyrolidone as a compatibilizer 

to produce plastics with reduced moisture sensitivity, resulting in a good shelf life and 

stability under ambient conditions. 

In another study, Wang et al.9 developed plastics having mechanical properties 

similar to commercial thermoplastics such as polystyrene from the blends of soybean and  

synthetic biodegradable polymer poly(hydroxyl ester ether) as well as wheat gluten and 

poly(hydroxyl ester ether) .  

Protein-protein blends have also been studied for developing glues, fibers, and 

plastics. For example, Zhang et al.10 extruded zein-soy protein to develop wet-spun 

fibers. The tenacity of these fibers was greater than that of soy protein fibers at 11% 

relative humidity.  Kumar et al.11, in a review, stated that soybean protein was mixed 

with animal blood to produce adhesive glue and found to be ideal for wood product 

assembly. In addition, soluble dried chicken blood blended with soy protein in a 1:1 ratio, 

crosslinked with dialdehyde starch, has been used for manufacturing interior-type 

plywood. Soybean-casein glues have also demonstrated composite performance for 

developing panels and flush door assemblies.11 
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The primary objective of this phase of research was to develop blends from whey 

and albumin proteins, and whey and natural rubber latex, to improve the flexibility or 

toughness of these protein-based plastics while minimizing the use of synthetic 

petroleum-based products. Traditionally, polyol plasticizers are used to impart flexibility 

to protein-based plastics. It has been found that these plasticizers can penetrate out of 

protein matrix and form liquid-like drops on the surface of a film at high relative 

humidity.12 This phenomenon is called “leaching.” In contrast, rubber is found to be a 

biobased and biodegradable12,13 natural polymer, and has been used for improving the 

elongation properties of the material. The rubber particles are surrounded by protein 

anions, hindering the coagulation of the latex.4,14,15 These proteins are decomposed 

rapidly by bacteria and enzymes when exposed to air, causing the rubber to partially 

coagulate. In the presence of air, crosslinking of the rubber occurs within the latex 

particles resulting in gel formation and subsequent degradation of the polymer chains.15  

Furthermore, protein-protein blends provide an opportunity to use their 

complimentary properties to develop plastics of desired properties. Another important 

objective of this research was to investigate the thermal and the mechanical 

characteristics of these plastics in understanding the fabrication process. 

 

5.2: Materials 
 

Whey and egg albumin proteins, and natural rubber latex, were used to develop 

biodegradable blends. The whey protein isolate (BiPro, Davisco Foods Intl.) and albumin 

from chicken egg whites (A5253, Sigma-Aldrich) contained 91% and at least 90% 
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proteins, respectively. According to the supplier, the egg white protein was composed of 

77% ovalbumin and 16% beta-Globulin. Ovalbumin has a molecular weight of 43 kD, 

including 385 amino acid residues; beta globulin has a molecular weight of 76 kD, 

including 686 amino acid residues.16 Whey protein is composed of 50-55% Beta 

lactoglobulin (18 kD with 185 amino acid residues) and 20-25% alphalactalbumin (14kD 

with 123 amino acid residues).16 Natural rubber latex (70% solid plus 30% water; pH: 

10.8) samples were supplied by Chemionics Corp.  

 

5.3: Results and discussion 

5.3.1: Bioplastics from blends 

5.3.1.1: Blends of whey and natural rubber latex 

Natural rubber was the first biopolymer used in the rubber industry.17 It is found 

to be biobased and biodegradable12,13, a natural polymer, and has been used for 

improving the elongation properties of the material. Rubber latex is essentially a 

dispersion or emulsion of cis-1,4-polyisoprene in water, having particle size between 0.15 

and 3.0µm. Other components of the rubber latex are 1-2% protein and phosphoproteins, 

2% resins, 1% fatty acids, 1% carbohydrates, and approximately 0.5% inorganic salt. The 

rubber particles are surrounded by protein anions, which hinder the coagulation of the 

latex.4,14,15 In addition, these proteins are decomposed rapidly by bacteria and enzymes 

when exposed to air, partially coagulating the rubber. Therefore, blends of whey protein 

and rubber latex were found in this work to be compatible for the development of plastic 

with improved mechanical properties.  
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By using a DSM microblender twin screw extruder, blends of whey protein and 

natural rubber latex were prepared according to the method described in the experimental 

section of this chapter. It was observed that at more than 20% of natural rubber content it 

was difficult to mix and extrude the blend due to the increased viscosity (rubber has a 

molecular weight in excess of one million18). In addition, it was observed that the blends 

required 105% of water per protein weight to obtain smooth processability during 

blending. 

Results of thermal analysis of the blends using DSC and TGA techniques are 

shown in Figure 5.2. The DSC thermograms in Figure 5.2(a) did not demonstrate 

prominent endothermic peaks due to denaturing of the whey protein, indicating the 

plasticizing effect of water. However, an endotherm at 0°C due to unbound water can be 

observed. Extensive previous research has found that to produce a plastic with acceptable 

performance from undenatured proteins, water or other molecules of low molecular 

weight should be added to act as a plasticizer to improve the processability and 

thermoplasticity of the protein during molding.19,20- 22 This crystallizable water was not 

present when whey protein was added with 25wt.-% of water, as shown in Figure 4.2(a) 

of Chapter 4. The on-set of degradation did not change, as can be seen in Figure 5.2(b) 

(compare to Figure 4.2(b) of Chapter 4). 
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Figure  5.2.  Thermal analysis of blends of whey and natural rubber: (a) DSC 
thermographs.; (b) TGA thermogram. 
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It was observed that plastic samples were not possible to prepare using molding 

conditions of whey plastic described in Chapter 3; i.e., temperature--150°C, pressure--

20MPa, holding time--5 minutes, followed by ambient cooling and conditioning 

overnight at 50°C in an oven.  In addition, higher water content (more than 25%) results 

in a foam-like material, lacking integrity. Therefore, samples were molded using the 

modified molding conditions of temperature--120°C, pressure--20MPa, holding time--5 

minutes, followed by ambient cooling and subsequent  conditioning in an oven at 70°C 

for 3 days. The dried sample contained residual moisture content of approximately 6%.  

Figure 5.3 shows the results of thermal analysis of these plastics. The DSC 

thermograph shown in Figure 5.3(a) did not clearly indicate the presence of two phases. 

But, the dynamic mechanical and thermal analysis (DMTA), shown later, confirmed the 

two phases. This difference can be attributed to the higher sensitivity of DMTA than 

DSC. TGA results showed that a different weight-loss pattern was observed for the 

plastic samples (Figure 5.3(b)) in comparison with the original blend material. 

Specifically, the first (water) weight loss occurred over a more extended temperature 

range: from room temperature to about 220°C. The slowdown of the water loss can be 

explained by the denser structure of the plastic sample as compared with the protein 

powder (Figure 5.2(b)). The temperature of degradation, however, was not affected by 

the compression molding. 
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Figure  5.3(a).  Thermal analysis of plastic samples from the blends of whey and natural 
rubber latex: (a) DSC thermographs. 
 
 
The static and dynamic mechanical properties of the plastics at different blend ratios can 

be seen in Figure 5.4. The toughness properties, i.e., both tensile strength and elongation 

in Figure 5.4(a), showed improvement compared to the neat whey plastic. This 

improvement in toughness can be attributed to strong interfacial adhesion between the 

protein and the natural rubber latex.12 
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Figure  5.3(b).  Thermal analysis of plastic samples from the blends of whey and natural 
rubber latex: (b) TGA thermographs. 

 

It has been found that natural rubber latex particles contain, in addition to 

polyisoprene, about 2.5 to 3.5% protein on their surface.18 In addition, Figure 5.4(b) 

demonstrates an overall depression in the storage modulus as the amount of rubber 

component increased to 20% in the blends. Past study with the blends of rigid 

polystyrene and synthetic rubber (styrene-butadiene-styrene block polymers) has also 

found that, by incorporating the rubber particles, modulus of composite reduces and can 

be predicted by theoretical models, such as Kerner equation and its modified form Halpin 
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and Tsai equation.23 In addition, above a polystyrene volume fraction of 0.8, the rubber 

appears to be a dispersion of spherical particles in the polystyrene.  

The height of Tan δ or loss factor peaks in Figure 5.4(c) increased with rubber 

content, confirming the improvement in toughness properties. Tan δ (ratio of the loss to 

the storage modulus) is also called the damping, and is an indicator of how efficiently the 

material loses energy to molecular rearrangements and internal friction.24 In addition, the 

lower transition at approximately (-)75°C can be attributed to the rubber phase, and the 

one around 175°C to whey-rich phase. 
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Figure  5.4(a).  Mechanical properties of plastics produced from blends of whey and 
rubber latex, molded at a temperature of 120°C and a pressure of 20 MPa for 5 minutes, 
followed by ambient cooling and subsequently annealing in an oven at 70°C for 3days: 
(a)Tensile properties. 
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Figure  5.4(b).  Mechanical properties of plastics produced from blends of whey and 
rubber latex, molded at a temperature of 120°C and a pressure of 20 MPa for 5 minutes, 
followed by ambient cooling and subsequently annealing in an oven at 70°C for 3days: 
(b)Storage modulus. 
 

5.3.1.2: Blends of Undenatured proteins 

Mixtures of whey/albumin at various w/w ratios were prepared to obtain the 

polymer blends. Specifically, the protein powders were dry-blended using a mechanical 

stirrer; water was then added drop-by-drop to this mixture (up to 25% on total weight of 

albumin and whey proteins). The powdery mixture set overnight to allow for the 

equilibration of the water distribution. The cartoon of these protein blends is shown in 

Figure 5.5 and represents the basic concept of dry-blending of two proteins in this 

research. 
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Figure  5.4(c).  Mechanical properties of plastics produced from blends of whey and 
rubber latex, molded at a temperature of 120°C and a pressure of 20 MPa for 5 minutes, 
followed by ambient cooling and subsequently annealing in an oven at 70°C for 3days: 
(c) Loss factor or Tan δ. 
 

The protein/protein blend is assumed to be compatible because these proteins 

contain complementary reactive functional groups (for example, amino, carboxy, and 

hydroxy). Because of the reactions between the functionalities at the phase boundary, 

strong interfacial adhesion should be readily achieved during molding at a temperature of 

approximately 150°C. 
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Protein particle-I 

Protein particle-II 

Figure  5.5. Schematic of dry-blending of proteins. 

 

A DSC study of the protein mixture showed almost no crystallizable (unbound) 

water in the samples as shown in Figure 5.6(a), suggesting the water molecules in the 

mixture were bound to the protein macromolecules through hydrogen bonding. 

Denaturing peak temperatures of blends were practically unchanged on mixing compared 

to whey or albumin proteins. This peak was approximately at 132°C. However, enthalpy 

of protein unfolding was found to be higher in blends than in individual protein 

components. This effect is difficult to explan straightforwardly. However, it can be 

supposed that formation of contacts between different (whey and albumin) proteins might 

be responsible for this behavior. The TGA analysis (Figure 5.6(b)) shows the weight-loss 

of the blend protein samples. The first weight-loss occurred from room temperature to 
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approximately 100°C, a loss that was primarily caused due to water evaporation. The 

second weight-loss, suggesting significant degradation of the protein, was initiated at 

225°C. Based on these results, the mixed protein powders were compression-molded 

using a Carver press at a temperature of 150°C and a pressure of 20 MPa for five 

minutes. Subsequently, samples were cooled under ambient conditions; this procedure 

was followed by overnight annealing at 50°C. 

Figure 5.7 shows the thermal characteristics of these plastics, produced at various 

blend ratios. Phase separation can not be easily observed in the DSC thermograph of 

Figure 5.7(a). However, Figure 5.7(b) shows the derivative heat flow, the peaks of 

which correspond to transitions such as glass-transition (Tg). These Tg of approximately 

60°C is probably due to albumin-rich phase and of 120°C due to whey-rich phase (see 

Figure 5.7(b)). Moreover, a slow drying over a broad temperature, shown in the TGA 

thermographs of Figure 5.7(b), confirms a dense structure of these plastic samples as 

compared to the original protein powders. The temperature of degradation, however, is 

not affected by the compression molding. 

Figure 5.8 shows static and dynamic mechanical properties of these blended 

plastics of varying blend ratios. The behavior of these blends was modeled, employing 

known empirical mixing rule of polymer blends. At the lower proportion of either blend 

components, i.e. below 30% of either whey or albumin proteins, both strength and 

modulus followed the mixing rule or showed synergistic effect, as can be seen in Figure 

5.8(a) and Figure 5.8(c). 
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Figure  5.6(a). Thermal analysis of blends of proteins: DSC thermograms.   

 

When the whey component was more than 70%, the plastic demonstrated a much 

higher strength and modulus than plastic with the albumin component above 70%. This 

result may be attributed to the higher effective complimentary reactive groups (COOH, 

OH, NH2) in whey protein (9.6 × 1020 reactive groups per gram) than in albumin protein 

(6.2 × 1020 reactive groups per gram), leading to more crosslinks and resulting in a 
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stronger network structure. However, elongation properties in Figure 5.8(b) 

demonstrated the opposite behavior, which is common. At 50% of each component, there 

was a significant drop in strength and modulus. Thus, probably continuous morphology is 

in effect because of a considerable contribution from both components, resulting in a 

mismatch of mechanical properties and leading to failure, due to the component having a 

lower strength (albumin in this case). 
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Figure  5.6(b).  Thermal analysis of blends of proteins: TGA thermograms.   

 105



0 50 100 150 200
-2

-1

0

(a)

H
ea

t F
lo

w
 (W

/g
)

Temperature ( °C)

 Whey/Albumin 100/0
 Whey/Albumin 10/90
 Whey/Albumin 30/70
 Whey/Albumin 50/50
 Whey/Albumin 70/30
 Whey/Albumin 90/10
 Whey/Albumin 0/100

 

Figure  5.7(a).  Thermal analysis of blends plastic samples produced at a temperature of 
150°C and a pressure of 20 MPa, followed by ambient cooling and annealing overnight at 
50°C: DSC thermograph.   

 

Figure 5.8(d) shows the storage modulus obtained from dynamic mechanical 

testing. As this figure indicates, the storage modulus measured over a range of room 

temperature to 150°C increases as the whey component in the blend increased, probably 

because of increased crosslinks. 
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Figure  5.7(b).  Thermal analysis of blends plastic samples produced at a temperature of 
150°C and a pressure of 20 MPa, followed by ambient cooling and annealing overnight at 
50°C: (b) DSC thermographs.   

 

The Tan δ curves, the ratio of loss modulus to storage modulus shown in Figure 

5.8(e), peak at secondary transition or glass transition temperature (Tg). Increasing the 

whey component in blends leads to a shift in Tan δ peaks towards higher temperature 

values, indicating higher Tg and resulting in a decrease in the height of Tan δ peaks, 

implying an increase in stiffness (more elastic component). 
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Figure  5.7(c).  Thermal analysis of blends plastic samples produced at a temperature of 
150°C and a pressure of 20 MPa, followed by ambient cooling and annealing overnight at 
50°C: TGA thermograph.   

 

5.4: Conclusion 

Plastic samples were prepared from the blends of undenatured chicken egg 

albumin and whey proteins, and from the blends of whey protein and natural rubber latex, 

through the compression-molding process. It was observed that approximately 20% of 

natural rubber and 105% of water were optimal to process and improve the strength and 

elongation properties. However, these samples were molded using the modified molding  
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Figure  5.8(a,b).  Static and dynamic mechanical properties of plastics produced from 
protein blends molded at a temperature of 150°C and a pressure of 20 MPa, followed by 
ambient cooling and annealing overnight at 50°C: (a) Strength; (b) Elongation. 
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Figure  5.8(c,d).  Static and dynamic mechanical properties of plastics produced from 
protein blends molded at a temperature of 150°C and a pressure of 20 MPa, followed 
by ambient cooling and annealing overnight at 50°C: (c) Modulus, (d) Storage 
modulus. 
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Figure  5.8(e).  Static and dynamic mechanical properties of plastics produced from 
protein blends molded at a temperature of 150°C and a pressure of 20 MPa, followed by 
ambient cooling and annealing overnight at 50°C: Internal friction (Tan δ). 
 

 

conditions: temperature--120°C, pressure--20MPa, holding time--5 minutes, followed by 

ambient cooling and subsequent annealing in an oven at 70°C for 3 days. In addition, the 

results from thermal analysis of these plastics indicated phase separation due to dispersed 

rubber particles and whey matrix; these phases were also confirmed by the loss factor 

graphs of dynamic mechanical analysis.  
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Dynamic mechanical and thermal analysis (DMTA) of whey-albumin blends 

confirmed the albumin and whey-rich phases. Properties of whey and albumin proteins 

blends followed mixing rule below 30% of either of these components. In the phase 

inversion region between 30 to 70%, plastics showed decreased tensile strength and 

modulus due to the significant contribution of either of these components, resulting in a 

mismatching of the mechanical properties.  
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CHAPTER 6 

BIODEGRADABLE PLASTICS FROM PARTIALLY 

DENATURED PROTEINS: FEATHERMEAL 
 
 

6.1: Introduction 

Synthetic polymers, almost without exception, are not biodegradable.  Polymers 

such as polyethylene, polystyrene, and polypropylene can persist in the environment for 

many years after their disposal. Therefore, the significance of the depletion of 

petrochemical resources, and the need for eco-friendly/biodegradable materials based on 

easily renewable natural resources, has necessitated the development of polymers from 

agricultural processing products.1 Indeed, the only truly biodegradable plastics are those 

that can be consumed by microorganisms and reduced to simple, eco-friendly 

compounds. Biodegradable plastics are especially important in the production of articles 

that are unlikely to be recycled.2 

The straightforward method of producing biodegradable plastics is by using 

natural renewable and biodegradable polymers based on starch, proteins or cellulose.3 In 

this respect, proteins are exceptionally versatile materials, both in the sources from which 

they can be obtained and in the wide variety of possible modifications, which can be 

helpful in tailoring their properties to the particular requirements of a specific application. 

They present significant advantages in that proteins are derived from a sustainable 

resource and can be processed in much the same way as conventional synthetic polymers. 

For instance, soy protein has been considered recently as an alternative to petroleum 

polymer in the manufacture of adhesives, plastics, and various binders.4- 7 It had been 
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shown that plastics and polymer blends that were made from soy protein had high tensile 

strength and good biodegradable performance. In another study, compression molding of 

blends that contained either protein isolates or defatted whole flour of chickpea produced 

plastic of acceptable properties.3 Protein isolates from sunflower, along with glycerol and 

water, were also used in various research studies to make thermal injection-molded 

biodegradable thermoplastics with better mechanical properties.8 Injection-molded 

biodegradable plastic made from blends of corn gluten meal (a byproduct of the corn-

based ethanol industries) was also developed.9 In this chapter, we are reporting on yet 

another novel plastic materials produced from proteins. Specifically, we will describe the 

properties of plastics made from proteins produced by the animal co-product (rendering) 

industry, and the process of fabricating those plastics. 

Rendering, a process that involves both physical and chemical transformation, is 

the recycling of raw animal tissue from food animals and waste cooking fats and oils. As 

a result, a variety of value-added products, such as bone meal, meat meal, poultry meal, 

hydrolyzed feather meal, blood meal, and fishmeal, are produced. Without the continuing 

efforts of the rendering industry, the accumulation of unprocessed animal by-products 

would impede the meat industry and would pose a serious potential hazard to animal and 

human health.10 Recently, the outbreak of “Bovine Spongiform Encephalopathy (BSE)”, 

or “Mad Cow Disease”, in Europe has led to prohibition of the use of various proteins 

(e.g., meat and bone meal) from co-product industries in ruminant feed in the United 

States and in any farm animal feed in the European Union. The excessive availability of 

these protein materials has encouraged the search for alternative uses of them, such as 
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fabrication of biodegradable plastics.11  

 

6.2: Materials 

Feathermeal protein was obtained from Fats and Proteins Research Foundation, 

VA. The reported protein content for feathermeal was 87.1% with additional 8.5% fatty 

contents (mainly saturated). Elemental analysis of carbon, hydrogen and nitrogen showed 

49.8% carbon, 7.7% hydrogen, and 12.5% nitrogen content, respectively. A rubbery 

Random copolymer PGMA-Co-PBMA was synthesized by Dr. Viktor Klep. 

 

6.3: Results and Discussion 

6.3.1: Plastics from feathermeal protein  

6.3.1.1: Plastics fabrication  

Feathermeal protein can be described as an insoluble keratin protein containing 

high amounts of cysteine, a sulfur-containing amino acid. The biomacromolecule is 

stabilized by disulfide bonds through cross-links with other intra- or inter-molecular 

cysteine fragments.12 Feathermeal is required to be processed by pressure and 

temperature to destroy the disulfide bonds in order to denature the protein. During the 

rendering process, clean, undecomposed feathers from slaughtered poultry are pressure-

cooked with live steam, partially hydrolyzing the protein and breaking the beta-

keratinaceous bonds that account for the structure of the feather fibers. 

The as-received feathermeal had a moisture content of 5-6%, whereas the sieved 

defatted protein powder, after drying, had a moisture content of 9-10%. It was supposed 
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that the increase in the moisture content might be due to the removal of hydrophobic fatty 

contents (mostly saturated fats). The defatted feathermeal protein powder was analyzed 

by DSC and TGA. Even though the feathermeal protein was thermally treated via the 

rendering process; DSC data (Figure 6.1(a)) indicated the presence of a denaturation 

(unfolding) temperature (~ 134°C) for the defatted feathermeal protein powder. Thus, the 

protein was not fully denatured during the rendering procedures, and further unfolding of 

the biopolymer took place upon heating.  

In one study, protein was extracted out of meat and bone meal (MBM), a by-

product of rendering industries, and found to have good adhesive properties. It can be 

calculated from their experimental data that around 60% of MBM (crude protein-56%) 

protein was soluble and had potential of pure proteins.13 

The cooperative unfolding originates from disruption of the multiple small forces 

that maintain the secondary/tertiary protein structure.14 Disruption of these forces alters 

the enthalpy of the system and causes the temperature to drop, because the unfolding 

process is generally endothermic. When a second DSC run was conducted for the 

feathermeal sample, no additional denaturation was observed. The results indicated that 

full denaturation was reached during the first DSC run. Table 6.1 shows the denaturing 

temperatures of various plant and animal proteins, as obtained by DSC measurements. 

The data suggest that additional denaturation of the feathermeal occurs in the temperature 

range that is typical for denaturation of other protein biomacromolecules.   
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Table  6.1.  Denaturing temperature of various plant and animal proteins from DSC 
studies 
 

Protein 
Denaturation 

temperature (°C) 
Ref. 

Corn zein isolate ~150°C 15

Wheat glutenin 65°C & 85°C 16

Soy protein isolate 80°C & 95°C 17

Fowl feather 

keratin (Dry) 
 170-200°C 18

Fowl feather 

keratin (Wet) 
 110-160°C 18 

Cottonseed isolate ~140°C 19

Whey protein concentrate ~75°C 20

Ovalbumin from chicken  

egg white 
~84°C 21

 

DSC measurements also provided important information on the nature of water 

incorporated into the feathermeal protein sample. In fact, an endothermic peak around 

0°C, which would correspond to the melting of crystallizable (unbound) water, was not 

observed. Thus, it was concluded that the water molecules situated in the feathermeal 

were bound to the protein macromolecules.22 
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Figure  6.1(a).  Thermal analysis of feathermeal protein powder and plastic samples 
produced at a temperature of 150°C and pressure of 20MPa, followed by cooling to 70°C 
under pressure at five minutes of pressing: (a) DSC thermograms.   
 

Figure 6.1(b) shows the weight loss of the feathermeal sample.  The first weight 

loss occurred from room temperature to about 100°C. The loss was mainly caused by the 

water evaporation during denaturation.23 In addition, TGA results (second weight loss) 

suggested that significant degradation of the protein was initiated at approximately 

220°C. 
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Figure  6.1(b).  Thermal analysis of feathermeal protein powder and plastic samples 
produced at a temperature of 150°C and pressure of 20MPa, followed by cooling to 70°C 
under pressure at five minutes of pressing: (b) TGA thermograms.   

 

Based on the results of the thermoanalysis, a certain molding cycle was accepted for the 

preparation of the plastic samples. Specifically, the defatted feathermeal protein powder 

was compression-molded using a Carver press at a temperature of 150°C (between 

denaturation temperature and degradation temperature) and molding pressure of 20 MPa 

for five minutes, and was then cooled to 70°C under pressure. The water content for the 

plastic obtained was on the level of 4%. 

 It was observed that, during the preparation of the plastic samples, the protein 

macromolecules denatured due to combined effect of heat, pressure and time as the 
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original endothermic peak due to the denaturation (~136°C) was not detected for the 

plastic samples obtained (Figure 6.1(a)). Conversely, an endothermic peak at roughly 

173°C was found for the plastic specimens. The result indicates that another type of 

folded structure is formed during the plastic preparation. It was supposed that formation 

of multiple dispersive and hydrogen bonds between amino, carboxy, and hydroxy amino 

acid residuals are responsible for the structurization.  Interestingly, the second DSC run 

(Figure 6.1(a)) shows no peak around 173°C for the feathermeal plastic, pointing to the 

conclusion that pressure might be responsible for the structurization of the protein 

material during the plastic fabrication. 

 TGA results showed that a different weight loss pattern was observed for the 

plastic samples (Figure 6.1(b)) in comparison with the original feathermeal material.  

Specifically, the first (water) weight loss occurred over a more extended temperature 

range: from room temperature to about 210°C. The slowdown of the water loss can be 

explained by the denser structure of the plastic sample as compared with the protein 

powder. The temperature of degradation, however, was virtually unaffected by the 

compression molding. 

 

6.3.1.2: Mechanical Properties 

Figure 6.2(a) shows the typical stress-strain diagram for the tested dog bone 

samples made from the feathermeal plastic. The first region, where stress (σ ) increases 

linearly with strain (ε ), is a region of elastic deformation; it is followed by plastic yield 

and strain hardening regions. In our opinion, the yield point may be attributed to the 
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break in hydrophobic interaction and hydrogen bonds of folded protein macromolecules. 

Remarkably, this phenomenon in the yield region is reversible in nature, as can be 

observed from the cyclic loading testing of plastic samples (Figure 6.2(b)).  
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Figure  6.2(a). Stress-strain curve for the compression molded feathermeal plastic, 
produced at a temperature of 150°C and pressure of 20 MPa for 5 minutes, followed by 
cooling to 70°C under pressure. 

 

It appears that biomacromolecules, which constituted the sample, fold back when the 

sample is unloaded prior to the break. This original mechanism of dissipating energy can 

be extremely useful if the plastic is subjected to a cycling loading during use. 
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Figure  6.2(b). Cyclic loading testing of the feathermeal samples, produced at a 
temperature of 150°C and pressure of 20 MPa for 5 minutes, followed by cooling to 70°C 
under pressure. 

 

Figure 6.3 shows the corresponding SEM micrograph of the fracture surfaces 

(from the tensile test), which indicate the brittle nature of the fracture. The stress at break, 

strain at break, and modulus were measured to be 9.2 MPa, 1.40%, and 2.20 GPa, 

respectively. The observed mechanical properties (high stiffness accompanied by low 

extensibility) are in the range of the values that are typically observed for bioplastics 

fabricated from unplasticized proteins. For instance, for plastic from soy protein, the 

stress at break, strain at break, and modulus were reported to be 35 MPa, 2.6%, and 1.63 

GPa, respectively.24  The properties of plastic made from soy protein are somewhat better 

in terms of strength and elongation. We associate this difference with the fact that protein 

plastics are typically prepared from biomacromolecules, which are thermally untreated 

and possess their native conformation. In this research, the protein had been subjected to 
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denaturation procedures before the fabrication of the plastics. Accordingly, to improve 

their properties, animal co-product proteins can be mixed with proteins that possess a 

lower level of denaturation and which demonstrate better properties. 

 

 

Figure  6.3. Scanning electron microscopy (SEM) micrograph of feathermeal plastic 
produced at a temperature of 150°C and pressure of 20 MPa, followed by cooling to 70°C 
under pressure. 
 
 
6.3.2: Plastics from blends containing feathermeal protein 

One of the most efficient routes for obtaining plastics with improved properties is 

polymer blending, in which two or more polymers are combined in one polymeric 

material. For instance, blends of synthetic polymers and natural polymers (polysaccharide 

and protein based) were utilized to produce totally and partially degradable blends.25 For 

a polyblend, a weakness in one component can to a certain extent be camouflaged by 

strength in the other constituting part.26 In general, the blends can be divided into 

homogeneous (miscible, one phase) and heterogeneous (more then one phase). In a 
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homogeneous blend, the components of the blend virtually lose part of their identity. The 

final properties of a miscible blend usually follow the so-called “mixing rule” (the 

arithmetical average of blend components). In a phase-separated blend, the properties of 

all blend components are present, and the final performance of the blend is very 

dependent on the size of structural elements and the adhesion at the interface. In general, 

a majority of immiscible blends are incompatible and demonstrate negative deviation 

from the “mixing rule” because of gross phase morphology and low interfacial adhesion. 

These blends are in many ways useless if they are not compatibilized.26 In a few 

exceptional cases, (some) properties of a compatible blend may be better than those of 

the individual components. Namely, a synergistic effect, which is sometimes difficult to 

predict, is observed.  

 
6.3.3: Blends of feathermeal with undenatured proteins 
6.3.3.1: Fabrication of plastics 
 

For the case of blending, as considered in this research work, where (partially 

denatured and non-soluble) feathermeal is blended with (non-denatured, water soluble) 

proteins, a heterogeneous polymer blend ought to be obtained. The protein/protein blend 

is supposed to be compatible, since the proteins possess complementary reactive 

functional groups such as amino, carboxy, and hydroxy. Owing to the reactions between 

the functionalities at the phase boundary, strong interfacial adhesion should be readily 

achieved after annealing of the samples at elevated temperatures. 

Two commercially available non-denatured and pure natural proteins, such as 

albumin (chicken egg white) and whey, were selected for the blending experiments. 
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Whey and albumin proteins have already been used in various technical applications, 

such as adhesives and coatings.27,28   

The stress-at-break, strain-at-break, and modulus were measured to be 19 MPa, 

5.8%, and 1.4GPa and 16.7 MPa, 2.8%, and 2.4GPa for the whey and albumin plastics, 

respectively. In general, the plastics obtained showed higher strength and elongation than 

did the feathermeal materials. On another hand, the stiffness of the feathermeal plastic 

was somewhat higher. To compare the properties of the whey/albumin and feathermeal 

plastics directly, the procedure for preparation of the feathermeal samples was modified 

to include annealing overnight at 50°C.   

The change in fabrication resulted in the alteration of mechanical properties of the 

feathermeal plastic. The stress-at-break, strain-at-break, and modulus were determined to 

be 5.7 MPa, 1.1%, and 2.87 GPa. The moisture content for the plastic was on the level of 

4%. The annealing increased the modulus of the feathermeal plastic, but it caused a 

significant decrease in strength and elongation. Evidently, plastics obtained from the 

different biomacromolecules have complementary properties, and blending of the 

proteins should result in an improvement of the mechanical performance of the 

feathermeal polymeric materials. 

Mixtures of feathermeal/albumin and feathermeal/whey proteins in 50%:50% w/w 

ratios were prepared to obtain polymer blends from the biomacromolecules. Specifically, 

the defatted feathermeal protein powder (moisture content of 10%) was dry-blended with 

the natural proteins using mechanical stirrer; water was then added to the mixture (up to 

25% on dry weight of albumin and whey proteins) drop by drop. The mixture was kept 
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overnight for equilibration of water. A DSC study of the protein mixtures showed that 

there was practically no crystallizable (unbound) water in the samples. Therefore, the 

water molecules situated in the mixtures were bound to the protein. The blend samples 

were molded to form plastic samples at a temperature of 150° C and a pressure of 20 

MPa for 5 minutes, and were then cooled to 70°C under pressure and dried in an oven at 

50°C overnight. 

 

6.3.3.1: Mechanical properties 
 

The mechanical properties from the static testing showed significant improvement 

as compared to unmodified feathermeal protein samples, as shown in Figure 6.4. In 

general, addition of the non-denatured proteins to the feathermeal material improved the 

elongation at break and the stress-at-break of the plastics. In fact, strain-at-break for the 

blend increased more than 1.5 times as compared with plastic made from feathermeal 

alone at the same conditions. Significant improvement was found in the strength of the 

blended material. The stiffness of the polymer blend made with albumin was slightly 

lower than expected, since pure albumin plastic possessed lower stiffness than the pure 

feathermeal plastic.   

The blend of feathermeal and whey proteins demonstrated the highest breaking 

stress and a Young’s modulus of 12.6 Mpa and 3.34 GPa, respectively. This blend 

demonstrated a synergistic effect in terms of stiffness, since the elastic modulus of the 

blend was higher than the moduli of pure components (2.87 GPa for the feathermeal 

plastic and 1.4 GPa for the whey plastic). 
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Figure  6.4. Mechanical properties of plastics produced from feathermeal and the blends 
of feathermeal/albumin and feathermeal/whey (50%:50% w/w ratios) proteins, molded at 
a temperature of 150°C and pressure of 20 MPa for 5 minutes, followed by cooling to 
70°C under pressure and overnight drying in an oven at 50°C.  

 

The obtained results indicated that blending of feathermeal with whey protein has definite 

potential. Figure 6.5 shows the dynamic mechanical analysis (DMA) of these blends. 

This DMA analysis also demonstrated higher storage modulus with the blend of 

feathermeal and whey protein than with featherrmeal and albumin. To evaluate the 

properties of the blend further, plastics containing different ratios of biomacromolecular 

materials were prepared. Known relationships that have been used to predict properties of 

polymer blends were used to model the behavior of the blends. The relationships were 

developed for spherical inclusions distributed in a matrix, but as a first approximation are 

often used for systems, where inclusions are not spherical in shape. 
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Figure 6.6 shows that the stiffness of the blended plastics depends on the ratio 

between feathermeal and whey in the blend. With the increase in the (stiffer) feathermeal 

component, the elastic modulus of the plastic increases. The dependence deviates from 

the simple “mixing” (additive rule) in a positive way, indicating a clear synergistic effect 

in which the properties of the blend are better than those of the individual components. 

Interestingly, the effect is observed in the region of possible phase inversion, where the 

ratio between the components is close to 1:1. 

For polymer blends containing nearly spherical particles of any modulus, a Kerner 

and Hashin equation has been used to model the level of stiffness. The well-established 

form of the Kerner equation, which considers the dispersed phase as spheroidal in shape, 

has the following form:29 
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where E, E1 ,E2  are the moduli for the binary blend, the matrix and the dispersed phase, 

respectively; φ1, φ2 are the volume fractions of the matrix and the dispersed phase, 

respectively; ν1 is the Poisson ratio for the matrix. (To estimate the volume fractions the 

density of protein material was considered to be 1g/cm3). This equation is valid in case 

of an ideal stress transfer through the interface (strong adhesion between the phases). If 

no stress is transferred (i.e., there is no adhesion between the phases), the Kerner 

equation is simplified, since E2 is then assumed to be zero: 
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Figure  6.5. Dynamic properties of plastics from feathermeal and the blends of 
feathermeal/albumin and feathermeal/whey (50%:50% w/w ratios) proteins, molded at a 
temperature of 150°C and pressure of 20 MPa for 5 minutes, followed by cooling to 70°C 
and overnight conditioning at 50°C. (a) Storage modulus, (b) Internal friction (Tan δ). 
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Figure 6.6. Tensile modulus of the feathermeal/whey blends and comparison with 
theoretical models with four replications at each volume fraction; error bars are ± one 
SD. Note: All samples were molded at a temperature of 150°C and pressure of 20MPa for 
5 minutes, followed by cooling to 70°C under pressure, and overnight drying in an oven 
at 50°C.  Note: FP- Feathermeal Protein. 
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Figure 6.6 shows that the theoretical prediction by Equations 6.1 and 6.2 

indicate that there is good adhesion between feathermeal and whey protein phases. This 

may be explained due to the functional compatibility between proteins (acid-basic 

interaction) and increased amide links from free COOH and NH2 groups. The stiffness of 

the polymer blend in the phase inversion region, where dual-phase continuity is observed, 

can be approximated by the Davies equation30, showing the moduli raised to the one-fifth 

power, as shown in Equation 6.3.  
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5
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EEE φφ +=        (6.3) 

For the projected phase inversion region, experimental results lie above the theoretically 

predicted ones from Davies dual-phase continuity model, suggesting presence of the 

synergistic effect. 

Figure 6.7 shows the change in elongation (or % tensile strain at break) for the 

feathermeal/whey blend. There is a clear negative deviation from the “mixing”(additive 

rule). The elongation at break can be evaluated (for polymer composites and blends) 

using a Nielsen equation.31 According to Nielsen, in general the introduction of a 

dispersed phase into a matrix causes a dramatic decrease in elongation to break. If there is 

good adhesion between the phases, the following equation is approximately correct: 

⎟
⎠
⎞⎜

⎝
⎛ −= 3

1

0 1 φεε C         (6.4) 

where Cε  is the elongation to break of the blend and 0ε  is the elongation at break of 

polymer constituting the matrix. There is a clear indication of good adhesion between 

feathermeal protein and whey polymer, as the experimental data are in close agreement or 
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are higher than the values predicted by Equation 6.4 (Figure 6.7). The obtained results 

are in accord with the elastic modulus calculations. 

 

The presence of dispersed phase is also often expected to decrease the tensile 

strength of a matrix material. According to Nicolais and Narkis32, the tensile (yield) 

strength (σ ) of a composite with “uniformly” distributed spherical filler particles of 

equal radius can be estimated by Equation 6.5.  

)1( b
mC aφσσ −=     (6.5) 

where Cσ  is the composite tensile strength, mσ is the polymer matrix tensile strength, a 

and b are constants, and φ  is the volume fraction of filler.  Constants ‘a’ and ‘b’ depend 

on stress concentration and dispersed phase geometry, respectively. 

For the spherical fillers, if there is no adhesion with matrix and if the fracture goes 

through the filler-matrix interface, the above equation becomes: 

)21.11( 3
2

φσσ −= mC     (6.6) 

According to Piggot and Leidner, the strength at break can be described by first power 

law equation: 

SmC )1( φσσ −=              (6.7) 

 
Where parameter S accounts for the weakness in structure due to stress concentration 

points at polymer-filler interphase. When S is unity, there is no stress concentration 

effect, implying better adhesion. 
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Figure  6.7. Tensile strain at break of the feathermeal/whey blends and comparison with 
theoretical models with four replications at each volume fraction; error bars are ± one 
SD. Note: All samples were molded at a temperature of 150°C and pressure of 20MPa for 
5 minutes, followed by cooling to 70°C under pressure, and overnight drying in an oven 
at 50°C. Note: FP- Feathermeal Protein. 
 

 

Figure 6.8 shows the tensile strength results for feathermeal/whey blends.  The 

values of the stress-at-break are generally (beside one composition) significantly above 

those predicted by Equations 6.6 and 6.7. In fact, the strength of the blend is close to the 

“mixing” rule. The results once again indicate that there is strong interaction between the 

components of the blend. 
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6.3.4: Blends of Feathermeal with rubbery synthetic copolymer 
 

Figure 6.9 shows the micrograph of the feathermeal protein powder. It shows a 

porous structure and can be filled with different impact modifiers or additives for 

improving the toughness properties. A synthetic random copolymer was synthesized from 

GMA (glycidyl methacrylate) and BMA (butyl methacrylate) monomers by Dr. V. Klep. 

Chemical structure of these monomers is shown in Figure 6.10. It was assumed that this 

copolymer might improve the toughness characteristics as long alkyl chains in BMA 

imparts flexibility and epoxy groups in GMA provides reactivity towards NH2 and 

COOH groups in protein, forming chemical anchorage. Varying wt.-% of this copolymer 

was mixed with feathermeal protein according to procedure described in the experimental 

section of the Chapter 3. 

Figure 6.11(a) shows the mechanical properties of plastics produced from 

different such percentages as 1%, 5%, 10%, & 15% of this copolymer. Figures 6.11 

(b,c,d) represent these properties in comparison to some established theoretical models 

such as Kerner, Nielsen and Piggot-Leidner. These empirical models for composites and 

blends have been discussed in Section 6.3.3.1. In addition, Kunori and Geil33 proposed 

Equation 6.8 for systems having strong interfacial adhesion, assuming a strong adhesive 

force between the blend components, the disperse phase will contribute to the strength of 

the blend and the fracture will propagate through the matrix. 

dddmC φσφσσ +−= )1(       (6.8) 
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Figure 6.8. Tensile strength of the feathermeal/whey blends and comparison with 
theoretical models with four replications at each volume fraction; error bars are ± one 
SD. Note: All samples were molded at a temperature of 150°C and pressure of 20MPa for 
5 minutes, followed by cooling to 70°C under pressure, and overnight drying in an oven 
at 50°C. Note: FP- Feathermeal Protein. 
 
 

     
Figure  6.9.  Scanning electron microscopy micrograph of the feathermeal protein 
powder. 
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Figure  6.10.  Chemical structure of monomer for rubbery synthetic copolymer. 

 

where Cσ  is the composite tensile strength, mσ is the polymer matrix tensile strength, 

and dφ  is the volume fraction of dispersed component. 

The experimental results, shown in Figure 6.11(b,c) for tensile strength and 

elongation were having positive deviations from these models, indicating a strong 

adhesion between the blending components. This improvement in mechanical 

characteristics can be attributed to the formation of crosslinks between epoxy groups of 

copolymer and reactive functional groups of feathermeal protein such as carboxyl and 

amino at high temperature of plastic molding. Modulus results, represented in Figure 

6.11(d), showed a reducing trend, which is common with plastics modified with rubbery 

polymers. However, the control sample showed lower mechanical properties, confirming 

the positive effect of this copolymer. Therefore, depending on the percentage of 

copolymer, the mechanical properties of the feathemeal plastic samples could be tailored. 

Figure 6.12 shows the fracture surfaces at different weight % of copolymer of 

PGMA-co-PBMA. All compositions of rubbery copolymer demonstrated uneven fracture 

surfaces, indicating more ductile behavior, compare to flat fracture surface of unmodified 

feathermeal sample, as shown in Figure 6.3.  
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Figure  6.11(a, b).  Mechanical properties of the feathermeal/PGMA-co-PBMA blends, 
molded at a temperature of 150°C and pressure of 20MPa for 5 minutes, followed by 
cooling to 70°C under pressure: (a) Mechanical properties, (b) Tensile strength. 
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Figure  6.11(c, d).  Mechanical properties of the feathermeal/PGMA-co-PBMA blends 
and comparison with empirical models. All samples were molded at a temperature of 
150°C and pressure of 20MPa for 5 minutes, followed by cooling to 70°C under 
pressure.:(c) Strain-at-break, (d) Modulus. 
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Figure  6.12.  Scanning electron microscopy micrographs at different weight (%) of 
copolymer PGMA-co-PBMA: (A) 1% w/w; (B) 5% w/w; (C) 10% w/w; (D) 15% w/w. 
All samples were molded at a temperature of 150°C and pressure of 20MPa for 5 
minutes, followed by cooling to 70°C under pressure. 
 

6.4: Conclusions 

Plastic samples from partially denatured feathermeal protein were successfully 

produced by the compression-molding process. The modulus (stiffness) for the material 

obtained was found to be comparable with that of commercial synthetic material but with 

lower toughness characteristics, which is a common phenomenon among plastics 

produced from animal and plant proteins. A reversible stress-strain property over the 

yield region was observed. Plastic forming conditions for undenatured animal proteins, 

such as albumin and whey proteins were also formulated for developing plastics out of 
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these protein’s blends with feathermeal proteins. The resultant plastic samples made from 

these biomacromolecular blends demonstrated improved mechanical properties as 

compared to neat plastics from feathermeal proteins. The results were interpreted in terms 

of theoretical models to describe mechanical properties such as extensibility, tensile 

strength, and stiffness of the plastics made out of feathermeal/whey blends at various 

volume ratio. The values for the stiffness of the feathermeal/whey blends deviated from 

the simple mixing rule and showed a synergistic effect. 

Plastic samples were also prepared from blends of synthetic rubber copolymer 

and feathermeal protein, demonstrating improved mechanical properties as compared to 

neat plastics from feathermeal proteins. In addition, these results were interpreted in 

terms of theoretical models, describing mechanical properties. 
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CHAPTER 7 

BIODEGRADABLE PLASTICS FROM PARTIALLY 

DENATURED PROTEINS: BLOODMEAL 
 
 

7.1: Introduction 

Rising oil prices and concerns over the dwindling availability of landfill sites have 

necessitated the development of polymers/biodegradable materials from agricultural 

processing by-products. A biodegradable material or green polymeric material can be 

obtained in various such forms as neat polymer, blended product, and composite.1 

Biodegradable plastics are especially important in articles that are unlikely to be recycled, 

such as trash and compost bags, mulch films, and disposable hygienic products.2 

An important way to produce these plastics involves using natural polymers based 

on starch, proteins, and cellulose.3 Several plant proteins, such as wheat and corn gluten, 

soy, pea, and potato, and animal proteins, such as casein, whey, collagen, and keratin are 

available for the development of biodegradable plastics.4 The most relevant properties of 

proteins are good processability, good film forming characteristics, good adhesion to 

various substrates, and barrier properties.5  

For example, Paetau et al.6 studied the preparation and processing conditions of 

soy-plastic through a compression-molding process. These plastics exhibited tensile 

strength comparable to that of commercial polystyrene. In addition, it was observed that 

moisture, temperature, and pressure were important factors for the mechanical and water 

resistant properties.6,7 Although plastics made from soy protein showed improved 

strength and good biodegradable performance, the brittleness problem of protein plastics 
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has not yet been solved. Therefore, blending methods have been extensively explored, 

producing plastics of desired properties. For example, compression molding of blends 

from chickpea protein isolates or defatted whole flour produced plastic materials of 

acceptable properties.3 In addition, blends of cereal proteins (soybean and wheat gluten) 

and poly(hydroxyl ester ether) (PHEE) were produced through commercial extrusion and 

molding equipment, resulting in plastics of comparable properties to commercial 

thermoplastics such as polystyrene.8 

To date, there has been only one reference regarding the development of plastics 

from animal protein co-products, especially from bloodmeal.9 Verbeek10 used chemically 

modified bloodmeal protein to produce plastic using injection molding process. Blood 

meal is produced from clean, fresh animal blood, exclusive of extraneous material, such 

as hair, stomach belchings, and urine, except as might occur unavoidably in good 

manufacturing processes.11 A large portion of the moisture (water) is usually removed by 

a mechanical dewatering process or by cooking to a semi-solid state. The semi-solid 

blood mass is then transferred to a rapid drying facility where more tightly bound water is 

rapidly removed.  

Excessive availability of bloodmeal protein on a renewable basis has forced 

rendering industries to explore alternative uses, such as fuel, fertilizers, and plastics in 

addition to the traditional use as an ingredient for animal feed. Therefore, the primary 

objective of this part of the research was to develop bioplastics from partially denatured 

bloodmeal protein. Another important objective of this research was to investigate the 

thermal and mechanical characteristics of these plastics in order to understand the 
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fabrication process. In addition, other less important objectives were to develop blends 

from bloodmeal and undenatured whey and albumin proteins and to develop 

biocomposites reinforced with natural fiber. 

 

7.2: Materials 

Partially denatured bloodmeal, pure undenatured proteins (whey and chicken egg 

whites albumin), and hemp fiber were used to develop plastics and composites. 

Bloodmeal protein was supplied by Fats and Proteins Research Foundation (FPRF), VA, 

containing 86-89% of crude protein with no saturated fatty content. Whey protein isolates 

(BiPro, Davisco Foods Intl.) and chicken egg whites albumin (A5253, Sigma-Aldrich) 

were composed of 91% and at least 90% protein, respectively. Chopped hemp fibers were 

supplied by Hempline, Inc., Canada. 

 

7.3: Results and Discussion 

 

7.3.1: Plastics from bloodmeal protein  

The bloodmeal contained a moisture content of approximately 8-9% and was 

analyzed using DSC and TGA to determine the denaturation and thermal stability. Even 

though the bloodmeal protein was thermally treated via the rendering process; DSC data 

in Figure 7.1(a) indicated the presence of the denaturation (unfolding) temperature (~ 

150°C) for the protein powder. Thus, the protein was not fully denatured during the 

rendering procedures, and further unfolding of the biopolymer occurred upon heating. 

The cooperative unfolding of the biopolymer originates from disruption of the multiple 
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small forces that maintain the secondary/tertiary protein structure.12 The denaturation of 

the bloodmeal occurs in the temperature range that is typical for denaturation of other 

protein biomacromolecules. DSC measurements also provided important information 

about the nature of water incorporated into the bloodmeal protein. In fact, an endothermic 

peak around 0°C, which would correspond to the melting of crystallizable (unbound) 

water, was not observed. Thus, the water was hydrogen bonded between protein 

macromolecules. 

Figure 7.1(b) shows the weight loss of the bloodmeal sample. The first weight-

loss occurred from room temperature to about 100°C, and was mainly due to by water 

evaporation.13  In addition, TGA results (second weight loss) suggested that significant 

degradation of the protein was initiated at 265°C. Based on the analysis from DSC and 

TGA, the bloodmeal protein powder was compression-molded using a Carver press at a 

temperature of 180°C (between denaturation temperature and degradation temperature) 

and a pressure of 40 MPa for five minutes, and was then cooled to 70°C under pressure.  

The water content for the plastic obtained was on the level of 4%. 

It can be observed from Figure 7.1(a) that the original endothermic peak because 

of denaturation (~150°C) was not observed in plastic samples due to denaturing resulting 

from heating and pressing. TGA results in Figure 7.1(b) showed a different weight-loss 

pattern for these plastics in comparison to the original bloodmeal powder. Specifically, 

the first (water) weight loss occurred over a more extended temperature range.  The 

slowdown of the water loss can be attributed to the denser structure of the plastic sample 

as compared to the protein powder. The temperature of degradation, however, was 
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virtually unaffected by the compression-molding. 

 

7.3.2: Mechanical properties 

Figure 7.2 shows the stress-strain diagram for the plastic samples made from the 

bloodmeal protein, and it is comprised of three regions: initial elastic deformation, plastic 

yield, and strain hardening. The behavior of the yield point can be due to the breaking of 

hydrophobic interactions and hydrogen bonds of folded protein macromolecules.  Figure 

7.3 shows the SEM micrograph of the fracture surfaces (from the tensile test) of this 

plastic, indicating the brittle nature of the fracture. The stress-at-break, strain-at-break, 

and modulus of bloodmeal plastics were measured to be 16.5 MPa, 1.65%, and 4.7 GPa, 

respectively.  

To observe the effect of molding pressure, trials were conducted at 20, 40, 50, 60 

and 70 MPa. Figure 7.4 shows the resulting mechanical properties of these plastics. It 

can be observed that the molding pressures of more than 40 MPa did not cause a 

significant improvement in tensile properties. Therefore, a pressure of 40 MPa was 

selected for the development of bloodmeal plastic samples.  

However, modulus increased with increasing pressures. This increased stiffness 

(or modulus) of plastic may have potential for developing such products as shooting discs 

and bullets for hunting. Overall, the observed mechanical properties (high stiffness 

accompanied by low extensibility) are in the range of the values that are typically 

observed for bioplastics fabricated from unplasticized undenatured proteins. The 

properties of plastic from undenatured proteins are somewhat better than the ones from 
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partially denatured proteins in terms of strength and elongation. This behavior can be 

associated with the fact that undenatured protein plastics are typically prepared from 

biomacromolecules, which are thermally untreated and possess their native conformation.  

Accordingly, to improve the properties of plastics, bloodmeal protein can be mixed with 

proteins that possess a lower level of denaturation and may demonstrate better properties. 
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Figure  7.1(a).  Thermal analysis of bloodmeal protein powder and plastic samples 
produced at a temperature of 180°C and a pressure of 40MPa for 5 minutes, followed by 
cooling to 70°C under pressure:  (a) DSC thermograms. 
 

 

7.3.3: Fabrication of plastics from blends containing bloodmeal protein 

One of the most efficient ways to obtain plastics with improved properties is to 

combine two or more polymers in a polyblend where weakness in one component can, to 
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a certain extent, be masked by the strength of the other component.14  The protein/protein 

blend is supposed to be compatible because of the complementary reactive functional 

groups such as amino, carboxy, and hydroxy. Owing to the reactions between the 

functionalities at the phase boundary, strong interfacial adhesion should be readily 

achieved after molding the samples at higher temperatures. 
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Figure  7.1(b).  Thermal analysis of bloodmeal protein powder and plastic samples 
produced at a temperature of 180°C and a pressure of 40MPa for 5 minutes, followed by 
cooling to 70°C under pressure:  (b) TGA thermograms. 
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Figure  7.2.  Stress-strain curve for the bloodmeal plastic, molded at a temperature of 
180°C and a pressure of 40MPa for 5 minutes, followed by cooling to 70°C under 
pressure. 
 
 

 
 

Figure  7.3.  SEM (Scanning Electron Microscopy) micrograph of bloodmeal plastic, 
molded at a temperature of 180°C and a pressure of 40MPa, followed by cooling to 70°C 
under pressure. 
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Figure  7.4.  Comparison of mechanical properties of bloodmeal plastic samples molded 
at a temperature of 180° C under different molding pressures for 5 minutes, followed by 
cooling to 70°C under pressure. 

 
 

Two commercially available, undenatured or pure natural proteins, chicken egg 

whites albumin and whey, were considered for the blending experiments. The stress-at-

break, strain-at-break, and modulus were measured to be 32.3 MPa, 5.7%, and 2.1 GPa 

and 22.8 MPa, 5.98%, and 1.5 GPa for the whey and albumen plastics, respectively. On 

the contrary, bloodmeal plastic exhibited stress-at-break, strain-at-break, and modulus of 

16.5 MPa, 1.65%, and 4.7 GPa, respectively. In general, the plastics from the egg 

albumin and whey proteins showed higher strength and elongation properties than the 

plastic from the bloodmeal protein itself. To compare the properties of the whey/albumin 
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and bloodmeal plastics directly, the procedure for preparation of the bloodmeal samples 

was modified to include the addition of 25% water and an overnight annealing at 50°C. 

The change in fabrication method altered the mechanical properties of the bloodmeal 

plastic as well, and the stress-at-break, strain-at-break, and modulus were determined to 

be 3.1MPa, 1.1%, and 1.85GPa, respectively. The annealing caused a significant decrease 

in strength, elongation, and modulus of bloodmeal plastic. Mixtures of 

bloodmeal/albumin and bloodmeal/whey proteins in 50%:50% w/w ratios were prepared 

to obtain polymer blends. A DSC study of these protein blends did not show any 

crystallizable (unbound) water. Therefore, the water molecules situated in the mixtures 

were bound to the protein macromolecules.  

 

7.3.3.1: Mechanical properties of bloodmeal plastics 

The mechanical properties of these plastics, shown in Figure 7.5, represented a 

significant improvement compared to the unmodified bloodmeal plastic samples. The 

blend of bloodmeal and albumin proteins showed the highest breaking stress and 

elongation of 18.7 MPa and 2.9%, respectively. Moreover, the dynamic mechanical 

analysis of these plastics, shown in Figure 7.6, also demonstrated higher storage modulus 

and loss factor (internal friction) peak compared to neat bloodmeal plastic, confirming 

the compatibility between these proteins. However, the blend of bloodmeal/albumin 

exhibited improved dampening (height of tan δ peak) compared to the blend of 

bloodmeal/whey proteins. These improved mechanical properties may be attributed to the 

same native albumin protein, constituting the bloodmeal and chicken egg whites. Overall, 
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the mechanical properties demonstrated that blending of bloodmeal with albumin protein 

has definite potential.  

 

7.3.3.2: Modeling of mechanical properties of plastics from blends 

To further evaluate the properties of blends, plastics containing different ratios of 

bloodmeal and albumin proteins were prepared.  Known relationships that have been 

used to predict properties of polymer blends and composites were used to model the 

behavior of these blends. These empirical relationships were developed for spherical 

inclusions distributed in a matrix, but as a first approximation are often used for systems 

where inclusions are not spherical in shape. Figure 7.7 shows that the stiffness of these 

plastics deviated from the simple “mixing” additive rule in a positive way, indicating a 

clear synergistic effect, where the properties of blends are better than those of the 

individual components.   

For polymer blends, the well-established Kerner equation considers the dispersed 

phase as spheres having the following form:15 
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Figure 7.5.  Mechanical properties of plastics from bloodmeal and the blends of 
bloodmeal/albumin and bloodmeal/whey (50%:50% w/w ratios), molded at a temperature 
of 150°C and a pressure of 20MPa for 5 minutes, followed by cooling to 70°C under 
pressure and subsequent overnight drying in an oven at 50°C.  
 
  
 
where E, E1 ,E2  represent the moduli for the binary blend, the matrix and the dispersed 

phase, respectively; φ1, φ2 the volume fractions of the matrix and the dispersed phase, 

respectively; and ν1 represents the poisson ratio for the matrix. (To estimate the volume 

fractions the density of protein material was considered to be 1g/cm3). 

Equation 7.1 is valid for an ideal stress transfer through the interface, indicating strong 

adhesion between the phases. If no stress is transferred, i.e., there is no adhesion between 
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the phases, the Kerner equation is simplified in the following form: 

 

 ( ) ( ) ([ )]1112
1 57/115/1

1
ννφφ −−+

= EE                            (7.2) 

E2 is assumed to be zero. 

Figure 7.7 shows that the theoretical prediction by Equations 7.1 & 7.2 indicate 

good adhesion between the bloodmeal and albumin protein phases. This may be 

explained by the functional compatibility between proteins and increased amide and ester 

links from free COOH, NH2 and OH groups. The stiffness of the polymer blend in the 

phase inversion region, where dual-phase continuity is observed, can be approximated by 

the Davies equation:16 

5
1

22
5

1
11

5
1

EEE φφ +=        (7.3) 

For the projected phase inversion region (volume fraction 0.35 to 0.65), experimental 

results lie above the ones theoretically predicted by the Davies dual-phase continuity 

model, suggesting also a synergistic effect. The Takayanagi model for a two phase 

system, which assumes different morphological structures in the blend or composites, 

was also used to predict the modulus results. Equations 7.4 & 7.5 show the Young’s 

modulus for a system with two continuous phases (upper bound) and two discontinuous 

phases (lower bound), respectively. This model also predicted the strong adhesion 

between two protein phases. 

( ) 22121 EEE φφ +−=                                                                               (7.4) 
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Figure 7.8 shows the change in elongation (or % tensile strain at break) for the 

bloodmeal/albumin blend. There is a clear negative deviation from the “mixing” additive 

rule. According to Nielsen17, in general, the introduction of a dispersed phase into a 

matrix causes a dramatic decrease in elongation to break. If there is a good adhesion 

between the phases, the following equation is approximately correct: 

⎟
⎠
⎞⎜

⎝
⎛ −= 3

1

0 1 φεε C        (7.6) 

where Cε  represents the elongation to break of the blend, and 0ε  the elongation to break 

of polymer constituting the matrix.  

The experimental data from Figure 7.8 are in close agreement or are higher than the 

values predicted by Equations 7.6 that clearly indicates the good adhesion between 

bloodmeal and albumin biopolymers. 

Presence of the dispersed phase is also often expected to decrease the tensile 

strength of a matrix material. According to Nicolais and Narkis18, the tensile streng h 

(

t

σ ) of a composite, reinforced with “uniformly” distributed spherical filler particles of 

equal radius, can be estimated by Equation 7.7. 

)1( b
mC aφσσ −=      (7.7) 

where Cσ  represents the composite tensile strength; mσ is the tensile strength of polymer 

matrix; a and b the constants; and φ  the volume fraction of filler.  Constants ‘a’ and ‘b’ 

depend on stress concentration and dispersed phase geometry, respectively.  
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For the spherical fillers, if there is no adhesion with matrix and if the fracture goes 

through the filler-matrix interface, Equation 7.7 becomes: 

)21.11( 3
2

φσσ −= mC     (7.8) 

According to Piggot and Leidner, the strength at break can be described by first power 

law equation: 

SmC )1( φσσ −=     (7.9) 

where parameter S accounts for the weakness in structure due to stress concentration 

points at polymer-filler interphase.  When S is unity, there is no stress concentration 

effect, implying better adhesion. Figure 7.9 shows the tensile strength results for blends 

of bloodmeal/albumin. The experimental values of the stress-at-break lie above those 

predicted by Equations 7.8 & 7.9. The results once again indicate that there is a strong 

interaction between the components of the blend.  

 

7.3.3.2 Dynamic mechanical properties of plastics from blends 

Figures 7.10(a) & 7.10(b) show the storage modulus and the loss factor (internal 

friction) of the plastics from blends of bloodmeal/albumin through dynamic mechanical 

analysis (DMA). It can be observed that the increased portion of the albumin protein in 

blends exhibit a shift of Tan δ peak (glass-transition) towards lower temperatures and 

increase in the Tan δ height, indicating the improvement of the dampening (or 

toughening) characteristics of bloodmeal plastics. The trend of Tg’s is shown in Figure 

7.10(c) and compared with the Fox equation (Equation 7.10) for miscible polymer 

blends.  
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Figure  7.6. Dynamic properties of plastics from bloodmeal and its blends, molded at a 
temperature of 150°C and a pressure of 20 MPa for 5 minutes, followed by cooling to 
70°C and overnight conditioning at 50°C: (a) Storage modulus, (b) Loss factor (tan δ). 
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Figure   7.7.  Tensile modulus of the plastics from blends of bloodmeal/albumen and 
their comparison with theoretical models. Note: All samples were molded at a 
temperature of 150°C and pressure of 20 MPa for 5 minutes, followed by cooling to 70°C 
under pressure and overnight drying in an oven at 50°C.  Note: BP- Bloodmeal Protein. 
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where and represent the glass-transitions of the component polymers, and  1g
T 2g

T 1W
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and  the weight fractions. 2W
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Figure  7.8.  Tensile strain at break of the plastics from blends of bloodmeal/albumen 
and their comparison with theoretical models. Note: All samples were molded at a 
temperature of 150°C and a pressure of 20 MPa for 5 minutes, followed by cooling to 
70°C under pressure and overnight drying in an oven at 50°C. Note: BP- Bloodmeal 
Protein. 

 

 

The Tg for mixtures is repeatedly higher than the one predicted by the Fox equation. This 

result indicates that the level of mobility of protein chains in the blends is lower than in 

one-component protein plastics. We suggest that this effect originates from strong 

interaction between the components in the blends. 
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7.3.4: Technical applications of bloodmeal plastics 

Bloodmeal plastics have potential in the development of biodegradable items such 

as flowerpots, golf tees, and mulch film holding nails. A special mold and plunger from 

stainless steel was designed to manufacture rectangular bars of bloodmeal plastics using 

standardized conditions for developing dogbone samples. These bars, strong enough to 

withstand the stresses of machining, were machined into golf tees, as shown in Figure 

7.11.  
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Figure  7.9.  Tensile strength of plastics from blends of bloodmeal/albumin and their 
comparison with theoretical models. Note: All samples were molded at a temperature of 
150°C and a pressure of 20 MPa for 5 minutes, followed by cooling to 70°C under 
pressure and overnight drying in an oven at 50°C. Note: BP- Bloodmeal Protein. 
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Figure  7.10(a).  Dynamic mechanical properties of the plastics from blends of 
bloodmeal/albumen. All samples were molded at a temperature of 150°C and a pressure 
of 20MPa for 5 minutes, folloed by cooling to 70°C under pressure and overnight drying 
in an oven at 50°C: (a) Storage modulus. Note: BP- Bloodmeal Protein. 

 

 

7.3.5: Preparation of biocomposite from bloodmeal protein and hemp fiber  

Natural fibers, available on a renewable basis, have been considered recently as 

reinforcements in producing various biodegradable composites for improving the 

mechanical properties of protein-based plastics.19 Moreover, these fibers have low cost, 

low density, acceptable mechanical properties, ease of separation, carbon dioxide 
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sequestration, biodegradability, and thermal and sonic insulation properties. Past studies 

have shown that these fibers can be processed through such common methods as sheet 

molding compound (SMC) or bulk molding compound (BMC) into a variety of 

composites for door panels, car roofs, and grain elevators. Table 7.11 shows the 

mechanical properties of various natural fibers, including hemp, for developing 

biocomposites for technical applications. 

Hemp fiber is a natural fiber produced from the stalks of the Cannabis sativa plant 

and is considered biodegradable. In this part of the research, hemp fibers were milled into 

short fibers through a Wiley mill having mesh of size 20. These chopped fibers were 

dried overnight in an oven at 50ºC, and later immersed in a 3%w/v whey solution in 

water. After 30 minutes of sonication, these fibers were kept in solution for three days. 

Subsequently, excess liquid was centrifuged, and modified hemp fibers were dried at 

50ºC. Figure 7.12 shows the UV-vis spectra of protein solutions before and after the 

modification of hemp fibers. Proteins have a characteristic peak at 280nm due to phenyl 

groups in various amino acid residues. A decrease in the intensity of this peak indicates 

the protein absorption of hemp fibers. However, the control sample did not show the 

characteristic peak of protein. 

A mixture of bloodmeal/whey modified hemp fibers in 90%:10% w/w was 

prepared and compression molded using the similar processing conditions of bloodmeal 

plastic. Figure 7.13 shows the mechanical properties of the bloodmeal/whey composites, 

and it can be observed that the addition of whey-modified hemp fibers improved the 

elongation and reduced the modulus (good for impact and energy absorption  
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Figure 7.10(b, c). Dynamic properties of the plastics from blends of bloodmeal/albumen, 
molded at a temperature of 150°C nd a pressure of 20MPa for 5 minutes, followed by 
cooling to 70°C and overnight conditioning at 50°C: (b) Loss factor, (c) Tg.  
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Figure  7.11.  Different machined products from the bar of bloodmeal plastics. 

 

Table  7.1.  Mechanical properties of vegetable and synthetic fibers.1 

Fiber Density 
(g/cm3) 

Elongation 
(%) 

Strength 
(MPa) 

Modulus (GPa)

Cotton 1.5-1.6 7.0-8.0 287-597 5.5-12.6 
Indian grass 1.25  264 28 
Hemp 1.29 1.6 695 42-70 
Ramie - 3.6-3.8 400-938 61.4-128 
Sisal 1.5 2.0-2.5 511-635 9.4-22.0 
Coir 1.2 30.0 175 4.0-6.0 
Kenaf 1.4 - 284-800 21-60 
Henequen 1.57 - 372 10 
Pineapple leaf 
fiber 

1.44 - 413-1627 35-83 

Jute 1.3-1.45 1.5-1.8 393-773 13-27 
Flax 1.5 2.7-3.2 345-1100 28-80 
Carbon 
(standard) 

1.4 1.4-1.8 4000 230.0-240.0 

Aramid 
(normal) 

1.4 3.3-3.7 3000-3150 63.0-67.0 

E-glass 2.5 2.5 2000-35000 70 
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Figure   7.12.  UV-vis spectra of whey protein solution before and after soaking hemp 
fibers.  

 

 

applications) compared to neat bloodmeal plastic or bloodmeal plastic reinforced with 

unmodified hemp fibers. This may be attributed to protein-protein interaction at the 

interfaces of modified hemp fibers and bloodmeal matrix. Therefore, tensile strength and 

elongation of the resulting composites was higher than the composites reinforced with 

unmodified hemp fibers.  

 

7.4: Conclusions 

Plastic samples from partially denatured bloodmeal protein were successfully 

produced through a compression-molding process. These plastics exhibited comparable 

modulus and lower strength and elongation than conventional synthetic plastics such as 
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polystyrene and polymethylmethacrylate. This is a common phenomenon for plastics  
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Figure  7.13.  Mechanical properties of bloodmeal composites reinforced with hemp 
fibers (10%wt.-), molded at a temperature of 180°C and a pressure of 40MPa for 5 
minutes, followed by cooling to 70°C under pressure.  
 
 
produced from animal and plant proteins. Plastic forming conditions for undenatured 

animal proteins, chicken egg whites albumin and whey, were also investigated for the 

development of plastics from blends of undenatured and bloodmeal proteins. The 

resulting plastic samples, made from these biomacromolecular blends, exhibited 

improved mechanical properties as compared to neat bloodmeal plastics. Extensibility, 
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tensile strength, and stiffness from the mechanical analysis of bloodmeal/albumin blends 

at various volume fractions were interpreted in terms of theoretical models and showed 

better adhesion. Bloodmeal protein also showed potential in the development of 

composites reinforced with hemp fibers. 
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CHAPTER 8 

PLASTICS FROM EPOXIDIZED VEGETABLE OIL  

VIA THERMAL AND ULTRASONIC CURING 
 

 

8.1: Introduction 

Biodegradable materials are receiving increased attention due to their availability 

on a renewable basis and environmental advantages. The depletion of non-renewable 

resources and the dependence on petroleum-based polymers has caused growing urgency 

to develop and commercialize new environmentally compatible biobased polymers.1  In 

this context, natural oils from agricultural resources, such as linseed oil and soybean oil, 

are useful in polymer material synthesis.2 These natural oils can be functionalized by 

epoxidation with organic peracids or H2O2 (hydrogen peroxide), and are considered an 

inexpensive renewable material for the generation of thermoset epoxy resins.3  

Thermoset composites from epoxy resins are often used in high-performance 

structural applications because they generally possess excellent properties such as 

toughness and dimensional stability.4,5 These resins are generally used as the binding 

agent, offering attractive combinations of strength, ease of processing, and cost. For 

example, epoxy resin is used as the binder in composites reinforced with carbon fibers for 

aerospace applications.6 To acquire the desired mechanical performance, epoxy-based 

composites need to be heated (curing process) in an autoclave, a pressurized vessel, 

throughout the curing procedure; this adds to the cost of manufacturing. 6,7 In addition, 

and equally significantly, the autoclave process can limit the size and shape of the parts, 
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and can affect factory logistics and manufacturing lead times. This motivation is the 

major driving force for the intense interest in alternative methods and procedures for 

manufacturing these composites. As a result, alternative techniques such as ultrasonic 

heating, radio-frequency heating, and microwave heating have been studied.8,9,10 

The traditional autoclave process of epoxy curing employs heating from the 

outside-in and relies on thermal conduction; the heating time is strongly dependent on the 

geometry and the dimensions of the structure.8 Research has been conducted to 

investigate several unconventional epoxy-curing methods to accelerate the curing process 

and reduce the total curing time.11,12 These processes can be classified as radiation curing 

using UV, gamma rays and electron beams; induction curing; dielectric curing using 

radio frequency and microwaves; and ultrasonic curing. However, ultrasonic curing, due 

to the heat generated within the sample by intermolecular friction, may be distinguished 

from the other curing techniques due to its beneficial non-thermal effects.9,13,14,15,16,17,18  

Ultrasonic treatment (besides volumetric heating) leads to the higher mobility of 

the epoxide oligomeric molecules during the curing process, an increase in the 

homogeneity of the curing composition, a decrease in the composites’ porosity due to 

removal of the air bubbles, an improvement in resin and fiber (filler) interactions at the 

interface because of better wettability, an increase in contact area, and a decrease in 

border defects. In addition, other technological advantages of ultrasonic energy have been 

reported:15 (a) reduced resin viscosity exhibits good consolidation without resin 

advancement; (b) the time to finish curing is decreased by at least a factor of two; and (c) 
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the sonic energy adsorption tends to be self-limiting, reducing the risk of damage due to 

overcuring. 

Curing agents (hardeners) have an important role in determining the storage and 

handling requirements of epoxy formulations. Various curing agents such as amines, 

anhydrides and dicyandiamide (DDA), a latent curing agent, have been used for epoxy 

systems in adhesives, composites, printed circuit boards, and powder coatings.19 It has 

been found that a one-part epoxy system, consisting of DGEBA (Diglycidyl Ether of 

Bisphenol A) and DDA, can be cured at a temperature of 180ºC-200ºC.20 However, the 

addition of accelerators such as aryldimethyl urea compounds (e.g., Monuron, Diuron, 

Fenuron, and TDI-uron) would allow this system to cure at a temperature of less than 

130ºC.21 In a study by Laliberte et al.20 using DSC, the epoxy/DDA/Monuron system 

exhibited a lower activation energy than both the epoxy/DDA and epoxy/Monuron 

systems, primarily due to the formation of the by-product dimethylamine. 

During polymerization or the curing reaction, epoxy groups open due to the active 

hydrogen of the curing agents, resulting in a cross-linked network structure. Several 

techniques, in addition to the traditional DSC technique, have been studied to determine 

the degree of epoxy curing; these techniques include the NIR (near-infrared) and MIR 

(mid-infrared),22 HPLC (high-performance-liquid-chromatography), 22 dielectric,  

raman, 23 and gravimetric methods.24 

Various natural epoxies, such as ELO (epoxidized linseed oil) and ESO 

(epoxidized soybean oil), have been used for coatings and printing inks and as an additive 

in thermoplastics to improve stability and flexibility, respectively.1 Vegetable oil based 
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epoxy is composed of fatty acid residues, which can be readily attacked by lipase 

secreting bacteria and fungi, allowing them to biodegrade.25 

Various curing agents, such as anhydrides2,26,27 and amines are available to cure 

epoxidized vegetable oils, but are toxic, require long curing processes at high 

temperatures, and have low heat resistance.3 Moreover, stochiometric ratios of these 

resins and curing agents are required for acquiring the desired properties.28 Recently, 

Kim et al.29 have synthesized latent catalytic initiator benzylpyrazinium salts with 

complex metal halide anions, which were found to be effective curing agents for various 

petroleum-based epoxy resin systems. Park et al.3 also used only 1% N-benzyl 

pyrazinium hexafluoroantimonate (BPH) to cure epoxy resin systems, which exhibited 

improved thermal-oxidative resistance and mechanical properties. They also showed that 

this curing agent did not propagate the reaction at a lower temperature (50°C), compared 

to rapid conversion at a higher temperature (180°C), indicating its latency at room 

temperature.30  Therefore, it is expected that the use of this latent catalyst would increase 

the storage stability and handling of thermosetting epoxy resins. To date, only Lligadas et 

al.31 have used a BPH curing agent to develop a bionanocomposite from ELO-polyhedral 

oligomeric silesequioxane hybrid materials with improved mechanical properties.  

However, petroleum-derived epoxy resins are well known for their easy 

processability, compositional versatility, superior tensile strength, solvent resistance, 

good heat and chemical resistance; despite these advantages, the costs involved in curing 

these resins are high. In this respect, epoxidized vegetable oils can replace and/or 

substitute traditional epoxy resins to produce tougher and flexible crosslinked material.1 
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For example, Miyagawa et al.26 used nanoscale reinforcements from organoclay and 

alumina nanowhiskers with ELO or ESO in conjunction with synthetic epoxy, producing 

a tough material that could be applicable for automotive, electronic packaging and 

aeronautic structures. In another study, Crivello et al.32 used a photochemical route to 

fabricate fiberglass-reinforced composites using the ultraviolet and visible (solar) 

irradiation of epoxidized vegetable oils. Bouquillon27 used natural hemp fibers to develop 

composites from thermosetting vegetable oil-based resin. 

The primary objective of this phase of research was to investigate the thermal and 

ultrasonic curing of natural, vegetable-based epoxy in order to determine its plastic 

forming ability using the least amount of an appropriate curing agent. Moreover, to 

understand these curing methods, a one-part model epoxy system, consisting of a latent 

curing agent, was studied, including the optimization of the ultrasonic curing variables, 

resulting in the development of rapid and cost effective out-of-autoclave composites. The 

other important objective was to develop a chemical model for differentiating the thermal 

and non-thermal effects of ultrasonic curing. Another objective was to investigate the 

effectiveness of FTIR as a rapid technique for determining the degree of curing. 

 

8.2: Materials  

A one-part epoxy system was used to study the ultrasonic curing process. Epoxy 

adhesive system 2214 was supplied by 3M. This resin was mainly composed of the bi-

functional epoxy diglycidyl ether of bisphenol-A (DGEBA), the curing agent 

dicyandiamide (DDA) and the accelerator 3-(p-chloro phenyl)-1,1-dimethyl urea 
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(Monuron). The chemical structures of the Epoxy/DDA/Monuron system are shown in 

Figure 8.1. 
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Figure  8.1.  Chemical structures of the Epoxy/DDA/Monuron system. 

 

Epoxidized vegetable oils ESO and ELO, curing agent BPH and thixotropic agent 

Aerosil R805 were used to develop plastic through thermal and ultrasonic curing 

methods. ELO and ESO are mainly composed of triglyceride molecules containing three 

fatty acid chains joined by a glycerol center. The fatty acid chains have 0-3 double bonds 

and vary in length from 16-22 carbon atoms.33 The typical chemical structure of an 

epoxidized oil is shown in Figure 8.2. 

   

O O

OO
O

O

O

O

O

O

12-22 Carbons long

Glycerol

Fatty acid chain

0-3 Double bonds
 

Figure  8.2.   General chemical structure of epoxidized oil. 
 
 Epoxidized soybean oil, Vikoflex® 7170, and epoxidized linseed oil, Vikoflex® 7190, 
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were supplied by Arkema, Inc., MN. The physical and chemical properties of these 

epoxidized oils are given in Table 8.1.34 

 

Table 8.1  Physical and chemical properties ESO and ELO.34 

Properties ELO7190 ESO7170 
Appearance/odor Light yellow 

viscous liquid, 
slight vegetable 
odor 

Light yellow viscous 
liquid, slight 
vegetable odor 

Sp. Gravity 1.03 0.994 
Vapor pressure <0.1mmHG@25C Very low 
Boiling point decomposes decomposes 
Freezing point 0°C 0°C 
Solubility in water 0.011%by wt Insoluble 
Oxirane % 9.18 7.02 
Iodine value 3 0.89 
Acid value 0.24 0.12 
Viscosity stokes @ 25C 
(Cp) 

114 4.1 

Molecular weight ~950 g/mol ~900-1000 g/mol 
EEW (epoxide 
equivalent weight) 

176 227-231 

 
 

For synthesis of the latent curing agent BPH (N-Benzylpyrazinium 

Hexafluoroantimonate), a known method from the literature29 was used. Dr. Viktor Klep 

assisted in the synthesis. Benzyl bromide, pyrazine, and sodium hexafluoroantimonate 

(technical grade) were supplied by Sigma-Aldrich; these were not purified further. 

Pyrazine (11.9g) was mixed with benzyl bromide (220g) at room temperature. The 
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mixture was stirred for 48 h and the precipitated product was filtered and rinsed with 

toluene several times and left in a fume hood to remove any residual benzyl bromide via 

evaporation. The aqueous solution of this precipitate was mixed with an aqueous solution 

of sodium hexafluoroanitmonate (0.15%w/v), which resulted in a white precipitation. 

This white precipitation was filtered, vacuumed, rinsed several times with ether, and 

recrystallized from methanol to yield 25g of white crystals of BPH. The chemical 

structure of BPH is shown in Figure 8.3. It illustrates a melting endothermic peak at 

136°C, which is in close agreement with Kim et al.’s 29,35 work. Aerosil R805 was 

supplied by Evonik Degussa. 

 

N NC
H2

SbF6

-

+  
Figure  8.3.  Chemical structure of BPH (N-Benzylpyrazinium Hexafluoroantimonate). 
 
 

8.3: Results and discussion 

8.3.1: Thermal curing of one-part model epoxy 

Traditionally, DSC has been considered an effective off-line tool to determine the 

extent of curing for thermoset polymers. To determine the curing kinetics, samples were 

thermally cured in an oven at a temperature of 100ºC (an optimal preheating temperature 

for ultrasonic curing, as discussed below) for different time intervals. The residual heat of 

curing, and thereby degree of curing from Equation 8.1, was determined using DSC, as 

represented in Figure 8.4. A latent period of 20 minutes for activating the DDA was 
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observed during curing. However, after 40 minutes into the activation period, a rapid 

acceleration in the curing process was observed. 

The extent of curing can also be substantiated by the decreased intensity of the 

epoxy band (916 cm-1) and the increased intensity of the hydroxyl band (3364 cm-1) due 

to the opening of epoxide groups identified in the FTIR analysis of uncured and fully 

cured samples, as shown in Figure 8.5. 19,36,37,38 Degree of curing (disappearance of the 

epoxy band) from FTIR was determined using Equation 8.1:37  

Degree of cure (diminishing of epoxy group) =
( )( )
( )( )trefepoxy

reftepoxy

AA
AA

,0,

0,,1−=α                        (8.1) 

where Aepoxy represents the area under the Gaussian peak of the epoxy fundamental band 

at 916 cm-1, and Aref the area under the Gaussian peak of the phenyl group (reference) 

band at 831cm-1.19,37,39  The degree of curing assessed by both DSC and FTIR are 

compared in Figure 8.6. It can be observed that there is a good correlation between the 

results from these techniques. Thus, both techniques can be used for evaluating the 

degree of epoxy curing. 

 

8.3.2: Ultrasonic curing of one-part model epoxy 

To achieve rapid curing through the ultrasonic curing process, different variables 

such as wave amplitude, pulse duration and preheating temperature were investigated and 

optimized. The amplitude of the horn vibration (or wave vibration) determines the horn 

output power. Ultrasonic energy may be applied continuously or in pulse mode, 

influencing the amount of energy put into the epoxy system. Kwan and Benatar13 used 
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pulsed ultrasound with a two second ON/OFF pulse condition. 

The preheating temperature depends on the latency of the curing agent of a one-

part epoxy system, and even with ultrasonic curing, there is a need of some initial energy 

to activate the curing agents, which results in the propagation of curing reaction. First, 

trials were conducted to achieve optimal conditions of ultrasonic curing in a shorter 

amount of time. Figure 8.7 shows the temperature history of the epoxy system over a 

period of 20 minutes cured by the pulsed-ultrasound under different pulse (one second) 

durations such as 10%, 30% and 50%, while keeping the amplitude and the preheating 

temperature constant at 21µm and 100ºC, respectively. It can be observed from Figures 

8.7 and 8.8 that with 10% and 30% pulses, the temperature rose to approximately 100ºC, 

achieving a maximum degree of curing of 46%. In contrast, a 50% pulse raised the 

temperature to approximately 150ºC and produced full curing. Therefore, a pulsed 

ultrasound was superior to a continuous one. 

Benatar8, through a study of the ultrasonic curing of a two-part epoxy system, also 

observed the positive effect of pulsed mode rather than continuous mode of ultrasonic 

curing. In addition, increasing the pulse to more than 50% (e.g. 60%) caused damage to 

the samples due to the excessive accumulation of ultrasonic energy. The preheating 

temperature is also important in activating and propagating the curing reaction. Figures 

8.9 (a, b) show the temperature history and corresponding degree of curing for different 

preheating temperatures under a constant amplitude of 21µm and a pulse duration of 

50%. 
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Figure  8.4.  Epoxy curing from DSC analysis for an isothermal curing at 100ºC in an 
oven.  
 
 

 

Figure  8.5.  FTIR spectra for epoxy curing for an isothermal curing at 100ºC in an oven.  
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Figure  8.6.  Comparison of degree of curing from FTIR due to epoxy band 
disappearance and from DSC for isothermal curing at 100ºC in an oven. 
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Figure  8.7.  Temperature profile of the one-part model epoxy system at various pulse 
durations. 
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Figure  8.8.  Degree of cure with different pulse durations for 20 minutes ultrasonic 
curing. 
 
 
 
It can be seen that at a low preheating temperature of 40°C, ultrasonic energy could not 

produce sufficient activation energy to begin the curing reaction. However, at a 

preheating temperature of 60°C, the temperature during curing did not rise when the 

ultrasound was applied. The sample could achieve a degree of curing of 30%, possibly 

due to non-thermal effects such as streaming from the cavitations, lower viscosity, and a 

higher diffusion rate. At a preheating temperature of 80°C, the application of ultrasound 

raised the temperature to 120°C and a degree of curing of 90% was achieved due to 

combined thermal and non-thermal effects of ultrasonic curing. However, at a preheating 

temperature of 100°C, the ultrasonic treatment raised the temperature to approximately 

150°C from the curing reaction, producing full curing. Therefore, the samples were 

ultrasonically cured under optimal conditions (i.e., amplitude--21µm, pulse duration--
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50%, and preheating temperature--100ºC) to investigate the curing kinetics.  

The resulting degree of curing at different time intervals is shown in Figure 8.10. 

A short latent period of 5 minutes, compared to 20 minutes with thermal curing, was 

observed due to combinations of the thermal (ultrasonic heating) and non-thermal effects 

of ultrasonic curing. It can be seen that full curing was achieved in 20 minutes, compared 

with the 120 minutes necessary for thermal curing. Moreover, a micrograph of the fully 

ultrasonically cured sample from SEM (Figure 8.11) did not reveal porosity, indicating a 

well consolidated material. 

FTIR was conducted to observe the curing trend, as this analysis is faster than 

traditional DSC analysis. FTIR analyses of samples cured at various time intervals are 

shown in Figure 8.12. It can be seen that ultrasonic treatment over time caused a change 

in the epoxy (916 cm-1) and hydroxyl (3364 cm-1) bands, while not affecting the band due 

to phenyl groups (831 cm-1). Therefore, the progression of curing can be confirmed by 

the decreased intensity of the epoxy band (916 cm-1) and the increased intensity of the 

hydroxyl band (3364 cm-1) due to the opening of epoxide groups.19 

 

8.3.3: Thermal and non-thermal effects of ultrasonic curing 

The interaction of the sonic energy with the uncured resins can produce both 

thermal and non-thermal effects due to micro-mixing, lower viscosity and higher 

diffusion rates. For instance, Kwan and Benatar13studied the reaction kinetics of a two-

part structural epoxy adhesive through DSC analysis. They developed a four parametric 

semi-empirical equation to separate the non-thermal effects resulting from ultrasonic 
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vibration, and the thermal effects resulting from ultrasonic heating. They demonstrated 

that in the initial 50 seconds of pulsed ultrasonic curing (both non-thermal and thermal), 

the curing was three times higher than with ultrasonic heating alone. The degree of curing 

was determined using the modified autocatalytic equation by plugging in the temperature 

history. This difference between thermal and non-thermal effects decreased to a 

minimum as the time increased above 100 seconds. The DSC technique in the dynamic 

and isothermal modes has been used to study the kinetics of epoxy curing.40 If the curing 

reaction is the only thermal event, then the rate of heat released during curing ⎟
⎠
⎞

⎜
⎝
⎛

dt
dH  will 

be directly proportional to the rate of reaction, 
dt
dc  by Equation 8.2: 

⎟
⎠
⎞

⎜
⎝
⎛

Δ
=

dt
dH

Hdt
dc 1           (8.2) 

where c represents the extent of reaction, )( tHΔ  the heat evolved at a certain time, and 

the total heat of reaction. )( HΔ

Therefore, the DSC technique can be used to determine the curing kinetics of 

epoxy curing, representing by the nth order (Equation 8.3) or the autocatalytic form 

(Equation 8.4), respectively: 

( )nck
dt
dc

−= 1          (8.3) 

( ) mn cck
dt
dc

−= 1           (8.4) 
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where k represents the Arrhenius rate constant, and m and n the orders of the reaction. 
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Figure  8.9.  (a) Temperature history of one-part model epoxy system at different 
preheating temperatures for 20 minutes of ultrasonic curing, (b) Corresponding degree of 
curing. 
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Figure  8.10. The degree of cure for the one-part model epoxy system cured using the 
pulsed ultrasonic process. 
 

 

Figure  8.11. SEM micrograph of fully ultrasonically cured sample. 

 

According to nth order, the reaction rate is maximal at time t=0, while for the 

autocatalytic form, it is maximal at some intermediate conversion, but the initial rate is 

zero.40  
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Figure  8.12. Mid-infrared spectra for one-part model epoxy, cured using pulsed 
ultrasonic curing (amplitude-21µm; pulse duration=50%) for different times. 
 

To differentiate between the non-thermal and thermal effects of ultrasonic curing, 

isothermal kinetics using DSC was conducted to develop the chemical model. A study by 

Kamal41 showed that during the isothermal curing of an epoxy system, the curing 

reaction exhibited a marked autocatalytic behavior. Kwan and Benatar13 stated that the 

high and rapidly changing heat rate produced by ultrasonic curing makes it impossible to 

simulate the heating profile by conventional heating methods. Therefore, they developed 

a chemical model through isothermal studies in DSC to determine the thermal effect on 

the reaction kinetics of epoxy. Figure 8.13 shows the typical thermograph of isothermal 

curing from the DSC instrument, comprising an initial baseline, an exothermic peak, and 

a final baseline. When the initial baseline and final baseline are at the same level, the 
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curing is assumed to be complete. 
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Figure  8.13.  Isothermal curing of the one-part model epoxy system at 100ºC. 

An isothermal curing study was conducted at various isothermal temperatures such as 

100ºC, 115ºC, 125ºC and 135ºC, as these temperatures were observed during ultrasonic 

curing under optimal conditions. According to Equation 8.2, the rate of reaction is 

proportional to the evolved rate of heat in DSC analysis. Therefore, the reaction rate 

(
dt
dc ) was determined for different degrees of curing at these isothermal temperatures, as 

shown in Figure 8.14. This graph clearly shows the autocatalytic behavior of epoxy 

curing, as the reaction rate exhibits the maximum at some intermediate value 

(approximately 40%) of curing. In addition, the reaction rate is found to increase with 
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increased isothermal temperature.  

Figure 8.14.  Comparison between the model predictions and experimental results of the 
reaction rate and conversion (degree of curing) observed in DSC at various isothermals. 

 

A good agreement to experimental data was observed using the autocatalytic 

equation (Equation. 8.4), leading to n of 1.42±0.082, m of 0.873±0.045, and activation 

energy (E) of 90.2 ±1.4 kJ/mole. Therefore, the chemical model (autocatalytic Equation 

8.4) can predict the curing kinetics of the epoxy system for non-isothermal conditions and 

can determine the pure thermal effects of ultrasonic curing to differentiate the thermal 

and non-thermal effects.14  

Figure 8.15 shows the temperature history of the epoxy system cured using the 

ultrasonic curing process under optimal conditions (i.e., pulse duration of 50%, amplitude 

of 21µm and preheating temperature of 100ºC). This temperature history, due to the 
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thermal effect of ultrasonic curing, was then plugged into the chemical model for 

determining the degree of curing, as shown in Figure 8.16. 
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Figure  8.15.  Temperature profile of the one-part model epoxy system at different times 
under optimum ultrasonic conditions. 
 
 
The degree of curing due to the combined thermal and non-thermal effects was 

determined using DSC for various time intervals such as 5, 10, 15 and 20 minutes. Table 

8.2 summarizes the degree of curing, and the results for both non-thermal and thermal 

effects are represented in Figure 8.16. There are no non-thermal effects that influence 

curing. Thus, the resulting curing is due to ultrasonic heating. 
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Table  8.2. The residual heat and corresponding conversion of epoxy samples cured by 
pulsed ultrasonic heating for different heating times. 

 
Ultrasonic-heating time (min) Residual heat (joules/g) Degree of 

Curing (%) 

5 397.3 5.9 

10 83.79 80 

15 45.9 89.13 

20 4 99 
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Figure  8.16.  Comparison between the degree of cure produced by pulsed ultrasonic 
curing and predictions from the autocatalytic model for different times. 
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Moreover, the temperature profiles of Figure 8.9 (a) at different preheating 

temperatures were substituted in the autocatalytic model Equation 8.4 to differentiate 

between any possible thermal and non-thermal effects. This equation determined the 

degree of curing due to the thermal effect of ultrasonic curing, as shown in Figure 8.17. 

In addition, the degree of curing due to the combined thermal and non-thermal effects 

was determined using DSC for these preheating temperatures, as shown in Figure 8.17. It 

can be seen that a preheating temperature of 80ºC produced significant curing due to the 

non-thermal effects of ultrasonic curing; thus, the curing may be attributed to streaming 

from the cavitations, lower viscosity, and a higher diffusion rate. It has been previously 

observed that the liquid motion in the vicinity of cavitation bubbles generate large shear 

and strain gradients due to the rapid streaming of the molecules around the cavitation 

bubble and the intense shock waves emanating from the collapse of the bubbles.42 

Moreover, ultrasonic vibration assists secondary amines (produced during crosslinking 

reaction and less reactive due to their steric hindrances) to absorb sufficient energy in a 

short time to promote the reaction.13 However, as the preheating temperature increases 

(for example 100°C), the difference due to non-thermal effects no longer prevails over 

thermal effects. 

 

8.3.4: Mechanical properties of samples cured using ultrasound 

Polymers, being viscoelastic, can store mechanical energy as potential energy and 

have the capacity to dissipate energy as heat.43 The DMA (dynamic mechanical analysis) 
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Figure  8.17.  Comparison between the degree of cure produced by pulsed ultrasonic 
heating and predictions from the autocatalytic model for different preheating 
temperatures. 

 

instrument measures the deformation of a material in response to vibrational forces, and 

determines the dynamic modulus (E’, stiffness of material), the loss modulus (E”) and 

mechanical damping or internal friction (
'
"tan

E
E

=δ  energy dissipation). These dynamic 

parameters have useful implications in determining the glass transition region, relaxation 

spectra, degree of crystallinity, crosslinking, phase separation, etc. 

DMA was conducted to compare the mechanical properties of the samples 
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produced through both the thermal and ultrasonic curing processes. The results of storage 

(or elastic) modulus and glass-transition temperatures are shown in Figure 8.18. Samples 

from ultrasonic curing, under optimal conditions, exhibited similar or better properties 

than those from thermal curing.  
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Figure  8.18.  Storage modulus (a) and glass-transition temperature (b) of samples cured 
using ultrasonic and thermal (oven) curing processes. 
 

8.3.5: Thermal curing of epoxidized vegetable oil 

After studying the positive effects of ultrasonic curing on a traditional model one-
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part epoxy system, the next phase of research was conducted to investigate the thermal 

and ultrasonic curing of natural epoxy. Figures 8.19 (a, b) shows the DSC thermographs 

of ESO and ELO curing using 1wt.-% of curing agent BPH, which acts as a thermally 

latent cationic initiator in the curing reaction. It can be seen that the onset temperature of 

the curing reaction is approximately 130°C, which matches with the dissociation 

temperature of BPH, a latent curing agent. In addition, the exothermic curves consist of 

an initial shoulder (initiation) and main exothermic peaks (curing reaction). Boquillan et 

al.35 found that the polymerization of a cationic epoxy system leads to a Lewis acid 

process with two separate initiation reactions:  

⎯→⎯+ ΔEpoxideBPH pyrazineSbFEpoxideofOCHPh +−−− −+
62 )(   (1) 

−+Δ ++−−⎯→⎯−+ 62 SbFHpyrazineORCHPhOHRBPH    (2) 

These two reactions are responsible for the initial shoulder of the exothermic 

curves in Figures 8.19(a, b), indicating the initiation of the curing reaction and, 

subsequently, the main exothermic peak due to the catalytic action of HSbF6, a protic or 

Lewis acid. It was observed that only 1% of BPH was sufficient to cure both ELO and 

ESO fully. BPH exhibited a sharp endothermic peak at a temperature of 136°C, resulting 

in its dissociation and thereby activating the epoxy curing reaction. The exothermic heat 

of curing was found to be 264.6 J/g for the ELO system, and 117.8J/g for the ESO 

system. This difference in the heat of curing can be attributed to the higher number of 

epoxy groups in ELO than ESO due to the higher degree of unsaturation, due to the 

constituent esterfied linolenic acid, which contains three double bonds. Moreover, neither 

ELO nor ESO cured in the absence of the curing agent. 
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Figure 8.19.  DSC thermographs of thermal curing. (a) ESO/BPH system, (b) ELO/BPH 
system. 
 

Figure 8.20 shows the TGA thermograph for ELO and ESO in the absence of the 

curing agent. They showed good thermal stability, as they begin degrading at 
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approximately 300°C. Moreover, the amount of volatiles is less than 1% until at 

temperature of approximately 200°C. Therefore, this thermal stability would produce 

minimum volatiles and thereby less shrinkage during epoxy curing. 
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Figure 8.20.  TGA thermographs of the as-received natural epoxies ELO and ESO. 

 

It was observed that the plastic from ESO lacked integrity and crumbled 

compared to ELO plastic, which demonstrated good integrity and showed the dynamic 

mechanical characteristics of a rubbery material. DMA analysis provides information 

about the viscoelasticity, crosslinking density and thermal stability of polymer networks. 

Crosslinking density can be obtained from the following equation for rubber elasticity in 

a plateau region of the DMA curve:44 
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where 'E  represents the rubber modulus, ρ the density of network or crosslinking density 

(mol/m3), ϕ the front factor (usually equal to unity), R the gas constant, and T the 

absolute temperature in the rubbery region. 

Figure 8.21 shows the DMA spectra of the ELO system cured using 1wt.-% of 

BPH. The rubbery storage modulus and glass transition temperature were 55MPa and 

54.3°C, respectively, resulting in a crosslinking density of 18.5×10-3 mol/cm3.  
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Figure  8.21.  Dynamic mechanical properties of ELO/BPH plastic. 

 

8.3.6: Ultrasonic curing of epoxidized vegetable oil 

It was found in the initial phase of this research that ELO can be an important 

biodegradable polymer to develop plastics and reinforced composites for various 

industrial applications. Recently, non-traditional methods of curing such as electron 

beam, ultrasonic and infrared curing have been studied to develop composites at reduced 

time and costs. Ultrasound curing has definite advantages, such as non-thermal and 
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thermal benefits, self-limiting, and better consolidation. Therefore, the ELO/BPH system 

was investigated through the ultrasonic curing method. To prevent the problem of ELO 

advancement (leading to migration of the epoxy resin out of mold) during ultrasonic 

treatment, it was found that 10wt.-% of thixotropic agent R805 (silica powder) produced 

a viscous consistency, resulting in a minimum advancement of ELO during curing.  

Figure 8.22 shows the residual heat of curing for samples using DSC, produced at 

5 and 20 minutes through both thermal and ultrasonic curing process.  Thermal curing of 

epoxy oil requires sufficient time to accumulate energy, which propagates the reaction. It 

was observed that, for the initial 5 minutes, thermal energy is not enough to initiate the 

curing reaction, as evidenced by the presence of the shoulder in the exothermic curve due 

to the latency of BPH. Moreover, the degree of curing rose to 36% after 20 minutes. 

However, the thermal and non-thermal effects of ultrasonic curing caused a rapid 

initiation of the reaction (absence of initial shoulder), and the degree of curing rose to 

81% after 20 minutes of treatment. These results are summarized in Table 8.3, indicating 

the benefits of ultrasonic curing.  

To observe the effect of ultrasonic curing on the mechanical properties of cured 

plastic, samples were first thermally cured at a preheating temperature of 100°C for 10 

minutes, followed by 20 minutes of ultrasonic curing. The initial thermal curing for 10 

minutes yields the integrity of the material and prevents oil advancement during 

ultrasonic curing. 
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Figure  8.22.  DSC thermographs of ultrasonic cured samples of the ELO/Silica/BPH 
system. 
 

Figure 8.23(a) shows the corresponding DSC analysis, indicating a higher degree 

of curing for sonicated samples. Moreover, the extent of ELO curing can also be followed 

using FTIR, as shown in Figure 8.23(b). The presence of epoxide moieties in ELO can 

be characterized through the band at 817cm-1. New band at 1070cm-1 corresponds to the 

aliphatic ether groups produced during epoxy ring opening.45 It can be seen in Figure 

8.23(b) that the ultrasonic cured samples exhibited a higher number of ether links (higher 

intensity of peak) due to the opening of epoxide groups. 

 202



Table  8.3. Residual heat of curing and degree of curing for the ELO/Silica/BPH system. 

Ultrasonic Curing Thermal Curing Sample 

Residual 

heat of 

curing (J/g) 

Degree of curing  

(%) 

Residual heat 

of curing (J/g) 

Degree of curing 

(%)  

Uncured 383 0 383 0 

5 min 149.2 61 379.7 10 

20 min 71.6 81 246.1 36 

 

To examine the stiffness of the samples, TMA (Thermomechanical Analysis) was 

used to measure the penetration depth between room temperature and 180°C, as shown in 

Figure 8.24. It can be observed that the ultrasonic cured samples exhibited less 

penetration due to having more crosslinks than the samples from thermal curing. 

 

8.4: Conclusions 

Natural epoxy ELO exhibited the potential for developing plastics and 

composites. Moreover, for the first time, an ultrasonic process was used to accelerate the 

curing of ELO. An induction period (latency) was observed during the isothermal oven 

curing of one-part model epoxy at 100ºC, corresponding to time required for the 

dissociation of monuron into isocyanate and dimethyl amine, which, after exceeding a 

critical concentration, catalyzes the reaction. Similarly, latency was also observed during 

ultrasonic curing, although less than with thermal curing due to combined  non-thermal  
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Figure  8.23.  Comparison between the samples from ultrasonic and thermal curing 
processes: (a) DSC thermographs, (b) FTIR. 
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Figure  8.24. TMA graph for ultrasonic and thermal cured samples. 

 

and thermal effects. From DSC analysis, a preheating temperature of 100ºC was found to 

be optimal for the progression of the curing reaction; however, the maximum difference 

between non-thermal and thermal effects was observed at a preheating temperature of 

80ºC. The full curing time was found to be reduced by a factor of six with pulsed 

ultrasonic curing. The curing level from pure thermal effects, produced by pulsed 

ultrasonic curing, could be determined by incorporating the curing temperature history 

into the autocatalytic equation. There was a good agreement for the degree of curing 

between the experimental results and those predicted by the autocatalytic equation. The 

results for curing at a preheating temperature of 100 ºC could not differentiate between 
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non-thermal and thermal effects. However, a distinguishable difference between these 

effects was observed at a preheating temperature of 80 ºC.  

ELO was found to be an appropriate functionalized vegetable oil to produce 

plastics and reinforced composites. The latent curing agent BPH seemed to be a more 

eco-friendly hardener since it  required a very small amount to cure the epoxy material 

completely. The non-traditional ultrasonic curing method demonstrated the advantage of 

rapid curing over the traditional thermal curing method for developing plastics or 

composites from natural epoxy ELO.  
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CHAPTER 9 

SUMMARY 
 
 

This research has demonstrated the fabrication and characterization of polymer 

blends and composites from biopolymers, especially animal co-product proteins and 

natural vegetable oil-based epoxy. Model animal proteins, whey and chicken egg whites 

albumin, were used to understand the plastic fabrication process. Through these studies, 

different approaches were developed for preparing pure or blend plastics from partially 

denatured or undenatured proteins. These proteins showed complimentary properties to 

address the issue of toughness. The compression molding process used here can be 

commercialized in developing various articles of desire in an easy way. The conclusions 

based on this research are summarized below according to the respective chapters. 

 

9.1: Biodegradable Plastics from Undenatured Proteins: Animal and Human  

This research into developing plastics from animal and human proteins has 

provided, for the first time, a foundation on which to design various medical devices and 

implants with increased biocompatibility.  

Plastic samples made from pure, undenatured animal and human proteins were 

successfully produced through the compression-molding process in order to better 

understand the plastic fabrication process. These plastics were prepared under optimal 

conditions: molding temperature of 150°C, molding pressure of 20MPa, holding time of 

5mins, followed by ambient cooling and overnight drying in an oven at 50°C. The water 

content in the protein material during thermal processing played a vital role. In addition, 
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ageing (water evaporation) during storage led to an increase in the plastic’s mechanical 

properties of strength and stiffness (modulus). A reversible stress-strain over the yield 

region was observed. These plastics showed viscoelastic characteristics.  

Plastic samples produced from chicken egg whites albumin and human serum 

albumin (HSA) demonstrated antimicrobial properties. HSA plastics exhibited increased 

strength, elongation, and modulus compared to egg white plastics. In addition, HSA 

plastics swelled to 83% in water. A significant drop in swelling of HSA plastics due to 

modification with calcium ions as crosslinks was found. 

 

9.2: Biodegradable Plastics from Blends of Undenatured Proteins  

The research reported here explored blending to develop plastics of desired 

properties, which are difficult to achieve using single components. Therefore, to address 

the issue of toughness, plastic samples were prepared from blends of undenatured 

chicken egg whites albumin and whey proteins, and from the blends of whey protein and 

natural rubber latex, through compression-molding. It was observed that approximately 

20% of natural rubber and 105wt.-% of water were optimal to process and improve the 

strength and elongation properties. The results from the dynamic mechanical and thermal 

analysis (DMTA) of these plastics indicated phase separation when dispersed rubber 

particles were formed in the whey matrix; the presence of the two phases were also 

confirmed by the loss factor graphs of dynamic mechanical analysis.  

Thermal analysis of whey/albumin blends confirmed the presence of albumin and 

whey rich phases. Properties of whey/albumin protein blends followed mixing rule below 
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30% of either of these components. In the phase inversion region between 30 to 70%, 

plastics showed decreased tensile strength and modulus due to the significant 

contribution of either of these components, resulting in a mismatching of the mechanical 

properties. Overall, the addition of whey protein increases the stiffness of the material 

due to its higher number of complimentary reactive groups.  

 

9.3: Biodegradable Plastics from Partially Denatured Proteins: Feathermeal 

The research reported here, for the first time, studied the animal co-product 

protein feathermeal, which is used mostly as an ingredient in animal feed, to develop 

plastic. This partially denatured protein exhibited strong potential for various technical 

applications that are difficult to recycle. 

Thus, plastic samples from partially denatured feathermeal protein were 

successfully produced by the compression-molding process.  The modulus (stiffness) for 

the material obtained was found to be comparable with that of commercial synthetic 

material but with lower toughness characteristics, which is a common phenomenon 

among plastics produced from animal and plant proteins. A reversible stress-strain 

property over the yield region was observed.  The resultant plastic samples made from 

these biomacromolecular blends of partially denatured and undenatured proteins 

demonstrated improved mechanical properties as compared to neat plastics from 

feathermeal proteins. The results were interpreted in terms of theoretical models to 

describe mechanical properties such as extensibility, tensile strength, and stiffness of the 

plastics made from feathermeal/whey blends at various volume ratios. The values for the 
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stiffness of the feathermeal/whey blends positively deviated from the simple mixing rule 

and showed a synergistic effect. 

Plastic samples were also prepared from blends of synthetic rubber copolymer 

and feathermeal protein, which demonstrated improved mechanical properties compared 

to plastics from feathermeal proteins. In addition, these results were interpreted in terms 

of theoretical models to describe mechanical properties. 

 

9.4: Biodegradable Plastics from Partially Denatured Proteins: Bloodmeal 

Plastic samples from another partially denatured bloodmeal protein, which is 

primarily used as an ingredient in animal feed, were successfully produced for the first 

time through the compression-molding process. These plastics exhibited comparable 

modulus but lower strength and elongation than conventional synthetic plastics. To 

address the issue of toughness, polymers blends were prepared from bloodmeal and pure 

undenatured proteins. Extensibility, tensile strength, and stiffness from the mechanical 

analysis of bloodmeal/albumin blends at various volume fractions were interpreted in 

terms of theoretical models and showed better adhesion. Bloodmeal protein also showed 

potential in the development of biocomposites reinforced with natural hemp fibers. 

 

9.5: Plastics from Epoxidized Vegetable Oil via Thermal and Ultrasonic Curing 

This research reports that vegetable oil-based epoxy, especially epoxidized 

linseed oil, showed significant potential to replace petroleum-derived resins to be used as 

a matrix for composites in structural applications. Furthermore, the research showed the 
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benefits of ultrasonic curing, which can help in preparing the out-of-autoclave 

composites. 

Initially, this research used a traditional one-part epoxy system as a model to 

investigate both thermal and ultrasonic curing processes. An induction period (latency) 

was observed during the isothermal oven curing of this epoxy system at 100ºC. Similarly, 

latency was also observed during ultrasonic curing, although lesser compared to thermal 

curing due to combined non-thermal and thermal effects. From DSC analysis, a 

preheating temperature of 100ºC was found to be optimal for the progression of curing 

reaction; although, maximum difference between non-thermal and thermal effects was 

observed at a preheating temperature of 80ºC. The time of full curing was found to be 

reduced by a factor of six with pulsed ultrasonic curing. The curing level from pure 

thermal effects, produced by pulsed ultrasonic curing, could be determined by 

incorporating the curing temperature history into the chemical model. There was good 

agreement between the degree of curing from the experimental results and the one 

predicted by the autocatalytic equation.  

ELO was found to be appropriate functionalized vegetable oil, which has potential 

to produce plastics and reinforced composites. The latent curing agent BPH seemed to be 

a more eco-friendly hardener and required a very small amount in natural epoxy system 

to cure completely. A non-traditional ultrasonic curing method demonstrated the 

advantage of rapid curing over the traditional thermal curing method for developing 

plastics or composites from natural epoxy ELO. 
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CHAPTER 10 
 

FUTURE STUDY 
 

The depletion of petroleum resources along with environmental regulations has 

spurred efforts to find new biocompatible and environmental friendly materials and 

products. Bio-based materials, such as agricultural and animal co-product/byproduct, 

offer a potential solution to this problem. The research in this dissertation sought the 

possibilities of utilizing biopolymers, such as proteins and natural epoxy for developing 

plastics/composites. Following list of future study can be conducted. 

 

• Development of biocomposites and bioplastics from rendering proteins 

(bloodmeal and feathermeal) modified with various additives, such as natural 

rubber latex and PEG (poly ethylene glycol) using a spray-drying process. 

Subsequently, plastic from these modified proteins can be reinforced with 

lignocellulosic reinforcements (wood and natural fibers) to improve toughness, 

and water resistance. 

• Development of polymer blends from rendering proteins and thermoplastic starch 

(TPS). 

• Biodegradability study of plastics made from animal co-product proteins and 

their derivatives. 

• Wound healing response of plastics produced from human serum and egg white 

albumins. 

• Development of epoxidized linseed oil- based composites. 
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APPENDIX 

ULTRASONIC CONSOLIDATION OF 

EPOXY COMPOSITES 
 

 

A-I.1: Introduction 

Current high performance composites are made by hansd lay-up of prepreg tapes 

(sheets of unidirectional fibers coated with a partially cured thermoset resin), followed by 

vacuum bagging, and autoclave or compression curing at slow heating rate 

(approximately 1-2°C).1 On the contrary, ultrasonic consolidation has several promising 

features that differs this method from other established techniques of the epoxy 

composite fabrication. The beneficial effects of ultrasonic curing have been investigated 

for various epoxy resins and composites, including AS1/3501-5A graphite/epoxy prepreg 

tape,2 AS4/3501-6 carbon/epoxy composite,3 B7809 epoxy adhesive (PPG), 2214 epoxy 

adhesive (3M) ,4 and EPO1441-30 epoxy resin (Shell).5 

All published investigations about ultrasonic curing have been focused on 

relatively small, cured, well consolidated, and pore-free samples. According to Graham et 

al.2, desired distribution of ultrasonic energy is necessary to extend this technique for 

producing larger specimens. They studied different possibilities to equalize sonic energy 

distribution over the bigger part and were able to cure a sample of 6” × 6” in dimension 

with variable thickness. 

Ultrasonic curing promises a great potential to develop epoxy based composites 

reinforced with high-performance fibers or fillers. However, this approach has not yet 
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been employed for relatively large structures. One of the main reasons for this limitation 

was the unavailability of ultrasonic equipment to develop large structural parts. Recently, 

Form-ation 2030, ultrasonic consolidation machine from Solidica, Inc., has shown 

potential for developing metal matrix composites reinforced with high performance 

fibers.6 This machine can apply ultrasonic vibrations with a specific accuracy within 

0.002-0.005 inch over the machine envelope of 20” ×30”. In addition, the ultrasonic 

consolidation parameters can be precisely controlled by an advanced control, drive, and 

application software. Therefore, the primary objective of the research was to optimize the 

ultrasonic curing variables using a model epoxy/carbon prepreg system on a Solidica 

ultrasonic consolidation machine. The outcome of this investigation would help in 

developing relatively large composite samples from bio-based epoxy and/or its blend 

with petroleum-based epoxy. 

 

A-I.2: Materials 

Carbon/one-part epoxy prepreg system was used to develop laminates/composites 

through ultrasonic consolidation process. The prepreg tape (DA409U/G35) was supplied 

by APCM Company, CT. It contained 42% unidirectional carbon fiber and 58% one-part 

epoxy system (DGEBA/DDA/Uron). The TeflonTM coated aluminum sheet (5.5 mil thick, 

alloy 3003, and 0.5 mil TEFLON coating) was supplied by McMaster-Carr. 

 

A-I.3: Experimental 

A-I.3.1: Specimen preparation 
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Figure A-I.1 shows the schematic representation of carbon/epoxy composite 

curing using ultrasonic consolidation process. After laying and assembling the two-ply 

laminate using Teflon coated aluminum sheet, the whole assembly was cold pressed to 

make it flat. Subsequently, it was tacked on heated platen of UTL and equilibrated at 

desired preheating temperature before subjecting to vibrating ultrasonic vibrations. 

 

Step 1: prepreg tape  Step 2: 0° / 0° 
Laminate  

Step 3: Pressing  

Solidica Form-ation Step 4: Ultrasonic Step 5: Post curing in 
 c ring

Figure  A-I.1.  Schematic representation of carbon/epoxy composite production using 
ultrasonic consolidation. 

 

Figure A-I.2 shows the basic principal of ultrasonic consolidation process. A 

horn, oscillating at a constant frequency of 20 kHz, transfers ultrasonic vibrations to the 

composite assembly and induce curing reaction due to thermal and non-thermal effects of 

ultrasound. For this ultrasonic curing, Formation 2030 UTL machine from Solidica, Inc. 

was used. It was equipped with advance CAD software to manipulate the horn position 
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over an envelope of 13” × 13”. CALCOMMSTM software, coupled with 

CALCONTROLTM thermal controllers and thermocouples, was used to acquire 

temperature data during ultrasonic curing.  

 

Figure  A-I.2.  Basic principle of ultrasonic consolidation. 

 

A-I.3.2: Thermal analysis  

 A TA Instrument differential scanning calorimeter (DSC 2920) was used to determine 

the degree of conversion using Equation A-I.1 at a heating rate of 10°C min-1.  

Degree of cure = a
H
H

T
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−
=

1
α       (A-I.1)  
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where represents the residual heat (J/g); rHΔ THΔ the total heat for uncured sample (J/g); 

and a the fraction of epoxy content (1.0 if no fiber content). Figure A-I.3 shows a 

dynamic DSC run for uncured carbon/epoxy prepreg.  
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Figure  A-I.3. DSC thermogram of as received uncured carbon/epoxy prepreg at a 
heating rate of 20°C min-1. 
 

To determine the fraction of epoxy content (a), TGA analysis was conducted at a heating 

rate of 20°Cmin-1 under both nitrogen and air environment to calculate the amount of 

carbon fibers, as shown in Figure A-I.4.  
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Figure  A-I.4. TGA thermogram of uncured as received carbon/epoxy prepreg at a 
heating rate of 20°C min-1. 
 
 
Dynamic mechanical properties storage and loss factor of the cured samples were 

analyzed using DMTA instrument (Model DMS 210, Seiko Instruments). DMA was 

conducted on samples of dimension , using a tensile fixture at a frequency 

of 1 Hz and a heating rate of 2°C min-1. Under ideal conditions, the glass transition 

region is marked by a rapid decrease in the storage modulus and a rapid increase in loss 

modulus.   

321020 mm××

 

A-I.4: Results and discussion 

A-I.4.1: Ultrasonic curing of samples 
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There are primarily four process parameters that can determine the time and 

extent of curing: horn oscillation amplitude (4.2-28.9 µm); normal force (20N- 1800N 

with a contact area of 1” × 0.6”) and traverse speed (3 to 100 inches/min); and 

temperature of platen, i.e., preheating temperature. Successful curing is dependent on the 

proper setup of these parameters. Amplitude determines the power (energy produced) of 

ultrasonic vibrations, while normal force affects the resin advancement during ultrasonic 

curing. Horn traverse relative to sample determines the sample-horn interaction time, 

affecting the degree of curing. It has been studied in Chapter 8 that one-part epoxy 

system requires certain activation energy to propagate the epoxy polymerization, and it 

was found to be at a preheating temperature of 100°C.  

It was observed that lowest horn traverse speed (3 inches/min) allowed enough 

time of interaction between the sample and the ultrasound to produce highest degree of 

curing. In addition amplitude exhibited significant influence on ultrasonic intensity as 

well. Effect of amplitude on temperature rise can be seen in Figure A-I.5. It is evident 

that an increase in amplitude raised the temperature to facilitate the epoxy curing. 

Moreover, the amplitude more than 20.0 µm caused cracks in the interfacing aluminum 

sheet of carbon/epoxy samples possibly due to excessive ultrasonic energy. Therefore, 

amplitude of 20 µm and a traverse speed of 3”/min were found to be optimal for curing 

the samples.  

After studying the effect of various ultrasonic parameters on curing, experiments 

were conducted to observe the spatial distribution of ultrasonic energy in the vicinity of 

the contact zone of horn and sample. To determine temperature from ultrasonic energy, 
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three thermocouples were embedded during prepreg laying up process according to 

schematics shown in Figure A-I.6. 
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Figure  A-I.5.  Temperature profile under ultrasonic consolidation at various amplitudes 
with sample length--2.5 inch, preheating temperature--100°C, and horn traverse speed--3 
inch min-1. 
 
 

The corresponding bell-shaped temperature profile due to ultrasonic curing can be 

seen in Figure A-I.7 for 10 successive horn traverses. The short burst of temperature 

extended for approximately 10-14 seconds of horn single traverse time. This is similar to 

a pulsed (20-30% pulse duration) ultrasonic curing due to the stationary horn studied in 

Chapter 8, resulting insufficient time for heating and cooling. 
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Figure  A-I.6. Set up for monitoring the temperature profile at following ultrasonic 
conditions: amplitude--20um; horn traverse speed--3 inch/min; normal force--20N; 
temperature--100ºC; and length of the sample-- 2.50 inch. 
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Figure  A-I.7.  Temperature profile under following ultrasonic conditions: amplitude—
20 µum; horn traverse speed--3 inch/min; normal force--20N; temperature--100ºC; and 
length of the sample-- 2.50 inch. 

 

 In addition, it has been observed through the research reported in Chapter 8 that 

pulse ultrasonic process was more beneficial than continuous one to cure one-part epoxy 
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system. Moreover, this spike in temperature was enough to start epoxy polymerization 

without overheating the samples. However, temperature profile from the third 

thermocouple placed outside the edge of horn did not show this spike, suggesting a mild 

intensity of ultrasonic energy at the edges of the horn. Moreover, a dummy sample (fully 

oven cured sample) did not show any rise or spike in temperature, indicating a self-

limiting effect of ultrasound. Subsequently, samples were produced at different number 

of repeating horn traverses to determine the kinetics of curing as shown in Figure A-I.8. 
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Figure A-I.8.  Curing kinetics under following ultrasonic conditions: amplitude-20 µm; 
horn traverse speed--3 inch/min; normal force--20N; temperature--100ºC; and length of 
the sample-- 2.50 inch. 

 

It can be seen that the degree of curing increased virtually linearly with the 

number of horn traverses till 40 traverses. During this time period, epoxy matrix 
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transforms to a gel state and subsequently to a densely crosslinked network. It has been 

observed by previous research that as the glass-transition temperature of the crosslinked 

network approaches to the curing temperature, material vitrifies, where uncured resin 

entraps in a glass state. The reaction at vitrification is controlled by the diffusion 

mechanism, making high energy ultrasound difficult to propagate the polymerization 

reaction at the same rate.7 Because of this vitrification effect, the curing curve in Figure 

A-I.8 deviated from the linear trend above 40 traverses. Therefore, once a good 

consolidated and crosslinked material is produced under ultrasound for smaller number of 

traverses (below 40), it would be prudent to go for post curing to develop final properties.  

 

A-I.5: Conclusions 

During this phase of the research, ultrasonic curing conditions horn amplitude, 

traverse speed and horn normal force, and preheating temperature were investigated to 

observe the curing kinetics. Bell shaped temperature spikes (maximum 150ºC) were 

observed during ultrasonic consolidation while going for repeating horn traverses.  Based 

on this study, the application of the Solidica machine in its present configuration is 

limited by its relatively high normal force and minimum horn traverse speed. 
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