
Clemson University
TigerPrints

All Dissertations Dissertations

12-2011

A FORMAL REPRESENTATION OF
MECHANICAL FUNCTIONS TO SUPPORT
PHYSICS-BASED COMPUTATIONAL
REASONING IN EARLY MECHANICAL
DESIGN
Chiradeep Sen
Clemson University, chiradeep.sen@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Sen, Chiradeep, "A FORMAL REPRESENTATION OF MECHANICAL FUNCTIONS TO SUPPORT PHYSICS-BASED
COMPUTATIONAL REASONING IN EARLY MECHANICAL DESIGN" (2011). All Dissertations. 826.
https://tigerprints.clemson.edu/all_dissertations/826

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/826?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A FORMAL REPRESENTATION OF MECHANICAL FUNCTIONS
TO SUPPORT PHYSICS-BASED COMPUTATIONAL REASONING

IN EARLY MECHANICAL DESIGN

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mechanical Engineering

by
Chiradeep Sen
December 2011

Accepted by:
Dr. Joshua D. Summers, Committee Chair

Dr. Gregory M. Mocko, Committee Co-Chair
Dr. Georges M. Fadel
Dr. Joel S. Greenstein

 ii

ABSTRACT

The lack of computational support to the conceptual phase of mechanical

engineering design is well recognized. Function-based modeling and thinking is widely

recommended in design texts as useful means for describing design concepts and using

them in tasks such as solution search, problem decomposition, and design archival.

Graph-based function structure models that describe a product as a network of

transformative actions of material, energy, and information, are discussed as a potential

tool for this purpose, but in the current state of the art, function structures are not

formalized as a computational representation. Consequently, no computer tool exists

with which a designer can construct grammatically controlled function structure models,

explore design ideas by model editing, and perform automated reasoning on the model

against the laws of nature to draw analytical inferences on the design. This research

presents, verifies, and validates a formal representation of mechanical functions that

supports consistent computer-aided modeling of early design and reasoning on those

models based on two universal principles of physics: (1) conservation and (2)

irreversibility. The representation is complete in three layers. The first layer—the

Conservation Layer—is defined with nine entities, five relations, five attributes, and 33

grammar rules that together formalize the construction of function structure graphs and

support conservation-based qualitative validation of design concepts. The second

layer—the Irreversibility Layer—includes three additional attributes that support both

conservation-based and irreversibility-based reasoning at qualitative and quantitative

 iii

levels. The third layer—the Semantic Layer—is an extension of the previous two, where

a vocabulary of nine verbs that describe mechanical devices and physical principles as

functions is proposed. This layer supports feature-based modeling and semantic

reasoning of function structures. The internal consistency of the representation is verified

by logical examination and ontological consistency checking using Protégé-OWL. The

coverage of the verbs is examined by constructing descriptive function structure models

of a variety of existing physical principles and devices. The research is validated by

incorporating the representation in a software tool using an object-oriented language and

graphic user-interface, and by using the tool to construct models and demonstrate

conservation-based and irreversibility-based reasoning.

 iv

DEDICATION

To Sunrita and Ishaan

 v

ACKNOWLEDGEMENT

It is hard to express in words how much my association with my advisors—Dr.

Joshua D. Summer and Dr. Gregory M. Mocko—over the past five years at Clemson has

influenced my overall attitude and views toward academic research, rational thinking,

and life as a whole. I want to take this opportunity to especially thank them for teaching

me how to do research, for pushing me when I slacked, for helping me with my thoughts

with their criticism and advice, and for being truly dependable friends. I owe much of

my academic and professional growth directly to them. I also thank Dr. Georges M.

Fadel and Dr. Joel S. Greenstein, my advisory committee members, for helping me

through the review of this dissertation and asking me questions that prepared me better to

address the research presented here. A special note of thanks and gratitude is for Dr.

Jean-Marc Delhaye, especially for guiding me through some critical components of this

work.

I thank the fellow graduate students of the Clemson Engineering Design

Applications and Research Lab (CEDAR) for their friendship, support, and for

continuously enriching my thoughts with alternate viewpoints. I specifically thank Ben

Caldwell and Beshoy Morkos—fellow doctoral students that shared many reflections

with me along this growth path called graduate school. I thank Prabhu Shankar, Essam

Namouz, Jesse Schultz, Carl Lamar, Parikshit Mehta, and Shraddha Joshi for being

supportive and critical of my work through my time at Clemson. I also thank my

 vi

students in the ME Senior Design program at Clemson for giving me the opportunities to

consolidate my ideas through teaching.

Finally, I would not disgrace with mere words of thanks the contributions and

sacrifice that my family—especially my wife Sunrita and son Ishaan—have made to

support my plans of pursuing doctoral studies in mid-career. These are the two people

that directly endured the brunt of the emotional and financial duress that came along with

this project and who made uncountable little sacrifices everyday through these years to

make my doctoral degree a reality. I could not have personally endured the stresses of

this program without the love of Sunrita and Ishaan, and the emotional support from my

parents, Arup and Reba, and my sister, Paramita. I am indebted to all these people for

life. I also want to thank Mr. Alok Roy Choudhury and his family for their friendship,

love, and support. Last, but not the least, I thank my neighbors and friends—Rajan and

Priya—for providing me and my family with residential accommodation in the final

weeks of finishing this dissertation. Without all and each of these people, this work

would not be possible.

 vii

TABLE OF CONTENTS

Abstract ... ii

Dedication .. iv

Acknowledgement .. v

List of Figures ... xv

List of Tables ... xxi

List of Model States .. xxv

List of Algorithms .. xxvi

Intentionally Left Blank .. xxvii

Chapter 1. Research Overview ... 1

1.1 Motivation: Why Create Physics-Based Function Models? 1

1.2 Core Concepts and Definitions .. 4

1.2.1 Representation... 4

1.2.2 Formal Representation .. 5

1.2.3 Model .. 5

1.2.4 Modeling ... 6

1.2.5 Reasoning .. 7

1.2.6 Flow and Flow Noun .. 7

1.2.7 Function and Function Verb ... 9

 viii

1.2.8 Function Structure ... 10

1.2.9 Topology ... 13

1.3 Summary of High-Level Requirements for the Representation 14

1.4 Research Questions, Hypotheses, and Tasks ... 16

1.5 Solution Overview .. 20

Chapter 2. Review of Function-Based Design ... 23

2.1 The AI Views of Function-Based Design .. 23

2.2 The Engineering Design View of Function-Based Design 27

2.3 Comparison of the Two Views... 31

2.4 The Functional Basis and the Design Repository .. 32

2.5 Research Gap Analysis: Lack of Rigor in the Function Structure Formalism ... 39

2.5.1 Vocabulary-Level Discrepancies .. 40

2.5.2 Definition-Level Lack of Rigor .. 42

2.5.3 Model-Level Discrepancies .. 47

2.6 Modeling Flexibility and Expressive Power of Notional Terms 50

Chapter 3. Requirements Analysis for the Representation ... 53

3.1 Coverage over Multiple Physics Domains ... 54

3.1.1 What is Coverage over Physics Domains? ... 54

3.1.2 Coverage of Contemporary Representations .. 55

3.1.3 The Coverage Requirement .. 56

3.2 Domain-Independence of Physics Laws .. 56

3.2.1 What is Domain-Dependence? ... 56

 ix

3.2.2 Level of Domain-Dependence of Comparable Representations 59

3.2.3 The Domain-Independence Requirement ... 62

3.3 Physics-Based Concreteness of Modeling Terms .. 63

3.3.1 What is Concreteness? .. 63

3.3.2 Concreteness of Existing Function Vocabularies 65

3.3.3 The Physics-Based Concreteness Requirement .. 70

3.4 Normative and Descriptive Modeling Support .. 71

3.4.1.1 What are Normative and Descriptive Models? ... 71

3.4.2 Characterization of Existing Function Representations 73

3.4.3 The Normative and Descriptive Modeling Requirement 74

3.5 Qualitative Modeling and Reasoning Support ... 75

3.5.1 What is a Qualitative Function Model? .. 75

3.5.2 What is Physics-Based Qualitative Reasoning? ... 75

3.5.3 Qualitative Modeling and Reasoning in Contemporary Representations ... 77

3.5.4 The Qualitative Modeling Requirement ... 78

3.5.5 The Qualitative Reasoning Requirement .. 79

3.6 Extendibility ... 79

3.6.1 What is Extendibility? ... 79

3.6.2 Quantitative Reasoning Extension .. 80

3.6.3 Causal Reasoning Extension ... 81

3.7 Scalability ... 82

3.7.1 What is Scalability? .. 82

 x

3.7.2 The Scalability Requirement ... 83

3.8 Consistency and Validity ... 85

Chapter 4. Systematic Discovery of Reasoning Needs and Information Elements for

the Representation ... 87

4.1 Discovering Reasoning Needs: The Chalkboard Exercise 87

4.1.1 Design Problem Selection ... 87

4.1.2 Participant Selection ... 89

4.1.3 Modeling Interface and Feedback ... 90

4.1.4 Exercise Steps: Black Box Modeling (Qualitative Reasoning) 91

4.1.5 Exercise Steps: Model Decomposition (Quantitative Reasoning) 101

4.2 Reasoning Algorithms .. 112

4.2.1 Conservation Reasoning Algorithms (Topologic) 112

4.2.2 Conservation Reasoning Algorithms (Derivational) 114

4.2.3 Irreversibility Reasoning Algorithm ... 119

4.2.4 Quantitative Reasoning Algorithm (Power Required) 120

4.3 Information Elements Extraction ... 126

Chapter 5. Representation Layer One: Formalization of Function Structure for

Conservation Reasoning ... 132

5.1 Layer 1 Vocabulary .. 133

5.1.1 Layer 1 Entity Types ... 136

5.1.2 Layer 1 Vocabulary of Relation Types ... 148

5.1.3 Layer 1 Vocabulary of Attribute Types and their Correspondence 150

 xi

5.2 Layer 1 Local Grammar ... 152

5.2.1 Unary Grammar Rules for Input-Output Relations (HeadNode, TailNode) ...

 .. 156

5.2.2 Unary Grammar Rules for Carrier-Carried Relations 158

5.2.3 Unary Grammar Rules for Parent-Child Relations 160

5.2.4 Binary Grammar Rules for Input-Output Relations 167

5.2.5 Binary Grammar Rules for Carrier-Carried Relations 172

5.2.6 Special Grammar Rules for Layer 1 ... 180

Chapter 6. Implementation and Validation: Modeling and Reasoning Demonstration

with Layer One ... 182

6.1 Demonstration of Internal Consistency .. 184

6.1.1 Logical Examination of Exhaustiveness of Local Grammar 185

6.1.2 Logical Examination of Consistency of Local Grammar 189

6.1.3 Ontological Examination of Consistency of the Vocabulary 195

6.2 Demonstration of External Validity against Conservation Laws 209

6.2.1 Design of the Software Tool ConMod .. 209

6.2.2 Demonstration of Function Modeling and Qualitative Conservation

Reasoning .. 234

6.2.3 Application to Product-Level Modeling and Reasoning (Scalability) 242

Chapter 7. Representation Layer Two: Extension of Layer One for Irreversibility-

based Reasoning.. 247

7.1 Extension of the Representation to Include Irreversibility-Based Attributes .. 249

 xii

7.2 Implementation and Validation: Qualitative Irreversibility Reasoning 251

7.3 Implementation and Validation: Quantitative Irreversibility Reasoning 262

Chapter 8. Representation Layer Three: Semantic Layer: A Physics-Based Vocabulary

of Function Verbs ... 279

8.1 The Need for Semantic Information in Function Modeling and Reasoning 280

8.2 Proposed Vocabulary of Atomic Function Verbs .. 287

8.2.1 Energy Verbs – Primary Level ... 289

8.2.2 Energy Verbs – Secondary Level ... 298

8.2.3 Material Verbs .. 311

8.2.4 Topologic Verbs .. 315

Chapter 9. Validation of Layer Three: Modeling Coverage of the Physics-Based

Verbs………. .. 322

9.1 Coverage Testing of Energy Verbs through Descriptive Modeling (Closed

Systems) .. 322

9.1.1 Storage and Supply of Electrical Energy (Device: Lead-Acid Battery) ... 323

9.1.2 Resistance to Electrical Current (Devices: Resistor, Heating Coil, Lamp

Filament).. 326

9.1.3 Storage and Supply of Electrical Energy using Capacitance (Device:

Capacitor) .. 330

9.1.4 Production of Magnetic Field using Inductance (Device: Solenoid with or

without Soft Iron Slider) .. 332

 xiii

9.1.5 Work from Electrical Energy (Device: DC Motor with Permanent

Magnet).. 335

9.1.6 Work from Electrical Energy (Device: DC Motor with Field Winding) .. 337

9.1.7 Electrical Energy from Work (Device: DC Generator with Permanent

Magnet).. 339

9.2 Coverage Testing of Material Verbs through Descriptive Modeling (Open

Systems) .. 341

9.2.1 Heat Transfer between Two fluids across a Wall (Device: Heat Exchanger

Pipe)…… ... 341

9.2.2 Heat Transfer from a Fluid to the Atmosphere (Device: Radiator) 342

9.2.3 Heat Transfer through an Intermediate Cycled Flow (Device: Disk Heat

Exchanger) ... 343

9.2.4 Free Drainage of Water from a Tank (Device: Penstock of a Hydraulic

Turbine) ... 345

9.2.5 Conversion of Kinetic Energy of Water to Shaft Work (Device: Francis

Turbine) ... 347

9.3 Extension of Physics-Based Verbs with Residual Flows for Feature-Based

Modeling ... 350

9.4 Product-Level Coverage: Descriptive Models from the Design Repository 357

9.4.1 The Hairdryer Function Structure ... 357

9.4.2 The Shop-Vac Function Structure .. 363

9.5 Product-Level Coverage: Normative Modeling of a New Product Concept ... 371

 xiv

Chapter 10. Closure, Ongoing Work, and Path Forward.. 377

10.1 Overall Research Outcome ... 377

10.2 Contributions to the State of the Art .. 378

10.3 Evaluating the Representation against the High-Level Requirements 382

10.4 Answers to Research Questions and Hypotheses ... 387

10.5 Ongoing Extensions and Future Research Directions 394

10.5.1 Ongoing Work: Formalization of Notional Verbs 395

10.5.2 Ongoing Work: Examination of Designer-Level Usability 404

10.5.3 Future Work: Causal Reasoning Extension .. 409

10.5.4 Future Work: Additional Directions to Explore 412

Appendices .. 414

Appendix A. Reasoning Discovery Experiment Steps Discussed in Section 4.1 ... 415

Appendix B. XML Code for the Function Ontology Presented in Section 6.1.3 ... 439

Appendix C. Header Files for the ConMod Application .. 457

Appendix D. Source Files for the ConMod Application ... 488

References ... 610

 xv

LIST OF FIGURES

Figure 1.1: Examples of mechanical functions ... 9

Figure 1.2: Function structure model of a hairdryer stored in the Design Repository 11

Figure 1.3: Conventional and bipartite views of a function structure model 13

Figure 2.1: The transformative view of device function [1] ... 27

Figure 2.2: Function structure of a hairdryer stored in the Design Repository 28

Figure 2.3: Sample graph grammar rule for function model synthesis

(Redrawn from [6]) ... 31

Figure 2.4: Function structure of an electrical motor using the Functional Basis

(secondary level) ... 35

Figure 2.5: Definitions of terms within the Design Repository .. 36

Figure 2.6: Artifact browser in the Design Repository showing the heating coil frame of

the hairdryer .. 38

Figure 2.7: Logical Definition of Channel derived by taking intersection of the definitions

in Table 2.5 ... 47

Figure 2.8: Illustration of model-level inconsistencies ... 48

Figure 3.1: Loss of generality of physics equations due to increasing domain-dependence

(Adapted from [126]) .. 58

Figure 3.2: Expression of hydrostatic pressure in terms of universal gravitation 59

Figure 3.3: Use of the verb Separate in two different models in the Design Repository . 66

Figure 3.4: Different physics of the same verb in two applications 68

 xvi

Figure 3.5: A typical function model for energy conversion .. 75

Figure 3.6: Qualitative and quantitative models ... 80

Figure 3.7: Subgraph being searched within a function model .. 83

Figure 4.1: A sample step from the chalkboard modeling exercise 92

Figure 5.1: Entity-relation-attribute (ERA) model for the Level 1 vocabulary 135

Figure 5.2: Redundant topologic data elements not captured in any class 143

Figure 5.3: Assignment of carrier flow, head node, and tail node based on flow type .. 144

Figure 5.4: An internally inconsistent model of a heat exchange function 152

Figure 5.5: The consistent construct of the heat exchange function 155

Figure 6.1: OWL class hierarchy (Asserted) .. 197

Figure 6.2: Exclusive disjunction between Material, Energy, and Signal (Asserted) 198

Figure 6.3: Object properties and data properties (Asserted) ... 200

Figure 6.4: Domain, range, and other characteristics of properties (Asserted) 202

Figure 6.5: Restrictions on Energy (Asserted and Inferred) ... 204

Figure 6.6: Consistency checking results for the ontology (Consistent) 205

Figure 6.7: Consistency checking results for the ontology (Consistent) 206

Figure 6.8: OWL class hierarchy (Inferred) – Identical with the asserted hierarchy 206

Figure 6.9: Creation of individual instances using the ontology 208

Figure 6.10: The document-view architecture of ConMod .. 211

Figure 6.11: Class diagram of the ConMod application ... 214

Figure 6.12: ConMod main window and toolbar buttons (Layer One) 231

Figure 6.13: Dialog boxes for adding function and environment instances (Layer One)232

 xvii

Figure 6.14: Dialog boxes for adding Material, Energy, and Signal instances

(Layer One) ... 233

Figure 6.15: Qualitative conservation reasoning message dialog 234

Figure 6.16: Model for topologic reasoning and derivational reasoning (# 1 – 5) 237

Figure 6.17: Derivational reasoning output from the model in Figure 6.16 238

Figure 6.18: Model for derivational reasoning # 6, 7, and 9 .. 240

Figure 6.19: Derivational reasoning output from the model in Figure 6.18 240

Figure 6.20: Model for derivational reasoning # 9a ... 241

Figure 6.21: Derivational reasoning output from the model in Figure 6.20 242

Figure 6.22: The Air Heater model from Model State 4.14 reconstructed in ConMod .. 244

Figure 6.23: Reasoning output for the Air Heater model in Model State 4.14 245

Figure 7.1: Energy loss in physical processes .. 248

Figure 7.2: Extension of the representation to support irreversibility reasoning 251

Figure 7.3: Dialog boxes for adding Material and Energy instances (Layer Two -

Qualitative) ... 253

Figure 7.4: Reasoning menu options in ConMod (Layer Two - Qualitative) 253

Figure 7.5: Air Heater model of Model State 4.14 reconstructed using ConMod

(Layer 2) .. 255

Figure 7.6: Qualitative derivational reasoning produced by ConMod-2 on the model

shown in Figure 7.5... 256

Figure 7.7: Qualitative irreversibility report produced by ConMod-2 on the model shown

in Figure 7.5 .. 257

 xviii

Figure 7.8: Modified model of the Air Heater, with residual flows identified by

modeler ... 258

Figure 7.9: Qualitative irreversibility report produced by ConMod-2 on the model shown

in Figure 7.8 (modified model with some residual flows marked) 259

Figure 7.10: Depiction of residual flows for different design intent and zero

magnitude .. 262

Figure 7.11: Add Energy dialog and reasoning toolbar (Layer Two - Quantitative) 263

Figure 7.12: Reasoning menu options in ConMod (Layer Two - Quantitative) 263

Figure 7.13: Quantitative model of the Air Heater using ConMod-2q, showing default

power of Energy flows and one negative power value ... 266

Figure 7.14: Quantitative reasoning Step-1: Check for negative power magnitudes 267

Figure 7.15: Aborting reasoning steps under out-of-date model state 267

Figure 7.16: Quantitative model of the Air Heater using ConMod-2q, after correcting

negative power values ... 269

Figure 7.17: Quantitative reasoning Step-2: Check for quantitative energy balance 270

Figure 7.18: Air Heater model after manually ensured energy balance 273

Figure 7.19: Quantitative energy balance report: Step 2 with passing results 274

Figure 7.20: Quantitative reasoning Step-3: Computing function-wise and model

efficiency ... 275

Figure 8.1: Lack of formalism to capture function semantics .. 281

Figure 8.2: Semantic inconsistency between function description and topology 282

Figure 8.3: An instance of the proposed verb Energize_M .. 285

 xix

Figure 8.4: Two possible return values for solution search ... 287

Figure 9.1: Storage of electrical energy as chemical potential energy 324

Figure 9.2: Supply of electrical energy from stored chemical potential energy 325

Figure 9.3: Resistive heating... 327

Figure 9.4: Storage of electrical energy as electrical potential energy (static charge) ... 330

Figure 9.5: Supply of electrical work (current) from stored electrical potential energy 331

Figure 9.6: Production of magnetic field without mechanical work by induction 333

Figure 9.7: Production of magnetic force from electric energy through induction 334

Figure 9.8: DC motor with permanent magnet ... 335

Figure 9.9: DC motor with field winding ... 338

Figure 9.10: DC motor model with energy transfer functions .. 339

Figure 9.11: DC generator with permanent magnet .. 340

Figure 9.12: Heat exchange between two fluids across a wall 342

Figure 9.13: Heat transfer from hot fluid in a pipe to atmospheric air 343

Figure 9.14: Heat transfer using an intermediate reused flow .. 344

Figure 9.15: Schematic diagram of free drainage of water from a tank 346

Figure 9.16: Conversion of potential energy into kinetic energy in free drainage of

liquids .. 347

Figure 9.17: Extraction of shaft work from kinetic energy of water 348

Figure 9.18: Geometric CAD model of a boss feature ... 351

Figure 9.19: Function structure model of a hairdryer stored in the Design Repository . 358

Figure 9.20: The hairdryer function structure using the physics-based verb primitives 359

 xx

Figure 9.21: The hairdryer function structure using the physics-based verb features 366

Figure 9.22: Shop-Vac function model within the Design Repository 367

Figure 9.23: Shop-vac function structure using the physics-based verb primitives 368

Figure 9.24: Shop-Vac function structure constructed using the physics-based verb

features .. 369

Figure 9.25: Normative model of an automatic omelet maker 373

Figure 10.1: Protocol to formalize notional verbs (In-progress future work) 396

Figure 10.2: Syntactic translation of the existing textual definition of Branch available in

Functional Basis literaure [26] .. 397

Figure 10.3: Incorrect use of the verb Branch allowed by its definition 398

Figure 10.4: Intended usage of the verb Branch not supported by its definition 398

Figure 10.5: Partial branching of mixtures not allowed by the definition of Branch 399

Figure 10.6: Functions conflicting with natural laws are supported by the definition ... 399

Figure 10.7: Energy exchange between the system and surrounding cannot be

modeled ... 401

Figure 10.8: Formalized definition of Branch consistent with the conservation laws 403

Figure 10.9: Sample results of pilot protocol studies on designer-model interaction 405

Figure 10.10: Activity Encoding for Participant P1 .. 406

Figure 10.11: Element encoding for participant P1 ... 407

Figure 10.12: Function structure of an electric motor and pump assembly 409

Figure 10.13: Causal relationships to be captured in the extended representation 410

Figure 10.14: Causal Reasoning Tree ... 411

 xxi

LIST OF TABLES

Table 1.1: Research Question 1, hypotheses, and tasks .. 17

Table 1.2: Research Question 2, hypotheses, and tasks .. 19

Table 2.1: The Functional Basis Verb Set .. 33

Table 2.2: The Functional Basis Nouns Set .. 34

Table 2.3: Energy flow types within the Functional Basis ... 42

Table 2.4: Sample verbs and notional definitions from the Functional Basis [26] 43

Table 2.5: First order logic-based translation of four Functional Basis verbs 46

Table 4.1: Redundant function inference .. 93

Table 4.2: Dangling tail and barren flow inference .. 93

Table 4.3: Dangling head and orphan flow inference ... 94

Table 4.4: Material transformation without energy exchange .. 95

Table 4.5: Environments as singularity nodes .. 96

Table 4.6: Unused (barren) energy flow ... 97

Table 4.7: Carrier flow and irreversibility inference .. 98

Table 4.8: One-in-many-out derivation (acceptable black box model) 100

Table 4.9: Topologic inferences during decomposition ... 102

Table 4.10: Material transformation without energy in a decomposed model 102

Table 4.11: Many-in-one-out inference (Accepted model) .. 104

Table 4.12: Flow preservation and additive inference in decomposition (Draw Air) 105

Table 4.13: Flow preservation inference in decomposition (Deliver Air) 107

 xxii

Table 4.14: Quantitative reasoning on efficiency and power required 108

Table 4.15: Summary of Reasoning Needs Discovered ... 110

Table 4.16: Extraction of information elements from the algorithms 127

Table 5.1: Layer 1 vocabulary .. 134

Table 5.2: Layer 1 entity: Element ... 137

Table 5.3: Layer 1 Entity: Node ... 138

Table 5.4: Layer 1 entity: Noun .. 139

Table 5.5: Layer 1 entity: Verb ... 140

Table 5.6: Layer 1 entity: Environment .. 141

Table 5.7: Layer 1 entity: Source .. 141

Table 5.8: Layer 1 entity: Sink ... 142

Table 5.9: Layer 1 entity: Material ... 145

Table 5.10: Layer 1 entity: Energy ... 146

Table 5.11: Layer 1 entity: Signal... 147

Table 5.12: Layer 1 relation types and descriptions ... 148

Table 5.13: Layer 1 attributes and descriptions .. 150

Table 5.14: Layer 1 grammar rules: Unary input-output relations 156

Table 5.15: Constructs controlled by the unary input-output rules 157

Table 5.16: Layer 1 grammar rules: Unary carrier-carried relations 158

Table 5.17: Constructs controlled by the unary carrier-carried rules 160

Table 5.18: Layer 1 grammar: Unary parent-child relations .. 161

Table 5.19: Constructs controlled by the unary parent-child rules 162

 xxiii

Table 5.20: Constructs controlled by the unary parent-child rules (Rule 12) 167

Table 5.21: Layer 1 grammar: Binary input-output relations for flows 168

Table 5.22: Constructs controlled by the binary input-output rules 169

Table 5.23: Layer 1 grammar: Binary input-output relations for nodes 171

Table 5.24: Constructs controlled by the binary input-output rules 171

Table 5.25: Layer 1 grammar: Binary carrier-carried relations 172

Table 5.26: Constructs controlled by the binary carrier-carried rules 173

Table 5.27: Layer 1 grammar: Special rule .. 180

Table 6.1: Domain, math_func, and range for unary input-output rules 190

Table 6.2: Domain, math_func, and range for all local grammar rules 191

Table 6.3: Class CGeometry ... 215

Table 6.4: Class CElement (Element) ... 216

Table 6.5: Class CNode (Node) .. 218

Table 6.6: Class CEdge (Noun) .. 219

Table 6.7: Class CFunction (Verb) ... 221

Table 6.8: Class CEnv (Environment) .. 222

Table 6.9: Class CMaterial (Material) .. 223

Table 6.10: Class CEnergy (Energy) .. 224

Table 6.11: Class CSignal (Signal) ... 224

Table 6.12: Class CConModDoc (Document) .. 225

Table 6.13: Class CConModView (View) .. 226

Table 6.14: Conservation reasoning to be validated using ConMod 235

 xxiv

Table 7.1: Layer 2 attributes and descriptions .. 249

Table 8.1: Primary energy verb: TypeChange_E ... 290

Table 8.2: Primary energy verb: Transfer_E .. 294

Table 8.3: Primary energy verb: Change_E .. 295

Table 8.4: Primary energy verb: Store_E ... 297

Table 8.5: Primary energy verb: Supply_E ... 298

Table 8.6: Three modes of transfer and storage for different energy types 302

Table 8.7: Primary energy verb: Conduct_E .. 308

Table 8.8: Primary energy verb: Radiate_E .. 309

Table 8.9: Summary of energy verbs and their description tables 310

Table 8.10: Material verb: Energize_M .. 312

Table 8.11: Material verb: DeEnergize_M ... 314

Table 8.12: Topologic verb: Logical_Branch ... 316

Table 8.13: Topologic verb: Logical_Unite .. 318

Table 8.14: The proposed physics-based verbs and their graphical symbols 319

Table 9.1: Model variation with design intent .. 329

Table 9.2: Extension of physics-based verbs with provisions for typical residual flows 352

Table 9.3: Function-name mapping between models (hairdryer) 361

Table 9.4: Function-name mapping between models (Shop-Vac) 363

Table 10.1: Answers to Research Questions and Hypotheses .. 387

 xxv

LIST OF MODEL STATES

Model State 4.1: Function instance AHD (Air Heating Device) 93

Model State 4.2: AHD with one input flow instance Air1 (type: Gas) 93

Model State 4.3: AHD with one output flow instance Air2 (type: Gas) 94

Model State 4.4: AHD with two material flows ... 95

Model State 4.5: Flow instances connected to environment instances 96

Model State 4.6: Energy flow EE1 input to support material transformation 97

Model State 4.7: EE1 transformed into ThE1 and added to Air2 98

Model State 4.8: Lost energy included in model: An acceptable model 100

Model State 4.9: User-driven decomposition (first level) .. 102

Model State 4.10: Stream of air flow through functions .. 102

Model State 4.11: Accepted model of first level decomposition 104

Model State 4.12: Second level decomposition of Draw Air ... 105

Model State 4.13: Second level decomposition of Deliver Air 107

Model State 4.14: Final Model State of the Exercise ... 108

 xxvi

LIST OF ALGORITHMS

Algorithm 4.1: Algorithm for redundant function .. 112

Algorithm 4.2: Algorithm for dangling tail .. 113

Algorithm 4.3: Algorithm for dangling head .. 113

Algorithm 4.4: Algorithm for barren flow .. 115

Algorithm 4.5: Algorithm for orphan flow ... 115

Algorithm 4.6: Algorithm for one-in-many-out derivation inference 116

Algorithm 4.7: Algorithm for many-in-one-out derivation inference 117

Algorithm 4.8: Algorithm for material transformation without energy 119

Algorithm 4.9: Algorithm for qualitative detection of missing residual flow 119

Algorithm 4.10: Algorithm for computing power required .. 120

Algorithm 4.11: Algorithm for boundary flow preservation in decomposition 121

Algorithm 4.12: Algorithm for additive inference across decomposition levels 124

 xxvii

INTENTIONALLY LEFT BLANK

 1

CHAPTER 1. RESEARCH OVERVIEW

The objective of this dissertation research is to develop a formal representation of

mechanical functions based on the governing physics of mechanical systems, specifically

to meet the modeling and computational reasoning needs in early design. This chapter

presents a high-level view of the overall research problem, the requirements of the

solution, summary of the research questions, hypotheses, and tasks, and an overview of

the solution, without providing details of the solution, its rationale, or validation. For

each item mentioned above, a pointer to the section or chapter within the document

where the item is addressed in greater detail is provided. After building motivation, some

core concepts necessary to understand this research are defined. High level requirements

that a system must satisfy to solve the overall problem are described next. The research

answers two overarching research questions, which are presented along with their

hypotheses and tasks. Finally, the representation is completed in three layers, as

presented in the last section of the chapter.

1.1 Motivation: Why Create Physics-Based Function Models?

The focus of early design lies on synthesis tasks such as ideation and concept

generation [1-4] and much research has been directed toward automating design synthesis

[5-13]. Traditionally, analysis is reserved for the later stages, where modeling and

reasoning tools such as CAD, FEA, and CFD exist. While applicable to a broad range of

problems, these tools typically need geometric and/or other quantitative information for

 2

modeling and reasoning that may not exist in early novel design. Computer tools for

early design analysis exist only in the evolutionary design of some complex systems such

as automotive1, aerospace2, or nuclear power plants3 [14], but they usually operate by

reusing previously established domain-specific rules of reconfigurable subsystems. In

the early stages of novel, open-ended mechanical design, solutions are synthesized often

in abstract, qualitative, non-geometric form and a variety of physics principles may be

considered. For these problems, general purpose tools that support modeling early,

abstract design from a variety of physics domains, and perform suitably abstracted

analysis, are needed. This analysis could include, but is not limited to, the theoretical

correctness and feasibility of a concept, possible functional failure sources, failure

propagation paths and effects, and the effects of changing a design parameter on the

remainder of the design (design exploration). Such tools could not only enable electronic

documentation of early design intent in dedicated file formats for viewing, editing, and

evolving in subsequent product variant design cycles, but also help the designer to engage

in a physics-based “conversation” with the model [15] while developing and exploring

1 https://www.modelica.org/, accessed on August 16, 2011

2 http://www.pca2000.com/en/index.php, accessed on August 16, 2011

3 http://www.intergraph.com/learnmore/ppm/power/nuclear-plant-construction.aspx, accessed on August

16, 2011

 3

design variants, and to examine the consequences of design decisions, while still within

the early stage.

However, computational reasoning requires the necessary information elements to

be available in a formal representation on which models can be constructed and reasoning

algorithms can be executed. To this end, a function-based representation is developed in

this dissertation. Function-based thinking is professed as a useful means to support early

design thinking in design texts [1, 2]. To date, automation effort in this area is primarily

channeled to aid design synthesis and many models exist to that end [5, 6, 16-22].

However, research shows that designers mentally archive and process their knowledge

about engineering devices in terms of their functions and use function-based human

reasoning to solve problems in early design [3, 23, 24]. This background makes

function-based formal reasoning a strong candidate for automating early design analysis.

Moreover, since functions can be modeled as graphs—a widely used and extendable data

structure supported by rigorous mathematical basis—and since previous research made

significant advances toward formalizing functions [16, 17, 25-29], it is anticipated that a

function-based representation, when properly designed, would be suitable for supporting

early design analysis reasoning. To facilitate easy interpretation of the remainder of this

discussion, the core concepts of function-based modeling and formal representation are

defined next.

 4

1.2 Core Concepts and Definitions

Core concepts pertinent to this research are defined to support the discussion in

the remainder of this chapter. In each definition sentence, the defined term is underlined.

1.2.1 Representation

The terms representation and model often are used interchangeably in literature

[30, 31] and a distinction is necessary for this dissertation. Representation has been

defined as a substitution of reality using a symbolism [31]. For this dissertation, a

representation is the collective description of (1) a vocabulary of entity types, relation

types, attributes, and (2) local grammar rules, which constitute the general information

structure for describing specific members within a domain of discourse. An example is

the boundary representation of three-dimensional geometry [32-34], which is used to

define members (3-d objects) within the domain of discourse (3-d space), and includes a

vocabulary of entity types (e.g., vertices, edges, faces, shells, holes, and loops), a

vocabulary of relation types (e.g., boundary relations), and grammar rules to control the

permitted combination of entity instances and relation instances (e.g., Euler’s equation of

manifold solid) [34]. This choice of information elements and their structure is generic

for all instances of solid objects described using the boundary representation. Similarly,

the vocabulary of symbols of electrical component types (entity types), electrical

connection types (relation types), and guidelines for correctly combining instances of

these entity types and relation types to describe an electrical device (grammar) constitutes

a representation for drawing circuit diagrams. The representation is the generic

information structure, as opposed to a specific solid or a specific circuit diagram, which

 5

are models constructed on the respective representations. A classification of

representations based on their vocabulary, structure, expression, purpose, and abstraction

is proposed in previous research [31, 35-42].

1.2.2 Formal Representation

A formal representation is a representation defined in a rigorous, computer-

implementable form that describes how to store the entities, relations, and attributes in a

computer data structure, render them on a computer screen, and support computational

reasoning on them. The term formal implies that the information captured is stored in the

syntactic “form” of the descriptions rather than in their semantics. Examples are the

implementations of the boundary representation in solid geometry kernels such as ACIS

[34], kernel-neutral CAD languages such as STEP AP-214 [43], and the Design

Exemplar [44, 45].

1.2.3 Model

A model is described as an abstraction of reality that can be used to answer some

questions about that reality [46]. Distinguishing a model from its representation, a model

is an instance of a specific member within a domain of discourse described by a

representation. It consists of specific instances of the entities, relations, and modifiers

defined within the representation. An example is a specific solid model of a machine part

built using the boundary representation. This model substitutes the real part for purposes

such as visualization and answering questions about its geometry, mass properties, fits,

and tolerances. It describes a specific object using specific instances of vertices, edges,

 6

faces, shells, holes, and loops, which are entities defined in the boundary representation.

Similarly, the circuit diagram for a specific electrical device drawn in accordance with

the set of rules described in the representation is a model. In this general sense, the word

model includes any substitution of an entity with another, such as (1) the specific

behavior equation of a spring-mass-damper system that answer questions about the

position, velocity, and acceleration of the mass, (2) a specific scaled physical prototype of

a building or an airplane that answers questions about its proportion, aerial view, or wind

flow characteristics around it, or (3) a specific project plan that answers questions about

activities on the critical path and an individual person’s tasks for a day.

1.2.4 Modeling

Modeling is the activity of constructing a model to describe a specific object

within a domain of discourse using a representation available to describe objects in that

domain. It is important to identify modeling separately from model and representation

since the final qualities of a model such as consistency, validity, completeness, and

soundness, are results of those qualities in the representation itself and in the modeling

action. Depending on the flexibility of the representation [31], it may be possible to

construct an inconsistent model using an internally consistent representation and vice

versa. For example, the term definitions in the Functional Basis vocabulary [25, 26, 47]

are not formalized, as they are defined in natural English rather than a syntactic form,

their flexibility is high. Consequently, they are often used in models that can be

demonstrated as inconsistent [48]. With highly flexible representations, the onus of

maintaining model-level consistency lies largely on the modeler, as the representation

 7

does not enforce guidelines to that effect. One objective of this dissertation research is to

formalize a function modeling representation such that the definitions restrict modeling

flexibility to ensure conformity to the natural laws (Chapter 6), while not reducing the

flexibility to model a wide range of physical principles and phenomena executed in

mechanical systems (Chapter 9).

1.2.5 Reasoning

Reasoning is the activity of using a model and logic described within the

representation (local rules) or outside (global rules) to draw inferences about the model in

order to derive information that is not explicitly captured within the model. An example

is to derive the volume, surface area, or length of the diagonal of a rectangular block from

its solid model that is created using its length, breadth, and height parameters. The

sought information is not directly captured in the model’s description, but can be derived

from the model by using global rules that relate the three parameters available in the

model to the sought parameters. Formal reasoning is the process of reasoning using a

formal representation and algorithmic rules.

1.2.6 Flow and Flow Noun

A flow is an occurrence of an entity type such as material, energy, or signal,

which is either used or produced by an action performed by an artifact. It is distinguished

from a fluid that is necessary for the operation of a device but is not used or produced by

it. For example, in a closed thermodynamic system, such as gas enclosed in a cylinder,

the gas is not a flow, since it is not entering or leaving the system. It is the system. Heat

 8

and work that cross the boundary of the system are flows. Similarly, in an automobile

cooling circuit studied as a system, the coolant fluid is not a flow, since it flows within

the system, rather than through it. However, when the coolant pump and the radiator are

studied as individual open systems, the coolant becomes a flow. Thus, whether a fluid is

a flow or a system depends on the definition of the system.

The complete description of a flow includes its type, subtype (optional), and

functional state. The functional state, or state, of a flow is the set of attributes and

relations pertinent to its type and their values that distinguish the flow from other flows

of the same type in a model. If two flows in a model have the same type, subtype, and

functional state, it follows that they are the same instance and therefore, the model is

redundant. In the proposed representation, a flow is characterized by the physical

quantities applicable to its type (e.g., voltage and current, if the type is electrical energy),

its Location attribute, and its carrier flows, controlled by the relation CarrierFlow. The

first specifies a zone in the geometric space where the flow is identified and the second is

a pointer to another flow that carries the flow in question. For example, an instance of

Electrical Energy available at a specific wall socket, socket1, can be characterized by its

type (Energy), subtype (Electrical Energy), and attributes voltage (110 V), current (1 A),

and Location (socket1), which completes its description. Similarly, energy carried by

water exiting a specific nozzle, nozzle1, in a Pelton turbine installation can be described

as type (Energy), subtype (Kinetic Energy), mass flow rate (100 kg/s), Location

(nozzle1), and CarrierFlow (pointer to the water flow instance). Two flows are defined

 9

as different if they are of different types or if they are of the same type but at least one

attribute value or relation value used to define their states is different between them.

For the purpose of formalizing, it is important to distinguish specific flow

instances from the class Noun, from which those instances are derived. Flow Noun or

Noun (proper noun, capitalized) is a class from which flow instance are derived and

subclasses of more specific a flow types are inherited. The term “a noun” or “nouns”

refers to one or more of these classes that inherit the Noun class. The term “a flow” or

“flows” refer to instances of nouns. For example, in Figure 1.1, EE1 is a flow, which is

an instance of the class Electrical Energy, and MW1 is another flow, which is an instance

of the class Mechanical Work. These two classes are inherited from the class Noun.

Figure 1.1: Examples of mechanical functions

1.2.7 Function and Function Verb

A mechanical function, or a function, is an occurrence of a transformative action

that transforms an input set of flows to a different set of flows. For example, the function

F1 in Figure 1.1 inputs the electrical energy flow EE1 and outputs the mechanical work

flow MW1. The function F2 inputs this flow and outputs two other mechanical work

flows, MW2 and MW3. A function is a description of an action, not of the device that

performs that action [1, 2]. For example, the function F1 could be mapped to any device

that matches this action description, such as an electric motor or a solenoid.

 10

For the purpose of formalizing, it is important to distinguish specific function

instances from the generic class named Verb, from which those instances are derived.

Function Verb or Verb (proper noun, capitalized) is the class from which flow instance

are derived and subclasses of more specific a flow types are inherited to describe

templates or types of action, along with the count and types of flows acceptable as inputs

and outputs to those actions. The term “a verb” or “verbs” refer to one or more of these

classes of actions, while “a function” is an instance of one of the verbs. For example, the

function F1 in Figure 1.1 is an instance of the verb Convert in the Functional Basis

vocabulary, while the function F2 is an instance of Distribute [26].

If the input and output set of flows are identical, that is, if the count, types, and all

attribute values defining flow states are the same between input and output, the function

is void, since no transformative action is required to change a flow-set to itself. For a

function to be valid, each incoming flow to the function must be different from at least

one of its derivatives at the output side. In the graph-based function structure

representation, functions are shown as labeled blocks, as shown in Figure 1.2.

1.2.8 Function Structure

Function Structure (proper noun, capitalized) is a representation for describing the

functionality of an artifact as graphs [1, 2, 49]. Figure 1.2 shows a model based on this

representation. These models are called function structures (common noun, small

letters). This model describes a commercial hairdryer product and is available in the

 11

Design Repository, which is a web-based archive of design information of

electromechanical products [50-53].

Figure 1.2: Function structure model of a hairdryer stored in the Design

Repository4

By the conventional definition of the Function Structure representation [1, 2], the

edges are flows (Noun instances) and the vertices are functions (Verb instances). In

graph theory [49], a vertex conventionally means an entity and an edge is a relation

between two entities. Thus, in function structures, flows are treated as relations between

functions. However, since every edge has two ends, a relation implies two entities that

are related. Then, the model in Figure 1.2 violates the standard construct of graphs, as it

contains flows that are connected to only one function. The free ends of these flows

imply input or output of flows to the modeled system from the environment, which is

4 http://repository.designengineeringlab.org, accessed on June 11, 2011

 12

denoted by the large rectangle, instead of additional vertices. Thus, while the Function

Structure representation is based on graphs, it uses modified graph constructs.

In the proposed representation, functions, flows, and environment instances are all

treated as entities, while their connections are relations, as labeled in Figure 1.3a. The

straight arrows in this figure are flows, while the curved arrows are label leaders. When

the flows are drawn as vertices instead of edges, the function structure model becomes a

bipartite graph with two partitions of vertices and two relation types between the

partitions. The two types of entities, shown in the left and right partitions of Figure 1.3b,

are (1) the nodes of the function structure model (functions and environments) and (2) the

flows. The two types of relations, shown by the edges of this graph, are Tail and Head,

indicating if a node (function or environment) is the tail or head node of a flow. Figure

1.3a and Figure 1.3b are two isomorphic views of the same model and show the same

topologic connections between functions and flows. For example, the two relations

attached to Flow1 in Figure 1.3b indicate that Flow1 has its tail attached to E2 and its

head attached to F2, which can be verified from Figure 1.3a.

 13

(a) Conventional function structure view (b) Bipartite function structure view

Figure 1.3: Conventional and bipartite views of a function structure model

While “vertex” and “edge” are used to describe graphs in general, the words

“node” and “flow” are used in this dissertation to describe function structure models.

Nodes include functions and environments, since in the conventional view of function

structures these two entities form the vertices of the graph. The flows are “edges”

(relations) in the conventional view, but “vertices” (entities) in the bipartite view. In all

types of graphs, “vertices” mean entities and “edges” mean relations. This convention is

carried throughout this document.

1.2.9 Topology

Topology of a function structure graph is the arrangement of connection between

the functions and the flows. In order to uniquely identify a function structure, its

functions, flows, and its topology must be identified. The same set of functions and

flows can be connected in different arrangements to produce different function structures

that differ only in terms of topology. In Figure 1.3b, the exact set of connections—

F1

F2

Flow3

Flow4

Flow1 Flow2

E1

E2 E3

Function
entity

Flow
entity

Env.
entity

Head
relation

Tail
relation

 14

including the type of connections and the connected entities to each connection—defines

the topology of the bipartite graph.

Next, high-level requirements for the early design representation proposed in this

dissertation are mentioned. These requirements are analyzed in greater detail in the next

chapter and a more rigorous treatment of identifying specific reasoning needs is presented

in Chapter 4.

1.3 Summary of High-Level Requirements for the Representation

In order to support analytical reasoning in the early design, as outlined in Section

1.1, a candidate representation must satisfy a set of high-level requirements, as

summarized here. The resulting representation is checked against this requirement list at

the end of the dissertation, in Chapter 10.

1. Coverage over multiple physics domains: A wide range of physical and

mechanical engineering principles and devices should be possible to model

and used in early reasoning. Specifically, basic phenomena of electrical,

mechanical, and thermal energy forms and their interaction with various

material forms should be describable, since the principles necessary to solve

novel, open-ended design problems are difficult to foresee.

2. Domain-independence of physics laws: The representation must formalize

mechanical functions using physics laws that are generally applicable to all

domains of mechanical design, rather than incrementally adding specific

knowledge and design rules from different domains. Specifically, the

 15

principles of (1) conservation and (2) irreversibility must be included in the

representation.

3. Physics-based concreteness: The entities, relations, attributes, and grammar

rules of the representation should support constructing models that are

consistent with the principles of conservation and irreversibility. The

representation should also support analyzing models through algorithmic

reasoning against these two principles of physics.

4. Normative and descriptive modeling support: The representation must

support descriptive modeling of existing design concepts, devices, or physical

principles. The representation should also support normative modeling of

new design concepts.

5. Qualitative modeling and reasoning support: The representation must allow

the designer to describe a design even when quantitative information is not

available. It must allow drawing qualitative inferences of two types from the

models based on (1) conservation and (2) irreversibility.

6. Extendibility: The representation must support extendibility of the following

types.

a. Quantitative reasoning extension: In the future, the representation

should be able to describe quantitative details of a model and support

reasoning using that additional quantitative information.

b. Causal reasoning extension: In the future, the representation should

be able to describe causal relations between functions and flows, in

 16

order to support physics-based causal description and predictive

analysis of early design.

7. Scalability: The representation should support modeling and reasoning on

function structure graphs that vary in number of nodes and edges.

8. Consistency: It should be impossible to infer two statements P and Q through

logical deductions from the declarations made within the representation—such

as the definitions of verbs, nouns, relations, constraints, and attribute

definitions—such that P = ¬ Q.

9. Validity: The representation must be valid against the principles of

conservation and irreversibility. Specifically, if a model implies a violation of

any of these principles, the representation should support a reasoning

algorithm that can detect that violation.

In order to build a representation that satisfies these requirements, two research

questions must be answered, which are discussed next.

1.4 Research Questions, Hypotheses, and Tasks

This section summarizes the research questions answered in this dissertation, the

hypotheses of this research, and the tasks used to test the hypotheses and answer the

questions. There are two highest-level questions in this research. Three research

hypotheses are identified against these two main questions. Each main question is

answered through multiple tasks, each of which answers a sub-question under the main

question. Table 1.1 and Table 1.2 present these two research questions, and their

 17

hypotheses, sub-questions, and tasks. The questions are numbered as “RQ”, the

hypotheses are numbered as “RH”, and the tasks are numbered corresponding to each

sub-question, as “Task”. The section numbers in the document that present each task are

also mentioned.

Table 1.1: Research Question 1, hypotheses, and tasks

Main

research

question

RQ-1. What are the entities, relations, attributes, and grammar rules

necessary to formalize the Function Structure representation, in

order to support (1) consistent models and (2) analytical

computational reasoning on concepts based on conservation and

irreversibility?

Hypotheses RH-1. The entities, relations, and attributes shown in Figure 5.1

and the grammar rules of Section 5.2 can support

consistent modeling and conservation-based reasoning on

concepts.

RH-2. The representation shown in Figure 7.2, including the

grammar rules of Section 5.2, can support irreversibility-

based reasoning on concepts.

Sub-

questions

and tasks

RQ-1.1. What specific physics-based analytical tasks should be

supported?

Task 1. Reasoning Discovery: Systematic discovery of

reasoning needs through a modeling exercise

 18

(Section 4.1).

RQ-1.2. Are these reasoning tasks algorithmically solvable?

Task 2. Algorithmic Deduction: Algorithms for performing

the reasoning tasks from the previous task (Section

4.2)

RQ-1.3. What information elements must be captured to support the

algorithms?

Task 3. Information Extraction: Analysis of the

algorithms to identify individual data elements

(Section 4.3)

RQ-1.4. Is the representation internally consistent?

Task 4. Consistency Verification: Logical inspection and

ontological consistency checking through Protégé

OWL (Section 6.1)

RQ-1.5. Can the representation support physics-based reasoning in early

design?

Task 5. Validation of Conservation: Development of a

software tool to demonstrate modeling and

conservation-based reasoning (Section 6.2).

Task 6. Validation of Irreversibility: Extension of the

software tool to demonstrate irreversibility-based

reasoning (Chapter 7).

 19

Table 1.2 explains the second research question, its hypotheses, sub-questions,

and tasks.

Table 1.2: Research Question 2, hypotheses, and tasks

Main

research

question

RQ-2. At the physics-based concreteness level, is there a finite set of

verbs that can describe a variety of physical phenomena and

mechanical engineering principles as functions?

Hypotheses RH-3. The eleven verbs presented in Chapter 8 (Table 8.14)

can describe principles from physics and mechanical

engineering involving electrical, mechanical, and

thermal energy.

Sub-questions

and tasks

RQ-2.1. Does the proposed verb set provide modeling coverage over a

variety of physics and mechanical engineering principles and

devices?

Task 7. Modeling Coverage Testing: Description of

principles of physics and mechanical engineering

through function structure models involving

electrical, mechanical, and thermal energy and

material forms (Sections 9.1, 9.2).

RQ-2.2. Can it support consistent descriptive modeling of existing

devices?

Task 8. Descriptive Modeling: Reconstruction of two

 20

models from the Design Repository (Section 9.4).

RQ-2.3. Can it support consistent normative modeling of new design

concepts?

Task 9. Normative Modeling: Modeling of one new

design concept using the proposed vocabulary

(Section 9.5).

The answer to these research questions and hypotheses are presented in the

concluding chapter (Chapter 10). Next, a brief overview of the solution, the formal

representation of mechanical functions developed in this research, is presented.

1.5 Solution Overview

The proposed representation is presented in three layers. As discussed in Section

1.2.2, a formal representation is defined with its vocabulary of entities, relations,

attributes, and local grammar rules. The three layers of the representation are

summarized below.

1. Layer One formalizes the graph-based Function Structure representation and

supports conservation-based reasoning. It comprises of the following

information elements.

a. Six Entities: Function, source, sink, material, energy, and signal

(Figure 5.1).

b. Five Relations: HeadNode, TailNode, CarrierFlow, Child_M, and

Child_E (Table 5.12)

 21

c. Five Attributes: GivenName, HeadPoint, TailPoint, GeometricCenter,

and AnchorPoints (Table 5.13)

d. 33 Grammar Rules: These rules are described in Section 5.2

2. Layer Two is an extension of the first layer that supports irreversibility

reasoning by including three additional attributes: IsResidual, Power, and

Efficiency (Figure 7.2).

3. Layer Three further extends the previous two layers and proposes a physics-

based vocabulary of verbs for function model construction and computational

reasoning (Chapter 8). Three types of verbs are proposed.

a. Seven Energy Verbs in a Two-Level Taxonomy: TypeChange_E,

Transfer_E, Change_E, Store_E, and Supply_E. Transfer_E has two

sub-verbs: Conduct_E and Radiate_E (Section 8.2.1).

b. Two Material Verbs: Energize_M and DeEnergize_M (Section 8.2.3)

c. Two Topologic Verbs: Logical_Branch and Logical_Unite (Section

8.2.4)

Each layer is validated after it is presented. The internal consistency and external

validity of Layer One is established in Chapter 6, where the representation is logically

examined for exhaustiveness of grammar, ontologically examined for consistency, and

implemented in a software tool named Concept Modeler – ConMod to demonstrate its

ability to support consistent model construction and its validity against the conservation

principle. Layer Two is validated in Chapter 7 by extending ConMod to implement the

new attributes and new algorithms that can detect violations of the irreversibility

 22

principle, both qualitatively and quantitatively. Layer Three is validated in Chapter 9,

where the new vocabulary of verbs is used to model principles of physics and the

mechanical engineering sciences and further applied to describe existing products and

new design concepts through function models using the proposed vocabulary.

In summary, this chapter provides a high-level view of the entire research. It

introduces the research problem and establishes the overall motivation for solving it, it

identifies (pending elaborate analysis) the requirements that a representation must satisfy

in order to solve the problem, and it lists the research questions that must be answered in

order to design that formal representation. The chapter ends with a brief overview of the

solution. In the following section, the previous and contemporary advances in function-

based design formalization are discussed.

 23

CHAPTER 2. REVIEW OF FUNCTION-BASED DESIGN

Historically, research in the representation of mechanical functions has been

conducted from two viewpoints. In Artificial Intelligence (AI), multiple models exist

mainly to support device description, cause-and-effect explanation, and design synthesis.

The second viewpoint, referred to here as the engineering design view, uses primarily one

representation—the graph-based Function Structure—to support different design

reasoning. These views are discussed below.

2.1 The AI Views of Function-Based Design

Function-based reasoning about artificial systems has been a topic of early

interest in artificial intelligence and cognition research [54-57], mainly due to the

character of design that design reasoning must aid the creative process of synthesizing

solution to a new problem, as opposed to explaining the workings of an existing device

[55, 56]. Consequently, design reasoning must use a representation that captures the

designer’s intent—a problem that is central in the models within the AI view [58]. To

this end, multiple approaches for automating function-based thinking have been explored,

including representations [7, 11, 12, 59-63], languages [19, 64], ontologies [29, 65, 66],

and their software implementation [16, 67].

This view recognizes that “how a device works” (behavior [8]) is a more of a

scientific problem that is less dependent on the observer’s viewpoints than “what a device

is for” or “what does a device do for human needs” (function [8, 16, 61, 68, 69]). The

 24

description of function cannot be isolated from the design problem, the designer, his

intent, and his view of the design problem, which is together described as the situatedness

of the design [10, 11]. Consequently, device function is described as the interaction

between several of these elements. Gero describes functions as the required actions of a

device and proposes the Function-Behavior-Structure model (FBS) [8, 10, 11, 70], using

the expected behavior (Be), the Structure of the device (S), the actual behavior of the

structure (Bs), and the process of iteration called reformulation, through which a designer

attempts to match Bs with Be, while both evolve with the iterations. Alternately,

function is defined as “the relation between the goal of a human user and the behavior of

a system” [69]. These models have been used to explain design creativity [9] and later

included situatedness [11]: the dynamic situation where the information available to and

represented in design influences the designer’s decisions.

A similar representation is the Function-Behavior-State model that defines

functions as “a description of (the device’s) behavior abstracted by human through

recognition of the behavior in order to utilize it” [59, 71]. This model is intended to

support problem decomposition and is extended into a design tool named the FBS-

modeler [17] that builds relations between sub-functions to structural features, and further

to physical states of those structures that enable performing the functions. The FBS-

modeler has been experimentally applied in reducing functional redundancy of

electromechanical devices [16].

 25

Another model, named Structure-Behavior-Function, defines function as a set of

the input and output states of a device and the behavior that causes state transformation

[68]. This model allows building design patterns that capture information about the

structure, behavior, and function of devices, simulating “the learning of high-level

abstractions and their use in reminding and adaptation” in future [72, 73]. This model

supports analogical reasoning and is implemented in case-based reasoning tools such as

IDeAL [12, 73] and Kritik [68]. Other approaches attempt to synthesize mechanisms

using a representation that describes functions as transmissions of forces and motions in

input-output format, and then selecting candidates from a pool using topological and

spatial selection criteria [74-76].

Similarly, Functional Representation (FR) defines a devices function from two

viewpoints: the device’s effect on the environment [60, 62], and in terms of an agent’s

view of the device, called the “device-centric view” [61]. This model supports failure

diagnosis through causal analysis [77], and was implemented in a language named Causal

Functional Representation Language (CFRL) [13, 19]. CFRL describes function as the

triple {DF,CF,GF}, indicating the device, the context of the device’s application, and the

goal or desire of the user [19]. CFRL can describe how a device works using causal

process descriptions [13].

Function and Behavior Representation Language (FBRL) [64] is a representation

that captures function and behavior. Behavior is described in terms of “objects” that are

input and output through “ports” attached to a device, thus making behavior in FBRL

 26

similar to function in engineering design literature [1, 2, 64]. Function, in FBRL, is a

“topping” on the behavior that captures the “goal” of the device, and is described by a

four-term vocabulary: ToMake, ToPrevent, ToControl, and ToMaintain [78]. This

representation has been shown to support high-level explanation generation for

mechanical devices, especially in seven identified categories: function of a component in

a system (what a component contributes to the overall function), change of scope

(resolution of the observer’s view of the explanation), occurrence of a fault (causal

reasoning), use of the ToPrevent function (negation of an action), reason why an output is

generated, the reason why an output is not generated (causal), and hypothetical

simulations (what-if analysis). Several related ontological classification of functions

have been proposed that support design synthesis reasoning of different types [79, 80].

These reasoning types, although identified out of a different need (explanation

generation) than the current research motivations (physics-based concept checking),

formulate a baseline for concept-level automated reasoning needs.

In summary, the AI models of device function are inspired by the complex

interaction between multiple entities and are primarily descriptive. These are more

holistic views of function and are subject to the difficulties of modeling intentionality of

human agents in the design and use of a device [58]. By contrast, the engineering design

view, described next, takes a simpler view of functions as transformations of material,

energy, and signal and supports some reasoning.

 27

2.2 The Engineering Design View of Function-Based Design

This viewpoint defines function as transformative actions between the input and

output flows in a system [1, 81-83]. A graph-based representation called the Function

Structure is widely studied to describe these transformations [1, 3-6, 21, 25, 84-88],

where the nodes are the transformative actions (functions) and the edges are the objects

of actions (flows) of three types: material, energy, and signal passing through the device.

Figure 2.1 shows the generic graphic template of a function with all three flow types at

input and output. The hairdryer model of Figure 1.2 (repeated in Figure 2.2) is a function

structure model produced by connecting individual functions performed by a device in a

network.

Figure 2.1: The transformative view of device function [1]

 28

Figure 2.2: Function structure of a hairdryer stored in the Design Repository5

Beyond these basic graph-theoretic constructs, the formalization of this

representation has been primarily empirical, as opposed to theoretical or logical. To help

formalize this representation, controlled vocabularies of functions and flows are

proposed, typically through empirical observations, where actions and flows within

mechanical devices and systems are observed and cataloged. Examples include the

discovery and cataloging of mechanical functions through engineering forensic studies of

US Army helicopters by Collins et al. [89] and the function discovery and cataloging of

electromechanical consumer products stored in the Design Repository [50, 51, 53]. The

discovered functions and flows are typically stored as verbs and nouns in controlled

vocabularies for use in future models. Examples include the vocabulary of 46 elemental

functions and forty adjectives proposed by Collins et al. [89], the four functions—

Motion, Control, Power, and Enclose—proposed by Kirschman and Fadel [90], and the

5 http://repository.designengineeringlab.org/ accessed on August 17, 2011

 29

vocabulary of functions in electromechanical products compiled by Szykman et al. [47],

and the Functional Basis [25, 26], which is a vocabulary of 53 function verbs and 45 flow

nouns organized in a three-level hierarchy.

An anticipated benefit of controlled vocabularies is that they can be used to

enforce consistency of term usage in function models. However, for ensuring this

consistency, the vocabulary must be consistent itself and model construction must be

additionally controlled through grammar rules (modeling guidelines). At present, the

formalism for constructing Function Structure models is not developed beyond these

vocabularies and grammar rules have not been proposed. This research gap is the one

directly addressed in this dissertation research and therefore, this gap is separately

discussed in Section 2.5.

Though this second viewpoint is largely based on empirical discovery of

functions observed in existing products, it can be used to support forward design projects

by providing means to reuse the discovered functional knowledge in new problems. For

example, the verbs and nouns of the Functional Basis are identified through reverse

engineering of consumer products [2], whose models and other design information are

catalogued in the Design Repository [50, 52], as they are generated. Once archived,

several design tools are developed that use this function information to generate concepts

for new designs [84, 91], to analyze similarity between concepts [88, 92, 93], to analyze

or predict failure modes in the conceptual phase [94-97], to decompose functional

concepts to smaller problems [5, 6], and to configure component structures [21, 98]. It

 30

must be emphasized that while these tools are computational, they do not perform

reasoning on the models directly to draw inferences about their physical behavior of

validity against natural laws. Thus, the gap addressed by this dissertation research

(Section 2.5) is not addressed by existing computer tools. The justification behind this

reuse-based approach is that a large share of design problems is adaptive or variant [99,

100], thus justifying reuse of previous design solutions in new problems.

To support design synthesis automation, graph grammar-based algorithms are

proposed that start with a high-level function structure and add or modify details within

the model to decompose it in multiple combinatory ways to synthesize multiple solution

concepts [5, 6]. The graph-grammar rules [101] are based on historical trends of model

topology transformation in the Design Repository models. For example, in the

electromechanical products within the database, once electrical energy is imported in the

modeled system, it is typically transferred to a switch, where it is actuated by a user.

Since the Design Repository contains many models of these products, this trend appears

as a generative graph-grammar rule, as illustrated in Figure 2.3. When this rule detects a

model construct as shown in Figure 2.3a, it transforms it into Figure 2.3b. Thus, these

rules are generative grammar rules [102]. However, these grammar rules are purely

trend-based; they do not use the definitions of function verbs or flow nouns to perform

reasoning and do not verify that the definition and the use of a term is internally

consistent and externally valid. In addition, these rules are executed by the computer

program and do not address the aforesaid gap of lack of grammar rules for model

construction by a human designer.

 31

(a) Model prior to application of grammar rule

(b) Model post-application of grammar rule

Figure 2.3: Sample graph grammar rule for function model synthesis (Redrawn

from [6])

2.3 Comparison of the Two Views

Overall, the two directions in function representation research differ in a few

ways. The AI representations attempt to include the user’s and designer’s intent, while

the graph-based model does not include that, though in some models in the Design

Repository the user’s interaction (usage) with the device is captured through flows of

human material or human energy [26]. Second, while a function structure captures

function as transformations of flows within the system, the AI models traditionally

discard this view on the ground that transformation alone is inadequate to capture the

entire essence of functions, specifically the user’s intent and the artifact’s effect on the

environment [59]. Third, unlike the function structures, the AI models typically do not

Import
EE

Transmit
EE

Actuate
EE

EE EE EE EE

 32

use static vocabularies for terms used in the models. Rather, to support modeling through

a free, natural language, several expanding ontologies of functions have been proposed

[27-29, 64, 66]. Finally, the AI models have been extended to substantial degree of

formalism, where modeling languages such as CFRL [13, 19] and tools such as FBS-

modeler [16, 18], IDeAL, and KRITIK [12] have been implemented, at least in academic

applications. In the present state of the art, formalization of the function and flow

definitions in function structures is limited to the vocabularies of functional terms and

their definitions and automated reasoning on the models is not supported yet.

2.4 The Functional Basis and the Design Repository

The Functional Basis [25, 26] is a vocabulary of 53 function verbs (Table 2.1) and

45 flow nouns (Table 2.2) organized in a three-level hierarchy. This vocabulary was

developed at Missouri University of Science & Technology in a joint effort between

industry and academia and was later reconciled with a former vocabulary developed at

NIST [47]. This vocabulary was incrementally developed by tearing down

electromechanical consumer products through the systematic protocol of reverse

engineering [2] and cataloging their functional information using function and flow

keywords. As new keywords were found necessary to define the products, those

keywords (verbs and nouns) were added to the vocabulary to ensure adequate coverage of

product variety [25, 26]. Terminally, the collection of terms was found to be adequate to

describe the newer products of the same kind and the vocabulary was reconciled to its

final, present form.

 33

Table 2.1: The Functional Basis Verb Set

Primary Secondary Tertiary

Branch
Separate

Divide
Extract
Remove

Distribute

Channel

Import
Export
Transfer Transport

Transmit

Guide
Translate
Rotate
Allow DoF

Connect
Couple Join

Link
Mix

Control
Magnitude

Actuate

Regulate
Increase
Decrease

Change

Increment
Decrement
Shape
Condition

Stop
Prevent
Inhibit

Convert Convert

Provide
Store Contain

Collect
Supply Supply

Signal

Sense
Detect
Measure

Indicate
Track
Display

Process

Support
Stabilize
Secure

 34

Table 2.2: The Functional Basis Nouns Set

Primary Secondary Tertiary

Material

Human
Gas
Liquid

Solid
Object
Particulate
Composite

Plasma

Mixture

Gas-Gas
Liquid-Liquid
Solid-Solid
Solid-Liquid-Gas
Colloidal

Signal
Status

Auditory
Olfactory
Tactile
Taste
Visual

Control
Analog
Discrete

Energy

Human
Acoustic
Biological
Chemical
Electrical

Electromagnetic
Optical
Solar

Hydraulic
Magnetic

Mechanical
Rotational
Translational

Pneumatic
Radioactive/Nuclear
Thermal

The verbs and nouns in the Functional Basis are meant to be used as functions and

flows in a function structure. For example, the conversion of electrical energy to

mechanical energy in an electric motor can be recorded as a conversion from electrical

 35

energy (EE) to mechanical energy (ME), as shown in Figure 2.4. This specific model

uses function verbs and flow nouns from the secondary level of the vocabulary. Further,

the hierarchy of terms is used to control the specificity of the terms. For example, to

describe the output energy more specifically, the secondary term ME can be replaced

with a suitable tertiary term that is a taxonomical child of ME – in this case, rotational

mechanical energy (RME). Conversely, if a lower resolution of description is required,

the primary term energy (E) can be used, hiding the details that the output energy is

rotational (tertiary), or even mechanical (secondary). The provision for switching levels

of specificity is claimed to support functional decomposition and ideation support [25].

Figure 2.4: Function structure of an electrical motor using the Functional Basis

(secondary level)

The terms in the vocabulary are defined within Functional Basis literature [26], as

well as within the Design Repository webpage6, as shown in Figure 2.5. By selecting a

term within the vocabulary tables (Import selected in this figure), the definition of the

term can be viewed in a different pane.

6 http://repository.designengineeringlab.org/ accessed on August 17, 2011

 36

Figure 2.5: Definitions of terms within the Design Repository

The Functional Basis has been used to store the reverse engineered design

information for approximately 185 electromechanical consumer products produced by the

systematic tear-down process described above. This design information is stored in a

web-based archive called the Design Repository [50, 52]. In addition to functional

information, this repository also stores information about assembly, manufacturing, and

physical parameters such as dimensions, mass, and color for the components and

subassemblies of the products. Figure 2.6 shows a screenshot of the artifact browser page

of this repository, showing one component (heating coil frame) of a specific product (the

hairdryer). Notably, since the functional information stored in this archive was created

through reverse engineering, where each component was examined in isolation and its

functionality was recorded, the functions here are attributed to individual components.

 37

As a result, the functional information stored in this archive is not solution-neutral, which

contradicts the recommendations of the design texts that a solution neutral description is

preferred for supporting idea generation [1, 3]. As seen from Figure 2.6, the functions

are captured in this repository using a list view. Additionally, graph-based function

structures for approximately half of the products in the Design Repository are available in

drawing form. The model in Figure 2.2 is an example of such a graph-based model.

Unfortunately, these drawings are static images and do not support automated reasoning.

Additionally, for many products, the list view of functions does not agree with the graph-

based description, making the data stored in the archive internally inconsistent.

 38

Figure 2.6: Artifact browser in the Design Repository showing the heating coil

frame of the hairdryer

The Functional Basis and the Design Repository are widely studied in design

research, and have been utilized in constructing several academic design tools and

methods [5, 6, 21, 84, 88, 91, 94-96, 98]. For example, the Concept Generator tool

suggests component layouts for new design concepts using the component-function

matrices of similar products stored in the Design Repository, similar to an automated

morphological analysis [84, 91]. Similarly, a failure analysis method, named the

Function-Failure Design Method (FFDM), has been proposed to predict potential failure

 39

modes in the conceptual design phase of new designs based on the archived failure

history of components performing similar functions [94-96]. This vocabulary has also

been used for analyzing functional similarity between products, which relies upon

identifying similar occurrences of function-flow pairs between two function structures

[88]. The Functional Basis has been extended to formulate a vocabulary of standard

mechanical components [21, 98]. Finally, the Functional Basis and Design Repository

have been used in creating an automated ideation tool that creates multiple options of

decomposing a given function structure based on historical data of functional transitions

stored in the Design Repository [5, 6]. These design tools are all based on the premise

that the terms in the Functional Basis vocabulary are consistent and adequate. However,

this assertion has never been tested through objective empirical studies. In the next

section, the Functional Basis vocabulary is critically examined as a benchmark of the

state of formalism of vocabulary-based modeling of function structure graphs and the

research gap addressed in this dissertation is articulated.

2.5 Research Gap Analysis: Lack of Rigor in the Function Structure Formalism

While function structure models support graph-based visualization, interpretation,

and reasoning by human designers, they have not been formalized as a representation. In

fact, the only element of a formal representation available is a collection of vocabularies

of functions and flows that are formalized to limited extents [25, 26, 47, 103]. Beyond

some basic modeling guidelines [87, 104], no formal grammar rule for function structure

construction have been proposed. The vocabularies are intended for providing high-level

notional descriptions of mechanical actions suitable for modeling of products and

 40

interpreting those models by human designers. These actions are not described with

physics-based rigor and contain at least three levels of inconsistency, as explained next.

The most commonly used vocabulary of function terms, the Functional Basis, is taken in

this research as a benchmark of existing formalism. The lack of rigor in this vocabulary

is illustrated here to highlight the types of issues that must be addressed when developing

a formal representation of functions. The intent of this exercise is not to point out

weaknesses of previous research. As recognized earlier, the Functional Basis is the first

consolidated effort toward a finite set of function terms and is widely accepted and used

in design research [5, 20, 88, 94, 95]. Its main intent is to support human-driven

construction, interpretation, and understanding of function models and to that end, the

vocabulary is considered successful by many researchers [5, 6, 20, 84, 88, 91, 94, 95,

101, 105]. The analysis is presented only to identify opportunities of formalization of

function definitions for the current dissertation research and to clearly establish the gap

this research addresses.

2.5.1 Vocabulary-Level Discrepancies

Vocabulary-level discrepancies are instances where the inclusion of a term in the

vocabulary itself causes inconsistency within the vocabulary. For illustration, the energy

flow vocabulary of the Functional Basis is repeated in Table 2.3. In this vocabulary, the

basis of classification for all terms is not uniform. The nouns are meant to define

different forms of energy used in mechanical devices [26]. However, while some of

these terms such as mechanical, electrical, thermal, or nuclear energy are forms of energy

in a physics-based sense, terms such as human energy, biological energy, and solar

 41

energy are classes based on the source of energy, rather than its physical form.

Similarly, hydraulic and pneumatic energies are classes based on the carrier material

medium of energy, as hydraulic energy is essentially mechanical energy carried by a

liquid and pneumatic energy is the same carried by a gas. Mixing multiple bases of

classification within the same vocabulary makes the vocabulary non-normal and

redundant, and therefore unsuitable for use in formal reasoning. For example, human

energy can be mechanical energy, when the energy is available as muscle work that

moves an object against a force across a distance. Biological energy obtained from

burning wood or coal is a mixture of many physical forms such as thermal and optical.

Optical energy and radiated thermal energy are types of electromagnetic radiation, yet

these are listed as different types in the vocabulary. Finally, since the material

vocabulary contains liquid and gas (Table 2.2) and the energy vocabulary has mechanical

energy, the terms hydraulic and pneumatic energy are redundant.

 42

Table 2.3: Energy flow types within the Functional Basis

Energy

Human

Acoustic

Biological

Chemical

Electrical

Electromagnetic
Optical

Solar

Hydraulic

Magnetic

Mechanical
Rotational

Translational

Pneumatic

Radioactive/Nuclear

Thermal

2.5.2 Definition-Level Lack of Rigor

While the existence of certain terms in the vocabulary is shown above to be

inconsistent, once those terms are accepted in the vocabulary, their definitions can be

further shown to contain lack of rigor. This definition-level lack of rigor happens when

1. A definition contains unexplained and ambiguous terms (ambiguity), or

2. Definitions of two terms are conflicting or redundant mutually (inconsistency)

 43

These two types of definition-level limitations are illustrated below. The conflicts

of the definition with natural laws or other body of knowledge external to the definitions

is not examined here, since the focus here is to examine only internal inconsistencies,

rather than external invalidity.

Ambiguity in Functional Basis Verb Definitions

Table 2.4 shows the notional definition of seven randomly sampled verbs from

the Functional Basis. For each verb, keywords that are necessary for consistent

interpretation of the definition but are unclear from the definition are identified.

Table 2.4: Sample verbs and notional definitions from the Functional Basis [26]

Verb Notional Definition Ambiguous Concepts

Extract To draw, or forcibly pull out, a flow Draw, force, pull out

Allow DoF To control the movement of a flow by a

force external to the device into one or more

directions

Control, movement, force,

directions

Inhibit To significantly restrain a flow, though a

portion of the flow continues to be

transferred.

Significantly, restrain,

portion, transfer

Distribute To cause a flow (material, energy, signal) to

break up. The individual bits are similar to

each other and the undistributed flow

Break up, bits, similar

Actuate To commence the flow of energy, signal, or Commence

 44

Verb Notional Definition Ambiguous Concepts

material in response to an imported control

signal

Collect To bring a flow together into one place Together, place

Contain To keep a flow within limits Keep, limits

A major observation from these definitions is their inherent lack of rigor and

objectivity. For example, one can ask for the verb Extract “what action constitutes

drawing?”, “are there limits to the force that qualifies the action as Extract?”, “what is a

definition of pulling out?”, or “from where is the flow pulled out?”. Similarly, for

Inhibit, one can ask “how much portion is significant?”, “Since the definition mentions

that the unrestrained portion is transferred, is this verb a special case of Transfer? Then,

why is it classified under Stop?”, or “how is a portion of a flow defined?”. Similarly, for

the verb Contain, one can ask “is the limit mentioned in the definition a limit of space,

time, or some other quantity? For example, if a function within a lemonade-making

machine keeps the density or sweetness of the liquid within an upper and a lower limit by

varying the amount of sugar, should that function be modeled as Contain? Why or why

not?” Each of these questions reveals an opportunity where more objective assignment

of words could make the definition more rigorous.

Internal Inconsistency in Functional Basis Verb Definitions

Some instances of internal inconsistency are easier to detect from direct

comparison of the definitions. For instance, while a verb named Separate is present in

 45

the Functional Basis, another verb—Divide—is defined as “To separate a flow” [26],

thus making one of the two verbs redundant. Some other inconsistencies need a rigorous

analysis to be revealed. To this end, Table 2.5 shows syntactic translations of the existing

textual definitions of four verbs—Import, Export, Transfer, and Guide—within the

Functional Basis, using first order logic-based syntactic statements. To eliminate any

negative bias against the level of formalism of these definitions, each definition is treated

as a formal statement of logic and is syntactically translated. For example, the textual

definition of Import in Functional Basis is “to bring in a flow (material, energy, signal)

from outside the system boundary (to inside the system)”. The last clause in parentheses

is not a part of the original definition, but is assumed to be true based on applications of

this verb in Design Repository models. Since only one flow is mentioned, there is only

one element in the both input list and the output list of the formal definition. Further,

since the flow is outside the system boundary before importing and belongs within the

system after being imported, the functional location (FLoc) of the input and output flows

of this verb are assigned as the environment and the system, respectively. In these

definitions, the functional location and geometric location are treated to be different

concepts. A function model includes a region within a functional space (F_Space) and

describes entities such as functions and flows within that space, in analogy with a

geometric solid in the boundary representation [32, 33] that includes a collection of

points in the geometric space (G_Space). Locations within the F_Space are FLoc, while

locations within the G_Space are GLoc, such as a space occupied by a valid manifold

solid [34]. The definition of Transfer illustrates the need for this distinction, as the

 46

function causes a change of GLoc of the flow, as opposed to Import, which changes the

flow’s FLoc.

Table 2.5: First order logic-based translation of four Functional Basis verbs

1

1

1

1

Class Import : Function

{

In_List = {I };

Out_List = {O };

I .FLoc = FEnv;

O .FLoc = FSystem;

}

Import

1

1

1

1

Class Export : Function

{

In_List = {I };

Out_List = {O };

I .FLoc = FSystem;

O .FLoc = FEnv;

}

Export

1

1

1 1

Class Transfer : Function

{

In_List = {I };

Out_List = {O };

I .GLoc O .GLoc;

}

Transfer

1

1

1 1

Class Guide : Function

{

In_List = {I };

Out_List = {O };

GPoint Path1 [int n];

I .Course = O .Course Path1;

}

Guide

Under this formalism, the syntactic definitions should allow identifying the

definition of the superclass, Channel, by taking intersection of the four individual classes.

A logical definition of Channel is derived from this intersection (Figure 2.7). A

comparison of this definition with the textual definition of Channel—“To cause a flow

(material, energy, signal) to move from one location to another location”—proves that the

 47

textual definition of Channel does not warrant the verb to be used as a super-class of its

subclass verbs. In fact, this textual definition is identical to that of Transfer, which is an

anomaly that invalidates the class hierarchical organization of these verbs. Thus,

although the Functional Basis vocabulary is hierarchically organized, the terms are not

hierarchically valid, when formally inspected.

1

1

Class Channel : Function

{

In_List = {I };

Out_List = {O };

}

Figure 2.7: Logical Definition of Channel derived by taking intersection of the

definitions in Table 2.5

Due to these vocabulary-level and definition-level inconsistencies, the vocabulary

does not guarantee consistent models, even if it was implemented in a computer tool.

Further, the lack of modeling grammar compatible with this vocabulary is another source

of lack of formalism, leading to model-level inconsistencies and invalidities, as illustrated

next.

2.5.3 Model-Level Discrepancies

Model-level discrepancies are instances where the use of the verbs in a function

model creates conflicts mutually, with the definition of its class, or with external natural

laws. These instances are not indicative of the inherent definitions of the verbs. Rather,

they illustrate the infiltration of errors in models due to the lack of rigorous modeling

 48

grammar rules. Besides some preliminary model construction guidelines [87, 104],

modeling rules with Functional Basis verbs and nouns have not been formalized. Figure

2.8 shows the hairdryer function structure of Figure 2.2, with some inconsistencies

labeled. Four types of violation: (1) vocabulary violation, (2) definition violation, (3)

conservation violation, and (4) irreversibility violation are highlighted. The four

instances of vocabulary violation are terms in the model that are not available in the

Functional Basis vocabulary. The function “Convert HE to CS” violates conservation

from a topological sense, since it inputs an energy flow but produces none. The function

“Guide Gas” violates the definition of Guide in the vocabulary—“ To direct the course of

a flow along a specific path” [26]—since the definition does not allow adding energy to

material flows but the function accomplishes that action. Finally, none of the functions

explicitly show losses or residual energy flows produced by the device, thus making the

model invalid against the principle of irreversibility.

Figure 2.8: Illustration of model-level inconsistencies

Definition violation
Conservation violation

Conservation violation
(EE is not conserved

across boundary)

Definition violation
conservation violation
Irreversibility violation

Definition violation
Conservation violation

Irreversibility violation
(No losses shown)

Vocabulary violation

HE, HM, or HS?

 49

In summary, this examination of the most popular vocabulary of function

structure modeling—the Functional Basis—identifies lack of logical rigor in its definition

and application at different levels. This illustration consolidates the lack of rigor in the

current state of the art in function structure modeling. Due to this overall lack of rigor,

the models are not suitable for formal analytical reasoning that examines a model’s

validity against physics laws or draws inferences in order to discover or predict behavior

of the modeled reality (concept). This illustration highlights the need for a formal

representation of mechanical functions that is both internally consistent (no self-

contradiction or redundancy) and externally valid against the natural laws, specifically,

the principles of conservation and irreversibility. The representation proposed in this

dissertation research satisfies these criteria, as summarized in the last chapter.

In this context, the need to support conservation-based validity in function models

is previously established in the context of Multi-level Flow Modeling (MFM) [106]. Six

atomic functions acting on mass and energy (source, sink, storage, balance, transport, and

barrier) and four device actions (maintain, produce, destroy, and suppress) are presented

with the express purpose of traversing between different levels of abstraction of device

description, such as abstract goals and physical functions [106]. However, in the context

of the function structure representation, which describes functions as transformation of

flows, the laws of conservation have not been explicitly captured in the verbs definitions.

While the verbs’ definitions need to be formalized in order to support computational

reasoning, this research aims at incorporating the conservation laws and irreversibility-

based constructs in those formalized definitions.

 50

2.6 Modeling Flexibility and Expressive Power of Notional Terms

While the lack of rigor of the contemporary top-down vocabularies such as the

Functional Basis are discussed, it can be argued and observed in the Design Repository

models that this lack of rigor indirectly provides a benefit to the modeler, as the

definitions do not constrain the modeler with specific details. The lack of rigor allows

overloading the meaning of the terms to suit the modeling need at hand, and the terms are

perceived as more expressive and flexible for function modeling, at least by human

modelers. For example, while the definition of Actuate (Table 2.4) requires that the

control signal used to commence the flow be imported, in the hairdryer function structure

of Figure 2.8, the signal flow in Actuate EE is not imported from the environment; it is

produced by another function. Possibly, the modeler overloaded the definition to retain

the idea that to actuate a flow, a control signal should be used, while he ignored the

requirement of importing. This case, however, is an example of ignoring an existing

constraint (signal must be imported) within a notional definition.

Another benefit of using notional terms in function models is their ability to

transmit complex ideas of actions in once instance. Each notional verb describes an

action that can be described with multiple physics-based elementary actions proposed in

this research. For example, as apparent from the definition of Inhibit (Table 2.4), a

material flow is de-energized off its kinetic energy (DeEnergize_M), but in a manner (not

clear in definition) such that some of the energy is available to a portion of the flow,

which could be described as an Energize_M function. The balance energy is probably a

residual or transferred to another function (not clear in definition). Similarly, the

 51

definition of Extract, applied to a Material flow, implies that the material experiences a

force. If the “pull out” term implies any change in spatial location, the force must

perform work, and thus the material must be energized (Energize_M), while some energy

could be lost. Thus, the notional verbs are more expressive than the physics-based

verbs—at least to a human modeler—from two accounts: (1) they are less rigorous and

afford overloading to meet the current modeling need and (2) they describe more

complex actions that can take multiple physics-based verbs to describe.

The above illustration shows that the notional verbs, specifically those in the

Functional Basis, are (1) weakly rigorous, but (2) highly expressive. Both characters

result from the use of incompletely or informally defined key concepts that must be

syntactically captured to formalize these definitions. This task of formalizing the

notional definitions is out of the scope of the current dissertation, although it is an

important extension that is already underway [48]. With these definitions and their

meaning (semantics) captured in syntactic form, semantic reasoning on these terms could

be possible in the future. For example, since the verb “Convert” implies that one form or

material or energy is converted into another form, by “knowing” this meaning, a

computer could reason that an instance of the verb where both the input and the output

flows are of the same type, is invalid. In addition, if the computer “knew” that the

amount of input energy and the amount of output energies must be equal, as required by

the first law of thermodynamics (energy conservation), it could perform quantitative

reasoning to detect or prevent instances of this verb where this condition is violated. By

extension, if the system “knew” that energy conversion always involves a loss as

 52

consequence of the second law of thermodynamics, it could detect or prevent this type of

model-level errors, which could result from designer oversight or the complexity of the

system designed. However, a computer “knows” about a domain of discourse such as

physics laws only when the entities, relations, attributes, and constraints necessary for

storing, algorithmically manipulating, and displaying the knowledge are formally

described in a representation. Representing human-interpretable, notional concepts in

computer-implementable and computer-reason-able form in this manner is a central

challenge of artificial intelligence [107] and this dissertation research proposes a

representation of mechanical functions that supports reasoning on these laws, without

using this explicit semantic information.

In summary, this chapter briefly reviews the contemporary advances in function-

based design within the artificial intelligence and engineering design viewpoints. Based

on the gap analysis presented in this chapter, the next chapter develops the requirements

on the formal representation in greater detail. The contributions in previous research

discussed in this chapter are revisited and critically analyzed in the context of those

requirements in the next chapter.

 53

CHAPTER 3. REQUIREMENTS ANALYSIS FOR THE REPRESENTATION

The purpose of this chapter is to analyze the high-level requirements the formal

representation of functions must satisfy in order to support computational analytical

reasoning in early design. The requirements identified are based on essential qualities of

formal logic systems discussed in literature [30, 31, 108-114], and identified research

gaps in function-based design [48, 115, 116]. Coverage, scalability, consistency, and

validity are general requirements for logic systems [109, 111-114, 117-121]. Not every

system meets each requirement. For example, in mathematics, it can be shown that any

set of axioms of natural number arithmetic that is consistent cannot be also complete, as

proven by the incompleteness theorem of Kurt Gödel [122]. These requirements are

therefore not constraints for a representation. Rather, these are criteria for evaluating

how rigorous the representation is. In addition to these criteria, four separate

requirements (nos. 2, 3, 4, and 5 in the list below) are identified specifically for the

representation problem addressed in this dissertation, based on gaps in design automation

research. Each requirement is followed by a brief discussion of how the gap is addressed.

Following are the high-level requirements for the proposed representation.

1. Coverage over multiple physics domains (Section 3.1)

2. Domain-independence of physics laws (Section 3.2)

3. Physics-based concreteness of modeling terms (Section 3.3)

4. Normative and descriptive modeling support (Section 3.4)

 54

5. Qualitative modeling and reasoning support (Section 3.5)

6. Extendibility (Section 3.6)

a. Quantitative reasoning extension

b. Causal reasoning extension

7. Scalability (Section 3.7)

8. Consistency and validity (Section 3.8)

These requirements are analyzed in detail and articulated for the proposed

representation in the following subsections.

3.1 Coverage over Multiple Physics Domains

3.1.1 What is Coverage over Physics Domains?

Coverage of a representation over physics domains means the set of domains of

physics whose principles and engineering applications can be modeled with the

representation [44, 119]. For example, if representation-A can be used to model only

electrical phenomena and representation-B can be used to model both electrical and

acoustic phenomena, representation-B is said to have broader coverage over physics than

representation-A. Notably, the ultimate practical usefulness of a representation depends

on a combination of several qualities such as coverage, consistency, validity, reasoning

accuracy, and efficiency. These concepts are treated as orthogonal to each other in this

discussion: a change of coverage of a representation does not necessarily imply a change

in the other qualities. Thus, the coverage requirement is discussed here without regard to

the other requirements in the forthcoming sections.

 55

3.1.2 Coverage of Contemporary Representations

Since the physical principles required to solve open-ended, as-yet unsolved design

problems are difficult to foresee, in order to be useful for these problems, the

representation must support modeling and reasoning based on a wide range of physical

phenomena and principles. It is well recognized in artificial intelligence that the broad

coverage of a representation usually comes at a cost of reasoning accuracy and efficiency

[30]. At one extreme, expert systems that use domain-specific design knowledge can

perform fast and accurate reasoning for a specific problem, but cannot solve a different

problem even with less speed or accuracy. Their reasoning accuracy and speed rely upon

the evolutionary discovery of domain-specific design rules to be reused in future

designs—an opportunity that presumably will not exist in novel design problems.

Examples include software for configuring automotive subsystems, airplane subsystems,

nuclear power plants, or turbo-machine stages.

At the other end of this spectrum lie the general purpose CAD, CAE, and CFD

tools that can model and analyze systems from virtually any engineering domain. For

example, the same commercial CAD/CAE tool can be used to model subsystems within

nuclear power plants, cars, and turbo-machines with equal precision and analyze their

behavior with comparable speed and accuracy. However, this broad coverage over

design domains—as visible from the ability to model virtually anything geometrically

definable—is realized by building the tools on highly generic representations such as the

boundary representation [32-34, 123], which comes at the cost of the designer having to

construct models for individual designs analyzed. Opportunity for capturing and reusing

 56

domain knowledge is limited, as these systems are not intended to serve a specific

problem domain, although several intermediate layers of customization exist between

these two extremes, where reusable design elements such as macros and parametric seed

parts are used to adapt the general-purpose CAD tools to specific design problems [124,

125].

3.1.3 The Coverage Requirement

A wide range of physical and mechanical engineering principles and devices

should be possible to model and used in early reasoning. Specifically, basic

phenomena of electrical, mechanical, and thermal energy forms and their

interaction with various material forms should be describable. This need is

addressed by designing a vocabulary of physics-based atomic functions (Chapter 8) and

flows that can model basic physics principles from standard college-level physics and

engineering texts [126-129] and could model additional principles in the future. The

demonstration of this modeling coverage is presented in Chapter 9.

3.2 Domain-Independence of Physics Laws

3.2.1 What is Domain-Dependence?

Domain-dependence of a physical law describes how restrictive the law is to a

given domain of physics, that is, if it can be used to explain phenomena and solve

problems only within a certain domain or if it can be applied to a broader set of problems.

As physics texts [126-129] commonly illustrate, the laws and equations in a given

domain (often analogous to chapters in the book) are derived from more generally

 57

applicable laws through simplifications and restrictive assumptions. By this process, the

derived laws, while applicable to those premises under the simplifications, lose their

general applicability. For example, hydrostatic pressure under a vertical liquid column of

depth h (p = ρgh) can be explained using the concepts of pressure, volume, density, and

weight. While this expression applies to only hydrostatics problems, pressure, volume,

density, and weight are more generally applicable concepts. The concept of weight (mg)

is derived from the Universal Law of Gravitation using the simplification that one of the

masses in the equation for universal gravitation is the Earth. Here, the expression w = mg

with g = 9.81 m/s2 is restrictive, as it only represents the force of attraction between a

body near the Earth and the Earth, while universal gravitation is a more general concept

applicable to any two bodies in the Universe. In fact, gravitation is one of the most

fundamental laws of physics that cannot be explained with other classical laws, other than

the general theory of relativity [130, 131]. This successive loss of generality caused by

adapting the laws and rules (equations) of physics to specific domains such as the Earth

(for weight) and hydrostatics (for pressure) is illustrated in Figure 3.1. The figure shows

the derivation of the expression for hydrostatic pressure from the Universal Law of

Gravitation. Each downward arrow leads to a more domain-specific concept that is

derived from a more domain-independent concept, through the simplifications mentioned

above the arrow.

 58

2

Most domain-independent concept: Universal Law of Gravitation
M.m

F G , applies to any two masses M and m in the entire Universe
r

Domain-independent definition: Pressure, p Force / Area F / A

Simplification-1

:
1. One of the attracting masses is the earth and the other is the mass of study
2. Thus, M = mass of earth = constant
3. And r = distance of m from the center of the earth

Domain-specific concept: Wei

2

2

ght of a body (m) on earth

W F m. G M r m.g

where g G M r a constant for this domain only (Terrestrial Gravity)

 gravitational field strength at the given location on the earth

Simplification-2:
1. Measure

pressure using the weight and area of a right cylinder
2. Pressure exerted on the bottom surface is the weight of

the water column, which is a force supported by area A
3. Top surface of the liquid is not externally pressurized

Further domain-specific concept: Hydrostatic pressure at depth h below the surface
p F / A
m.g / A, assuming no additional pressure exerted on the liquid surface, and

assuming h

is not high enough to cause g to significantly change
V g / A, m / V, assuming is constant over h and V

Ah g / A, V Ah, assuming A is constant over h
gh

Figure 3.1: Loss of generality of physics equations due to increasing domain-

dependence (Adapted from [126])

While the more general versions of the laws are not inapplicable to the specific

domains, the domain-specific derived rules and laws are more practical to use, as they are

written in terms of parameters that are easier to measure and control in those domains.

 59

For example, the expression for hydrostatic pressure can be written in terms of universal

gravitation (Figure 3.2). This equation could actually be used to cases where the

assumptions in p = ρgh do not apply, such as for a very tall water column along which g

or ρ changes. However, for most practical water columns, this equation would not be

very useful, since it is expressed in terms of difficult-to-measure parameters such as the

mass of the column and the Earth, the distance of the column’s center of mass to the

earth’s, and the universal gravitational constant, G. Further, it uses the parameter A,

which, for other reasons not captured in Figure 3.2, is insignificant for measuring

hydrostatic pressure at a point inside the liquid. The expression p = ρgh is not only

smaller and simpler; it is expressed in terms of parameters that are much easy to measure

and control. However, the p = ρgh form only works under the assumptions stated in

Figure 3.1 and makes the equation more restrictive.

Earth Water

2
2

Earth-Water

Earth-Water

Force of gravitational attraction between

the Earth and the liquid column
Pressure

Area of the base of the column

M .mM.m GG rr ,
A A

where r is the distance between the ce

nters of mass

of the Earth and the water column

Figure 3.2: Expression of hydrostatic pressure in terms of universal gravitation

3.2.2 Level of Domain-Dependence of Comparable Representations

The issue of coverage over physics could possibly be addressed in two

approaches: (1) by finding the specific physics laws and design rules for different design

 60

domains and incrementally adding them to an extendible representation that will

eventually solve a broad array of problems with high accuracy and efficiency, and (2) by

finding suitable domain-independent physics laws that apply to a broad array of

mechanical systems without being rewritten for specific domains and capture them in a

representation. The first approach is taken by multi-domain simulation and solving tools

such as Modelica7 [132-134], which can configure multiple systems within the

automotive domain, such as the drive train, air conditioner, and suspension. In academic

research, similar approach is used in the 2nd CAD tool of conceptual design of

electromechanical systems [135], which relies on codifying catalog data of mechanical,

fluid, and electrical components. However, while such tools can eventually solve a

variety of problems, at any point in time they still remain domain-specific and could not

be used to solve a problem whose domain knowledge is not captured yet. Moreover,

design rules in these systems are typically represented as algebraic or differential

equations and require quantitative specification of design parameters during modeling,

which may not be possible in conceptual design, thus rendering this approach unusable

for the purpose.

The research in this dissertation takes the second approach. Instead of focusing

on domain-specific physical laws and design rules, it captures the laws that are generic

enough to apply to any system at any stage of product development, such as the

7 https://www.modelica.org/, accessed on August 16, 2011

 61

conservation laws of mass and energy. The degree of domain-dependence of physics

laws forms a continuum and choosing the appropriate level is a fundamental challenge in

this research. At one end of this spectrum are the most fundamental laws that physicists

agree can be used to explain all phenomena studied: (1) conservation laws of mass and

energy, (2) conservation of momentum of an isolated system, (3) Newton’s law of

gravitation, (4) Newton’s three laws of motion, (5) Maxwell’s laws of electromagnetism,

(6) the laws of thermodynamics, and (7) the invariance of speed of light [130, 131, 136].

Arguably, all physical phenomena known to science can be explained using these laws,

just as pressure was explained in terms of universal gravitation, albeit often in a much

convoluted manner. However, these laws are not directly used to solve problems in

physics and certainly not in engineering, because easier and more practical views derived

from these fundamental laws exist for different domains. For example, the phenomena of

sound propagation in air can be explained by applying the laws of motion to the

individual air particles [126] and the concept of pressure of an enclosed gas can be

explained from laws of motion and momentum conservation in elastic collision using the

kinetic theory of gas [126]. Yet, there exists specific equations for solving problems in

sound propagation and pressure [126], thus saving the physicist the labor of deriving

every calculation from the fundamental laws. As these physical phenomena are used in

engineering design, the laws become further domain-specific, depending on which design

parameters are measurable and controlled, and in terms of which parameters the

phenomena was discovered and studied. For example, the effect of surging in a gas

medium involves both pressure and propagation of the wave front at sonic velocity. Yet,

 62

in centrifugal compressor design—based on the author’s experience of working at a

compressor design company—the rules to prevent surging are typically written in terms

of empirical laws concerning geometry, gas properties, and flow parameters, rather than

in terms of the kinetic theory or the more fundamental laws. Domain-specific modeling

and simulation tools such as Modelica typically use design rules at this end of the

spectrum.

3.2.3 The Domain-Independence Requirement

The representation must formalize mechanical functions using physics laws

that are generally applicable to all domains of mechanical design, rather than

incrementally adding specific knowledge and design rules from different domains.

Specifically, the principles of conservation and irreversibility must be included in

the representation. To this end, the physics laws in standard college-level physics

books [126-129] is deemed appropriate, as engineers are usually familiar with them by

education and while these laws are not specific to any class of devices, they could be

used to analyze design models at a theoretical level if the models were constructed by

composing physical phenomena that these laws govern. For example, if a conceptual

model of a clothes ironing machine is constructed in terms of the transfer of mass and

energy flows, the representation could support reasoning to determine if the laws of

balance are violated in the model or if the efficiency of a subset of processes is within a

specified range. This use of college-level, device-independent physics to analyze early

design is a key feature of this research and has not been explored previously.

Specifically, function structure graphs describe the flow of energy and material: the two

 63

entities that are subject to a fundamental law of physics—the laws of conservation—even

at a conceptual level. Thus, these models provide an opportunity to enforce the

conservation and balance laws of mass and energy, as realized in the representation.

However, in order to model a device using a function structure that is consistent

with physics, the elements of the model—function verbs, flow nouns, their relations, and

their modifiers—must be defined with a physics-based concreteness, so that formal

reasoning can be supported. This requirement is explained next.

3.3 Physics-Based Concreteness of Modeling Terms

3.3.1 What is Concreteness?

The adjective “concrete” is used here as an antonym to “abstract”. Traditionally,

function verbs are discovered empirically, by observing actions performed by mechanical

artifacts and asking: “what could be a verb to describe the observed action for future use

in function modeling”? However, when one attempts to describe the actions of a device,

multiple descriptions can result depending on the abstractness of the language and the

degree of detail sought. For example, when attempting to describe the overall action of a

hairdryer, a designer can use any of the following statements. The action in each

statement is underlined.

1. “It helps the user to dry hair.”

2. “It dries hair.”

3. “It produces heat for drying hair.”

4. “It produces a stream of hot air.”

 64

5. “It transforms cold air at rest to hot air in motion.”

6. “It converts electrical energy to kinetic and thermal energy and adds them to

air.”

7. “It converts electrical energy to heat and kinetic energy of a fan rotor.”

8. (All of the above) + “it converts part of the incoming energy to mechanical,

thermal, and acoustic energy, and a magnetic field, and releases them to the

surroundings.”

Each of these sentences is a description of the device’s action and each is correct,

but they are in increasing order of concreteness and decreasing order of abstractness. The

first sentence tells nothing about what the device does, rather, describes what a user could

do with it, although it is phrased so that the device is the subject of the sentence. In

affordance-based design, this view is called the user-artifact affordance (UAA) of the

device [137-140], to illustrate what the device affords, rather than what it “does”, for a

user. The subsequent sentences become decreasingly descriptive of the user, his goal (to

dry hair), the device’s purpose as perceived by the designer, user, or society (to dry hair),

or the device’s surroundings (air). They become more concrete as they focus directly on

the device’s physical actions and ignore what bigger purpose is served by those actions.

The last sentence is a highly concrete description of what the device “does”, rather than

what effect is creates, and leaves the description of its function to the spinning of the fan.

At this level of concreteness, even the fact that the device draws or delivers air is

considered contingent upon the surroundings being filled with air and thus is not a

description of the device’s action. Similar hierarchies of abstraction are recognized in

 65

previous research, notably by Morten Lind in his Multilevel Flow Model [106] with three

levels: goal, purpose, and function, and by Chandrasekaran who distinguishes between

“function as effect” (more abstract) and the “device-centric” view (more concrete) [7, 60-

62]. Experimental evidence also supports similar variability in concreteness and level of

detail in product description [141, 142].

3.3.2 Concreteness of Existing Function Vocabularies

The reverse engineered function vocabularies, specifically the Functional Basis

[26] and Collins’ vocabulary [89], generally define terms at device-centric concreteness.

However, these terms are not described directly as physics-based phenomena of the

device, possibly because they were not intended to support physics-based reasoning.

Rather, they are defined at a level of concreteness a designer is likely to find useful for

modeling. For example, the verb Separate is defined in the Functional Basis as “To

isolate a flow (material, energy, signal) into distinct components. The separated

components are distinct from the flow before separation, as well as each other” [26].

The definition does not describe the physical process that causes separation. Further,

function models in the Design Repository8 reveal that different applications of this verb

that are consistent with this definition are realized through different physical phenomena.

For example, the use of the verb Separate in the function structures for a can opener and a

vacuum cleaner product within this database are shown in Figure 3.3.

8 http://repository.designengineeringlab.org, accessed on June 8, 2011

 66

(a) Use of Separate in the can

opener model in the Design

Repository

(b) Use of Separate in the shop-vac vacuum

cleaner model in the Design Repository

Figure 3.3: Use of the verb Separate in two different models in the Design

Repository

With minor exceptions, the models are topologically similar: both receive a

material flow and an energy flow, and output two different material flows derived by

separating one from the other. The energy flow is available in some output form,

although it is not shown in the can opener model, presumably because of modeler

oversight. This oversight is an example of possible model-level inconsistency due to the

onus of model consistency being on the designer, instead of being enforced by the

representation’s consistency, as explained in Section 1.2.4.

However, the physical principles of these two separation processes are quite

different, which is a detail not captured in any of these two models, since the

representation used in these models, consisting of the vocabulary [26] and the modeling

guidelines [86, 87, 104], do not enforce such detail. For example, separating the lid from

a can in a can opener needs mechanical work to be done on the assembly such that the

 67

forces binding the lid to the can are exceeded and the mechanical work is dissipated as

heat and sound, while separating dirt from air in a vacuum cleaner filter requires the

kinetic energy of the dirt particles to be completely removed without completely

removing the kinetic energy of the air, a process that dissipates the absorbed energy as

heat and sound. These two processes are graphically shown in Figure 3.4 using a

function structure-like modeling construct. The dotted line in each case is the overall

instance of Separate, while the blocks inside are decomposition of how material and

energy flows interact to cause the separation. The following rules are used: (1) function

names are replaced with serial numbers since the identity of these verbs is not important

for understanding the models, (2) the circular nodes with a minus sign represent balance

between input and output flows for separate accounting of its portions, (3) the types of

energy flows entering and leaving the blocks where a material flow is energized (F5) or

de-energized (F2, F3) are kept the same without type change, while (4) any type change

that happens in these functions is separately shown in other blocks (F1, F4, F6).

Additionally, the individual functions or any subset of them is carefully drawn to ensure

energy balance and mass balance at least at a qualitative level, by ensuring that for every

input material or energy flow, there is at least one output flow of the same type. The

symbol MW reads as mechanical work, which replaces the term pneumatic energy or

mechanical energy in Figure 3.3. Many of these modeling constructs are result of the

design of the representation in this dissertation research, and are clarified later. At

present, the purpose of these models is to illustrate that it is possible to construct function

 68

structure-like models to describe functions as physical principles, at least at a qualitative

level.

(a) Separation of lid from can

(b) Separation of dirt from air-dirt mixture

Figure 3.4: Different physics of the same verb in two applications

The two processes in Figure 3.4 involve different physical phenomena organized

in different topologic arrangements, indicating that the definition of Separate does not

 69

map to a unique physical principle. However, this verb is widely used in the Design

Repository models: a total of 67 times in 130 models9, indicating that the term is found

useful by modelers for descriptive function modeling. In general, it can be observed from

similar exercises that most of the Functional Basis terms are not defined at physics-based

concreteness. The concreteness of these verbs is difficult to pinpoint without a pre-

established hierarchy of concreteness. Why this level of concreteness was chosen,

whether the level is uniform for all verbs, or whether this concreteness is indeed optimal

for descriptive modeling has not been studied objectively. However, this vocabulary is

widely used for product modeling in design research and education—more often for

descriptive modeling than normative modeling as per published literature—and therefore

this concreteness is deemed user-tested for the current research’s purpose. Ultimately, it

is accepted on face value that the concreteness of the Functional Basis is at least suitable,

if not optimal, for descriptive modeling. This acceptance may lack academic rigor, but it

does not influence the outcome of this research and is left for future researchers to

reinstate or refute rigorously. For this research’s purpose, the concreteness of the reverse

engineered vocabulary terms such as Separate is called notional while the level at which

the verbs directly describe the physical actions as material and energy balance is called

the physics-based level of concreteness. The Functional Basis vocabulary is used as a

9 Based on June-2009 data

 70

benchmark of notional terms, since of all the vocabularies, it is the most used in design

research and product modeling in design education.

By virtue of this notional abstractness, the Functional Basis verbs are capable of

communicating more information in the models than only the transformation of material,

energy, and signal, as captured in the correspondent terms in the vocabulary. For

example, the verb Extract can be used to describe any action that is notionally described

as one of its six correspondents: refine, filter, purify, percolate, strain, and clear [26].

Similarly, the definition of Guide captures that a flow is constrained to a specific path in

Euclidean space [26]. Thus, these terms or similar terms at the notional level are highly

expressive and are deemed more useful than terms defined with physics-based

concreteness for early design modeling and human interpretation of models.

3.3.3 The Physics-Based Concreteness Requirement

While the notional terms can capture more information, this lack of concreteness

prevents them from supporting physics-based reasoning. Since notional concepts are

difficult to formalize, the Functional Basis terms have never been formally defined for

computer implementation and do not support any computational reasoning based directly

on their meanings [48]. To address this gap, the verbs in the new representation must be

designed to describe physical actions of devices directly, instead of notional actions, so

that (1) their definitions can be formalized and (2) physics-based reasoning can be

performed based on their definitions. For example, in Figure 3.4a, the ratio between the

mechanical work used to cut the lid (MW3) and the total mechanical work consumed by

 71

the model (MW1) could be used in computer reasoning to estimate energy efficiency of

the concept. Much of early design reasoning can be done based on the governing physics

of mechanical systems. For example, a qualitative understanding of electricity and DC

motor principles can be used to reason that an increase in the voltage across the motor

terminals would result in higher current through the rotor coils, causing higher torque,

and ultimately higher speed of the rotor, assuming constant load. Quantitative knowledge

of these principles could additionally support quantitative assessment of this causal chain.

It is anticipated that by making the modeling terms (functions, flows) physics-based,

many useful reasoning could be supported, while still in the early stage. To this end, the

entities, relations, attributes, and grammar rules of the representation should

support constructing models that are consistent with the principles of conservation

and irreversibility. The representation should also support analyzing models

through algorithmic reasoning against these two principles of physics.. The

representation addressed this requirement using a multi-layer vocabulary that evolves

from a vocabulary of symbols to two physics-based layers conforming to the first and the

second laws of thermodynamics.

3.4 Normative and Descriptive Modeling Support

3.4.1.1 What are Normative and Descriptive Models?

The distinction between the two model types—normative and descriptive—is

discussed in early philosophy and design research [55]. In philosophy and ethics, the

word normative means “what should be” and descriptive means “what is” [55]. In

 72

design, these are important concepts, as design begins with a need or the intent to create a

solution and ends with an actual solution. Overall, a normative model is one that the

modeler considers as an ideal or intended description of an entity and a descriptive model

is the actually observed description of an entity.

A normative function structure is a function structure that describes the ideal or

intended transformative actions, flows, and their ideal topologic arrangement. It

describes functionality that the designer aims to realize.

A descriptive function structure is a function structure that describes the actual

transformative actions on flows and their topologic arrangement that occur in an actual

device or an existing concept, during one of its modes of use, as observed by the modeler.

Since these models describe actual devices, a descriptive function structure is complete

when it captures all the functions and flows present in the device.

An important feature of these definitions is that the two types of models are

distinguished not based on the “state” of the model as described by their contents, but

based on the “process” and “purpose” of constructing them and what the designer

“believes” about them. The definition of the normative model does not presuppose

correctness, consistency, or feasibility of realizing it in design. Thus, a normative

function structure could violate known laws of physics or logic and still be accepted as a

normative model. Similarly, the descriptive model definition does not presuppose that

the designer was successful in observing and capturing every actual functional detail, as

visible in the missing output energy flow from the Separate function in the can opener

 73

model in Figure 3.3. Both normative and descriptive models can be “wrong” or

“incomplete” and still be allowed by their definitions. Thus, it is impossible to tell from

only observing a model if it is normative or descriptive. However, complete descriptive

models are consistent with physics and logic, since real devices obey physics and logic.

3.4.2 Characterization of Existing Function Representations

Most of the existing function representations show support for both normative and

descriptive modeling, although some have are designed to serve one better. For example,

the Function as Effect model [60] and the Causal Function Representation Language [19]

are intended to model existing devices in a descriptive manner and then analyze them

using causal reasoning. The Function-Behavior-State model [16, 17, 143] is designed to

construct normative models of new design artifacts and analyze their behavior. The

Functional Basis [26] and Collins’ vocabulary [89] were created by observing actual

device functions in a descriptive manner. However, their terms are used in both

descriptive [53] and normative modeling [5, 6, 20, 22]. Most models in the Design

Repository are descriptive models, as they are created through systematic reverse

engineering of existing products. A graph grammar-based design synthesis tool [5, 6]

produces normative options for decomposing a given overall normative function, using

trends observed in descriptive models within the Design Repository as reference for its

grammar rules. The Function-Behavior-Structure model [8, 10, 11] provides a high-level

explanation of how normative models created by the designer evolves through an

iterative process called reformulation by comparing the normative model with descriptive

models of the available design options.

 74

3.4.3 The Normative and Descriptive Modeling Requirement

The representation must support descriptive modeling of existing design

concepts, devices, or physical principles. The representation should also support

normative modeling of new design concepts. It is anticipated that physics-based terms

would be more useful for descriptive modeling, as physical actions can be observed

directly on the device or concept, thus resulting into physically concrete models. This

method of descriptive modeling is different from the method used in existing reverse

engineered models, specifically those in the Design Repository constructed using the

notional terms of the Functional Basis, in the sense that these models are already physics-

based at the time of construction. Reasoning systems that currently use the Design

Repository models for building patterns to base their reasoning algorithms, such that the

graph-based synthesis tool [6], the failure prediction and diagnosis tools [94-97, 144],

and the model similarity detection tool [88] could potentially support more accurate and

efficient reasoning, if they were rewritten to use these physics-based models, as these

models capture the transformation of material and energy flows in more concrete manner.

For normative modeling, both notional and physics-based terms can be useful,

depending on the concreteness of the concept or the state of knowledge of the designer.

For this type of models, the representation allows using terms from the notional level

vocabulary, or the physics-based vocabulary, or composing new user-defined notional

terms from the other vocabulary elements. In each case, the representation supports

reasoning to check correctness of the model against the laws of physics captured. It is

anticipated that the process of reformulation identified in previous research [8, 10, 11]

 75

can be supported through computer-assisted design through this capability, as the

designer can model a normative design without regard to obeying physics, while the tool

ensures physics-based correctness of the model at each edit step or on request, thus

ensuring that the modeled idea, while still normative, is not in violation of physics or far

from realizable.

3.5 Qualitative Modeling and Reasoning Support

3.5.1 What is a Qualitative Function Model?

A qualitative function model is a function model that does not contain any

quantitative information about the functions and flows. For example model (a) in Figure

3.5 is a qualitative model, while model (b) is quantitative, as it contains quantitative

information about the power associated with the mechanical energy flow (ME) and the

efficiency of the Convert function.

(a) Qualitative model (b) Quantitative model

Figure 3.5: A typical function model for energy conversion

3.5.2 What is Physics-Based Qualitative Reasoning?

Qualitative physics is a technique of expressing physics laws and equations in

qualitative terms, called confluences [145-147], primarily by capturing how the direction

 76

of change of a parameter in an equation (increase, decrease) causes a corresponding

change in other parameters, without using magnitudes for any of the parameters. When

applied to a function structure model instead of an equation, an example of confluence-

based qualitative reasoning is to infer from Figure 3.5(a) that an increase in the amount

of energy or power of the input EE flow will cause a corresponding increase in the ME

flow. By contrast, quantitative reasoning would be to infer from Figure 3.5(b) that the

input EE to the function Convert must be supplied at a rate of 4825.7 Watts, using the

power attribute of the output ME flow (1500 W), the efficiency attribute of the function

Convert (35%), and the definition of the term efficiency. As seen here, this quantitative

reasoning requires quantitative information in the model, and thus the representation must

have provisions for holding such information.

Another example of physics-based qualitative reasoning would be to infer that the

Convert function violates the conservation law of material, as it does not produce any

material flow despite receiving one. Similarly, the Convert function in Figure 3.5(a)

violates the second law of thermodynamics and irreversibility principle, as all of the

incoming electrical energy is shown to be converted into mechanical energy without any

loss. No lost energy flow such as thermal or acoustic energy is shown in the model. This

reasoning is qualitative, since no quantitative information is needed to perform it and the

inference also does not produce any quantitative insight about the design, such as exactly

how much energy is to be lost. Using this type of reasoning, the modeler-inflicted

inconsistency such as in Figure 3.4(a) could be reported back to the modeler.

 77

3.5.3 Qualitative Modeling and Reasoning in Contemporary Representations

The Function Structure representation, commonly used to construct models within

the Design Repository [50, 53] and the graph grammar-based synthesis tool [6], is not

formalized enough at present to rigorously conclude if it supports quantitative modeling

or not. Some models in the repository contain quantitative details of flows, although

those details are merged within the flow names, since there is no other placeholder

formally designated within the representation to capture quantitative detail. Thus it

should be said that while the current level of formalism does not provide for quantitative

information, the models can be and are used to capture such details by extending the

formal scope of the representation.

Other function representations that are more formalized typically support

qualitative modeling, although some provide placeholders for defining attributes or

parameters of functions or flows. For example, the Functional Representation (FR) [61,

62] does not have any static vocabulary for the flow types or their attributes, but its

implementation as the Causal Function Representation Language (CFRL) allows defining

a device such as battery with parameters such as stored charge and electromotive force.

However, these parameters are not designed to accept numeric values. Similarly, the

Function-Behavior-State model [16, 17], the Structure-Behavior-Function model [12, 68],

or the function ontologies [27-29, 64-66, 148] do not provide for quantitative modeling.

Consequently, the reasoning performed on the respective models is primarily qualitative.

 78

3.5.4 The Qualitative Modeling Requirement

The representation must allow the designer to describe a design even when

quantitative information is not available. This is a fundamental requirement in the

early, formative stages of design concepts designers may not have quantitative

information to include in the model and an important objective of this representation is to

allow computer-based modeling in the absence of such details. A design tool that

requires quantitative information to add an object to the model, such as the geometric

CAD tools that requires the necessary geometric information to draw a line (e.g., the

terminal point coordinates or a point coordinate, a vector, and a length) would not be

useful for this early design requirement.

An additional requirement on the modeling environment is that it should not be

unnecessarily restrict the use to a linear modeling pattern. For example, it should allow

the designer to develop invalid models and continue to develop a model even when the

reasoning system identified a potential invalid modeling move, as the modeling sequence

is a reflection of the designer’s though sequence, where not all advances in decision are

made after attesting their validity. Often an advance is made to test its outcome beyond

the immediate consequences. Thus, in order to facilitate exploration, the tool should

allow intentional invalid modeling and progress without accepting reasoning suggestions.

However, as mentioned earlier, this requirement applies more to the implementation of

the representation in design tools, rather than the representation itself.

 79

3.5.5 The Qualitative Reasoning Requirement

The representation must allow drawing qualitative inferences of two types

from the models based on (1) conservation and (2) irreversibility. The details of

these reasoning types are discussed in Chapter 4. The representation addresses these

requirements by incorporating the laws of conservation of mass and energy within the

definitions in the function verbs at the first and the second layer of the representation.

The subsequent layers composed of these concepts are then guaranteed to support both

types of reasoning, as illustrated in Chapter 9.

3.6 Extendibility

3.6.1 What is Extendibility?

Extendibility is described as a fundamental character of formal representations

[31, 44] and describes how well the representation can accommodate addition of new

functionality to meet newer requirements of representation and reasoning while

minimizing the effort of redesign and implementation. Distinct from scalability, which

relates to the ability to operate on a wide range of parameters such as complexity that

were considered during designing the representation but were not tested over the entire

range, extendibility is concerned with the ability to grow to meet newer requirements that

were not considered during designing the representation. Similar to scalability, the

extendibility requirements for a representation must be identified for each representation

separately. For the representation in this research, one modeling extension and two

reasoning extensions are considered: (1) quantitative reasoning, and (2) causal reasoning.

 80

3.6.2 Quantitative Reasoning Extension

In the future, the representation should be able to describe quantitative

details of a model and support reasoning using that additional quantitative

information. Referring to Figure 3.5, which is redrawn here in Figure 3.6, the future

extension should support assigning magnitudes to the physical parameters such as power

of the mechanical energy flow or the efficiency of the functions. Moreover, it should

support quantitative reasoning, for example, to predict the required electrical energy input

based on that quantitative information.

(a) Qualitative model (b) Quantitative model

Figure 3.6: Qualitative and quantitative models

In order to support this extension, the representation must allow adding

placeholders for the quantitative attributes and magnitudes of the model elements

(functions, flows). It is anticipated that this extension will not be directly applicable to

the same early stage of design as addressed by this dissertation research. However, it will

potentially be useful to build software tools that can span across design stages. For

example, the same early design software could be used in the conceptual stage—where

quantitative details are not extracted from a model—and the embodiment stage—where

 81

the same models can be extended to include quantitative information, thus allowing a

smooth transition and retention of design intent across design stages.

3.6.3 Causal Reasoning Extension

In the future, the representation should be able to describe causal relations

between functions and flows, in order to support physics-based causal description

and predictive analysis of early design. Causal reasoning is widely used in design for

explanation generation [7, 61], failure prediction and propagation analysis [94-97, 144,

149]. However, it has not been performed using formal physics-based reasoning on

graph-based function structures. As seen in Chapter 10, in some cases, causal deductions

can directly use the conservation relations built within this representation, thus making

this extension of particular interest. For more complex models, a separate description of

causal relations between model elements that work in synch with the function

representation may be needed. With this causal reasoning support, design tools built on

this representation could potentially support failure analysis. For example, in Figure 3.6,

it could be used to predict that if the electrical energy flow fails, it causes a failure in the

output mechanical energy flow. When such causal derivations are topologically

propagated through a function structure graph, much useful insight could be earned about

the critical functional modules (weakest link), robustness (functional redundancy), or the

spread of damage during a failure (propagation tree depth and width).

 82

3.7 Scalability

3.7.1 What is Scalability?

Scalability is described as a fundamental character of formal representations [31]

and describes how well the representation can solve problems within a given class that

vary in size, complexity, and abstractness, thus indicating that it can handle “growing

amounts of work” [150]. Representations are often designed and tested based on needs

identified in sample problems in a domain and it is difficult to logically claim that the

needs thus identified are the complete set that needs to be considered in design. For

example, the vocabulary of function verbs in this dissertation research is developed and

tested using sample problems in physics-based function modeling, shown in Chapter 9.

While a large set of sample problems gives a reasonably high confidence about the

representation’s ability to model any device, it is difficult, if not impossible to logically

prove or disprove that claim. In lieu of an exhaustive set of samples problems used in

design and a logical proof of coverage over all problems in the domain, the purpose of

demonstrating scalability is to illustrate that the representation can model devices beyond

the ones used to design it and that vary in different characters such as size and

complexity. Scalability requirements are difficult to define for all representations at once

and must be identified for each representation separately. The following discussion

identifies the scalability requirement.

 83

3.7.2 The Scalability Requirement

The representation should support modeling and reasoning on function

structure graphs that vary in number of nodes and edges. Number of nodes and

edges are well-accepted metrics of graph complexity in mathematics [49] and design

research [151-156]. Theoretically, there is no limit on this graph complexity for the

representation. Practically, this scaling can be limited by the computing resource

requirement for storing the model elements, the algorithmic complexity of the reasoning

algorithms, and the limitation of display capabilities for showing large models. For

example, given a function structure, a designer may want to search for all occurrences of

subgraphs consisting of Figure 3.7. This type of search may be used in searching

solution principles that satisfy a specific subfunction module, such as converting EE to

ME in this case, using solution principle catalogs that store solutions against the functions

they perform [157, 158].

Figure 3.7: Subgraph being searched within a function model

Since all instances of the subgraph are to be found, a sequential search algorithm

is preferred over faster algorithms such as the binary search, especially because the

difference between their speeds is not significant for small search spaces (small function

models). The algorithmic complexity of sequential search is proportional to the size of

the list searched, given by O(N) in the big-O notation. In the case of searching for a

subgraph, the algorithm has to proceed by first searching for all instances of EE, forming

 84

a list of those instance pointers, then searching within that list for all instances where the

EE flow is an input to a Transfer function, then looking for all instances of “EE-Transfer”

that produce an outgoing flow of EE, and so on. Although there are some constraints

imposed on function verbs definitions that can be used to reduce the number of

comparisons in most cases, such as the equality of input and output flow types across

Transfer, the worst case complexity is unaffected by those simplifications, as not all

functions or subgraphs will benefit from them. Therefore, if there are F functions and f

flows in the model, and there are i functions and j flows in the searched subgraph (i = 2, j

= 3 in this case), the big-O complexity of the search algorithm will be O(Fi
 × fj). Thus,

computation time for these subgraph pattern matching algorithms will increase

exponentially with the size of the searched subgraph and may become a computation

bottleneck when large subgraphs are searched within large models.

However, typical reasoning algorithms for checking model consistency with

conservation laws will have lower complexity. For example, the complexity for checking

if the functions in a model obeys conservation laws is O(F × i × j), where F is the number

of functions, i is the average number of input flows to a function, and j is the average

number of output flows. Thus, the degree of connectedness of the graph (i, j) is also

important in algorithmic complexity.

 85

The range of model size within a sample of eleven function structure graphs used

in previous research [159] out of the 110 in the Design Repository10 is between 17 and 50

for function count and between 30 and 104 for flow count. Based on this data, the

scaling requirement is that the representation must support modeling and reasoning

on function structures with up to 50 functions and 150 flows, without causing

perceptible memory overflow or slowness.

3.8 Consistency and Validity

Consistency or internal consistency is the quality of formal logic systems that

ensures lack of contradiction within the statements of the system [109, 111, 113, 114,

160]. It should be impossible to infer two statements P and Q through logical

deductions from the declarations made within the representation—such as the

definitions of verbs, nouns, relations, constraints, and attribute definitions—such

that P = ¬ Q. Consistency is an internal property of a representation, as it does not

require that the statements producible by the representation be true according to external

knowledge. It only requires agreement between statements derived within the

representation. Consistency of the proposed representation is demonstrated in Section

6.1.

10 Based on June 2009 data

 86

Validity or external validity of a logic system against an external body of rules is

the quality to ensure that starting from a premise that is true according to the external

rules, it is impossible to logically derive an inference that is false according to the same

external rules using declarations within the logic system and their implications [160].

The representation must be valid against the principles of conservation and

irreversibility. Specifically, if a model implies a violation of any of these principles,

the representation should support a reasoning algorithm that can detect that

violation. For the representation in this dissertation, it means that when the

representation used to model a real mechanical device, none of the implications of the

model makes a violation of the laws of conservation or irreversibility. In contrast with

consistency, validity is an external property of a representation, as it checks for

agreement between the implications of statements within the representation and an

external body of rules. For this representation, the external rules are the laws of

conservation of mass and energy, and the principle of irreversibility. Validity of the

representation against the conservation principle is demonstrated in Section 6.2, while its

validity against the irreversibility principle is demonstrated in Chapter 7.

In summary, this chapter elaborates on the requirements the formal representation

must satisfy in order to support function-based formal analytical reasoning in early

design. In the next chapter, specific reasoning needs for this representation are identified

through a simulated modeling exercise. From this exercise, the algorithmic steps for

reasoning and the information elements necessary to capture in the representation are

identified.

 87

CHAPTER 4. SYSTEMATIC DISCOVERY OF REASONING NEEDS AND

INFORMATION ELEMENTS FOR THE REPRESENTATION

The information elements necessary to support reasoning on conservation and

irreversibility are identified in this chapter in three steps. First, specific reasoning tasks

under these categories are identified through a modeling exercise (Section 4.1). Next,

procedures are developed to perform those tasks algorithmically (Section 4.2). Finally,

these procedures are inspected for extracting information elements (Section 4.3). These

information elements and the reasoning tasks they support define the data and reasoning

requirements for the representation, developed in the next chapter.

4.1 Discovering Reasoning Needs: The Chalkboard Exercise

The purpose of this exercise is to discover the type of analytical reasoning a

designer may use or want to receive through a designer-model conversation during new

product design. This conversation is analogous to a sketch-designer conversation

discussed in previous research [15]. In the exercise, a designer develops and explores the

functional architecture of an electromechanical design product as part of concept

development, while verbal feedback is provided to simulate computer-aided analysis

feedback on the in-process model states.

4.1.1 Design Problem Selection

The design artifact is one that the designer had used earlier and of which he

understands the working principles, but one that he had not examined or designed

 88

previously. Such a product ensures that the designer is able to ideate and develop a

reasonably detailed function model, but is unlikely to be biased by previous familiarity

with the component-level details of the product. The following design problem is given.

The Design Problem

“Design an air-heating device that intakes air from one location in a

house and delivers hot air to another location. The device should

consume approximately 3 kilowatts of power”.

Three high-level requirements from Chapter 3 are used in selecting the problem

and the simulated reasoning feedback.

1. Domain coverage (Section 3.1): The design problem is chosen to involve

electrical, mechanical, thermal, and fluid phenomena, and possible use of

acoustic, optical, or other principles, thus necessitating the designer to use

principles in a variety of domains.

2. Normative modeling (Section 3.4): The designer is given a problem that is

new to him, with instructions to describe the intended functionality of the

device. The designer never designed this or similar systems previously and

has no work experience in the HVAC domain. The descriptive modeling

requirement is not directly addressed in this exercise. It is later used to test

domain coverage of the vocabulary of the new function vocabulary in Chapter

7.

 89

3. Qualitative modeling and reasoning (Section 3.5): The designer is instructed

to keep the model qualitative initially (models in Section 4.1.4) and add

quantitative details only when he thinks that the qualitative model describes

the functions correctly (Section 4.1.5). In order to simulate non-restrictive

modeling, the designer is instructed to optionally respond to or ignore the

suggestions produced by the tool. All feedbacks are provided in qualitative

form, for as long as the model itself is qualitative, thus simulating qualitative

reasoning.

Some of the high-level requirements from Chapter 3 are not considered in this

exercise. The domain-independence and physics-based concreteness requirements are

not addressed. Rather, these needs are discovered from this exercise as modeling needs

necessary to support qualitative reasoning (Section 4.3). The descriptive modeling

requirement is not addressed due to the inherently normative character of the design task.

Rather, descriptive modeling is used in Section 9.1 during vocabulary testing. Scalability

pertains to data structure design and cannot be addressed unless the information elements

to be stored are first identified through this exercise.

4.1.2 Participant Selection

The participant in this exercise is a graduate student involved in function-based

design research. He is academically trained in function modeling through a design theory

and methods class. He designed and built electromechanical devices and tools in industry

and academic projects. He used and designed geometric CAD and CAD-automation

 90

software professionally for eleven years total. Because of this background, this

participant is deemed suitable, as he could use both his product design and function

modeling background during modeling and simulate model states that would illustrate the

reasoning requirements effectively.

Only one participant is used in this exercise as the objective is not to discover a

replicable trend of participant behavior or to discover reasoning needs. At the point of

conducting this study, the need to support the three reasoning categories is already

identified through literature review on functional reasoning. The reasoning messages

passed to the designer are not produced by the participant or the model; they are provided

from outside. The objectives of using the participant are (1) to articulate the exact tasks

under the three pre-identified categories and (2) to verify that a designer could use those

reasoning helps in developing a model, when supplied by a computer.

4.1.3 Modeling Interface and Feedback

The modeling interface is a chalkboard inside a design lab, which gives the

designer a familiar work environment and the flexibility for easy erasing and editing, thus

creating an environment suitable for creative tasks. During this modeling session, a

“conversation” between the designer and the model is simulated by supplying verbal

feedback messages to the designer, between modeling steps. These messages represent

results of analytical reasoning performed by an ideal function-modeling software tool that

hypothetically replaces the chalkboard. Care is taken to ensure that the messages only

provide analytical feedback, rather than synthesis directions, and that they can be

 91

produced purely based on two types of knowledge: (1) conservation laws and (2) the

irreversibility principle. The synthesis of the model is controlled by the designer. The

tool does not suggest what the designer should do. It only keeps the growth of the model

controlled by checking it against these laws that inevitably apply to any concept.

4.1.4 Exercise Steps: Black Box Modeling (Qualitative Reasoning)

The modeling steps are captured in photographs (Appendix A), which reconstruct

the modeling history similar to a storyboard, when viewed serially. One step from this

sequence is shown in Figure 4.1 for reference. This figure is the 27th step of a total 44-

step process and shows an intermediate state of the model where the designer identifies

several functions and flows.

 92

Figure 4.1: A sample step from the chalkboard modeling exercise

To illustrate reasoning, only the salient steps of the process are reproduced in

Table 4.1 through Table 4.8. The reasoning depends only on the state of the model and

not on the modeling process. Thus omitting these interim steps does not impact the

reasoning discovery. The shown steps are in their original order of construction. For

each state, the feedback supplied is mentioned with its rationale. This section shows

steps leading up to the black box model and demonstrates the use of conservation and

irreversibility reasoning at a qualitative level. Two types of conservation reasoning are

identified in the Message section of the tables: (1) topologic and (2) derivational. The

first uses only topological connectedness between model elements to generate the

 93

messages, while the second actually uses the conservation laws. Extension of these

reasoning types at the quantitative level is illustrated in the next section.

Table 4.1: Redundant function inference

Model State 4.1: Function instance AHD (Air Heating Device)

Message Topologic inference: Redundant function: AHD

Rationale

A function that has no input or output flow attached is considered a

redundant function, as it is not performing any transformative action and is

therefore not contributing to the overall functionality of the model. While

the function is perhaps drawn with the intent of adding flows to it next, at the

present state, it matches the description of a redundant function.

Table 4.2: Dangling tail and barren flow inference

Model State 4.2: AHD with one input flow instance Air1 (type: Gas)

Message
1. Topologic inference: Dangling tail: Air1

2. Derivational inference: Barren flow: Air1

Rationale
1. Every flow must have at least one “parent flow” from which it is

derived, and at least one “derivative flow” that is derived from it, as

 94

otherwise, either its genesis or its outcome is unexplained, which

violates conservation. The only exception to this rationale is in the

case of the flows that are derived from singularity nodes, such as the

environment and functions for storing and supplying flows, as

explained in Section 8.2. Air1 does not have any entity—function or

flow—at its tail to explain its genesis.

2. Although the head of Air1 is not dangling (attached to AHD), the

model does not show a derivative of Air1 and AHD is not marked as

a singularity. This combination is another violation of conservation.

Table 4.3: Dangling head and orphan flow inference

Model State 4.3: AHD with one output flow instance Air2 (type: Gas)

This model is produced by an alternate modeling sequence from Model State 4.1.

Message
1. Topologic inference: Dangling head: Air2

2. Derivational inference: Orphan flow: Air2

Rationale

1. Air2 does not have any entity—function or flow—to explain it

derivation.

2. Although the tail of Air2 is not dangling (attached to AHD), the

model does not show a parent of Air2 and AHD is not marked as a

singularity.

 95

Table 4.4: Material transformation without energy exchange

Model State 4.4: AHD with two material flows

Message

1. Topologic inference: Dangling tail: Air1; Dangling head: Air2

2. Derivational inference: Air1 → Air2 (“→” reads as “is derived as”)

3. Derivational inference: Transformation of material Air1 to Air2

without energy transaction

Rationale

1. The orphan and barren flows are abolished, since a derivational

relation can be inferred. However, the dangling tail and head

messages are still valid.

2. If there is only one input and only one output flow attached to a

function and they are of the same major type (Material, Energy), the

output must be derived from the input to satisfy conservation (one-

in-one-out). If they are of different major types, such as one a

Material and the other an Energy, this inference cannot be drawn,

since conversion between material and energy is not accepted.

3. Any change in material state requires exchange of energy to or from

the material, as a consequence of the first law of thermodynamics

[128, 129]. This exchange does not always imply “consumption”, as

in some cases energy may be released, such as the cooling of a hot

 96

metal plate in air, which liberates heat. Alternately, the increase of

temperature of air could be realized without exchange of energy with

the surroundings, such as by converting one form of its energy into

raising its internal energy (manifested as temperature). For example,

the kinetic energy of Air1 could be reduced to cause the difference to

manifest as internal energy. However, using the closed-world

assumption, it is assumed that unless such a relation is explicitly

mentioned, it is not true. No exchange of energy is shown to or from

Air1 or Air2. Thus, the model must be faulty to show that

temperature changes between the two flows.

Table 4.5: Environments as singularity nodes

Model State 4.5: Flow instances connected to environment instances

Message

1. Derivational inference: Air1 → Air2

2. Derivational inference: Transformation of material Air1 to Air2

without energy transaction

Note: The dangling tail and head messages are withdrawn.

Rationale

1. The inference is explained in the previous steps.

2. The first law violation reasoning still applies from the previous step.

Note: Air1 is introduced from the Environment Env1 and Air2 is dismissed

 97

to Env2. For model-level conservation consistency, Environment instances

are acceptable as singularities, similar to sources and sinks in

thermodynamic processes [128, 129]. Hypothetically, they can supply or

receive indefinite amounts of material or energy, without undergoing any

state change (transformative action). Thus, Environments are not functions,

although they are nodes in the function structure graph. They define the

functional scope of the model. For example, as long as a flow is submitted

to the environment, the model does not need to show or support reasoning on

its further derivations. In reality, the flow may undergo further

transformations, but those are outside the model’s scope.

Table 4.6: Unused (barren) energy flow

Model State 4.6: Energy flow EE1 input to support material transformation

Message

1. Derivational inference: Air1 → Air2

2. Derivational inference: Barren flow: EE1

3. Derivational inference: Transformation of material Air1 to Air2

without energy transaction

 98

Rationale

1. The derivation inference is explained in previous models.

2. EE1 is a barren flow, as its derivative is not shown in the model.

3. The third message continues, since although EE1 is input to the

function, there is no indication of energy exchange to or from the air

flows.

Table 4.7: Carrier flow and irreversibility inference

Air2.T > Air1.T

Model State 4.7: EE1 transformed into ThE1 and added to Air2

Message

1. Derivational inference: Air1 → Air2

2. Derivational inference: EE1 → ThE1

3. Irreversibility inference: Conversion of energy without any loss:

100% efficiency implied in AHD.

Note: The message about EE1 being a barren flow is withdrawn.

Note: The message about material transformation without energy transaction

is now withdrawn.

AHD
Env

1
Air1
[G]

Air2
[G]

Env
2

Env
3

EE1 [EE]

ThE1 [ThE]

 99

Rationale

1. The derivation inference is explained in previous models.

2. The second derivational message is explained similar to the first. If a

function has only one energy input and only one energy output, there

is no other way but form them to be in a parent-derivative relation, in

order for conservation to satisfy. Additionally, the two energy flows

are also of different types, which ensure that the function AHD is not

classified as ineffective.

3. Any energy transforming process must operate at efficiency less than

unity and incur losses, as a consequence of the second law of

thermodynamics. However, the notion of loss relies on the notion of

what is useful and what is unwanted, as illustrated in Table 9.1 later.

For example, heat produced in a light bulb is considered loss since

light is the sought form of energy. This notion inverts in the case of a

heat lamp, where heat is sought and light is a loss. Thus, it is

required that every transformation of energy produces at least two

output energy flows, one of which may be a loss. The two flows may

be of the same type, in which case loss represents the portion of

output energy that cannot be used in a subsequent function. For

example, the model in this state implies the incoming electrical

energy is transformed into heat in entirety, while in reality a portion

of the heat (same type as ThE1) would be lost because it escapes

without being added to Air2.

 100

Table 4.8: One-in-many-out derivation (acceptable black box model)

Model State 4.8: Lost energy included in model: An acceptable model

Message

1. Derivational inference: Air1 → Air2

2. Derivational inference: EE1 → {ThE1, Loss}

3. Acceptable model state.

Rationale

1. The first derivation message is explained in previous steps.

2. When there is only one input flow of a major type (Material, Energy)

and more than one output flow within that major type, conservation

requires that all the output flows be derived from the single input

flow of that type (one-in-many-out).

3. The 100% efficiency message is addressed by modeling a flow of lost

energy. The type of this flow is intentionally kept generic to Energy

(E), as the designer is unsure about the specific forms of loss at this

early stage. Overall, this model agrees with the laws of conservation.

 101

In total, the above modeling steps identify eight distinct reasoning tasks:

1. Redundant function (Model State 4.1)

2. Dangling tail (Model State 4.2)

3. Dangling head (Model State 4.3)

4. Barren flow (Model State 4.2)

5. Orphan flow (Model State 4.3)

6. One-in-many-out derivation inference (Model State 4.8)

7. Material transformation without energy (Model State 4.4)

8. Missing residual flow (Model State 4.7, Model State 4.8)

Each task is based on either conservation or irreversibility principles. This

modeling session is continued next to reveal reasoning at a quantitative level.

4.1.5 Exercise Steps: Model Decomposition (Quantitative Reasoning)

This section describes a continuation of the above modeling exercise to illustrate

quantitative reasoning. In this exercise, the designer decomposes the model by referring

to the black box, using a separate work area on the chalkboard. This choice of a separate

work area parallels to saving the black box model to the disk and using a new workspace

to perform decomposition. These modeling steps are illustrated in Table 4.9 through

Table 4.14. In each table, the message and the rationale are illustrated for a model state.

 102

Table 4.9: Topologic inferences during decomposition

Model State 4.9: User-driven decomposition (first level)

Message
1. Topologic inference: Redundant function: Draw Air, Heat air,

Deliver Air

Rationale 1. The redundant function message is explained in Model State 4.1

Table 4.10: Material transformation without energy in a decomposed model

Model State 4.10: Stream of air flow through functions

Message

1. Derivational inference: Air1 → Air3 → Air4 → Air2

2. Derivational inference: Transformation of material without energy

exchange: Draw Air, Heat Air, Deliver Air

Rationale

1. In derivation inference is explained in Model State 4.4. The

observation of interest is that the elementary reasoning actions

identified in the black box modeling session in Section 4.1.3, such as

derivation inference, are now used to compose more complex

inferences.

2. The energy exchange message is discussed in Model State 4.5

 103

By definition of functions and flows (Section 1.2), two flow instances have to be

different at least by their state and a function must cause a change of state or type of a

flow, otherwise it is an ineffective function. In this modeling exercise, the simulated

software assumes that different instances of the same flow type in a model must be of

different states. For example, Air1 is the air outside the inlet orifice of the device, which

is at a lower velocity (typically zero) than Air3, which represents air after being operated

by the Draw Air function and flowing faster than Air1. From Air3 to Air4, the major

change is in temperature, indicated in the second relation.

The following model state shows a further decomposed version of the model,

without walking through the steps leading to it from Model State 4.10, since those steps

do not illustrate any new reasoning. Model State 4.11 is the end product of the first level

of decomposition and illustrates how the designer planned energy exchange through the

product to satisfy conservation, leading into the second level of decomposition.

 104

Table 4.11: Many-in-one-out inference (Accepted model)

Model State 4.11: Accepted model of first level decomposition

Message

1. Derivational inference: Air1 → Air3 → Air4 → Air2

2. Derivational inference: EE1 → {KE1, Loss1}, where KE is kinetic

energy

3. Derivational inference: EE2 → {ThE1, Loss1}

4. Derivational inference: EE3 → {EE1, EE2}

5. Derivational inference: {MW2, ThE2} → Loss3, MW is mechanical

work

6. Acceptable model state

Rationale

1-4. The derivation inferences are explained in the previous steps.

5. When there are more than one input flow of a major type (Material,

Energy) and only one output flow within that major type, all the input

 105

flows must be conserved as the single output flow (many-in-one-

out).

6. The model only returns inferred derivations and does not imply an

error.

The above steps show the exploration of the first level of decomposition, which

ends with an acceptable state. Beyond this point, the designer explores deeper into the

subfunctions identified above, in order to resolve them to more well-defined terms that

can support solution search and physics-based reasoning.

Table 4.12: Flow preservation and additive inference in decomposition (Draw Air)

Model State 4.12: Second level decomposition of Draw Air

The text in the dotted line box indicates the lower-resolution function of which the shown

model is the decomposition. For example, this model is a decomposition of Draw Air.

Message 1. Derivational inference: Air1 → Air3

 106

2. Derivational inference: EE1 → {MW1, Loss5}

3. Derivational inference: MW1 → {KE1, Loss4}

4. Resolution inference: Accepted preservation of boundary flows

5. Resolution inference: Loss4.E + Loss5.E = Loss1.E

6. Accepted model state

Rationale

1-3. The derivational inferences are explained in previous model

states.

4. The decomposition action is valid, since the flows attached to the

Draw Air function before decomposition is accounted for at the

overall boundary of the decomposed model. This quality of

decomposition is named here the preservation of boundary flows

under decomposition.

5. The loss flows Loss4 and Loss5 in the decomposed model replace the

single loss flow Loss1 in the composed model. Thus, the energy

content of Loss4 and Loss5 must equal that of Loss1. This inference

does not indicate a derivational relation that Loss1 is derived into

Loss4 and Loss5. Rather, it implies that the modeled Loss1 flow at a

lower resolution is the sum of the two loss flows at the higher

resolution model. This type of inference is called here the additive

inference across decomposition levels.

6. The model it obeys the balance laws of mass and energy, and

accounts for irreversibility.

 107

Table 4.13: Flow preservation inference in decomposition (Deliver Air)

Model State 4.13: Second level decomposition of Deliver Air

Message

1. Derivational inference: Air4 → Air2

2. Derivational inference: MW2 → Loss6

3. Derivational inference: ThE2 → Loss7

4. Resolution inference: Accepted preservation of boundary flows

5. Resolution inference: Loss8.E + Loss9.E = Loss3.E

6. Accepted model state

Rationale
All of the reasoning messages are similar to those explained in previous

steps.

The final model state of the modeling exercise is shown in Model State 4.14

below, where the designer adds quantitative details. He decides that the conversion of

EE4 to ThE3 happens without loss, since the device is probably a resistive heater that

converts all of the consumed EE into heat. Energize_Air3 has an efficiency of 0.6, since

40% of the produced heat is lost through the insulation. The total heat added to air is

 108

1500 Watts. The designer may know this value from external calculations or may enter it

only to explore a what-if scenario using the model. He estimates that 1000 Watts are

necessary to cause the air to flow, potentially using a blower. The blower blades have an

efficiency of 90%, while the blower motor rejects 20% of its input energy as heat

(Loss5). Based on this data, the designer wants to explore the total power required to

operate the machine.

Table 4.14: Quantitative reasoning on efficiency and power required

Model State 4.14: Final Model State of the Exercise

Message

1. All inferences from Model State 4.11, Model State 4.12, and Model

State 4.13

2. Derivational inference: EE2 → EE3 →{ThE3, Loss5}

3. Total power required = 3889 Watts

Rationale 1. The inferences carried forward from the previous model states are

 109

explained in the respective model state rationales.

2. The conduct function uses only one input and one output energy, and

thus the inference must hold. Moreover, the conduct function

receives a signal from the temperature attribute of the existing air

flow Air2.

3. The power required is computed as follows.

En _ Air3

En _ Air1

Convert1 Convert1

ThE1.E 1500W
ThE3.E 2500W

0.6

EE2.E EE4.E ThE3.E Loss7.E 2500 0 W

KE1.E / 1000W / 0.9MW1.E
EE1.E 1389W

0.8

EE3.E EE1.E EE2.E 2500W 1389W 3889W

By comparing this final model (Model State 4.14) with the black box (Model

State 4.8) and the first level decomposition (Model State 4.11), the evolution and

boundary flow preservation under decomposition can be verified. It also illustrates how

model decomposition helps in understanding design problems. In this case, although the

problem statement mentions delivery of air, the designer is focused on the main function

of heating at the black box level and shows only the addition of thermal energy (ThE1) to

the air. It is only when the inner details of the device are planned that the need for

driving the air is identified, which resulted into adding kinetic energy KE1 to the air flow

in the decomposed model. Similar discovery of functionality happened with the energy

exchange in the Deliver Air function, which was not completely predictable in the black

box. The model decomposition exercise identifies four additional reasoning tasks:

 110

1. Many-in-one-out derivation (Model State 4.11)

2. Boundary flow preservation in decomposition (Model State 4.12)

3. Additive inference across decomposition levels (Model State 4.12)

4. Quantitative inference about power required (Model State 4.14)

In all, twelve reasoning tasks are identified from the black box and decomposition

exercises, with which a designer could be assisted while exploring function architecture

of novel design. These reasoning tasks are summarized in Table 4.15. For each task, the

table includes the model states where it is illustrated and the algorithm number where it is

presented in the next section. The conservation reasoning tasks are divided into (1)

topologic and (2) derivational, as explained in the next section. These algorithms are

then inspected for information elements in Section 4.3.

Table 4.15: Summary of Reasoning Needs Discovered

Reasoning # Reasoning Name Model State Algorithm

Conservation:

Topologic

1 Redundant function
Model State 4.1

Model State 4.9
Algorithm 4.1

2 Dangling tail
Model State 4.2

Model State 4.4
Algorithm 4.2

3 Dangling head
Model State 4.3

Model State 4.4
Algorithm 4.3

Conservation:

Derivational
4 Barren flow

Model State 4.2

Model State 4.6
Algorithm 4.4

 111

Reasoning # Reasoning Name Model State Algorithm

5 Orphan flow Model State 4.3 Algorithm 4.5

6
One-in-one-out and one-

in-many-out derivation

Model State 4.4

Model State 4.5

Model State 4.6

Model State 4.7

Model State 4.8

Model State 4.10

Model State 4.11

Algorithm 4.6

7
Many-in-one-out

derivation
Model State 4.11 Algorithm 4.7

8
Material transformation

without energy input

Model State 4.4

Model State 4.5

Model State 4.6

Model State 4.10

Algorithm 4.8

Irreversibility 9 Missing residual flow Model State 4.7 Algorithm 4.9

Quantitative 10 Power required Model State 4.14 Algorithm 4.10

Resolution

Reasoning

11

Boundary flow

preservation in

decomposition

Model State 4.12 Algorithm 4.11

12 Additive inference Model State 4.12 Algorithm 4.12

 112

Reasoning # Reasoning Name Model State Algorithm

across decomposition

levels

4.2 Reasoning Algorithms

This section is presented with two goals: (1) to ascertain that the reasoning tasks

identified in the modeling exercise can be indeed performed algorithmically and (2) to

identify the information elements required to support such algorithms. The algorithms

for the twelve reasoning tasks under the five types (Table 4.15) are presented in the tables

below (Algorithm 4.1 through Algorithm 4.12). Commented lines are provided in red to

help interpretation and therefore individual tables are not discussed.

4.2.1 Conservation Reasoning Algorithms (Topologic)

These three algorithms [115] classified as topologic reasoning, as they are written

entirely based on the valid connections between functions and flows, without direct

reference to the laws of conservation.

Algorithm 4.1: Algorithm for redundant function

Loop through FunctionInstanceList; // List of function instances in the

model

IF (FunctionInstanceList[i].InList.IsEmpty() &&

FunctionInstanceList[i].OutList.IsEmpty())

Echo “Redundant function: ” + FunctionInstanceList[i].GivenName;

 113

// InList and OutList are linked lists of flow pointers and are used to

store pointers to the input and output flow instances to a function

instance.

// IsEmpty is a Boolean member function in the linked list data

structure that returns TRUE if the list is empty.

//GivenName is a string data member that holds the name of an element.

Algorithm 4.2: Algorithm for dangling tail

Loop through FlowInstanceList; // List of flow instances in the

model

IF (FlowInstanceList[i].pTailNode == NULL)

Echo “Dangling Tail: ” + FlowInstanceList[i].GivenName;

// pTailElement is a pointer to the CElement instance at the tail of a

flow instance, which can be a function, an environment, or another

flow.

Algorithm 4.3: Algorithm for dangling head

Loop through FlowInstanceList; // List of flow instances in the

model

IF (FlowInstanceList[i].pHeadNode == NULL)

Echo “Dangling Head: ” + FlowInstanceList[i].GivenName;

 114

// pHeadElement is a pointer to the CElement instance at the head of a

flow instance, which can be a function, an environment, or another

flow.

4.2.2 Conservation Reasoning Algorithms (Derivational)

These algorithms are used to check a model’s adherence to the laws of

conservation of mass and energy. Since energy conservation is the essence of the first

law of thermodynamics, these are also called the First Law Algorithms. The orphan and

barren flow algorithms essentially enforce that a flow must be conserved or derived into

other flows of the same major type (Material, Energy), as otherwise its outcome is

unaccounted for. The one-in-many-out and many-in-one-out inference algorithms rely on

separate conservation of mass and energy. Conservation of the mass-energy

combination, such as in nuclear reactions where mass is changed into energy, is not

allowed in this representation and will in fact return as a violation of the individual

conservation laws. This simplification prevents reasoning on those reactions, as the

outcome of the mass difference converted into energy and the genesis of the energy from

mass are both unaccountable in this scheme. However, this intentional compromise

allows for reasoning in other simpler designs. If the algorithm was written to check for

the mass-energy combination, functions that input mass but outputs only energy (no

mass) would not be detected as violation, as it would be explicable that the mass was

converted to energy. However, this detection is important, as illustrated in the modeling

exercise.

 115

Algorithm 4.4: Algorithm for barren flow

Loop through FlowInstanceList;

IF ((FlowInstanceList[i].ChildList.IsEmpty) && // No child of

flow

(EnvList.Find(FlowInstanceList[i].pHeadNOde) == NULL))

// the head of the flow is not going to an environment instance

Echo “Barren flow: ” + FlowInstanceList[i].GivenName;

// ChildList is a list in the flow class used to store pointers to the

child flows of the flow object. A flow can have more than one child.

// A flow that has no children (derivatives) and whose head is

connected to an environment instance is not to be detected as barren,

as the flow’s head is outside the system boundary where conservation

rules do not apply.

Algorithm 4.5: Algorithm for orphan flow

Loop through FlowInstanceList;

IF ((FlowInstanceList[i].ParentList.IsEmpty) && // No parent of

flow

(EnvList.Find(FlowInstanceList[i].pTailNode) == NULL))

// the tail element of the flow is not an environment instance

Echo “Orphan flow: ” + FlowInstanceList[i].GivenName;

 116

// ParentList is a list in the flow class used to store pointers to the

parent flows of the flow object. A flow can have more than one parent.

// EnvList is a linked list containing pointers to all environment

instances in the model

// A flow that has no parents and whose tail is connected to an

environment instance is not to be detected as orphan, as the flow’s

tail is outside the system boundary where conservation rules do not

apply.

Algorithm 4.6: Algorithm for one-in-many-out derivation inference

Loop through FunctionInstanceList; // List of function instances

 Loop through (FunctionInstance.Inlist); // Each input flow

 IF (MaterialList.Find(InFlow) != NULL) // InFlow is a Material

 M_InList.AddTail(InFlow); // Collect all material input

 IF (EnergyList.Find(InFlow) != NULL) // InFlow is an energy

 E_InList.AddTail(InFlow); // Collect all energy input

 Loop through (FunctionInstance.OutList) // Each output flow

 Collect all M output to M_OutList and all E output to E_OutList;

 // Using steps similar to collecting input flows

 If ((M_InList.GetCount() == 1) && (M_OutList.GetCount() >= 1)

 // If the one-in-many-out condition satisfies for materials

 Loop through M_OutList using index [i];

 M_InList[0].ChildList.AddTail(M_OutList[i]);

 117

 // Add each material output as a derivative of the single input

 Add “M_InList[0] → M_OutList[i]” to the inference message;

 If ((E_InList.GetCount() == 1) && (E_OutList.GetCount() >= 1)

 // If the one-in-many-out condition satisfies for energy flows

 Loop through E_OutList using index [i];

 E_InList[0].ChildList.AddTail(E_OutList[i]);

 // Add each energy output as a derivative of the single input

 Add “E_InList[0] → E_OutList[i]” to the inference message;

 // Before moving to the next function instance, clear off the

temporary storage of input and output lists.

M_InList.RemoveAll();

M_OutList.RemoveAll();

E_InList.RemoveAll();

E_OutList.RemoveAll();

// RemoveAll is a member function of the linked list data structure

that empties the list without deleting it.

Algorithm 4.7: Algorithm for many-in-one-out derivation inference

Loop through FunctionInstanceList; // List of function instances

 Loop through (FunctionInstance.Inlist); // Each input flow

 IF (MaterialList.Find(InFlow) != NULL) // InFlow is a Material

 M_InList.AddTail(InFlow); // Collect all material input

 IF (EnergyList.Find(InFlow) != NULL) // InFlow is an energy

 118

 E_InList.AddTail(InFlow); // Collect all energy input

 Loop through (FunctionInstance.OutList) // Each output flow

 Collect all M output M_OutList and all E output to E_OutList;

 // Using steps similar to collecting input flows

 If ((M_InList.GetCount >= 1) && (M_OutList.GetCount == 1)

 // If the many-in-one-out condition satisfies for materials

 Loop through M_InList using index [i];

 M_InList[i].ChildList.AddTail(M_OutList[0]);

 // Add the single material output as a derivative of each input

 Add “M_InList[i] → M_OutList[0]” to the inference message;

 If ((E_InList.GetCount >= 1) && (E_OutList.GetCount == 1)

 // If the many-in-one-out condition satisfies for energy flows

 Loop through E_InList using index [i];

 E_InList[i].ChildList.AddTail(E_OutList[0]);

 // Add the single energy output as a derivative of each input

 Add “E_InList[i] → E_OutList[0]” to the inference message;

 // Before moving to the next function instance, clear off the

temporary storage in the input and output lists

M_InList.RemoveAll();

M_OutList.RemoveAll();

E_InList.RemoveAll();

E_OutList.RemoveAll();

 119

// RemoveAll is a member function of the linked list data structure

that empties the list without deleting it.

Algorithm 4.8: Algorithm for material transformation without energy

Loop through FunctionInstanceList; // List of function

instances

 // Detect difference between Material flows across every function

 Loop through FunctionInstance.M_InList; // Each input material

flow

 Loop through M_InFLow.ChildList; // Each child flow of

InFlow

 IF ((M_InFlow.OutBaggageList.IsEmpty()) &&

 (ChildFlow.InBaggageList.IsEmpty()))

 Echo “Material transformation from” +

M_InFlow.GivenName + “to” + ChildFlow.GivenName + “without energy

exchange”;

4.2.3 Irreversibility Reasoning Algorithm

Algorithm 4.9: Algorithm for qualitative detection of missing residual flow

// If there are energy input and output to a function but no residual

energy output, echo the error message.

 120

Loop through FunctionInstanceList; // List of all function instances

 IF ((FunctionInstance.E_InList.GetCount() > 1) &&

 (FunctionInstance.E_OutList.GetCount() > 1))

 {

 Bool ResidualFound = FALSE;

 Loop through FunctionInstance.E_OutList;

 IF E_OutFlow.IsResidual == TRUE

 ResidualFound = TRUE;

 IF (ResidualFound == FALSE)

 Echo “Residual Energy not found in function: “

 + FunctionInstance.GivenName;

 }

4.2.4 Quantitative Reasoning Algorithm (Power Required)

Algorithm 4.10: Algorithm for computing power required

Loop through FunctionInstanceList; // List of all function instances

 IF ((FunctionInstance.E_InList.GetCount() > 1) &&

 (FunctionInstance.E_OutList.GetCount() > 1))

 {

 Function.PowerReq = Bool ResidualFound = FALSE;

 Function.OutputPower = 0;

 121

 Loop through FunctionInstance.E_OutList;

 IF E_OutFlow.IsResidual != TRUE

 Function.OutputPower=Function.OutputPower+E_OutFlow.Power;

 FunctionPowerRequired =Function.OutputPower /

Function.Effy;

 }

Algorithm 4.11: Algorithm for boundary flow preservation in decomposition

Loop through FunctionInstanceList; // In the low res model

 IF (FunctionInstance.HasDecomposition == FALSE)

 Continue; // If no decomposition, move on to the next

func.

 // HasDecomposition is a Boolean to a function

 IF (FunctionInstance.HasDecomposition == TRUE)

 List <Noun*> InListLowResTemp;// Initiate a temporary list

 Loop through FunctionInstance.M_InList;

 Add M_InFlow to InListLowResTemp; // Add to the

temp list

 Loop through FunctionInstance.E_InList;

 Add E_InFlow to InListLowResTemp; // Add to the

temp list

 // Thus, all pointers of input flows to the low res function

 122

 // are now collected in the temporary list

 List <Noun*> InListHighResTemp;// Temporary list at high

res

 Loop through HighRes.FlowInstanceList;// All flow instances

 // Flow lists in the high resolution model

 InListHighResTemp.Add(HighRes.FlowInstance);

 // Replicate the input flow list (high res)

 // Check if a flow is an input to the decomposed model

 IF ((Find(HighRes.FunctionInstanceList, InFlow.HeadNode)) &&

// IF the head is attached to a function in the high res model

 (!Find(HighRes.FunctionInstanceList, InFlow.TailNode)))

// but the tail is not connected to a function in the high res

// then the flow is struly an input to the decomposed model

 {

 IF (InListLowResTemp.Remove(InFlow) == FALSE)

// Try removing the flow pointer from the low res temp list.

// FALSE means that the input flow is absent in the temp list.

 Echo “Not in low res: ” +

InFlow.GivenName;

 }

 Continue;

// In this manner, all input flows to the high res model that

 123

// was also found in the low res input list, would be removed

// from the temporary list. If the decomposition was preserved,

// at this time the temporary list should be empty.

 IF (InListLowResTemp.IsEmpty() == FALSE)

 Echo “Non-preserved flow: ” + FunctionInstance.GivenName;

///////////////////////

// Now repeat the process for output flow balancing.

// Exception: Use only non-Loss output flows to check for preservation.

///////////////////////

 List <Noun*> OutListLowResTemp;

 Loop through FunctionInstance.M_OutList;

 IF (M_OutFlow.IsLoss == FALSE)

 Add M_OutFlow to OutListLowResTemp;

 Loop through FunctionInstance.E_OutList;

 IF (E_OutFlow.ISLoss == FALSE)

 Add E_OutFlow to OutListLowResTemp;

 List <Noun*> OutListHighResTemp;

 Loop through HighRes.FlowInstanceList;

 IF (FlowInstance.IsLoss == FALSE)

 OutListHighResTemp.Add(HighRes.FlowInstance);

 124

 IF ((Find(HighRes.FunctionInstanceList, InFlow.TailNode)) &&

 (!Find(HighRes.FunctionInstanceList, InFlow.HeadNode)))

 {

 IF (OutListLowResTemp.Remove(OutFlow) == FALSE)

 Echo “Not in low res: ” +

OutFlow.GivenName;

 }

 Continue;

 IF (OutListLowResTemp.IsEmpty() == FALSE)

 Echo “Non-preserved flow: ” + FunctionInstance.GivenName;

Algorithm 4.12: Algorithm for additive inference across decomposition levels

// This algorithm is similar to the one above, with the following

exceptions:

// 1. It works only on the loss flows

// 2. Instead of checking flow balance across levels, it infers a

balance.

// 3. It separately accounts for Material and Energy losses, since

those two subtypes cannot mix.

Loop through FunctionInstanceList; // In the low res model

 IF (FunctionInstance.HasDecomposition == FALSE)

 125

 Continue; // If no decomposition, move on to the next

func.

 // HasDecomposition is a Boolean to a function

 IF (FunctionInstance.HasDecomposition == TRUE)

 List <Noun*> M_OutListLowResTemp;

 Loop through FunctionInstance.M_OutList;

 IF (M_OutFlow.IsLoss == TRUE)

 M_OutListLowResTemp.Add(HighRes.M_OutFlow);

 List <Noun*> M_OutListHighResTemp;

 Loop through HighRes.M_FlowInstanceList;

 IF (HighRes.M_FlowInstance.IsLoss == TRUE)

 M_OutListHighResTemp.Add(HighRes.M_FlowInstance);

 String Message = “”;

 Loop through M_OutListLowResTemp;

 Message = Message + M_OutFlow.GivenName + “.EnergyContent +

”;

 Message = Message + “ = ”;

 Loop through M_ OutListHighResTemp;

 126

 Message = Message + M_OutFlow.GivenName + “.EnergyContent +

”;

4.3 Information Elements Extraction

The algorithms from the previous section are inspected to expose the elements of

information used to perform the reasoning tasks computationally. Table 4.16 summarizes

these findings against each algorithm. For each information element, its representation

component type (entity, relation, or attribute) is captured in the ERA column, and its

programming data type and brief description are presented in the last two columns. For

each algorithm, only the new information elements identified in addition to previously

identified ones are listed. Rows marked as “Nothing new” indicate that no additional

element than the ones previously identified are used in that algorithm. The algorithms

include keywords, methods, operators, and constants used in common programming

languages such as C++ [161], which are not extracted as information element. Examples

are (1) keywords such as If, Else, List, String, and Continue, (2) methods such as Find,

GetCount, RemoveAll, (3) operators such as “==”, and (4) constants such as NULL,

TRUE, and FALSE, which are used in several of the algorithms.

 127

Table 4.16: Extraction of information elements from the algorithms

Algorithm

Reference

Information

Element

ERA

Type

Computer

Data Type

Description

Algorithm

4.1

Function Entity Class Verb
Class from which functions are

instantiated

InList Attribute List<Flow*>

Attribute to a function holding the

list of flow pointers that are input

to a function. Its identification

requires identifying the head node

of the flow.

OutList Attribute List<Flow*>

Attribute to a function holding the

list of flow pointers that are output

from a function. Its identification

requires identifying the tail node of

the flow.

GivenName Attribute
String

GivenName

Attribute to a to a function, flow,

or environment instance in the

model, holding the name given to

it by user

Algorithm

4.2

Flow Entity Class Noun
Class from which flows are

instantiated

TailNode Relation Class* Node Relation between a flow and a

 128

Algorithm

Reference

Information

Element

ERA

Type

Computer

Data Type

Description

node (function of environment)

indicating that the node is at the

tail of the flow

Algorithm

4.3

HeadNode Relation Class* Node

Relation between a flow and a

node (function or environment)

indicating that the node is at the

head of the flow

Node Entity Class Node
Class from which nodes (functions

and environments) are instantiated

Algorithm

4.4

ChildList Relation List<Flow*>

Relation between a flow and a list

of flows, where the flows in the list

derived from the given flow.

Environment Entity
Class

Environment

Class to derive environment

instances

Algorithm

4.5
ParentList Relation List<Flow*>

Relation between a flow and a list

of flows, where the flow is derived

into the flows in the list.

Algorithm

4.6
M_InList Attribute List<Material*>

Attribute to a function holding the

list of material flows input to it

 129

Algorithm

Reference

Information

Element

ERA

Type

Computer

Data Type

Description

E_InList Attribute List<Energy*>
Attribute to a function holding the

list of energy flows input to it

M_OutList Attribute List<Material*>
Attribute to a function holding the

list of material flows output from it

E_OutList Attribute List<Energy*>
Attribute to a function holding the

list of energy flows output from it

M_Flow Entity Class Material
Class from which material flows

are instantiated

E_Flow Entity Class Energy
Class from which energy flow are

instantiated

Algorithm

4.7
Nothing new

Algorithm

4.8
InBaggage Relation List<Flow*>

A relation between two flows,

where one flow is carried by the

other and the carried flows’ head

node is same as the carrier flow’s

head node

 OutBaggage Relation List<Flow*>
A relation between two flows,

where one flow is carried by the

 130

Algorithm

Reference

Information

Element

ERA

Type

Computer

Data Type

Description

other and the carried flows’ tail

node is same as the carrier flow’s

tail node

Algorithm

4.9
IsResidual Attribute Boolean

A Boolean attribute to a flow that

is set to TRUE if the modeler

indicates that an output flow from

a function is a loss (residual) flow

Algorithm

4.10
Power Attribute Double

A number that indicates the power

associated with an energy flow.

 Efficiency Attribute Double
A number that indicates the

efficiency of a function

Algorithm

4.11
Information elements are not extracted from these two algorithms, since these two

algorithms, while detected during the modeling exercise, are out of the scope of

this dissertation research, and are reserved for future extensions.
Algorithm

4.12

The information elements discovered here are used next to design the formal

representation of mechanical functions. In order to organize this design task, the

representation is developed in three layers that build successively. The first layer,

presented in Chapter 5, is the foundational layer that formalizes basic information

elements required for drawing function structure graphs, with formal description of its

 131

entities, relations, attributes, and local grammar to ensure internal consistency of function

structure models. In addition, this layer supports qualitative conservation reasoning of

the two types identified in this chapter: (1) topologic and (2) derivational. Thus, this first

layer is called the Conservation Layer.

The second layer extends the first by including the concept of irreversibility and

supports reasoning on residual flows at qualitative and quantitative levels. This layer is

called the Irreversibility Layer.

The third layer is called the Semantic Layer. A finite vocabulary of mechanical

function verbs is presented that captures the meaning of the verb terms through its

topology. This layer supports feature-based modeling and semantic reasoning of function

structure graphs. In the next chapter, the first layer (Conservation) is developed.

 132

CHAPTER 5. REPRESENTATION LAYER ONE:

FORMALIZATION OF FUNCTION STRUCTURE FOR CONSERVATION

REASONING

Based on the reasoning needs and information elements discovered in the

previous chapter, the formal representation of mechanical functions is designed in a

three-layer structure:

1. Conservation Layer: The fundamental entities, relations, attributes, and local

grammar rules of function structure modeling are formalized. This layer

supports model validation and qualitative reasoning based on the conservation

principle, of two types mentioned in Table 4.15: topologic and derivational.

2. Irreversibility Layer: This layer extends the Conservation layer by adding

constructs for modeling irreversibility in the vocabulary terms and supports

irreversibility reasoning.

3. Semantic Layer: This layer extends the previous two by adding a vocabulary

of physics-based function verbs. It supports feature-based modeling of

function structures that also support physics-based reasoning of the previous

layers.

This chapter presents the first layer that formalizes the Function Structure

representation and supports qualitative conservation reasoning (topologic and

derivational). The other layers are subsequently built upon this layer. As defined in

 133

Section 1.2.1 and 1.2.2, a representation is described by its vocabulary and local grammar

[30, 31, 110, 162-165], the components of which are:

1. Vocabulary of entity types: The vocabulary of unique concept types

necessary to construct a model

2. Vocabulary of relation types: The vocabulary of unique connection types

that can exist between instances of the entity types

3. Vocabulary of attributes: The vocabulary of unique parameters used to

characterize or specify the entity and relation instances

4. Local grammar: The set of rules and constraints that control how instances of

entities, relations, and attributes can be combined to construct a model

In the following sections, the entity types, relation types, attributes, and local

grammar rules required to formalize the Function Structure representation are identified

and rigorously defined. Despite frequent use of function structure models, these graphs

have not been formalized as a representation before [48, 115, 116] and do not support

consistent formal reasoning [48, 166]. The contribution of this first layer is to that end.

5.1 Layer 1 Vocabulary

The vocabularies of entity types, relation types, and attributes are shown in Table

5.1.

 134

Table 5.1: Layer 1 vocabulary

Entity Types

Taxonomy
∷

Virtual 1 Virtual 2 Instantiable Instantiable

Element

Node

Verb

Environment
Source

Sink

Noun

Material

Energy

Signal

Relation Types ∷	 {HeadNode, TailNode, CarrierFlow, Child_M, Child_E}

Attribute Types ∷ {GivenName, HeadPoint, TailPoint, GeometricCenter,

AnchorPoint}

The vocabulary of entity types is hierarchical, shown in the taxonomy in Table

5.1, while the vocabularies of relation types and attributes are list based and flat. Not all

relation types and attributes are compatible to all entity types. The valid correspondences

are shown in in Figure 5.1 using the entity-relation-attribute (ERA) diagram format [162].

 135

 Figure 5.1: Entity-relation-attribute (ERA) model for the Level 1 vocabulary

The rectangles are entity types, the diamonds are relation types, and the ellipses

are the attributes. The labels on the edges of this diagram indicate the one-to-one, one-to-

many, or many-to-many correspondence of the relations. For example, the labels 1 and n

on the relation type TailNode indicates that a flow can have only one Node instance

(function or environment) as its tail node but a Node instance can be the tail node of

many flows, which is a one-to-many relationship. The is_a relationship does not appear

in the vocabulary (Table 5.1), since it captures the taxonomical and ontological relation

between the entity types and is not directly instantiated in a function model. Every other

 136

entity type, relation type, and attribute in this ERA diagram, except Element, Node, and

Noun, can be instantiated (Section 5.1.1). The GivenName attribute of every Element

instance is its unique identifier. The exclusive disjunction (XOR) symbols on the

relations indicate that only one of the many relations connected by the symbol holds for a

given instance. For example, a Node instance is either a Verb instance or an

Environment instance, but not both.

5.1.1 Layer 1 Entity Types

An entity type is a class that describes a concept, as opposed to an instance of a

class, which is a specific occurrence of that concept. The leaf nodes of Figure 5.1 are

classes instantiable in models. Classes in the other two columns are virtual superclasses

(not instantiable) and are used to organize the vocabulary to minimize redundancy of

attributes and relations. For example, the attribute GivenName applies to everything that

is an instance of Element and this taxonomy enables declaring this attribute type only

once to the Element class, instead of assigning it to five classes in the third column. The

methods declared in higher-level classes can also be inherited and overloaded in the

subclasses as necessary. In Table 5.2 through Table 5.11, these classes are described

using their notional description (natural English), formal description (pseudo code), and

graphical description that is used for rendering their instances. Table 5.2 illustrates the

entity class Element.

 137

Table 5.2: Layer 1 entity: Element

Notional

Description

The most abstract class from which all entity classes are inherited. It

holds data members and methods common to all entities, such as the

GivenName string and the methods for drawing and editing them.

Class

Description

Class Element {} // Base Class

{

// Data members

String GivenName; // Name string of the instance

Point GeometricCenter; // Location of the instance on screen

Point[int n] AnchorPoints; // Points where other elements can be attached

// Public virtual methods - declared here, but implemented in subclasses

virtual OnDraw(); // Draw the element

virtual OnSelect(); // Select the element

virtual OnHighlight(); // Highlight the element for selection

virtual OnDelete(); // Delete the element

virtual OnMove(); // Move the element

virtual OnCopy(); // Copy the element

virtual OnSave(); // Save the element

virtual OnLoad(); // Load the element

}

Instance

rendering

None – not an instantiable class

Table 5.3 illustrates the entity class Node.

 138

Table 5.3: Layer 1 Entity: Node

Notional

Description

The Node class is used to distinguish the nodes of a function structure

(functions and environments) from the flows. This class passes down the

data members form Element to Verb and Environment through inheritance

and defines one method for computing vertices of the geometric shapes

(blocks and hexagons) of functions and environments. The abstract

identity of functions and environments as nodes is used by classes such as

Noun, which accepts only Node instances as TailNode and HeadNode,

thus giving algorithmic flexibility to look for Node instances when

querying the terminals of a flow, rather than once looking for functions

and then for environments.

Class

Description

Class Node : Element {} // Inherited from Element

{

virtual ComputeBlockCoordinates(); // Geometric coordinates for rendering

}

Instance

rendering

None – not an instantiable class

Table 5.4 illustrates the entity class Noun.

 139

Table 5.4: Layer 1 entity: Noun

Notional

Description

Noun is the abstract superclass for the flow classes Material, Energy, and

Signal. Inherited from Element, it has the data members and methods that

apply to all flow types, irrespective of their subtype.

Class

Description

Class Noun : Element {} // Inherited from Element

{

// Data members

Node* pTailNode; // Pointer to tail node (any subtype)

Node* pHeadNode; // Pointer to head node (any subtype)

Noun* pCarrierFlow; // Pointer to carrier flow instance

Point TailPoint; // Location of the tail point on screen

Point HeadPoint // Location of the head point on screen

// Methods

virtual AssignCarrierFlow; // Implemented in Energy and Signal classes

}

Instance

rendering

None – not an instantiable class

Table 5.5 illustrates the entity class Verb.

 140

Table 5.5: Layer 1 entity: Verb

Notional

Description

Verb is the class for deriving function instances. It contains only

geometric data that allows constructing the function block. It inherits the

Rectangle class, available in most graphics-based development

environments such as MFC [167, 168], for this purpose. All methods

required for drawing and editing are inherited from the Element class,

although overridden specifically within this class.

Class

Description

Class Verb : Node, Rectangle {} // Inherited from Node and Rectangle

{

ComputeBlockCoordinates(); // Computes the rectangle vertices

}

Instance

rendering

Table 5.6 illustrates the entity class Environment.

 141

Table 5.6: Layer 1 entity: Environment

Notional

Description

Environment is the class for deriving environment instances. It is similar

to the Verb class, except that its local implementation of the drawing and

editing functions are written to draw hexagonal shapes.

Class

Description

Class Environment : Node {} // Inherited from Node

{

ComputeBlockCoordinates(); // Computes the hexagon vertices

}

Instance

rendering

Table 5.7 illustrates the entity class Source.

Table 5.7: Layer 1 entity: Source

Notional

Description

Source is a class for introducing new flows to the scope of a model. Its

instances can only output flows. They cannot input flows.

Class

Description

Class Source : Environment {} // Inherited from Environment

{

// None required - the Source behavior is controlled by grammar rules

// applied during the construction of Noun instances - their HeadNode

// cannot point to a Source instance.

}

Instance

rendering

Table 5.8 illustrates the entity class Sink.

 142

Table 5.8: Layer 1 entity: Sink

Notional

Description

Sink is a subclass of Environment for dismissing flows out of the scope of

the model. Its instances can only input flows. They cannot output flows.

Class

Description

Class Sink : Environment {} // Inherited from Environment

{

// None required - the Sink behavior is controlled by grammar rules

// applied during the construction of Noun instances - their TailNode

// cannot point to a Sink instance.

}

Instance

rendering

Both Verb and Environment class instances are often queried in the algorithms for

their input and output flow lists of the three types (Material, Energy, and Signal). In

order to access this topologic connection from the Node, Verb, or Environment classes,

lists of flow pointers such Figure 5.2 could be included in the Node superclass. However,

a function can have infinitely many input and output flows, while a flow can have only

two terminals: head and tail. This character of flows allows easier management of

topologic information from the Noun class, as by knowing a fixed number of pointers—

HeadNode and TailNode—for each flow, the entire graph’s topology can be known. If

the lists in Figure 5.2 were used to manage topologic connections, each function would

have six lists and each list would contain an unknown number of flows, thus calling for

dynamic array management challenges.

 143

Including the two Node pointers as well as the lists in Figure 5.2 would cause

redundancy of information and loss of normality of the representation. Often, such

redundancy is intentionally designed into formal representations. For example, in the

boundary representation [32, 33], each edge is accompanied by a co-edge, whose

parameter value increases in the opposite direction of the edge and whose vertices are

ordered backwards. This redundant co-edge is used to trace an edge in the reverse

direction in algorithms such as face stitching [34]. In the proposed function

representation, such redundancy is intentionally avoided. When the list of flows attached

to a node is needed by an algorithm, the list is composed at runtime by looping through

the flows and checking if its head or tail is attached to the node. These temporary lists

are stored in a class that represents the model, as discussed in Chapter 6.

List <Element*> pInMaterialList; // List of input Material flows

List <Element*> pOutMaterialList; // List of output Material flows

List <Element*> pInEnergyList; // List of input Energy flows

List <Element*> pOutEnergyList; // List of output Energy flows

List <Element*> pInSignalList; // List of input Signal flows

List <Element*> pOutSignalList; // List of output Signal flows

Figure 5.2: Redundant topologic data elements not captured in any class

The three classes inherited from Noun have a special method called

AssignCarrierFlow that computes the valid carrier types for each flow type. In Material,

it sets the pointer pCarrierFlow to NULL. In the Energy and Signal classes, it does two

things: (1) it assigns the carrier flow to the instantiated flow and (2) it finds out which

end of the instantiated flow is not connected to a node and assigns the corresponding

 144

node of the carrier to the carried flow. For example, in Figure 5.3, queries on the

TailNode, HeadNode, and CarrierFlow attributes of M1 and E1 would return the

followings. The two bold faced assignments are performed by AssignCarrierFlow.

1. M1.TailNode = NULL, M1.HeadNode = Function1, M1.CarrierFlow = NULL

2. E1.TailNode = Function2, E1.HeadNode = Function1, E1.CarrierFlow =

M1.

For the graphical depiction of the carrier relationship, the OnDraw() method

implemented in the class of E1 ensures that E1.HeadPoint is attached to an AnchorPoint

of M1.

Figure 5.3: Assignment of carrier flow, head node, and tail node based on flow type

Table 5.9 illustrates the entity class Material.

 145

Table 5.9: Layer 1 entity: Material

Notional

Description

Material is the class to instantiate material flows. It inherits all properties

from Noun. The only two additional data members are (1) the list of child

flows, which must be of the type Material, in order to avoid conversion

between material and energy or signal, and (2) the overridden method

AssignCarrierFlow.

Class

Description

Class Material : Noun {} // Inherited from Noun

{

// Data members

List <Material*> ChildList; // List of derived flows (conservation)

// Methods

AssignCarrierFlow(); // Set Noun* pCarrierFlow = NULL

// in this local implementation in Material

}

Instance

rendering

Table 5.10 illustrates the entity class Energy.

 146

Table 5.10: Layer 1 entity: Energy

Notional

Description

Energy is similar to the Material class, with the difference that its children

are all Energy instances and it can be carried by Material instances only.

Class

Description

Class Energy : Noun {} // Inherited from Noun

{

// Data Members

List <Energy*> ChildList; // List of derived flows (conservation)

//Methods

// The carrier instance is limited to only Material instances

// by a method (local grammar) called by the class constructor.

// This method also assigns the head or tail node of a flow to the

// respective node of the carrier, depending on which end is undefined.

AssignCarrierFlow(); // Carrier flow selection method

}

Instance

rendering

Table 5.11 illustrates the entity class Signal.

 147

Table 5.11: Layer 1 entity: Signal

Notional

Description

Energy is similar to the Material class, with the difference that it does not

have any children and must be carried by a Material or an Energy

instance.

Class

Description

Class Signal : Noun {Noun* pCarrierME}

// Inherited from Noun

{

pTailNode NULL; // Signals are not produced by a function

AssignCarrierFlow(); // Carrier flow selection method

// No other declaration is nece

ssary

}

Instance

rendering

Some behaviors of instances are dictated directly by their definitions, while some

are controlled by the local grammar rules. For example, the choice of the class Node for

the flow attributes HeadNode and TailNode is built within the definition of the Noun

class and prevents anything but a node to be used as a flow terminal. By contrast, the

selection of carrier flow type depends on the flow type, since Material does not have a

carrier, Energy can be carried only be Material, and Signal must be carried by either

Energy or Material. While these carrier relationships could be separately declared in the

respective classes, such as “Material* pCarrierFlow;” within the Energy class, it would

remove the ability of accessing the carrier of a flow without knowing its type (Material,

Energy, or Signal). For example, when the head of a carrier flow is rerouted from one

node to another node, the carried flow’s head node also must be rerouted accordingly.

 148

This editing can be done without knowing the type of the carrier and carried flows,

because the CarrierFlow attribute can be accessed from the generic Noun class. Keeping

the names of the methods AssignCarrierFlow the same between the two classes and the

superclass Noun also adds the flexibility that after rerouting, this method can be called

from the Noun class irrespective of their subtype to check for valid carrier relationships.

5.1.2 Layer 1 Vocabulary of Relation Types

Table 5.12 describes the relation types in the symbolic layer of the representation.

Table 5.12: Layer 1 relation types and descriptions

Relation In Class Description

HeadNode

(Input)

Noun HeadNode is a relation between a flow and a node and

indicates the node to which the head of the flow is connected.

From function modeling point of view, it indicates by which

function is the flow used next, or to which environment

instance does the flow exit the functional scope of the model.

To ensure that the head of a flow can be connected only to a

node (function or environment), the attribute data type is set to

Node (Table 5.4). For ease of reference, the HeadNode

relation is sometimes called the input relation, since a flow is

an input to its head node.

TailNode

(Output)

Noun TailNode is a relation between a flow and a node and indicates

the node to which the tail of the flow is connected. From

 149

Relation In Class Description

function modeling point of view, it indicates by which

function is the flow produced, or from which environment

instance does the flow enter the functional scope of the model.

To ensure that the head of a flow can be connected only to a

node (function of environment), the attribute data type is set to

Node (Table 5.4). For ease of reference, the TailNode relation

is sometimes called the output relation, since a flow is an

output from its tail node.

CarrierFlow Noun CarrierFlow is a relation between a flow and another flow. It

provides for modeling situations where one flow carries

another flow with it. For example, a flow of hot air carries

with it kinetic energy and thermal energy.

Child_M Material Child_M is a relation between two sets of Material flows and

indicates the conservation of the first set in form of the second

set. For example, in a chemical reaction, the set of reactants

input to the reaction are conserved as the set of products of the

reaction.

Child_E Energy Child_E is a relation between two sets of Energy flows and

indicates the conservation of the first set in form of the second

set. For example, when electrical energy enters a motor, it

produces many forms of output energy, including mechanical

 150

Relation In Class Description

work, heat, and sound. These output flows are the children of

the electrical energy, as the electrical energy is conserved as

these flows across a function.

Child_M and Child_E relationships exist only between flows that are across a

function instance. For ease of reference, the inverse of a Child relation is called the

Parent relation.

5.1.3 Layer 1 Vocabulary of Attribute Types and their Correspondence

Table 5.13 describes the attributes of the classes, along with their data types.

Table 5.13: Layer 1 attributes and descriptions

Attribute In Class Data

Type

Description

GivenName Element String GivenName uniquely identifies every

instance in a model. The designer enters a

value to this attribute for every instance by

giving the instance a name at the time of

construction. Methods are written at the

model-level classes to avoid duplication of

given names.

HeadPoint Noun Point HeadPoint indicates the geometric location of

 151

Attribute In Class Data

Type

Description

the head of a flow instance on the screen. It

is used to select and edit flow instances and

to route the head of a flow to anchor points of

the head node.

TailPoint Noun Point TailPoint indicates the geometric location of

the tail of a flow instance on the screen. It is

used to select and edit flow instances and to

route the tail of a flow to anchor points of the

tail node.

GeometricCenter Element Point GeometricCenter is the geometric location of

the center of an instance on the screen and is

used to perform operations such as highlight

and select, which are typically followed by

edit operations.

AnchorPoints[n] Element Point AnchorPoints[n] is an array of Point data

type that holds the possible geometric points

where instances can be connected to each

other, such as a flow connected to a function

or to its carrier flow.

 152

5.2 Layer 1 Local Grammar

Except for the trivial cases where a model entirely comprises of only one entity

instance, entities must be connected through relations to form a model. Local grammar

rules control how entities can be related in a model, by imposing constraints on these

relations. Specifically, they prevent connecting instances in a manner that is logically

prohibited by the definitions of their own classes, thus ensuring consistency (absence of

self-conflict) in the model. These rules are part of the representation, as they are applied

at the time of instantiation and control what constructs can and cannot be added to a

model, rather than checking a model post-construction for adherence to rules. For

example, the definitions of the classes listed above lead to a local grammar rule that

prevents a flow to go from one carrier flow to another carrier flow directly. The

implication of including this rule in the local grammar is that a properly implemented

software based on this representation would make it impossible in the first place to

construct the model in Figure 5.4. This behavior is similar to the impossibility of

instantiating an edge with three vertices using the boundary representation, as the Edge

class requires an Edge instance to be bounded by exactly two Vertex instances.

Figure 5.4: An internally inconsistent model of a heat exchange function

Hot water

Cold water

Heat

 153

As discussed in Section 1.2.4, in the absence of rigorous formalism of function

structure construction, the onus of internal consistency and external validity of models

lies on the designer and therefore cannot be ensured. For example, models in the Design

Repository [50, 53] show many examples of elements that conflict with their own class

definitions (internal inconsistency) and elements that violate laws of conservation

(external invalidity), as illustrated in Figure 2.8. By writing and implementing local

grammar rules like the one mentioned above, the onus of internal consistency can now be

borne by the design of the tool’s underlying representation, rather than the designer.

However, model validity against external knowledge such as natural laws is not borne by

the local grammar and external reasoning algorithms for model validation must be written

to ensure that validity. These rules are implemented at the time of reasoning, as opposed

to within the representation, and are therefore referred to as global model validation rules.

The significance of local grammar becomes clearer when compared to global

model validation rules. Both local and global rules are used to ensure model correctness,

although at different levels. The local rules decide whether or not a model is permitted to

exist, while the global rules examine if an existing model adheres to some external

standard, such as conservation laws. Thus, local grammar ensures consistency (internal)

and global rules ensure validity (external). Local grammar rules are applied at

instantiation time, while global rules are executed after model construction, to support

reasoning [102, 169-171].

 154

A local grammar depends on the collective commitment made in the definitions of

all terms in the vocabulary. For example, Figure 5.4 could be interpreted as a model of

heat transfer between two water flows at different temperatures, as in a heat exchanger.

The modeling construct of adding the tail of the heat flow to a material flow (cold water)

is permitted in isolation by the declaration of carrier flows in the Noun class. Similarly,

the carrier relation at the head of the flow is also individually permitted, when the other

relation is ignored. However, this model is unacceptable as a whole, because it creates

ambiguity about the carrier flow of Heat and violates the Noun class definition, since that

class defines only one CarrierFlow data member.

Further, this modeling construct contradicts with the definition of function and

flow states. State of a flow is defined by the unique combination of its attribute and

relation values. Two flows are different (Section 1.2.6) when they are of different types

or they are of the same type but at least one attribute or relation value is different between

them. Thus, if there are two flows in a model that are of the same type and have the same

state, they are indeed the same flow instance and the model is redundant by showing it

twice. In the proposed representation, the CarrierFlow relation is included in defining the

state of a flow. Thus, heat carried by the hot fluid and that carried by the cold fluid must

be two different flow instances, as a difference exists between them in the relation

CarrierFlow. Thus, by definition of function, (Section 1.2.7), a function must be

involved causing the change of state. In the case of the heat exchanger, this function is

the conductive transfer of heat from the hot water to the cold water through a medium

such as a pipe wall. Thus, while parts of the model in Figure 5.4 individually agree with

 155

the definition of carrier flows, the model as a whole violates the collective definitions of

flow, state, and function. A function is needed to make the model consistent with these

definitions, as shown in Figure 5.5.

Figure 5.5: The consistent construct of the heat exchange function

Notably, the resulting model still violates known laws of nature, as it does not

capture the state change of the water flows, such as the hot water becoming colder and

the cold water becoming hotter, and it does not account for heat losses. However, these

laws are not part of the definitions of terms within the representation, and thus are

examples of external invalidity rather than internal inconsistency. Thus, Figure 5.4

exemplifies internal inconsistency, whereas Figure 5.5 is internally consistent yet

externally invalid.

The local grammar for the proposed representation is discussed next. There are

three types of modeling constructs that represents relations between the entities: (1)

HeadNode and TailNode relations are rendered as the head or tail of an arrow connected

to a node, (2) CarrierFlow relations are modeled as a flow head entering or a flow tail

leaving the stem of another flow arrow, and (3) Child relation is modeled as derivation

dotted lines across a function. These three types are separately presented next, using

unary and binary rules.

 156

5.2.1 Unary Grammar Rules for Input-Output Relations (HeadNode, TailNode)

Table 5.14 states the unary rules for the input-output connections.

Table 5.14: Layer 1 grammar rules: Unary input-output relations

Rule 1 A flow of any subtype must have exactly one head node (function or

environment).

Rule 2 A flow of subtype Material (M) or Energy (E) must have exactly one tail node.

Rule 3 A flow of subtype Signal (S) has no tail node.

Rule 4 Nodes (function, environment) cannot be input or output to each other.

Rule 5 Flows cannot be input or output to each other.

A unary rule determines if a relation between two elements is permitted to exist in

a model construct. As illustrated earlier, it is possible to have connections that are

acceptable in isolation but not when used in combination with other connections (e.g., the

two carrier relations in Figure 5.4). Thus, it is important to distinguish between

connections that are prohibited at all from those that are prohibited only when combined

with other connections. The benefit is that for connections that are prohibited at the

unary level, it is unnecessary to test if they are permitted at the binary level, in

combination with some other connection. Table 5.15 shows possible input-output

modeling constructs controlled by these rules. Since an input or output relation involves

exactly two entities, a total of 3 × 3 = 9 permutations of the form {left entity, right entity}

need to be examined, as shown in the table. Further, constructs whose permissions

depend on the flow subtypes are explicitly shown. Flows that are labeled as “Flow<n>”

 157

represent any subtype. For each construct, the status is shown with a green check

(permitted) or a red cross (prohibited). The rule number that determines the status is

shown below the status, using “Ref”.

Table 5.15: Constructs controlled by the unary input-output rules

 Left entity
Function Flow Environment

R
ig

h
t

en
ti

ty

F
u

n
ct

io
n

Construct 1

Ref: Rule 4

Construct 2

Ref: Rule 1

Construct 3

Ref: Rule 4

F
lo

w

Construct 4

Ref: Rule 2

Construct 5

Ref: Rule 5

Construct 6

Ref: Rule 2

Construct 7

Ref: Rule 3

Construct 8

Ref: Rule 3

 158

 Left entity
Function Flow Environment

E
n

vi
ro

n
m

en
t

Construct 9

Ref: Rule 4

Construct 10

Ref: Rule 1

Construct 11

Ref: Rule 4

These rules are consequences of the class definitions. For example, Rule 1

directly follows from the declaration of one HeadNode and one TailNode pointer in the

Noun class. These pointers point to Node instances by the same definition, which

explains Rule 5. Similarly, Rule 3 follows from the definition of Signal, which prevents

a tail node of a signal flow. In this manner, the rules ensure that constructs inconsistent

with the definition of the classes are not permitted in a model. These rules do not impose

any constraint on the number of flows attached to a node. These constraints are added

later, in Rule 24 and Rule 25 in Table 5.23. Examples of these constructs are found in

each of the modeling steps in Section 4.1.

5.2.2 Unary Grammar Rules for Carrier-Carried Relations

Table 5.16 describes the unary rules for the carrier-carried relationship.

Table 5.16: Layer 1 grammar rules: Unary carrier-carried relations

Rule 6 A flow can have at most one carrier.

Rule 7 A flow of type Material or Energy can have null carrier (not a carried flow).

Rule 8 A flow of type Signal must always have a carrier.

Flow6 E5

 159

Rule 9 A Material flow can carry one or more flows of subtypes Energy and Signal,

but not Material.

Rule 10 An Energy flow can carry one or more flows of subtype Signal, but not of

Material or Energy.

Rule 11 A Signal flow cannot carry any flow of any subtype.

Table 5.17 describes the modeling constructs controlled by these rules. Since the

carrier-carried relation can only exist between two flows, four possibilities for carrier

flows emerge for each of the three types of carried flows, thus producing 3 × 4 = 12

permutations of the form {carried flow, carrier flow}, which are captured in the table.

Examples of energy and signal carried by material flows are found in Model State 4.14,

where kinetic and thermal energy, as well as the temperature signal, are carried by a hot

air flow. An example of signal carried by energy is voltage signal carried by electrical

energy flows in various transducers or current signal carried by electrical energy flow in

circuit breakers. All other carrier relations are invalid. Signals do not exist in their own

identity since they are not physical entities such as material or energy flowing through a

device. They are manifested when one or more of the attributes values associated with a

carrier flow meets a condition, such as the temperature of Air2 in Model State 4.14

becoming higher than a preset magnitude. Thus, a signal flow always needs to be carried

by a flow, whose attributes are decoded or interpreted as signals by a function. For the

same reason, signal flows cannot carry any other flows. Rule 6 is used in each cell of the

table. A construct that violates Rule 6 is shown in Figure 5.5, where a flow is shown to

have two carrier flows. This construct is examined later in Table 5.26.

 160

Table 5.17: Constructs controlled by the unary carrier-carried rules

 Carrier flow subtype
Null Material Energy Signal

C
ar

ri
ed

 f
lo

w
 s

u
b

ty
p

e

M
at

er
ia

l

Construct 12

Ref: Rule 6,

Rule 7

Construct 13

Ref: Rule 9

Construct 14

Ref: Rule 10

Construct 15

Ref: Rule 11

E
n

er
gy

Construct 16

Ref: Rule 6,

Rule 7

Construct 17

Ref: Rule 9

Construct 18

Ref: Rule 10

Construct 19

Ref: Rule 11

S
ig

n
al

Construct 20

Ref: Rule 6,

Rule 8

Construct 21

Ref: Rule 9

Construct 22

Ref: Rule 10

Construct 23

Ref: Rule 11

5.2.3 Unary Grammar Rules for Parent-Child Relations

Table 5.18 describes the unary rules for the parent-child relationship.

M7 S3

M6

E7 S4

E6

S5

S6

 161

Table 5.18: Layer 1 grammar: Unary parent-child relations

Rule 12 A flow can be the child of another flow (parent) only if the parent is input to

the function of which the child flow is an output.

Rule 13 A Material flow can have one or more children, all of which must be of type

Material.

Rule 14 A Material flow can have one or more parents, all of which must be of type

Material.

Rule 15 A set of Material flows can be the children of another set of Material flows,

where individual derivations are intractable.

Rule 16 An Energy flow can have one or more children, all of which must be of type

Energy.

Rule 17 An Energy flow can have one or more parents, all of which must be of type

Energy.

Rule 18 A set of Energy flows can be the children of another set of Energy flows,

where individual derivations are intractable.

Rule 19 A Signal flow cannot be the child of any flow.

Rule 20 A Signal flow cannot have any child flow of any type.

Table 5.19 shows the permutations of model constructs that are controlled by

these rules. There are three flow subtypes (Material, Energy, Signal) between which

parent-child relations are examined, resulting in 3 × 3 = 9 permutations of the form

{parent flow, child flow}. Within each cell, there are three options for cardinality (one in

many out, many in one out, and many in many out), resulting into a total 9 × 3 = 27 sub-

 162

permutations (Construct 24 through Construct 50). All constructs in this table satisfy

Rule 12. Figures are included only for the consistent constructs.

Table 5.19: Constructs controlled by the unary parent-child rules

 Parent flow
Material Energy Signal

C
h

il
d

 f
lo

w

M
at

er
ia

l

Construct 24

One-in-many-out

Ref: Rule 13

Construct 25

One-in-many-out

Ref: Rule 16, Rule 14

Construct 26

One-in-many-out

Ref: Rule 20, Rule 14

Construct 27

Many-in-one-out

Ref: Rule 14

Construct 28

Many-in-one-out

Ref: Rule 16, Rule 14

Construct 29

Many-in-one-out

Ref: Rule 20, Rule 14

 163

 Parent flow
Material Energy Signal

Construct 30

Many-in-many-out

Ref: Rule 15

Construct 31

Many-in-many-out

Ref: Rule 16, Rule 14

Construct 32

Many-in-many-out

Ref: Rule 20, Rule 14

E
n

er
gy

Construct 33

One-in-many-out

Ref: Rule 13, Rule 17

Construct 34

One-in-many-out

Ref: Rule 16

Construct 35

One-in-many-out

Ref: Rule 20, Rule 17

Construct 36

Many-in-one-out

Ref: Rule 13, Rule 17

Construct 37

Many-in-one-out

Ref: Rule 17

Construct 38

Many-in-one-out

Ref: Rule 20, Rule 17

 164

 Parent flow
Material Energy Signal

Construct 39

Many-in-many-out

Ref: Rule 13, Rule 17

Construct 40

Many-in-many-out

Ref: Rule 18

Construct 41

Many-in-many-out

Ref: Rule 20, Rule 17

S
ig

n
al

Construct 42

One-in-many-out

Ref: Rule 19, Rule 13

Construct 43

One-in-many-out

Ref: Rule 19, Rule 16

Construct 44

One-in-many-out

Ref: Rule 19, Rule 20

Construct 45

Many-in-one-out

Ref: Rule 19, Rule 13

Construct 46

Many-in-one-out

Ref: Rule 19, Rule 16

Construct 47

Many-in-one-out

Ref: Rule 19, Rule 20

Construct 48

Many-in-many-out

Ref: Rule 19, Rule 13

Construct 49

Many-in-many-out

Ref: Rule 19, Rule 16

Construct 50

Many-in-many-out

Ref: Rule 19, Rule 20

In summary, material is conserved as material and energy is conserved as energy

only. Although conversion from material to energy is possible physically, such as in

 165

nuclear reactions, Construct 33, Construct 36, or Construct 39 are not allowed in this

representation, as allowing them would make it difficult for the reasoning algorithms to

distinguish nuclear reactions that convert mass to energy from models that are subject to

the separate laws of mass and energy conservation and yet show one of these three

constructs due to oversight or wrong ideation. It is anticipated that devices and principles

that are subject to the separate conservation laws of mass and energy will be more

frequently encountered in mechanical design projects than nuclear reactions. By design,

this decision reduces the representation’s coverage over nuclear phenomena. However,

in the design of a nuclear power plant, this compromise would only eliminate the ability

to model the nuclear fuel and reaction principles, while retaining coverage over the other

principles and devices. Even in a nuclear plant, most machinery such as boilers, turbines,

and heat exchangers are subject to the separate conservation laws and can still be

modeled.

The need for conservation does not apply to signals, as they are not entities that

exist on their own. Signals are realized as the attribute values of a material or energy

flow satisfy a condition that is previously agreed upon between the sender and the

recipient as a message. For example, in a thermostat, a signal to actuate an electrical

switch may be manifested by the temperature attribute of a material flow satisfying a

condition. The material flow itself is not the signal, since it could exist even if its

temperature was not measured. Temperature is not a signal, as it is not a flow, rather, an

attribute of a flow. The phenomenon of the temperature attribute satisfying the condition

is what is interpreted by another device as the signal. Thus, the existence of a signal flow

 166

requires the presence of the interpreting device or function. Nothing is consumed to

produce this signal, nor is the signal consumed to produce anything. Thus, signals are not

conserved.

The 27 cells in Table 5.19 describe topological configurations that satisfy Rule

12. Ideally, there are 27 similar permutations of type and cardinality for the topology

where the parent flow set is not input to the function that produces the children set and 27

more for when the children are not output from the function to which the parent set is

input. In between these two, there are many more possibilities depending on the exact

count of flows in the parent and child sets for some flows in a set being input or output to

a function across which conservation is examined. Table 5.20 summarizes the status

outcomes of these constructs using only nine simplified permutations. There are three

ways by which each of the parent and the child flow can be related to a function through

the input-output relation: (1) the flow is input to the function, (2) the flow is output from

the function, and (3) the flow is not connected to the function. Thus, there are a total of 3

× 3 = 9 permutations to be considered. For each case, the cell illustrates the status of the

construct as per Rule 12. For simplicity, the terms Parent and Child include all flow

subtypes. The status applies to all cardinality options, although the illustrations use one-

in-one-out. With these simplifications, these nine permutations cover all possibilities

explained above.

 167

Table 5.20: Constructs controlled by the unary parent-child rules (Rule 12)

 Parent
Input Output None

C
h

il
d

In
p

u
t

Construct 51

Ref: Rule 12

Construct 52

Ref: Rule 12

Construct 53

Ref: Rule 12

O
u

tp
u

t

Construct 54

Ref: Rule 12

Construct 55

Ref: Rule 12

Construct 56

Ref: Rule 12

N
on

e

Construct 57

Ref: Rule 12

Construct 58

Ref: Rule 12

Construct 59

Ref: Rule 12

5.2.4 Binary Grammar Rules for Input-Output Relations

The binary grammar rules examine if two relations can coexist in a construct. For

input-output relations, these rules examine if the two ends of a flow can be connected to a

 168

certain permutation of nodes (functions and environments). Table 5.21 states the binary

input-output rules.

Table 5.21: Layer 1 grammar: Binary input-output relations for flows

Rule 21 A flow of subtype Material or Energy can be output from a node and input to a

different node.

Rule 22 A flow of any type cannot be output from and input to the same node.

Rule 23 A flow of any type cannot have environment instances as both HeadNode and

TailNode.

For a binary construct to be permitted, all unary constructs used within it must be

permitted. However, all binary constructs composed of permitted unary constructs are

not necessarily permitted. For example, a binary construct where a Signal flow output

from a function block is input to another function block is prohibited as it contains a

prohibited unary construct where a Signal flow is produced by a function (see Construct 7

in Table 5.15). However, although a binary construct where a flow is output from and

input to the same function is permitted by combining the unary Construct 2 and Construct

4, it is not permitted as a binary construct. Those relations are not allowed to coexist, as

they imply circular dependency (see Table 5.22). Thus, the legality of the constituent

unary constructs is a necessary but not sufficient condition for the legality of a binary

construct. Table 5.22 illustrates only those binary constructs that are composed of the

permitted unary constructs. For each row, the unary constructs used to compose the

binary construct are mentioned in the first two columns, while the rule used to determine

 169

the status is mentioned in the Ref. column. The flows in each case indicate either

Material or Energy subtype, as Signal flows are not permitted to have tail nodes.

Table 5.22: Constructs controlled by the binary input-output rules

Tail
node

Head
node

Binary Construct Ref. Rationale

F
un

ct
io

n
C

on
st

ru
ct

 4

F
un

ct
io

n
(o

th
er

)
C

on
st

ru
ct

 2

Construct 60

R
ul

e
21

The flow is produced by an

action of the device and

used by another.

F
un

ct
io

n
C

on
st

ru
ct

 4

E
nv

ir
on

m
en

t
C

on
st

ru
ct

 1
0

Construct 61

R
ul

e
21

The flow is produced by an

action of the device and

further actions on it are not

in the model scope. This

construct is analogous to the

verb Export in the

Functional Basis.

E
nv

ir
on

m
en

t
C

on
st

ru
ct

 6

F
un

ct
io

n
C

on
st

ru
ct

 2

Construct 62

R
ul

e
21

The flow is used by an

action of the device, but the

previous action that

produced it is not in scope.

This construct is analogous

to the verb Import in the

Functional Basis.

 170

Tail
node

Head
node

Binary Construct Ref. Rationale
E

nv
ir

on
m

en
t

C
on

st
ru

ct
 6

E
nv

ir
on

m
en

t (
ot

he
r)

C

on
st

ru
ct

 1
0

Construct 63

 R
ul

e
23

Environments are boundary

entities of a model. The

flow thus connected never

entered the model, and is

thus redundant.

F
un

ct
io

n
C

on
st

ru
ct

 4

F
un

ct
io

n
(s

am
e)

C

on
st

ru
ct

 2

Construct 64

R

ul
e

22

Since each flow arrow

represents one state of the

flow, the function outputs

the flow in the same state as

input, and is thus redundant.

E
nv

ir
on

m
en

t
C

on
st

ru
ct

 6

E
nv

ir
on

m
en

t (
sa

m
e)

C

on
st

ru
ct

 1
0

Construct 65

R
ul

e
22

Environments are boundary

entities of a model. The

flow thus connected never

entered the model, and is

thus redundant.

Table 5.22 only includes constructs of the form {node, flow, node}. Two more

constructs—of the form {flow, node, flow}—are possible for the two subtypes of nodes.

Table 5.23 describes the binary rules for these constructs, where two or more input-

output relations are considered for a node.

E3

(M E)5

 171

Table 5.23: Layer 1 grammar: Binary input-output relations for nodes

Rule 24 A function has no restriction on the number and type of input and output flows

attached to it, as long as the flow constraints are satisfied.

Rule 25 An environment instance can be either source or a sink, but not both.

Table 5.24 illustrates the constructs controlled by these two rules. As before, the

flows include Material and Energy instances, but not signals, as they cannot have tail

nodes. The rules apply for all options of cardinality, although the figures are drawn using

the one-in-one-out cardinality.

Table 5.24: Constructs controlled by the binary input-output rules

Environments represent boundaries of the modeling scope. By choice, it is

decided that in a model, each environment is either a source of flows or a sink of flows.

A flow through an environment instance can exist only when two models are joined or

Tail
node

Head
node

Binary construct Ref. Rationale

F
un

ct
io

n
C

on
st

ru
ct

 4

F
un

ct
io

n
(s

am
e)

C

on
st

ru
ct

 2

Construct 66

R
ul

e
24

This construct can occur

when a function receives a

flow and produces its

derivative.

E
nv

ir
on

m
en

t
C

on
st

ru
ct

 6

E
nv

ir
on

m
en

t
(s

am
e)

C

on
st

ru
ct

 1
0

Construct 67

R
ul

e
25

See rationale below.

 172

composed. Here, a flow produced by one model (Flow1) is used by another model as

input (Flow2). Grammar rules could be written to allow junctions of this type

temporarily and to check if the two flows are at the same state, in which case the

operation could be finished by destroying the environment instance and connecting the

two flows. However, this operation is out of the scope of this research.

5.2.5 Binary Grammar Rules for Carrier-Carried Relations

By definition of the class Noun (Table 5.4), each flow can have at most one

carrier and thus, the carrier relation is inherently unary. Further, the unary constructs in

Table 5.17 illustrate that only three types of carrier-carried relations are valid: (1)

material carrying energy, (2) material carrying signal, and (3) energy carrying signal.

However, the definition of Noun or the unary rules do not describe how carried flows can

added to or extracted from their carrier flows. The binary rules impose those constraints.

Table 5.25

Table 5.25: Layer 1 grammar: Binary carrier-carried relations

Rule 26 A carried Energy flow can be added to a carrier Material flow only by the node

that outputs the carrier Material flow.

Rule 27 A carried Energy flow must be extracted from a carrier Material flow as input

by the node that inputs the carrier Material flow.

Rule 28 A signal flow is never added to a carrier flow.

Rule 29 A carried signal flow can be extracted from its carrier by the same or a

different node that inputs the carrier flow.

 173

Rule 30 Addition and extraction of a carried flow to and from a carrier flow cannot be

accomplished without an intervening function.

Rule 31 A node can input a carried flow only if its carrier flow is also an input to the

node.

Rule 32 A node can output a carried flow only if its carrier flow is also output by the

node.

Table 5.26 illustrates the modeling constructs controlled by these rules. In the

last cluster in this table, rules are mentioned that apply to all subtypes of carrier and

carried flows. These rules depend on the head and tail connections of both carrier and

carried flows, as mentioned in columns 2 through 5. The rationale for each rule is

provided following the table, using reference to construct numbers.

Table 5.26: Constructs controlled by the binary carrier-carried rules

R
el

at
io

n

C
ar

ri
ed

fl

ow
 t

ai
l

C
ar

ri
ed

fl

ow
 h

ea
d

C
ar

ri
er

fl

ow
 t

ai
l

C
ar

ri
er

fl

ow
 h

ea
d

Binary construct
St. Ref.

N
od

e

C
ar

ri
er

N
od

e
(s

am
e)

Construct 68

R
ul

e
26

Construct 69

R
ul

e
26

E1 M2

E2

 174

N
od

e

C
ar

ri
er

¬
 N

od
e

(s
am

e)

Construct 70

R
ul

e
26

R

ul
e

32

Construct 71

R
ul

e
26

R

ul
e

32

M
at

er
ia

l c
ar

ry
in

g
en

er
gy

C
ar

ri
er

N
od

e

N
od

e
(s

am
e)

Construct 72

R
ul

e
27

Construct 73

R
ul

e
27

C
ar

ri
er

N
od

e

¬
 N

od
e

(s
am

e)

Construct 74

R

ul
e

27

R
ul

e
31

Construct 75

R
ul

e
27

R

ul
e

31

C
ar

ri
er

Construct 76

R
ul

e
28

 175

M
at

er
ia

l O
R

 e
ne

rg
y

ca
rr

yi
ng

 s
ig

na
l

C
ar

ri
er

N
od

e

N
od

e
(s

am
e)

Construct 77

R
ul

e
29

Construct 78

R
ul

e
29

C
ar

ri
er

N
od

e

¬
 N

od
e

(s
am

e)

Construct 79

R
ul

e
29

Construct 80

R
ul

e
29

A
ny

 c
ar

ry
in

g
an

y

C
ar

ri
er

C
ar

ri
er

 (
sa

m
e)

Construct 81

R
ul

e
30

C
ar

ri
er

C
ar

ri
er

 (
di

ff
er

en
t)

Construct 82

R
ul

e
30

C
ar

ri
er

C
ar

ri
er

’s
 ta

il

no
de

F
un

ct
io

n

Construct 83

R
ul

e
31

 176

C
ar

ri
er

C
ar

ri
er

’s
 ta

il

no
de

E
nv

ir
on

m
en

t

Construct 84

R
ul

e
31

C
ar

ri
er

’s
 h

ea
d

no
de

C
ar

ri
er

F
un

ct
io

n

Construct 85

R
ul

e
32

C
ar

ri
er

’s
 h

ea
d

no
de

C
ar

ri
er

E
nv

ir
on

m
en

t Construct 86

R
ul

e
32

Rationale behind the Binary Carrier-Carried Modeling Constructs

Construct 68. This construct represents the production of an energized flow. The

function outputs both the M1 and E1, while E1 leaves riding on M1.

An example is a flow of moving air (M1), which carries kinetic energy

(E1).

Construct 69. This construct is redundant, but not prohibited. It implies introduction

of an energized flow to a system. The energy flow is redundant, since

it can be modeled as input to the first function that uses it, as shown in

row 5. This construct is similar to the verb Import in the Functional

Basis.

Construct 70. The output of energy E3 is not prohibited. Its addition to the material

flow M3 is prohibited, since it does not capture for the state change of

the material due to this energy added. In this representation, each

 177

arrow is a specific flow state and the state cannot change from the tail

of the arrow to its head. For example, if E3 was heat and M3 was air,

it is not clear if M3 is the colder air or the hotter air. By definition of

function, a function must be present to depict the addition of heat to

air and the change of state, using two flows of air across the function.

Function2 only shows the production of heat, not the addition to air.

The example in row 1 has a similar construct, but the depiction that

M1 and E1 are produced by the same function, coupled with the fact

that E1 is carried by M1, indicates that the function not only produces

the energy, but also adds it to the material flow. Thus, there are two

fundamental actions lumped in Function1.

Construct 71. This construct is prohibited because of similar reasons explained

above, applied to environment instances instead of functions.

Construct 72. This construct is the input-side counterpart of row 1, and implies that

the function inputs the material flow M5 to extract its energy E5 to

perform its actions.

Construct 73. This construct is the export counterpart of row 2. The depiction of E6

is not incorrect, but redundant.

Construct 74. This construct is prohibited because of the reasons explained in row 3.

The change of state of M7 must be captured in a separate function.

Construct 75. This construct is prohibited for the same reasons explained above,

applied to environments.

 178

Construct 76. As explained earlier, signals are manifested when attributes of a

material or energy flow meets a previously agreed condition. This

condition is tested by the function that uses the signal, not by the

function that produces the carrier flow of the signal. For example, in

the air heater function structure (Model State 4.14), the temperature

attribute of Air2 is interpreted as a signal by the function Conduct EE.

The Transfer Air function, which produces Air2, is responsible for

causing the temperature attribute to change, but it does not influence or

depend upon the fact that this temperature attribute is used by another

function as a signal. For example, in an open-loop system, the

Transfer Air function would still produce Air2 at certain temperature

and would not change in terms of the types and count of flows. The

information transferred to Conduct EE is held in Air2, not in the

function that produces it. In this sense, a signal flow is never added by

anything to a carrier. A signal is only interpreted from the attributes of

a carrier.

Construct 77. It is possible and acceptable that the signal is used by a function that

also inputs the flow whose attribute is used as a signal. For example, a

circuit breaker uses the current attribute of an electrical energy flow

that it also inputs.

Construct 78. Similar argument as above, applied to environments.

 179

Construct 79. As explained with the air heater example, it is possible and acceptable

that an attribute of a flow is interpreted as signals by a function other

than the function that uses that flow. While this other function

(Function6) uses the information carried by the flow (M⋃E)4, it does

not perform a transformative action on the carrier flow, and thus

should not input it.

Construct 80. The same argument as above, applied to environments.

Construct 81. This construct is a redundant depiction of a carrier flow.

Construct 82. This construct violates the definition of the term function, as illustrated

in the beginning of Section 5.2, in context of Figure 5.4 and Figure

5.5.

Construct 83. By definition of function, an output flow at its state is the outcome of a

transformative action and is produced after the action is performed.

Thus, a flow carried by that output flow cannot be used by the

function, as that would imply circular dependency.

Construct 84. The same argument applies, for environment instances.

Construct 85. In symmetry to the above argument, an input flow is required to

perform the function and must therefore exist at its state before the

function is performed. Thus, an output of the function cannot be

carried by it, since the output is produced after the function execution.

Construct 86. Same argument as above, applies to environment instances.

 180

5.2.6 Special Grammar Rules for Layer 1

In addition to the rules mentioned above, a special rule in necessary to prevent

circular dependency of carrier flows (Table 5.27).

Table 5.27: Layer 1 grammar: Special rule

Rule description Graphical construct St.

Rule 33:

A set of flows cannot form a circular

chain of carrier-carried relations.

Construct 87

The carrier relation is predicated upon the understanding that the specific carried

flow instance cannot exist without the carrier. For example, kinetic energy of a moving

body exists on the condition that the body itself exists. The carrier is capable of existing

without the carried flow. For example, the body could exist at rest and have no kinetic

energy. Then, if Flow2 is capable of carrying Flow3, it can independently exist too. The

same argument applies to Flow3 and thus raises the question why any of the two flows

should need a carrier. The same argument can be extended to larger loops of circular

dependency of carrier relations. Notably, while this construct can be rejected based on

this circular dependency argument, in this representation, this construct is already

prevented by the hierarchy of carrier flow subtypes in Table 5.17. For example, since

material can carry energy, but the reverse is not true, Flow2 and Flow3 cannot be the

 181

carrier of each other, no matter what their subtypes are. Thus, the circular dependency

clause is redundant for this representation.

In conclusion, this chapter formalizes the Function Structure representation,

which constitutes the first layer of the proposed representation. Specifically, entities,

relations, attributes, and local grammar rules to ensure internal consistency of models are

formally defined. The next necessary step is to validate that this proposed layer is in fact

capable of constructing function structures supported by existing research and of

supporting the claimed reasoning types: topologic and derivational conservation, which is

presented next.

 182

CHAPTER 6. IMPLEMENTATION AND VALIDATION:

MODELING AND REASONING DEMONSTRATION WITH LAYER ONE

Validation of a representation includes demonstrating internal consistency and

external validity [31]. Consistency requires that the declarations within the

representation do not lead to self-contradiction through logical inference and is

demonstrated from three directions (Section 6.1):

1. Exhaustiveness of Local Grammar (Section 6.1.1): Logically examinations

are used to show that all constructs possibly considered for inclusion in a

function structure are identified in the grammar and for each construct, there

is a rule to test if the construct is permitted or prohibited.

2. Consistency of Local Grammar (Section 6.1.2): Logical examinations are

used to show that the rules available in the local grammar do not contradict

mutually.

3. Consistency of Vocabulary (Section 6.1.3): The class definitions are

committed to an ontology using Protégé-OWL11 and checked using the

Protégé logical consistency checker.

11 http://protege.stanford.edu/overview/protege-owl.html, accessed on August 16, 2011

 183

Validity against external knowledge requires that statements made using the

representation that are known to be correct by that body of knowledge do not lead to

inferences that are not correct by that body of knowledge. In this dissertation, the

external bodies of knowledge against which validity is sought are (1) the laws of

conservation and (2) irreversibility. In this section, validity against conservation is

illustrated in three steps (Section 6.1.3).

1. Software Implementation (Section 6.2.1): The representation is implemented

in software.

2. Reasoning Demonstration (Section 6.2.2): The software tool is used to

construct models of low complexity which are then used to perform

qualitative conservation reasoning of topologic and derivational types,

showing that the inferences are in agreement with the conservation principle.

3. Product-Level Modeling Demonstration (Section 6.2.3): The software is

used to construct the air heater function model from Model State 4.14 to

illustrate that the representation can support larger models and perform

reasoning on them, thus illustrating scalability at a basic level.

Through this illustration, it is also shown that while the first layer is valid against

conservation, it is not valid against the irreversibility principle. This gap motivates the

design of the subsequent layers. In the next section, the internal consistency of the first

layer is demonstrated.

 184

6.1 Demonstration of Internal Consistency

One way of testing a representation for consistency is to implement it in software

and then to try to construct models that are allowed by the tool yet are illogical based on

the definitions of the terms. In this approach, lack of consistency can be established by

finding at least one instance where a model construct violates the definition of the

elements used in it. However, the inability to produce such as violation dos not

conclusively provide its consistency, although a high number of failed attempts to

simulate inconsistency may give reasonable confidence toward it. The only way to prove

consistency is to examine the definitions and grammar rules exhaustively and show that

none of their implications leads to self-contradiction. However, this approach is

practically infeasible, since it requires testing many model constructs, as explained next.

The total number of model elements in the first layer includes ten classes, five

relations, five attributes, and 33 grammar rules (Chapter 5). For simplicity, the attributes

and relations are not considered in this discussion. Since a definition can be inconsistent

within itself or contradict with other definitions, consistency checking for the ten class

definitions requires checking (210 – 1) = 1023 subsets. The negative one indicates that

the empty set, consisting of no class at all, needs not be tested. Similarly, the grammar

rules, which could be inconsistent within oneself or between two or more rules in

combination, form a total number of test cases of (233 – 1), a ten-digit number. Further, a

subset of classes that is consistent as a set of definitions can still be inconsistent when

combined with one of the grammar rule sets, which requires checking every possible

combination between class sets and rule sets – a total option space of (210 – 1) × (233 – 1),

 185

a thirteen-digit number. Thus, the total number of combinations of definitions and

grammar rules that need to be checked is: (210 – 1) + (233 – 1) + (210 – 1) × (233 – 1), a

number larger than 8.796 × (10)12. To provide some perspective, if each evaluation takes

only one second—a highly ambitious estimate—the total time required to finish these

evaluations is over 278922 years.

A proof of consistency being infeasible, this section illustrates with combinatory

arguments how consistency is built in the design of the representation, especially in the

grammar rules. First, it is shown that all constructs and rules necessary for function

structure construction are available in the grammar (exhaustiveness). Second, it is shown

that the rules available are mutually consistent (consistency). If all necessary rules are

available and they are consistent, the grammar as a whole is claimed to be consistent.

Finally, an ontological examination reveals that the class definitions are internally

consistent, thus establishing that the entire representation is internally consistent.

6.1.1 Logical Examination of Exhaustiveness of Local Grammar

The exhaustiveness of the grammar is examined in two steps. First, it is shown

that all rule types necessary for model construction are captured in the grammar, where

each table in Section 5.2 represents a rule type. Second, it is argued that within each rule

type, all possible combinations of the constructs are considered, where each row a table is

one combinatory possibility. Together, these two claims imply that while constructing a

function structure, a modeler can always find a grammar rule to check if a possible

construct is prohibited.

 186

Exhaustiveness of Rule Types

The local grammar provides all necessary rule types to control model

construction. The ERA model for the first layer (Figure 5.1) reveals only three basic

relation types: (1) input-output, (2) carrier-carried, and (3) parent-child. Since grammar

rules control the permission or prohibition of relations instances, rules must exist for each

relation type for exhaustiveness. To this end, grammar rules exist for each relation: Table

5.14, Table 5.21, and Table 5.23 control the input-output relation, Table 5.16, Table 5.25,

and Table 5.27 control the carrier-carried relation, and Table 5.18 and Table 5.20 control

the parent-child relation. Further, since a flow has exactly two ends (head and tail) and a

node has exactly two ends (input and output), only two levels of connections needs to be

examined for the input-output relation: unary and binary. The unary rules examine if a

relation can exist at all between two entities. The benefit of separately stating the unary

rules is that for relations that are prohibited at the unary level, it is unnecessary to further

examine if they can coexist with other relations. Once a relation can exist at one end of a

node or flow, the binary rules determine if a relation can exist at the other, open end of

the node or flow. For the input-output relation, Table 5.14 captures the unary rules,

Table 5.21 captures the binary rules for flows, and Table 5.23 describes the binary rules

for the nodes, thus giving exhaustive coverage on input-output rule types.

Since a flow can have only one carrier, the carrier-carried relation is inherently

unary, the rules for which are captured in Table 5.16. However, rules must exist to

control two actions: the addition and extraction of a flow to or from its carrier. These

rules are the binary carrier-carried rules captured in Table 5.25, and Table 5.27. For the

 187

parent-child relation, although a flow can have multiple parents of children, only one

instance of the relation exists between the parent set and the child set. Thus, this relation

is inherently unary, captured in Table 5.18 and Table 5.20. In summary, grammar rule

types exist for all relations and all varieties (unary, binary). Thus, the set of grammar

rule types is exhaustive.

Exhaustiveness of Constructs and Rules within Each Rule Type

While individual rule types exist for all relations, it can be shown by examining

the rule tables and the constructs in Section 5.2 that within individual rule types, enough

rules exist to control modeling. For example, since an input or an output relation

involves exactly two entities and there are three major types of entities—functions, flows,

and environments—it is sufficient to examine 32 = 9 constructs of the form {first entity,

second entity} to test all constructs of the input-output unary rules. Table 5.15 shows

that the unary rules in Table 5.14 do provide a decision for each of these possibilities. To

be sure, if the three subtypes of flows are separately counted, the number of entities

increases to five: function, environment, material, energy, and signal. In that case, a total

52 = 25 permutations need to be tested. While Table 5.15 does not have 25 cells, it does

cover those 25 permutations by lumping the three flow types into Flow<n> whenever

possible. If the status of a construct depends on the flow subtype, those constructs are

explicitly shown, e.g., in the second row of Table 5.15. Thus, rules exist for all possible

unary constructs and therefore, the unary rules for input-output relations (Table 5.14) are

exhaustive.

 188

The binary input-output rules are written only for the constructs that are valid at

the unary level. Since there are only two permitted constructs for a flow output from a

node and two more for a flow input to a node (Table 5.15), a total of 2 × 2 = 4

combinations of the form {node, flow, node} are to be examined, where the head and the

tail nodes are different instances. In addition, two more possibilities arise where the

nodes are the same. Thus, only six possible binary constructs need to be examined for

the input-output relation, all of which are captured in Table 5.22. Similarly, for binary

constructs of the form {flow, node, flow}, the four permitted unary constructs in Table

5.15 can be combined in only two sets that has a node in the middle. These two sets are

examined in Table 5.24, providing evidence that the rules in Table 5.23 are exhaustive.

Thus, both unary and binary rules for the input-output relation are exhaustive.

In this manner, the exhaustiveness of the carrier-carried rules and the parent-child

rules can be verified by examining the possible combinatory constructs captured in their

respective tables. This exercise is omitted here to avoid repetition—the combinations are

explained for each rule type in the paragraph preceding the table of illustrations in

Chapter 5. For example, the unary carrier-carried rules must support 3 × 4 = 12

constructs (Table 5.17), as there are three subtypes of carried flows and four possibilities

of carrier flow subtypes. Similarly, the parent-child rules (unary only) must support 3 × 3

× 3 = 27 constructs (Table 5.19), as there are three subtypes of the parent flow, three

subtypes of the child flow, and three options for cardinality (one-in-many-out, many-in-

one-out, and many-in-many-out). By examining these tables, it is seen that the tables

 189

capture all possible combinatory constructs and the rules provide for a decision for each

construct. Thus, rules are exhaustively written for all possible modeling constructs.

6.1.2 Logical Examination of Consistency of Local Grammar

The illustrations in the previous two subsections establish that there is a rule to

determine if any possible modeling construct is prohibited. In this subsection, it is shown

that within a rule type, the rules are consistent. Since each rule determines values for a

particular parameter, such as the number of head nodes of a flow, a rule can be thought of

as a mathematical function (math_func) between its argument and outcome. The

keyword math_func is used to distinguish mathematical functions from mechanical

functions. Three concepts—domain, range, and math_func—are explained here. (1)

Domain of a rule is the set of argument entities for which the rule is defined. For Rule 1,

the domain is {Flow} since the rule can be applied to any flow entity to compute its

number of head nodes. (2) Math_func of a rule is the parameter that the rule returns.

Rule 1 determines the number of head nodes permitted for the flow argument and thus,

math_func = Number_of_Head_Nodes. (3) Range of a rule is the set of values that the

rule can produce. The range of Rule 1 is {1}. In order to have the possibility of self-

conflict, two rules must have the same math_func and intersecting domains. Otherwise,

either they compute different parameters for the same domain, compute same parameters

for different domains, or are totally unrelated, each of which eliminates the possibility of

mutual conflict. A sufficient condition for conflict is for two rules to meet the necessary

conditions and in addition have disjoint ranges. Thus, one way to demonstrate internal

 190

consistency is to disprove the necessary condition by showing that there are no set of

rules with the same math_func and intersecting domains.

Table 6.1 describes these three properties for the unary input-output rules, first

introduced in Table 5.14. Since the rules are written in natural English for easier

interpretation and since some of these rules include negations, the domain and range may

be sometimes difficult to identify. For example, Rule 4 is defined over the domain

{Node}, while its range is {¬ Node}.

Table 6.1: Domain, math_func, and range for unary input-output rules

Rule # Domain math_func Range

Rule 1 {Flow} Number_of_Head_Nodes {1}

Rule 2 {Material ⋃ Energy} ⊂ {Flow} Number_of_Tail_Nodes {1}

Rule 3 {Signal} ⊂ {Flow} Number_of_Tail_Nodes {0}

Rule 4 {Function ⋃ Env}⊆ Node} Permitted_Input_Types {¬ Node}

Rule 5 {Flow} Permitted_Input_Types {¬ Flow}

A scrutiny of Table 6.1 reveals that there are no two rules for which the domain

and math_func are the same. For example, Rule 1 and Rule 4 have the same domain but

different math_func, while Rule 2 and Rule 3 have the same math_func but their domains

are non-intersecting, since Flow is the disjoint union of Material, Energy, and Signal.

Thus, the unary input-output rules are mutually consistent. The method of examination

illustrated above can be repeated for all rules in the local grammar. Since there are 33

 191

rules, there are 33 × 32 = 1056 rule pairs to examine. While that examination is not

included, the domain, math_func, and range of all rules are presented in Table 6.2.

Table 6.2: Domain, math_func, and range for all local grammar rules

Rule # Domain math_func Range

Rule 1 {Flow} Number_of_Head_Nodes {1}

Rule 2 {Material ⋃ Energy} ⊂ {Flow} Number_of_Tail_Nodes {1}

Rule 3 {Signal} ⊂ {Flow} Number_of_Tail_Nodes {0}

Rule 4 {Function ⋃ Env}⊆ Node} Permitted_Input_Types {¬ Node}

Rule 5 {Flow} Permitted_Input_Types {¬ Flow}

Rule 6 {Flow} Number_of_Carrier_Flows {0, 1}

Rule 7 {Material ⋃ Energy} ⊂ {Flow} Number_of_Carrier_Flows {0, 1}

Rule 8 {Signal} ⊂ {Flow} Number_of_Carrier_Flows {1}

Rule 9 {Material} Number_of_Carried_Flows {1, 2, 3…}

Subtype_of_Carried_Flows {Energy ⋃

Signal }

Rule 10 {Energy} Number_of_Carried_Flows {1, 2, 3…}

Subtype_of_Carried_Flows {Signal}

Rule 11 {Signal} Number_of_Carried_Flows {0}

Rule 12 {{Flow, Flow, Parent-child

relation}}

Parent.HeadNode ==

Child.TailNode

{TRUE}

Rule 13 {Material} Number_of_Child_Flows {1, 2, 3…}

 192

Rule # Domain math_func Range

Type_of_Child_Flows {Material}

Rule 14 {Material} Number_of_Parent_Flows {1, 2, 3…}

Type_of_Parent_Flows {Material}

Rule 15 {Material, Material, …} Number_of_Parent_Flows {1, 2, 3…}

Type_of_Parent_Flows {Material}

Rule 16 {Energy} Number_of_Child_Flows {1, 2, 3…}

Type_of_Child_Flows { Energy }

Rule 17 {Energy} Number_of_Parent_Flows {1, 2, 3…}

Type_of_Parent_Flows {Energy }

Rule 18 {Energy, Energy, …} Number_of_Parent_Flows {1, 2, 3…}

Type_of_Parent_Flows {Energy }

Rule 19 {Signal} Number_of_Child_Flows {0}

Rule 20 {Signal} Number_of_Parent_Flows {0}

Rule 21 {Material ⋃ Energy} Node_to_Node {TRUE}

Rule 22 {{Flow, Node}} Flow.TailNode == Node

&&

Flow.HeadNode == Node

{FALSE}

Rule 23 {Flow} Env_to_Env {FALSE}

Rule 24 {Function} Number_of_Input_Flows {1, 2, 3…}

Type_of_Input_Flows {M ⋃ E ⋃ S

 193

Rule # Domain math_func Range

}

Number_Of_Output_Flows {1, 2, 3…}

Type_of_Output_Flows {M ⋃ E}

Rule 25 {Environment} Is_Source {TRUE,

FALSE}

Is_Sink {TRUE,

FALSE}

Is_Sink && Is_Source {FALSE}

Rule 26 {{M, E, Carrier relation}} E.TailNode == M.TailNode {TRUE}

Rule 27 {{M, E, Carrier relation}} E.HeadNode ==

M.HeadNode

{TRUE}

Rule 28 {{S, {M ⋃ S}, Carrier relation}} S.TailNode != NULL {FALSE}

Rule 29 {{S, {M ⋃ S}, Carrier relation}} S.HeadNode ==

Carrier.HeadNode

{TRUE,

FALSE}

Rule 30 {{Flow, Carrier1, Carrier2}} Flow.Carrier == Carrier1

&&

Flow.Carrier == Carrier2

{FALSE}

Rule 31 {{Carried flow, Carrier flow,

Carrier relation, Node,}}

Carried.HeadNode == Node

&&

Carrier.HeadNode != Node

{FALSE}

 194

Rule # Domain math_func Range

Rule 32 {{Carried flow, Carrier flow,

Carrier relation, Node,}}

Carried.TailNode == Node

&&

Carrier.TailNode != Node

{FALSE}

Rule 33 {Flow} Flow.Carrier == Flow {FALSE}

It can be seen that rule pairs such as Rule 6 and Rule 7 meet the necessary

condition for conflict, as they have the same math_func and intersecting domains.

However, in those cases, the range is also identical, which violates the sufficient

condition for conflict. Similarly, Rule 6 and Rule 8 have the same necessary condition,

as {Signal} is a subset of {Flow}. However, the range of Rule 8, {1}, is also a subset of

the range of Rule 6, {0, 1}, thus avoiding conflict.

Based on these examinations, it is seen that there is no pair of rules that satisfy the

necessary and sufficient conditions for conflict. For most cases, the necessary condition

is not met, as the rules do not have the same math_func and intersecting domains. In the

few cases where this necessary condition is met, the ranges are also consistent, thus

violating the sufficient condition of conflict. Based on this analysis, it is concluded

that the set of rules in the local grammar are consistent. This conclusion is also

indirectly supported by the lack of repetition of modeling constructs in the tables in

Chapter 5. There are a total of 86 constructs in Chapter 5. However, no two of them are

topologically identical. Since each rule solves a different problem, the modeling

constructs where their effect is pertinent are also different. Notably, the constructs were

 195

not carefully made to look unique. Their uniqueness is a result of the consistency of the

rules.

Ultimately, Sections 6.1.1 and 6.1.2 collectively support three claims: (1) all

constructs needed for modeling a function structure are captured in the tables in Section

5.2, (2) all rules needed to determine if each of those constructs is permitted or prohibited

are available in Section 5.2, and (3) the rules thus available are mutually consistent.

Thus, it is shown that the local grammar of the first layer of the representation is

internally consistent.

6.1.3 Ontological Examination of Consistency of the Vocabulary

To test consistency of the vocabulary, the class definitions from Chapter 5 are

committed to an ontology using the Protégé Frames Ontology Editor12 and then checked

using the Protégé consistency checker. An ontology is an explicit specification of

domain of discourse [27-29, 66, 172, 173]. Information is organized in terms of the

entities comprising the domain, the properties used to characterize the concepts, relations

between those concepts, and constraints imposed on those concepts, relations, and

properties [172]. In this sense, an ontology holds the same information types as a formal

representation, defined in Section 1.2.2. It is thus reasonable to expect that the

Conservation Layer (Layer 1) of the formal representation presented in Chapter 5 should

12 Available at http://protege.stanford.edu/overview/protege-owl.html, accessed on August 16, 2011

 196

be implementable in ontological form that satisfies the consistency checks. The Web

Ontology Language (OWL) is a family of languages for authoring ontologies and

explicitly capturing formal semantics of concepts, especially for semantic reasoning

[174]. Protégé is a free, open-source software that supports ontology-editing with OWL

and conforms to requirements of data exchange (e.g., XML), notations (e.g., OWL), and

frameworks (e.g., RDF) necessary for developing semantic networks, as set by the World

Wide Web Consortium, W3C13. However, the main purpose of using Protégé OWL in

this research is to use its reasoning ability to check consistency of the asserted ontology

and to draw inferences about the ontological identity of classes and objects. For example,

the knowledge that a function can produce only material and energy flows, but not

signals, can be asserted by setting the domain of the relation TailNode as {Material ⋃

Energy}. Thereafter, if the asserted description of the class Signal or any of its instances

includes a TailNode property, the Protégé reasoner detects these two assertions to be in

conflict. Further, the Protégé reasoner can determine if a class or an instance asserted by

the user can be interpreted as another class or its instance, based on the properties

declared in the instance – an ability that can be used to check if the asserted concepts

(classes, properties, restrictions) are ambiguous. The construction of the ontology is

presented next with figures and text. A computer code for reconstructing this ontology in

13 http://www.w3.org/, accessed on August 16, 2011

 197

Protégé OWL is available in Appendix B in the Extensible Markup Language (XML)

format.

Asserted Class Hierarchy and Sibling Disjunction

Figure 6.1 shows the asserted class hierarchy in the ontology.

Figure 6.1: OWL class hierarchy (Asserted)

The hierarchy is identical to the vocabulary presented in Table 5.1, except that the

OWL class owl:Thing is used instead of the top-level entity Element. Owl:Thing is the

mandatory top-level class enforced by Protégé. Adding Element under owl:Thing and

adding the remaining hierarchy under Element would produce an equally consistent

ontology, although it is unnecessary to do so. For this ontology’s purpose, owl:Thing is

 198

equivalent to Element. Further, Verb, Energy, and Material have more hierarchical levels

under them (collapsed). These levels are used in the subsequent layers of the

representation and are not exposed here since the scope of this chapter is limited to

validating the first layer only.

During creating the class hierarchy, all subclasses under a superclass (called

sibling classes in OWL terminology) are asserted to be disjoint, thus capturing the

exclusive disjunction (XOR) relations in the ERA diagram (Figure 5.1). Thus, Node and

Noun are mutually disjoint, Environment and Verb are mutually disjoint, Material,

Energy, and Signal are mutually disjoint, and Source and Sink are mutually disjoint. For

illustration, the disjoint assertions for the class Material are shown in Figure 6.2.

Figure 6.2: Exclusive disjunction between Material, Energy, and Signal (Asserted)

Asserted Object Properties and Data Properties

Object properties in Protégé are analogous to relations between the classes. Data

properties are analogous the attributes. Figure 6.3 show the asserted object properties

and data properties in the ontology. The properties replicate the relations shown in the

ERA diagram in Figure 5.1. The hasHeadNode and hasTailNode properties capture the

 199

HeadNode and TailNode relations, hasChild captures the Child relations, and hasCarrier

represents the CarrierFlow relations. In addition, by exploiting the benefits of Protégé

OWL, the inverse properties of each property are captured, as indicated by the ↔

symbols. For example, the fact that a flow’s head is connected to a node can be

described in two ways: (1) by asserting that the flow’s head node (hasHeadNode

property) is the node or (2) by asserting that one of the node’s input flows (hasInput

property) is the flow. These two assertions are equivalent, they capture the same

information about the model topology, yet the first is written as a flow property and the

second is a node property. These two properties are the inverse property of each other.

Except for the hasCarrierFlow and hasBaggageFlow property groups, the object

properties are organized in a hierarchical manner in order to facilitate their conceptual

grouping. The super-properties are not directly used in model creation, as no domain or

range is necessary or asserted for them. For the carrier and baggage properties, the child

properties are created because Protégé does not allow defining multiple sets of domains

and ranges for the same property name. For example, although the restriction of flow

subtypes for carrier relations can be controlled by unary grammar rules (Table 5.14),

separate relations must be created for capturing those restrictions. In this case, the

E_hasCarrier property can connect any Energy (domain) to any Material (range), while

the S_hasCarrier property has a domain of Signal flows and a range of Material ⋃

Energy, thus capturing the unary carrier-carried rules of Table 5.14. The domain and

range of the properties are discussed in the next section. The data properties capture the

attributes mentioned in the ERA model. Since Protégé OWL allows only basic data types

 200

such as integer, floating points, and strings, the point coordinates for geometric center,

head point, and tail point are expressed as individual X and Y coordinates (floating point

numbers).

(a) Object properties

(b) Data Propoerties

Figure 6.3: Object properties and data properties (Asserted)

 201

It should be noted that the apparent disagreement between the attributes and

relations of the ERA model and the properties in this ontology, such as the necessity to

use the hierarchical properties for the carrier relation and the floating point numbers for

the point coordinates, are not indicative of inconsistency of the ERA model. Rather these

are results of the implementation environment provided by Protégé OWL. In the next

section, the representation is implemented in an object-oriented application for external

validation. In that implementation, the points are captured as instances of a CPoint class

and a single property is used to capture the carrier-carried relations between different

flow subtypes, using algorithmic enforcement of the unary carrier-carried rules of Table

5.14.

Asserted Domain, Range, and other Qualifiers

Domain and range of a property in Protégé are analogous to the entities connected

by a property in the ERA model. Figure 6.4 shows a Protégé screenshot of the property

list, along with their domains and ranges. The domain of a property is the set of things

that can “have” that property or for which that property is defined. For example, since

only Source and Verb instances are the only things that can produce output flows, the

domain of property hasOutput (highlighted row in the figure) is Source ⋃ Verb. The

range of a property is the set of things that the property can point to, or the set that can be

related to the domain through the property. For example, since only Material and Energy

flow instances can be related to a Verb or Source instance through the hasOutput

property, the range of hasOutput is Material ⋃ Energy. In this manner, the asserted

domains and ranges reflect the relations in the ERA model and also some grammar rules.

 202

Figure 6.4: Domain, range, and other characteristics of properties (Asserted)

In addition to the domain and range information, three special characters are

asserted for each property. A property is called functional if for it points to one specific

instance within the range. For example, since a flow can have only one tail node, the

hasTailNode property is marked as Functional. A property is called inverse functional if

its inverse property is functional. For example, since hasTailNode is functional, its

inverse property hasOutput is inverse functional. A property is transitive if the two

assertions (1) instance A is related to B and (2) B is related to C imply that A is related to

C. For example, the hasChild properties are transitive, since they imply derivation

through conservation, in which case if A is derived from B and B is derived from C, it is

correct to infer that A is derived (indirectly) from C.

 203

Asserted Restrictions (Axioms)

Restrictions in Protégé are analogous to the local grammar rules that determine

which properties (relations) can exist between the classes. Three types of restrictions—

existential, universal, and cardinal—are possible in Protégé OWL. For illustration,

Figure 6.5 shows the restrictions asserted on the properties of the class Energy. An

existential restriction is used to assert that an instance must have a property. For

example, the assertion of domain and range for the hasTailNode property ensures that an

Energy instance (in domain) “can” have a tail node, which must be a Source or a Verb

instance. The existential restriction on this property asserts that an Energy instance

“must” have “at least one” tail node within that range. However, since the hasTailNode

property is also asserted as functional, there can be one and only one tail node for an

Energy instance. The cardinality restriction is used to set exact, upper, or lower bound of

a property. For example, the domain and range of the E_hasCarrier property assert that

there “can” be one and only one (functional) carrier flow of an Energy flow (domain),

which must be a Material (range). The cardinality of “≤ 1” in this case asserts that an

Energy flow can have at most one carrier. In this manner, restrictions are asserted for

each property of each class, as applicable. The Protégé OWL classes inherit restrictions

from their superclasses. For example, the exact cardinality of the X and Y coordinates of

the head and tail points of Energy are inherited from its superclass Noun, where they are

asserted one time so that they can be applied to all Noun subclasses.

 204

Figure 6.5: Restrictions on Energy (Asserted and Inferred)

With the assertion of the classes and their hierarchy, the object and data

properties, their domains, ranges, and qualifiers, and the restrictions, the assertion of the

ontology is complete. As a whole, the ontology replicates the entities, relations,

attributes, and the applicable grammar rules that can be replicated using the ontological

environment. At this point, the reasoner is used to check consistency of the asserted

ontology.

Ontological Reasoning for Consistency Checking and Ambiguity

The Pellet 1.5.2 reasoner [175] is used to examine the ontology. Figure 6.6 shows

the outcome of the consistency checker. The results prove that the asserted ontology is

consistent, as inconsistent ontological elements, if any, are reported in red color in this

 205

output window. This illustration verifies that no conflict exists between the asserted

statements.

Figure 6.6: Consistency checking results for the ontology (Consistent)

Figure 6.7 shows the outcome of the reasoner for computing inferred data types

and Figure 6.8 shows the class hierarchy inferred by the reasoner from the asserted

hierarchy. No data type except the explicitly asserted ones is found. The inferred and

asserted class hierarchies are also identical. This indicates that each concept in the

ontology is unambiguously defined, as there is no possibility of inferring one concept as

another.

 206

Figure 6.7: Consistency checking results for the ontology (Consistent)

Figure 6.8: OWL class hierarchy (Inferred) – Identical with the asserted hierarchy

 207

Model Construction and Model-Level Consistency Checking using the Ontology

Based on the above three illustrations of consistency of the classes, it is expected

that instances created from those classes and related by the asserted properties will define

a model that will also be consistent. To this end, the function structure generated at the

final step of the modeling exercise (Model State 4.14) is created using the ontology.

Figure 6.9 shows a Protégé screenshot of the Verb instance En_Air_3, for illustration.

This instance represents the function block Energize Air 3 in Model State 4.14. The total

number of instances created for each class is shown beside each class name in the left

panel (Class Browser) of this figure. These numbers can reflect the number of instances

in Model State 4.14. For verbs, the eight instances are seen in the center panel (Instance

Browser). The form for adding a verb asks exactly those questions that are necessary to

define a verb: its input flows (hasInput) and output flows (hasOutput). These entries

replicate the topology of Model State 4.14.

Upon finishing the model using the instances of nodes, flows and their topological

relations, the consistency checker is invoked again, to test the model-level consistency

and to ensure that while the representation itself is consistent, it can support consistent

models. Similar to Figure 6.6, the reasoner does not detect any inconsistency in the

model. Based on consistency of both the ontology and the model, the internal

consistency of the vocabulary is now demonstrated. Further, based on the

demonstration of exhaustiveness and consistency of the local grammar by logical

examination and consistency of the classes through this ontological examination, it is

 208

asserted that the internal consistency of the representation as a whole is now

demonstrated.

While the representation is consistent, it remains to be validated that it can

actually support the reasoning it is designed for: (1) topologic and (2) derivational

reasoning at a qualitative level. This external validation is addressed next.

Figure 6.9: Creation of individual instances using the ontology

 209

6.2 Demonstration of External Validity against Conservation Laws

External validity of the representation is demonstrated by incorporating the

representation in an object-oriented, graphic user interface-based software tool, using the

tool to construct models, and reason on them using the laws of conservation. The design

of this software tool is discussed next. The software tool is named the Concept Modeler,

ConMod for short, as the representation is intended to support modeling and reasoning on

early design concepts.

6.2.1 Design of the Software Tool ConMod

The ConMod program is implemented in order to demonstrate external validity of

the proposed representation against the laws of physics—specifically, conservation laws

for the first layer—by showing that the reasoning needs identified in Chapter 4 are indeed

supported by the representation. The tool itself is not a direct outcome of the research. It

is only a means to validate that the direct outcome of this research—the representation—

is valid. The tool is developed using the Microsoft Foundation Classes (MFC) library

that provides Application-Programmer Interface (API) classes in the C++ language for

writing Windows-based programs. The default version of an MFC project, when

compiled, creates a Windows application with empty windows, basic toolbar buttons, and

menu items such as File Open, File Close, Save, Cut, Copy, Paste, Print, and Help, while

each of these buttons and menus are nonfunctional. Code is written to implement

functionality for these buttons and menus, such as model construction, editing, and

reasoning. The high-level system architecture for ConMod is discussed next.

 210

It must be emphasized that the sole purpose of this software implementation is to

allow external validation through automated reasoning. In order to perform reasoning, a

computer model is first required. The software is designed only to provide models for

this illustration and to execute the reasoning algorithms. The design of the software, such

as its user interface, is not examined here. Only the minimal features required to

demonstrate reasoning are implemented.

ConMod System Architecture

The system architecture of ConMod is shown in Figure 6.10. This architecture is

based on the Document-View architecture provided by MFC. Two overridable MFC

classes—document and view—are used to hold data. The document class

(CConModDoc in source code) is instantiated only once per session and holds the

instances of model classes such as functions and flows. The view class (CConModView)

holds the graphic data to render the model on screen and uses private methods to

automatically update whenever there is a change in the document due to a model edit.

 211

Figure 6.10: The document-view architecture of ConMod

There are six individual functional modules of the application, indicated by

shaded shapes in the figure.

1. GUI Controls: This module implements the toolbars, buttons, menu items,

and context menu lists and serves as the user’s gateway to the application. It

invokes the other modules and helps the user select instances from the view.

2. ConMod Classes: This module is the static repository where the classes are

declared and implemented. Data in this module is used in constructing the

instances, but is never changed during modeling or reasoning operations in a

session of the application. Data in this module can be edited only by the Class

Modeler module. Classes in this repository also contain the methods for

construction, rendering, and edit operations pertinent to the classes, which are

called by the Modeler during model edits.

 212

3. Modeler: This module includes the methods for adding, editing, and deleting

instances of ConMod classes such as Verb, Noun, and Environment.

Instances are created and edited on the document, which causes the view to

automatically update the rendering on screen.

4. File Management: This module is used to perform file input output

operations, such as saving and launching. During saving, data necessary to

reconstruct the model are read from the document and saved in a file (not

shown). The extension for ConMod model files is *.fst, which stands for

“function structure”. During launching (File Open), data from the file is read

and added to the document, which causes the view to update.

5. Reasoner: This module is invoked by the GUI at user request. It contains and

executes the algorithms required to check the model for qualitative

conservation. It only reads the instances in the document and reports the

findings to the GUI rendering module, to be returned to the user.

6. Class Modeler: This module is available for defining new function and flow

classes by the designer or modeler without requiring editing the source code,

thus allowing capture and reuse of domain-specific design knowledge through

customization.

The functionality of these modules is implemented in the source code, available in

Appendix C and Appendix D. The executable file for the program, ConMod.exe, is

available upon request from the Clemson Engineering Design Applications and Research

 213

Lab, CEDAR14. The class diagram and description for this application are discussed

next.

ConMod Class Diagram and Class Descriptions

Figure 6.11 shows the class diagram for ConMod. Classes from the vocabulary of

Table 5.1 are seen in the subclasses under CElement. The class Noun is named CEdge

and Verb is named CFunction in this implementation. The shown version of ConMod is

a partial implementation of the representation, where classes Source and Sink are not

shown. This simplification does not compromise the demonstration of the conservation

reasoning, as illustrated in the next sections.

14 http://www.clemson.edu/ces/cedar, accessed on August 16, 2011

 214

Figure 6.11: Class diagram of the ConMod application

The classes at the bottom are MFC classes that provide general functionality for

Windows-based applications such as windows, frames, dialogs, and device contexts

(canvas for drawing objects). The only exception is CConModDoc, the document class

that holds the instances added to a model. The CGeometry class is required at the highest

level as many classes underneath it use geometric data and methods provided by it for

drawing instances.

The complete source code of this application is available in Appendix C and

Appendix D. For inspection of the implementation of the data members and methods in

the code, the declarations within the classes (C++ header files) are presented in Table 6.3

through Table 6.13. The purpose is to illustrate that the code actually implements the

class data elements and methods identified in the representation and to explain occasional

 215

deviations where that adherence is violated. Data members and methods that pertain to

the software design aspect such as the user interface and dialogs, and those that are

defined in the subsequent layers such as irreversibility, are omitted for brevity. These

data and methods do not interfere with the conservation reasoning illustrated.

In each table, the class declaration in the header file is shown to illustrate its

superclasses. The data members and member functions are then described. For data

members, the first word is the data type and the second word is the name of the data

member. For methods, the first word before the parentheses is the name of the method,

the words to the left of the name are the return data type and the virtual qualifier

(optional), and the list in the parentheses contains the data passed to the method as

arguments. Each argument is described with its data type (first word), name (second

word), and optionally with its default value (assignment operation with “=” sign). Table

6.3 describes the highest-level class CGeometry.

Table 6.3: Class CGeometry

Class declaration

class CGeometry

// Not inherited from anything – top level class

Data members Description

None

Methods (Member functions) Description

int RoundToTwenty(float n, int t); Rounds up n to the nearest multiple of t

 216

and returns the result as an integer

CPoint SnapToGrid(CPoint p); Computes a point derived by snapping the

input point p to the grid size, a global

variable

long distance(CPoint p1, CPoint

p2);

Computes the distance between two

points, p1 and p2

CPoint* InterpolatePoints(CPoint

p1,CPoint p2, double ratio);

Computes a point by interpolating

between two input points, p1 and p2, by

the input ratio

Table 6.4 describes the class CElement, analogous to the class Element in the

design (Table 5.2).

Table 6.4: Class CElement (Element)

Class declaration

class CElement : public CGeometry

// Inherits CGeometry, otherwise the top-level class for elements

Data members Description

// Geometric and name attribute

data

CString GivenName; Name given to an element by the user

CPoint GeometricCenter; Holds the geometric center of an element

CPoint AnchorsForBaggageFlows[16]; A list of points where carrier flow ends

 217

can be connected to the stem of a flow

arrow

// Input-output relation data

CPoint TailPoint, HeadPoint; Point data members storing the location of

the head and tail of point flows

CElement* pHeadElem; Pointer to the element that is the head

element of a flow instance

CElement* pTailElem; Pointer to the element that is the tail

element of a flow instance

CPoint Anchors[16]; A list of points where flows can be

connected to a function or environment, or

nodes can be connected to a flow (head

and tail points)

// Model editing data

bool IsHighlighted; Flag set to true when an element is

highlighted for selection by the user

bool IsSelected; Flag set to true when an element is

selected for an edit operation by the user

int GrabHandle; An integer that stores where an element is

“grabbed” by the mouse: tail, center, or

head

// Drawing data – pen and brush

 218

int PenR, PenG, PenB; Color settings for the drawing pen

int BrushR, BrushG, BrushB; Color setting for the drawing brush

int HeadBrushR, HeadBrushG,

HeadBrushB;

Color setting for the brush that paints the

head of a flow by topological status

(dangling or attached)

int TailBrushR, TailBrushG,

TailBrushB;

Color setting for the brush that paints the

tail of a flow by topological status

(dangling or attached)

Methods (Member functions) Description

virtual void DrawOnDC(CDC* pDC); Method for drawing individual instances

on screen, declared as virtual as it is

differently implemented for different

element types

Table 6.5 describes the class CNode, analogous to the class Node in Table 5.2.

Table 6.5: Class CNode (Node)

Class declaration

class CNode : public CElement

// Inherits CElement per the design of the vocabulary

Data members Description

// Input-output relations

bool NoInputAttached; Flag to detect if the node has no input

 219

flows

bool NoOutputAttached; Flag to detect if the node has no output

flows

Methods (Member functions) Description

void ComputeBlockCoordinates(); Method to compute the node vertices –

overridden by CFunction and CEnv

Table 6.6 describes the class CEdge, analogous to the class Noun in Table 5.2.

Table 6.6: Class CEdge (Noun)

Class declaration

class CEdge : public CElement

// Inherits CElement (equivalent to Noun) per the design of the

vocabulary

Data members Description

// Input-output relations

void ComputeAnchorPoints(); Method to compute the anchor points for a

flow, including the head and tail points

and the points on the stem for attaching

carried flows

void AttachEdgeToNearestAnchor(); Method to attach an edge to the nearest

anchor available in the whole model,

helping the user to connect an edge end to

 220

an element

void ResetGeometricCenter(); Method to recomputed the geometric

center of an edge after it is moved or

reconnected

// Carrier-carried relations

bool ThisFlowIsIncomingBaggage; Boolean to indicate if the flow is added as

a baggage (carried) to another flow

bool ThisFlowIsOutgoingBaggage; Boolean to indicate if the flow is carried

by a another flow and used by a function

// Head drawing data

CPoint HeadLeftVertex,

HeadRightVertex;

Points to hold the left and right vertices of

the head of a flow

double HeadSize, HalfHeadAngle; Numbers to contain the head size in pixels

and the half angle of the arrow head

CPoint HeadVertexArray[3]; Array holding the three points defining

the head of a flow as a triangle

// Stem drawing data

int StemThickness; Integer showing the thickness of a flow

that caries between Material, Energy, and

Signal

int StemLineFont; Font style of the flow stem that varies

between Material, Energy, and Signal

 221

int FontSize; Font size of the flow name on the stem,

which varies between carrier and carried

flows

Methods (Member functions) Description

// Flow constructor

CEdge(CPoint TailClick, CPoint

HeadClick);

Constructor method that adds a flow using

the two points on the screen where the

mouse is clicked as input for the tail and

head

// Drawing method

void DrawOnDC(CDC* pDC);

Method to draw a flow with its stem, its

tail circle, its head with three lines, and

fill colors in the head and tail ac per their

dangling status

Table 6.7 describes the class CFunction, analogous to the class Verb in Table 5.2.

Table 6.7: Class CFunction (Verb)

Class declaration

class CFunction : public CNode, public CRect, public CDialog

// Inherits CNode per the design of the vocabulary

// Inherits the MFC class CDialog as a dilaog isrequired to accept user

input

// Inherits the MFC class CRect to facilitate drawing function blocks

Data members Description

// Attributes

 222

CString GivenName; Name given to the function by the

modeler

Methods (Member functions) Description

void ComputeBlockCoordinates(); Method to compute the vertices of the

function block

void DrawOnDC(CDC* pDC); Method to draw the function blocks

Table 6.8 describes the class CEnv, analogous to Environment in Table 5.2.

Table 6.8: Class CEnv (Environment)

Class declaration

class CEnv : public CNode, public CDialog

// Inherits CNode per the design of the vocabulary

// Inherits the MFC class CDialog as a dilaog isrequired to accept user

input

Data members Description

// Attributes

CString GivenName; Name given to the environment instance

by the modeler

Methods (Member functions) Description

void ComputeBlockCoordinates(); Method to compute the vertices of the

environment hexagon

void DrawOnDC(CDC* pDC); Method to draw the environment

 223

hexagons

Table 6.9 describes the class CMaterial, analogous to class Material in Table 5.2.

Table 6.9: Class CMaterial (Material)

Class declaration

class CMaterial : public CEdge, public CDialog

// Inherits CEdge per the design of the vocabulary

// Inherits the MFC class CDialog as a dilaog isrequired to accept user

input

Data members Description

// Attributes

CString GivenName; Name given to the environment instance

by the modeler

// Parent-child relations

CList<CMaterial*, CMaterial*>

ChildList;

List of pointers to child flows, all of

which are instances of class CMaterial

CList<CMaterial*, CMaterial*>

ParentList;

List of pointers to parent flows, all of

which are instances of class CMaterial

Methods (Member functions) Description

void DrawOnDC(CDC* pDC); Method to draw the CMaterial instance

Table 6.10 describes the class CEnergy, analogous to the class Energy in Table

5.2.

 224

Table 6.10: Class CEnergy (Energy)

Class declaration

class CEnergy : public CEdge, public CDialog

// Inherits CEdge per the design of the vocabulary

// Inherits the MFC class CDialog as a dilaog isrequired to accept user

input

Data members Description

// Attributes

CString GivenName; Name given to the environment instance

by the modeler

// Parent-child relations

CList< CEnergy*, CEnergy*>

ChildList;

List of pointers to child flows, all of

which are instances of class CEnergy

CList< CEnergy*, CEnergy*>

ParentList;

List of pointers to parent flows, all of

which are instances of class CEnergy

Methods (Member functions) Description

void DrawOnDC(CDC* pDC); Method to draw the CEnergy instance

Table 6.11 describes the class CSignal, analogous to the class Signal in Table 5.2.

Table 6.11: Class CSignal (Signal)

Class declaration

class CSignal : public CEdge, public CDialog

// Inherits CEdge per the design of the vocabulary

 225

// Inherits the MFC class CDialog as a dilaog isrequired to accept user

input

Data members Description

// Attributes

CString GivenName; Name given to the environment instance

by the modeler

// Parent-child relations - NONE

Methods (Member functions) Description

void DrawOnDC(CDC* pDC); Method to draw the CEnergy instance

Table 6.12 describes the MFC document class CConModDoc. This class is not

included in the vocabulary of Table 5.2. It is used to hold the model instances in this

implementation.

Table 6.12: Class CConModDoc (Document)

Class declaration

class CConModDoc : public CDocument

// This class is not a part of the vocabulary of the representation and

thus does not inherit anything from that vocabulary

// Inherits the MFC class CDcoument to store model elements and update

views

Data members Description

CList<CElement*, CElement*>

CElementList;

List of all CElement objects, irrespective of

types. Used by methods that do not depend

 226

on the types, such as deleting and

refreshing the screen

CList<CNode*, CNode*> CNodeList; List of all nodes

CList<CEdge*, CEdge*> CEdgeList; List of all flows

CList<CFunction*, CFunction*>

CFunctionList;

List of only functions

CList<CEnv*, CEnv*> CEnvList; List of only environment instances

CList<CMaterial*, CMaterial*>

CMaterialList;

List of only material flows

CList<CEnergy*, CEnergy*>

CEnergyList;

List of only energy flows

CList<CSignal*, CSignal*>

CSignalList;

List of only signal flows

CList<CElement*, CElement*>

PreselectionList;

List of elements (irrespective of types) that

are highlighted for an operation

Methods (Member functions) Description

None

Table 6.13 shows the MFC view class, CConModView, used to create the

graphics of the model and to support the reasoning algorithms.

Table 6.13: Class CConModView (View)

Class declaration

class CConModView : public CView, public CGeometry

// This class is not a part of the vocabulary of the representation and

 227

thus does not inherit anything from that vocabulary

// Inherits the MFC class CDcoument to store model elements and update

views

// Inherits geometry as it needs geometric functions to update the view

Data members Description

// Model reasoning data members

CString Msg_OrphanFlow; String that holds the orphan flow message

CString Msg_BarrenFlow String that holds the barren flow message

CString Msg_OneInManyOut_M; String that holds the error message when

material conservation is violated in the

one-in-many-out configuration

CString Msg_OneInManyOut_E; String that holds the error message when

energy conservation is violated in the one-

in-many-out configuration

CString Msg_ManyInOneOut_M; String that holds the error message when

material conservation is violated in the

many-in-one-out configuration

CString Msg_ManyInOneOut_E; String that holds the error message when

energy conservation is violated in the

many-in-one-out configuration

CString Msg_ManyInManyOut; String that holds the error message telling

that unless derivation relations are shown,

 228

it is not possible to conclude on a

violation in the many-in-many-out

configuration

Methods (Member functions) Description

// Screen refresh

virtual void OnDraw(CDC* pDC); Method to redraw every element instance

in the model to refresh the whole screen

// Model construction methods

void AddFunction(void); Method to add a function to the model

void AddEnv(void); Method to add an environment to the

model

void AddEdge_Dynamic(void); Method to create a temporary flow

instance that follows the mouse pointer

for as long as the mouse button is down

during flow addition

void AddMaterial(void); Method to add a material flow to the

model

void AddEnergy(void); Method to add an energy flow to the

model

void AddSignal(void); Method to add a signal flow to the model

// Model editing methods

void MoveConnect(); Method to move an element or reconnect

 229

the ends of a flow

void MoveConnectDynamic(); Method to update the screen with a

temporary element instance for as long as

the mouse button is down after selecting

an element to be moved or reconnected

void

DetachEdgesFromElement(CElement*

pElement);

Method to delete the topological

connections of a flow after its ends have

been detached from a node

// Model reasoning methods

void Set_OrphanFlowMsg(); Method to compose Msg_OrphanFlow

void Set_BarrenFlowMsg(); Method to compose Msg_BarrenFlow

void Set_OneInManyOutMsg_M(); Method to compose

Msg_OneInManyOut_M

void Set_OneInManyOutMsg_E(); Method to compose

Msg_OneInManyOut_E

void Set_ManyInOneOutMsg_M(); Method to compose

Msg_ManyInOneOut_M

void Set_ManyInOneOutMsg_E(); Method to compose

Msg_ManyInOneOut_E

void Set_ManyInManyOutMsg(); Method to compose Msg_ManyInManyOut

A few differences can be noticed between the implementation of these classes and

the design presented in Table 5.2 and Figure 5.1, which need to be explained. The

 230

GivenName attribute included in the CElement class is overridden in the leaf-level

classes such as Material, Energy, and Signal, as the CDialog class requires the

GivenName data member to be declared at the leaf classes. The HeadNode and TailNode

pointers are declared in the high-level class CElement as CElement* pointers, instead of

in the CEdge class as CNode* pointers. This change at the implementation level

provides some flexibility to refer to a flow as an element, without having to know its

type. The carrier-carried relation and the actions of adding a carried flow to its carrier are

implemented indirectly using two actions: (1) by assigning the carrier flow as the

pHeadElem of the carried flow and (2) setting the Boolean parameter

ThisFlowIsOutgoingBaggage to TRUE. In addition, almost every class includes data and

methods necessary to render, select, highlight, or edit their instances, which are details

pertinent to this implementation rather than the design of the representation. If the

representation was implemented in another application for a different purpose, these

additional data and methods would probably be implemented differently, while the core

class hierarchy and the data and methods prescribed in the design would not. Besides

these minor implementation-specific changes, the data and methods in these classes do

reflect the attributes and relations identified in Chapter 5. The next section presents the

user interface design of the ConMod application.

ConMod Graphic User Interface and Rendering

Figure 6.12 shows the design of the main window and toolbar for the application.

The toolbar includes icons for the two node subtypes—function and environment—and

the three flow subtypes—material, energy, and signal. The environment subtypes, source

 231

and sink, are not implemented in this version of ConMod and can be included in a future

extension.

Figure 6.12: ConMod main window and toolbar buttons (Layer One)

Figure 6.13 shows the Add Function and Add Environment dialogs, which pass

the user-entered string to the GivenName data member of the respective classes:

CFunction and CEnv. The GeometricCenter data required by those class constructors is

passed from the mouse click on the graphics area of the application.

 232

Add Function dialog

Add Environment dialog

Figure 6.13: Dialog boxes for adding function and environment instances (Layer

One)

Figure 6.14 shows the Add Material, Add Energy, and Add Signal dialogs. For

the purpose of the first layer of the representation, these dialogs operate in similar manner

as the Add Function dialog, as they pass the user-entered name of the flows to

GivenName data members in the respective classes: CMaterial, CEnergy, and CSignal.

The start and end points of the flows are passed by the mouse button press and release

positions on the graphic screen using two methods within the CConModView class:

OnMouseLDown and OnMouseLUp.

 233

Add Material dialog

Add Energy dialog

Add Signal Dialog

Figure 6.14: Dialog boxes for adding Material, Energy, and Signal instances (Layer

One)

The model entities such as functions, flows, and environments can be added,

edited, and deleted using this interface objects, as illustrated next. The reasoning

algorithms can be invoked by double-clicking on the white space in the graphics area,

while a message window is provided for returning reasoning output. When run on an

empty model, this window returns a default hard-coded message, shown in Figure 6.15.

 234

Figure 6.15: Qualitative conservation reasoning message dialog

6.2.2 Demonstration of Function Modeling and Qualitative Conservation

Reasoning

As mentioned in Chapter 5, the conservation layer of the representation is

designed to support the first eight out of the twelve reasoning tasks summarized in Table

4.15. The ConMod application is used here to demonstrate this reasoning. The graphical

constructs that trigger these reasoning and the message to be generated from these

reasoning are summarized in Table 6.14. In addition to the eight types, a ninth

reasoning—many-in-many-out—is identified by logically extending the reasoning types

of Table 4.15. In this reasoning (# 9a in Table 6.14), the system identifies functions that

input and output multiple flows of subtype Material or Energy and accordingly infers

conservation.

 235

Table 6.14: Conservation reasoning to be validated using ConMod

Ref. from

Table 4.15

Reasoning

Name
Model Construct Expected Feedback

T
op

ol
og

ic

1
Redundant

function
Redundant function: “F1”

2 Dangling tail

Dangling tail: Flow1

3 Dangling head

Dangling head: Flow2

D
er

iv
at

io
n

al

4 Barren flow

Barren flow: Flow2

5 Orphan flow

Orphan flow: Flow1

6

One-in-one-out

and one-in-

many-out

inference

Conservation inferred:

{M1} → {M2, M3}

{E1} → {E2, E3}

7
Many-in-one-

out inference

Conservation inferred:

{M5, M5} → {M6}

{E5, E5} → {E6}

 236

Ref. from

Table 4.15

Reasoning

Name
Model Construct Expected Feedback

9

Material

transformation

without energy

exchange

Material transformation

without energy in F7

9a

Many-in-

many-out

inference

Conservation inferred:

{M7, M8} → {M9, M10}

Topologic and derivational reasoning are demonstrated by constructing the model

in Figure 6.16. The model shows at least one instance of all five element classes shown

on the toolbar. The flow subtypes Material and Energy are indicated by their line

thickness (material = thick, energy = thin). Signals have a dotted line font and S1 is

carried by Flow2. Element names such as M1 and F1 are entered by the user through the

text field in the respective dialogs. The letters within brackets on flow names are classes

selected from the tree in those dialogs. As seen in Figure 6.14, the default selections for

the flow subtypes are M for Material and E for Energy. These trees could be expanded to

select a more specific flow type, but that detail is outside the scope of this validation of

Layer 1.

 237

Figure 6.16: Model for topologic reasoning and derivational reasoning (# 1 – 5)

Topological Reasoning is performed at real-time during modeling, as indicated

by the colors of the elements. F2 and Env1 are identified as redundant (red), as they are

not attached to any flow. F1, Env2, and Env3 are not redundant, as they have at least one

attached flow. The dangling flow ends are highlighted in red, while attached ends are

black. For example, E2 has dangling tail but attached head, M2, E3, and S1 have

dangling heads but attached tails, E1 has both ends dangling, while M1 and M3 have both

ends attached to nodes. Thus, reasoning # 1, # 2, and # 3 from Table 6.14 are

demonstrated.

 238

Derivational Reasoning is performed on user-request, by double clicking the

white space in the graphics area. The result of derivational reasoning on the model is

shown in Figure 6.17. All checks are run at every request. In this case, the reasoner

found E1, E2, and E3 to be orphan, since their parent flows are not modeled. This,

despite the fact that E1 and E2 have dangling tails but E3’s tail is attached. The

derivational inference is not based upon dangling end status – they are based upon

whether the parent and child flows are modeled or not. M2, E1, and E3 are barren, since

their children are not shown. Although the children of M3 and E2 are not shown, they

are not detected as barren, since they are released to an environment, and thus their

children are outside the scope of reasoning. Similarly, M1 is not an orphan, since its

parent flows are outside the reasoning scope. Thus, reasoning # 4 and # 5 from Table

6.14 are demonstrated.

Figure 6.17: Derivational reasoning output from the model in Figure 6.16

In addition, this model demonstrates the one-in-many-out inference for material

flows. M1 is inferred to be the parent of M2 and M3, as M1 is the only Material input to

 239

F1 while M2 and M3 are the only Material output. Thus, reasoning # 6 is partially

demonstrated.

Messages for the other reasoning are not produced, since the model either passed

those checks or did not include modeling constructs where they apply. For example, the

many-in-one-out or many-in-many-out constructs are not modeled. In order to

demonstrate reasoning # 6 through 9a, the model is edited to Figure 6.18. The reasoning

output is shown in Figure 6.19. The first two messages are results of many-in-one-out

derivation inferences for Material and Energy. The third message indicates that F1

transforms material without consuming or releasing energy, which is a violation of the

first law of thermodynamics. Notably, flows with inferred children (e.g., M1) are not

listed as barren and flows with inferred parents (e.g., E3) are not identified as orphans.

With this illustration, reasoning # 6, # 7, and # 9 are demonstrated.

 240

Figure 6.18: Model for derivational reasoning # 6, 7, and 9

Figure 6.19: Derivational reasoning output from the model in Figure 6.18

 241

To demonstrate the last reasoning, many-in-many-out inference (# 9a), the model

in Figure 6.20 is constructed. The reasoning output is shown in Figure 6.21. Each flow

in the left side of a derivation relation (→) is a parent of each of the flows on the right

side of the relation. Thus, E3 is a child of both E1 and E2, while the same is true for E4.

Thus, the individual conservation relations are not captured in this inference. Similar to

the previous models, the orphan and barren flow messages report flows, whose parent of

children cannot be inferred from the model. Thus, reasoning # 9a is demonstrated.

Figure 6.20: Model for derivational reasoning # 9a

 242

Figure 6.21: Derivational reasoning output from the model in Figure 6.20

The demonstration of the nine reasoning tasks (eight from Table 4.15, plus #9a in

Table 6.14) using the ConMod software illustrates that the representation can be

incorporated in software to support conservational reasoning computationally. Thus,

these demonstrations constitute external validation of the representation against the

laws of conservation. While the reasoning algorithms are illustrated using models of

small complexity that are limited to one or two functions, it remains to be tested if the

representation can support constructing models of larger scales and support reasoning on

them, which is addressed next.

6.2.3 Application to Product-Level Modeling and Reasoning (Scalability)

To test scalability of the representation (Section 3.6), the air heater function

structure from Model State 4.14 is constructed using ConMod. The model has eight

functions and twenty flows, and is thus considered a mid-size model, based on the

 243

distribution of model sizes in the Design Repository [166]. Thus, this model constitutes a

low-fidelity demonstration of scaling.

The model is shown in Figure 6.22. Although Model State 4.14 shows residual

flows distinctly with red arrows, no flow in this model is tagged as a residual, since the

depiction of residues is not included in this layer of the representation. Residual flows

are reserved for the second layer, presented in Chapter 7. However, this model shows the

use of carrier flows. For example, KE1 is added to the carrier Air3 by function En_Air1.

En_Air1 shows the addition of kinetic energy using mechanical work MW1 (e.g., in a fan

blade), which is available by converting EE1 (e.g., in a motor). En_Air3 adds heat ThE1

to the air flow, part of which (ThE2) is lost as Loss9 to the environment. The Transfer

Air function consumes some kinetic energy from the flow itself, which is used to

overcome the frictional resistance of the flow path and lost as Loss8. Notably, Model

State 4.14, being constructed by a human designer prior to the development of this

representation, contains a violation of Rule 31 (see Construct 74), as it shows the carried

flow ThE2 being input to a node that does not input its carrier, Air4. This deviation is

addressed in the model of Figure 6.22 by including one additional function, Dissipate,

which shows the loss of heat from the exiting air stream through possibly the walls of the

surrounding conduit.

 244

Figure 6.22: The Air Heater model from Model State 4.14 reconstructed in ConMod

 245

Figure 6.23 shows the reasoning output from this model. None of the flows is

identified as orphan or barren, as each flow has either a node or a carrier flow at its head

or tail. Each function that transforms a material flow either adds or extracts energy to or

from at least one of the material flows. Finally, the derivations are shown as inferred,

based on the count of input and output flow of the two major subtypes—Material and

Energy—attached to each function. With this illustration of product modeling and

reasoning using ConMod, the scalability of the representation is demonstrated.

Figure 6.23: Reasoning output for the Air Heater model in Model State 4.14

In conclusion, this chapter provides validation for the first layer of the

representation, including internal consistency of the vocabulary and the grammar, and

external validation using modeling and reasoning through software implementation.

 246

Internal consistency is established through logical examination of the exhaustiveness and

consistency of the grammar, and by ontological examination of consistency of the

vocabulary. External validation is claimed by implementing the representation in the

ConMod software and using it to construct function structure models and perform two

types of conservation reasoning: topologic and derivational. Based on this discussion, it

is asserted that the first layer of the representation is validated.

Next, the representation is extended to support qualitative and quantitative

reasoning based on the principle of irreversibility. While conservation of energy,

supported in the first layer qualitatively, is a corollary of the first law of thermodynamics

[128, 129], the principle of irreversibility is a consequence of the second law of

thermodynamics [128, 129]. Thus, after the extension presented next, the representation

will stand validated against both laws of thermodynamics.

 247

CHAPTER 7. REPRESENTATION LAYER TWO:

EXTENSION OF LAYER ONE FOR IRREVERSIBILITY-BASED REASONING

The formal representation presented in the previous chapter is extended in this

chapter to support one additional type of reasoning—irreversibility—identified in Table

4.15. The extension is needed in order to support validating design concepts against the

principle of irreversibility. At the qualitative level, this reasoning includes the detection

of omitted residual energy flows in functions that input and output energy, based directly

on the second law of thermodynamics that requires any physical process—and thus, any

function—to be irreversible. For example, mechanical work required to deform an elastic

member such as a spring is partially lost as heat during deformation, thus requiring more

work to be input to the spring than the amount of strain energy stored. The work done is

producing this heat cannot be recovered during elastic recovery of the spring. Instead,

during recovery, part of the stored energy is again lost in overcoming internal friction of

the material and wasted as heat, thus further reducing the available work output. Thus,

energy is lost in both steps: during storing strain energy in the spring and recovering

mechanical work from it, thus making the cyclic process irreversible. This loss of energy

is shown in Figure 7.1, where MW is mechanical work and StrE is strain energy.

 248

Figure 7.1: Energy loss in physical processes

This irreversibility in cyclic processes is a consequence of the second law of

thermodynamics, a fundamental law that no design principle or concept can escape. One

corollary of this law is that when a system is put through a process that takes it from one

state to another, it is impossible to completely reverse the process such that both the

system and its surroundings are put back to their previous states [128, 129]. All real

processes are irreversible. In this example, the spring can return to its original

thermodynamic state (undeformed state) at the end of each cycle, as long as the

deformation was within the elastic limit, the recovery was complete, and time was

allowed for the spring to exchange heat with the environment, but the environment

around the spring undergoes change of state in every cycle, as it gains heat dissipated by

the spring.

This residual energy often becomes major design consideration. For example,

energy rejected by the spring or any elastic medium initiates the study of hysteretic

losses, a major concern in the design of tires and other traction systems [176]. Similarly,

heat rejected by internal combustion engines is a residual from the combustion process

that necessitates the entire cooling subsystem in automotive and other applications in

order to be dissipated to the atmosphere. Since this irreversibility is known to be

 249

inviolable by all design concepts and can become a major design concern, it is deemed

useful to capture this principle in the formal representation, so that concepts can be

validated against this principle and designers can be alerted about losses their design

must incur, thus preventing accidental overestimation of output power or underestimation

of power required to operate a device. In the representation, irreversibility is first

captured qualitatively so that algorithms can detect missing residual flows. Further, the

extendibility to support quantitative reasoning is illustrated by adding new function and

flow attributes, and using them to algorithmically compute the quantitative efficiency of

individual functions and the model as a whole. Section 7.1 presents the extension to the

representation. Sections 7.2 and 7.3 demonstrate irreversibility-based reasoning of

qualitative and quantitative types using extension of ConMod, thus providing external

validation of the extension.

7.1 Extension of the Representation to Include Irreversibility-Based Attributes

The extension of the representation to support irreversibility reasoning requires

adding only one attribute (IsResidual) for quantitative reasoning and two other attributes

(Efficiency and Power) for quantitative reasoning. Table 7.1 describes these attributes,

their classes, and data types.

Table 7.1: Layer 2 attributes and descriptions

Attribute In Class Data Type Description

IsResidual Energy Boolean IsResidual is set to true when a designer declares

that an energy flow included in the model is

 250

Attribute In Class Data Type Description

residual from a function.

Power Energy Number

(e.g., float or

double)

The attribute Power of an Energy flow is the time

rate of energy carried by that flow instance. It is

predicated on the representation being used to

model steady-state flow processes of mechanical

systems. Many devices, process, and principles

can be modeled as such, while the representation

can be later extended to model transient or non-

flow processes in the future.

Efficiency Verb Number

(e.g., float or

double)

Efficiency is a number variable to hold the

efficiency of a function as the ratio of the total

power of the output energy flows not marked as

residual to the total power of all input flows to

the function.

Figure 7.2 shows the extension of the representation, using the ERA model from

the first layer (Figure 5.1) in grey and the newly added attributes in bold black font. The

following sections illustrate software implementation of this extension and validation by

supporting both qualitative and quantitative reasoning based on the irreversibility

principle, using ConMod.

 251

Figure 7.2: Extension of the representation to support irreversibility reasoning

7.2 Implementation and Validation: Qualitative Irreversibility Reasoning

Since the extension is based on the first layer, whose internal consistency is

already established (Section 6.1), it is unnecessary to re-examine the internal consistency

of the representation post-extension. The attributes added in this extension are mutually

disjoint, as (1) efficiency applies to the Verb class while the other two (IsResidual and

Power) apply to its disjoint class: Noun, and (2) the two attributes added to Noun are

independent of each other, since all Energy flows must have the Power attribute

independent of whether it is declared by the modeler as residual or not. Further, the new

attributes do not require any grammar rule to restrict their application: all functions have

 252

efficiency (whether declared by the user or inferred by reasoning), all Energy flows have

Power (declared or computed), and all Energy flows have a value for the IsResidual

attribute (true or false). Thus, by this extension, the internal consistency of the

representation could not have altered from that established in the previous layer.

However, the external validity should be demonstrated using illustration of reasoning, as

shown next.

There is no change to the class diagram of ConMod due to this extension, as the

extension is limited to addition of attributes to existing classes only. The following

changes are made to the user interface:

1. A Residual Energy check box is added to the Add Energy dialog (Figure 7.3a)

2. A Residual Material check box is added to the Add Material dialog (Figure

7.3b)

3. A menu is added to turn on irreversibility-based modeling and reasoning

(Figure 7.4)

The Residual Energy check box passes a Boolean value to the IsResidual attribute

of the CEnergy class (checked = true, unchecked = false) and is used in the qualitative

and quantitative irreversibility reasoning. The Residual Material check box passes values

to the CMaterial class, but is not used in reasoning in this implementation of ConMod,

and hence is not mentioned as a necessary data member in the previous section. Residual

Material is included to provide the ability to mark a material flow as residual for

visualization and human reasoning. Both check boxes are turned on when irreversibility-

 253

based modeling and reasoning is selected from the Reasoning menu. In the Reasoning

menu, selecting Reasoning > Qualitative > Conservation (Layer 1) limits the reasoning

ability to that provided by the previous implementation of ConMod (hereafter called

ConMod-1). Irreversibility extension reasoning can be turned on by selecting Reasoning

> Qualitative > Irreversibility (Layer 2).

(a) Add Material dialog

(b) Add Energy dialog

Figure 7.3: Dialog boxes for adding Material and Energy instances (Layer Two -

Qualitative)

Figure 7.4: Reasoning menu options in ConMod (Layer Two - Qualitative)

To demonstrate irreversibility reasoning at the qualitative level, the Air Heater

model of Figure 6.22 is reconstructed using the Layer Two implementation of ConMod

(hereafter referred as ConMod-2), shown in Figure 7.5. Although some flows are named

 254

as Loss6 and Loss7, none are marked as Residual in in this model, in order to maintain

similarity with Figure 6.22 constructed using ConMod-1. The derivational inferences

produced by ConMod-2 (Figure 7.6) are identical as that produced by ConMod-1 (Figure

6.23). An inspection of the model and this report reveals that the inferences are correct to

the model.

 255

Figure 7.5: Air Heater model of Model State 4.14 reconstructed using ConMod (Layer 2)

 256

Figure 7.6: Qualitative derivational reasoning produced by ConMod-2 on the model

shown in Figure 7.5

Further, ConMod-2 produces a report identifying functions that violate the

principle of irreversibility. At a qualitative level, the only reasoning possible is to detect

functions that input and output energy flows but do not have any of the output energy

marked as residual. This reasoning output is shown in Figure 7.7, which identifies each

function in Figure 7.5 as a violation, since none of the energy flows is marked as residual.

 257

Figure 7.7: Qualitative irreversibility report produced by ConMod-2 on the model

shown in Figure 7.5

To address these messages, the model is next edited to mark the residual flows of

Model State 4.14 as residual. These flows include Loss4, Loss5, Loss6, Loss7, Loss8,

and Loss9. The edited model is shown in Figure 7.8, where the residual flows are in red.

 258

Figure 7.8: Modified model of the Air Heater, with residual flows identified by modeler

 259

The derivation reasoning output from this edited model is identical to the previous

model, as the tagging of an energy flow as residual should not change the inferences

about total energy balance of a function. However, the qualitative irreversibility

reasoning output is changed due to this edit, as shown in Figure 7.9. The two functions

that continue to violate irreversibility are “D’bute EE” and “Conduct EE”.

Figure 7.9: Qualitative irreversibility report produced by ConMod-2 on the model

shown in Figure 7.8 (modified model with some residual flows marked)

Notably, these two functions (D’bute EE and Conduct EE) were not identified to

have any residual flows in Model State 4.14, produced by a human designer during the

modeling exercise. However, both functions are expected to incur losses in the physical

embodiments, as the distribution of electrical energy in a junction box or the conduction

of electrical energy through a wire certainly produces resistive heat, and possibly other

forms of energy losses. This detection of violations of the second law of

thermodynamics is an illustration of how the representation and its implementation in

ConMod-2 can help to draw a designer’s attention to constructs that inadvertently inflict

 260

violations of physical laws in a concept. In many cases, this oversight can make a

concept unrealizable if the omitted losses are of significant magnitude.

The omission of residues is detected as a warning, rather than an error of the

model, as visible in Figure 7.9. This choice is made during implementing ConMod-2,

due to two reasons. First, the notion of “loss” is not fundamentally required by the

second law of thermodynamics. This law implies that when heat is converted to work by

a device (e.g., a heat engine), some part of the input heat cannot be converted into useful

work and must be rejected [128, 129]. Thus, the law only requires multiple output energy

forms, without identifying one as loss. This rejected heat from an engine is commonly

described as loss, since in typical applications, the output shaft work is the flow of

interest and efficiency is described as the ratio of the output work to the input heat.

However, in design projects, the notion of loss often depends on the designer’s intent, the

design requirements, and the behavior of the physical principles of the device. For

example, heat rejected by an automotive engine is often used to satisfy two design

requirements at the system level: (1) to provide heat to the passenger cabin and (2) to

raise and maintain engine temperature within a range required by the operating viscosity

of the lubricants. Specifically in wintery conditions, a change often happens in the

physical behavior of the engine and user-intent. (1) The rate of heat loss from the engine

increases due to higher temperature gradients between the engine and the surroundings.

(2) The user often intends to deliver more heat to the cabin. Thus, an engine that rejects

more heat is often more desirable in winter, so that it can keep the cabin warm and

maintain engine temperature at the same time. Similarly, heat produced by an electric

 261

lamp can be perceived as loss if the intent is to produce light, while it can be a useful

commodity in a heat lamp, where the light is residue. In some other applications, where

both the light and heat produced by a lamp are used to achieve design goals—such as

lamps in cafeteria stalls used to both illuminate and keep warm the food—none of the

output flows may be considered as loss. Thus, the notion of loss depends on the design

problem and requiring residual flows from every function in the representation may

reduce modeling coverage over some of the cases mentioned above.

Second, while all physical processes are subject to irreversibility, the flexibility to

optionally overrule this requirement may provide modeling convenience, especially when

the residual flows are negligible or of unknown magnitude. In order to allow the modeler

to capture negligible or unknown residues without violating irreversibility at a qualitative

level, the representation allows setting zero magnitude for residual flows at a quantitative

level, while the qualitative reasoner detects all functions without residual energy as

violations. Thus, all three models shown in Figure 7.10—the light bulb, the heat lamp,

and the café lamp discussed above—are accepted by the reasoner at a qualitative level,

where the loss from the café lamp is set to zero magnitude in the quantitative model. The

quantitative extension of the representation is discussed next.

 262

Figure 7.10: Depiction of residual flows for different design intent and zero

magnitude

In summary, the representation is extended to include class attributes necessary

for supporting qualitative irreversibility-based reasoning. The extension of ConMod-1

into ConMod-2 is used to demonstrate that such reasoning is supported by an

implementation of the extension. Thus, the extendibility of the representation to

support qualitative irreversibility reasoning is validated. Next, the representation is

further extended to support quantitative reasoning.

7.3 Implementation and Validation: Quantitative Irreversibility Reasoning

The quantitative extension is implemented in ConMod-2 by adding the Efficiency

and Power attributes to the CFunction and CEnergy classes. No change is made to the

class structure. The user interface is extended as follows:

 263

1. Two number fields—Force Term and Rate Term—are added to the Add Energy

dialog to capture power associated with an Energy flow instance (Figure 7.11a).

2. Two buttons are added on a new reasoning toolbar to allow requesting the

qualitative and quantitative reasoning algorithms separately (Figure 7.11b).

3. A menu is added to turn on quantitative modeling and reasoning (Figure 7.12).

(a) Add Energy dialog

(b) Reasoning toolbar

Figure 7.11: Add Energy dialog and reasoning toolbar (Layer Two - Quantitative)

Figure 7.12: Reasoning menu options in ConMod (Layer Two - Quantitative)

 264

The force and rate terms are generic placeholders for conjugate quantities, whose

product defines power associated with many common energy forms. For example, the

rate of mechanical work required to cause linear motion of a body (e.g., a slider in a

guide) against a force (e.g., friction between the slider and a guide) is the product of the

force applied and the velocity (rate of displacement) of the point of application of the

force: P = F × v. For rotational systems, e.g., in a rotating shaft, power transmitted is the

product of the torque (analogous to force) and angular speed (rate of angular

displacement): P = T × ω. The rate of electrical work done by current passing through a

resistance is the product of the voltage or electromotive force (analogous to force) and

the current (rate of charge): P = V × I [132-134, 177]. Thus, in many forms of energy,

specifically those that involve time rate of a quantity, the force term and the rate term can

be used to compute power. It is recognized that this correspondence does not apply to

many other energy forms. The purpose of using these conjugates instead of a more direct

Power attribute in the CEnergy dialog box is to recognize that energy flows are often

expressed in terms of indirect quantities that are more measurable and appropriate for

specifying those energy types than using the power attribute directly. For example,

engines are rated by the torque-speed characteristics and motors are specified by their

operating voltage and RPM. However, the only conservable quantities in these devices

are mass, energy, and momentum within isolated systems. Thus, in order to apply energy

balance, the quantities used to specify the flows must be first used to compute power.

The representation should ideally support specifying flows in terms of the physical

quantities appropriate for specifying their form, yet it should be capable of computing

 265

power from these quantities. The use of the force term and rate term is only an indication

of that flexibility to be achieved in future extension of ConMod. The two fields in Figure

7.11a, when multiplied, specify the power quantity of the CEnergy instance.

To demonstrate irreversibility reasoning in the quantitative level, the Air Heater

function structure of Figure 7.8 is reconstructed using the implementation of ConMod-2

with quantitative extension (hereafter referred to as ConMod-2q). This extension

supports all modeling and reasoning supported by the previous layers. In addition, when

quantitative reasoning is chosen from the menu by selecting Reasoning > Quantitative >

Efficiency (Layer 2), the model displays the default values of power for each flow,

appended to the right of the flow names with a default unit of watts (W). The force term

and rate term fields in the Add Energy dialog (Figure 7.11a) are also enabled.

The model displaying the default power magnitudes of the Energy flows is shown

in Figure 7.13. Each energy flow is assigned a power of 100 Watts, based on the default

values of the force term (100 SI units) and the rate term (1 SI unit) assumed by the

default dialog in Figure 7.11a. The only exception is Loss7, which is intentionally edited

to have a power of negative 100 W (-100 W – highlighted with an ellipse in the figure),

in order to illustrate the checks executed under quantitative reasoning.

 266

Figure 7.13: Quantitative model of the Air Heater using ConMod-2q, showing default power of Energy flows and one

negative power value

 267

Upon requesting quantitative reasoning, the algorithms are executed on the model

in Figure 7.13 in three steps. Figure 7.14 shows the result from the first step. Loss7 is

identified as a flow with negative power. The first step checks for existence of negative

power values in energy flows. A negative power value can occur either by user editing

(this case) or as a result of energy balance inference. At any time, if a flow with negative

power is identified, the algorithm recognizes that the model is out-of-date. Further

execution of reasoning (steps two and three) is aborted in this condition (Figure 7.15).

Figure 7.14: Quantitative reasoning Step-1: Check for negative power magnitudes

Figure 7.15: Aborting reasoning steps under out-of-date model state

 268

The model is next edited to assign a power value of 100W to Loss7, thus

eliminating flows with negative power. This corrected model state is shown in Figure

7.16. The corrected power value of 100 W is marked with an ellipse to highlight the

difference with the previous model state.

 269

Figure 7.16: Quantitative model of the Air Heater using ConMod-2q, after correcting negative power values

 270

Quantitative reasoning on this amended model produces the output shown in

Figure 7.17 produced. The algorithm finds no flows with negative power and continues

to the second step of quantitative energy balance. Since each energy flow has Power =

100 W, any function with unequal count of input and output energy flows is detected as

an unbalanced function. The functions where a balance is found are also reported. An

inspection reveals that the report in Figure 7.17 is correct to the model in Figure 7.16.

Similar to the previous step, subsequent reasoning is aborted until quantitative energy

balance is established in each function.

Figure 7.17: Quantitative reasoning Step-2: Check for quantitative energy balance

The model is next edited manually in order to achieve energy balance in each

function. For ease of model review, the input power in EE3 is kept as 100 W. The

resulting edited model is shown in Figure 7.18. The power magnitudes are chosen to

 271

assign realistic values to the flows. For example, resistive loss due to the distribution and

conduction of electrical energy are assigned only 2 watts each, while the En_Air1

function (possibly executed by a fan) and the En_Air3 function (possibly executed by a

heater) have larger losses. The fan loses six watts out of the input 36 watts (~17% loss),

while its fails to add to the air ten watts out of the 56 W of heat produced (~17% loss).

The heater’ functionality is shown in this model using two functions: Convert2 and

En_Air3. The first produces heat using electricity, while the second adds that heat to the

air stream. The use of two functions for one device shows that the representation does

not require maintaining a 1:1 mapping between functions and devices. In fact, in the

early design stages, where this representation is intended to be used, the devices or

embodiments of functions may not be known to the designer, and the representation

should not require the designer to maintain such mapping.

The loss from Convert2 is set to zero, since in resistive heating, all of the input

electrical energy can be converted into heat (if the temperature is not high enough to

trigger incandescence). This complete conversion of electrical energy to heat is not

against the irreversibility principle. The principle requires losses in converting heat to

work. When converting work to heat, all of the input work can be dissipated as heat. In

resistive heating, the work is performed by the electric current (electrical work). This

example shows another reason why it is useful to allow setting zero magnitudes to the

loss flows. However, loss from En_Air3 is shown as non-zero, as it is impossible for a

heater to add heat to the flowing air stream without losing any part of it to colder

 272

surroundings, since heat spontaneously flows from hotter to colder temperatures without

requiring external work input.

 273

Figure 7.18: Air Heater model after manually ensured energy balance

 274

The result of the quantitative reasoning on the model of Figure 7.18 is shown

next. In Figure 7.19, the reasoner determines that energy balance is achieved in the

individual functions, and therefore, in the model as a whole. With this check passed, the

reasoner continues to the third step of reasoning (Figure 7.20).

Figure 7.19: Quantitative energy balance report: Step 2 with passing results

Figure 7.20 shows the result of computing efficiency for the individual functions

and the model as a whole. An inspection of the input, output, loss, and efficiency of the

individual functions reveals that the reported numbers are correct based on the model.

Individual efficiencies are computed as the ratio of power of all output energy flows that

are not marked as residual to all input energy flows, residual or not. Further, the reasoner

computes the efficiency of the model, as shown in the last line of Figure 7.20. The

reported model efficiency, 67%, can be verified in two ways from the model. First, the

total power of the output loss flows is (2 + 4 + 6 + 2 + 0 + 10 + 1 + 8) watts = 33 watts,

 275

while the only input power is that of EE3, 100 watts. Thus, the efficiency is (100 – 33) /

100 = 67%. Second, the total energy added to the air stream is in two steps, En_Air1

adds 30 watts of kinetic energy, and En_Air3 adds 46 watts of heat, totaling up to 30 + 46

= 76 watts. Out of this added energy, the air spends 1 watt to viscous resistance of the

pipeline in the Transfer Air function and losses 8 watts of heat through the pipe walls in

the Dissipate function, resulting in a net energy available in the outgoing Air2 flow as 76

– (1 + 8) = 67 watts. Thus, the efficiency is 67/100 = 67%. Both results agree with the

reported model efficiency in Figure 7.20.

Figure 7.20: Quantitative reasoning Step-3: Computing function-wise and model

efficiency

 276

In summary, this chapter presents an extension to the first layer of the formal

representation (Chapter 5) to support irreversibility-based reasoning at qualitative and

quantitative levels. The extension of the representation involves the addition of three

new attributes to existing classes. No change in the class structure is necessary. The

enhanced reasoning ability due to this extension of the representation is demonstrated by

implementing new algorithms in ConMod, which perform qualitative and quantitative

model checking against the irreversibility principle and compute the function-wise and

model-level efficiency. Through these demonstrations, the representation’s

extendibility to support qualitative and quantitative reasoning on the irreversibility

principle is validated.

It should be mentioned that the three steps of quantitative reasoning—checking

for negative power, checking for energy balance, and computing efficiency—are not the

only quantitative reasoning that this representation can support at present. For example,

the third step computes efficiency of functions from known values of input and output

energy flows and identification of residues. Similarly, a ConMod model could be used to

estimate the required power input to a model from the desired output power of output

energy flows and the efficiencies of the functions. Similarly, if the available input power

and the efficiency of the modeled functions were known, the model could be used to

estimate the expected output power of the flows. Each of these reasoning types relies on

the definition of efficiency as the ratio of total output usable power and the total input

power. In each case mentioned, a different set of two variables are known and the third

one is determined. Each of these reasoning actions can be supported by implementing

 277

more algorithms in the ConMod software code, without any further extension of the

representation. However, for illustration purposes, only the efficiency computing

reasoning is implemented.

This ability to perform quantitative physics-based reasoning using function

structures opens up the possibility of automating confluence-based reasoning in early

design stages, although the need for a variational solving system is identified to support

that reasoning. For example, in the computation of function-wise efficiency in ConMod-

2q, the following parametric definition of efficiency is used:

Efficiency = (Usable output power) / (Total input power)

This parametric relation can only be used when the terms in the right hand side

are known and the efficiency (left hand side) is to be computed. However, when

analyzing confluence, a designer may need to investigate the effect of changing the

efficiency of a function on the usable output power, while the input remains constant.

Solving this problem parametrically to determine the new output power would require the

unknown variable (output) to be expressed in a new parametric form:

Usable output power = (Total input power) × Efficiency

Similarly, if the input power is to be computed while efficiency is changed,

another parametric expression for the same mathematical relation would be necessary.

Instead of predicting the possible permutations of these parametric forms, a variational

 278

solver can be used to solve these problems based on one declaration of the relation

between the variables.

In the next chapter, the representation is further extended by proposing a set of

function verbs. These verbs are defined using the existing representation and ensure

physics-based concreteness of definitions. These verbs can be used as a vocabulary of

elementary functional actions suitable for constructing function structures that can

support more enhanced physics-based reasoning.

 279

CHAPTER 8. REPRESENTATION LAYER THREE: SEMANTIC LAYER:

A PHYSICS-BASED VOCABULARY OF FUNCTION VERBS

The first two layers of the representation described in Chapter 5 through Chapter

7 rely on the six entity types: Function, Source, Sink, Material, Energy, and Signal, and

the 33 grammar rules of Layer 1. Any function structure based on this representation

must be defined with these vocabulary terms and grammar rules. While models so

constructed are internally consistent, externally valid against conservation and

irreversibility, and support formal reasoning, one limitation is that the models are entirely

syntactic; they do not capture or support reasoning on the meanings of the model terms.

For example, all reasoning would be equally applicable if the term Function was replaced

with any other word, or if a function named Convert Energy did not convert anything.

Constructing function models using meaningful terms not only increases the expressive

power of the model to human interpreters, it makes modeling easier and more consistent,

and when implemented in a formal representation, enables enhanced sematic reasoning,

many of which are necessary to perform design tasks such as solution search, problem

decomposition, model comparison, or similarity detection. This chapter begins to address

this need by extending the representation by proposing a finite vocabulary of atomic

actions (function verbs) to be used for function structure construction. These verbs are

formally defined to capture semantics of those actions using their topology (types and

count of flows attached) and additional grammar rules. This chapter verifies that this

vocabulary provides adequate coverage over function modeling, by constructing models

 280

to describe fundamental processes of physics and the engineering sciences, and by

modeling complete products in both descriptive and normative modes. However,

demonstration of reasoning supported by the vocabulary is not presented in this chapter

and is reserved for future efforts. In the following section, the need for capturing

semantic information in models is further developed.

8.1 The Need for Semantic Information in Function Modeling and Reasoning

The only entity to describe a transformative action in the current representation is

Verb. The Verb class is shown to be able to describe many actions, such as distributing

energy, converting energy, transferring energy, or energizing material flows (Figure

7.18). However, in each case, the function and its topological constructs—count and type

of input and output flows—must be controlled manually to ensure that the modeled

function and its attached flows truly describe the action the modeler intends. The

grammar rules prevent constructs that violate entity definitions and the reasoner detects

violations of natural laws, but these controls cannot ensure that a function’s topology

describes—or carries the meaning of—a specific transformative action such as Distribute

or Convert. It is therefore possible that the modeler adds a function with the intent to

describe an action such as distribution or conversion and then edits the model to the point

where the function does not describe the originally intended action. The reasoner cannot

draw inferences on the semantics of the modeled terms to detect this type of errors.

For example, Figure 8.1a shows the Distribute EE function from Figure 7.18 and

its attached flows as an isolated construct. This function is accepted by both the grammar

 281

and reasoning algorithms of Layer 1. For this example, it is assumed from the name of

the function that the original intent of adding this function was to describe a distribution

of energy. The function is next edited (in isolation, as shown) by deleting its output

flows, finally to arrive at the construct of Figure 8.1b. At no step, including Figure 8.1b,

do the grammar rules or the reasoner detect this construct as a violation of modeling

intent, despite that the model no longer describes any distribution: Figure 8.1b has only

one outgoing flow.

(a) Distribute with multiple output flows

(b) Distribute with no “distribution”

Figure 8.1: Lack of formalism to capture function semantics

This behavior is not surprising, given that there is no data element available in the

representation to store the original intent of distributing a flow. Notably, the GivenName

attribute “D’bute EE” is only a string for identification, not used in any semantic

reasoning. Similarly, Figure 8.2a shows an instance of Convert that does not convert

anything: all of its output flows are of the same type (mechanical energy, ME) as the

input. Instead, Figure 8.2b shows a function that changes the type of the incoming

energy flow from electrical energy (EE) to mechanical (ME) and thermal (ThE), yet is

not described as a Convert function. This behavior is also expected, since in addition to

 282

the intent of the verb being omitted, the energy flow labels EE and ME are only strings

for identification. The representation has no data element to capture that a flow marked

as EE is in fact electrical energy and thus must have certain properties and behavior. In

summary, the representation does not capture the semantics of functions and flows.

(a) Convert without “conversion” (b) Conduct with “conversion”

Figure 8.2: Semantic inconsistency between function description and topology

Allowing this type of errors not only makes the model wrong—as it does not

describe what the modeler wants to describe—it allows the modeler to overlook

violations of modeling intent, such as the missing output flows from Distribute shown

above, which is more likely to happen in models of higher size and visual complexity.

Consequently, the modeler can make incorrect inferences, such as underestimating the

power requirement. The algorithms presented earlier cannot detect these errors, as these

constructs do not violate conservation or irreversibility. It is anticipated that it would

benefit the modeler to detect the violation of modeling semantics and support more

enhanced reasoning about the concept based on this additional “knowledge” of semantics.

 283

To detect these errors, the reasoner must compare the modeled constructs to

internally stored meanings of the function verbs. To this end, the count and type of input

and output flows attached to a function contains enough information to capture meaning.

For example, in natural English, the verb distribute implies multiple flows being

produced15 (count), Convert implies the input and output flows being of different types16

(type), and both Distribute and Conduct17 imply no change of type within the scope of

those verbs (type). Additionally, the definitions of these verbs in the Functional Basis

vocabulary [26] also reveal similar semantic implications when objectively examined

[48, 115, 116]. Thus, the count and type of input and output flows attached to a function

are used here to surrogate the semantics of the function verb.

This approach of comparing model constructs with pre-stored semantic

definitions is predicated upon a finite number of verbs to be captured in the

representation. To this end, previous research indicates that a finite set of verbs can be

used to describe a wide range of mechanical actions [26, 27, 90, 106]. Examples are the

vocabulary of functions identified through engineering forensics of helicopters by Collins

15 “to divide among several or many” [http://www.merriam-webster.com/, accessed on August 16, 2011]

16 “to change from one form or function to another” [http://www.merriam-webster.com/, accessed on

August 16, 2011]

17 “to act as a medium for conveying or transmitting” [http://www.merriam-webster.com/, accessed on

August 16, 2011]

 284

et. al. [89] and the Functional Basis vocabulary [26]. However, being identified through

empirical observation (top-down approach), the verb definitions in these vocabularies

have notional concreteness, rather than physics-based concreteness, as explained in

Chapter 2. As a result, while these verbs are useful for human interpretation, they are not

suitable for physics-based reasoning. It is anticipated in this research that even at the

physics-based concreteness level, a finite set of verbs can be identified to describe

mechanical devices and principles. To this end, the aim of this chapter is to propose a

new finite vocabulary of atomic function verbs that can describe mechanical

functions with physics-based concreteness and to demonstrate that the vocabulary

provides adequate modeling coverage over a variety of physics and engineering

principles, phenomena, and devices. Each verb proposed here is composed of one or

more instances of functions and flows, and verb-specific grammar rules that capture the

meaning of the verbs. This finite number of verbs and grammar rules does not imply that

the total number of possible function structures is finite or that the representation has

coverage over a finitely many concepts. Rather, it means that infinitely many models can

be constructed using a finite number of individual verbs and a finite number of ways they

can be arranged topologically. Before presenting this vocabulary, the prospects of using

a finite vocabulary of formalized verbs in function structure modeling and reasoning are

illustrated next with examples.

Potential Benefits of Using a Finite Set of Verbs in Function Modeling

A static function verb vocabulary can provide benefits in both modeling and

reasoning. In modeling, a verb can be directly instantiated with its correct topological

 285

construct, thus increasing consistency and speed of modeling. For example, an instance

of the verb Energize_M used to model the addition of energy to a material (see Table

8.14) inputs one energy and one material flow, and produces one material and one energy

flow so that the output energy is carried by the output material, as shown in Figure 8.3.

This entire construct can be instantiated at once and thus can ensure correctness and

consistency of this topology. Grammar rules can be written to prevent violating these

constructs through erroneous editing.

Figure 8.3: An instance of the proposed verb Energize_M

In terms of reasoning, the use of semantic information can improve accuracy of

many automated design reasoning tasks, such as solution search, problem decomposition,

model comparison and similarity detection, and computing model complexity. Solution

search is discussed in design texts as a major activity potentially supported by function

modeling [1, 2]. To automate this activity, a solution search system can be devised in

two parts: (1) a database of solution principles, components, or subsystems, whose

function structure graphs are also mapped to the devices and stored in a searchable format

(similar to the *.fst models produced in ConMod-2q), and (2) a search algorithm that can

accept a function structure model in a similar format and search for solutions in the

 286

database whose functional constructs (whole or part) matches with constructs in the input

model. When a match is detected, the reasoner reasons that the stored device, whose

function structure contains similar structure as the input model or its portions, can be a

potential solution candidate and returns it.

Unless semantic information is formalized and implemented in the models, the

search algorithm can at most use the topological similarity between the models to

perform the search, without using information about the names or subtypes of the entities.

For example, if the input construct is as shown in Figure 8.4a, the search may return the

models in Figure 8.4b and Figure 8.4c from the database, since the only information

usable for search is that the construct has one function with one input energy and one

output energy. The facts that the function is a conversion of energy and the input and

output types are ME and ThE are not usable, unless these words are formally defined in

the representation. Additionally, it is impossible for the reasoner to detect that the

Transfer function actually causes conversion and the Store function converts energy and

supplies one of them, rather than storing something.

 287

(a) Input modeling construct

(b) Construct 1 stored in database

(c) Construct 2 stored in database

Figure 8.4: Two possible return values for solution search

With semantic information captured in the vocabulary terms, these algorithms can

have more information (data elements) to use in reasoning. For this solution search

example, only those solutions that show the conversion from ME to ThE can be returned

and thus, reasoning accuracy can be improved. It can be shown through similar exercises

that vocabulary-based modeling can improve reasoning accuracy and efficiency for other

activities such as similarity detection and model comparison. The proposed vocabulary

of verbs is presented next.

8.2 Proposed Vocabulary of Atomic Function Verbs

The proposed vocabulary of atomic verbs contains three parts: (1) energy verbs,

(2) material verbs, and (3) topologic verbs. Energy verbs are those that transform energy

flows from one state (not type) to another, without using material flows. Material verbs

are those that transform material flows and always involve energy flows, since the state

of a material flow cannot be changed without exchanging energy, as per reasoning # 9 of

 288

Table 4.15. Topologic verbs are logical operations, rather than mechanical actions,

required to instantiate energy balance and mass balance declarations.

The selection of verbs in this taxonomy is based on an overall review of physical

processes, especially the transport phenomena of heat and mass, with the intent of

describing those processes as actions (functions) performed on material and energy

flows. In outcome, it is recognized that only five basic actions are performed on energy:

1. Energy is converted from one form to another,

2. Energy is transferred from one location to another,

3. Energy is changed in quantitative specification,

4. Energy is stored in material media, and

5. Stored energy is released from material media.

The vocabulary of energy verbs is based on these actions, as discussed in Sections

8.2.1 and 8.2.2. Further, all actions on material flows are resolved into two basic actions:

6. Addition of energy to material, and

7. Removal of energy from material.

These two actions are the basis of the material verbs (Section 8.2.3). Topologic

verbs, discussed in Section 8.2.4, are not mechanical actions, as mentioned earlier. The

rationale behind reducing all processes into these seven actions rests on reviewing and

modeling a large number of phenomena from various physics domains such as

mechanics, hydrostatics, gravitation, elasticity, heat, acoustics, optics, electricity,

 289

magnetism, radioactivity, and from the engineering sciences such as hydraulics,

thermodynamics, and heat transfer. This accounting is omitted here for brevity.

However, in order to support the choice of these actions as a basis for developing the

vocabulary, the resulting vocabulary is tested for coverage over engineering processes

and devices. The energy verbs at the primary level are presented next.

8.2.1 Energy Verbs – Primary Level

The energy verbs are those that describe transformative actions on energy flows

and are organized in a two-level taxonomy. At the primary level, five verbs are defined:

(1) TypeChange_E, (2) Transfer_E, (3) Change_E, (4) Store_E, and (5) Supply_E, based

on the actions identified above. These verbs are described in Table 8.1 through Table

8.5. In each table, the first row introduces the verb’s name, the second row provides a

textual description of the verb for human interpretation of its purpose and action, the

verb’s semantics is captured in terms of the count and type of the attached flows in the

third row, and the fourth row introduces the grammar rules (constraints) imposed on the

flows as required by the semantics. Based on this information, the fifth row provides a

formal definition of the verb using first order predicate logic statements in a set-based

syntax. Finally, the sixth row identifies new flow attribute to be included in the

representation in order to define these new verbs. Table 8.1 describes the verb

TypeChange_E.

 290

Table 8.1: Primary energy verb: TypeChange_E

Verb

name

TypeChange_E

Textual

definition

To change the subtype of an energy flow

Input type

and count

One flow of a subtype of E

(Energy)

Output type

and count

One flow of a subtype of E

(Energy)

Grammar The input and output flows are necessarily of different subtypes.

Formal

definition

Class TypeChange_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List

in

out

in out

E ; // Only one input energy

Output_E_List E ; // Only one output energy

// Grammar constraints

E .SubType E .SubType; // The two flows are of different subtypes

}

Attributes Energy subtype, such as electrical, mechanical, etc.

 291

TypeChange_E is reserved for describing the conversion between energy forms,

similar to the Functional Basis verb Convert18 [26]. However, as defined in the

Functional Basis, Convert involves more complex actions, such as the conversion of

material and signal flows, the production of multiple flows, and residual output flows.

As shown above, the definition of TypeChange_E does not provide for residues or

multiple output flows. Thus, the simultaneous production of heat and light by conversion

from electrical energy in a light bulb cannot be modeled with one instance of

TypeChange_E. This behavior is intentional: TypeChange_E is not intended to describe

an entire conversion action. Rather, it is intended for describing only one fundamental

action of changing one energy type into another. This character is true for all verbs

presented in this chapter: they operate on the minimal number of flows and do not

include residual energy. Additional grammar rules and algorithms are required to ensure

that these atomic verbs can be combined to describe more complex concepts such as

Convert and other notional verbs from the existing vocabularies, and to validate these

models against the natural laws.

The definition of TypeChange_E also indicates that a distinction between the

subtypes of energy such as mechanical and electrical should be captured in the formal

18 “To change from one form of a flow (material, energy, signal) to another. For completeness, any type of

flow conversion is valid. In practice, conversions such as convert electricity to torque will be more

common than convert solid to optical energy.”

 292

representation. Developing a complete, consistent, and valid classification and formal

definition of flows is not in the immediate focus of this research, as this research is more

focused on formalizing functions at this stage. Thus, to provide for an energy

classification, the types mentioned in the Functional Basis vocabulary are adopted with

some modifications. Hydraulic and pneumatic energy are excluded, as these terms are

classes based on the carrier of the energy, rather than form of energy. Hydraulic and

pneumatic energy are means to transfer mechanical energy using a liquid or a gas carrier

or medium. Human, biological, acoustic, and solar energy are dropped, as these terms

are classes based on the source of energy rather than form. For example, biological

energy obtained by burning wood contains multiple forms such as light and heat, and the

energy stored in the wood can actually be better described as chemical energy that is

released in combustion. Solar energy is a mix of different wavelengths of

electromagnetic waves and not a distinct energy form than electromagnetic energy.

Human energy can be a mix of many energy types. Acoustic energy is described as a

form of mechanical energy conducted by a gaseous material. The optical and solar

subgroups under electromagnetic energy are not included, since from a physics point of

view, the only character distinguishing visible light from other electromagnetic waves is

wavelength, and thus, the other waves in the electromagnetic spectrum such as radio

waves, infrared, ultraviolet, x-rays, and gamma rays should be separately included. It is

anticipated that scope of the representation will cover all properties of light used in the

purview of general purpose mechanical engineering design that is covered under the

general category electromagnetic energy. Radioactive and Nuclear energy are considered

 293

as two different types. Nuclear is the type stored in an unstable nucleus, such as U238.

Radioactive energy is essentially electromagnetic energy that is released when an

unstable nucleus undergoes decay and includes electromagnetic waves such as heat and

gamma rays. Thus, the only terms from the Functional Basis considered in this table are

mechanical, thermal, electrical, chemical, and electromagnetic. Each of these types is

different energy forms and is governed by different physics. To continue with the

vocabulary, Table 8.2 describes the verb Transfer_E.

 294

Table 8.2: Primary energy verb: Transfer_E

Verb name Transfer_E

Textual

definition

To change the location of an energy flow in geometric space

Input type

and count

One flow of a subtype of E

(Energy)

Output type

and count

One flow of a subtype of

E (Energy)

Grammar The input and output flows are necessarily of the same subtype.

The input and output flows have necessarily different locations.

Formal

definition

Class Transfer_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E

in

out

in out

in out

; // Only one input energy

Output_E_List E ; // Only one output energy

// Grammar constraints

E .SubType E .SubType; // No type change during transfer

E .Location E .Location; // Location must chang

 e

}

Attributes Energy flow location

Table 8.3 describes the verb Change_E.

 295

Table 8.3: Primary energy verb: Change_E

Verb name Change_E

Textual

definition

To change the quantitative parameters of an energy flow without

changing its type

Input type and

count

One flow of a subtype of E

(Energy)

Output type

and count

One flow of a subtype

of E (Energy)

Grammar The input and output flows are necessarily of the same subtype.

At least one parameter between the flows is necessarily of different

value.

Formal

definition

 in

Class Change_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E

 out

in out

; // Only one input energy

Output_E_List E ; // No output energy

// Grammar constraints - NONE

E .Subtype E .Subtype; // No change of type

}

Attributes None

The Change_E function implies a change of quantitative specifications without a

change of type. Since energy flows of different subtypes are specified with different

parameter sets (e.g., torque and speed for rotational ME, current and voltage for EE), the

formalization of Change_E would require formalizing the parameters for each flow

 296

subtype. At this stage, this representation does not formalize the flows classes or their

parameters and thus it is not possible to formalize the definition of Change_E for

different energy subtypes beyond the generic definition above. Further, a change of

location can be possible between the input and output energy flows, such as between the

input ME and output ME flows of a gear box that are identified at the inlet and outlet of

the box. Thus, at the present formalism, the definition of Change_E looks similar to that

of Transfer_E, with the exception that location change is mandatory for Transfer_E but

not for Change_E. Despite this similarity, it should be emphasized that Change_E

describes an entirely different mechanical action from the other verbs, although at the

present formalism, it cannot fully accomplish that purpose. The definition above is a

placeholder for future extension of Change_E. Table 8.4 describes the next verb,

Store_E.

 297

Table 8.4: Primary energy verb: Store_E

Verb name Store_E

Textual

definition

To store an energy flow in a material medium (part of system), where

the medium behaves like a sink (singularity) and is able to receive an

infinite amount of the energy flow type

Input type and

count

One flow of a subtype of E

(Energy)

Output type

and count

None

Grammar None

Formal

definition

 in

Class Store_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E ;

// Only one input energy

Output_E_List ; // No output energy

// Grammar constraints - NONE

}

Attributes None

Table 8.5 describes the verb Supply_E. The secondary level of energy verbs are

presented next.

 298

Table 8.5: Primary energy verb: Supply_E

Verb name Supply_E

Textual

definition

To obtain energy from a material medium (part of system) , where the

medium behaves like a source (singularity) and is able to release an

infinite amount of the energy flow type

Input type,

count

None Output type,

count

One flow of a subtype of E

(Energy)

Grammar None

Formal

definition

Class Supply_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List ; /

 out

/ No input energy

Output_E_List E ; // Only one output energy

// Grammar constraints - NONE

}

Attributes None

8.2.2 Energy Verbs – Secondary Level

While the transfer of energy is captured in the primary verb Transfer_E, in the

study of heat transfer, three distinct mechanisms of transfer, governed by distinct

principles and phenomena, are discussed: (1) conduction, (2) convection, and (3)

radiation [128, 129]. A significant difference between these principles is in the

interaction of energy with matter.

 299

1. Conduction requires a material medium. While heat is transferred across the

medium by means of the local motion (vibration) of the particles, the medium as a

whole does not have the same net displacement as the conducted heat. Examples

are the conduction of heat or electricity through a metal conductor, from a zone of

higher temperature or electrical potential to a zone of lower temperature or

electrical potential.

2. Convection also requires a material medium and the medium as whole moves by

a net displacement to carry energy with it. Convection includes diffusion of the

energy into the fluid from a boundary and transfer of the fluid in a process called

advection. An example is the warming of water in a pot heated from the bottom,

where heat is diffused from the bottom plate into the water, and reaches the top

layers of water chiefly by the advection of hotter (and thus lighter) water

molecules from the bottom to top.

3. Radiation does not require a medium at all, although properties of the intervening

material or empty space, such as refractive index and transparency, influence the

quantitative parameters of radiation such as speed of light and loss of intensity

due to absorption. An example is the propagation of light through air, water, or

empty space.

It is anticipated that by distinguishing between these three types of energy

transfer, enhanced reasoning can be supported in early design. For example, qualitatively

it can be inferred from an instance of radiation that no material medium is necessary in

the embodiment of that function, while from an instance of convection, it can be inferred

 300

that a fluid medium must be used, since only liquids and gasses can support advection. In

future quantitative extensions, an instance of one of these types could be used to infer

material properties pertaining to that type, such as conductivity for conduction and

convection coefficient for convection.

Further, it is anticipated that the characteristic difference between these three

mechanisms in terms of interaction of energy and matter can be conceptually extended to

other forms of energy than heat, such as mechanical, electrical, or chemical. With this

extension, conduction, convection, and radiation can be used as general subtypes of

energy transfer. This anticipation is verified next by attempting to describe transfer

processes of various energy forms analogous to conduction, convection, and radiation.

Verification of Three Types of Transfer for Different Energy Types

In Table 8.6, five actions—Conduct, Diffuse, Advect, Radiate, and Store—are

five columns on the right. Each cell contains one or more examples of the action

mentioned in the column header on a given type of energy (column 1) and using a given

type of material (column 2). For example, the top left cell describes the action Conduct

for Mechanical Energy (ME), using material of the type solid (S). The first four actions

are the potential subtypes of Transfer_E under examination. Store is included to discover

if all energy types can be stored, so that grammar rules for the verb Store_E can be

written accordingly. Supply is not separately shown. For each type stored, an opposite

phenomenon can be used to describe supply of the energy. For the material types (column

 301

2), the three basic phases of material—solid (S), liquid (L), and gaseous (G)—are

considered.

 302

Table 8.6: Three modes of transfer and storage for different energy types

E M Conduct Diffuse Advect Radiate Store

M
ec

ha
ni

ca
l E

ne
rg

y
(M

E
)

S
ol

id

A rotating shaft
conducts mechanical
work from one location
(end) to another
location (end). The
shaft rotates locally,
but does not undergo
net displacement
between the ends as the
energy.

Kinetic energy is
handed over (diffused)
from a moving billiard
ball to a static ball in
collision and across
multiple balls in a
Newton pendulum.

A projectile (e.g., a
bullet) carries kinetic
energy from one
location to another, and
must have
displacement between
the locations to transfer
energy.

X

M
ec

ha
ni

ca
l e

ne
rg

y
ca

nn
ot

 b
e

ra
di

at
ed

, a
s

it
 c

an
no

t b
e

tr
an

sf
er

re
d

w
it

ho
ut

us

in
g

m
at

er
ia

l.

Gravitational PE is
stored in a raised solid
object, such as a
raised hammer.
Elastic Strain E is
stored in a solid object
(e.g., spring) by
elastically deforming
its geometry.

L
iq

ui
d

Water in a pipeline
conducts mechanical
energy during surging
or water hammer. An
open water surface
conducts ME as waves.
In both cases, a wave
propagates without net
displacement of water.

Kinetic energy is
diffused from a water
jet to the buckets of a
Pelton wheel during
collision.

Water exiting a nozzle
and hitting the buckets
of a Pelton wheel
advects kinetic energy,
as the water itself must
move to cause the
transfer from the nozzle
to the bucket.

A soap bubble stores
surface energy
(potential energy).
Water stored behind a
dam has stored
gravitational
potential energy.

G
as

eo
us

Air conducts ME as
sound waves and
shockwaves. Both are
perceived by humans as
sound, when the
frequency is in the
audible range (20-
20,000 Hz).

Wind hitting the blades
of a windmill diffuses
its kinetic energy to the
blades.

Air hitting the blades of
a windmill advect
kinetic energy. Both
have net displacement
to carry energy to the
blades.

Mechanical work is
stored in a tank of
compressed air when
the air is compressed.
During expansion, this
stored work is released
as exergy.

 303

E M Conduct Diffuse Advect Radiate Store
T

he
rm

al
 E

ne
rg

y
(T

hE
)

S
ol

id

Heat is conducted
through heat
exchanger plates and
radiator fins. The
plates and fins do not
move, while the heat is
transferred.

Heat is diffused
from a hot solid
to a cold solid
in thermal
contact, such as
from the tip of a
soldering iron
to solid solder.

Solids cannot support
advection by molecule motion,
but the whole solid can move
and carry heat. Shotgun
pellets are made by dropping
molten lead drops from a
height into water to cool and
freeze. The heat rejected to
water is advected by the pellets
across the height.

R
ad

ia
te

d
he

at
 is

 c
la

ss
if

ie
d

as
 e

le
ct

ro
m

ag
ne

ti
c

en
er

gy
 (

E
M

E
).

Heat is stored in all solid
objects as internal energy,
indicated by its
temperature. It is better
received when it is
extracted from the solid as
sensible heat, which
causes measurable drop of
temperature.

L
iq

ui
d

When a liquid column
is heated at the top
layers, the only means
for heat to transfer to
the bottom layer is by
conduction. Due to a
negative density
gradient (hotter liquid
at the top), convection
cannot ensue.

Heat is diffused
from hot liquid
to solid in
thermal contact,
such as from
hot coolant to
the walls of a
radiator in a
car.

When a liquid column is
heated at the bottom, heat is
transferred to the top through
advection, which starts once
the temperature difference and
height of the column is large
enough for the column to
collapse.

Heat is stored in all liquids
as internal energy,
indicated by its
temperature. It can be
removed as sensible or
latent heat, depending on
whether the liquid is above
or at its freezing point.

G
as

eo
us

When a gas column is
heated at the top
layers, the only means
for heat to transfer to
the bottom layer is by
conduction.

Heat is diffused
from hot gas to
a solid in
thermal contact,
such as from the
hot exhaust gas
to the walls of
the exhaust
pipe in a car.

When a gas column (e.g., the
air column inside a chimney
stack) is heated at the bottom,
the main transfer process is
convection, similar to liquids.
The gas particles themselves
move to the top to carry heat
with them.

Heat is stored in vapors as
internal energy, as
indicated by its
temperature. It can be
removed as sensible or
latent heat, depending on
whether the vapor is above
or at its condensation point.

 304

E M Conduct Diffuse Advect Radiate Store
E

le
ct

ri
ca

l E
ne

rg
y

(E
E

)

S
ol

id

Electrical energy is
conducted through wires.
The conductor does not
need to move to transfer
the energy.

Electrical energy is
diffused from one
conductor to another
in electrical contact,
such as between the
contacts of a switch.

EE is convected by solid toner
particles in laser printers from
the drum to the paper. The
particles are charged and are
transferred due to attraction of
the oppositely charged paper. A
small current is established by
the flow of the particles. The
energy of this current is advected
by the displacement of the toner
particles.

Static electricity is
stored in solid objects
such as toner particles,
charged capacitor
plates, and the leaves
of an electroscope.
The storage of electric
energy in batteries is
not mentioned, since
the stored form is
chemical energy.

L
iq

ui
d

Electrical energy is
conducted through liquids
such as mercury. The
liquid does not move in
order to conduct the
energy.

Electric energy is
diffused between a
liquid and a solid in
electrical contact,
such as between the
electrolyte and an
electrode in
electroplating.

Charged paint
droplets in spray
painting advect
electrical energy
from the nozzle to
the work surface
by physically
moving in space.

Electrical energy
is transferred
through empty
space or air by
induction, such
as between the
high-voltage and
low-voltage coils
of a transformer.
A load connected
across the low
voltage side
consumes EE
transferred from
the high-voltage
side without using
a conductor.

Static electricity is
stored in liquids, such
as in gasoline during
transport due to
friction against the
inside of a tank and in
water droplets in
clouds.

G
as

eo
us

Electric energy is
conducted (discharged)
through gas in cathode
ray discharge tubes and
through air during
lightning. Although flow
of charged gas particles is
involved, the gas does not
undergo net displacement.

Charged gas in
plasma arc welding
is discharged in
contact with a solid.

Gasses in plasma
state (e.g., in
plasma arc
welding) convect
electrical energy,
where gas particles
have to move in
space to transfer
the energy.

Static electric charge
stored in gas particles.

 305

E M Conduct Diffuse Advect Radiate Store
C

he
m

. E
ne

rg
y

(C
hE

)

S
ol

id

X
Chemical energy
cannot be conducted
through material media.
ChE is energy locked
in the chemical bonds
of the material and thus
always needs a material
carrier. It cannot be
transferred without
moving the material
that stores it.

X
Chemical energy
cannot be diffused

ChE is convected by
the flow of pulverized
coal in a furnace in a
boiler plant. The coal
must to transfer its
stored ChE.

X

C
he

m
ic

al
 e

ne
rg

y
ca

nn
ot

 b
e

ra
di

at
ed

.

Chemical energy is
stored in the molecular
bonds of carbon and
in the solid
electrolytes of a
rechargeable cell
during charging.

L
iq

ui
d ChE is convected by

the flow of gasoline in
an engine.

Chemical energy is
stored in the atomic
bonds of liquid
hydrocarbons, such as
liquefied propane.

G
as

eo
us

ChE is convected by
the flow of propane
gas in a grill.

Chemical energy is
stored in the atomic
bonds of gaseous
hydrocarbons, such as
gaseous propane.

 306

E M Conduct Diffuse Advect Radiate Store
E

le
ct

ro
m

ag
ne

ti
c

E
ne

rg
y

(E
M

E
)

S
ol

id

Conduct through
solids:
The only physical
process of transferring
EME is radiation.
However, the process
of transmitting light
through an optical
fibers and cables can
be modeled as
conduction, since the
cable does not undergo
any displacement.

Diffuse: X
The entrance of light
from one medium to
another can be viewed
as diffusion, but since
the medium does not
play any role in
transferring the light,
this view is considered
inappropriate in
function modeling.

Advect: X
The only means of
transferring EME is
radiation.

R
ad

ia
te

:
E

M
E

 i
s

tr
an

sf
er

re
d

as
 r

ad
ia

ti
on

 i
n

th
e

pr
op

ag
at

io
n

of
 r

ad
io

 w
av

es
,

in
fr

ar
ed

 l
ig

ht
 (

T
hE

),
 v

is
ib

le
 l

ig
ht

(o

pt
ic

al
 e

ne
rg

y,
 O

pE
),

 X
-r

ay
s,

 a
nd

 g
am

m
a

ra
ys

.

Store: X
Electromagnetic
energy cannot be
stored in any medium
in electromagnetic
form. It can be
converted and stored
in other forms, as in
photovoltaic cells or
solar panels that
convert EME from the
sun into EE.

L
iq

ui
d

G
as

eo
us

 307

As shown in Table 8.6, the characteristics feature of the three energy transfer

mechanisms in terms of interaction of energy with material can be extended to other

energy form than heat using the concepts of conduction (medium does not move),

diffusion (transfer across media in contact), advection (medium carries the energy), and

radiation (medium not required) studied in heat transfer. However, as seen in the

material verbs, diffusion can be modeled as the energizing of material (e.g., adding heat

to colder fluid by a hotter plate) or de-energizing of material (e.g., removing heat from a

hotter fluid to a colder plate), and advection can be modeled using the carrier flow

relation, as energy carried by material. Thus, the two phenomena within convection,

diffusion and advection, do not need to be captured as separate verbs. Thus, the only

secondary verbs required under Transfer_E are (1) Conduct_E and (2) Radiate_E, which

are described next. Table 8.7 describes the verb Conduct_E.

 308

Table 8.7: Primary energy verb: Conduct_E

Verb name Conduct_E

Textual

definition

To transfer energy using a material medium, while the medium does not

undergo a net displacement between the locations of energy transfer

Input type,

count

One flow of a subtype of E Output type,

count

One flow of a subtype of

E

Grammar All inherited grammar from Transfer_E

The input energy subtype cannot be Chemical Energy, as per Table 8.6

Formal

definition

in

Class Conduct_E : Transfer_E {} // Inherited from class Transfer_E

{

// Grammar constraints

E .SubType ChE; // Chemical energy cannot be conducted

}

Attributes None

Table 8.8 describes the verb Radiate_E.

 309

Table 8.8: Primary energy verb: Radiate_E

Verb name Radiate_E

Textual

definition

To transfer energy without using a material medium

Input type,

count

One flow of a subtype of

E

Output type,

count

One flow of a subtype of E

Grammar All inherited grammar from Transfer_E

The input energy subtype can be only electrical, thermal, or

electromagnetic, as per Table 8.6

Formal

definition

 in

Class Radiate_E : Transfer_E {} // Inherited from class Transfer_E

{

// Grammar constraints

E .SubType ThE EE EME ; // Only ThE, EE, and EME can be radiated

}

Attributes None

As seen above, the only difference between the primary verb Transfer_E and its

children is in the additional grammar rules that controls which subtypes of energy can be

conducted or radiated. The identification of these transfer process for various energy

types identified in Table 8.6 is used to derive these grammar rules. In Conduct_E, the

conducting material is not included as an input flow, since by definition of function

(Section 1.2.7) and flow (Section 1.2.6), a function is an action performed by the

device, and a flow is an entity that the device acts upon [178]. Since Conduct_E is a

function executed by the modeled system, the medium of conduction must be a

 310

component of the system, and therefore should not be included as a flow. To this end,

previous research [179] indicates that reasoning such as those involved in similarity

detection between function models is inaccurate when the distinction between system and

flows is ignored. Table 8.9 summarizes the energy verbs in a taxonomy, and includes

their textual definitions tables where they are formally defined. The next subsection

describes the material verbs.

Table 8.9: Summary of energy verbs and their description tables

Primary Secondary Textual Description
Defined in

Table

TypeChange_E To change the subtype of an energy flow Table 8.1

Transfer_E To change the location of an energy flow

in geometric space

Table 8.2

Conduct_E To cause a change of location of an energy

instance using a medium, where the

medium does not change location

Table 8.7

Radiate_E To cause a change of location of an energy

instance without using a medium or a

carrier, although physical properties of the

medium intervening the two locations may

influence the process

Table 8.8

Change_E To change the quantitative parameters of Table 8.3

 311

an energy flow without changing its type

Store_E To store an energy flow in a material

medium (part of system), where the

medium behaves like a sink (singularity)

and is able to receive an infinite amount of

the energy flow type

Table 8.4

Supply_E To obtain energy from a material medium

(part of system) , where the medium

behaves like a source (singularity) and is

able to release an infinite amount of the

energy flow type

Table 8.5

8.2.3 Material Verbs

Material verbs are those that perform transformative actions on material flows.

As discussed earlier in this section, two basic actions involving materials are identified

from the review of physical processes, which are translated into verbs next. Table 8.10

describes the verb Energize_M.

 312

Table 8.10: Material verb: Energize_M

Verb

name

Energize_M

Textual

definition

To add energy to a material flow

Input

type,

count

One flow of a subtype of E

One flow of type M

Output type,

count

One flow of a subtype of

E

One flow of type M

Grammar The input energy flow must not be a carried flow.

The output energy flow must be carried by the output material flow.

The subtype of the input energy flow must be the same as the output energy.

No restriction on the subtypes of the material flow, since phase change

between solid, liquid, or vapor may occur as result of energizing.

 313

Formal

definition

Class Energize_M : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

List <Material*> Input_M_List; /

in

out

in

/ Input material list

List <Material*> Output_M_List; // Output material list

// Count of flows

Input_E_List E ; // Exactly one input energy

Output_E_List E ; // Exactly one output energy

Input_M_List M ;

 out

in out

in

// Exactly one input material

Output_M_List M ; // Exactly one output material

// Grammar constraints

E .SubType E .SubType; // No type change of energy

E .Carrier ; // Input energy must not be a carr

out out

ied flow

E .Carrier M ; // Energy must be added to material

}

Attributes None

Table 8.11 describes the material verb DeEnergize_M.

 314

Table 8.11: Material verb: DeEnergize_M

Verb

name

DeEnergize_M

Textual

definition

To remove energy from a material flow

Input

type,

count

One flow of a subtype of

E

One flow of type M

Output type,

count

One flow of a subtype of

E

One flow of type M

Grammar The input energy flow must be carried by the input material flow.

The output energy must not be a carried flow.

The subtype of the input energy flow must be the same as the output

energy.

No restriction on the subtypes of the material flow, since phase change

between solid, liquid, or vapor may occur as result of energizing.

 315

Formal

definition

Class DeEnergize_M : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

List <Material*> Input_M_List

in

out

i

; // Input material list

List <Material*> Output_M_List; // Output material list

// Count of flows

Input_E_List E ; // Exactly one input energy

Output_E_List E ; // Exactly one output energy

Input_M_List M

n

out

in out

in in

; // Exactly one input material

Output_M_List M ; // Exactly one output material

// Grammar constraints

E .SubType E .SubType; // No type change of energy

E .Carrier M ; // Energy must be removed from

out

 material

E .Carrier ; // Ouput energy must not be carried

}

Attributes None

Similar to the energy verbs, the material verbs also input and output the minimal

number of flows that describe the action intended and does not provide for residual flows.

As mentioned earlier, reasoning algorithms must be written in addition to these

definitions to ensure model validity against the principles of conservation and

irreversibility. In the next subsection, the topologic verbs are described.

8.2.4 Topologic Verbs

Two topologic verbs—logical branch and logical unite—are described next.

These verbs are not mechanical actions. Rather, these verbs are necessary to instantiate

user-defined declarations of energy balance and mass balance between energy and mass

 316

flows in the model. As shown in the next section, when used in conjunction with the

other verbs presented, these verbs allow modeling residues and the branching of flows.

Table 8.12 describes the verb Logical_Branch.

Table 8.12: Topologic verb: Logical_Branch

Verb name Logical_Branch

Textual

definition

To state that the mass or energy parameter of one flow (input) equals the

sum of that parameter of a set of multiple other flows (output)

Input type,

count

Exactly one flow, E or M Output type,

count

At least one flow, E or

M

Grammar The input flow is either a material or an energy, but not both

All output flows are of the same subtype as the input

For material, the input mass equals the sum of the output masses

For energy, the input power equals the sum of the output powers

 317

Formal

definition

 1

Class Logical_Branch : Verb {} // Inherited from class Verb

{

// Type of flows

List <Noun*> Input_List; // Input list

List <Noun*> Output_List; // Output list

// Count of flows

Input_List I ; // Exactly one inp

1 2 3 n

1

i 1

ut flow

Output_List O ,O ,O ...O ; // Multiple output flow allowed

n 1; // At least one output required

// Grammar constraints

I .SubType M E ; // Only material and energy can be balanced

i,O .SubType I .Sub

n

1 1 i
i 1

n

1 1 i
i 1

Type; // No change of subtypes allowed

I .SubType M I .mass O .mass ; // Mass balance

I .SubType E I .power O .power ; // Energy balance

}

Attributes None

As seen from the above definition, the type of the flow is not changed. In

addition, no transformative action is modeled using this verb. The purpose is to provide a

means to declare that the mass or energy of one flow is conserved as the mass or energy

of several other flows. Use of this verb is shown in the next section. Table 8.13

describes the verb Logical_Unite.

 318

Table 8.13: Topologic verb: Logical_Unite

Verb name Logical_Unite

Textual

definition

To state that the mass or energy parameter of a set of multiple flows (input)

equals the sum of that parameter of another flow (output)

Input type,

count

At least one flow, E or M Output type,

count

Exactly one flow, E or

M

Grammar The output flow is either a material or an energy, but not both

All input flows are of the same subtype as the output

For material, the sum of the input masses equals the output mass

For energy, the sum of the input powers equals the output power

Formal

definition

 1 2 3 n

Class Logical_Unite : Verb {} // Inherited from class Verb

{

// Type of flows

List <Noun*> Input_List; // Input list

List <Noun*> Output_List; // Output list

// Count of flows

Input_List I , I , I ...I ; // Multi

1

1

i 1

ple input flow allowed

Output_List O ; // Exactly one output flow

n 1; // At least one input required

// Grammar constraints

O .SubType M E ; // Only material and energy can be balanced

i, I .SubType O .SubTy

n

1 i 1
i 1

n

1 i 1
i 1

pe; // No change of subtypes allowed

O .SubType M I .mass O .mass ; // Mass balance

O .SubType E I .power O .power ;// Energy balance

}

Attributes None

 319

Before applying the verbs presented in this section to test their coverage over

physical principles and devices, the verbs are summarized, along with their representative

graphical symbols, in Table 8.14. In each verb symbol, the flow names are written to

match the name declared in the formal definition, for ease of reference. This table also

shows all the verbs and their taxonomy together and provides pointers to their definition

tables. In the following section, this vocabulary is applied to model physical principles

and devices to test the coverage of this vocabulary.

Table 8.14: The proposed physics-based verbs and their graphical symbols

Part Primary Verb
Secondary

Verb
Ref. Table Graphical Symbol

E
n

er
gy

 v
er

b

TypeChange_E Table 8.1

Transfer_E

 Table 8.2

Conduct_E Table 8.7

Radiate_E Table 8.8

Change_E Table 8.3

 320

Part Primary Verb
Secondary

Verb
Ref. Table Graphical Symbol

Store_E Table 8.4

Supply_E Table 8.5

M
at

er
ia

l v
er

b

Energize_M Table 8.10

DeEnergize_M Table 8.11

T
op

ol
og

ic
 v

er
b

Logical_Branch Table 8.12

Logical_Unite Table 8.13

 321

The Logical_Branch and Logical_Unite verb instances are together referred to as

balance nodes of function structure models presented hereafter. As seen from the

symbols, both Store_E and Supply_E functions violate derivational conservation, as they

do not maintain energy balance between the input and output sides. While this violation

may lead to the identification of those flows as orphan or barren by the reasoning

algorithms of ConMod-2q, this modeling construct is consistent with physics as energy

can be stored in material bodies and later released. For example, in a rechargeable

battery, chemical energy is stored during charging and liberated during discharging.

Thus, derivational reasoning for this semantic layer should be waived for the special

cases of Store_E and Supply_E.

In summary, this chapter presents a finite vocabulary of verbs that are claimed to

be atomic actions performed by mechanical devices and can be used in modeling

engineering devices and phenomena as function structure models. In the next chapter,

this vocabulary is validated by using it in a wide variety of function modeling

applications.

 322

CHAPTER 9. VALIDATION OF LAYER THREE:

MODELING COVERAGE OF THE PHYSICS-BASED VERBS

In this chapter the proposed vocabulary of verbs is validated through modeling

applications. Since the verbs are identified from review of physics phenomena and their

formal definitions are composed of physics-based entities of the previous two layers, the

vocabulary is first tested by modeling principles and processes of physics and the

engineering sciences. Section 9.1 presents application of the energy verbs in descriptive

modeling of closed systems involving multiple energy forms, without using material

flows. Section 9.2 applies both energy verbs and material verbs to model existing open

system phenomena from heat transfer and hydraulics. Once the vocabulary’s ability to

describe basic phenomena is demonstrated, it is used to model complete products in

Section 9.4 (descriptive modeling) and Section 9.5 (normative modeling).

9.1 Coverage Testing of Energy Verbs through Descriptive Modeling (Closed

Systems)

Since the energy verbs describe energy transformation without mass transfer, only

electro-mechanical processes and thermodynamic processes of closed systems can be

modeled to test these verbs. Open systems with mass flow, such as thermal-hydraulic

machines and principles can be modeled only for testing the material verbs. In this

section, seven physical processes (Subsections 9.1.1 through 9.1.7) involving various

energy subtypes are modeled using the energy verbs. These processes are chosen to

address the overage requirement that the vocabulary must support modeling phenomena

 323

involving at least electrical, thermal, and mechanical energy forms, as mentioned in

3.1.3For each process, a representative device is used as a typical embodiment of the

process for ease of understanding and interpretation of the model. It is emphasized that

the models describe the physics of the processes, rather than the devices.

The modeling approach of this exercise is descriptive (describing existing

processes), rather than normative (developing an ideal process or principle). Thus,

ideally, residual flows should not be captured, since a pure descriptive inspection should

objectively identify the functions and flows of an observed process without cognizance of

the designer’s intent. In fact, as discussed in context of Figure 7.10 (Section 7.2), the

identification of residues may largely vary with the application of a process in design

(light bulb, heat lamp, and café lamp example). In the models below, the residual flows

are identified in context of the representative device. This depiction is used at the end of

Section 9.2 to explain irreversibility-based reasoning using this vocabulary.

All models presented in this exercise are qualitative, as the definitions of energy

verbs presented here do not include quantitative details. For clarity, environment

instances are not shown in these models. All dangling ends of flows shown are to be

considered as attached to respective environment instances. Potential reasoning that can

be supported with these models are also identified when applicable.

9.1.1 Storage and Supply of Electrical Energy (Device: Lead-Acid Battery)

First it is recognized that many devices have multiple modes of use and often

execute different functions or processes in different modes. An example is a

 324

rechargeable battery, which can be used in two modes: charging and discharging. The

function structures for these two modes are shown below. The representative device a

common lead-acid battery with electrodes made of lead oxide (anode, +) and metallic

lead (cathode, -) and diluted sulfuric acid as the electrolyte.

Use Mode: Charging (Storage)

The function structure of the battery during charging is shown in Figure 9.1.

Energy is consumed as electrical work done by the electrical source and is spent in two

accounts indicated by the balance node: (1) in overcoming the internal resistance of the

electrolyte and electrodes and (2) in executing the chemical reaction where the lead-

sulfate deposit and water is changed into lead, lead oxide, and sulfuric acid. The first part

is lost as heat, while the electrical work EW2 is stored as chemical energy, as the

resulting total energy state of the molecules of this reaction is higher than in a discharged

battery.

Figure 9.1: Storage of electrical energy as chemical potential energy

Although the main scope of this research does not include establishing a flow

vocabulary for function modeling, some flows in addition to those identified in Section

8.2.1 by modifying the Functional Basis are necessary to work compatibly with the

energy verbs. For example, since the physical phenomena of static electric charge

 325

accumulation in a material body are different from those of current electricity, a

distinction is necessary between these two forms of electrical energy. Hereafter, the first

is modeled as electrical potential energy (EPE) and the second as electrical work (EW).

Electrical work is done at all times when a current flows through a conductor. The need

for this distinction will become clearer in Section 9.1.3.

Use Mode: Discharging (Supply)

The chemical reaction of charging is exactly reversed during discharging, as

shown in Figure 9.2. The difference of the chemical binding energy of the reactant and

product molecules is liberated as electrical work, as the products of the reaction reduce to

a lower energy state. This liberation is captured in the first TypeChange_E function.

Due to irreversibility, only a part (EW3) of this total electrical work EW1 is done on the

load connected to the external circuit, while the remainder EW2 is consumed to

overcome internal resistance of the cell and dissipated as heat, modeled as the second

TypeChange_E function.

Figure 9.2: Supply of electrical energy from stored chemical potential energy

While the word supply may imply a physical flow of an entity, the Supply_E

function does not imply a “flow” of chemical energy ChE as a change of location in

geometric space. Rather, it is required for derivational and topologic consistency of the

 326

model. Without it, the flow ChE would have a dangling tail or would be inferred as

entering from the environment. By definition, a function is an action performed by the

device (Section 1.2.7). Here, the device is the source of this ChE and Supply_E describes

that action.

It should be mentioned that electrical work is done by the cell only when current

is established by losing the external circuit. Ideally, there is a third use mode of the

cell—idling—where the external circuit is open. However, once the circuit is opened, the

reaction continues only momentarily until the potential difference between the electrodes

builds up to create a counter electromotive force that stops the reaction and the entire

electrochemical process comes to a static equilibrium, where all functions cease to exist.

9.1.2 Resistance to Electrical Current (Devices: Resistor, Heating Coil, Lamp

Filament)

The three basic properties of conductors that contribute to impedance to current

are resistance, inductance, and capacitance [126]. These basic building blocks of

electrical circuits are modeled before moving to more complex systems such as series and

parallel R-L-C circuits and devices such as DC motors and DC generators.

A pure resistor offers only resistance to current, without inductance or

capacitance, and electrical work spent in moving the charge against the resistance is

entirely dissipated as heat according to Joule’s Law [126]. The function structure for this

process is shown in Figure 9.3.

 327

Figure 9.3: Resistive heating

This process occurs in many devices such as electrical wires, heating elements

coffee makers and hairdryers, and filaments in incandescent lamps. These devices are

mentioned because they reveal certain characteristics of modeling the resistive heating

process. First, the last two devices are usually not pure resistors, as they are formed as

coils and thus produce magnetic fields around them. This is a theoretical difficulty that

can be easily mitigated for this discussion by hypothetically replacing the coils with

equivalent straight resistors.

Second, while an electric wire usually produces only heat, the heater element and

lamp filament usually produce both heat (ThE) and light (EME). This light is produced

through incandescence, which triggers only when the conductor’s temperature exceeds a

threshold, a property of the resistor material. In turn, the steady state temperature of the

conductor is a function of rate of heat generation and dissipation to the surroundings, the

first of which depends on design parameters such as current, and conductor properties

such as conductance, length, sectional area, and melting point, while the second depends

on the heat transfer modes (conduction, convection, and radiation) and their respective

coefficients. Thus, whether light is produced at output ultimately depends on the

quantitative details of the model, although the present modeling scope is only qualitative.

To support automated reasoning about when these use modes will exist, quantitative

 328

parameters must be captured in the representation for individual principles, an extension

reserved for future extensions of this research.

Third, different output energy flows from the same principle can be desired or

considered lost in different designs. Table 9.1 shows four representative devices of the

resistive heating principle. These devices vary in design parameters such as electric

current and resistance that control if light (EME) is produced and in design intent that

determines if heat (ThE) is desired or not. In the two cases where multiple energy types

are produced from the same function, two instances of TypeChange_E are required, since

the definition of the verb allows only one conversion per instance. These models

demonstrate that the energy verbs can describe each of the cases, when accompanied by a

means to mark the residual flows, which is already available in the second layer of the

representation.

 329

Table 9.1: Model variation with design intent
D

es
ig

n
 in

te
n

t H
ea

t
d

es
ir

ed

Heating coil (coffee maker)

Filament (heat lamp, hairdryer)

H
ea

t
n

ot
 d

es
ir

ed

Electrical wire

Filament (light bulb)

 Light not produced Light produced

Design parameters (e.g., current)

Finally, the representation can support modeling the same phenomenon at

different spatial resolutions. For example, the production of light and radiated heat in an

incandescent filament can be modeled as successive conversions from ThE to ME to

EME. Light and radiated heat are electromagnetic waves with the only difference being

in their frequencies. The production of these waves is a result of the atoms releasing a

part of their vibrational kinetic energy (ME) as electromagnetic radiation when their

temperature is elevated above a threshold [126]. Part of this radiation is described by

human observers as light, as its frequency lies in the visible spectrum for humans. Thus,

the identification of this energy as light (OpE) is a function of the observer being human

 330

and not of the physics of the device. For this reason, the Functional Basis term optical

energy is replaced with electromagnetic energy (EME) in all models in this illustration.

9.1.3 Storage and Supply of Electrical Energy using Capacitance (Device:

Capacitor)

The storage and supply of electrical energy in a capacitor is similar to those in a

lead-acid battery, with the difference that the form in which energy is stored in a

capacitor is electrical rather than chemical.

Use Mode: Charging (Storage)

Storing charge in a capacitor requires electrical work to be done by the source, as

electrons must be moved against the counter electromotive force offered by the

increasingly charged electrodes. The stored form of electrical energy is the electrical

potential energy EPE (static electric charge). Work spent in accumulating this charge is

EW2. In addition, EW3 is electric work dissipated as heat, due to internal resistance of

the capacitor is therefore the bottom TypeChange_E function is topologically identical

with Figure 9.3. EW1 is the total work spent in the process and is the sum of EW2 and

EW3, as implied by the balance node.

Figure 9.4: Storage of electrical energy as electrical potential energy (static charge)

 331

Use Mode: Discharging (Supply)

The function structure for the discharge of a capacitor is shown in Figure 9.5.

Figure 9.5: Supply of electrical work (current) from stored electrical potential

energy

Notably, the vocabulary can describe the capacitor and the rechargeable battery in

topologically identical models, the only difference being the form of energy stored. This

similarity indicates that as long as qualitative physics principles are considered, these two

processes could be used interchangeably for storing and supplying electric energy, which

is indeed true. This similarity can be also used in automated reasoning. For example, a

reasoning algorithm for solution search can be written that matches the modeled

functional construct with an archive of solutions where device types are mapped against

functions. If this algorithm is used to seek solutions to “storage of EE as ChE” (Figure

9.1), it would possibly return different types of storage batteries, and when searched for

“storage of EE as EPE”, it may return capacitors. However, based on this topological

similarity, the same algorithm could return both device classes, if the search was widened

as “storage of EE”, without mentioning the form of stored energy. In this manner, the

representation shows potential for supporting more enhanced reasoning, which is

reserved for future work.

 332

9.1.4 Production of Magnetic Field using Inductance (Device: Solenoid with or

without Soft Iron Slider)

Producing magnetic fields by passing current through an inductor is a

fundamental process in electrical systems and is used in applications such as

transformers, motors, and generators. Basic demonstration of this principle is done by

passing current through a straight conductor, which induces the magnetic field around it,

while a basic engineering application is the solenoid, where current is passed through a

helically coiled conductor that induces the field along the coil axis. A soft iron slider

partially inserted into the solenoid is commonly used to extract linear motion (thus, work)

based on this principle. Function structures for this principle are shown next, for two

different use modes: slider locked and slider moving.

Use Mode: Slider Locked (Motion Prevented)

In this use mode, the slider does not move, either because it is locked positively or

the field is not strong enough to overcome friction. Figure 9.6 shows two variants of this

principle: Figure 9.6a represents the device with a magnetic but non-magnet slider, such

as a soft iron core. Figure 9.6b shows the function structure for a permanent magnet

slider. The distinction between these principles will become clearer in the next use mode.

MagF is the magnetic field produced. No mechanical work is done, as there is no motion

(locked). Thus, the entire electrical work is dissipated as resistive heat (ThE). Figure

9.6a describes any of three processes: (1) straight conductor carrying current, (2) solenoid

carrying current and no iron slider is used, (3) solenoid carrying current while soft iron

slider is used but locked from moving. While mass and energy are conserved entities of

 333

the universe, forces are not, and the topologic derivation rules do not require force

balance across functions. This model is therefore consistent with the balance laws. In

Figure 9.6b, the system produces two magnetic fields, one each from the solenoid and the

permanent magnet, both of which are available to the surroundings. No mechanical work

is done, as the slider is locked.

(a) No slider or soft iron slider

Use mode: slider locked

(b) Permanent magnet slider

Use mode: slider locked

Figure 9.6: Production of magnetic field without mechanical work by induction

The models for resistive heating (Figure 9.3) and inductive magnetic field

production (Figure 9.6) are identical except MagF. Admittedly, Figure 9.3 could be more

complete as a descriptive model if the magnetic field produced around the conductor was

shown. However, it was omitted as for most applications of resistive heating the field

produced by a straight conductor is negligible.

Use Mode: Slider Moving

When the slider is unlocked and the magnetic force is strong enough to overcome

friction, the slider moves, and mechanical work is done as at least the frictional resistance

(force) of the slider is overcome over a distance. Figure 9.7a and Figure 9.7b show this

 334

process for a soft iron slider and a permanent magnet slider. The total electrical work is

spent in two accounts: (1) to produce mechanical work MW1 and (2) to overcome

electrical resistance of the solenoid, which produces ThE1. The magnetic force from the

coil is used in producing mechanical work in both cases, while the magnetic force from

the permanent magnet (PM) is additionally used in the second case. Again, since forces

are not conserved entities, the Supply_F and TypeChange_E functions do not violate

conservation laws.

(a) Soft iron slider

Use mode: slider moving

(b) Permanent magnet slider

Use mode: slider moving

Figure 9.7: Production of magnetic force from electric energy through induction

The four models shown above use a function named Supply_F that is not

presented in the energy verbs. Similarly, the flow MagF is of the type force, rather than

material or energy previously discussed. The reason for their use is that the role of the

magnet (e.g., the permanent magnet in Figure 9.7b) is only to produce a magnetic force

field, rather than to provide magnetic energy. No part of the energy required to produce

 335

MW1 comes from the magnet, as the magnet remains in the same state after the operation

is over. The only energy input to the system is through electrical current and thus, it must

be a part (EW3) of the total incoming electrical work (EW1) that is spent to produce

MW1. However, the current through the conductor would not produce this mechanical

work unless the conductor was immersed in a magnetic field, as described by Fleming’s

left hand rule [126]. Thus, the magnet’s role is to create a force field, which should not

be described as energy, and therefore the function Supply_F and the flow MagF are

justified. However, this discussion shows that the representation could be extended to

include flows of force and associated force-transforming functions in the future.

9.1.5 Work from Electrical Energy (Device: DC Motor with Permanent Magnet)

As the principles of electrical impedance—resistance, inductance, and

capacitance—are modeled above using the vocabulary, larger electrical systems of

engineering interest are modeled next. Figure 9.8 shows the function structure for the

typical use mode of a DC motor.

Figure 9.8: DC motor with permanent magnet

 336

The magnet provides the field MagF (PM). Mechanical work MW2 is available

at the shaft. The MW3 part of the total mechanical work produced (MW1) is consumed

to maintain motion against bearing friction and is ultimately dissipated as heat (ThE2)

and sound (AcE1). The other source of loss is the part of electrical work spent in

overcoming the electrical resistance of the rotor coil. This portion is captured as EW2,

which is dissipated as heat ThE1. This method of modeling has two major advantages in

reasoning.

First, separation of the electrical and mechanical losses allow for calculating

motor efficiency as the product of electrical and mechanical efficiencies, as shown below.

3 2 2
motor e m

1 3 1

EW MW MW Net mechanical work output

EW EW EW Total electrical work input

Second, this model can simulate the two other possible use modes by progressive

alteration: (1) no load, where the motor freely rotates without extraction of mechanical

work and (2) stalling, where the load is increased until rotation stops while the motor

continues to consume electricity. In both modes, the net mechanical work output is zero.

The no load mode is simulated by setting MW2 to zero, as the motor consumes only

enough electric work to keep it in steady state motion against bearing friction, thus

resulting:

2 1 3 1 3ThE AcE MW MW EW

 337

Mechanical work is produced, but is entirely consumed in overcoming friction,

leaving none for net output. In stalling, motion ceases and thus MW1 should be set to

zero, implying that the entire incoming electrical work must be dissipated as resistive

heat from the coil, as follows.

1 3

1 2 1

MW EW 0

ThE EW EW

In stalling, there is no frictional heat or sound produced and this outcome can be

reasoned as:

1

2 3

2 3

2 3

MW 0

MW MW 0

MW 0 and MW 0

both MW and MW are non-negative

9.1.6 Work from Electrical Energy (Device: DC Motor with Field Winding)

The only difference in this model from the previous model is that the total

incoming electrical energy must be distributed to feed the field winding and the rotor

winding. This model is shown in Figure 9.9. Unlike the permanent magnet, the field

winding consumes electrical work EW5, which must be supplied in addition to the

previous total input EW1, thus increasing the total input to EW4 = EW1 + EW5. The

field winding is represented as a TypeChange_E function, instead of the Supply_F

function in the previous model.

 338

Figure 9.9: DC motor with field winding

To illustrate the use of the verbs under Transfer_E, the model in Figure 9.9 is

extended in Figure 9.10 to show the transfer of the mechanical work using the shaft and

dissipation of heat to the atmosphere. Both Figure 9.9 and Figure 9.10 are correct, the

difference being in functional scope (which functions are included) of the models. Figure

9.9 includes functions to produce mechanical work and heat. Figure 9.10 includes

additional functions, typically executed by additional physical embodiments, such as the

shaft and fins. The net mechanical work output is conducted through the shaft that acts

as a conduit for work transfer and does not undergo a net displacement. MW2 is the

input to the shaft, while MW4 is work available to the driven agent at the output end of

the shaft. All heat produced is ultimately transferred through conduction into air,

convection, and radiation, as shown with the individual functions. ThE4 implies the total

heat, while the addition of heat to air (diffusion) is shown using the Energize_M function.

 339

Figure 9.10: DC motor model with energy transfer functions

9.1.7 Electrical Energy from Work (Device: DC Generator with Permanent

Magnet)

The converse principle of a DC motor is executed by a DC generator, where

mechanical work is consumed to spin a coil inside a magnetic field, the interaction

between which produces potential difference between the generator terminals. Electrical

work is done only in the use mode when a load is connected between the terminals,

shown in Figure 9.11. MW2 is the total mechanical work supplied by the prime mover

(environment), of which MW3 is dissipated as heat and sound through friction. The

remainder, MW1, is used to produce electrical work EW3 in presence of magnetic field

MagF (PM). A part of this total electrical work, EW2, is consumed in overcoming the

 340

internal resistance of the rotor coil and the counter electromotive force (back emf), and is

ultimately dissipated as heat, ThE1.

Figure 9.11: DC generator with permanent magnet

Figure 9.11 is intentionally drawn with the energy arrows going from right to left,

contrary to normal practice, in order to illustrate that this model is obtained purely by

reversing the directions of the non-residual energy flows (black arrows) in the DC motor

function model (Figure 9.8). The directions of the residual flows (red arrows) are not

reversed. This symmetry shows that this modeling method can be used to reason that by

reversing the flows through a motor, a generator could be built. Also, the non-reversal of

the residual flows shows that the models are in agreement with the Second Law of

Thermodynamics, since irrespective of the work flow directions, the losses always leave

the system and are not recovered when the overall process is reversed.

Notably, this last model is an open system, as it shows incoming and outgoing

material flows (air) and consequently, uses the material verb Energize_M. However,

modeling coverage of the material should be demonstrated through more exhaustive

 341

modeling of basic principles of open systems with mass transfers. This demonstration is

presented next.

9.2 Coverage Testing of Material Verbs through Descriptive Modeling (Open

Systems)

Two major areas of engineering physics involving mass and energy transfer are

heat transfer and hydraulics. In this section, principles and phenomena from these two

areas are modeled to illustrate modeling coverage of the verbs, with special interest to the

material verbs that were not tested in the previous section sufficiently.

9.2.1 Heat Transfer between Two fluids across a Wall (Device: Heat Exchanger

Pipe)

A basic process in heat transfer is the transfer from a hot fluid to a cold fluid

separated by a conductive wall. This principle is embodied in many applications,

including thermal insulations around steam pipes and hot water pipes (hot fluid inside

pipe), and in evaporator coils in refrigerators (cold fluid inside). Here the representative

device is a drum and tube type heat exchanger, where one fluid fills the drum and the

other is passed through the tubes that run in coils inside the drum. The exchange of heat

between these fluids happens through the wall of the pipe. Figure 9.12 shows a function

structure for the process. The process is completed in three steps: (1) heat is diffused

from the incoming hot fluid to the wall, (2) heat is conducted across the wall, and (3) heat

is diffused to the cold fluid from the wall. These steps are shown by the three functions

DeEnergize_M, Conduct_E, and Energize_M. Whot1 is the incoming hot fluid that loses

 342

heat and exits at a different state, Wcold1. Wcold2 is the incoming cold fluid that receives

the heat and becomes Whot2.

Figure 9.12: Heat exchange between two fluids across a wall

9.2.2 Heat Transfer from a Fluid to the Atmosphere (Device: Radiator)

An extension to the previous model is the case where the cold side of the heat

exchanger is atmospheric air, as commonly applied in automotive radiators

(representative device). The difference with the previous case is that on the cold side,

heat is not only diffused to air, but is also radiated in space. The part diffused in air can

be conducted through it or carried away by free or forced convection, but those functions

are not within the scope of the model.

 343

Figure 9.13: Heat transfer from hot fluid in a pipe to atmospheric air

9.2.3 Heat Transfer through an Intermediate Cycled Flow (Device: Disk Heat

Exchanger)

A common application of the above principles happens in devices where an

intermediate fluid (or solid) is cycled between the two temperatures as the carrier of heat

from the hot to the cold fluid. The functionality of this intermediate flow is similar to

that of the wall in Figure 9.12, which carries heat from the hot to the cold fluid.

However, this intermediate fluid is reused and therefore energy must be expended in

keeping them in motion. An example is the coolant fluid in automotive engines, which

receives heat by diffusion when in thermal contact with the jackets in the cylinder block,

rejects heat at the radiator, and is cycled back to the engine block using a pump. Another

application is a disk type heat exchanger (representative device), as modeled in Figure

9.14. In this model, the disk itself is modeled as the intermediate flow. Although the

disk as a whole does not flow through the system, heat is received and rejected by

individual particles of the disk, which are cycled back by doing mechanical work. The

material flows Disk1, Disk2, and Disk3 represent three states of a given particle of the

 344

disk. As mentioned earlier, the definition of flow (Section 1.2.6) requires that a flow is

not a part of the modeled system. However, for reused material such as the engine

coolant or the disk particles, a duality of identity arises based on the system resolution.

From a low resolution view, the coolant or the disk can be considered parts of the heat

transfer system and the model should not depict them as a flow. In a closer look, they

can be perceived as a flow. For example, when individual cooling subsystems such as

the radiator or the coolant pump are modeled, the coolant needs to be treated as a flow

through those systems, since it carries the energy exchanged at each step. The model in

Figure 9.14 is based on this high-resolution view.

Figure 9.14: Heat transfer using an intermediate reused flow

The first DeEnergize_M function (top left) shows the loss of heat from the hot

fluid Whot, which is received by the particle through the first Energize_M function (left).

Here the hot fluid is de-energized and the particle is energized. The diffusion of heat

 345

between two flows is shown with two functions, as opposed to the diffusion of heat from

a fluid to the system shown with one function (DeEnergize_M) in Figure 9.12. This two-

function construct is a consequence of using the particle as a flow, rather than as a device,

and illustrates the representation’s ability to model both viewpoints. No Conduct_E

function is required to complete this diffusion, as used in Figure 9.12, since the two flows

(hot fluid and the particle) are in direct thermal contact.

The particle is next energized with mechanical work MW2 that keeps it rotating,

and comes in thermal contact with the atmospheric air on the cold side. Heat is

dissipated from the hot particle to air in the same manner as described for the radiator in

the previous model. The particle then returns to the original state and is reused in the

dame functions. No further mechanical work is added to the particle, since it is already

energized with ME2. In the next subsection, some basic principles from hydraulics are

modeled.

9.2.4 Free Drainage of Water from a Tank (Device: Penstock of a Hydraulic

Turbine)

A basic principle in hydraulics is the drainage of water from a tank. It is applied

in applications such as the penstock of a hydraulic turbine, where the reservoir is the tank

and the penstock itself is the pipeline, as depicted in Figure 9.15. Gravitational potential

energy stored in the elevated water is converted into kinetic energy according to

Bernoulli’s principle that conserves the sum of the pressure head, velocity head, and

elevation head along a streamline.

 346

Figure 9.15: Schematic diagram of free drainage of water from a tank

The corresponding function structure is shown in Figure 9.16. The total potential

energy lost by the water in state A (WA) corresponds to the gravitational potential energy

due to a fall through the gross head, Hgross. Of this total energy converted, a part is lost

(Eloss) in overcoming the pipe friction, while the balance (KE2) is available at the water

jet at the free end of the pipe. This energy corresponds to the net head of the system,

Hnet, and is manifested as the velocity of water in state B, KE3. The topology of this

model requires the use of a DeEnergize_M and an Energize_M function, with a pseudo

flow of water in the middle, since the TypeChange_E verb accepts only an energy flow

and produces another. The vocabulary does not provide any verb for converting a carried

energy flow directly into another energy flow carried by the same material. Thus, the

model describes the process indirectly, where the water is first shown to be de-energized

off its potential energy and later energized with the converted form, kinetic energy. The

interim flow, W2, is a pseudo flow, as it is only required for maintaining continuity of the

model, but does not describe any state of the water in the actual system.

 347

Figure 9.16: Conversion of potential energy into kinetic energy in free drainage of

liquids

9.2.5 Conversion of Kinetic Energy of Water to Shaft Work (Device: Francis

Turbine)

A second basic hydraulic phenomenon is the extraction of shaft work from the

kinetic energy of water, as performed by various types of hydraulic turbines

(representative device). The function structure is shown in Figure 9.17. The water jet, as

available from the penstock (WB in Figure 9.16) transfers its kinetic energy to the blades

of a Francis runner or the buckets of a Pelton wheel. This energy is partially lost, as

shown using the balance node, as frictional and hydraulic losses in the blades (Eblade) and

also in overcoming mechanical losses such as bearing friction (Ebearing). The remainder is

available as shaft work MWshaft.

DeEn_MWA
W2 (pseudo)

PE2

PE1
mgHgross

En_M WB

KE1

KE3
(mvB

2/2)

TypChg
_E

KE4
TypChg

_E
Eloss

KE2 mgHnet

 348

Figure 9.17: Extraction of shaft work from kinetic energy of water

In summary, this chapter demonstrates modeling coverage of the vocabulary of

atomic function verbs by describing a variety of existing principles of physics and

engineering as function models. Principles from a variety of physics domains and

engineering sciences are modeled, and a variety of flow subtypes of energy and material,

in a variety of combinations are described. Although this modeling exercise could be

continued to provide additional proof of coverage, based on this preliminary

examination, it is demonstrated that the proposed vocabulary provides adequate

coverage for modeling existing physical and engineering principles.

With the exception of the two topologic verbs—logical branch and logical unite—

the verbs of this proposed vocabulary Chapter 8 are composed of the six entities of the

first layer: Function, Source, Sink, Material, Energy, and Signal. Further, an examination

of the models of this chapter reveals that the grammar rules of the first layer (section 5.2)

are adhered to in these models. The grammar rules for the topologic verbs are identical

 349

to those applicable to functions in the first layer. Thus, each model constructed here with

the verbs vocabulary could as well be constructed directly from the first layer of the

representation. Based on this observation, it can be said without explicit demonstration

that all reasoning on conservation presented in Chapter 6 is equally applicable to these

models.

In contrast, these models are not compatible with the irreversibility algorithms of

Chapter 7, since the proposed verb definitions do not include residual flows. In fact, if

the algorithms of Chapter 7 were used, each model of this chapter would be identified as

a violation. For example, both the DeEnergize_M and TypeChange_E functions in

Figure 9.17 transform energy without producing residues. These errors, while detected

by the irreversibility reasoning algorithms, cannot be fixed by adding a residual flow to

the verbs, as was possible in the previous layers, since the definition of the verbs would

not allow more than the specified number of flows. However, it must be emphasized that

this violation does not imply that by extending the representation through the verbs

vocabulary, the validity of the representation against the principle of irreversibility is lost.

As mentioned above, the verb definitions are based entirely on the previous layers of the

representation. It is only the reasoning algorithms for irreversibility that need to be

rewritten to achieve compatibility with the new verbs. For example, a possible reasoning

algorithm to check for residual flows for the TypeChange_E function would be to inspect

that for every instance of TypeChange_E, another instance of TypeChange_E exists that

produces a residual flow and whose input energy flow is an output from the same logical

branch node that produces the input energy to the TypeChange_E function of concern.

 350

For example, in Figure 9.4, the type change from EW2 to EPE is desired by the design,

while the type change from EW3 to ThE is residual. This model would be accepted by

the new algorithm since EW3 comes from the same balance node as EW2, indicating that

a part (EW3) of the total energy spent (EW1) is lost during type changing. Similarly, in

Figure 9.17, the desired conversion of KE4 to MWshaft is accompanied by the two

instances of TypeChange_E that produce residual flows (Eblade and Ebearing) and come

from the same balance node as KE4. For the output side, the type change from PE2 to

KE1 in Figure 9.16 is also valid, since a part of KE1 is lot as KE4. In this case, the

reasoner should look for an accompanying loss from a logical branch node at the head of

the output flow of the TypeChange_E function. Thus, even with the physics-based verbs,

reasoning on irreversibility can be performed with suitable new algorithms. In the next

section, the verb definitions are extended to include these residual flows within the

definitions, in order to enable feature-based modeling, as explained next.

9.3 Extension of Physics-Based Verbs with Residual Flows for Feature-Based

Modeling

In this section, the verb definitions are extended to include residual flows within

the definition, so that typical losses incurred during an action are automatically added to a

model when these extended classes are instantiated. The motivation is to allow feature-

based modeling, as available in geometric CAD systems [180], where one feature can

instantiate a group of related entities at once. For example, a boss feature in a

commercial CAD tool (Figure 9.18) includes a cylinder primitive, a Boolean unite

operation between the cylinder and the base solid (plate), and fillet features at the

 351

resulting edges as requested by the modeler. The fillet, in turn, consists of a sketch of the

fillet cross section, a sweep of the sketch to generate the fillet solid to be added to a

concave edge or removed from a convex edge, and appropriate Boolean operations to

unite or subtract the fillet solid to the base solid. When a boss is added to the model, all

these elementary entities of the model are instantiated in the correct order and operated

through the Boolean operations to create the boss.

Figure 9.18: Geometric CAD model of a boss feature

Similarly, the intent of adding the residual flows within the verb definitions is to

enable fast and easy instantiation of function-features that include the main function and

its losses. However, since modeling requirements are difficult to foresee, similar to

geometric CAD, the features may not always provide coverage over modeling situations.

Low-level entities, such as the original verb set of Table 8.14, may be necessary to model

non-covered actions. Table 9.2 illustrates the extensions for each physics-based verb

originally presented in Table 8.14. In order to distinguish the original verbs of Table 8.14

from the extended features of Table 9.2, the former is hereafter named the verb

primitives, while the latter is called the verb features, in analogy with geometric CAD

primitives and features.

Convex edge
Concave edge

 352

Table 9.2: Extension of physics-based verbs with provisions for typical residual

flows

Verb-I
Verb-

II
Verb Primitive Verb Feature (Extension)

T
yp

eC
ha

ng
e_

E

T
ra

ns
fe

r_
E

C
on

du
ct

_E

 353

Verb-I
Verb-

II
Verb Primitive Verb Feature (Extension)

R
ad

ia
te

_E

C
ha

ng
e_

E

S
to

re
_E

Radiate_E_II

Radiate
_E

TypChg
_E

ThE

EME -
EME

EME

EME

EME

 354

Verb-I
Verb-

II
Verb Primitive Verb Feature (Extension)

S
up

pl
y_

E

E
ne

rg
iz

e_
M

D
eE

ne
rg

iz
e_

M

 355

Verb-I
Verb-

II
Verb Primitive Verb Feature (Extension)

L
og

ic
al

_B
ra

nc
h

No extension

L
og

ic
al

_U
ni

te

No extension

As seen from the table, the verb features entirely comprise of the primitives of

Table 8.14, which are formally defined in the tables of Chapter 8 (Table 8.1 through

Table 8.8). The only added information is the topological arrangement of these entities

for each feature, added according to the grammar rules of Chapter 5. Thus, formal

definitions of the features are not separately presented. The chain-dotted line describes

the collection of primitive entities and relations that together define the feature. Each

feature name is created by appending “_II” to the primitive, for distinction.

Further, the losses for each verb are considered in three different forms, as

illustrated with the three outgoing red arrows from the logical branch nodes. For

example, in the DeEnergize_M_II feature, ME is extracted from the material flow M, one

part of which is usable flow (black arrow, to the right from the balance node). The other

two are lost in two ways: in the original form (ME) and after a type change (ThE). The

rationale behind this default design is to provide for losses in typical applications. The

 356

DeEnergize_M_II function can be used to describe a hydraulic turbine, where M is the

water flow, ME is extracted by the blades and thus the DeEnergize_M verb is the

function of the runner, the black ME flow (to the right from the balance mode) is the

available shaft work, the loss flow ME (to the left) is energy lost in mechanical form such

as vibrations, and the loss flow ThE is energy lost from ME but after conversion into heat

due to bearing friction and blade losses. Thus, three different means of losses are

captured by the features.

The features include default usable and residual flows in the context of typical

applications, such as the turbine for the DeEnergize_M_II function. It is possible that in

a different application, one of the energy flows is absent or a different set of flows is

chosen as the losses. Thus, during implementation, the flows should be available for

deletion, addition of more flows to the balance node, and for editing their residual status.

As illustrated earlier, these capabilities are available in ConMod-2q for individual flows,

proving that these capabilities are realizable. Further, the use of templates does not

eliminate the need for reasoning algorithms for irreversibility. Since the flows are

available for editing, it is possible for a modeler to accidentally describe a function that

violates the natural laws, which should be detected by the reasoner.

Based on the demonstration of coverage in Sections 9.1 and 9.2, it is expected that

since the new physics-based verbs and features can describe principles and phenomena of

mechanical products, they could also describe products as a whole. To this end, two

types of product-level modeling are illustrated next. In Section 9.4, two models from the

 357

Design Repository are reconstructed using the new vocabulary in two steps: (1) using the

verb primitives of Table 8.14 and (2) using the verb features of Table 9.2. Together,

these two steps in Section 9.4 illustrate that the proposed vocabulary can support

descriptive modeling of existing products. Further, in Section 9.5, the vocabulary of

verbs and their extensions into the features are used to model new product concepts, as

typical of an early stage design process. This exercise demonstrates that normative

modeling of new concepts is also supported by the proposed vocabulary.

9.4 Product-Level Coverage: Descriptive Models from the Design Repository

In this section, the physics-based vocabulary of verb primitives and features are

used to model products from the Design Repository, in order to illustrate that the

descriptive models of existing products constructed using the Functional Basis

vocabulary can be constructed using the new vocabulary and the feature set. The two

products modeled are: (1) the hairdryer model from Figure 1.2 and (2) a Shop-Vac

vacuum cleaner model.

9.4.1 The Hairdryer Function Structure

Figure 9.19 shows the hairdryer function structure of stored within the Design

Repository, originally shown in Figure 1.2. The legend at bottom right indicates the flow

subtypes. The rectangle around the model is the system boundary, which is crossed by

incoming flows used by the device and outgoing flows produced by the device.

 358

Figure 9.19: Function structure model of a hairdryer stored in the Design

Repository19

Figure 9.20 shows the hairdryer model, duly reconstructed using the verb

primitives. A few differences can be noticed between the two models. The boundary

functions, such as Import and Export in the Design Repository model are replaced with

the Environment instances in the new model. The functions at the bottom left corner of

the Design Repository model, showing human interaction with the product with human

energy as a flow are omitted in the new model, since from a physics-based point of view,

human energy is not a basic energy type, as discussed in the discussion following Table

8.1. A control signal carried by an imported material flow M1 is used to indicate that the

Conduct_E2 function is executed in response to a signal, which replaces the Actuate EE

function in the Design Repository model.

19 http://repository.designengineeringlab.org, accessed on June 11, 2011

 359

Figure 9.20: The hairdryer function structure using the physics-based verb

primitives

Three points are important to note. First, the construct showing the material flow

M1 connecting two environment nodes in Figure 9.20 is prohibited by the grammar rules

of Chapter 5 (Construct 63, Rule 23). In this model, the role of M1 is to show that an

external material is required to carry the signal CS1 that actuates the EE flow, which is a

correct physical description of the device, as the human user must press a button or a

switch to turn on the device. A signal has to be always carried by a material or an energy

(Rule 8) and cannot be produced by a node (Rule 3), and thus the signal CS1 could not be

directly imported into the mode. Yet, the human interaction is not an action performed

by the device, and therefore, should not be described with a function, as required by the

definition of functions in Section 1.2.7. Thus, M1 should not be acted upon by a

function, and yet, must enter and leave the model, thus requiring the illegal construct.

This example highlights that human-machine interaction is difficult to formalize through

a function-based description and a richer and expressive formal representation must be

used to that end. Current research on function-interaction modeling [181] begins to

address these needs.

Conduct
_E1

EE1 EE2
Conduct

_E2
EE3 -

CS1

Conduct
_E3

EE4 EE5

Conduct
_E4

EE6

EE7

TypChg
_E1

TypChg
_E2

ME1

En_M2 Air3

ThE1

ThE2

En_M1Air1 Air2

ME3
M1

Conduct
_E5

ME2

 360

Second, the addition of the signal flow to the Conduct_E2 function is not

explicitly allowed by the definition of Conduct_E in Table 8.14. However, as discussed

in Chapter 5, a signal flow is never added to a carrier flow but can be added to any

function. Since signals are not conserved entities, the conservational validity of the

function is not altered by adding an incoming signal. The action of the function is altered

so that the output flows are produced only when the signal is received. The Conduct_E2

function in the model is an instance of conditional Conduct_E, which is the function of a

switch, as captured by the function Actuate EE in the Design Repository model.

Third, the function Regulate EE is not captured in the Design Repository model is

not shown in the new model. The action of regulating EE, as executed by a regulator, is a

transient action that shifts the system from one steady state to another. The

representation captures only steady states of functions. Although the regulator changes

parameters of the EE flow, it is not captured with a Change_E function, since that change

does not happen continuously for the time the device stays in a steady state.

Besides these differences, the major difference between the Design Repository

model and the new model is in the constructs for adding heat and kinetic energy to the air

flow. In the Design Repository model, the Guide function is used to accomplish both

actions, although the function is (1) a violation of energy conservation since it has two

input energy flows and no energy output and (2) a violation of its own class definition,

 361

since the definition of Guide20 [26] does not allow adding energy to material flows. In

the new model, these two actions are captured by the two Energize_M functions. Table

9.3 lists a mapping between the function names in the original model from the Design

Repository (Figure 9.19) and the new model (Figure 9.20), along with typical

components or subsystems used to execute each function, for ease of reference.

Table 9.3: Function-name mapping between models (hairdryer)

Figure 9.19

Design Repository Model

Figure 9.20

New Model with

Primitives

Possible Component

Import EE
None – shown by the

environment node
None

Transfer EE Conduct_E1 Mains cord

Actuate EE Conduct_E2 Switch

Regulate EE
None – transient

phenomenon
Regulator

Distribute EE Logical_Branch Junction / solder

Transfer EE Conduct_E3 Wire

Convert EE to ThE TypeChange_E1 Heater coil

20 “To direct the course of a flow (material, energy, signal) along a specific path.”

 362

Figure 9.19

Design Repository Model

Figure 9.20

New Model with

Primitives

Possible Component

Import HE
None – collectively shown

with the flow M1 carrying

CS1

These items are not

functions executed by the

device

Guide HE

Export HE

Convert HE to CS

Import Gas
None – shown by the

environment node
None

Guide Gas
Energize_M1

Energize_M2
Conduit within the barrel

Export Gas
None – shown by the

environment node
None

Transfer EE (bottom) Conduct_E4 Wire

Convert EE to ME TypeChange_E2 Motor

Transfer ME Conduct_E5 Shaft

Convert ME to PnE Energize_M1 Fan rotor

Figure 9.21 shows the hairdryer model constructed using the verb features. As

discussed earlier, the elements within the features are deletable and editable. In this

model, the flows that do not apply for the specific application are deleted. However, the

chain dotted lines defining the features are retained, in order to facilitate comparing the

features retained in the model with those defined in Table 9.2. For ease of reference,

 363

functions and flows that exist in the primitive-based model (Figure 9.20) are described

with the same names in this model. Other functions and flows that are unique to this

model are named without the trailing numeric. Losses coming from the individual

function features are described with the main form and source in parentheses. For

example, ThE (Res) is thermal energy due to resistive loss, ThE (Sur) is thermal energy

lost across the surface of the device, ThE (Fric) is frictional heat loss, ME (Vib) is

vibrational loss, and ME (Ac) is acoustic loss. The model illustrates that the use of

features can draw the modeler’s attention to residual flows and helps to capture them in

the model. Next, the Shop-Vac vacuum cleaner model with the Design Repository is

reconstructed using the proposed verbs.

9.4.2 The Shop-Vac Function Structure

Figure 9.22 shows the Shop-Vac function structure stored in the Design

Repository, while Figure 9.23 shows the one created using the proposed verb primitives.

Figure 9.24 shows the model constructed with the verb features. Table 9.4 shows a

mapping between the functions names of the first two models (Design Repository model

and primitives-based model).

Table 9.4: Function-name mapping between models (Shop-Vac)

Figure 9.22

Design Repository Model

Figure 9.23

New Model with

Primitives

Possible Component

Import Solid-Gas Mixture None None

 364

Figure 9.22

Design Repository Model

Figure 9.23

New Model with

Primitives

Possible Component

Guide Solid-Gas Mixture Energize_M1 Conduit

Separate Solid from Gas
DeEnergize_M1

Filter

Store Solid Filter

Export Gas None Discharge port

Import Solid (Hand) None – collectively shown

with the flow M1 carrying

CS1

These items are not

functions executed by the

device

Guide Solid (Hand)

Export Solid (Hand)

Import EE None None

Transfer EE Conduct_E1 Power cord

Actuate EE Conduct_E2 Switch

Convert EE to ME TypeChange_E1 Motor

Convert ME to PnE (top) Energize_M1 Fan rotor – suction side

Convert ME to PnE

(bottom)
Energize_M2 Fan rotor – cooling side

Import Gas None None

Guide Gas
Energize_M2

Energize_M3
Conduit

Export Gas None None

 365

Figure 9.22

Design Repository Model

Figure 9.23

New Model with

Primitives

Possible Component

Import Human Force None Handle

Transmit Force None Handle

Export Solid (Debris) None – different use mode Not a function of the device

 366

Figure 9.21: The hairdryer function structure using the physics-based verb features

Conduct_E_II

Conduct
_E1

TypChg
_E

ThE (Res)

EE1 -
EE

EE

Conduct_E_II

Conduct
_E2

TypChg
_E

ThE (Res)

EE2 -
EE

EE EE3

CS1

-

Conduct_E_II

Conduct
_E3

TypChg
_E

ThE (Res)

EE4
-

EE

EE

Conduct_E_II

Conduct
_E4

TypChg
_E

ThE (Res)

EE6

-
EE

EE

TypChg_E_II

TypChg
_E2

TypChg
_E

ThE (Res)

EE7 -
EE

EE

TypChg_E_II

TypChg
_E1

EE5 - EE

En_M_II

En_M1Air1 Air2

ME2

TypChg
_E

ThE (Fric)

ME1

-
ME

ME

ME(Ac)

En_M_II

En_M2 Air3

ThE2

ThE1

-
ThE

ThE(Sur)

M1

Conduct_E_II

Conduct
_E

TypChg
_E

ThE (Fric)

-
ME

ME

ME(Vib)

ME2

 367

Figure 9.22: Shop-Vac function model within the Design Repository

 368

Figure 9.23: Shop-vac function structure using the physics-based verb primitives

 369

Figure 9.24: Shop-Vac function structure constructed using the physics-based verb features

 370

Multiple use modes of the vacuum cleaner are superposed in the same model in

Figure 9.22. The use-mode of emptying the stored dirt from the vacuum cleaner is

represented by the last three functions in Table 9.4, while the remaining functions

describe the use mode of cleaning dirt from the floor. Although this ability to superpose

use-modes in a single model appears to indicate higher expressiveness of the model, the

lack of a rigorous representation voids that apparent benefit. For example, terms such as

Force and Human Force are not included in the vocabulary available for modeling, the

branching of Human Force and Hand are shown as edge divisions without using nodes

and thus violates the basic definition of graphs, the Guide Solid (hand) function lumps

the action of pushing the device on the floor (the function receives human force) with the

action of operating the switch (the function produces the signal to actuate EE), branches

of the same Human Force flow are shown to accomplish the actions of pushing the device

(Guide Solid) and emptying the dust container (Export Solid), although these actions are

never performed simultaneously within the same use mode, and finally, the model does

not describe that Human Force is actually carried by the Hand flow, although both Hand

and Human Force are included in the model. These examples of inconsistency are results

of the lack of a rigorous definition of terms and the lack of a model-level grammar

constraining modeling constructs. As a result, although the model stored in the Design

Repository (Figure 9.22) appears to describe the device to a human interpreter, it is

unsuitable for formal reasoning.

In contrast, the new model only captures the dirt-cleaning use mode. A

significant feature of this new model is its use of the Energize_M and DeEnergize_M

 371

functions. Energize_M2 and Energize_M3 describe the cooling of the motor using a fan

mounted on the motor shaft. The balance node shows the portion of the produced ME

used to mobilize cooling air using this fan (Energize_M2), while Energize_M3 shows the

addition of the produced heat to the air flow, which exits the system, thus carrying the

heat away. ME2, the other part of the ME produced, energizes the air-dirt mixture

(Energize_M1), while only the debris portion of the mixture flow is slowed down to rest

by the filter, thus de-energizing the dirt’s kinetic energy (DeEnergize_M1). The balance

node at the head of Mix2 addresses the need for separate accounting of energy of the air

and the dirt. No separate function is necessary. Thus, the functions in the old and the

new model are not mapped one-to-one. Both functions: Separate Gas from Solid and

Store Solid in the Design Repository model are described through the DeEnergize_M1

function in the new model, as verified from Table 9.4.

Figure 9.24 shows the model constructed with the verb features. In this model,

the flows within the features are left unedited and undeleted. Similar to the feature-based

model of the hairdryer (Figure 9.21), this model also repeats the flow names that appear

in the primitive-based counterpart (Figure 9.23), while functions and flows unique to this

model are left unnumbered. The vocabulary is next used to model a new design concept,

to examine its ability to support normative modeling.

9.5 Product-Level Coverage: Normative Modeling of a New Product Concept

The ability to support normative modeling is examined by constructing functional

architectures for a design problem that is previously unsolved by the modeler. The

 372

problem is to design an automatic omelet-making machine for cafeterias that starts

with raw eggs and mass produces cooked omelets by adding oil and using electrical

power. The same modeler who constructed the air heating device model during the

reasoning discovery exercise in Chapter 4 is used to construct this model. A resulting

functional architecture for the machine is shown in Figure 9.25. The model is

constructed using the primitive verbs, rather than the features, since it is often useful to

focus on only the intended functions rather than the residual functions and flows in early

conceptual design [1, 2]. This model can later be examined for conservation and

irreversibility and edited to include a more elaborate version with residual flows.

Additionally, functions from the Transfer_E group are not included, as the transfer of

energy is a minor detail that is reserved for future iterations and elaborations of the

model. Some researchers argue that avoiding auxiliary functions such as transfer makes

the model more interpretable and thus useful for design communication in early stages

[179].

 373

Figure 9.25: Normative model of an automatic omelet maker

 374

In this modeled architecture, an egg is cracked using mechanical energy ME4

(Energize_M1), thus creating two parts: the shell and the egg. The shell is further

energized with kinetic energy ME6, causing it to leave the system boundary. The egg is

dropped, causing it to lose its gravitational potential energy GPE1. The egg is then

agitated with mechanical energy ME8, oil is added to it from the environment, and heat

ThE1 is then added to the mixture during the cooking process. The result is the omelet,

Om1, which is further energized with kinetic energy ME10 to deliver the omelet outside

the system. Each instance of ME is produced by changing the energy type from EE, in

four different TypeChange_E functions. As seen from this figure, the primitive verbs

from Table 8.14 can be used to describe the concept architecture for the design.

The product-level modeling exercises (Sections 9.4 and 9.5) show that the

vocabulary is better suited for describing existing devices than new ideas. The last model

illustrates that a normative model can be created using the vocabulary, but it does not

examine if the vocabulary is suitable or optimized for normative product modeling. In

fact, based on modeling experience using this vocabulary, it is anticipated that physics-

based verbs may not be the best vocabulary to model, interpret, or communicate new

concepts, since they require the modeler to develop a concept in terms of its physics, and

thus require a potentially premature commitment to physical principles, which is

recommended in design texts to be reserved for later design stages [1-3]. For example, in

Figure 9.25, it is difficult for a designer other than the modeler to realize that

Energize_M1 is the action of cracking the egg or that Energize_M5 is the action of

discarding the shell. To this end, notional terms proposed earlier in the top-down

 375

vocabularies such as the Functional Basis have been used in both descriptive and

normative modeling earlier. As illustrated in Chapter 3, the Functional Basis verbs are

more expressive and flexible than the physics-based verbs and potentially make stronger

candidates for modeling novel products. However, as illustrated in Chapter 2 and by

analysis of the Shop-Vac model in Section 9.4.2, the Functional Basis verbs are defined

non-rigorously and the absence of model-level grammar rules permit violating these

definitions during modeling, ultimately making the models unsuitable for formal

reasoning. The physics-based verbs (primitives and features) are better suited to support

formal reasoning, as they are defined with entities, relations, attributes, and local

grammar rules of the first two layers, which are rigorously defined, internally consistent

(Section 6.1), valid against the conservation law (Section 6.2), and valid against the

irreversibility principle at both qualitative and quantitative levels (Chapter 7). Thus, a

tradeoff appears between the Functional Basis and the physics-based verbs: they each

have their advantages and weaknesses. It would be worthwhile effort to extend the

physics-based verbs and their reasoning ability to describe the notional verbs of the

Functional Basis in the future, which would then support normative modeling of new

products with intuitive terms for the human designer, yet would be rigorous enough to

support physics-based formal reasoning.

In summary, this chapter examines modeling coverage of the physics-based verbs

on physical and engineering principles, existing products, and novel products. This

exercise is a main part of validating this new vocabulary. Once coverage is established,

the reasoning ability of these new verbs should be examined. As mentioned at the end of

 376

Section 9.2, since the verbs are composed of the first two layers of the representation,

whose reasoning ability is already validated, explicit demonstration of reasoning with the

new verbs is unnecessary. However, for illustration, the verbs should be implemented in

ConMod and corresponding reasoning algorithms should be written. This exercise is

reserved for future extensions.

With this chapter, the main deliverable of this dissertation—a formal

representation of functions for computational reasoning—is concluded. In the next and

final chapter of this dissertation, the overall outcome of this research is summarized,

along with discussion on the contributions of this research to the state of the art of design

automation, direct answers to the research questions and hypotheses, evaluation of the

proposed representation against the requirements set in the beginning of the document,

and future extensions of this work.

 377

CHAPTER 10. CLOSURE, ONGOING WORK, AND PATH FORWARD

This chapter is the concluding chapter of this dissertation. It summarizes the

work accomplished and highlights the major contributions. The research questions are

directly answered with pointers within the document where pertinent material can be

found. The list of requirements set at the beginning (Section 1.3) is revisited and the

proposed representation is evaluated against it, in order to show that the representation

satisfies those requirements. Finally, future extensions to this research and new research

questions discovered here are summarized.

10.1 Overall Research Outcome

The overall research outcome is a formal representation of mechanical functions

that support computer-based modeling and analytical reasoning on early design concepts

and can validate them against the laws of nature. The representation is complete in three

layers. The first layer (Chapter 5) identifies and formalizes the fundamental entities,

relations, attributes, and local grammar rules of the Function Structure representation and

is the foundational layer of the representation. The internal consistency of this layer is

verified by ontological and logical examinations (Section 6.1), while its ability to support

conservation-based reasoning is validated by committing the representation to the

ConMod tool (Section 6.2). The second layer extends the first with three attributes

(Section 7.1), which supports irreversibility-based reasoning at both qualitative level

(Section 7.2) and quantitative level (Section 7.3). The third layer (Chapter 8) extends the

 378

first two with semantic modeling and reasoning ability. Nine new physics-based verbs

(seven primary verbs, two secondary verbs) are proposed and defined upon the previous

two layers in syntactic and graphical form. The ability of these verbs to provide

modeling coverage on physical and engineering principles, and design products, is

examined in Chapter 9, thus completing the presentation of the formal representation.

10.2 Contributions to the State of the Art

The most significant contribution of this research is the formalization of the

graph-based Function Structure representation to support computational

reasoning. Function-based thinking and specifically function structure graphs are highly

recommended in design texts as a useful means of modeling early design ideas, with the

possibility of using these models to support design thinking tasks that involve reasoning

of different kind. However, a tool to construct consistent function structures on the

computer and perform reasoning automatically was not available until this research.

Function-based reasoning, as a research topic, is studied and approached from a variety

of viewpoints. Computer-based representations and tools exist in some of these areas, as

outlined in Chapter 2. However, no formal representation or computer tool

implementation for the graph-based Function-Structure representation existed prior to

this research. Graph-drawing software tools have existed formerly at the commercial

level (e.g., Microsoft VisioTM) and in design research (e.g., FunctionCAD [182]). As

shown in Chapter 2, these tools can produce a visual rendering of function models, but do

not have the intelligence—vocabulary, grammar, and algorithms—to perform any

reasoning pertinent to the design itself. This research shows, by first presenting and then

 379

implementing the proposed representation, that early design concepts can be interactively

modeled and reasoned upon on the computer.

The second contribution is addressing the area of function-based design

analysis in early stages for the first time. Automation of early design tasks,

specifically design synthesis, has remained a focus of design research and computer tools

that synthesize new functional concepts from a given high-level description through

graph grammar-based model decomposition exist. These tools are potentially useful and

credit must be assigned to these achievements, as they can further the automation of the

synthesis process. For example, these tools have been extended to component-selection

for concepts and providing end-to-end synthesis automation for the conceptual design

stage [22]. However, none of these tools support what this dissertation defines and

realizes as reasoning: the ability to draw inferences from a model using logic and

external knowledge of the physical world, in order to discover or predict behavior of the

modeled reality (concept). To this end, this research does not contradict, but complement

the synthesis automation research. The design need addressed by this research is not of

synthesis support. Rather, the formal representation developed in this work can be used

to analyze modeled concepts for validity against the laws of nature. It is anticipated that

models created through automated synthesis could be analyzed using the algorithms of

the proposed representation, if the two computational systems were integrated. This

integration would provide more reliable selection criteria for the synthesized concepts, as

they could be validated against the natural laws during the graph grammar-based

 380

synthesis. This extension is an interesting candidate for future exploration of this

research.

From the modeling standpoint, this research enables interactive construction

of design concepts through a designer-computer mixed initiative early in the design

process. This facility replaces paper and pencil as the modeling medium with the

computer, in a much similar manner of how two-dimensional geometric CAD replaced

the drawing board in the early 1980’s. The basic graph-drawing tools mentioned earlier

also partially address this need. However, tools built upon this formal representation,

such as ConMod, allow more than just drawing a concept; they allow the designer to

engage in a physics-based conversation with the model while exploring ideas. The

representation, and specifically its ConMod implementation, has another significant

similarity with geometric CAD, in that it does not attempt to completely automate design,

thus taking away the control and ownership of the design from the designer, as done in

previously proposed systems [22]. The approach of this research is based on the

philosophy of mixed initiative between the designer and the machine, where the designer

retains control and the computer provides analytical feedback. In this sense, the

representation serves as a foundation for early design CAD and forms a counterpart of

geometric CAD in detail design analysis.

From the reasoning point of view, the representation shows potential to serve

as a foundational formalism for early design reasoning. The benefits of this

representation extend beyond just easy model editing on a computer and electronic

 381

archival of design, which most computer-aided tools provide. By virtue of the underlying

formal representation, these archived models could be used to support more enhanced

reasoning in the future, particularly those that need multiple models, such as concept

comparison for (1) complexity, (2) failure-prone-ness, (3) efficiency and other variables,

or (4) manufacturability-related issues. For example, a recent research initiative [152]

focuses on predicting product cost based on the complexity of function structures. This

work could benefit from a tool such as ConMod in two ways. First, the compared models

could be ascertained as “comparable”, if they were constructed using verbs that are at the

same level of concreteness, rather than notional terms from the Functional Basis, whose

concreteness potentially varies and have not been examined objectively. With notional

terms, model complexity cannot be truly surrogated with count-based and connectedness-

based graph metrics, since a model may contain few terms of high inherent

expressiveness or many terms of low inherent expressiveness. With a physics-based

vocabulary, descriptive models can be ensured to compose of verbs at comparable

inherent expressiveness, since these verbs describe atomic physical actions. Second, the

complexity-based algorithms could be written within ConMod to perform the complexity

comparison. Similarly, a failure-based predictive tool [95, 97, 144] uses models built on

notional terms from the Functional Basis. For similar concreteness-related reasons as

above, this tool’s reasoning on causal propagation of failures could potentially be more

objective, physics-based, and consequently reliable, if the models were constructed upon

this proposed representation.

 382

Finally, this research provides certain benefits to design research and

teaching. Design texts commonly suggest the merit of function-based modeling and

thinking in supporting early design tasks such as solution search and idea generation by

human designers. However, these claims have not be objectively examined in previous

research, potentially due to the difficulty in conducting human-subject studies on function

modeling and analyzing their results objectively. With a formal representation now

available, it is anticipated that software-based research tools to study function modeling

could be built with reasonable effort. These tools could be written to automatically

monitor model editing moves to serve as a protocol-gathering system in protocol studies

and to analyze models post-construction, thus serving as an analysis tool in user-studies.

In teaching, it is anticipated that the fundamental physics-based nature, specifically the

representation’s validity against the first and the second laws of thermodynamics, could

be used to build software for teaching early-curricular mechanical engineering courses.

For example, students in the thermal-fluid sciences could potentially examine the effect

of adding an economizer or a water-preheater to a boiler plant on the efficiency of

different other subsystems and the plant as a whole. In the next section, the

representation is evaluated against the high-level requirements set in Section 1.3, to

illustrate that the representation actually satisfies the requirements.

10.3 Evaluating the Representation against the High-Level Requirements

This section revisits the high-level requirements for the representation listed in

Section 1.3 and detailed in Chapter 3, and examines how each requirement is satisfied.

 383

Coverage over Multiple Physics Domains (Section 3.1)

It is illustrated through several modeling exercises that the representation supports

modeling and reasoning on various domains of physics and mechanical engineering.

Sections 9.1 and 9.2 are dedicated to test coverage over physics principles. Specifically,

Section 9.1 illustrates models involving electrical energy operations, such as its storage,

supply, and conversion to other forms. Section 9.2 addresses these needs for mechanical

and thermal energy forms and various material forms. These material forms include (1)

solids such as the disk type heat exchanger in Section 9.2.3 and the debris in the Shop-

Vac model of Section 9.4.2, (2) liquids such as water in the hydraulic machines of

Sections 9.2.4 and 9.2.5, and (3) gaseous such as air in the hairdryer model of Section

9.4.1. Many other examples of these energy and material types are available in the

multiple models illustrated in this dissertation. Thus, the coverage requirement is

satisfied.

Domain-Independence of Physics Laws (Section 3.2)

The representation is fundamentally built upon the two laws of thermodynamics.

The conservation principle is a consequence of the first law, while irreversibility is a

consequence of the second law of thermodynamics. Thus, at a fundamental level, the

representation incorporates physics laws that are universally applicable and therefore

domain-independent. This character is illustrated by demonstrating the representation’s

ability to reason on models and detect violations of conservation (Sections 6.2 and 7.3)

and irreversibility (Chapter 7). Thus, the domain-independence requirement is

satisfied.

 384

Physics-Based Concreteness (Section 3.3)

The requirement is to use entities, relations, and attributes that support physics-

based reasoning. The physics-based verbs proposed in the semantic layer (Chapter 8) are

physics-based. They describe elementary physical phenomena that comprise mechanical

systems at any larger scale, rather than notional terms such as those in the Functional

Basis [26], which describe highly expressive actions in a non-rigorous manner. Each

physics-based verb is syntactically defined in Chapter 8 and these definitions are adhered

to in the modeling application in Chapter 9, where these terms are validated for coverage.

Physics-based reasoning is already demonstrated in Chapter 6 and Chapter 7, where the

ConMod application is used to detect violations of physics laws. Since the physics-based

verbs are defined using these validated terms and grammar rules, their ability to support

physics-based reasoning does not need to be externally examined and is deemed

available. Thus, the physics-based concreteness requirement is satisfied.

Normative and Descriptive Modeling (Section 3.4)

Descriptive modeling is thoroughly examined in the modeling applications of

Chapter 9, where a total of 24 models are presented that describe existing physical

phenomena and mechanical devices. Thus, the descriptive modeling requirement is

satisfied. The normative modeling requirement is tested with two applications: (1) the

Omelet-maker function model of Section 9.5 and (2) the air heater model constructed

using ConMod in Section 6.2.3, which replicates a normative model created during the

modeling exercise of Chapter 4. It is generally experienced during normative modeling

using the physic-based vocabulary that the notional terms of exiting vocabularies such as

 385

the Functional Basis are potentially better suited for describing a new idea. The physics-

based terms require the designer to think in terms of the concept’s physics, which

requires a premature commitment to solution principles. However, the first two layers do

not bind the designer to use a vocabulary and supports normative modeling using free

language. The air heater model of Section 6.2.3 is an example of this type of modeling,

which is supported by the representation and the ConMod implementation. While the

physics-based verbs can be used to model new concepts, at present the representation

supports normative modeling through free language. Thus, the normative modeling

requirement is satisfied.

Qualitative Modeling and Reasoning Support (Section 3.5)

The ConMod models presented to illustrate conservation-based reasoning

(Section 6.2) and qualitative irreversibility reasoning (Section 7.2) are all qualitative and

do not include numeric data. Further, the 25 models used to illustrate modeling coverage

of the physics-based verbs in Chapter 9 are all qualitative. Qualitative reasoning on

conservation and irreversibility are shown in Section 6.2 and Section 7.2 respectively.

Thus, the qualitative modeling and reasoning requirement is satisfied.

Extendibility (Section 3.6)

Throughout the dissertation, the representation is built by extending upon

previously presented layers. Further, the extension into supporting quantitative reasoning

is explicitly illustrated by implementing quantitative reasoning in ConMod in Section 7.3.

Quantitative reasoning on these models to compute different unknown variables such as

 386

power required, efficiency, the power of a flow, or other physical parameters of the

functions or flows would require integrating this representation with a variational solver,

as indicated in Section 7.3. Complete development of this extension is reserved for

future work. Further, the possible extension of the representation to formalize notional

verbs from existing top-down vocabularies or free language is illustrated in Section

10.5.1 and the possibility to support causal reasoning is illustrated in Section 10.5.3.

Thus, the extendibility requirement is satisfied by the representation.

Scalability (Section 3.7)

Throughout the dissertation, models of a wide range of size and connectedness are

illustrated. In terms of physical size of the concepts, the models describe artifacts as

small as a spring or the electrodes of a lead-acid battery, where the phenomenon is

conversion of EE to ChE (Section 9.1.1). At the other extreme, entire hydraulic turbines

are modeled (Section 9.2.5). However, the scalability concern of the representation does

not arise from the physical size of the artifacts, rather the complexity of the model related

to the number of instances and their connections. The smallest models in this dissertation

are the Store_E and Supply_E functions in Section 8.2.1, each of which has only one

function and one flow. Starting from this size, models of a variety of sizes are presented.

One illustration of scaling is provided in Section 6.2.3, where a complete product is

modeled in ConMod. The concern for scaling arises from the ability for the computer

data structure to hold information for large models and support executing the algorithms.

As explained in Section 3.6, the Big-O complexity of these algorithms does not raise

significant concern that modern computer hardware would run out of resources for

 387

models in ConMod. Thus, although the scaling requirement is not formally tested, it

is anticipated that this requirement is satisfied.

With this discussion, the proposed representation is checked against the

requirements set at the beginning of the dissertation. The next section provides answers

to the research questions and summarizes the test results of the research hypotheses.

10.4 Answers to Research Questions and Hypotheses

In this section, the research questions from Chapter 1 are answered and the

hypotheses are concluded. The questions are answered starting from the sub-questions,

leading up to the answer to the respective main questions. Table 10.1 summarizes the

answers.

Table 10.1: Answers to Research Questions and Hypotheses

RQ-1.1 What specific physics-based analytical tasks should be supported?

Task 1 Reasoning Discovery

Answer

The twelve reasoning needs in the three categories discovered through the

modeling exercise in Chapter 4 and summarized in Table 4.15 are

supported. The last two items in this list, related to resolution-based

reasoning, are not supported due to scope limitations. The complete list of

supported reasoning includes redundant function, dangling head, dangling

tail, barren flow, orphan flow, one-in-many-out derivation, many-in-one-

out derivation, material transformation without energy, detecting missing

residual flows, and power required. In addition, an eleventh derivation of

 388

the type many-in-many-out is supported, as mentioned in Table 6.14.

RQ-1.2 Are these reasoning tasks algorithmically solvable?

Task 2 Algorithmic Deduction

Answer The algorithm for all twelve reasoning types identified in Table 4.15 are

presented in Chapter 4 (Algorithm 4.1 through Algorithm 4.12) and also

implemented in ConMod (Chapter 6 and Chapter 7). In addition, although

the algorithm pseudo code for the additional reasoning in Table 6.14 is not

presented, the algorithm is implemented in ConMod and illustrated in

Chapter 6. Thus, all reasoning needs identified here are algorithmically

realizable.

RQ-1.3 What information elements must be captured to support the

algorithms?

Task 3 Information Extraction

Answer The information elements necessary for the representation are those

identified by systematically inspecting the algorithm pseudo codes of

Section 4.2 and listing them in Table 4.16. In total, there are 22 elements

of information, including six entities, six relations, and ten attributes.

RQ-1.4 Is the representation internally consistent?

Task 4 Consistency Verification

 389

Answer Yes. Internal consistency of the representation is examined in three

sections within Chapter 6:

Logical Examination of Exhaustiveness of Local Grammar (Section 6.1.1),

Logical Examination of Consistency of Local Grammar (Section 6.1.2),

and

Ontological Examination of Consistency of the Vocabulary (Section 6.1.3).

RQ-1.5 Can the representation support physics-based reasoning in early

design?

Task 5 Validation of Conservation

Answer Yes. The ability to support conservation-based reasoning is demonstrated

by implementing the representation in the ConMod software tool, in two

steps:

Demonstration of External Validity against Conservation Laws (Section

6.2) and

Implementation and Validation: Quantitative Irreversibility Reasoning

(Section 7.3)

Task 6 Validation of Irreversibility

Answer Yes. The ability to support irreversibility-based reasoning is demonstrated

by implementing the representation in the ConMod software tool, in two

steps:

 390

Implementation and Validation: Qualitative Irreversibility Reasoning

(Section 7.2) and

Implementation and Validation: Quantitative Irreversibility Reasoning

(Section 7.3)

Based on the answers to the above sub-questions, RQ-1 is answered next.

RQ-1 What are the entities, relations, attributes, and grammar rules

necessary to formalize the Function Structure representation, in order

to support (1) consistent models and (2) analytical computational

reasoning on concepts based on conservation and irreversibility?

Answer The entities, relations, attributes, and grammar rules necessary to formalize

the Function Structure representation are the ones presented in Chapter 5

and Chapter 7. Specifically the entities of Table 5.1 and Figure 5.1, the

relations of Table 5.12, and the attributes of Table 5.13 support

conservation-based reasoning, as shown in Section 6.2. Further, the three

additional attributes of Table 7.1 and Figure 7.2 support irreversibility-

based reasoning illustrated in Sections 7.2 and 7.3.

RQ-2.1 Does the proposed verb set provide modeling coverage over a variety

of physics and mechanical engineering principles and devices?

Task 7 Modeling Coverage Testing

 391

Answer Yes. The coverage of the proposed physics-based vocabulary on the

principles and devices illustrated through model construction applications

in Chapter 9. Specifically, Section 9.1 illustrates coverage over processes

in closed systems without mass transfer. These processes involve various

energy forms including electrical, mechanical, and thermal. Section 9.2

extends this coverage testing on open systems with both material and

energy flows. In all, seventeen models are used to illustrate this coverage.

RQ-2.2 Can it support consistent descriptive modeling of existing devices?

Task 8 Descriptive Modeling

Answer Yes. The coverage over descriptive modeling of existing mechanical

engineering devices is shown in Section 9.4, using two models: a hairdryer

and a vacuum cleaner from the Design Repository database.

RQ-2.3 Can it support consistent normative modeling of new design concepts?

Task 9 Normative Modeling

Answer Yes. The coverage over normative modeling is shown through modeling

two new concepts. The first is the omelet-maker machine of Section 9.5.

The second is the room air-heater device, originally modeled as a new

product by a designer in the modeling exercise of Chapter 4 and later

replicated in ConMod in Section 6.2.3.

However, it should be mentioned that the physics-based verbs are generally

 392

found to be less useful for normative modeling than the notional terms of

the top-down vocabularies such as the Functional Basis.

Based on the answers to the above sub-questions, RQ-2 is answered next.

RQ-2 At the physics-based concreteness level, is there a finite set of verbs

that can describe a variety of physical phenomena and mechanical

engineering principles as functions?

Answer Yes. The eleven verbs proposed in Chapter 8 can serve this purpose.

Specifically, there are seven energy verbs in a two-level taxonomy (five

primary verbs: Section 8.2.1 and two secondary verbs: Section 8.2.2), two

material verbs (Section 8.2.3) and two topologic verbs (Section 8.2.4) in

this vocabulary.

The research hypotheses related to the primary research questions can now

be answered.

RH-1 The entities, relations, and attributes shown in Figure 5.1 and the

grammar rules of Section 5.2 can support consistent modeling and

conservation-based reasoning on concepts.

Status TRUE.

The hypothesis is tested by applying the entities, relations, and attributes

 393

from Figure 5.1 and Table 5.2, and the grammar rules of Section 5.2 in

constructing function structure models. To illustrate conservation-based

reasoning, these information elements are implemented in the ConMod

software tool in Section 6.2, where specific reasoning tasks under the

conservation type are individually demonstrated. Finally, a product-level

modeling and reasoning illustration is also performed in Section 6.2.3.

RH-2 The representation shown in Figure 7.2, including the grammar rules

of Section 5.2, can support irreversibility-based reasoning on concepts.

Status TRUE.

The hypothesis is tested by applying the entities, relations, and attributes

from Figure 5.1 and Table 5.2, the grammar rules of Section 5.2, and the

additional three attributes highlighted in Figure 7.2 in constructing function

structure models. To illustrate irreversibility-based reasoning, these

elements are implemented in the ConMod software tool in Section Chapter

7, where specific reasoning tasks under the irreversibility type are

individually demonstrated. Both qualitative and quantitative reasoning on

conservation and irreversibility are demonstrated in this chapter.

RH-3 The eleven verbs presented in Chapter 8 (Table 8.14) can describe

principles from physics and mechanical engineering involving

electrical, mechanical, and thermal energy.

 394

Status TRUE.

This hypothesis is tested by applying these verbs to model principles from

physics and mechanical engineering in Chapter 9. Specifically, Section 9.1

illustrates coverage over processes in closed systems without mass transfer.

These processes involve various energy forms including electrical,

mechanical, and thermal. Section 9.2 extends this coverage testing on open

systems with both material and energy flows. In all, seventeen models are

used to illustrate this coverage.

The above discussion concludes the answers to the research questions and

hypotheses. Overall, it is observed that the representation satisfies the high-level

requirement set in the beginning of the document and the research hypotheses are found

to be true. One overarching merit of this work is that the representation and its reasoning

are both verified and validated within the dissertation by logical and ontological

examinations and live demonstration through software code. However, as all research

should do, this work raises new research questions and directions for exploration in the

near future, as discussed in the next and final section of this dissertation.

10.5 Ongoing Extensions and Future Research Directions

Two immediate future research directions emanating from this dissertation—

formalization of notional verbs and designer usability examination—are already

underway and are described in Sections 10.5.1 and 10.5.2. Additional future research

directions are summarized in the last two subsections.

 395

10.5.1 Ongoing Work: Formalization of Notional Verbs

It is identified through the normative modeling exercise that the notional terms are

better suited for new product description than the physics-based verbs due to their higher

flexibility and expressive power. Conversely, the physics-based verbs are more rigorous

and formally reason-able than the notional verbs. It would be useful to merge the

benefits of both of these approaches into a unified set of verb definitions. Work toward

formalizing the notional terms is already in progress [48]. As a first step, a protocol is

proposed that can be used to identify necessary physics-based components for

formalizing the textual definition of a given notional verb from any vocabulary or from

the free language. This protocol is shown in Figure 10.1.

 396

Figure 10.1: Protocol to formalize notional verbs (In-progress future work)

The protocol requires first critically examining the textual definition and

translates the intent of the text into a formal class using set-based first-order logic

statements. Then, it ensures types and counts of incoming and outgoing flows for the

verb. Some verbs need enabler flows of material (e.g., catalysts) or energy (e.g.,

detonators) for executing their complete notional action. These flows are identified.

Finally, the expressions for conservation of mass and energy are explicitly written and

residual flows are identified to ensure conformity to irreversibility. This protocol is

illustrated here by formalizing the verb Branch from the Functional Basis vocabulary.

Translate to Classes

Topological Check: Main Flow Stream
- Check count
- Check types

Topological Check: Enabler Flow Stream
- Check count
- Check types

Conservation Check
- Of Energy
- Of Mass

Identify Enabler Flows

Textual Definition

Formal Definition

 397

Branch is defined in the Functional Basis as: “To cause a flow (material, energy,

signal) to no longer be joined or mixed” [26]. This definition suggests by use of the term

“a flow” that the verb receives only one input flow. Although the common meaning of

the word Branch implies multiple output flows, in the absence of explicit declaration, it

has to be “literally” inferred from the definition that it produces only one output flow.

The input flow is mentioned to be of any sub-type within the classes Material (M),

Energy (E), and Signal (S), while the output flow cannot be of the types Mixed or Joined.

The resulting translation in first order logic statements is presented in Figure 10.2. The

keyword Type is a method that returns the class name of its calling instance. Next, this

definition is subjected to the four checks.

1

1

1

1

: { _ , _ }

{

_

_

.

.

}

Class Branch In List Out List

In List I

Out List O

I Type M E S

O Type M E S Mixture Joined

Figure 10.2: Syntactic translation of the existing textual definition of Branch

available in Functional Basis literaure [26]

Topological Check of the Main Flow Stream in “Branch”

There are two lists of flows, _In List and _Out List in the main flows stream of

Figure 10.2, where the following inconsistencies can be observed.

 398

Count check: Since the definition “literally” allows only one output flow, it

conflicts with the intent of the verb. For example, according to the definition, the model

in Figure 10.3 is accepted by the definition, although the function does not actually

branch the flow. Conversely, Figure 10.4 is not acceptable by the definition, although it

actually represents the branching action. Therefore, the new formalized definition must

allow for multiple output flows.

Figure 10.3: Incorrect use of the verb Branch allowed by its definition

Figure 10.4: Intended usage of the verb Branch not supported by its definition

Type check: The term Joined is mentioned in the definition, but is not a

Functional Basis noun type and therefore should be eliminated from 1.O Type . Further, by

including Mixture within the negative sign in 1.O Type , the definition becomes

unnecessarily restrictive, as it prevents partial branching, where an output flow is also a

mixture, as shown in Figure 10.5. Here, the input flow is a mixture of three components,

while one of the output flows is a mixture of two components. As this situation is

deemed common in mechanical systems, the new definition is required allow partial

branching. This can be achieved by lifting the restriction from 1.O Type .

 399

Figure 10.5: Partial branching of mixtures not allowed by the definition of Branch

In addition, the present definition allows the model in Figure 10.6, which satisfies

the definition but violates the laws of conservation, as it converts an energy flow into a

material. Thus, restrictions must be imposed to ensure that energy is only branched into

other forms of energy, while materials are branched into other materials.

Figure 10.6: Functions conflicting with natural laws are supported by the definition

At present, signal flows are deliberately excluded from the definitions, as they

need additional constructs of flow representation. For example, signals are neither

conservable, nor independent entities, such as material or energy. They are carried by a

material or energy carrier flow [183], and are interpreted by the recipient by sensing

parameters of those carrier flows, such as the voltage of an electrical signal or the

frequency of a laser. Thus, the modeling of signals requires modeling the carrier-carried

relation, which is saved for the future. The definitions will be extended to include signals

as and when this signal formalism is developed.

 400

Identify Enabler Flows in “Branch”

The existing definition cannot represent the exchange of energy between the

system and its surroundings that may be required to execute the branching operation.

While the branching of energies shown in Figure 10.4 does not require any enabling

energy, typically the branching of material mixtures into its components requires energy

exchange. In the case of passive branching, as with the dust filter in a vacuum cleaner

(Figure 10.7a), this energy comes from the incoming air flow (Pneumatic Energy), as a

result of which the outgoing air contains less energy than the incoming air and the filter

heats up to dissipates the difference (Thermal energy). In the case of active branching, as

with splitting a piece of wood with a table saw (Figure 10.7b), energy must be input to

the system through the saw blade (Mechanical Energy) and the human hand (Human

Energy), or through the electrical cord (Electrical Energy), if the whole table saw is

considered as a system. Some energy also exits the system as heat (Thermal Energy) in

this case. Both of these cases illustrate the natural law that some energy is needed to

break the bonds between the components of a material flow, which is the essence of

branching. Thus, energy flows that “enable” the branching operation must be included

when the main flow is a mixture of materials. For energy main flows, the enablers should

be optional, thus supporting the unlikely case where enabler energies are required to

branch energies.

 401

(a)

(b)

Figure 10.7: Energy exchange between the system and surrounding cannot be

modeled

Topological Rules for the Enabler Flow Stream in “Branch”

Count check: The definition must allow multiple input enabler flows, as some

branching operations may need that. For the sake of conservation, once a set of energy

flows are introduced to the system, they must also exit the system. Thus, a set of output

flows that represent the transformed form of the incoming enabling energies should be

included in the definition. In addition, checks should be provided to ensure that the

output flows could be modeled only when the input enabler flows were modeled.

Type check: However, at present, these enabling flows are only envisioned as

energy flows, although material or signal enables may be included in future.

Conservation Rules for “Branch”

At present, mixing between the main and the enabling flow streams is not

perceived as a modeling requirement. Thus, the mass and energy of all flows in _In List

 402

must be conserved in _Out List and all input enabler flows must also be conserved by

their output forms.

Formal Class Definition of “Branch”

The textual definition of Branch [26] is formalized in Figure 10.8. This

definition, presented in first order logic statements as pseudo code of an object oriented

class, is meant to capture the intent of the verb’s textual definition, while adding the

necessary constructs to resolve the inconsistencies and to ensure adherence to the

conservation laws, and ultimately expresses it in a formal, syntactic form so that the

computer can reason on the definition at the syntactic level in an algorithmic manner,

rather than relying on human semantic interpretation. The three sections in this

definition, marked by the commented lines, indicate results of the four checks in the

protocol. _ _Enabler In List and _ _Enabler Out List are initialized as optional arguments

and default to the empty list, as the function may not always need enablers. The symbol

 represents the integer set. The statements here are simultaneously enforced and should

be read as connected by logical AND conditions (). These symbols are omitted for the

sake of readability.

 403

 1

1 2

: { _ , _

_ _ {}, _ _ {}}

{

/* Topological rules: Main stream of flows*/

_ // Accept only one input flow to be branched per instance

_ , ,...

Class Branch In List Out List

Enabler In List Enabler Out List

In List I

Out List O O

1

1

, // Have provisions for producing up to m flows

1, // Must produce at least two ouptut flows - branching action

. // The input flow can be a material or an energy flow

. ,

mO

m m

I Type M E

I Type M i m O

1

. // If input is M, all output must be M - No coversion from

// M to E is allowed

. , . // If input is E, all output must be forms of E - no conversion

// from E to M is allow

i

i

Type M

I Type E i m O Type E

1 2

1 2

ed

/* Topological rules: Enabler energy flows */

_ _ , ,..., // Multiple enabler flows are allowed to enable branching

_ _ , ,..., // The enabler flows can be output as

p

q

Enabler In List J J J

Enabler Out List K K K multiple flows

0, // Optionally, an instance of Branch may not need any enabler

0, // Same optional flexibility for othe output enabler flows

0 0 // If no enabler input, there must be no ena

p p

q q

p q bler output

// for the sake of conservation

0 0 // If there is an enabler input, at least one enabler output must

0, . // In the present version, only E flows can be enablers

0, .

i

i

p q

i p J Type E

i q K Type

1
1

1
1

// Consequently, only E flows are allowed as enabler output

/* Conservation Rules */

. . // Main flow mass conservation

. . // Main flow energy conservatoin

.

m

i
i

m

i
i

i

E

I Mass O Mass

I Energy O Energy

J Energ
1 1

. // Enabler energy conservation - seprartely from main flows

// No mass conservation for enablers required, since only E

// flows can be enablers

}

p q

i
i i

y K Energy

Figure 10.8: Formalized definition of Branch consistent with the conservation laws

 404

Once a significant set of notional verbs are formalized through this protocol, they

will be encoded in ConMod and used to perform conservation and irreversibility-based

reasoning. This work is reserved for the future. While this direction is in progress,

another necessary direction to explore is the practical usability of design tools supported

by the proposed representation to human designers. This direction of future work is

discussed next.

10.5.2 Ongoing Work: Examination of Designer-Level Usability

While this dissertation establishes internal consistency and external validity of the

representation, it does not go into examining the requirements for software

implementation of the representation. For example, the ConMod software tool developed

within this dissertation is meant primarily for demonstration of reasoning ability, rather

than for use in actual design projects by end-users. Although ConMod, in its present

form, could be used in design projects, it is understood that the practical usefulness of the

representation intimately depends on the usability and software design aspect of the

software implementation. The ultimate success of this research will not be realized until

it is implemented is tools that designers can use. A research direction is already

underway to find the requirements for these tools, where designers are studied through

protocol analyses [184] to reveal patterns of their interaction with a function structure

model. Preliminary studies in this direction have helped establish rich protocols that will

be next applied to larger participant pools. Figure 10.9 shows a sample model produced

by a participant in this experiment.

 405

Figure 10.9: Sample results of pilot protocol studies on designer-model interaction

In this case, the participant is given the following novel design problem and asked

to construct function structure models to explore functional architecture for the design.

Two participants, P1 and P2, were used in this reported pilot study.

Design Problem for Protocol Study

“Design an automatic clothes-ironing machine for use in hotels. The

purpose of the device is to press wrinkled clothes as obtained from clothes

dryers and fold them suitably for the garment type. You are free to choose

the degree of automation. At this stage of the project, there is no

restriction on the types and quantity of resources consumed or emitted.

However, an estimated 5 minutes per garment is desirable”.

The resulting models are put through a formalism of encoding, completed in three

steps: activity encoding, element encoding, and topology encoding. The first step is a

time study of the sequence of different activities through the modeling session. The

 406

second is a cataloging of the model elements created through the sessions, while the last

is an accounting of the modeling process, which accounts for how each element was

connected to the surrounding elements at creation-time. Collectively, these three steps

encode the entire modeling process, such that both the model and the modeling process

can be re-enacted purely from the encoded information.

STEP 1: Activity Encoding

In activity encoding, the timestamp of starting an activity and the elements

produced in that activity are encoded in a spreadsheet such as Figure 10.10a. The

elements are given unique IDs that are tracked throughout the experiment, as shown in

Figure 10.10b for one participant, P1.

(a) Activity encoding sheet (b) Assigning IDs to elements for P1

Figure 10.10: Activity Encoding for Participant P1

STEP 2: Element Encoding

In this step, the type of each element is encoded against its unique ID, thus

producing a table such as Figure 10.11 (first two columns). Here B = block, BT = block

text, E = edge, ET = edge text.

TmStmp Act

0:30 PS

1:21 A 1 2 3 4 5 6

1:48

2:10 PS

2:18

Element IDs

 407

STEP 3: Topology Encoding

In this step, the connectedness between the elements is captured by recording the

IDs of the elements at the “head” and “tail” of a given element, at the instant when the

given element is drawn by the participant. For edges, the head and tail block IDs are

recorded, for blocks, the input and output edge IDs are recorded, and for texts, only the

parent block or edge IDs are recorded as tail, while the head is left blank. These

recordings are shown in the last two columns of Figure 10.11.

Figure 10.11: Element encoding for participant P1

Several critical observations are made from the encoded data. For example, 46 of

the 48 flows in the resulting model made by P1, the designer added the flow name (ET)

immediately after adding the flow (E). Yet, for thirteen of the seventeen functions, the

function name was added only after adding their attached flows, or at least after a

pregnant pause. This trend was also strongly visible in participant P2’s activity sheet.

Thus, the flow type or name was known to the designers as soon as a flow was

conceived, indicating that these designers conceived the device in terms of the flows it

would process, rather than in terms of functions it would perform. The function names

Elem ID Elem Typ
1 B 0 0
2 BT 1
3 E 0 1
4 ET 3
5 E 2 0
6 ET 5
7 E 0 1

Topology

 408

were later retro-fitted to describe the resulting transformative actions indicated by the

flows.

P1’s overall approach was nucleation, as he started the decomposed model with a

few sub-functions on each end of the board, indicating the clearly identified sub-actions

involved in ironing, and eventually finished the model by connecting those functions and

others through edges in the middle of the board. P2, however, followed a generally

forward chaining approach. The first function drawn was a subfunction on the left end of

the board and the last function was the final action that produced folded pressed clothes.

However, when the modeling actions are observed at a finer time-resolution, both

designers seem to use nucleation and forward chaining when adding functions, and

forward and backward chaining when adding flows. For example, P2 added six functions

by nucleation, seven functions by forward chaining on the head of an existing flow, but

only one function by backward chaining, on the tail of a flow. However, for the flows,

P2 added sixteen and eleven flows by forward and backward chaining, and only two

through nucleation, which were later appended with functions through forward chaining.

Several other observations are made about the rate of modeling, patterns of model

editing and deleting, and the use of the black box model is developing the decomposed

model. These details will be used to further refine the design of the protocol and execute

the study at larger scales. The next section discusses the evolving work on causal

reasoning supported in the future.

 409

10.5.3 Future Work: Causal Reasoning Extension

Causal reasoning is a potential candidate for a future extension of this research.

Figure 10.12 shows the function structure of an electric motor and pump assembly, where

the intended and residual flows are identified. Causal reasoning at a quantitative level

would require capturing numeric values of flow and function parameters, as illustrated

during the quantitative extension demonstration of Chapter 7. All energy types have a

power attribute (W), all liquid flows have a pressure attribute (p), and all material flows

have mass (m).

Figure 10.12: Function structure of an electric motor and pump assembly

An example reasoning question asked on this model could be: “Determine the

effect on the design if the incoming water flow (Water1) is stopped”. In order to answer

this question, the reasoner must use the knowledge of causal relations between functions

 410

and flows. For example, it must know that EE1 causes ME1, AcE1, and ThE1—a

knowledge element that can be inferred directly from the conservation relation already

captured in the representation. Similarly, it can be automatically reasoned that all

outgoing energy flows from the pump are caused by ME1. This direct usability of the

conservation relation in some cases to derive the causal relations makes causal reasoning

a strong candidate for future extension of this research.

1 1 1 1

1 2

1 2 2 2

2 5

1 2

, ,

.

, ,

.

CAUSES

CAUSES

CAUSES

EE ME AcE ThE

dW K dW

ME ME AcE ThE

dW K dW

Water Water

Figure 10.13: Causal relationships to be captured in the extended representation

However, causal relation is not always derivable from conservation. For example,

if Water 1 is stopped because there is no water at the suction end of the pipe (sump), then

entire inside of the pump will run dry, causing the impeller to rub freely without doing

work to pressurize the water, and consequently the motor would consume less power. In

a different case, if Water 1 stops because the suction pipe is chocked, the inside of the

pump and the water lines are still filled with water (primed), causing the impeller to spin

inside still water, and consequently the motor may consume more power. Thus, it may

not be enough to describe the root cause as “Water 1 stopped” but the cause for such

stoppage must be mentioned and used in reasoning. The future research directions will

include formalizing these cause and effect statements, their logical relations, and the

algorithms to computationally reason in terms of effect propagation. Figure 10.14

 411

describes a possible causal reasoning tree for such a derivational algorithm, where Water

1 stops due to the sump running dry. The blocks indicate inferences drawn by the

reasoner, the tree branches are the sequence of causal inference propagation, whereas the

externally drawn arrows indicate the information elements within the model that the

reasoner would use to draw the inferences.

Figure 10.14: Causal Reasoning Tree

In this tree, the root node describes that the flow Water1 has stopped. Since

Water2 is modeled as an effect of Water1, it can be reasoned that Water2 will stop,

causing ME2 to cease. Next, it will be possible to reason that all the energy entering the

pump through the shaft (ME1) will be spent in producing only heat (ThE2) and sound

(AeC2). Additionally, since ME2 has ceased, W5 = 0. Based on the quantitative relations,

it can be determined that W2 and by effect W1 will also reduce. Thus, it will be possible

Water1 =

p1 = 0 Water2 =

p2 = 0 ME2 =

W5 = 0

W5
Reduced

W2
Reduced

W1
Reduced

ME1 → AeC2 + ThE2

1 2.dW K dW

 1 2 2 2, ,CAUSESME ME AcE ThE

2 5.dW K dW

1 2
CAUSESWater Water

2 2
CARRIED

BY
ME Water

W5 is an attribute of ME2

p1 is an attribute of Water1

p2 is an attribute of Water2

 412

to reason, from the facts presented explicitly in the model, that if the incoming water flow

is cut off, the outgoing water flow will stop, all the energy entering the pump will be

wasted as heat and sound, the pump will consume less power than before, and the motor

will draw less power than before.

10.5.4 Future Work: Additional Directions to Explore

A major possibility identified in this dissertation is to extend the representation

with quantitative attributes of functions and flows, which would potentially support more

enhanced reasoning. In this context, the need for integrating the representation with a

variational solving system is discussed in Chapter 7. With a variational solver, the design

rules of a specific domain could be captured as non-directional rule statements, unlike

parametric statements, and the tool could be used to solve for any of the unknown

parameters, as long as enough numeric data for computing its relations are available in

the model.

Another area identified but not addressed in this dissertation is the need to support

resolution scaling and decomposition-based reasoning. Model decomposition and

problem discovery is a major anticipated benefit of function-based modeling and thinking

in design texts [1, 2]. Automating this area will help realize these benefits through

computational reasoning.

While the dissertation proposes physics-based verbs and ongoing work on

formalizing notional verbs are discussed in this chapter, an important area to

simultaneously formalize is the set of nouns for flow modeling in formal function

 413

structure models. This area is unaddressed in this research and must be developed in

order to realize the complete benefits of this work.

As indicated in the hairdryer function model of Section 9.4.1, this representation

is not capable of describing transient phenomena and only describes steady states of

operation (use modes). Many mechanical engineering devices rely on transient

phenomena for their operations and thus, a potentially useful extension of this work is in

modeling those processes.

Finally, while this research is primarily focused on supporting analytical

reasoning in early design, it is anticipated that it could be extended to support design

synthesis. As shown with an example in Section 8.1, a software tool built on this

representation could be connected to a database of solution principles and function

structure models drawn in these tools could be used to search solution candidates from

those databases. Several directions of contemporary research in function-based synthesis

[6, 20-22, 98] identify criteria for ranking and selecting solution candidates in similar

situations. It is anticipated that the current research and its future extensions can be

integrated with these ongoing efforts to evolve a foundational representation and a

distributed software framework, providing automation support to the entire conceptual

design process through formal, rigorous, computational reasoning.

 414

APPENDICES

 415

Appendix A. Reasoning Discovery Experiment Steps Discussed in Section 4.1

Chalkboard Exercise Step 1

 416

Chalkboard Exercise Step 2

Chalkboard Exercise Step 3

 417

Chalkboard Exercise Step 4

Chalkboard Exercise Step 5

 418

Chalkboard Exercise Step 6

Chalkboard Exercise Step 7

 419

Chalkboard Exercise Step 8

Chalkboard Exercise Step 9

 420

Chalkboard Exercise Step 10

Chalkboard Exercise Step 11

 421

Chalkboard Exercise Step 12

Chalkboard Exercise Step 13

 422

Chalkboard Exercise Step 14

Chalkboard Exercise Step 15

 423

Chalkboard Exercise Step 16

Chalkboard Exercise Step 17

 424

Chalkboard Exercise Step 18

Chalkboard Exercise Step 19

 425

Chalkboard Exercise Step 20

Chalkboard Exercise Step 21

 426

Chalkboard Exercise Step 22

Chalkboard Exercise Step 23

 427

Chalkboard Exercise Step 24

Chalkboard Exercise Step 25

 428

Chalkboard Exercise Step 26

Chalkboard Exercise Step 27

 429

Chalkboard Exercise Step 28

Chalkboard Exercise Step 29

 430

Chalkboard Exercise Step 30

Chalkboard Exercise Step 31

 431

Chalkboard Exercise Step 32

Chalkboard Exercise Step 33

 432

Chalkboard Exercise Step 34

Chalkboard Exercise Step 35

 433

Chalkboard Exercise Step 36

Chalkboard Exercise Step 37

 434

Chalkboard Exercise Step 38

Chalkboard Exercise Step 39

 435

Chalkboard Exercise Step 40

Chalkboard Exercise Step 41

 436

Chalkboard Exercise Step 42

Chalkboard Exercise Step 43

 437

Chalkboard Exercise Step 44

Chalkboard Exercise Step 45

 438

Chalkboard Exercise Step 46

 439

Appendix B. XML Code for the Function Ontology Presented in Section 6.1.3

The code provided below can be used to reconstruct the ontological view of the

representation, including the class definitions, relations (object properties), and attributes

(data properties), plus one function structure constructed to illustrate consistency of the

representation. The modeled function structure is the air-heating device, first presented

in Model State 4.14. The ontology is discussed in Section 6.1.3.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >
 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#"
>
 <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >
]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1310314983.owl#"
 xml:base="http://www.owl-ontologies.com/Ontology1310314983.owl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="AcE">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>
 <Material rdf:ID="Air_1">
 <hasHeadNode rdf:resource="#En_Air_1"/>

 440

 <hasTailNode rdf:resource="#Env_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Material>
 <Material rdf:ID="Air_2">
 <hasBaggage_S rdf:resource="#T"/>
 <hasHeadNode rdf:resource="#Env_2"/>
 <hasTailNode rdf:resource="#Transfer_Air"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Material>
 <Material rdf:ID="Air_3">
 <hasBaggage_E rdf:resource="#KE_1"/>
 <hasHeadNode rdf:resource="#En_Air_3"/>
 <hasTailNode rdf:resource="#En_Air_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Material>
 <Material rdf:ID="Air_4">
 <hasBaggage_E rdf:resource="#MW_2"/>
 <hasBaggage_E rdf:resource="#ThE_1"/>
 <hasBaggage_E rdf:resource="#ThE_2"/>
 <hasHeadNode rdf:resource="#Transfer_Air"/>
 <hasTailNode rdf:resource="#En_Air_3"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Material>
 <owl:Class rdf:ID="Balance-">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <owl:Class rdf:ID="ChE">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ME"/>

 441

 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>
 <owl:Class rdf:ID="Conduct_E">
 <rdfs:subClassOf rdf:resource="#Transfer_E"/>
 <owl:disjointWith rdf:resource="#Convect_E"/>
 <owl:disjointWith rdf:resource="#Radiate_E"/>
 </owl:Class>
 <Verb rdf:ID="Conduct_EE">
 <hasInput rdf:resource="#EE_2"/>
 <hasInput rdf:resource="#T"/>
 <hasOutput rdf:resource="#EE_3"/>
 <hasOutput rdf:resource="#EE_4"/>
 </Verb>
 <Verb rdf:ID="Conduct_Heat">
 <hasInput rdf:resource="#ThE_2"/>
 <hasOutput rdf:resource="#Loss_9"/>
 </Verb>
 <owl:Class rdf:ID="Convect_E">
 <rdfs:subClassOf rdf:resource="#Transfer_E"/>
 <owl:disjointWith rdf:resource="#Conduct_E"/>
 <owl:disjointWith rdf:resource="#Radiate_E"/>
 </owl:Class>
 <Verb rdf:ID="Convert_1">
 <hasInput rdf:resource="#EE_1"/>
 <hasOutput rdf:resource="#Loss_5"/>
 <hasOutput rdf:resource="#MW_1"/>
 </Verb>
 <Verb rdf:ID="Convert_2">
 <hasInput rdf:resource="#EE_3"/>
 <hasInput rdf:resource="#EE_4"/>
 <hasOutput rdf:resource="#Loss_7"/>
 <hasOutput rdf:resource="#ThE_3"/>
 </Verb>
 <owl:Class rdf:ID="Convert_E">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <owl:Class rdf:ID="DeEnergize_M">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>

 442

 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <Verb rdf:ID="Distribute_1">
 <hasOutput rdf:resource="#EE_1"/>
 <hasOutput rdf:resource="#EE_2"/>
 </Verb>
 <owl:Class rdf:ID="Distribute_E">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <owl:FunctionalProperty rdf:ID="E_hasCarrier">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Energy"/>
 <owl:inverseOf rdf:resource="#hasBaggage_E"/>
 <rdfs:range rdf:resource="#Material"/>
 <rdfs:subPropertyOf rdf:resource="#hasCarrierFlow"/>
 </owl:FunctionalProperty>
 <owl:Class rdf:ID="EE">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>
 <Energy rdf:ID="EE_1">
 <hasHeadNode rdf:resource="#Convert_1"/>
 <hasTailNode rdf:resource="#Distribute_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="EE_2">
 <hasHeadNode rdf:resource="#Conduct_EE"/>
 <hasTailNode rdf:resource="#Distribute_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="EE_3">
 <hasHeadNode rdf:resource="#Convert_2"/>
 <hasTailNode rdf:resource="#Conduct_EE"/>

 443

 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="EE_4">
 <hasHeadNode rdf:resource="#Convert_2"/>
 <hasTailNode rdf:resource="#Conduct_EE"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <owl:Class rdf:ID="EE_Static">
 <rdfs:subClassOf rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EW"/>
 </owl:Class>
 <owl:Class rdf:ID="EME">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>
 <Verb rdf:ID="En_Air_1">
 <hasInput rdf:resource="#Air_1"/>
 <hasInput rdf:resource="#MW_1"/>
 <hasOutput rdf:resource="#Air_3"/>
 <hasOutput rdf:resource="#KE_1"/>
 <hasOutput rdf:resource="#Loss_4"/>
 </Verb>
 <Verb rdf:ID="En_Air_3">
 <hasInput rdf:resource="#Air_3"/>
 <hasInput rdf:resource="#KE_1"/>
 <hasInput rdf:resource="#ThE_3"/>
 <hasOutput rdf:resource="#Air_4"/>
 <hasOutput rdf:resource="#Loss_6"/>
 <hasOutput rdf:resource="#MW_2"/>
 <hasOutput rdf:resource="#ThE_1"/>
 <hasOutput rdf:resource="#ThE_2"/>
 </Verb>
 <owl:Class rdf:ID="Energize_M">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>

 444

 </owl:Class>
 <owl:Class rdf:ID="Energy">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTailNode"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Source"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Noun"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#E_hasCarrier"/>
 <owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Material"/>
 <owl:disjointWith rdf:resource="#Signal"/>
 </owl:Class>
 <owl:Class rdf:ID="Env">
 <rdfs:subClassOf rdf:resource="#Node"/>
 <owl:disjointWith rdf:resource="#Verb"/>
 </owl:Class>
 <Source rdf:ID="Env_1">
 <hasOutput rdf:resource="#Air_1"/>
 </Source>
 <Sink rdf:ID="Env_2">
 <hasInput rdf:resource="#Air_2"/>
 </Sink>
 <Source rdf:ID="Env_3"/>
 <Sink rdf:ID="Env_4">
 <hasInput rdf:resource="#Loss_4"/>
 <hasInput rdf:resource="#Loss_5"/>
 </Sink>
 <Sink rdf:ID="Env_5">
 <hasInput rdf:resource="#Loss_6"/>
 <hasInput rdf:resource="#Loss_7"/>
 </Sink>
 <Sink rdf:ID="Env_6">
 <hasInput rdf:resource="#Loss_8"/>
 <hasInput rdf:resource="#Loss_9"/>
 </Sink>
 <owl:Class rdf:ID="EW">
 <rdfs:subClassOf rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EE_Static"/>
 </owl:Class>

 445

 <owl:Class rdf:ID="Gas">
 <rdfs:subClassOf rdf:resource="#Gaseous"/>
 <owl:disjointWith rdf:resource="#Vapor"/>
 </owl:Class>
 <owl:Class rdf:ID="Gaseous">
 <rdfs:subClassOf rdf:resource="#Material"/>
 <owl:disjointWith rdf:resource="#Liquid"/>
 <owl:disjointWith rdf:resource="#Solid"/>
 </owl:Class>
 <owl:FunctionalProperty rdf:ID="GeometricCenter_X">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="GeometricCenter_Y">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="GivenName">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:FunctionalProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasBaggage_E">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Material"/>
 <owl:inverseOf rdf:resource="#E_hasCarrier"/>
 <rdfs:range rdf:resource="#Energy"/>
 <rdfs:subPropertyOf rdf:resource="#hasBaggageFlow"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasBaggage_S">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <owl:inverseOf rdf:resource="#S_hasCarrier"/>
 <rdfs:range rdf:resource="#Signal"/>
 <rdfs:subPropertyOf rdf:resource="#hasBaggageFlow"/>
 </owl:InverseFunctionalProperty>
 <owl:ObjectProperty rdf:ID="hasBaggageFlow">
 <owl:inverseOf rdf:resource="#hasCarrierFlow"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasCarrierFlow">
 <owl:inverseOf rdf:resource="#hasBaggageFlow"/>
 </owl:ObjectProperty>
 <owl:TransitiveProperty rdf:ID="hasChild">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <owl:inverseOf rdf:resource="#hasParent"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:ID="hasChild_E">

 446

 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Energy"/>
 <owl:inverseOf rdf:resource="#hasParent_E"/>
 <rdfs:range rdf:resource="#Energy"/>
 <rdfs:subPropertyOf rdf:resource="#hasChild"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:ID="hasChild_M">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Material"/>
 <owl:inverseOf rdf:resource="#hasParent_M"/>
 <rdfs:range rdf:resource="#Material"/>
 <rdfs:subPropertyOf rdf:resource="#hasChild"/>
 </owl:TransitiveProperty>
 <owl:FunctionalProperty rdf:ID="hasHeadNode">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Noun"/>
 <owl:inverseOf rdf:resource="#hasInput"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sink"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:subPropertyOf rdf:resource="#hasTerminal"/>
 </owl:FunctionalProperty>
 <owl:ObjectProperty rdf:ID="hasInOutFlows">
 <owl:inverseOf rdf:resource="#hasTerminal"/>
 </owl:ObjectProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasInput">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sink"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <owl:inverseOf rdf:resource="#hasHeadNode"/>
 <rdfs:range rdf:resource="#Noun"/>
 <rdfs:subPropertyOf rdf:resource="#hasInOutFlows"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasOutput">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Source"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>

 447

 </rdfs:domain>
 <owl:inverseOf rdf:resource="#hasTailNode"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:subPropertyOf rdf:resource="#hasInOutFlows"/>
 </owl:InverseFunctionalProperty>
 <owl:TransitiveProperty rdf:ID="hasParent">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <owl:inverseOf rdf:resource="#hasChild"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:ID="hasParent_E">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Energy"/>
 <owl:inverseOf rdf:resource="#hasChild_E"/>
 <rdfs:range rdf:resource="#Energy"/>
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:ID="hasParent_M">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Material"/>
 <owl:inverseOf rdf:resource="#hasChild_M"/>
 <rdfs:range rdf:resource="#Material"/>
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 </owl:TransitiveProperty>
 <owl:FunctionalProperty rdf:ID="hasTailNode">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <owl:inverseOf rdf:resource="#hasOutput"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Source"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:subPropertyOf rdf:resource="#hasTerminal"/>
 </owl:FunctionalProperty>
 <owl:ObjectProperty rdf:ID="hasTerminal">
 <owl:inverseOf rdf:resource="#hasInOutFlows"/>

 448

 </owl:ObjectProperty>
 <owl:FunctionalProperty rdf:ID="HeadPoint_X">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:domain rdf:resource="#Noun"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="HeadPoint_Y">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:domain rdf:resource="#Noun"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:Class rdf:ID="Balance+">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <owl:Class rdf:ID="KE">
 <rdfs:subClassOf rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#MW"/>
 <owl:disjointWith rdf:resource="#PE"/>
 </owl:Class>
 <Energy rdf:ID="KE_1">
 <E_hasCarrier rdf:resource="#Air_3"/>
 <hasHeadNode rdf:resource="#En_Air_3"/>
 <hasTailNode rdf:resource="#En_Air_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <owl:Class rdf:ID="KE_Linear">
 <rdfs:subClassOf rdf:resource="#KE"/>
 <owl:disjointWith rdf:resource="#KE_Rotational"/>
 </owl:Class>
 <owl:Class rdf:ID="KE_Rotational">
 <rdfs:subClassOf rdf:resource="#KE"/>
 <owl:disjointWith rdf:resource="#KE_Linear"/>
 </owl:Class>
 <owl:Class rdf:ID="Liquid">
 <rdfs:subClassOf rdf:resource="#Material"/>
 <owl:disjointWith rdf:resource="#Gaseous"/>
 <owl:disjointWith rdf:resource="#Solid"/>
 </owl:Class>
 <Energy rdf:ID="Loss_4">
 <hasHeadNode rdf:resource="#Env_4"/>
 <hasTailNode rdf:resource="#En_Air_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>

 449

 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="Loss_5">
 <hasHeadNode rdf:resource="#Env_4"/>
 <hasTailNode rdf:resource="#Convert_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="Loss_6">
 <hasHeadNode rdf:resource="#Env_5"/>
 <hasTailNode rdf:resource="#En_Air_3"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="Loss_7">
 <hasHeadNode rdf:resource="#Env_5"/>
 <hasTailNode rdf:resource="#Convert_2"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="Loss_8">
 <hasHeadNode rdf:resource="#Env_6"/>
 <hasTailNode rdf:resource="#Transfer_Air"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="Loss_9">
 <hasHeadNode rdf:resource="#Env_6"/>
 <hasTailNode rdf:resource="#Conduct_Heat"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <owl:Class rdf:ID="MagE">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>

 450

 <owl:Class rdf:ID="Material">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTailNode"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Source"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Noun"/>
 <owl:disjointWith rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#Signal"/>
 </owl:Class>
 <owl:Class rdf:ID="ME">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ThE"/>
 </owl:Class>
 <owl:Class rdf:ID="MW">
 <rdfs:subClassOf rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#KE"/>
 <owl:disjointWith rdf:resource="#PE"/>
 </owl:Class>
 <Energy rdf:ID="MW_1">
 <hasHeadNode rdf:resource="#En_Air_1"/>
 <hasTailNode rdf:resource="#Convert_1"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="MW_2">
 <E_hasCarrier rdf:resource="#Air_4"/>
 <hasHeadNode rdf:resource="#Transfer_Air"/>
 <hasTailNode rdf:resource="#En_Air_3"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <owl:Class rdf:ID="Node">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInOutFlows"/>

 451

 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 <owl:disjointWith rdf:resource="#Noun"/>
 </owl:Class>
 <owl:Class rdf:ID="Noun">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasHeadNode"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sink"/>
 <owl:Class rdf:about="#Verb"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HeadPoint_X"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HeadPoint_Y"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#TailPoint_X"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#TailPoint_Y"/>

 452

 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Node"/>
 </owl:Class>
 <owl:Class rdf:ID="PE">
 <rdfs:subClassOf rdf:resource="#ME"/>
 <owl:disjointWith rdf:resource="#KE"/>
 <owl:disjointWith rdf:resource="#MW"/>
 </owl:Class>
 <owl:Class rdf:ID="PE_Elastic">
 <rdfs:subClassOf rdf:resource="#PE"/>
 <owl:disjointWith rdf:resource="#PE_Gravitational"/>
 </owl:Class>
 <owl:Class rdf:ID="PE_Gravitational">
 <rdfs:subClassOf rdf:resource="#PE"/>
 <owl:disjointWith rdf:resource="#PE_Elastic"/>
 </owl:Class>
 <owl:Class rdf:ID="Radiate_E">
 <rdfs:subClassOf rdf:resource="#Transfer_E"/>
 <owl:disjointWith rdf:resource="#Conduct_E"/>
 <owl:disjointWith rdf:resource="#Convect_E"/>
 </owl:Class>
 <owl:FunctionalProperty rdf:ID="S_hasCarrier">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#Signal"/>
 <owl:inverseOf rdf:resource="#hasBaggage_S"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:subPropertyOf rdf:resource="#hasCarrierFlow"/>
 </owl:FunctionalProperty>
 <owl:Class rdf:ID="Signal">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#S_hasCarrier"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 453

 <rdfs:subClassOf rdf:resource="#Noun"/>
 <owl:disjointWith rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#Material"/>
 </owl:Class>
 <owl:Class rdf:ID="Sink">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInput"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Env"/>
 </owl:Class>
 <owl:Class rdf:ID="Solid">
 <rdfs:subClassOf rdf:resource="#Material"/>
 <owl:disjointWith rdf:resource="#Gaseous"/>
 <owl:disjointWith rdf:resource="#Liquid"/>
 </owl:Class>
 <owl:Class rdf:ID="Source">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasOutput"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Env"/>
 </owl:Class>
 <owl:Class rdf:ID="Store_E">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <owl:Class rdf:ID="Supply_E">

 454

 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Transfer_E"/>
 </owl:Class>
 <Signal rdf:ID="T">
 <hasHeadNode rdf:resource="#Conduct_EE"/>
 <S_hasCarrier rdf:resource="#Air_2"/>
 </Signal>
 <owl:FunctionalProperty rdf:ID="TailPoint_X">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:domain rdf:resource="#Noun"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="TailPoint_Y">
 <rdf:type rdf:resource="&owl;DatatypeProperty"/>
 <rdfs:domain rdf:resource="#Noun"/>
 <rdfs:range rdf:resource="&xsd;float"/>
 </owl:FunctionalProperty>
 <owl:Class rdf:ID="ThE">
 <rdfs:subClassOf rdf:resource="#Energy"/>
 <owl:disjointWith rdf:resource="#AcE"/>
 <owl:disjointWith rdf:resource="#ChE"/>
 <owl:disjointWith rdf:resource="#EE"/>
 <owl:disjointWith rdf:resource="#EME"/>
 <owl:disjointWith rdf:resource="#MagE"/>
 <owl:disjointWith rdf:resource="#ME"/>
 </owl:Class>
 <Energy rdf:ID="ThE_1">
 <E_hasCarrier rdf:resource="#Air_4"/>
 <hasHeadNode rdf:resource="#Transfer_Air"/>
 <hasTailNode rdf:resource="#En_Air_3"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="ThE_2">
 <E_hasCarrier rdf:resource="#Air_4"/>
 <hasHeadNode rdf:resource="#Conduct_Heat"/>
 <hasTailNode rdf:resource="#En_Air_3"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <Energy rdf:ID="ThE_3">
 <hasHeadNode rdf:resource="#En_Air_3"/>

 455

 <hasTailNode rdf:resource="#Convert_2"/>
 <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X>
 <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y>
 <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X>
 <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y>
 </Energy>
 <owl:Class rdf:ID="ThE_Latent">
 <rdfs:subClassOf rdf:resource="#ThE"/>
 <owl:disjointWith rdf:resource="#ThE_Sensible"/>
 </owl:Class>
 <owl:Class rdf:ID="ThE_Sensible">
 <rdfs:subClassOf rdf:resource="#ThE"/>
 <owl:disjointWith rdf:resource="#ThE_Latent"/>
 </owl:Class>
 <Verb rdf:ID="Transfer_Air">
 <hasInput rdf:resource="#Air_4"/>
 <hasInput rdf:resource="#MW_2"/>
 <hasInput rdf:resource="#ThE_1"/>
 <hasOutput rdf:resource="#Air_2"/>
 <hasOutput rdf:resource="#Loss_8"/>
 </Verb>
 <owl:Class rdf:ID="Transfer_E">
 <rdfs:subClassOf rdf:resource="#Verb"/>
 <owl:disjointWith rdf:resource="#Balance-"/>
 <owl:disjointWith rdf:resource="#Convert_E"/>
 <owl:disjointWith rdf:resource="#DeEnergize_M"/>
 <owl:disjointWith rdf:resource="#Distribute_E"/>
 <owl:disjointWith rdf:resource="#Energize_M"/>
 <owl:disjointWith rdf:resource="#Balance+"/>
 <owl:disjointWith rdf:resource="#Store_E"/>
 <owl:disjointWith rdf:resource="#Supply_E"/>
 </owl:Class>
 <owl:Class rdf:ID="Vapor">
 <rdfs:subClassOf rdf:resource="#Gaseous"/>
 <owl:disjointWith rdf:resource="#Gas"/>
 </owl:Class>
 <owl:Class rdf:ID="Verb">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInput"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasOutput"/>

 456

 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Energy"/>
 <owl:Class rdf:about="#Material"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Node"/>
 <owl:disjointWith rdf:resource="#Env"/>
 </owl:Class>
</rdf:RDF>

 457

Appendix C. Header Files for the ConMod Application

// ChildFrm.h : interface of the CChildFrame class
//

#pragma once

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Attributes
protected:
 CSplitterWnd m_wndSplitter;
public:

// Operations
public:

// Overrides
 public:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext*
pContext);
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()
};

#pragma once
#include "Template.h"

// CConduct_E_Template dialog

 458

class CConduct_E_Template : public CDialog, public CTemplate
{
 DECLARE_DYNAMIC(CConduct_E_Template)

public:
 CConduct_E_Template(CWnd* pParent = NULL, CPoint InsertionPoint =
(500,500),
 CString* pCounterString_F = NULL, CString*
pCounterString_InE = NULL,
 CString* pCounterString_OutE = NULL, CString*
pCounterString_OutE_Res = NULL);

 virtual ~CConduct_E_Template();

// Dialog Data
 enum { IDD = IDD_Conduct_E_TEMPLATE };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public: // Instances that comprise the Convert_E template
 CFunction* pFunctionBlock;
 CEnergy* pEnergy_InE;
 CEnergy* pEnergy_OutE;
 CEnergy* pEnergy_OutE_Res;
};

// ConMod.h : main header file for the ConMod application
//
#pragma once

#ifndef __AFXWIN_H__
 #error "include 'stdafx.h' before including this file for PCH"
#endif

#include "resource.h" // main symbols

// CConModApp:
// See ConMod.cpp for the implementation of this class
//

class CConModApp : public CWinApp
{

 459

public:
 CConModApp();

// Overrides
public:
 virtual BOOL InitInstance();

// Implementation
 afx_msg void OnAppAbout();
 DECLARE_MESSAGE_MAP()
};

extern CConModApp theApp;

#include "Function.h"
#include "Env.h"
#include "Edge.h"
#include "Material.h"
#include "Energy.h"
#include "Signal.h"
#include "Convert_E_Template.h"
#include "Conduct_E_Template.h"
#include "Energize_M_Template.h"
#include "Distribute_E_Template.h"
#include "DeEn_M_Template.h"

#pragma once

class CConModDoc : public CDocument
{
protected: // create from serialization only
 CConModDoc();
 DECLARE_DYNCREATE(CConModDoc)

// Attributes
public:

// Operations
public:

// Overrides
public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);

// Implementation
public:
 virtual ~CConModDoc();

 460

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()

public:
 CList<CElement*, CElement*> CElementList; // list of all
elements of all types - reconstructed everytime OnDraw is called
 CList<CNode*, CNode*> CNodeList; // List of Function blocks -
appended upon ADD_FUNCTION, removed upon DELETE
 CList<CEdge*, CEdge*> CEdgeList; // List of
flow arrows (edges) of all kinds - appended upon ADD_EDGE, removed upon
DELETE
 CList<CElement*, CElement*> PreselectionList;

 CList<CFunction*, CFunction*> CFunctionList;
 CList<CEnv*, CEnv*> CEnvList;
 CList<CMaterial*, CMaterial*> CMaterialList;
 CList<CMaterial*, CMaterial*> CMaterialList_IN_TEMP;
 CList<CMaterial*, CMaterial*> CMaterialList_OUT_TEMP;
 CList<CEnergy*, CEnergy*> CEnergyList;
 CList<CEnergy*, CEnergy*> CEnergyList_IN_TEMP;
 CList<CEnergy*, CEnergy*> CEnergyList_OUT_TEMP;
 CList<CSignal*, CSignal*> CSignalList;
 CList<CSignal*, CSignal*> CSignalList_IN_TEMP;
 CList<CSignal*, CSignal*> CSignalList_OUT_TEMP;

 CList<CTemplate*, CTemplate*> CTemplateList; // List of all
templates of Layer 2
 // The main purpose of this list is to store the "template"
instances, while the individual
 // elements in the templates, such as functions and flows, are
stored in the CElementList.
 // By storing the templates in this separate list, it will be
easier to delete them
 // during application exit (Destructor of the View class).

 CList<CFunction*, CFunction*> CConvert_E_Function_List;
 CList<CConvert_E_Template*, CConvert_E_Template*>
CConvert_E_Template_List;

 CList<CFunction*, CFunction*> CConduct_E_Function_List;
 CList<CConduct_E_Template*, CConduct_E_Template*>
CConduct_E_Template_List;

 CList<CFunction*, CFunction*> CEnergize_M_Function_List;

 461

 CList<CEnergize_M_Template*, CEnergize_M_Template*>
CEnergize_M_Template_List;

 CList<CFunction*, CFunction*> CDistribute_E_Function_List;
 CList<CDistribute_E_Template*, CDistribute_E_Template*>
CDistribute_E_Template_List;

 CList<CFunction*, CFunction*> CDeEn_M_Function_List;
 CList<CDeEn_M_Template*, CDeEn_M_Template*>
CDeEn_M_Template_List;
};

#pragma once

#include "afxmt.h"
#include "geometry.h"

#define SELECTION_RADIUS 20

class CConModView :
 public CView, public CGeometry
{
protected: // create from serialization only
 CConModView();
 DECLARE_DYNCREATE(CConModView)

// Attributes
public:
 CConModDoc* GetDocument() const;

// Operations
public:

// Overrides
public:
 virtual void OnDraw(CDC* pDC);
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
 virtual ~CConModView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

 462

protected:

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()

 //===
=============
 //===
=============
 // END OF WIZARD-GENERATED CODE
 //===
=============
 //===
=============

 //===
=============
 // SELECTION OF REASONING OPTIONS - THREE MAIN TYPES
 //===
=============

public:
 int ReasoningOption;
 enum{QUALITATIVE_CONSERVATION,
 QUALITATIVE_IRREVERSIBILITY,
 QUANTITATIVE_EFFICIENCY,
 QUANTITATIVE_POWERREQUIRED};

 //===
=============
 // SELECTION OF MESSAGE HANDLER FUNCTIONS THROUGH ENUMERATED
WHAT-TO-DO LIST
 //===
=============

public:
 int WhatToDo;
 enum
 {
 ESCAPE,
 ADD_FUNCTION,
 ADD_MATERIAL,
 ADD_ENERGY,
 ADD_SIGNAL,
 ADD_ENV,
 ADD_CONVERT_E_TEMPLATE,
 ADD_CONDUCT_E_TEMPLATE, // Add more todo items here
 ADD_ENERGIZE_M_TEMPLATE, // Add more todo items
here
 ADD_DISTRIBUTE_E_TEMPLATE, // Add more todo items
here

 463

 ADD_DEEN_M_TEMPLATE // Add more todo items here
 };

 //===
=============
 // MAIN MENU - REASONING OPTION SELECTION MESSAGE HANDLER
FUNCTION
 //===
=============

public:
 afx_msg void OnQualitativeConservation();
 afx_msg void OnQualitativeIrreversibility();
 afx_msg void OnQuantitativeEfficiency();
 afx_msg void OnQuantitativePowerRequired();

 //===
=============
 // PRIMITIVES TOOLBAR MESSAGE HANDLER FUNCTIONS
 //===
=============

public:
 void Handler_SaveFile(void);

public:
 void Handler_AddFunction(void);
 void Handler_AddMaterial(void);
 void Handler_AddEnergy(void);
 void Handler_AddSignal(void);
 void Handler_AddEnv(void);
 void Handler_EditCut(void);

 //===
=============
 // FEATURES TOOLBAR MESSAGE HANDLER FUNCTIONS
 //===
=============

public:
 void Handler_AddConvert_E_Template(void);
 void Handler_AddConduct_E_Template(void);
 void Handler_AddEnergize_M_Template(void);
 void Handler_AddDistribute_E_Template(void);
 void Handler_AddDeEn_M_Template(void);

 //===
=============
 // REASONING TOOLBAR MESSAGE HANDLER FUNCTIONS
 //===
=============

public:

 464

 void Handler_Qualitative(void);
 void Handler_Quantitative(void);
 //===
=============
 // FUNCTIONS FOR ADDING INSTANCES TO THE MODEL
 //===
=============
public:
 int Counter_F;
 int Counter_Env;
 int Counter_M;
 int Counter_E;
 int Counter_S;
 CString CounterString;

public:
 void AddFunction(void);
 void AddMaterial(void);
 void AddEdge_Dynamic(void);
 void AddEnergy(void);
 void AddSignal(void);
 void AddEnv(void);

public:
 void AddConvert_E_Template(void);
 void AddConduct_E_Template(void);
 void AddEnergize_M_Template(void);
 void AddDistribute_E_Template(void);
 void AddDeEn_M_Template(void);

 // The following four members are used during construction of the
dynamic
 // instance of edges, and to pass their values to the final
instance.
 CElement* pTailElemDynamic;
 CElement* pHeadElemDynamic;
 bool TailNodeSelected;

 //===
=============
 // FUNCTIONS FOR SELECTING INSTANCES FROM THE MODEL TO DO EDIT
OPERATIONS
 //===
=============

public:
 void Preselect(CPoint* pMouseTip); // Preselection of
elements by mouse hover
 void Highlight(CElement* pElement); // Change color when
preselected
 void UnHighlight(CElement* pElement); // Reset color when
released from preselection

 465

 void SelectElement(CElement* pElement); // Finally select one
element from the presel list
 void ScrollThroughPreselection(); // Scrolling through
preselected elements
 POSITION ScrollPosition; // Current
position within PreselectionList that is selected
 enum {NONE, TAIL, CENTER, HEAD}; // Grab handle
locations
 CElement* pElementToBeDeleted;
 CElement* pSelectedElement; // Pointer to
store the currently selected element

 //===
=============
 // FUNCTIONS FOR STORING OBJECT POINTERS AND DETERMINING THEIR
TYPE
 //===
=============

 // For basic elements (Layer 1) - Node, Edge, Function, Env, M,
E, and S

 bool ElementIsNode(CElement* pElement); // TRUE if
pSelectedElement is a member of CNodeList
 bool ElementIsFunction(CElement* pElement); //
TRUE if pSelectedElement is a member of CFunctionList
 bool ElementIsEnv(CElement* pElement); // TRUE if
pSelectedElement is a member of CEnvList
 bool ElementIsEdge(CElement* pElement); // TRUE if
pSelectedElement is a member of CEdgeList
 bool ElementIsMaterial(CElement* pElement); //
TRUE if pSelectedElement is a member of CEdgeList
 bool ElementIsEnergy(CElement* pElement); // TRUE if
pSelectedElement is a member of CEdgeList
 bool ElementIsSignal(CElement* pElement); // TRUE if
pSelectedElement is a member of CEdgeList

 POSITION NodeIndexInNodeList; // Gets set by
SelectedElementIsNode so that it could be removed
 POSITION FunctionIndexInFunctionList; // Gets set by
SelectedElementIsFunction so that it could be removed
 POSITION EnvIndexInEnvList; // Gets set by SelectedElementIsEnv
so that it could be removed
 POSITION EdgeIndexInEdgeList; // Gets set by
SelectedElementIsEdge so that it could be removed
 POSITION MaterialIndexInMaterialList; // Gets set
by SelectedElementIsEdge so that it could be removed
 POSITION EnergyIndexInEnergyList; // Gets set by
SelectedElementIsEdge so that it could be removed
 POSITION SignalIndexInSignalList; // Gets set by
SelectedElementIsEdge so that it could be removed

 // For templates

 466

 bool ElementIsConvert_E_Function(CElement* pElement);
 bool ElementIsConvert_E_Template(CElement* pElement);

 bool ElementIsConduct_E_Function(CElement* pElement);
 bool ElementIsConduct_E_Template(CElement* pElement);

 bool ElementIsEnergize_M_Function(CElement* pElement);

 bool ElementIsEnergize_M_Template(CElement* pElement);

 bool ElementIsDistribute_E_Function(CElement* pElement);

 bool ElementIsDistribute_E_Template(CElement* pElement);

 bool ElementIsDeEn_M_Function(CElement* pElement);
 bool ElementIsDeEn_M_Template(CElement* pElement);

 POSITION Convert_E_Function_IndexInConvert_E_Function_List;

 POSITION Convert_E_Template_IndexInConvert_E_Template_List;

 POSITION Conduct_E_Function_IndexInConduct_E_Function_List;

 POSITION Conduct_E_Template_IndexInConduct_E_Template_List;

 POSITION Energize_M_Function_IndexInEnergize_M_Function_List;

 POSITION Energize_M_Template_IndexInEnergize_M_Template_List;

 POSITION Distribute_E_Function_IndexInDistribute_E_Function_List;

 POSITION Distribute_E_Template_IndexInDistribute_E_Template_List;

 POSITION DeEn_M_Function_IndexInDeEn_M_Function_List;
 POSITION DeEn_M_Template_IndexInDeEn_M_Template_List;

 void EmptyAllTempLists();
 //===
=============
 // FUNCTIONS FOR EDIT OPERATIONS ON INSTANCES WITHIN THE MODEL
 //===
=============
public:
 void MoveConnectDynamic();
 void MoveConnect();
 void DetachEdgesFromElement(CElement* pElement);
 void DeleteElement(CElement* pElement);

 467

 // The following four members stores the topology of a flow
terminal
 // (head or tail) that is moved by the MoveConnectDynamic
function to a temp
 // storage, so that the point can be reassigned in the case the
operation
 // was illegal. The storage code is in the MoveConnectDynamic
function.
 // The reassignment code is in OnDraw (during gramamr chekcs).
 CElement* pRememberHeadElement;
 CPoint RememberHeadPoint;
 CElement* pRememberTailElement;
 CPoint RememberTailPoint;

 //===
=============
 // PARAMETERS AND FLAGS FOR CONTROLLING AND SIGNALLING MOUSE
POINTS AND BUTTONS
 //===
=============

public:
 // Parameters
 CPoint MouseLDownPoint;
 CPoint MouseLUpPoint;
 CPoint MouseRDownPoint;
 CPoint MouseRUpPoint;
 CPoint MouseMovePoint;

 // Flags
 bool LButtonIsDown;
 bool RButtonIsDown;

 //===
=============
 // MESSAGE HANDLING FUNCTIONS FOR MOUSE EVENTS
 //===
=============

public: // Mouse Button and Move Functions
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
 afx_msg void OnRButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnRButtonUp(UINT nFlags, CPoint point);
 afx_msg void OnMouseMove(UINT nFlags, CPoint point);
 afx_msg void OnMButtonUp(UINT nFlags, CPoint point);

public:
 afx_msg BOOL OnEraseBkgnd(CDC* pDC); // Flicker elimination
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);

 //===
=============

 468

 // CONSERVATION CHECKING FUNCTIONS - TOPOLOGICAL CONSERVATION
(WITHOUT VOCAB)
 // REFERE TO: ICED-2011 PAPER
 //===
=============

 bool GrammarCheckRequired;

 CString Msg_OrphanFlow;
 CString Msg_BarrenFlow;
 CString Msg_OneInManyOut_M;
 CString Msg_OneInManyOut_E;
 CString Msg_ManyInOneOut_M;
 CString Msg_ManyInOneOut_E;
 CString Msg_ManyInManyOut;
 CString Msg_MissingResidualEnergy;
 CString Msg_MaterialChangeWithoutEnergy;

 void Set_OrphanFlowMsg();
 void Set_BarrenFlowMsg();
 void Set_OneInManyOutMsg_M();
 void Set_OneInManyOutMsg_E();
 void Set_ManyInOneOutMsg_M();
 void Set_ManyInOneOutMsg_E();
 void Set_ManyInManyOutMsg();
 void Set_MissingResidualEnergyMsg();
 void Set_MaterialChangeWithoutEnergyMsg();

 void ComposeQualitativeMessage();

 //===
=============
 // Quantitative Reasoning Methods
 //===
=============

 void VerifyPositivePowerOfFlows();
 void VerifyEnergyBalanceOfFunctions();
 void ComputeEfficiency();
 void ComposeQuantitativeMessage();
 bool ContinueReasoning;
};

#ifndef _DEBUG // debug version in ConModView.cpp
inline CConModDoc* CConModView::GetDocument() const
 { return reinterpret_cast<CConModDoc*>(m_pDocument); }
#endif

 469

#pragma once
#include "Template.h"

// CConvert_E dialog

class CConvert_E_Template : public CDialog, public CTemplate
{
 DECLARE_DYNAMIC(CConvert_E_Template)

public:
 CConvert_E_Template(CWnd* pParent = NULL, CPoint InsertionPoint =
(500,500),
 CString* pCounterString_F = NULL, CString*
pCounterString_InE = NULL,
 CString* pCounterString_OutE = NULL, CString*
pCounterString_OutE_Res = NULL);

 virtual ~CConvert_E_Template();

// Dialog Data
 enum { IDD = IDD_CONVERT_E_TEMPLATE };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public: // Instances that comprise the Convert_E template
 CFunction* pFunctionBlock;
 CEnergy* pEnergy_InE;
 CEnergy* pEnergy_OutE;
 CEnergy* pEnergy_OutE_Res;
};

#pragma once
#include "Template.h"

// CDeEn_M_Template dialog

class CDeEn_M_Template : public CDialog, public CTemplate
{
 DECLARE_DYNAMIC(CDeEn_M_Template)

public:
 CDeEn_M_Template(CWnd* pParent = NULL,
 CPoint InsertionPoint = (500,500),

 470

 CString* pCounterString_F = NULL,
 CString* pCounterString_InM = NULL,
 CString* pCounterString_OutM = NULL,
 CString* pCounterString_InE = NULL,
 CString* pCounterString_OutE = NULL); // standard
constructor

 virtual ~CDeEn_M_Template();

// Dialog Data
 enum { IDD = IDD_DEEN_M_TEMPLATE };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public: // Instances that comprise the Convert_E template
 CFunction* pFunctionBlock;
 CEnergy* pEnergy_InE;
 CEnergy* pEnergy_OutE;
 CMaterial* pMaterial_InM;
 CMaterial* pMaterial_OutM;
};

#pragma once
#include "Template.h"

// CDistribute_E_Template dialog

class CDistribute_E_Template : public CDialog, public CTemplate
{
 DECLARE_DYNAMIC(CDistribute_E_Template)

public:
 CDistribute_E_Template(CWnd* pParent = NULL,
 CPoint InsertionPoint = (500,500),
 CString* pCounterString_F = NULL,
 CString* pCounterString_InE = NULL,
 CString* pCounterString_OutE1 = NULL,
 CString* pCounterString_OutE2 = NULL); // standard
constructor

 virtual ~CDistribute_E_Template();

// Dialog Data
 enum { IDD = IDD_DISTRIBUTE_E_TEMPLATE };

protected:

 471

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public: // Instances that comprise the Convert_E template
 CFunction* pFunctionBlock;
 CEnergy* pEnergy_InE;
 CEnergy* pEnergy_OutE1;
 CEnergy* pEnergy_OutE2;
};

#pragma once
#include "element.h"
#include "math.h"
#include "node.h"

#define EDGE_HEAD_SIZE 20
#define EDGE_HEAD_HALF_ANGLE 0.25 // Radians

class CEdge : public CElement
{
public:
 CEdge(void);
 CEdge(CPoint TailClick, CPoint HeadClick);
 ~CEdge(void);

 // Head construction data
 CPoint HeadLeftVertex, HeadRightVertex;
 double HeadSize, HalfHeadAngle;
 CPoint HeadVertexArray[3];

 // Topological information
 void ComputeAnchorPoints();
 void AttachEdgeToNearestAnchor();
 void ResetGeometricCenter(); // Makes sure that the
GeometricCenter is reset between the
 // Tail and Head
points, when an arrow is moved by grabbing
 // Those terminal
points
 bool ThisFlowIsIncomingBaggage;
 bool ThisFlowIsOutgoingBaggage;

 // Drawing data
 int StemThickness;
 int StemLineFont;
 enum {NONE, THIN, MEDIUM, THICK};
 int FontSize;

 472

 void DrawOnDC(CDC* pDC);
};

#pragma once
#include "geometry.h"

#define GENERIC_PEN_R 0
#define GENERIC_PEN_G 0
#define GENERIC_PEN_B 0

#define GENERIC_BRUSH_R 0
#define GENERIC_BRUSH_G 0
#define GENERIC_BRUSH_B 0

#define DANGLING_BRUSH_R 255
#define DANGLING_BRUSH_G 0
#define DANGLING_BRUSH_B 0

#define PRESELECTION_PEN_R 200
#define PRESELECTION_PEN_G 0
#define PRESELECTION_PEN_B 200

#define SELECTION_PEN_R 0
#define SELECTION_PEN_G 200
#define SELECTION_PEN_B 0

#define RESIDUAL_PEN_R 255
#define RESIDUAL_PEN_G 0
#define RESIDUAL_PEN_B 0

#define GENERIC_FONT_SIZE 16
#define BAGGAGE_FONT_SIZE 12

class CElement :
 public CGeometry/*, public CDialog*/
{
public:
 CElement(void);
 virtual ~CElement(void); // Must be virtual, so that
individual desctrutors of
 // the derived classes
are called when CConModView's
 // destructor tries to
close the session

 // PARAMETERS OVERRIDEN IN BOTH CNode AND CEdge CLASSES
 bool IsHighlighted;
 bool IsSelected;
 bool IsResidual;

 473

 CPoint GeometricCenter;
 CPoint Anchors[16];
 CPoint AnchorsForBaggageFlows[16];

 //CString GivenName; // Unnecessary - the individual
classes need their own
 // GivenName attribute,
because the dilaog constructor
 // needs a GivenName
that is not inherited.

 int PenR, PenG, PenB;
 int BrushR, BrushG, BrushB;

 int GrabHandle; // Stores where (Head, Tail, Center) an
element is grabbed by the mouse
 virtual void DrawOnDC(CDC* pDC);

 //int ReasoningOption;
 enum{QUALITATIVE_CONSERVATION,
 QUALITATIVE_IRREVERSIBILITY,
 QUANTITATIVE_EFFICIENCY,
 QUANTITATIVE_POWERREQUIRED};

 // PARAMETERS OVERRIDEN IN CEDGE: TOPOLOGY DATA
 CPoint TailPoint, HeadPoint;
 int HeadBrushR, HeadBrushG, HeadBrushB;
 int TailBrushR, TailBrushG, TailBrushB;
 CElement* pHeadElem;
 CElement* pTailElem;
};

#pragma once
#include "Template.h"

// CEnergize_M_Template dialog

class CEnergize_M_Template : public CDialog, public CTemplate
{
 DECLARE_DYNAMIC(CEnergize_M_Template)

public:
 CEnergize_M_Template(CWnd* pParent = NULL,
 CPoint InsertionPoint = (500,500),
 CString* pCounterString_F = NULL,
 CString* pCounterString_InM = NULL,

 474

 CString* pCounterString_OutM = NULL,
 CString* pCounterString_InE = NULL,
 CString* pCounterString_OutE = NULL);
 virtual ~CEnergize_M_Template();

// Dialog Data
 enum { IDD = IDD_ENERGIZE_M_TEMPLATE };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public: // Instances that comprise the Convert_E template
 CFunction* pFunctionBlock;
 CEnergy* pEnergy_InE;
 CEnergy* pEnergy_OutE;
 CMaterial* pMaterial_InM;
 CMaterial* pMaterial_OutM;
};

#pragma once
#include "edge.h"
#include "afxcmn.h"
#include "afxwin.h"

// CEnergy dialog

class CEnergy :
 public CEdge, public CDialog
{
 DECLARE_DYNAMIC(CEnergy)

public:
 CEnergy(CWnd* pParent = NULL,
 CPoint TailClick = (0,0,0),
 CPoint HeadClick = (100,100,0),
 CString* pCounterString = NULL,
 int ReasOpt = QUALITATIVE_CONSERVATION); // standard
constructor

 virtual ~CEnergy();

// Dialog Data
 enum { IDD = IDD_ENERGY };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 475

 DECLARE_MESSAGE_MAP()

public:

 CList<CEnergy*, CEnergy*> ChildList;
 CList<CEnergy*, CEnergy*> ParentList;
 CString GivenName;
 void DrawOnDC(CDC*pDC);
 int UI_IsResidual;
 BOOL OnInitDialog();
 void OnOK();
 CTreeCtrl* pEnergyTaxonomy;
 HTREEITEM hEnergyType;
 CString EnergyTypeName;

 // Quantitative data members
 double Power;
 double UI_ForceTerm, UI_RateTerm;
 int ReasoningOption;

};

#pragma once
#include "node.h"

#define ENV_SIZE 25

#define ENV_BRUSH_R 255
#define ENV_BRUSH_G 220
#define ENV_BRUSH_B 210

// CEnv dialog

class CEnv :
 public CNode, public CDialog
{
 DECLARE_DYNAMIC(CEnv)

public:
 CEnv(CWnd* pParent = NULL, CPoint InsertionPoint = (500,500,0),
CString* pCounterString = NULL); // standard constructor
 virtual ~CEnv();

// Dialog Data
 enum { IDD = IDD_ENV };

protected:

 476

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()
public:
 // Environment name within block
 CString GivenName;

 // Drawing functions
 void ComputeBlockCoordinates();
 void DrawOnDC(CDC* pDC);
};

#pragma once
#include "node.h"

#define BLOCK_LENGTH 80
#define BLOCK_HEIGHT 40

#define FUNCTION_BRUSH_R 150
#define FUNCTION_BRUSH_G 175
#define FUNCTION_BRUSH_B 200

// CFunction dialog

class CFunction :
 public CNode, public CRect, public CDialog
{
 DECLARE_DYNAMIC(CFunction)

public:
 CFunction(CWnd* pParent = NULL, CPoint InsertionPoint =
(500,500,0), CString* pCounterString = NULL); // standard constructor
 virtual ~CFunction();

// Dialog Data
 enum {IDD = IDD_FUNCTION};

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()
public:

 // Function name within block
 CString GivenName;

 // Drawing functions
 void ComputeBlockCoordinates();

 477

 void DrawOnDC(CDC* pDC);

 // Quantitative data
 double Efficiency;
};

#pragma once
#include "math.h"

class CGeometry
{
public:
 CGeometry(void);
 ~CGeometry(void);

 // Member Functions
 int RoundToInteger(long n, int t);
 CPoint SnapToGrid(CPoint p);
 long distance(CPoint p1, CPoint p2);
 CPoint* InterpolatePoints(CPoint p1,CPoint p2, double ratio);
};

// MainFrm.h : interface of the CMainFrame class
//

#pragma once

class CMainFrame : public CMDIFrameWnd
{
 DECLARE_DYNAMIC(CMainFrame)
public:
 CMainFrame();

// Attributes
public:

// Operations
public:

// Overrides
public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

 478

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
 // Conmod custom toolbars
 CToolBar m_primitivesToolBar;
 CToolBar m_featuresToolBar;
 CToolBar m_reasoningToolBar;

// Generated message map functions
protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
};

#pragma once
#include "edge.h"

// CMaterial dialog

class CMaterial :
 public CEdge, public CDialog
{
 DECLARE_DYNAMIC(CMaterial)

public:
 CMaterial(CWnd* pParent = NULL,
 CPoint TailClick = (0,0,0),
 CPoint HeadClick = (100,100,0),
 CString* pCounterString = NULL,
 int ReasOpt = QUALITATIVE_CONSERVATION); // standard
constructor
 virtual ~CMaterial();

// Dialog Data
 enum { IDD = IDD_MATERIAL };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

 479

public:
 CList<CMaterial*, CMaterial*> ChildList;
 CList<CMaterial*, CMaterial*> ParentList;
 CString GivenName;
 void DrawOnDC(CDC*pDC);
 int UI_IsResidual;
 BOOL OnInitDialog();
 void OnOK();
 CTreeCtrl* pMaterialTaxonomy;
 HTREEITEM hMaterialType;
 CString MaterialTypeName;
 int ReasoningOption;
};

#pragma once
#include "afxwin.h"
#ifndef _MEMDC_H_
#define _MEMDC_H_

//

// CMemDC - memory DC
//
// Author: Keith Rule
// Email: keithr@europa.com
// Copyright 1996-2002, Keith Rule
//
// You may freely use or modify this code provided this
// Copyright is included in all derived versions.
//
// History - 10/3/97 Fixed scrolling bug.
// Added print support. - KR
//
// 11/3/99 Fixed most common complaint. Added
// background color fill. - KR
//
// 11/3/99 Added support for mapping modes other than
// MM_TEXT as suggested by Lee Sang Hun. - KR
//
// 02/11/02 Added support for CScrollView as supplied
// by Gary Kirkham. - KR
//
// This class implements a memory Device Context which allows
// flicker free drawing.

class CMemDC : public CDC {
private:
 CBitmap m_bitmap; // Offscreen bitmap
 CBitmap* m_oldBitmap; // bitmap originally found in CMemDC
 CDC* m_pDC; // Saves CDC passed in constructor

 480

 CRect m_rect; // Rectangle of drawing area.
 BOOL m_bMemDC; // TRUE if CDC really is a Memory DC.

public:
 CMemDC(CDC* pDC, const CRect* pRect = NULL) : CDC()
 {
 ASSERT(pDC != NULL);

 // Some initialization

 m_pDC = pDC;
 m_oldBitmap = NULL;
 m_bMemDC = !pDC->IsPrinting();

 // Get the rectangle to draw

 if (pRect == NULL) {
 pDC->GetClipBox(&m_rect);
 } else {
 m_rect = *pRect;
 }

 if (m_bMemDC) {
 // Create a Memory DC

 CreateCompatibleDC(pDC);
 pDC->LPtoDP(&m_rect);

 m_bitmap.CreateCompatibleBitmap(pDC, m_rect.Width(),
 m_rect.Height());
 m_oldBitmap = SelectObject(&m_bitmap);

 SetMapMode(pDC->GetMapMode());

 SetWindowExt(pDC->GetWindowExt());
 SetViewportExt(pDC->GetViewportExt());

 pDC->DPtoLP(&m_rect);
 SetWindowOrg(m_rect.left, m_rect.top);
 } else {
 // Make a copy of the relevent parts of the current

 // DC for printing

 m_bPrinting = pDC->m_bPrinting;
 m_hDC = pDC->m_hDC;
 m_hAttribDC = pDC->m_hAttribDC;
 }

 // Fill background

 FillSolidRect(m_rect, pDC->GetBkColor());
 }

 481

 ~CMemDC()
 {
 if (m_bMemDC) {
 // Copy the offscreen bitmap onto the screen.

 m_pDC->BitBlt(m_rect.left, m_rect.top,
 m_rect.Width(), m_rect.Height(),
 this, m_rect.left, m_rect.top, SRCCOPY);

 //Swap back the original bitmap.

 SelectObject(m_oldBitmap);
 } else {
 // All we need to do is replace the DC with an illegal

 // value, this keeps us from accidentally deleting the

 // handles associated with the CDC that was passed to

 // the constructor.

 m_hDC = m_hAttribDC = NULL;
 }
 }

 // Allow usage as a pointer

 CMemDC* operator->()
 {
 return this;
 }

 // Allow usage as a pointer

 operator CMemDC*()
 {
 return this;
 }
};

#endif

#pragma once
#include "element.h"

class CNode :
 public CElement
{
public:

 482

 CNode(void);
 virtual ~CNode(void); // Must be virtual, so that individual
desctrutors of
 // the derived classes are
called when CConModView's
 // destructor tries to close
the session

 // Parameters to check for dangling functions and env instances
 bool NoInputAttached;
 bool NoOutputAttached;

 void ComputeBlockCoordinates();
};

//{{NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by ConMod.rc
//
#define IDD_ABOUTBOX 100
#define IDP_OLE_INIT_FAILED 100
#define IDS_STRING101 101
#define IDS_STRING102 102
#define IDD_CONVERT_E_TEMPLATE 104
#define IDD_Conduct_E_TEMPLATE 105
#define IDD_ENERGIZE_M_TEMPLATE 106
#define IDD_DISTRIBUTE_E_TEMPLATE 107
#define IDD_DEEN_M_TEMPLATE 108
#define IDR_MAINFRAME 128
#define IDR_ConceptTYPE 129
#define IDC_CROSSHAIR 130
#define IDR_PRIMITIVES 131
#define IDD_FUNCTION 138
#define IDD_MATERIAL 139
#define IDD_ENERGY 140
#define IDD_SIGNAL 141
#define IDD_ENV 142
#define IDR_FEATURES 143
#define IDR_REASONING 145
#define IDR_HTML1 147
#define IDR_HTML2 148
#define IDC_FUNCTION_NAME 1006
#define IDC_MATERIAL_NAME 1010
#define IDC_ENERGY_NAME 1011
#define IDC_SIGNAL_NAME 1012
#define IDC_ENV_NAME 1013
#define IDC_RESIDUAL_ENERGY 1014
#define IDC_RESIDUAL_MATERIAL 1021
#define IDC_FORCE_TERM 1023
#define IDC_RATE_TERM 1024

 483

#define IDC_STATIC1 1025
#define IDC_STATIC2 1026
#define IDC_FORCE_STATIC_TEXT 1031
#define IDC_FORCE_STATIC_TEXT2 1032
#define IDC_RATE_STATIC_TEXT 1032
#define ID_ADD_FUNCTION 32779
#define ID_ADD_SIGNAL 32782
#define ID_ADD_ENERGY 32783
#define ID_ADD_MATERIAL 32784
#define ID_ADD_ENV 32785
#define ID_IMPORT 32786
#define ID_CONVERT_E 32787
#define ID_BUTTON32789 32789
#define ID_CONDUCT_E_TEMPLATE 32789
#define ID_ENERGIZE_M_TEMPLATE 32790
#define ID_DISTRIBUTE_E_TEMPLATE 32791
#define ID_BUTTON32792 32792
#define ID_DEEN_M_TEMPLATE 32792
#define ID_BUTTON32794 32794
#define ID_QUANTITATIVE 32795
#define ID_REASONINGOPTION_QUALITATIVE 32796
#define ID_REASONINGOPTION_POWERREQUIRED 32798
#define ID_QUALITATIVE 32799
#define ID_HELP_CONMODDOCUMENTATION 32801
#define ID_Menu 32802
#define ID_BUTTON32805 32805
#define ID_QUANTITATIVE_EFFICIENCY 32807
#define ID_QUANTITATIVE_POWERREQUIRED 32808
#define ID_QUALITATIVE_CONSERVATIN 32809
#define ID_QUALITATIVE_IRREVERSIBILITY 32810
#define ID_QUALITATIVE_CONSERVATION 32811
#define ID_QUALITATIVE_CONSERVATI 32812

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 149
#define _APS_NEXT_COMMAND_VALUE 32813
#define _APS_NEXT_CONTROL_VALUE 1032
#define _APS_NEXT_SYMED_VALUE 109
#endif
#endif

#pragma once
#include "edge.h"

// CSignal dialog

 484

class CSignal :
 public CEdge, public CDialog
{
 DECLARE_DYNAMIC(CSignal)

public:
 CSignal(CWnd* pParent = NULL, CPoint TailClick = (0,0,0), CPoint
HeadClick = (100,100,0), CString* pCounterString = NULL); // standard
constructor
 virtual ~CSignal();

// Dialog Data
 enum { IDD = IDD_SIGNAL };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 DECLARE_MESSAGE_MAP()

public:
 //CList<CSignal*, CSignal*> ChildList;
 //CList<CSignal*, CSignal*> ParentList;
 CString GivenName;
 void DrawOnDC(CDC*pDC);
};

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently,
// but are changed infrequently

#pragma once

#ifndef _SECURE_ATL
#define _SECURE_ATL 1
#endif

#ifndef VC_EXTRALEAN
#define VC_EXTRALEAN // Exclude rarely-used stuff from
Windows headers
#endif

#include "targetver.h"
#include "memdc.h" // Flicker prevention

#define _ATL_CSTRING_EXPLICIT_CONSTRUCTORS // some CString
constructors will be explicit

// turns off MFC's hiding of some common and often safely ignored
warning messages

 485

#define _AFX_ALL_WARNINGS

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions

#include <afxdisp.h> // MFC Automation classes

#ifndef _AFX_NO_OLE_SUPPORT
#include <afxdtctl.h> // MFC support for Internet Explorer 4
Common Controls
#endif
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // MFC support for Windows
Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

#ifdef _UNICODE
#if defined _M_IX86
#pragma comment(linker,"/manifestdependency:\"type='win32'
name='Microsoft.Windows.Common-Controls' version='6.0.0.0'
processorArchitecture='x86' publicKeyToken='6595b64144ccf1df'
language='*'\"")
#elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\"type='win32'
name='Microsoft.Windows.Common-Controls' version='6.0.0.0'
processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df'
language='*'\"")
#elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\"type='win32'
name='Microsoft.Windows.Common-Controls' version='6.0.0.0'
processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df'
language='*'\"")
#else
#pragma comment(linker,"/manifestdependency:\"type='win32'
name='Microsoft.Windows.Common-Controls' version='6.0.0.0'
processorArchitecture='*' publicKeyToken='6595b64144ccf1df'
language='*'\"")
#endif
#endif

#pragma once

// The following macros define the minimum required platform. The
minimum required platform
// is the earliest version of Windows, Internet Explorer etc. that has
the necessary features to run
// your application. The macros work by enabling all features
available on platform versions up to and

 486

// including the version specified.

// Modify the following defines if you have to target a platform prior
to the ones specified below.
// Refer to MSDN for the latest info on corresponding values for
different platforms.
#ifndef WINVER // Specifies that the minimum
required platform is Windows Vista.
#define WINVER 0x0600 // Change this to the appropriate value
to target other versions of Windows.
#endif

#ifndef _WIN32_WINNT // Specifies that the minimum required
platform is Windows Vista.
#define _WIN32_WINNT 0x0600 // Change this to the appropriate value
to target other versions of Windows.
#endif

#ifndef _WIN32_WINDOWS // Specifies that the minimum required
platform is Windows 98.
#define _WIN32_WINDOWS 0x0410 // Change this to the appropriate value
to target Windows Me or later.
#endif

#ifndef _WIN32_IE // Specifies that the minimum
required platform is Internet Explorer 7.0.
#define _WIN32_IE 0x0700 // Change this to the appropriate value
to target other versions of IE.
#endif

#pragma once

#include "Element.h"
#include "Function.h"
#include "Env.h"
#include "Material.h"
#include "Energy.h"
#include "Signal.h"

#define TEMPLATE_FLOW_LENGTH 120

// CTemplate

class CTemplate : public CElement
{
public:
 CTemplate();
 virtual ~CTemplate();

 487

};

/*
 This is a high-level abstract class for all templates of the
second layer.
 The purpose is to provide one identity so that instances all
Layer-2 versb, such as
 Covnert_E and Energize_M, can be stored in a single list called
CTemplateList,
 declared in the Doc class as usual. The template instances are
not used in the
 model in their own identity, they are only required to
instnatiate the elements
 such as functions and flows WITHIN the templates using one
instance call in
 View, such as in functions AddCovnert_E. After that, the
elements are used, while
 the template instance must be deleted. To facilitate this
delete, the templates
 are stored in this CTemplateList, which is emptied during
application exit (View class
 desctrictor).
*/

 488

Appendix D. Source Files for the ConMod Application

// ChildFrm.cpp : implementation of the CChildFrame class
//
#include "stdafx.h"
#include "ConMod.h"

#include "ChildFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
END_MESSAGE_MAP()

// CChildFrame construction/destruction

CChildFrame::CChildFrame()
{
 // TODO: add member initialization code here
}

CChildFrame::~CChildFrame()
{
}

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
CCreateContext* pContext)
{
 return m_wndSplitter.Create(this,
 2, 2, // TODO: adjust the number of rows,
columns
 CSize(10, 10), // TODO: adjust the minimum pane size
 pContext);
}

BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying the
CREATESTRUCT cs
 if(!CMDIChildWnd::PreCreateWindow(cs))
 return FALSE;

 cs.style |= WS_MAXIMIZE; // This does not maximize the child
window without the next line

 489

 cs.style |= WS_VISIBLE; // These pipe characters (|) are very
important - try deleting them!
 return TRUE;
}

// CChildFrame diagnostics

#ifdef _DEBUG
void CChildFrame::AssertValid() const
{
 CMDIChildWnd::AssertValid();
}

void CChildFrame::Dump(CDumpContext& dc) const
{
 CMDIChildWnd::Dump(dc);
}

#endif //_DEBUG

// CChildFrame message handlers

// Conduct_E_Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Conduct_E_Template.h"

// CConduct_E_Template dialog

IMPLEMENT_DYNAMIC(CConduct_E_Template, CDialog)

CConduct_E_Template::CConduct_E_Template(CWnd* pParent /*= NULL*/,
CPoint InsertionPoint /*= (500,500)*/,
 CString* pCounterString_F /*= NULL*/,
CString* pCounterString_InE /*= NULL*/,
 CString* pCounterString_OutE /*=
NULL*/, CString* pCounterString_OutE_Res /*= NULL*/)
 : CDialog(CConduct_E_Template::IDD, pParent)
{
 pFunctionBlock = new CFunction(NULL, InsertionPoint,
pCounterString_F);

 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);

 490

 CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint,
pCounterString_InE);
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString_OutE);
 pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint,
HeadOfOutE_Res, pCounterString_OutE_Res);

 pEnergy_InE->pHeadElem = pFunctionBlock;
 pEnergy_OutE->pTailElem = pFunctionBlock;
 pEnergy_OutE_Res->pTailElem = pFunctionBlock;
 pEnergy_OutE_Res->UI_IsResidual = true;
}

CConduct_E_Template::~CConduct_E_Template()
{
}

void CConduct_E_Template::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CConduct_E_Template, CDialog)
END_MESSAGE_MAP()

// CConduct_E_Template message handlers

// ConMod.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ConMod.h"
#include "MainFrm.h"

#include "ChildFrm.h"
#include "ConModDoc.h"
#include "ConModView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

 491

// CConModApp

BEGIN_MESSAGE_MAP(CConModApp, CWinApp)
 ON_COMMAND(ID_APP_ABOUT, &CConModApp::OnAppAbout)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

// CConModApp construction

CConModApp::CConModApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
 EnableHtmlHelp();
}

// The one and only CConModApp object

CConModApp theApp;

// CConModApp initialization

BOOL CConModApp::InitInstance()
{
 // InitCommonControlsEx() is required on Windows XP if an
application
 // manifest specifies use of ComCtl32.dll version 6 or later to
enable
 // visual styles. Otherwise, any window creation will fail.
 INITCOMMONCONTROLSEX InitCtrls;
 InitCtrls.dwSize = sizeof(InitCtrls);
 // Set this to include all the common control classes you want to
use
 // in your application.
 InitCtrls.dwICC = ICC_WIN95_CLASSES;
 InitCommonControlsEx(&InitCtrls);

 CWinApp::InitInstance();

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }
 AfxEnableControlContainer();

 492

 // Standard initialization
 // If you are not using these features and wish to reduce the
size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need
 // Change the registry key under which our settings are stored
 // TODO: You should modify this string to be something
appropriate
 // such as the name of your company or organization
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(4); // Load standard INI file options
(including MRU)
 // Register the application's document templates. Document
templates
 // serve as the connection between documents, frame windows and
views
 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(IDR_ConceptTYPE,
 RUNTIME_CLASS(CConModDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CConModView));
 if (!pDocTemplate)
 return FALSE;
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame || !pMainFrame->LoadFrame(IDR_MAINFRAME))
 {
 delete pMainFrame;
 return FALSE;
 }
 m_pMainWnd = pMainFrame;
 // call DragAcceptFiles only if there's a suffix
 // In an MDI app, this should occur immediately after setting
m_pMainWnd
 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line. Will return
FALSE if
 // app was launched with /RegServer, /Register, /Unregserver or
/Unregister.
 if (!ProcessShellCommand(cmdInfo))

 493

 return FALSE;
 // The main window has been initialized, so show and update it
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 enum { IDD = IDD_ABOUTBOX };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

// Implementation
protected:
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
END_MESSAGE_MAP()

// App command to run the dialog
void CConModApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

// CConModApp message handlers

 494

// ConModDoc.cpp : implementation of the CConModDoc class
//

#include "stdafx.h"
#include "ConMod.h"

#include "ConModDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CConModDoc

IMPLEMENT_DYNCREATE(CConModDoc, CDocument)

BEGIN_MESSAGE_MAP(CConModDoc, CDocument)
END_MESSAGE_MAP()

// CConModDoc construction/destruction

CConModDoc::CConModDoc()
{
 // TODO: add one-time construction code here

}

CConModDoc::~CConModDoc()
{
}

BOOL CConModDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}

// CConModDoc serialization

void CConModDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {

 495

 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

// CConModDoc diagnostics

#ifdef _DEBUG
void CConModDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CConModDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

// CConModDoc commands

// ConModView.cpp : implementation of the CConModView class

#include "stdafx.h"
#include "ConMod.h"
#include "ConModDoc.h"
#include "ConModView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

//
===
=====
//
===
=====
// MESSAGE MAPS
//
===
=====
//
===
=====

 496

IMPLEMENT_DYNCREATE(CConModView, CView)

BEGIN_MESSAGE_MAP(CConModView, CView)

 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, &CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, &CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, &CView::OnFilePrintPreview)

 // ConMod Main Menu - Reasoning Options Message Handlers
 ON_COMMAND(ID_QUALITATIVE_CONSERVATION,
&CConModView::OnQualitativeConservation)
 ON_COMMAND(ID_QUALITATIVE_IRREVERSIBILITY,
&CConModView::OnQualitativeIrreversibility)
 ON_COMMAND(ID_QUANTITATIVE_EFFICIENCY,
&CConModView::OnQuantitativeEfficiency)
 ON_COMMAND(ID_QUANTITATIVE_POWERREQUIRED,
&CConModView::OnQuantitativePowerRequired)

 // ConMod PRIMITIVES Toolbar Commands
 ON_COMMAND(ID_ADD_FUNCTION, Handler_AddFunction)
 ON_COMMAND(ID_ADD_MATERIAL, Handler_AddMaterial)
 ON_COMMAND(ID_ADD_ENERGY, Handler_AddEnergy)
 ON_COMMAND(ID_ADD_SIGNAL, Handler_AddSignal)
 ON_COMMAND(ID_ADD_ENV, Handler_AddEnv)

 // ConMod FEATURES Toolbar Commands
 ON_COMMAND(ID_CONVERT_E, Handler_AddConvert_E_Template)
 ON_COMMAND(ID_CONDUCT_E_TEMPLATE, Handler_AddConduct_E_Template)
 ON_COMMAND(ID_ENERGIZE_M_TEMPLATE,
Handler_AddEnergize_M_Template)
 ON_COMMAND(ID_DISTRIBUTE_E_TEMPLATE,
Handler_AddDistribute_E_Template)
 ON_COMMAND(ID_DEEN_M_TEMPLATE, Handler_AddDeEn_M_Template)

 // ConMod REASONING Toolbar Commands
 ON_COMMAND(ID_QUALITATIVE, Handler_Qualitative)
 ON_COMMAND(ID_QUANTITATIVE, Handler_Quantitative)

 // ConMod Mouse Event Commands
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONUP()
 ON_WM_RBUTTONDOWN()
 ON_WM_RBUTTONUP()
 ON_WM_MOUSEMOVE()
 ON_WM_LBUTTONDBLCLK()

 // Flicker prevention of the screen
 ON_WM_ERASEBKGND()

 // ConModKeyboard Event Commands
 ON_COMMAND(ID_EDIT_CUT, Handler_EditCut)

 497

 ON_WM_MBUTTONUP()
END_MESSAGE_MAP()

//
===
=====
//
===
=====
// CONSTRUCTOR and DESTRUCTOR
//
===
=====
//
===
=====

CConModView::CConModView()
{
 ReasoningOption = QUALITATIVE_CONSERVATION;
 ContinueReasoning = true;

 WhatToDo = ESCAPE;
 LButtonIsDown = false;
 RButtonIsDown = false;
 pTailElemDynamic = NULL;
 pHeadElemDynamic = NULL;
 TailNodeSelected = false;
 pElementToBeDeleted = NULL;

 // Conservation Checking Messages
 Msg_OrphanFlow = "";
 Msg_BarrenFlow = "";
 Msg_OneInManyOut_M = "";
 Msg_OneInManyOut_E = "";
 Msg_ManyInOneOut_M = "";
 Msg_ManyInOneOut_E = "";
 Msg_ManyInManyOut = "";
 Msg_MissingResidualEnergy = "";
 Msg_MaterialChangeWithoutEnergy = "";

 Counter_F = 0;
 Counter_Env = 0;
 Counter_M = 0;
 Counter_E = 0;
 Counter_S = 0;

 GrammarCheckRequired = true;
}

CConModView::~CConModView()
{

 498

 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos !=
NULL;)
 {
 delete pDoc->CElementList.GetAt(pos);
 pDoc->CElementList.GetNext(pos);
 }
 pDoc->CFunctionList.RemoveAll();
 pDoc->CEnvList.RemoveAll();
 pDoc->CNodeList.RemoveAll();
 pDoc->CMaterialList.RemoveAll();
 pDoc->CEnergyList.RemoveAll();
 pDoc->CSignalList.RemoveAll();
 pDoc->CEdgeList.RemoveAll();
 pDoc->CElementList.RemoveAll();

 for (POSITION pos = pDoc->CTemplateList.GetHeadPosition(); pos !=
NULL;)
 {
 delete pDoc->CTemplateList.GetAt(pos);
 pDoc->CTemplateList.GetNext(pos);
 }
 pDoc->CTemplateList.RemoveAll();
}

BOOL CConModView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 cs.lpszClass = AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW |
CS_VREDRAW,
 AfxGetApp()->LoadCursor(IDC_CROSSHAIR), (HBRUSH)
(COLOR_WINDOW + 1));

 return CView::PreCreateWindow(cs);
}

//
===
=====
//
===
=====
// DRAWING: OnDraw FUNCTION
//
===
=====
//
===
=====

void CConModView::OnDraw(CDC* dc)

 499

{
 CMemDC pDC(dc);

 CConModDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;

 //===
==========
 // Check for dangling CNodes (CFunctions and CEnvs)
 //===
==========

 if (pDoc->CNodeList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CNodeList.GetHeadPosition(); pos
!= NULL;)
 {
 pDoc->CNodeList.GetAt(pos)->NoInputAttached = true;
 pDoc->CNodeList.GetAt(pos)->NoOutputAttached = true;

 for (POSITION pos_inner = pDoc-
>CEdgeList.GetHeadPosition(); pos_inner != NULL;)
 {
 if (pDoc->CEdgeList.GetAt(pos_inner)->pTailElem
== pDoc->CNodeList.GetAt(pos))
 pDoc->CNodeList.GetAt(pos)-
>NoOutputAttached = false;
 if (pDoc->CEdgeList.GetAt(pos_inner)->pHeadElem
== pDoc->CNodeList.GetAt(pos))
 pDoc->CNodeList.GetAt(pos)-
>NoInputAttached = false;
 pDoc->CEdgeList.GetNext(pos_inner);
 }

 pDoc->CNodeList.GetNext(pos);
 }
 }

 //===
==========
 // Check for baggage flows (incoming and outgoing)
 //===
==========

 if (pDoc->CEdgeList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos
!= NULL;)
 {
 if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem) &&

 500

 (pDoc->CEdgeList.GetAt(pos)->pHeadElem-
>pTailElem == pDoc->CEdgeList.GetAt(pos)->pTailElem) &&
 ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pTailElem))
 pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsOutgoingBaggage = true;
 else pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsOutgoingBaggage = false;

 if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&
 (pDoc->CEdgeList.GetAt(pos)->pTailElem-
>pHeadElem == pDoc->CEdgeList.GetAt(pos)->pHeadElem) &&
 ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem))
 pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsIncomingBaggage = true;
 else pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsIncomingBaggage = false;

 pDoc->CEdgeList.GetNext(pos);
 }
 }

 //===
==========
 // Update the ReasoningOption variable in Energy flows, so that
dialogs
 // show the correct reasoning option check box through
ONInitDialog
 //===
==========
 if (pDoc->CEnergyList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition();
pos != NULL;)
 {
 pDoc->CEnergyList.GetAt(pos)->ReasoningOption = this-
>ReasoningOption;
 pDoc->CElementList.GetNext(pos);
 }
 }

 //===
==========
 // Update the ReasoningOption variable in Material flows, so that
dialogs
 // show the correct reasoning option check box through
ONInitDialog
 //===
==========
 if (pDoc->CMaterialList.IsEmpty() == false)
 {

 501

 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition();
pos != NULL;)
 {
 pDoc->CMaterialList.GetAt(pos)->ReasoningOption =
this->ReasoningOption;
 pDoc->CMaterialList.GetNext(pos);
 }
 }

 //===
==========
 //===
==========
 // Redraw all elements
 //===
==========
 //===
==========

 if (pDoc->CElementList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CElementList.GetHeadPosition();
pos != NULL;)
 {
 pDoc->CElementList.GetAt(pos)->DrawOnDC(pDC);
 pDoc->CElementList.GetNext(pos);
 }
 }

 //===
==========
 //===
==========
 // *************** APPLY GRAMMAR RULES ******************
 //===
==========
 //===
==========

 //===
==========
 // Check for uniqueness of GivenName of FUNCTIONS
 //===
==========
 if (pDoc->CFunctionList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition();
pos != pDoc->CFunctionList.GetTailPosition();)
 {
 if (pDoc->CFunctionList.GetAt(pos)->GivenName ==
pDoc->CFunctionList.GetTail()->GivenName)
 {

 502

 AfxMessageBox("ILLEGAL NAMING :: ABORTING
INSTANCE.\n\n***** " +
 pDoc-
>CFunctionList.GetAt(pos)->GivenName +
 " *****\n\nFunction
names must be unique.");
 DeleteElement(pDoc->CFunctionList.GetTail());
 return;
 }
 pDoc->CFunctionList.GetNext(pos);
 }
 }

 //===
==========
 // Check for uniqueness of GivenName of ENV
 //===
==========
 if (pDoc->CEnvList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos
!= pDoc->CEnvList.GetTailPosition();)
 {
 if (pDoc->CEnvList.GetAt(pos)->GivenName == pDoc-
>CEnvList.GetTail()->GivenName)
 {
 AfxMessageBox("ILLEGAL NAMING :: ABORTING
INSTANCE.\n\n***** " +
 pDoc-
>CEnvList.GetAt(pos)->GivenName +
 " *****\n\nEnvironment
names must be unique.");
 DeleteElement(pDoc->CEnvList.GetTail());
 return;
 }
 pDoc->CEnvList.GetNext(pos);
 }
 }

 //===
==========
 // Check for uniqueness of GivenName of MATERIAL
 //===
==========
 if (pDoc->CMaterialList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition();
pos != pDoc->CMaterialList.GetTailPosition();)
 {
 if (pDoc->CMaterialList.GetAt(pos)->GivenName ==
pDoc->CMaterialList.GetTail()->GivenName)
 {

 503

 AfxMessageBox("ILLEGAL NAMING :: ABORTING
INSTANCE.\n\n***** " +
 pDoc-
>CMaterialList.GetAt(pos)->GivenName +
 " *****\n\nMaterial
flow names must be unique.");
 DeleteElement(pDoc->CMaterialList.GetTail());
 return;
 }
 pDoc->CMaterialList.GetNext(pos);
 }
 }

 //===
==========
 // Check for uniqueness of GivenName of ENERGY
 //===
==========
 if (pDoc->CEnergyList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition();
pos != pDoc->CEnergyList.GetTailPosition();)
 {
 if (pDoc->CEnergyList.GetAt(pos)->GivenName == pDoc-
>CEnergyList.GetTail()->GivenName)
 {
 AfxMessageBox("ILLEGAL NAMING :: ABORTING
INSTANCE.\n\n***** " +
 pDoc-
>CEnergyList.GetAt(pos)->GivenName +
 " *****\n\nEnergy flow
names must be unique.");
 DeleteElement(pDoc->CEnergyList.GetTail());
 return;
 }
 pDoc->CEnergyList.GetNext(pos);
 }
 }

 //===
==========
 // Check for uniqueness of GivenName of NEW SIGNAL
 //===
==========
 if (pDoc->CSignalList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CSignalList.GetHeadPosition();
pos != pDoc->CSignalList.GetTailPosition();)
 {
 if (pDoc->CSignalList.GetAt(pos)->GivenName == pDoc-
>CSignalList.GetTail()->GivenName)
 {

 504

 AfxMessageBox("ILLEGAL NAMING :: ABORTING
INSTANCE.\n\n***** " +
 pDoc-
>CSignalList.GetAt(pos)->GivenName +
 " *****\n\nSignal flow
names must be unique.");
 DeleteElement(pDoc->CSignalList.GetTail());
 return;
 }
 pDoc->CSignalList.GetNext(pos);
 }
 }

 //===
==========
 // Check for the Env-Flow-Env construct
 // Check for head node = tail node construct
 // Check for the Double-Carrier construct
 // Check for Wrong Carrier Hierarchy, e.g., E carrying M
 // Check for Carried head != Carrier head construct
 //===
==========

 if (pDoc->CEdgeList.IsEmpty() == false)
 {
 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition();
((pos != NULL) && (GrammarCheckRequired));)
 {
 //==========================
 // Check for the Env-Flow-Env construct
 //==========================
 if (ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&
 (pDoc->CEdgeList.GetAt(pos)->pTailElem == pDoc-
>CEdgeList.GetAt(pos)->pHeadElem))
 {
 GrammarCheckRequired = false; // This call is
very important.
 // Without it, the same instance is attmepted
to delete multiple
 // times and the system crashes because it does
not find the
 // instance the second time around.
 AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot have the same head and tail node.\n\n(Get
real - This ain't no FunctionCAD)"));

 // There are two ways to create the Head = Tail
situation.
 // (1) At creation time - by selecting the same
node twice
 // (2) by dragging an existing signal end to
two Env's

 505

 // These three situations are addressed here.

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;
 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 //==========================
 // Check for the Env-Flow-Env construct
 //==========================
 if (ElementIsEnv(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&
 ElementIsEnv(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem))
 {
 GrammarCheckRequired = false;

 AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot connect to Env's."));

 // There are three ways to create the Env-flow-
Env construct:
 // (1) by adding a flow between two Env
instances,
 // (2) by dragging an existing flow end to two
Env's, and
 // (3) by adding an Env instance to the end of
a flow that
 // already has an Env at the other end. These
three situations
 // are addressed here.

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 506

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;
 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 //==========================
 // Check for the Double-Carrier construct
 //==========================
 if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&
 ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem))
 {
 GrammarCheckRequired = false;
 AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot have two carriers."));

 // There are two ways of creating the double-
carrier construct:
 // (1) At the time of adding a flow, two other
flows can be selected
 // (2) by connecting the end of a flow to a
carrier, while the
 // other end already has a carrier
 // Both cases are addressed here.
 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;

 507

 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 //==========================
 // Check for Wrong Carrier Hierarchy
 //==========================
 if (
 ((ElementIsMaterial(pDoc-
>CEdgeList.GetAt(pos))) &&
 ((ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) || (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pTailElem))))
 ||
 ((ElementIsEnergy(pDoc->CEdgeList.GetAt(pos)))
&&
 ((ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) ||
 (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) ||
 (ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) ||
 (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem))))
 ||
 ((ElementIsSignal(pDoc->CEdgeList.GetAt(pos)))
&&
 ((ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) ||
 ((ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) || (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)))))
)
 {
 GrammarCheckRequired = false;

 CString* pCarrierMessage = new CString;

 if (ElementIsMaterial(pDoc-
>CEdgeList.GetAt(pos)))
 *pCarrierMessage = "Material cannot be
carried by another flow. No, not even by another Material.";
 if (ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos)))
 *pCarrierMessage = "Energy can be carried
by Material only. Not by another Energy, not by a Signal.";

 508

 if (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)))
 *pCarrierMessage = "Signal must be
carried by a M or E. It can go ONLY from its carrier to ONLY a Node.";

 AfxMessageBox(_T("ILLEGAL CARRIER HIERACHY ::
ABORTING OPERATION.\n\n") + *pCarrierMessage);

 delete pCarrierMessage;

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;
 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 //==========================
 // Check for Carried head != Carrier head construct
FOR FLOW-to-NODE BAGGAGE
 //==========================
 if (
 (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) &&
 (!ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos))) &&
 (ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) &&
 (pDoc->CEdgeList.GetAt(pos)->pHeadElem !=
pDoc->CEdgeList.GetAt(pos)->pTailElem->pHeadElem)
)
 {
 GrammarCheckRequired = false;
 AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA carried Energy flow can be input to ONLY the function
\nthat inputs its carrier."));

 509

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;
 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 //==========================
 // Check for Carried head != Carrier head construct
for NODE-to-FLOW BAGGAGE
 //==========================
 if (
 (ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) &&
 (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) &&
 (pDoc->CEdgeList.GetAt(pos)->pTailElem !=
pDoc->CEdgeList.GetAt(pos)->pHeadElem->pTailElem)
)
 {
 GrammarCheckRequired = false;
 AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA carried Energy flow can be added to a flow ONLY by the
function \nthat outputs its carrier."));

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 if (WhatToDo == ESCAPE) // Case 2
 {
 pDoc->CEdgeList.GetAt(pos)->pHeadElem =
pRememberHeadElement;
 pDoc->CEdgeList.GetAt(pos)->HeadPoint =
RememberHeadPoint;
 pDoc->CEdgeList.GetAt(pos)->pTailElem =
pRememberTailElement;

 510

 pDoc->CEdgeList.GetAt(pos)->TailPoint =
RememberTailPoint;
 }

 if ((WhatToDo == ADD_ENV) || (WhatToDo ==
ADD_FUNCTION)) // Case 3
 DeleteElement(pDoc->CNodeList.GetTail());

 return;
 }

 pDoc->CEdgeList.GetNext(pos);
 }
 }

 //===
==========
 // Check for grammar rules of the CONVERT_E Temaplate
 //===
==========

 if (pDoc->CConvert_E_Function_List.IsEmpty() == false)
 {
 for(POSITION pos = pDoc-
>CConvert_E_Function_List.GetHeadPosition(); ((pos != NULL) &&
(GrammarCheckRequired));)
 {
 bool* pThisConvEHasNoInputE = new bool;
 bool* pThisConvEHasNoOutEResidual = new bool;
 bool* pThisConvEHasMAttached = new bool;
 bool* pThisConvDoesNotConvertAnything = new bool;

 *pThisConvEHasNoInputE = true;
 *pThisConvEHasNoOutEResidual = true;
 *pThisConvEHasMAttached = false;
 *pThisConvDoesNotConvertAnything = true;

 for (POSITION pos1 = pDoc-
>CEnergyList.GetHeadPosition(); pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem ==
pDoc->CConvert_E_Function_List.GetAt(pos))
 *pThisConvEHasNoInputE = false;

 if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem
== pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual))
 *pThisConvEHasNoOutEResidual = false;

 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {

 511

 if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>IsResidual == false) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName != pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName))

 *pThisConvDoesNotConvertAnything =
false;

 pDoc->CEnergyList.GetNext(pos2);
 }

 pDoc->CEnergyList.GetNext(pos1);
 }

 for (POSITION pos1 = pDoc-
>CMaterialList.GetHeadPosition(); pos1 != NULL;)
 {
 if ((pDoc->CMaterialList.GetAt(pos1)->pHeadElem
== pDoc->CConvert_E_Function_List.GetAt(pos)) ||
 (pDoc->CMaterialList.GetAt(pos1)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)))
 *pThisConvEHasMAttached = true;

 pDoc->CMaterialList.GetNext(pos1);
 }

 if ((*pThisConvEHasNoInputE) ||
(*pThisConvEHasNoOutEResidual) ||
 (*pThisConvEHasMAttached) ||
(*pThisConvDoesNotConvertAnything))
 {
 GrammarCheckRequired = false;

 CString* pLine1 = new CString;
 CString* pLine2 = new CString;
 CString* pLine3 = new CString;
 CString* pLine4 = new CString;
 CString* pLine5 = new CString;

 *pLine1 = "\n(1) Minimum one E in, ";
 *pLine2 = "\n(2) Minimum one E out, ";
 *pLine3 = "\n(3) Minimum one residual E out,
which could be the only output, and";
 *pLine4 = "\n(3) At least one pair of Input E
and Output E must be of different subtype.";
 *pLine5 = "\n\n(5) No Material flows are
allowed.";

 512

 AfxMessageBox(_T("ILLEGAL TEMPLATE :: ABORTING
OPERATION. \n\nConvert_E needs:") + *pLine1 + *pLine2 + *pLine3 +
*pLine4 + *pLine5);

 delete pLine1;
 delete pLine2;
 delete pLine3;
 delete pLine4;
 delete pLine5;

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 else if ((WhatToDo == ESCAPE) &&
(ElementIsEdge(pSelectedElement))) // Case 2
 {
 pSelectedElement->pHeadElem =
pRememberHeadElement;
 pSelectedElement->HeadPoint =
RememberHeadPoint;
 pSelectedElement->pTailElem =
pRememberTailElement;
 pSelectedElement->TailPoint =
RememberTailPoint;
 }

 else if (pSelectedElement == NULL) // When
template violation occurs because of DELETING A REQUIRED FLOW
 {
 AfxMessageBox(_T("This action will delete
the template function, \nsince a necessary condition is violated.
\n\n(Sorry - Can't Undo.)"));
 DeleteElement(pDoc-
>CConvert_E_Function_List.GetAt(pos));
 }

 return;
 }

 delete pThisConvEHasNoInputE;
 delete pThisConvEHasNoOutEResidual;
 delete pThisConvEHasMAttached;
 delete pThisConvDoesNotConvertAnything;

 pDoc->CConvert_E_Function_List.GetNext(pos);
 }
 }

 //===
==========
 // Check for grammar rules of the Conduct_E Temaplate

 513

 //===
==========

 if (pDoc->CConduct_E_Function_List.IsEmpty() == false)
 {
 for(POSITION pos = pDoc-
>CConduct_E_Function_List.GetHeadPosition(); ((pos != NULL) &&
(GrammarCheckRequired));)
 {
 bool* pThisConductHasExactlyOneInputE = new bool;
 bool* pThisConductHasMultipleUsableOutputE = new
bool;
 bool* pThisConductCausesTypeChangeOfUsableOutput =
new bool;
 bool* pThisConductHasNoResidualOutputE = new bool;
 bool* pThisConductHasNoOutputOfSameTypeAsInput = new
bool;
 bool* pThisConductEHasMAttached = new bool;

 *pThisConductHasExactlyOneInputE = false;
 *pThisConductHasMultipleUsableOutputE = false;
 *pThisConductCausesTypeChangeOfUsableOutput = false;
 *pThisConductHasNoResidualOutputE = true;
 *pThisConductHasNoOutputOfSameTypeAsInput = true;
 *pThisConductEHasMAttached = false;

 int* pInputECount = new int;
 *pInputECount = 0;
 int* pUsableOutputECount = new int;
 *pUsableOutputECount = 0;

 for (POSITION pos1 = pDoc-
>CEnergyList.GetHeadPosition(); pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem ==
pDoc->CConduct_E_Function_List.GetAt(pos))
 *pInputECount = *pInputECount + 1;

 if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem
== pDoc->CConduct_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual == false))
 *pUsableOutputECount =
*pUsableOutputECount + 1;

 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&

 514

 (pDoc->CEnergyList.GetAt(pos2)-
>IsResidual == false) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName != pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName))

 *pThisConductCausesTypeChangeOfUsableOutput = true;

 if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName == pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName))

 *pThisConductHasNoOutputOfSameTypeAsInput = false;

 pDoc->CEnergyList.GetNext(pos2);
 }

 if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem
== pDoc->CConduct_E_Function_List.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual == true))
 *pThisConductHasNoResidualOutputE =
false;

 pDoc->CEnergyList.GetNext(pos1);
 }

 if (*pInputECount == 1)
 *pThisConductHasExactlyOneInputE = true;
 if (*pUsableOutputECount > 1)
 *pThisConductHasMultipleUsableOutputE = true;

 delete pInputECount;
 delete pUsableOutputECount;

 for (POSITION pos1 = pDoc-
>CMaterialList.GetHeadPosition(); pos1 != NULL;)
 {
 if ((pDoc->CMaterialList.GetAt(pos1)->pHeadElem
== pDoc->CConduct_E_Function_List.GetAt(pos)) ||
 (pDoc->CMaterialList.GetAt(pos1)-
>pTailElem == pDoc->CConduct_E_Function_List.GetAt(pos)))
 *pThisConductEHasMAttached = true;

 pDoc->CMaterialList.GetNext(pos1);
 }

 if ((!(*pThisConductHasExactlyOneInputE)) ||
(*pThisConductHasMultipleUsableOutputE) ||

 515

 (*pThisConductCausesTypeChangeOfUsableOutput)
|| (*pThisConductHasNoResidualOutputE) ||
 (*pThisConductHasNoOutputOfSameTypeAsInput) ||
(*pThisConductEHasMAttached))
 {
 GrammarCheckRequired = false;

 CString* pLine1 = new CString;
 CString* pLine2 = new CString;
 CString* pLine3 = new CString;
 CString* pLine4 = new CString;
 CString* pLine5 = new CString;
 CString* pLine6 = new CString;

 *pLine1 = "\n(1) Exactly one input E, ";
 *pLine2 = "\n(2) Maximum one usable output E
(if more than one, then it is branching), ";
 *pLine3 = "\n(3) The usable output E, if
present, must be of the same type as the input E,";
 *pLine4 = "\n(4) Minimum one residual output E,
";
 *pLine5 = "\n(5) At least one output E must be
of the same type as the input E, and";
 *pLine6 = "\n\n(6) No Material flows are
allowed.";

 AfxMessageBox(_T("ILLEGAL TEMPLATE :: ABORTING
OPERATION. \n\nConduct_E needs:") + *pLine1 + *pLine2 + *pLine3 +
*pLine4 + *pLine5 + *pLine6);

 delete pLine1;
 delete pLine2;
 delete pLine3;
 delete pLine4;
 delete pLine5;
 delete pLine6;

 if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1
 DeleteElement(pDoc->CEdgeList.GetTail());

 else if ((WhatToDo == ESCAPE) &&
(ElementIsEdge(pSelectedElement))) // Case 2
 {
 pSelectedElement->pHeadElem =
pRememberHeadElement;
 pSelectedElement->HeadPoint =
RememberHeadPoint;
 pSelectedElement->pTailElem =
pRememberTailElement;
 pSelectedElement->TailPoint =
RememberTailPoint;
 }

 516

 else if (pSelectedElement == NULL) // When
template violation occurs because of DELETING A REQUIRED FLOW
 {
 AfxMessageBox(_T("This action will delete
the template function, \nsince a necessary condition is violated.
\n\n(Sorry - Can't Undo.)"));
 DeleteElement(pDoc-
>CConduct_E_Function_List.GetAt(pos));
 }/**/

 return;
 }

 delete pThisConductHasExactlyOneInputE;
 delete pThisConductHasMultipleUsableOutputE;
 delete pThisConductCausesTypeChangeOfUsableOutput;
 delete pThisConductHasNoResidualOutputE;
 delete pThisConductHasNoOutputOfSameTypeAsInput;
 delete pThisConductEHasMAttached;

 pDoc->CConduct_E_Function_List.GetNext(pos);
 }
 }

 GrammarCheckRequired = true;
}

//
===
=====
//
===
=====
// PRINTING FUNCTIONS
//
===
=====
//
===
=====

BOOL CConModView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CConModView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

 517

void CConModView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

//
===
=====
//
===
=====
// DIAGNOSTICS AND EXCEPTION HANDLING
//
===
=====
//
===
=====

#ifdef _DEBUG
void CConModView::AssertValid() const
{
 CView::AssertValid();
}

void CConModView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

//
===
=====
//
===
=====
// DOCUMENT POINTER
//
===
=====
//
===
=====

CConModDoc* CConModView::GetDocument() const // non-debug version is
inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CConModDoc)));
 return (CConModDoc*)m_pDocument;
}
#endif //_DEBUG

 518

//
===
=====
//
===
=====
// STANDARD TOOLBAR EVENT HANDLER - FILE SAVE
//
===
=====
//
===
=====

void CConModView::Handler_SaveFile(void)
{
 AfxMessageBox(_T("Save File."));
}

//
===
=====
//
===
=====
// MAIN MENU - REASONING OPTION MESSAGE HANDLER FUNCTIONS
//
===
=====
//
===
=====
void CConModView::OnQualitativeConservation()
{
 ReasoningOption = QUALITATIVE_CONSERVATION;
 AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE
CONSERVATION."));
}

void CConModView::OnQualitativeIrreversibility()
{
 ReasoningOption = QUALITATIVE_IRREVERSIBILITY;
 AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE
IRREVERSIBILITY."));
}

void CConModView::OnQuantitativeEfficiency()
{
 ReasoningOption = QUANTITATIVE_EFFICIENCY;
 AfxMessageBox(_T("Reasoning Switched to: EFFICIENCY."));
}

void CConModView::OnQuantitativePowerRequired()

 519

{
 ReasoningOption = QUANTITATIVE_POWERREQUIRED;
 AfxMessageBox(_T("Reasoning Switched to: POWER REQUIRED."));
}

//
===
=====
//
===
=====
// PRIMITIVES TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT
TO DO"
//
===
=====
//
===
=====

void CConModView::Handler_AddFunction(void)
{
 WhatToDo = ADD_FUNCTION;
}

void CConModView::Handler_AddMaterial(void)
{
 WhatToDo = ADD_MATERIAL;
}

void CConModView::Handler_AddEnergy(void)
{
 WhatToDo = ADD_ENERGY;
}

void CConModView::Handler_AddSignal(void)
{
 WhatToDo = ADD_SIGNAL;
}

void CConModView::Handler_AddEnv(void)
{
 WhatToDo = ADD_ENV;
}

//
===
=====
//
===
=====
// FEATURES TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT TO
DO"

 520

//
===
=====
//
===
=====

void CConModView::Handler_AddConvert_E_Template(void)
{
 WhatToDo = ADD_CONVERT_E_TEMPLATE;
}

void CConModView::Handler_AddConduct_E_Template(void)
{
 WhatToDo = ADD_CONDUCT_E_TEMPLATE;
}

void CConModView::Handler_AddEnergize_M_Template(void)
{
 WhatToDo = ADD_ENERGIZE_M_TEMPLATE;
}

void CConModView::Handler_AddDistribute_E_Template(void)
{
 WhatToDo = ADD_DISTRIBUTE_E_TEMPLATE;
}

void CConModView::Handler_AddDeEn_M_Template(void)
{
 WhatToDo = ADD_DEEN_M_TEMPLATE;
}

//
===
=====
//
===
=====
// REASONING TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT
TO DO"
//
===
=====
//
===
=====

void CConModView::Handler_Qualitative(void)
{
 ComposeQualitativeMessage();
}

void CConModView::Handler_Quantitative(void)

 521

{
 ComposeQuantitativeMessage();
}

//
===
=====
//
===
=====
// EDIT TOOLBAR EVENT HANDLER FUNCTIONS
//
===
=====
//
===
=====

void CConModView::Handler_EditCut()
{
 if (pSelectedElement == NULL)
 return;
 if (WhatToDo == ESCAPE)
 {
 CConModDoc* pDoc = GetDocument();
 DetachEdgesFromElement(pSelectedElement);
 DeleteElement(pSelectedElement);
 pSelectedElement = NULL; // Resets the pointer
to NULL
 }

 //OnDraw(this->GetDC());
};
//
===
=====
//
===
=====
// MOUSE EVENT HANDLER FUNCTIONS - CALLS THE APPROPRIATE INSTANCE-
ADDING FNC.
//
===
=====
//
===
=====

void CConModView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CConModDoc* pDoc = GetDocument();

 MouseLDownPoint = point;

 522

 LButtonIsDown = TRUE;

 switch (WhatToDo)
 {
 case ESCAPE:
 if (ElementIsEdge(pSelectedElement))
 {
 // Remember head topology, in case you have to revert back
to this state.
 // This condition may arise if the new topology after move
/ connect is
 // unacceptable by the grammar rules, in which case the
OnDraw function
 // reverts the topology to the older "REMEMBERED" one.

 RememberHeadPoint = pSelectedElement->HeadPoint;
 pRememberHeadElement = pSelectedElement->pHeadElem;
 RememberTailPoint = pSelectedElement->TailPoint;
 pRememberTailElement = pSelectedElement->pTailElem;
 }
 break;

 case ADD_FUNCTION:
 AddFunction();
 break;

 case ADD_ENV:
 AddEnv();
 break;

 case ADD_CONVERT_E_TEMPLATE:
 AddConvert_E_Template();
 break;

 case ADD_CONDUCT_E_TEMPLATE:
 AddConduct_E_Template();
 break;

 case ADD_ENERGIZE_M_TEMPLATE:
 AddEnergize_M_Template();
 break;

 case ADD_DISTRIBUTE_E_TEMPLATE:
 AddDistribute_E_Template();
 break;

 case ADD_DEEN_M_TEMPLATE:
 AddDeEn_M_Template();
 break;
 }
}

void CConModView::OnLButtonUp(UINT nFlags, CPoint point)

 523

{
 MouseLUpPoint = point;
 CConModDoc* pDoc = GetDocument();

 switch (WhatToDo)
 {
 case ESCAPE:
 MoveConnect();
 break;

 case ADD_MATERIAL:
 AddMaterial();
 break;

 case ADD_ENERGY:
 AddEnergy();
 break;

 case ADD_SIGNAL:
 AddSignal();
 break;
 }

 LButtonIsDown = FALSE;
}

void CConModView::OnRButtonDown(UINT nFlags, CPoint point)
{
 MouseRDownPoint = point;
 RButtonIsDown = TRUE;

 CConModDoc* pDoc = GetDocument();

 // IF PreselectionList IS EMPTY, RIGHT CLICK WILL SET WhatToDo =
ESCAPE
 // OTHERWISE, IF THE LIST IS FULL, IT SHOULD SCROLL THROUGH THAT
LIST
 if (pDoc->PreselectionList.IsEmpty())
 WhatToDo = ESCAPE;
 else
 ScrollThroughPreselection();
}

void CConModView::OnRButtonUp(UINT nFlags, CPoint point)
{
 MouseRUpPoint = point;
 RButtonIsDown = FALSE;
}

void CConModView::OnMouseMove(UINT nFlags, CPoint point)
{
 MouseMovePoint = point;

 524

 // FOR ALL WHATTODO's, IF BOTH BUTTONS ARE UP, MOUSE MOVEMENT
WILL PRESELECT ELEMENTS

 if ((!LButtonIsDown) && (!RButtonIsDown))
 Preselect(&point);

 switch (WhatToDo)
 {
 case ESCAPE:
 if (LButtonIsDown && pSelectedElement != NULL)
 MoveConnectDynamic();
 break;

 case ADD_MATERIAL:
 if ((LButtonIsDown) && (!RButtonIsDown))
 AddEdge_Dynamic();
 break;

 case ADD_ENERGY:
 if ((LButtonIsDown) && (!RButtonIsDown))
 AddEdge_Dynamic();
 break;

 case ADD_SIGNAL:
 if ((LButtonIsDown) && (!RButtonIsDown))
 AddEdge_Dynamic();
 break;
 }
}

void CConModView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 CConModDoc* pDoc = this->GetDocument();

 if (pSelectedElement == NULL)
 ComposeQualitativeMessage();
 else if (ElementIsFunction(pSelectedElement))
 pDoc->CFunctionList.GetAt(FunctionIndexInFunctionList)-
>DoModal();
 else if (ElementIsEnv(pSelectedElement))
 pDoc->CEnvList.GetAt(EnvIndexInEnvList)->DoModal();
 else if (ElementIsMaterial(pSelectedElement))
 pDoc->CMaterialList.GetAt(MaterialIndexInMaterialList)-
>DoModal();
 else if (ElementIsEnergy(pSelectedElement))
 pDoc->CEnergyList.GetAt(EnergyIndexInEnergyList)-
>DoModal();
 else if (ElementIsSignal(pSelectedElement))
 pDoc->CSignalList.GetAt(SignalIndexInSignalList)-
>DoModal();
}

void CConModView::OnMButtonUp(UINT nFlags, CPoint point)

 525

{
 //if ((this->ElementIsEnergy(this->pSelectedElement)) ||
 // (this->ElementIsMaterial(this->pSelectedElement)))
 // this->pSelectedElement->IsResidual = !(this-
>pSelectedElement->IsResidual);
}

BOOL CConModView::OnEraseBkgnd(CDC* pDC)
{
 return FALSE;
}

//
===
=====
//
===
=====
// FUNCTIONS THAT ADD, DELETE, AND MODIFY INSTANCES IN THE MODEL
//
===
=====
//
===
=====

void CConModView::AddFunction()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 //===
==========
 // Auto-increment the name counter
 //===
==========
 Counter_F = Counter_F + 1;
 CounterString.Format(_T("%d"), Counter_F);

 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == TAIL)) // Grabbed an edge at tail
 {
 CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(pSelectedElement->TailPoint), &CounterString);
 pSelectedElement->pTailElem = NewCFunction;
 pDoc->CElementList.AddTail(NewCFunction);
 pDoc->CNodeList.AddTail(NewCFunction);
 pDoc->CFunctionList.AddTail(NewCFunction);
 }

 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == HEAD)) // Grabbed an edge at head
 {

 526

 CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(pSelectedElement->HeadPoint), &CounterString);
 pSelectedElement->pHeadElem = NewCFunction;
 pDoc->CElementList.AddTail(NewCFunction);
 pDoc->CNodeList.AddTail(NewCFunction);
 pDoc->CFunctionList.AddTail(NewCFunction);
 }

 if (pSelectedElement == NULL)
 {
 CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(MouseLDownPoint), &CounterString);
 pDoc->CElementList.AddTail(NewCFunction);
 pDoc->CNodeList.AddTail(NewCFunction);
 pDoc->CFunctionList.AddTail(NewCFunction);
 }

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
 // to TRUE, since a
click was made on the
 // screen to add the
function. When the button
 // is lifted, it is
usually in the Add Function
 // Dialog, so the
graphics window does not know
 // that L Button was
lifted. Therefore,
 // functions such as
Preselect misbehave.
}

void CConModView::AddEdge_Dynamic()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();
 CEdge* NewCEdge = new CEdge(MouseLDownPoint, MouseMovePoint);

 //NewCEdge->pTailElem = pTailElemDynamic;
 if (pTailElemDynamic != NULL)
 {
 NewCEdge->pTailElem = pTailElemDynamic;
 TailNodeSelected = true;
 }

 Preselect(&MouseMovePoint);
 NewCEdge->pHeadElem = pHeadElemDynamic;

 NewCEdge->DrawOnDC(this->GetDC());
 delete NewCEdge;
}

 527

void CConModView::AddMaterial()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 Counter_M = Counter_M + 1;
 CounterString.Format(_T("%d"), Counter_M);

 CMaterial* NewCMaterial = new CMaterial(NULL, MouseLDownPoint,
MouseLUpPoint, &CounterString, this->ReasoningOption);

 NewCMaterial->pTailElem = pTailElemDynamic;
 NewCMaterial->pHeadElem = pHeadElemDynamic;

 pDoc->CElementList.AddTail(NewCMaterial);
 pDoc->CEdgeList.AddTail(NewCMaterial);
 pDoc->CMaterialList.AddTail(NewCMaterial);
 //OnDraw(this->GetDC());

 // Clear up the temporary edge creation data for the next use
 pTailElemDynamic = NULL;
 pHeadElemDynamic = NULL;
 TailNodeSelected = false;
}

void CConModView::AddEnergy()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 Counter_E = Counter_E + 1;
 CounterString.Format(_T("%d"), Counter_E);

 CEnergy* NewCEnergy = new CEnergy(NULL, MouseLDownPoint,
MouseLUpPoint, &CounterString, this->ReasoningOption);

 NewCEnergy->pTailElem = pTailElemDynamic;
 NewCEnergy->pHeadElem = pHeadElemDynamic;

 pDoc->CElementList.AddTail(NewCEnergy);
 pDoc->CEdgeList.AddTail(NewCEnergy);
 pDoc->CEnergyList.AddTail(NewCEnergy);
 //OnDraw(this->GetDC());

 // Clear up the temporary edge creation data for the next use
 pTailElemDynamic = NULL;
 pHeadElemDynamic = NULL;
 TailNodeSelected = false;
}

void CConModView::AddSignal()
{

 528

 CConModDoc* pDoc = GetDocument();
 Invalidate();

 Counter_S = Counter_S + 1;
 CounterString.Format(_T("%d"), Counter_S);

 CSignal* NewCSignal = new CSignal(NULL, MouseLDownPoint,
MouseLUpPoint, &CounterString);

 NewCSignal->pTailElem = pTailElemDynamic;
 NewCSignal->pHeadElem = pHeadElemDynamic;

 pDoc->CElementList.AddTail(NewCSignal);
 pDoc->CEdgeList.AddTail(NewCSignal);
 pDoc->CSignalList.AddTail(NewCSignal);
 //OnDraw(this->GetDC());

 // Clear up the temporary edge creation data for the next use
 pTailElemDynamic = NULL;
 pHeadElemDynamic = NULL;
 TailNodeSelected = false;
}

void CConModView::AddEnv()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 Counter_Env = Counter_Env + 1;
 CounterString.Format(_T("%d"), Counter_Env);

 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == TAIL)) // Grabbed an edge at tail
 {
 CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement-
>TailPoint), &CounterString);
 pSelectedElement->pTailElem = NewCEnv;
 pDoc->CElementList.AddTail(NewCEnv);
 pDoc->CNodeList.AddTail(NewCEnv);
 pDoc->CEnvList.AddTail(NewCEnv);
 }

 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == HEAD)) // Grabbed an edge at head
 {
 CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement-
>HeadPoint), &CounterString);
 pSelectedElement->pHeadElem = NewCEnv;
 pDoc->CElementList.AddTail(NewCEnv);
 pDoc->CNodeList.AddTail(NewCEnv);
 pDoc->CEnvList.AddTail(NewCEnv);
 }

 529

 if (pSelectedElement == NULL)
 {
 CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(MouseLDownPoint),
&CounterString);
 pDoc->CElementList.AddTail(NewCEnv);
 pDoc->CNodeList.AddTail(NewCEnv);
 pDoc->CEnvList.AddTail(NewCEnv);
 }

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
 // to TRUE, since a
click was made on the
 // screen to add the
function. When the button
 // is lifted, it is
usually in the Add Function
 // Dialog, so the
graphics window does not know
 // that L Button was
lifted. Therefore,
 // functions such as
Preselect misbehave.
}

void CConModView::AddConvert_E_Template()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 CString* pCounterString_F = new CString;
 CString* pCounterString_InE = new CString;
 CString* pCounterString_OutE = new CString;
 CString* pCounterString_OutE_Res = new CString;

 Counter_F ++;
 pCounterString_F->Format(_T("%d"), Counter_F);
 *pCounterString_F = *pCounterString_F + " [Conv_E]";
 Counter_E ++;
 pCounterString_InE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE_Res->Format(_T("%d"), Counter_E);

 if (pSelectedElement == NULL) // Create only in empty, white
space of the screen - otherwise more
 //attachment issues will arise
 {

 530

 CConvert_E_Template* NewCConvert_E_Template = new
CConvert_E_Template(NULL, SnapToGrid(MouseLDownPoint),
 pCounterString_F, pCounterString_InE,
pCounterString_OutE, pCounterString_OutE_Res);

 pDoc->CTemplateList.AddTail(NewCConvert_E_Template);
 pDoc-
>CConvert_E_Template_List.AddTail(NewCConvert_E_Template);

 pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pFunctionBlock);
 pDoc->CNodeList.AddTail(NewCConvert_E_Template-
>pFunctionBlock);
 pDoc->CFunctionList.AddTail(NewCConvert_E_Template-
>pFunctionBlock);
 pDoc-
>CConvert_E_Function_List.AddTail(NewCConvert_E_Template-
>pFunctionBlock); // Enables grammr checking

 pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_InE);
 pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_InE);
 pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_InE);

 pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE);
 pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE);
 pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE);

 pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res);
 pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res);
 pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res);
 }

 delete pCounterString_F;
 delete pCounterString_InE;
 delete pCounterString_OutE;
 delete pCounterString_OutE_Res;

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
}

void CConModView::AddConduct_E_Template()

 531

{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 CString* pCounterString_F = new CString;
 CString* pCounterString_InE = new CString;
 CString* pCounterString_OutE = new CString;
 CString* pCounterString_OutE_Res = new CString;

 Counter_F ++;
 pCounterString_F->Format(_T("%d"), Counter_F);
 *pCounterString_F = *pCounterString_F + " [Cond_E]";
 Counter_E ++;
 pCounterString_InE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE_Res->Format(_T("%d"), Counter_E);

 if (pSelectedElement == NULL) // Create only in empty, white
space of the screen - otherwise more
 //attachment issues will arise
 {
 CConduct_E_Template* NewCConduct_E_Template = new
CConduct_E_Template(NULL, SnapToGrid(MouseLDownPoint),
 pCounterString_F, pCounterString_InE,
pCounterString_OutE, pCounterString_OutE_Res);

 pDoc->CTemplateList.AddTail(NewCConduct_E_Template);
 pDoc-
>CConduct_E_Template_List.AddTail(NewCConduct_E_Template);

 pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pFunctionBlock);
 pDoc->CNodeList.AddTail(NewCConduct_E_Template-
>pFunctionBlock);
 pDoc->CFunctionList.AddTail(NewCConduct_E_Template-
>pFunctionBlock);
 pDoc-
>CConduct_E_Function_List.AddTail(NewCConduct_E_Template-
>pFunctionBlock); // Enables grammr checking

 pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_InE);
 pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_InE);
 pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_InE);

 pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE);

 532

 pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE);
 pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE);

 pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res);
 pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res);
 pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res);
 }

 delete pCounterString_F;
 delete pCounterString_InE;
 delete pCounterString_OutE;
 delete pCounterString_OutE_Res;

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
}

void CConModView::AddEnergize_M_Template()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 CString* pCounterString_F = new CString;
 CString* pCounterString_InM = new CString;
 CString* pCounterString_OutM = new CString;
 CString* pCounterString_InE = new CString;
 CString* pCounterString_OutE = new CString;

 Counter_F ++;
 pCounterString_F->Format(_T("%d"), Counter_F);
 *pCounterString_F = *pCounterString_F + " [En_Mat]";
 Counter_M ++;
 pCounterString_InM->Format(_T("%d"), Counter_M);
 Counter_M ++;
 pCounterString_OutM->Format(_T("%d"), Counter_M);
 Counter_E ++;
 pCounterString_InE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE->Format(_T("%d"), Counter_E);

 if (pSelectedElement == NULL) // Create only in empty, white
space of the screen - otherwise more
 //attachment issues will arise
 {
 CEnergize_M_Template* NewCEnergize_M_Template = new
CEnergize_M_Template(NULL, SnapToGrid(MouseLDownPoint),

 533

 pCounterString_F, pCounterString_InM,
pCounterString_OutM, pCounterString_InE, pCounterString_OutE);

 pDoc->CTemplateList.AddTail(NewCEnergize_M_Template);
 pDoc-
>CEnergize_M_Template_List.AddTail(NewCEnergize_M_Template);

 pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock);
 pDoc->CNodeList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock);
 pDoc->CFunctionList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock);
 pDoc-
>CEnergize_M_Function_List.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); // Enables grammr checking

 pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM);
 pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM);
 pDoc->CMaterialList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM);

 pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM);
 pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM);
 pDoc->CMaterialList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM);

 pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE);
 pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE);
 pDoc->CEnergyList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE);

 pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE);
 pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE);
 pDoc->CEnergyList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE);

 }

 delete pCounterString_F;
 delete pCounterString_InM ;
 delete pCounterString_OutM;
 delete pCounterString_InE ;
 delete pCounterString_OutE;

 534

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
}

void CConModView::AddDistribute_E_Template()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 CString* pCounterString_F = new CString;
 CString* pCounterString_InE = new CString;
 CString* pCounterString_OutE1 = new CString;
 CString* pCounterString_OutE2 = new CString;

 Counter_F ++;
 pCounterString_F->Format(_T("%d"), Counter_F);
 *pCounterString_F = *pCounterString_F + " [Dist_E]";
 Counter_E ++;
 pCounterString_InE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE1->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE2->Format(_T("%d"), Counter_E);

 if (pSelectedElement == NULL) // Create only in empty, white
space of the screen - otherwise more
 //attachment issues will arise
 {
 CDistribute_E_Template* NewCDistribute_E_Template = new
CDistribute_E_Template(NULL, SnapToGrid(MouseLDownPoint),
 pCounterString_F, pCounterString_InE,
pCounterString_OutE1, pCounterString_OutE2);

 pDoc->CTemplateList.AddTail(NewCDistribute_E_Template);
 pDoc-
>CDistribute_E_Template_List.AddTail(NewCDistribute_E_Template);

 pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock);
 pDoc->CNodeList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock);
 pDoc->CFunctionList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock);
 pDoc-
>CDistribute_E_Function_List.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); // Enables grammr checking

 pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE);
 pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE);

 535

 pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE);

 pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1);
 pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1);
 pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1);

 pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2);
 pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2);
 pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2);
 }

 delete pCounterString_F;
 delete pCounterString_InE ;
 delete pCounterString_OutE1;
 delete pCounterString_OutE2;

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
}

void CConModView::AddDeEn_M_Template()
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 CString* pCounterString_F = new CString;
 CString* pCounterString_InM = new CString;
 CString* pCounterString_OutM = new CString;
 CString* pCounterString_InE = new CString;
 CString* pCounterString_OutE = new CString;

 Counter_F ++;
 pCounterString_F->Format(_T("%d"), Counter_F);
 *pCounterString_F = *pCounterString_F + " [DeEn_M]";
 Counter_M ++;
 pCounterString_InM->Format(_T("%d"), Counter_M);
 Counter_M ++;
 pCounterString_OutM->Format(_T("%d"), Counter_M);
 Counter_E ++;
 pCounterString_InE->Format(_T("%d"), Counter_E);
 Counter_E ++;
 pCounterString_OutE->Format(_T("%d"), Counter_E);

 536

 if (pSelectedElement == NULL) // Create only in empty, white
space of the screen - otherwise more
 //attachment issues will arise
 {
 CDeEn_M_Template* NewCDeEn_M_Template = new
CDeEn_M_Template(NULL, SnapToGrid(MouseLDownPoint),
 pCounterString_F, pCounterString_InM,
pCounterString_OutM, pCounterString_InE, pCounterString_OutE);

 pDoc->CTemplateList.AddTail(NewCDeEn_M_Template);
 pDoc->CDeEn_M_Template_List.AddTail(NewCDeEn_M_Template);

 pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock);
 pDoc->CNodeList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock);
 pDoc->CFunctionList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock);
 pDoc-
>CEnergize_M_Function_List.AddTail(NewCDeEn_M_Template-
>pFunctionBlock); // Enables grammr checking

 pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM);
 pDoc->CEdgeList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM);
 pDoc->CMaterialList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM);

 pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM);
 pDoc->CEdgeList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM);
 pDoc->CMaterialList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM);

 pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pEnergy_InE);
 pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pEnergy_InE);
 pDoc->CEnergyList.AddTail(NewCDeEn_M_Template-
>pEnergy_InE);

 pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pEnergy_OutE);
 pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pEnergy_OutE);
 pDoc->CEnergyList.AddTail(NewCDeEn_M_Template-
>pEnergy_OutE);

 }

 delete pCounterString_F;
 delete pCounterString_InM ;
 delete pCounterString_OutM;

 537

 delete pCounterString_InE ;
 delete pCounterString_OutE;

 //OnDraw(this->GetDC());
 LButtonIsDown = FALSE; // Without this line, LButtonIsDown
remains set
}

//
===
=====
//
===
=====
// FUNCTIONS TO SELECT AND UNSELECT OBJECTS FROM THE MODEL
//
===
=====
//
===
=====

void CConModView::Preselect(CPoint* pMouseTip)
{
 CConModDoc* pDoc = GetDocument();
 Invalidate();

 //
===
=====
 // RESET THE EXISTING CONTAINERS OF PRESELECTION DATA AT EVERY
NEW CALL
 //
===
=====
 pDoc->PreselectionList.RemoveAll();
 ScrollPosition = NULL;
 pSelectedElement = NULL;

 //
===
=====
 // SPECIAL REQUIREMENT FOR EDGES - CLEAR OFF THE TEMPORARY HEAD
AND TAIL NODES
 //
===
=====
 if (!TailNodeSelected)
 pTailElemDynamic = NULL;
 pHeadElemDynamic = NULL;

 538

 //
===
=====
 // LOOK FOR PROXIMITY BETWEEN MOUSE TIP AND ALL CELEMENT
INSTANCES.
 // FOR ALL PROXIMAL CELEMENT INSTANCES, HIGHLIGHT, ASSIGN
GRABHANDLE, AND ADD TO
 // PRESELECTIONLIST (IF NOT ALREADY THERE).
 // THREE TESTS FOR GRABHANDLE ARE NECESSARY TO PERFORM
THIS ACTION.
 // IF NOT PROXIMAL, THEN UNHIGHLIHGT, RESET GRABHANDLE, AND
REMOVE FROM
 // PRESELECTIONLIST (IF NOT ALREADY REMOVED).
 //
===
=====

 if (!pDoc->CElementList.IsEmpty())
 {
 for (POSITION pos = pDoc->CElementList.GetHeadPosition();
pos != NULL;)
 {
 if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS)
 {
 pDoc->CElementList.GetAt(pos)->GrabHandle =
CENTER; // Applies to both nodes and edges
 Highlight(pDoc->CElementList.GetAt(pos));
 if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))
 pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos));
 }
 else if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->HeadPoint) <= SELECTION_RADIUS)
 {
 pDoc->CElementList.GetAt(pos)->GrabHandle =
HEAD; // Applies to edges
 Highlight(pDoc->CElementList.GetAt(pos));
 if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))
 pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos));
 }
 else if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->TailPoint) <= SELECTION_RADIUS)
 {
 pDoc->CElementList.GetAt(pos)->GrabHandle =
TAIL; // Applies to edges
 Highlight(pDoc->CElementList.GetAt(pos));
 if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))

 539

 pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos));
 }
 else
 {
 UnHighlight(pDoc->CElementList.GetAt(pos));
 pDoc->CElementList.GetAt(pos)->GrabHandle =
NULL;
 if (pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))
 pDoc->PreselectionList.RemoveAt(pDoc-
>PreselectionList.Find(pDoc->CElementList.GetAt(pos))); // (pDoc-
>CElementList.GetAt(pos));
 }

 pDoc->CElementList.GetNext(pos);
 }
 }

 //
===
=====
 // GET READY FOR SCROLLING:
 // IF PreselectionList HAS THINGS IN IT, SELECT THE FIRST ITEM
AND SET
 // ScrollPosition AS THE HEAD POSITION WITHIN THAT LIST.
 // OTHERWISE, THE EXISTING NULL VALUES SET AT THE BEGINNING OF
THIS FUNCTION
 // CALL WILL PREVAIL.
 //
===
=====

 if (!pDoc->PreselectionList.IsEmpty())
 {
 SelectElement(pDoc->PreselectionList.GetHead()); //
stroes pSelectedElement
 ScrollPosition = pDoc->PreselectionList.GetHeadPosition();

 // SCPECIAL CASE - IF ADDING AN EDGE, STORE ITS temporary
TAIL and HEAD
 if ((WhatToDo == ADD_ENERGY) || (WhatToDo ==
ADD_MATERIAL)|| (WhatToDo == ADD_SIGNAL))
 {
 if (LButtonIsDown)
 pHeadElemDynamic = pSelectedElement;
 else
 pTailElemDynamic = pSelectedElement;

 if (pHeadElemDynamic == pTailElemDynamic)
 pHeadElemDynamic = NULL; // Prevents self-
cycling edges
 }

 540

 }

 // Finally, redraw the screen
 //OnDraw(this->GetDC());
}

void CConModView::Highlight(CElement* pElement)
{
 pElement->IsHighlighted = true;
 pElement->IsSelected = false;
}

void CConModView::UnHighlight(CElement* pElement)
{
 pElement->IsHighlighted = false;
 pElement->IsSelected = false;
}

void CConModView::SelectElement(CElement* pElement)
{
 pSelectedElement = pElement;
 pElement->IsSelected = true;
 pElement->IsHighlighted = false;
}

void CConModView::ScrollThroughPreselection()
{
 CConModDoc* pDoc = GetDocument();

 // Reset the current selection to PRESELECTION_PEN_ colors
 Highlight(pDoc->PreselectionList.GetAt(ScrollPosition));

 // If the tail of PreselectionList has arrived, start over at the
head
 if (ScrollPosition == pDoc->PreselectionList.GetTailPosition())
 ScrollPosition = pDoc->PreselectionList.GetHeadPosition();
 else
 pDoc->PreselectionList.GetNext(ScrollPosition);

 // Select the element at this incremented ScrollPosition
 SelectElement(pDoc->PreselectionList.GetAt(ScrollPosition));

 //OnDraw(this->GetDC());

 //
===
=====
 // SCPECIAL CASE - IF ADDING EDGE, STORE ITS TAIL NODE and HEAD
NODE.
 // AN IDENTICAL IF STATEMENT IS ALSO USED IN Preselect, TO ENABLE
THE
 // SAME FEATURES IF TEH USER SELECTED THE FIRST SELECTED ELEMENT
WITHOUT

 541

 // SCROLLING.
 //
===
=====
 if (WhatToDo == ADD_ENERGY || WhatToDo == ADD_MATERIAL ||
WhatToDo == ADD_SIGNAL)
 {
 if (LButtonIsDown)
 pHeadElemDynamic = pSelectedElement;
 else
 pTailElemDynamic = pSelectedElement;

 if (pHeadElemDynamic == pTailElemDynamic)
 pHeadElemDynamic = NULL; // Prevents self-
cycling edges
 }
}

bool CConModView::ElementIsNode(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CNodeList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CNodeList.GetAt(pos) == pElement)
 {
 NodeIndexInNodeList = pos;
 return true;
 }
 pDoc->CNodeList.GetNext(pos);
 }
 return false;
}

bool CConModView::ElementIsFunction(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CFunctionList.GetAt(pos) == pElement)
 {
 FunctionIndexInFunctionList = pos;
 return true;
 }

 pDoc->CFunctionList.GetNext(pos);
 }

 return false;
}

 542

bool CConModView::ElementIsEnv(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CEnvList.GetAt(pos) == pElement)
 {
 EnvIndexInEnvList = pos;
 return true;
 }

 pDoc->CEnvList.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsEdge(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CEdgeList.GetAt(pos) == pElement)
 {
 EdgeIndexInEdgeList = pos;
 return true;
 }

 pDoc->CEdgeList.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsMaterial(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos) == pElement)
 {
 MaterialIndexInMaterialList = pos;
 return true;
 }

 pDoc->CMaterialList.GetNext(pos);

 543

 }

 return false;
}

bool CConModView::ElementIsEnergy(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos) == pElement)
 {
 EnergyIndexInEnergyList = pos;
 return true;
 }

 pDoc->CEnergyList.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsSignal(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CSignalList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CSignalList.GetAt(pos) == pElement)
 {
 SignalIndexInSignalList = pos;
 return true;
 }

 pDoc->CSignalList.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsConvert_E_Function(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CConvert_E_Function_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CConvert_E_Function_List.GetAt(pos) == pElement)
 {

 544

 Convert_E_Function_IndexInConvert_E_Function_List =
pos;
 return true;
 }

 pDoc->CConvert_E_Function_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsConvert_E_Template(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CConvert_E_Template_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CConvert_E_Template_List.GetAt(pos) == pElement)
 {
 Convert_E_Template_IndexInConvert_E_Template_List =
pos;
 return true;
 }

 pDoc->CConvert_E_Template_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsConduct_E_Function(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CConduct_E_Function_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CConduct_E_Function_List.GetAt(pos) == pElement)
 {
 Conduct_E_Function_IndexInConduct_E_Function_List =
pos;
 return true;
 }

 pDoc->CConduct_E_Function_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsConduct_E_Template(CElement* pElement)
{

 545

 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CConduct_E_Template_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CConduct_E_Template_List.GetAt(pos) == pElement)
 {
 Conduct_E_Template_IndexInConduct_E_Template_List =
pos;
 return true;
 }

 pDoc->CConduct_E_Template_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsEnergize_M_Function(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CEnergize_M_Function_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CEnergize_M_Function_List.GetAt(pos) == pElement)
 {
 Energize_M_Function_IndexInEnergize_M_Function_List =
pos;
 return true;
 }

 pDoc->CEnergize_M_Function_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsEnergize_M_Template(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CEnergize_M_Template_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CEnergize_M_Template_List.GetAt(pos) == pElement)
 {
 Energize_M_Template_IndexInEnergize_M_Template_List =
pos;
 return true;
 }

 pDoc->CEnergize_M_Template_List.GetNext(pos);

 546

 }

 return false;
}

bool CConModView::ElementIsDistribute_E_Function(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CDistribute_E_Function_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CDistribute_E_Function_List.GetAt(pos) ==
pElement)
 {

 Distribute_E_Function_IndexInDistribute_E_Function_List = pos;
 return true;
 }

 pDoc->CDistribute_E_Function_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsDistribute_E_Template(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CDistribute_E_Template_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CDistribute_E_Template_List.GetAt(pos) ==
pElement)
 {

 Distribute_E_Template_IndexInDistribute_E_Template_List = pos;
 return true;
 }

 pDoc->CDistribute_E_Template_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsDeEn_M_Function(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CDeEn_M_Function_List.GetHeadPosition(); pos != NULL;)

 547

 {
 if (pDoc->CDeEn_M_Function_List.GetAt(pos) == pElement)
 {
 DeEn_M_Function_IndexInDeEn_M_Function_List = pos;
 return true;
 }

 pDoc->CDeEn_M_Function_List.GetNext(pos);
 }

 return false;
}

bool CConModView::ElementIsDeEn_M_Template(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc-
>CDeEn_M_Template_List.GetHeadPosition(); pos != NULL;)
 {
 if (pDoc->CDeEn_M_Template_List.GetAt(pos) == pElement)
 {
 DeEn_M_Template_IndexInDeEn_M_Template_List = pos;
 return true;
 }

 pDoc->CDeEn_M_Template_List.GetNext(pos);
 }

 return false;
}

//
===
=====
//
===
=====
// FUNCTIONS TO EDIT OBJECTS WITHIN THE MODEL
//
===
=====
//
===
=====

void CConModView::MoveConnectDynamic() // Called by OnMouseMove
{
 CConModDoc* pDoc = GetDocument();
 GrammarCheckRequired = false; // This callis very important
- without it,
 // the grammr checks for topological error will
take effect DURING

 548

 // the move / connect operation BEFORE LIFTING
UP THE MOUSE L
 // BUTTON and throw errors for topology that
the user has not
 // committed to (by lifting mouse L button)

 //
===
=====
 // THIS IS A BASIC CHECK THAT AN ELEMENT IS SELECTED FOR MOVE OR
CONNECT.
 // PRACTICALLY, THIS CHECK IS REDUNDANT, SINCE THE ONLY CALLING
FUNCTION
 // OF THIS FUNCTION, OnMouseMove, MAKES SURE THAT AN ELEMENT IS
INDEED SELECTED.
 //
===
=====
 if (!LButtonIsDown || pSelectedElement == NULL)
 return;

 //
===
=====
 // IF AN EDGE IS ANCHORED ON ANY ONE SIDE, PREVENT MOVING IT BY
ITS CENTER
 //
===
=====
 if ((ElementIsEdge(pSelectedElement))
 &&
 ((pSelectedElement->pHeadElem != NULL)
 ||
 (pSelectedElement->pTailElem != NULL))
 &&
 (pSelectedElement->GrabHandle == CENTER))
 return;

 Invalidate();

 //
===
=====
 // MOVE NODES AND DOUBLY-DANLGING EDGES BY THE CENTER GRABHANDLE
 //
===
=====

 if (pSelectedElement->GrabHandle == CENTER) // Works
for nodes and edges with both ends dangling
 {
 // First, compute the orientation and length of the arrow
using its existing

 549

 // center, tail and head points. This check will workk
even for the nodes, although
 // that would not mean anything real. So, it is
unnecessary to check that the element
 // is an edge.
 long HalfDeltaX = pSelectedElement->HeadPoint.x -
pSelectedElement->GeometricCenter.x;
 long HalfDeltaY = pSelectedElement->HeadPoint.y -
pSelectedElement->GeometricCenter.y;

 // Then, move the center point. This moves nodes directly.
For edges, the ends
 // need to be recalculated, as done next.
 pSelectedElement->GeometricCenter = MouseMovePoint;

 // Then re-compute the new head and tail poitns based on
the new center point.
 pSelectedElement->HeadPoint.x = pSelectedElement-
>GeometricCenter.x + HalfDeltaX;
 pSelectedElement->HeadPoint.y = pSelectedElement-
>GeometricCenter.y + HalfDeltaY;
 pSelectedElement->TailPoint.x = pSelectedElement-
>GeometricCenter.x - HalfDeltaX;
 pSelectedElement->TailPoint.y = pSelectedElement-
>GeometricCenter.y - HalfDeltaY;
 }

 //
===
=====
 // MOVE AND/OR CONNECT THE head POINT OF AN EDGE
 //
===
=====

 if (ElementIsEdge(pSelectedElement) && (pSelectedElement-
>GrabHandle == HEAD))
 {
 pSelectedElement->pHeadElem = NULL;

 for (POSITION pos = pDoc->CElementList.GetHeadPosition();
pos != NULL;)
 {
 if (distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS)
 {
 Highlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos);
 }
 else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->TailPoint) <= SELECTION_RADIUS) &&

 550

 (ElementIsEdge(pDoc->CElementList.GetAt(pos)))
&&
 (pDoc->CElementList.GetAt(pos)->pHeadElem !=
NULL) &&
 (pDoc->CElementList.GetAt(pos)->pTailElem ==
NULL))
 {
 Highlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos)->pHeadElem;
 pElementToBeDeleted = pDoc-
>CElementList.GetAt(pos);
 }
 else
 {
 UnHighlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->HeadPoint = MouseMovePoint;
 if (pDoc->CElementList.GetAt(pos) ==
pElementToBeDeleted)
 pElementToBeDeleted = NULL;
 }

 pDoc->CElementList.GetNext(pos);
 }
 }

 //
===
=====
 // MOVE AND/OR CONNECT THE tail POINT OF AN EDGE
 //
===
=====

 if (ElementIsEdge(pSelectedElement) && (pSelectedElement-
>GrabHandle == TAIL))
 {
 pSelectedElement->pTailElem = NULL;

 for (POSITION pos = pDoc->CElementList.GetHeadPosition();
pos != NULL;)
 {
 if (distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS)
 {
 Highlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->pTailElem = pDoc-
>CElementList.GetAt(pos);
 }
 else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->HeadPoint) <= SELECTION_RADIUS) &&
 (ElementIsEdge(pDoc->CElementList.GetAt(pos)))
&&

 551

 (pDoc->CElementList.GetAt(pos)->pTailElem !=
NULL) &&
 (pDoc->CElementList.GetAt(pos)->pHeadElem ==
NULL))
 {
 Highlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->pTailElem = pDoc-
>CElementList.GetAt(pos)->pTailElem;
 pElementToBeDeleted = pDoc-
>CElementList.GetAt(pos);
 }
 else
 {
 UnHighlight(pDoc->CElementList.GetAt(pos));
 pSelectedElement->TailPoint = MouseMovePoint;
 if (pDoc->CElementList.GetAt(pos) ==
pElementToBeDeleted)
 pElementToBeDeleted = NULL;
 }

 pDoc->CElementList.GetNext(pos);
 }
 }

 // OnDraw(this->GetDC()); // Do NOT call OnDraw here - it
will fire the
 // grammar checks before the move/connect is complete
}

void CConModView::MoveConnect() // Called by OnLButtonUp,
when moving edges (ESCAPE)
{
 if (pSelectedElement == NULL)
 return;

 CConModDoc* pDoc = GetDocument();
 Invalidate();

 // SNAP THE NODES TO THE GRID AFTER MOVE IS OVER, WHEN L-BUTTON
IS LIFTED
 if (ElementIsNode(pSelectedElement))
 pSelectedElement->GeometricCenter =
SnapToGrid(pSelectedElement->GeometricCenter);

 if (pElementToBeDeleted != NULL)
 {
 DeleteElement(pElementToBeDeleted);
 pElementToBeDeleted = NULL;
 }

 GrammarCheckRequired = true;

 //OnDraw(this->GetDC());

 552

}

void CConModView::DetachEdgesFromElement(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();

 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pElement == pDoc->CEdgeList.GetAt(pos)->pHeadElem)
 pDoc->CEdgeList.GetAt(pos)->pHeadElem = NULL;
 if (pElement == pDoc->CEdgeList.GetAt(pos)->pTailElem)
 pDoc->CEdgeList.GetAt(pos)->pTailElem = NULL;

 pDoc->CEdgeList.GetNext(pos);
 }
}

void CConModView::DeleteElement(CElement* pElement)
{
 CConModDoc* pDoc = GetDocument();
 DetachEdgesFromElement(pElement);

 delete pElement; // Deletes the actual instance of the element
 // pointed by pElement

 POSITION pos = pDoc->CElementList.Find(pElement);
 pDoc->CElementList.RemoveAt(pos); // Removes the pointer entry
from CElementList

 if (ElementIsNode(pElement))
 pDoc->CNodeList.RemoveAt(NodeIndexInNodeList); // Removes
the pointer entry from CNodeList

 if (ElementIsFunction(pElement))
 pDoc->CFunctionList.RemoveAt(FunctionIndexInFunctionList);
 // Removes the pointer entry from CFunctionList

 if (ElementIsEnv(pElement))
 pDoc->CEnvList.RemoveAt(EnvIndexInEnvList); // Removes
the pointer entry from CFunctionList

 if (ElementIsEdge(pElement))
 pDoc->CEdgeList.RemoveAt(EdgeIndexInEdgeList); // Removes
the pointer entry from CEdgeList

 if (ElementIsMaterial(pElement))
 pDoc->CMaterialList.RemoveAt(MaterialIndexInMaterialList);
 // Removes the pointer entry from CEdgeList

 if (ElementIsEnergy(pElement))
 pDoc->CEnergyList.RemoveAt(EnergyIndexInEnergyList); //
Removes the pointer entry from CEdgeList

 553

 if (ElementIsSignal(pElement))
 pDoc->CSignalList.RemoveAt(SignalIndexInSignalList); //
Removes the pointer entry from CEdgeList

 if (ElementIsConvert_E_Template(pElement))
 pDoc-
>CConvert_E_Template_List.RemoveAt(Convert_E_Template_IndexInConvert_E_
Template_List); // Removes the pointer entry from CEdgeList

 if (ElementIsConvert_E_Function(pElement))
 pDoc-
>CConvert_E_Function_List.RemoveAt(Convert_E_Function_IndexInConvert_E_
Function_List); // Removes the pointer entry from CEdgeList

 if (ElementIsConduct_E_Template(pElement))
 pDoc-
>CConduct_E_Template_List.RemoveAt(Conduct_E_Template_IndexInConduct_E_
Template_List); // Removes the pointer entry from CEdgeList

 if (ElementIsConduct_E_Function(pElement))
 pDoc-
>CConduct_E_Function_List.RemoveAt(Conduct_E_Function_IndexInConduct_E_
Function_List); // Removes the pointer entry from CEdgeList

 if (ElementIsEnergize_M_Template(pElement))
 pDoc-
>CEnergize_M_Template_List.RemoveAt(Energize_M_Template_IndexInEnergize
_M_Template_List); // Removes the pointer entry from CEdgeList

 if (ElementIsEnergize_M_Function(pElement))
 pDoc-
>CEnergize_M_Function_List.RemoveAt(Energize_M_Function_IndexInEnergize
_M_Function_List); // Removes the pointer entry from CEdgeList

 if (ElementIsDistribute_E_Function(pElement))
 pDoc-
>CDistribute_E_Function_List.RemoveAt(Distribute_E_Function_IndexInDist
ribute_E_Function_List); // Removes the pointer entry from
CEdgeList

 if (ElementIsDistribute_E_Template(pElement))
 pDoc-
>CDistribute_E_Template_List.RemoveAt(Distribute_E_Template_IndexInDist
ribute_E_Template_List); // Removes the pointer entry from
CEdgeList

 if (ElementIsDeEn_M_Function(pElement))
 pDoc-
>CDeEn_M_Function_List.RemoveAt(DeEn_M_Function_IndexInDeEn_M_Function_
List); // Removes the pointer entry from CEdgeList

 if (ElementIsDeEn_M_Template(pElement))

 554

 pDoc-
>CDeEn_M_Template_List.RemoveAt(DeEn_M_Template_IndexInDeEn_M_Template_
List); // Removes the pointer entry from CEdgeList

 //for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos
!= NULL;)
 //{
 // for (POSITION pos1 = pDoc->CMaterialList.GetAt(pos)-
>ChildList.GetHeadPosition(); pos1 != NULL;)
 // {
 // if (pDoc->CMaterialList.GetAt(pos)-
>ChildList.GetAt(pos1) == pSelectedElement)
 // pDoc->CMaterialList.GetAt(pos)-
>ChildList.RemoveAt(pos1);
 // if (pDoc->CMaterialList.GetAt(pos)-
>ParentList.GetAt(pos1) == pSelectedElement)
 // pDoc->CMaterialList.GetAt(pos)-
>ParentList.RemoveAt(pos1);
 // }
 // pDoc->CMaterialList.GetNext(pos);
 //}
 //
 //for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 //{
 // for (POSITION pos1 = pDoc->CEnergyList.GetAt(pos)-
>ChildList.GetHeadPosition(); pos1 != NULL;)
 // {
 // if (pDoc->CEnergyList.GetAt(pos)-
>ChildList.GetAt(pos1) == pSelectedElement)
 // pDoc->CEnergyList.GetAt(pos)-
>ChildList.RemoveAt(pos1);
 // if (pDoc->CEnergyList.GetAt(pos)-
>ParentList.GetAt(pos1) == pSelectedElement)
 // pDoc->CEnergyList.GetAt(pos)-
>ParentList.RemoveAt(pos1);
 // }
 // pDoc->CEnergyList.GetNext(pos);
 //}

 //OnDraw(this->GetDC());
}

//
===
=====
//
===
=====
// FUNCTIONS FOR DERIVATIONAL TOPOLOGICAL CONSERVATION CHECKS
//
===
=====

 555

//
===
=====

void CConModView::Set_OrphanFlowMsg()
{
 CConModDoc* pDoc = GetDocument();

 Msg_OrphanFlow = "";

 CString* pEdgeNames = new CString;
 *pEdgeNames = _T("");

 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos)->ParentList.IsEmpty() &&
!ElementIsEnv(pDoc->CMaterialList.GetAt(pos)->pTailElem))
 *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMaterialList.GetAt(pos)->GivenName;

 pDoc->CMaterialList.GetNext(pos);
 }

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos)->ParentList.IsEmpty() &&
!ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pTailElem) && !(pDoc-
>CEnergyList.GetAt(pos)->ThisFlowIsIncomingBaggage))
 *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergyList.GetAt(pos)->GivenName;

 pDoc->CEnergyList.GetNext(pos);
 }

 if (*pEdgeNames != "")
 Msg_OrphanFlow = _T("\nOrphan Flow Detected: ") +
*pEdgeNames + (".");

 delete pEdgeNames;
}

void CConModView::Set_BarrenFlowMsg()
{
 CConModDoc* pDoc = GetDocument();

 Msg_BarrenFlow = "";

 CString* pEdgeNames = new CString;
 *pEdgeNames = _T("");

 556

 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos)->ChildList.IsEmpty() &&
!ElementIsEnv(pDoc->CMaterialList.GetAt(pos)->pHeadElem))
 *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMaterialList.GetAt(pos)->GivenName;

 pDoc->CMaterialList.GetNext(pos);
 }

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos)->ChildList.IsEmpty() &&
!ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pHeadElem) && !(pDoc-
>CEnergyList.GetAt(pos)->ThisFlowIsOutgoingBaggage))
 *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergyList.GetAt(pos)->GivenName;

 pDoc->CEnergyList.GetNext(pos);
 }

 if (*pEdgeNames != "")
 Msg_BarrenFlow = Msg_BarrenFlow + _T("\nBarren Flow
Detected: ") + *pEdgeNames + (".");

 delete pEdgeNames;
}

void CConModView::Set_OneInManyOutMsg_M()
{
 CConModDoc* pDoc = GetDocument();

 Msg_OneInManyOut_M = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 CString* pInputEdgeName = new CString;
 *pInputEdgeName = _T("");
 CString *pOutputEdgeNames = new CString;
 *pOutputEdgeNames = _T("");

 //===
============
 // Inference of MATERIAL conservation - One In Many Out

 //===
============
 for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition();
pos1 != NULL;)

 557

 {
 if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem ==
pDoc->CFunctionList.GetAt(pos))
 pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1));

 pDoc->CMaterialList.GetNext(pos1);
 }

 if (pDoc->CMaterialList_IN_TEMP.GetCount() == 1)
 {
 for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos2)->pTailElem
== pDoc->CFunctionList.GetAt(pos))
 pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2));

 pDoc->CMaterialList.GetNext(pos2);
 }

 if (pDoc->CMaterialList_OUT_TEMP.GetCount() >= 1)
 {
 *pInputEdgeName = pDoc-
>CMaterialList_IN_TEMP.GetHead()->GivenName;

 for (POSITION pos3 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 pDoc->CMaterialList_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CMaterialList_OUT_TEMP.GetAt(pos3));
 pDoc->CMaterialList_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CMaterialList_IN_TEMP.GetHead());
 *pOutputEdgeNames = *pOutputEdgeNames +
_T(", ") + pDoc->CMaterialList_OUT_TEMP.GetAt(pos3)->GivenName;

 pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos3);
 }

 Msg_OneInManyOut_M = Msg_OneInManyOut_M +
("\nInferred Derivations: {") + *pInputEdgeName + ("} --> {") +
*pOutputEdgeNames + ("}.");
 }
 }

 delete pInputEdgeName;
 delete pOutputEdgeNames;
 EmptyAllTempLists(); // For every function block

 pDoc->CFunctionList.GetNext(pos);
 }

 558

}

void CConModView::Set_OneInManyOutMsg_E()
{
 CConModDoc* pDoc = GetDocument();

 Msg_OneInManyOut_E = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 CString* pInputEdgeName = new CString;
 *pInputEdgeName = _T("");
 CString *pOutputEdgeNames = new CString;
 *pOutputEdgeNames = _T("");

 //===
============
 // Inference of MATERIAL conservation - One In Many Out

 //===
============
 for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1));

 pDoc->CEnergyList.GetNext(pos1);
 }

 if (pDoc->CEnergyList_IN_TEMP.GetCount() == 1)
 {
 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos2)->pTailElem ==
pDoc->CFunctionList.GetAt(pos))
 pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2));

 pDoc->CEnergyList.GetNext(pos2);
 }

 if (pDoc->CEnergyList_OUT_TEMP.GetCount() >= 1)
 {
 *pInputEdgeName = pDoc-
>CEnergyList_IN_TEMP.GetHead()->GivenName;

 559

 for (POSITION pos3 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 pDoc->CEnergyList_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetAt(pos3));
 pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetHead());
 *pOutputEdgeNames = *pOutputEdgeNames +
_T(", ") + pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)->GivenName;

 pDoc->CEnergyList_OUT_TEMP.GetNext(pos3);
 }

 Msg_OneInManyOut_E = Msg_OneInManyOut_E +
("\nInferred Derivations: {") + *pInputEdgeName + ("} --> {") +
*pOutputEdgeNames + ("}.");
 }
 }

 delete pInputEdgeName;
 delete pOutputEdgeNames;
 EmptyAllTempLists(); // For every function block

 pDoc->CFunctionList.GetNext(pos);
 }
}

void CConModView::Set_ManyInOneOutMsg_M()
{
 CConModDoc* pDoc = GetDocument();

 Msg_ManyInOneOut_M = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 CString *pInputEdgeNames = new CString;
 *pInputEdgeNames = _T("");
 CString *pOutputEdgeName = new CString;
 *pOutputEdgeName = _T("");

 //===
============
 // Inference of MATERIAL conservation - Many In One Out

 //===
============
 for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem ==
pDoc->CFunctionList.GetAt(pos))

 560

 pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1));

 pDoc->CMaterialList.GetNext(pos1);
 }

 if (pDoc->CMaterialList_IN_TEMP.GetCount() > 1)
 {
 for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos2)->pTailElem
== pDoc->CFunctionList.GetAt(pos))
 pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2));

 pDoc->CMaterialList.GetNext(pos2);
 }

 if (pDoc->CMaterialList_OUT_TEMP.GetCount() == 1)
 {
 *pOutputEdgeName = pDoc-
>CMaterialList_OUT_TEMP.GetHead()->GivenName;

 for (POSITION pos3 = pDoc-
>CMaterialList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 pDoc->CMaterialList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CMaterialList_IN_TEMP.GetAt(pos3));
 pDoc->CMaterialList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CMaterialList_OUT_TEMP.GetHead());
 *pInputEdgeNames = *pInputEdgeNames +
_T(", ") + pDoc->CMaterialList_IN_TEMP.GetAt(pos3)->GivenName;

 pDoc-
>CMaterialList_IN_TEMP.GetNext(pos3);
 }

 Msg_ManyInOneOut_M = Msg_ManyInOneOut_M +
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") +
*pOutputEdgeName + ("}.");
 }
 }
 delete pInputEdgeNames;
 delete pOutputEdgeName;
 EmptyAllTempLists(); // For every function block
 pDoc->CFunctionList.GetNext(pos);
 }
}

void CConModView::Set_ManyInOneOutMsg_E()
{
 CConModDoc* pDoc = GetDocument();

 561

 Msg_ManyInOneOut_E = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 CString *pInputEdgeNames = new CString;
 *pInputEdgeNames = _T("");
 CString *pOutputEdgeName = new CString;
 *pOutputEdgeName = _T("");

 //===
============
 // Inference of MATERIAL conservation - Many In One Out

 //===
============
 for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1));

 pDoc->CEnergyList.GetNext(pos1);
 }

 if (pDoc->CEnergyList_IN_TEMP.GetCount() > 1)
 {
 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos2)->pTailElem ==
pDoc->CFunctionList.GetAt(pos))
 pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2));

 pDoc->CEnergyList.GetNext(pos2);
 }

 if (pDoc->CEnergyList_OUT_TEMP.GetCount() == 1)
 {
 *pOutputEdgeName = pDoc-
>CEnergyList_OUT_TEMP.GetHead()->GivenName;

 for (POSITION pos3 = pDoc-
>CEnergyList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 pDoc->CEnergyList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetAt(pos3));

 562

 pDoc->CEnergyList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetHead());
 *pInputEdgeNames = *pInputEdgeNames +
_T(", ") + pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName;

 pDoc->CEnergyList_IN_TEMP.GetNext(pos3);
 }

 Msg_ManyInOneOut_M = Msg_ManyInOneOut_M +
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") +
*pOutputEdgeName + ("}.");
 }
 }
 delete pInputEdgeNames;
 delete pOutputEdgeName;
 EmptyAllTempLists(); // For every function block
 pDoc->CFunctionList.GetNext(pos);
 }
}

void CConModView::Set_ManyInManyOutMsg()
{
 CConModDoc* pDoc = GetDocument();

 Msg_ManyInManyOut = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 CString *pInputEdgeNames = new CString;
 *pInputEdgeNames = _T("");
 CString *pOutputEdgeNames = new CString;
 *pOutputEdgeNames = _T("");

 //===
============
 // Inference of Impossible Conclusion - Many In Many Out

 //===
============
 for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1));

 pDoc->CEnergyList.GetNext(pos1);
 }

 563

 if (pDoc->CEnergyList_IN_TEMP.GetCount() > 1) // Only
then you investigate further, otherwise don't waste time
 {
 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos2)->pTailElem ==
pDoc->CFunctionList.GetAt(pos))
 pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2));

 pDoc->CEnergyList.GetNext(pos2);
 }

 if (pDoc->CEnergyList_OUT_TEMP.GetCount() > 1) //
Now both sides have too many flows to conclude
 {
 for (POSITION pos3 = pDoc-
>CEnergyList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 for (POSITION pos4 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos4 != NULL;)
 {
 pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos4)->ParentList.AddTail(pDoc-
>CEnergyList_IN_TEMP.GetAt(pos3));
 pDoc-
>CEnergyList_IN_TEMP.GetAt(pos3)->ChildList.AddTail(pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos4));
 pDoc-
>CEnergyList_OUT_TEMP.GetNext(pos4);
 }
 *pInputEdgeNames = *pInputEdgeNames +
_T(", ") + pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName;

 pDoc->CEnergyList_IN_TEMP.GetNext(pos3);
 }/**/

 for (POSITION pos5 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos5 != NULL;)
 {
 *pOutputEdgeNames = *pOutputEdgeNames +
_T(", ") + pDoc->CEnergyList_OUT_TEMP.GetAt(pos5)->GivenName;
 pDoc->CEnergyList_OUT_TEMP.GetNext(pos5);
 }

 Msg_ManyInManyOut = Msg_ManyInManyOut +
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") +
*pOutputEdgeNames + ("}.");
 }
 }

 *pInputEdgeNames = _T("");

 564

 *pOutputEdgeNames = _T("");
 EmptyAllTempLists(); // For every function block

 for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem ==
pDoc->CFunctionList.GetAt(pos))
 pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1));

 pDoc->CMaterialList.GetNext(pos1);
 }

 if (pDoc->CMaterialList_IN_TEMP.GetCount() > 1) // Only
then you investigate further, otherwise don't waste time
 {
 for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos2)->pTailElem
== pDoc->CFunctionList.GetAt(pos))
 pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2));

 pDoc->CMaterialList.GetNext(pos2);
 }

 if (pDoc->CMaterialList_OUT_TEMP.GetCount() > 1)
 // Now both sides have too many flows to conclude
 {
 for (POSITION pos3 = pDoc-
>CMaterialList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 for (POSITION pos4 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos4 != NULL;)
 {
 pDoc-
>CMaterialList_OUT_TEMP.GetAt(pos4)->ParentList.AddTail(pDoc-
>CMaterialList_IN_TEMP.GetAt(pos3));
 pDoc-
>CMaterialList_IN_TEMP.GetAt(pos3)->ChildList.AddTail(pDoc-
>CMaterialList_OUT_TEMP.GetAt(pos4));
 pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos4);
 }
 *pInputEdgeNames = *pInputEdgeNames +
_T(", ") + pDoc->CMaterialList_IN_TEMP.GetAt(pos3)->GivenName;

 pDoc-
>CMaterialList_IN_TEMP.GetNext(pos3);
 }/**/

 565

 for (POSITION pos5 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos5 != NULL;)
 {
 *pOutputEdgeNames = *pOutputEdgeNames +
_T(", ") + pDoc->CMaterialList_OUT_TEMP.GetAt(pos5)->GivenName;
 pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos5);
 }

 Msg_ManyInManyOut = Msg_ManyInManyOut +
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") +
*pOutputEdgeNames + ("}.");
 }
 }

 delete pInputEdgeNames;
 delete pOutputEdgeNames;
 EmptyAllTempLists(); // For every function block
 pDoc->CFunctionList.GetNext(pos);
 }
}

void CConModView::Set_MissingResidualEnergyMsg()
{
 if (ReasoningOption == QUALITATIVE_CONSERVATION)
 return;

 CConModDoc* pDoc = GetDocument();

 Msg_MissingResidualEnergy = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1));

 pDoc->CEnergyList.GetNext(pos1);
 }

 if (pDoc->CEnergyList_IN_TEMP.GetCount() >= 1)
 {
 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if (pDoc->CEnergyList.GetAt(pos2)->pTailElem ==
pDoc->CFunctionList.GetAt(pos))

 566

 pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2));

 pDoc->CEnergyList.GetNext(pos2);
 }

 if (pDoc->CEnergyList_OUT_TEMP.GetCount() >= 1)
 {
 // Testing if there is at least one residual
energy flow at the output
 bool ResidualEnergyFound = false;

 for (POSITION pos3 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)
 {
 if (pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos3)->IsResidual)
 ResidualEnergyFound = true;
 pDoc->CEnergyList_OUT_TEMP.GetNext(pos3);
 }

 if (!ResidualEnergyFound)
 {
 Msg_MissingResidualEnergy =
Msg_MissingResidualEnergy +
 "\n::Warning:: Energy Loss Not
Shown in Function: " + pDoc->CFunctionList.GetAt(pos)->GivenName + ".";
 }
 }
 }

 EmptyAllTempLists(); // For every function block
 pDoc->CFunctionList.GetNext(pos);
 }
}

void CConModView::Set_MaterialChangeWithoutEnergyMsg()
{
 CConModDoc* pDoc = GetDocument();

 Msg_MaterialChangeWithoutEnergy = "";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 bool ThisFuncHasInputM;
 bool ThisFuncHasOutputM;
 bool ThisFuncHasInputEBaggage;
 bool ThisFuncHasOutputEBaggage;

 ThisFuncHasInputM = false;
 ThisFuncHasOutputM = false;
 ThisFuncHasInputEBaggage = false;

 567

 ThisFuncHasOutputEBaggage = false;

 for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition();
pos1 != NULL;)
 {
 if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem ==
pDoc->CFunctionList.GetAt(pos))
 {
 ThisFuncHasInputM = true;

 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if ((pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CMaterialList.GetAt(pos1)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>pHeadElem == pDoc->CFunctionList.GetAt(pos)))
 {
 ThisFuncHasInputEBaggage = true;
 //return;
 }
 pDoc->CEnergyList.GetNext(pos2);
 }
 }

 if (pDoc->CMaterialList.GetAt(pos1)->pTailElem ==
pDoc->CFunctionList.GetAt(pos))
 {
 ThisFuncHasOutputM = true;

 for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL;)
 {
 if ((pDoc->CEnergyList.GetAt(pos2)-
>pHeadElem == pDoc->CMaterialList.GetAt(pos1)) &&
 (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CFunctionList.GetAt(pos)))
 {
 ThisFuncHasOutputEBaggage = true;
 //return;
 }
 pDoc->CEnergyList.GetNext(pos2);
 }
 }

 pDoc->CMaterialList.GetNext(pos1);
 }

 if ((ThisFuncHasInputM) && (ThisFuncHasOutputM) &&
!(ThisFuncHasInputEBaggage) &&!(ThisFuncHasOutputEBaggage))
 Msg_MaterialChangeWithoutEnergy =
Msg_MaterialChangeWithoutEnergy +

 568

 "\nEnergy must be exchanged to/from Material to
transform Material (" + pDoc->CFunctionList.GetAt(pos)->GivenName +
").";

 EmptyAllTempLists(); // For every function block
 pDoc->CFunctionList.GetNext(pos);
 }
}/**/

void CConModView::EmptyAllTempLists()
{
 CConModDoc* pDoc = GetDocument();

 pDoc->CMaterialList_IN_TEMP.RemoveAll();
 pDoc->CMaterialList_OUT_TEMP.RemoveAll();
 pDoc->CEnergyList_IN_TEMP.RemoveAll();
 pDoc->CEnergyList_OUT_TEMP.RemoveAll();
 pDoc->CSignalList_IN_TEMP.RemoveAll();
 pDoc->CSignalList_OUT_TEMP.RemoveAll();
}

void CConModView::ComposeQualitativeMessage()
{
 CConModDoc* pDoc = this->GetDocument();

 //==============================
 // Derivation Check
 //==============================

 Msg_OneInManyOut_M = "";
 Msg_OneInManyOut_E = "";
 Msg_ManyInOneOut_M = "";
 Msg_ManyInOneOut_E = "";
 Msg_ManyInManyOut = "";
 Msg_MissingResidualEnergy = "";
 Msg_MaterialChangeWithoutEnergy = "";
 Msg_OrphanFlow = "";
 Msg_BarrenFlow = "";

 CString* pMsg_DerivationChecks = new CString;
 *pMsg_DerivationChecks = _T("***** QUALITATIVE CONSERVATION
REPORT *****\n");

 // First, clear all existing parent-child relations that are
 // leftover from a previous call to this function.
 // The relations will be recomputed during the next inferences
anyways.
 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos !=
NULL;)
 {
 pDoc->CMaterialList.GetAt(pos)->ParentList.RemoveAll();
 pDoc->CMaterialList.GetAt(pos)->ChildList.RemoveAll();
 pDoc->CMaterialList.GetNext(pos);

 569

 }

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 pDoc->CEnergyList.GetAt(pos)->ParentList.RemoveAll();
 pDoc->CEnergyList.GetAt(pos)->ChildList.RemoveAll();
 pDoc->CEnergyList.GetNext(pos);
 }

 // Must finish drawing inferences before deciding barren and
orphan flows,
 // because it is during these inferences that parent and children
are
 // computed. WIthout these inferences, all flows will return as
both
 // orphan abd barren.
 Set_OneInManyOutMsg_M();
 Set_OneInManyOutMsg_E();
 Set_ManyInOneOutMsg_M();
 Set_ManyInOneOutMsg_E();
 Set_ManyInManyOutMsg();
 Set_MissingResidualEnergyMsg();
 Set_MaterialChangeWithoutEnergyMsg();

 // Now call orphan and barren flow messages
 Set_OrphanFlowMsg();
 Set_BarrenFlowMsg();

 // Now compose all the messages generated by the above checks and
display
 *pMsg_DerivationChecks = *pMsg_DerivationChecks +
 Msg_OneInManyOut_M +
 Msg_OneInManyOut_E +
 Msg_ManyInOneOut_M +
 Msg_ManyInOneOut_E +
 Msg_ManyInManyOut +

 Msg_MaterialChangeWithoutEnergy +
 Msg_OrphanFlow +
 Msg_BarrenFlow;

 int* m = new int;
 *m = MessageBox(*pMsg_DerivationChecks, _T("Qualitative
Conservation Report"), MB_ICONWARNING | MB_OK);
 delete m;

 delete pMsg_DerivationChecks; // Resets to empty string

 //==============================
 // Irreversivbility Check
 //==============================

 570

 CString* pMsg_IrrevChecks = new CString;
 *pMsg_IrrevChecks = _T("***** QUALITATIVE IRREVERSIBILITY REPORT
*****\n");

 if (ReasoningOption >= QUALITATIVE_IRREVERSIBILITY)
 {
 *pMsg_IrrevChecks = *pMsg_IrrevChecks +
Msg_MissingResidualEnergy;
 int* n = new int;
 *n = MessageBox(*pMsg_IrrevChecks, _T("Qualitative
Irreversibility Report"), MB_ICONWARNING | MB_OK);
 delete n;
 }

 delete pMsg_IrrevChecks;
}

void CConModView::VerifyPositivePowerOfFlows()
{
 CConModDoc* pDoc = this->GetDocument();

 ContinueReasoning = true;

 CString* pNegativeEnergyReportString = new CString;
 *pNegativeEnergyReportString = "***** NEGATIVE POWER REPORT
*****\nThe following flows have negative power. \n";

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 pDoc->CEnergyList.GetAt(pos)->Power = pDoc-
>CEnergyList.GetAt(pos)->UI_ForceTerm *
 pDoc->CEnergyList.GetAt(pos)->UI_RateTerm;

 if (pDoc->CEnergyList.GetAt(pos)->Power < 0)
 {
 ContinueReasoning = false;
 CString* pPowerString = new CString;
 pPowerString->Format(_T("%4.1f"), pDoc-
>CEnergyList.GetAt(pos)->Power);

 *pNegativeEnergyReportString =
*pNegativeEnergyReportString + "\nFlow: " + pDoc-
>CEnergyList.GetAt(pos)->GivenName +
 "\t\tPower = " + *pPowerString + " W";

 delete pPowerString;
 }

 pDoc->CEnergyList.GetNext(pos);
 }

 if (ContinueReasoning == false)

 571

 {
 int n = MessageBox(*pNegativeEnergyReportString,
_T("Negative Power Report"), MB_ICONWARNING | MB_OK);
 AfxMessageBox(_T("Quantitative reasoning (Energy Balance,
Efficiency, Confluence) cannot continue with flows with negative
power."));
 }

 delete pNegativeEnergyReportString;
}

void CConModView::VerifyEnergyBalanceOfFunctions()
{
 if (ContinueReasoning == false)
 return;

 CConModDoc* pDoc = this->GetDocument();

 CString* pEnergyBalanceReportString = new CString;
 *pEnergyBalanceReportString = "***** ENERGY BALANCE REPORT
*****\n";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 double* pTotalInputPower = new double;
 double* pTotalOutputPower = new double;

 *pTotalInputPower = 0.0;
 *pTotalOutputPower = 0.0;

 for(POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 pDoc->CEnergyList.GetAt(pos1)->Power = pDoc-
>CEnergyList.GetAt(pos1)->UI_ForceTerm *
 pDoc->CEnergyList.GetAt(pos1)->UI_RateTerm;

 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 *pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergyList.GetAt(pos1)->Power);

 if (pDoc->CEnergyList.GetAt(pos1)->pTailElem == pDoc-
>CFunctionList.GetAt(pos))
 *pTotalOutputPower = *pTotalOutputPower +
(pDoc->CEnergyList.GetAt(pos1)->Power);

 pDoc->CEnergyList.GetNext(pos1);
 }

 if (*pTotalInputPower == *pTotalOutputPower)

 572

 *pEnergyBalanceReportString =
*pEnergyBalanceReportString + "\nFunction: " + pDoc-
>CFunctionList.GetAt(pos)->GivenName + "\tBalanced.";

 else
 {
 ContinueReasoning = false;

 CString* pInputPString = new CString;
 CString* pOutputPString = new CString;

 pInputPString->Format(_T("%4.1f"),
*pTotalInputPower);
 pOutputPString->Format(_T("%4.1f"),
*pTotalOutputPower);

 *pEnergyBalanceReportString =
*pEnergyBalanceReportString + "\nFunction: " +
 pDoc->CFunctionList.GetAt(pos)->GivenName +
"\tInput = " + *pInputPString +
 " W\tOutput = " + *pOutputPString + " W.";

 delete pInputPString;
 delete pOutputPString;
 }

 delete pTotalInputPower;
 delete pTotalOutputPower;

 pDoc->CFunctionList.GetNext(pos);
 }

 int n = MessageBox(*pEnergyBalanceReportString, _T("Energy
Balance Violation Report"), MB_ICONWARNING | MB_OK);

 if (ContinueReasoning == false)
 AfxMessageBox(_T("Quantitative reasoning (Efficiency,
Confluence) cannot continue without energy balance in each
function."));

 delete pEnergyBalanceReportString;
}

void CConModView::ComputeEfficiency()
{
 if (ContinueReasoning == false)
 return;

 CConModDoc* pDoc = this->GetDocument();

 //======================================
 // Compute function-wise efficiency
 //======================================

 573

 CString* pEfficiencyMessage = new CString;
 *pEfficiencyMessage = "***** INDIVIDUAL FUNCTION EFFICIENCY
REPORT *****\n"
 "\nFunction\tInput\tUsable\tLoss\tEfficiency"
 "\n===";

 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos !=
NULL;)
 {
 pDoc->CFunctionList.GetAt(pos)->Efficiency = 0.0;
 // Reset the efficiency at the beginning of
 // each run of this algorithm

 double* pTotalInputPower = new double;
 double* pTotalUsableOutputPower = new double;

 *pTotalInputPower = 0.0;
 *pTotalUsableOutputPower = 0.0;

 for(POSITION pos1 = pDoc->CEnergyList.GetHeadPosition();
pos1 != NULL;)
 {
 pDoc->CEnergyList.GetAt(pos1)->Power = pDoc-
>CEnergyList.GetAt(pos1)->UI_ForceTerm *
 pDoc->CEnergyList.GetAt(pos1)->UI_RateTerm;

 if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
 *pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergyList.GetAt(pos1)->Power);

 if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem ==
pDoc->CFunctionList.GetAt(pos)) &&
 (pDoc->CEnergyList.GetAt(pos1)->IsResidual ==
false))
 *pTotalUsableOutputPower =
*pTotalUsableOutputPower + (pDoc->CEnergyList.GetAt(pos1)->Power);

 pDoc->CEnergyList.GetNext(pos1);
 }

 if ((*pTotalInputPower != 0.0) && (*pTotalUsableOutputPower
!= 0))
 pDoc->CFunctionList.GetAt(pos)->Efficiency =
(*pTotalUsableOutputPower / *pTotalInputPower);

 CString* pInputEString = new CString;
 CString* pUsableOutputEString = new CString;
 CString* pLossEString = new CString;
 CString* pEffyString = new CString;

 pInputEString->Format(_T("%5.1f"), *pTotalInputPower);

 574

 pUsableOutputEString->Format(_T("%5.1f"),
*pTotalUsableOutputPower);
 pLossEString->Format(_T("%5.1f"), (*pTotalInputPower -
*pTotalUsableOutputPower));
 pEffyString->Format(_T("%5.3f"), pDoc-
>CFunctionList.GetAt(pos)->Efficiency);

 *pEfficiencyMessage = *pEfficiencyMessage +
 "\n" + pDoc->CFunctionList.GetAt(pos)->GivenName +
 "\t" + *pInputEString +
 "\t" + *pUsableOutputEString +
 "\t" + *pLossEString +
 "\t" + *pEffyString;

 delete pTotalInputPower;
 delete pTotalUsableOutputPower;
 delete pInputEString;
 delete pUsableOutputEString;
 delete pLossEString;
 delete pEffyString;

 pDoc->CFunctionList.GetNext(pos);
 }

 //======================================
 // Compute efficiency for the whole model
 //======================================

 double* pModelInputPower = new double;
 double* pModelLossPower = new double;
 double* pModelEfficiency = new double;

 *pModelInputPower = 0;
 *pModelLossPower = 0;
 *pModelEfficiency = 0;

 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos !=
NULL;)
 {
 if ((ElementIsFunction(pDoc->CEnergyList.GetAt(pos)-
>pHeadElem)) &&
 (pDoc->CEnergyList.GetAt(pos)->pTailElem != NULL) &&
 ((ElementIsEnv(pDoc->CEnergyList.GetAt(pos)-
>pTailElem)) || (ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pTailElem-
>pTailElem))))
 *pModelInputPower = *pModelInputPower + pDoc-
>CEnergyList.GetAt(pos)->Power;

 if ((ElementIsFunction(pDoc->CEnergyList.GetAt(pos)-
>pTailElem)) &&
 (pDoc->CEnergyList.GetAt(pos)->pHeadElem != NULL) &&

 575

 ((ElementIsEnv(pDoc->CEnergyList.GetAt(pos)-
>pHeadElem)) || (ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pHeadElem-
>pHeadElem))) &&
 (pDoc->CEnergyList.GetAt(pos)->IsResidual == true))
 *pModelLossPower = *pModelLossPower + pDoc-
>CEnergyList.GetAt(pos)->Power;

 pDoc->CEnergyList.GetNext(pos);
 }

 if ((*pModelInputPower != 0) /*&& (*pModelLossPower != 0)*/)
 // Have to set more traps
 *pModelEfficiency = (*pModelInputPower - *pModelLossPower)
/ *pModelInputPower;

 CString* pModelEffyString = new CString;
 pModelEffyString->Format(_T("%5.3f"), *pModelEfficiency);

 *pEfficiencyMessage = *pEfficiencyMessage + "\n\nOVERAL MODEL
EFFICIENCY: " + *pModelEffyString;

 delete pModelInputPower;
 delete pModelLossPower;
 delete pModelEfficiency;
 delete pModelEffyString;

 int n = MessageBox(*pEfficiencyMessage, _T("Efficiency Report"),
MB_ICONWARNING | MB_OK);

 delete pEfficiencyMessage;
}

void CConModView::ComposeQuantitativeMessage()
{
 //================================
 // Commented out for rolling back to Layer One (Chapter 6)
 //================================

 if ((ReasoningOption == QUALITATIVE_CONSERVATION) ||
(ReasoningOption == QUALITATIVE_IRREVERSIBILITY))
 {
 AfxMessageBox(_T("***** QUANTITATIVE REASONING NOT
AVAILABLE *****\n\nTo turn on, choose \"Quantitative -> Efficiency\"
from Reasoning Menu."));
 return;
 }

 if (ReasoningOption == QUANTITATIVE_EFFICIENCY)
 {
 VerifyPositivePowerOfFlows();
 VerifyEnergyBalanceOfFunctions();
 ComputeEfficiency(); // Resets every function's effy to
zero, then recomputes

 576

 // from present
state of model
 }

 if (ReasoningOption == QUANTITATIVE_POWERREQUIRED)
 {
 AfxMessageBox(_T("Under Construction."));
 }
}

// Convert_E.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Convert_E_Template.h"

// CConvert_E dialog

IMPLEMENT_DYNAMIC(CConvert_E_Template, CDialog)

CConvert_E_Template::CConvert_E_Template(CWnd* pParent /*= NULL*/,
CPoint InsertionPoint /*= (500,500)*/,
 CString* pCounterString_F /*= NULL*/,
CString* pCounterString_InE /*= NULL*/,
 CString* pCounterString_OutE /*=
NULL*/, CString* pCounterString_OutE_Res /*= NULL*/)
 : CDialog(CConvert_E_Template::IDD, pParent)
{
 pFunctionBlock = new CFunction(NULL, InsertionPoint,
pCounterString_F);

 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint,
pCounterString_InE);
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString_OutE);
 pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint,
HeadOfOutE_Res, pCounterString_OutE_Res);

 577

 pEnergy_InE->pHeadElem = pFunctionBlock;
 pEnergy_OutE->pTailElem = pFunctionBlock;
 pEnergy_OutE_Res->pTailElem = pFunctionBlock;
 pEnergy_OutE_Res->UI_IsResidual = true;
}

CConvert_E_Template::~CConvert_E_Template()
{
}

void CConvert_E_Template::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CConvert_E_Template, CDialog)
END_MESSAGE_MAP()

// CConvert_E message handlers

// DeEn_M_Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "DeEn_M_Template.h"

// CDeEn_M_Template dialog

IMPLEMENT_DYNAMIC(CDeEn_M_Template, CDialog)

CDeEn_M_Template::CDeEn_M_Template(CWnd* pParent/* = NULL*/,
 CPoint InsertionPoint /*= (500,500)*/,
 CString* pCounterString_F /*= NULL*/,
 CString* pCounterString_InM /*= NULL*/,
 CString* pCounterString_OutM /*= NULL*/,
 CString* pCounterString_InE /*= NULL*/,
 CString* pCounterString_OutE /*= NULL*/)
 : CDialog(CDeEn_M_Template::IDD, pParent)
{
 pFunctionBlock = new CFunction(NULL, InsertionPoint,
pCounterString_F);

 CPoint TailOfInM(InsertionPoint.x - 1.5*TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutM(InsertionPoint.x + TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);

 578

 CPoint HeadOfOutE(InsertionPoint.x, InsertionPoint.y -
TEMPLATE_FLOW_LENGTH);

 pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint,
pCounterString_InM);
 pMaterial_OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM,
pCounterString_OutM);
 pEnergy_InE = new CEnergy(NULL, InsertionPoint /*Dummy*/,
InsertionPoint, pCounterString_InE);
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString_OutE);

 pMaterial_InM->pHeadElem = pFunctionBlock;
 pMaterial_OutM->pTailElem = pFunctionBlock;
 pEnergy_InE->pHeadElem = pFunctionBlock;
 pEnergy_InE->pTailElem = pMaterial_InM;
 pEnergy_OutE->pTailElem = pFunctionBlock;
}

CDeEn_M_Template::~CDeEn_M_Template()
{
}

void CDeEn_M_Template::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CDeEn_M_Template, CDialog)
END_MESSAGE_MAP()

// CDeEn_M_Template message handlers

// Distribute_E_Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Distribute_E_Template.h"

// CDistribute_E_Template dialog

IMPLEMENT_DYNAMIC(CDistribute_E_Template, CDialog)

CDistribute_E_Template::CDistribute_E_Template(CWnd* pParent /*=
NULL*/,

CPoint InsertionPoint /*= (500,500)*/,

 579

CString* pCounterString_F /*= NULL*/,

CString* pCounterString_InE /*= NULL*/,

CString* pCounterString_OutE1 /*= NULL*/,

CString* pCounterString_OutE2 /*= NULL*/)
 : CDialog(CDistribute_E_Template::IDD, pParent)
{
 pFunctionBlock = new CFunction(NULL, InsertionPoint,
pCounterString_F);

 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutE1(InsertionPoint.x + TEMPLATE_FLOW_LENGTH,
InsertionPoint.y - TEMPLATE_FLOW_LENGTH);
 CPoint HeadOfOutE2(InsertionPoint.x + TEMPLATE_FLOW_LENGTH,
InsertionPoint.y + TEMPLATE_FLOW_LENGTH);

 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint,
pCounterString_InE);
 pEnergy_OutE1 = new CEnergy(NULL, InsertionPoint, HeadOfOutE1,
pCounterString_OutE1);
 pEnergy_OutE2 = new CEnergy(NULL, InsertionPoint, HeadOfOutE2,
pCounterString_OutE2);

 pEnergy_InE->pHeadElem = pFunctionBlock;
 pEnergy_OutE1->pTailElem = pFunctionBlock;
 pEnergy_OutE2->pTailElem = pFunctionBlock;
}

CDistribute_E_Template::~CDistribute_E_Template()
{
}

void CDistribute_E_Template::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CDistribute_E_Template, CDialog)
END_MESSAGE_MAP()

// CDistribute_E_Template message handlers

#include "StdAfx.h"
#include "Edge.h"

 580

#include "math.h"

CEdge::CEdge(void)
{
}

CEdge::CEdge(CPoint TailClick, CPoint HeadClick)
{
 TailPoint = TailClick;
 HeadPoint = HeadClick;
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5);
 StemThickness = THIN;
 StemLineFont = PS_SOLID;

 HeadSize = EDGE_HEAD_SIZE;
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE;

 ComputeAnchorPoints();
 pHeadElem = NULL;
 pTailElem = NULL;
 ThisFlowIsIncomingBaggage = false;
 ThisFlowIsOutgoingBaggage = false;

 FontSize = GENERIC_FONT_SIZE;
}

CEdge::~CEdge(void)
{
}

void CEdge::AttachEdgeToNearestAnchor()
{
 FontSize = GENERIC_FONT_SIZE;
 HeadSize = EDGE_HEAD_SIZE;

 if (pTailElem != NULL)
 {
 // Initialize with any one anchor point - zeroth chosen
arbitrarily
 long double d = distance(HeadPoint, pTailElem->Anchors[0]);
 TailPoint = pTailElem->Anchors[0];

 for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor
points on both nodes and edges
 {
 if (distance(pTailElem->Anchors[n], HeadPoint) < d)
 {
 d = distance(HeadPoint, pTailElem->Anchors[n]);
 TailPoint = pTailElem->Anchors[n];
 }
 }
 }

 581

 if (pHeadElem != NULL)
 {
 // Initialize with any one anchor point - zeroth chosen
arbitrarily
 long double d = distance(TailPoint, pHeadElem->Anchors[0]);
 this->HeadPoint = pHeadElem->Anchors[0];

 for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor
points on both nodes and edges
 {
 if (distance(pHeadElem->Anchors[n], TailPoint) < d)
 {
 d = distance(TailPoint, pHeadElem->Anchors[n]);
 HeadPoint = pHeadElem->Anchors[n];
 }
 }
 }

 if (ThisFlowIsOutgoingBaggage) // i.e., this flow's is a
baggage flow and its pHeadElem (carrier)
 // is another
flow that is exiting the same function as this one
 {
 for (int n = 0; n <= 15; n++)
 {
 if (this->pTailElem->AnchorsForBaggageFlows[n] ==
this->pHeadElem->TailPoint)
 this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[n+2];
 // The following two conditional statements are
special cases where
 // the 14+2 = 16 and 15+2 = 17 -th elements do not
exist in the array.
 if (this->pTailElem->AnchorsForBaggageFlows[14] ==
this->pHeadElem->TailPoint)
 this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[0];
 if (this->pTailElem->AnchorsForBaggageFlows[15] ==
this->pHeadElem->TailPoint)
 this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[1];
 if (this->pTailElem->AnchorsForBaggageFlows[0] ==
this->pHeadElem->TailPoint)
 this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[2];

 this->HeadPoint = this->pHeadElem->Anchors[5];
 }
 // The following two lines improves readability of baggage
flows
 FontSize = BAGGAGE_FONT_SIZE;
 HeadSize = EDGE_HEAD_SIZE / 2;
 }

 582

 if (ThisFlowIsIncomingBaggage)
 {
 for (int n = 0; n <= 15; n++)
 {
 if (this->pHeadElem->AnchorsForBaggageFlows[n] ==
this->pTailElem->HeadPoint)
 this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[n+2];
 // The following two conditional statements are
special cases where
 // the 14+2 = 16 and 15+2 = 17 -th elements do not
exist in the array.
 if (this->pHeadElem->AnchorsForBaggageFlows[14] ==
this->pTailElem->HeadPoint)
 this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[0];
 if (this->pHeadElem->AnchorsForBaggageFlows[15] ==
this->pTailElem->HeadPoint)
 this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[1];
 if (this->pHeadElem->AnchorsForBaggageFlows[0] ==
this->pTailElem->HeadPoint)
 this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[2];

 this->TailPoint = this->pTailElem->Anchors[10];
 }
 // The following two lines improves readability of baggage
flows
 FontSize = BAGGAGE_FONT_SIZE;
 HeadSize = EDGE_HEAD_SIZE / 2;
 }
}

void CEdge::DrawOnDC(CDC* pDC)
{
 AttachEdgeToNearestAnchor();

 CElement::DrawOnDC(pDC); // Call the drawing function of the
parent class - sets pen color

 //
===
=====
 // Draw the STEM of the arrow using PenStem (No brush required)
 //
===
=====

 CPen PenStem;
 PenStem.CreatePen(StemLineFont, StemThickness, RGB(PenR, PenG,
PenB));

 583

 CPen* pOldPen = pDC->SelectObject(&PenStem);
 CPoint* ArrowTerminalPoints = new CPoint[2];
 ArrowTerminalPoints[0] = TailPoint;
 ArrowTerminalPoints[1] = HeadPoint;
 pDC->Polyline(ArrowTerminalPoints, 2);
 delete[] ArrowTerminalPoints;

 ComputeAnchorPoints(); // Computes the eight anchor points
along the stem of
 // the edge whenever
the edge is edited, moved, or whatever.

 ResetGeometricCenter(); // Makes sure that the
GeometricCenter is reset between the
 // Tail and Head
points, when an arrow is moved by grabbing
 // Those terminal
points

 /*for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)
 pDC->Ellipse(Anchors[AnchorInx - 1].x - 1,
Anchors[AnchorInx - 1].y - 1,
 Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx
- 1].y + 1);*/

 //
===
=====
 // Draw the HEAD of the arrow using PenHead and BrushHead
 //
===
=====

 CPen PenHead;
 PenHead.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB));

 if (this->pHeadElem == NULL)
 {
 HeadBrushR = DANGLING_BRUSH_R;
 HeadBrushG = DANGLING_BRUSH_G;
 HeadBrushB = DANGLING_BRUSH_B;
 }
 else
 {
 HeadBrushR = GENERIC_BRUSH_R;
 HeadBrushG = GENERIC_BRUSH_G;
 HeadBrushB = GENERIC_BRUSH_B;
 }

 CBrush BrushHead(RGB(HeadBrushR,HeadBrushG,HeadBrushB));
 CBrush* pOldBrush = pDC->SelectObject(&BrushHead);

 pOldPen = pDC->SelectObject(&PenHead);

 584

 double alpha = atan(abs(double(HeadPoint.y) -
double(TailPoint.y)) / abs(double(HeadPoint.x) - double(TailPoint.x)));

 int X_Factor, Y_Factor;

 if (HeadPoint.x >= TailPoint.x)
 X_Factor = 1;
 else X_Factor = (-1);

 if (TailPoint.y >= HeadPoint.y)
 Y_Factor = 1;
 else Y_Factor = (-1);

 HeadLeftVertex.x = HeadPoint.x - HeadSize * cos(alpha -
HalfHeadAngle) * X_Factor;
 HeadLeftVertex.y = HeadPoint.y + HeadSize * sin(alpha -
HalfHeadAngle) * Y_Factor;

 HeadRightVertex.x = HeadPoint.x - HeadSize * cos(alpha +
HalfHeadAngle) * X_Factor;
 HeadRightVertex.y = HeadPoint.y + HeadSize * sin(alpha +
HalfHeadAngle) * Y_Factor;

 HeadVertexArray[0] = HeadPoint;
 HeadVertexArray[1] = HeadLeftVertex;
 HeadVertexArray[2] = HeadRightVertex;

 pDC->Polygon(HeadVertexArray,3);

 //
===
=====
 // Draw the TAIL of the arrow using PenTail and BrushTail
 //
===
=====

 CPen PenTail;
 PenTail.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB));

 if (this->pTailElem == NULL)
 {
 TailBrushR = DANGLING_BRUSH_R;
 TailBrushG = DANGLING_BRUSH_G;
 TailBrushB = DANGLING_BRUSH_B;
 }
 else
 {
 TailBrushR = GENERIC_BRUSH_R;
 TailBrushG = GENERIC_BRUSH_G;
 TailBrushB = GENERIC_BRUSH_B;
 }

 585

 CBrush BrushTail(RGB(TailBrushR,TailBrushG,TailBrushB));
 pOldBrush = pDC->SelectObject(&BrushTail);
 pOldPen = pDC->SelectObject(&PenTail);

 pDC->Ellipse(TailPoint.x - 4, TailPoint.y - 4, TailPoint.x + 4,
TailPoint.y + 4);

 //
===
=====
 // Put back the old objects, although I do not understand how
this impacts anything.
 //
===
=====

 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
}

void CEdge::ComputeAnchorPoints()
{
 // First eight poitns - between tail and center
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)
 {
 Anchors[AnchorInx - 1] = *InterpolatePoints(TailPoint,
HeadPoint, (0.5 / 9 * AnchorInx));
 }

 // Second eight popints - between center and head
 for (int AnchorInx = 1; AnchorInx <= 8; AnchorInx++)
 {
 Anchors[AnchorInx + 7] = *InterpolatePoints(TailPoint,
HeadPoint, (0.5 + 0.5 / 9 * AnchorInx));
 }
}

void CEdge::ResetGeometricCenter()
{
 GeometricCenter = *this->InterpolatePoints(this->HeadPoint, this-
>TailPoint, 0.5);
}

#include "StdAfx.h"
#include "Element.h"

CElement::CElement(void)
{
 IsHighlighted = false;

 586

 IsSelected = false;
 IsResidual = false;

 PenR = GENERIC_PEN_R;
 PenG = GENERIC_PEN_G;
 PenB = GENERIC_PEN_B;

 GrabHandle = 0; // NONE
}

CElement::~CElement(void)
{
}

void CElement::DrawOnDC(CDC* pDC)
{
 //
===
=====
 // Decide the color, based on HIGHLIGHT, SELECTED, or GENERIC
status
 //
===
=====

 if (this->IsHighlighted) // This ORDER of checks is very
important. If
 { // changed, this will
change the highlight and
 this->PenR = PRESELECTION_PEN_R; // unhighlight behavior
of energies
 this->PenG = PRESELECTION_PEN_G;
 this->PenB = PRESELECTION_PEN_B;
 }

 else if (this->IsSelected)
 {
 this->PenR = SELECTION_PEN_R;
 this->PenG = SELECTION_PEN_G;
 this->PenB = SELECTION_PEN_B;
 }

 else if (this->IsResidual)
 {
 this->PenR = RESIDUAL_PEN_R;
 this->PenG = RESIDUAL_PEN_G;
 this->PenB = RESIDUAL_PEN_B;
 }

 else
 {
 this->PenR = GENERIC_PEN_R;
 this->PenG = GENERIC_PEN_G;

 587

 this->PenB = GENERIC_PEN_B;
 }
}

// Energize_M_Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Energize_M_Template.h"

// CEnergize_M_Template dialog

IMPLEMENT_DYNAMIC(CEnergize_M_Template, CDialog)

CEnergize_M_Template::CEnergize_M_Template(CWnd* pParent/* = NULL*/,
 CPoint InsertionPoint /*= (500,500)*/,
 CString* pCounterString_F /*= NULL*/,
 CString* pCounterString_InM /*= NULL*/,
 CString* pCounterString_OutM /*= NULL*/,
 CString* pCounterString_InE /*= NULL*/,
 CString* pCounterString_OutE /*= NULL*/)
 : CDialog(CEnergize_M_Template::IDD, pParent)
{
 pFunctionBlock = new CFunction(NULL, InsertionPoint,
pCounterString_F);

 CPoint TailOfInM(InsertionPoint.x - TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint HeadOfOutM(InsertionPoint.x + 1.5*TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);
 CPoint TailOfInE(InsertionPoint.x, InsertionPoint.y -
TEMPLATE_FLOW_LENGTH);

 pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint,
pCounterString_InM);
 pMaterial_OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM,
pCounterString_OutM);
 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint,
pCounterString_InE);
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutM
/*Dummy*/, pCounterString_OutE);

 pMaterial_InM->pHeadElem = pFunctionBlock;
 pMaterial_OutM->pTailElem = pFunctionBlock;
 pEnergy_InE->pHeadElem = pFunctionBlock;
 pEnergy_OutE->pTailElem = pFunctionBlock;
 pEnergy_OutE->pHeadElem = pMaterial_OutM;
}

 588

CEnergize_M_Template::~CEnergize_M_Template()
{
}

void CEnergize_M_Template::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CEnergize_M_Template, CDialog)
END_MESSAGE_MAP()

// CEnergize_M_Template message handlers

// Energy.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Energy.h"

IMPLEMENT_DYNAMIC(CEnergy, CDialog)

CEnergy::CEnergy(CWnd* pParent,
 CPoint TailClick,
 CPoint HeadClick,
 CString* pCounterString,
 int ReasOpt)
 : CDialog(CEnergy::IDD, pParent)
 , GivenName(_T("E") + *pCounterString)
 , UI_IsResidual(false)
 , UI_ForceTerm(100)
 , UI_RateTerm(1)
 , ReasoningOption(ReasOpt)
{
 TailPoint = TailClick;
 HeadPoint = HeadClick;
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5);
 StemThickness = THIN; // This sets the thickness of Energy
arrows

 HeadSize = EDGE_HEAD_SIZE;
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE;

 ComputeAnchorPoints();
 pHeadElem = NULL;
 pTailElem = NULL;

 589

 DoModal(); // Launches modal dialog
}

BOOL CEnergy::OnInitDialog()
{
 CDialog::OnInitDialog();

 //==============================
 // Grey Out Dialog Controls
 //==============================

 if (this->ReasoningOption == QUALITATIVE_CONSERVATION)
 GetDlgItem(IDC_RESIDUAL_ENERGY)->EnableWindow(false);
 //Greys out control

 if ((this->ReasoningOption < QUANTITATIVE_EFFICIENCY) /*||
(UI_IsResidual == true)*/)
 {
 GetDlgItem(IDC_FORCE_TERM)->EnableWindow(false);
 //Greys out control
 GetDlgItem(IDC_RATE_TERM)->EnableWindow(false);
 //Greys out control
 GetDlgItem(IDC_FORCE_STATIC_TEXT)->EnableWindow(false);
 //Greys out control
 GetDlgItem(IDC_RATE_STATIC_TEXT)->EnableWindow(false);
 //Greys out control
 }

 else
 {
 GetDlgItem(IDC_FORCE_TERM)->EnableWindow(true); //
Makes control available
 GetDlgItem(IDC_RATE_TERM)->EnableWindow(true); //
Makes control available
 GetDlgItem(IDC_FORCE_STATIC_TEXT)->EnableWindow(true);
 // Makes control available
 GetDlgItem(IDC_RATE_STATIC_TEXT)->EnableWindow(true);
 // Makes control available

 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)
 {
 pEnergyTaxonomy = new CTreeCtrl;

 pEnergyTaxonomy->Create(WS_CHILD | WS_VISIBLE |
WS_BORDER | WS_TABSTOP |
 TVS_HASLINES |
TVS_HASBUTTONS | TVS_LINESATROOT |

 /*TVS_SINGLEEXPAND | */TVS_SHOWSELALWAYS | TVS_TRACKSELECT,
 CRect(11, 150, 248, 440), this, 0x1221);

 590

 // Full List of all energy types (leaf nodes and
intermediate nodes)
 HTREEITEM hEnergy, // Primary
 hME, hEE, hThE, hChE, hEME, hMagE, hAcE, //
Secondary
 hKinetic, hPotential, // Tertiary under hME
 hLinear, hRotatinal, // Quaternary under
hKinetic
 hGravitational, hElastic; //Quaternary under
hPotential

 // PRIMARY LEVEL
 hEnergy = pEnergyTaxonomy->InsertItem(_T("E"),
TVI_ROOT);

 // SECONDARY LEVEL (UNDER hEnergy)
 hME = pEnergyTaxonomy->InsertItem(_T("ME"), hEnergy);
 hEE = pEnergyTaxonomy->InsertItem(_T("EE"), hEnergy);
 hThE = pEnergyTaxonomy->InsertItem(_T("ThE"),
hEnergy);
 hChE = pEnergyTaxonomy->InsertItem(_T("ChE"),
hEnergy);
 hEME = pEnergyTaxonomy->InsertItem(_T("EME"),
hEnergy);
 hMagE = pEnergyTaxonomy->InsertItem(_T("MagE"),
hEnergy);
 hAcE = pEnergyTaxonomy->InsertItem(_T("AcE"),
hEnergy);

 // TERTIARY LEVEL (UNDER hME)
 hKinetic = pEnergyTaxonomy->InsertItem(_T("KE"),
hME);
 hPotential = pEnergyTaxonomy->InsertItem(_T("PE"),
hME);

 // QUARTERNARY LEVEL (UNDER hME -> hKinetic)
 hLinear = pEnergyTaxonomy->InsertItem(_T("LinKE"),
hKinetic);
 hRotatinal = pEnergyTaxonomy->InsertItem(_T("RotKE"),
hKinetic);

 // QUARTERNARY LEVEL (UNDER hME -> hPotential)
 hGravitational = pEnergyTaxonomy-
>InsertItem(_T("GrvPE"), hPotential);
 hElastic = pEnergyTaxonomy->InsertItem(_T("ElPE"),
hPotential);

 pEnergyTaxonomy->SelectItem(hEnergyType);

 pEnergyTaxonomy->Expand(hEnergy, TVE_EXPAND);
 pEnergyTaxonomy->Expand(hME, TVE_EXPAND);
 pEnergyTaxonomy->Expand(hKinetic, TVE_EXPAND);
 pEnergyTaxonomy->Expand(hPotential, TVE_EXPAND);

 591

 }
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

CEnergy::~CEnergy()
{
}

void CEnergy::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_ENERGY_NAME, GivenName); // Connects
variable IDC_ENERGY_NAME to member GivenName

 DDX_Check(pDX, IDC_RESIDUAL_ENERGY, UI_IsResidual);
 DDX_Text(pDX, IDC_FORCE_TERM, UI_ForceTerm);
 DDX_Text(pDX, IDC_RATE_TERM, UI_RateTerm);
}

void CEnergy::OnOK()
{
 CDialog::OnOK();

 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)
 {
 hEnergyType = pEnergyTaxonomy->GetSelectedItem();
 EnergyTypeName = pEnergyTaxonomy->GetItemText(hEnergyType);
 delete pEnergyTaxonomy;
 }

 else
 EnergyTypeName = "E";
}

void CEnergy::DrawOnDC(CDC* pDC)
{
 IsResidual = UI_IsResidual;
 Power = UI_ForceTerm * UI_RateTerm;

 CEdge::DrawOnDC(pDC); // Execute the entire drawing code
of the parent class CEdge

 //
===
=====
 // Write the name of CEnergy using a Font object
 //
===
=====

 // Initializes a CFont object with the specified characteristics.

 592

 CFont font;
 VERIFY(font.CreateFont(
 FontSize, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut
 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

 CFont* def_font = pDC->SelectObject(&font);
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE);

 CString* pPowerString = new CString;
 *pPowerString = "";

 if ((this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) /*&&
(this->IsResidual == false)*/)
 {
 pPowerString->Format(_T("%2.0f"), this->Power);
 *pPowerString = *pPowerString + _T("W");
 }
 else
 *pPowerString = "";

 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, (GivenName + "
[" + EnergyTypeName + "] " + *pPowerString));
 pDC->SelectObject(def_font);

 //
===
=====
 // Put back the old objects, although I do not understand how
this impacts anything.
 //
===
=====

 font.DeleteObject();
 delete pPowerString;
}

BEGIN_MESSAGE_MAP(CEnergy, CDialog)
END_MESSAGE_MAP()

 593

#include "stdafx.h"
#include "ConMod.h"
#include "Env.h"
#include "geometry.h"

// CEnv dialog

IMPLEMENT_DYNAMIC(CEnv, CDialog)

CEnv::CEnv(CWnd* pParent, CPoint InsertionPoint, CString*
pCounterString)
 : CDialog(CEnv::IDD, pParent)
 , GivenName("Env" + *pCounterString)
{
 GeometricCenter = InsertionPoint;
 ComputeBlockCoordinates();

 DoModal(); // Launches modal dialog
}

CEnv::~CEnv()
{
}

void CEnv::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_ENV_NAME, GivenName);
}

void CEnv::ComputeBlockCoordinates()
{
 Anchors[0] = CPoint ((GeometricCenter.x + ENV_SIZE),
(GeometricCenter.y));
 Anchors[1] = CPoint ((GeometricCenter.x), (GeometricCenter.y +
ENV_SIZE * 0.866));
 Anchors[2] = CPoint ((GeometricCenter.x - ENV_SIZE),
(GeometricCenter.y));
 Anchors[3] = CPoint ((GeometricCenter.x), (GeometricCenter.y -
ENV_SIZE * 0.866));
 Anchors[4] = CPoint ((GeometricCenter.x + 0.5*ENV_SIZE),
(GeometricCenter.y + ENV_SIZE * 0.866));
 Anchors[5] = CPoint ((GeometricCenter.x - 0.5*ENV_SIZE),
(GeometricCenter.y + ENV_SIZE * 0.866));
 Anchors[6] = CPoint ((GeometricCenter.x - 0.5*ENV_SIZE),
(GeometricCenter.y - ENV_SIZE * 0.866));
 Anchors[7] = CPoint ((GeometricCenter.x + 0.5*ENV_SIZE),
(GeometricCenter.y - ENV_SIZE * 0.866));

 594

 Anchors[8] = CPoint ((GeometricCenter.x + 0.75*ENV_SIZE),
(GeometricCenter.y + ENV_SIZE * 0.433));
 Anchors[9] = CPoint ((GeometricCenter.x - 0.75*ENV_SIZE),
(GeometricCenter.y + ENV_SIZE * 0.433));
 Anchors[10] = CPoint ((GeometricCenter.x - 0.75*ENV_SIZE),
(GeometricCenter.y - ENV_SIZE * 0.433));
 Anchors[11] = CPoint ((GeometricCenter.x + 0.75*ENV_SIZE),
(GeometricCenter.y - ENV_SIZE * 0.433));
 Anchors[12] = Anchors[0];
 Anchors[13] = Anchors[0];
 Anchors[14] = Anchors[0];
 Anchors[15] = Anchors[0];

 AnchorsForBaggageFlows[0] = Anchors[0];
 AnchorsForBaggageFlows[1] = Anchors[11];
 AnchorsForBaggageFlows[2] = Anchors[7];
 AnchorsForBaggageFlows[3] = Anchors[3];
 AnchorsForBaggageFlows[4] = Anchors[6];
 AnchorsForBaggageFlows[5] = Anchors[10];
 AnchorsForBaggageFlows[6] = Anchors[2];
 AnchorsForBaggageFlows[7] = Anchors[9];
 AnchorsForBaggageFlows[8] = Anchors[5];
 AnchorsForBaggageFlows[9] = Anchors[1];
 AnchorsForBaggageFlows[10] = Anchors[4];
 AnchorsForBaggageFlows[11] = Anchors[8];
 AnchorsForBaggageFlows[12] = Anchors[0];
 AnchorsForBaggageFlows[13] = Anchors[0];
 AnchorsForBaggageFlows[14] = Anchors[0];
 AnchorsForBaggageFlows[15] = Anchors[0];
}

void CEnv::DrawOnDC(CDC* pDC)
{
 CElement::DrawOnDC(pDC); // Call the drawing function of the
parent class - sets pen color

 if (this->NoInputAttached && this->NoOutputAttached)
 {
 BrushR = DANGLING_BRUSH_R;
 BrushG = DANGLING_BRUSH_G;
 BrushB = DANGLING_BRUSH_B;
 }
 else
 {
 BrushR = ENV_BRUSH_R;
 BrushG = ENV_BRUSH_G;
 BrushB = ENV_BRUSH_B;
 }

 CPen Pen;
 Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB));
 CPen* pOldPen = pDC->SelectObject(&Pen);
 CBrush Brush(RGB(BrushR, BrushG, BrushB));

 595

 CBrush* pOldBrush = pDC->SelectObject(&Brush);

 ComputeBlockCoordinates();

 CPoint AnchorsForHexagon[6];
 AnchorsForHexagon[0] = Anchors[0];
 AnchorsForHexagon[1] = Anchors[4];
 AnchorsForHexagon[2] = Anchors[5];
 AnchorsForHexagon[3] = Anchors[2];
 AnchorsForHexagon[4] = Anchors[6];
 AnchorsForHexagon[5] = Anchors[7];
 pDC->Polygon(AnchorsForHexagon,6);

 //pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,
 //GeometricCenter.x + 2, GeometricCenter.y + 2);
 /*
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)
 pDC->Ellipse(Anchors[AnchorInx - 1].x - 1,
Anchors[AnchorInx - 1].y - 1,
 Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx
- 1].y + 1);*/

 // Initializes a CFont object with the specified characteristics.
 CFont font;
 VERIFY(font.CreateFont(
 16, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut
 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

 CFont* def_font = pDC->SelectObject(&font);
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName);
 pDC->SelectObject(def_font);

 font.DeleteObject();
 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
}

BEGIN_MESSAGE_MAP(CEnv, CDialog)
END_MESSAGE_MAP()

 596

// CEnv message handlers

#include "stdafx.h"
#include "ConMod.h"
#include "Function.h"

// CFunction dialog

IMPLEMENT_DYNAMIC(CFunction, CDialog)

CFunction::CFunction(CWnd* pParent, CPoint InsertionPoint, CString*
pCounterString)
 : CDialog(CFunction::IDD, pParent)
 , GivenName("F" + *pCounterString) // Populates the string
in the GivenName field - default
{
 GeometricCenter = InsertionPoint;
 ComputeBlockCoordinates();
 Efficiency = 0;

 DoModal(); // Launches modal dialog
}

CFunction::~CFunction()
{
}

void CFunction::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_FUNCTION_NAME, GivenName); // Connects variable
with dialog element
}

BEGIN_MESSAGE_MAP(CFunction, CDialog)

END_MESSAGE_MAP()

void CFunction::ComputeBlockCoordinates()
{
 left = GeometricCenter.x - BLOCK_LENGTH / 2;
 right = GeometricCenter.x + BLOCK_LENGTH / 2;
 top = GeometricCenter.y - BLOCK_HEIGHT / 2;
 bottom = GeometricCenter.y + BLOCK_HEIGHT / 2;

 Anchors[0] = CPoint (right, (top + bottom)/2); // E
 Anchors[4] = CPoint (right, top); // NE
 Anchors[1] = CPoint ((right + left)/2, top); // N
 Anchors[5] = CPoint (left, top); // NW

 597

 Anchors[2] = CPoint (left, (top + bottom)/2); // W
 Anchors[6] = CPoint (left, bottom); // SW
 Anchors[3] = CPoint ((left + right)/2, bottom); // S
 Anchors[7] = CPoint (right, bottom); // SE

 Anchors[8] = CPoint (right, top + BLOCK_HEIGHT/4); // ENE
 Anchors[9] = CPoint (right - BLOCK_LENGTH/4, top); // NNE
 Anchors[10] = CPoint (left + BLOCK_LENGTH/4, top); //
NNW
 Anchors[11] = CPoint (left, top + BLOCK_HEIGHT/4); //
WNW

 Anchors[12] = CPoint (left, bottom - BLOCK_HEIGHT/4); // WSW
 Anchors[13] = CPoint (left + BLOCK_LENGTH/4, bottom); // SSW
 Anchors[14] = CPoint (right - BLOCK_LENGTH/4, bottom);// SSE
 Anchors[15] = CPoint (right, bottom - BLOCK_HEIGHT/4); //
ESE

 // The following lines reorders the anchors to a different list,
 // AnchorsForBaggageFlows. This list is scrolled through when a
 // baggage flow (incoming or outgoing) needs to be attached to
 // the function with only two nodes apart from where the main
 // flow is attached.

 AnchorsForBaggageFlows[0] = Anchors[0];
 AnchorsForBaggageFlows[1] = Anchors[8];
 AnchorsForBaggageFlows[2] = Anchors[4];
 AnchorsForBaggageFlows[3] = Anchors[9];
 AnchorsForBaggageFlows[4] = Anchors[1];
 AnchorsForBaggageFlows[5] = Anchors[10];
 AnchorsForBaggageFlows[6] = Anchors[5];
 AnchorsForBaggageFlows[7] = Anchors[11];
 AnchorsForBaggageFlows[8] = Anchors[2];
 AnchorsForBaggageFlows[9] = Anchors[12];
 AnchorsForBaggageFlows[10] = Anchors[6];
 AnchorsForBaggageFlows[11] = Anchors[13];
 AnchorsForBaggageFlows[12] = Anchors[3];
 AnchorsForBaggageFlows[13] = Anchors[14];
 AnchorsForBaggageFlows[14] = Anchors[7];
 AnchorsForBaggageFlows[15] = Anchors[15];
}

void CFunction::DrawOnDC(CDC* pDC)
{
 CElement::DrawOnDC(pDC); // Call the drawing function of the
parent class - sets pen color

 if (this->NoInputAttached && this->NoOutputAttached)
 {
 BrushR = DANGLING_BRUSH_R;
 BrushG = DANGLING_BRUSH_G;
 BrushB = DANGLING_BRUSH_B;

 598

 }
 else
 {
 BrushR = FUNCTION_BRUSH_R;
 BrushG = FUNCTION_BRUSH_G;
 BrushB = FUNCTION_BRUSH_B;
 }

 CPen Pen;
 Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB));
 CPen* pOldPen = pDC->SelectObject(&Pen);
 CBrush Brush(RGB(BrushR, BrushG, BrushB));
 CBrush* pOldBrush = pDC->SelectObject(&Brush);

 ComputeBlockCoordinates();
 CRect VerbRect(left, top, right, bottom);
 pDC->Rectangle(VerbRect);

 //pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,
 //GeometricCenter.x + 2, GeometricCenter.y + 2);
 /*
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)
 pDC->Ellipse(Anchors[AnchorInx - 1].x - 1,
Anchors[AnchorInx - 1].y - 1,
 Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx
- 1].y + 1);*/

 // Initializes a CFont object with the specified characteristics.
 CFont font;
 VERIFY(font.CreateFont(
 16, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut
 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

 CFont* def_font = pDC->SelectObject(&font);
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName);
 pDC->SelectObject(def_font);

 font.DeleteObject();
 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);

 599

}

#include "StdAfx.h"
#include "Geometry.h"

#define GRID_SIZE 20

CGeometry::CGeometry(void)
{
}

CGeometry::~CGeometry(void)
{
}

int CGeometry::RoundToInteger(long Coordinate, int GridSize)
{
 int GridCountLower = int(Coordinate)/GridSize;
 if ((Coordinate - GridCountLower * GridSize) <= (GridSize / 2))
 return (GridCountLower * GridSize);
 else return (GridCountLower * GridSize + GridSize);
}

CPoint CGeometry::SnapToGrid(CPoint p)
{
 return CPoint(RoundToInteger(p.x, GRID_SIZE), RoundToInteger(p.y,
GRID_SIZE));
}

long CGeometry::distance(CPoint p1, CPoint p2)
{
 return sqrt(pow((p1.x - p2.x), 2.0) + pow((p1.y - p2.y), 2.0));
}

CPoint* CGeometry::InterpolatePoints(CPoint p1, CPoint p2, double
ratio)
{
 long x_new = ((p2.x - p1.x) * ratio) + p1.x;
 long y_new = ((p2.y - p1.y) * ratio) + p1.y;
 CPoint NewPoint(x_new, y_new);
 return &NewPoint;
}/**/

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"

 600

#include "ConMod.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 ON_WM_CREATE()
 // Global help commands
 ON_COMMAND(ID_HELP_FINDER, &CMDIFrameWnd::OnHelpFinder)
 ON_COMMAND(ID_HELP, &CMDIFrameWnd::OnHelp)
 ON_COMMAND(ID_CONTEXT_HELP, &CMDIFrameWnd::OnContextHelp)
 ON_COMMAND(ID_DEFAULT_HELP, &CMDIFrameWnd::OnHelpFinder)
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_TOP
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |
CBRS_SIZE_DYNAMIC) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {

 601

 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Delete these three lines if you don't want the toolbar
to be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndToolBar);

 // Custom ConMod toolbar controls: PRIMITIVES TOOLBAR

 if (!m_primitivesToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_LEFT
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |
CBRS_SIZE_DYNAMIC) ||
 !m_primitivesToolBar.LoadToolBar(IDR_PRIMITIVES))
 {
 TRACE0("Failed to create PRIMITIVES toolbar\n");
 return -1; // fail to create
 }

 m_primitivesToolBar.EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_primitivesToolBar);

 // Custom ConMod toolbar controls: FEATURES TOOLBAR

 //==================
 // Commented out for rolling back to Layer 1 (Chapter 6)
 //==================

 if (!m_featuresToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_BOTTOM
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |
CBRS_SIZE_DYNAMIC) ||
 !m_featuresToolBar.LoadToolBar(IDR_FEATURES))
 {
 TRACE0("Failed to create FEATURES toolbar\n");
 return -1; // fail to create
 }

 m_featuresToolBar.EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_featuresToolBar);

 // Custom ConMod toolbar controls: REASONING TOOLBAR

 602

 if (!m_reasoningToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_RIGHT
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |
CBRS_SIZE_DYNAMIC) ||
 !m_reasoningToolBar.LoadToolBar(IDR_REASONING))
 {
 TRACE0("Failed to create REASONING toolbar\n");
 return -1; // fail to create
 }

 m_reasoningToolBar.EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_reasoningToolBar);

 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CMDIFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 // Control the size of the main frame window
 BOOL bRet = CFrameWnd::PreCreateWindow(cs);
 cs.cx = 1200;
 cs.cy = 800;
 return bRet;
 //return TRUE;
}

// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CMDIFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CMDIFrameWnd::Dump(dc);
}

#endif //_DEBUG

// CMainFrame message handlers

 603

// Material.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Material.h"

IMPLEMENT_DYNAMIC(CMaterial, CDialog)

CMaterial::CMaterial(CWnd* pParent,
 CPoint TailClick,
 CPoint HeadClick,
 CString* pCounterString,
 int ReasOpt)
 : CDialog(CMaterial::IDD, pParent)
 , GivenName(_T("M") + *pCounterString)
 , UI_IsResidual(false)
 , ReasoningOption(ReasOpt)
{
 TailPoint = TailClick;
 HeadPoint = HeadClick;
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5);
 StemThickness = MEDIUM; // This sets the thickness of Material
arrows

 HeadSize = EDGE_HEAD_SIZE;
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE;

 ComputeAnchorPoints();
 pHeadElem = NULL;
 pTailElem = NULL;

 DoModal(); // Launches modal dialog
}

BOOL CMaterial::OnInitDialog()
{
 CDialog::OnInitDialog();

 //==============================
 // Grey Out Dialog Controls
 //==============================

 if (this->ReasoningOption == QUALITATIVE_CONSERVATION)
 GetDlgItem(IDC_RESIDUAL_MATERIAL)->EnableWindow(false);
 //Greys out control

 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)
 {
 pMaterialTaxonomy = new CTreeCtrl;

 pMaterialTaxonomy->Create(WS_CHILD | WS_VISIBLE | WS_BORDER
| WS_TABSTOP |

 604

 TVS_HASLINES |
TVS_HASBUTTONS | TVS_LINESATROOT |

 /*TVS_SINGLEEXPAND | */TVS_SHOWSELALWAYS | TVS_TRACKSELECT,
 CRect(11, 60, 248, 150), this, 0x1221);

 // Full List of all energy types (leaf nodes and
intermediate nodes)
 HTREEITEM hMaterial, // Primary
 hSolid, hLiquid, hGaseous; //Secondary under
hMaterial

 // PRIMARY LEVEL
 hMaterial = pMaterialTaxonomy->InsertItem(_T("M"),
TVI_ROOT);

 // SECONDARY LEVEL (UNDER hMaterial)
 hSolid = pMaterialTaxonomy->InsertItem(_T("S"), hMaterial);
 hLiquid = pMaterialTaxonomy->InsertItem(_T("L"),
hMaterial);
 hGaseous = pMaterialTaxonomy->InsertItem(_T("G"),
hMaterial);

 pMaterialTaxonomy->SelectItem(hMaterialType);
 pMaterialTaxonomy->Expand(hMaterial, TVE_EXPAND);
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

CMaterial::~CMaterial()
{
 //delete pMaterialTaxonomy;
}

void CMaterial::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_MATERIAL_NAME, GivenName); // Connects
variable IDC_MATERIAL_NAME to member GivenName

 DDX_Check(pDX, IDC_RESIDUAL_MATERIAL, UI_IsResidual);
}

void CMaterial::OnOK()
{
 CDialog::OnOK();

 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)
 {
 hMaterialType = pMaterialTaxonomy->GetSelectedItem();
 MaterialTypeName = pMaterialTaxonomy-
>GetItemText(hMaterialType);

 605

 delete pMaterialTaxonomy;
 }

 else
 MaterialTypeName = "M";
}

void CMaterial::DrawOnDC(CDC* pDC)
{
 IsResidual = UI_IsResidual;

 CEdge::DrawOnDC(pDC); // Execute the entire drawing code
of the parent class CEdge

 //
===
=====
 // Write the name of CMaterial using a Font object
 //
===
=====

 // Initializes a CFont object with the specified characteristics.
 CFont font;
 VERIFY(font.CreateFont(
 FontSize, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut
 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

 CFont* def_font = pDC->SelectObject(&font);
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, (GivenName + "
[" + MaterialTypeName + "]"));
 pDC->SelectObject(def_font);

 //
===
=====
 // Put back the old objects, although I do not understand how
this impacts anything.

 606

 //
===
=====

 font.DeleteObject();
}

BEGIN_MESSAGE_MAP(CMaterial, CDialog)

END_MESSAGE_MAP()

#include "StdAfx.h"
#include "Node.h"

CNode::CNode(void)
{
}

CNode::~CNode(void)
{
}

void CNode::ComputeBlockCoordinates()
{}

/*void CNode::DrawOnDC(CDC* pDC)
{}*/

// Signal.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Signal.h"

// CSignal dialog

IMPLEMENT_DYNAMIC(CSignal, CDialog)

CSignal::CSignal(CWnd* pParent, CPoint TailClick, CPoint HeadClick,
CString* pCounterString)
 : CDialog(CSignal::IDD, pParent)
 , GivenName(_T("S") + *pCounterString)

 607

{
 TailPoint = TailClick;
 HeadPoint = HeadClick;
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5);
 StemThickness = THIN; // This sets the thickness of signal
arrows
 StemLineFont = PS_DOT;

 HeadSize = EDGE_HEAD_SIZE;
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE;

 ComputeAnchorPoints();
 pHeadElem = NULL;
 pTailElem = NULL;

 DoModal(); // Launches modal dialog
}

CSignal::~CSignal()
{
}

void CSignal::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_SIGNAL_NAME, GivenName); // Connects
variable IDC_SIGNAL_NAME to member GivenName
}

void CSignal::DrawOnDC(CDC* pDC)
{
 CEdge::DrawOnDC(pDC); // Execute the entire drawing code
of the parent class CEdge

 //
===
=====
 // Write the name of CMaterial using a Font object
 //
===
=====

 // Initializes a CFont object with the specified characteristics.
 CFont font;
 VERIFY(font.CreateFont(
 FontSize, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut

 608

 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

 CFont* def_font = pDC->SelectObject(&font);
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName);
 pDC->SelectObject(def_font);

 //
===
=====
 // Put back the old objects, although I do not understand how
this impacts anything.
 //
===
=====

 font.DeleteObject();
}

BEGIN_MESSAGE_MAP(CSignal, CDialog)
END_MESSAGE_MAP()

// CSignal message handlers

// stdafx.cpp : source file that includes just the standard includes
// ConMod.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod.h"
#include "Template.h"

// CTemplate

 609

CTemplate::CTemplate()
{

}

CTemplate::~CTemplate()
{
}

 610

REFERENCES

[1] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H., 2007, Engineering Design: A
Systematic Approach, 3rd. ed. Springer-Verlag London Limited. London, UK.

[2] Otto, K. N. and Wood, K. L., 2001, Product Design Techniques in Reverse
Engineering and New Product Development Prentice Hall. Upper Saddle River,
NJ.

[3] Ullman, D. G., 1992, The Mechanical Design Process McGraw-Hill. New York.

[4] Ulrich, K. T. and Eppinger, S. D., 2008, Product Design and Development,
Fourth ed. McGraw-Hill. New York, NY, USA.

[5] Sridharan, P. and Campbell, M. I., 2004, "A Grammar for Function Structures,"
ASME 2004 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Salt Lake City, UT, USA, September 28-
October 2, 2004.

[6] Sridharan, P. and Campbell, M. I., 2005, "A Study on the Grammatical
Construction of Function Structures," Artificial Intelligence for Engineering
Design, Analysis & Manufacturing, 19(3) pp. 139-160.

[7] Chandrasekaran, B., 1990, "Design Problem Solving: A Task Analysis," AI
Magazine, 11(4) pp. 59-71.

[8] Gero, J. S., 1990, "Design Prototypes: A Knowledge Representation Schema for
Design," AI Magazine, 11(4) pp. 26-36.

[9] Gero, J. S., 1996, "Creativity, Emergence and Evolution in Design," Knowledge-
Based Systems, 9(7) pp. 435-448.

[10] Gero, J. S. and Kannengiesser, U., 2000, "Towards a Situated Function-
Behaviour-Structure Framework as the Basis for a Theory of Designing,"

 611

Workshop on Development and Application of Design Theories in AI in Design
Research, Sixth International Conference on Artificial Intelligence in Design,
Worcester, MA, USA, June 2000.

[11] Gero, J. S. and Kannengiesser, U., "The Situated Function-Behaviour-Structure
Framework," in Artificial Intelligence in Design, J. S. Gero, Ed. Norwell, MA,
USA: Kluwer Academic Publishers, 2002, pp. 89-104.

[12] Goel, A. K. and Bhatta, S. R., 2004, "Use of Design Patterns in Analogy-Based
Design," Advanced Engineering Informatics, 18pp. 85-94.

[13] Iwasaki, Y., Fikes, R., Vescovi, M., and Chandrasekaran, B., 1993, "How Things
Are Intended to Work: Capturing Functional Knowledge in Device Design,"
International Joint Conference on Artificial Intelligence, Menlo Park, CA.

[14] Schultz, R. R., Nigg, D. W., Ougouag, A. M., Terry, W. K., Wolf, J. R., Gougar,
H. D., Johnsen, G. W., McEligot, D. M., McCreery, G. E., Johnson, R. W.,
Sterbentz, J. W., and MacDonald, P. E., "Next Generation Nuclear Plant–Design
Methods Development and Validation Research and Development Program Plan,"
Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID
September 2004 2004.

[15] Goldschmidt, G., 1991, "The Dialectics of Sketching," Creativity Research
Journal, 4(2) pp. 123-143.

[16] Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., 1996,
"Supporting Conceptual Design Based on the Function-Behavior-State Modeler,"
Artificial Intelligence for Engineering Design, Analysis & Manufacturing, 10(4)
pp. 275-288.

[17] Umeda, Y. and Tomiyama, T., 1995, "FBS Modeling: Modeling Scheme of
Function for Conceptual Design," 9th. International Workshop on Qualitative
Reasoning, Amsterdam, Nederlands, May 1995.

[18] Umeda, Y. and Tomiyama, T., 1997, "Functional Reasoning in Design," IEEE
Intelligent Systems, 12(2) pp. 42-48.

 612

[19] Vescovi, M., Iwasaki, Y., Fikes, R., and Chandrasekaran, B., 1993, "CFRL: A
Language for Specifying the Causal Functionality of Engineered Devices,"
Eleventh National Conference on Artificial Intelligence, Washington, D.C., July
1993.

[20] Kurtoglu, T., "A Computational Approach to Innovative Conceptual Design," in
Mechanical Engineering. vol. PhD Austin: University of Texas, 2007, p. 155.

[21] Kurtoglu, T., Campbell, M. I., Gonzales, J., Bryant, C. R., and Stone, R. B., 2005,
"Capturing Empirically Derived Design Knowledge for Creating Conceptual
Design Configurations," ASME 2005 International Design Engineering and
Technical Conferences and Computers and Information in Engineering
Conference, Long Beach, CA, USA, September 24-28, 2005.

[22] Kurtoglu, T., Swantner, A., and Campbell, M. I., 2010, "Automating the
Conceptual Design Process: From Black Box to Component Selection," Artificial
Intelligence for Engineering Design, Analysis & Manufacturing, 24(1) pp. 49-62.

[23] Ullman, D. G., Dietterich, T. G., and Stauffer, L. A., 1988, "A Model of the
Mechanical Design Process Based on Empirical Data," Artificial intelligence for
Engineering Design, Analysis, and Manufacturing, 2(1) pp. 33-52.

[24] Ullman, D. G., Wood, S., and Craig, D., 1990, "The Importance of Drawing in the
Mechanical Design Process," Computer & Graphics, 14(2) pp. 163-274.

[25] Stone, R. B. and Wood, K. L., 2000, "Development of a Functional Basis for
Design," Journal of Mechanical Design, 122(4) pp. 359-370.

[26] Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., and Wood, K. L., 2002, "A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts," Research in Engineering Design, 13(2) pp. 65-82.

[27] Kitamura, Y., Kashiwaseb, M., Fuseb, M., and Mizoguchi, R., 2004,
"Deployment of an Ontological Framework of Functional Design Knowledge,"
Advanced Engineering Informatics, 18(2) pp. 115-127.

 613

[28] Kitamura, Y., Koji, Y., and Mizoguchi, R., 2005, "An Ontological Model of
Device Function and Its Deployment for Engineering Knowledge Sharing," First
Workshop FOMI 2005 - Formal Ontologies Meet Industry, Castelnuovo del
Garda (VR), Italy, June 9-10, 2005.

[29] Kitamura, Y. and Mizoguchi, R., 2003, "Ontology-Based Description of
Functional Design Knowledge and Its Use in a Functional Way Server," Expert
Systems with Applications, 24(2003) pp. 153-166.

[30] Summers, J. D., 2005, "Reasoning in Engineering Design," ASME International
Design Engineering Technical Conferences & Computers and Information in
Engineering Conference, Long Beach, California.

[31] Summers, J. D. and Shah, J. J., 2004, "Representation in Engineering Design: A
Framework for Classification," ASME Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Salt Lake City, UT,
Sep 28 - Oct 2, 2004.

[32] Baumgart, B. G., "Winged Edge Polyhedron Representation," Stanford
University, Stanford, CA, USA 1972.

[33] Baumgart, B. G., "Geometric Modelling for Computer Vision," Stanford
University Stanford, CA, USA Artificial Intelligence Report Number CS-463,
1974.

[34] Corney, J. and Lim, T., 2002, 3d Modeling with Acis, Second ed. Saxe-Coburg
Publications.

[35] Dym, C. L., 1994, "Representing Designed Artifacts: The Languages of
Engineering Design," Archives of Computational Methods in Engineering, 1pp.
75-108.

[36] Dym, C., 1995, Engineering Design: A Synthesis of Views Cambridge University
Press. New York, NY.

 614

[37] Dym, C. L., 1992, "Representation and Problem-Solving: The Foundations of
Engineering Design," Environment and Planning B: Planning and Design, 19(1)
pp. 97-105.

[38] Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., and Leifer, L. J., 2005,
"Engineering Design Thinking, Teaching, and Learning," Journal of Engineering
Education, 94(1) pp. 103-120.

[39] Regli, W., Hu, X., Atwood, M., and Sun, W., 2000, "A Survey of Design
Rationale Systems: Approaches, Representation, Capture, and Retrieval,"
Engineering with Computers, 16pp. 209-235.

[40] Ullman, D. and Abmrosio, B., 1995, "A Taxonomy for Classifying Engineering
Decision Problems and Support Systems," Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing, 9(427-438)

[41] Shah, J. and Wilson, P., 1989, "Analysis of Design Abstraction, Representation,
and Inferencing Requirements for Computer Aided Design," Journal of Design
Studies, 10(3) pp. 169-178.

[42] Finger, S. and Dixon, J. R., 1989, "A Review of Research in Mechanical
Engineering Design. Part Ii: Representations, Analysis, and Design for the Life
Cycle," Research in engineering design, 1(121-137)

[43] Pratt, M. J., 2001, "Introduction to Iso 10303 - the Step Standard for Product Data
Exchange," Journal of Computing and Information Science in Engineering, 1(1)
pp. 102-103.

[44] Summers, J. D., "Expressiveness of the Design Exemplar," in ASME 2005
International Design Engineering & Technical Conferences & Computers and
Information in Engineering Conferences. vol. CIE-85135 Long Beach, California,
USA: ASME, 2005.

[45] Summers, J. D., Bettig, B., and Shah, J. J., 2004, "The Design Exemplar: A New
Data Structure for Embodiment Design Automation," ASME Journal of
Mechanical Design, 126(5) pp. 775-787.

 615

[46] Minsky, M. L., "Matter, Mind and Models," in IFIP Congress. vol. 1 Washington,
D.C., USA, 1965, pp. 45-49.

[47] Szykman, S., Racz, J. W., and Sriram, R. D., 1999, "The Representation of
Function in Computer-Based Design," 1999 ASME Design Engineering Technical
Conferences, Las Vegas, NV, USA, September 12-15, 1999.

[48] Sen, C., Summers, J. D., and Mocko, G. M., 2011, "A Protocol to Formalize
Function Verbs to Support Conservation-Based Model Check Reasoning,"
Journal of Engineering Design (In Press),

[49] Diestel, R., 2005, Graph Theory, 3rd. ed. Springer-Verlag. Heidelberg, New
York.

[50] Bohm, M. R. and Stone, R. B., 2004, "Product Design Support: Exploring a
Design Repository System," ASME International Mechanical Engineering
Congress, Anaheim, CA, USA, November 13–19, 2004.

[51] Bohm, M. R. and Stone, R. B., 2004, "Representing Functionality to Support
Reuse: Conceptual and Supporting Functions," ASME 2004 Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, Salt Lake City, UT, USA, September 28 – October 2, 2004.

[52] Bohm, M. R., Stone, R. B., Simpson, T. W., and Steva, E. D., 2006, "Introduction
of a Data Schema: The Inner Workings of a Design Repository," ASME 2006
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Philadelphia, PA, USA, September 10-
13, 2006.

[53] Bohm, M. R., Stone, R. B., and Szykman, S., 2005, "Enhancing Virtual Product
Representations for Advanced Design Repository Systems," Journal of
Computing and Information Science in Engineering, 5(4) pp. 360-72.

[54] Freeman, P. and Newell, A., 1971, "A Model for Functional Reasoning in
Design," International Joint Confernce for Artificial Intelligence, London, UK,
Sep 1-3, 1971.

 616

[55] Simon, H. A., 1996, The Sciences of the Artificial The MIT Press. Cambridge,
MA.

[56] Simon, H. A., 1979, Models of Thought Yale University Press. New Haven.

[57] Eastman, C. M., 1969, "Cognitive Processes and Ill-Defined Problems: A Case
Study from Design," First Joint Interantional Confernce on Artificial Intelligence,
Washington, DC, 1969.

[58] Kroes, P., 2010, "Formalization of Technical Functions: Why Is That So
Difficult?," Tools and Methods of Competitive Engineering, TMCE-2010,
Ancona, Italy, August 12-16, 2010.

[59] Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H., "Function, Behavior,
and Structure," in Applications of Artificial Intelligence V, Vol 1: Design, J. S.
Gero, Ed. Boston, MA: Springer Verlag, , 1990, pp. 177-193.

[60] Chandrasekaran, B. and Josephson, J. R., 1997, "Representing Function as
Effect," Fifth International Workshop on Advances in Functional Modeling of
Complex Technical Systems, Paris, France, July 1997.

[61] Chandrasekaran, B. and Josephson, J. R., 2000, "Function in Device
Representation," Engineering with Computers, 16(3-4) pp. 162-177.

[62] Chandrasekaran, B., 2005, "Representing Function: Relating Functional
Representation and Functional Modeling Research Streams," Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 19(2) pp. 65-
74.

[63] Eck, D. V., McAdams, D. A., and Vermaas, P. E., 2007, "Functional
Decomposition in Engineering: A Survey," ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in
Engineering Conference, Las Vegas, NV, USA.

[64] Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R., 1995, "FBRL:A
Function and Behavior Representation Language," International Joint

 617

Conferences on Artificial Intelligence, Montreal, Quebec, Canada, August 20-25,
1995.

[65] Garbacz, P., 2005-2006, "Towards a Standard Taxonomy of Artifact Functions,"
Applied Ontology, 1pp. 221–236.

[66] Cebrian-Tarrason, D., Lopez-Montero, J. A., and Vidal1, R., 2008, "Ontofabes:
Ontology Design Based in FBS Framework," CIRP Design Conference 2008:
Design Synthesis, Enschede, Netherlands, April 7-9, 2008.

[67] Bracewell, R. H. and Sharpe, J. E. E., 1996, "Functional Descriptions Used in
Computer Support for Qualitative Scheme Generation—“Schemebuilder”,"
Artificial Intelligence for Engineering Design, Analysis & Manufacturing, 10(4)
pp. 333-345.

[68] Goel, A., Bhatta, S., and Stroulia, E., "Kritik: An Early Case-Based Design
System," in Issues and Applications of Case-Based Reasoning in Design, M. L.
Maher and P. Pu, Eds. Mahwah, NJ: Erlbaum, 1997, pp. 87-132.

[69] Bobrow, D. G., 1984, "Qualitative Reasoning About Physical Systems: An
Introduction," Artificial Intelligence, 24(1-3) pp. 1-5.

[70] Dorst, K. and Vermaas, P. E., 2005, "John Gero’s Function-Behaviour-Structure
Model of Designing: A Critical Analysis," Research in Engineering Design, 16pp.
17-26.

[71] Erden, M. S., Komoto, H., VanBeeK, T. J., D’Amelio, V., Echavarria, E., and
Tomiyama, T., 2008, "A Review of Function Modeling: Approaches and
Applications," Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 22(2) pp. 147-169.

[72] Bhatta, S. R. and Goel, A. K., 1997, "A Functional Theory of Design Patterns,"
15th International Joint Conference on Artificial Intelligence - Volume 1, Nagoya,
Japan.

 618

[73] Bhatta, S., Goel, A., and Prabhakar, S., 1994, "Innovation in Analogical Design:
A Model-Based Approach," Artificial Intelligence in Design, Dordrecht, The
Netherlands, 1994.

[74] Chakrabarti, A. and Bligh, T. P., 1994, "An Approach to Functional Synthesis of
Solutions in Mechanical Conceptual Design. Part I: Introduction and Knowledge
Representation," Research in Engineering Design, 6(3) pp. 127-141.

[75] Chakrabarti, A. and Bligh, T. P., 2001, "A Scheme for Functional Reasoning in
Conceptual Design," Design Studies, 22pp. 493-517.

[76] Chakrabarti, A. and Bligh, T. P., 1996, "An Approach to Functional Synthesis of
Mechanical Design Concepts: Theory, Applications, and Emerging Research
Issues," Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, 10(4) pp. 313-331.

[77] Sembugamoorthy, V. and Chandrasekaran, B., "Functional Representation of
Devices and Compilation of Diagnostic Problem-Solving Systems," in
Experience, Memory, and Reasoning, J. Kolodner and C. K. Riesbeck, Eds.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1986, pp. 47-53.

[78] Keuneke, A. M., 1991, "Device Representation - the Significance of Functional
Knowledge," IEEE Expert 6(2) pp. 22-25.

[79] Deng, Y. M., 2002, "Function and Behavior Representation in Conceptual
Mechanical Design," Artificial Intelligence in Engineering Design, Analysis, &
Manufacturing, 16(5) pp. 343-362.

[80] Zhang, W. Y., Tor, S. B., Britton, G. A., and Deng, Y. M., "Functional Design of
Mechanical Products Based on Behavior-Driven Function-Environment-Structure
Modeling Framework,"

[81] Rodenacker, W., 1971, Methodisches Konstruieren Springer-Verlag. Berlin.

[82] Fenves, S. J., 2002, "A Core Product Model for Representing Design
Information," National Institute of Standards & Technology Report No. NISTIR
7185, Gaithersburg, MD, USA.

 619

[83] Fenves, S. J., Foufou, S., Bock, C., Sudarsan, R., and Sriram, R. D., 2006, "Cpm:
A Core Product Model for Plm Support," Frontiers in Design Simulation and
Research, Alanta, Georgia, USA.

[84] Bryant, C. R., McAdams, D. A., and Stone, R. B., 2006, "A Validation Study of
an Automated Concept Generator Design Tool," ASME 2006 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Philadelphia, PA, USA, September 10-13, 2006.

[85] Caldwell, B. W. and Mocko, G. M., 2007, "Towards Rules for Functional
Composition," ASME 2008 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference,
Brooklyn, NY, USA, August 3-6, 2008.

[86] Kurfman, M. A., Stone, R. B., Rajan, J. R., and Wood, K. L., 2001, "Functional
Modeling Experimental Studies," ASME Design Engineering Technical
Conferences, Pittsburgh, Pennsylvania, Sep 9-12, 2001.

[87] Kurfman, M. A., Stone, R. B., Wie, M. V., Wood, K. L., and Otto, K. N., 2000,
"Theoretical Underpinnings of Functional Modeling: Preliminary Experimental
Studies," 2000 ASME Design Engineering Technical Conference, Baltimore, MD,
USA, Sep 10-13, 2000.

[88] McAdams, D. A. and Wood, K., 2002, "A Quantitative Similarity Metric for
Design-by-Analogy," Journal of Mechanical Design, 124(2) pp. 173-182.

[89] Collins, J. A., Hagan, B. T., and Bratt, H. M., 1976, "Failure-Experience Matrix -
a Useful Design Tool," Journal of Engineering for Industry, B 98(3) pp. 1074-
1079.

[90] Kirschman, C. F. and Fadel, G. M., 1998, "Classifying Functions for Mechanical
Design," Journal of Mechanical Design, 120(3) pp. 475-482.

[91] Vucovich, J., Bhardwaj, N., Ho, H. H., Ramakrishna, M., Thakur, M., and Stone,
R., 2006, "Concept Generation Algorithms for Repository-Based Early Design,"
ASME 2006 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Philadelphia, PA, USA,
September 10-13, 2006.

 620

[92] Anandan, S., "Similarity Metrics Applied to Graph Based Design Model
Authoring," in Department of Mechanical Engineering. vol. PhD Clemson:
Clemson University, 2008.

[93] Anandan, S., Summers, J. D., Maier, J. R. A., Bapat, V., and Bettig, B., 2007,
"Semantics in Engineering Design," International Conference on Engineering
Design, Paris, France.

[94] Stone, R. B., Tumer, I. Y., and Stock, M. E., 2005, "Linking Product
Functionality to Historic Failures to Improve Failure Analysis in Design,"
Research in Engineering Design, 16(2) pp. 96-108.

[95] Tumer, I. Y. and Stone, R. B., 2001, "Analytical Methods to Evaluate Failure
Potential During High-Risk Component Development," 2001 ASME Design
Engineering Technical Conferences, Pittsburgh, PA, USA, September 9-12, 2001.

[96] Arunajadai, S. G., Stone, R. B., and Tumer, I. Y., 2002, "A Framework for
Creating a Function-Based Design Tool for Failure Mode Identification," ASME
2002 Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Montreal, Canada, September 29 – October 2, 2002.

[97] Arunajadai, S. G., Uder, S. J., Stone, R. B., and Tumer, I. Y., 2004, "Failure
Mode Identification through Clustering Analysis," Quality and Reliability
Engineering International, 20pp. 511-526.

[98] Kurtoglu, T., Campbell, M. I., Bryant, C. R., Stone, R. B., and McAdams, D. A.,
2005, "Deriving a Component Basis for Computational Functional Synthesis,"
International Conference on Engineering Design, ICED '05, Melbourne,
Australia, Aug 15-18, 2005.

[99] Baya, V. and Leifer, L., 1995, "Understanding Design Information Handling
Behavior Using Time and Information Measure," ASME Design Engineering
Technical Conferences, Boston, MA.

[100] Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ramani, K., 2005, "Three-
Dimensional Shape Searching: State-of-the-Art Review and Future Trends,"
Computer-Aided Design & Applications, 37pp. 509-530.

 621

[101] Cagan, J., Campbell, M. I., and Finger, S., 2005, "A Framework for
Computational Design Synthesis: Model and Applications," Journal of
Computing and Information Science in Engineering, 5(3) pp. 171-181.

[102] Linz, P., 1996, An Introduction to Formal Languages and Automata, Second ed.
D. C. Heath and Company. Lexington, MA, USA.

[103] Collins, J. A., busby, H. R., and Staab, G. H., 2010, Mechanical Design of
Machine Elements and Machines, Second ed. John Wiley & Sons. Hoboken, NJ.

[104] Kurfman, M. A., Stone, R. B., Rajan, J., and Wood, K. L., 2003, "Experimental
Studies Assessing the Repeatability of a Functional Modeling Derivational
Method," Journal of Mechanical Design, 125pp. 682-693.

[105] Vermaas, P. E., 2007, "The Functional Modeling Account of Stone and Wood:
Some Critical Remarks," International Conference on Engineering Design, ICED
Cité des Sciences et de L'industrie, Paris, France, Aug 28-31, 2007.

[106] Lind, M., 1994, "Modeling Goals and Functions of Complex Plant," Applied
Artificial Intelligence,

[107] Russell, S. and Norvig, P., 2002, Artificial Intelligence: A Modern Approach
Prentice Hall/Pearson Education. Upper Saddle River, N.J.

[108] Chomsky, N., 1956, "Three Models for the Description of Language," IRE
Transactrions on Information Theory, 2(3) pp. 113-124.

[109] Russell, S. and Norvig, P., 2003, Artificial Intelligence: A Modern Approach
Prentice Hall/Pearson Education. Upper Saddle River, N.J.

[110] Chen, P. P., "A Preliminary Framework for Entity-Relationship Models," in
Second International Conference on the Entity-Relationship Approach to
Information Modeling and Analysis, P. P. Chen, Ed.: North-Holland Publishing
Co., 1981, pp. 19-28.

 622

[111] Luger, G. F., 2002, Artificial Intelligence: Structures and Strategies for Complex
Problem Solving, Fourth ed. Addison-Wesley. Essex, England.

[112] Kleene, S., 1991, Introduction to Metamathematics Amsterday, New York.

[113] Reichenbach, H., 1947, Elements of Symbolic Logic Dover Publications Inc. New
York.

[114] Tarski, A., 1946, Introduction to Logic and to the Methodology of Deductive
Sciences, Second ed. Dover Publications, Inc. New York.

[115] Sen, C., Summers, J. D., and Mocko, G. M., 2011, "Exploring Potentials for
Conservational Reasoning Using Topologic Rules of Function Structure Graphs,"
The 18th International Conference on Engineering Design, Copenhagen, August
15-18, 2011.

[116] Sen, C., Summers, J. D., and Mocko, G. M., 2010, "Topological Information
Content and Expressiveness of Function Models in Mechanical Design," Journal
of Computing and Information Science in Engineering, 10(3) pp. 031003-1 –
031003-11.

[117] Trucco, E., 1956, "A Note on the Information Content of Graphs," Bulltin of
Mathematical Biophysics, 18

[118] Hazelrigg, G. A., 1999, "On the Role and Use of Mathematical Models in
Engineering Design," Journal of Mechanical Design, 121(3) pp. 336-341.

[119] Baader, F., 1996, "A Formal Definition for the Expressive Power of
Terminological Knowledge Representation Languages," Journal of Logic and
Computation, 6(1) pp. 33-54.

[120] Winston, P. H., 1992, Artificial Intelligence, Third ed. Addison-Wesley
Publishing Company. Reading. Massachusetts, USA.

[121] Rich, E. and Knight, K., 1991, Artificial Intelligence, Second ed. McGraw-Hill,
Inc. New York, NY, USA.

 623

[122] Boolos, G., 1989, "A New Proof of the Gödel Incompleteness Theorem," Notices
of the American Mathematical Society 36pp. 388-390 and 676.

[123] Lienhardt, P., 1991, "Topological Models for Boundary Representation: A
Comparison with N-Dimensional Generalized Maps," Computer-Aided Design &
Applications, 23(1) pp. 59-82.

[124] Chavali, S., "A Case Study Investigating Rule Based Design in an Industrial
Setting," in Department of Mechanical Engineering. vol. MS Clemson, SC:
Clemson University, 2007.

[125] Chavali, S. R., Sen, C., Mocko, G. M., and Summers, J. D., 2008, "Using Rule
Based Design in Engineer to Order Industry: An Sme Case Study," Computer-
Aided Design & Applications, 5(1-4) pp. 178-193.

[126] Halliday, D., Resnick, R., and Walker, J., 2011, Fundamentals of Physics
Extended, Ninth Edition, Ninth ed. John Wiley & Sons, Inc. New York.

[127] Griffiths, D. J., 1999, Introduction to Electrodynamics, Third ed. Prentice-Hall,
Inc. Upper Saddle River, NJ.

[128] Bejan, A., 2006, Advanced Engineering Thermodynamics, Third ed. John Wiley
& Sons, Inc. Hoboken, NJ.

[129] Moran, M. J., Shapiro, H. N., Boettner, D. D., and Bailey, M., 2010,
Fundamentals of Engineering Thermodynamics John Wiley & Sons, Inc.
Hoboken, NJ.

[130] Feynman, R. P., 1985, Q.E.D. Quantum Electro-Dynamics: The Strange Theory
of Light and Matter Princeton University Press. Princeton, New Jersey, USA.

[131] Feynman, R. P., 1997, Six Not-So-Easy Pieces: Einstein's Relativity, Symmetry,
and Space-Time Penguin Putnam Inc. New York City, NY, USA.

[132] Paredis, C. J., Bernard, Y., Burkhart, R. M., Koning, H. D., Friedenthal, S.,
Fritzson, P., Rouquette, N. F., and Schamai, W., 2010 "An Overview of the

 624

SysML-Modelica Transformation Specification," INCOSE International
Symposium, July 2010.

[133] Schamai, W., Pohlmann, U., Fritzson, P., Paredis, C. J., Helle, P., and Strobel, C.,
2010, Execution of Umlstate Machines Using Modelica.

[134] Davies, K. L., Haynes, C. L., and Paredis, C. J., 2009, "Modeling Reaction and
Diffusion Processes of Fuel Cells within Modelica," 7th International Modelica
Conference, Linköping, Sweden, September 2009.

[135] Vargas-Hernandez, N. and Shah, J. J., 2004, "2nd-Cad: A Tool for Conceptual
Systems Design in Electromechanical Domain," Journal of Computing and
Information Science in Engineering, 4pp. 28-36.

[136] Phillips, A. C., "Introduction to Quantum Mechanics," Second ed New York:
John Wiley & Sons. Inc., 2003.

[137] Maier, J., Anandan, S., Bapat, V., Summers, J. D., and Bettig, B., 2007, "A
Computational Framework for Semantically Rich Design Problems Based on the
Theory of Affordances and Exemplar Technology," International Conference for
Engineering Design, Paris, France.

[138] Maier, J. R. A., 2008, "Rethinking Design Thoery," Mechanical Engineering,
130(9) pp. 34-37.

[139] Maier, J. R. A. and Fadel, G. M., 2001, "Affordance: The Fundamental Concept
in Engineering Design," 2001 ASME Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Pittsburgh,
Pennsylvania, USA, September 9-12, 2001.

[140] Maier, J. R. R. and Fadel, G. M., 2002, "Comapring Function and Affordance as
Bases for Design," Proceedings of ASME 2002 Design Engineering Technical
Conferences and Computer and Information in Engineering Conference,
Montreal, Canada, Sep 29 - Oct 2, 2002.

 625

[141] Albers, A., Matthiesen, S., Thau, S., and Alink, T., 2008, "Support of Design
Engineering Activity through C&Cm - Temporal Decomposition of Design
Problems," TMCE 2008 Symposium, Izmir, Turkey, April 21-25, 2008.

[142] Albers, A., Burkardt, N., and Ohmer, M., 2004, "Principles for Design on the
Abstract Level of the Contact & Channel Model," TMCE 2004, Lausanne,
Switzerland, April 13-17, 2004.

[143] Umeda, Y., Kondoh, S., Shimomura, Y., and Tomiyama, T., 2005, "Development
of Design Methodology for Upgradable Products Based on Function–Behavior–
State Modeling," Artificial Intelligence for Engineering Design, Analysis &
Manufacturing, 19pp. 161-182.

[144] Stone, R. B., Tumer, I. Y., and Wie, M. V., 2005, "The Function-Failure Design
Method," Journal of Mechanical Design, 127(3) p. 397 (11 pages).

[145] Forbus, K. D., 1984, "Qualitative Process Theory," Artificial Intelligence, 24pp.
85-168.

[146] DeKleer, J. and Brown, J. S., 1984, "A Qualitative Physics Based on
Confluences," Artificial Aintelligence, 24(1-3) pp. 7-83.

[147] DeKleer, J. and Brown, J. S., 1984, "A Framework for Qualitative Physics," Sixth
Annual Conference of the Cognitive Science Society.

[148] Sim, S. K. and Duffy, A. H. B., 2003, "Towards an Ontology of Generic
Engineering Design Activities," Research in Engineering Design, 14pp. 200-223.

[149] Kurtoglu, T. and Tumer, I. Y., 2008, "A Graph-Based Fault Identification and
Propagation Framework for Functional Design of Complex Systems," ASME
Journal of Mechanical Design, 130pp. 051401-1 - 051401-8.

[150] Bondi, A. B., 2000, "Characteristics of Scalability and Their Impact on
Performance," 2nd international workshop on Software and performance, Ottawa,
Ontario, Canada.

 626

[151] Mathieson, J. L., Sen, C., and Summers, J. D., 2009, "Information Generation in
the Design Process," ASME 2009 Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, San Diego, CA, USA,
August 30 - September 2, 2009.

[152] Mathieson, J., Shanthakumar, A., Sen, C., Summers, J. D., and Stone, R., 2011,
"Complexity as a Surrogate Mapping between Function Models and Market
Value," ASME International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Washington, DC,
September 2011.

[153] Ameri, F., Summers, J. D., Mocko, G. M., and Porter, M., 2008, "Engineering
Design Complexity: An Experimental Study of Methods and Measures,"
Research in Engineering Design, 19(2-3) pp. 161-179.

[154] Summers, J. D. and Ameri, F., 2008, "An Algorithm for Assessing Design
Complexity through a Connectivity View," TMCE 2008, Izmir, Turkey, April 20-
25, 2008.

[155] Kayyar, M., Summers, J. D., Ameri, F., and Biggers, S., "A Case Study of Sme
Design Process and Development of a Design Enabling Tool," in ASME Design
Engineering Technical Conferences and Computers in Engineering Conferences.
vol. DAC Las Vegas, NV: ASME, 2007, p. #35610.

[156] Pehlivan, S., Ameri, F., and Summers, J. D., 2009, "An Agent-Based Sysetm
Approach to Fixture Design," International Journal of Computer Applications in
Technology, 36(3-4) pp. 284-296.

[157] Roth, K., 2000, Konstruieren Mit Konstruktionskatalogen, Third ed. Springer
Berlin.

[158] Koller, R., 1998, Konstruktionslehre Für Den Maschinenbau, Fourth ed. Springer
Berlin.

[159] Caldwell, B. W., Sen, C., Mocko, G. M., and Summers, J. D., 2011, "An
Empirical Study of the Expressiveness of the Functional Basis," Artificial
Intelligence for Engineering Design, Analysis & Manufacturing 25pp. 273-287.

 627

[160] Merrie, B., Moor, J., and Nelson, J., 2009, The Logic Book Fifth ed. McGraw-
Hill, Inc. New York.

[161] Stroustrup, B., 1997, The C++ Programming Language, Third ed. Addison-
Wesley Publishing Company. Reading, Massachusetts.

[162] Chen, P. P., 1976, "The Entity-Relationship Model - toward a Unified View of
Data," ACM Transactions on Database Systems, 1(1) pp. 9-36.

[163] Chen, P. P., 1980, "Entity-Relationship Approach to Systems Analysis and
Design," First International Conference on the Entity-Relationship Approach,
North-Holland.

[164] Chen, P. P., 1981, "Entity-Relationship Approach to Information Modeling and
Analysis," Second International Conference on the Entity-Relationship Approach,
Washington, DC, USA, October 12-14, 1981.

[165] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,
2003, The Description Logic Handbook: Theory, Implementation and
Applications Cambridge University Press. Cambridge, UK.

[166] Caldwell, B. W., Sen, C., Mocko, G. M., Summers, J. D., and Fadel, G. M., 2008,
"Empirical Examination of the Functional Basis and Design Repository," Third
International Conference on Design Computing and Cognition, Atlanta,
GA,USA, June 23-25, 2008.

[167] Prosise, J., 1999, Programming Windows with Mfc, Second ed. Microsoft Press.
Redmond, WA.

[168] Jones, R. M., 2000, Introduction to Mfc Programming with Visual C++ Prentice-
Hall, Inc. Upper Saddle River, NJ.

[169] Harrison, M. A., 1978, Introduction to Formal Language Theory Addison-
Wesley.

 628

[170] Mateescu, A. and Salomaa, A., "Aspects of Classical Language Theory," in
Handbook of formal languages. vol. 1, G. Rozenberg and A. Salomaa, Eds. New
York, NY, USA: Springer-Verlag, 1997.

[171] Hopcroft, J., Motwani, R., and Ullman, J., 2001, Introduction to Automata
Theory, Languages, and Computation, Second ed. Addison-Wesley. New York,
NY, USA.

[172] Gruber, T., 1993, "A Translation Approach to Portable Ontology Specifications,"
Knowledge Acquisition, 5(199-220)

[173] Patil, L., Dutta, D., and Sriram, R., 2005, "Ontology-Based Exchange of Product
Data Semantics," IEEE Transactions on Automation Science and Engineering,
2(3) pp. 213-225.

[174] Li, L. and Horrocks, I., 2004, "A Software Framework for Matchmaking Based
on Semantic Web Technology," International Journal of Electronic Commerce,
8(4) pp. 39-60.

[175] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., and Katz, Y., 2007, "Pellet: A
Practical OWL-DL Reasoner," Web Semantics: Science, Services and Agents on
the World Wide Web, 5(2) pp. 51-53.

[176] Ma, J., Summers, J. D., and Joseph, P., 2010, "Simulation Studies on the
Influence of Obstacles on Rolling Lunar Wheel," ASME International Design
Engineering Technical Conferences, Montreal, Canada, August, 2010.

[177] Johnson, T. A., Paredis, C. J., and Burkhart, R. M., 2008, "Integrating Models and
Simulations of Continuous Dynamics into SysML," 6th International Modelica
Conference, Linköping, Sweden.

[178] Schultz, J., Sen, C., Mathieson, J., Caldwell, B. W., Summers, J. D., and Mocko,
G. M., 2010, "Limitations to Function Structures: A Case Study in Morphing
Airfoil Design," ASME International Design Engineering Technical Conferences,
DTM, Montreal, Canada, August, 2010.

 629

[179] Caldwell, B. W. and Mocko, G. M., 2011, "Validation of Function Pruning Rules
through Similarity at Three Levels of Abstraction," Journal of Mechanical Design
(Accepted),

[180] Zeid, I., 2007, Mastering Cad/Cam, First ed. Tata McGraw-Hill Publishing
Company Limited. New Delhi, India.

[181] Ramachandran, R., Caldwell, B. W., and Mocko, G. M., 2011, "A User Study to
Evaluate the Function Model and Function Interaction Model for Concept
Generation," ASME International Design Engineering Technical Conferences,
Washington, DC, September, 2011.

[182] Nagel, R. L., "A Design Framework for Identifying Automation Opportunities,"
in School of Mechanical, Industrial and Manufacturing Engineering. vol. PhD
Corvallis, OR: Oregon State University, 2011.

[183] Nagel, R. L., Bohm, M. R., Stone, R. B., and McAdams, D. A., "A Representation
of Carrier Flows for Functional Design," International Conference on
Engineering Design ICED 07, Paris, France, August 28-31, 2007.

[184] Cardella, M. E., Atman, C. J., and Adams, R. S., 2006, "Mapping between Design
Activities and External Representations for Engineering Student Designers,"
Design Studies, 27pp. 5-24.

	Clemson University
	TigerPrints
	12-2011

	A FORMAL REPRESENTATION OF MECHANICAL FUNCTIONS TO SUPPORT PHYSICS-BASED COMPUTATIONAL REASONING IN EARLY MECHANICAL DESIGN
	Chiradeep Sen
	Recommended Citation

	Microsoft Word - SEN_Dissertation_V4 (Manuscript Office Comments).docx

