
Clemson University
TigerPrints

All Dissertations Dissertations

12-2009

Branchings and Time Evolution of Reaction
Networks
Changyuan Wang
Clemson University, cwang@alumni.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Astrophysics and Astronomy Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Wang, Changyuan, "Branchings and Time Evolution of Reaction Networks" (2009). All Dissertations. 506.
https://tigerprints.clemson.edu/all_dissertations/506

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/506?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

BRANCHINGS AND TIME EVOLUTION OF REACTION NETWORKS

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Ph.D
Physics

by
Changyuan Wang
December 2009

Accepted by:
Dr. Bradley S. Meyer, Committee Chair

Dr. Sean D. Brittain
Dr. Mark D. Leising
Dr. Murray S. Daw

ABSTRACT

In this thesis I analyze flows in reaction networks in terms of branchings in a digraph.

If the coupled differential equations governing the rate of change of probabilities X of a state

or species are finite-differenced in time, a matrix equation (I+A∆t)X(t+∆t) = X(t) results,

where X(t) is a vector giving the probabilities at time t and X(t + ∆t) is a vector giving

the probabilities at time t + ∆t. I demonstrate that the matrix (I + A∆t) may be written

as the product of an incidence matrix and a weight matrix for a directed graph (digraph)

representing the network. From this I demonstrate that individual diagonal element of

the inverse matrix (I + A∆t)−1 may be written as a sum of the exponential weight of all

branchings rooted at the vertex corresponding to the root vertex in the digraph divided by

the sum of the exponential weight of all branchings. I also demonstrate that the individual

element of the inverse matrix at row i, column j is the sum of exponential weights of all

branchings rooted at vertex i but with a path from vertex i to vertex j in the digraph

divided by the sum of exponential weights of all branchings. From this I demonstrate how

to compute X(t + ∆t) from X(t) in terms of sums of branchings and how to compute

effective transition rates. I then consider long-term solutions and demonstrate how to

condense linear networks that obey detailed balance. This provides a useful connection to

equilibrium analysis of the network. I then consider some implications of the branching

analysis for the statistical mechanics of reaction networks, and I extend the analysis to non-

linear networks. Finally I provide some example applications. I conclude that branchings

in network digraphs hold promise for analyzing complicated reaction flows, and I list some

future directions of possible research.

DEDICATION

I dedicate this dissertation to my parents Minbo Wang and Liying Dou and my wife

Jing Zhang who have encouraged and motivated in the completion of this paper. It can not

be done without their patience , understanding and support, and most of the love.

ACKNOWLEDGEMENTS

This paper is mostly done under the help and guidance from my advisor Dr. Bradley

S. Meyer. I ran into numerous difficulties in carrying out the relevant research in this paper,

and Dr. Meyer spent much time working with me and helped me to solve those difficulties.

A lot of the key ideas directly came through my discussion with him. There were many times

when I felt satisfied with a result but that was usually when he brought something deeper for

me to ponder upon. His support and guidance was a very beneficial experience for me not

only for the paper alone but for my future life. I would like to thank Raman Anantaraman

and colleagues at Michigan State University for choosing me to attend the Rare Isotope

Beams Summer School in 2007, an experience that allowed me to do experimental work on

nuclear physics and thereby gain an appreciation for the nuclear data that underlie reaction

networks. Finally, I would also like to thank my other committee members, Dr. Mark

Leising, Dr. Sean Brittain and Dr. Murray Daw for their help.

TABLE OF CONTENTS

Page

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Figures . vi

1. Introduction . 1

2. Reaction Networks and Digraphs . 6

3. The Inverse Matrix . 11

4. Enumerations . 17

5. Probabilities . 21

6. Effective Rates . 24

7. Long-Time Behavior of Networks . 25

8. Reaction Network Thermodynamics . 36

9. Non-Linear Network Treatment . 42

10. Examples and Applications . 49

10.1 Two-State System . 49
10.2 Effective De-Excitation Rates . 55
10.3 Silicon Disintegration . 57

11. Conclusions . 62

Appendices

A. Column addition in a square matrix . 66
B. Determinant of the Sum of Two Matrices . 68
C. Branching Code . 70

Bibliography . 118

LIST OF FIGURES

Figure Page

2.1 A simple 3 state network. 7

2.2 A simple 3 state network represented as a graph with arc
weights. Note that the direction of the arcs has been re-
versed. 7

2.3 A simple 3 state network represented as a graph with arc
weights. This graph now includes the fictitious vertex 0
with accompanying arcs with weight 0 to account for the
identity submatrix part of the full matrix problem for the network. 9

7.1 A simple, strongly-connected six vertex network. Note that,
while the network is strongly connected, it is not reversible. 26

7.2 A spanning branching, or arborescence, of the six-vertex net-
work in Fig. 7.1 . 27

7.3 The same network as in Fig. 7.1 but now the arcs (3,4) and
(4,3) have negligible weights such that the network breaks
into two clusters. 30

7.4 A branching for the network in Fig. 7.3. 32

10.1 Raw network for the two-state system. 50

10.2 Network digraph for the two-state system. 50

10.3 Branchings for the two-state system. 51

10.4 The single spanning tree in the simple two-state network. 53

10.5 Excitation of a three-level system. 56

10.6 Digraph for the alpha network. Arcs deriving from different
reactions have different colors. 58

10.7 Optimal branching for the ∆t = 10−3 s case. 59

10.8 Optimal branching for the ∆t = 103 s case. 60

CHAPTER 1

INTRODUCTION

Reaction networks are collections of states or species and the possible reactions

linking them. In studying the network, one is interested in finding the time evolution of the

population probabilities for the states or the abundances of the species.

For a linear network of dimension n, the time rate of change of the probabilities Xi

of each state i are governed by n coupled linear differential equations:

dXi

dt
= −ΛiXi +

∑
r

n∑
j 6=i

λ
(r)
ji Xj , (1.1)

where λ
(r)
ji is the rate of transition from state j to state i due to reaction r and where the

total destruction rate of i is

Λi =
∑

r

n∑
j 6=i

λ
(r)
ij . (1.2)

The symbol
∑

r indicates a sum over all reactions r in the network, and we note that

λ
(r)
ij = 0 if reaction r does not link states or species i and j. The n equations of the form

Eq. (1.1) may then be arranged in matrix form to read

dX

dt
= −AX, (1.3)

where the vector X comprises the individual state probabilities Xi and where the matrix

elements of A are

Aii = Λi (1.4)

and

Aij = −
∑

r

λ
(r)
ji . (1.5)

If the rates are independent of time, the solution to Eq. (1.3) is simply

X(t) = X(0) exp (−At) , (1.6)

2

where X(0) is the initial probability or abundance vector, X(t) is the vector at time t,

and exp (−At) is the exponential of the matrix −At. In many situations that arise, for

example, in reaction networks in astrophysics, the rates are time dependent. Furthermore,

the coupled ordinary differential equations in Eq. (1.3) are quite stiff. In such cases, it is

common to finite difference in time (that is, take a finite time step ∆t) and use implicit

differentiation such that the derivatives are computed at time t + ∆t. The resulting matrix

equation is

(I + A∆t) X(t + ∆t) = X(t), (1.7)

and the solution is

X(t + ∆t) = (I + A∆t)−1 X(t) ≡ P (t, ∆t)X(t). (1.8)

From the known vector at t, one thus integrates to find the vector at time t+∆t. The next

time step ∆t is then chosen so that no abundance or probability changes by more than a

few percent.

This procedure can also accommodate non-linear networks. In such cases, instead

of having a reaction i ↔ j, with a rate λij , an appropriate reaction might be i + j ↔ k + `.

The differential equation governing the probability or abundance of state or species i would

include the terms
dXi

dt
= −fXiXj + rXkX`, (1.9)

where f is the rate per interacting pair in the forward direction (i + j → k + `) and r is the

rate per interacting pair in the reverse direction (k + ` → i + j). If we finite difference this

equation in time implicitly and linearize, we find

∆X

∆t
=

X(t + ∆t)−X(t)
∆t

=

−1
2
fXi(t)Xj(t+∆t)− 1

2
fXi(t+∆t)Xj(t)+

1
2
rXk(t)X`(t+∆t)+

1
2
rXk(t+∆t)X`(t). (1.10)

Other numbers of reactants or products can be accommodated similarly. The contribution

of all such terms may then be collected into a matrix equation of the form in Eq. (1.7) with

solution given by Eq. (1.8). The abundances or probabilities are then typically refined by

Newton-Raphson iteration (e.g, [Hix and Meyer 2006]).

3

Solution of reaction networks using the above procedure is by now a mature field. It

is in general possible to find the inverse matrix numerically in Eq. (1.8), though problems

can arise when time steps are large or when the system nears equilibrium, in which case the

matrix (I + A∆t) tends to become singular. More generally for numerical solutions, one

does not find the inverse matrix but rather solves the matrix equation Eq. (1.7) by usual

matrix techniques such as Gaussian elimination or LU decomposition. Sparse matrix solu-

tion techniques, such as routines based on Krylov subspaces, permit us to evolve networks

with millions of species (or states) routinely (e.g., [Jordan et al. 2005]).

What I seek in this dissertation is not better ways of solving the coupled, stiff

differential equations governing the reaction network. Rather I seek a better understanding

of the results. In particular, I seek a better understanding of the reaction flows. Apart from

providing insight into the reaction mechanisms in the network and the underlying statistical

mechanics, such understanding is essential for determining which reaction rates govern the

flows and hence are important for either experimental study or more detailed theoretical

evaluation. For example, reaction sensitivity studies for alpha-rich freezeouts in supernovae

[The et al. 1998; Jordan et al. 2003] have already motivated nuclear physics experiments

to determine key [Sonzogni et al. 2000; Vockenhuber et al. 2007] to determine key reaction

cross sections that were previously only estimated theoretically. Experimental campaigns

to measure reaction cross sections are costly and require solid justification for why they

affect final abundance results. Such justification comes from a clear understanding of the

relevant reaction’s governing role in the reaction flows.

Reaction flows are straightforward to understand when they are unidirectional. In

many problems of interest, however, forward and reverse flows are comparable, and com-

plicated cycles result. For example, for the simple network i ↔ j, we see that if ∆t is small

enough, then

∆Xi = (−λijXi(t) + λjiXj(t))∆t. (1.11)

Thus, the change in the abundance or probability of i is the net flow, that is, the flow

in (λjiXj(t)) minus the flow out (λijXi(t)), times the timestep ∆t. Since Xi and Xj are

typically changing more slowly than the timescales from either the forward or reverse flow

4

individually, however, we can expect flows to cycle many times in time ∆t. The solution to

eq. (1.8) of course handles this, but we would like to understanding this cycling explicitly.

One approach to understanding the behavior of reaction networks is to study the

equilibria that arise. Given enough time, the reaction networks considered here establish

a complete equilibrium in which all forward and reverse flows come into balance. This is

a condition of maximum entropy or minimum free energy. If the external variables like

temperature and density change on a timescale faster than the time required to achieve

equilibrium, however, the system will not reach or maintain the complete equilibrium. Parts

of the system, however, may reach an equilibrium. For example, in stellar nucleosynthesis

in matter expanding from high temperature and density, the three-body reactions that

assemble 4He into heavier species are much slower than the reactions that convert heavy

nuclei into each other. This means that the heavy nuclei can be in equilibrium under

exchange of neutrons, protons, and alpha particles, but the overall abundance of heavy nuclei

is not what one would find in a full equilibrium. In effect, the system is in equilibrium but

now there is an extra constraint present on the number of heavy nuclei. [Meyer et al. 1998]

showed that such constraints could be treated via the method of Lagrange multipliers. The

Lagrange multiplier turns out to be a chemical potential associated with the heavy nuclei

as a whole. This picture has proven crucial for understanding the stellar nucleosynthesis of

48Ca, which is always underproduced relative to 66Zn in the full equilibrium but can easily

be understood as a product of a constrained equilibrium [Meyer et al. 1996].

The idea of constrained equilibria has turned out to be very useful for understanding

basic features of explosive nucleosynthesis. In particular, one views explosive nucleosynthe-

sis as a “descent of the hierarchy of statistical equilibria” (see contribution of Meyer to

[Wallerstein et al. 1997]). The focus is on understanding the evolution of equilibrium clus-

ters and the constraints that appear as time proceeds during the expansion and cooling of

matter in an explosive environment. The movies at

http://www.webnucleo.org/home/movies/alpha rich/

demonstrate this quite clearly.

5

While the idea of constrained equilibria has proven quite valuable for understanding

reaction networks, we seek a more comprehensive framework for understanding the time

evolution and flows in a reaction network. This more comprehensive framework should

encompass both the equilibrium and unidirectional flows pictures. Branchings in directed

graphs provide us with this framework in a straightforward, intuitive way that will greatly

clarify the role of particular reactions in complex flows.

CHAPTER 2

REACTION NETWORKS AND DIGRAPHS

From Eq. (1.8) we note P (t, ∆t) ≡ (I + A∆t)−1. P is thus a transition matrix that

acts on X(t), the abundance or probability vector at t, to give X(t + ∆t), the abundance

or probability vector at the new time t + ∆t. Because Xi(t + ∆t) =
∑

j Pij(t, ∆t)Xj(t), it

is clear that Pij(t, ∆t) is the probability that state or species j at t contributes to state or

species i at t+∆t. In other words, Pij(t, ∆t) gives the net flow from species j to i over time

step ∆t. For our linear networks with time-independent rates, P is a right stochastic matrix

and the evolution of our network is a finite state space Markov chain. For our networks with

time-varying rates, we must restrict the evolution to time step ∆t before again updating

the rates.

To determine the individual matrix elements Pij , we represent our network as a

directed graph. A graph G = (V,E) is a set V of vertices and a set of edges E, which

are two-element subsets of V . An edge is thus a line (segment) connecting two vertices. A

directed graph (digraph) D = (V,A) is a set V of vertices and a set A of arcs, which are

ordered pairs of vertices. In particular, an arc a = (i, j) is an arrow directed from vertex i

to vertex j, where i and j are both elements of V . For our problem, vertices are states or

levels in our network. Arcs are related to reactions connecting those states or levels.

Given a network with n states or species, we draw a graph with n vertices. Each

vertex is labeled with an index i that corresponds to the state or species number in the

network and ranges from 1 to n. If a particular reaction r in the network connects state or

species i to state or species j, we draw an arc in our graph from vertex j to vertex i and

give the arc weight ln
(
λ

(r)
ij ∆t

)
. Note that the direction of the arc is in the reverse of the

flow in time. This is because the arcs will represent the contribution to j from i in time

∆t. For non-linear networks, it is important to note that there can be multiple arcs per

reaction.

7

λ23

λ21

λ31

λ32

λ12

λ13

1

3

2

Figure 2.1 A simple 3 state network.

ln (λ32∆t)

ln (λ12∆t)

ln (λ13∆t)

ln (λ23∆t)

ln (λ21∆t)

ln (λ31∆t)

1

3

2

Figure 2.2 A simple 3 state network represented as a graph with arc weights. Note that
the direction of the arcs has been reversed.

8

We now assume that we have drawn all arcs from all reactions. We denote the total

number of arcs as m and a particular arc k as ek. The out, or source, vertex of arc k is

denoted s(ek), and the in, or target, vertex of arc k is t(ek). We denote the weight of arc k

as w(ek). With these definitions, we note from Eqs. (1.2) and (1.4) that

(A∆t)ii =
∑

k

δt(ek),i exp(w(ek)), (2.1)

where the sum runs over all arcs but the Krönecker delta picks out only those arcs with

species or state i as the target. Similarly, from Eq. (1.5), we find

(A∆t)ij = −
∑

k

δt(ek),jδs(ek),i exp(w(ek)), (2.2)

where, in this case, the sum runs over all arcs with species or state i as the source and

species or state j as the target.

We may now accommodate the identity matrix in Eq. (1.7) in the following way.

We extend our graph by including a fictitious vertex with label 0, and we draw a single arc

from vertex 0 to each vertex i and give each of those n arcs weight zero. If we include those

arcs in Eq. (2.1), the effect is to add unity to each of the diagonal terms in the matrix for

i = 1 to n. We thus extend our matrix to include a row and column with index 0 and write

(I + A∆t)ii =
∑

k

δt(ek),i exp(w(ek)) (2.3)

and

(I + A∆t)ij = −
∑

k

δt(ek),jδs(ek),i exp(w(ek)). (2.4)

It is useful to note that (I + A∆t)i0 = 0 since no arc has vertex 0 as its target and that

(I + A∆t)0i = −1 since there is only one arc from vertex 0 to vertex i. While the extended

matrix (I + A∆t) in Eqs. (2.3) and (2.4) now has n + 1 rows and columns, we can return

to the matrix representing our network by striking the first row and column, that is, by

striking row 0 and column 0.

We may now write the matrix I + A∆t as the product of an incidence matrix M

and a weight matrix W . An incidence matrix M is a matrix with n rows and m columns,

where n is the number of vertices in a digraph and m is the number of arcs. The elements

9

0

ln (λ32∆t)

0

ln (λ12∆t)

ln (λ31∆t) ln (λ13∆t)

ln (λ23∆t)

0

ln (λ21∆t)

1

0

3

2

Figure 2.3 A simple 3 state network represented as a graph with arc weights. This graph
now includes the fictitious vertex 0 with accompanying arcs with weight 0 to account for

the identity submatrix part of the full matrix problem for the network.

10

of M are

Mi,k = δt(ek),i − δs(ek),i, (2.5)

where δi,j is the usual Krönecker delta. For a column k, then, there is a −1 in the row

corresponding to the source vertex of the arc ek and a 1 in the row corresponding to the

target vertex of arc ek. The weight matrix W has m rows and n columns. The elements of

W are

Wk,j = δt(ek),j exp(w(ek)) (2.6)

In Eq. (2.6), the k-th row corresponds to the k-th arc in the graph.

For our network with n states or species plus the fictitious vertex 0, we now consider

the (n + 1)× (n + 1) matrix MW . The (i, j) element of this matrix is

(MW)i,j =
∑

k

Mi,kWk,j =
∑

k

δt(ek),iδt(ek),j exp(w(ek))−
∑

k

δs(ek),iδt(ek),j exp(w(ek)).

(2.7)

If i = j, the second term in the sum in Eq. (2.7) is zero since our digraph contains no loops

and, hence, the source and target of any arc must be distinct. In this case,

(MW)i,i =
∑

k

δt(ek),i exp(w(ek)). (2.8)

If i 6= j, the first term in the sum in Eq. (2.7) is zero since an arc cannot have two distinct

targets. In this case,

(MW)i,j = −
∑

k

δs(ek),iδt(ek),j exp(w(ek)). (2.9)

Comparison of Eqs. (2.3) and (2.8) and Eqs. (2.4) and (2.9) show that

I + A∆t = MW. (2.10)

This is true for the case of the (n+1)× (n+1) extended matrix I +A∆t that includes row

and column 0. It is also true for the case of the n× n matrix that does not include a row 0

and column 0 if we imagine striking row 0 of M and column 0 of W .

CHAPTER 3

THE INVERSE MATRIX

In this chapter I demonstrate how to compute individual elements of the matrix

P (t, ∆t) from branchings in the digraph representing our reaction network. For a directed

graph D, the indegree of any vertex is the number of arcs going into that vertex while the

outdegree is the number of arcs leaving that vertex. A branching B on a graph is then an

acyclic subgraph of D that has no vertex with indegree larger than one. If a digraph has

n vertices, a spanning branching, or arborescence, has n − 1 arcs. The underlying graph

is a tree (an acyclic connected graph). A general branching has fewer than n− 1 arcs. Its

underlying graph is a forest. The weight w(B) of a branching B is the sum of the weights

of its arcs.

The transition matrix P (t, ∆t) for our network is the inverse of the matrix I + A∆t

(Eq. [1.8]). The (i, j) element of (I + A∆t)−1 is given by the (j, i) cofactor of I+A∆t divided

by the determinant of I + A∆t. The (j, i) cofactor of a square matrix is the determinant of

the submatrix obtained by removing the j-th row and i-th column multiplied by the factor

(−1)i+j .

Consider first the determinant of I + A∆t, denoted det(I + A∆t). From Eq. (2.10),

we may write

det(I + A∆t) = det(MW). (3.1)

To calculate det(MW), we use the Cauchy-Binet formula, which states that, if M is an

n×m matrix and W is an m× n matrix,

det(MW) =
∑
S

det(MS)det(WS), (3.2)

where the sum runs over all subsets S of {1, ...,m} with n elements. There are C(n, m)

such subsets S, where C(n, m) is the usual binomial coefficient.

In computing det(MW), we are computing the case for the digraph with n real

vertices (no fictitious vertex 0). Nevertheless, it is useful to add the fictitious vertex 0 and

12

then imagine striking the first row of M (and therefore MS) and the first column of WS

(and therefore WS) before computing the determinants. We also, without loss of generality,

imagine that M and W are sorted by the index of their invertices. There are no arcs into

fictitious vertex 0; thus, the first `1 columns of M correspond to the `1 arcs that have vertex

1 as the invertex (and thus have a 1 in row 1). The first `1 rows of W thus have entries (the

values exp(w(ek))) in column 1. The `1 columns in M are then followed by `2 columns in

M that correspond to the `2 arcs that have vertex 2 as the invertex, and the `1 rows in W

are followed by `2 rows in W with entries in column 2. This sorting proceeds until all arcs

are accounted for.

We now consider the submatrices MS and WS . Consider first MS . Before striking

row 0, MS is an (n + 1) × n incidence matrix. It corresponds to an n-arc subgraph of the

full digraph. WS is an n× (n + 1) weight matrix that has the same rows as the columns in

MS . The first column is all zeros, but, because of our sorted arrangement of the rows of W ,

there is one entry per row and column number of the non-zero element in each row is larger

than or equal to that in the previous row. As a consequence, if any two rows in WS have

the same column number for their non-zero elements, there must be a zero in the diagonal

element of one of the rows. This means that one of the columns in WS must contain all

zeros and, after striking column 0 in the n × (n + 1) version of WS , det(WS) = 0. Only

subgraphs of our extended digraph that have indegree equal to one for each vertex other

than 0 contribute to det(MW). Moreover, because of the sorted arrangement of the arcs,

the contributing submatrices WS will be diagonal; hence, for a given subset S,

det(WS) = exp

(∑
k∈S

w(ek)

)
. (3.3)

We now return to our (n + 1) × n version of MS . In appendix A I demonstrate

that addition of two distinct columns in a square matrix leaves the determinant unchanged.

The columns in MS correspond to a particular subset S of arcs in the network digraph.

Each arc either has vertex 0 as a source or does not. Consider a column in MS that

corresponds to an arc k1 such that s(ek1) 6= 0. Since we have previously shown that each

vertex other than 0 has indegree exactly one, there must be another arc k2 in the subgraph

13

with t(ek2) = s(ek1). Add the column corresponding to arc k2 to that corresponding to

arc k1. The column corresponding to arc k1 now has −1 in row s(ek2) and 1 in row t(ek1)

unless s(ek2) = t(ek1), in which case the column corresponding to arc k1 now has all zeros

and, after striking row 0 in MS , det(MS) = 0. Because s(ek2) = t(ek1), arcs k1 and k2

form a cycle; thus, the subgraph corresponding to subset S must be acyclic to contribute

to det(MW).

If s(ek2) 6= 0, we may repeat the above procedure by finding the arc k3 whose target

is the source of k2. In this way we regress back until column operations have converted

the column corresponding to arc k1 into one in which there is −1 in row 0 and 1 in row

t(ek1). If at any stage of the regression a cycle forms, the column corresponding to arc k1

will have all zeros and, after striking row 0, det(MS) = 0. We repeat this procedure for

all columns that correspond to arcs whose source is not vertex 0. If no cycles appear, the

resulting incidence matrix will have −1 in each column of row 0 and, because of the sorted

arrangement of the arcs, 1 in the (i + 1, i) element.

The above regression procedure thus produces a new incidence matrix that has a

single arc from vertex 0 to each of the other vertices, if the subgraph is acyclic. Otherwise

det(MS) = 0. In other words, the subgraph will only contribute to det(MW) if there is an

n-arc path from fictitious vertex 0 to each of the other vertices. The new incidence matrix

is that for an arborescence of the extended graph in which all arcs have vertex 0 as the

source. We call this graph the root graph of S. In general, an arc in this graph from vertex

i to vertex j means that there is a path from vertex i to vertex j in the parent graph. In

our particular case, we see that only subgraphs that have a path from vertex 0 to each of

the other vertices i contribute to the overall determinant.

If we now strike row 0 from the (n + 1)×n version of MS , we are left with an n×n

identity matrix. The determinant is unity. In this way, we find that

det(MS)det(WS) = exp

(∑
k∈S

w(ek)

)
(3.4)

if the n arcs in subset S form an acyclic subgraph of our n + 1 digraph (that includes

fictitious vertex 0) with indegree equal to zero for vertex 0 and indegree equal to one for all

14

other vertices. Thus, the n arcs in S form an arborescence of the digraph rooted at vertex

0. From Eq. (3.1), we thus see that

det(I + A∆t) =
∑
S′

exp

(∑
k∈S′

w(ek)

)
(3.5)

where S′ is a subset of arcs in the digraph that form an arborescence rooted at vertex 0.

If we now imagine removing fictitious vertex 0 and all arcs with vertex 0 as their

source from the digraph, we see that the contributing subgraphs are branchings. A succinct

expression of our result then is that

det(I + A∆t) =
∑
B

exp (w(B)) , (3.6)

where B is any branching in our digraph.

We now consider the cofactors of I + A∆t. To compute the (i, j) cofactor, we again

use the Cauchy-Binet formula in Eq. (3.2). Here we are striking row j and column i in

I +A∆t (as well as row 0 and column 0 in the extended version of the matrix that includes

fictitious vertex 0). Since the (j, i) minor submatrix obtained in this way has n−1 rows and

columns, we are considering subsets S of arcs {1, ...,m} containing n − 1 elements. Thus,

to obtain the relevant matrix MS , we find the (n + 1) × (n − 1) matrices that contain the

set S columns of M and then strike row 0 and row j. Similarly, to compute the relevant

matrix WS , we find the (n − 1) × (n + 1) matrices that contain the set S rows of W and

then strike column 0 and column i.

Consider first WS . Since we strike column i, any subset S that includes an arc with

vertex i as a target will yield a matrix WS with all zeros in the row corresponding to that

arc. As a result, only subgraphs that have indegree equal to zero for vertex i will contribute

to the (i, j) cofactor. As before, the indegree of all other vertices (except vertex 0) must be

one.

Consider now MS . The relevant subgraph obtained from our subset S of arcs will

have n − 1 total arcs, none of which has indegree larger than unity. This means that

one vertex in addition to vertex 0 has indegree equal to zero. That vertex, by the previous

considerations of WS , must be vertex i. We now perform column operations. The regression

15

traceback will thus produce a root graph in which each vertex is connected to vertex 0 or

to vertex i. As before, cycles will result in a matrix with all zeros in a column and thus

det(MS) = 0. The resulting incidence matrix for a contributing subgraph will have in each

column −1 in either row 0 or row i. It will also have 1 in each column with the row number

of that element increasing for increasing column number. Since the indegrees of vertex 0

and i are zero, however, rows 0 and i do not have 1.

We now consider striking rows 0 and j. Suppose first that j = i. In this case we

strike the only rows that contain −1’s. Because of the sorted arrangement of the arcs, the

resulting matrix is the (n − 1) × (n − 1) identity matrix. Since (−1)i+j = 1 for i = j,

det(MS) = 1 and the (i, i) cofactor is the weighted sum of all branchings that have indegree

equal to zero for vertex i. The (i, i) element of the inverse matrix is this cofactor divided

by the determinant of I + A∆t; thus,

P (t, ∆t)ii =

∑
B:(i) exp (w(B))∑

B exp (w(B))
, (3.7)

where B : (i) is any branching rooted at vertex i; that is, has indegree equal to zero for

vertex i.

Suppose now that j 6= i. First suppose that the column of the modified MS that

has 1 in row j has −1 in row 0. The subgraph composed of arcs in S then has a path from

vertex 0 to vertex j. When we strike row 0 and row j, the resulting matrix has all zeros in

this column and det(MS) = 0. This means that there must be a −1 in row i of this column;

hence, subgraphs obtained from subsets S only contribute to the (i, j) cofactor if there is a

path from vertex i to vertex j.

Once we have struck rows 0 and j, we have an (n−1)× (n−1) matrix. The column

in this matrix corresponding to the arc whose target is vertex j has −1 in row i and zeros

in the other rows. We may compute the determinant by performing the Laplace expansion.

We strike row i and this column. The resulting matrix is an (n − 2) × (n − 2) identity

matrix since any −1’s in the initial matrix are in row i. The determinant of this minor

is thus unity. This is the only non-zero element in the column, so the determinant is the

appropriate factor of −1. We have −1 as the factor we are expanding about. We now

consider the row and column of this factor −1. Suppose first that j < i. In this case, the

16

−1 we are expanding about is in column j. Since we struck row j, the row is i − 1; thus,

we have an additional factor (−1)i−1+j so that det(MS) = (−1)i+j . If instead j > i, we are

expanding about row i. Row j is j − i units below row i; thus, the column is i + j − i− 1,

where the −1 accounts for the offset of the 1 from the diagonal in our sorted arrangement

of arcs. We thus have an additional factor (−1)i+j−1 and again det(MS) = (−1)i+j . The

(i, j) cofactor of I + A∆t, denoted Cij is thus for i 6= j

Cij = (−1)i+j
∑
S

(−1)i+j exp

(∑
k∈S

w(ek)

)
=
∑
S

exp

(∑
k∈S

w(ek)

)
, (3.8)

where S is a subset of arcs that give a branching of the overall graph with indegree equal

to zero for vertex i and a path from vertex i to vertex j. The (i, j) element of the inverse

matrix is this cofactor divided by the determinant of I + A∆t; thus,

P (t, ∆t)i,j 6=i =

∑
B:(i)→j exp (w(B))∑

B exp (w(B))
, (3.9)

where B : (i) → j is any branching rooted at vertex i that includes a path from vertex i to

vertex j.

In computing the cofactors Cij , we have connected them with branchings in our

extended graph that are rooted at vertex 0 and vertex i. Such branchings contain n − 1

arcs. Any such branching may be viewed as one of the n arc arborescences of the extended

graph rooted at vertex 0 with the arc from vertex 0 to vertex i removed. Since the weight

of this arc is zero, it does not contribute to the weight of the branching. Thus, any n arc

arborescence rooted at vertex 0 may be viewed as contributing a branching rooted at vertex

i if there is an arc in the arborescence from vertex 0 to vertex i.

CHAPTER 4

ENUMERATIONS

This chapter considers the number of branchings in a network digraph. We begin

by considering a complete, simple digraph. A simple digraph is one for which there is at

most one arc from a given vertex i to a given vertex j and there are no loops, that is,

no arcs from vertex i to itself. In the language of the reaction network, there is only one

reaction linking the states or species represented by vertices i and j. A complete digraph

is one for which there are two arcs between every pair of vertices i and j, one arc from i to

j and one arc from j to i. If there are n vertices in the complete, simple digraph, there are

C(n, 2) = n!/ ((n− 2)!2!) pairs of vertices and, hence, n(n− 1) arcs.

As we have repeatedly done, we note that branchings in an n vertex graph may be

viewed as arborescences in an n + 1 arc graph rooted at a fictitious vertex 0. To compute

the number of branchings present in an n vertex complete, simple digraph, we compute the

number of arborescences rooted at vertex 0 in the extended graph. To do this, we extend

our graph further and add arcs from each of the vertices {1, 2, ..., n} to 0. This makes a

complete, simple digraph with n + 1 vertices. The number of arborescences in a complete,

simple digraph with n vertices is easy to compute. We use the well-known result that the

number of spanning trees in a complete graph is nn−2 [?]. Since each vertex in a spanning

tree can serve as the root of an arborescence, each spanning tree corresponds to n possible

arborescences. The number of arborescences in the complete, simple digraph with n arcs is

thus n×n(n−2) = n(n−1); thus, in our graph with n+1 vertices, the number is (n+1)n. By

symmetry, the number of these that are rooted at vertex 0 is (n+1)n/(n+1) = (n+1)(n−1).

This is the number of branchings in our n vertex complete, simple network digraph. This

becomes staggeringly large even for n relatively small. For example, if n = 9, the number

of branchings is 108. It will clearly not be possible to compute all branchings for large

networks.

18

In general our networks will be sparse, not complete; that is, the number of vertices

to which a given vertex will be directly connected in the digraph is a small fraction of the

whole. To compute the number of branchings in this case, we assign a weight 0 to each arc

in the digraph. Eqs. (3.2) and (3.6) show, then, that the number of branchings N will be

N = det(I + M) (4.1)

where M is a matrix with element Mi,i equal to the outdegree of vertex i and element

−Mi,i6=j equal to the number of arcs in the digraph incidence on vertex j from vertex i.

Appendix B shows that the determinant of a sum of two matrices A and B is the

sum of determinants of all matrices formed from the permutations of different rows of A

and B. Thus, the number of branchings is det(I) plus the sum of determinants of all

matrices formed by replacing a row of I by the corresponding row of M plus the sum of

determinants of all matrices form by replacing two rows of I by the corresponding rows

of M and so forth up to det(M). det(M) = 0 since the sum of entries across a column

equals zero. Consider now the case in which we have the matrix formed by replacing row i

of I by the corresponding row of M . This is the matrix that has diagonal elements equal

to 1 for all entries except for row i, which has a value equal to the outdegree of vertex i.

The off-diagonal element are all zero except in row i where the element Mi,j 6=i is negative

the number of the arcs from vertex i to j. We obtain this matrix from a subgraph of our

extended digraph in which we remove all arcs with source not equal to vertex 0 or vertex i.

We also remove the arc from 0 to i, if present. The branchings obtained from this subgraph,

then, are one arc branchings with vertex i as the source. From an expansion by minors along

column i, the determinant of this matrix is Mi,i, the outdegree of vertex i, which is indeed

the number of one-arc branchings with vertex i as the source. Since i ranges from 1 to n,

the sum of the determinants of all such matrices gives the number of one-arc branchings.

We now consider the matrices formed by replacing two rows of I by the correspond-

ing rows of M . Suppose the two rows are i and j. We obtain this matrix by removing from

the extended graph all arcs with source other than vertex 0, i, or j and the arcs from 0 to

i and 0 to j, if present. The determinant of this matrix then gives the number of two-arc

branchings with vertices i and j as sources. We note that these arcs may or may not form

19

a two-arc path depending on whether the target of i is j or vice versa or not at all. Since

there are n vertices, there are C(n, 2) determinants that contribute two-arc branchings.

We repeat this procedure until we get to the matrix M itself. By arguments similar

to those above, the determinant of M corresponds to the number of n arc branchings. An

n−1-arc branching, however, already spans the digraph (without vertex 0). Adding another

arc either forms a cycle or leads to a vertex with indegree equal to two. In either case, this

is not a branching.

For a complete, simple graph with n vertices, Mi,i = n − 1 and Mi,i6=j = −1. The

number of zero-arc branchings is det(I) = 1. The number of one-arc branchings with arc i

as a source vertex is n−1. Since there are n choices for i, the number of one-arc branchings

is n(n − 1), the number of arcs in the graph. For the number of two-arc branchings, the

determinant reduces to that of a 2× 2 matrix with (n− 1) on the diagonals and −1 as the

off-diagonal elements. The determinant of this matrix is n(n− 2). When we combine with

the C(n, 2) choices for the two rows, we obtain (n− 1)!n2/ ((n− 3)!2!) = C(n− 1, 2)n2.

For the general case with m rows of M replacing the corresponding rows of I,

the resulting determinant is that of a m × m matrix with n − 1 on the diagonal and −1

elsewhere. We may view this matrix as a sum of a diagonal matrix with n on each diagonal

and an m × m matrix with all elements equal to −1. The determinant is again a sum of

determinants of m × m matrices formed from permutations of the various rows from the

two matrices. Only the diagonal matrix with n’s on the diagonal and the matrices with

n’s on the diagonal on all rows except one row which has all −1’s contribute because the

other permutations will have two identical rows and, thus, zero determinant. The resulting

determinant, then, is nm−mn(m−1) = n(m−1)(n−m) since there are m choices for the row

with all −1’s. In the overall matrix, there are n!/ ((n−m)!m!) ways of taking the m rows

in the n× n matrix. Nm, the number of branchings in the complete, simple graph with m

arcs is thus

Nm =
n!n(m−1) (n−m)

(n−m)!m!
=

(n− 1)!nm

(n−m− 1)!m!
= C(n− 1,m)nm. (4.2)

20

The total number of branchings in the complete graph is thus

N =
n−1∑
m=0

C(n− 1,m)nm = (1 + n)(n−1), (4.3)

the expected result.

As a final consideration on complete, simple graphs, consider the fraction of all

branchings that are arborescences. For our n vertex complete, simple digraph, there are

n(n−1) arborescences and (n + 1)(n−1) branchings. The fraction of branchings that are

arborescences is thus
N(n−1)

N
=
(

1
1 + 1/n

)(n−1)

. (4.4)

It is interesting that, in the limit that n →∞, N(n−1)/N → 1/e.

More generally, for a graph that is not simple and complete, one must work out the

determinants for the particular case at hand.

CHAPTER 5

PROBABILITIES

The probabilities at t + ∆t are given by Eq. (1.6); thus,

Xi(t + ∆t) =
n∑

j=1

PijXj(t) =

∑
B:(i) exp{w(B)}Xi(t)∑

B exp{w(B)}
+

∑
j 6=i

∑
B:(i)→j exp{w(B)}Xj(t)∑

B exp{w(B)}
.

(5.1)

We now consider a branching B : (i) → j. This branching is rooted at i but includes a

path from i to j. As argued previously, we can view this branching as derived from the n

arc arborescence with the arc from vertex 0 to vertex i removed. With this observation,

we interpret the branching B : (i) → i to be any branching that, when fictitious vertex 0 is

added, contains an arc from vertex 0 → i. This allows us to write Eq. (5.1) as

Xi(t + ∆t) =

∑
j

∑
B:(i)→j exp{w(B)}Xj(t)∑

B exp{w(B)}
, (5.2)

where the sum on j in the numerator is no longer restricted to j 6= i.

From Eq. (5.2), the probabilities at time t + ∆t may be derived by the following

algorithm. First, construct the extended graph that includes vertex 0 and has an arc with

weight zero from vertex 0 to each vertex i. Construct all n arc arborescences rooted at vertex

i. For each arborescence B, calculate its weight w(B) and add it to the sum
∑

B exp{w(B)}.

Then, if the arborescence has an arc from vertex 0 to vertex i, add to the numerator for

Xi(t + ∆t) the term exp{w(Bk)}
∑

j∈C Xj(t), where C is the subset of vertices connected

to i, that is, for every vertex in C, there is a path from i to that vertex. We note that C

includes i. If the arborescence has an arc from vertex 0 to m but no arc out of m, vertex

m is isolated in the underlying branching. In such a case the branching contributes a term

exp{w(B)}Xm(t) to Xm(t + ∆t).

A full implementation of the above algorithm is not practical since the number

of branchings in even a modest digraph will be staggeringly large. On the other hand, we

note the following property. Each arborescence (or underlying branching) occurs once in the

denominator. Now consider the sum
∑n

i=1 Xi(t+∆t). Because every vertex other than 0 has

22

indegree one in each arborescence, a particular branching B contributes exp{w(B)}
∑n

j=1 Xj(t) =

exp{w(B)} to the numerator. As a result, the sum over the Xi(t + ∆t) for any number of

branchings included will remain unity. A modification of the above algorithm, then, is to

compute the largest weight branching (Bmax), include its contribution to the Xi(t + ∆t)′s,

then include the contribution of the second largest branching, and so forth, until the prob-

abilities converge to desired accuracy. The algorithm is then practical if the number of

branchings needed for convergence is a sufficiently small fraction of the total number of

branchings.

It is worth noting that the largest weight (optimum) branching Bmax may be deter-

mined from Edmonds’ algorithm [Edmonds 1967]. This permits us to modify Eq. (5.2) to

read

Xi(t + ∆t) =

∑
j

∑
B:(i)→j exp{w(B)− w(Bmax)}Xj(t)∑

B exp{w(B)− w(Bmax)}
, (5.3)

which keeps the exponentials small and computationally manageable as we add each suc-

cessive one to the sum. It is convenient to write Eq. (5.3) as

Xi(t + ∆t) =

∑
j

∑
B:(i)→j exp{∆(B)}Xj(t)∑

B exp {∆(B)}
, (5.4)

where

∆(B) ≡ w(B)− w(Bmax). (5.5)

An algorithm with time complexity O(km log n) and memory complexity O(k +m) is avail-

able for finding the k-th optimal arborescences of a digraph with n vertices and m arcs

[Camerini et al. 1980].

It becomes convenient for later discussion to write Eq. (5.2) as follows:

Xi(t + ∆t) =
∑

B exp {w(B)}X(i)
B (t)∑

B exp {w(B)}
(5.6)

where we define

X
(i)
B (t) =

∑
j:{(i)→j}B

Xj(t), (5.7)

23

where the symbol j : {(i) → j}B means any vertex j for which there is a path from root

i to j in branching B. We emphasize that, if the branching B is not rooted at i, then we

must consider X
(i)
B (t) = 0.

It is clear that ∑
i

X
(i)
B (t) = 1 (5.8)

because, for any given branching, a vertex is connected by a path to one and only one root

of the branching; thus, the sum in Eq. (5.8) is simply the sum of the probabilities of each

vertex at time t. We then easily reconfirm that

∑
i

Xi(t + ∆t) =
∑

B exp {w(B)}
∑

i X
(i)
B (t)∑

B exp {w(B)}
= 1; (5.9)

that is, the sum of the probabilities at later time is unity independent of the number of

branchings included in the sum (as long as at least one branching is included).

CHAPTER 6

EFFECTIVE RATES

Eq. (1.1) gives the rate of change of state i. If we finite difference in time, we find

dXi

dt
→ Xi(t + ∆t)−Xi(t)

∆t
. (6.1)

From Eq. (5.1), we thus find

Xi(t + ∆t)−Xi(t)
∆t

= − 1
∆t

∑
B:(i)

exp{w(B)}∑
B exp{w(B)}

Xi(t) +
1

∆t

∑
j 6=i

∑
B:(i)→j exp{w(B)}∑

B exp{w(B)}
Xj(t),

(6.2)

where B : (i) is any branching not rooted at i. From Eqs. (1.1) and (6.2), we thus infer the

effective transition rate from j to i:

λeff
ji =

1
∆t

∑
B:(i)→j exp{w(B)}∑

B exp{w(B)}
. (6.3)

The total effective destruction rate of i is

Λeff
i =

∑
j 6=i

λeff
ij =

1
∆t

∑
j 6=i

∑
B:(j)→i exp{w(B)}∑

B exp{w(B)}
. (6.4)

Because the sum in Eq. (6.4) is over all branchings not rooted at i, this becomes

Λeff
i =

1
∆t

∑
B:(i)

exp{w(B)}∑
B exp{w(B)}

, (6.5)

as in Eq. (6.2).

CHAPTER 7

LONG-TIME BEHAVIOR OF NETWORKS

In this chapter, I consider the long-time behavior of the network, that is, the solu-

tions for the probabilities when ∆t →∞. Because the arc weights for our graph are given

by terms of the form ln (λ∆t), for sufficiently large ∆t, all arc weights will be positive. The

largest weight branchings, then, are ones that span the network. Spanning branchings, or

arborescences, of an n vertex digraph have n− 1 arcs; thus, spanning branchings will have

a weight given by some number plus (n− 1) ln ∆t.

We begin by considering an undirected graph G = (V,E). A connected component

of G is a maximal set of vertices U ⊆ V , such that for every pair of vertices i and j in U ,

there is a path between i and j. The graph G itself is connected if U = V , that is, there is

a path between each pair of vertices in the graph. Equivalently, we may say that the graph

is connected if there is at least one spanning tree in the graph.

We now consider a digraph D = (V,A). A strongly-connected component of D is a

maximal set of vertices U ⊆ V , such that for every pair of vertices i and j in U , we have a

path from i to j and a path from j to i. A digraph itself is strongly connected if U = V ,

that is, every vertex in the digraph is reachable from every other vertex.

If our network (more correctly, the digraph representing our network) is not strongly

connected, then at least one vertex j is not reachable from at least one other vertex i in

the digraph. It is thus clear that we cannot have an arborescence in our network rooted at

i. From Eq. (5.6), we see that Xi(t + ∆t) will be a weighted sum of branchings rooted at i

divided by the weighted sum of all branchings. Because the branchings rooted at i do not

span the digraph, the maximum weighted sum will be proportional to exp {(n− 2) ln ∆t}

at best. If there are spanning branchings present in the network, however, the denominator

in Eq. (5.6) will include terms proportional to exp {(n− 1) ln ∆t}. As ∆t → ∞, then, it

is clear that Xi(t + ∆t) → 0. We thus see that if the underlying graph of our network is

26

1

3

2

5

4

6

Figure 7.1 A simple, strongly-connected six vertex network. Note that, while the
network is strongly connected, it is not reversible.

connected, any vertex that cannot serve as the root of an arborescence will have a probability

that goes to zero as ∆t →∞.

With this consideration in mind, we restrict our attention to strongly connected

networks in which every vertex is reachable from every other vertex. Again from Eq. (5.6)

we see that, as ∆t → ∞, the weighted sums are dominated by the spanning branchings.

Furthermore, since these branchings are spanning, there is a path from the single root in

the branching to every other vertex; thus,

X
(i)
Bspan

(t) = 1. (7.1)

From Eq. (5.6) we see that

Xi,∞ =

∑
B:(i),span exp {w(B)}∑

B:span exp {w(B)}
, (7.2)

where the subscript ∞ denotes the limit ∆t →∞ and the notation B:span denotes branch-

ings B that span the graph. We note in Eq. (7.2) that the term exp {(n− 1)∆t} is present in

27

1

0

3

2

5

4

6

Figure 7.2 A spanning branching, or arborescence, of the six-vertex network in Fig. 7.1
.

both the numerator and denominator and cancels out. We may thus compute the branching

weights without the ∆t terms.

Eq. (7.2) shows that the long-time solution for the probability of state i in a reaction

network will be the weighted sum of arborescences rooted at i divided by the weighted sum

of all arborescences in the network. In many cases in physics, this long-time solution

represents an equilibrium, especially if the network is strongly connected. The equilibrium

probability in a network for the state represented by vertex i in our digraph then is the

weighted fraction of branchings rooted at vertex i.

At this point we now consider networks in which the reaction rates derive from

quantum mechanics. In such a case, all individual reaction flows are equal and the reaction

rate λji may be derived by detailed balance from λij . In particular, we find

λji

λij
=

Xeq
i

Xeq
j

. (7.3)

28

where Xeq
i is the equilibrium probability of state i. It is convenient to define

Rij ≡
Xeq

i

Xeq
j

. (7.4)

When detailed balance holds, we may derive an extremely useful result for the equilibrium

probability of a state in the linear network. To do this, we note that the underlying graph

of an arborescence is a spanning tree. We further note that an n vertex spanning tree is the

underlying graph for n arborescences. For example, consider the spanning tree. Choose a

particular vertex i of the tree as the root of the arborescence. Change all edges of the tree

incident on i into arcs with vertex i as the out vertex. Consider any vertex j that is the

target of the newly created arcs. An edge incident on j but not on i must then be changed

into an arc directed out from vertex j. The procedure continues until we reach a leaf of the

tree and all edges have been turned into arcs. The result is a branching rooted at vertex i.

We assume now that all arcs in our digraph are reversible, that is, that if there

is an arc from vertex i to vertex j, there is also an arc from vertex j to vertex i. If the

rates in the network derive from quantum mechanics, the weights of these two arcs are

related by detailed balance, as described above. Now consider two branchings that have

the same spanning tree as their underlying graph but have different roots. The weights of

these branchings are related. Suppose the first branching Bi is rooted at i and the second

branching Bj is rooted at j. Since the two branchings derive from the same tree, there is a

directed path Pj in Bj from vertex j to vertex i that is the reverse of the directed path Pi

in Bi from vertex i to vertex j. To convert Bi into Bj , then, we simply reverse all arcs in

Pi to produce Pj . This means that

w(Bj) = ln
(

λii1

λi1i

)
+ ln

(
λi1i2

λi2i1

)
+ ... + ln

(
λikj

λjik

)
+ w(Bi) = ln (Ri1iRi2i1 ...Rikj) + w(Bi),

(7.5)

where i1, i2, ..., ik are the intermediate vertices in paths Pi and Pj . Because of Eqs. (7.3)

and (7.4) we thus find

exp{w(Bj)} = Rji exp{w(Bi)}. (7.6)

29

We now consider Xi,∞. Since every spanning branching is rooted at some vertex j,

we may write

Xi,∞ =

∑
B:(i),span exp {w(B)}∑

j

∑
B:(j),span exp {w(B)}

, (7.7)

From Eq. (7.6), we may now write

Xi,∞ =

∑
B:(i),span exp {w(B)}∑

j Rji
∑

B:(i),span exp {w(B)}
, (7.8)

which becomes

Xi,∞ =
1∑
j Rji

. (7.9)

Eq. (7.9) may be expanded via Eq. (7.4) to read

Xi,∞ =
Xeq

i∑
j Xeq

j

= Xeq
i (7.10)

since the probabilities are normalized. For the case of a strongly-connected, linear, reversible

network governed by detailed balance, the long-time probabilities are those in equilibrium,

as expected.

We now consider a particular branching B
(i)
T derived from a spanning tree T and

rooted at vertex i. If we multiply numerator and denominator of Eq. (7.9) by exp{w(B(i))},

we find

Xi,∞ =
exp{w(B(i)

T)}∑
j exp{w(B(i)

T }Rji

, (7.11)

which, by Eq. (7.6), becomes

Xi,∞ =
exp

{
w(B(i)

T)
}

∑
j exp

{
w(B(j)

T)
} . (7.12)

It is important to note that the branchings B
(j)
T are all derived from B

(i)
T , that is, all branch-

ings in the denominator in Eq. (7.12) are from the same tree. The valuable result is that,

for a strongly-connected, reversible linear network governed by detailed balance, we may

find the long-time probability of a state by finding any spanning tree T , computing the ex-

ponential weight of the arborescence rooted at i derived from T , and dividing this result by

the sum of the exponential weights of all arborescences derived from T . Kruskal’s algorithm

[?] for finding the minimum spanning tree has time complexity O(m lnm), where m is the

30

1

3

2

5

4

6

Figure 7.3 The same network as in Fig. 7.1 but now the arcs (3,4) and (4,3) have
negligible weights such that the network breaks into two clusters.

number of edges in the tree, while Prim’s algorithm [?] for finding the minimum spanning

tree has time complexity O(m lnn). Both algorithms are clearly quite efficient. Alterna-

tively, we may find the maximum weight arborescence in the network and use the underlying

graph as T . In any event, such a procedure greatly reduces the computational effort. For

example, in a complete, simple network with n vertices, one computes n branchings to find

Xi,∞ for all i in Eq. (7.12) while one computes n(n−1) branchings in Eq. (7.2).

We now consider a network for which some subset of reactions is too slow to maintain

full equilibrium. The simplest scenario to consider is one in which the slow reactions cause

the network to break up into two distinct equilibrium clusters. We assume that the two

clusters themselves are strongly connected but that there is no arc between the two clusters

so that the full network is no longer strongly connected. Fig. 7.3 illustrates such a scenario.

In this case, if the arcs between vertices 3 and 4 have negligible weights, the network breaks

up into two clusters, one cluster, C1, comprising vertices 1, 2, and 3 and the other cluster,

C2, comprising vertices 4, 5, and 6. Clusters C1 and C2 are themselves strongly connected,

but C1 and C2 are not connected to each other.

31

As long as the arc weights remain sufficiently strong within the two clusters (because

∆t is sufficiently large), the dominant branchings will separately span the two clusters but

will lack arcs between the two clusters. Fig. 7.4 illustrates such a branching for the six-

vertex network of Fig. 7.3. The branching, call it B, has two roots, one a vertex in C1 and

the other a vertex in C2. The weight of this branching is then the weight of the arborescence

rooted within cluster C1 plus the weight of the arborescence rooted within cluster C2. We

may thus write

expw(B) = exp
{

w(B(C1))
}

exp
{

w(B(C2))
}

. (7.13)

Since the arborescences within C1 are independent of those in C2, it thus clear that, if we

neglect arcs whose source is in C1 and target is in C2 or whose source is in C2 and target

is in C1, the exponential sum over branchings is

∑
B

exp {w(B)} =
∑

B1:[(C1)]

∑
B2:[(C2)]

exp {w(B1)} exp {w(B2)} (7.14)

where B : [(Cm)] indicates a branching B rooted in (as indicated by the parentheses) and

completely contained within (as indicated by the square brackets) cluster Cm. Similarly,

we will use the notation B : [(i ∈ Cm)] to denote a branching B rooted at a vertex i ∈ Cm

such that the branching is also completely contained within Cm. The probability of state

i ∈ C1 at t + ∆t is given by

Xi(t + ∆t) =

∑
B1:[(i∈C1)] exp {w(B1)}X

(i)
B1

∑
B2:[(C2)] exp {w(B2)}∑

B1:[(C1)] exp {w(B1)}
∑

B2:[(C2)] exp {w(B2)}
(7.15)

from which it is clear that

Xi(t + ∆t) =

∑
B:[(i∈C1)] exp {w(B)}X

(i)
B∑

B:[(C1)] exp {w(B)}
. (7.16)

If we further assume that only the branchings B : [C1] that span C1 are included because

∆t is large enough, then we find

Xi(t + ∆t) =
XC1

∑
B:[(i∈C1)] exp {w(B)}∑

B:[(C1)] exp {w(B)}
= f

(i)
C1

XC1 (7.17)

32

C1 C2

1

0

32 5

4

6

Figure 7.4 A branching for the network in Fig. 7.3.

where in general for state i and cluster Cm

XCm =
∑

i∈Cm

Xi(t) (7.18)

and

f
(i)
Cm

=

∑
B:[(i∈Cm)] exp {w(B)}∑
B:[(Cm)] exp {w(B)}

. (7.19)

In this way, Cm acts as its own equilibrium cluster, and the probability of state i is the

fraction f
(i)
Cm

of exponentially weighted branchings in Cm rooted at i multiplied by the total

probability of the cluster.

We construct spanning branchings of the full network from the two branchings that

span C1 and C2. A spanning branching of the full network will be rooted at a single vertex.

Suppose i ∈ C1. The branching will then have a single arc from a vertex in C1 to a vertex

in C2. Since that arc leaves the vertex in C1, the source vertex can be any vertex in C1.

On the other hand, the arc goes to a vertex in C2. As a consequence, the target vertex of

the arc must be the root of the spanning branching in C2. Call that vertex k. In effect, to

construct a spanning branching rooted at i of the full network, we remove the arc from the

33

fictitious vertex 0 to k and add an arc from vertex j ∈ C1 to k ∈ C2. The weight of the arc

(j, k) is ln (λkj∆t); thus, the exponential weight of the branching B so constructed is

exp {w(B : (i ∈ C1))} = exp {w(B1 : [(i ∈ C1)])} exp {w(B2 : [(k ∈ C2)])}λkj∆t. (7.20)

We obtain the sum of all exponential weights of branchings rooted at i by summing over

each branching rooted at k and then over all possible values of j and k. The result is

∑
B:(i)

exp {w(B)} =
∑

B1:[(i∈C1)]

exp {w(B1)}
∑
j∈C1

∑
k∈C2

λkj∆t.
∑

B2:[(k∈C2)]

exp {w(B2)} . (7.21)

Finally, to get the sum of all spanning branchings rooted in cluster C1, we sum over i, which

results in a sum over all arborescences rooted in and contained within C1. Thus,

∑
B:(C1)

exp {w(B)} =
∑

B1:[(C1)]

exp {w(B1)}
∑
j∈C1

∑
k∈C2

λkj∆t
∑

B2:[(k∈C2)]

exp {w(B2)} . (7.22)

A similar analysis follows for the remaining spanning branchings, which are rooted in C2.

The result is

∑
B:(C2)

exp {w(B)} =
∑

B2:[(C2)]

exp {w(B2)}
∑
j∈C1

∑
k∈C2

λjk∆t
∑

B1:[(j∈C1]

exp {w(B1)} . (7.23)

From these results and Eq. (7.19) we find

∑
B:span

exp {w(B)} =

∆t
∑

B1:[(C1)]

exp {w(B1)}
∑

B2:[(C2)]

exp {w(B2)}
∑
j∈C1

∑
k∈C2

{
λjkf

(j)
C1

+ λkjf
(k)
C2

}
. (7.24)

We now compute the effective rate for transition from C2 to C1. From §6, and with

the assumptions 1) that only n−2 and n−1 arc branchings dominate and 2) that the n−2

arc branchings are those dominated by the union of spanning branchings within C1 and C2,

we find

λeff
C2C1

=
1

∆t

∑
B:(C1) exp {w(B)}∑

B1:[(C1)] exp {w(B1)}
∑

B2:[(C2)] exp {w(B2)}+
∑

B:span exp {w(B)}
, (7.25)

which becomes

λeff
C2C1

=

∑
j∈C1

∑
k∈C2

λkjf
(k)
C2

1 + ∆t
∑

j∈C1

∑
k∈C2

{
λjkf

(j)
C1

+ λkjf
(k)
C2

} . (7.26)

34

If we define

λCmCn ≡
∑

j∈Cm

∑
k∈Cn

λkjf
(k)
Cn

, (7.27)

we find

λeff
C2C1

=
λC2C1

1 + (λC1C2 + λC2C1) ∆t
, (7.28)

which is the effective rate for a two-state system given transition rates λC1C2 and λC2C1

between the two states C1 and C2. Similarly, we may find

λeff
C1C2

=
λC1C2

1 + (λC1C2 + λC2C1) ∆t
. (7.29)

We have thus reduced the full system to a two-state problem and found the effective tran-

sition rates.

We now assume that the reduced two state system thus produced is strongly con-

nected, that is, that neither λC1C2 nor λC2C1 is zero. In this case, we may consider the

ratio
λeff

C1C2

λeff
C2C1

=
λC1C2

λC2C1

. (7.30)

We note, however, that this ratio is that of the sum of weighted spanning branchings rooted

in C2 to that in C1. It is thus clear that

λC1C2

λC2C1

=
XC2,∞
XC1,∞

. (7.31)

The two-state linear system automatically satisfies its own detailed balance.

Although the above analysis considered only two strongly-connected components,

it holds for any number of strongly-connected components that are not connected to each

other. This reduction process then presents a valuable possible algorithm for computing

the evolution of the state probabilities. The steps would be the following:

1. Construct the digraph D representing the network and assign weights w to the arcs.

2. Choose a threshold weight (for example, w = 0) and construct a copy D′ of D that
excludes arcs in D whose weight falls below the threshold weight. Arcs with weights
above the threshold will change state probabilities on a timescale fast compared to
∆t.

35

3. Find the strongly-connected components of D′. Tarjan’s algorithm for finding the
strongly-connected components of a digraph has time complexity O(n + m), where
n is the number of vertices and m is the number of arcs [?].

4. Treat each strongly-connected component as a cluster Cm and compute the proba-
bility for the cluster by Eq. (7.18).

5. Compute the cluster fractions f
(i)
Cm

for each state i by Eq. (7.19). If the rates obey
detailed balance, this process is greatly simplified because one may find the cluster
fractions for each cluster from arborescences derived from a single spanning tree of
the cluster.

6. Compute cluster transition rates from Eq. (7.27). This requires individual rates
between species in different clusters, which may not be in D′ but are in D.

7. Compute the evolution of the reduced system by treating the clusters as states and
using the normal branching rules previously derived.

If the entire digraph is strongly connected, the above algorithm yields the full equi-

librium since there will only be one cluster with no transitions; that is, the reduced graph

will be the trivial graph (one vertex, no arcs). The cluster probability will be unity. The

individual state probabilities can then be determined from Eq. (7.2).

More generally, there will be more than one strongly-connected component. Given

time, the clusters will merge. On the other hand, if the individual rates are decreasing

with time due, for example, to material expanding and cooling, larger clusters may break

up into smaller clusters. Such evolution can continue until the whole network breaks up

into n separate clusters. If this continues until one single branching, that with no arcs (or,

perhaps more properly, with only arcs from fictitious vertex 0 to each vertex i), dominates,

then the network will experience full reaction freezeout. This process of cluster breakup

would be the “descent of the hierarchy of statistical equilibria” discussed in §1.

CHAPTER 8

REACTION NETWORK THERMODYNAMICS

In this chapter, I consider network thermodynamics in the context of branchings in

digraphs. To begin, it is useful to note that a particle with mass m that obeys Maxwell-

Boltzmann statistics typically has a chemical potentials µ given by

µ = mc2 + kT ln

{
n

g

(
2πh̄2

mkT

)3/2
}

, (8.1)

where c is the speed of light in vacuum, k is Boltzmann’s constant, n is the number density

of the particles, g is a multiplicity (spin factor) for the particle, and h̄ is Planck’s constant

divided by π. Suppose we are considering atoms of a particular isotope. At temperature T ,

these atoms will be distributed among their excited states. Let i be a particular state in the

atom. The number density of atoms at time t in state i will be ni(t) = nXi(t), where Xi(t)

is the probability to find an atom in state i at t. The different states will have different

masses mi, which can be related to the ground state mass m0 by mic
2 = m0c

2 + Ei, where

Ei is the excitation energy of state i above the ground state. From this we may find,

µi

kT
=

Ei

kT
+ ln

{
Xi

gi

}
+ m0c

2 + kT ln

{
n

(
2πh̄2

mkT

)3/2
}

, (8.2)

where we neglect the small difference between masses inside the logarithm. At “chemical”

equilibrium, all states have the same chemical potential (µeq
i = µeq

j for all i and j); thus,

Xeq
j

Xeq
i

=
gj

gi
exp {− (Ej − Ei) /kT} , (8.3)

which is the usual Boltzmann distribution.

In general, the distribution of atoms among their excited states will not be the

equilibrium one; thus, it is convenient to consider the distance from equilibrium for a given

state i:
µi

kT
−

µeq
i

kT
= ln

(
Xi

Xeq
i

)
. (8.4)

37

Eq. (8.4) shows that, if the probability for state i is bigger than that in equilibrium,

µi > µeq
i , and it is energetically favorable to reduce the probability of state i. The reverse

is true if Xi < Xeq
i . When Xi = Xeq

i , both sides of Eq. (8.4) are zero, as expected.

All this motivates consideration of the chemical potential as defined in Eq. (8.4).

We note that, when states i may be considered as a linear network and when Eq. (8.4)

holds, we may find

µi

kT
−

µeq
i

kT
= ln

∑B:(i) exp {w(B)}X
(i)
B∑

B exp {w(B)}

− ln

(∑
B:(i),span exp {w(B)}∑

B:span exp {w(B)}

)
. (8.5)

Thus, the chemical potential difference from equilibrium is the logarithm of the ratio of the

fraction of the weighted sum of branchings rooted at i compared to the same fraction in

equilibrium.

From Eq. (8.5), it makes sense to define µi/kT as

µi

kT
= ln

∑B:(i) exp {w(B)}X
(i)
B∑

B exp {w(B)}

+
Ai

kT
, (8.6)

where Ai is a function of quantities specific to i (such as the multiplicity) and to the system

as a whole (such as the volume). We make the further key assumption that we may write

Ai = A + Γi, (8.7)

that is, that we may separate out from Ai a part that depends on i and a part that does

not. This holds in may physical situations [recall Eq. (8.2)]. With this definition, we find

µi

kT
− Γi

kT
= ln

∑B:(i) exp {w(B)}X
(i)
B∑

B exp {w(B)}

+
A

kT
, (8.8)

Finally, it becomes convenient to define

µ′i
kT

=
µi

kT
− A

kT
. (8.9)

We see that µ′i is a chemical potential with the A part removed. With this definition, we

see that
µ′i
kT

− Γi

kT
= ln

∑B:(i) exp {w(B)}X
(i)
B∑

B exp {w(B)}

 . (8.10)

38

We compute Γi by considering the long-time limit. We then take the difference

between µ′i and µ′j , which goes to zero. As a consequence, we find

Γj − Γi = kT ln

(∑
B:(i),span exp {w(B)}∑
B:(j),span exp {w(B)}

)
. (8.11)

From this we infer

Γi = E0 − kT ln

 ∑
B:(i),span

exp {w(B)}

 , (8.12)

where E0 is an overall energy scale. It makes sense to define

E0 = kT ln

 ∑
B:span

exp {w(B)}

 . (8.13)

With this definition, Γi will be independent of ∆t because the spanning branchings all

have the same power of ∆t which then cancel out. Γi is an energy. When the network is

strongly connected and reversible, the weighted sum of the branchings rooted at vertex i is

proportional to the equilibrium probability. Eq. (8.11) and (8.3) give

Γj − Γi = kT ln
(

gi

gj

)
+ Ej − Ej . (8.14)

Thus, in this case, the Γ’s are related to the physical energy of the various states. When

the network is not reversible, the Γ’s are a different energy.

Let us now consider the general quantity

Z = exp
{

A

kT

}
. (8.15)

Since ∑
B exp {w(B)}∑
B exp {w(B)}

=

∑
i

∑
B:(i) exp {w(B)}X

(i)
B∑

B exp {w(B)}
= 1, (8.16)

we find

Z = exp
{

A

kT

} ∑
i

∑
B:(i) exp {w(B)}X

(i)
B∑

B exp {w(B)}
. (8.17)

By Eq. (8.8), we thus find

Z = exp
{

A

kT

}∑
i

exp
{

(µ′i − Γi)
kT

}
. (8.18)

39

We compute

Ω = −kT lnZ = − lnA− kT ln

(∑
i

exp
{

(µ′i − Γi)
kT

})
. (8.19)

At this point, we identify Ω as the grand potential and Z as the grand partition

function. Since A depends only on the system, for example, the temperature T , the set

of external variables {Y } (such as the volume V , which we will take to be the only ex-

ternal parameter), and possibly the total number chemical potential µ, we thus identify

A = −Ωsystem(T, V, µ). The second term is a grand potential associated simply with the

probabilities {Xi}. In this way it is a “network” grand potential that is not dependent on

the external variables:

Ωnet = −kT ln

(∑
i

exp
{

(µ′i − Γi)
kT

})
. (8.20)

With these definitions

Ω(T, V, µ, {µ′i}) = Ωsystem(T, V, µ) + Ωnet(T, {µ′i}). (8.21)

A change in the grand potential is given by

dΩ =
(

∂Ω
∂T

)
V,µ,{Xi}

dT +
(

∂Ω
∂V

)
T,µ,{Xi}

dV +
(

∂Ω
∂µ

)
T,V,{Xi}

dN

+
∑

i

(
∂Ω
∂µ′i

)
T,V,µ,{Xj 6=i}

dXi. (8.22)

This becomes

dΩ =
(

∂ (Ωsystem + Ωnet)
∂T

)
V,µ,{Xi}

dT +
(

∂Ωsystem

∂V

)
T,µ,{Xi}

dV

+
(

∂Ωsystem

∂µ

)
T,V,{Xi}

dµ +
∑

i

(
∂Ωnet

∂µ′i

)
T,V,µ,{µ′

j 6=i}
dµ′i. (8.23)

From standard thermodynamics, we recall

dΩ = −SdT − PdV −Ndµ, (8.24)

so we recognize the entropy

S = −
(

∂ (Ωsystem + Ωnet)
∂T

)
V,µ,{Xi}

, (8.25)

40

the pressure

P = −
(

∂Ωsystem

∂V

)
T,µ,{Xi}

, (8.26)

and the total number

N = −
(

∂Ωsystem

∂µ

)
T,V,{Xi}

. (8.27)

We further identify

Xi =
(

∂Ωnet

∂µ′i

)
T,V,µ,{µ′

j 6=i}
. (8.28)

To consider these results, we begin by computing Xi. The result is

Xi(t + ∆t) =
exp

{
(µ′

i−Γi)
kT

}
∑

j exp
{

(µ′
j−Γj)
kT

} =

∑
B:(i) exp {w(B)}X

(i)
B∑

B exp {w(B)}
, (8.29)

where the second equation follows from Eq. (8.10). This is the expected result. We next

compute the entropy. We first note from Eq. (8.25) that we can write

S = Ssystem + Snet. (8.30)

The system entropy is the normal entropy for a system with temperature T , volume V , and

total chemical potential µ. Of more interest is the network entropy

Snet = −
(

∂Ωnet

∂T

)
V,µ,{µi}

= −k
∑

i

(µ′i − Γi)
kT

exp
{

(µ′i − Γi)
kT

}
. (8.31)

From this we see

Snet = −k
∑

i

Xi(t + ∆t) ln Xi(t + ∆t). (8.32)

The above result is not surprising in that it is simply the Shannon entropy [?]. What

is interesting about it is that we may substitute in Eq. (5.4) to find

Snet = k ln

(∑
B

exp {∆(w(B)}

)
− k

∑
i

Xi(t + ∆t) ln

∑
B:(i)

exp {∆(B)}X
(i)
B

 , (8.33)

where we recall the sum of probabilities is unity. Let us now define a “complexity” associated

with vertex i as Ci:

Ci =
∑
B:(i)

exp {∆(B)}X
(i)
B . (8.34)

41

The total complexity

C =
∑

i

Ci. (8.35)

The result is

Snet = k ln C − k
∑

i

X(t + ∆t) ln Ci = k ln C − k ln〈Ci〉, (8.36)

where 〈Ci〉 is the average complexity associated with a single vertex. The total complexity

is the weighted sum of branchings in the network compared to the maximum branching.

For example, if only one branching dominates, C = 1. If all branchings have equal weight,

C = N , where N is the total number of branchings. Since X
(i)
B is the fraction of a branching

B that “belongs” to root vertex i, the network entropy is given by the logarithm of the full

complexity less the logarithm of the average complexity belonging to any given node.

As a final point, we consider the change in entropy in the system. In the absence of

an external heating, the entropy is given by

TdS = −
∑

i

µidNi, (8.37)

where Ni = XiN , with N the total number of atoms. In terms of the specific entropy

s = S/N , we may find

d(s/k) = −
∑

i

µi

kT
dXi. (8.38)

From Eq. (8.9), we obtain

d(s/k) = −
∑

i

(
µ′i
kT

+
Γi

kT

)
dXi, (8.39)

where the part dependent on A drops out because
∑

i dXi = 0. From Eqs. (8.8) and (8.11)

we then find

d(s/k) = −
∑

i

ln

∑B:(i) exp {w(B)}X
(i)
B∑

B:(i),span exp {w(B)}

 dXi. (8.40)

This result gives us a useful way of computing the entropy change in a system from the

branchings. Notice in particular that for long-time solutions in a strongly-connected network

that d(s/k) → 0 because spanning branchings dominate and the logarithm goes to ln(1).

CHAPTER 9

NON-LINEAR NETWORK TREATMENT

Thus far I have only treated linear reaction networks. This chapter extends the

analysis to non-linear networks. For definiteness, I will use the example of nuclear reaction

networks in astrophysical plasmas (generally stellar interiors) in which the reacting species

are fully-ionized nuclei.

To begin, consider the number density ni of a nuclear species i in an astrophysical

plasma. If we ignore small corrections in mass due to binding energies, the number density

of nucleons is NAρ, where NA is Avogadro’s number and ρ is the mass density. We thus

define Yi, the abundance of i per nucleon, to be

Yi =
ni

NAρ
. (9.1)

Let us now suppose i participates in a reaction i+ j + ...+k ↔ `+m+ ...n. The convention

will be that the “forward” direction for the reaction is the exothermic direction while the

“reverse” direction is the endothermic direction. By convention, then, the reactants in the

reaction are those species combining in the exothermic direction to produce the products.

Let R be the set of reactants and P be the subset of products. There are NR reactants and

NP products. The time rate of change of a species q ∈ R due to this reaction is thus

dYq∈R

dt
= −λfor

∏
j∈R

Yj + λrev

∏
k∈P

Yk, (9.2)

where λfor is the rate per interacting set of nuclei in the forward direction and λrev is the

rate per interacting set of nuclei in the reverse direction. The time rate of change of a

species s ∈ P due to this reaction, then, is

dYs∈P

dt
= λfor

∏
j∈R

Yj − λrev

∏
k∈P

Yk, (9.3)

We now define the mass fraction Xi of species i. This is the number of grams of

i per gram of total material. Since species i has Zi protons and Ai nucleons, the mass

43

fraction of species i is

Xi = AiYi. (9.4)

By conservation of mass, we then note

∑
i

Xi = 1. (9.5)

Xi thus is the probability that a gram of nucleons will be in the form of species i. With

these definitions, Eqs. (9.2) and (9.3) become

dXq∈R

dt
= −λforAq

∏
j∈R

Xj

Aj
+ λrevAq

∏
k∈P

Xk

Ak
, (9.6)

and
dXs∈P

dt
= λforAs

∏
j∈R

Xj

Aj
− λrevAs

∏
k∈P

Xk

Ak
. (9.7)

To evolve the mass fractions, we now finite difference in time and linearize. We first

define modified forward and reverse rates as

λ̃for ≡
λfor

NR

∏
j∈R

Xj(t)
Aj

(9.8)

and

λ̃rev ≡
λrev

NP

∏
k∈P

Xk(t)
Ak

. (9.9)

For q ∈ R, the result is then

Xq(t + ∆t)−Xq(t)
∆t

= −λ̃for

∑
`∈R

Aq

X`(t)
X`(t + ∆t) + λ̃rev

∑
m∈P

Aq

Xm(t)
Xm(t + ∆t). (9.10)

For s ∈ P , the result is

Xs(t + ∆t)−Xs(t)
∆t

= λ̃for

∑
`∈R

As

X`(t)
X`(t + ∆t)− λ̃rev

∑
m∈P

As

Xm(t)
Xm(t + ∆t). (9.11)

As with the linear network, we may thus write

(I + M∆t) X(t + ∆t) = X(t), (9.12)

where X(t) and X(t + ∆t) are vectors whose elements are the mass fractions of all species

at time t and t + ∆t, respectively.

44

We now identify the contribution of the particular reaction to the matrix elements.

For u ∈ R and v ∈ R, we find

Mu∈R,v∈R∆t = λ̃for∆t
Au

Xv(t)
. (9.13)

For u ∈ R and v ∈ P , we find

Mu∈R,v∈P ∆t = −λ̃rev∆t
Au

Xv(t)
. (9.14)

For u ∈ P and v ∈ R,

Mu∈P,v∈R∆t = −λ̃for∆t
Au

Xv(t)
. (9.15)

Finally, for u ∈ P and v ∈ P ,

Mu∈P,v∈P ∆t = λ̃rev∆t
Au

Xv(t)
. (9.16)

We now consider the column sum of matrix elements from a particular reaction.

Consider first a column v such that v ∈ R. We sum over rows. The result is

∑
u

Mu,v∈R =
∑

u1∈R

Mu1∈R,v∈R +
∑

u2∈P

Mu2∈P,v∈R

=
λ̃for

Xv(t)

∑
u1∈R

Au1 −
∑

u2∈P

Au2

= 0. (9.17)

The last line follows from the fact that the number of nucleons in the reaction is conserved.

If v ∈ P , then

∑
u

Mu,v∈P =
∑

u1∈R

Mu1∈R,v∈P +
∑

u2∈P

Mu2∈P,v∈P

=
λ̃rev

Xv(t)

− ∑
u1∈R

Au1 +
∑

u2∈P

Au2

= 0. (9.18)

The matrix defined in this way thus has the crucial property that column sums are zero.

This means that the diagonal element is the negative of the sum of the other elements in

45

the same column. The network can then be represented as a digraph as we have previously

discussed.

As we have previously seen, the (u, v) matrix element corresponds to an arc from

vertex u to vertex v. We thus can identify arc weights. If u and v are distinct vertices, and

if u ∈ R and v ∈ P , then then arc weight wuv is

wu∈R,v∈P = ln
[
λ̃rev∆t

Au

Xv(t)

]
. (9.19)

Similarly

wu∈P,v∈R = ln
[
λ̃for∆t

Au

Xv(t)

]
. (9.20)

These are exactly analogous to the linear network case except that we use the modified rates

and the arc weight is modified by the ratio Au/Xv(t). Thus one must multiply the modified

rate times ∆t by the mass number of the outvertex and divide by the mass fraction at time

t of the invertex.

If u and v are distinct, and if u ∈ R and v ∈ R or u ∈ P and v ∈ P , the matrix

element Muv is positive. By the network digraph rules, then, the arc weight is the logarithm

of a negative number. This is incorporated by adding iπ to the arc weight, where i =
√
−1,

as usual. The result is

wu∈R,v∈R = iπ + ln
[
λ̃for∆t

Au

Xv(t)

]
(9.21)

and

wu∈P,v∈P = iπ + ln
[
λ̃rev∆t

Au

Xv(t)

]
(9.22)

A complex arc weight adds a complication to the problem since branching weights are

now possibly complex; however, this complication is minor since the imaginary part of

the branching weight will be an integer multiple of iπ. In comparing exponential sums

of branching weights, then, we must simply compare absolute magnitudes to determine a

branching’s relative contribution.

A mnemonic may help in remembering when an arc requires the iπ addend. Consider

first, for example, the reaction i ↔ j. This is a linear reaction. In the network digraph, this

reaction contributes an arc i → j and an arc j → i. Consider now the non-linear reaction

i+ j ↔ k. This reaction thus contributes normal arcs i → k, j → k, k → i, and k → j since

46

these vertices all lie on opposite sides of the reaction. There are also arcs between reactants

i and j. We can accommodate this by writing i → k − j and j → k − i. The negative sign

in front of the i or j means arc i → j and the arc j → i thus includes the logarithm of a

negative one. Alternatively, we may imagine a pivot point attached to the ↔ in i + j ↔ k.

To get a arc from i to j, we must “rotate” j by π radians about the pivot point to get it on

the other side of the reaction. This π then can be thought of as the iπ in the arc weight.

The matrix derived from a single reaction is singular–each row in the matrix is a

multiple of the other rows. Consider the matrix elements for a given row u1. The elements

have the form of λ̃∆t times the ratio Au1/Xv(t), where v is the column number. For another

row u2, the element is the same λ̃∆t times the ratio Au2/Xv(t). Thus all elements of row

u2 are a multiple Au2/Au1 of the corresponding elements of row u1.

An important consequence of the fact that the rows of the matrix are multiples of

each other is the result that det (I + M∆t) = 1+Tr(M∆t). This is because the determinant

is the sum of all determinants of matrices formed from permutations of rows of I and M∆t.

Any matrix with two or more rows from M∆t will give determinant zero because those

two rows are multiples of each other; thus, the only permutations giving non-zero values

are I and the matrices formed from one row of M∆t and all the other rows from I. The

determinant of these latter matrices is simply the product of the diagonal elements, and

the sum of these determinants is thus the trace of M∆t. As we have seen, a diagonal

element of M∆t is the negative of the sum of the other elements in the same column. These

other elements are the negative of the exponential arc weights. The consequence is that

branchings arising from a single non-linear reaction are simply the sum of the individual

arcs. In other words, branchings from a single reaction can have at most one arc.

We now consider many reactions. For each reaction r we construct a matrix Mr.

We may then write Eq. (9.12) as

(I + M∆t) X(t + ∆t) =

(
I +

∑
r

Mr∆t

)
X(t + ∆t) = X(t). (9.23)

To compute det (I + M∆t), we again note that this is the sum of all determinants of matrices

formed from permutations of rows of I and the various Mr. Because the rows of each Mr

are multiples of each other, however, any matrix that has two or more rows from a given Mr

47

will yield determinant zero. A determinant is a sum of terms, each of which contains only

one element from each row in the matrix [see Eq. (B.1)]. We also note that the terms that

survive in this sum are each exponentials of branching weights in our network digraph; thus,

we find the result that a reaction can contribute no more than one arc to any branching.

Unlike linear reactions, each non-linear reaction contributes multiple arcs to the

network digraph. For example, the forward reaction i + j → k contributes four arcs:

i → j, i → k, j → i, and j → k. Nevertheless, only one of these arcs may appear in

any branching in the network. A branching that includes, for example, two arcs from the

same reaction will be canceled out by one or more branchings with two arcs from the same

reaction in the sum of branchings that gives rise to the determinant. Normal computation

of a determinant handles these calculations; however, since these cancellations are often

between large numbers, numerical inaccuracies can creep in. By explicitly excluding terms

in the determinant that will cancel out, we can not only reduce the size of our calculation

but also increase its accuracy.

As a final note, the useful result for the linear network that long-term solutions

can be obtained from a single spanning tree does not hold for the non-linear network when

detailed balance applies. This is because there is not a simple relationship between λ̃for

and λ̃rev. These rates also depend on the abundances of the interacting species at time t

which may or may not have their equilibrium values.

In summary, non-linear reaction networks may also be analyzed with branchings

in network digraphs. For nuclear reaction networks, we must first consider mass fractions

in place of abundances. This permits the matrix M for the reaction to have the crucial

property that the elements in a give column sum to zero. We must then modify reaction

rates by including the abundances of the reactants and dividing by the number of reactants

to account for the linearization. Then we must assign arcs weights in the network digraph.

To do this, we must multiply the modified rate by ∆t and by the ratio of the mass number

of the outvertex to the mass fraction at time t of the invertex. The logarithm of the absolute

value of this quantity is the arc weight. We finally add iπ to the arc weight if the arc is

between two reactants (or two products) in the reaction. At this point we may apply all

the previous rules we developed for analyzing linear reactions with branchings in digraphs

48

except that detailed balance must be treated more carefully. An important added constraint

on our calculation of branchings is that a reaction may contribute no more than one arc to

any branching.

While the above analysis considered nuclear reaction networks, it should readily to

any non-linear network. The key is to identify the quantity conserved in reactions (in the

above case, the number of nucleons) and the effective probability (in the above case, the

mass fraction of species).

CHAPTER 10

EXAMPLES AND APPLICATIONS

The analysis in the previous chapters is rather abstract. Here I present some exam-

ples to illustrate the key ideas of applications of branchings to reaction networks.

10.1 Two-State System

The simplest non-trivial system we can analyze is the two-state linear network shown

in Fig. 10.1. The transition rate from state 1 to 2 is λ12 and from state 2 to 1 is λ21. We

create a network digraph by assigning states 1 and 2 to vertices 1 and 2 in the digraph,

respectively, and then, for time step ∆t, adding arc (1, 2) with weight ln(λ21∆t) and arc

(2, 1) with weight ln(λ12∆t). We then add fictitious vertex 0 and arcs (0, 1) and (0, 2) with

weights 0 each. This results in the network digraph shown in Fig. 10.2.

To analyze the flows from t to t+∆t, we must find the branchings. There are three,

as shown in Fig. 10.3. Shown are the two-arc arborescences including fictitious vertex 0

and the arcs out of vertex 0 to one or more of vertices 1 and 2. If we focus on the actual

graphs without the fictitious vertex, the branchings are the digraphs with only vertices 1

and 2 and the solid arcs; thus, the branchings are 1) the graph with vertices 1 and 2 and

no arc [with branching weight w(B1) = 0], 2) the graph with vertices 1 and 2 and arc (1, 2)

[with branching weight w(B2) = ln(λ21∆t)], and 3) the graph with vertices 1 and 2 and arc

(2, 1) [with branching weight w(B3) = ln(λ12∆t)].

With the branchings and their weights now available, it is possible to compute the

transition matrix, that is, the inverse matrix we apply to the probabilities at t to get those

at t + ∆t. probabilities X(t + ∆t) from X(t). From Eqs. (3.7) and (3.9), we find X1(t + ∆t)

X2(t + ∆t)

 =
1

1 + (λ12 + λ21) ∆t

 1 + λ21∆t λ21∆t

λ12∆t 1 + λ12∆t

 X1(t)

X2(t)

 (10.1)

In Eq. (10.1, the factor in front of the matrix is one over the sum of the exponentials of

the all the branchings weights. The (1, 1) element of the matrix is then this overall factor

50

Figure 10.1 Raw network for the two-state system.

Figure 10.2 Network digraph for the two-state system.

51

Figure 10.3 Branchings for the two-state system.

times the sum of the exponential weights of all branchings rooted at vertex 1; thus, it is

exp (w(B1)) + exp (w(B2)). The (1, 2) element of the matrix is this overall factor times the

sum of the sum of the exponential weights of all branchings rooted at vertex 1 but with

a path from vertex 1 to vertex 2; thus, it is exp (w(B2)). The (2, 1) and the (2, 2) matrix

elements are similar except for branchings rooted at vertex 2.

We may compute the probabilities at t + ∆t directly from Eq. (10.1); however, it is

instructive to compute them via the sorted branching algorithm. Let us assume the branch-

ing weights are such that w(B2) > w(B1) > w(B3), as determined by an implementation

of the Camerini et al. algorithm. We would construct the probabilities at time t + ∆t as

follows. We begin with X1(t + ∆t) = X2(t + ∆t) = 0. Now consider B2. It is rooted at

vertex 1, so it contributes to X1(t + ∆t). Thus, from the first term in Eq. (5.6), we would

find ∆(B2) = 0 and

X1(t + ∆t) =
e0X

(1)
B2

(t)
e0

= X1(t) + X2(t) (10.2)

and

X2(t + ∆t) = 0, (10.3)

52

since B2 is not rooted at vertex 2. Notice that in this step X1(t + ∆t) + X2(t + ∆t) =

X1(t) + X2(t) = 1 since the probabilities at t are normalized. We next apply B1. Here

∆(B1) = 0− ln(λ21∆t) = − ln(λ21∆t) and, hence,

X1(t + ∆t) =
X1(t) + X2(t) + X1(t)

λ21∆t

1 + 1
λ21∆t

=
X1(t) (1 + λ21∆t) + λ21∆tX2(t)

1 + λ21∆t
(10.4)

and

X2(t + ∆t) =
X2(t)
λ21∆t

1 + 1
λ21∆t

=
X2(t)

1 + λ21∆t
. (10.5)

If we sum, we find that X1(t + ∆t) + X2(t + ∆t) = 1. Finally, we consider B3. Here

∆(B3) = ln(λ12∆t)− ln(λ21∆t). If this branching were negligible [exp{∆(B3)} sufficiently

less than one], then we could stop, and the probabilities in Eq. (10.4) and (10.5) would be

satisfactory. If not, we would include this branching to find

X1(t + ∆t) =
X1(t) + X2(t) + X1(t)

λ21∆t

1 + 1
λ21∆t + λ12∆t

λ21∆t

(10.6)

and

X2(t + ∆t) =
X2(t)
λ21∆t + λ12∆t

λ21∆t (X1(t) + X2(t))

1 + 1
λ21∆t + λ12∆t

λ21∆t

. (10.7)

After minor manipulations, these probabilities become

X1(t + ∆t) =
(1 + λ21∆t) X1(t) + λ21∆tX2(t)

1 + (λ12 + λ21) ∆t
(10.8)

and

X2(t + ∆t) =
λ12∆tX1(t) + (1 + λ12∆t) X2(t)

1 + (λ12 + λ21) ∆t
(10.9)

These are the results expected from Eq. (10.1).

In the long time limit (∆t → ∞), w(B3) would become larger than w(B1). This

means that we would add brancing B3 before B1 in computing the X(t + ∆t)’s. In any

event, the long-time limit of the probabilities are

X1(t + ∆t) =
λ21∆t

(λ12 + λ21) ∆t
=

λ21

λ12 + λ21
(10.10)

and

X2(t + ∆t) =
λ12∆t

(λ12 + λ21) ∆t
=

λ12

λ12 + λ21
. (10.11)

53

Figure 10.4 The single spanning tree in the simple two-state network.

Notice that these are from all spanning branchings (B2 and B3), which themselves are

derived from the one spanning tree in the problem, shown in Fig. (10.4). Interestingly,

the probabilities in Eq. (10.10) and (10.11) are the equilibrium values though we have

not required detailed balance explicitly. That the equilibrium values derive from a single

spanning tree is simply a consequence of the fact that there is only one spanning tree in the

network.

The above procedure shows that as we add each branching, the solutions tend to

converge on the correct result. What is also useful is that the sum of the probabilities

always stays unity during each iteration; thus, if we stop the iteration before convergence,

we nevertheless still have normalized probabilities.

From Eq. (6.3), we find, assuming w(B2) is the largest weight branching,

λeff
12 =

1
∆t

λ12
λ21

1 + 1
λ21∆t + λ12

λ21

(10.12)

and

λeff
21 =

1
∆t

1
1 + 1

λ21∆t + λ12
λ21

. (10.13)

54

We could then compute the probabilities at t + ∆t as

X1(t + ∆t)−X1(t)
∆t

= −λeff
12 X1(t) + λeff

21 X2(t) (10.14)

and
X2(t + ∆t)−X2(t)

∆t
= λeff

12 X1(t)− λeff
21 X2(t) (10.15)

Simple manipulation of these equations leads back to Eqs. (10.6) and (10.7). In general,

this method of computing the probabilities is less useful than directly from the branchings,

however, because there will be effective rates between every species; thus, we will need to

compute and store O(n2) effective rates, which may not be practical for a large network.

Nevertheless, the effective rates are useful for analyzing flows between particular species

over time step ∆t.

It is worth noting that the total complexity of the network (again assuming that

w(B2) > w(B1) > w(B3)) is

C = 1 +
1

λ21∆t
+

λ12

λ21
. (10.16)

Depending on the relative magnitudes of the terms, it is clear that 1 ≤ C ≤ 3. A complexity

near 3 means all branchings are contributing. A complexity near 1 means that B2 dominates.

We may also note that the network entropy is

Snet/k = ln
(

1 +
1

λ21∆t
+

λ12

λ21

)
−(1 + λ21∆t) X1(t) + λ21∆tX2(t)

1 + (λ12 + λ21) ∆t
ln
(

1 +
X1(t)
λ21∆t

)
−λ12∆tX1(t) + (1 + λ21∆t) X2(t)

1 + (λ12 + λ21) ∆t
ln
(

X2(t)
λ21∆t

+
λ12

λ21

)
. (10.17)

At this point it is worth noting that the network entropy can decrease in the evo-

lution of the system. Imagine, for instance, that λ12 � λ21. The long-time (equilibrium)

solution will be X1(t+∆t) � X2(t+∆t). Suppose X2(t) = 1 and X1(t) = 0. If we imagine

evolving the system by simply dialing up ∆t, the network entropy will begin at zero. As

probability shifts from state 2 to 1, however, there will be some point at which the two

states will have equal probability. Here Snet = k ln 2. Further evolution, however, will lead

to the case that X1 � X2. In this case, the network entropy will decrease towards one

55

again. This is a consequence of the entropy being for a system with a finite number of

states. Nevertheless, the total entropy S = Ssystem + Snet is likely increasing with time

because the energy released by the de-excitation is going into other degrees of freedom (say,

the translational degrees of the atoms) that are accounted for in Ssystem.

This consideration leads to another thought experiment. Suppose the system starts

at t = 0 at low temperature with equal probabilities for the two states: X1(t) = X2(t) = 0.5.

Suppose further that at low temperature, the rates λ12 = λ21 = 0 so that the system is not

evolving. Now suppose the system is suddenly heated up to high temperature such that

λ12 = λ21 = 1. The states already have their equilibrium probabilities, so they will not

evolve with time. Nevertheless, we have the sense that, before ∆t ≈ 1, the states have not

“earned” their equilibrium, so something must be evolving. I propose that, in fact, what is

evolving is the complexity. For small ∆t, the complexity is simply unity because branching

B2 will dominate. As ∆t increases, however, the complexity will first increase until it

attains a maximum of three at ∆t = 1 where all three branchings have equal weight. As

∆t increases further, however, branchings B1 and B3 will dominate B2, and the complexity

will decrease to two, which is its long-time limit. In this way, the complexity, as I have

defined it, may be a particulaly valuable diagnostic of the evolution of a reaction network.

10.2 Effective De-Excitation Rates

In this section, I address a question of excitation and de-excitation of a multi-level

atom suggested by Prof. Sean Brittain of Clemson University. Fig. 10.5 shows three levels in

an atom. There are transitions among all three levels. The transition rates are all governed

by detailed balance so that the reverse and forward rates are related by a Boltzmann factor.

Suppose now that the transitions between levels 1 and 2 are very weak. The problem is to

demonstrate that the long-time limit is still such that levels 1 and 2 have their equilibrium

probability ratio.

A standard approach is to compute a 3×3 rate matrix, set the right-hand side vector

to zero, and solve. I will approach the problem from the digraph branching perspective. I

begin by noting that if I exclude the transitions between levels 1 and 2, my network has a

single spanning tree. I can compute the long-time probabilities for levels 1 and 2 from this

56

Figure 10.5 Excitation of a three-level system.

spanning tree by, in the case of level 1, a branching rooted at vertex 1 with arcs (1, 3) and

(3, 2) and, in the case of level 2, a branching rooted at vertex 2 with arcs (2, 3) and (3, 1).

Since the denominators of my branching result for X1(t+∆t) and X2(t+∆t) are the same,

I find
X2,∞
X1,∞

=
λ32λ13

λ23λ31
. (10.18)

By detailed balance, this becomes

X2,∞
X1,∞

=
X2,eqX3,eq

X3,eqX1,eq
=

X2,eq

X1,eq
, (10.19)

as required.

It is also possible to compute an effective excitation rate from level 1 to level 2 (via

level 3). To do this, we compute λeff
12 . This rate is the exponential of the branching weight

with the path from vertex 2 to 1 divided by the sum of the exponentials of all branching

weights:

λeff
12 =

1
∆t

λ32λ13∆t2

1 + (λ13 + λ31 + λ23 + λ32) ∆t + (λ13λ32 + λ13λ23 + λ31λ23) ∆t2
. (10.20)

57

For ∆t much larger than the smallest 1/λ (but not ∞), the effective excitation rate is

λeff
12 =

λ32λ13

λ13 + λ31 + λ23 + λ32 + (λ13λ32 + λ13λ23 + λ31λ23) ∆t
. (10.21)

The effective de-excitation rate is similarly easy to find. The essence of these effective rates

is that they are the sum of exponential weights of spanning branchings with paths from 1

to 2 or 2 to 1 divided by the exponential weights of all branchings with one fewer arc than

a spanning branching.

If we extend the atom to more than three levels, the above procedures also apply.

We simply need to find a single spanning tree and consider only branchings derived from it.

Alternatively, we could apply a Camerini et al. based algorithm. For the effective excitation

rate, we would constrain the branchings to be those with the appropriate paths.

10.3 Silicon Disintegration

As a final example, I consider a simple non-linear network for silicon disintegration.

The network consists of six species (4He, 12C, 16O, 20Ne, 24Mg, and 28Si) and the reactions

among them [4He +4 He +4 He ↔12 C + γ, 12C +4 He ↔16 O + γ, 16O +4 He ↔20 Ne + γ,

20Ne +4 He ↔24 Mg + γ, 24Mg +4 He ↔28 Si + γ– the γ’s represent energy released in the

reaction, which is typically in the form of one or more γ rays.]. The network digraph is

shown in Fig. 10.6. In this figure, the arcs coming from different reactions have different

colors. For example, the arcs for the triple-α reaction are shown in purple. Notice that

there are three arcs from 4He to 12C and back because we treat each of the three 4He’s as

a separate species–we could combine each of the set of three arcs into single arcs.

To analyze the branchings in this network, I employ the branching code described in

Appendix C. To generate the arcs, I use a code built on top of libnucnet, a library of codes

for storing and managing nuclear reactions networks written at Clemson University [Meyer

and Adams 2007]. For definiteness, I started with mass fractions X(4He) = X(12C) =

X(16O) = X(20Ne) = X(24Mg) = 0.1 and X(28Si) = 0.5. I computed the rates for reactions

at a temperature of 4× 109 K and a density of 1 g/cc. I then computed all the branchings

at time steps ∆t = 10−3 s and ∆t = 103 s.

58

Figure 10.6 Digraph for the alpha network. Arcs deriving from different reactions have
different colors.

59

Figure 10.7 Optimal branching for the ∆t = 10−3 s case.

For ∆t = 10−3, there are a total of 2,949 branchings. The complexity is C =

5.6731, which is considerably less than the total number of branchings. The above numbers

include the constraint that no reaction should contribute more than one arc to a branching.

Had I not included this constraint, there would be a total of 8,046 branchings. The total

complexity is the same, of course, due to the cancellations that are avoided by the constraint

on the number of arcs from each reaction. Fig. 10.7 shows the optimal branching in this

case–it has weight w = 8.1331.

The mass fractions at t+∆t are X(4He) = 0.213363, X(12C) = 0.0175353, X(16O) =

0.186649, X(20Ne) = 4.37987e − 05, X(24Mg) = 0.086772, and X(28Si) = 0.495636. The

network entropy is Snet/k = ln(3.57598). If I constrain the branchings such that only those

with ∆ ≥ 10−10, I find the same results (to the presented number of significant figures) with

only 1,024 branchings. Perhaps more usefully, if I combine the three arcs for the triple-α

reaction, there are only a total of 1,613 branchings and the complexity drops to 1.87903

although the entropy and final abundances are the same. This result shows that strategies

to combine arcs where possible should be employed.

60

Figure 10.8 Optimal branching for the ∆t = 103 s case.

I now consider the case ∆t = 103 s. Here there are again a total of 2,949 branchings.

The total complexity is C = 7.88516. This is larger than for the ∆t = 10−3 case because the

longer time step allows a larger fraction of the arcs to contribute. The optimal branching is

that shown in Fig. 10.8. This branching is spanning because all the arc weights are positive

because ∆t is sufficiently large.

The final mass fractions are X(4He) = 0.88781, X(12C) = 9.18441e− 08, X(16O) =

5.67553e− 05, X(20Ne) = 2.89249e− 08, X(24Mg) = 0.0151745, and X(28Si) = 0.0969591.

The network entropy is Snet/k = 1.48588. This is less than for the ∆t = 10−3 s case

because the 28Si and other species have largely disintegrated into 4He, and this single species

dominates the abundances. Interestingly, the initial network entropy is Snet/k = 1.49787,

so, as in the thought experiment in §10.1, the network entropy grows and then declines

again, ultimately to a value less than its starting value. If I consider only branchings

61

with ∆ ≥ 10−10, then there are only 437 contributing branchings; however, the X(12C) =

9.18395e − 08 (the other mass fractions are the same to the number of significant figures

presented). The 12C mass fraction deviates in the third decimal place, as expected for

cutting off the branchings at ∆ ≥ 10−10. It may be necessary to develop strategies to

include at least one branching rooted at a low-probability vertex, even if it would be fall

below the cut-off ∆.

As with the ∆t = 10−3 s case, combining the triple-α arcs into single arcs reduces

the number of branchings to 1,613. The total complexity is C = 2.62839. This again

emphasizes the desirability of combining arcs where possible.

Finally, I note that ∆t = 103 s is large enough that the network has nearly achieved

its long-time solution. For completeness, if I run the calculation at ∆t = 1030 s, I find

C = 7.88407. This is slightly less than for the ∆t = 103 s case, which shows a few four

arc (sub-spanning) branchings still contributed at that time step. The final mass fractions

are X(4He) = 0.887866, X(12C) = 1.8853e − 16, X(16O) = 3.79323e − 05, X(20Ne) =

2.87501e − 08, X(24Mg) = 0.0151733, and X(28Si) = 0.0969229. The long-time network

entropy is Snet/k = 1.48548, slightly down from the ∆t = 103 s case. It is worth emphasizing

that the long-time abundances above are not necessarily the equilibrium abundances because

the treatment linearizes the problem. We could attain the equilibrium abundances by

iterating with a Newton-Raphson procedure, as briefly outlined in §1.

CHAPTER 11

CONCLUSIONS

In this thesis, I have considered reaction networks in terms of branchings in directed

graphs. In particular, I considered linearized networks that have been finite-differenced in

time implicitly. I demonstrated that the resulting matrix can be written as incidence matrix

for a directed graph times a weight matrix. The directed graph has vertices given by the

various states or species in the network, plus a fictitious vertex (labeled with index “0”).

The arcs in the graph are all the connections between the states (essentially the reactions),

although the arcs point in the opposite direction compared to the actual flow in time since

they represent the contribution of the invertex to the outvertx in time ∆t. The arc weights

are given by the logarithm of the reaction rate times the ∆t. There are also arcs from vertex

0 to all the other vertices (but none from the other vertices to 0), all with weight zero.

With the network graph so constructed, I demonstrated that individual elements of

the inverse matrix are given by the ratio of the sum of exponential weights of branchings

in the digraph. For example, the (i, j) inverse matrix element is given by the sum of

exponential weights of all branchings that have a path from vertex i to vertex j divided by

the sum of all branchings. This let me define an effective rate for transition from j to i as

this same ratio divided by ∆t. Finally, the probability of state or species i at time t + ∆t

is the sum of terms given by the exponential weight of a branching rooted at vertex i times

the sum of all probabilities of vertices linked to i by a path going from i to that vertex,

with this sum then divided by the sum of all exponential weights of branchings.

With these results, I then demonstrated how to condense strongly-connected com-

ponents of clusters within the digraph. These condensed clusters then represented long-time

“equilibrium” or steady-state components of the network. I demonstrated how to compute

effective rates of transitions between these clusters. I then demonstrated how to view the

non-equilibrium entropy of a multi-state network in terms of branchings. This led to my

63

definition of network complexity as the sum of exponential weights of branchings relative

to the maximum weight branching.

The above results were derived for linear networks. I then demonstrated how to

treat non-linear networks (in the case of nuclear reaction networks). The key is to evolve

not abundances, as is traditionally done, but rather mass fractions, which are probabilities.

By modifying arc weights accordingly, I showed the results for the linear network held for the

non-linear one. An added result is that a particular reaction cannot contribute more than

one arc to a branching. This leads to a tremendous reduction in the number of branchings

that contribute and to greater accuracy in any calculation. Finally, I demonstrated my

results with some examples and other applications.

At this point it is worth considering future directions in this research. Here is an

incomplete list of future possible projects.

• Construct a code to compute the k-th largest branchings in a digraph. This code
should be able to account for complex weights and to include no more than one arc
from a given reaction in any branching. Prof. Meyer is consulting with Prof. M.
Saltzman in the Department of Mathematical Sciences at Clemson to build a code
based on the Camerini et al. algorithm. It will need to be extended to allow for the
non-linear network constraints.

• Develop strategies for computing branchings rooted at a particular vertex. In par-
ticular, it is necessary to develop a version of the Camerini et al. algorithm that
requires the arc from vertex 0 to vertex i to be included in all computed branchings.
This is necessary to compute relative flows over time ∆t efficiently.

• Develop strategies for computing branchings that necessarily include a path from
vertex i to vertex j. This is necessary to compute effective rates efficiently.

• Study potential applications to iterative solvers for matrix equations. Such solvers
require only matrix multiples, but they converge slowly if the matrix is not diago-
nally dominant. Convergence can be speeded up if the matrix is pre-conditioned,
that is, multiplied by an approximate inverse matrix. Since branchings provide a
systematic way of computing such an inverse matrix, it may be possible to com-
pute a good preconditioner by, say, only including the leading few branchings in a
calculation of the inverse matrix.

• Once the above are developed, implement parallel versions of these algorithms.

Branchings hold promise for a better understanding of reaction networks. Analysis

of branchings may bridge the gap between long-time (equilibrium) solutions and kinetic

64

calculations both conceptually and computationally. Progress on the above tasks would

help clarify this potential promise.

APPENDICES

66

Appendix A

Column addition in a square matrix

In this appendix, I demonstrate the well-known result that column addition in a

square matrix leaves the determinant unchanged. To begin, consider the n × n square

matrix B with elements

bkj = δk,j + δk,`δj,m. (A.1)

Now consider the matrix product C = AB, where the elements of the n× n square matrix

A are aij and those of the result matrix C are cij . We may thus write

cij =
∑

k=1,n

aikbkj , (A.2)

If we apply Eq. (A.1), we find

cij = aij + ai`δj,m. (A.3)

Matrix C is therefore the result of adding column ` to column m in matrix A. From Eq.

(A.1), we see that matrix B is the identity matrix with an extra one at row ` and column

m.

First consider the case ` = m. This is the case of adding column ` to itself or,

equivalently, doubling all elements in column `. In this case, matrix B is diagonal with ones

in each element except for a two in row `, column `. Now the determinant of C is

det(C) = det(AB) = det(A) · det(B). (A.4)

For a diagonal matrix, the determinant is the product of the diagonal elements; thus, in this

case det(B) = 2 and det(C) = 2det(A). Addition of a column to itself in a matrix doubles

the matrix’s determinant, a well-known result.

Now consider the case ` 6= m. Matrix B is thus a matrix with ones down the diagonal

and a single other matrix element with value one at row `, column m. The determinant of

B can be determined by Laplace expansion by minors. We expand along column `, which

has a single non-zero element, namely, the one on the diagonal. Striking row ` and column

` leaves a (n − 1) × (n − 1) square identity matrix as the only contributing minor to the

67

expansion. The determinant is unity; thus, for ` 6= m, det(B) = 1 and det(C) = det(A).

Column addition in a square matrix leaves the determinant unchanged.

68

Appendix B

Determinant of the Sum of Two Matrices

In this appendix, I consider some well-known properties of the determinant of a sum

of two matrices. First, one notes that the determinant of an n×n matrix A may be written

det(A) =
∑

i1,i2,i3,...,in

εi1i2i3...ina1i1a2i2a3i3 ...anin , (B.1)

where ajij is the matrix element of A in row j and column ij and where εi1i2i3...in is the

completely anti-symmetric Levi-Cività symbol, which is +1 for even permutations of its

indices, −1 for odd permutations, and zero if any index is repeated (e.g., [Arfken and

Weber 1995]). The sum in Eq. (B.1) runs from 1 to n for each index ij . The determinant

of the sum of two n× n square matrices A and B is thus

det(A + B) =
∑

i1,i2,i3,...,in

εi1i2i3...in(a1i1 + b1i1)(a2i2 + b2i2)(a3i3 + b3i3)...(anin + bnin), (B.2)

where bjij is the matrix element of B in row j and column ij . Expansion of Eq. (B.2)

results in a series of 2n sums of the form

det(A + B) =
∑
ab

∑
i1,i2,i3,...,in

εi1i2i3...inc1i1 × c2i2 × c3i3 × ...× cnin , (B.3)

where each cjij is either ajij or bjij and the symbol
∑

ab denotes the sum of the various

choices. Since each individual sum in Eq. (B.3) is a determinant, it is evident that the

determinant of A + B is the sum of determinants of all matrices formed by replacing some

number of rows of A by their corresponding rows in B. Thus, the determinant of A + B is

the determinant of A + the sum of the determinants of matrices formed by replacing one

row of A by its corresponding row in B + the sum of determinants of matrices formed by

replacing two rows of A by the two corresponding rows in B + ... + the sum of determinants

of all matrices with n− 1 rows from B and one row from A + the determinant of B.

The following simple example demonstrates this result. Consider the matrix

A =

 a −b

−a b

 . (B.4)

69

We seek the determinant |I + A|, where I is the identity matrix. Direct calculation yields

|I + A| = 1 + a + b. Using the permutation of rows approach, however, yields

|I + A| =

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

1 0

−a b

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

a −b

0 1

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

a −b

−a b

∣∣∣∣∣∣∣ = 1 + a + b + 0 = 1 + a + b (B.5)

as expected.

70

Appendix C

Branching Code

In this appendix, I present the branching code written by myself and Professor

Bradley S. Meyer (Clemson University). It computes all branchings and their weightings

for the input digraph and the complexity (as defined in Eq. (8.35)). If initial probabilities

Xi(t) are provided in another input file, the code will also compute the network entropy

and the probabilities Xi(t+∆t). The code requires a “fictitious” vertex and at least one arc

from that vertex to another one. It depends on the webnucleo.org library module wn matrix

(see http://www.webnucleo.org). wn matrix itself depends on libxml, the GNOME XML

toolkit and parser, and gsl, the GNU Scientific Library.

The code works by creating an array of arcs (sorted by in vertex) and a weight

matrix. It then builds a tree. It constructs a root node. At this point the only “leaf” is the

root node. It then considers the first arc. It adds it to the current leaves of the tree–at this

point only the root node. It then considers the next arc. It adds that arc as a child of any

leaf if it maintains the branching condition, namely, the arc should not create a cycle or a

vertex with indegree larger than one. This is determined by recursing through the leaf and

its parents up to the root node and adding the arc. This subset of arcs is then a possible

branching. The code computes the determinant of the incidence submatrix of these arcs

and checks that the corresponding weight submatrix has non-zero values on the diagonal.

Once a leaf has n− 2, where n is the number of vertices in the full digraph (including the

fictitious vertex), it is no longer considered as a possible leaf to which one may add an arc

since it already spans the digraph. That node of the tree is then added to a branching

list. After all arcs have been considered, the branching list is sorted using qsort() and then

output.

If the network is non-linear, the added “sign” tag keeps track of whether the arc is

real or “virtual”. Also, the sum of the number of reactants and products in a given reaction

is stored in a hash. As possible branchings are considered, the hash is queried to determine

if the branching would span the subset of arcs involved in the reaction. If it would, the arc

is not added to the leaf under consideration.

71

This program is useful for studying digraphs up to about ten vertices, depending

on the sparseness of the digraph. Despite the efficiency of the tree for storing the possi-

ble branchings, however, the required memory and execution time grow dramatically for

increasingly large graphs. A new code built on the Camerini et al. [Camerini et al. 1980]

algorithm is desirable. We are consulting with Professor Matthew Saltzman of the Depart-

ment of Mathematical Sciences about implementing such a code.

To execute the code (executable named “branching”), one would type:

branching reacs.txt arcs.txt (probs.txt)

where the probs.txt (the probabilities file) is optional. For a three species non-linear net-

work with two reactions (1 ↔ 2 called “12” and 1 + 2 ↔ 3 called “123”), the reacs.txt file

would be:

root 5

12 2

123 3

The root reaction is the one from the fictitious vertex to each of the other vertices. The

current implementation of the code requires the number following the “root” to be larger

than or equal to n + 2. The reaction “12” has one reactant and one product, hence the 2.

The reaction “123” has two reactants and one product, hence the 3.

The arcs.txt file is

0 1 0 1 root

0 2 0 1 root

0 3 0 1 root

1 2 5 1 12

2 1 3 1 12

1 2 10. -1 123

2 1 11. -1 123

1 3 20. 1 123

72

3 1 21. 1 123

2 3 32. 1 123

3 2 41. 1 123

The first column is the outvertex of the given arc, the second is the invertex, the third is

the arc weight, the fourth is the sign (1 for real arc, -1 for virtual arc), and the fifth is the

reaction to which the arc belongs.

The probs.txt file looks simply like:

1 0.3

2 0.4

3 0.3

and gives the initial probability for each vertex.

The output from such input is:

(0,3) (3,2) (2,1)

w(B) = 42.0000 Delta(B) = 0.0000 exp{Delta(B)} = 1.0000e+00

(0,3) (3,2) (0,1)

w(B) = 41.0000 Delta(B) = -1.0000 exp{Delta(B)} = 3.6788e-01

(2,3) (1,2) (0,1)

w(B) = 37.0000 Delta(B) = -5.0000 exp{Delta(B)} = 6.7379e-03

(2,3) (0,2) (2,1)

w(B) = 33.0000 Delta(B) = -9.0000 exp{Delta(B)} = 1.2341e-04

(2,3) (0,2) (0,1)

w(B) = 32.0000 Delta(B) = -10.0000 exp{Delta(B)} = 4.5400e-05

(0,3) (1,2) (3,1)

73

w(B) = 26.0000 Delta(B) = -16.0000 exp{Delta(B)} = 1.1254e-07

(1,3) (1,2) (0,1)

w(B) = 25.0000 Delta(B) = -17.0000 exp{Delta(B)} = 4.1399e-08

(1,3) (0,2) (2,1)

w(B) = 21.0000 Delta(B) = -21.0000 exp{Delta(B)} = 7.5826e-10

(0,3) (0,2) (3,1)

w(B) = 21.0000 Delta(B) = -21.0000 exp{Delta(B)} = 7.5826e-10

(1,3) (0,2) (0,1)

w(B) = 20.0000 Delta(B) = -22.0000 exp{Delta(B)} = 2.7895e-10

(0,3) (0,2) (2,1)

w(B) = 11.0000 Delta(B) = -31.0000 exp{Delta(B)} = -3.4425e-14

(0,3) (1,2) (0,1)

w(B) = 10.0000 Delta(B) = -32.0000 exp{Delta(B)} = -1.2664e-14

(0,3) (1,2) (0,1)

w(B) = 5.0000 Delta(B) = -37.0000 exp{Delta(B)} = 8.5330e-17

(0,3) (0,2) (2,1)

w(B) = 1.0000 Delta(B) = -41.0000 exp{Delta(B)} = 1.5629e-18

(0,3) (0,2) (0,1)

w(B) = 0.0000 Delta(B) = -42.0000 exp{Delta(B)} = 5.7495e-19

Number of branchings = 15

74

Number of nodes = 3

Complexity = ln(1.37479)

1 0.0851881

2 0.000112884

3 0.914699

Entropy = ln(1.33963).

The code is:

/*//

// <file

// repository_path = "$Source: /pub/cvsprojects/nucleo/local/texfiles/thesis/wang_dissertation/appendix/branching_code.tex,v $"

// revision = "$Revision: 1.4 $"

// date = "$Date: 2009/11/30 15:18:37 $"

// tag = "$Name: $"

// template_version = "cp_template.0.12"

// >

//

// <description>

// <abstract>

// Code to compute branchings in a general non-linear network.

// </abstract>

// </description>

// <license>

// This file was originally written by Changyuan Wang and Bradley S. Meyer.

//

// This is free software; you can redistribute it and//or modify it

// under the terms of the GNU General Public License as published by

// the Free Software Foundation; either version 2 of the License, or

// (at your option) any later version.

//

75

// This software is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

// </license>

//

// </file>

//*/

#include <stdlib.h>

#include <stdio.h>

#include <WnMatrix.h>

#define BUF_SIZE 256

#define CUT -100.

/*==

// Define types.

//==*/

typedef struct {

xmlNodePtr pNode;

double dWeight;

double dWeightSign;

double dDiff;

double dDiffSign;

} branching;

typedef struct {

size_t iInVertex;

size_t iOutVertex;

76

double dWeight;

double dSign;

xmlChar *sxReaction;

} arc;

typedef struct {

xmlHashTablePtr pReactionHash;

arc **pArcs;

} graph;

/*==

// Prototypes.

//==*/

int print_list(branching *, graph *);

void print_branching(xmlNodePtr, graph *);

double compute_weight(xmlNodePtr, graph *);

double compute_sign(xmlNodePtr, graph *);

double compute_complexity(xmlListPtr);

int complexity_walker(branching *, double *);

gsl_vector *compute_vertex_complexities(xmlListPtr, graph *, gsl_vector *);

void populate_branching_hash(xmlNodePtr, xmlHashTablePtr, graph *);

int vertex_complexities_walker(branching *, void *);

int assign_vertex_complexities(size_t *, void *);

void

add_vertex_complexities(

const xmlChar *,

void *,

const xmlChar *,

const xmlChar *,

77

const xmlChar *

);

void get_branching_root_list(xmlNodePtr, xmlListPtr, graph *);

static void

add_node(xmlNodePtr, size_t, size_t, size_t, WnMatrix *, graph *, xmlListPtr);

xmlNodePtr add_child(xmlNodePtr, size_t);

void assign_matrix(xmlNodePtr, size_t, WnMatrix *, WnMatrix *);

void branching_free(xmlLinkPtr);

void arc_free(arc *);

double compute_determinant(WnMatrix *);

int is_valid_branching(xmlNodePtr, graph *, size_t, WnMatrix *);

int has_distinct_reactions(xmlNodePtr, graph *);

void distinct_reactions(xmlNodePtr, graph *, xmlHashTablePtr, int *);

int compare_branchings(const void *, const void *);

int arc_sort(const void *, const void *);

void branching_sort(xmlListPtr);

int populate_branching_array(branching *, void *);

/*==

// print_list().

//==*/

int

print_list(branching *p_branching, graph *p_graph)

{

if(p_branching->dDiff < CUT) return 0;

print_branching(p_branching->pNode, p_graph);

printf(

78

"w(B) = %7.4f Delta(B) = %7.4f exp{Delta(B)} = %.4e\n",

p_branching->dWeight,

p_branching->dDiff,

exp(p_branching->dDiff) * p_branching->dDiffSign

);

printf("\n");

return 1;

}

/*==

// print_branching().

//==*/

void

print_branching(xmlNodePtr p_node, graph *p_graph)

{

xmlChar *sx_arc;

size_t i;

if(p_node == xmlDocGetRootElement(p_node->doc))

fprintf(stdout, "\n");

else

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

fprintf(

79

stdout,

"(%lu,%lu) ",

(unsigned long) p_graph->pArcs[i]->iOutVertex,

(unsigned long) p_graph->pArcs[i]->iInVertex

);

print_branching(p_node->parent, p_graph);

}

}

/*==

// compute_weight().

//==*/

double

compute_weight(xmlNodePtr p_node, graph *p_graph)

{

xmlChar *sx_arc;

size_t i;

if(p_node == xmlDocGetRootElement(p_node->doc))

return 0.;

else

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

return

compute_weight(p_node->parent, p_graph) + p_graph->pArcs[i]->dWeight;

80

}

}

/*==

// compute_sign().

//==*/

double

compute_sign(xmlNodePtr p_node, graph *p_graph)

{

xmlChar *sx_arc;

size_t i;

if(p_node == xmlDocGetRootElement(p_node->doc))

return 1.;

else

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

return compute_sign(p_node->parent, p_graph) * p_graph->pArcs[i]->dSign;

}

}

/*==

// get_branching_root_list().

//==*/

81

void

get_branching_root_list(xmlNodePtr p_node, xmlListPtr p_list, graph *p_graph)

{

xmlChar *sx_arc;

size_t i;

if(p_node == xmlDocGetRootElement(p_node->doc))

return;

else

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

if(p_graph->pArcs[i]->iOutVertex == 0)

xmlListPushBack(p_list, &p_graph->pArcs[i]->iInVertex);

get_branching_root_list(p_node->parent, p_list, p_graph);

}

}

/*==

// compute_complexity().

//==*/

double

compute_complexity(xmlListPtr p_list)

{

82

double d_result = 0;

xmlListWalk(

p_list,

(xmlListWalker) complexity_walker,

&d_result

);

return d_result;

}

/*==

// complexity_walker().

//==*/

int

complexity_walker(

branching *p_branching, double *p_result

)

{

if(p_branching->dDiff < CUT) return 0;

*p_result += exp(p_branching->dDiff) * p_branching->dDiffSign;

return 1;

}

83

/*==

// compute_vertex_complexities().

//==*/

gsl_vector *

compute_vertex_complexities(

xmlListPtr p_list,

graph *p_graph,

gsl_vector *p_probabilities

)

{

struct {

double dWeight;

double dSum;

graph *pGraph;

gsl_vector *pProbabilities;

gsl_vector *pVector;

xmlHashTablePtr pHash;

} work;

size_t i;

gsl_vector *p_return_vector;

work.pGraph = p_graph;

work.pProbabilities = p_probabilities;

work.pVector = gsl_vector_calloc(p_probabilities->size);

84

xmlListWalk(

p_list,

(xmlListWalker) vertex_complexities_walker,

&work

);

p_return_vector = gsl_vector_calloc(p_probabilities->size);

for(i = 0; i < p_return_vector->size; i++)

if(!WnMatrix__value_is_zero(gsl_vector_get(work.pVector, i)))

gsl_vector_set(

p_return_vector,

i,

gsl_vector_get(work.pVector, i)

);

gsl_vector_free(work.pVector);

return p_return_vector;

}

/*==

// vertex_complexities_walker().

//==*/

int

vertex_complexities_walker(

branching *p_branching, void *p_data

)

85

{

typedef struct {

double dWeight;

double dSum;

graph *pGraph;

gsl_vector *pProbabilities;

gsl_vector *pVector;

xmlHashTablePtr pHash;

} work;

xmlListPtr p_root_list;

work *p_work = (work *) p_data;

if(p_branching->dDiff < CUT) return 1;

p_work->dWeight = exp(p_branching->dDiff) * p_branching->dDiffSign;

p_work->pHash =

xmlHashCreate(0);

populate_branching_hash(

p_branching->pNode,

p_work->pHash,

p_work->pGraph

);

p_root_list = xmlListCreate(NULL, NULL);

get_branching_root_list(

86

p_branching->pNode,

p_root_list,

p_work->pGraph

);

xmlListWalk(

p_root_list,

(xmlListWalker) assign_vertex_complexities,

p_work

);

xmlListDelete(p_root_list);

xmlHashFree(p_work->pHash, (xmlHashDeallocator) xmlFree);

return 1;

}

/*==

// populate_branching_hash().

//==*/

void

populate_branching_hash(

xmlNodePtr p_node,

xmlHashTablePtr p_hash,

graph *p_graph

)

{

87

xmlChar *sx_arc, *sx_valid, sx_out[BUF_SIZE], sx_in[BUF_SIZE];

size_t i;

if(p_node != xmlDocGetRootElement(p_node->doc))

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

xmlStrPrintf(

sx_out,

BUF_SIZE,

(const xmlChar *) "%lu",

(unsigned long) p_graph->pArcs[i]->iOutVertex

);

xmlStrPrintf(

sx_in,

BUF_SIZE,

(const xmlChar *) "%lu",

(unsigned long) p_graph->pArcs[i]->iInVertex

);

sx_valid = xmlCharStrdup("valid");

xmlHashAddEntry3(p_hash, sx_out, sx_in, NULL, sx_valid);

populate_branching_hash(p_node->parent, p_hash, p_graph);

}

88

}

/*==

// assign_vertex_complexities().

//==*/

int

assign_vertex_complexities(size_t *p_vertex, void *p_data)

{

typedef struct {

double dWeight;

double dSum;

graph *pGraph;

gsl_vector *pProbabilities;

gsl_vector *pVector;

xmlHashTablePtr pHash;

} work;

xmlChar sx_vertex[BUF_SIZE];

work *p_work = (work *) p_data;

xmlStrPrintf(sx_vertex, BUF_SIZE, (const xmlChar *) "%lu", *p_vertex);

p_work->dSum =

gsl_vector_get(p_work->pProbabilities, *p_vertex);

xmlHashScanFull3(

p_work->pHash,

89

sx_vertex,

NULL,

NULL,

(xmlHashScannerFull) add_vertex_complexities,

p_work

);

p_work->pVector->data[*p_vertex] += p_work->dWeight * p_work->dSum;

return 1;

}

/*==

// add_vertex_complexities().

//==*/

void

add_vertex_complexities(

const xmlChar *sx_valid,

void *p_data,

const xmlChar *sx_out,

const xmlChar *sx_in,

const xmlChar *sx_extra

)

{

typedef struct {

double dWeight;

double dSum;

90

graph *pGraph;

gsl_vector *pProbabilities;

gsl_vector *pVector;

xmlHashTablePtr pHash;

} work;

work *p_work = (work *) p_data;

if(!sx_valid || !sx_out || sx_extra)

{

fprintf(stderr, "Not valid input.\n");

exit(EXIT_FAILURE);

}

p_work->dSum +=

gsl_vector_get(

p_work->pProbabilities,

(size_t) atol((const char *) sx_in)

);

xmlHashScanFull3(

p_work->pHash,

sx_in,

NULL,

NULL,

(xmlHashScannerFull) add_vertex_complexities,

p_work

);

}

91

/*==

// add_child().

//==*/

xmlNodePtr

add_child(xmlNodePtr p_parent, size_t i_arc)

{

xmlChar sx_arc[BUF_SIZE];

xmlNodePtr p_child;

xmlStrPrintf(

sx_arc,

BUF_SIZE,

(const xmlChar *) "%lu",

(unsigned long) i_arc

);

p_child =

xmlNewChild(

p_parent,

NULL,

(const xmlChar *) "node",

NULL

);

xmlNewProp(p_child, (const xmlChar *) "arc", sx_arc);

return p_child;

92

}

/*==

// add_node().

//==*/

static void

add_node(

xmlNode * p_node,

size_t i_arc,

size_t i_level,

size_t i_nodes,

WnMatrix *p_incidence,

graph *p_graph,

xmlListPtr p_list

)

{

xmlNodePtr p_cur_node = NULL, p_child;

branching *p_branching;

if(p_node->type == XML_ELEMENT_NODE)

{

if(i_level < i_nodes)

{

p_child = add_child(p_node, i_arc);

if(!is_valid_branching(p_child, p_graph, i_level, p_incidence))

{

xmlUnlinkNode(p_child);

93

xmlFreeNode(p_child);

p_child = NULL;

}

for(

p_cur_node = p_node->children;

p_cur_node;

p_cur_node = p_cur_node->next

)

if(p_cur_node != p_child)

add_node(

p_cur_node,

i_arc,

i_level + 1,

i_nodes,

p_incidence,

p_graph,

p_list

);

}

if(i_level == i_nodes - 1)

{

if(p_child)

{

p_branching = (branching *) malloc(sizeof(branching));

p_branching->pNode = p_child;

p_branching->dWeight = compute_weight(p_child, p_graph);

p_branching->dWeightSign = compute_sign(p_child, p_graph);

xmlListPushBack(p_list, p_branching);

}

}

94

}

}

/*==

// branching_free().

//==*/

void

branching_free(xmlLinkPtr p_link)

{

branching *p_branching;

p_branching = (branching *) xmlLinkGetData(p_link);

free(p_branching);

}

/*==

// arc_free().

//==*/

void

arc_free(arc *p_arc)

{

xmlFree(p_arc->sxReaction);

free(p_arc);

95

}

/*==

// compute_determinant().

//==*/

double

compute_determinant(WnMatrix *self)

{

gsl_matrix *p_matrix;

gsl_permutation *p_perm;

int i_signum = 0;

double d_result;

p_perm = gsl_permutation_alloc(WnMatrix__getNumberOfRows(self));

p_matrix = WnMatrix__getGslMatrix(self);

gsl_linalg_LU_decomp(p_matrix, p_perm, &i_signum);

d_result = gsl_linalg_LU_det(p_matrix, i_signum);

gsl_matrix_free(p_matrix);

gsl_permutation_free(p_perm);

return d_result;

}

96

/*==

// assign_matrix().

//==*/

void

assign_matrix(

xmlNodePtr p_node,

size_t i_col,

WnMatrix *p_parent_matrix,

WnMatrix *p_matrix

)

{

WnMatrix__Line *p_col;

xmlChar *sx_arc;

size_t i;

if(i_col > 0)

{

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

p_col =

WnMatrix__getColumn(p_parent_matrix, (size_t) atol((char *) sx_arc));

xmlFree(sx_arc);

for(i = 0; i < WnMatrix__Line__getNumberOfElements(p_col); i++)

{

WnMatrix__assignElement(

p_matrix,

WnMatrix__Line__getNonZeroIndices(p_col)[i],

i_col,

WnMatrix__Line__getNonZeroElements(p_col)[i]

97

);

}

WnMatrix__Line__free(p_col);

assign_matrix(p_node->parent, i_col - 1, p_parent_matrix, p_matrix);

}

}

/*==

// has_distinct_reactions().

//==*/

int

has_distinct_reactions(xmlNodePtr p_node, graph *p_graph)

{

int i_result = 1;

xmlHashTablePtr p_hash;

p_hash = xmlHashCreate(0);

distinct_reactions(p_node, p_graph, p_hash, &i_result);

xmlHashFree(p_hash, (xmlHashDeallocator) xmlFree);

return i_result;

}

/*==

98

// distinct_reactions().

//==*/

void

distinct_reactions(

xmlNodePtr p_node,

graph *p_graph,

xmlHashTablePtr p_hash,

int *p_result

)

{

xmlChar *sx_arc, *sx_current, *sx_max, *sx_new_current, sx_tmp[BUF_SIZE];

size_t i;

int i_max, i_current;

if(p_node == xmlDocGetRootElement(p_node->doc))

return;

sx_arc = xmlGetProp(p_node, (const xmlChar *) "arc");

i = (size_t) atol((const char *) sx_arc) - 1;

xmlFree(sx_arc);

sx_max =

xmlHashLookup(

p_graph->pReactionHash,

p_graph->pArcs[i]->sxReaction

);

if(!sx_max)

99

{

fprintf(

stderr,

"Reaction %s not present.\n", p_graph->pArcs[i]->sxReaction

);

exit(EXIT_FAILURE);

}

i_max = atoi((char *) sx_max);

sx_current =

xmlHashLookup(

p_hash,

p_graph->pArcs[i]->sxReaction

);

if(!sx_current)

i_current = 0;

else

i_current = atoi((char *) sx_current);

if(++i_current < i_max - 1 || i_max == 2)

{

xmlStrPrintf(

sx_tmp,

BUF_SIZE, (const xmlChar *) "%d",

i_current

);

sx_new_current = xmlStrdup(sx_tmp);

xmlHashUpdateEntry(

100

p_hash,

p_graph->pArcs[i]->sxReaction,

sx_new_current,

(xmlHashDeallocator) xmlFree

);

distinct_reactions(p_node->parent, p_graph, p_hash, p_result);

}

else

{

*p_result = 0;

return;

}

}

/*==

// is_valid_branching().

//==*/

int

is_valid_branching(

xmlNodePtr p_node,

graph *p_graph,

size_t i_level,

WnMatrix *p_incidence

)

{

WnMatrix *p_work, *p_submatrix;

size_t i;

101

if(!has_distinct_reactions(p_node, p_graph))

return 0;

p_work =

WnMatrix__new(

WnMatrix__getNumberOfRows(p_incidence),

i_level

);

assign_matrix(

p_node,

i_level,

p_incidence,

p_work

);

p_submatrix = WnMatrix__extractMatrix(p_work, 1L, 1L, i_level, i_level);

WnMatrix__free(p_work);

for(i = 1; i <= WnMatrix__getNumberOfRows(p_submatrix); i++)

if(WnMatrix__getElement(p_submatrix, i, i) != 1.)

{

WnMatrix__free(p_submatrix);

return 0;

}

if(WnMatrix__value_is_zero(compute_determinant(p_submatrix)))

{

102

WnMatrix__free(p_submatrix);

return 0;

}

else

{

WnMatrix__free(p_submatrix);

return 1;

}

}

/*==

// compare_branchings().

//==*/

int

compare_branchings(const void *p_data1, const void *p_data2)

{

const branching * p_branching1 = *(branching * const *) p_data1;

const branching * p_branching2 = *(branching * const *) p_data2;

if(p_branching1->dWeight < p_branching2->dWeight)

return -1;

else if(p_branching1->dWeight > p_branching2->dWeight)

return 1;

else

return 0;

}

103

/*==

// branching_sort().

//==*/

void

branching_sort(xmlListPtr p_list)

{

struct {

branching **pBranchings;

size_t iIndex;

} work;

size_t i, i_count;

i_count = xmlListSize(p_list);

work.pBranchings =

(branching **)

malloc(sizeof(branching *) * i_count);

work.iIndex = 0;

xmlListWalk(

p_list,

(xmlListWalker) populate_branching_array,

&work

);

104

xmlListClear(p_list);

qsort(

work.pBranchings,

i_count,

sizeof(branching *),

compare_branchings

);

for(i = 0; i < i_count; i++)

{

work.pBranchings[i]->dDiff =

work.pBranchings[i]->dWeight -

work.pBranchings[i_count-1]->dWeight;

work.pBranchings[i]->dDiffSign =

work.pBranchings[i]->dWeightSign *

work.pBranchings[i_count-1]->dWeightSign;

}

for(i = 0; i < i_count; i++)

xmlListPushFront(p_list, work.pBranchings[i]);

free(work.pBranchings);

}

/*==

// populate_branching_array().

//==*/

105

int

populate_branching_array(

branching *p_branching,

void *p_data

)

{

typedef struct {

branching **pBranchings;

size_t iIndex;

} work;

branching *p_new_branching;

work *p_work = (work *) p_data;

p_new_branching = (branching *) malloc(sizeof(branching));

if(!p_new_branching)

{

fprintf(stderr, "Couldn’t allocate memory.\n");

exit(EXIT_FAILURE);

}

p_new_branching->pNode = p_branching->pNode;

p_new_branching->dWeight = p_branching->dWeight;

p_new_branching->dWeightSign = p_branching->dWeightSign;

p_work->pBranchings[p_work->iIndex++] = p_new_branching;

return 1;

106

}

/*==

// arc_sort().

//==*/

int

arc_sort(const void *p_data1, const void *p_data2)

{

const arc * p_arc1 = *(arc * const *) p_data1;

const arc * p_arc2 = *(arc * const *) p_data2;

if(p_arc1->iInVertex < p_arc2->iInVertex)

return -1;

else if(p_arc1->iInVertex > p_arc2->iInVertex)

return 1;

else

return 0;

}

/*==

// main().

//==*/

int

main(int argc, char **argv)

{

107

xmlDocPtr doc = NULL; /* document pointer */

xmlNodePtr root_node = NULL; /* node pointers */

xmlListPtr p_branching_list;

graph *p_graph;

size_t i, i_level, i_arcs, i_nodes;

size_t i_1, i_2;

double d_tmp, d_tmp_2, d_total_complexity, d_entropy;

char s_reaction[BUF_SIZE], s_reactants[BUF_SIZE];

xmlChar *sx_reactants;

WnMatrix *p_incidence_matrix;

gsl_vector *p_complexities, *p_probabilities;

FILE *p_file;

if (argc < 3 || argc > 4) {

fprintf(

stderr, "\nUsage: %s reac_file arc_file prob_file\n\n", argv[0]

);

fprintf(

stderr, " reac_file = input arc text file\n\n"

);

fprintf(

stderr, " arc_file = input arc text file\n\n"

);

fprintf(

stderr,

" prob_file = input vectex probability text file (optional)\n\n"

);

}

108

LIBXML_TEST_VERSION;

/*

* Creates a new document, a node and set it as a root node

*/

doc = xmlNewDoc((const xmlChar *) "1.0");

root_node = xmlNewNode(NULL, (const xmlChar *) "root");

xmlDocSetRootElement(doc, root_node);

/*==

// Create graph.

//==*/

p_graph = (graph *) malloc(sizeof(graph));

if(!p_graph)

{

fprintf(stderr, "Couldn’t allocate memory for graph.\n");

return EXIT_FAILURE;

}

/*==

// Store reactions.

//==*/

p_graph->pReactionHash = xmlHashCreate(0);

p_file = fopen(argv[1], "r");

if(!p_file)

109

{

fprintf(stderr, "Unable to open file.\n");

return EXIT_FAILURE;

}

while(!feof(p_file))

{

fscanf(p_file, "%s %s\n", s_reaction, s_reactants);

sx_reactants = xmlCharStrdup(s_reactants);

if(

xmlHashAddEntry(

p_graph->pReactionHash,

(const xmlChar *) s_reaction,

sx_reactants

)

)

{

fprintf(stderr, "Couldn’t add entry.\n");

return EXIT_FAILURE;

}

}

fclose(p_file);

/*==

// Store arcs.

//==*/

p_file = fopen(argv[2], "r");

110

if(!p_file)

{

fprintf(stderr, "Unable to open file.\n");

return EXIT_FAILURE;

}

i_arcs = 0;

i_nodes = 0;

while(!feof(p_file))

{

fscanf(

p_file,

"%lu %lu %lf %lf %s\n",

(unsigned long *) &i_1,

(unsigned long *) &i_2,

&d_tmp,

&d_tmp_2,

s_reaction

);

if(i_1 > i_nodes) i_nodes = i_1;

if(i_2 > i_nodes) i_nodes = i_2;

i_arcs++;

}

p_graph->pArcs =

(arc **) malloc(sizeof(arc) * i_arcs);

if(!p_graph->pArcs)

{

111

fprintf(stderr, "Couldn’t allocate memory for arcs.\n");

return EXIT_FAILURE;

}

for(i = 0; i < i_arcs; i++)

p_graph->pArcs[i] = (arc *) malloc(sizeof(arc));

p_incidence_matrix = WnMatrix__new(i_nodes, i_arcs);

rewind(p_file);

i_arcs = 0;

while(!feof(p_file))

{

fscanf(

p_file,

"%lu %lu %lf %lf %s\n",

(unsigned long *) &i_1,

(unsigned long *) &i_2,

&d_tmp,

&d_tmp_2,

s_reaction

);

p_graph->pArcs[i_arcs]->iOutVertex = i_1;

p_graph->pArcs[i_arcs]->iInVertex = i_2;

p_graph->pArcs[i_arcs]->dWeight = d_tmp;

p_graph->pArcs[i_arcs]->dSign = d_tmp_2;

p_graph->pArcs[i_arcs]->sxReaction =

xmlCharStrdup(s_reaction);

112

i_arcs++;

}

fclose(p_file);

/*==

// Sort arcs.

//==*/

qsort(p_graph->pArcs, i_arcs, sizeof(arc *), arc_sort);

/*==

// Assign incidence matrix.

//==*/

for(i = 1; i <= i_arcs; i++)

{

if(p_graph->pArcs[i - 1]->iOutVertex != 0)

WnMatrix__assignElement(

p_incidence_matrix,

p_graph->pArcs[i-1]->iOutVertex,

i,

-1.

);

WnMatrix__assignElement(

p_incidence_matrix,

p_graph->pArcs[i-1]->iInVertex,

i,

113

1.

);

}

p_branching_list =

xmlListCreate(

(xmlListDeallocator) branching_free,

NULL

);

for(i = 1; i <= i_arcs; i++)

{

i_level = 1;

add_node(

root_node,

i,

i_level,

i_nodes + 1,

p_incidence_matrix,

p_graph,

p_branching_list

);

}

/*==

// Sort branchings and print out.

//==*/

branching_sort(p_branching_list);

114

xmlListWalk(

p_branching_list,

(xmlListWalker) print_list,

p_graph

);

printf("Number of branchings = %d\n", xmlListSize(p_branching_list));

printf("Number of nodes = %d\n", (int) i_nodes);

d_total_complexity = compute_complexity(p_branching_list);

printf(

"Complexity = ln(%g)\n",

d_total_complexity

);

/*==

// Here compute entropy if initial probabilities provided.

//==*/

if(argc == 4)

{

p_file = fopen(argv[3], "r");

if(!p_file)

{

fprintf(stderr, "Unable to open file.\n");

return EXIT_FAILURE;

}

115

if(!(p_probabilities = gsl_vector_calloc(i_nodes + 1)))

{

fprintf(stderr, "Unable to allocate vector.\n");

return EXIT_FAILURE;

}

while(!feof(p_file))

{

fscanf(

p_file,

"%lu %lf\n",

(unsigned long *) &i_1,

&d_tmp

);

if(i_1 >= i_nodes + 1)

{

fprintf(stderr, "Too large a vertex number.\n");

return EXIT_FAILURE;

}

gsl_vector_set(p_probabilities, i_1, d_tmp);

}

fclose(p_file);

p_complexities =

compute_vertex_complexities(p_branching_list, p_graph, p_probabilities);

d_entropy = 0.;

for(i = 1; i <= i_nodes; i++)

116

{

d_tmp = p_complexities->data[i] / d_total_complexity;

fprintf(

stdout,

"%lu %g\n",

(unsigned long)i,

d_tmp

);

d_entropy -= d_tmp * log(d_tmp);

}

fprintf(stdout, "Entropy = ln(%g).\n", exp(d_entropy));

gsl_vector_free(p_complexities);

gsl_vector_free(p_probabilities);

}

/*==

// Clean up.

//==*/

for(i = 0; i < i_arcs; i++)

arc_free(p_graph->pArcs[i]);

117

free(p_graph->pArcs);

xmlHashFree(p_graph->pReactionHash, (xmlHashDeallocator) xmlFree);

free(p_graph);

xmlListDelete(p_branching_list);

WnMatrix__free(p_incidence_matrix);

xmlFreeDoc(doc);

xmlCleanupParser();

xmlMemoryDump();

return EXIT_SUCCESS;

}

BIBLIOGRAPHY

Arfken, G. B. and Weber, H. J. 1995. Mathematical Methods for Physicists. Academic
Press, San Diego, CA.

Camerini, P. M., Fratta, L., and Maffioli, F. 1980. The k best spanning
arborescences of a network. Networks 10, 91–109.

Edmonds, J. 1967. Optimum Branchings. J. Res. Nat. Bur. Standards 71B, 233–240.

Hix, W. R. and Meyer, B. S. 2006. Thermonuclear kinetics in astrophysics. Nuclear
Physics A 777, 188–207.

Jordan, G. C., Gupta, S. S., and Meyer, B. S. 2003. Nuclear reactions important in
α -rich freeze-outs. Phys. Rev. C 68, 6 (Dec.), 065801.

Jordan, G. C., Meyer, B. S., and D’Azevedo, E. 2005. Toward in situ
Calculation of Nucleosynthesis in Supernova Models. In Open Issues in Supernovae,
A. Mezzacappa and G. M. Fuller, Eds. World Scientific.

Meyer, B. S. and Adams, D. C. 2007. Libnucnet: A Tool for Understanding
Nucleosynthesis. 70th Annual Meteoritical Society Meeting, held in August 13-17,
2007, Tucson, Arizona. Meteoritics and Planetary Science Supplement, Vol. 42,
p.5215 42, 5215–+.

Meyer, B. S., Krishnan, T. D., and Clayton, D. D. 1996. 48ca production in matter
expanding from high temperature and density. Astrophys. J. 462, 825–838.

Meyer, B. S., Krishnan, T. D., and Clayton, D. D. 1998. Theory of quasi-
equilibrium nucleosynthesis and applications to matter expanding from high
temperature and density. Astrophys. J. 498, 808–830.

Sonzogni, A. A., Rehm, K. E., Ahmad, I., Borasi, F., Bowers, D. L., Brumwell,
F., Caggiano, J., Davids, C. N., Greene, J. P., Harss, B., Heinz, A.,
Henderson, D., Janssens, R. V., Jiang, C. L., McMichael, G., Nolen,
J., Pardo, R. C., Paul, M., Schiffer, J. P., Segel, R. E., Seweryniak,
D., Siemssen, R. H., Truran, J. W., Uusitalo, J., Wiedenhöver, I., and
Zabransky, B. 2000. The 44Ti\(α,p\) Reaction and its Implication on the 44Ti
Yield in Supernovae. Physical Review Letters 84, 1651–1654.

The, L.-S., Clayton, D. D., Jin, L., and Meyer, B. S. 1998. Nuclear reactions
governing the nucleosynthesis of 44ti. Astrophys. J. 504, 500–515.

Vockenhuber, C., Ouellet, C. O., The, L.-S., Buchmann, L., Caggiano, J.,
Chen, A. A., Crawford, H., D’Auria, J. M., Davids, B., Fogarty, L.,
Frekers, D., Hussein, A., Hutcheon, D. A., Kutschera, W., Laird,
A. M., Lewis, R., O’Connor, E., Ottewell, D., Paul, M., Pavan, M. M.,
Pearson, J., Ruiz, C., Ruprecht, G., Trinczek, M., Wales, B., and

119

Wallner, A. 2007. Measurement of the Ca40(α,γ)Ti44 reaction relevant for
supernova nucleosynthesis. Phys. Rev. C 76, 3 (Sept.), 035801–+.

Wallerstein, G., Iben, I., Parker, P., Boesgaard, A. M., Hale, G. M.,
Champagne, A. E., Barnes, C. A., Kaeppeler, F., Smith, V. V., Hoffman,
R. D., Timmes, F. X., Sneden, C., Boyd, R. N., Meyer, B. S., and Lambert,
D. L. 1997. Synthesis of the elements in stars : forty years of progress. Rev. Mod.
Phys. 69, 995–1084.

	Clemson University
	TigerPrints
	12-2009

	Branchings and Time Evolution of Reaction Networks
	Changyuan Wang
	Recommended Citation

	tmp.1389118324.pdf.iSwYw

