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ABSTRACT 

The lack of computational support to the conceptual phase of mechanical 

engineering design is well recognized.  Function-based modeling and thinking is widely 

recommended in design texts as useful means for describing design concepts and using 

them in tasks such as solution search, problem decomposition, and design archival.  

Graph-based function structure models that describe a product as a network of 

transformative actions of material, energy, and information, are discussed as a potential 

tool for this purpose, but in the current state of the art, function structures are not 

formalized as a computational representation.  Consequently, no computer tool exists 

with which a designer can construct grammatically controlled function structure models, 

explore design ideas by model editing, and perform automated reasoning on the model 

against the laws of nature to draw analytical inferences on the design.  This research 

presents, verifies, and validates a formal representation of mechanical functions that 

supports consistent computer-aided modeling of early design and reasoning on those 

models based on two universal principles of physics: (1) conservation and (2) 

irreversibility.  The representation is complete in three layers.  The first layer—the 

Conservation Layer—is defined with nine entities, five relations, five attributes, and 33 

grammar rules that together formalize the construction of function structure graphs and 

support conservation-based qualitative validation of design concepts.   The second 

layer—the Irreversibility Layer—includes three additional attributes that support both 

conservation-based and irreversibility-based reasoning at qualitative and quantitative 
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levels.  The third layer—the Semantic Layer—is an extension of the previous two, where 

a vocabulary of nine verbs that describe mechanical devices and physical principles as 

functions is proposed.  This layer supports feature-based modeling and semantic 

reasoning of function structures.  The internal consistency of the representation is verified 

by logical examination and ontological consistency checking using Protégé-OWL.  The 

coverage of the verbs is examined by constructing descriptive function structure models 

of a variety of existing physical principles and devices.  The research is validated by 

incorporating the representation in a software tool using an object-oriented language and 

graphic user-interface, and by using the tool to construct models and demonstrate 

conservation-based and irreversibility-based reasoning.   
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CHAPTER 1. RESEARCH OVERVIEW  

The objective of this dissertation research is to develop a formal representation of 

mechanical functions based on the governing physics of mechanical systems, specifically 

to meet the modeling and computational reasoning needs in early design.  This chapter 

presents a high-level view of the overall research problem, the requirements of the 

solution, summary of the research questions, hypotheses, and tasks, and an overview of 

the solution, without providing details of the solution, its rationale, or validation.  For 

each item mentioned above, a pointer to the section or chapter within the document 

where the item is addressed in greater detail is provided.  After building motivation, some 

core concepts necessary to understand this research are defined.  High level requirements 

that a system must satisfy to solve the overall problem are described next.  The research 

answers two overarching research questions, which are presented along with their 

hypotheses and tasks.  Finally, the representation is completed in three layers, as 

presented in the last section of the chapter.   

1.1 Motivation: Why Create Physics-Based Function Models? 

The focus of early design lies on synthesis tasks such as ideation and concept 

generation [1-4] and much research has been directed toward automating design synthesis 

[5-13].  Traditionally, analysis is reserved for the later stages, where modeling and 

reasoning tools such as CAD, FEA, and CFD exist.  While applicable to a broad range of 

problems, these tools typically need geometric and/or other quantitative information for 
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modeling and reasoning that may not exist in early novel design.  Computer tools for 

early design analysis exist only in the evolutionary design of some complex systems such 

as automotive1, aerospace2, or nuclear power plants3 [14], but they usually operate by 

reusing previously established domain-specific rules of reconfigurable subsystems.  In 

the early stages of novel, open-ended mechanical design, solutions are synthesized often 

in abstract, qualitative, non-geometric form and a variety of physics principles may be 

considered.  For these problems, general purpose tools that support modeling early, 

abstract design from a variety of physics domains, and perform suitably abstracted 

analysis, are needed.  This analysis could include, but is not limited to, the theoretical 

correctness and feasibility of a concept, possible functional failure sources, failure 

propagation paths and effects, and the effects of changing a design parameter on the 

remainder of the design (design exploration).  Such tools could not only enable electronic 

documentation of early design intent in dedicated file formats for viewing, editing, and 

evolving in subsequent product variant design cycles, but also help the designer to engage 

in a physics-based “conversation” with the model [15] while developing and exploring 

                                                 

 

1 https://www.modelica.org/, accessed on August 16, 2011 

2 http://www.pca2000.com/en/index.php, accessed on August 16, 2011 

3 http://www.intergraph.com/learnmore/ppm/power/nuclear-plant-construction.aspx, accessed on August 

16, 2011 
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design variants, and to examine the consequences of design decisions, while still within 

the early stage.   

However, computational reasoning requires the necessary information elements to 

be available in a formal representation on which models can be constructed and reasoning 

algorithms can be executed.  To this end, a function-based representation is developed in 

this dissertation.  Function-based thinking is professed as a useful means to support early 

design thinking in design texts [1, 2].  To date, automation effort in this area is primarily 

channeled to aid design synthesis and many models exist to that end [5, 6, 16-22].  

However, research shows that designers mentally archive and process their knowledge 

about engineering devices in terms of their functions and use function-based human 

reasoning to solve problems in early design [3, 23, 24].  This background makes 

function-based formal reasoning a strong candidate for automating early design analysis.  

Moreover, since functions can be modeled as graphs—a widely used and extendable data 

structure supported by rigorous mathematical basis—and since previous research made 

significant advances toward formalizing functions [16, 17, 25-29], it is anticipated that a 

function-based representation, when properly designed, would be suitable for supporting 

early design analysis reasoning.  To facilitate easy interpretation of the remainder of this 

discussion, the core concepts of function-based modeling and formal representation are 

defined next.     
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1.2 Core Concepts and Definitions  

Core concepts pertinent to this research are defined to support the discussion in 

the remainder of this chapter.  In each definition sentence, the defined term is underlined.   

1.2.1 Representation  

The terms representation and model often are used interchangeably in literature 

[30, 31] and a distinction is necessary for this dissertation.  Representation has been 

defined as a substitution of reality using a symbolism [31].  For this dissertation, a 

representation is the collective description of (1) a vocabulary of entity types, relation 

types, attributes, and (2) local grammar rules, which constitute the general information 

structure for describing specific members within a domain of discourse.  An example is 

the boundary representation of three-dimensional geometry [32-34], which is used to 

define members (3-d objects) within the domain of discourse (3-d space), and includes a 

vocabulary of entity types (e.g., vertices, edges, faces, shells, holes, and loops), a 

vocabulary of relation types (e.g., boundary relations), and grammar rules to control the 

permitted combination of entity instances and relation instances (e.g., Euler’s equation of 

manifold solid) [34].  This choice of information elements and their structure is generic 

for all instances of solid objects described using the boundary representation.  Similarly, 

the vocabulary of symbols of electrical component types (entity types), electrical 

connection types (relation types), and guidelines for correctly combining instances of 

these entity types and relation types to describe an electrical device (grammar) constitutes 

a representation for drawing circuit diagrams.  The representation is the generic 

information structure, as opposed to a specific solid or a specific circuit diagram, which 
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are models constructed on the respective representations. A classification of 

representations based on their vocabulary, structure, expression, purpose, and abstraction 

is proposed in previous research [31, 35-42].   

1.2.2 Formal Representation  

A formal representation is a representation defined in a rigorous, computer-

implementable form that describes how to store the entities, relations, and attributes in a 

computer data structure, render them on a computer screen, and support computational 

reasoning on them.  The term formal implies that the information captured is stored in the 

syntactic “form” of the descriptions rather than in their semantics.  Examples are the 

implementations of the boundary representation in solid geometry kernels such as ACIS 

[34], kernel-neutral CAD languages such as STEP AP-214 [43], and the Design 

Exemplar [44, 45].   

1.2.3 Model  

A model is described as an abstraction of reality that can be used to answer some 

questions about that reality [46].  Distinguishing a model from its representation, a model 

is an instance of a specific member within a domain of discourse described by a 

representation.  It consists of specific instances of the entities, relations, and modifiers 

defined within the representation.  An example is a specific solid model of a machine part 

built using the boundary representation.  This model substitutes the real part for purposes 

such as visualization and answering questions about its geometry, mass properties, fits, 

and tolerances.  It describes a specific object using specific instances of vertices, edges, 
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faces, shells, holes, and loops, which are entities defined in the boundary representation.   

Similarly, the circuit diagram for a specific electrical device drawn in accordance with 

the set of rules described in the representation is a model.  In this general sense, the word 

model includes any substitution of an entity with another, such as (1) the specific 

behavior equation of a spring-mass-damper system that answer questions about the 

position, velocity, and acceleration of the mass, (2) a specific scaled physical prototype of 

a building or an airplane that answers questions about its proportion, aerial view, or wind 

flow characteristics around it, or (3) a specific project plan that answers questions about 

activities on the critical path and an individual person’s tasks for a day.   

1.2.4 Modeling 

Modeling is the activity of constructing a model to describe a specific object 

within a domain of discourse using a representation available to describe objects in that 

domain.  It is important to identify modeling separately from model and representation 

since the final qualities of a model such as consistency, validity, completeness, and 

soundness, are results of those qualities in the representation itself and in the modeling 

action.  Depending on the flexibility of the representation [31], it may be possible to 

construct an inconsistent model using an internally consistent representation and vice 

versa.  For example, the term definitions in the Functional Basis vocabulary [25, 26, 47] 

are not formalized, as they are defined in natural English rather than a syntactic form, 

their flexibility is high.  Consequently, they are often used in models that can be 

demonstrated as inconsistent [48].  With highly flexible representations, the onus of 

maintaining model-level consistency lies largely on the modeler, as the representation 
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does not enforce guidelines to that effect.  One objective of this dissertation research is to 

formalize a function modeling representation such that the definitions restrict modeling 

flexibility to ensure conformity to the natural laws (Chapter 6), while not reducing the 

flexibility to model a wide range of physical principles and phenomena executed in 

mechanical systems (Chapter 9).   

1.2.5 Reasoning 

Reasoning is the activity of using a model and logic described within the 

representation (local rules) or outside (global rules) to draw inferences about the model in 

order to derive information that is not explicitly captured within the model.  An example 

is to derive the volume, surface area, or length of the diagonal of a rectangular block from 

its solid model that is created using its length, breadth, and height parameters.  The 

sought information is not directly captured in the model’s description, but can be derived 

from the model by using global rules that relate the three parameters available in the 

model to the sought parameters.  Formal reasoning is the process of reasoning using a 

formal representation and algorithmic rules.   

1.2.6 Flow and Flow Noun 

A flow is an occurrence of an entity type such as material, energy, or signal, 

which is either used or produced by an action performed by an artifact.  It is distinguished 

from a fluid that is necessary for the operation of a device but is not used or produced by 

it.  For example, in a closed thermodynamic system, such as gas enclosed in a cylinder, 

the gas is not a flow, since it is not entering or leaving the system.  It is the system.  Heat 
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and work that cross the boundary of the system are flows.  Similarly, in an automobile 

cooling circuit studied as a system, the coolant fluid is not a flow, since it flows within 

the system, rather than through it.  However, when the coolant pump and the radiator are 

studied as individual open systems, the coolant becomes a flow.  Thus, whether a fluid is 

a flow or a system depends on the definition of the system.   

The complete description of a flow includes its type, subtype (optional), and 

functional state.  The functional state, or state, of a flow is the set of attributes and 

relations pertinent to its type and their values that distinguish the flow from other flows 

of the same type in a model.  If two flows in a model have the same type, subtype, and 

functional state, it follows that they are the same instance and therefore, the model is 

redundant.  In the proposed representation, a flow is characterized by the physical 

quantities applicable to its type (e.g., voltage and current, if the type is electrical energy), 

its Location attribute, and its carrier flows, controlled by the relation CarrierFlow.  The 

first specifies a zone in the geometric space where the flow is identified and the second is 

a pointer to another flow that carries the flow in question.  For example, an instance of 

Electrical Energy available at a specific wall socket, socket1, can be characterized by its 

type (Energy), subtype (Electrical Energy), and attributes voltage (110 V), current (1 A), 

and Location (socket1), which completes its description.  Similarly, energy carried by 

water exiting a specific nozzle, nozzle1, in a Pelton turbine installation can be described 

as type (Energy), subtype (Kinetic Energy), mass flow rate (100 kg/s), Location 

(nozzle1), and CarrierFlow (pointer to the water flow instance).  Two flows are defined 
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as different if they are of different types or if they are of the same type but at least one 

attribute value or relation value used to define their states is different between them.     

For the purpose of formalizing, it is important to distinguish specific flow 

instances from the class Noun, from which those instances are derived.  Flow Noun or 

Noun (proper noun, capitalized) is a class from which flow instance are derived and 

subclasses of more specific a flow types are inherited.  The term “a noun” or “nouns” 

refers to one or more of these classes that inherit the Noun class.  The term “a flow” or 

“flows” refer to instances of nouns.  For example, in Figure 1.1, EE1 is a flow, which is 

an instance of the class Electrical Energy, and MW1 is another flow, which is an instance 

of the class Mechanical Work.  These two classes are inherited from the class Noun.     

 

Figure 1.1: Examples of mechanical functions 

1.2.7 Function and Function Verb 

A mechanical function, or a function, is an occurrence of a transformative action 

that transforms an input set of flows to a different set of flows.  For example, the function 

F1 in Figure 1.1 inputs the electrical energy flow EE1 and outputs the mechanical work 

flow MW1.  The function F2 inputs this flow and outputs two other mechanical work 

flows, MW2 and MW3.  A function is a description of an action, not of the device that 

performs that action [1, 2].  For example, the function F1 could be mapped to any device 

that matches this action description, such as an electric motor or a solenoid.   
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For the purpose of formalizing, it is important to distinguish specific function 

instances from the generic class named Verb, from which those instances are derived.  

Function Verb or Verb (proper noun, capitalized) is the class from which flow instance 

are derived and subclasses of more specific a flow types are inherited to describe 

templates or types of action, along with the count and types of flows acceptable as inputs 

and outputs to those actions.  The term “a verb” or “verbs” refer to one or more of these 

classes of actions, while “a function” is an instance of one of the verbs.  For example, the 

function F1 in Figure 1.1 is an instance of the verb Convert in the Functional Basis 

vocabulary, while the function F2 is an instance of Distribute [26].   

If the input and output set of flows are identical, that is, if the count, types, and all 

attribute values defining flow states are the same between input and output, the function 

is void, since no transformative action is required to change a flow-set to itself.  For a 

function to be valid, each incoming flow to the function must be different from at least 

one of its derivatives at the output side.  In the graph-based function structure 

representation, functions are shown as labeled blocks, as shown in Figure 1.2.   

1.2.8 Function Structure 

Function Structure (proper noun, capitalized) is a representation for describing the 

functionality of an artifact as graphs [1, 2, 49].  Figure 1.2 shows a model based on this 

representation.  These models are called function structures (common noun, small 

letters).  This model describes a commercial hairdryer product and is available in the 
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Design Repository, which is a web-based archive of design information of 

electromechanical products [50-53].   

 

Figure 1.2: Function structure model of a hairdryer stored in the Design 

Repository4 

By the conventional definition of the Function Structure representation [1, 2], the 

edges are flows (Noun instances) and the vertices are functions (Verb instances).  In 

graph theory [49], a vertex conventionally means an entity and an edge is a relation 

between two entities.  Thus, in function structures, flows are treated as relations between 

functions.  However, since every edge has two ends, a relation implies two entities that 

are related.  Then, the model in Figure 1.2 violates the standard construct of graphs, as it 

contains flows that are connected to only one function.  The free ends of these flows 

imply input or output of flows to the modeled system from the environment, which is 

                                                 

 

4 http://repository.designengineeringlab.org, accessed on June 11, 2011 
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denoted by the large rectangle, instead of additional vertices.  Thus, while the Function 

Structure representation is based on graphs, it uses modified graph constructs.   

In the proposed representation, functions, flows, and environment instances are all 

treated as entities, while their connections are relations, as labeled in Figure 1.3a.  The 

straight arrows in this figure are flows, while the curved arrows are label leaders.  When 

the flows are drawn as vertices instead of edges, the function structure model becomes a 

bipartite graph with two partitions of vertices and two relation types between the 

partitions.  The two types of entities, shown in the left and right partitions of Figure 1.3b, 

are (1) the nodes of the function structure model (functions and environments) and (2) the 

flows.  The two types of relations, shown by the edges of this graph, are Tail and Head, 

indicating if a node (function or environment) is the tail or head node of a flow.  Figure 

1.3a and Figure 1.3b are two isomorphic views of the same model and show the same 

topologic connections between functions and flows. For example, the two relations 

attached to Flow1 in Figure 1.3b indicate that Flow1 has its tail attached to E2 and its 

head attached to F2, which can be verified from Figure 1.3a.   
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(a) Conventional function structure view (b) Bipartite function structure view 

Figure 1.3: Conventional and bipartite views of a function structure model 

While “vertex” and “edge” are used to describe graphs in general, the words 

“node” and “flow” are used in this dissertation to describe function structure models.  

Nodes include functions and environments, since in the conventional view of function 

structures these two entities form the vertices of the graph.  The flows are “edges” 

(relations) in the conventional view, but “vertices” (entities) in the bipartite view.  In all 

types of graphs, “vertices” mean entities and “edges” mean relations.  This convention is 

carried throughout this document.   

1.2.9 Topology 

Topology of a function structure graph is the arrangement of connection between 

the functions and the flows.  In order to uniquely identify a function structure, its 

functions, flows, and its topology must be identified.  The same set of functions and 

flows can be connected in different arrangements to produce different function structures 

that differ only in terms of topology.  In Figure 1.3b, the exact set of connections—
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Flow3

Flow4
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Flow 
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entity

Head 
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including the type of connections and the connected entities to each connection—defines 

the topology of the bipartite graph.   

Next, high-level requirements for the early design representation proposed in this 

dissertation are mentioned.  These requirements are analyzed in greater detail in the next 

chapter and a more rigorous treatment of identifying specific reasoning needs is presented 

in Chapter 4. 

1.3 Summary of High-Level Requirements for the Representation  

In order to support analytical reasoning in the early design, as outlined in Section 

1.1, a candidate representation must satisfy a set of high-level requirements, as 

summarized here.  The resulting representation is checked against this requirement list at 

the end of the dissertation, in Chapter 10.   

1. Coverage over multiple physics domains: A wide range of physical and 

mechanical engineering principles and devices should be possible to model 

and used in early reasoning.  Specifically, basic phenomena of electrical, 

mechanical, and thermal energy forms and their interaction with various 

material forms should be describable, since the principles necessary to solve 

novel, open-ended design problems are difficult to foresee. 

2. Domain-independence of physics laws: The representation must formalize 

mechanical functions using physics laws that are generally applicable to all 

domains of mechanical design, rather than incrementally adding specific 

knowledge and design rules from different domains.  Specifically, the 
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principles of (1) conservation and (2) irreversibility must be included in the 

representation.   

3. Physics-based concreteness: The entities, relations, attributes, and grammar 

rules of the representation should support constructing models that are 

consistent with the principles of conservation and irreversibility.  The 

representation should also support analyzing models through algorithmic 

reasoning against these two principles of physics.   

4. Normative and descriptive modeling support: The representation must 

support descriptive modeling of existing design concepts, devices, or physical 

principles.  The representation should also support normative modeling of 

new design concepts.   

5. Qualitative modeling and reasoning support: The representation must allow 

the designer to describe a design even when quantitative information is not 

available.  It must allow drawing qualitative inferences of two types from the 

models based on (1) conservation and (2) irreversibility.   

6. Extendibility: The representation must support extendibility of the following 

types.   

a. Quantitative reasoning extension: In the future, the representation 

should be able to describe quantitative details of a model and support 

reasoning using that additional quantitative information. 

b. Causal reasoning extension: In the future, the representation should 

be able to describe causal relations between functions and flows, in 
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order to support physics-based causal description and predictive 

analysis of early design.  

7. Scalability: The representation should support modeling and reasoning on 

function structure graphs that vary in number of nodes and edges. 

8. Consistency: It should be impossible to infer two statements P and Q through 

logical deductions from the declarations made within the representation—such 

as the definitions of verbs, nouns, relations, constraints, and attribute 

definitions—such that P = ¬ Q.   

9. Validity: The representation must be valid against the principles of 

conservation and irreversibility.  Specifically, if a model implies a violation of 

any of these principles, the representation should support a reasoning 

algorithm that can detect that violation.   

In order to build a representation that satisfies these requirements, two research 

questions must be answered, which are discussed next.   

1.4 Research Questions, Hypotheses, and Tasks 

This section summarizes the research questions answered in this dissertation, the 

hypotheses of this research, and the tasks used to test the hypotheses and answer the 

questions.  There are two highest-level questions in this research.  Three research 

hypotheses are identified against these two main questions.  Each main question is 

answered through multiple tasks, each of which answers a sub-question under the main 

question.  Table 1.1 and Table 1.2 present these two research questions, and their 
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hypotheses, sub-questions, and tasks.  The questions are numbered as “RQ”, the 

hypotheses are numbered as “RH”, and the tasks are numbered corresponding to each 

sub-question, as “Task”.  The section numbers in the document that present each task are 

also mentioned.   

Table 1.1: Research Question 1, hypotheses, and tasks 

Main 

research 

question 

RQ-1. What are the entities, relations, attributes, and grammar rules 

necessary to formalize the Function Structure representation, in 

order to support (1) consistent models and (2) analytical 

computational reasoning on concepts based on conservation and 

irreversibility? 

Hypotheses RH-1. The entities, relations, and attributes shown in Figure 5.1 

and the grammar rules of Section 5.2 can support 

consistent modeling and conservation-based reasoning on 

concepts.   

RH-2. The representation shown in Figure 7.2, including the 

grammar rules of Section 5.2, can support irreversibility-

based reasoning on concepts.   

Sub-

questions 

and tasks 

RQ-1.1. What specific physics-based analytical tasks should be 

supported? 

Task 1. Reasoning Discovery: Systematic discovery of 

reasoning needs through a modeling exercise 
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(Section 4.1).   

RQ-1.2. Are these reasoning tasks algorithmically solvable? 

Task 2. Algorithmic Deduction: Algorithms for performing 

the reasoning tasks from the previous task (Section 

4.2) 

RQ-1.3. What information elements must be captured to support the 

algorithms? 

Task 3. Information Extraction: Analysis of the 

algorithms to identify individual data elements 

(Section 4.3) 

RQ-1.4. Is the representation internally consistent? 

Task 4. Consistency Verification: Logical inspection and 

ontological consistency checking through Protégé 

OWL (Section 6.1) 

RQ-1.5. Can the representation support physics-based reasoning in early 

design? 

Task 5. Validation of Conservation: Development of a 

software tool to demonstrate modeling and 

conservation-based reasoning (Section 6.2).   

Task 6. Validation of Irreversibility: Extension of the 

software tool to demonstrate irreversibility-based 

reasoning (Chapter 7). 



 

 19  

Table 1.2 explains the second research question, its hypotheses, sub-questions, 

and tasks.   

Table 1.2: Research Question 2, hypotheses, and tasks 

Main 

research 

question 

RQ-2. At the physics-based concreteness level, is there a finite set of 

verbs that can describe a variety of physical phenomena and 

mechanical engineering principles as functions? 

Hypotheses RH-3. The eleven verbs presented in Chapter 8 (Table 8.14) 

can describe principles from physics and mechanical 

engineering involving electrical, mechanical, and 

thermal energy.   

Sub-questions 

and tasks 

RQ-2.1. Does the proposed verb set provide modeling coverage over a 

variety of physics and mechanical engineering principles and 

devices?  

Task 7. Modeling Coverage Testing: Description of 

principles of physics and mechanical engineering 

through function structure models involving 

electrical, mechanical, and thermal energy and 

material forms (Sections 9.1, 9.2).   

RQ-2.2. Can it support consistent descriptive modeling of existing 

devices? 

Task 8. Descriptive Modeling: Reconstruction of two 
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models from the Design Repository (Section 9.4). 

RQ-2.3. Can it support consistent normative modeling of new design 

concepts? 

Task 9. Normative Modeling: Modeling of one new 

design concept using the proposed vocabulary 

(Section 9.5).   

The answer to these research questions and hypotheses are presented in the 

concluding chapter (Chapter 10).  Next, a brief overview of the solution, the formal 

representation of mechanical functions developed in this research, is presented.    

1.5 Solution Overview 

The proposed representation is presented in three layers.  As discussed in Section 

1.2.2, a formal representation is defined with its vocabulary of entities, relations, 

attributes, and local grammar rules.  The three layers of the representation are 

summarized below. 

1. Layer One formalizes the graph-based Function Structure representation and 

supports conservation-based reasoning.  It comprises of the following 

information elements. 

a. Six Entities: Function, source, sink, material, energy, and signal 

(Figure 5.1).  

b. Five Relations: HeadNode, TailNode, CarrierFlow, Child_M, and 

Child_E (Table 5.12) 
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c. Five Attributes: GivenName, HeadPoint, TailPoint, GeometricCenter, 

and AnchorPoints (Table 5.13) 

d. 33 Grammar Rules: These rules are described in Section 5.2 

2. Layer Two is an extension of the first layer that supports irreversibility 

reasoning by including three additional attributes: IsResidual, Power, and 

Efficiency (Figure 7.2). 

3. Layer Three further extends the previous two layers and proposes a physics-

based vocabulary of verbs for function model construction and computational 

reasoning (Chapter 8).  Three types of verbs are proposed. 

a. Seven Energy Verbs in a Two-Level Taxonomy: TypeChange_E, 

Transfer_E, Change_E, Store_E, and Supply_E.  Transfer_E has two 

sub-verbs: Conduct_E and Radiate_E (Section 8.2.1). 

b. Two Material Verbs: Energize_M and DeEnergize_M (Section 8.2.3) 

c. Two Topologic Verbs: Logical_Branch and Logical_Unite (Section 

8.2.4) 

Each layer is validated after it is presented.  The internal consistency and external 

validity of Layer One is established in Chapter 6, where the representation is logically 

examined for exhaustiveness of grammar, ontologically examined for consistency, and 

implemented in a software tool named Concept Modeler – ConMod to demonstrate its 

ability to support consistent model construction and its validity against the conservation 

principle.  Layer Two is validated in Chapter 7 by extending ConMod to implement the 

new attributes and new algorithms that can detect violations of the irreversibility 
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principle, both qualitatively and quantitatively.  Layer Three is validated in Chapter 9, 

where the new vocabulary of verbs is used to model principles of physics and the 

mechanical engineering sciences and further applied to describe existing products and 

new design concepts through function models using the proposed vocabulary.   

In summary, this chapter provides a high-level view of the entire research.  It 

introduces the research problem and establishes the overall motivation for solving it, it 

identifies (pending elaborate analysis) the requirements that a representation must satisfy 

in order to solve the problem, and it lists the research questions that must be answered in 

order to design that formal representation.  The chapter ends with a brief overview of the 

solution.  In the following section, the previous and contemporary advances in function-

based design formalization are discussed.   
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CHAPTER 2. REVIEW OF FUNCTION-BASED DESIGN 

Historically, research in the representation of mechanical functions has been 

conducted from two viewpoints.  In Artificial Intelligence (AI), multiple models exist 

mainly to support device description, cause-and-effect explanation, and design synthesis.  

The second viewpoint, referred to here as the engineering design view, uses primarily one 

representation—the graph-based Function Structure—to support different design 

reasoning.  These views are discussed below. 

2.1 The AI Views of Function-Based Design 

Function-based reasoning about artificial systems has been a topic of early 

interest in artificial intelligence and cognition research [54-57], mainly due to the 

character of design that design reasoning must aid the creative process of synthesizing 

solution to a new problem, as opposed to explaining the workings of an existing device 

[55, 56].  Consequently, design reasoning must use a representation that captures the 

designer’s intent—a problem that is central in the models within the AI view [58].  To 

this end, multiple approaches for automating function-based thinking have been explored, 

including representations [7, 11, 12, 59-63], languages [19, 64], ontologies [29, 65, 66], 

and their software implementation [16, 67].   

This view recognizes that “how a device works” (behavior [8]) is a more of a 

scientific problem that is less dependent on the observer’s viewpoints than “what a device 

is for” or “what does a device do for human needs” (function [8, 16, 61, 68, 69]).  The 



 

 24  

description of function cannot be isolated from the design problem, the designer, his 

intent, and his view of the design problem, which is together described as the situatedness 

of the design [10, 11].  Consequently, device function is described as the interaction 

between several of these elements.  Gero describes functions as the required actions of a 

device and proposes the Function-Behavior-Structure model (FBS) [8, 10, 11, 70], using 

the expected behavior (Be), the Structure of the device (S), the actual behavior of the 

structure (Bs), and the process of iteration called reformulation, through which a designer 

attempts to match Bs with Be, while both evolve with the iterations.  Alternately, 

function is defined as “the relation between the goal of a human user and the behavior of 

a system” [69].  These models have been used to explain design creativity [9] and later 

included situatedness [11]: the dynamic situation where the information available to and 

represented in design influences the designer’s decisions.   

A similar representation is the Function-Behavior-State model that defines 

functions as “a description of (the device’s) behavior abstracted by human through 

recognition of the behavior in order to utilize it” [59, 71].  This model is intended to 

support problem decomposition and is extended into a design tool named the FBS-

modeler [17] that builds relations between sub-functions to structural features, and further 

to physical states of those structures that enable performing the functions.  The FBS-

modeler has been experimentally applied in reducing functional redundancy of 

electromechanical devices [16].   
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Another model, named Structure-Behavior-Function, defines function as a set of 

the input and output states of a device and the behavior that causes state transformation 

[68].  This model allows building design patterns that capture information about the 

structure, behavior, and function of devices, simulating “the learning of high-level 

abstractions and their use in reminding and adaptation” in future [72, 73].  This model 

supports analogical reasoning and is implemented in case-based reasoning tools such as 

IDeAL [12, 73] and Kritik [68].  Other approaches attempt to synthesize mechanisms 

using a representation that describes functions as transmissions of forces and motions in 

input-output format, and then selecting candidates from a pool using topological and 

spatial selection criteria [74-76].   

Similarly, Functional Representation (FR) defines a devices function from two 

viewpoints:  the device’s effect on the environment [60, 62], and in terms of an agent’s 

view of the device, called the “device-centric view” [61].  This model supports failure 

diagnosis through causal analysis [77], and was implemented in a language named Causal 

Functional Representation Language (CFRL) [13, 19].  CFRL describes function as the 

triple {DF,CF,GF}, indicating the device, the context of the device’s application, and the 

goal or desire of the user [19].  CFRL can describe how a device works using causal 

process descriptions [13].   

Function and Behavior Representation Language (FBRL) [64] is a representation 

that captures function and behavior.  Behavior is described in terms of “objects” that are 

input and output through “ports” attached to a device, thus making behavior in FBRL 
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similar to function in engineering design literature [1, 2, 64].  Function, in FBRL, is a 

“topping” on the behavior that captures the “goal” of the device, and is described by a 

four-term vocabulary:  ToMake, ToPrevent, ToControl, and ToMaintain [78].  This 

representation has been shown to support high-level explanation generation for 

mechanical devices, especially in seven identified categories:  function of a component in 

a system (what a component contributes to the overall function), change of scope 

(resolution of the observer’s view of the explanation), occurrence of a fault (causal 

reasoning), use of the ToPrevent function (negation of an action), reason why an output is 

generated, the reason why an output is not generated (causal), and hypothetical 

simulations (what-if analysis).  Several related ontological classification of functions 

have been proposed that support design synthesis reasoning of different types [79, 80].  

These reasoning types, although identified out of a different need (explanation 

generation) than the current research motivations (physics-based concept checking), 

formulate a baseline for concept-level automated reasoning needs.   

In summary, the AI models of device function are inspired by the complex 

interaction between multiple entities and are primarily descriptive.  These are more 

holistic views of function and are subject to the difficulties of modeling intentionality of 

human agents in the design and use of a device [58].  By contrast, the engineering design 

view, described next, takes a simpler view of functions as transformations of material, 

energy, and signal and supports some reasoning. 
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2.2 The Engineering Design View of Function-Based Design 

This viewpoint defines function as transformative actions between the input and 

output flows in a system [1, 81-83].  A graph-based representation called the Function 

Structure is widely studied to describe these transformations [1, 3-6, 21, 25, 84-88], 

where the nodes are the transformative actions (functions) and the edges are the objects 

of actions (flows) of three types: material, energy, and signal passing through the device.  

Figure 2.1 shows the generic graphic template of a function with all three flow types at 

input and output.  The hairdryer model of Figure 1.2 (repeated in Figure 2.2) is a function 

structure model produced by connecting individual functions performed by a device in a 

network.   

 

Figure 2.1: The transformative view of device function [1] 
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Figure 2.2: Function structure of a hairdryer stored in the Design Repository5 

Beyond these basic graph-theoretic constructs, the formalization of this 

representation has been primarily empirical, as opposed to theoretical or logical.  To help 

formalize this representation, controlled vocabularies of functions and flows are 

proposed, typically through empirical observations, where actions and flows within 

mechanical devices and systems are observed and cataloged.  Examples include the 

discovery and cataloging of mechanical functions through engineering forensic studies of 

US Army helicopters by Collins et al. [89] and the function discovery and cataloging of 

electromechanical consumer products stored in the Design Repository [50, 51, 53].  The 

discovered functions and flows are typically stored as verbs and nouns in controlled 

vocabularies for use in future models.  Examples include the vocabulary of 46 elemental 

functions and forty adjectives proposed by Collins et al. [89], the four functions—

Motion, Control, Power, and Enclose—proposed by Kirschman and Fadel [90], and the 

                                                 

 

5 http://repository.designengineeringlab.org/ accessed on August 17, 2011 
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vocabulary of functions in electromechanical products compiled by Szykman et al. [47], 

and the Functional Basis [25, 26], which is a vocabulary of 53 function verbs and 45 flow 

nouns organized in a three-level hierarchy.   

An anticipated benefit of controlled vocabularies is that they can be used to 

enforce consistency of term usage in function models.  However, for ensuring this 

consistency, the vocabulary must be consistent itself and model construction must be 

additionally controlled through grammar rules (modeling guidelines).  At present, the 

formalism for constructing Function Structure models is not developed beyond these 

vocabularies and grammar rules have not been proposed.  This research gap is the one 

directly addressed in this dissertation research and therefore, this gap is separately 

discussed in Section 2.5.   

Though this second viewpoint is largely based on empirical discovery of 

functions observed in existing products, it can be used to support forward design projects 

by providing means to reuse the discovered functional knowledge in new problems.  For 

example, the verbs and nouns of the Functional Basis are identified through reverse 

engineering of consumer products [2], whose models and other design information are 

catalogued in the Design Repository [50, 52], as they are generated.  Once archived, 

several design tools are developed that use this function information to generate concepts 

for new designs [84, 91], to analyze similarity between concepts [88, 92, 93], to analyze 

or predict failure modes in the conceptual phase [94-97], to decompose functional 

concepts to smaller problems [5, 6], and to configure component structures [21, 98].  It 
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must be emphasized that while these tools are computational, they do not perform 

reasoning on the models directly to draw inferences about their physical behavior of 

validity against natural laws.  Thus, the gap addressed by this dissertation research 

(Section 2.5) is not addressed by existing computer tools.  The justification behind this 

reuse-based approach is that a large share of design problems is adaptive or variant [99, 

100], thus justifying reuse of previous design solutions in new problems. 

To support design synthesis automation, graph grammar-based algorithms are 

proposed that start with a high-level function structure and add or modify details within 

the model to decompose it in multiple combinatory ways to synthesize multiple solution 

concepts [5, 6].  The graph-grammar rules [101] are based on historical trends of model 

topology transformation in the Design Repository models.  For example, in the 

electromechanical products within the database, once electrical energy is imported in the 

modeled system, it is typically transferred to a switch, where it is actuated by a user.  

Since the Design Repository contains many models of these products, this trend appears 

as a generative graph-grammar rule, as illustrated in Figure 2.3.  When this rule detects a 

model construct as shown in Figure 2.3a, it transforms it into Figure 2.3b.  Thus, these 

rules are generative grammar rules [102].  However, these grammar rules are purely 

trend-based; they do not use the definitions of function verbs or flow nouns to perform 

reasoning and do not verify that the definition and the use of a term is internally 

consistent and externally valid.  In addition, these rules are executed by the computer 

program and do not address the aforesaid gap of lack of grammar rules for model 

construction by a human designer.   
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(a) Model prior to application of grammar rule 

 

 

(b) Model post-application of grammar rule 

Figure 2.3: Sample graph grammar rule for function model synthesis  (Redrawn 

from [6]) 

2.3 Comparison of the Two Views 

Overall, the two directions in function representation research differ in a few 

ways.  The AI representations attempt to include the user’s and designer’s intent, while 

the graph-based model does not include that, though in some models in the Design 

Repository the user’s interaction (usage) with the device is captured through flows of 

human material or human energy [26].  Second, while a function structure captures 

function as transformations of flows within the system, the AI models traditionally 

discard this view on the ground that transformation alone is inadequate to capture the 

entire essence of functions, specifically the user’s intent and the artifact’s effect on the 

environment [59].  Third, unlike the function structures, the AI models typically do not 

Import 
EE

Transmit 
EE

Actuate 
EE

EE EE EE EE
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use static vocabularies for terms used in the models. Rather, to support modeling through 

a free, natural language, several expanding ontologies of functions have been proposed 

[27-29, 64, 66].  Finally, the AI models have been extended to substantial degree of 

formalism, where modeling languages such as CFRL [13, 19] and tools such as FBS-

modeler [16, 18], IDeAL, and KRITIK [12] have been implemented, at least in academic 

applications.  In the present state of the art, formalization of the function and flow 

definitions in function structures is limited to the vocabularies of functional terms and 

their definitions and automated reasoning on the models is not supported yet.   

2.4 The Functional Basis and the Design Repository  

The Functional Basis [25, 26] is a vocabulary of 53 function verbs (Table 2.1) and 

45 flow nouns (Table 2.2) organized in a three-level hierarchy.  This vocabulary was 

developed at Missouri University of Science & Technology in a joint effort between 

industry and academia and was later reconciled with a former vocabulary developed at 

NIST [47].  This vocabulary was incrementally developed by tearing down 

electromechanical consumer products through the systematic protocol of reverse 

engineering [2] and cataloging their functional information using function and flow 

keywords.  As new keywords were found necessary to define the products, those 

keywords (verbs and nouns) were added to the vocabulary to ensure adequate coverage of 

product variety [25, 26].  Terminally, the collection of terms was found to be adequate to 

describe the newer products of the same kind and the vocabulary was reconciled to its 

final, present form.   
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Table 2.1: The Functional Basis Verb Set 

Primary Secondary Tertiary 

Branch 
Separate 

Divide 
Extract 
Remove 

Distribute 

Channel 

Import 
Export 
Transfer Transport 

Transmit 

Guide 
Translate 
Rotate 
Allow DoF 

Connect 
Couple Join 

Link 
Mix 

Control 
Magnitude 

Actuate 

Regulate 
Increase 
Decrease 

Change 

Increment 
Decrement 
Shape 
Condition 

Stop 
Prevent 
Inhibit 

Convert Convert 

Provide 
Store Contain 

Collect 
Supply Supply 

Signal 

Sense 
Detect 
Measure 

Indicate 
Track 
Display 

Process 

Support 
Stabilize 
Secure  
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Table 2.2: The Functional Basis Nouns Set 

Primary Secondary Tertiary 

Material 

Human  
Gas  
Liquid  

Solid 
Object 
Particulate 
Composite 

Plasma  

Mixture 

Gas-Gas 
Liquid-Liquid 
Solid-Solid 
Solid-Liquid-Gas 
Colloidal 

Signal 
Status 

Auditory 
Olfactory 
Tactile 
Taste 
Visual 

Control 
Analog 
Discrete 

Energy 

Human  
Acoustic  
Biological  
Chemical  
Electrical  

Electromagnetic 
Optical 
Solar 

Hydraulic  
Magnetic  

Mechanical 
Rotational 
Translational 

Pneumatic  
Radioactive/Nuclear  
Thermal  

The verbs and nouns in the Functional Basis are meant to be used as functions and 

flows in a function structure.  For example, the conversion of electrical energy to 

mechanical energy in an electric motor can be recorded as a conversion from electrical 
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energy (EE) to mechanical energy (ME), as shown in Figure 2.4.  This specific model 

uses function verbs and flow nouns from the secondary level of the vocabulary.  Further, 

the hierarchy of terms is used to control the specificity of the terms.  For example, to 

describe the output energy more specifically, the secondary term ME can be replaced 

with a suitable tertiary term that is a taxonomical child of ME – in this case, rotational 

mechanical energy (RME).  Conversely, if a lower resolution of description is required, 

the primary term energy (E) can be used, hiding the details that the output energy is 

rotational (tertiary), or even mechanical (secondary).  The provision for switching levels 

of specificity is claimed to support functional decomposition and ideation support [25]. 

 

Figure 2.4: Function structure of an electrical motor using the Functional Basis 

(secondary level) 

The terms in the vocabulary are defined within Functional Basis literature [26], as 

well as within the Design Repository webpage6, as shown in Figure 2.5. By selecting a 

term within the vocabulary tables (Import selected in this figure), the definition of the 

term can be viewed in a different pane.  

                                                 

 

6 http://repository.designengineeringlab.org/ accessed on August 17, 2011 
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Figure 2.5: Definitions of terms within the Design Repository 

The Functional Basis has been used to store the reverse engineered design 

information for approximately 185 electromechanical consumer products produced by the 

systematic tear-down process described above.  This design information is stored in a 

web-based archive called the Design Repository [50, 52].  In addition to functional 

information, this repository also stores information about assembly, manufacturing, and 

physical parameters such as dimensions, mass, and color for the components and 

subassemblies of the products.  Figure 2.6 shows a screenshot of the artifact browser page 

of this repository, showing one component (heating coil frame) of a specific product (the 

hairdryer).  Notably, since the functional information stored in this archive was created 

through reverse engineering, where each component was examined in isolation and its 

functionality was recorded, the functions here are attributed to individual components.  
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As a result, the functional information stored in this archive is not solution-neutral, which 

contradicts the recommendations of the design texts that a solution neutral description is 

preferred for supporting idea generation [1, 3].  As seen from Figure 2.6, the functions 

are captured in this repository using a list view.  Additionally, graph-based function 

structures for approximately half of the products in the Design Repository are available in 

drawing form. The model in Figure 2.2 is an example of such a graph-based model.  

Unfortunately, these drawings are static images and do not support automated reasoning.  

Additionally, for many products, the list view of functions does not agree with the graph-

based description, making the data stored in the archive internally inconsistent.  
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Figure 2.6: Artifact browser in the Design Repository showing the heating coil 

frame of the hairdryer  

The Functional Basis and the Design Repository are widely studied in design 

research, and have been utilized in constructing several academic design tools and 

methods [5, 6, 21, 84, 88, 91, 94-96, 98].  For example, the Concept Generator tool 

suggests component layouts for new design concepts using the component-function 

matrices of similar products stored in the Design Repository, similar to an automated 

morphological analysis [84, 91].  Similarly, a failure analysis method, named the 

Function-Failure Design Method (FFDM), has been proposed to predict potential failure 
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modes in the conceptual design phase of new designs based on the archived failure 

history of components performing similar functions [94-96].  This vocabulary has also 

been used for analyzing functional similarity between products, which relies upon 

identifying similar occurrences of function-flow pairs between two function structures 

[88].  The Functional Basis has been extended to formulate a vocabulary of standard 

mechanical components [21, 98].  Finally, the Functional Basis and Design Repository 

have been used in creating an automated ideation tool that creates multiple options of 

decomposing a given function structure based on historical data of functional transitions 

stored in the Design Repository [5, 6].  These design tools are all based on the premise 

that the terms in the Functional Basis vocabulary are consistent and adequate.  However, 

this assertion has never been tested through objective empirical studies.  In the next 

section, the Functional Basis vocabulary is critically examined as a benchmark of the 

state of formalism of vocabulary-based modeling of function structure graphs and the 

research gap addressed in this dissertation is articulated.   

2.5 Research Gap Analysis: Lack of Rigor in the Function Structure Formalism 

While function structure models support graph-based visualization, interpretation, 

and reasoning by human designers, they have not been formalized as a representation.  In 

fact, the only element of a formal representation available is a collection of vocabularies 

of functions and flows that are formalized to limited extents [25, 26, 47, 103].  Beyond 

some basic modeling guidelines [87, 104], no formal grammar rule for function structure 

construction have been proposed.  The vocabularies are intended for providing high-level 

notional descriptions of mechanical actions suitable for modeling of products and 
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interpreting those models by human designers.  These actions are not described with 

physics-based rigor and contain at least three levels of inconsistency, as explained next.  

The most commonly used vocabulary of function terms, the Functional Basis, is taken in 

this research as a benchmark of existing formalism.  The lack of rigor in this vocabulary 

is illustrated here to highlight the types of issues that must be addressed when developing 

a formal representation of functions.  The intent of this exercise is not to point out 

weaknesses of previous research.  As recognized earlier, the Functional Basis is the first 

consolidated effort toward a finite set of function terms and is widely accepted and used 

in design research [5, 20, 88, 94, 95].  Its main intent is to support human-driven 

construction, interpretation, and understanding of function models and to that end, the 

vocabulary is considered successful by many researchers [5, 6, 20, 84, 88, 91, 94, 95, 

101, 105].  The analysis is presented only to identify opportunities of formalization of 

function definitions for the current dissertation research and to clearly establish the gap 

this research addresses.   

2.5.1 Vocabulary-Level Discrepancies 

Vocabulary-level discrepancies are instances where the inclusion of a term in the 

vocabulary itself causes inconsistency within the vocabulary.  For illustration, the energy 

flow vocabulary of the Functional Basis is repeated in Table 2.3.  In this vocabulary, the 

basis of classification for all terms is not uniform.  The nouns are meant to define 

different forms of energy used in mechanical devices [26].  However, while some of 

these terms such as mechanical, electrical, thermal, or nuclear energy are forms of energy 

in a physics-based sense, terms such as human energy, biological energy, and solar 



 

 41  

energy are classes based on the source of energy, rather than its physical form.  

Similarly, hydraulic and pneumatic energies are classes based on the carrier material 

medium of energy, as hydraulic energy is essentially mechanical energy carried by a 

liquid and pneumatic energy is the same carried by a gas.  Mixing multiple bases of 

classification within the same vocabulary makes the vocabulary non-normal and 

redundant, and therefore unsuitable for use in formal reasoning.  For example, human 

energy can be mechanical energy, when the energy is available as muscle work that 

moves an object against a force across a distance.  Biological energy obtained from 

burning wood or coal is a mixture of many physical forms such as thermal and optical.  

Optical energy and radiated thermal energy are types of electromagnetic radiation, yet 

these are listed as different types in the vocabulary.  Finally, since the material 

vocabulary contains liquid and gas (Table 2.2) and the energy vocabulary has mechanical 

energy, the terms hydraulic and pneumatic energy are redundant.   
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Table 2.3: Energy flow types within the Functional Basis  

Energy 

Human  

Acoustic  

Biological  

Chemical  

Electrical  

Electromagnetic 
Optical 

Solar 

Hydraulic  

Magnetic  

Mechanical 
Rotational 

Translational 

Pneumatic  

Radioactive/Nuclear  

Thermal  

2.5.2 Definition-Level Lack of Rigor 

While the existence of certain terms in the vocabulary is shown above to be 

inconsistent, once those terms are accepted in the vocabulary, their definitions can be 

further shown to contain lack of rigor.  This definition-level lack of rigor happens when  

1. A definition contains unexplained and ambiguous terms (ambiguity), or 

2. Definitions of two terms are conflicting or redundant mutually (inconsistency) 
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These two types of definition-level limitations are illustrated below.  The conflicts 

of the definition with natural laws or other body of knowledge external to the definitions 

is not examined here, since the focus here is to examine only internal inconsistencies, 

rather than external invalidity.   

Ambiguity in Functional Basis Verb Definitions 

Table 2.4 shows the notional definition of seven randomly sampled verbs from 

the Functional Basis.  For each verb, keywords that are necessary for consistent 

interpretation of the definition but are unclear from the definition are identified.   

Table 2.4: Sample verbs and notional definitions from the Functional Basis [26] 

Verb Notional Definition Ambiguous Concepts 

Extract To draw, or forcibly pull out, a flow Draw, force, pull out 

Allow DoF To control the movement of a flow by a 

force external to the device into one or more 

directions 

Control, movement, force, 

directions 

Inhibit To significantly restrain a flow, though a 

portion of the flow continues to be 

transferred. 

Significantly, restrain, 

portion, transfer 

Distribute To cause a flow (material, energy, signal) to 

break up. The individual bits are similar to 

each other and the undistributed flow 

Break up, bits, similar 

Actuate To commence the flow of energy, signal, or Commence 
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Verb Notional Definition Ambiguous Concepts 

material in response to an imported control 

signal 

Collect To bring a flow together into one place Together, place 

Contain To keep a flow within limits Keep, limits 

A major observation from these definitions is their inherent lack of rigor and 

objectivity.  For example, one can ask for the verb Extract “what action constitutes 

drawing?”, “are there limits to the force that qualifies the action as Extract?”, “what is a 

definition of pulling out?”, or “from where is the flow pulled out?”.   Similarly, for 

Inhibit, one can ask “how much portion is significant?”, “Since the definition mentions 

that the unrestrained portion is transferred, is this verb a special case of Transfer?  Then, 

why is it classified under Stop?”, or “how is a portion of a flow defined?”.  Similarly, for 

the verb Contain, one can ask “is the limit mentioned in the definition a limit of space, 

time, or some other quantity?  For example, if a function within a lemonade-making 

machine keeps the density or sweetness of the liquid within an upper and a lower limit by 

varying the amount of sugar, should that function be modeled as Contain?  Why or why 

not?”  Each of these questions reveals an opportunity where more objective assignment 

of words could make the definition more rigorous.   

Internal Inconsistency in Functional Basis Verb Definitions 

Some instances of internal inconsistency are easier to detect from direct 

comparison of the definitions.  For instance, while a verb named Separate is present in 
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the Functional Basis, another verb—Divide—is defined as “To separate a flow” [26], 

thus making one of the two verbs redundant.  Some other inconsistencies need a rigorous 

analysis to be revealed.  To this end, Table 2.5 shows syntactic translations of the existing 

textual definitions of four verbs—Import, Export, Transfer, and Guide—within the 

Functional Basis, using first order logic-based syntactic statements.  To eliminate any 

negative bias against the level of formalism of these definitions, each definition is treated 

as a formal statement of logic and is syntactically translated.  For example, the textual 

definition of Import in Functional Basis is “to bring in a flow (material, energy, signal) 

from outside the system boundary (to inside the system)”.  The last clause in parentheses 

is not a part of the original definition, but is assumed to be true based on applications of 

this verb in Design Repository models.  Since only one flow is mentioned, there is only 

one element in the both input list and the output list of the formal definition.  Further, 

since the flow is outside the system boundary before importing and belongs within the 

system after being imported, the functional location (FLoc) of the input and output flows 

of this verb are assigned as the environment and the system, respectively.  In these 

definitions, the functional location and geometric location are treated to be different 

concepts.  A function model includes a region within a functional space (F_Space) and 

describes entities such as functions and flows within that space, in analogy with a 

geometric solid in the boundary representation [32, 33] that includes a collection of 

points in the geometric space (G_Space).  Locations within the F_Space are FLoc, while 

locations within the G_Space are GLoc, such as a space occupied by a valid manifold 

solid [34].  The definition of Transfer illustrates the need for this distinction, as the 
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function causes a change of GLoc of the flow, as opposed to Import, which changes the 

flow’s FLoc.   

Table 2.5: First order logic-based translation of four Functional Basis verbs 

1

1

1

1

Class Import : Function

{

In_List = {I };

Out_List = {O };

I .FLoc = FEnv;

O .FLoc = FSystem;

}  

Import 

1

1

1

1

Class Export : Function

{

In_List = {I };

Out_List = {O };

I .FLoc = FSystem;

O .FLoc = FEnv;

}  

Export 

1

1

1 1

Class Transfer : Function

{

In_List = {I };

Out_List = {O };

I .GLoc  O .GLoc;

}



 

Transfer 

1

1

1 1

Class Guide : Function

{

In_List = {I };

Out_List = {O };

GPoint Path1 [int n];

I .Course = O .Course Path1;

}



 

Guide 

Under this formalism, the syntactic definitions should allow identifying the 

definition of the superclass, Channel, by taking intersection of the four individual classes.  

A logical definition of Channel is derived from this intersection (Figure 2.7).  A 

comparison of this definition with the textual definition of Channel—“To cause a flow 

(material, energy, signal) to move from one location to another location”—proves that the 
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textual definition of Channel does not warrant the verb to be used as a super-class of its 

subclass verbs.  In fact, this textual definition is identical to that of Transfer, which is an 

anomaly that invalidates the class hierarchical organization of these verbs.  Thus, 

although the Functional Basis vocabulary is hierarchically organized, the terms are not 

hierarchically valid, when formally inspected.   

1

1

Class Channel : Function

{

In_List = {I };

Out_List = {O };

}  

Figure 2.7: Logical Definition of Channel derived by taking intersection of the 

definitions in Table 2.5 

Due to these vocabulary-level and definition-level inconsistencies, the vocabulary 

does not guarantee consistent models, even if it was implemented in a computer tool.  

Further, the lack of modeling grammar compatible with this vocabulary is another source 

of lack of formalism, leading to model-level inconsistencies and invalidities, as illustrated 

next. 

2.5.3 Model-Level Discrepancies  

Model-level discrepancies are instances where the use of the verbs in a function 

model creates conflicts mutually, with the definition of its class, or with external natural 

laws.  These instances are not indicative of the inherent definitions of the verbs.  Rather, 

they illustrate the infiltration of errors in models due to the lack of rigorous modeling 
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grammar rules.  Besides some preliminary model construction guidelines [87, 104], 

modeling rules with Functional Basis verbs and nouns have not been formalized.  Figure 

2.8 shows the hairdryer function structure of Figure 2.2, with some inconsistencies 

labeled.  Four types of violation: (1) vocabulary violation, (2) definition violation, (3) 

conservation violation, and (4) irreversibility violation are highlighted.  The four 

instances of vocabulary violation are terms in the model that are not available in the 

Functional Basis vocabulary.  The function “Convert HE to CS” violates conservation 

from a topological sense, since it inputs an energy flow but produces none.  The function 

“Guide Gas” violates the definition of Guide in the vocabulary—“ To direct the course of 

a flow along a specific path” [26]—since the definition does not allow adding energy to 

material flows but the function accomplishes that action.  Finally, none of the functions 

explicitly show losses or residual energy flows produced by the device, thus making the 

model invalid against the principle of irreversibility.   

 

Figure 2.8: Illustration of model-level inconsistencies  

Definition violation 
Conservation violation

Conservation violation
(EE is not conserved 

across boundary)

Definition violation 
conservation violation
Irreversibility violation

Definition violation
Conservation violation

Irreversibility violation
(No losses shown)

Vocabulary violation

HE, HM, or HS?
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In summary, this examination of the most popular vocabulary of function 

structure modeling—the Functional Basis—identifies lack of logical rigor in its definition 

and application at different levels.  This illustration consolidates the lack of rigor in the 

current state of the art in function structure modeling.  Due to this overall lack of rigor, 

the models are not suitable for formal analytical reasoning that examines a model’s 

validity against physics laws or draws inferences in order to discover or predict behavior 

of the modeled reality (concept).  This illustration highlights the need for a formal 

representation of mechanical functions that is both internally consistent (no self-

contradiction or redundancy) and externally valid against the natural laws, specifically, 

the principles of conservation and irreversibility.  The representation proposed in this 

dissertation research satisfies these criteria, as summarized in the last chapter.   

In this context, the need to support conservation-based validity in function models 

is previously established in the context of Multi-level Flow Modeling (MFM) [106].  Six 

atomic functions acting on mass and energy (source, sink, storage, balance, transport, and 

barrier) and four device actions (maintain, produce, destroy, and suppress) are presented 

with the express purpose of traversing between different levels of abstraction of device 

description, such as abstract goals and physical functions [106].  However, in the context 

of the function structure representation, which describes functions as transformation of 

flows, the laws of conservation have not been explicitly captured in the verbs definitions.  

While the verbs’ definitions need to be formalized in order to support computational 

reasoning, this research aims at incorporating the conservation laws and irreversibility-

based constructs in those formalized definitions.  
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2.6 Modeling Flexibility and Expressive Power of Notional Terms 

While the lack of rigor of the contemporary top-down vocabularies such as the 

Functional Basis are discussed, it can be argued and observed in the Design Repository 

models that this lack of rigor indirectly provides a benefit to the modeler, as the 

definitions do not constrain the modeler with specific details.  The lack of rigor allows 

overloading the meaning of the terms to suit the modeling need at hand, and the terms are 

perceived as more expressive and flexible for function modeling, at least by human 

modelers.  For example, while the definition of Actuate (Table 2.4) requires that the 

control signal used to commence the flow be imported, in the hairdryer function structure 

of Figure 2.8, the signal flow in Actuate EE is not imported from the environment; it is 

produced by another function.  Possibly, the modeler overloaded the definition to retain 

the idea that to actuate a flow, a control signal should be used, while he ignored the 

requirement of importing.  This case, however, is an example of ignoring an existing 

constraint (signal must be imported) within a notional definition.   

Another benefit of using notional terms in function models is their ability to 

transmit complex ideas of actions in once instance.  Each notional verb describes an 

action that can be described with multiple physics-based elementary actions proposed in 

this research.  For example, as apparent from the definition of Inhibit (Table 2.4), a 

material flow is de-energized off its kinetic energy (DeEnergize_M), but in a manner (not 

clear in definition) such that some of the energy is available to a portion of the flow, 

which could be described as an Energize_M function.  The balance energy is probably a 

residual or transferred to another function (not clear in definition).  Similarly, the 
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definition of Extract, applied to a Material flow, implies that the material experiences a 

force.  If the “pull out” term implies any change in spatial location, the force must 

perform work, and thus the material must be energized (Energize_M), while some energy 

could be lost.  Thus, the notional verbs are more expressive than the physics-based 

verbs—at least to a human modeler—from two accounts: (1) they are less rigorous and 

afford overloading to meet the current modeling need and (2) they describe more 

complex actions that can take multiple physics-based verbs to describe.   

The above illustration shows that the notional verbs, specifically those in the 

Functional Basis, are (1) weakly rigorous, but (2) highly expressive.  Both characters 

result from the use of incompletely or informally defined key concepts that must be 

syntactically captured to formalize these definitions.  This task of formalizing the 

notional definitions is out of the scope of the current dissertation, although it is an 

important extension that is already underway [48].  With these definitions and their 

meaning (semantics) captured in syntactic form, semantic reasoning on these terms could 

be possible in the future.  For example, since the verb “Convert” implies that one form or 

material or energy is converted into another form, by “knowing” this meaning, a 

computer could reason that an instance of the verb where both the input and the output 

flows are of the same type, is invalid.  In addition, if the computer “knew” that the 

amount of input energy and the amount of output energies must be equal, as required by 

the first law of thermodynamics (energy conservation), it could perform quantitative 

reasoning to detect or prevent instances of this verb where this condition is violated.  By 

extension, if the system “knew” that energy conversion always involves a loss as 
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consequence of the second law of thermodynamics, it could detect or prevent this type of 

model-level errors, which could result from designer oversight or the complexity of the 

system designed.  However, a computer “knows” about a domain of discourse such as 

physics laws only when the entities, relations, attributes, and constraints necessary for 

storing, algorithmically manipulating, and displaying the knowledge are formally 

described in a representation.  Representing human-interpretable, notional concepts in 

computer-implementable and computer-reason-able form in this manner is a central 

challenge of artificial intelligence [107] and  this dissertation research proposes a 

representation of mechanical functions that supports reasoning on these laws, without 

using this explicit semantic information. 

In summary, this chapter briefly reviews the contemporary advances in function-

based design within the artificial intelligence and engineering design viewpoints.  Based 

on the gap analysis presented in this chapter, the next chapter develops the requirements 

on the formal representation in greater detail.  The contributions in previous research 

discussed in this chapter are revisited and critically analyzed in the context of those 

requirements in the next chapter.   
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CHAPTER 3. REQUIREMENTS ANALYSIS FOR THE REPRESENTATION 

The purpose of this chapter is to analyze the high-level requirements the formal 

representation of functions must satisfy in order to support computational analytical 

reasoning in early design.  The requirements identified are based on essential qualities of 

formal logic systems discussed in literature [30, 31, 108-114], and identified research 

gaps in function-based design [48, 115, 116].  Coverage, scalability, consistency, and 

validity are general requirements for logic systems [109, 111-114, 117-121].  Not every 

system meets each requirement.  For example, in mathematics, it can be shown that any 

set of axioms of natural number arithmetic that is consistent cannot be also complete, as 

proven by the incompleteness theorem of Kurt Gödel [122].  These requirements are 

therefore not constraints for a representation.  Rather, these are criteria for evaluating 

how rigorous the representation is.  In addition to these criteria, four separate 

requirements (nos. 2, 3, 4, and 5 in the list below) are identified specifically for the 

representation problem addressed in this dissertation, based on gaps in design automation 

research.  Each requirement is followed by a brief discussion of how the gap is addressed.  

Following are the high-level requirements for the proposed representation. 

1. Coverage over multiple physics domains (Section 3.1) 

2. Domain-independence of physics laws (Section 3.2) 

3. Physics-based concreteness of modeling terms (Section 3.3) 

4. Normative and descriptive modeling support (Section 3.4) 
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5. Qualitative modeling and reasoning support (Section 3.5) 

6. Extendibility (Section 3.6) 

a. Quantitative reasoning extension 

b. Causal reasoning extension 

7. Scalability (Section 3.7) 

8. Consistency and validity (Section 3.8) 

These requirements are analyzed in detail and articulated for the proposed 

representation in the following subsections. 

3.1 Coverage over Multiple Physics Domains 

3.1.1 What is Coverage over Physics Domains? 

Coverage of a representation over physics domains means the set of domains of 

physics whose principles and engineering applications can be modeled with the 

representation [44, 119].  For example, if representation-A can be used to model only 

electrical phenomena and representation-B can be used to model both electrical and 

acoustic phenomena, representation-B is said to have broader coverage over physics than 

representation-A.  Notably, the ultimate practical usefulness of a representation depends 

on a combination of several qualities such as coverage, consistency, validity, reasoning 

accuracy, and efficiency.  These concepts are treated as orthogonal to each other in this 

discussion: a change of coverage of a representation does not necessarily imply a change 

in the other qualities.  Thus, the coverage requirement is discussed here without regard to 

the other requirements in the forthcoming sections.   
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3.1.2 Coverage of Contemporary Representations  

Since the physical principles required to solve open-ended, as-yet unsolved design 

problems are difficult to foresee, in order to be useful for these problems, the 

representation must support modeling and reasoning based on a wide range of physical 

phenomena and principles.  It is well recognized in artificial intelligence that the broad 

coverage of a representation usually comes at a cost of reasoning accuracy and efficiency 

[30].  At one extreme, expert systems that use domain-specific design knowledge can 

perform fast and accurate reasoning for a specific problem, but cannot solve a different 

problem even with less speed or accuracy.  Their reasoning accuracy and speed rely upon 

the evolutionary discovery of domain-specific design rules to be reused in future 

designs—an opportunity that presumably will not exist in novel design problems.  

Examples include software for configuring automotive subsystems, airplane subsystems, 

nuclear power plants, or turbo-machine stages.   

At the other end of this spectrum lie the general purpose CAD, CAE, and CFD 

tools that can model and analyze systems from virtually any engineering domain.  For 

example, the same commercial CAD/CAE tool can be used to model subsystems within 

nuclear power plants, cars, and turbo-machines with equal precision and analyze their 

behavior with comparable speed and accuracy.  However, this broad coverage over 

design domains—as visible from the ability to model virtually anything geometrically 

definable—is realized by building the tools on highly generic representations such as the 

boundary representation [32-34, 123], which comes at the cost of the designer having to 

construct models for individual designs analyzed.  Opportunity for capturing and reusing 
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domain knowledge is limited, as these systems are not intended to serve a specific 

problem domain, although several intermediate layers of customization exist between 

these two extremes, where reusable design elements such as macros and parametric seed 

parts are used to adapt the general-purpose CAD tools to specific design problems [124, 

125].   

3.1.3 The Coverage Requirement 

A wide range of physical and mechanical engineering principles and devices 

should be possible to model and used in early reasoning.  Specifically, basic 

phenomena of electrical, mechanical, and thermal energy forms and their 

interaction with various material forms should be describable.  This need is 

addressed by designing a vocabulary of physics-based atomic functions (Chapter 8) and 

flows that can model basic physics principles from standard college-level physics and 

engineering texts [126-129] and could model additional principles in the future.  The 

demonstration of this modeling coverage is presented in Chapter 9. 

3.2 Domain-Independence of Physics Laws  

3.2.1 What is Domain-Dependence? 

Domain-dependence of a physical law describes how restrictive the law is to a 

given domain of physics, that is, if it can be used to explain phenomena and solve 

problems only within a certain domain or if it can be applied to a broader set of problems.  

As physics texts [126-129] commonly illustrate, the laws and equations in a given 

domain (often analogous to chapters in the book) are derived from more generally 
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applicable laws through simplifications and restrictive assumptions.  By this process, the 

derived laws, while applicable to those premises under the simplifications, lose their 

general applicability.  For example, hydrostatic pressure under a vertical liquid column of 

depth h (p = ρgh) can be explained using the concepts of pressure, volume, density, and 

weight.  While this expression applies to only hydrostatics problems, pressure, volume, 

density, and weight are more generally applicable concepts.  The concept of weight (mg) 

is derived from the Universal Law of Gravitation using the simplification that one of the 

masses in the equation for universal gravitation is the Earth.  Here, the expression w = mg 

with g = 9.81 m/s2 is restrictive, as it only represents the force of attraction between a 

body near the Earth and the Earth, while universal gravitation is a more general concept 

applicable to any two bodies in the Universe.  In fact, gravitation is one of the most 

fundamental laws of physics that cannot be explained with other classical laws, other than 

the general theory of relativity [130, 131].  This successive loss of generality caused by 

adapting the laws and rules (equations) of physics to specific domains such as the Earth 

(for weight) and hydrostatics (for pressure) is illustrated in Figure 3.1.  The figure shows 

the derivation of the expression for hydrostatic pressure from the Universal Law of 

Gravitation.  Each downward arrow leads to a more domain-specific concept that is 

derived from a more domain-independent concept, through the simplifications mentioned 

above the arrow. 
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2

Most domain-independent concept: Universal Law of Gravitation
M.m

F G , applies to any two masses M and m in the entire Universe
r

Domain-independent definition: Pressure, p Force / Area F / A

Simplification-1





: 
1. One of the attracting masses is the earth and the other is the mass of study
2. Thus, M = mass of earth = constant
3. And r = distance of m from the center of the earth

Domain-specific concept: Wei


 
 

2

2

ght of a body (m) on earth

W F m. G M r m.g

where g G M r  a constant for this domain only (Terrestrial Gravity)

 gravitational field strength at the given location on the earth

Simplification-2:
1. Measure 

  

 



pressure using the weight and area of a right cylinder
2. Pressure exerted on the bottom surface is the weight of 

the water column, which is a force supported by area A
3. Top surface of the liquid is not externally pressurized

Further domain-specific concept: Hydrostatic pressure at depth h below the surface
p F / A
m.g / A,  assuming no additional pressure exerted on the liquid surface, and 

assuming h 



 


 
 

is not high enough to cause g to significantly change
V g / A,  m / V,  assuming  is constant over h and V

Ah g / A,  V Ah,  assuming A is constant over h
gh

    
  
 




 

Figure 3.1: Loss of generality of physics equations due to increasing domain-

dependence (Adapted from [126]) 

While the more general versions of the laws are not inapplicable to the specific 

domains, the domain-specific derived rules and laws are more practical to use, as they are 

written in terms of parameters that are easier to measure and control in those domains.  
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For example, the expression for hydrostatic pressure can be written in terms of universal 

gravitation (Figure 3.2).  This equation could actually be used to cases where the 

assumptions in p = ρgh do not apply, such as for a very tall water column along which g 

or ρ changes.  However, for most practical water columns, this equation would not be 

very useful, since it is expressed in terms of difficult-to-measure parameters such as the 

mass of the column and the Earth, the distance of the column’s center of mass to the 

earth’s, and the universal gravitational constant, G.  Further, it uses the parameter A, 

which, for other reasons not captured in Figure 3.2, is insignificant for measuring 

hydrostatic pressure at a point inside the liquid.  The expression p = ρgh is not only 

smaller and simpler; it is expressed in terms of parameters that are much easy to measure 

and control.  However, the p = ρgh form only works under the assumptions stated in 

Figure 3.1 and makes the equation more restrictive.   

 
Earth Water

2
2

Earth-Water

Earth-Water

Force of gravitational attraction between 

the Earth and the liquid column
Pressure 

Area of the base of the column

M .mM.m GG rr ,
A A

where r  is the distance between the ce



 

nters of mass 

of the Earth and the water column

 

Figure 3.2: Expression of hydrostatic pressure in terms of universal gravitation 

3.2.2 Level of Domain-Dependence of Comparable Representations  

The issue of coverage over physics could possibly be addressed in two 

approaches: (1) by finding the specific physics laws and design rules for different design 
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domains and incrementally adding them to an extendible representation that will 

eventually solve a broad array of problems with high accuracy and efficiency, and (2) by 

finding suitable domain-independent physics laws that apply to a broad array of 

mechanical systems without being rewritten for specific domains and capture them in a 

representation.  The first approach is taken by multi-domain simulation and solving tools 

such as Modelica7 [132-134], which can configure multiple systems within the 

automotive domain, such as the drive train, air conditioner, and suspension.  In academic 

research, similar approach is used in the 2nd CAD tool of conceptual design of 

electromechanical systems [135], which relies on codifying catalog data of mechanical, 

fluid, and electrical components.  However, while such tools can eventually solve a 

variety of problems, at any point in time they still remain domain-specific and could not 

be used to solve a problem whose domain knowledge is not captured yet.  Moreover, 

design rules in these systems are typically represented as algebraic or differential 

equations and require quantitative specification of design parameters during modeling, 

which may not be possible in conceptual design, thus rendering this approach unusable 

for the purpose.   

The research in this dissertation takes the second approach.  Instead of focusing 

on domain-specific physical laws and design rules, it captures the laws that are generic 

enough to apply to any system at any stage of product development, such as the 

                                                 

 

7 https://www.modelica.org/, accessed on August 16, 2011 
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conservation laws of mass and energy.  The degree of domain-dependence of physics 

laws forms a continuum and choosing the appropriate level is a fundamental challenge in 

this research.  At one end of this spectrum are the most fundamental laws that physicists 

agree can be used to explain all phenomena studied: (1) conservation laws of mass and 

energy, (2) conservation of momentum of an isolated system, (3) Newton’s law of 

gravitation, (4) Newton’s three laws of motion, (5) Maxwell’s laws of electromagnetism, 

(6) the laws of thermodynamics, and (7) the invariance of speed of light [130, 131, 136].  

Arguably, all physical phenomena known to science can be explained using these laws, 

just as pressure was explained in terms of universal gravitation, albeit often in a much 

convoluted manner.  However, these laws are not directly used to solve problems in 

physics and certainly not in engineering, because easier and more practical views derived 

from these fundamental laws exist for different domains.  For example, the phenomena of 

sound propagation in air can be explained by applying the laws of motion to the 

individual air particles [126] and the concept of pressure of an enclosed gas can be 

explained from laws of motion and momentum conservation in elastic collision using the 

kinetic theory of gas [126].  Yet, there exists specific equations for solving problems in 

sound propagation and pressure [126], thus saving the physicist the labor of deriving 

every calculation from the fundamental laws.  As these physical phenomena are used in 

engineering design, the laws become further domain-specific, depending on which design 

parameters are measurable and controlled, and in terms of which parameters the 

phenomena was discovered and studied.  For example, the effect of surging in a gas 

medium involves both pressure and propagation of the wave front at sonic velocity.  Yet, 
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in centrifugal compressor design—based on the author’s experience of working at a 

compressor design company—the rules to prevent surging are typically written in terms 

of empirical laws concerning geometry, gas properties, and flow parameters, rather than 

in terms of the kinetic theory or the more fundamental laws.  Domain-specific modeling 

and simulation tools such as Modelica typically use design rules at this end of the 

spectrum. 

3.2.3 The Domain-Independence Requirement 

The representation must formalize mechanical functions using physics laws 

that are generally applicable to all domains of mechanical design, rather than 

incrementally adding specific knowledge and design rules from different domains.  

Specifically, the principles of conservation and irreversibility must be included in 

the representation.  To this end, the physics laws in standard college-level physics 

books [126-129] is deemed appropriate, as engineers are usually familiar with them by 

education and while these laws are not specific to any class of devices, they could be 

used to analyze design models at a theoretical level if the models were constructed by 

composing physical phenomena that these laws govern.  For example, if a conceptual 

model of a clothes ironing machine is constructed in terms of the transfer of mass and 

energy flows, the representation could support reasoning to determine if the laws of 

balance are violated in the model or if the efficiency of a subset of processes is within a 

specified range.  This use of college-level, device-independent physics to analyze early 

design is a key feature of this research and has not been explored previously.  

Specifically, function structure graphs describe the flow of energy and material: the two 
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entities that are subject to a fundamental law of physics—the laws of conservation—even 

at a conceptual level.  Thus, these models provide an opportunity to enforce the 

conservation and balance laws of mass and energy, as realized in the representation. 

However, in order to model a device using a function structure that is consistent 

with physics, the elements of the model—function verbs, flow nouns, their relations, and 

their modifiers—must be defined with a physics-based concreteness, so that formal 

reasoning can be supported.  This requirement is explained next.    

3.3 Physics-Based Concreteness of Modeling Terms  

3.3.1 What is Concreteness? 

The adjective “concrete” is used here as an antonym to “abstract”.  Traditionally, 

function verbs are discovered empirically, by observing actions performed by mechanical 

artifacts and asking: “what could be a verb to describe the observed action for future use 

in function modeling”?  However, when one attempts to describe the actions of a device, 

multiple descriptions can result depending on the abstractness of the language and the 

degree of detail sought.  For example, when attempting to describe the overall action of a 

hairdryer, a designer can use any of the following statements.  The action in each 

statement is underlined. 

1. “It helps the user to dry hair.” 

2. “It dries hair.” 

3. “It produces heat for drying hair.”  

4. “It produces a stream of hot air.” 
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5. “It transforms cold air at rest to hot air in motion.” 

6. “It converts electrical energy to kinetic and thermal energy and adds them to 

air.” 

7. “It converts electrical energy to heat and kinetic energy of a fan rotor.” 

8. (All of the above) + “it converts part of the incoming energy to mechanical, 

thermal, and acoustic energy, and a magnetic field, and releases them to the 

surroundings.” 

Each of these sentences is a description of the device’s action and each is correct, 

but they are in increasing order of concreteness and decreasing order of abstractness.  The 

first sentence tells nothing about what the device does, rather, describes what a user could 

do with it, although it is phrased so that the device is the subject of the sentence.  In 

affordance-based design, this view is called the user-artifact affordance (UAA) of the 

device [137-140], to illustrate what the device affords, rather than what it “does”, for a 

user.  The subsequent sentences become decreasingly descriptive of the user, his goal (to 

dry hair), the device’s purpose as perceived by the designer, user, or society (to dry hair), 

or the device’s surroundings (air).  They become more concrete as they focus directly on 

the device’s physical actions and ignore what bigger purpose is served by those actions.  

The last sentence is a highly concrete description of what the device “does”, rather than 

what effect is creates, and leaves the description of its function to the spinning of the fan.  

At this level of concreteness, even the fact that the device draws or delivers air is 

considered contingent upon the surroundings being filled with air and thus is not a 

description of the device’s action.  Similar hierarchies of abstraction are recognized in 
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previous research, notably by Morten Lind in his Multilevel Flow Model [106] with three 

levels: goal, purpose, and function, and by Chandrasekaran who distinguishes between 

“function as effect” (more abstract) and the “device-centric” view (more concrete) [7, 60-

62].  Experimental evidence also supports similar variability in concreteness and level of 

detail in product description [141, 142].   

3.3.2 Concreteness of Existing Function Vocabularies  

The reverse engineered function vocabularies, specifically the Functional Basis 

[26] and Collins’ vocabulary [89], generally define terms at device-centric concreteness.  

However, these terms are not described directly as physics-based phenomena of the 

device, possibly because they were not intended to support physics-based reasoning.  

Rather, they are defined at a level of concreteness a designer is likely to find useful for 

modeling.  For example, the verb Separate is defined in the Functional Basis as “To 

isolate a flow (material, energy, signal) into distinct components. The separated 

components are distinct from the flow before separation, as well as each other” [26].   

The definition does not describe the physical process that causes separation.  Further, 

function models in the Design Repository8 reveal that different applications of this verb 

that are consistent with this definition are realized through different physical phenomena.  

For example, the use of the verb Separate in the function structures for a can opener and a 

vacuum cleaner product within this database are shown in Figure 3.3.   

                                                 

 

8 http://repository.designengineeringlab.org, accessed on June 8, 2011 
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(a) Use of Separate in the can 

opener model in the Design 

Repository  

(b) Use of Separate in the shop-vac vacuum 

cleaner model in the Design Repository  

Figure 3.3: Use of the verb Separate in two different models in the Design 

Repository  

With minor exceptions, the models are topologically similar: both receive a 

material flow and an energy flow, and output two different material flows derived by 

separating one from the other.  The energy flow is available in some output form, 

although it is not shown in the can opener model, presumably because of modeler 

oversight.  This oversight is an example of possible model-level inconsistency due to the 

onus of model consistency being on the designer, instead of being enforced by the 

representation’s consistency, as explained in Section 1.2.4.   

However, the physical principles of these two separation processes are quite 

different, which is a detail not captured in any of these two models, since the 

representation used in these models, consisting of the vocabulary [26] and the modeling 

guidelines [86, 87, 104], do not enforce such detail.  For example, separating the lid from 

a can in a can opener needs mechanical work to be done on the assembly such that the 
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forces binding the lid to the can are exceeded and the mechanical work is dissipated as 

heat and sound, while separating dirt from air in a vacuum cleaner filter requires the 

kinetic energy of the dirt particles to be completely removed without completely 

removing the kinetic energy of the air, a process that dissipates the absorbed energy as 

heat and sound.  These two processes are graphically shown in Figure 3.4 using a 

function structure-like modeling construct.  The dotted line in each case is the overall 

instance of Separate, while the blocks inside are decomposition of how material and 

energy flows interact to cause the separation.  The following rules are used: (1) function 

names are replaced with serial numbers since the identity of these verbs is not important 

for understanding the models, (2) the circular nodes with a minus sign represent balance 

between input and output flows for separate accounting of its portions, (3) the types of 

energy flows entering and leaving the blocks where a material flow is energized (F5) or 

de-energized (F2, F3) are kept the same without type change, while (4) any type change 

that happens in these functions is separately shown in other blocks (F1, F4, F6).  

Additionally, the individual functions or any subset of them is carefully drawn to ensure 

energy balance and mass balance at least at a qualitative level, by ensuring that for every 

input material or energy flow, there is at least one output flow of the same type.  The 

symbol MW reads as mechanical work, which replaces the term pneumatic energy or 

mechanical energy in Figure 3.3.  Many of these modeling constructs are result of the 

design of the representation in this dissertation research, and are clarified later.  At 

present, the purpose of these models is to illustrate that it is possible to construct function 
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structure-like models to describe functions as physical principles, at least at a qualitative 

level.   

 

(a) Separation of lid from can 

 

(b) Separation of dirt from air-dirt mixture 

Figure 3.4: Different physics of the same verb in two applications 

The two processes in Figure 3.4 involve different physical phenomena organized 

in different topologic arrangements, indicating that the definition of Separate does not 
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map to a unique physical principle.  However, this verb is widely used in the Design 

Repository models: a total of 67 times in 130 models9, indicating that the term is found 

useful by modelers for descriptive function modeling.  In general, it can be observed from 

similar exercises that most of the Functional Basis terms are not defined at physics-based 

concreteness.  The concreteness of these verbs is difficult to pinpoint without a pre-

established hierarchy of concreteness.  Why this level of concreteness was chosen, 

whether the level is uniform for all verbs, or whether this concreteness is indeed optimal 

for descriptive modeling has not been studied objectively.  However, this vocabulary is 

widely used for product modeling in design research and education—more often for 

descriptive modeling than normative modeling as per published literature—and therefore 

this concreteness is deemed user-tested for the current research’s purpose.  Ultimately, it 

is accepted on face value that the concreteness of the Functional Basis is at least suitable, 

if not optimal, for descriptive modeling.  This acceptance may lack academic rigor, but it 

does not influence the outcome of this research and is left for future researchers to 

reinstate or refute rigorously.  For this research’s purpose, the concreteness of the reverse 

engineered vocabulary terms such as Separate is called notional while the level at which 

the verbs directly describe the physical actions as material and energy balance is called 

the physics-based level of concreteness.  The Functional Basis vocabulary is used as a 

                                                 

 

9 Based on June-2009 data 
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benchmark of notional terms, since of all the vocabularies, it is the most used in design 

research and product modeling in design education.   

By virtue of this notional abstractness, the Functional Basis verbs are capable of 

communicating more information in the models than only the transformation of material, 

energy, and signal, as captured in the correspondent terms in the vocabulary.  For 

example, the verb Extract can be used to describe any action that is notionally described 

as one of its six correspondents: refine, filter, purify, percolate, strain, and clear [26].  

Similarly, the definition of Guide captures that a flow is constrained to a specific path in 

Euclidean space [26].  Thus, these terms or similar terms at the notional level are highly 

expressive and are deemed more useful than terms defined with physics-based 

concreteness for early design modeling and human interpretation of models.   

3.3.3 The Physics-Based Concreteness Requirement 

While the notional terms can capture more information, this lack of concreteness 

prevents them from supporting physics-based reasoning.  Since notional concepts are 

difficult to formalize, the Functional Basis terms have never been formally defined for 

computer implementation and do not support any computational reasoning based directly 

on their meanings [48].  To address this gap, the verbs in the new representation must be 

designed to describe physical actions of devices directly, instead of notional actions, so 

that (1) their definitions can be formalized and (2) physics-based reasoning can be 

performed based on their definitions.  For example, in Figure 3.4a, the ratio between the 

mechanical work used to cut the lid (MW3) and the total mechanical work consumed by 
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the model (MW1) could be used in computer reasoning to estimate energy efficiency of 

the concept.  Much of early design reasoning can be done based on the governing physics 

of mechanical systems.  For example, a qualitative understanding of electricity and DC 

motor principles can be used to reason that an increase in the voltage across the motor 

terminals would result in higher current through the rotor coils, causing higher torque, 

and ultimately higher speed of the rotor, assuming constant load.  Quantitative knowledge 

of these principles could additionally support quantitative assessment of this causal chain.  

It is anticipated that by making the modeling terms (functions, flows) physics-based, 

many useful reasoning could be supported, while still in the early stage.  To this end, the 

entities, relations, attributes, and grammar rules of the representation should 

support constructing models that are consistent with the principles of conservation 

and irreversibility.  The representation should also support analyzing models 

through algorithmic reasoning against these two principles of physics.. The 

representation addressed this requirement using a multi-layer vocabulary that evolves 

from a vocabulary of symbols to two physics-based layers conforming to the first and the 

second laws of thermodynamics.     

3.4 Normative and Descriptive Modeling Support 

3.4.1.1 What are Normative and Descriptive Models? 

The distinction between the two model types—normative and descriptive—is 

discussed in early philosophy and design research [55].  In philosophy and ethics, the 

word normative means “what should be” and descriptive means “what is” [55].  In 
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design, these are important concepts, as design begins with a need or the intent to create a 

solution and ends with an actual solution.  Overall, a normative model is one that the 

modeler considers as an ideal or intended description of an entity and a descriptive model 

is the actually observed description of an entity. 

A normative function structure is a function structure that describes the ideal or 

intended transformative actions, flows, and their ideal topologic arrangement.  It 

describes functionality that the designer aims to realize.   

A descriptive function structure is a function structure that describes the actual 

transformative actions on flows and their topologic arrangement that occur in an actual 

device or an existing concept, during one of its modes of use, as observed by the modeler.  

Since these models describe actual devices, a descriptive function structure is complete 

when it captures all the functions and flows present in the device.   

An important feature of these definitions is that the two types of models are 

distinguished not based on the “state” of the model as described by their contents, but 

based on the “process” and “purpose” of constructing them and what the designer 

“believes” about them.  The definition of the normative model does not presuppose 

correctness, consistency, or feasibility of realizing it in design.  Thus, a normative 

function structure could violate known laws of physics or logic and still be accepted as a 

normative model.  Similarly, the descriptive model definition does not presuppose that 

the designer was successful in observing and capturing every actual functional detail, as 

visible in the missing output energy flow from the Separate function in the can opener 
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model in Figure 3.3.  Both normative and descriptive models can be “wrong” or 

“incomplete” and still be allowed by their definitions.  Thus, it is impossible to tell from 

only observing a model if it is normative or descriptive.  However, complete descriptive 

models are consistent with physics and logic, since real devices obey physics and logic.   

3.4.2 Characterization of Existing Function Representations  

Most of the existing function representations show support for both normative and 

descriptive modeling, although some have are designed to serve one better.  For example, 

the Function as Effect model [60] and the Causal Function Representation Language [19] 

are intended to model existing devices in a descriptive manner and then analyze them 

using causal reasoning.  The Function-Behavior-State model [16, 17, 143] is designed to 

construct normative models of new design artifacts and analyze their behavior.  The 

Functional Basis [26] and Collins’ vocabulary [89] were created by observing actual 

device functions in a descriptive manner.  However, their terms are used in both 

descriptive [53] and normative modeling [5, 6, 20, 22].  Most models in the Design 

Repository are descriptive models, as they are created through systematic reverse 

engineering of existing products.  A graph grammar-based design synthesis tool [5, 6] 

produces normative options for decomposing a given overall normative function, using 

trends observed in descriptive models within the Design Repository as reference for its 

grammar rules.  The Function-Behavior-Structure model [8, 10, 11] provides a high-level 

explanation of how normative models created by the designer evolves through an 

iterative process called reformulation by comparing the normative model with descriptive 

models of the available design options.     



 

 74  

3.4.3 The Normative and Descriptive Modeling Requirement 

The representation must support descriptive modeling of existing design 

concepts, devices, or physical principles.  The representation should also support 

normative modeling of new design concepts.  It is anticipated that physics-based terms 

would be more useful for descriptive modeling, as physical actions can be observed 

directly on the device or concept, thus resulting into physically concrete models.  This 

method of descriptive modeling is different from the method used in existing reverse 

engineered models, specifically those in the Design Repository constructed using the 

notional terms of the Functional Basis, in the sense that these models are already physics-

based at the time of construction.  Reasoning systems that currently use the Design 

Repository models for building patterns to base their reasoning algorithms, such that the 

graph-based synthesis tool [6], the failure prediction and diagnosis tools [94-97, 144], 

and the model similarity detection tool [88] could potentially support more accurate and 

efficient reasoning, if they were rewritten to use these physics-based models, as these 

models capture the transformation of material and energy flows in more concrete manner.   

For normative modeling, both notional and physics-based terms can be useful, 

depending on the concreteness of the concept or the state of knowledge of the designer.  

For this type of models, the representation allows using terms from the notional level 

vocabulary, or the physics-based vocabulary, or composing new user-defined notional 

terms from the other vocabulary elements.  In each case, the representation supports 

reasoning to check correctness of the model against the laws of physics captured.  It is 

anticipated that the process of reformulation identified in previous research [8, 10, 11] 
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can be supported through computer-assisted design through this capability, as the 

designer can model a normative design without regard to obeying physics, while the tool 

ensures physics-based correctness of the model at each edit step or on request, thus 

ensuring that the modeled idea, while still normative, is not in violation of physics or far 

from realizable. 

3.5 Qualitative Modeling and Reasoning Support 

3.5.1 What is a Qualitative Function Model? 

A qualitative function model is a function model that does not contain any 

quantitative information about the functions and flows.  For example model (a) in Figure 

3.5 is a qualitative model, while model (b) is quantitative, as it contains quantitative 

information about the power associated with the mechanical energy flow (ME) and the 

efficiency of the Convert function.   

  

(a) Qualitative model (b) Quantitative model 

Figure 3.5: A typical function model for energy conversion 

3.5.2 What is Physics-Based Qualitative Reasoning? 

Qualitative physics is a technique of expressing physics laws and equations in 

qualitative terms, called confluences [145-147], primarily by capturing how the direction 
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of change of a parameter in an equation (increase, decrease) causes a corresponding 

change in other parameters, without using magnitudes for any of the parameters.  When 

applied to a function structure model instead of an equation, an example of confluence-

based qualitative reasoning is to infer from Figure 3.5(a) that an increase in the amount 

of energy or power of the input EE flow will cause a corresponding increase in the ME 

flow.  By contrast, quantitative reasoning would be to infer from Figure 3.5(b) that the 

input EE to the function Convert must be supplied at a rate of 4825.7 Watts, using the 

power attribute of the output ME flow (1500 W), the efficiency attribute of the function 

Convert (35%), and the definition of the term efficiency.  As seen here, this quantitative 

reasoning requires quantitative information in the model, and thus the representation must 

have provisions for holding such information.   

Another example of physics-based qualitative reasoning would be to infer that the 

Convert function violates the conservation law of material, as it does not produce any 

material flow despite receiving one.  Similarly, the Convert function in Figure 3.5(a) 

violates the second law of thermodynamics and irreversibility principle, as all of the 

incoming electrical energy is shown to be converted into mechanical energy without any 

loss.  No lost energy flow such as thermal or acoustic energy is shown in the model.  This 

reasoning is qualitative, since no quantitative information is needed to perform it and the 

inference also does not produce any quantitative insight about the design, such as exactly 

how much energy is to be lost.  Using this type of reasoning, the modeler-inflicted 

inconsistency such as in Figure 3.4(a) could be reported back to the modeler.   
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3.5.3 Qualitative Modeling and Reasoning in Contemporary Representations  

The Function Structure representation, commonly used to construct models within 

the Design Repository [50, 53] and the graph grammar-based synthesis tool [6], is not 

formalized enough at present to rigorously conclude if it supports quantitative modeling 

or not.  Some models in the repository contain quantitative details of flows, although 

those details are merged within the flow names, since there is no other placeholder 

formally designated within the representation to capture quantitative detail.  Thus it 

should be said that while the current level of formalism does not provide for quantitative 

information, the models can be and are used to capture such details by extending the 

formal scope of the representation.   

Other function representations that are more formalized typically support 

qualitative modeling, although some provide placeholders for defining attributes or 

parameters of functions or flows.  For example, the Functional Representation (FR) [61, 

62] does not have any static vocabulary for the flow types or their attributes, but its 

implementation as the Causal Function Representation Language (CFRL) allows defining 

a device such as battery with parameters such as stored charge and electromotive force.  

However, these parameters are not designed to accept numeric values.  Similarly, the 

Function-Behavior-State model [16, 17], the Structure-Behavior-Function model [12, 68], 

or the function ontologies [27-29, 64-66, 148] do not provide for quantitative modeling.  

Consequently, the reasoning performed on the respective models is primarily qualitative.   
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3.5.4 The Qualitative Modeling Requirement 

The representation must allow the designer to describe a design even when 

quantitative information is not available.  This is a fundamental requirement in the 

early, formative stages of design concepts designers may not have quantitative 

information to include in the model and an important objective of this representation is to 

allow computer-based modeling in the absence of such details.  A design tool that 

requires quantitative information to add an object to the model, such as the geometric 

CAD tools that requires the necessary geometric information to draw a line (e.g., the 

terminal point coordinates or a point coordinate, a vector, and a length) would not be 

useful for this early design requirement.   

An additional requirement on the modeling environment is that it should not be 

unnecessarily restrict the use to a linear modeling pattern.  For example, it should allow 

the designer to develop invalid models and continue to develop a model even when the 

reasoning system identified a potential invalid modeling move, as the modeling sequence 

is a reflection of the designer’s though sequence, where not all advances in decision are 

made after attesting their validity.  Often an advance is made to test its outcome beyond 

the immediate consequences.  Thus, in order to facilitate exploration, the tool should 

allow intentional invalid modeling and progress without accepting reasoning suggestions.  

However, as mentioned earlier, this requirement applies more to the implementation of 

the representation in design tools, rather than the representation itself. 
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3.5.5 The Qualitative Reasoning Requirement 

The representation must allow drawing qualitative inferences of two types 

from the models based on (1) conservation and (2) irreversibility.  The details of 

these reasoning types are discussed in Chapter 4.  The representation addresses these 

requirements by incorporating the laws of conservation of mass and energy within the 

definitions in the function verbs at the first and the second layer of the representation.  

The subsequent layers composed of these concepts are then guaranteed to support both 

types of reasoning, as illustrated in Chapter 9.   

3.6 Extendibility 

3.6.1 What is Extendibility? 

Extendibility is described as a fundamental character of formal representations 

[31, 44] and describes how well the representation can accommodate addition of new 

functionality to meet newer requirements of representation and reasoning while 

minimizing the effort of redesign and implementation.  Distinct from scalability, which 

relates to the ability to operate on a wide range of parameters such as complexity that 

were considered during designing the representation but were not tested over the entire 

range, extendibility is concerned with the ability to grow to meet newer requirements that 

were not considered during designing the representation.  Similar to scalability, the 

extendibility requirements for a representation must be identified for each representation 

separately.  For the representation in this research, one modeling extension and two 

reasoning extensions are considered: (1) quantitative reasoning, and (2) causal reasoning.   
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3.6.2 Quantitative Reasoning Extension 

In the future, the representation should be able to describe quantitative 

details of a model and support reasoning using that additional quantitative 

information.  Referring to Figure 3.5, which is redrawn here in Figure 3.6, the future 

extension should support assigning magnitudes to the physical parameters such as power 

of the mechanical energy flow or the efficiency of the functions.  Moreover, it should 

support quantitative reasoning, for example, to predict the required electrical energy input 

based on that quantitative information.    

  

(a) Qualitative model (b) Quantitative model 

Figure 3.6: Qualitative and quantitative models 

In order to support this extension, the representation must allow adding 

placeholders for the quantitative attributes and magnitudes of the model elements 

(functions, flows).  It is anticipated that this extension will not be directly applicable to 

the same early stage of design as addressed by this dissertation research.  However, it will 

potentially be useful to build software tools that can span across design stages.  For 

example, the same early design software could be used in the conceptual stage—where 

quantitative details are not extracted from a model—and the embodiment stage—where 
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the same models can be extended to include quantitative information, thus allowing a 

smooth transition and retention of design intent across design stages. 

3.6.3 Causal Reasoning Extension 

In the future, the representation should be able to describe causal relations 

between functions and flows, in order to support physics-based causal description 

and predictive analysis of early design.  Causal reasoning is widely used in design for 

explanation generation [7, 61], failure prediction and propagation analysis [94-97, 144, 

149].  However, it has not been performed using formal physics-based reasoning on 

graph-based function structures.  As seen in Chapter 10, in some cases, causal deductions 

can directly use the conservation relations built within this representation, thus making 

this extension of particular interest.  For more complex models, a separate description of 

causal relations between model elements that work in synch with the function 

representation may be needed.  With this causal reasoning support, design tools built on 

this representation could potentially support failure analysis.  For example, in Figure 3.6, 

it could be used to predict that if the electrical energy flow fails, it causes a failure in the 

output mechanical energy flow.  When such causal derivations are topologically 

propagated through a function structure graph, much useful insight could be earned about 

the critical functional modules (weakest link), robustness (functional redundancy), or the 

spread of damage during a failure (propagation tree depth and width).   
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3.7 Scalability 

3.7.1 What is Scalability? 

Scalability is described as a fundamental character of formal representations [31] 

and describes how well the representation can solve problems within a given class that 

vary in size, complexity, and abstractness, thus indicating that it can handle “growing 

amounts of work” [150].  Representations are often designed and tested based on needs 

identified in sample problems in a domain and it is difficult to logically claim that the 

needs thus identified are the complete set that needs to be considered in design.  For 

example, the vocabulary of function verbs in this dissertation research is developed and 

tested using sample problems in physics-based function modeling, shown in Chapter 9.  

While a large set of sample problems gives a reasonably high confidence about the 

representation’s ability to model any device, it is difficult, if not impossible to logically 

prove or disprove that claim.  In lieu of an exhaustive set of samples problems used in 

design and a logical proof of coverage over all problems in the domain, the purpose of 

demonstrating scalability is to illustrate that the representation can model devices beyond 

the ones used to design it and that vary in different characters such as size and 

complexity. Scalability requirements are difficult to define for all representations at once 

and must be identified for each representation separately.  The following discussion 

identifies the scalability requirement.   
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3.7.2 The Scalability Requirement 

The representation should support modeling and reasoning on function 

structure graphs that vary in number of nodes and edges.  Number of nodes and 

edges are well-accepted metrics of graph complexity in mathematics [49] and design 

research [151-156].  Theoretically, there is no limit on this graph complexity for the 

representation.  Practically, this scaling can be limited by the computing resource 

requirement for storing the model elements, the algorithmic complexity of the reasoning 

algorithms, and the limitation of display capabilities for showing large models.  For 

example, given a function structure, a designer may want to search for all occurrences of 

subgraphs consisting of Figure 3.7.  This type of search may be used in searching 

solution principles that satisfy a specific subfunction module, such as converting EE to 

ME in this case, using solution principle catalogs that store solutions against the functions 

they perform [157, 158].   

 

Figure 3.7: Subgraph being searched within a function model 

Since all instances of the subgraph are to be found, a sequential search algorithm 

is preferred over faster algorithms such as the binary search, especially because the 

difference between their speeds is not significant for small search spaces (small function 

models).  The algorithmic complexity of sequential search is proportional to the size of 

the list searched, given by O(N) in the big-O notation.  In the case of searching for a 

subgraph, the algorithm has to proceed by first searching for all instances of EE, forming 
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a list of those instance pointers, then searching within that list for all instances where the 

EE flow is an input to a Transfer function, then looking for all instances of “EE-Transfer” 

that produce an outgoing flow of EE, and so on.  Although there are some constraints 

imposed on function verbs definitions that can be used to reduce the number of 

comparisons in most cases, such as the equality of input and output flow types across 

Transfer, the worst case complexity is unaffected by those simplifications, as not all 

functions or subgraphs will benefit from them.  Therefore, if there are F functions and f 

flows in the model, and there are i functions and j flows in the searched subgraph (i = 2, j 

= 3 in this case), the big-O complexity of the search algorithm will be O(Fi
 × fj).  Thus, 

computation time for these subgraph pattern matching algorithms will increase 

exponentially with the size of the searched subgraph and may become a computation 

bottleneck when large subgraphs are searched within large models.   

However, typical reasoning algorithms for checking model consistency with 

conservation laws will have lower complexity.  For example, the complexity for checking 

if the functions in a model obeys conservation laws is O(F × i × j), where F is the number 

of functions, i is the average number of input flows to a function, and j is the average 

number of output flows.  Thus, the degree of connectedness of the graph (i, j) is also 

important in algorithmic complexity.   
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The range of model size within a sample of eleven function structure graphs used 

in previous research [159] out of the 110 in the Design Repository10 is between 17 and 50 

for function count and between 30 and 104 for flow count.  Based on this data, the 

scaling requirement is that the representation must support modeling and reasoning 

on function structures with up to 50 functions and 150 flows, without causing 

perceptible memory overflow or slowness.   

3.8 Consistency and Validity 

Consistency or internal consistency is the quality of formal logic systems that 

ensures lack of contradiction within the statements of the system [109, 111, 113, 114, 

160].  It should be impossible to infer two statements P and Q through logical 

deductions from the declarations made within the representation—such as the 

definitions of verbs, nouns, relations, constraints, and attribute definitions—such 

that P = ¬ Q.  Consistency is an internal property of a representation, as it does not 

require that the statements producible by the representation be true according to external 

knowledge.  It only requires agreement between statements derived within the 

representation.  Consistency of the proposed representation is demonstrated in Section 

6.1.   

                                                 

 

10 Based on June 2009 data 
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Validity or external validity of a logic system against an external body of rules is 

the quality to ensure that starting from a premise that is true according to the external 

rules, it is impossible to logically derive an inference that is false according to the same 

external rules using declarations within the logic system and their implications [160].  

The representation must be valid against the principles of conservation and 

irreversibility.  Specifically, if a model implies a violation of any of these principles, 

the representation should support a reasoning algorithm that can detect that 

violation.  For the representation in this dissertation, it means that when the 

representation used to model a real mechanical device, none of the implications of the 

model makes a violation of the laws of conservation or irreversibility.  In contrast with 

consistency, validity is an external property of a representation, as it checks for 

agreement between the implications of statements within the representation and an 

external body of rules.  For this representation, the external rules are the laws of 

conservation of mass and energy, and the principle of irreversibility.  Validity of the 

representation against the conservation principle is demonstrated in Section 6.2, while its 

validity against the irreversibility principle is demonstrated in Chapter 7.    

In summary, this chapter elaborates on the requirements the formal representation 

must satisfy in order to support function-based formal analytical reasoning in early 

design.  In the next chapter, specific reasoning needs for this representation are identified 

through a simulated modeling exercise.  From this exercise, the algorithmic steps for 

reasoning and the information elements necessary to capture in the representation are 

identified.   
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CHAPTER 4. SYSTEMATIC DISCOVERY OF REASONING NEEDS AND 

INFORMATION ELEMENTS FOR THE REPRESENTATION  

The information elements necessary to support reasoning on conservation and 

irreversibility are identified in this chapter in three steps.  First, specific reasoning tasks 

under these categories are identified through a modeling exercise (Section 4.1).  Next, 

procedures are developed to perform those tasks algorithmically (Section 4.2).  Finally, 

these procedures are inspected for extracting information elements (Section 4.3).  These 

information elements and the reasoning tasks they support define the data and reasoning 

requirements for the representation, developed in the next chapter. 

4.1 Discovering Reasoning Needs: The Chalkboard Exercise 

The purpose of this exercise is to discover the type of analytical reasoning a 

designer may use or want to receive through a designer-model conversation during new 

product design.  This conversation is analogous to a sketch-designer conversation 

discussed in previous research [15].  In the exercise, a designer develops and explores the 

functional architecture of an electromechanical design product as part of concept 

development, while verbal feedback is provided to simulate computer-aided analysis 

feedback on the in-process model states.   

4.1.1 Design Problem Selection 

The design artifact is one that the designer had used earlier and of which he 

understands the working principles, but one that he had not examined or designed 
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previously.  Such a product ensures that the designer is able to ideate and develop a 

reasonably detailed function model, but is unlikely to be biased by previous familiarity 

with the component-level details of the product.  The following design problem is given. 

The Design Problem 

“Design an air-heating device that intakes air from one location in a 

house and delivers hot air to another location.  The device should 

consume approximately 3 kilowatts of power”. 

Three high-level requirements from Chapter 3 are used in selecting the problem 

and the simulated reasoning feedback. 

1. Domain coverage (Section 3.1): The design problem is chosen to involve 

electrical, mechanical, thermal, and fluid phenomena, and possible use of 

acoustic, optical, or other principles, thus necessitating the designer to use 

principles in a variety of domains.    

2. Normative modeling (Section 3.4): The designer is given a problem that is 

new to him, with instructions to describe the intended functionality of the 

device.  The designer never designed this or similar systems previously and 

has no work experience in the HVAC domain.  The descriptive modeling 

requirement is not directly addressed in this exercise.  It is later used to test 

domain coverage of the vocabulary of the new function vocabulary in Chapter 

7.     
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3. Qualitative modeling and reasoning (Section 3.5): The designer is instructed 

to keep the model qualitative initially (models in Section 4.1.4) and add 

quantitative details only when he thinks that the qualitative model describes 

the functions correctly (Section 4.1.5).  In order to simulate non-restrictive 

modeling, the designer is instructed to optionally respond to or ignore the 

suggestions produced by the tool.  All feedbacks are provided in qualitative 

form, for as long as the model itself is qualitative, thus simulating qualitative 

reasoning.   

Some of the high-level requirements from Chapter 3 are not considered in this 

exercise.  The domain-independence and physics-based concreteness requirements are 

not addressed.  Rather, these needs are discovered from this exercise as modeling needs 

necessary to support qualitative reasoning (Section 4.3).  The descriptive modeling 

requirement is not addressed due to the inherently normative character of the design task.  

Rather, descriptive modeling is used in Section 9.1 during vocabulary testing.  Scalability 

pertains to data structure design and cannot be addressed unless the information elements 

to be stored are first identified through this exercise.   

4.1.2 Participant Selection 

The participant in this exercise is a graduate student involved in function-based 

design research.  He is academically trained in function modeling through a design theory 

and methods class.  He designed and built electromechanical devices and tools in industry 

and academic projects. He used and designed geometric CAD and CAD-automation 
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software professionally for eleven years total.  Because of this background, this 

participant is deemed suitable, as he could use both his product design and function 

modeling background during modeling and simulate model states that would illustrate the 

reasoning requirements effectively.   

Only one participant is used in this exercise as the objective is not to discover a 

replicable trend of participant behavior or to discover reasoning needs.  At the point of 

conducting this study, the need to support the three reasoning categories is already 

identified through literature review on functional reasoning.  The reasoning messages 

passed to the designer are not produced by the participant or the model; they are provided 

from outside.  The objectives of using the participant are (1) to articulate the exact tasks 

under the three pre-identified categories and (2) to verify that a designer could use those 

reasoning helps in developing a model, when supplied by a computer.    

4.1.3 Modeling Interface and Feedback 

The modeling interface is a chalkboard inside a design lab, which gives the 

designer a familiar work environment and the flexibility for easy erasing and editing, thus 

creating an environment suitable for creative tasks.  During this modeling session, a 

“conversation” between the designer and the model is simulated by supplying verbal 

feedback messages to the designer, between modeling steps.  These messages represent 

results of analytical reasoning performed by an ideal function-modeling software tool that 

hypothetically replaces the chalkboard.  Care is taken to ensure that the messages only 

provide analytical feedback, rather than synthesis directions, and that they can be 
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produced purely based on two types of knowledge: (1) conservation laws and (2) the 

irreversibility principle.  The synthesis of the model is controlled by the designer.  The 

tool does not suggest what the designer should do.  It only keeps the growth of the model 

controlled by checking it against these laws that inevitably apply to any concept. 

4.1.4 Exercise Steps: Black Box Modeling (Qualitative Reasoning) 

The modeling steps are captured in photographs (Appendix A), which reconstruct 

the modeling history similar to a storyboard, when viewed serially.  One step from this 

sequence is shown in Figure 4.1 for reference.  This figure is the 27th step of a total 44-

step process and shows an intermediate state of the model where the designer identifies 

several functions and flows.   
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Figure 4.1: A sample step from the chalkboard modeling exercise 

To illustrate reasoning, only the salient steps of the process are reproduced in 

Table 4.1 through Table 4.8.  The reasoning depends only on the state of the model and 

not on the modeling process.  Thus omitting these interim steps does not impact the 

reasoning discovery.  The shown steps are in their original order of construction.  For 

each state, the feedback supplied is mentioned with its rationale.  This section shows 

steps leading up to the black box model and demonstrates the use of conservation and 

irreversibility reasoning at a qualitative level.  Two types of conservation reasoning are 

identified in the Message section of the tables: (1) topologic and (2) derivational.  The 

first uses only topological connectedness between model elements to generate the 
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messages, while the second actually uses the conservation laws.  Extension of these 

reasoning types at the quantitative level is illustrated in the next section.   

Table 4.1: Redundant function inference 

 

Model State 4.1: Function instance AHD (Air Heating Device) 

Message  Topologic inference: Redundant function: AHD 

Rationale 

A function that has no input or output flow attached is considered a 

redundant function, as it is not performing any transformative action and is 

therefore not contributing to the overall functionality of the model.  While 

the function is perhaps drawn with the intent of adding flows to it next, at the 

present state, it matches the description of a redundant function. 

Table 4.2: Dangling tail and barren flow inference 

 

Model State 4.2: AHD with one input flow instance Air1 (type: Gas) 

Message 
1. Topologic inference: Dangling tail: Air1 

2. Derivational inference: Barren flow: Air1 

Rationale 
1. Every flow must have at least one “parent flow” from which it is 

derived, and at least one “derivative flow” that is derived from it, as 



 

 94  

otherwise, either its genesis or its outcome is unexplained, which 

violates conservation.  The only exception to this rationale is in the 

case of the flows that are derived from singularity nodes, such as the 

environment and functions for storing and supplying flows, as 

explained in Section 8.2.  Air1 does not have any entity—function or 

flow—at its tail to explain its genesis. 

2. Although the head of Air1 is not dangling (attached to AHD), the 

model does not show a derivative of Air1 and AHD is not marked as 

a singularity.  This combination is another violation of conservation. 

Table 4.3: Dangling head and orphan flow inference 

 

Model State 4.3: AHD with one output flow instance Air2 (type: Gas) 

This model is produced by an alternate modeling sequence from Model State 4.1. 

Message 
1. Topologic inference: Dangling head: Air2  

2. Derivational inference: Orphan flow: Air2 

Rationale 

1. Air2 does not have any entity—function or flow—to explain it 

derivation. 

2. Although the tail of Air2 is not dangling (attached to AHD), the 

model does not show a parent of Air2 and AHD is not marked as a 

singularity. 
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Table 4.4: Material transformation without energy exchange 

 

Model State 4.4: AHD with two material flows 

Message 

1. Topologic inference: Dangling tail: Air1; Dangling head: Air2  

2. Derivational inference: Air1 → Air2 (“→” reads as “is derived as”) 

3. Derivational inference: Transformation of material Air1 to Air2 

without energy transaction 

Rationale 

1. The orphan and barren flows are abolished, since a derivational 

relation can be inferred.  However, the dangling tail and head 

messages are still valid.   

2. If there is only one input and only one output flow attached to a 

function and they are of the same major type (Material, Energy), the 

output must be derived from the input to satisfy conservation (one-

in-one-out).  If they are of different major types, such as one a 

Material and the other an Energy, this inference cannot be drawn, 

since conversion between material and energy is not accepted.     

3. Any change in material state requires exchange of energy to or from 

the material, as a consequence of the first law of thermodynamics 

[128, 129].  This exchange does not always imply “consumption”, as 

in some cases energy may be released, such as the cooling of a hot 
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metal plate in air, which liberates heat.  Alternately, the increase of 

temperature of air could be realized without exchange of energy with 

the surroundings, such as by converting one form of its energy into 

raising its internal energy (manifested as temperature).  For example, 

the kinetic energy of Air1 could be reduced to cause the difference to 

manifest as internal energy.  However, using the closed-world 

assumption, it is assumed that unless such a relation is explicitly 

mentioned, it is not true.  No exchange of energy is shown to or from 

Air1 or Air2.  Thus, the model must be faulty to show that 

temperature changes between the two flows.  

Table 4.5: Environments as singularity nodes 

 

Model State 4.5: Flow instances connected to environment instances 

Message 

1. Derivational inference: Air1 → Air2 

2. Derivational inference: Transformation of material Air1 to Air2 

without energy transaction 

Note: The dangling tail and head messages are withdrawn.   

Rationale 

1. The inference is explained in the previous steps. 

2. The first law violation reasoning still applies from the previous step. 

Note: Air1 is introduced from the Environment Env1 and Air2 is dismissed 
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to Env2.  For model-level conservation consistency, Environment instances 

are acceptable as singularities, similar to sources and sinks in 

thermodynamic processes [128, 129].  Hypothetically, they can supply or 

receive indefinite amounts of material or energy, without undergoing any 

state change (transformative action).  Thus, Environments are not functions, 

although they are nodes in the function structure graph.  They define the 

functional scope of the model.  For example, as long as a flow is submitted 

to the environment, the model does not need to show or support reasoning on 

its further derivations.  In reality, the flow may undergo further 

transformations, but those are outside the model’s scope.     

Table 4.6: Unused (barren) energy flow 

 

Model State 4.6: Energy flow EE1 input to support material transformation 

Message 

1. Derivational inference: Air1 → Air2 

2. Derivational inference: Barren flow: EE1 

3. Derivational inference: Transformation of material Air1 to Air2 

without energy transaction 
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Rationale 

1. The derivation inference is explained in previous models.   

2. EE1 is a barren flow, as its derivative is not shown in the model. 

3. The third message continues, since although EE1 is input to the 

function, there is no indication of energy exchange to or from the air 

flows. 

Table 4.7: Carrier flow and irreversibility inference 

 

Air2.T > Air1.T 

Model State 4.7: EE1 transformed into ThE1 and added to Air2 

Message 

1. Derivational inference: Air1 → Air2 

2. Derivational inference: EE1 → ThE1 

3. Irreversibility inference: Conversion of energy without any loss: 

100% efficiency implied in AHD. 

Note: The message about EE1 being a barren flow is withdrawn. 

Note: The message about material transformation without energy transaction 

is now withdrawn. 

AHD
Env 

1
Air1
[G]

Air2
[G]

Env 
2

Env 
3

EE1 [EE]

ThE1 [ThE]
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Rationale 

1. The derivation inference is explained in previous models.   

2. The second derivational message is explained similar to the first.  If a 

function has only one energy input and only one energy output, there 

is no other way but form them to be in a parent-derivative relation, in 

order for conservation to satisfy.  Additionally, the two energy flows 

are also of different types, which ensure that the function AHD is not 

classified as ineffective.   

3. Any energy transforming process must operate at efficiency less than 

unity and incur losses, as a consequence of the second law of 

thermodynamics.  However, the notion of loss relies on the notion of 

what is useful and what is unwanted, as illustrated in Table 9.1 later.  

For example, heat produced in a light bulb is considered loss since 

light is the sought form of energy.  This notion inverts in the case of a 

heat lamp, where heat is sought and light is a loss.  Thus, it is 

required that every transformation of energy produces at least two 

output energy flows, one of which may be a loss.  The two flows may 

be of the same type, in which case loss represents the portion of 

output energy that cannot be used in a subsequent function.  For 

example, the model in this state implies the incoming electrical 

energy is transformed into heat in entirety, while in reality a portion 

of the heat (same type as ThE1) would be lost because it escapes 

without being added to Air2.   
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Table 4.8: One-in-many-out derivation (acceptable black box model) 

 

Model State 4.8: Lost energy included in model: An acceptable model 

Message 

1. Derivational inference: Air1 → Air2 

2. Derivational inference: EE1 → {ThE1, Loss} 

3. Acceptable model state. 

Rationale 

1. The first derivation message is explained in previous steps.   

2. When there is only one input flow of a major type (Material, Energy) 

and more than one output flow within that major type, conservation 

requires that all the output flows be derived from the single input 

flow of that type (one-in-many-out).   

3. The 100% efficiency message is addressed by modeling a flow of lost 

energy.  The type of this flow is intentionally kept generic to Energy 

(E), as the designer is unsure about the specific forms of loss at this 

early stage.  Overall, this model agrees with the laws of conservation.  



 

 101  

In total, the above modeling steps identify eight distinct reasoning tasks:  

1. Redundant function (Model State 4.1) 

2. Dangling tail (Model State 4.2) 

3. Dangling head (Model State 4.3) 

4. Barren flow (Model State 4.2) 

5. Orphan flow (Model State 4.3) 

6. One-in-many-out derivation inference (Model State 4.8) 

7. Material transformation without energy (Model State 4.4) 

8. Missing residual flow (Model State 4.7, Model State 4.8) 

Each task is based on either conservation or irreversibility principles.  This 

modeling session is continued next to reveal reasoning at a quantitative level. 

4.1.5 Exercise Steps: Model Decomposition (Quantitative Reasoning) 

This section describes a continuation of the above modeling exercise to illustrate 

quantitative reasoning.  In this exercise, the designer decomposes the model by referring 

to the black box, using a separate work area on the chalkboard.  This choice of a separate 

work area parallels to saving the black box model to the disk and using a new workspace 

to perform decomposition.  These modeling steps are illustrated in Table 4.9 through 

Table 4.14.  In each table, the message and the rationale are illustrated for a model state.    
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Table 4.9: Topologic inferences during decomposition 

 

Model State 4.9: User-driven decomposition (first level) 

Message 
1. Topologic inference: Redundant function: Draw Air, Heat air, 

Deliver Air 

Rationale 1. The redundant function message is explained in Model State 4.1 

Table 4.10: Material transformation without energy in a decomposed model 

 

Model State 4.10: Stream of air flow through functions 

Message 

1. Derivational inference: Air1 → Air3 → Air4 → Air2 

2. Derivational inference: Transformation of material without energy 

exchange: Draw Air, Heat Air, Deliver Air 

Rationale 

1. In derivation inference is explained in Model State 4.4.  The 

observation of interest is that the elementary reasoning actions 

identified in the black box modeling session in Section 4.1.3, such as 

derivation inference, are now used to compose more complex 

inferences.   

2. The energy exchange message is discussed in Model State 4.5  
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By definition of functions and flows (Section 1.2), two flow instances have to be 

different at least by their state and a function must cause a change of state or type of a 

flow, otherwise it is an ineffective function.  In this modeling exercise, the simulated 

software assumes that different instances of the same flow type in a model must be of 

different states.  For example, Air1 is the air outside the inlet orifice of the device, which 

is at a lower velocity (typically zero) than Air3, which represents air after being operated 

by the Draw Air function and flowing faster than Air1.  From Air3 to Air4, the major 

change is in temperature, indicated in the second relation.   

The following model state shows a further decomposed version of the model, 

without walking through the steps leading to it from Model State 4.10, since those steps 

do not illustrate any new reasoning.  Model State 4.11 is the end product of the first level 

of decomposition and illustrates how the designer planned energy exchange through the 

product to satisfy conservation, leading into the second level of decomposition.   
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Table 4.11: Many-in-one-out inference (Accepted model) 

 

Model State 4.11: Accepted model of first level decomposition 

Message 

1. Derivational inference: Air1 → Air3 → Air4 → Air2 

2. Derivational inference: EE1 → {KE1, Loss1}, where KE is kinetic 

energy 

3. Derivational inference: EE2 → {ThE1, Loss1} 

4. Derivational inference: EE3 → {EE1, EE2} 

5. Derivational inference: {MW2, ThE2} → Loss3, MW is mechanical 

work 

6. Acceptable model state 

Rationale 

1-4. The derivation inferences are explained in the previous steps.   

5. When there are more than one input flow of a major type (Material, 

Energy) and only one output flow within that major type, all the input 
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flows must be conserved as the single output flow (many-in-one-

out). 

6. The model only returns inferred derivations and does not imply an 

error.     

The above steps show the exploration of the first level of decomposition, which 

ends with an acceptable state.  Beyond this point, the designer explores deeper into the 

subfunctions identified above, in order to resolve them to more well-defined terms that 

can support solution search and physics-based reasoning.   

Table 4.12: Flow preservation and additive inference in decomposition (Draw Air) 

 

Model State 4.12: Second level decomposition of Draw Air  

The text in the dotted line box indicates the lower-resolution function of which the shown 

model is the decomposition.  For example, this model is a decomposition of Draw Air.   

Message 1. Derivational inference: Air1 → Air3 
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2. Derivational inference: EE1 → {MW1, Loss5} 

3. Derivational inference: MW1 → {KE1, Loss4} 

4. Resolution inference: Accepted preservation of boundary flows  

5. Resolution inference: Loss4.E + Loss5.E = Loss1.E 

6. Accepted model state 

Rationale 

1-3. The derivational inferences are explained in previous model 

states. 

4. The decomposition action is valid, since the flows attached to the 

Draw Air function before decomposition is accounted for at the 

overall boundary of the decomposed model.  This quality of 

decomposition is named here the preservation of boundary flows 

under decomposition.   

5. The loss flows Loss4 and Loss5 in the decomposed model replace the 

single loss flow Loss1 in the composed model.  Thus, the energy 

content of Loss4 and Loss5 must equal that of Loss1.  This inference 

does not indicate a derivational relation that Loss1 is derived into 

Loss4 and Loss5.  Rather, it implies that the modeled Loss1 flow at a 

lower resolution is the sum of the two loss flows at the higher 

resolution model.   This type of inference is called here the additive 

inference across decomposition levels.  

6. The model it obeys the balance laws of mass and energy, and 

accounts for irreversibility.   
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Table 4.13: Flow preservation inference in decomposition (Deliver Air)  

  

Model State 4.13: Second level decomposition of Deliver Air  

Message 

1. Derivational inference: Air4 → Air2 

2. Derivational inference: MW2 → Loss6 

3. Derivational inference: ThE2 → Loss7 

4. Resolution inference: Accepted preservation of boundary flows 

5. Resolution inference: Loss8.E + Loss9.E = Loss3.E 

6. Accepted model state 

Rationale 
All of the reasoning messages are similar to those explained in previous 

steps. 

The final model state of the modeling exercise is shown in Model State 4.14 

below, where the designer adds quantitative details.  He decides that the conversion of 

EE4 to ThE3 happens without loss, since the device is probably a resistive heater that 

converts all of the consumed EE into heat.  Energize_Air3 has an efficiency of 0.6, since 

40% of the produced heat is lost through the insulation.  The total heat added to air is 
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1500 Watts.  The designer may know this value from external calculations or may enter it 

only to explore a what-if scenario using the model.  He estimates that 1000 Watts are 

necessary to cause the air to flow, potentially using a blower.  The blower blades have an 

efficiency of 90%, while the blower motor rejects 20% of its input energy as heat 

(Loss5).  Based on this data, the designer wants to explore the total power required to 

operate the machine.   

Table 4.14: Quantitative reasoning on efficiency and power required 

 

Model State 4.14: Final Model State of the Exercise 

Message 

1. All inferences from Model State 4.11, Model State 4.12, and Model 

State 4.13 

2. Derivational inference: EE2 → EE3 →{ThE3, Loss5} 

3. Total power required = 3889 Watts 

Rationale 1. The inferences carried forward from the previous model states are 
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explained in the respective model state rationales. 

2. The conduct function uses only one input and one output energy, and 

thus the inference must hold.  Moreover, the conduct function 

receives a signal from the temperature attribute of the existing air 

flow Air2.   

3. The power required is computed as follows. 

   
   

   

En _ Air3

En _ Air1

Convert1 Convert1

ThE1.E 1500W
ThE3.E 2500W

0.6

EE2.E EE4.E ThE3.E Loss7.E 2500 0 W

KE1.E / 1000W / 0.9MW1.E
EE1.E 1389W

0.8

EE3.E EE1.E EE2.E 2500W 1389W 3889W

  


     


   
 

         

By comparing this final model (Model State 4.14) with the black box (Model 

State 4.8) and the first level decomposition (Model State 4.11), the evolution and 

boundary flow preservation under decomposition can be verified.  It also illustrates how 

model decomposition helps in understanding design problems.  In this case, although the 

problem statement mentions delivery of air, the designer is focused on the main function 

of heating at the black box level and shows only the addition of thermal energy (ThE1) to 

the air.  It is only when the inner details of the device are planned that the need for 

driving the air is identified, which resulted into adding kinetic energy KE1 to the air flow 

in the decomposed model.  Similar discovery of functionality happened with the energy 

exchange in the Deliver Air function, which was not completely predictable in the black 

box.  The model decomposition exercise identifies four additional reasoning tasks:  
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1. Many-in-one-out derivation (Model State 4.11) 

2. Boundary flow preservation in decomposition (Model State 4.12) 

3. Additive inference across decomposition levels (Model State 4.12) 

4. Quantitative inference about power required (Model State 4.14) 

In all, twelve reasoning tasks are identified from the black box and decomposition 

exercises, with which a designer could be assisted while exploring function architecture 

of novel design.  These reasoning tasks are summarized in Table 4.15.  For each task, the 

table includes the model states where it is illustrated and the algorithm number where it is 

presented in the next section.  The conservation reasoning tasks are divided into (1) 

topologic and (2) derivational, as explained in the next section.  These algorithms are 

then inspected for information elements in Section 4.3.   

Table 4.15: Summary of Reasoning Needs Discovered  

Reasoning  # Reasoning Name Model State Algorithm 

Conservation: 

Topologic 

1 Redundant function 
Model State 4.1 

Model State 4.9 
Algorithm 4.1 

2 Dangling tail 
Model State 4.2 

Model State 4.4 
Algorithm 4.2 

3 Dangling head 
Model State 4.3 

Model State 4.4 
Algorithm 4.3 

Conservation: 

Derivational 
4 Barren flow 

Model State 4.2 

Model State 4.6 
Algorithm 4.4 
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Reasoning  # Reasoning Name Model State Algorithm 

5 Orphan flow Model State 4.3 Algorithm 4.5 

6 
One-in-one-out and one-

in-many-out derivation  

Model State 4.4 

Model State 4.5 

Model State 4.6 

Model State 4.7 

Model State 4.8 

Model State 4.10 

Model State 4.11 

Algorithm 4.6 

7 
Many-in-one-out 

derivation 
Model State 4.11 Algorithm 4.7 

8 
Material transformation 

without energy input 

Model State 4.4 

Model State 4.5 

Model State 4.6 

Model State 4.10 

Algorithm 4.8 

Irreversibility 9 Missing residual flow Model State 4.7 Algorithm 4.9 

Quantitative 10 Power required Model State 4.14 Algorithm 4.10 

Resolution 

Reasoning 

11 

Boundary flow 

preservation in 

decomposition 

Model State 4.12 Algorithm 4.11 

12 Additive inference Model State 4.12 Algorithm 4.12 
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Reasoning  # Reasoning Name Model State Algorithm 

across decomposition 

levels 

4.2 Reasoning Algorithms 

This section is presented with two goals: (1) to ascertain that the reasoning tasks 

identified in the modeling exercise can be indeed performed algorithmically and (2) to 

identify the information elements required to support such algorithms.  The algorithms 

for the twelve reasoning tasks under the five types (Table 4.15) are presented in the tables 

below (Algorithm 4.1 through Algorithm 4.12).  Commented lines are provided in red to 

help interpretation and therefore individual tables are not discussed.   

4.2.1 Conservation Reasoning Algorithms (Topologic) 

These three algorithms [115] classified as topologic reasoning, as they are written 

entirely based on the valid connections between functions and flows, without direct 

reference to the laws of conservation.   

Algorithm 4.1: Algorithm for redundant function  

 

Loop through FunctionInstanceList; // List of function instances in the 

model 

IF (FunctionInstanceList[i].InList.IsEmpty() && 

FunctionInstanceList[i].OutList.IsEmpty()) 

Echo “Redundant function: ” + FunctionInstanceList[i].GivenName; 
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// InList and OutList are linked lists of flow pointers and are used to 

store pointers to the input and output flow instances to a function 

instance. 

// IsEmpty is a Boolean member function in the linked list data 

structure that returns TRUE if the list is empty. 

//GivenName is a string data member that holds the name of an element. 

 

Algorithm 4.2: Algorithm for dangling tail  

 

Loop through FlowInstanceList; // List of flow instances in the 

model 

IF (FlowInstanceList[i].pTailNode == NULL) 

Echo “Dangling Tail: ” + FlowInstanceList[i].GivenName;  

 

// pTailElement is a pointer to the CElement instance at the tail of a 

flow instance, which can be a function, an environment, or another 

flow. 

 

Algorithm 4.3: Algorithm for dangling head  

 

Loop through FlowInstanceList;  // List of flow instances in the 

model 

IF (FlowInstanceList[i].pHeadNode == NULL) 

Echo “Dangling Head: ” + FlowInstanceList[i].GivenName;  
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// pHeadElement is a pointer to the CElement instance at the head of a 

flow instance, which can be a function, an environment, or another 

flow. 

 

4.2.2 Conservation Reasoning Algorithms (Derivational) 

These algorithms are used to check a model’s adherence to the laws of 

conservation of mass and energy.  Since energy conservation is the essence of the first 

law of thermodynamics, these are also called the First Law Algorithms.  The orphan and 

barren flow algorithms essentially enforce that a flow must be conserved or derived into 

other flows of the same major type (Material, Energy), as otherwise its outcome is 

unaccounted for.  The one-in-many-out and many-in-one-out inference algorithms rely on 

separate conservation of mass and energy.  Conservation of the mass-energy 

combination, such as in nuclear reactions where mass is changed into energy, is not 

allowed in this representation and will in fact return as a violation of the individual 

conservation laws.  This simplification prevents reasoning on those reactions, as the 

outcome of the mass difference converted into energy and the genesis of the energy from 

mass are both unaccountable in this scheme.  However, this intentional compromise 

allows for reasoning in other simpler designs.  If the algorithm was written to check for 

the mass-energy combination, functions that input mass but outputs only energy (no 

mass) would not be detected as violation, as it would be explicable that the mass was 

converted to energy.  However, this detection is important, as illustrated in the modeling 

exercise.   
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Algorithm 4.4: Algorithm for barren flow  

 

Loop through FlowInstanceList; 

IF ((FlowInstanceList[i].ChildList.IsEmpty) &&  // No child of 

flow 

(EnvList.Find(FlowInstanceList[i].pHeadNOde) == NULL)) 

// the head of the flow is not going to an environment instance 

Echo “Barren flow: ” + FlowInstanceList[i].GivenName; 

 

// ChildList is a list in the flow class used to store pointers to the 

child flows of the flow object.  A flow can have more than one child.   

// A flow that has no children (derivatives) and whose head is 

connected to an environment instance is not to be detected as barren, 

as the flow’s head is outside the system boundary where conservation 

rules do not apply. 

 

Algorithm 4.5: Algorithm for orphan flow  

 

Loop through FlowInstanceList; 

IF ((FlowInstanceList[i].ParentList.IsEmpty) &&  // No parent of 

flow 

(EnvList.Find(FlowInstanceList[i].pTailNode) == NULL)) 

// the tail element of the flow is not an environment instance 

Echo “Orphan flow: ” + FlowInstanceList[i].GivenName; 
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// ParentList is a list in the flow class used to store pointers to the 

parent flows of the flow object.  A flow can have more than one parent.   

// EnvList is a linked list containing pointers to all environment 

instances in the model  

// A flow that has no parents and whose tail is connected to an 

environment instance is not to be detected as orphan, as the flow’s 

tail is outside the system boundary where conservation rules do not 

apply. 

 

Algorithm 4.6: Algorithm for one-in-many-out derivation inference  

 

Loop through FunctionInstanceList;  // List of function instances 

 Loop through (FunctionInstance.Inlist); // Each input flow  

 IF (MaterialList.Find(InFlow) != NULL) // InFlow is a Material 

  M_InList.AddTail(InFlow); // Collect all material input  

 IF (EnergyList.Find(InFlow) != NULL) // InFlow is an energy 

  E_InList.AddTail(InFlow); // Collect all energy input  

 

 Loop through (FunctionInstance.OutList) // Each output flow 

 Collect all M output to M_OutList and all E output to E_OutList; 

 // Using steps similar to collecting input flows 

 

 If ((M_InList.GetCount() == 1) && (M_OutList.GetCount() >= 1) 

 // If the one-in-many-out condition satisfies for materials 

  Loop through M_OutList using index [i]; 

  M_InList[0].ChildList.AddTail(M_OutList[i]);  
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 // Add each material output as a derivative of the single input 

  Add “M_InList[0] → M_OutList[i]” to the inference message;   

 

 If ((E_InList.GetCount() == 1) && (E_OutList.GetCount() >= 1) 

 // If the one-in-many-out condition satisfies for energy flows 

  Loop through E_OutList using index [i]; 

  E_InList[0].ChildList.AddTail(E_OutList[i]);  

 // Add each energy output as a derivative of the single input 

  Add “E_InList[0] → E_OutList[i]” to the inference message;   

 

 // Before moving to the next function instance, clear off the 

temporary storage of input and output lists.  

M_InList.RemoveAll();   

M_OutList.RemoveAll();   

E_InList.RemoveAll();   

E_OutList.RemoveAll();   

// RemoveAll is a member function of the linked list data structure 

that empties the list without deleting it. 

 

Algorithm 4.7: Algorithm for many-in-one-out derivation inference  

 

Loop through FunctionInstanceList;  // List of function instances 

 Loop through (FunctionInstance.Inlist); // Each input flow  

 IF (MaterialList.Find(InFlow) != NULL) // InFlow is a Material 

  M_InList.AddTail(InFlow); // Collect all material input  

 IF (EnergyList.Find(InFlow) != NULL) // InFlow is an energy 
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  E_InList.AddTail(InFlow); // Collect all energy input  

 

 Loop through (FunctionInstance.OutList) // Each output flow 

 Collect all M output M_OutList and all E output to E_OutList; 

 // Using steps similar to collecting input flows 

 

 If ((M_InList.GetCount >= 1) && (M_OutList.GetCount == 1) 

 // If the many-in-one-out condition satisfies for materials 

  Loop through M_InList using index [i]; 

  M_InList[i].ChildList.AddTail(M_OutList[0]);  

 // Add the single material output as a derivative of each input 

  Add “M_InList[i] → M_OutList[0]” to the inference message;     

 

 If ((E_InList.GetCount >= 1) && (E_OutList.GetCount == 1) 

 // If the many-in-one-out condition satisfies for energy flows 

  Loop through E_InList using index [i]; 

  E_InList[i].ChildList.AddTail(E_OutList[0]);  

 // Add the single energy output as a derivative of each input 

  Add “E_InList[i] → E_OutList[0]” to the inference message;   

 

 // Before moving to the next function instance, clear off the 

temporary storage in the input and output lists  

M_InList.RemoveAll(); 

M_OutList.RemoveAll(); 

E_InList.RemoveAll(); 

E_OutList.RemoveAll(); 
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// RemoveAll is a member function of the linked list data structure 

that empties the list without deleting it. 

 

Algorithm 4.8: Algorithm for material transformation without energy  

 

Loop through FunctionInstanceList;   // List of function 

instances 

  

 // Detect difference between Material flows across every function 

 Loop through FunctionInstance.M_InList; // Each input material 

flow 

  Loop through M_InFLow.ChildList; // Each child flow of 

InFlow 

   IF ((M_InFlow.OutBaggageList.IsEmpty()) && 

    (ChildFlow.InBaggageList.IsEmpty())) 

   Echo “Material transformation from” +  

M_InFlow.GivenName + “to” + ChildFlow.GivenName + “without energy 

exchange”;  

 

4.2.3 Irreversibility Reasoning Algorithm 

Algorithm 4.9: Algorithm for qualitative detection of missing residual flow  

 

// If there are energy input and output to a function but no residual 

energy output, echo the error message. 
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Loop through FunctionInstanceList; // List of all function instances 

 IF ((FunctionInstance.E_InList.GetCount() > 1) && 

  (FunctionInstance.E_OutList.GetCount() > 1)) 

 {  

  Bool ResidualFound = FALSE; 

 

  Loop through FunctionInstance.E_OutList; 

  IF E_OutFlow.IsResidual == TRUE 

   ResidualFound = TRUE; 

 

  IF (ResidualFound == FALSE) 

   Echo “Residual Energy not found in function: “  

   + FunctionInstance.GivenName; 

 } 

 

4.2.4 Quantitative Reasoning Algorithm (Power Required) 

Algorithm 4.10: Algorithm for computing power required  

 

Loop through FunctionInstanceList; // List of all function instances 

 IF ((FunctionInstance.E_InList.GetCount() > 1) && 

  (FunctionInstance.E_OutList.GetCount() > 1)) 

 {  

  Function.PowerReq = Bool ResidualFound = FALSE; 

  Function.OutputPower = 0; 
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  Loop through FunctionInstance.E_OutList; 

  IF E_OutFlow.IsResidual != TRUE 

  

 Function.OutputPower=Function.OutputPower+E_OutFlow.Power; 

 

  FunctionPowerRequired =Function.OutputPower / 

Function.Effy; 

 } 

 

Algorithm 4.11: Algorithm for boundary flow preservation in decomposition  

 

Loop through FunctionInstanceList; // In the low res model 

 IF (FunctionInstance.HasDecomposition == FALSE) 

  Continue; // If no decomposition, move on to the next 

func. 

    // HasDecomposition is a Boolean to a function 

 

 IF (FunctionInstance.HasDecomposition == TRUE) 

  List <Noun*> InListLowResTemp;// Initiate a temporary list 

  Loop through FunctionInstance.M_InList; 

   Add M_InFlow to InListLowResTemp; // Add to the 

temp list 

  Loop through FunctionInstance.E_InList; 

   Add E_InFlow to InListLowResTemp;  // Add to the 

temp list 

 // Thus, all pointers of input flows to the low res function 
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 // are now collected in the temporary list 

   

  List <Noun*> InListHighResTemp;// Temporary list at high 

res 

 

  Loop through HighRes.FlowInstanceList;// All flow instances 

  // Flow lists in the high resolution model 

  InListHighResTemp.Add(HighRes.FlowInstance); 

   // Replicate the input flow list (high res)  

 

  // Check if a flow is an input to the decomposed model 

 IF ((Find(HighRes.FunctionInstanceList, InFlow.HeadNode)) && 

// IF the head is attached to a function in the high res model 

  (!Find(HighRes.FunctionInstanceList, InFlow.TailNode))) 

// but the tail is not connected to a function in the high res 

// then the flow is struly an input to the decomposed model 

  { 

   IF (InListLowResTemp.Remove(InFlow) == FALSE) 

// Try removing the flow pointer from the low res temp list. 

// FALSE means that the input flow is absent in the temp list. 

     Echo “Not in low res: ” + 

InFlow.GivenName;  

 

  } 

 Continue; 

 

// In this manner, all input flows to the high res model that 
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// was also found in the low res input list, would be removed  

// from the temporary list.  If the decomposition was preserved, 

// at this time the temporary list should be empty. 

 

 IF (InListLowResTemp.IsEmpty() == FALSE)  

  Echo “Non-preserved flow: ” + FunctionInstance.GivenName; 

 

 

/////////////////////// 

// Now repeat the process for output flow balancing. 

// Exception: Use only non-Loss output flows to check for preservation.   

/////////////////////// 

 

  List <Noun*> OutListLowResTemp;  

 

  Loop through FunctionInstance.M_OutList; 

   IF (M_OutFlow.IsLoss == FALSE) 

    Add M_OutFlow to OutListLowResTemp;  

  Loop through FunctionInstance.E_OutList; 

   IF (E_OutFlow.ISLoss == FALSE) 

    Add E_OutFlow to OutListLowResTemp; 

  

  List <Noun*> OutListHighResTemp;  

 

  Loop through HighRes.FlowInstanceList;  

  IF (FlowInstance.IsLoss == FALSE) 

   OutListHighResTemp.Add(HighRes.FlowInstance); 
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 IF ((Find(HighRes.FunctionInstanceList, InFlow.TailNode)) && 

  (!Find(HighRes.FunctionInstanceList, InFlow.HeadNode))) 

  { 

   IF (OutListLowResTemp.Remove(OutFlow) == FALSE) 

     Echo “Not in low res: ” + 

OutFlow.GivenName;  

 

  } 

 Continue; 

 

 IF (OutListLowResTemp.IsEmpty() == FALSE)  

  Echo “Non-preserved flow: ” + FunctionInstance.GivenName; 

 

Algorithm 4.12: Algorithm for additive inference across decomposition levels  

 

// This algorithm is similar to the one above, with the following 

exceptions: 

// 1. It works only on the loss flows 

// 2. Instead of checking flow balance across levels, it infers a 

balance. 

// 3. It separately accounts for Material and Energy losses, since 

those two subtypes cannot mix. 

 

Loop through FunctionInstanceList; // In the low res model 

 IF (FunctionInstance.HasDecomposition == FALSE) 
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  Continue; // If no decomposition, move on to the next 

func. 

    // HasDecomposition is a Boolean to a function 

 

 IF (FunctionInstance.HasDecomposition == TRUE) 

  List <Noun*> M_OutListLowResTemp;  

 

  Loop through FunctionInstance.M_OutList; 

   IF (M_OutFlow.IsLoss == TRUE) 

    M_OutListLowResTemp.Add(HighRes.M_OutFlow);  

    

  List <Noun*> M_OutListHighResTemp;  

 

  Loop through HighRes.M_FlowInstanceList;  

  IF (HighRes.M_FlowInstance.IsLoss == TRUE) 

   M_OutListHighResTemp.Add(HighRes.M_FlowInstance); 

 

  String Message = “”; 

 

 Loop through M_OutListLowResTemp; 

  Message = Message + M_OutFlow.GivenName + “.EnergyContent + 

”; 

 

 Message = Message + “ = ”; 

 

 Loop through M_ OutListHighResTemp; 
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  Message = Message + M_OutFlow.GivenName + “.EnergyContent + 

”; 

 

4.3 Information Elements Extraction 

The algorithms from the previous section are inspected to expose the elements of 

information used to perform the reasoning tasks computationally.  Table 4.16 summarizes 

these findings against each algorithm.  For each information element, its representation 

component type (entity, relation, or attribute) is captured in the ERA column, and its 

programming data type and brief description are presented in the last two columns.  For 

each algorithm, only the new information elements identified in addition to previously 

identified ones are listed.  Rows marked as “Nothing new” indicate that no additional 

element than the ones previously identified are used in that algorithm.  The algorithms 

include keywords, methods, operators, and constants used in common programming 

languages such as C++ [161], which are not extracted as information element.  Examples 

are (1) keywords such as If, Else, List, String, and Continue, (2) methods such as Find, 

GetCount, RemoveAll, (3) operators such as “==”, and (4) constants such as NULL, 

TRUE, and FALSE, which are used in several of the algorithms.   

  



 

 127  

Table 4.16: Extraction of information elements from the algorithms  

Algorithm 

Reference 

Information 

Element 

ERA  

Type 

Computer 

Data Type 

Description 

Algorithm 

4.1 

Function Entity Class Verb 
Class from which functions are 

instantiated  

InList Attribute List<Flow*> 

Attribute to a function holding the 

list of flow pointers that are input 

to a function.  Its identification 

requires identifying the head node 

of the flow.     

OutList Attribute List<Flow*> 

Attribute to a function holding the 

list of flow pointers that are output 

from a function.  Its identification 

requires identifying the tail node of 

the flow.    

GivenName Attribute 
String 

GivenName 

Attribute to a to a function, flow, 

or environment instance in the 

model, holding the name given to 

it by user 

Algorithm 

4.2 

Flow Entity Class Noun 
Class from which flows are 

instantiated 

TailNode Relation Class* Node Relation between a flow and a 
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Algorithm 

Reference 

Information 

Element 

ERA  

Type 

Computer 

Data Type 

Description 

node (function of environment) 

indicating that the node is at the 

tail of the flow 

Algorithm 

4.3 

HeadNode Relation Class* Node 

Relation between a flow and a 

node (function or environment) 

indicating that the node is at the 

head of the flow 

Node Entity Class Node 
Class from which nodes (functions 

and environments) are instantiated 

Algorithm 

4.4 

ChildList Relation List<Flow*> 

Relation between a flow and a list 

of flows, where the flows in the list 

derived from the given flow. 

Environment  Entity 
Class 

Environment 

Class to derive environment 

instances 

Algorithm 

4.5 
ParentList Relation List<Flow*> 

Relation between a flow and a list 

of flows, where the flow is derived 

into the flows in the list. 

Algorithm 

4.6 
M_InList Attribute List<Material*>

Attribute to a function holding the 

list of material flows input to it 
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Algorithm 

Reference 

Information 

Element 

ERA  

Type 

Computer 

Data Type 

Description 

E_InList Attribute List<Energy*> 
Attribute to a function holding the 

list of energy flows input to it 

M_OutList Attribute List<Material*>
Attribute to a function holding the 

list of material flows output from it 

E_OutList Attribute List<Energy*> 
Attribute to a function holding the 

list of energy flows output from it 

M_Flow Entity Class Material 
Class from which material flows 

are instantiated 

E_Flow Entity Class Energy 
Class from which energy flow are 

instantiated 

Algorithm 

4.7 
Nothing new 

Algorithm 

4.8 
InBaggage Relation List<Flow*> 

A relation between two flows, 

where one flow is carried by the 

other and the carried flows’ head 

node is same as the carrier flow’s 

head node 

 OutBaggage Relation List<Flow*> 
A relation between two flows, 

where one flow is carried by the 
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Algorithm 

Reference 

Information 

Element 

ERA  

Type 

Computer 

Data Type 

Description 

other and the carried flows’ tail 

node is same as the carrier flow’s 

tail node 

Algorithm 

4.9 
IsResidual Attribute Boolean 

A Boolean attribute to a flow that 

is set to TRUE if the modeler 

indicates that an output flow from 

a function is a loss (residual) flow 

Algorithm 

4.10 
Power Attribute Double 

A number that indicates the power 

associated with an energy flow. 

 Efficiency Attribute Double 
A number that indicates the 

efficiency of a function 

Algorithm 

4.11 
Information elements are not extracted from these two algorithms, since these two 

algorithms, while detected during the modeling exercise, are out of the scope of 

this dissertation research, and are reserved for future extensions. 
Algorithm 

4.12 

The information elements discovered here are used next to design the formal 

representation of mechanical functions.  In order to organize this design task, the 

representation is developed in three layers that build successively.  The first layer, 

presented in Chapter 5, is the foundational layer that formalizes basic information 

elements required for drawing function structure graphs, with formal description of its 
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entities, relations, attributes, and local grammar to ensure internal consistency of function 

structure models.  In addition, this layer supports qualitative conservation reasoning of 

the two types identified in this chapter: (1) topologic and (2) derivational.  Thus, this first 

layer is called the Conservation Layer.   

The second layer extends the first by including the concept of irreversibility and 

supports reasoning on residual flows at qualitative and quantitative levels.  This layer is 

called the Irreversibility Layer.   

The third layer is called the Semantic Layer.  A finite vocabulary of mechanical 

function verbs is presented that captures the meaning of the verb terms through its 

topology.  This layer supports feature-based modeling and semantic reasoning of function 

structure graphs.  In the next chapter, the first layer (Conservation) is developed.   
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CHAPTER 5. REPRESENTATION LAYER ONE:  

FORMALIZATION OF FUNCTION STRUCTURE FOR CONSERVATION 

REASONING  

Based on the reasoning needs and information elements discovered in the 

previous chapter, the formal representation of mechanical functions is designed in a 

three-layer structure:  

1. Conservation Layer: The fundamental entities, relations, attributes, and local 

grammar rules of function structure modeling are formalized.  This layer 

supports model validation and qualitative reasoning based on the conservation 

principle, of two types mentioned in Table 4.15: topologic and derivational.   

2. Irreversibility Layer: This layer extends the Conservation layer by adding 

constructs for modeling irreversibility in the vocabulary terms and supports 

irreversibility reasoning. 

3. Semantic Layer: This layer extends the previous two by adding a vocabulary 

of physics-based function verbs.  It supports feature-based modeling of 

function structures that also support physics-based reasoning of the previous 

layers.     

This chapter presents the first layer that formalizes the Function Structure 

representation and supports qualitative conservation reasoning (topologic and 

derivational).  The other layers are subsequently built upon this layer.  As defined in 
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Section 1.2.1 and 1.2.2, a representation is described by its vocabulary and local grammar 

[30, 31, 110, 162-165], the components of which are: 

1. Vocabulary of entity types: The vocabulary of unique concept types 

necessary to construct a model   

2. Vocabulary of relation types: The vocabulary of unique connection types 

that can exist between instances of the entity types 

3. Vocabulary of attributes: The vocabulary of unique parameters used to 

characterize or specify the entity and relation instances  

4. Local grammar: The set of rules and constraints that control how instances of 

entities, relations, and attributes can be combined to construct a model 

In the following sections, the entity types, relation types, attributes, and local 

grammar rules required to formalize the Function Structure representation are identified 

and rigorously defined.  Despite frequent use of function structure models, these graphs 

have not been formalized as a representation before [48, 115, 116] and do not support 

consistent formal reasoning [48, 166].  The contribution of this first layer is to that end.   

5.1 Layer 1 Vocabulary 

The vocabularies of entity types, relation types, and attributes are shown in Table 

5.1.   
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Table 5.1: Layer 1 vocabulary 

Entity Types 

Taxonomy 
∷ 

 

Virtual 1 Virtual 2 Instantiable  Instantiable 

Element 

Node 

Verb  

Environment  
Source 

Sink 

Noun 

Material  

Energy  

Signal  

 

Relation Types ∷	 {HeadNode, TailNode, CarrierFlow, Child_M, Child_E} 

Attribute Types ∷ {GivenName, HeadPoint, TailPoint, GeometricCenter, 

AnchorPoint} 

The vocabulary of entity types is hierarchical, shown in the taxonomy in Table 

5.1, while the vocabularies of relation types and attributes are list based and flat.  Not all 

relation types and attributes are compatible to all entity types.  The valid correspondences 

are shown in in Figure 5.1 using the entity-relation-attribute (ERA) diagram format [162].   
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 Figure 5.1: Entity-relation-attribute (ERA) model for the Level 1 vocabulary  

The rectangles are entity types, the diamonds are relation types, and the ellipses 

are the attributes.  The labels on the edges of this diagram indicate the one-to-one, one-to-

many, or many-to-many correspondence of the relations.  For example, the labels 1 and n 

on the relation type TailNode indicates that a flow can have only one Node instance 

(function or environment) as its tail node but a Node instance can be the tail node of 

many flows, which is a one-to-many relationship.  The is_a relationship does not appear 

in the vocabulary (Table 5.1), since it captures the taxonomical and ontological relation 

between the entity types and is not directly instantiated in a function model.  Every other 
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entity type, relation type, and attribute in this ERA diagram, except Element, Node, and 

Noun, can be instantiated (Section 5.1.1).  The GivenName attribute of every Element 

instance is its unique identifier.  The exclusive disjunction (XOR) symbols on the 

relations indicate that only one of the many relations connected by the symbol holds for a 

given instance.  For example, a Node instance is either a Verb instance or an 

Environment instance, but not both.   

5.1.1 Layer 1 Entity Types 

An entity type is a class that describes a concept, as opposed to an instance of a 

class, which is a specific occurrence of that concept.  The leaf nodes of Figure 5.1 are 

classes instantiable in models.  Classes in the other two columns are virtual superclasses 

(not instantiable) and are used to organize the vocabulary to minimize redundancy of 

attributes and relations.  For example, the attribute GivenName applies to everything that 

is an instance of Element and this taxonomy enables declaring this attribute type only 

once to the Element class, instead of assigning it to five classes in the third column.  The 

methods declared in higher-level classes can also be inherited and overloaded in the 

subclasses as necessary.  In Table 5.2 through Table 5.11, these classes are described 

using their notional description (natural English), formal description (pseudo code), and 

graphical description that is used for rendering their instances.  Table 5.2 illustrates the 

entity class Element.   
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Table 5.2: Layer 1 entity: Element 

Notional 

Description 

The most abstract class from which all entity classes are inherited.  It 

holds data members and methods common to all entities, such as the 

GivenName string and the methods for drawing and editing them. 

Class 

Description 

Class Element {} // Base Class

{

// Data members

String GivenName; // Name string of the instance

Point  GeometricCenter; // Location of the instance on screen

Point[int n] AnchorPoints; // Points where other elements can be attached

// Public virtual methods - declared here, but implemented in subclasses 

virtual OnDraw(); // Draw the element

virtual OnSelect(); // Select the element

virtual OnHighlight(); // Highlight the element for selection

virtual OnDelete(); // Delete the element

virtual OnMove(); // Move the element

virtual OnCopy(); // Copy the element

virtual OnSave(); // Save the element

virtual OnLoad(); // Load the element

}  

Instance 

rendering 

None – not an instantiable class 

Table 5.3 illustrates the entity class Node. 
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Table 5.3: Layer 1 Entity: Node 

Notional 

Description 

The Node class is used to distinguish the nodes of a function structure 

(functions and environments) from the flows.  This class passes down the 

data members form Element to Verb and Environment through inheritance 

and defines one method for computing vertices of the geometric shapes 

(blocks and hexagons) of functions and environments.  The abstract 

identity of functions and environments as nodes is used by classes such as 

Noun, which accepts only Node instances as TailNode and HeadNode, 

thus giving algorithmic flexibility to look for Node instances when 

querying the terminals of a flow, rather than once looking for functions 

and then for environments.   

Class 

Description 

Class Node : Element {} // Inherited from Element

{

virtual ComputeBlockCoordinates(); // Geometric coordinates for rendering

}

 

Instance 

rendering 

None – not an instantiable class 

Table 5.4 illustrates the entity class Noun. 
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Table 5.4: Layer 1 entity: Noun 

Notional 

Description 

Noun is the abstract superclass for the flow classes Material, Energy, and 

Signal.  Inherited from Element, it has the data members and methods that 

apply to all flow types, irrespective of their subtype.   

Class 

Description 

Class Noun : Element {} // Inherited from Element

{

// Data members

Node* pTailNode; // Pointer to tail node (any subtype)

Node* pHeadNode; // Pointer to head node (any subtype)

Noun* pCarrierFlow; // Pointer to carrier flow instance

Point TailPoint; // Location of the tail point on screen

Point HeadPoint // Location of the head point on screen

// Methods

virtual AssignCarrierFlow; // Implemented in Energy and Signal classes

}

 

Instance 

rendering 

None – not an instantiable class 

Table 5.5 illustrates the entity class Verb. 

  



 

 140  

Table 5.5: Layer 1 entity: Verb 

Notional 

Description 

Verb is the class for deriving function instances.  It contains only 

geometric data that allows constructing the function block.  It inherits the 

Rectangle class, available in most graphics-based development 

environments such as MFC [167, 168], for this purpose.  All methods 

required for drawing and editing are inherited from the Element class, 

although overridden specifically within this class.   

Class 

Description 

Class Verb : Node, Rectangle {} // Inherited from Node and Rectangle

{

ComputeBlockCoordinates(); // Computes the rectangle vertices

}

 

Instance 

rendering  

Table 5.6 illustrates the entity class Environment. 
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Table 5.6: Layer 1 entity: Environment  

Notional 

Description 

Environment is the class for deriving environment instances.  It is similar 

to the Verb class, except that its local implementation of the drawing and 

editing functions are written to draw hexagonal shapes.    

Class 

Description 

Class Environment : Node {} // Inherited from Node

{

ComputeBlockCoordinates(); // Computes the hexagon vertices

}

 

Instance 

rendering  

Table 5.7 illustrates the entity class Source. 

Table 5.7: Layer 1 entity: Source  

Notional 

Description 

Source is a class for introducing new flows to the scope of a model.  Its 

instances can only output flows.  They cannot input flows. 

Class 

Description 

Class Source : Environment {} // Inherited from Environment

{

// None required - the Source behavior is controlled by grammar rules

// applied during the construction of Noun instances - their HeadNode

// cannot point to a Source instance.

}

 

Instance 

rendering  

Table 5.8 illustrates the entity class Sink. 
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Table 5.8: Layer 1 entity: Sink  

Notional 

Description 

Sink is a subclass of Environment for dismissing flows out of the scope of 

the model.  Its instances can only input flows.  They cannot output flows. 

Class 

Description 

Class Sink : Environment {} // Inherited from Environment

{

// None required - the Sink behavior is controlled by grammar rules

// applied during the construction of Noun instances - their TailNode

// cannot point to a Sink instance.

}

 

Instance 

rendering  

Both Verb and Environment class instances are often queried in the algorithms for 

their input and output flow lists of the three types (Material, Energy, and Signal).  In 

order to access this topologic connection from the Node, Verb, or Environment classes, 

lists of flow pointers such Figure 5.2 could be included in the Node superclass.  However, 

a function can have infinitely many input and output flows, while a flow can have only 

two terminals: head and tail.  This character of flows allows easier management of 

topologic information from the Noun class, as by knowing a fixed number of pointers—

HeadNode and TailNode—for each flow, the entire graph’s topology can be known.  If 

the lists in Figure 5.2 were used to manage topologic connections, each function would 

have six lists and each list would contain an unknown number of flows, thus calling for 

dynamic array management challenges.   
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Including the two Node pointers as well as the lists in Figure 5.2 would cause 

redundancy of information and loss of normality of the representation.  Often, such 

redundancy is intentionally designed into formal representations.  For example, in the 

boundary representation [32, 33], each edge is accompanied by a co-edge, whose 

parameter value increases in the opposite direction of the edge and whose vertices are 

ordered backwards.  This redundant co-edge is used to trace an edge in the reverse 

direction in algorithms such as face stitching [34].  In the proposed function 

representation, such redundancy is intentionally avoided.  When the list of flows attached 

to a node is needed by an algorithm, the list is composed at runtime by looping through 

the flows and checking if its head or tail is attached to the node.  These temporary lists 

are stored in a class that represents the model, as discussed in Chapter 6.   

List <Element*> pInMaterialList; // List of input Material flows

List <Element*> pOutMaterialList; // List of output Material flows

List <Element*> pInEnergyList; // List of input Energy flows

List <Element*> pOutEnergyList; // List of output Energy flows

List <Element*> pInSignalList; // List of input Signal flows

List <Element*> pOutSignalList; // List of output Signal flows  

Figure 5.2: Redundant topologic data elements not captured in any class 

The three classes inherited from Noun have a special method called 

AssignCarrierFlow that computes the valid carrier types for each flow type.  In Material, 

it sets the pointer pCarrierFlow to NULL.  In the Energy and Signal classes, it does two 

things: (1) it assigns the carrier flow to the instantiated flow and (2) it finds out which 

end of the instantiated flow is not connected to a node and assigns the corresponding 
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node of the carrier to the carried flow.  For example, in Figure 5.3, queries on the 

TailNode, HeadNode, and CarrierFlow attributes of M1 and E1 would return the 

followings.  The two bold faced assignments are performed by AssignCarrierFlow. 

1. M1.TailNode = NULL, M1.HeadNode = Function1, M1.CarrierFlow = NULL 

2. E1.TailNode = Function2, E1.HeadNode = Function1, E1.CarrierFlow = 

M1. 

For the graphical depiction of the carrier relationship, the OnDraw() method 

implemented in the class of E1 ensures that E1.HeadPoint is attached to an AnchorPoint 

of M1. 

 

Figure 5.3: Assignment of carrier flow, head node, and tail node based on flow type 

Table 5.9 illustrates the entity class Material. 
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Table 5.9: Layer 1 entity: Material 

Notional 

Description 

Material is the class to instantiate material flows.  It inherits all properties 

from Noun.  The only two additional data members are (1) the list of child 

flows, which must be of the type Material, in order to avoid conversion 

between material and energy or signal, and (2) the overridden method 

AssignCarrierFlow.    

Class 

Description 

Class Material : Noun {} // Inherited from Noun

{

// Data members

List <Material*> ChildList; // List of derived flows (conservation)

// Methods

AssignCarrierFlow(); // Set Noun* pCarrierFlow = NULL

// in this local implementation in Material

}

 

Instance 

rendering  

Table 5.10 illustrates the entity class Energy. 
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Table 5.10: Layer 1 entity: Energy 

Notional 

Description 

Energy is similar to the Material class, with the difference that its children 

are all Energy instances and it can be carried by Material instances only.    

Class 

Description 

Class Energy : Noun {} // Inherited from Noun

{

// Data Members

List <Energy*> ChildList; // List of derived flows (conservation)

//Methods

// The carrier instance is limited to only Material instances 

// by a method  (local grammar) called by the class constructor.  

// This method also assigns the head or tail node of a flow to the

// respective node of the carrier, depending on which end is undefined.

AssignCarrierFlow(); // Carrier flow selection method

}

 

Instance 

rendering  

Table 5.11 illustrates the entity class Signal. 
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Table 5.11: Layer 1 entity: Signal 

Notional 

Description 

Energy is similar to the Material class, with the difference that it does not 

have any children and must be carried by a Material or an Energy 

instance.   

Class 

Description 

Class Signal : Noun {Noun* pCarrierME}

// Inherited from Noun

{

pTailNode NULL; // Signals are not produced by a function

AssignCarrierFlow(); // Carrier flow selection method

// No other declaration is nece



ssary

}

 

Instance 

rendering  

Some behaviors of instances are dictated directly by their definitions, while some 

are controlled by the local grammar rules.  For example, the choice of the class Node for 

the flow attributes  HeadNode and TailNode is built within the definition of the Noun 

class and prevents anything but a node to be used as a flow terminal.  By contrast, the 

selection of carrier flow type depends on the flow type, since Material does not have a 

carrier, Energy can be carried only be Material, and Signal must be carried by either 

Energy or Material.  While these carrier relationships could be separately declared in the 

respective classes, such as “Material* pCarrierFlow;” within the Energy class, it would 

remove the ability of accessing the carrier of a flow without knowing its type (Material, 

Energy, or Signal).  For example, when the head of a carrier flow is rerouted from one 

node to another node, the carried flow’s head node also must be rerouted accordingly.  
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This editing can be done without knowing the type of the carrier and carried flows, 

because the CarrierFlow attribute can be accessed from the generic Noun class.  Keeping 

the names of the methods AssignCarrierFlow the same between the two classes and the 

superclass Noun also adds the flexibility that after rerouting, this method can be called 

from the Noun class irrespective of their subtype to check for valid carrier relationships. 

5.1.2 Layer 1 Vocabulary of Relation Types 

Table 5.12 describes the relation types in the symbolic layer of the representation.   

Table 5.12: Layer 1 relation types and descriptions 

Relation In Class Description 

HeadNode 

(Input) 

Noun HeadNode is a relation between a flow and a node and 

indicates the node to which the head of the flow is connected.  

From function modeling point of view, it indicates by which 

function is the flow used next, or to which environment 

instance does the flow exit the functional scope of the model.  

To ensure that the head of a flow can be connected only to a 

node (function or environment), the attribute data type is set to 

Node (Table 5.4).  For ease of reference, the HeadNode 

relation is sometimes called the input relation, since a flow is 

an input to its head node.   

TailNode 

(Output) 

Noun TailNode is a relation between a flow and a node and indicates 

the node to which the tail of the flow is connected.  From 
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Relation In Class Description 

function modeling point of view, it indicates by which 

function is the flow produced, or from which environment 

instance does the flow enter the functional scope of the model.  

To ensure that the head of a flow can be connected only to a 

node (function of environment), the attribute data type is set to 

Node (Table 5.4).  For ease of reference, the TailNode relation 

is sometimes called the output relation, since a flow is an 

output from its tail node.   

CarrierFlow Noun CarrierFlow is a relation between a flow and another flow. It 

provides for modeling situations where one flow carries 

another flow with it.  For example, a flow of hot air carries 

with it kinetic energy and thermal energy.   

Child_M Material Child_M is a relation between two sets of Material flows and 

indicates the conservation of the first set in form of the second 

set.  For example, in a chemical reaction, the set of reactants 

input to the reaction are conserved as the set of products of the 

reaction.   

Child_E Energy Child_E is a relation between two sets of Energy flows and 

indicates the conservation of the first set in form of the second 

set.  For example, when electrical energy enters a motor, it 

produces many forms of output energy, including mechanical 
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Relation In Class Description 

work, heat, and sound.  These output flows are the children of 

the electrical energy, as the electrical energy is conserved as 

these flows across a function.   

Child_M and Child_E relationships exist only between flows that are across a 

function instance.  For ease of reference, the inverse of a Child relation is called the 

Parent relation. 

5.1.3 Layer 1 Vocabulary of Attribute Types and their Correspondence 

Table 5.13 describes the attributes of the classes, along with their data types.   

Table 5.13: Layer 1 attributes and descriptions 

Attribute In Class Data 

Type 

Description 

GivenName Element String GivenName uniquely identifies every 

instance in a model.  The designer enters a 

value to this attribute for every instance by 

giving the instance a name at the time of 

construction.  Methods are written at the 

model-level classes to avoid duplication of 

given names.   

HeadPoint Noun Point HeadPoint indicates the geometric location of 
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Attribute In Class Data 

Type 

Description 

the head of a flow instance on the screen.  It 

is used to select and edit flow instances and 

to route the head of a flow to anchor points of 

the head node.   

TailPoint Noun Point TailPoint indicates the geometric location of 

the tail of a flow instance on the screen.  It is 

used to select and edit flow instances and to 

route the tail of a flow to anchor points of the 

tail node. 

GeometricCenter Element Point GeometricCenter is the geometric location of 

the center of an instance on the screen and is 

used to perform operations such as highlight 

and select, which are typically followed by 

edit operations.   

AnchorPoints[n] Element Point AnchorPoints[n] is an array of Point data 

type that holds the possible geometric points 

where instances can be connected to each 

other, such as a flow connected to a function 

or to its carrier flow.   
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5.2 Layer 1 Local Grammar 

Except for the trivial cases where a model entirely comprises of only one entity 

instance, entities must be connected through relations to form a model.  Local grammar 

rules control how entities can be related in a model, by imposing constraints on these 

relations.  Specifically, they prevent connecting instances in a manner that is logically 

prohibited by the definitions of their own classes, thus ensuring consistency (absence of 

self-conflict) in the model.  These rules are part of the representation, as they are applied 

at the time of instantiation and control what constructs can and cannot be added to a 

model, rather than checking a model post-construction for adherence to rules.  For 

example, the definitions of the classes listed above lead to a local grammar rule that 

prevents a flow to go from one carrier flow to another carrier flow directly.  The 

implication of including this rule in the local grammar is that a properly implemented 

software based on this representation would make it impossible in the first place to 

construct the model in Figure 5.4.  This behavior is similar to the impossibility of 

instantiating an edge with three vertices using the boundary representation, as the Edge 

class requires an Edge instance to be bounded by exactly two Vertex instances.   

 

Figure 5.4: An internally inconsistent model of a heat exchange function 

Hot water

Cold water

Heat
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As discussed in Section 1.2.4, in the absence of rigorous formalism of function 

structure construction, the onus of internal consistency and external validity of models 

lies on the designer and therefore cannot be ensured.  For example, models in the Design 

Repository [50, 53] show many examples of elements that conflict with their own class 

definitions (internal inconsistency) and elements that violate laws of conservation 

(external invalidity), as illustrated in Figure 2.8.  By writing and implementing local 

grammar rules like the one mentioned above, the onus of internal consistency can now be 

borne by the design of the tool’s underlying representation, rather than the designer.  

However, model validity against external knowledge such as natural laws is not borne by 

the local grammar and external reasoning algorithms for model validation must be written 

to ensure that validity.  These rules are implemented at the time of reasoning, as opposed 

to within the representation, and are therefore referred to as global model validation rules.   

The significance of local grammar becomes clearer when compared to global 

model validation rules.  Both local and global rules are used to ensure model correctness, 

although at different levels.  The local rules decide whether or not a model is permitted to 

exist, while the global rules examine if an existing model adheres to some external 

standard, such as conservation laws.  Thus, local grammar ensures consistency (internal) 

and global rules ensure validity (external).  Local grammar rules are applied at 

instantiation time, while global rules are executed after model construction, to support 

reasoning [102, 169-171].   
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A local grammar depends on the collective commitment made in the definitions of 

all terms in the vocabulary.  For example, Figure 5.4 could be interpreted as a model of 

heat transfer between two water flows at different temperatures, as in a heat exchanger.  

The modeling construct of adding the tail of the heat flow to a material flow (cold water) 

is permitted in isolation by the declaration of carrier flows in the Noun class.  Similarly, 

the carrier relation at the head of the flow is also individually permitted, when the other 

relation is ignored.  However, this model is unacceptable as a whole, because it creates 

ambiguity about the carrier flow of Heat and violates the Noun class definition, since that 

class defines only one CarrierFlow data member.   

Further, this modeling construct contradicts with the definition of function and 

flow states.  State of a flow is defined by the unique combination of its attribute and 

relation values.  Two flows are different (Section 1.2.6) when they are of different types 

or they are of the same type but at least one attribute or relation value is different between 

them.  Thus, if there are two flows in a model that are of the same type and have the same 

state, they are indeed the same flow instance and the model is redundant by showing it 

twice.  In the proposed representation, the CarrierFlow relation is included in defining the 

state of a flow.  Thus, heat carried by the hot fluid and that carried by the cold fluid must 

be two different flow instances, as a difference exists between them in the relation 

CarrierFlow.  Thus, by definition of function, (Section 1.2.7), a function must be 

involved causing the change of state.  In the case of the heat exchanger, this function is 

the conductive transfer of heat from the hot water to the cold water through a medium 

such as a pipe wall.  Thus, while parts of the model in Figure 5.4 individually agree with 



 

 155  

the definition of carrier flows, the model as a whole violates the collective definitions of 

flow, state, and function.  A function is needed to make the model consistent with these 

definitions, as shown in Figure 5.5.   

 

Figure 5.5: The consistent construct of the heat exchange function 

Notably, the resulting model still violates known laws of nature, as it does not 

capture the state change of the water flows, such as the hot water becoming colder and 

the cold water becoming hotter, and it does not account for heat losses.  However, these 

laws are not part of the definitions of terms within the representation, and thus are 

examples of external invalidity rather than internal inconsistency.  Thus, Figure 5.4 

exemplifies internal inconsistency, whereas Figure 5.5 is internally consistent yet 

externally invalid.   

The local grammar for the proposed representation is discussed next.  There are 

three types of modeling constructs that represents relations between the entities: (1) 

HeadNode and TailNode relations are rendered as the head or tail of an arrow connected 

to a node, (2) CarrierFlow relations are modeled as a flow head entering or a flow tail 

leaving the stem of another flow arrow, and (3) Child relation is modeled as derivation 

dotted lines across a function.  These three types are separately presented next, using 

unary and binary rules.   
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5.2.1 Unary Grammar Rules for Input-Output Relations (HeadNode, TailNode) 

Table 5.14 states the unary rules for the input-output connections. 

Table 5.14: Layer 1 grammar rules: Unary input-output relations 

Rule 1 A flow of any subtype must have exactly one head node (function or 

environment).   

Rule 2  A flow of subtype Material (M) or Energy (E) must have exactly one tail node. 

Rule 3 A flow of subtype Signal (S) has no tail node. 

Rule 4 Nodes (function, environment) cannot be input or output to each other. 

Rule 5 Flows cannot be input or output to each other.   

A unary rule determines if a relation between two elements is permitted to exist in 

a model construct.  As illustrated earlier, it is possible to have connections that are 

acceptable in isolation but not when used in combination with other connections (e.g., the 

two carrier relations in Figure 5.4).  Thus, it is important to distinguish between 

connections that are prohibited at all from those that are prohibited only when combined 

with other connections.  The benefit is that for connections that are prohibited at the 

unary level, it is unnecessary to test if they are permitted at the binary level, in 

combination with some other connection.  Table 5.15 shows possible input-output 

modeling constructs controlled by these rules.  Since an input or output relation involves 

exactly two entities, a total of 3 × 3 = 9 permutations of the form {left entity, right entity} 

need to be examined, as shown in the table.  Further, constructs whose permissions 

depend on the flow subtypes are explicitly shown.  Flows that are labeled as “Flow<n>” 
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represent any subtype.  For each construct, the status is shown with a green check 

(permitted) or a red cross (prohibited).  The rule number that determines the status is 

shown below the status, using “Ref”. 

Table 5.15: Constructs controlled by the unary input-output rules 

 Left entity 
Function Flow Environment 

R
ig

h
t 

en
ti

ty
 

F
u

n
ct

io
n

 

Construct 1 

 

 

Ref: Rule 4 

Construct 2 

 

 

Ref: Rule 1 

Construct 3 

 

 

Ref: Rule 4 

F
lo

w
 

Construct 4 

 

 

Ref: Rule 2 

Construct 5 

 

 

Ref: Rule 5 

Construct 6 

 

 

Ref: Rule 2 

Construct 7 

 

 

Ref: Rule 3 

Construct 8 

 

 

Ref: Rule 3 
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 Left entity 
Function Flow Environment 

E
n

vi
ro

n
m

en
t 

Construct 9 

 

 

Ref: Rule 4 

Construct 10 

 

 

Ref: Rule 1 

Construct 11 

 

 

Ref: Rule 4 

These rules are consequences of the class definitions.  For example, Rule 1 

directly follows from the declaration of one HeadNode and one TailNode pointer in the 

Noun class.  These pointers point to Node instances by the same definition, which 

explains Rule 5.  Similarly, Rule 3 follows from the definition of Signal, which prevents 

a tail node of a signal flow.  In this manner, the rules ensure that constructs inconsistent 

with the definition of the classes are not permitted in a model.  These rules do not impose 

any constraint on the number of flows attached to a node.  These constraints are added 

later, in Rule 24 and Rule 25 in Table 5.23.  Examples of these constructs are found in 

each of the modeling steps in Section 4.1. 

5.2.2 Unary Grammar Rules for Carrier-Carried Relations 

Table 5.16 describes the unary rules for the carrier-carried relationship.   

Table 5.16: Layer 1 grammar rules: Unary carrier-carried relations 

Rule 6 A flow can have at most one carrier. 

Rule 7  A flow of type Material or Energy can have null carrier (not a carried flow). 

Rule 8  A flow of type Signal must always have a carrier.   

Flow6 E5
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Rule 9  A Material flow can carry one or more flows of subtypes Energy and Signal, 

but not Material. 

Rule 10 An Energy flow can carry one or more flows of subtype Signal, but not of 

Material or Energy. 

Rule 11 A Signal flow cannot carry any flow of any subtype. 

Table 5.17 describes the modeling constructs controlled by these rules.  Since the 

carrier-carried relation can only exist between two flows, four possibilities for carrier 

flows emerge for each of the three types of carried flows, thus producing 3 × 4 = 12 

permutations of the form {carried flow, carrier flow}, which are captured in the table.  

Examples of energy and signal carried by material flows are found in Model State 4.14, 

where kinetic and thermal energy, as well as the temperature signal, are carried by a hot 

air flow.  An example of signal carried by energy is voltage signal carried by electrical 

energy flows in various transducers or current signal carried by electrical energy flow in 

circuit breakers.  All other carrier relations are invalid.  Signals do not exist in their own 

identity since they are not physical entities such as material or energy flowing through a 

device.  They are manifested when one or more of the attributes values associated with a 

carrier flow meets a condition, such as the temperature of Air2 in Model State 4.14 

becoming higher than a preset magnitude.  Thus, a signal flow always needs to be carried 

by a flow, whose attributes are decoded or interpreted as signals by a function.  For the 

same reason, signal flows cannot carry any other flows.  Rule 6 is used in each cell of the 

table.  A construct that violates Rule 6 is shown in Figure 5.5, where a flow is shown to 

have two carrier flows.  This construct is examined later in Table 5.26.   
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Table 5.17: Constructs controlled by the unary carrier-carried rules 

 Carrier flow subtype 
Null Material Energy Signal 

C
ar

ri
ed

 f
lo

w
 s

u
b
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p

e 

M
at
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l 

Construct 12 

 

 

Ref: Rule 6, 

Rule 7 

Construct 13 

 

 

Ref: Rule 9 

Construct 14 

 

Ref: Rule 10 

Construct 15 

 

Ref: Rule 11 

E
n

er
gy

 

Construct 16 

 

 

Ref: Rule 6, 

Rule 7 

Construct 17 

 

 

Ref: Rule 9 

Construct 18 

 

Ref: Rule 10 

Construct 19 

 

Ref: Rule 11 

S
ig

n
al

 

Construct 20 

 

 

Ref: Rule 6, 

Rule 8 

Construct 21 

 

 

Ref: Rule 9 

Construct 22 

 

Ref: Rule 10 

Construct 23 

 

Ref: Rule 11 

5.2.3 Unary Grammar Rules for Parent-Child Relations 

Table 5.18 describes the unary rules for the parent-child relationship.   

M7 S3

M6

E7 S4

E6

S5

S6
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Table 5.18: Layer 1 grammar: Unary parent-child relations 

Rule 12 A flow can be the child of another flow (parent) only if the parent is input to 

the function of which the child flow is an output. 

Rule 13  A Material flow can have one or more children, all of which must be of type 

Material. 

Rule 14  A Material flow can have one or more parents, all of which must be of type 

Material.   

Rule 15  A set of Material flows can be the children of another set of Material flows, 

where individual derivations are intractable. 

Rule 16 An Energy flow can have one or more children, all of which must be of type 

Energy. 

Rule 17 An Energy flow can have one or more parents, all of which must be of type 

Energy.   

Rule 18 A set of Energy flows can be the children of another set of Energy flows, 

where individual derivations are intractable.   

Rule 19 A Signal flow cannot be the child of any flow. 

Rule 20 A Signal flow cannot have any child flow of any type. 

Table 5.19 shows the permutations of model constructs that are controlled by 

these rules.  There are three flow subtypes (Material, Energy, Signal) between which 

parent-child relations are examined, resulting in 3 × 3 = 9 permutations of the form 

{parent flow, child flow}.  Within each cell, there are three options for cardinality (one in 

many out, many in one out, and many in many out), resulting into a total 9 × 3 = 27 sub-
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permutations (Construct 24 through Construct 50).  All constructs in this table satisfy 

Rule 12.  Figures are included only for the consistent constructs.   

Table 5.19: Constructs controlled by the unary parent-child rules 

 Parent flow 
Material Energy Signal 

C
h

il
d

 f
lo

w
 

M
at

er
ia

l 

Construct 24 

One-in-many-out 

 

Ref: Rule 13 

Construct 25 

One-in-many-out 

 

Ref: Rule 16, Rule 14 

Construct 26 

One-in-many-out 

 

Ref: Rule 20, Rule 14 

Construct 27 

Many-in-one-out 

 

Ref: Rule 14 

Construct 28 

Many-in-one-out 

 

Ref: Rule 16, Rule 14 

Construct 29 

Many-in-one-out 

 

Ref: Rule 20, Rule 14 
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 Parent flow 
Material Energy Signal 

Construct 30 

Many-in-many-out 

 

Ref: Rule 15 

Construct 31 

Many-in-many-out 

 

Ref: Rule 16, Rule 14 

Construct 32 

Many-in-many-out 

 

Ref: Rule 20, Rule 14 

E
n

er
gy

 

Construct 33 

One-in-many-out 

 

Ref: Rule 13, Rule 17 

Construct 34 

One-in-many-out 

 

 

Ref: Rule 16 

Construct 35 

One-in-many-out 

 

Ref: Rule 20, Rule 17 

Construct 36 

Many-in-one-out 

 

Ref: Rule 13, Rule 17 

Construct 37 

Many-in-one-out 

 

 

Ref: Rule 17 

Construct 38 

Many-in-one-out 

 

Ref: Rule 20, Rule 17 
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 Parent flow 
Material Energy Signal 

Construct 39 

Many-in-many-out 

 

Ref: Rule 13, Rule 17 

Construct 40 

Many-in-many-out 

 

 

Ref: Rule 18 

Construct 41 

Many-in-many-out 

 

Ref: Rule 20, Rule 17 

S
ig

n
al

 

Construct 42 

One-in-many-out 

 

Ref: Rule 19, Rule 13 

Construct 43 

One-in-many-out 

 

Ref: Rule 19, Rule 16 

Construct 44 

One-in-many-out 

 

Ref: Rule 19, Rule 20 

Construct 45 

Many-in-one-out 

 

Ref: Rule 19, Rule 13 

Construct 46 

Many-in-one-out 

 

Ref: Rule 19, Rule 16 

Construct 47 

Many-in-one-out 

 

Ref: Rule 19, Rule 20 

Construct 48 

Many-in-many-out 

 

Ref: Rule 19, Rule 13 

Construct 49 

Many-in-many-out 

 

Ref: Rule 19, Rule 16 

Construct 50 

Many-in-many-out 

 

Ref: Rule 19, Rule 20 

In summary, material is conserved as material and energy is conserved as energy 

only.  Although conversion from material to energy is possible physically, such as in 
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nuclear reactions, Construct 33, Construct 36, or Construct 39 are not allowed in this 

representation, as allowing them would make it difficult for the reasoning algorithms to 

distinguish nuclear reactions that convert mass to energy from models that are subject to 

the separate laws of mass and energy conservation and yet show one of these three 

constructs due to oversight or wrong ideation.  It is anticipated that devices and principles 

that are subject to the separate conservation laws of mass and energy will be more 

frequently encountered in mechanical design projects than nuclear reactions.  By design, 

this decision reduces the representation’s coverage over nuclear phenomena.  However, 

in the design of a nuclear power plant, this compromise would only eliminate the ability 

to model the nuclear fuel and reaction principles, while retaining coverage over the other 

principles and devices.  Even in a nuclear plant, most machinery such as boilers, turbines, 

and heat exchangers are subject to the separate conservation laws and can still be 

modeled.   

The need for conservation does not apply to signals, as they are not entities that 

exist on their own.  Signals are realized as the attribute values of a material or energy 

flow satisfy a condition that is previously agreed upon between the sender and the 

recipient as a message.  For example, in a thermostat, a signal to actuate an electrical 

switch may be manifested by the temperature attribute of a material flow satisfying a 

condition.  The material flow itself is not the signal, since it could exist even if its 

temperature was not measured.  Temperature is not a signal, as it is not a flow, rather, an 

attribute of a flow.  The phenomenon of the temperature attribute satisfying the condition 

is what is interpreted by another device as the signal.  Thus, the existence of a signal flow 
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requires the presence of the interpreting device or function.  Nothing is consumed to 

produce this signal, nor is the signal consumed to produce anything.  Thus, signals are not 

conserved. 

The 27 cells in Table 5.19 describe topological configurations that satisfy Rule 

12.  Ideally, there are 27 similar permutations of type and cardinality for the topology 

where the parent flow set is not input to the function that produces the children set and 27 

more for when the children are not output from the function to which the parent set is 

input.  In between these two, there are many more possibilities depending on the exact 

count of flows in the parent and child sets for some flows in a set being input or output to 

a function across which conservation is examined.  Table 5.20 summarizes the status 

outcomes of these constructs using only nine simplified permutations.  There are three 

ways by which each of the parent and the child flow can be related to a function through 

the input-output relation: (1) the flow is input to the function, (2) the flow is output from 

the function, and (3) the flow is not connected to the function.  Thus, there are a total of 3 

× 3 = 9 permutations to be considered.  For each case, the cell illustrates the status of the 

construct as per Rule 12.  For simplicity, the terms Parent and Child include all flow 

subtypes.  The status applies to all cardinality options, although the illustrations use one-

in-one-out.  With these simplifications, these nine permutations cover all possibilities 

explained above.   
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Table 5.20: Constructs controlled by the unary parent-child rules (Rule 12) 

 Parent 
Input Output None 

C
h

il
d

 

In
p

u
t 

Construct 51 

 

 

Ref: Rule 12 

Construct 52 

 

Ref: Rule 12 

Construct 53 

 

 

Ref: Rule 12 

O
u
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u

t 

Construct 54 

 

Ref: Rule 12 

Construct 55 

 

 

Ref: Rule 12 

Construct 56 

 

 

Ref: Rule 12 

N
on

e 

Construct 57 

 

 

Ref: Rule 12 

Construct 58 
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5.2.4 Binary Grammar Rules for Input-Output Relations 

The binary grammar rules examine if two relations can coexist in a construct.  For 

input-output relations, these rules examine if the two ends of a flow can be connected to a 
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certain permutation of nodes (functions and environments).  Table 5.21 states the binary 

input-output rules.   

Table 5.21: Layer 1 grammar: Binary input-output relations for flows 

Rule 21 A flow of subtype Material or Energy can be output from a node and input to a 

different node. 

Rule 22  A flow of any type cannot be output from and input to the same node. 

Rule 23  A flow of any type cannot have environment instances as both HeadNode and 

TailNode. 

For a binary construct to be permitted, all unary constructs used within it must be 

permitted.  However, all binary constructs composed of permitted unary constructs are 

not necessarily permitted. For example, a binary construct where a Signal flow output 

from a function block is input to another function block is prohibited as it contains a 

prohibited unary construct where a Signal flow is produced by a function (see Construct 7 

in Table 5.15).  However, although a binary construct where a flow is output from and 

input to the same function is permitted by combining the unary Construct 2 and Construct 

4, it is not permitted as a binary construct.  Those relations are not allowed to coexist, as 

they imply circular dependency (see Table 5.22).  Thus, the legality of the constituent 

unary constructs is a necessary but not sufficient condition for the legality of a binary 

construct.  Table 5.22 illustrates only those binary constructs that are composed of the 

permitted unary constructs.  For each row, the unary constructs used to compose the 

binary construct are mentioned in the first two columns, while the rule used to determine 
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the status is mentioned in the Ref. column.   The flows in each case indicate either 

Material or Energy subtype, as Signal flows are not permitted to have tail nodes.   

Table 5.22: Constructs controlled by the binary input-output rules 

Tail 
node 

Head 
node 

Binary Construct Ref. Rationale 
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The flow is produced by an 

action of the device and 

further actions on it are not 

in the model scope.  This 

construct is analogous to the 

verb Export in the 

Functional Basis.   
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The flow is used by an 

action of the device, but the 

previous action that 

produced it is not in scope.  

This construct is analogous 

to the verb Import in the 

Functional Basis. 
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Environments are boundary 

entities of a model.  The 

flow thus connected never 

entered the model, and is 

thus redundant.   
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Since each flow arrow 

represents one state of the 

flow, the function outputs 

the flow in the same state as 

input, and is thus redundant. 
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Environments are boundary 

entities of a model.  The 

flow thus connected never 

entered the model, and is 

thus redundant.   

Table 5.22 only includes constructs of the form {node, flow, node}.  Two more 

constructs—of the form {flow, node, flow}—are possible for the two subtypes of nodes.  

Table 5.23 describes the binary rules for these constructs, where two or more input-

output relations are considered for a node.   

E3

(M E)5
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Table 5.23: Layer 1 grammar: Binary input-output relations for nodes 

Rule 24 A function has no restriction on the number and type of input and output flows 

attached to it, as long as the flow constraints are satisfied. 

Rule 25 An environment instance can be either source or a sink, but not both. 

Table 5.24 illustrates the constructs controlled by these two rules.  As before, the 

flows include Material and Energy instances, but not signals, as they cannot have tail 

nodes.  The rules apply for all options of cardinality, although the figures are drawn using 

the one-in-one-out cardinality. 

Table 5.24: Constructs controlled by the binary input-output rules 

Environments represent boundaries of the modeling scope.  By choice, it is 

decided that in a model, each environment is either a source of flows or a sink of flows.  

A flow through an environment instance can exist only when two models are joined or 
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when a function receives a 
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See rationale below. 
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composed.  Here, a flow produced by one model (Flow1) is used by another model as 

input (Flow2).  Grammar rules could be written to allow junctions of this type 

temporarily and to check if the two flows are at the same state, in which case the 

operation could be finished by destroying the environment instance and connecting the 

two flows.  However, this operation is out of the scope of this research. 

5.2.5 Binary Grammar Rules for Carrier-Carried Relations 

By definition of the class Noun (Table 5.4), each flow can have at most one 

carrier and thus, the carrier relation is inherently unary.  Further, the unary constructs in 

Table 5.17 illustrate that only three types of carrier-carried relations are valid: (1) 

material carrying energy, (2) material carrying signal, and (3) energy carrying signal.  

However, the definition of Noun or the unary rules do not describe how carried flows can 

added to or extracted from their carrier flows.  The binary rules impose those constraints.  

Table 5.25 

Table 5.25: Layer 1 grammar: Binary carrier-carried relations  

Rule 26 A carried Energy flow can be added to a carrier Material flow only by the node 

that outputs the carrier Material flow.   

Rule 27 A carried Energy flow must be extracted from a carrier Material flow as input 

by the node that inputs the carrier Material flow.   

Rule 28 A signal flow is never added to a carrier flow.   

Rule 29 A carried signal flow can be extracted from its carrier by the same or a 

different node that inputs the carrier flow.   
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Rule 30 Addition and extraction of a carried flow to and from a carrier flow cannot be 

accomplished without an intervening function.   

Rule 31 A node can input a carried flow only if its carrier flow is also an input to the 

node. 

Rule 32 A node can output a carried flow only if its carrier flow is also output by the 

node.   

Table 5.26 illustrates the modeling constructs controlled by these rules.   In the 

last cluster in this table, rules are mentioned that apply to all subtypes of carrier and 

carried flows.  These rules depend on the head and tail connections of both carrier and 

carried flows, as mentioned in columns 2 through 5.  The rationale for each rule is 

provided following the table, using reference to construct numbers.   

Table 5.26: Constructs controlled by the binary carrier-carried rules 
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Rationale behind the Binary Carrier-Carried Modeling Constructs 

Construct 68. This construct represents the production of an energized flow.  The 

function outputs both the M1 and E1, while E1 leaves riding on M1.  

An example is a flow of moving air (M1), which carries kinetic energy 

(E1).   

Construct 69. This construct is redundant, but not prohibited.  It implies introduction 

of an energized flow to a system.  The energy flow is redundant, since 

it can be modeled as input to the first function that uses it, as shown in 

row 5.  This construct is similar to the verb Import in the Functional 

Basis.  

Construct 70. The output of energy E3 is not prohibited.  Its addition to the material 

flow M3 is prohibited, since it does not capture for the state change of 

the material due to this energy added.  In this representation, each 
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arrow is a specific flow state and the state cannot change from the tail 

of the arrow to its head.  For example, if E3 was heat and M3 was air, 

it is not clear if M3 is the colder air or the hotter air.  By definition of 

function, a function must be present to depict the addition of heat to 

air and the change of state, using two flows of air across the function.  

Function2 only shows the production of heat, not the addition to air.  

The example in row 1 has a similar construct, but the depiction that 

M1 and E1 are produced by the same function, coupled with the fact 

that E1 is carried by M1, indicates that the function not only produces 

the energy, but also adds it to the material flow.  Thus, there are two 

fundamental actions lumped in Function1.     

Construct 71. This construct is prohibited because of similar reasons explained 

above, applied to environment instances instead of functions.   

Construct 72. This construct is the input-side counterpart of row 1, and implies that 

the function inputs the material flow M5 to extract its energy E5 to 

perform its actions.   

Construct 73. This construct is the export counterpart of row 2.  The depiction of E6 

is not incorrect, but redundant.   

Construct 74. This construct is prohibited because of the reasons explained in row 3.  

The change of state of M7 must be captured in a separate function.   

Construct 75. This construct is prohibited for the same reasons explained above, 

applied to environments. 
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Construct 76. As explained earlier, signals are manifested when attributes of a 

material or energy flow meets a previously agreed condition.  This 

condition is tested by the function that uses the signal, not by the 

function that produces the carrier flow of the signal.  For example, in 

the air heater function structure (Model State 4.14), the temperature 

attribute of Air2 is interpreted as a signal by the function Conduct EE.  

The Transfer Air function, which produces Air2, is responsible for 

causing the temperature attribute to change, but it does not influence or 

depend upon the fact that this temperature attribute is used by another 

function as a signal.  For example, in an open-loop system, the 

Transfer Air function would still produce Air2 at certain temperature 

and would not change in terms of the types and count of flows.  The 

information transferred to Conduct EE is held in Air2, not in the 

function that produces it.  In this sense, a signal flow is never added by 

anything to a carrier.  A signal is only interpreted from the attributes of 

a carrier.   

Construct 77. It is possible and acceptable that the signal is used by a function that 

also inputs the flow whose attribute is used as a signal.  For example, a 

circuit breaker uses the current attribute of an electrical energy flow 

that it also inputs.   

Construct 78. Similar argument as above, applied to environments.   
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Construct 79. As explained with the air heater example, it is possible and acceptable 

that an attribute of a flow is interpreted as signals by a function other 

than the function that uses that flow.  While this other function 

(Function6) uses the information carried by the flow (M⋃E)4, it does 

not perform a transformative action on the carrier flow, and thus 

should not input it.   

Construct 80. The same argument as above, applied to environments.   

Construct 81. This construct is a redundant depiction of a carrier flow.   

Construct 82. This construct violates the definition of the term function, as illustrated 

in the beginning of Section 5.2, in context of Figure 5.4 and Figure 

5.5.   

Construct 83. By definition of function, an output flow at its state is the outcome of a 

transformative action and is produced after the action is performed.  

Thus, a flow carried by that output flow cannot be used by the 

function, as that would imply circular dependency.   

Construct 84. The same argument applies, for environment instances. 

Construct 85. In symmetry to the above argument, an input flow is required to 

perform the function and must therefore exist at its state before the 

function is performed.  Thus, an output of the function cannot be 

carried by it, since the output is produced after the function execution.   

Construct 86. Same argument as above, applies to environment instances.   
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5.2.6 Special Grammar Rules for Layer 1 

In addition to the rules mentioned above, a special rule in necessary to prevent 

circular dependency of carrier flows (Table 5.27).   

Table 5.27: Layer 1 grammar: Special rule  

Rule description Graphical construct St. 

Rule 33: 

A set of flows cannot form a circular 

chain of carrier-carried relations.   

Construct 87 

 

 

 
 

The carrier relation is predicated upon the understanding that the specific carried 

flow instance cannot exist without the carrier.  For example, kinetic energy of a moving 

body exists on the condition that the body itself exists.  The carrier is capable of existing 

without the carried flow.  For example, the body could exist at rest and have no kinetic 

energy.  Then, if Flow2 is capable of carrying Flow3, it can independently exist too.  The 

same argument applies to Flow3 and thus raises the question why any of the two flows 

should need a carrier.   The same argument can be extended to larger loops of circular 

dependency of carrier relations.  Notably, while this construct can be rejected based on 

this circular dependency argument, in this representation, this construct is already 

prevented by the hierarchy of carrier flow subtypes in Table 5.17.  For example, since 

material can carry energy, but the reverse is not true, Flow2 and Flow3 cannot be the 
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carrier of each other, no matter what their subtypes are.  Thus, the circular dependency 

clause is redundant for this representation.   

In conclusion, this chapter formalizes the Function Structure representation, 

which constitutes the first layer of the proposed representation.  Specifically, entities, 

relations, attributes, and local grammar rules to ensure internal consistency of models are 

formally defined.  The next necessary step is to validate that this proposed layer is in fact 

capable of constructing function structures supported by existing research and of 

supporting the claimed reasoning types: topologic and derivational conservation, which is 

presented next.   
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CHAPTER 6. IMPLEMENTATION AND VALIDATION:  

MODELING AND REASONING DEMONSTRATION WITH LAYER ONE 

Validation of a representation includes demonstrating internal consistency and 

external validity [31].  Consistency requires that the declarations within the 

representation do not lead to self-contradiction through logical inference and is 

demonstrated from three directions (Section 6.1): 

1. Exhaustiveness of Local Grammar (Section 6.1.1): Logically examinations 

are used to show that all constructs possibly considered for inclusion in a 

function structure are identified in the grammar and for each construct, there 

is a rule to test if the construct is permitted or prohibited.  

2. Consistency of Local Grammar (Section 6.1.2): Logical examinations are 

used to show that the rules available in the local grammar do not contradict 

mutually. 

3. Consistency of Vocabulary (Section 6.1.3): The class definitions are 

committed to an ontology using Protégé-OWL11 and checked using the 

Protégé logical consistency checker. 

                                                 

 

11 http://protege.stanford.edu/overview/protege-owl.html, accessed on August 16, 2011 
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Validity against external knowledge requires that statements made using the 

representation that are known to be correct by that body of knowledge do not lead to 

inferences that are not correct by that body of knowledge.  In this dissertation, the 

external bodies of knowledge against which validity is sought are (1) the laws of 

conservation and (2) irreversibility.  In this section, validity against conservation is 

illustrated in three steps (Section 6.1.3).  

1. Software Implementation (Section 6.2.1): The representation is implemented 

in software. 

2. Reasoning Demonstration (Section 6.2.2): The software tool is used to 

construct models of low complexity which are then used to perform 

qualitative conservation reasoning of topologic and derivational types, 

showing that the inferences are in agreement with the conservation principle.   

3. Product-Level Modeling Demonstration (Section 6.2.3): The software is 

used to construct the air heater function model from Model State 4.14 to 

illustrate that the representation can support larger models and perform 

reasoning on them, thus illustrating scalability at a basic level.   

Through this illustration, it is also shown that while the first layer is valid against 

conservation, it is not valid against the irreversibility principle.  This gap motivates the 

design of the subsequent layers.  In the next section, the internal consistency of the first 

layer is demonstrated.   
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6.1 Demonstration of Internal Consistency 

One way of testing a representation for consistency is to implement it in software 

and then to try to construct models that are allowed by the tool yet are illogical based on 

the definitions of the terms.  In this approach, lack of consistency can be established by 

finding at least one instance where a model construct violates the definition of the 

elements used in it.  However, the inability to produce such as violation dos not 

conclusively provide its consistency, although a high number of failed attempts to 

simulate inconsistency may give reasonable confidence toward it.  The only way to prove 

consistency is to examine the definitions and grammar rules exhaustively and show that 

none of their implications leads to self-contradiction.  However, this approach is 

practically infeasible, since it requires testing many model constructs, as explained next.   

The total number of model elements in the first layer includes ten classes, five 

relations, five attributes, and 33 grammar rules (Chapter 5).  For simplicity, the attributes 

and relations are not considered in this discussion.  Since a definition can be inconsistent 

within itself or contradict with other definitions, consistency checking for the ten class 

definitions requires checking (210 – 1) = 1023 subsets.  The negative one indicates that 

the empty set, consisting of no class at all, needs not be tested.  Similarly, the grammar 

rules, which could be inconsistent within oneself or between two or more rules in 

combination, form a total number of test cases of (233 – 1), a ten-digit number.  Further, a 

subset of classes that is consistent as a set of definitions can still be inconsistent when 

combined with one of the grammar rule sets, which requires checking every possible 

combination between class sets and rule sets – a total option space of (210 – 1) × (233 – 1), 
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a thirteen-digit number.  Thus, the total number of combinations of definitions and 

grammar rules that need to be checked is: (210 – 1) + (233 – 1) + (210 – 1) × (233 – 1), a 

number larger than 8.796 × (10)12.  To provide some perspective, if each evaluation takes 

only one second—a highly ambitious estimate—the total time required to finish these 

evaluations is over 278922 years.   

A proof of consistency being infeasible, this section illustrates with combinatory 

arguments how consistency is built in the design of the representation, especially in the 

grammar rules.  First, it is shown that all constructs and rules necessary for function 

structure construction are available in the grammar (exhaustiveness).  Second, it is shown 

that the rules available are mutually consistent (consistency).  If all necessary rules are 

available and they are consistent, the grammar as a whole is claimed to be consistent.  

Finally, an ontological examination reveals that the class definitions are internally 

consistent, thus establishing that the entire representation is internally consistent.   

6.1.1 Logical Examination of Exhaustiveness of Local Grammar 

The exhaustiveness of the grammar is examined in two steps.  First, it is shown 

that all rule types necessary for model construction are captured in the grammar, where 

each table in Section 5.2 represents a rule type.  Second, it is argued that within each rule 

type, all possible combinations of the constructs are considered, where each row a table is 

one combinatory possibility.  Together, these two claims imply that while constructing a 

function structure, a modeler can always find a grammar rule to check if a possible 

construct is prohibited.   



 

 186  

Exhaustiveness of Rule Types 

The local grammar provides all necessary rule types to control model 

construction.  The ERA model for the first layer (Figure 5.1) reveals only three basic 

relation types: (1) input-output, (2) carrier-carried, and (3) parent-child.  Since grammar 

rules control the permission or prohibition of relations instances, rules must exist for each 

relation type for exhaustiveness.  To this end, grammar rules exist for each relation: Table 

5.14, Table 5.21, and Table 5.23 control the input-output relation, Table 5.16, Table 5.25, 

and Table 5.27 control the carrier-carried relation, and Table 5.18 and Table 5.20 control 

the parent-child relation.  Further, since a flow has exactly two ends (head and tail) and a 

node has exactly two ends (input and output), only two levels of connections needs to be 

examined for the input-output relation: unary and binary.  The unary rules examine if a 

relation can exist at all between two entities.  The benefit of separately stating the unary 

rules is that for relations that are prohibited at the unary level, it is unnecessary to further 

examine if they can coexist with other relations.  Once a relation can exist at one end of a 

node or flow, the binary rules determine if a relation can exist at the other, open end of 

the node or flow.  For the input-output relation, Table 5.14 captures the unary rules, 

Table 5.21 captures the binary rules for flows, and Table 5.23 describes the binary rules 

for the nodes, thus giving exhaustive coverage on input-output rule types.   

Since a flow can have only one carrier, the carrier-carried relation is inherently 

unary, the rules for which are captured in Table 5.16.  However, rules must exist to 

control two actions: the addition and extraction of a flow to or from its carrier.  These 

rules are the binary carrier-carried rules captured in Table 5.25, and Table 5.27.  For the 



 

 187  

parent-child relation, although a flow can have multiple parents of children, only one 

instance of the relation exists between the parent set and the child set.  Thus, this relation 

is inherently unary, captured in Table 5.18 and Table 5.20.  In summary, grammar rule 

types exist for all relations and all varieties (unary, binary).  Thus, the set of grammar 

rule types is exhaustive.   

Exhaustiveness of Constructs and Rules within Each Rule Type 

While individual rule types exist for all relations, it can be shown by examining 

the rule tables and the constructs in Section 5.2 that within individual rule types, enough 

rules exist to control modeling.  For example, since an input or an output relation 

involves exactly two entities and there are three major types of entities—functions, flows, 

and environments—it is sufficient to examine 32 = 9 constructs of the form {first entity, 

second entity} to test all constructs of the input-output unary rules.  Table 5.15 shows 

that the unary rules in Table 5.14 do provide a decision for each of these possibilities.  To 

be sure, if the three subtypes of flows are separately counted, the number of entities 

increases to five: function, environment, material, energy, and signal.  In that case, a total 

52 = 25 permutations need to be tested. While Table 5.15 does not have 25 cells, it does 

cover those 25 permutations by lumping the three flow types into Flow<n> whenever 

possible.  If the status of a construct depends on the flow subtype, those constructs are 

explicitly shown, e.g., in the second row of Table 5.15.  Thus, rules exist for all possible 

unary constructs and therefore, the unary rules for input-output relations (Table 5.14) are 

exhaustive.   
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The binary input-output rules are written only for the constructs that are valid at 

the unary level.  Since there are only two permitted constructs for a flow output from a 

node and two more for a flow input to a node (Table 5.15), a total of 2 × 2 = 4 

combinations of the form {node, flow, node} are to be examined, where the head and the 

tail nodes are different instances.  In addition, two more possibilities arise where the 

nodes are the same.  Thus, only six possible binary constructs need to be examined for 

the input-output relation, all of which are captured in Table 5.22.  Similarly, for binary 

constructs of the form {flow, node, flow}, the four permitted unary constructs in Table 

5.15 can be combined in only two sets that has a node in the middle.  These two sets are 

examined in Table 5.24, providing evidence that the rules in Table 5.23 are exhaustive.  

Thus, both unary and binary rules for the input-output relation are exhaustive.   

In this manner, the exhaustiveness of the carrier-carried rules and the parent-child 

rules can be verified by examining the possible combinatory constructs captured in their 

respective tables.  This exercise is omitted here to avoid repetition—the combinations are 

explained for each rule type in the paragraph preceding the table of illustrations in 

Chapter 5.  For example, the unary carrier-carried rules must support 3 × 4 = 12 

constructs (Table 5.17), as there are three subtypes of carried flows and four possibilities 

of carrier flow subtypes.  Similarly, the parent-child rules (unary only) must support 3 × 3 

× 3 = 27 constructs (Table 5.19), as there are three subtypes of the parent flow, three 

subtypes of the child flow, and three options for cardinality (one-in-many-out, many-in-

one-out, and many-in-many-out).  By examining these tables, it is seen that the tables 



 

 189  

capture all possible combinatory constructs and the rules provide for a decision for each 

construct.  Thus, rules are exhaustively written for all possible modeling constructs.   

6.1.2 Logical Examination of Consistency of Local Grammar  

The illustrations in the previous two subsections establish that there is a rule to 

determine if any possible modeling construct is prohibited.  In this subsection, it is shown 

that within a rule type, the rules are consistent.  Since each rule determines values for a 

particular parameter, such as the number of head nodes of a flow, a rule can be thought of 

as a mathematical function (math_func) between its argument and outcome.  The 

keyword math_func is used to distinguish mathematical functions from mechanical 

functions.  Three concepts—domain, range, and math_func—are explained here.  (1) 

Domain of a rule is the set of argument entities for which the rule is defined.  For Rule 1, 

the domain is {Flow} since the rule can be applied to any flow entity to compute its 

number of head nodes.  (2) Math_func of a rule is the parameter that the rule returns.  

Rule 1 determines the number of head nodes permitted for the flow argument and thus, 

math_func = Number_of_Head_Nodes.  (3) Range of a rule is the set of values that the 

rule can produce.  The range of Rule 1 is {1}.  In order to have the possibility of self-

conflict, two rules must have the same math_func and intersecting domains.  Otherwise, 

either they compute different parameters for the same domain, compute same parameters 

for different domains, or are totally unrelated, each of which eliminates the possibility of 

mutual conflict.  A sufficient condition for conflict is for two rules to meet the necessary 

conditions and in addition have disjoint ranges.  Thus, one way to demonstrate internal 
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consistency is to disprove the necessary condition by showing that there are no set of 

rules with the same math_func and intersecting domains.   

Table 6.1 describes these three properties for the unary input-output rules, first 

introduced in Table 5.14.  Since the rules are written in natural English for easier 

interpretation and since some of these rules include negations, the domain and range may 

be sometimes difficult to identify.  For example, Rule 4 is defined over the domain 

{Node}, while its range is {¬ Node}. 

Table 6.1: Domain, math_func, and range for unary input-output rules 

Rule # Domain math_func Range 

Rule 1 {Flow} Number_of_Head_Nodes {1} 

Rule 2 {Material ⋃ Energy} ⊂ {Flow} Number_of_Tail_Nodes {1} 

Rule 3 {Signal} ⊂ {Flow} Number_of_Tail_Nodes {0} 

Rule 4 {Function ⋃ Env}⊆ Node} Permitted_Input_Types {¬ Node} 

Rule 5 {Flow} Permitted_Input_Types {¬ Flow} 

A scrutiny of Table 6.1 reveals that there are no two rules for which the domain 

and math_func are the same.  For example, Rule 1 and Rule 4 have the same domain but 

different math_func, while Rule 2 and Rule 3 have the same math_func but their domains 

are non-intersecting, since Flow is the disjoint union of Material, Energy, and Signal.  

Thus, the unary input-output rules are mutually consistent.  The method of examination 

illustrated above can be repeated for all rules in the local grammar.  Since there are 33 
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rules, there are 33 × 32 = 1056 rule pairs to examine.  While that examination is not 

included, the domain, math_func, and range of all rules are presented in Table 6.2.   

Table 6.2: Domain, math_func, and range for all local grammar rules 

Rule # Domain math_func Range 

Rule 1 {Flow} Number_of_Head_Nodes {1} 

Rule 2 {Material ⋃ Energy} ⊂ {Flow} Number_of_Tail_Nodes {1} 

Rule 3 {Signal} ⊂ {Flow} Number_of_Tail_Nodes {0} 

Rule 4 {Function ⋃ Env}⊆ Node} Permitted_Input_Types {¬ Node} 

Rule 5 {Flow} Permitted_Input_Types {¬ Flow} 

Rule 6 {Flow} Number_of_Carrier_Flows {0, 1} 

Rule 7 {Material ⋃ Energy} ⊂ {Flow} Number_of_Carrier_Flows {0, 1} 

Rule 8 {Signal} ⊂ {Flow} Number_of_Carrier_Flows {1} 

Rule 9 {Material} Number_of_Carried_Flows {1, 2, 3…} 

Subtype_of_Carried_Flows {Energy ⋃ 

Signal } 

Rule 10 {Energy} Number_of_Carried_Flows {1, 2, 3…} 

Subtype_of_Carried_Flows {Signal} 

Rule 11 {Signal} Number_of_Carried_Flows {0} 

Rule 12 {{Flow, Flow, Parent-child 

relation}} 

Parent.HeadNode == 

Child.TailNode 

{TRUE} 

Rule 13 {Material} Number_of_Child_Flows {1, 2, 3…} 
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Rule # Domain math_func Range 

Type_of_Child_Flows {Material} 

Rule 14 {Material} Number_of_Parent_Flows {1, 2, 3…} 

Type_of_Parent_Flows {Material} 

Rule 15 {Material, Material, …} Number_of_Parent_Flows {1, 2, 3…} 

Type_of_Parent_Flows {Material} 

Rule 16 {Energy} Number_of_Child_Flows {1, 2, 3…} 

Type_of_Child_Flows { Energy } 

Rule 17 {Energy} Number_of_Parent_Flows {1, 2, 3…} 

Type_of_Parent_Flows {Energy } 

Rule 18 {Energy, Energy, …} Number_of_Parent_Flows {1, 2, 3…} 

Type_of_Parent_Flows {Energy } 

Rule 19 {Signal} Number_of_Child_Flows {0} 

Rule 20 {Signal} Number_of_Parent_Flows {0} 

Rule 21 {Material ⋃ Energy} Node_to_Node {TRUE} 

Rule 22 {{Flow, Node}} Flow.TailNode == Node  

&& 

Flow.HeadNode == Node 

{FALSE} 

Rule 23 {Flow} Env_to_Env {FALSE} 

Rule 24 {Function} Number_of_Input_Flows {1, 2, 3…} 

Type_of_Input_Flows {M ⋃ E ⋃ S 
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Rule # Domain math_func Range 

} 

Number_Of_Output_Flows {1, 2, 3…} 

Type_of_Output_Flows {M ⋃ E} 

Rule 25 {Environment} Is_Source {TRUE, 

FALSE} 

Is_Sink {TRUE, 

FALSE} 

Is_Sink && Is_Source {FALSE} 

Rule 26 {{M, E, Carrier relation}} E.TailNode == M.TailNode {TRUE} 

Rule 27 {{M, E, Carrier relation}} E.HeadNode == 

M.HeadNode 

{TRUE} 

Rule 28 {{S, {M ⋃ S}, Carrier relation}} S.TailNode != NULL {FALSE} 

Rule 29 {{S, {M ⋃ S}, Carrier relation}} S.HeadNode == 

Carrier.HeadNode 

{TRUE, 

FALSE} 

Rule 30 {{Flow, Carrier1, Carrier2}} Flow.Carrier == Carrier1  

&& 

Flow.Carrier == Carrier2 

{FALSE} 

Rule 31 {{Carried flow, Carrier flow, 

Carrier relation, Node,}} 

Carried.HeadNode == Node 

&& 

Carrier.HeadNode != Node 

{FALSE} 
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Rule # Domain math_func Range 

Rule 32 {{Carried flow, Carrier flow, 

Carrier relation, Node,}} 

Carried.TailNode == Node 

&& 

Carrier.TailNode != Node 

{FALSE} 

Rule 33 {Flow} Flow.Carrier == Flow {FALSE} 

It can be seen that rule pairs such as Rule 6 and Rule 7 meet the necessary 

condition for conflict, as they have the same math_func and intersecting domains.  

However, in those cases, the range is also identical, which violates the sufficient 

condition for conflict.  Similarly, Rule 6 and Rule 8 have the same necessary condition, 

as {Signal} is a subset of {Flow}.  However, the range of Rule 8, {1}, is also a subset of 

the range of Rule 6, {0, 1}, thus avoiding conflict.   

Based on these examinations, it is seen that there is no pair of rules that satisfy the 

necessary and sufficient conditions for conflict.  For most cases, the necessary condition 

is not met, as the rules do not have the same math_func and intersecting domains.  In the 

few cases where this necessary condition is met, the ranges are also consistent, thus 

violating the sufficient condition of conflict.  Based on this analysis, it is concluded 

that the set of rules in the local grammar are consistent.  This conclusion is also 

indirectly supported by the lack of repetition of modeling constructs in the tables in 

Chapter 5.  There are a total of 86 constructs in Chapter 5.  However, no two of them are 

topologically identical.  Since each rule solves a different problem, the modeling 

constructs where their effect is pertinent are also different.  Notably, the constructs were 
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not carefully made to look unique.  Their uniqueness is a result of the consistency of the 

rules.   

Ultimately, Sections 6.1.1 and 6.1.2 collectively support three claims: (1) all 

constructs needed for modeling a function structure are captured in the tables in Section 

5.2, (2) all rules needed to determine if each of those constructs is permitted or prohibited 

are available in Section 5.2, and (3) the rules thus available are mutually consistent.  

Thus, it is shown that the local grammar of the first layer of the representation is 

internally consistent.   

6.1.3 Ontological Examination of Consistency of the Vocabulary  

To test consistency of the vocabulary, the class definitions from Chapter 5 are 

committed to an ontology using the Protégé Frames Ontology Editor12 and then checked 

using the Protégé consistency checker.  An ontology is an explicit specification of 

domain of discourse [27-29, 66, 172, 173].  Information is organized in terms of the 

entities comprising the domain, the properties used to characterize the concepts, relations 

between those concepts, and constraints imposed on those concepts, relations, and 

properties [172].  In this sense, an ontology holds the same information types as a formal 

representation, defined in Section 1.2.2.  It is thus reasonable to expect that the 

Conservation Layer (Layer 1) of the formal representation presented in Chapter 5 should 

                                                 

 

12 Available at http://protege.stanford.edu/overview/protege-owl.html, accessed on August 16, 2011 
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be implementable in ontological form that satisfies the consistency checks.  The Web 

Ontology Language (OWL) is a family of languages for authoring ontologies and 

explicitly capturing formal semantics of concepts, especially for semantic reasoning 

[174].  Protégé is a free, open-source software that supports ontology-editing with OWL 

and conforms to requirements of data exchange (e.g., XML), notations (e.g., OWL), and 

frameworks (e.g., RDF) necessary for developing semantic networks, as set by the World 

Wide Web Consortium, W3C13.  However, the main purpose of using Protégé OWL in 

this research is to use its reasoning ability to check consistency of the asserted ontology 

and to draw inferences about the ontological identity of classes and objects.  For example, 

the knowledge that a function can produce only material and energy flows, but not 

signals, can be asserted by setting the domain of the relation TailNode as {Material ⋃ 

Energy}.  Thereafter, if the asserted description of the class Signal or any of its instances 

includes a TailNode property, the Protégé reasoner detects these two assertions to be in 

conflict.  Further, the Protégé reasoner can determine if a class or an instance asserted by 

the user can be interpreted as another class or its instance, based on the properties 

declared in the instance – an ability that can be used to check if the asserted concepts 

(classes, properties, restrictions) are ambiguous.  The construction of the ontology is 

presented next with figures and text.  A computer code for reconstructing this ontology in 

                                                 

 

13 http://www.w3.org/, accessed on August 16, 2011 
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Protégé OWL is available in Appendix B in the Extensible Markup Language (XML) 

format.   

Asserted Class Hierarchy and Sibling Disjunction 

Figure 6.1 shows the asserted class hierarchy in the ontology.     

 

Figure 6.1: OWL class hierarchy (Asserted) 

The hierarchy is identical to the vocabulary presented in Table 5.1, except that the 

OWL class owl:Thing is used instead of the top-level entity Element. Owl:Thing is the 

mandatory top-level class enforced by Protégé.  Adding Element under owl:Thing and 

adding the remaining hierarchy under Element would produce an equally consistent 

ontology, although it is unnecessary to do so.  For this ontology’s purpose, owl:Thing is 
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equivalent to Element.  Further, Verb, Energy, and Material have more hierarchical levels 

under them (collapsed).  These levels are used in the subsequent layers of the 

representation and are not exposed here since the scope of this chapter is limited to 

validating the first layer only.   

During creating the class hierarchy, all subclasses under a superclass (called 

sibling classes in OWL terminology) are asserted to be disjoint, thus capturing the 

exclusive disjunction (XOR) relations in the ERA diagram (Figure 5.1).  Thus, Node and 

Noun are mutually disjoint, Environment and Verb are mutually disjoint, Material, 

Energy, and Signal are mutually disjoint, and Source and Sink are mutually disjoint.  For 

illustration, the disjoint assertions for the class Material are shown in Figure 6.2.   

 

Figure 6.2: Exclusive disjunction between Material, Energy, and Signal (Asserted) 

Asserted Object Properties and Data Properties 

Object properties in Protégé are analogous to relations between the classes.  Data 

properties are analogous the attributes.  Figure 6.3 show the asserted object properties 

and data properties in the ontology.  The properties replicate the relations shown in the 

ERA diagram in Figure 5.1.  The hasHeadNode and hasTailNode properties capture the 
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HeadNode and TailNode relations, hasChild captures the Child relations, and hasCarrier 

represents the CarrierFlow relations.  In addition, by exploiting the benefits of Protégé 

OWL, the inverse properties of each property are captured, as indicated by the ↔ 

symbols.  For example, the fact that a flow’s head is connected to a node can be 

described in two ways: (1) by asserting that the flow’s head node (hasHeadNode 

property) is the node or (2) by asserting that one of the node’s input flows (hasInput 

property) is the flow.  These two assertions are equivalent, they capture the same 

information about the model topology, yet the first is written as a flow property and the 

second is a node property.  These two properties are the inverse property of each other.   

Except for the hasCarrierFlow and hasBaggageFlow property groups, the object 

properties are organized in a hierarchical manner in order to facilitate their conceptual 

grouping.  The super-properties are not directly used in model creation, as no domain or 

range is necessary or asserted for them.  For the carrier and baggage properties, the child 

properties are created because Protégé does not allow defining multiple sets of domains 

and ranges for the same property name.  For example, although the restriction of flow 

subtypes for carrier relations can be controlled by unary grammar rules (Table 5.14), 

separate relations must be created for capturing those restrictions.  In this case, the 

E_hasCarrier property can connect any Energy (domain) to any Material (range), while 

the S_hasCarrier property has a domain of Signal flows and a range of Material ⋃ 

Energy, thus capturing the unary carrier-carried rules of Table 5.14.  The domain and 

range of the properties are discussed in the next section.  The data properties capture the 

attributes mentioned in the ERA model.  Since Protégé OWL allows only basic data types 
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such as integer, floating points, and strings, the point coordinates for geometric center, 

head point, and tail point are expressed as individual X and Y coordinates (floating point 

numbers).   

 

(a) Object properties 

 

(b) Data Propoerties 

Figure 6.3: Object properties and data properties (Asserted) 
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It should be noted that the apparent disagreement between the attributes and 

relations of the ERA model and the properties in this ontology, such as the necessity to 

use the hierarchical properties for the carrier relation and the floating point numbers for 

the point coordinates, are not indicative of inconsistency of the ERA model.  Rather these 

are results of the implementation environment provided by Protégé OWL.  In the next 

section, the representation is implemented in an object-oriented application for external 

validation.  In that implementation, the points are captured as instances of a CPoint class 

and a single property is used to capture the carrier-carried relations between different 

flow subtypes, using algorithmic enforcement of the unary carrier-carried rules of Table 

5.14.   

Asserted Domain, Range, and other Qualifiers  

Domain and range of a property in Protégé are analogous to the entities connected 

by a property in the ERA model.  Figure 6.4 shows a Protégé screenshot of the property 

list, along with their domains and ranges.  The domain of a property is the set of things 

that can “have” that property or for which that property is defined.  For example, since 

only Source and Verb instances are the only things that can produce output flows, the 

domain of property hasOutput (highlighted row in the figure) is Source ⋃ Verb.  The 

range of a property is the set of things that the property can point to, or the set that can be 

related to the domain through the property.  For example, since only Material and Energy 

flow instances can be related to a Verb or Source instance through the hasOutput 

property, the range of hasOutput is Material ⋃ Energy.  In this manner, the asserted 

domains and ranges reflect the relations in the ERA model and also some grammar rules.   
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Figure 6.4: Domain, range, and other characteristics of properties (Asserted) 

In addition to the domain and range information, three special characters are 

asserted for each property.  A property is called functional if for it points to one specific 

instance within the range.  For example, since a flow can have only one tail node, the 

hasTailNode property is marked as Functional.  A property is called inverse functional if 

its inverse property is functional.  For example, since hasTailNode is functional, its 

inverse property hasOutput is inverse functional.  A property is transitive if the two 

assertions (1) instance A is related to B and (2) B is related to C imply that A is related to 

C.  For example, the hasChild properties are transitive, since they imply derivation 

through conservation, in which case if A is derived from B and B is derived from C, it is 

correct to infer that A is derived (indirectly) from C.   
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Asserted Restrictions (Axioms) 

Restrictions in Protégé are analogous to the local grammar rules that determine 

which properties (relations) can exist between the classes.  Three types of restrictions—

existential, universal, and cardinal—are possible in Protégé OWL.  For illustration, 

Figure 6.5 shows the restrictions asserted on the properties of the class Energy.  An 

existential restriction is used to assert that an instance must have a property.  For 

example, the assertion of domain and range for the hasTailNode property ensures that an 

Energy instance (in domain) “can” have a tail node, which must be a Source or a Verb 

instance.  The existential restriction on this property asserts that an Energy instance 

“must” have “at least one” tail node within that range.  However, since the hasTailNode 

property is also asserted as functional, there can be one and only one tail node for an 

Energy instance.  The cardinality restriction is used to set exact, upper, or lower bound of 

a property.  For example, the domain and range of the E_hasCarrier property assert that 

there “can” be one and only one (functional) carrier flow of an Energy flow (domain), 

which must be a Material (range).  The cardinality of “≤ 1” in this case asserts that an 

Energy flow can have at most one carrier.  In this manner, restrictions are asserted for 

each property of each class, as applicable.  The Protégé OWL classes inherit restrictions 

from their superclasses.  For example, the exact cardinality of the X and Y coordinates of 

the head and tail points of Energy are inherited from its superclass Noun, where they are 

asserted one time so that they can be applied to all Noun subclasses.   
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Figure 6.5: Restrictions on Energy (Asserted and Inferred) 

With the assertion of the classes and their hierarchy, the object and data 

properties, their domains, ranges, and qualifiers, and the restrictions, the assertion of the 

ontology is complete.  As a whole, the ontology replicates the entities, relations, 

attributes, and the applicable grammar rules that can be replicated using the ontological 

environment.  At this point, the reasoner is used to check consistency of the asserted 

ontology.   

Ontological Reasoning for Consistency Checking and Ambiguity 

The Pellet 1.5.2 reasoner [175] is used to examine the ontology.  Figure 6.6 shows 

the outcome of the consistency checker.  The results prove that the asserted ontology is 

consistent, as inconsistent ontological elements, if any, are reported in red color in this 
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output window.  This illustration verifies that no conflict exists between the asserted 

statements.   

 

Figure 6.6: Consistency checking results for the ontology (Consistent) 

Figure 6.7 shows the outcome of the reasoner for computing inferred data types 

and Figure 6.8 shows the class hierarchy inferred by the reasoner from the asserted 

hierarchy.  No data type except the explicitly asserted ones is found.  The inferred and 

asserted class hierarchies are also identical.  This indicates that each concept in the 

ontology is unambiguously defined, as there is no possibility of inferring one concept as 

another.   
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Figure 6.7: Consistency checking results for the ontology (Consistent) 

 

Figure 6.8: OWL class hierarchy (Inferred) – Identical with the asserted hierarchy 
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Model Construction and Model-Level Consistency Checking using the Ontology  

Based on the above three illustrations of consistency of the classes, it is expected 

that instances created from those classes and related by the asserted properties will define 

a model that will also be consistent.  To this end, the function structure generated at the 

final step of the modeling exercise (Model State 4.14) is created using the ontology.  

Figure 6.9 shows a Protégé screenshot of the Verb instance En_Air_3, for illustration.  

This instance represents the function block Energize Air 3 in Model State 4.14.  The total 

number of instances created for each class is shown beside each class name in the left 

panel (Class Browser) of this figure.  These numbers can reflect the number of instances 

in Model State 4.14.  For verbs, the eight instances are seen in the center panel (Instance 

Browser).  The form for adding a verb asks exactly those questions that are necessary to 

define a verb: its input flows (hasInput) and output flows (hasOutput).  These entries 

replicate the topology of Model State 4.14.   

Upon finishing the model using the instances of nodes, flows and their topological 

relations, the consistency checker is invoked again, to test the model-level consistency 

and to ensure that while the representation itself is consistent, it can support consistent 

models.  Similar to Figure 6.6, the reasoner does not detect any inconsistency in the 

model.  Based on consistency of both the ontology and the model, the internal 

consistency of the vocabulary is now demonstrated.  Further, based on the 

demonstration of exhaustiveness and consistency of the local grammar by logical 

examination and consistency of the classes through this ontological examination, it is 
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asserted that the internal consistency of the representation as a whole is now 

demonstrated.   

While the representation is consistent, it remains to be validated that it can 

actually support the reasoning it is designed for: (1) topologic and (2) derivational 

reasoning at a qualitative level.  This external validation is addressed next.   

 

Figure 6.9: Creation of individual instances using the ontology 
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6.2 Demonstration of External Validity against Conservation Laws 

External validity of the representation is demonstrated by incorporating the 

representation in an object-oriented, graphic user interface-based software tool, using the 

tool to construct models, and reason on them using the laws of conservation.  The design 

of this software tool is discussed next.  The software tool is named the Concept Modeler, 

ConMod for short, as the representation is intended to support modeling and reasoning on 

early design concepts.   

6.2.1 Design of the Software Tool ConMod 

The ConMod program is implemented in order to demonstrate external validity of 

the proposed representation against the laws of physics—specifically, conservation laws 

for the first layer—by showing that the reasoning needs identified in Chapter 4 are indeed 

supported by the representation.  The tool itself is not a direct outcome of the research.  It 

is only a means to validate that the direct outcome of this research—the representation—

is valid.  The tool is developed using the Microsoft Foundation Classes (MFC) library 

that provides Application-Programmer Interface (API) classes in the C++ language for 

writing Windows-based programs.  The default version of an MFC project, when 

compiled, creates a Windows application with empty windows, basic toolbar buttons, and 

menu items such as File Open, File Close, Save, Cut, Copy, Paste, Print, and Help, while 

each of these buttons and menus are nonfunctional.  Code is written to implement 

functionality for these buttons and menus, such as model construction, editing, and 

reasoning.  The high-level system architecture for ConMod is discussed next.  
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It must be emphasized that the sole purpose of this software implementation is to 

allow external validation through automated reasoning.  In order to perform reasoning, a 

computer model is first required.  The software is designed only to provide models for 

this illustration and to execute the reasoning algorithms.  The design of the software, such 

as its user interface, is not examined here.  Only the minimal features required to 

demonstrate reasoning are implemented.   

ConMod System Architecture  

The system architecture of ConMod is shown in Figure 6.10.  This architecture is 

based on the Document-View architecture provided by MFC.  Two overridable MFC 

classes—document and view—are used to hold data.  The document class 

(CConModDoc in source code) is instantiated only once per session and holds the 

instances of model classes such as functions and flows.  The view class (CConModView) 

holds the graphic data to render the model on screen and uses private methods to 

automatically update whenever there is a change in the document due to a model edit.   
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Figure 6.10: The document-view architecture of ConMod 

There are six individual functional modules of the application, indicated by 

shaded shapes in the figure.   

1. GUI Controls: This module implements the toolbars, buttons, menu items, 

and context menu lists and serves as the user’s gateway to the application.  It 

invokes the other modules and helps the user select instances from the view. 

2. ConMod Classes: This module is the static repository where the classes are 

declared and implemented.  Data in this module is used in constructing the 

instances, but is never changed during modeling or reasoning operations in a 

session of the application.  Data in this module can be edited only by the Class 

Modeler module.  Classes in this repository also contain the methods for 

construction, rendering, and edit operations pertinent to the classes, which are 

called by the Modeler during model edits.   
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3. Modeler: This module includes the methods for adding, editing, and deleting 

instances of ConMod classes such as Verb, Noun, and Environment.  

Instances are created and edited on the document, which causes the view to 

automatically update the rendering on screen.   

4. File Management: This module is used to perform file input output 

operations, such as saving and launching.  During saving, data necessary to 

reconstruct the model are read from the document and saved in a file (not 

shown).  The extension for ConMod model files is *.fst, which stands for 

“function structure”.  During launching (File Open), data from the file is read 

and added to the document, which causes the view to update.   

5. Reasoner: This module is invoked by the GUI at user request.  It contains and 

executes the algorithms required to check the model for qualitative 

conservation.  It only reads the instances in the document and reports the 

findings to the GUI rendering module, to be returned to the user. 

6. Class Modeler: This module is available for defining new function and flow 

classes by the designer or modeler without requiring editing the source code, 

thus allowing capture and reuse of domain-specific design knowledge through 

customization.   

The functionality of these modules is implemented in the source code, available in 

Appendix C and Appendix D.  The executable file for the program, ConMod.exe, is 

available upon request from the Clemson Engineering Design Applications and Research 
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Lab, CEDAR14.  The class diagram and description for this application are discussed 

next.   

ConMod Class Diagram and Class Descriptions 

Figure 6.11 shows the class diagram for ConMod.  Classes from the vocabulary of 

Table 5.1 are seen in the subclasses under CElement.  The class Noun is named CEdge 

and Verb is named CFunction in this implementation.  The shown version of ConMod is 

a partial implementation of the representation, where classes Source and Sink are not 

shown.  This simplification does not compromise the demonstration of the conservation 

reasoning, as illustrated in the next sections.   

                                                 

 

14 http://www.clemson.edu/ces/cedar, accessed on August 16, 2011 
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Figure 6.11: Class diagram of the ConMod application 

The classes at the bottom are MFC classes that provide general functionality for 

Windows-based applications such as windows, frames, dialogs, and device contexts 

(canvas for drawing objects).  The only exception is CConModDoc, the document class 

that holds the instances added to a model.  The CGeometry class is required at the highest 

level as many classes underneath it use geometric data and methods provided by it for 

drawing instances.     

The complete source code of this application is available in Appendix C and 

Appendix D.   For inspection of the implementation of the data members and methods in 

the code, the declarations within the classes (C++ header files) are presented in Table 6.3 

through Table 6.13.  The purpose is to illustrate that the code actually implements the 

class data elements and methods identified in the representation and to explain occasional 
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deviations where that adherence is violated.  Data members and methods that pertain to 

the software design aspect such as the user interface and dialogs, and those that are 

defined in the subsequent layers such as irreversibility, are omitted for brevity.  These 

data and methods do not interfere with the conservation reasoning illustrated.   

In each table, the class declaration in the header file is shown to illustrate its 

superclasses.  The data members and member functions are then described.  For data 

members, the first word is the data type and the second word is the name of the data 

member.  For methods, the first word before the parentheses is the name of the method, 

the words to the left of the name are the return data type and the virtual qualifier 

(optional), and the list in the parentheses contains the data passed to the method as 

arguments.  Each argument is described with its data type (first word), name (second 

word), and optionally with its default value (assignment operation with “=” sign).  Table 

6.3 describes the highest-level class CGeometry.   

Table 6.3: Class CGeometry 

Class declaration 

class CGeometry  

// Not inherited from anything – top level class 

Data members Description 

None 

Methods (Member functions) Description 

int RoundToTwenty(float n, int t); Rounds up n to the nearest multiple of t 
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and returns the result as an integer 

CPoint SnapToGrid(CPoint p); Computes a point derived by snapping the 

input point p to the grid size, a global 

variable 

long distance(CPoint p1, CPoint 

p2); 

Computes the distance between two 

points, p1 and p2  

CPoint* InterpolatePoints(CPoint 

p1,CPoint p2, double ratio); 

Computes a point by interpolating 

between two input points, p1 and p2, by 

the input ratio 

Table 6.4 describes the class CElement, analogous to the class Element in the 

design (Table 5.2). 

Table 6.4: Class CElement (Element) 

Class declaration 

class CElement : public CGeometry   

// Inherits CGeometry, otherwise the top-level class for elements 

Data members Description 

// Geometric and name attribute 

data 

 

CString GivenName; Name given to an element by the user 

CPoint GeometricCenter; Holds the geometric center of an element 

CPoint AnchorsForBaggageFlows[16]; A list of points where carrier flow ends 
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can be connected to the stem of a flow 

arrow 

// Input-output relation data  

CPoint TailPoint, HeadPoint; Point data members storing the location of 

the head and tail of point flows 

CElement* pHeadElem; Pointer to the element that is the head 

element of a flow instance 

CElement* pTailElem; Pointer to the element that is the tail 

element of a flow instance 

CPoint Anchors[16]; A list of points where flows can be 

connected to a function or environment, or 

nodes can be connected to a flow (head 

and tail points) 

// Model editing data  

bool IsHighlighted; Flag set to true when an element is 

highlighted for selection by the user 

bool IsSelected; Flag set to true when an element is 

selected for an edit operation by the user 

int GrabHandle; An integer that stores where an element is 

“grabbed” by the mouse: tail, center, or 

head 

// Drawing data – pen and brush  
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int PenR, PenG, PenB; Color settings for the drawing pen 

int BrushR, BrushG, BrushB; Color setting for the drawing brush 

int HeadBrushR, HeadBrushG, 

HeadBrushB; 

Color setting for the brush that paints the 

head of a flow by topological status 

(dangling or attached) 

int TailBrushR, TailBrushG, 

TailBrushB; 

Color setting for the brush that paints the 

tail of a flow by topological status 

(dangling or attached) 

Methods (Member functions) Description 

virtual void DrawOnDC(CDC* pDC); Method for drawing individual instances 

on screen, declared as virtual as it is 

differently implemented for different 

element types 

Table 6.5 describes the class CNode, analogous to the class Node in Table 5.2. 

Table 6.5: Class CNode (Node) 

Class declaration 

class CNode : public CElement 

// Inherits CElement per the design of the vocabulary  

Data members Description 

// Input-output relations  

bool NoInputAttached; Flag to detect if the node has no input 
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flows 

bool NoOutputAttached; Flag to detect if the node has no output 

flows 

Methods (Member functions) Description 

void ComputeBlockCoordinates(); Method to compute the node vertices – 

overridden by CFunction and CEnv  

Table 6.6 describes the class CEdge, analogous to the class Noun in Table 5.2.   

Table 6.6: Class CEdge (Noun) 

Class declaration 

class CEdge : public CElement  

// Inherits CElement (equivalent to Noun) per the design of the 

vocabulary 

Data members Description 

// Input-output relations  

void ComputeAnchorPoints(); Method to compute the anchor points for a 

flow, including the head and tail points 

and the points on the stem for attaching 

carried flows 

void AttachEdgeToNearestAnchor(); Method to attach an edge to the nearest 

anchor available in the whole model, 

helping the user to connect an edge end to 
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an element 

void ResetGeometricCenter(); Method to recomputed the geometric 

center of an edge after it is moved or 

reconnected 

// Carrier-carried relations  

bool ThisFlowIsIncomingBaggage; Boolean to indicate if the flow is added as 

a baggage (carried) to another flow 

bool ThisFlowIsOutgoingBaggage; Boolean to indicate if the flow is carried 

by a another flow and used by a function 

// Head drawing data  

CPoint HeadLeftVertex, 

HeadRightVertex; 

Points to hold the left and right vertices of 

the head of a flow 

double HeadSize, HalfHeadAngle; Numbers to contain the head size in pixels 

and the half angle of the arrow head 

CPoint HeadVertexArray[3]; Array holding the three points defining 

the head of a flow as a triangle 

// Stem drawing data  

int StemThickness; Integer showing the thickness of a flow 

that caries between Material, Energy, and 

Signal 

int StemLineFont; Font style of the flow stem that varies 

between Material, Energy, and Signal 
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int FontSize; Font size of the flow name on the stem, 

which varies between carrier and carried 

flows 

Methods (Member functions) Description 

// Flow constructor 

CEdge(CPoint TailClick, CPoint 

HeadClick); 

Constructor method that adds a flow using 

the two points on the screen where the 

mouse is clicked as input for the tail and 

head 

// Drawing method 

void DrawOnDC(CDC* pDC); 

Method to draw a flow with its stem, its 

tail circle, its head with three lines, and 

fill colors in the head and tail ac per their 

dangling status 

Table 6.7 describes the class CFunction, analogous to the class Verb in Table 5.2.   

Table 6.7: Class CFunction (Verb) 

Class declaration 

class CFunction : public CNode, public CRect, public CDialog  

// Inherits CNode per the design of the vocabulary 

// Inherits the MFC class CDialog as a dilaog isrequired to accept user 

input  

// Inherits the MFC class CRect to facilitate drawing function blocks 

Data members Description 

// Attributes  



 

 222  

CString GivenName; Name given to the function by the 

modeler 

Methods (Member functions) Description 

void ComputeBlockCoordinates(); Method to compute the vertices of the 

function block 

void DrawOnDC(CDC* pDC); Method to draw the function blocks 

Table 6.8 describes the class CEnv, analogous to Environment in Table 5.2.  

Table 6.8: Class CEnv (Environment) 

Class declaration 

class CEnv : public CNode, public CDialog  

// Inherits CNode per the design of the vocabulary 

// Inherits the MFC class CDialog as a dilaog isrequired to accept user 

input 

Data members Description 

// Attributes  

CString GivenName; Name given to the environment instance 

by the modeler 

Methods (Member functions) Description 

void ComputeBlockCoordinates(); Method to compute the vertices of the 

environment hexagon 

void DrawOnDC(CDC* pDC); Method to draw the environment 
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hexagons 

Table 6.9 describes the class CMaterial, analogous to class Material in Table 5.2.   

Table 6.9: Class CMaterial (Material) 

Class declaration 

class CMaterial : public CEdge, public CDialog 

// Inherits CEdge per the design of the vocabulary  

// Inherits the MFC class CDialog as a dilaog isrequired to accept user 

input 

Data members Description 

// Attributes  

CString GivenName; Name given to the environment instance 

by the modeler 

// Parent-child relations  

CList<CMaterial*, CMaterial*> 

ChildList; 

List of pointers to child flows, all of 

which are instances of class CMaterial 

CList<CMaterial*, CMaterial*> 

ParentList; 

List of pointers to parent flows, all of 

which are instances of class CMaterial 

Methods (Member functions) Description 

void DrawOnDC(CDC* pDC); Method to draw the CMaterial instance 

Table 6.10 describes the class CEnergy, analogous to the class Energy in Table 

5.2. 
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Table 6.10: Class CEnergy (Energy) 

Class declaration 

class CEnergy : public CEdge, public CDialog 

// Inherits CEdge per the design of the vocabulary  

// Inherits the MFC class CDialog as a dilaog isrequired to accept user 

input 

Data members Description 

// Attributes  

CString GivenName; Name given to the environment instance 

by the modeler 

// Parent-child relations  

CList< CEnergy*, CEnergy*> 

ChildList; 

List of pointers to child flows, all of 

which are instances of class CEnergy 

CList< CEnergy*, CEnergy*> 

ParentList; 

List of pointers to parent flows, all of 

which are instances of class CEnergy 

Methods (Member functions) Description 

void DrawOnDC(CDC* pDC); Method to draw the CEnergy instance 

Table 6.11 describes the class CSignal, analogous to the class Signal in Table 5.2.   

Table 6.11: Class CSignal (Signal) 

Class declaration 

class CSignal : public CEdge, public CDialog 

// Inherits CEdge per the design of the vocabulary  
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// Inherits the MFC class CDialog as a dilaog isrequired to accept user 

input 

Data members Description 

// Attributes  

CString GivenName; Name given to the environment instance 

by the modeler 

// Parent-child relations - NONE  

Methods (Member functions) Description 

void DrawOnDC(CDC* pDC); Method to draw the CEnergy instance 

Table 6.12 describes the MFC document class CConModDoc.  This class is not 

included in the vocabulary of Table 5.2.  It is used to hold the model instances in this 

implementation.   

Table 6.12: Class CConModDoc (Document) 

Class declaration 

class CConModDoc : public CDocument 

// This class is not a part of the vocabulary of the representation and 

thus does not inherit anything from that vocabulary   

// Inherits the MFC class CDcoument to store model elements and update 

views 

Data members Description 

CList<CElement*, CElement*> 

CElementList; 

List of all CElement objects, irrespective of 

types.  Used by methods that do not depend 
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on the types, such as deleting and 

refreshing the screen 

CList<CNode*, CNode*> CNodeList; List of all nodes 

CList<CEdge*, CEdge*> CEdgeList; List of all flows  

CList<CFunction*, CFunction*> 

CFunctionList; 

List of only functions 

CList<CEnv*, CEnv*> CEnvList; List of only environment instances 

CList<CMaterial*, CMaterial*> 

CMaterialList; 

List of only material flows 

CList<CEnergy*, CEnergy*> 

CEnergyList; 

List of only energy flows 

CList<CSignal*, CSignal*> 

CSignalList; 

List of only signal flows 

CList<CElement*, CElement*> 

PreselectionList; 

List of elements (irrespective of types) that 

are highlighted for an operation 

Methods (Member functions) Description 

None  

Table 6.13 shows the MFC view class, CConModView, used to create the 

graphics of the model and to support the reasoning algorithms.   

Table 6.13: Class CConModView (View) 

Class declaration 

class CConModView : public CView, public CGeometry 

// This class is not a part of the vocabulary of the representation and 
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thus does not inherit anything from that vocabulary   

// Inherits the MFC class CDcoument to store model elements and update 

views 

// Inherits geometry as it needs geometric functions to update the view

Data members Description 

// Model reasoning data members  

CString Msg_OrphanFlow; String that holds the orphan flow message 

CString Msg_BarrenFlow String that holds the barren flow message 

CString Msg_OneInManyOut_M; String that holds the error message when 

material conservation is violated in the 

one-in-many-out configuration 

CString Msg_OneInManyOut_E; String that holds the error message when 

energy conservation is violated in the one-

in-many-out configuration 

CString Msg_ManyInOneOut_M; String that holds the error message when 

material conservation is violated in the 

many-in-one-out configuration 

CString Msg_ManyInOneOut_E; String that holds the error message when 

energy conservation is violated in the 

many-in-one-out configuration 

CString Msg_ManyInManyOut; String that holds the error message telling 

that unless derivation relations are shown, 
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it is not possible to conclude on a 

violation in the many-in-many-out 

configuration 

Methods (Member functions) Description 

// Screen refresh  

virtual void OnDraw(CDC* pDC); Method to redraw every element instance 

in the model to refresh the whole screen 

// Model construction methods  

void AddFunction(void); Method to add a function to the model 

void AddEnv(void); Method to add an environment to the 

model 

void AddEdge_Dynamic(void); Method to create a temporary flow 

instance that follows the mouse pointer 

for as long as the mouse button is down 

during flow addition  

void AddMaterial(void); Method to add a material flow to the 

model 

void AddEnergy(void); Method to add an energy flow to the 

model 

void AddSignal(void); Method to add a signal flow to the model 

// Model editing methods  

void MoveConnect(); Method to move an element or reconnect 



 

 229  

the ends of a flow 

void MoveConnectDynamic(); Method to update the screen with a 

temporary element instance for as long as 

the mouse button is down after selecting 

an element to be moved or reconnected 

void 

DetachEdgesFromElement(CElement* 

pElement); 

Method to delete the topological 

connections of a flow after its ends have 

been detached from a node 

// Model reasoning methods  

void Set_OrphanFlowMsg(); Method to compose Msg_OrphanFlow 

void Set_BarrenFlowMsg(); Method to compose Msg_BarrenFlow 

void Set_OneInManyOutMsg_M(); Method to compose 

Msg_OneInManyOut_M 

void Set_OneInManyOutMsg_E(); Method to compose 

Msg_OneInManyOut_E 

void Set_ManyInOneOutMsg_M(); Method to compose 

Msg_ManyInOneOut_M 

void Set_ManyInOneOutMsg_E(); Method to compose 

Msg_ManyInOneOut_E 

void Set_ManyInManyOutMsg(); Method to compose Msg_ManyInManyOut 

A few differences can be noticed between the implementation of these classes and 

the design presented in Table 5.2 and Figure 5.1, which need to be explained.  The 
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GivenName attribute included in the CElement class is overridden in the leaf-level 

classes such as Material, Energy, and Signal, as the CDialog class requires the 

GivenName data member to be declared at the leaf classes.  The HeadNode and TailNode 

pointers are declared in the high-level class CElement as CElement* pointers, instead of 

in the CEdge class as CNode* pointers.  This change at the implementation level 

provides some flexibility to refer to a flow as an element, without having to know its 

type.  The carrier-carried relation and the actions of adding a carried flow to its carrier are 

implemented indirectly using two actions: (1) by assigning the carrier flow as the 

pHeadElem of the carried flow and (2) setting the Boolean parameter 

ThisFlowIsOutgoingBaggage to TRUE.  In addition, almost every class includes data and 

methods necessary to render, select, highlight, or edit their instances, which are details 

pertinent to this implementation rather than the design of the representation.  If the 

representation was implemented in another application for a different purpose, these 

additional data and methods would probably be implemented differently, while the core 

class hierarchy and the data and methods prescribed in the design would not.  Besides 

these minor implementation-specific changes, the data and methods in these classes do 

reflect the attributes and relations identified in Chapter 5.  The next section presents the 

user interface design of the ConMod application.   

ConMod Graphic User Interface and Rendering 

Figure 6.12 shows the design of the main window and toolbar for the application.  

The toolbar includes icons for the two node subtypes—function and environment—and 

the three flow subtypes—material, energy, and signal.  The environment subtypes, source 
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and sink, are not implemented in this version of ConMod and can be included in a future 

extension.   

 

Figure 6.12: ConMod main window and toolbar buttons (Layer One) 

Figure 6.13 shows the Add Function and Add Environment dialogs, which pass 

the user-entered string to the GivenName data member of the respective classes: 

CFunction and CEnv.  The GeometricCenter data required by those class constructors is 

passed from the mouse click on the graphics area of the application.   
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Add Function dialog 

 

Add Environment dialog 

Figure 6.13: Dialog boxes for adding function and environment instances (Layer 

One)  

Figure 6.14 shows the Add Material, Add Energy, and Add Signal dialogs.  For 

the purpose of the first layer of the representation, these dialogs operate in similar manner 

as the Add Function dialog, as they pass the user-entered name of the flows to 

GivenName data members in the respective classes: CMaterial, CEnergy, and CSignal.  

The start and end points of the flows are passed by the mouse button press and release 

positions on the graphic screen using two methods within the CConModView class: 

OnMouseLDown and OnMouseLUp.     
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Add Material dialog 

 

Add Energy dialog 

 

Add Signal Dialog 

Figure 6.14: Dialog boxes for adding Material, Energy, and Signal instances (Layer 

One) 

The model entities such as functions, flows, and environments can be added, 

edited, and deleted using this interface objects, as illustrated next.  The reasoning 

algorithms can be invoked by double-clicking on the white space in the graphics area, 

while a message window is provided for returning reasoning output.  When run on an 

empty model, this window returns a default hard-coded message, shown in Figure 6.15.   
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Figure 6.15: Qualitative conservation reasoning message dialog 

6.2.2 Demonstration of Function Modeling and Qualitative Conservation 

Reasoning 

As mentioned in Chapter 5, the conservation layer of the representation is 

designed to support the first eight out of the twelve reasoning tasks summarized in Table 

4.15.  The ConMod application is used here to demonstrate this reasoning.  The graphical 

constructs that trigger these reasoning and the message to be generated from these 

reasoning are summarized in Table 6.14.  In addition to the eight types, a ninth 

reasoning—many-in-many-out—is identified by logically extending the reasoning types 

of Table 4.15.  In this reasoning (# 9a in Table 6.14), the system identifies functions that 

input and output multiple flows of subtype Material or Energy and accordingly infers 

conservation.   
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Table 6.14: Conservation reasoning to be validated using ConMod 

Ref. from 

Table 4.15 

Reasoning 

Name 
Model Construct Expected Feedback 

T
op

ol
og

ic
 

1 
Redundant 

function  
Redundant function: “F1” 

2 Dangling tail 
 

Dangling tail: Flow1 

3 Dangling head 
 

Dangling head: Flow2 

D
er

iv
at

io
n

al
 

4 Barren flow 
 

Barren flow: Flow2 

5 Orphan flow 
 

Orphan flow: Flow1 

6 

One-in-one-out 

and one-in-

many-out 

inference 
 

Conservation inferred: 

{M1} → {M2, M3} 

{E1} → {E2, E3} 

7 
Many-in-one-

out inference 

 

Conservation inferred: 

{M5, M5} → {M6} 

{E5, E5} → {E6} 
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Ref. from 

Table 4.15 

Reasoning 

Name 
Model Construct Expected Feedback 

9 

Material 

transformation 

without energy 

exchange 

 

Material transformation 

without energy in F7 

9a 

Many-in-

many-out 

inference 

Conservation inferred: 

{M7, M8} → {M9, M10} 

Topologic and derivational reasoning are demonstrated by constructing the model 

in Figure 6.16.  The model shows at least one instance of all five element classes shown 

on the toolbar.  The flow subtypes Material and Energy are indicated by their line 

thickness (material = thick, energy = thin).  Signals have a dotted line font and S1 is 

carried by Flow2.  Element names such as M1 and F1 are entered by the user through the 

text field in the respective dialogs.  The letters within brackets on flow names are classes 

selected from the tree in those dialogs.  As seen in Figure 6.14, the default selections for 

the flow subtypes are M for Material and E for Energy.  These trees could be expanded to 

select a more specific flow type, but that detail is outside the scope of this validation of 

Layer 1.   
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Figure 6.16: Model for topologic reasoning and derivational reasoning (# 1 – 5) 

Topological Reasoning is performed at real-time during modeling, as indicated 

by the colors of the elements.  F2 and Env1 are identified as redundant (red), as they are 

not attached to any flow.  F1, Env2, and Env3 are not redundant, as they have at least one 

attached flow.  The dangling flow ends are highlighted in red, while attached ends are 

black.  For example, E2 has dangling tail but attached head, M2, E3, and S1 have 

dangling heads but attached tails, E1 has both ends dangling, while M1 and M3 have both 

ends attached to nodes.  Thus, reasoning # 1, # 2, and # 3 from Table 6.14 are 

demonstrated.   
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Derivational Reasoning is performed on user-request, by double clicking the 

white space in the graphics area.  The result of derivational reasoning on the model is 

shown in Figure 6.17.  All checks are run at every request.  In this case, the reasoner 

found E1, E2, and E3 to be orphan, since their parent flows are not modeled.  This, 

despite the fact that E1 and E2 have dangling tails but E3’s tail is attached.  The 

derivational inference is not based upon dangling end status – they are based upon 

whether the parent and child flows are modeled or not.  M2, E1, and E3 are barren, since 

their children are not shown.  Although the children of M3 and E2 are not shown, they 

are not detected as barren, since they are released to an environment, and thus their 

children are outside the scope of reasoning.  Similarly, M1 is not an orphan, since its 

parent flows are outside the reasoning scope.  Thus, reasoning # 4 and # 5 from Table 

6.14 are demonstrated.   

  

Figure 6.17: Derivational reasoning output from the model in Figure 6.16 

In addition, this model demonstrates the one-in-many-out inference for material 

flows.  M1 is inferred to be the parent of M2 and M3, as M1 is the only Material input to 
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F1 while M2 and M3 are the only Material output.  Thus, reasoning # 6 is partially 

demonstrated.   

Messages for the other reasoning are not produced, since the model either passed 

those checks or did not include modeling constructs where they apply.  For example, the 

many-in-one-out or many-in-many-out constructs are not modeled.  In order to 

demonstrate reasoning # 6 through 9a, the model is edited to Figure 6.18.  The reasoning 

output is shown in Figure 6.19.  The first two messages are results of many-in-one-out 

derivation inferences for Material and Energy.  The third message indicates that F1 

transforms material without consuming or releasing energy, which is a violation of the 

first law of thermodynamics.  Notably, flows with inferred children (e.g., M1) are not 

listed as barren and flows with inferred parents (e.g., E3) are not identified as orphans.  

With this illustration, reasoning # 6, # 7, and # 9 are demonstrated.   
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Figure 6.18: Model for derivational reasoning # 6, 7, and 9 

  

Figure 6.19: Derivational reasoning output from the model in Figure 6.18 
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To demonstrate the last reasoning, many-in-many-out inference (# 9a), the model 

in Figure 6.20 is constructed.  The reasoning output is shown in Figure 6.21.  Each flow 

in the left side of a derivation relation (→) is a parent of each of the flows on the right 

side of the relation.  Thus, E3 is a child of both E1 and E2, while the same is true for E4.  

Thus, the individual conservation relations are not captured in this inference.  Similar to 

the previous models, the orphan and barren flow messages report flows, whose parent of 

children cannot be inferred from the model.  Thus, reasoning # 9a is demonstrated.   

 

Figure 6.20: Model for derivational reasoning # 9a 
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Figure 6.21: Derivational reasoning output from the model in Figure 6.20 

The demonstration of the nine reasoning tasks (eight from Table 4.15, plus #9a in 

Table 6.14) using the ConMod software illustrates that the representation can be 

incorporated in software to support conservational reasoning computationally.  Thus, 

these demonstrations constitute external validation of the representation against the 

laws of conservation.  While the reasoning algorithms are illustrated using models of 

small complexity that are limited to one or two functions, it remains to be tested if the 

representation can support constructing models of larger scales and support reasoning on 

them, which is addressed next.   

6.2.3 Application to Product-Level Modeling and Reasoning (Scalability)  

To test scalability of the representation (Section 3.6), the air heater function 

structure from Model State 4.14 is constructed using ConMod.  The model has eight 

functions and twenty flows, and is thus considered a mid-size model, based on the 
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distribution of model sizes in the Design Repository [166].  Thus, this model constitutes a 

low-fidelity demonstration of scaling.    

The model is shown in Figure 6.22.  Although Model State 4.14 shows residual 

flows distinctly with red arrows, no flow in this model is tagged as a residual, since the 

depiction of residues is not included in this layer of the representation.  Residual flows 

are reserved for the second layer, presented in Chapter 7.  However, this model shows the 

use of carrier flows.  For example, KE1 is added to the carrier Air3 by function En_Air1.  

En_Air1 shows the addition of kinetic energy using mechanical work MW1 (e.g., in a fan 

blade), which is available by converting EE1 (e.g., in a motor).  En_Air3 adds heat ThE1 

to the air flow, part of which (ThE2) is lost as Loss9 to the environment.  The Transfer 

Air function consumes some kinetic energy from the flow itself, which is used to 

overcome the frictional resistance of the flow path and lost as Loss8.  Notably, Model 

State 4.14, being constructed by a human designer prior to the development of this 

representation, contains a violation of Rule 31 (see Construct 74), as it shows the carried 

flow ThE2 being input to a node that does not input its carrier, Air4.  This deviation is 

addressed in the model of Figure 6.22 by including one additional function, Dissipate, 

which shows the loss of heat from the exiting air stream through possibly the walls of the 

surrounding conduit.   
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Figure 6.22: The Air Heater model from Model State 4.14 reconstructed in ConMod 
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Figure 6.23 shows the reasoning output from this model.  None of the flows is 

identified as orphan or barren, as each flow has either a node or a carrier flow at its head 

or tail.  Each function that transforms a material flow either adds or extracts energy to or 

from at least one of the material flows.  Finally, the derivations are shown as inferred, 

based on the count of input and output flow of the two major subtypes—Material and 

Energy—attached to each function.  With this illustration of product modeling and 

reasoning using ConMod, the scalability of the representation is demonstrated. 

 

Figure 6.23: Reasoning output for the Air Heater model in Model State 4.14 

In conclusion, this chapter provides validation for the first layer of the 

representation, including internal consistency of the vocabulary and the grammar, and 

external validation using modeling and reasoning through software implementation.  
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Internal consistency is established through logical examination of the exhaustiveness and 

consistency of the grammar, and by ontological examination of consistency of the 

vocabulary.  External validation is claimed by implementing the representation in the 

ConMod software and using it to construct function structure models and perform two 

types of conservation reasoning: topologic and derivational.  Based on this discussion, it 

is asserted that the first layer of the representation is validated.   

Next, the representation is extended to support qualitative and quantitative 

reasoning based on the principle of irreversibility.  While conservation of energy, 

supported in the first layer qualitatively, is a corollary of the first law of thermodynamics 

[128, 129], the principle of irreversibility is a consequence of the second law of 

thermodynamics [128, 129].  Thus, after the extension presented next, the representation 

will stand validated against both laws of thermodynamics.   
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CHAPTER 7. REPRESENTATION LAYER TWO:  

EXTENSION OF LAYER ONE FOR IRREVERSIBILITY-BASED REASONING 

The formal representation presented in the previous chapter is extended in this 

chapter to support one additional type of reasoning—irreversibility—identified in Table 

4.15.  The extension is needed in order to support validating design concepts against the 

principle of irreversibility.  At the qualitative level, this reasoning includes the detection 

of omitted residual energy flows in functions that input and output energy, based directly 

on the second law of thermodynamics that requires any physical process—and thus, any 

function—to be irreversible.  For example, mechanical work required to deform an elastic 

member such as a spring is partially lost as heat during deformation, thus requiring more 

work to be input to the spring than the amount of strain energy stored.  The work done is 

producing this heat cannot be recovered during elastic recovery of the spring.  Instead, 

during recovery, part of the stored energy is again lost in overcoming internal friction of 

the material and wasted as heat, thus further reducing the available work output.  Thus, 

energy is lost in both steps: during storing strain energy in the spring and recovering 

mechanical work from it, thus making the cyclic process irreversible.  This loss of energy 

is shown in Figure 7.1, where MW is mechanical work and StrE is strain energy.   



 

 248  

 

Figure 7.1: Energy loss in physical processes 

This irreversibility in cyclic processes is a consequence of the second law of 

thermodynamics, a fundamental law that no design principle or concept can escape.  One 

corollary of this law is that when a system is put through a process that takes it from one 

state to another, it is impossible to completely reverse the process such that both the 

system and its surroundings are put back to their previous states [128, 129].  All real 

processes are irreversible.  In this example, the spring can return to its original 

thermodynamic state (undeformed state) at the end of each cycle, as long as the 

deformation was within the elastic limit, the recovery was complete, and time was 

allowed for the spring to exchange heat with the environment, but the environment 

around the spring undergoes change of state in every cycle, as it gains heat dissipated by 

the spring.   

This residual energy often becomes major design consideration.  For example, 

energy rejected by the spring or any elastic medium initiates the study of hysteretic 

losses, a major concern in the design of tires and other traction systems [176].  Similarly, 

heat rejected by internal combustion engines is a residual from the combustion process 

that necessitates the entire cooling subsystem in automotive and other applications in 

order to be dissipated to the atmosphere.  Since this irreversibility is known to be 
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inviolable by all design concepts and can become a major design concern, it is deemed 

useful to capture this principle in the formal representation, so that concepts can be 

validated against this principle and designers can be alerted about losses their design 

must incur, thus preventing accidental overestimation of output power or underestimation 

of power required to operate a device.  In the representation, irreversibility is first 

captured qualitatively so that algorithms can detect missing residual flows.  Further, the 

extendibility to support quantitative reasoning is illustrated by adding new function and 

flow attributes, and using them to algorithmically compute the quantitative efficiency of 

individual functions and the model as a whole.  Section 7.1 presents the extension to the 

representation.  Sections 7.2 and 7.3 demonstrate irreversibility-based reasoning of 

qualitative and quantitative types using extension of ConMod, thus providing external 

validation of the extension. 

7.1 Extension of the Representation to Include Irreversibility-Based Attributes 

The extension of the representation to support irreversibility reasoning requires 

adding only one attribute (IsResidual) for quantitative reasoning and two other attributes 

(Efficiency and Power) for quantitative reasoning.  Table 7.1 describes these attributes, 

their classes, and data types.   

Table 7.1: Layer 2 attributes and descriptions 

Attribute In Class Data Type Description 

IsResidual Energy Boolean IsResidual is set to true when a designer declares 

that an energy flow included in the model is 
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Attribute In Class Data Type Description 

residual from a function.  

Power Energy Number  

(e.g., float or 

double) 

The attribute Power of an Energy flow is the time 

rate of energy carried by that flow instance.  It is 

predicated on the representation being used to 

model steady-state flow processes of mechanical 

systems.  Many devices, process, and principles 

can be modeled as such, while the representation 

can be later extended to model transient or non-

flow processes in the future.   

Efficiency Verb Number  

(e.g., float or 

double) 

Efficiency is a number variable to hold the 

efficiency of a function as the ratio of the total 

power of the output energy flows not marked as 

residual to the total power of all input flows to 

the function.  

Figure 7.2 shows the extension of the representation, using the ERA model from 

the first layer (Figure 5.1) in grey and the newly added attributes in bold black font.  The 

following sections illustrate software implementation of this extension and validation by 

supporting both qualitative and quantitative reasoning based on the irreversibility 

principle, using ConMod. 
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Figure 7.2: Extension of the representation to support irreversibility reasoning 

7.2 Implementation and Validation: Qualitative Irreversibility Reasoning 

Since the extension is based on the first layer, whose internal consistency is 

already established (Section 6.1), it is unnecessary to re-examine the internal consistency 

of the representation post-extension.  The attributes added in this extension are mutually 

disjoint, as (1) efficiency applies to the Verb class while the other two (IsResidual and 

Power) apply to its disjoint class: Noun, and (2) the two attributes added to Noun are 

independent of each other, since all Energy flows must have the Power attribute 

independent of whether it is declared by the modeler as residual or not.  Further, the new 

attributes do not require any grammar rule to restrict their application: all functions have 
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efficiency (whether declared by the user or inferred by reasoning), all Energy flows have 

Power (declared or computed), and all Energy flows have a value for the IsResidual 

attribute (true or false).  Thus, by this extension, the internal consistency of the 

representation could not have altered from that established in the previous layer.  

However, the external validity should be demonstrated using illustration of reasoning, as 

shown next.   

There is no change to the class diagram of ConMod due to this extension, as the 

extension is limited to addition of attributes to existing classes only.  The following 

changes are made to the user interface: 

1. A Residual Energy check box is added to the Add Energy dialog (Figure 7.3a) 

2. A Residual Material check box is added to the Add Material dialog (Figure 

7.3b) 

3. A menu is added to turn on irreversibility-based modeling and reasoning 

(Figure 7.4) 

The Residual Energy check box passes a Boolean value to the IsResidual attribute 

of the CEnergy class (checked = true, unchecked = false) and is used in the qualitative 

and quantitative irreversibility reasoning.  The Residual Material check box passes values 

to the CMaterial class, but is not used in reasoning in this implementation of ConMod, 

and hence is not mentioned as a necessary data member in the previous section.  Residual 

Material is included to provide the ability to mark a material flow as residual for 

visualization and human reasoning.  Both check boxes are turned on when irreversibility-
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based modeling and reasoning is selected from the Reasoning menu.  In the Reasoning 

menu, selecting Reasoning > Qualitative > Conservation (Layer 1) limits the reasoning 

ability to that provided by the previous implementation of ConMod (hereafter called 

ConMod-1).  Irreversibility extension reasoning can be turned on by selecting Reasoning 

> Qualitative > Irreversibility (Layer 2).   

 

(a) Add Material dialog 

 

(b) Add Energy dialog 

Figure 7.3: Dialog boxes for adding Material and Energy instances (Layer Two - 

Qualitative) 

 

Figure 7.4: Reasoning menu options in ConMod (Layer Two - Qualitative) 

To demonstrate irreversibility reasoning at the qualitative level, the Air Heater 

model of Figure 6.22 is reconstructed using the Layer Two implementation of ConMod 

(hereafter referred as ConMod-2), shown in Figure 7.5.  Although some flows are named 
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as Loss6 and Loss7, none are marked as Residual in in this model, in order to maintain 

similarity with Figure 6.22 constructed using ConMod-1.  The derivational inferences 

produced by ConMod-2 (Figure 7.6) are identical as that produced by ConMod-1 (Figure 

6.23).  An inspection of the model and this report reveals that the inferences are correct to 

the model.   
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Figure 7.5: Air Heater model of Model State 4.14 reconstructed using ConMod (Layer 2) 
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Figure 7.6: Qualitative derivational reasoning produced by ConMod-2 on the model 

shown in Figure 7.5 

Further, ConMod-2 produces a report identifying functions that violate the 

principle of irreversibility.  At a qualitative level, the only reasoning possible is to detect 

functions that input and output energy flows but do not have any of the output energy 

marked as residual.  This reasoning output is shown in Figure 7.7, which identifies each 

function in Figure 7.5 as a violation, since none of the energy flows is marked as residual.   
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Figure 7.7: Qualitative irreversibility report produced by ConMod-2 on the model 

shown in Figure 7.5 

To address these messages, the model is next edited to mark the residual flows of 

Model State 4.14 as residual.  These flows include Loss4, Loss5, Loss6, Loss7, Loss8, 

and Loss9.  The edited model is shown in Figure 7.8, where the residual flows are in red. 
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Figure 7.8: Modified model of the Air Heater, with residual flows identified by modeler 
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The derivation reasoning output from this edited model is identical to the previous 

model, as the tagging of an energy flow as residual should not change the inferences 

about total energy balance of a function.  However, the qualitative irreversibility 

reasoning output is changed due to this edit, as shown in Figure 7.9.  The two functions 

that continue to violate irreversibility are “D’bute EE” and “Conduct EE”.   

 

Figure 7.9: Qualitative irreversibility report produced by ConMod-2 on the model 

shown in Figure 7.8 (modified model with some residual flows marked) 

Notably, these two functions (D’bute EE and Conduct EE) were not identified to 

have any residual flows in Model State 4.14, produced by a human designer during the 

modeling exercise.  However, both functions are expected to incur losses in the physical 

embodiments, as the distribution of electrical energy in a junction box or the conduction 

of electrical energy through a wire certainly produces resistive heat, and possibly other 

forms of energy losses.  This detection of violations of the second law of 

thermodynamics is an illustration of how the representation and its implementation in 

ConMod-2 can help to draw a designer’s attention to constructs that inadvertently inflict 
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violations of physical laws in a concept.  In many cases, this oversight can make a 

concept unrealizable if the omitted losses are of significant magnitude.   

The omission of residues is detected as a warning, rather than an error of the 

model, as visible in Figure 7.9.  This choice is made during implementing ConMod-2, 

due to two reasons.  First, the notion of “loss” is not fundamentally required by the 

second law of thermodynamics.  This law implies that when heat is converted to work by 

a device (e.g., a heat engine), some part of the input heat cannot be converted into useful 

work and must be rejected [128, 129].  Thus, the law only requires multiple output energy 

forms, without identifying one as loss.  This rejected heat from an engine is commonly 

described as loss, since in typical applications, the output shaft work is the flow of 

interest and efficiency is described as the ratio of the output work to the input heat.  

However, in design projects, the notion of loss often depends on the designer’s intent, the 

design requirements, and the behavior of the physical principles of the device.  For 

example, heat rejected by an automotive engine is often used to satisfy two design 

requirements at the system level: (1) to provide heat to the passenger cabin and (2) to 

raise and maintain engine temperature within a range required by the operating viscosity 

of the lubricants.  Specifically in wintery conditions, a change often happens in the 

physical behavior of the engine and user-intent.  (1) The rate of heat loss from the engine 

increases due to higher temperature gradients between the engine and the surroundings.  

(2) The user often intends to deliver more heat to the cabin.  Thus, an engine that rejects 

more heat is often more desirable in winter, so that it can keep the cabin warm and 

maintain engine temperature at the same time.  Similarly, heat produced by an electric 
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lamp can be perceived as loss if the intent is to produce light, while it can be a useful 

commodity in a heat lamp, where the light is residue.  In some other applications, where 

both the light and heat produced by a lamp are used to achieve design goals—such as 

lamps in cafeteria stalls used to both illuminate and keep warm the food—none of the 

output flows may be considered as loss.  Thus, the notion of loss depends on the design 

problem and requiring residual flows from every function in the representation may 

reduce modeling coverage over some of the cases mentioned above.   

Second, while all physical processes are subject to irreversibility, the flexibility to 

optionally overrule this requirement may provide modeling convenience, especially when 

the residual flows are negligible or of unknown magnitude.  In order to allow the modeler 

to capture negligible or unknown residues without violating irreversibility at a qualitative 

level, the representation allows setting zero magnitude for residual flows at a quantitative 

level, while the qualitative reasoner detects all functions without residual energy as 

violations.  Thus, all three models shown in Figure 7.10—the light bulb, the heat lamp, 

and the café lamp discussed above—are accepted by the reasoner at a qualitative level, 

where the loss from the café lamp is set to zero magnitude in the quantitative model.  The 

quantitative extension of the representation is discussed next. 
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Figure 7.10: Depiction of residual flows for different design intent and zero 

magnitude 

In summary, the representation is extended to include class attributes necessary 

for supporting qualitative irreversibility-based reasoning.  The extension of ConMod-1 

into ConMod-2 is used to demonstrate that such reasoning is supported by an 

implementation of the extension.  Thus, the extendibility of the representation to 

support qualitative irreversibility reasoning is validated.  Next, the representation is 

further extended to support quantitative reasoning.  

7.3 Implementation and Validation: Quantitative Irreversibility Reasoning 

The quantitative extension is implemented in ConMod-2 by adding the Efficiency 

and Power attributes to the CFunction and CEnergy classes.  No change is made to the 

class structure.  The user interface is extended as follows: 
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1. Two number fields—Force Term and Rate Term—are added to the Add Energy 

dialog to capture power associated with an Energy flow instance (Figure 7.11a).   

2. Two buttons are added on a new reasoning toolbar to allow requesting the 

qualitative and quantitative reasoning algorithms separately (Figure 7.11b).   

3. A menu is added to turn on quantitative modeling and reasoning (Figure 7.12). 

 

(a) Add Energy dialog 

 

(b) Reasoning toolbar 

Figure 7.11: Add Energy dialog and reasoning toolbar (Layer Two - Quantitative) 

 

Figure 7.12: Reasoning menu options in ConMod (Layer Two - Quantitative) 
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The force and rate terms are generic placeholders for conjugate quantities, whose 

product defines power associated with many common energy forms.  For example, the 

rate of mechanical work required to cause linear motion of a body (e.g., a slider in a 

guide) against a force (e.g., friction between the slider and a guide) is the product of the 

force applied and the velocity (rate of displacement) of the point of application of the 

force: P = F × v.  For rotational systems, e.g., in a rotating shaft, power transmitted is the 

product of the torque (analogous to force) and angular speed (rate of angular 

displacement): P = T × ω.  The rate of electrical work done by current passing through a 

resistance is the product of the voltage or electromotive force (analogous to force) and 

the current (rate of charge): P = V × I [132-134, 177].  Thus, in many forms of energy, 

specifically those that involve time rate of a quantity, the force term and the rate term can 

be used to compute power.  It is recognized that this correspondence does not apply to 

many other energy forms.  The purpose of using these conjugates instead of a more direct 

Power attribute in the CEnergy dialog box is to recognize that energy flows are often 

expressed in terms of indirect quantities that are more measurable and appropriate for 

specifying those energy types than using the power attribute directly.  For example, 

engines are rated by the torque-speed characteristics and motors are specified by their 

operating voltage and RPM.  However, the only conservable quantities in these devices 

are mass, energy, and momentum within isolated systems.  Thus, in order to apply energy 

balance, the quantities used to specify the flows must be first used to compute power.  

The representation should ideally support specifying flows in terms of the physical 

quantities appropriate for specifying their form, yet it should be capable of computing 
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power from these quantities.  The use of the force term and rate term is only an indication 

of that flexibility to be achieved in future extension of ConMod.  The two fields in Figure 

7.11a, when multiplied, specify the power quantity of the CEnergy instance.   

To demonstrate irreversibility reasoning in the quantitative level, the Air Heater 

function structure of Figure 7.8 is reconstructed using the implementation of ConMod-2 

with quantitative extension (hereafter referred to as ConMod-2q).  This extension 

supports all modeling and reasoning supported by the previous layers.  In addition, when 

quantitative reasoning is chosen from the menu by selecting Reasoning > Quantitative > 

Efficiency (Layer 2), the model displays the default values of power for each flow, 

appended to the right of the flow names with a default unit of watts (W).  The force term 

and rate term fields in the Add Energy dialog (Figure 7.11a) are also enabled.   

The model displaying the default power magnitudes of the Energy flows is shown 

in Figure 7.13.  Each energy flow is assigned a power of 100 Watts, based on the default 

values of the force term (100 SI units) and the rate term (1 SI unit) assumed by the 

default dialog in Figure 7.11a.  The only exception is Loss7, which is intentionally edited 

to have a power of negative 100 W (-100 W – highlighted with an ellipse in the figure), 

in order to illustrate the checks executed under quantitative reasoning. 
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Figure 7.13: Quantitative model of the Air Heater using ConMod-2q, showing default power of Energy flows and one 

negative power value 
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Upon requesting quantitative reasoning, the algorithms are executed on the model 

in Figure 7.13 in three steps.  Figure 7.14 shows the result from the first step.  Loss7 is 

identified as a flow with negative power.  The first step checks for existence of negative 

power values in energy flows.  A negative power value can occur either by user editing 

(this case) or as a result of energy balance inference.  At any time, if a flow with negative 

power is identified, the algorithm recognizes that the model is out-of-date.  Further 

execution of reasoning (steps two and three) is aborted in this condition (Figure 7.15).   

 

Figure 7.14: Quantitative reasoning Step-1: Check for negative power magnitudes 

 

Figure 7.15: Aborting reasoning steps under out-of-date model state 
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The model is next edited to assign a power value of 100W to Loss7, thus 

eliminating flows with negative power.  This corrected model state is shown in Figure 

7.16.  The corrected power value of 100 W is marked with an ellipse to highlight the 

difference with the previous model state.   
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Figure 7.16: Quantitative model of the Air Heater using ConMod-2q, after correcting negative power values 
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Quantitative reasoning on this amended model produces the output shown in 

Figure 7.17 produced.  The algorithm finds no flows with negative power and continues 

to the second step of quantitative energy balance.  Since each energy flow has Power = 

100 W, any function with unequal count of input and output energy flows is detected as 

an unbalanced function.  The functions where a balance is found are also reported.  An 

inspection reveals that the report in Figure 7.17 is correct to the model in Figure 7.16.  

Similar to the previous step, subsequent reasoning is aborted until quantitative energy 

balance is established in each function.   

 

Figure 7.17: Quantitative reasoning Step-2: Check for quantitative energy balance 

The model is next edited manually in order to achieve energy balance in each 

function.  For ease of model review, the input power in EE3 is kept as 100 W.  The 

resulting edited model is shown in Figure 7.18.  The power magnitudes are chosen to 
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assign realistic values to the flows.  For example, resistive loss due to the distribution and 

conduction of electrical energy are assigned only 2 watts each, while the En_Air1 

function (possibly executed by a fan) and the En_Air3 function (possibly executed by a 

heater) have larger losses.  The fan loses six watts out of the input 36 watts (~17% loss), 

while its fails to add to the air ten watts out of the 56 W of heat produced (~17% loss).  

The heater’ functionality is shown in this model using two functions: Convert2 and 

En_Air3.  The first produces heat using electricity, while the second adds that heat to the 

air stream.  The use of two functions for one device shows that the representation does 

not require maintaining a 1:1 mapping between functions and devices.  In fact, in the 

early design stages, where this representation is intended to be used, the devices or 

embodiments of functions may not be known to the designer, and the representation 

should not require the designer to maintain such mapping.   

The loss from Convert2 is set to zero, since in resistive heating, all of the input 

electrical energy can be converted into heat (if the temperature is not high enough to 

trigger incandescence).  This complete conversion of electrical energy to heat is not 

against the irreversibility principle.  The principle requires losses in converting heat to 

work.  When converting work to heat, all of the input work can be dissipated as heat.  In 

resistive heating, the work is performed by the electric current (electrical work).  This 

example shows another reason why it is useful to allow setting zero magnitudes to the 

loss flows.  However, loss from En_Air3 is shown as non-zero, as it is impossible for a 

heater to add heat to the flowing air stream without losing any part of it to colder 
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surroundings, since heat spontaneously flows from hotter to colder temperatures without 

requiring external work input. 
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Figure 7.18: Air Heater model after manually ensured energy balance 
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The result of the quantitative reasoning on the model of Figure 7.18 is shown 

next.  In Figure 7.19, the reasoner determines that energy balance is achieved in the 

individual functions, and therefore, in the model as a whole.  With this check passed, the 

reasoner continues to the third step of reasoning (Figure 7.20).   

 

Figure 7.19: Quantitative energy balance report: Step 2 with passing results 

Figure 7.20 shows the result of computing efficiency for the individual functions 

and the model as a whole.  An inspection of the input, output, loss, and efficiency of the 

individual functions reveals that the reported numbers are correct based on the model.  

Individual efficiencies are computed as the ratio of power of all output energy flows that 

are not marked as residual to all input energy flows, residual or not.  Further, the reasoner 

computes the efficiency of the model, as shown in the last line of Figure 7.20.  The 

reported model efficiency, 67%, can be verified in two ways from the model.  First, the 

total power of the output loss flows is (2 + 4 + 6 + 2 + 0 + 10 + 1 + 8) watts = 33 watts, 
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while the only input power is that of EE3, 100 watts.  Thus, the efficiency is (100 – 33) / 

100 = 67%.  Second, the total energy added to the air stream is in two steps, En_Air1 

adds 30 watts of kinetic energy, and En_Air3 adds 46 watts of heat, totaling up to 30 + 46 

= 76 watts.  Out of this added energy, the air spends 1 watt to viscous resistance of the 

pipeline in the Transfer Air function and losses 8 watts of heat through the pipe walls in 

the Dissipate function, resulting in a net energy available in the outgoing Air2 flow as 76 

– (1 + 8) = 67 watts.  Thus, the efficiency is 67/100 = 67%.  Both results agree with the 

reported model efficiency in Figure 7.20.   

 

Figure 7.20: Quantitative reasoning Step-3: Computing function-wise and model 

efficiency 
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In summary, this chapter presents an extension to the first layer of the formal 

representation (Chapter 5) to support irreversibility-based reasoning at qualitative and 

quantitative levels.  The extension of the representation involves the addition of three 

new attributes to existing classes.  No change in the class structure is necessary.  The 

enhanced reasoning ability due to this extension of the representation is demonstrated by 

implementing new algorithms in ConMod, which perform qualitative and quantitative 

model checking against the irreversibility principle and compute the function-wise and 

model-level efficiency.  Through these demonstrations, the representation’s 

extendibility to support qualitative and quantitative reasoning on the irreversibility 

principle is validated.   

It should be mentioned that the three steps of quantitative reasoning—checking 

for negative power, checking for energy balance, and computing efficiency—are not the 

only quantitative reasoning that this representation can support at present.  For example, 

the third step computes efficiency of functions from known values of input and output 

energy flows and identification of residues.  Similarly, a ConMod model could be used to 

estimate the required power input to a model from the desired output power of output 

energy flows and the efficiencies of the functions.  Similarly, if the available input power 

and the efficiency of the modeled functions were known, the model could be used to 

estimate the expected output power of the flows.  Each of these reasoning types relies on 

the definition of efficiency as the ratio of total output usable power and the total input 

power.  In each case mentioned, a different set of two variables are known and the third 

one is determined.  Each of these reasoning actions can be supported by implementing 
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more algorithms in the ConMod software code, without any further extension of the 

representation.  However, for illustration purposes, only the efficiency computing 

reasoning is implemented.   

This ability to perform quantitative physics-based reasoning using function 

structures opens up the possibility of automating confluence-based reasoning in early 

design stages, although the need for a variational solving system is identified to support 

that reasoning.  For example, in the computation of function-wise efficiency in ConMod-

2q, the following parametric definition of efficiency is used: 

Efficiency = (Usable output power) / (Total input power) 

This parametric relation can only be used when the terms in the right hand side 

are known and the efficiency (left hand side) is to be computed.  However, when 

analyzing confluence, a designer may need to investigate the effect of changing the 

efficiency of a function on the usable output power, while the input remains constant.  

Solving this problem parametrically to determine the new output power would require the 

unknown variable (output) to be expressed in a new parametric form: 

Usable output power = (Total input power) × Efficiency 

Similarly, if the input power is to be computed while efficiency is changed, 

another parametric expression for the same mathematical relation would be necessary.  

Instead of predicting the possible permutations of these parametric forms, a variational 
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solver can be used to solve these problems based on one declaration of the relation 

between the variables.   

In the next chapter, the representation is further extended by proposing a set of 

function verbs.  These verbs are defined using the existing representation and ensure 

physics-based concreteness of definitions.  These verbs can be used as a vocabulary of 

elementary functional actions suitable for constructing function structures that can 

support more enhanced physics-based reasoning.   
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CHAPTER 8. REPRESENTATION LAYER THREE: SEMANTIC LAYER: 

A PHYSICS-BASED VOCABULARY OF FUNCTION VERBS 

The first two layers of the representation described in Chapter 5 through Chapter 

7 rely on the six entity types: Function, Source, Sink, Material, Energy, and Signal, and 

the 33 grammar rules of Layer 1.  Any function structure based on this representation 

must be defined with these vocabulary terms and grammar rules.  While models so 

constructed are internally consistent, externally valid against conservation and 

irreversibility, and support formal reasoning, one limitation is that the models are entirely 

syntactic; they do not capture or support reasoning on the meanings of the model terms.  

For example, all reasoning would be equally applicable if the term Function was replaced 

with any other word, or if a function named Convert Energy did not convert anything.  

Constructing function models using meaningful terms not only increases the expressive 

power of the model to human interpreters, it makes modeling easier and more consistent, 

and when implemented in a formal representation, enables enhanced sematic reasoning, 

many of which are necessary to perform design tasks such as solution search, problem 

decomposition, model comparison, or similarity detection.  This chapter begins to address 

this need by extending the representation by proposing a finite vocabulary of atomic 

actions (function verbs) to be used for function structure construction.  These verbs are 

formally defined to capture semantics of those actions using their topology (types and 

count of flows attached) and additional grammar rules.  This chapter verifies that this 

vocabulary provides adequate coverage over function modeling, by constructing models 
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to describe fundamental processes of physics and the engineering sciences, and by 

modeling complete products in both descriptive and normative modes.  However, 

demonstration of reasoning supported by the vocabulary is not presented in this chapter 

and is reserved for future efforts.  In the following section, the need for capturing 

semantic information in models is further developed.   

8.1 The Need for Semantic Information in Function Modeling and Reasoning 

The only entity to describe a transformative action in the current representation is 

Verb.  The Verb class is shown to be able to describe many actions, such as distributing 

energy, converting energy, transferring energy, or energizing material flows (Figure 

7.18).  However, in each case, the function and its topological constructs—count and type 

of input and output flows—must be controlled manually to ensure that the modeled 

function and its attached flows truly describe the action the modeler intends.  The 

grammar rules prevent constructs that violate entity definitions and the reasoner detects 

violations of natural laws, but these controls cannot ensure that a function’s topology 

describes—or carries the meaning of—a specific transformative action such as Distribute 

or Convert.  It is therefore possible that the modeler adds a function with the intent to 

describe an action such as distribution or conversion and then edits the model to the point 

where the function does not describe the originally intended action.  The reasoner cannot 

draw inferences on the semantics of the modeled terms to detect this type of errors.  

For example, Figure 8.1a shows the Distribute EE function from Figure 7.18 and 

its attached flows as an isolated construct.  This function is accepted by both the grammar 
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and reasoning algorithms of Layer 1.  For this example, it is assumed from the name of 

the function that the original intent of adding this function was to describe a distribution 

of energy.  The function is next edited (in isolation, as shown) by deleting its output 

flows, finally to arrive at the construct of Figure 8.1b.  At no step, including Figure 8.1b, 

do the grammar rules or the reasoner detect this construct as a violation of modeling 

intent, despite that the model no longer describes any distribution: Figure 8.1b has only 

one outgoing flow.   

(a) Distribute with multiple output flows 

(b) Distribute with no “distribution” 

Figure 8.1: Lack of formalism to capture function semantics 

This behavior is not surprising, given that there is no data element available in the 

representation to store the original intent of distributing a flow.  Notably, the GivenName 

attribute “D’bute EE” is only a string for identification, not used in any semantic 

reasoning.  Similarly, Figure 8.2a shows an instance of Convert that does not convert 

anything: all of its output flows are of the same type (mechanical energy, ME) as the 

input.  Instead, Figure 8.2b shows a function that changes the type of the incoming 

energy flow from electrical energy (EE) to mechanical (ME) and thermal (ThE), yet is 

not described as a Convert function.  This behavior is also expected, since in addition to 
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the intent of the verb being omitted, the energy flow labels EE and ME are only strings 

for identification.  The representation has no data element to capture that a flow marked 

as EE is in fact electrical energy and thus must have certain properties and behavior.  In 

summary, the representation does not capture the semantics of functions and flows.   

(a) Convert without “conversion” (b) Conduct with “conversion” 

Figure 8.2: Semantic inconsistency between function description and topology 

Allowing this type of errors not only makes the model wrong—as it does not 

describe what the modeler wants to describe—it allows the modeler to overlook 

violations of modeling intent, such as the missing output flows from Distribute shown 

above, which is more likely to happen in models of higher size and visual complexity.  

Consequently, the modeler can make incorrect inferences, such as underestimating the 

power requirement.  The algorithms presented earlier cannot detect these errors, as these 

constructs do not violate conservation or irreversibility.  It is anticipated that it would 

benefit the modeler to detect the violation of modeling semantics and support more 

enhanced reasoning about the concept based on this additional “knowledge” of semantics.   
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To detect these errors, the reasoner must compare the modeled constructs to 

internally stored meanings of the function verbs.  To this end, the count and type of input 

and output flows attached to a function contains enough information to capture meaning.  

For example, in natural English, the verb distribute implies multiple flows being 

produced15 (count), Convert implies the input and output flows being of different types16 

(type), and both Distribute and Conduct17 imply no change of type within the scope of 

those verbs (type).  Additionally, the definitions of these verbs in the Functional Basis 

vocabulary [26] also reveal similar semantic implications when objectively examined 

[48, 115, 116].  Thus, the count and type of input and output flows attached to a function 

are used here to surrogate the semantics of the function verb.   

This approach of comparing model constructs with pre-stored semantic 

definitions is predicated upon a finite number of verbs to be captured in the 

representation.  To this end, previous research indicates that a finite set of verbs can be 

used to describe a wide range of mechanical actions [26, 27, 90, 106].  Examples are the 

vocabulary of functions identified through engineering forensics of helicopters by Collins 

                                                 

 

15 “to divide among several or many” [http://www.merriam-webster.com/, accessed on August 16, 2011] 

16 “to change from one form or function to another” [http://www.merriam-webster.com/, accessed on 

August 16, 2011] 

17 “to act as a medium for conveying or transmitting” [http://www.merriam-webster.com/, accessed on 

August 16, 2011] 
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et. al. [89] and the Functional Basis vocabulary [26].  However, being identified through 

empirical observation (top-down approach), the verb definitions in these vocabularies 

have notional concreteness, rather than physics-based concreteness, as explained in 

Chapter 2.  As a result, while these verbs are useful for human interpretation, they are not 

suitable for physics-based reasoning.  It is anticipated in this research that even at the 

physics-based concreteness level, a finite set of verbs can be identified to describe 

mechanical devices and principles.  To this end, the aim of this chapter is to propose a 

new finite vocabulary of atomic function verbs that can describe mechanical 

functions with physics-based concreteness and to demonstrate that the vocabulary 

provides adequate modeling coverage over a variety of physics and engineering 

principles, phenomena, and devices.  Each verb proposed here is composed of one or 

more instances of functions and flows, and verb-specific grammar rules that capture the 

meaning of the verbs.  This finite number of verbs and grammar rules does not imply that 

the total number of possible function structures is finite or that the representation has 

coverage over a finitely many concepts.  Rather, it means that infinitely many models can 

be constructed using a finite number of individual verbs and a finite number of ways they 

can be arranged topologically.  Before presenting this vocabulary, the prospects of using 

a finite vocabulary of formalized verbs in function structure modeling and reasoning are 

illustrated next with examples. 

Potential Benefits of Using a Finite Set of Verbs in Function Modeling  

A static function verb vocabulary can provide benefits in both modeling and 

reasoning.  In modeling, a verb can be directly instantiated with its correct topological 
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construct, thus increasing consistency and speed of modeling.  For example, an instance 

of the verb Energize_M used to model the addition of energy to a material (see Table 

8.14) inputs one energy and one material flow, and produces one material and one energy 

flow so that the output energy is carried by the output material, as shown in Figure 8.3.  

This entire construct can be instantiated at once and thus can ensure correctness and 

consistency of this topology.  Grammar rules can be written to prevent violating these 

constructs through erroneous editing.   

 

Figure 8.3: An instance of the proposed verb Energize_M 

In terms of reasoning, the use of semantic information can improve accuracy of 

many automated design reasoning tasks, such as solution search, problem decomposition, 

model comparison and similarity detection, and computing model complexity.  Solution 

search is discussed in design texts as a major activity potentially supported by function 

modeling [1, 2].  To automate this activity, a solution search system can be devised in 

two parts: (1) a database of solution principles, components, or subsystems, whose 

function structure graphs are also mapped to the devices and stored in a searchable format 

(similar to the *.fst models produced in ConMod-2q), and (2) a search algorithm that can 

accept a function structure model in a similar format and search for solutions in the 
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database whose functional constructs (whole or part) matches with constructs in the input 

model.  When a match is detected, the reasoner reasons that the stored device, whose 

function structure contains similar structure as the input model or its portions, can be a 

potential solution candidate and returns it.   

Unless semantic information is formalized and implemented in the models, the 

search algorithm can at most use the topological similarity between the models to 

perform the search, without using information about the names or subtypes of the entities.  

For example, if the input construct is as shown in Figure 8.4a, the search may return the 

models in Figure 8.4b and Figure 8.4c from the database, since the only information 

usable for search is that the construct has one function with one input energy and one 

output energy.  The facts that the function is a conversion of energy and the input and 

output types are ME and ThE are not usable, unless these words are formally defined in 

the representation.  Additionally, it is impossible for the reasoner to detect that the 

Transfer function actually causes conversion and the Store function converts energy and 

supplies one of them, rather than storing something.   
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(a) Input modeling construct 

 

(b) Construct 1 stored in database 

 

(c) Construct 2 stored in database 

Figure 8.4:  Two possible return values for solution search 

With semantic information captured in the vocabulary terms, these algorithms can 

have more information (data elements) to use in reasoning.  For this solution search 

example, only those solutions that show the conversion from ME to ThE can be returned 

and thus, reasoning accuracy can be improved.  It can be shown through similar exercises 

that vocabulary-based modeling can improve reasoning accuracy and efficiency for other 

activities such as similarity detection and model comparison.  The proposed vocabulary 

of verbs is presented next.   

8.2 Proposed Vocabulary of Atomic Function Verbs 

The proposed vocabulary of atomic verbs contains three parts: (1) energy verbs, 

(2) material verbs, and (3) topologic verbs.  Energy verbs are those that transform energy 

flows from one state (not type) to another, without using material flows.  Material verbs 

are those that transform material flows and always involve energy flows, since the state 

of a material flow cannot be changed without exchanging energy, as per reasoning # 9 of 
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Table 4.15.  Topologic verbs are logical operations, rather than mechanical actions, 

required to instantiate energy balance and mass balance declarations.     

The selection of verbs in this taxonomy is based on an overall review of physical 

processes, especially the transport phenomena of heat and mass, with the intent of 

describing those processes as actions (functions) performed on material and energy 

flows.  In outcome, it is recognized that only five basic actions are performed on energy:  

1. Energy is converted from one form to another,  

2. Energy is transferred from one location to another,  

3. Energy is changed in quantitative specification, 

4. Energy is stored in material media, and  

5. Stored energy is released from material media.   

The vocabulary of energy verbs is based on these actions, as discussed in Sections 

8.2.1 and 8.2.2.  Further, all actions on material flows are resolved into two basic actions:  

6. Addition of energy to material, and  

7. Removal of energy from material.   

These two actions are the basis of the material verbs (Section 8.2.3).  Topologic 

verbs, discussed in Section 8.2.4, are not mechanical actions, as mentioned earlier.  The 

rationale behind reducing all processes into these seven actions rests on reviewing and 

modeling a large number of phenomena from various physics domains such as 

mechanics, hydrostatics, gravitation, elasticity, heat, acoustics, optics, electricity, 
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magnetism, radioactivity, and from the engineering sciences such as hydraulics, 

thermodynamics, and heat transfer.  This accounting is omitted here for brevity.  

However, in order to support the choice of these actions as a basis for developing the 

vocabulary, the resulting vocabulary is tested for coverage over engineering processes 

and devices.  The energy verbs at the primary level are presented next. 

8.2.1 Energy Verbs – Primary Level 

The energy verbs are those that describe transformative actions on energy flows 

and are organized in a two-level taxonomy.  At the primary level, five verbs are defined: 

(1) TypeChange_E, (2) Transfer_E, (3) Change_E, (4) Store_E, and (5) Supply_E, based 

on the actions identified above.  These verbs are described in Table 8.1 through Table 

8.5.  In each table, the first row introduces the verb’s name, the second row provides a 

textual description of the verb for human interpretation of its purpose and action, the 

verb’s semantics is captured in terms of the count and type of the attached flows in the 

third row, and the fourth row introduces the grammar rules (constraints) imposed on the 

flows as required by the semantics.  Based on this information, the fifth row provides a 

formal definition of the verb using first order predicate logic statements in a set-based 

syntax.  Finally, the sixth row identifies new flow attribute to be included in the 

representation in order to define these new verbs.  Table 8.1 describes the verb 

TypeChange_E.   
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Table 8.1: Primary energy verb: TypeChange_E 

Verb 

name 

TypeChange_E 

Textual 

definition 

To change the subtype of an energy flow 

Input type 

and count 

One flow of a subtype of E 

(Energy) 

Output type 

and count 

One flow of a subtype of E 

(Energy) 

Grammar The input and output flows are necessarily of different subtypes.  

Formal 

definition 

Class TypeChange_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List  
 

in

out

in out

E ; // Only one input energy

Output_E_List E ; // Only one output energy

// Grammar constraints

E .SubType E .SubType; // The two flows are of different subtypes

}







Attributes Energy subtype, such as electrical, mechanical, etc.   
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TypeChange_E is reserved for describing the conversion between energy forms, 

similar to the Functional Basis verb Convert18 [26].  However, as defined in the 

Functional Basis, Convert involves more complex actions, such as the conversion of 

material and signal flows, the production of multiple flows, and residual output flows.  

As shown above, the definition of TypeChange_E does not provide for residues or 

multiple output flows.  Thus, the simultaneous production of heat and light by conversion 

from electrical energy in a light bulb cannot be modeled with one instance of 

TypeChange_E.  This behavior is intentional: TypeChange_E is not intended to describe 

an entire conversion action.  Rather, it is intended for describing only one fundamental 

action of changing one energy type into another.  This character is true for all verbs 

presented in this chapter: they operate on the minimal number of flows and do not 

include residual energy.  Additional grammar rules and algorithms are required to ensure 

that these atomic verbs can be combined to describe more complex concepts such as 

Convert and other notional verbs from the existing vocabularies, and to validate these 

models against the natural laws.     

The definition of TypeChange_E also indicates that a distinction between the 

subtypes of energy such as mechanical and electrical should be captured in the formal 

                                                 

 

18 “To change from one form of a flow (material, energy, signal) to another. For completeness, any type of 

flow conversion is valid. In practice, conversions such as convert electricity to torque will be more 

common than convert solid to optical energy.” 



 

 292  

representation.  Developing a complete, consistent, and valid classification and formal 

definition of flows is not in the immediate focus of this research, as this research is more 

focused on formalizing functions at this stage.  Thus, to provide for an energy 

classification, the types mentioned in the Functional Basis vocabulary are adopted with 

some modifications.  Hydraulic and pneumatic energy are excluded, as these terms are 

classes based on the carrier of the energy, rather than form of energy.  Hydraulic and 

pneumatic energy are means to transfer mechanical energy using a liquid or a gas carrier 

or medium.  Human, biological, acoustic, and solar energy are dropped, as these terms 

are classes based on the source of energy rather than form.  For example, biological 

energy obtained by burning wood contains multiple forms such as light and heat, and the 

energy stored in the wood can actually be better described as chemical energy that is 

released in combustion.  Solar energy is a mix of different wavelengths of 

electromagnetic waves and not a distinct energy form than electromagnetic energy.  

Human energy can be a mix of many energy types.  Acoustic energy is described as a 

form of mechanical energy conducted by a gaseous material.  The optical and solar 

subgroups under electromagnetic energy are not included, since from a physics point of 

view, the only character distinguishing visible light from other electromagnetic waves is 

wavelength, and thus, the other waves in the electromagnetic spectrum such as radio 

waves, infrared, ultraviolet, x-rays, and gamma rays should be separately included.  It is 

anticipated that scope of the representation will cover all properties of light used in the 

purview of general purpose mechanical engineering design that is covered under the 

general category electromagnetic energy.  Radioactive and Nuclear energy are considered 



 

 293  

as two different types.  Nuclear is the type stored in an unstable nucleus, such as U238.  

Radioactive energy is essentially electromagnetic energy that is released when an 

unstable nucleus undergoes decay and includes electromagnetic waves such as heat and 

gamma rays.  Thus, the only terms from the Functional Basis considered in this table are 

mechanical, thermal, electrical, chemical, and electromagnetic.  Each of these types is 

different energy forms and is governed by different physics.  To continue with the 

vocabulary, Table 8.2 describes the verb Transfer_E.   
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Table 8.2: Primary energy verb: Transfer_E 

Verb name Transfer_E 

Textual 

definition 

To change the location of an energy flow in geometric space 

Input type 

and count 

One flow of a subtype of E 

(Energy) 

Output type 

and count 

One flow of a subtype of 

E (Energy) 

Grammar The input and output flows are necessarily of the same subtype. 

The input and output flows have necessarily different locations.    

Formal 

definition 

Class Transfer_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E 
 

in

out

in out

in out

; // Only one input energy

Output_E_List E ; // Only one output energy

// Grammar constraints

E .SubType E .SubType; // No type change during transfer

E .Location E .Location; // Location must chang





 e

}

 

Attributes Energy flow location 

Table 8.3 describes the verb Change_E.   
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Table 8.3: Primary energy verb: Change_E 

Verb name Change_E 

Textual 

definition 

To change the quantitative parameters of an energy flow without 

changing its type 

Input type and 

count 

One flow of a subtype of E 

(Energy) 

Output type 

and count 

One flow of a subtype 

of E (Energy) 

Grammar The input and output flows are necessarily of the same subtype. 

At least one parameter between the flows is necessarily of different 

value.   

Formal 

definition 

 in

Class Change_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E

 out

in out

; // Only one input energy

Output_E_List E ; // No output energy

// Grammar constraints - NONE

E .Subtype E .Subtype; // No change of type

}





 

Attributes None 

The Change_E function implies a change of quantitative specifications without a 

change of type.  Since energy flows of different subtypes are specified with different 

parameter sets (e.g., torque and speed for rotational ME, current and voltage for EE), the 

formalization of Change_E would require formalizing the parameters for each flow 
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subtype.  At this stage, this representation does not formalize the flows classes or their 

parameters and thus it is not possible to formalize the definition of Change_E for 

different energy subtypes beyond the generic definition above.  Further, a change of 

location can be possible between the input and output energy flows, such as between the 

input ME and output ME flows of a gear box that are identified at the inlet and outlet of 

the box.  Thus, at the present formalism, the definition of Change_E looks similar to that 

of Transfer_E, with the exception that location change is mandatory for Transfer_E but 

not for Change_E.  Despite this similarity, it should be emphasized that Change_E 

describes an entirely different mechanical action from the other verbs, although at the 

present formalism, it cannot fully accomplish that purpose.  The definition above is a 

placeholder for future extension of Change_E.  Table 8.4 describes the next verb, 

Store_E.   
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Table 8.4: Primary energy verb: Store_E 

Verb name Store_E 

Textual 

definition 

To store an energy flow in a material medium (part of system), where 

the medium behaves like a sink (singularity) and is able to receive an 

infinite amount of the energy flow type 

Input type and 

count 

One flow of a subtype of E 

(Energy) 

Output type 

and count 

None 

Grammar None 

Formal 

definition 

 in

Class Store_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List E ;

 
// Only one input energy

Output_E_List ; // No output energy

// Grammar constraints - NONE

}

 

 

Attributes None 

Table 8.5 describes the verb Supply_E.  The secondary level of energy verbs are 

presented next. 
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Table 8.5: Primary energy verb: Supply_E 

Verb name Supply_E 

Textual 

definition 

To obtain energy from a material medium (part of system) , where the 

medium behaves like a source (singularity) and is able to release an 

infinite amount of the energy flow type 

Input type, 

count 

None Output type, 

count 

One flow of a subtype of E 

(Energy) 

Grammar None 

Formal 

definition 

 

Class Supply_E : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

// Count of flows

Input_E_List ; / 

 out

/ No input energy

Output_E_List E ; // Only one output energy

// Grammar constraints - NONE

}



 

Attributes None 

8.2.2 Energy Verbs – Secondary Level 

While the transfer of energy is captured in the primary verb Transfer_E, in the 

study of heat transfer, three distinct mechanisms of transfer, governed by distinct 

principles and phenomena, are discussed: (1) conduction, (2) convection, and (3) 

radiation [128, 129].  A significant difference between these principles is in the 

interaction of energy with matter.   
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1. Conduction requires a material medium.  While heat is transferred across the 

medium by means of the local motion (vibration) of the particles, the medium as a 

whole does not have the same net displacement as the conducted heat.  Examples 

are the conduction of heat or electricity through a metal conductor, from a zone of 

higher temperature or electrical potential to a zone of lower temperature or 

electrical potential.   

2. Convection also requires a material medium and the medium as whole moves by 

a net displacement to carry energy with it.  Convection includes diffusion of the 

energy into the fluid from a boundary and transfer of the fluid in a process called 

advection.  An example is the warming of water in a pot heated from the bottom, 

where heat is diffused from the bottom plate into the water, and reaches the top 

layers of water chiefly by the advection of hotter (and thus lighter) water 

molecules from the bottom to top. 

3. Radiation does not require a medium at all, although properties of the intervening 

material or empty space, such as refractive index and transparency, influence the 

quantitative parameters of radiation such as speed of light and loss of intensity 

due to absorption.  An example is the propagation of light through air, water, or 

empty space. 

It is anticipated that by distinguishing between these three types of energy 

transfer, enhanced reasoning can be supported in early design.  For example, qualitatively 

it can be inferred from an instance of radiation that no material medium is necessary in 

the embodiment of that function, while from an instance of convection, it can be inferred 
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that a fluid medium must be used, since only liquids and gasses can support advection.  In 

future quantitative extensions, an instance of one of these types could be used to infer 

material properties pertaining to that type, such as conductivity for conduction and 

convection coefficient for convection. 

Further, it is anticipated that the characteristic difference between these three 

mechanisms in terms of interaction of energy and matter can be conceptually extended to 

other forms of energy than heat, such as mechanical, electrical, or chemical.  With this 

extension, conduction, convection, and radiation can be used as general subtypes of 

energy transfer.  This anticipation is verified next by attempting to describe transfer 

processes of various energy forms analogous to conduction, convection, and radiation.   

Verification of Three Types of Transfer for Different Energy Types 

In Table 8.6, five actions—Conduct, Diffuse, Advect, Radiate, and Store—are 

five columns on the right.  Each cell contains one or more examples of the action 

mentioned in the column header on a given type of energy (column 1) and using a given 

type of material (column 2).  For example, the top left cell describes the action Conduct 

for Mechanical Energy (ME), using material of the type solid (S).  The first four actions 

are the potential subtypes of Transfer_E under examination.  Store is included to discover 

if all energy types can be stored, so that grammar rules for the verb Store_E can be 

written accordingly.  Supply is not separately shown.  For each type stored, an opposite 

phenomenon can be used to describe supply of the energy. For the material types (column 
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2), the three basic phases of material—solid (S), liquid (L), and gaseous (G)—are 

considered. 



 

 302  

Table 8.6: Three modes of transfer and storage for different energy types  

E M Conduct Diffuse Advect Radiate Store 
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A rotating shaft 
conducts mechanical 
work from one location 
(end) to another 
location (end).  The 
shaft rotates locally, 
but does not undergo 
net displacement 
between the ends as the 
energy.    

Kinetic energy is 
handed over (diffused) 
from a moving billiard 
ball to a static ball in 
collision and across 
multiple balls in a 
Newton pendulum.   

A projectile (e.g., a 
bullet) carries kinetic 
energy from one 
location to another, and 
must have 
displacement between 
the locations to transfer 
energy.    
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Gravitational PE is 
stored in a raised solid 
object, such as a 
raised hammer.  
Elastic Strain E is 
stored in a solid object 
(e.g., spring) by 
elastically deforming 
its geometry. 

L
iq

ui
d 

Water in a pipeline 
conducts mechanical 
energy during surging 
or water hammer.  An 
open water surface 
conducts ME as waves. 
In both cases, a wave 
propagates without net 
displacement of water.  

Kinetic energy is 
diffused from a water 
jet to the buckets of a 
Pelton wheel during 
collision.   

Water exiting a nozzle 
and hitting the buckets 
of a Pelton wheel 
advects kinetic energy, 
as the water itself must 
move to cause the 
transfer from the nozzle 
to the bucket. 

A soap bubble stores 
surface energy 
(potential energy).   
Water stored behind a 
dam has stored 
gravitational 
potential energy.   

G
as

eo
us

 

Air conducts ME as 
sound waves and 
shockwaves. Both are 
perceived by humans as 
sound, when the 
frequency is in the 
audible range (20-
20,000 Hz).  

Wind hitting the blades 
of a windmill diffuses 
its kinetic energy to the 
blades.   

Air hitting the blades of 
a windmill advect 
kinetic energy.  Both 
have net displacement 
to carry energy to the 
blades.   

Mechanical work is 
stored in a tank of 
compressed air when 
the air is compressed.  
During expansion, this 
stored work is released 
as exergy.   
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E M Conduct Diffuse Advect Radiate Store 
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Heat is conducted 
through heat 
exchanger plates and 
radiator fins.  The 
plates and fins do not 
move, while the heat is 
transferred.   

Heat is diffused 
from a hot solid 
to a cold solid 
in thermal 
contact, such as 
from the tip of a 
soldering iron 
to solid solder.  

Solids cannot support 
advection by molecule motion, 
but the whole solid can move 
and carry heat.  Shotgun 
pellets are made by dropping 
molten lead drops from a 
height into water to cool and 
freeze.  The heat rejected to 
water is advected by the pellets 
across the height. 
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Heat is stored in all solid 
objects as internal energy, 
indicated by its 
temperature.  It is better 
received when it is 
extracted from the solid as 
sensible heat, which 
causes measurable drop of 
temperature.   

L
iq
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d 

When a liquid column 
is heated at the top 
layers, the only means 
for heat to transfer to 
the bottom layer is by 
conduction.  Due to a 
negative density 
gradient (hotter liquid 
at the top), convection 
cannot ensue.   

Heat is diffused 
from hot liquid 
to solid in 
thermal contact, 
such as from 
hot coolant to 
the walls of a 
radiator in a 
car.   

When a liquid column is 
heated at the bottom, heat is 
transferred to the top through 
advection, which starts once 
the temperature difference and 
height of the column is large 
enough for the column to 
collapse. 

Heat is stored in all liquids 
as internal energy, 
indicated by its 
temperature.  It can be 
removed as sensible or 
latent heat, depending on 
whether the liquid is above 
or at its freezing point.   

G
as
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us

 

When a gas column is 
heated at the top 
layers, the only means 
for heat to transfer to 
the bottom layer is by 
conduction.   

Heat is diffused 
from hot gas to 
a solid in 
thermal contact, 
such as from the 
hot exhaust gas 
to the walls of 
the exhaust 
pipe in a car. 

When a gas column (e.g., the 
air column inside a chimney 
stack) is heated at the bottom, 
the main transfer process is 
convection, similar to liquids.  
The gas particles themselves 
move to the top to carry heat 
with them. 

Heat is stored in vapors as 
internal energy, as 
indicated by its 
temperature.  It can be 
removed as sensible or 
latent heat, depending on 
whether the vapor is above 
or at its condensation point.
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E M Conduct Diffuse Advect Radiate Store 
E

le
ct

ri
ca

l E
ne

rg
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(E
E

) 

S
ol

id
 

Electrical energy is 
conducted through wires.  
The conductor does not 
need to move to transfer 
the energy. 

Electrical energy is 
diffused from one 
conductor to another 
in electrical contact, 
such as between the 
contacts of a switch.  

EE is convected by solid toner 
particles in laser printers from 
the drum to the paper.  The 
particles are charged and are 
transferred due to attraction of 
the oppositely charged paper.  A 
small current is established by 
the flow of the particles.  The 
energy of this current is advected 
by the displacement of the toner 
particles.     

Static electricity is 
stored in solid objects 
such as toner particles, 
charged capacitor 
plates, and the leaves 
of an electroscope. 
The storage of electric 
energy in batteries is 
not mentioned, since 
the stored form is 
chemical energy.   

L
iq

ui
d 

Electrical energy is 
conducted through liquids 
such as mercury.  The 
liquid does not move in 
order to conduct the 
energy. 

Electric energy is 
diffused between a 
liquid and a solid in 
electrical contact, 
such as between the 
electrolyte and an 
electrode in 
electroplating.   

Charged paint 
droplets in spray 
painting advect 
electrical energy 
from the nozzle to 
the work surface 
by physically 
moving in space.   

Electrical energy 
is transferred 
through empty 
space or air by 
induction, such 
as between the 
high-voltage and 
low-voltage coils 
of a transformer.  
A load connected 
across the low 
voltage side 
consumes EE 
transferred from 
the high-voltage 
side without using 
a conductor. 

Static electricity is 
stored in liquids, such 
as in gasoline during 
transport due to 
friction against the 
inside of a tank and in 
water droplets in 
clouds.   

G
as

eo
us

 

Electric energy is 
conducted (discharged) 
through gas in cathode 
ray discharge tubes and 
through air during 
lightning.  Although flow 
of charged gas particles is 
involved, the gas does not 
undergo net displacement.  

Charged gas in 
plasma arc welding 
is discharged in 
contact with a solid.  

Gasses in plasma 
state (e.g., in 
plasma arc 
welding) convect 
electrical energy, 
where gas particles 
have to move in 
space to transfer 
the energy.   

Static electric charge 
stored in gas particles.  
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X 
Chemical energy 
cannot be conducted 
through material media.  
ChE is energy locked 
in the chemical bonds 
of the material and thus 
always needs a material 
carrier.  It cannot be 
transferred without 
moving the material 
that stores it.   

X 
Chemical energy 
cannot be diffused 

ChE is convected by 
the flow of pulverized 
coal in a furnace in a 
boiler plant.  The coal 
must to transfer its 
stored ChE.   

X
 

C
he

m
ic

al
 e

ne
rg

y 
ca

nn
ot

 b
e 

ra
di

at
ed

. 

Chemical energy is 
stored in the molecular 
bonds of carbon and 
in the solid 
electrolytes of a 
rechargeable cell 
during charging. 

L
iq

ui
d ChE is convected by 

the flow of gasoline in 
an engine. 

Chemical energy is 
stored in the atomic 
bonds of liquid 
hydrocarbons, such as 
liquefied propane.   

G
as

eo
us

 

ChE is convected by 
the flow of propane 
gas in a grill.   

Chemical energy is 
stored in the atomic 
bonds of gaseous 
hydrocarbons, such as 
gaseous propane.   
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Conduct through 
solids: 
The only physical 
process of transferring 
EME is radiation.  
However, the process 
of transmitting light 
through an optical 
fibers and cables can 
be modeled as 
conduction, since the 
cable does not undergo 
any displacement. 

Diffuse: X 
The entrance of light 
from one medium to 
another can be viewed 
as diffusion, but since 
the medium does not 
play any role in 
transferring the light, 
this view is considered 
inappropriate in 
function modeling.   

   
Advect: X 
The only means of 
transferring EME is 
radiation.   

R
ad

ia
te

: 
E

M
E

 i
s 

tr
an

sf
er

re
d 
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 r

ad
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ti
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 i
n 

th
e 

pr
op
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n 
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, 
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T
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(o
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 O

pE
),

 X
-r

ay
s,

 a
nd
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m
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Store: X 
Electromagnetic 
energy cannot be 
stored in any medium 
in electromagnetic 
form.  It can be 
converted and stored 
in other forms, as in 
photovoltaic cells or 
solar panels that 
convert EME from the 
sun into EE. 

L
iq

ui
d 

G
as

eo
us
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As shown in Table 8.6, the characteristics feature of the three energy transfer 

mechanisms in terms of interaction of energy with material can be extended to other 

energy form than heat using the concepts of conduction (medium does not move), 

diffusion (transfer across media in contact), advection (medium carries the energy), and 

radiation (medium not required) studied in heat transfer.  However, as seen in the 

material verbs, diffusion can be modeled as the energizing of material (e.g., adding heat 

to colder fluid by a hotter plate) or de-energizing of material (e.g., removing heat from a 

hotter fluid to a colder plate), and advection can be modeled using the carrier flow 

relation, as energy carried by material.  Thus, the two phenomena within convection, 

diffusion and advection, do not need to be captured as separate verbs.  Thus, the only 

secondary verbs required under Transfer_E are (1) Conduct_E and (2) Radiate_E, which 

are described next.  Table 8.7 describes the verb Conduct_E.   
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Table 8.7: Primary energy verb: Conduct_E 

Verb name Conduct_E 

Textual 

definition 

To transfer energy using a material medium, while the medium does not 

undergo a net displacement between the locations of energy transfer 

Input type, 

count 

One flow of a subtype of E Output type, 

count 

One flow of a subtype of 

E 

Grammar All inherited grammar from Transfer_E 

The input energy subtype cannot be Chemical Energy, as per Table 8.6 

Formal 

definition 

in

Class Conduct_E : Transfer_E {} // Inherited from class Transfer_E

{

// Grammar constraints

E .SubType ChE; // Chemical energy cannot be conducted

}


 

Attributes None 

Table 8.8 describes the verb Radiate_E.   
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Table 8.8: Primary energy verb: Radiate_E 

Verb name Radiate_E 

Textual 

definition 

To transfer energy without using a material medium 

Input type, 

count 

One flow of a subtype of 

E 

Output type, 

count 

One flow of a subtype of E 

Grammar All inherited grammar from Transfer_E 

The input energy subtype can be only electrical, thermal, or 

electromagnetic, as per Table 8.6 

Formal 

definition 

 in

Class Radiate_E : Transfer_E {} // Inherited from class Transfer_E

{

// Grammar constraints

E .SubType ThE EE EME ; // Only ThE, EE, and EME can be radiated

}

  

Attributes None 

As seen above, the only difference between the primary verb Transfer_E and its 

children is in the additional grammar rules that controls which subtypes of energy can be 

conducted or radiated.  The identification of these transfer process for various energy 

types identified in Table 8.6 is used to derive these grammar rules.  In Conduct_E, the 

conducting material is not included as an input flow, since by definition of function 

(Section 1.2.7) and flow (Section 1.2.6), a function is an action performed by the 

device, and a flow is an entity that the device acts upon [178].  Since Conduct_E is a 

function executed by the modeled system, the medium of conduction must be a 



 

 310  

component of the system, and therefore should not be included as a flow.  To this end, 

previous research [179] indicates that reasoning such as those involved in similarity 

detection between function models is inaccurate when the distinction between system and 

flows is ignored. Table 8.9 summarizes the energy verbs in a taxonomy, and includes 

their textual definitions tables where they are formally defined.  The next subsection 

describes the material verbs.   

Table 8.9: Summary of energy verbs and their description tables 

Primary Secondary Textual Description 
Defined in 

Table 

TypeChange_E  To change the subtype of an energy flow Table 8.1 

Transfer_E  To change the location of an energy flow 

in geometric space 

Table 8.2 

Conduct_E To cause a change of location of an energy 

instance using a medium, where the 

medium does not change location 

Table 8.7 

Radiate_E To cause a change of location of an energy 

instance without using a medium or a 

carrier, although physical properties of the 

medium intervening the two locations may 

influence the process 

Table 8.8 

Change_E  To change the quantitative parameters of Table 8.3 
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an energy flow without changing its type 

Store_E  To store an energy flow in a material 

medium (part of system), where the 

medium behaves like a sink (singularity) 

and is able to receive an infinite amount of 

the energy flow type 

Table 8.4 

Supply_E  To obtain energy from a material medium 

(part of system) , where the medium 

behaves like a source (singularity) and is 

able to release an infinite amount of the 

energy flow type 

Table 8.5 

8.2.3 Material Verbs 

Material verbs are those that perform transformative actions on material flows.  

As discussed earlier in this section, two basic actions involving materials are identified 

from the review of physical processes, which are translated into verbs next.  Table 8.10 

describes the verb Energize_M.   
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Table 8.10: Material verb: Energize_M 

Verb 

name 

Energize_M 

Textual 

definition 

To add energy to a material flow 

Input 

type, 

count 

One flow of a subtype of E 

One flow of type M 

Output type, 

count 

One flow of a subtype of 

E 

One flow of type M 

Grammar The input energy flow must not be a carried flow. 

The output energy flow must be carried by the output material flow. 

The subtype of the input energy flow must be the same as the output energy.  

No restriction on the subtypes of the material flow, since phase change 

between solid, liquid, or vapor may occur as result of energizing.   
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Formal 

definition 

Class Energize_M : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

List <Material*> Input_M_List; /

 
 
 

in

out

in

/ Input material list

List <Material*> Output_M_List; // Output material list

// Count of flows

Input_E_List E ; // Exactly one input energy

Output_E_List E ; // Exactly one output energy

Input_M_List M ;







 out

in out

in

// Exactly one input material

Output_M_List M ; // Exactly one output material

// Grammar constraints

E .SubType E .SubType; // No type change of energy

E .Carrier ; // Input energy must not be a carr






out out

ied flow

E .Carrier M ; // Energy must be added to material

}



Attributes  None 

Table 8.11 describes the material verb DeEnergize_M.   
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Table 8.11: Material verb: DeEnergize_M 

Verb 

name 

DeEnergize_M 

Textual 

definition 

To remove energy from a material flow 

Input 

type, 

count 

One flow of a subtype of 

E 

One flow of type M 

Output type, 

count 

One flow of a subtype of 

E 

One flow of type M 

Grammar The input energy flow must be carried by the input material flow. 

The output energy must not be a carried flow. 

The subtype of the input energy flow must be the same as the output 

energy.   

No restriction on the subtypes of the material flow, since phase change 

between solid, liquid, or vapor may occur as result of energizing.   
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Formal 

definition 

Class DeEnergize_M : Verb {} // Inherited from class Verb

{

// Type of flows

List <Energy*> Input_E_List; // Input energy list

List <Energy*> Output_E_List; // Output energy list

List <Material*> Input_M_List

 
 

in

out

i

; // Input material list

List <Material*> Output_M_List; // Output material list

// Count of flows

Input_E_List E ; // Exactly one input energy

Output_E_List E ; // Exactly one output energy

Input_M_List M





 
 

n

out

in out

in in

; // Exactly one input material

Output_M_List M ; // Exactly one output material

// Grammar constraints

E .SubType E .SubType; // No type change of energy

E .Carrier M ; // Energy must be removed from






out

 material

E .Carrier ; // Ouput energy must not be carried

}

  

Attributes  None 

Similar to the energy verbs, the material verbs also input and output the minimal 

number of flows that describe the action intended and does not provide for residual flows.  

As mentioned earlier, reasoning algorithms must be written in addition to these 

definitions to ensure model validity against the principles of conservation and 

irreversibility.  In the next subsection, the topologic verbs are described.   

8.2.4 Topologic Verbs 

Two topologic verbs—logical branch and logical unite—are described next.  

These verbs are not mechanical actions.  Rather, these verbs are necessary to instantiate 

user-defined declarations of energy balance and mass balance between energy and mass 
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flows in the model.  As shown in the next section, when used in conjunction with the 

other verbs presented, these verbs allow modeling residues and the branching of flows.  

Table 8.12 describes the verb Logical_Branch. 

Table 8.12: Topologic verb: Logical_Branch 

Verb name Logical_Branch 

Textual 

definition 

To state that the mass or energy parameter of one flow (input) equals the 

sum of that parameter of a set of multiple other flows (output) 

Input type, 

count 

Exactly one flow, E or M Output type, 

count 

At least one flow, E or 

M 

Grammar The input flow is either a material or an energy, but not both 

All output flows are of the same subtype as the input  

For material, the input mass equals the sum of the output masses 

For energy, the input power equals the sum of the output powers 
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Formal 

definition 

 1

Class Logical_Branch : Verb {} // Inherited from class Verb

{

// Type of flows

List <Noun*> Input_List; // Input list

List <Noun*> Output_List; // Output list

// Count of flows

Input_List I ; // Exactly one inp

 

 

1 2 3 n

1

i 1

ut flow

Output_List O ,O ,O ...O ; // Multiple output flow allowed

n 1; // At least one output required

// Grammar constraints

I .SubType M E ; // Only material and energy can be balanced

i,O .SubType I .Sub







 



 

 

n

1 1 i
i 1

n

1 1 i
i 1

Type; // No change of subtypes allowed

I .SubType M I .mass O .mass ; // Mass balance

I .SubType E I .power O .power ; // Energy balance

}





 
   

 
    
 



  

Attributes  None 

As seen from the above definition, the type of the flow is not changed.  In 

addition, no transformative action is modeled using this verb.  The purpose is to provide a 

means to declare that the mass or energy of one flow is conserved as the mass or energy 

of several other flows.  Use of this verb is shown in the next section.  Table 8.13 

describes the verb Logical_Unite. 
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Table 8.13: Topologic verb: Logical_Unite 

Verb name Logical_Unite 

Textual 

definition 

To state that the mass or energy parameter of a set of multiple flows (input) 

equals the sum of that parameter of another flow (output) 

Input type, 

count 

At least one flow, E or M Output type, 

count 

Exactly one flow, E or 

M 

Grammar The output flow is either a material or an energy, but not both 

All input flows are of the same subtype as the output  

For material, the sum of the input masses equals the output mass 

For energy, the sum of the input powers equals the output power 

Formal 

definition 

 1 2 3 n

Class Logical_Unite : Verb {} // Inherited from class Verb

{

// Type of flows

List <Noun*> Input_List; // Input list

List <Noun*> Output_List; // Output list

// Count of flows

Input_List I , I , I ...I ; // Multi

 

 

1

1

i 1

ple input flow allowed

Output_List O ; // Exactly one output flow

n 1; // At least one input required

// Grammar constraints

O .SubType M E ; // Only material and energy can be balanced

i, I .SubType O .SubTy







 



 

 

n

1 i 1
i 1

n

1 i 1
i 1

pe; // No change of subtypes allowed

O .SubType M I .mass O .mass ; // Mass balance

O .SubType E I .power O .power ;// Energy balance

}





 
   

 
    
 



  

Attributes  None 
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Before applying the verbs presented in this section to test their coverage over 

physical principles and devices, the verbs are summarized, along with their representative 

graphical symbols, in Table 8.14.  In each verb symbol, the flow names are written to 

match the name declared in the formal definition, for ease of reference.  This table also 

shows all the verbs and their taxonomy together and provides pointers to their definition 

tables.  In the following section, this vocabulary is applied to model physical principles 

and devices to test the coverage of this vocabulary.   

Table 8.14: The proposed physics-based verbs and their graphical symbols 

Part Primary Verb 
Secondary 

Verb 
Ref. Table Graphical Symbol 

E
n

er
gy

 v
er

b
 

TypeChange_E  Table 8.1 

 

Transfer_E 

 Table 8.2 

 

Conduct_E Table 8.7 

 

Radiate_E Table 8.8 

 

Change_E  Table 8.3 
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Part Primary Verb 
Secondary 

Verb 
Ref. Table Graphical Symbol 

Store_E  Table 8.4 

 

Supply_E  Table 8.5 

 

M
at

er
ia

l v
er

b
 

Energize_M  Table 8.10 

DeEnergize_M  Table 8.11 

 

T
op

ol
og

ic
 v

er
b

 

Logical_Branch  Table 8.12 

 

Logical_Unite  Table 8.13 
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The Logical_Branch and Logical_Unite verb instances are together referred to as 

balance nodes of function structure models presented hereafter.  As seen from the 

symbols, both Store_E and Supply_E functions violate derivational conservation, as they 

do not maintain energy balance between the input and output sides.  While this violation 

may lead to the identification of those flows as orphan or barren by the reasoning 

algorithms of ConMod-2q, this modeling construct is consistent with physics as energy 

can be stored in material bodies and later released.  For example, in a rechargeable 

battery, chemical energy is stored during charging and liberated during discharging.  

Thus, derivational reasoning for this semantic layer should be waived for the special 

cases of Store_E and Supply_E.   

In summary, this chapter presents a finite vocabulary of verbs that are claimed to 

be atomic actions performed by mechanical devices and can be used in modeling 

engineering devices and phenomena as function structure models.  In the next chapter, 

this vocabulary is validated by using it in a wide variety of function modeling 

applications.   
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CHAPTER 9. VALIDATION OF LAYER THREE: 

MODELING COVERAGE OF THE PHYSICS-BASED VERBS 

In this chapter the proposed vocabulary of verbs is validated through modeling 

applications.  Since the verbs are identified from review of physics phenomena and their 

formal definitions are composed of physics-based entities of the previous two layers, the 

vocabulary is first tested by modeling principles and processes of physics and the 

engineering sciences.  Section 9.1 presents application of the energy verbs in descriptive 

modeling of closed systems involving multiple energy forms, without using material 

flows.  Section 9.2 applies both energy verbs and material verbs to model existing open 

system phenomena from heat transfer and hydraulics.  Once the vocabulary’s ability to 

describe basic phenomena is demonstrated, it is used to model complete products in 

Section 9.4 (descriptive modeling) and Section 9.5 (normative modeling).   

9.1 Coverage Testing of Energy Verbs through Descriptive Modeling (Closed 

Systems) 

Since the energy verbs describe energy transformation without mass transfer, only 

electro-mechanical processes and thermodynamic processes of closed systems can be 

modeled to test these verbs.  Open systems with mass flow, such as thermal-hydraulic 

machines and principles can be modeled only for testing the material verbs.  In this 

section, seven physical processes (Subsections 9.1.1 through 9.1.7) involving various 

energy subtypes are modeled using the energy verbs.  These processes are chosen to 

address the overage requirement that the vocabulary must support modeling phenomena 
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involving at least electrical, thermal, and mechanical energy forms, as mentioned in 

3.1.3For each process, a representative device is used as a typical embodiment of the 

process for ease of understanding and interpretation of the model.  It is emphasized that 

the models describe the physics of the processes, rather than the devices.   

The modeling approach of this exercise is descriptive (describing existing 

processes), rather than normative (developing an ideal process or principle).  Thus, 

ideally, residual flows should not be captured, since a pure descriptive inspection should 

objectively identify the functions and flows of an observed process without cognizance of 

the designer’s intent.  In fact, as discussed in context of Figure 7.10 (Section 7.2), the 

identification of residues may largely vary with the application of a process in design 

(light bulb, heat lamp, and café lamp example).  In the models below, the residual flows 

are identified in context of the representative device.  This depiction is used at the end of 

Section 9.2 to explain irreversibility-based reasoning using this vocabulary.  

All models presented in this exercise are qualitative, as the definitions of energy 

verbs presented here do not include quantitative details.    For clarity, environment 

instances are not shown in these models.  All dangling ends of flows shown are to be 

considered as attached to respective environment instances.  Potential reasoning that can 

be supported with these models are also identified when applicable.   

9.1.1 Storage and Supply of Electrical Energy (Device: Lead-Acid Battery) 

First it is recognized that many devices have multiple modes of use and often 

execute different functions or processes in different modes.  An example is a 
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rechargeable battery, which can be used in two modes: charging and discharging.  The 

function structures for these two modes are shown below.  The representative device a 

common lead-acid battery with electrodes made of lead oxide (anode, +) and metallic 

lead (cathode, -) and diluted sulfuric acid as the electrolyte.   

Use Mode: Charging (Storage) 

The function structure of the battery during charging is shown in Figure 9.1.  

Energy is consumed as electrical work done by the electrical source and is spent in two 

accounts indicated by the balance node: (1) in overcoming the internal resistance of the 

electrolyte and electrodes and (2) in executing the chemical reaction where the lead-

sulfate deposit and water is changed into lead, lead oxide, and sulfuric acid.  The first part 

is lost as heat, while the electrical work EW2 is stored as chemical energy, as the 

resulting total energy state of the molecules of this reaction is higher than in a discharged 

battery.   

 

Figure 9.1: Storage of electrical energy as chemical potential energy 

Although the main scope of this research does not include establishing a flow 

vocabulary for function modeling, some flows in addition to those identified in Section 

8.2.1 by modifying the Functional Basis are necessary to work compatibly with the 

energy verbs.  For example, since the physical phenomena of static electric charge 
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accumulation in a material body are different from those of current electricity, a 

distinction is necessary between these two forms of electrical energy.  Hereafter, the first 

is modeled as electrical potential energy (EPE) and the second as electrical work (EW).  

Electrical work is done at all times when a current flows through a conductor.  The need 

for this distinction will become clearer in Section 9.1.3.    

Use Mode: Discharging (Supply) 

The chemical reaction of charging is exactly reversed during discharging, as 

shown in Figure 9.2.  The difference of the chemical binding energy of the reactant and 

product molecules is liberated as electrical work, as the products of the reaction reduce to 

a lower energy state.  This liberation is captured in the first TypeChange_E function.  

Due to irreversibility, only a part (EW3) of this total electrical work EW1 is done on the 

load connected to the external circuit, while the remainder EW2 is consumed to 

overcome internal resistance of the cell and dissipated as heat, modeled as the second 

TypeChange_E function.   

 

Figure 9.2: Supply of electrical energy from stored chemical potential energy 

While the word supply may imply a physical flow of an entity, the Supply_E 

function does not imply a “flow” of chemical energy ChE as a change of location in 

geometric space.  Rather, it is required for derivational and topologic consistency of the 



 

 326  

model.  Without it, the flow ChE would have a dangling tail or would be inferred as 

entering from the environment.  By definition, a function is an action performed by the 

device (Section 1.2.7).  Here, the device is the source of this ChE and Supply_E describes 

that action.   

It should be mentioned that electrical work is done by the cell only when current 

is established by losing the external circuit.  Ideally, there is a third use mode of the 

cell—idling—where the external circuit is open.  However, once the circuit is opened, the 

reaction continues only momentarily until the potential difference between the electrodes 

builds up to create a counter electromotive force that stops the reaction and the entire 

electrochemical process comes to a static equilibrium, where all functions cease to exist.     

9.1.2 Resistance to Electrical Current (Devices: Resistor, Heating Coil, Lamp 

Filament) 

The three basic properties of conductors that contribute to impedance to current 

are resistance, inductance, and capacitance [126].  These basic building blocks of 

electrical circuits are modeled before moving to more complex systems such as series and 

parallel R-L-C circuits and devices such as DC motors and DC generators.   

A pure resistor offers only resistance to current, without inductance or 

capacitance, and electrical work spent in moving the charge against the resistance is 

entirely dissipated as heat according to Joule’s Law [126].  The function structure for this 

process is shown in Figure 9.3.     
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Figure 9.3: Resistive heating 

This process occurs in many devices such as electrical wires, heating elements 

coffee makers and hairdryers, and filaments in incandescent lamps.  These devices are 

mentioned because they reveal certain characteristics of modeling the resistive heating 

process.  First, the last two devices are usually not pure resistors, as they are formed as 

coils and thus produce magnetic fields around them.  This is a theoretical difficulty that 

can be easily mitigated for this discussion by hypothetically replacing the coils with 

equivalent straight resistors.   

Second, while an electric wire usually produces only heat, the heater element and 

lamp filament usually produce both heat (ThE) and light (EME).  This light is produced 

through incandescence, which triggers only when the conductor’s temperature exceeds a 

threshold, a property of the resistor material.  In turn, the steady state temperature of the 

conductor is a function of rate of heat generation and dissipation to the surroundings, the 

first of which depends on design parameters such as current, and conductor properties 

such as conductance, length, sectional area, and melting point, while the second depends 

on the heat transfer modes (conduction, convection, and radiation) and their respective 

coefficients.  Thus, whether light is produced at output ultimately depends on the 

quantitative details of the model, although the present modeling scope is only qualitative.  

To support automated reasoning about when these use modes will exist, quantitative 
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parameters must be captured in the representation for individual principles, an extension 

reserved for future extensions of this research.     

Third, different output energy flows from the same principle can be desired or 

considered lost in different designs.  Table 9.1 shows four representative devices of the 

resistive heating principle.  These devices vary in design parameters such as electric 

current and resistance that control if light (EME) is produced and in design intent that 

determines if heat (ThE) is desired or not.  In the two cases where multiple energy types 

are produced from the same function, two instances of TypeChange_E are required, since 

the definition of the verb allows only one conversion per instance.  These models 

demonstrate that the energy verbs can describe each of the cases, when accompanied by a 

means to mark the residual flows, which is already available in the second layer of the 

representation.     
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Table 9.1: Model variation with design intent  
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Heating coil (coffee maker)  

Filament (heat lamp, hairdryer) 
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Electrical wire  

Filament (light bulb) 

 Light not produced Light produced 

Design parameters (e.g., current) 

Finally, the representation can support modeling the same phenomenon at 

different spatial resolutions.  For example, the production of light and radiated heat in an 

incandescent filament can be modeled as successive conversions from ThE to ME to 

EME.  Light and radiated heat are electromagnetic waves with the only difference being 

in their frequencies.  The production of these waves is a result of the atoms releasing a 

part of their vibrational kinetic energy (ME) as electromagnetic radiation when their 

temperature is elevated above a threshold [126].  Part of this radiation is described by 

human observers as light, as its frequency lies in the visible spectrum for humans.  Thus, 

the identification of this energy as light (OpE) is a function of the observer being human 
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and not of the physics of the device.  For this reason, the Functional Basis term optical 

energy is replaced with electromagnetic energy (EME) in all models in this illustration.     

9.1.3 Storage and Supply of Electrical Energy using Capacitance (Device: 

Capacitor) 

The storage and supply of electrical energy in a capacitor is similar to those in a 

lead-acid battery, with the difference that the form in which energy is stored in a 

capacitor is electrical rather than chemical. 

Use Mode: Charging (Storage) 

Storing charge in a capacitor requires electrical work to be done by the source, as 

electrons must be moved against the counter electromotive force offered by the 

increasingly charged electrodes.  The stored form of electrical energy is the electrical 

potential energy EPE (static electric charge).  Work spent in accumulating this charge is 

EW2.  In addition, EW3 is electric work dissipated as heat, due to internal resistance of 

the capacitor is therefore the bottom TypeChange_E function is topologically identical 

with Figure 9.3.  EW1 is the total work spent in the process and is the sum of EW2 and 

EW3, as implied by the balance node.   

 

Figure 9.4: Storage of electrical energy as electrical potential energy (static charge) 
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Use Mode: Discharging (Supply) 

The function structure for the discharge of a capacitor is shown in Figure 9.5.   

 

Figure 9.5: Supply of electrical work (current) from stored electrical potential 

energy 

Notably, the vocabulary can describe the capacitor and the rechargeable battery in 

topologically identical models, the only difference being the form of energy stored.  This 

similarity indicates that as long as qualitative physics principles are considered, these two 

processes could be used interchangeably for storing and supplying electric energy, which 

is indeed true.  This similarity can be also used in automated reasoning.  For example, a 

reasoning algorithm for solution search can be written that matches the modeled 

functional construct with an archive of solutions where device types are mapped against 

functions.  If this algorithm is used to seek solutions to “storage of EE as ChE” (Figure 

9.1), it would possibly return different types of storage batteries, and when searched for 

“storage of EE as EPE”, it may return capacitors.  However, based on this topological 

similarity, the same algorithm could return both device classes, if the search was widened 

as “storage of EE”, without mentioning the form of stored energy.  In this manner, the 

representation shows potential for supporting more enhanced reasoning, which is 

reserved for future work.   
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9.1.4 Production of Magnetic Field using Inductance (Device: Solenoid with or 

without Soft Iron Slider) 

Producing magnetic fields by passing current through an inductor is a 

fundamental process in electrical systems and is used in applications such as 

transformers, motors, and generators.  Basic demonstration of this principle is done by 

passing current through a straight conductor, which induces the magnetic field around it, 

while a basic engineering application is the solenoid, where current is passed through a 

helically coiled conductor that induces the field along the coil axis.  A soft iron slider 

partially inserted into the solenoid is commonly used to extract linear motion (thus, work) 

based on this principle.  Function structures for this principle are shown next, for two 

different use modes: slider locked and slider moving. 

Use Mode: Slider Locked (Motion Prevented) 

In this use mode, the slider does not move, either because it is locked positively or 

the field is not strong enough to overcome friction.  Figure 9.6 shows two variants of this 

principle: Figure 9.6a represents the device with a magnetic but non-magnet slider, such 

as a soft iron core.  Figure 9.6b shows the function structure for a permanent magnet 

slider.  The distinction between these principles will become clearer in the next use mode.  

MagF is the magnetic field produced.  No mechanical work is done, as there is no motion 

(locked).  Thus, the entire electrical work is dissipated as resistive heat (ThE).  Figure 

9.6a describes any of three processes: (1) straight conductor carrying current, (2) solenoid 

carrying current and no iron slider is used, (3) solenoid carrying current while soft iron 

slider is used but locked from moving.  While mass and energy are conserved entities of 
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the universe, forces are not, and the topologic derivation rules do not require force 

balance across functions.  This model is therefore consistent with the balance laws.  In 

Figure 9.6b, the system produces two magnetic fields, one each from the solenoid and the 

permanent magnet, both of which are available to the surroundings.  No mechanical work 

is done, as the slider is locked.   

 

 
(a) No slider or soft iron slider 

Use mode: slider locked 

(b) Permanent magnet slider 

Use mode: slider locked 

Figure 9.6: Production of magnetic field without mechanical work by induction  

The models for resistive heating (Figure 9.3) and inductive magnetic field 

production (Figure 9.6) are identical except MagF.  Admittedly, Figure 9.3 could be more 

complete as a descriptive model if the magnetic field produced around the conductor was 

shown.  However, it was omitted as for most applications of resistive heating the field 

produced by a straight conductor is negligible.  

Use Mode: Slider Moving 

When the slider is unlocked and the magnetic force is strong enough to overcome 

friction, the slider moves, and mechanical work is done as at least the frictional resistance 

(force) of the slider is overcome over a distance.  Figure 9.7a and Figure 9.7b show this 
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process for a soft iron slider and a permanent magnet slider.  The total electrical work is 

spent in two accounts: (1) to produce mechanical work MW1 and (2) to overcome 

electrical resistance of the solenoid, which produces ThE1.  The magnetic force from the 

coil is used in producing mechanical work in both cases, while the magnetic force from 

the permanent magnet (PM) is additionally used in the second case.  Again, since forces 

are not conserved entities, the Supply_F and TypeChange_E functions do not violate 

conservation laws.   

 

 

(a) Soft iron slider 

Use mode: slider moving 

(b) Permanent magnet slider 

Use mode: slider moving 

Figure 9.7: Production of magnetic force from electric energy through induction 

The four models shown above use a function named Supply_F that is not 

presented in the energy verbs.  Similarly, the flow MagF is of the type force, rather than 

material or energy previously discussed.  The reason for their use is that the role of the 

magnet (e.g., the permanent magnet in Figure 9.7b) is only to produce a magnetic force 

field, rather than to provide magnetic energy.  No part of the energy required to produce 
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MW1 comes from the magnet, as the magnet remains in the same state after the operation 

is over.  The only energy input to the system is through electrical current and thus, it must 

be a part (EW3) of the total incoming electrical work (EW1) that is spent to produce 

MW1.  However, the current through the conductor would not produce this mechanical 

work unless the conductor was immersed in a magnetic field, as described by Fleming’s 

left hand rule [126].  Thus, the magnet’s role is to create a force field, which should not 

be described as energy, and therefore the function Supply_F and the flow MagF are 

justified.  However, this discussion shows that the representation could be extended to 

include flows of force and associated force-transforming functions in the future.   

9.1.5 Work from Electrical Energy (Device: DC Motor with Permanent Magnet) 

As the principles of electrical impedance—resistance, inductance, and 

capacitance—are modeled above using the vocabulary, larger electrical systems of 

engineering interest are modeled next.  Figure 9.8 shows the function structure for the 

typical use mode of a DC motor.   

 

Figure 9.8: DC motor with permanent magnet 
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The magnet provides the field MagF (PM).  Mechanical work MW2 is available 

at the shaft.  The MW3 part of the total mechanical work produced (MW1) is consumed 

to maintain motion against bearing friction and is ultimately dissipated as heat (ThE2) 

and sound (AcE1).  The other source of loss is the part of electrical work spent in 

overcoming the electrical resistance of the rotor coil.  This portion is captured as EW2, 

which is dissipated as heat ThE1.  This method of modeling has two major advantages in 

reasoning.   

First, separation of the electrical and mechanical losses allow for calculating 

motor efficiency as the product of electrical and mechanical efficiencies, as shown below. 

3 2 2
motor e m

1 3 1

EW MW MW Net mechanical work output

EW EW EW Total electrical work input
         

Second, this model can simulate the two other possible use modes by progressive 

alteration: (1) no load, where the motor freely rotates without extraction of mechanical 

work and (2) stalling, where the load is increased until rotation stops while the motor 

continues to consume electricity.  In both modes, the net mechanical work output is zero.  

The no load mode is simulated by setting MW2 to zero, as the motor consumes only 

enough electric work to keep it in steady state motion against bearing friction, thus 

resulting:  

2 1 3 1 3ThE AcE MW MW EW     
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Mechanical work is produced, but is entirely consumed in overcoming friction, 

leaving none for net output.  In stalling, motion ceases and thus MW1 should be set to 

zero, implying that the entire incoming electrical work must be dissipated as resistive 

heat from the coil, as follows. 

1 3

1 2 1

MW EW 0

ThE EW EW

 
    

In stalling, there is no frictional heat or sound produced and this outcome can be 

reasoned as: 

1

2 3

2 3

2 3

MW 0

MW MW 0

MW 0 and MW 0

both MW  and MW  are non-negative


  

  
  

9.1.6 Work from Electrical Energy (Device: DC Motor with Field Winding) 

The only difference in this model from the previous model is that the total 

incoming electrical energy must be distributed to feed the field winding and the rotor 

winding.  This model is shown in Figure 9.9.  Unlike the permanent magnet, the field 

winding consumes electrical work EW5, which must be supplied in addition to the 

previous total input EW1, thus increasing the total input to EW4 = EW1 + EW5.  The 

field winding is represented as a TypeChange_E function, instead of the Supply_F 

function in the previous model.   
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Figure 9.9: DC motor with field winding 

To illustrate the use of the verbs under Transfer_E, the model in Figure 9.9 is 

extended in Figure 9.10 to show the transfer of the mechanical work using the shaft and 

dissipation of heat to the atmosphere.  Both Figure 9.9 and Figure 9.10 are correct, the 

difference being in functional scope (which functions are included) of the models.  Figure 

9.9 includes functions to produce mechanical work and heat.  Figure 9.10 includes 

additional functions, typically executed by additional physical embodiments, such as the 

shaft and fins.  The net mechanical work output is conducted through the shaft that acts 

as a conduit for work transfer and does not undergo a net displacement.  MW2 is the 

input to the shaft, while MW4 is work available to the driven agent at the output end of 

the shaft.  All heat produced is ultimately transferred through conduction into air, 

convection, and radiation, as shown with the individual functions.  ThE4 implies the total 

heat, while the addition of heat to air (diffusion) is shown using the Energize_M function.     
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Figure 9.10: DC motor model with energy transfer functions 

9.1.7 Electrical Energy from Work (Device: DC Generator with Permanent 

Magnet) 

The converse principle of a DC motor is executed by a DC generator, where 

mechanical work is consumed to spin a coil inside a magnetic field, the interaction 

between which produces potential difference between the generator terminals.  Electrical 

work is done only in the use mode when a load is connected between the terminals, 

shown in Figure 9.11.  MW2 is the total mechanical work supplied by the prime mover 

(environment), of which MW3 is dissipated as heat and sound through friction.  The 

remainder, MW1, is used to produce electrical work EW3 in presence of magnetic field 

MagF (PM).  A part of this total electrical work, EW2, is consumed in overcoming the 
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internal resistance of the rotor coil and the counter electromotive force (back emf), and is 

ultimately dissipated as heat, ThE1.   

 

Figure 9.11: DC generator with permanent magnet 

Figure 9.11 is intentionally drawn with the energy arrows going from right to left, 

contrary to normal practice, in order to illustrate that this model is obtained purely by 

reversing the directions of the non-residual energy flows (black arrows) in the DC motor 

function model (Figure 9.8).  The directions of the residual flows (red arrows) are not 

reversed.  This symmetry shows that this modeling method can be used to reason that by 

reversing the flows through a motor, a generator could be built.  Also, the non-reversal of 

the residual flows shows that the models are in agreement with the Second Law of 

Thermodynamics, since irrespective of the work flow directions, the losses always leave 

the system and are not recovered when the overall process is reversed.   

Notably, this last model is an open system, as it shows incoming and outgoing 

material flows (air) and consequently, uses the material verb Energize_M.  However, 

modeling coverage of the material should be demonstrated through more exhaustive 
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modeling of basic principles of open systems with mass transfers.  This demonstration is 

presented next.   

9.2 Coverage Testing of Material Verbs through Descriptive Modeling (Open 

Systems) 

Two major areas of engineering physics involving mass and energy transfer are 

heat transfer and hydraulics.  In this section, principles and phenomena from these two 

areas are modeled to illustrate modeling coverage of the verbs, with special interest to the 

material verbs that were not tested in the previous section sufficiently.   

9.2.1 Heat Transfer between Two fluids across a Wall (Device: Heat Exchanger 

Pipe) 

A basic process in heat transfer is the transfer from a hot fluid to a cold fluid 

separated by a conductive wall.  This principle is embodied in many applications, 

including thermal insulations around steam pipes and hot water pipes (hot fluid inside 

pipe), and in evaporator coils in refrigerators (cold fluid inside).  Here the representative 

device is a drum and tube type heat exchanger, where one fluid fills the drum and the 

other is passed through the tubes that run in coils inside the drum.  The exchange of heat 

between these fluids happens through the wall of the pipe.  Figure 9.12 shows a function 

structure for the process.  The process is completed in three steps: (1) heat is diffused 

from the incoming hot fluid to the wall, (2) heat is conducted across the wall, and (3) heat 

is diffused to the cold fluid from the wall.  These steps are shown by the three functions 

DeEnergize_M, Conduct_E, and Energize_M.  Whot1 is the incoming hot fluid that loses 
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heat and exits at a different state, Wcold1.  Wcold2 is the incoming cold fluid that receives 

the heat and becomes Whot2.   

 

Figure 9.12: Heat exchange between two fluids across a wall 

9.2.2 Heat Transfer from a Fluid to the Atmosphere (Device: Radiator) 

An extension to the previous model is the case where the cold side of the heat 

exchanger is atmospheric air, as commonly applied in automotive radiators 

(representative device).  The difference with the previous case is that on the cold side, 

heat is not only diffused to air, but is also radiated in space.  The part diffused in air can 

be conducted through it or carried away by free or forced convection, but those functions 

are not within the scope of the model.   
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Figure 9.13: Heat transfer from hot fluid in a pipe to atmospheric air 

9.2.3 Heat Transfer through an Intermediate Cycled Flow (Device: Disk Heat 

Exchanger) 

A common application of the above principles happens in devices where an 

intermediate fluid (or solid) is cycled between the two temperatures as the carrier of heat 

from the hot to the cold fluid.  The functionality of this intermediate flow is similar to 

that of the wall in Figure 9.12, which carries heat from the hot to the cold fluid.  

However, this intermediate fluid is reused and therefore energy must be expended in 

keeping them in motion.  An example is the coolant fluid in automotive engines, which 

receives heat by diffusion when in thermal contact with the jackets in the cylinder block, 

rejects heat at the radiator, and is cycled back to the engine block using a pump.  Another 

application is a disk type heat exchanger (representative device), as modeled in Figure 

9.14.  In this model, the disk itself is modeled as the intermediate flow.  Although the 

disk as a whole does not flow through the system, heat is received and rejected by 

individual particles of the disk, which are cycled back by doing mechanical work.  The 

material flows Disk1, Disk2, and Disk3 represent three states of a given particle of the 
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disk.  As mentioned earlier, the definition of flow (Section 1.2.6) requires that a flow is 

not a part of the modeled system.  However, for reused material such as the engine 

coolant or the disk particles, a duality of identity arises based on the system resolution.  

From a low resolution view, the coolant or the disk can be considered parts of the heat 

transfer system and the model should not depict them as a flow.  In a closer look, they 

can be perceived as a flow.  For example, when individual cooling subsystems such as 

the radiator or the coolant pump are modeled, the coolant needs to be treated as a flow 

through those systems, since it carries the energy exchanged at each step.  The model in 

Figure 9.14 is based on this high-resolution view.   

 

Figure 9.14: Heat transfer using an intermediate reused flow 

The first DeEnergize_M function (top left) shows the loss of heat from the hot 

fluid Whot, which is received by the particle through the first Energize_M function (left).  

Here the hot fluid is de-energized and the particle is energized.  The diffusion of heat 
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between two flows is shown with two functions, as opposed to the diffusion of heat from 

a fluid to the system shown with one function (DeEnergize_M) in Figure 9.12.  This two-

function construct is a consequence of using the particle as a flow, rather than as a device, 

and illustrates the representation’s ability to model both viewpoints.  No Conduct_E 

function is required to complete this diffusion, as used in Figure 9.12, since the two flows 

(hot fluid and the particle) are in direct thermal contact.   

The particle is next energized with mechanical work MW2 that keeps it rotating, 

and comes in thermal contact with the atmospheric air on the cold side.  Heat is 

dissipated from the hot particle to air in the same manner as described for the radiator in 

the previous model.  The particle then returns to the original state and is reused in the 

dame functions.  No further mechanical work is added to the particle, since it is already 

energized with ME2.  In the next subsection, some basic principles from hydraulics are 

modeled.   

9.2.4 Free Drainage of Water from a Tank (Device: Penstock of a Hydraulic 

Turbine) 

A basic principle in hydraulics is the drainage of water from a tank.  It is applied 

in applications such as the penstock of a hydraulic turbine, where the reservoir is the tank 

and the penstock itself is the pipeline, as depicted in Figure 9.15.  Gravitational potential 

energy stored in the elevated water is converted into kinetic energy according to 

Bernoulli’s principle that conserves the sum of the pressure head, velocity head, and 

elevation head along a streamline.     
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Figure 9.15: Schematic diagram of free drainage of water from a tank 

The corresponding function structure is shown in Figure 9.16.  The total potential 

energy lost by the water in state A (WA) corresponds to the gravitational potential energy 

due to a fall through the gross head, Hgross.  Of this total energy converted, a part is lost 

(Eloss) in overcoming the pipe friction, while the balance (KE2) is available at the water 

jet at the free end of the pipe.  This energy corresponds to the net head of the system, 

Hnet, and is manifested as the velocity of water in state B, KE3.  The topology of this 

model requires the use of a DeEnergize_M and an Energize_M function, with a pseudo 

flow of water in the middle, since the TypeChange_E verb accepts only an energy flow 

and produces another.  The vocabulary does not provide any verb for converting a carried 

energy flow directly into another energy flow carried by the same material.  Thus, the 

model describes the process indirectly, where the water is first shown to be de-energized 

off its potential energy and later energized with the converted form, kinetic energy.  The 

interim flow, W2, is a pseudo flow, as it is only required for maintaining continuity of the 

model, but does not describe any state of the water in the actual system. 
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Figure 9.16: Conversion of potential energy into kinetic energy in free drainage of 

liquids 

9.2.5 Conversion of Kinetic Energy of Water to Shaft Work (Device: Francis 

Turbine) 

A second basic hydraulic phenomenon is the extraction of shaft work from the 

kinetic energy of water, as performed by various types of hydraulic turbines 

(representative device).  The function structure is shown in Figure 9.17.  The water jet, as 

available from the penstock (WB in Figure 9.16) transfers its kinetic energy to the blades 

of a Francis runner or the buckets of a Pelton wheel.  This energy is partially lost, as 

shown using the balance node, as frictional and hydraulic losses in the blades (Eblade) and 

also in overcoming mechanical losses such as bearing friction (Ebearing).  The remainder is 

available as shaft work MWshaft.   

DeEn_MWA
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PE2

PE1
mgHgross

En_M WB

KE1

KE3 
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Figure 9.17: Extraction of shaft work from kinetic energy of water 

In summary, this chapter demonstrates modeling coverage of the vocabulary of 

atomic function verbs by describing a variety of existing principles of physics and 

engineering as function models.  Principles from a variety of physics domains and 

engineering sciences are modeled, and a variety of flow subtypes of energy and material, 

in a variety of combinations are described.  Although this modeling exercise could be 

continued to provide additional proof of coverage, based on this preliminary 

examination, it is demonstrated that the proposed vocabulary provides adequate 

coverage for modeling existing physical and engineering principles.   

With the exception of the two topologic verbs—logical branch and logical unite—

the verbs of this proposed vocabulary Chapter 8 are composed of the six entities of the 

first layer: Function, Source, Sink, Material, Energy, and Signal.  Further, an examination 

of the models of this chapter reveals that the grammar rules of the first layer (section 5.2) 

are adhered to in these models.  The grammar rules for the topologic verbs are identical 
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to those applicable to functions in the first layer.  Thus, each model constructed here with 

the verbs vocabulary could as well be constructed directly from the first layer of the 

representation.  Based on this observation, it can be said without explicit demonstration 

that all reasoning on conservation presented in Chapter 6 is equally applicable to these 

models.   

In contrast, these models are not compatible with the irreversibility algorithms of 

Chapter 7, since the proposed verb definitions do not include residual flows.  In fact, if 

the algorithms of Chapter 7 were used, each model of this chapter would be identified as 

a violation.  For example, both the DeEnergize_M and TypeChange_E functions in 

Figure 9.17 transform energy without producing residues.  These errors, while detected 

by the irreversibility reasoning algorithms, cannot be fixed by adding a residual flow to 

the verbs, as was possible in the previous layers, since the definition of the verbs would 

not allow more than the specified number of flows.  However, it must be emphasized that 

this violation does not imply that by extending the representation through the verbs 

vocabulary, the validity of the representation against the principle of irreversibility is lost.  

As mentioned above, the verb definitions are based entirely on the previous layers of the 

representation.  It is only the reasoning algorithms for irreversibility that need to be 

rewritten to achieve compatibility with the new verbs.  For example, a possible reasoning 

algorithm to check for residual flows for the TypeChange_E function would be to inspect 

that for every instance of TypeChange_E, another instance of TypeChange_E exists that 

produces a residual flow and whose input energy flow is an output from the same logical 

branch node that produces the input energy to the TypeChange_E function of concern.  
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For example, in Figure 9.4, the type change from EW2 to EPE is desired by the design, 

while the type change from EW3 to ThE is residual.  This model would be accepted by 

the new algorithm since EW3 comes from the same balance node as EW2, indicating that 

a part (EW3) of the total energy spent (EW1) is lost during type changing.  Similarly, in 

Figure 9.17, the desired conversion of KE4 to MWshaft is accompanied by the two 

instances of TypeChange_E that produce residual flows (Eblade and Ebearing) and come 

from the same balance node as KE4.  For the output side, the type change from PE2 to 

KE1 in Figure 9.16 is also valid, since a part of KE1 is lot as KE4.  In this case, the 

reasoner should look for an accompanying loss from a logical branch node at the head of 

the output flow of the TypeChange_E function.  Thus, even with the physics-based verbs, 

reasoning on irreversibility can be performed with suitable new algorithms.  In the next 

section, the verb definitions are extended to include these residual flows within the 

definitions, in order to enable feature-based modeling, as explained next.    

9.3 Extension of Physics-Based Verbs with Residual Flows for Feature-Based 

Modeling 

In this section, the verb definitions are extended to include residual flows within 

the definition, so that typical losses incurred during an action are automatically added to a 

model when these extended classes are instantiated.  The motivation is to allow feature-

based modeling, as available in geometric CAD systems [180], where one feature can 

instantiate a group of related entities at once.  For example, a boss feature in a 

commercial CAD tool (Figure 9.18) includes a cylinder primitive, a Boolean unite 

operation between the cylinder and the base solid (plate), and fillet features at the 
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resulting edges as requested by the modeler.  The fillet, in turn, consists of a sketch of the 

fillet cross section, a sweep of the sketch to generate the fillet solid to be added to a 

concave edge or removed from a convex edge, and appropriate Boolean operations to 

unite or subtract the fillet solid to the base solid.  When a boss is added to the model, all 

these elementary entities of the model are instantiated in the correct order and operated 

through the Boolean operations to create the boss.   

 

Figure 9.18: Geometric CAD model of a boss feature 

Similarly, the intent of adding the residual flows within the verb definitions is to 

enable fast and easy instantiation of function-features that include the main function and 

its losses.  However, since modeling requirements are difficult to foresee, similar to 

geometric CAD, the features may not always provide coverage over modeling situations.  

Low-level entities, such as the original verb set of Table 8.14, may be necessary to model 

non-covered actions.  Table 9.2 illustrates the extensions for each physics-based verb 

originally presented in Table 8.14.  In order to distinguish the original verbs of Table 8.14 

from the extended features of Table 9.2, the former is hereafter named the verb 

primitives, while the latter is called the verb features, in analogy with geometric CAD 

primitives and features.     

Convex edge 
Concave edge 
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Table 9.2: Extension of physics-based verbs with provisions for typical residual 

flows 

Verb-I 
Verb-

II 
Verb Primitive Verb Feature (Extension) 
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Verb-I 
Verb-

II 
Verb Primitive Verb Feature (Extension) 
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Verb-I 
Verb-

II 
Verb Primitive Verb Feature (Extension) 
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Verb-I 
Verb-

II 
Verb Primitive Verb Feature (Extension) 

L
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h 

 

 

No extension 

L
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_U
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te
 

 

 

No extension 

As seen from the table, the verb features entirely comprise of the primitives of 

Table 8.14, which are formally defined in the tables of Chapter 8 (Table 8.1 through 

Table 8.8).  The only added information is the topological arrangement of these entities 

for each feature, added according to the grammar rules of Chapter 5.  Thus, formal 

definitions of the features are not separately presented.  The chain-dotted line describes 

the collection of primitive entities and relations that together define the feature.  Each 

feature name is created by appending “_II” to the primitive, for distinction.   

Further, the losses for each verb are considered in three different forms, as 

illustrated with the three outgoing red arrows from the logical branch nodes.  For 

example, in the DeEnergize_M_II feature, ME is extracted from the material flow M, one 

part of which is usable flow (black arrow, to the right from the balance node).  The other 

two are lost in two ways: in the original form (ME) and after a type change (ThE).  The 

rationale behind this default design is to provide for losses in typical applications.  The 
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DeEnergize_M_II function can be used to describe a hydraulic turbine, where M is the 

water flow, ME is extracted by the blades and thus the DeEnergize_M verb is the 

function of the runner, the black ME flow (to the right from the balance mode) is the 

available shaft work, the loss flow ME (to the left) is energy lost in mechanical form such 

as vibrations, and the loss flow ThE is energy lost from ME but after conversion into heat 

due to bearing friction and blade losses.  Thus, three different means of losses are 

captured by the features.   

The features include default usable and residual flows in the context of typical 

applications, such as the turbine for the DeEnergize_M_II function.  It is possible that in 

a different application, one of the energy flows is absent or a different set of flows is 

chosen as the losses.  Thus, during implementation, the flows should be available for 

deletion, addition of more flows to the balance node, and for editing their residual status.  

As illustrated earlier, these capabilities are available in ConMod-2q for individual flows, 

proving that these capabilities are realizable.  Further, the use of templates does not 

eliminate the need for reasoning algorithms for irreversibility.  Since the flows are 

available for editing, it is possible for a modeler to accidentally describe a function that 

violates the natural laws, which should be detected by the reasoner.   

Based on the demonstration of coverage in Sections 9.1 and 9.2, it is expected that 

since the new physics-based verbs and features can describe principles and phenomena of 

mechanical products, they could also describe products as a whole.  To this end, two 

types of product-level modeling are illustrated next.  In Section 9.4, two models from the 
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Design Repository are reconstructed using the new vocabulary in two steps: (1) using the 

verb primitives of Table 8.14 and (2) using the verb features of Table 9.2.  Together, 

these two steps in Section 9.4 illustrate that the proposed vocabulary can support 

descriptive modeling of existing products.  Further, in Section 9.5, the vocabulary of 

verbs and their extensions into the features are used to model new product concepts, as 

typical of an early stage design process.  This exercise demonstrates that normative 

modeling of new concepts is also supported by the proposed vocabulary.   

9.4 Product-Level Coverage: Descriptive Models from the Design Repository  

In this section, the physics-based vocabulary of verb primitives and features are 

used to model products from the Design Repository, in order to illustrate that the 

descriptive models of existing products constructed using the Functional Basis 

vocabulary can be constructed using the new vocabulary and the feature set.  The two 

products modeled are: (1) the hairdryer model from Figure 1.2 and (2) a Shop-Vac 

vacuum cleaner model.   

9.4.1 The Hairdryer Function Structure 

Figure 9.19 shows the hairdryer function structure of stored within the Design 

Repository, originally shown in Figure 1.2.  The legend at bottom right indicates the flow 

subtypes.  The rectangle around the model is the system boundary, which is crossed by 

incoming flows used by the device and outgoing flows produced by the device.   
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Figure 9.19: Function structure model of a hairdryer stored in the Design 

Repository19 

Figure 9.20 shows the hairdryer model, duly reconstructed using the verb 

primitives.  A few differences can be noticed between the two models.  The boundary 

functions, such as Import and Export in the Design Repository model are replaced with 

the Environment instances in the new model.  The functions at the bottom left corner of 

the Design Repository model, showing human interaction with the product with human 

energy as a flow are omitted in the new model, since from a physics-based point of view, 

human energy is not a basic energy type, as discussed in the discussion following Table 

8.1.  A control signal carried by an imported material flow M1 is used to indicate that the 

Conduct_E2 function is executed in response to a signal, which replaces the Actuate EE 

function in the Design Repository model.   

                                                 

 

19 http://repository.designengineeringlab.org, accessed on June 11, 2011 
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Figure 9.20: The hairdryer function structure using the physics-based verb 

primitives  

Three points are important to note.  First, the construct showing the material flow 

M1 connecting two environment nodes in Figure 9.20 is prohibited by the grammar rules 

of Chapter 5 (Construct 63, Rule 23).  In this model, the role of M1 is to show that an 

external material is required to carry the signal CS1 that actuates the EE flow, which is a 

correct physical description of the device, as the human user must press a button or a 

switch to turn on the device.  A signal has to be always carried by a material or an energy 

(Rule 8) and cannot be produced by a node (Rule 3), and thus the signal CS1 could not be 

directly imported into the mode.  Yet, the human interaction is not an action performed 

by the device, and therefore, should not be described with a function, as required by the 

definition of functions in Section 1.2.7.  Thus, M1 should not be acted upon by a 

function, and yet, must enter and leave the model, thus requiring the illegal construct.  

This example highlights that human-machine interaction is difficult to formalize through 

a function-based description and a richer and expressive formal representation must be 

used to that end.  Current research on function-interaction modeling [181] begins to 

address these needs.   
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Second, the addition of the signal flow to the Conduct_E2 function is not 

explicitly allowed by the definition of Conduct_E in Table 8.14.  However, as discussed 

in Chapter 5, a signal flow is never added to a carrier flow but can be added to any 

function.  Since signals are not conserved entities, the conservational validity of the 

function is not altered by adding an incoming signal.  The action of the function is altered 

so that the output flows are produced only when the signal is received.  The Conduct_E2 

function in the model is an instance of conditional Conduct_E, which is the function of a 

switch, as captured by the function Actuate EE in the Design Repository model.  

Third, the function Regulate EE is not captured in the Design Repository model is 

not shown in the new model.  The action of regulating EE, as executed by a regulator, is a 

transient action that shifts the system from one steady state to another.  The 

representation captures only steady states of functions.  Although the regulator changes 

parameters of the EE flow, it is not captured with a Change_E function, since that change 

does not happen continuously for the time the device stays in a steady state.   

Besides these differences, the major difference between the Design Repository 

model and the new model is in the constructs for adding heat and kinetic energy to the air 

flow.  In the Design Repository model, the Guide function is used to accomplish both 

actions, although the function is (1) a violation of energy conservation since it has two 

input energy flows and no energy output and (2) a violation of its own class definition, 
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since the definition of Guide20 [26] does not allow adding energy to material flows.  In 

the new model, these two actions are captured by the two Energize_M functions.  Table 

9.3 lists a mapping between the function names in the original model from the Design 

Repository (Figure 9.19) and the new model (Figure 9.20), along with typical 

components or subsystems used to execute each function, for ease of reference.  

Table 9.3: Function-name mapping between models (hairdryer) 

Figure 9.19 

Design Repository Model 

Figure 9.20 

New Model with 

Primitives 

Possible Component 

Import EE 
None – shown by the 

environment node 
None  

Transfer EE Conduct_E1 Mains cord 

Actuate EE Conduct_E2 Switch 

Regulate EE 
None – transient 

phenomenon 
Regulator  

Distribute EE Logical_Branch Junction / solder 

Transfer EE Conduct_E3 Wire 

Convert EE to ThE TypeChange_E1 Heater coil 

                                                 

 

20 “To direct the course of a flow (material, energy, signal) along a specific path.” 
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Figure 9.19 

Design Repository Model 

Figure 9.20 

New Model with 

Primitives 

Possible Component 

Import HE 
None – collectively shown 

with the flow M1 carrying 

CS1 

These items are not 

functions executed by the 

device 

Guide HE 

Export HE 

Convert HE to CS 

Import Gas 
None – shown by the 

environment node 
None 

Guide Gas 
Energize_M1  

Energize_M2 
Conduit within the barrel 

Export Gas 
None – shown by the 

environment node 
None 

Transfer EE (bottom) Conduct_E4 Wire 

Convert EE to ME TypeChange_E2 Motor 

Transfer ME Conduct_E5 Shaft 

Convert ME to PnE Energize_M1 Fan rotor 

Figure 9.21 shows the hairdryer model constructed using the verb features.  As 

discussed earlier, the elements within the features are deletable and editable.  In this 

model, the flows that do not apply for the specific application are deleted.  However, the 

chain dotted lines defining the features are retained, in order to facilitate comparing the 

features retained in the model with those defined in Table 9.2.  For ease of reference, 
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functions and flows that exist in the primitive-based model (Figure 9.20) are described 

with the same names in this model.  Other functions and flows that are unique to this 

model are named without the trailing numeric.  Losses coming from the individual 

function features are described with the main form and source in parentheses.  For 

example, ThE (Res) is thermal energy due to resistive loss, ThE (Sur) is thermal energy 

lost across the surface of the device, ThE (Fric) is frictional heat loss, ME (Vib) is 

vibrational loss, and ME (Ac) is acoustic loss.  The model illustrates that the use of 

features can draw the modeler’s attention to residual flows and helps to capture them in 

the model.  Next, the Shop-Vac vacuum cleaner model with the Design Repository is 

reconstructed using the proposed verbs.   

9.4.2 The Shop-Vac Function Structure 

Figure 9.22 shows the Shop-Vac function structure stored in the Design 

Repository, while Figure 9.23 shows the one created using the proposed verb primitives.  

Figure 9.24 shows the model constructed with the verb features.  Table 9.4 shows a 

mapping between the functions names of the first two models (Design Repository model 

and primitives-based model).   

Table 9.4: Function-name mapping between models (Shop-Vac) 

Figure 9.22 

Design Repository Model 

Figure 9.23 

New Model with 

Primitives 

Possible Component 

Import Solid-Gas Mixture None None 
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Figure 9.22 

Design Repository Model 

Figure 9.23 

New Model with 

Primitives 

Possible Component 

Guide Solid-Gas Mixture Energize_M1 Conduit 

Separate Solid from Gas 
DeEnergize_M1 

Filter 

Store Solid Filter 

Export Gas None Discharge port 

Import Solid (Hand) None – collectively shown 

with the flow M1 carrying 

CS1 

These items are not 

functions executed by the 

device 

Guide Solid (Hand) 

Export Solid (Hand) 

Import EE None None 

Transfer EE Conduct_E1 Power cord 

Actuate EE Conduct_E2 Switch 

Convert EE to ME TypeChange_E1 Motor 

Convert ME to PnE (top) Energize_M1 Fan rotor – suction side 

Convert ME to PnE 

(bottom) 
Energize_M2 Fan rotor – cooling side 

Import Gas None None 

Guide Gas 
Energize_M2 

Energize_M3 
Conduit 

Export Gas None None 
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Figure 9.22 

Design Repository Model 

Figure 9.23 

New Model with 

Primitives 

Possible Component 

Import Human Force None Handle 

Transmit Force None Handle 

Export Solid (Debris) None – different use mode Not a function of the device 
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Figure 9.21: The hairdryer function structure using the physics-based verb features 
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Figure 9.22: Shop-Vac function model within the Design Repository 
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Figure 9.23: Shop-vac function structure using the physics-based verb primitives 
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Figure 9.24: Shop-Vac function structure constructed using the physics-based verb features 
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Multiple use modes of the vacuum cleaner are superposed in the same model in 

Figure 9.22.  The use-mode of emptying the stored dirt from the vacuum cleaner is 

represented by the last three functions in Table 9.4, while the remaining functions 

describe the use mode of cleaning dirt from the floor.  Although this ability to superpose 

use-modes in a single model appears to indicate higher expressiveness of the model, the 

lack of a rigorous representation voids that apparent benefit.  For example, terms such as 

Force and Human Force are not included in the vocabulary available for modeling, the 

branching of Human Force and Hand are shown as edge divisions without using nodes 

and thus violates the basic definition of graphs, the Guide Solid (hand) function lumps 

the action of pushing the device on the floor (the function receives human force) with the 

action of operating the switch (the function produces the signal to actuate EE), branches 

of the same Human Force flow are shown to accomplish the actions of pushing the device 

(Guide Solid) and emptying the dust container (Export Solid), although these actions are 

never performed simultaneously within the same use mode, and finally, the model does 

not describe that Human Force is actually carried by the Hand flow, although both Hand 

and Human Force are included in the model.  These examples of inconsistency are results 

of the lack of a rigorous definition of terms and the lack of a model-level grammar 

constraining modeling constructs.  As a result, although the model stored in the Design 

Repository (Figure 9.22) appears to describe the device to a human interpreter, it is 

unsuitable for formal reasoning.   

In contrast, the new model only captures the dirt-cleaning use mode.  A 

significant feature of this new model is its use of the Energize_M and DeEnergize_M 
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functions.  Energize_M2 and Energize_M3 describe the cooling of the motor using a fan 

mounted on the motor shaft.  The balance node shows the portion of the produced ME 

used to mobilize cooling air using this fan (Energize_M2), while Energize_M3 shows the 

addition of the produced heat to the air flow, which exits the system, thus carrying the 

heat away.  ME2, the other part of the ME produced, energizes the air-dirt mixture 

(Energize_M1), while only the debris portion of the mixture flow is slowed down to rest 

by the filter, thus de-energizing the dirt’s kinetic energy (DeEnergize_M1).  The balance 

node at the head of Mix2 addresses the need for separate accounting of energy of the air 

and the dirt.  No separate function is necessary.  Thus, the functions in the old and the 

new model are not mapped one-to-one.  Both functions: Separate Gas from Solid and 

Store Solid in the Design Repository model are described through the DeEnergize_M1 

function in the new model, as verified from Table 9.4.   

Figure 9.24 shows the model constructed with the verb features.  In this model, 

the flows within the features are left unedited and undeleted.  Similar to the feature-based 

model of the hairdryer (Figure 9.21), this model also repeats the flow names that appear 

in the primitive-based counterpart (Figure 9.23), while functions and flows unique to this 

model are left unnumbered.  The vocabulary is next used to model a new design concept, 

to examine its ability to support normative modeling.   

9.5 Product-Level Coverage: Normative Modeling of a New Product Concept 

The ability to support normative modeling is examined by constructing functional 

architectures for a design problem that is previously unsolved by the modeler.  The 
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problem is to design an automatic omelet-making machine for cafeterias that starts 

with raw eggs and mass produces cooked omelets by adding oil and using electrical 

power.  The same modeler who constructed the air heating device model during the 

reasoning discovery exercise in Chapter 4 is used to construct this model.  A resulting 

functional architecture for the machine is shown in Figure 9.25.  The model is 

constructed using the primitive verbs, rather than the features, since it is often useful to 

focus on only the intended functions rather than the residual functions and flows in early 

conceptual design [1, 2].  This model can later be examined for conservation and 

irreversibility and edited to include a more elaborate version with residual flows.  

Additionally, functions from the Transfer_E group are not included, as the transfer of 

energy is a minor detail that is reserved for future iterations and elaborations of the 

model.  Some researchers argue that avoiding auxiliary functions such as transfer makes 

the model more interpretable and thus useful for design communication in early stages 

[179].   
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Figure 9.25: Normative model of an automatic omelet maker 
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In this modeled architecture, an egg is cracked using mechanical energy ME4 

(Energize_M1), thus creating two parts: the shell and the egg.  The shell is further 

energized with kinetic energy ME6, causing it to leave the system boundary.  The egg is 

dropped, causing it to lose its gravitational potential energy GPE1.  The egg is then 

agitated with mechanical energy ME8, oil is added to it from the environment, and heat 

ThE1 is then added to the mixture during the cooking process.  The result is the omelet, 

Om1, which is further energized with kinetic energy ME10 to deliver the omelet outside 

the system.  Each instance of ME is produced by changing the energy type from EE, in 

four different TypeChange_E functions.  As seen from this figure, the primitive verbs 

from Table 8.14 can be used to describe the concept architecture for the design.   

The product-level modeling exercises (Sections 9.4 and 9.5) show that the 

vocabulary is better suited for describing existing devices than new ideas.  The last model 

illustrates that a normative model can be created using the vocabulary, but it does not 

examine if the vocabulary is suitable or optimized for normative product modeling.  In 

fact, based on modeling experience using this vocabulary, it is anticipated that physics-

based verbs may not be the best vocabulary to model, interpret, or communicate new 

concepts, since they require the modeler to develop a concept in terms of its physics, and 

thus require a potentially premature commitment to physical principles, which is 

recommended in design texts to be reserved for later design stages [1-3].  For example, in 

Figure 9.25, it is difficult for a designer other than the modeler to realize that 

Energize_M1 is the action of cracking the egg or that Energize_M5 is the action of 

discarding the shell.  To this end, notional terms proposed earlier in the top-down 
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vocabularies such as the Functional Basis have been used in both descriptive and 

normative modeling earlier.  As illustrated in Chapter 3, the Functional Basis verbs are 

more expressive and flexible than the physics-based verbs and potentially make stronger 

candidates for modeling novel products.  However, as illustrated in Chapter 2 and by 

analysis of the Shop-Vac model in Section 9.4.2, the Functional Basis verbs are defined 

non-rigorously and the absence of model-level grammar rules permit violating these 

definitions during modeling, ultimately making the models unsuitable for formal 

reasoning.  The physics-based verbs (primitives and features) are better suited to support 

formal reasoning, as they are defined with entities, relations, attributes, and local 

grammar rules of the first two layers, which are rigorously defined, internally consistent 

(Section 6.1), valid against the conservation law (Section 6.2), and valid against the 

irreversibility principle at both qualitative and quantitative levels (Chapter 7).  Thus, a 

tradeoff appears between the Functional Basis and the physics-based verbs: they each 

have their advantages and weaknesses.  It would be worthwhile effort to extend the 

physics-based verbs and their reasoning ability to describe the notional verbs of the 

Functional Basis in the future, which would then support normative modeling of new 

products with intuitive terms for the human designer, yet would be rigorous enough to 

support physics-based formal reasoning.     

In summary, this chapter examines modeling coverage of the physics-based verbs 

on physical and engineering principles, existing products, and novel products.  This 

exercise is a main part of validating this new vocabulary.  Once coverage is established, 

the reasoning ability of these new verbs should be examined.  As mentioned at the end of 
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Section 9.2, since the verbs are composed of the first two layers of the representation, 

whose reasoning ability is already validated, explicit demonstration of reasoning with the 

new verbs is unnecessary.  However, for illustration, the verbs should be implemented in 

ConMod and corresponding reasoning algorithms should be written.  This exercise is 

reserved for future extensions.   

With this chapter, the main deliverable of this dissertation—a formal 

representation of functions for computational reasoning—is concluded.  In the next and 

final chapter of this dissertation, the overall outcome of this research is summarized, 

along with discussion on the contributions of this research to the state of the art of design 

automation, direct answers to the research questions and hypotheses, evaluation of the 

proposed representation against the requirements set in the beginning of the document, 

and future extensions of this work.   
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CHAPTER 10. CLOSURE, ONGOING WORK, AND PATH FORWARD 

This chapter is the concluding chapter of this dissertation.  It summarizes the 

work accomplished and highlights the major contributions.  The research questions are 

directly answered with pointers within the document where pertinent material can be 

found.  The list of requirements set at the beginning (Section 1.3) is revisited and the 

proposed representation is evaluated against it, in order to show that the representation 

satisfies those requirements.  Finally, future extensions to this research and new research 

questions discovered here are summarized.   

10.1 Overall Research Outcome  

The overall research outcome is a formal representation of mechanical functions 

that support computer-based modeling and analytical reasoning on early design concepts 

and can validate them against the laws of nature.  The representation is complete in three 

layers.  The first layer (Chapter 5) identifies and formalizes the fundamental entities, 

relations, attributes, and local grammar rules of the Function Structure representation and 

is the foundational layer of the representation.  The internal consistency of this layer is 

verified by ontological and logical examinations (Section 6.1), while its ability to support 

conservation-based reasoning is validated by committing the representation to the 

ConMod tool (Section 6.2).  The second layer extends the first with three attributes 

(Section 7.1), which supports irreversibility-based reasoning at both qualitative level 

(Section 7.2) and quantitative level (Section 7.3).  The third layer (Chapter 8) extends the 
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first two with semantic modeling and reasoning ability.  Nine new physics-based verbs 

(seven primary verbs, two secondary verbs) are proposed and defined upon the previous 

two layers in syntactic and graphical form.  The ability of these verbs to provide 

modeling coverage on physical and engineering principles, and design products, is 

examined in Chapter 9, thus completing the presentation of the formal representation.   

10.2 Contributions to the State of the Art 

The most significant contribution of this research is the formalization of the 

graph-based Function Structure representation to support computational 

reasoning.  Function-based thinking and specifically function structure graphs are highly 

recommended in design texts as a useful means of modeling early design ideas, with the 

possibility of using these models to support design thinking tasks that involve reasoning 

of different kind.  However, a tool to construct consistent function structures on the 

computer and perform reasoning automatically was not available until this research.  

Function-based reasoning, as a research topic, is studied and approached from a variety 

of viewpoints.  Computer-based representations and tools exist in some of these areas, as 

outlined in Chapter 2.  However, no formal representation or computer tool 

implementation for the graph-based Function-Structure representation existed prior to 

this research.  Graph-drawing software tools have existed formerly at the commercial 

level (e.g., Microsoft VisioTM) and in design research (e.g., FunctionCAD [182]).  As 

shown in Chapter 2, these tools can produce a visual rendering of function models, but do 

not have the intelligence—vocabulary, grammar, and algorithms—to perform any 

reasoning pertinent to the design itself.  This research shows, by first presenting and then 
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implementing the proposed representation, that early design concepts can be interactively 

modeled and reasoned upon on the computer.   

The second contribution is addressing the area of function-based design 

analysis in early stages for the first time.  Automation of early design tasks, 

specifically design synthesis, has remained a focus of design research and computer tools 

that synthesize new functional concepts from a given high-level description through 

graph grammar-based model decomposition exist.  These tools are potentially useful and 

credit must be assigned to these achievements, as they can further the automation of the 

synthesis process.  For example, these tools have been extended to component-selection 

for concepts and providing end-to-end synthesis automation for the conceptual design 

stage [22].  However, none of these tools support what this dissertation defines and 

realizes as reasoning: the ability to draw inferences from a model using logic and 

external knowledge of the physical world, in order to discover or predict behavior of the 

modeled reality (concept).  To this end, this research does not contradict, but complement 

the synthesis automation research.  The design need addressed by this research is not of 

synthesis support.  Rather, the formal representation developed in this work can be used 

to analyze modeled concepts for validity against the laws of nature.  It is anticipated that 

models created through automated synthesis could be analyzed using the algorithms of 

the proposed representation, if the two computational systems were integrated.  This 

integration would provide more reliable selection criteria for the synthesized concepts, as 

they could be validated against the natural laws during the graph grammar-based 
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synthesis.  This extension is an interesting candidate for future exploration of this 

research. 

From the modeling standpoint, this research enables interactive construction 

of design concepts through a designer-computer mixed initiative early in the design 

process.  This facility replaces paper and pencil as the modeling medium with the 

computer, in a much similar manner of how two-dimensional geometric CAD replaced 

the drawing board in the early 1980’s.  The basic graph-drawing tools mentioned earlier 

also partially address this need.  However, tools built upon this formal representation, 

such as ConMod, allow more than just drawing a concept; they allow the designer to 

engage in a physics-based conversation with the model while exploring ideas.  The 

representation, and specifically its ConMod implementation, has another significant 

similarity with geometric CAD, in that it does not attempt to completely automate design, 

thus taking away the control and ownership of the design from the designer, as done in 

previously proposed systems [22].  The approach of this research is based on the 

philosophy of mixed initiative between the designer and the machine, where the designer 

retains control and the computer provides analytical feedback.  In this sense, the 

representation serves as a foundation for early design CAD and forms a counterpart of 

geometric CAD in detail design analysis.    

From the reasoning point of view, the representation shows potential to serve 

as a foundational formalism for early design reasoning.  The benefits of this 

representation extend beyond just easy model editing on a computer and electronic 
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archival of design, which most computer-aided tools provide.  By virtue of the underlying 

formal representation, these archived models could be used to support more enhanced 

reasoning in the future, particularly those that need multiple models, such as concept 

comparison for (1) complexity, (2) failure-prone-ness, (3) efficiency and other variables, 

or (4) manufacturability-related issues.  For example, a recent research initiative [152] 

focuses on predicting product cost based on the complexity of function structures.  This 

work could benefit from a tool such as ConMod in two ways.  First, the compared models 

could be ascertained as “comparable”, if they were constructed using verbs that are at the 

same level of concreteness, rather than notional terms from the Functional Basis, whose 

concreteness potentially varies and have not been examined objectively.  With notional 

terms, model complexity cannot be truly surrogated with count-based and connectedness-

based graph metrics, since a model may contain few terms of high inherent 

expressiveness or many terms of low inherent expressiveness.  With a physics-based 

vocabulary, descriptive models can be ensured to compose of verbs at comparable 

inherent expressiveness, since these verbs describe atomic physical actions.  Second, the 

complexity-based algorithms could be written within ConMod to perform the complexity 

comparison.  Similarly, a failure-based predictive tool [95, 97, 144] uses models built on 

notional terms from the Functional Basis.  For similar concreteness-related reasons as 

above, this tool’s reasoning on causal propagation of failures could potentially be more 

objective, physics-based, and consequently reliable, if the models were constructed upon 

this proposed representation.   
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Finally, this research provides certain benefits to design research and 

teaching.  Design texts commonly suggest the merit of function-based modeling and 

thinking in supporting early design tasks such as solution search and idea generation by 

human designers.  However, these claims have not be objectively examined in previous 

research, potentially due to the difficulty in conducting human-subject studies on function 

modeling and analyzing their results objectively.  With a formal representation now 

available, it is anticipated that software-based research tools to study function modeling 

could be built with reasonable effort.  These tools could be written to automatically 

monitor model editing moves to serve as a protocol-gathering system in protocol studies 

and to analyze models post-construction, thus serving as an analysis tool in user-studies.  

In teaching, it is anticipated that the fundamental physics-based nature, specifically the 

representation’s validity against the first and the second laws of thermodynamics, could 

be used to build software for teaching early-curricular mechanical engineering courses.  

For example, students in the thermal-fluid sciences could potentially examine the effect 

of adding an economizer or a water-preheater to a boiler plant on the efficiency of 

different other subsystems and the plant as a whole.  In the next section, the 

representation is evaluated against the high-level requirements set in Section 1.3, to 

illustrate that the representation actually satisfies the requirements.   

10.3 Evaluating the Representation against the High-Level Requirements 

This section revisits the high-level requirements for the representation listed in 

Section 1.3 and detailed in Chapter 3, and examines how each requirement is satisfied.   
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Coverage over Multiple Physics Domains (Section 3.1) 

It is illustrated through several modeling exercises that the representation supports 

modeling and reasoning on various domains of physics and mechanical engineering.  

Sections 9.1 and 9.2 are dedicated to test coverage over physics principles.  Specifically, 

Section 9.1 illustrates models involving electrical energy operations, such as its storage, 

supply, and conversion to other forms.  Section 9.2 addresses these needs for mechanical 

and thermal energy forms and various material forms.  These material forms include (1) 

solids such as the disk type heat exchanger in Section 9.2.3 and the debris in the Shop-

Vac model of Section 9.4.2, (2) liquids such as water in the hydraulic machines of 

Sections 9.2.4 and 9.2.5, and (3) gaseous such as air in the hairdryer model of Section 

9.4.1.  Many other examples of these energy and material types are available in the 

multiple models illustrated in this dissertation.  Thus, the coverage requirement is 

satisfied. 

Domain-Independence of Physics Laws (Section 3.2) 

The representation is fundamentally built upon the two laws of thermodynamics.  

The conservation principle is a consequence of the first law, while irreversibility is a 

consequence of the second law of thermodynamics.  Thus, at a fundamental level, the 

representation incorporates physics laws that are universally applicable and therefore 

domain-independent.  This character is illustrated by demonstrating the representation’s 

ability to reason on models and detect violations of conservation (Sections 6.2 and 7.3) 

and irreversibility (Chapter 7).  Thus, the domain-independence requirement is 

satisfied.   
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Physics-Based Concreteness (Section 3.3) 

The requirement is to use entities, relations, and attributes that support physics-

based reasoning.  The physics-based verbs proposed in the semantic layer (Chapter 8) are 

physics-based.  They describe elementary physical phenomena that comprise mechanical 

systems at any larger scale, rather than notional terms such as those in the Functional 

Basis [26], which describe highly expressive actions in a non-rigorous manner.  Each 

physics-based verb is syntactically defined in Chapter 8 and these definitions are adhered 

to in the modeling application in Chapter 9, where these terms are validated for coverage.  

Physics-based reasoning is already demonstrated in Chapter 6 and Chapter 7, where the 

ConMod application is used to detect violations of physics laws.  Since the physics-based 

verbs are defined using these validated terms and grammar rules, their ability to support 

physics-based reasoning does not need to be externally examined and is deemed 

available.  Thus, the physics-based concreteness requirement is satisfied.   

Normative and Descriptive Modeling (Section 3.4) 

Descriptive modeling is thoroughly examined in the modeling applications of 

Chapter 9, where a total of 24 models are presented that describe existing physical 

phenomena and mechanical devices.  Thus, the descriptive modeling requirement is 

satisfied.  The normative modeling requirement is tested with two applications: (1) the 

Omelet-maker function model of Section 9.5 and (2) the air heater model constructed 

using ConMod in Section 6.2.3, which replicates a normative model created during the 

modeling exercise of Chapter 4.  It is generally experienced during normative modeling 

using the physic-based vocabulary that the notional terms of exiting vocabularies such as 
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the Functional Basis are potentially better suited for describing a new idea.  The physics-

based terms require the designer to think in terms of the concept’s physics, which 

requires a premature commitment to solution principles.  However, the first two layers do 

not bind the designer to use a vocabulary and supports normative modeling using free 

language.  The air heater model of Section 6.2.3 is an example of this type of modeling, 

which is supported by the representation and the ConMod implementation.  While the 

physics-based verbs can be used to model new concepts, at present the representation 

supports normative modeling through free language.  Thus, the normative modeling 

requirement is satisfied.   

Qualitative Modeling and Reasoning Support (Section 3.5) 

The ConMod models presented to illustrate conservation-based reasoning 

(Section 6.2) and qualitative irreversibility reasoning (Section 7.2) are all qualitative and 

do not include numeric data.  Further, the 25 models used to illustrate modeling coverage 

of the physics-based verbs in Chapter 9 are all qualitative.  Qualitative reasoning on 

conservation and irreversibility are shown in Section 6.2 and Section 7.2 respectively.  

Thus, the qualitative modeling and reasoning requirement is satisfied. 

Extendibility (Section 3.6) 

Throughout the dissertation, the representation is built by extending upon 

previously presented layers.  Further, the extension into supporting quantitative reasoning 

is explicitly illustrated by implementing quantitative reasoning in ConMod in Section 7.3.  

Quantitative reasoning on these models to compute different unknown variables such as 
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power required, efficiency, the power of a flow, or other physical parameters of the 

functions or flows would require integrating this representation with a variational solver, 

as indicated in Section 7.3.  Complete development of this extension is reserved for 

future work.  Further, the possible extension of the representation to formalize notional 

verbs from existing top-down vocabularies or free language is illustrated in Section 

10.5.1 and the possibility to support causal reasoning is illustrated in Section 10.5.3.  

Thus, the extendibility requirement is satisfied by the representation.   

Scalability (Section 3.7) 

Throughout the dissertation, models of a wide range of size and connectedness are 

illustrated.  In terms of physical size of the concepts, the models describe artifacts as 

small as a spring or the electrodes of a lead-acid battery, where the phenomenon is 

conversion of EE to ChE (Section 9.1.1).  At the other extreme, entire hydraulic turbines 

are modeled (Section 9.2.5).  However, the scalability concern of the representation does 

not arise from the physical size of the artifacts, rather the complexity of the model related 

to the number of instances and their connections.  The smallest models in this dissertation 

are the Store_E and Supply_E functions in Section 8.2.1, each of which has only one 

function and one flow.  Starting from this size, models of a variety of sizes are presented.  

One illustration of scaling is provided in Section 6.2.3, where a complete product is 

modeled in ConMod.  The concern for scaling arises from the ability for the computer 

data structure to hold information for large models and support executing the algorithms.  

As explained in Section 3.6, the Big-O complexity of these algorithms does not raise 

significant concern that modern computer hardware would run out of resources for 
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models in ConMod.  Thus, although the scaling requirement is not formally tested, it 

is anticipated that this requirement is satisfied.   

With this discussion, the proposed representation is checked against the 

requirements set at the beginning of the dissertation.  The next section provides answers 

to the research questions and summarizes the test results of the research hypotheses.   

10.4 Answers to Research Questions and Hypotheses 

In this section, the research questions from Chapter 1 are answered and the 

hypotheses are concluded.  The questions are answered starting from the sub-questions, 

leading up to the answer to the respective main questions.  Table 10.1 summarizes the 

answers.   

Table 10.1: Answers to Research Questions and Hypotheses 

RQ-1.1 What specific physics-based analytical tasks should be supported? 

Task 1 Reasoning Discovery 

Answer 

 

The twelve reasoning needs in the three categories discovered through the 

modeling exercise in Chapter 4 and summarized in Table 4.15 are 

supported.  The last two items in this list, related to resolution-based 

reasoning, are not supported due to scope limitations.  The complete list of 

supported reasoning includes redundant function, dangling head, dangling 

tail, barren flow, orphan flow, one-in-many-out derivation, many-in-one-

out derivation, material transformation without energy, detecting missing 

residual flows, and power required.  In addition, an eleventh derivation of 
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the type many-in-many-out is supported, as mentioned in Table 6.14. 

 

RQ-1.2 Are these reasoning tasks algorithmically solvable? 

Task 2 Algorithmic Deduction 

Answer The algorithm for all twelve reasoning types identified in Table 4.15 are 

presented in Chapter 4 (Algorithm 4.1 through Algorithm 4.12) and also 

implemented in ConMod (Chapter 6 and Chapter 7).  In addition, although 

the algorithm pseudo code for the additional reasoning in Table 6.14 is not 

presented, the algorithm is implemented in ConMod and illustrated in 

Chapter 6.  Thus, all reasoning needs identified here are algorithmically 

realizable. 

 

RQ-1.3 What information elements must be captured to support the 

algorithms? 

Task 3 Information Extraction 

Answer The information elements necessary for the representation are those 

identified by systematically inspecting the algorithm pseudo codes of 

Section 4.2 and listing them in Table 4.16.  In total, there are 22 elements 

of information, including six entities, six relations, and ten attributes.   

 

RQ-1.4 Is the representation internally consistent? 

Task 4 Consistency Verification 
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Answer Yes.  Internal consistency of the representation is examined in three 

sections within Chapter 6:  

Logical Examination of Exhaustiveness of Local Grammar (Section 6.1.1),  

Logical Examination of Consistency of Local Grammar (Section 6.1.2), 

and  

Ontological Examination of Consistency of the Vocabulary (Section 6.1.3).  

 

RQ-1.5 Can the representation support physics-based reasoning in early 

design? 

Task 5 Validation of Conservation 

Answer Yes.  The ability to support conservation-based reasoning is demonstrated 

by implementing the representation in the ConMod software tool, in two 

steps: 

Demonstration of External Validity against Conservation Laws (Section 

6.2) and 

Implementation and Validation: Quantitative Irreversibility Reasoning 

(Section 7.3) 

 

Task 6 Validation of Irreversibility 

Answer Yes.  The ability to support irreversibility-based reasoning is demonstrated 

by implementing the representation in the ConMod software tool, in two 

steps: 



 

 390  

Implementation and Validation: Qualitative Irreversibility Reasoning 

(Section 7.2) and  

Implementation and Validation: Quantitative Irreversibility Reasoning 

(Section 7.3) 

 

Based on the answers to the above sub-questions, RQ-1 is answered next. 

 

RQ-1 What are the entities, relations, attributes, and grammar rules 

necessary to formalize the Function Structure representation, in order 

to support (1) consistent models and (2) analytical computational 

reasoning on concepts based on conservation and irreversibility? 

Answer The entities, relations, attributes, and grammar rules necessary to formalize 

the Function Structure representation are the ones presented in Chapter 5 

and Chapter 7.  Specifically the entities of Table 5.1 and Figure 5.1, the 

relations of Table 5.12, and the attributes of Table 5.13 support 

conservation-based reasoning, as shown in Section 6.2.  Further, the three 

additional attributes of Table 7.1 and Figure 7.2 support irreversibility-

based reasoning illustrated in Sections 7.2 and 7.3.  

 

RQ-2.1 Does the proposed verb set provide modeling coverage over a variety 

of physics and mechanical engineering principles and devices? 

Task 7 Modeling Coverage Testing 
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Answer Yes.  The coverage of the proposed physics-based vocabulary on the 

principles and devices illustrated through model construction applications 

in Chapter 9.  Specifically, Section 9.1 illustrates coverage over processes 

in closed systems without mass transfer.  These processes involve various 

energy forms including electrical, mechanical, and thermal.  Section 9.2 

extends this coverage testing on open systems with both material and 

energy flows.  In all, seventeen models are used to illustrate this coverage. 

 

RQ-2.2 Can it support consistent descriptive modeling of existing devices? 

Task 8 Descriptive Modeling 

Answer Yes.  The coverage over descriptive modeling of existing mechanical 

engineering devices is shown in Section 9.4, using two models: a hairdryer 

and a vacuum cleaner from the Design Repository database.   

 

RQ-2.3 Can it support consistent normative modeling of new design concepts? 

Task 9 Normative Modeling 

Answer Yes.  The coverage over normative modeling is shown through modeling 

two new concepts.  The first is the omelet-maker machine of Section 9.5.  

The second is the room air-heater device, originally modeled as a new 

product by a designer in the modeling exercise of Chapter 4 and later 

replicated in ConMod in Section 6.2.3.   

However, it should be mentioned that the physics-based verbs are generally 
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found to be less useful for normative modeling than the notional terms of 

the top-down vocabularies such as the Functional Basis.   

 

Based on the answers to the above sub-questions, RQ-2 is answered next.   

 

RQ-2 At the physics-based concreteness level, is there a finite set of verbs 

that can describe a variety of physical phenomena and mechanical 

engineering principles as functions? 

Answer Yes.  The eleven verbs proposed in Chapter 8 can serve this purpose.  

Specifically, there are seven energy verbs in a two-level taxonomy (five 

primary verbs: Section 8.2.1 and two secondary verbs: Section 8.2.2), two 

material verbs (Section 8.2.3) and two topologic verbs (Section 8.2.4) in 

this vocabulary.   

 

The research hypotheses related to the primary research questions can now 

be answered.   

 

RH-1 The entities, relations, and attributes shown in Figure 5.1 and the 

grammar rules of Section 5.2 can support consistent modeling and 

conservation-based reasoning on concepts. 

Status TRUE. 

The hypothesis is tested by applying the entities, relations, and attributes 
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from Figure 5.1 and Table 5.2, and the grammar rules of Section 5.2 in 

constructing function structure models.  To illustrate conservation-based 

reasoning, these information elements are implemented in the ConMod 

software tool in Section 6.2, where specific reasoning tasks under the 

conservation type are individually demonstrated.  Finally, a product-level 

modeling and reasoning illustration is also performed in Section 6.2.3.   

 

RH-2 The representation shown in Figure 7.2, including the grammar rules 

of Section 5.2, can support irreversibility-based reasoning on concepts. 

Status TRUE. 

The hypothesis is tested by applying the entities, relations, and attributes 

from Figure 5.1 and Table 5.2, the grammar rules of Section 5.2, and the 

additional three attributes highlighted in Figure 7.2 in constructing function 

structure models.  To illustrate irreversibility-based reasoning, these 

elements are implemented in the ConMod software tool in Section Chapter 

7, where specific reasoning tasks under the irreversibility type are 

individually demonstrated.  Both qualitative and quantitative reasoning on 

conservation and irreversibility are demonstrated in this chapter.   

 

RH-3 The eleven verbs presented in Chapter 8 (Table 8.14) can describe 

principles from physics and mechanical engineering involving 

electrical, mechanical, and thermal energy. 
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Status TRUE. 

This hypothesis is tested by applying these verbs to model principles from 

physics and mechanical engineering in Chapter 9.  Specifically, Section 9.1 

illustrates coverage over processes in closed systems without mass transfer.  

These processes involve various energy forms including electrical, 

mechanical, and thermal.  Section 9.2 extends this coverage testing on open 

systems with both material and energy flows.  In all, seventeen models are 

used to illustrate this coverage. 

The above discussion concludes the answers to the research questions and 

hypotheses.  Overall, it is observed that the representation satisfies the high-level 

requirement set in the beginning of the document and the research hypotheses are found 

to be true.  One overarching merit of this work is that the representation and its reasoning 

are both verified and validated within the dissertation by logical and ontological 

examinations and live demonstration through software code.  However, as all research 

should do, this work raises new research questions and directions for exploration in the 

near future, as discussed in the next and final section of this dissertation. 

10.5 Ongoing Extensions and Future Research Directions 

Two immediate future research directions emanating from this dissertation—

formalization of notional verbs and designer usability examination—are already 

underway and are described in Sections 10.5.1 and 10.5.2.  Additional future research 

directions are summarized in the last two subsections. 
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10.5.1 Ongoing Work: Formalization of Notional Verbs  

It is identified through the normative modeling exercise that the notional terms are 

better suited for new product description than the physics-based verbs due to their higher 

flexibility and expressive power.  Conversely, the physics-based verbs are more rigorous 

and formally reason-able than the notional verbs.  It would be useful to merge the 

benefits of both of these approaches into a unified set of verb definitions.  Work toward 

formalizing the notional terms is already in progress [48].  As a first step, a protocol is 

proposed that can be used to identify necessary physics-based components for 

formalizing the textual definition of a given notional verb from any vocabulary or from 

the free language.  This protocol is shown in Figure 10.1.     
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Figure 10.1: Protocol to formalize notional verbs (In-progress future work) 

The protocol requires first critically examining the textual definition and 

translates the intent of the text into a formal class using set-based first-order logic 

statements.  Then, it ensures types and counts of incoming and outgoing flows for the 

verb.  Some verbs need enabler flows of material (e.g., catalysts) or energy (e.g., 

detonators) for executing their complete notional action.  These flows are identified.  

Finally, the expressions for conservation of mass and energy are explicitly written and 

residual flows are identified to ensure conformity to irreversibility.  This protocol is 

illustrated here by formalizing the verb Branch from the Functional Basis vocabulary.   

Translate to Classes

Topological Check: Main Flow Stream
- Check count
- Check types

Topological Check: Enabler Flow Stream
- Check count
- Check types

Conservation Check
- Of Energy
- Of Mass

Identify Enabler Flows

Textual Definition

Formal Definition
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Branch is defined in the Functional Basis as: “To cause a flow (material, energy, 

signal) to no longer be joined or mixed” [26]. This definition suggests by use of the term 

“a flow” that the verb receives only one input flow.  Although the common meaning of 

the word Branch implies multiple output flows, in the absence of explicit declaration, it 

has to be “literally” inferred from the definition that it produces only one output flow.  

The input flow is mentioned to be of any sub-type within the classes Material (M), 

Energy (E), and Signal (S), while the output flow cannot be of the types Mixed or Joined.  

The resulting translation in first order logic statements is presented in Figure 10.2.  The 

keyword Type is a method that returns the class name of its calling instance.  Next, this 

definition is subjected to the four checks. 
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Figure 10.2: Syntactic translation of the existing textual definition of Branch 

available in Functional Basis literaure [26] 

Topological Check of the Main Flow Stream in “Branch” 

There are two lists of flows, _In List  and _Out List in the main flows stream of 

Figure 10.2, where the following inconsistencies can be observed. 
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Count check: Since the definition “literally” allows only one output flow, it 

conflicts with the intent of the verb.  For example, according to the definition, the model 

in Figure 10.3 is accepted by the definition, although the function does not actually 

branch the flow.  Conversely, Figure 10.4 is not acceptable by the definition, although it 

actually represents the branching action.  Therefore, the new formalized definition must 

allow for multiple output flows.    

 

Figure 10.3: Incorrect use of the verb Branch allowed by its definition 

 

Figure 10.4: Intended usage of the verb Branch not supported by its definition 

Type check: The term Joined is mentioned in the definition, but is not a 

Functional Basis noun type and therefore should be eliminated from 1.O Type .  Further, by 

including Mixture within the negative sign in 1.O Type , the definition becomes 

unnecessarily restrictive, as it prevents partial branching, where an output flow is also a 

mixture, as shown in Figure 10.5.  Here, the input flow is a mixture of three components, 

while one of the output flows is a mixture of two components.  As this situation is 

deemed common in mechanical systems, the new definition is required allow partial 

branching.  This can be achieved by lifting the restriction from 1.O Type . 
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Figure 10.5: Partial branching of mixtures not allowed by the definition of Branch 

In addition, the present definition allows the model in Figure 10.6, which satisfies 

the definition but violates the laws of conservation, as it converts an energy flow into a 

material.  Thus, restrictions must be imposed to ensure that energy is only branched into 

other forms of energy, while materials are branched into other materials.   

 

Figure 10.6: Functions conflicting with natural laws are supported by the definition 

At present, signal flows are deliberately excluded from the definitions, as they 

need additional constructs of flow representation.  For example, signals are neither 

conservable, nor independent entities, such as material or energy.  They are carried by a 

material or energy carrier flow [183], and are interpreted by the recipient by sensing 

parameters of those carrier flows, such as the voltage of an electrical signal or the 

frequency of a laser.  Thus, the modeling of signals requires modeling the carrier-carried 

relation, which is saved for the future.  The definitions will be extended to include signals 

as and when this signal formalism is developed.   
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Identify Enabler Flows in “Branch” 

The existing definition cannot represent the exchange of energy between the 

system and its surroundings that may be required to execute the branching operation.  

While the branching of energies shown in Figure 10.4 does not require any enabling 

energy, typically the branching of material mixtures into its components requires energy 

exchange.  In the case of passive branching, as with the dust filter in a vacuum cleaner 

(Figure 10.7a), this energy comes from the incoming air flow (Pneumatic Energy), as a 

result of which the outgoing air contains less energy than the incoming air and the filter 

heats up to dissipates the difference (Thermal energy).  In the case of active branching, as 

with splitting a piece of wood with a table saw (Figure 10.7b), energy must be input to 

the system through the saw blade (Mechanical Energy) and the human hand (Human 

Energy), or through the electrical cord (Electrical Energy), if the whole table saw is 

considered as a system.  Some energy also exits the system as heat (Thermal Energy) in 

this case.  Both of these cases illustrate the natural law that some energy is needed to 

break the bonds between the components of a material flow, which is the essence of 

branching.  Thus, energy flows that “enable” the branching operation must be included 

when the main flow is a mixture of materials.  For energy main flows, the enablers should 

be optional, thus supporting the unlikely case where enabler energies are required to 

branch energies.   
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(a) 

 

(b) 

Figure 10.7: Energy exchange between the system and surrounding cannot be 

modeled  

Topological Rules for the Enabler Flow Stream in “Branch” 

Count check:  The definition must allow multiple input enabler flows, as some 

branching operations may need that.  For the sake of conservation, once a set of energy 

flows are introduced to the system, they must also exit the system.  Thus, a set of output 

flows that represent the transformed form of the incoming enabling energies should be 

included in the definition.  In addition, checks should be provided to ensure that the 

output flows could be modeled only when the input enabler flows were modeled.   

Type check:  However, at present, these enabling flows are only envisioned as 

energy flows, although material or signal enables may be included in future.   

Conservation Rules for “Branch” 

At present, mixing between the main and the enabling flow streams is not 

perceived as a modeling requirement.  Thus, the mass and energy of all flows in _In List  
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must be conserved in _Out List  and all input enabler flows must also be conserved by 

their output forms.   

Formal Class Definition of “Branch” 

The textual definition of Branch [26] is formalized in Figure 10.8.  This 

definition, presented in first order logic statements as pseudo code of an object oriented 

class, is meant to capture the intent of the verb’s textual definition, while adding the 

necessary constructs to resolve the inconsistencies and to ensure adherence to the 

conservation laws, and ultimately expresses it in a formal, syntactic form so that the 

computer can reason on the definition at the syntactic level in an algorithmic manner, 

rather than relying on human semantic interpretation.  The three sections in this 

definition, marked by the commented lines, indicate results of the four checks in the 

protocol.  _ _Enabler In List  and _ _Enabler Out List  are initialized as optional arguments 

and default to the empty list, as the function may not always need enablers.  The symbol 

  represents the integer set.  The statements here are simultaneously enforced and should 

be read as connected by logical AND conditions ( ). These symbols are omitted for the 

sake of readability.   
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Figure 10.8: Formalized definition of Branch consistent with the conservation laws 
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Once a significant set of notional verbs are formalized through this protocol, they 

will be encoded in ConMod and used to perform conservation and irreversibility-based 

reasoning.  This work is reserved for the future.  While this direction is in progress, 

another necessary direction to explore is the practical usability of design tools supported 

by the proposed representation to human designers.  This direction of future work is 

discussed next. 

10.5.2 Ongoing Work: Examination of Designer-Level Usability 

While this dissertation establishes internal consistency and external validity of the 

representation, it does not go into examining the requirements for software 

implementation of the representation.  For example, the ConMod software tool developed 

within this dissertation is meant primarily for demonstration of reasoning ability, rather 

than for use in actual design projects by end-users.  Although ConMod, in its present 

form, could be used in design projects, it is understood that the practical usefulness of the 

representation intimately depends on the usability and software design aspect of the 

software implementation.  The ultimate success of this research will not be realized until 

it is implemented is tools that designers can use.  A research direction is already 

underway to find the requirements for these tools, where designers are studied through 

protocol analyses [184] to reveal patterns of their interaction with a function structure 

model.  Preliminary studies in this direction have helped establish rich protocols that will 

be next applied to larger participant pools.  Figure 10.9 shows a sample model produced 

by a participant in this experiment.   
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Figure 10.9: Sample results of pilot protocol studies on designer-model interaction 

In this case, the participant is given the following novel design problem and asked 

to construct function structure models to explore functional architecture for the design.  

Two participants, P1 and P2, were used in this reported pilot study.   

Design Problem for Protocol Study 

“Design an automatic clothes-ironing machine for use in hotels.  The 

purpose of the device is to press wrinkled clothes as obtained from clothes 

dryers and fold them suitably for the garment type.  You are free to choose 

the degree of automation.  At this stage of the project, there is no 

restriction on the types and quantity of resources consumed or emitted.  

However, an estimated 5 minutes per garment is desirable”. 

The resulting models are put through a formalism of encoding, completed in three 

steps:  activity encoding, element encoding, and topology encoding.  The first step is a 

time study of the sequence of different activities through the modeling session.  The 
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second is a cataloging of the model elements created through the sessions, while the last 

is an accounting of the modeling process, which accounts for how each element was 

connected to the surrounding elements at creation-time.  Collectively, these three steps 

encode the entire modeling process, such that both the model and the modeling process 

can be re-enacted purely from the encoded information.   

STEP 1:  Activity Encoding 

In activity encoding, the timestamp of starting an activity and the elements 

produced in that activity are encoded in a spreadsheet such as Figure 10.10a.  The 

elements are given unique IDs that are tracked throughout the experiment, as shown in 

Figure 10.10b for one participant, P1. 

(a) Activity encoding sheet (b) Assigning IDs to elements for P1 

Figure 10.10:  Activity Encoding for Participant P1 

STEP 2:  Element Encoding 

In this step, the type of each element is encoded against its unique ID, thus 

producing a table such as Figure 10.11 (first two columns).  Here B = block, BT = block 

text, E = edge, ET = edge text.   

TmStmp Act

0:30 PS

1:21 A 1 2 3 4 5 6

1:48

2:10 PS

2:18

Element IDs
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STEP 3:  Topology Encoding 

In this step, the connectedness between the elements is captured by recording the 

IDs of the elements at the “head” and “tail” of a given element, at the instant when the 

given element is drawn by the participant.  For edges, the head and tail block IDs are 

recorded, for blocks, the input and output edge IDs are recorded, and for texts, only the 

parent block or edge IDs are recorded as tail, while the head is left blank.  These 

recordings are shown in the last two columns of Figure 10.11. 

 

Figure 10.11:  Element encoding for participant P1 

Several critical observations are made from the encoded data.  For example, 46 of 

the 48 flows in the resulting model made by P1, the designer added the flow name (ET) 

immediately after adding the flow (E).  Yet, for thirteen of the seventeen functions, the 

function name was added only after adding their attached flows, or at least after a 

pregnant pause.  This trend was also strongly visible in participant P2’s activity sheet.  

Thus, the flow type or name was known to the designers as soon as a flow was 

conceived, indicating that these designers conceived the device in terms of the flows it 

would process, rather than in terms of functions it would perform.  The function names 

Elem ID Elem Typ
1 B 0 0
2 BT 1
3 E 0 1
4 ET 3
5 E 2 0
6 ET 5
7 E 0 1

Topology
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were later retro-fitted to describe the resulting transformative actions indicated by the 

flows. 

P1’s overall approach was nucleation, as he started the decomposed model with a 

few sub-functions on each end of the board, indicating the clearly identified sub-actions 

involved in ironing, and eventually finished the model by connecting those functions and 

others through edges in the middle of the board.  P2, however, followed a generally 

forward chaining approach.  The first function drawn was a subfunction on the left end of 

the board and the last function was the final action that produced folded pressed clothes. 

However, when the modeling actions are observed at a finer time-resolution, both 

designers seem to use nucleation and forward chaining when adding functions, and 

forward and backward chaining when adding flows.  For example, P2 added six functions 

by nucleation, seven functions by forward chaining on the head of an existing flow, but 

only one function by backward chaining, on the tail of a flow.  However, for the flows, 

P2 added sixteen and eleven flows by forward and backward chaining, and only two 

through nucleation, which were later appended with functions through forward chaining. 

Several other observations are made about the rate of modeling, patterns of model 

editing and deleting, and the use of the black box model is developing the decomposed 

model.  These details will be used to further refine the design of the protocol and execute 

the study at larger scales.  The next section discusses the evolving work on causal 

reasoning supported in the future.    
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10.5.3 Future Work: Causal Reasoning Extension 

Causal reasoning is a potential candidate for a future extension of this research.  

Figure 10.12 shows the function structure of an electric motor and pump assembly, where 

the intended and residual flows are identified.  Causal reasoning at a quantitative level 

would require capturing numeric values of flow and function parameters, as illustrated 

during the quantitative extension demonstration of Chapter 7.  All energy types have a 

power attribute (W), all liquid flows have a pressure attribute (p), and all material flows 

have mass (m).    

 

Figure 10.12: Function structure of an electric motor and pump assembly 

An example reasoning question asked on this model could be: “Determine the 

effect on the design if the incoming water flow (Water1) is stopped”.  In order to answer 

this question, the reasoner must use the knowledge of causal relations between functions 
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and flows.  For example, it must know that EE1 causes ME1, AcE1, and ThE1—a 

knowledge element that can be inferred directly from the conservation relation already 

captured in the representation.  Similarly, it can be automatically reasoned that all 

outgoing energy flows from the pump are caused by ME1.  This direct usability of the 

conservation relation in some cases to derive the causal relations makes causal reasoning 

a strong candidate for future extension of this research.   
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Figure 10.13: Causal relationships to be captured in the extended representation  

However, causal relation is not always derivable from conservation.  For example, 

if Water 1 is stopped because there is no water at the suction end of the pipe (sump), then 

entire inside of the pump will run dry, causing the impeller to rub freely without doing 

work to pressurize the water, and consequently the motor would consume less power.  In 

a different case, if Water 1 stops because the suction pipe is chocked, the inside of the 

pump and the water lines are still filled with water (primed), causing the impeller to spin 

inside still water, and consequently the motor may consume more power.  Thus, it may 

not be enough to describe the root cause as “Water 1 stopped” but the cause for such 

stoppage must be mentioned and used in reasoning.  The future research directions will 

include formalizing these cause and effect statements, their logical relations, and the 

algorithms to computationally reason in terms of effect propagation.  Figure 10.14 



 

 411  

describes a possible causal reasoning tree for such a derivational algorithm, where Water 

1 stops due to the sump running dry.  The blocks indicate inferences drawn by the 

reasoner, the tree branches are the sequence of causal inference propagation, whereas the 

externally drawn arrows indicate the information elements within the model that the 

reasoner would use to draw the inferences.    

 

Figure 10.14: Causal Reasoning Tree 

In this tree, the root node describes that the flow Water1 has stopped. Since 

Water2 is modeled as an effect of Water1, it can be reasoned that Water2 will stop, 

causing ME2 to cease.  Next, it will be possible to reason that all the energy entering the 

pump through the shaft (ME1) will be spent in producing only heat (ThE2) and sound 

(AeC2).  Additionally, since ME2 has ceased, W5 = 0.  Based on the quantitative relations, 

it can be determined that W2 and by effect W1 will also reduce.  Thus, it will be possible 

Water1 = 

p1 = 0 Water2 = 

p2 = 0 ME2 = 

W5 = 0

W5 
Reduced

W2 
Reduced

W1 
Reduced

ME1 → AeC2 + ThE2

1 2.dW K dW

 1 2 2 2, ,CAUSESME ME AcE ThE

2 5.dW K dW

1 2
CAUSESWater Water

2 2
CARRIED

BY
ME Water

W5 is an attribute of ME2

p1 is an attribute of Water1

p2 is an attribute of Water2
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to reason, from the facts presented explicitly in the model, that if the incoming water flow 

is cut off, the outgoing water flow will stop, all the energy entering the pump will be 

wasted as heat and sound, the pump will consume less power than before, and the motor 

will draw less power than before.   

10.5.4 Future Work: Additional Directions to Explore 

A major possibility identified in this dissertation is to extend the representation 

with quantitative attributes of functions and flows, which would potentially support more 

enhanced reasoning.  In this context, the need for integrating the representation with a 

variational solving system is discussed in Chapter 7.  With a variational solver, the design 

rules of a specific domain could be captured as non-directional rule statements, unlike 

parametric statements, and the tool could be used to solve for any of the unknown 

parameters, as long as enough numeric data for computing its relations are available in 

the model.   

Another area identified but not addressed in this dissertation is the need to support 

resolution scaling and decomposition-based reasoning.  Model decomposition and 

problem discovery is a major anticipated benefit of function-based modeling and thinking 

in design texts [1, 2].  Automating this area will help realize these benefits through 

computational reasoning.   

While the dissertation proposes physics-based verbs and ongoing work on 

formalizing notional verbs are discussed in this chapter, an important area to 

simultaneously formalize is the set of nouns for flow modeling in formal function 
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structure models.  This area is unaddressed in this research and must be developed in 

order to realize the complete benefits of this work.    

As indicated in the hairdryer function model of Section 9.4.1, this representation 

is not capable of describing transient phenomena and only describes steady states of 

operation (use modes).  Many mechanical engineering devices rely on transient 

phenomena for their operations and thus, a potentially useful extension of this work is in 

modeling those processes. 

Finally, while this research is primarily focused on supporting analytical 

reasoning in early design, it is anticipated that it could be extended to support design 

synthesis.  As shown with an example in Section 8.1, a software tool built on this 

representation could be connected to a database of solution principles and function 

structure models drawn in these tools could be used to search solution candidates from 

those databases.  Several directions of contemporary research in function-based synthesis 

[6, 20-22, 98] identify criteria for ranking and selecting solution candidates in similar 

situations.  It is anticipated that the current research and its future extensions can be 

integrated with these ongoing efforts to evolve a foundational representation and a 

distributed software framework, providing automation support to the entire conceptual 

design process through formal, rigorous, computational reasoning. 
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Appendix A. Reasoning Discovery Experiment Steps Discussed in Section 4.1 

 

Chalkboard Exercise Step 1 
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Chalkboard Exercise Step 2 

  

Chalkboard Exercise Step 3 
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Chalkboard Exercise Step 4 

  

Chalkboard Exercise Step 5 
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Chalkboard Exercise Step 7 



 

 419  
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Chalkboard Exercise Step 38 

  

Chalkboard Exercise Step 39 



 

 435  
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Chalkboard Exercise Step 46 
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Appendix B. XML Code for the Function Ontology Presented in Section 6.1.3 

The code provided below can be used to reconstruct the ontological view of the 

representation, including the class definitions, relations (object properties), and attributes 

(data properties), plus one function structure constructed to illustrate consistency of the 

representation.  The modeled function structure is the air-heating device, first presented 

in Model State 4.14.  The ontology is discussed in Section 6.1.3.   

<?xml version="1.0"?> 
 
 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" > 
    <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
    <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" 
> 
    <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" > 
]> 
 
 
<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1310314983.owl#" 
     xml:base="http://www.owl-ontologies.com/Ontology1310314983.owl" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
     xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#"> 
    <owl:Ontology rdf:about=""/> 
    <owl:Class rdf:ID="AcE"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
    <Material rdf:ID="Air_1"> 
        <hasHeadNode rdf:resource="#En_Air_1"/> 
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        <hasTailNode rdf:resource="#Env_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Material> 
    <Material rdf:ID="Air_2"> 
        <hasBaggage_S rdf:resource="#T"/> 
        <hasHeadNode rdf:resource="#Env_2"/> 
        <hasTailNode rdf:resource="#Transfer_Air"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Material> 
    <Material rdf:ID="Air_3"> 
        <hasBaggage_E rdf:resource="#KE_1"/> 
        <hasHeadNode rdf:resource="#En_Air_3"/> 
        <hasTailNode rdf:resource="#En_Air_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Material> 
    <Material rdf:ID="Air_4"> 
        <hasBaggage_E rdf:resource="#MW_2"/> 
        <hasBaggage_E rdf:resource="#ThE_1"/> 
        <hasBaggage_E rdf:resource="#ThE_2"/> 
        <hasHeadNode rdf:resource="#Transfer_Air"/> 
        <hasTailNode rdf:resource="#En_Air_3"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Material> 
    <owl:Class rdf:ID="Balance-"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ChE"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
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        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Conduct_E"> 
        <rdfs:subClassOf rdf:resource="#Transfer_E"/> 
        <owl:disjointWith rdf:resource="#Convect_E"/> 
        <owl:disjointWith rdf:resource="#Radiate_E"/> 
    </owl:Class> 
    <Verb rdf:ID="Conduct_EE"> 
        <hasInput rdf:resource="#EE_2"/> 
        <hasInput rdf:resource="#T"/> 
        <hasOutput rdf:resource="#EE_3"/> 
        <hasOutput rdf:resource="#EE_4"/> 
    </Verb> 
    <Verb rdf:ID="Conduct_Heat"> 
        <hasInput rdf:resource="#ThE_2"/> 
        <hasOutput rdf:resource="#Loss_9"/> 
    </Verb> 
    <owl:Class rdf:ID="Convect_E"> 
        <rdfs:subClassOf rdf:resource="#Transfer_E"/> 
        <owl:disjointWith rdf:resource="#Conduct_E"/> 
        <owl:disjointWith rdf:resource="#Radiate_E"/> 
    </owl:Class> 
    <Verb rdf:ID="Convert_1"> 
        <hasInput rdf:resource="#EE_1"/> 
        <hasOutput rdf:resource="#Loss_5"/> 
        <hasOutput rdf:resource="#MW_1"/> 
    </Verb> 
    <Verb rdf:ID="Convert_2"> 
        <hasInput rdf:resource="#EE_3"/> 
        <hasInput rdf:resource="#EE_4"/> 
        <hasOutput rdf:resource="#Loss_7"/> 
        <hasOutput rdf:resource="#ThE_3"/> 
    </Verb> 
    <owl:Class rdf:ID="Convert_E"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <owl:Class rdf:ID="DeEnergize_M"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
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        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <Verb rdf:ID="Distribute_1"> 
        <hasOutput rdf:resource="#EE_1"/> 
        <hasOutput rdf:resource="#EE_2"/> 
    </Verb> 
    <owl:Class rdf:ID="Distribute_E"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <owl:FunctionalProperty rdf:ID="E_hasCarrier"> 
        <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Energy"/> 
        <owl:inverseOf rdf:resource="#hasBaggage_E"/> 
        <rdfs:range rdf:resource="#Material"/> 
        <rdfs:subPropertyOf rdf:resource="#hasCarrierFlow"/> 
    </owl:FunctionalProperty> 
    <owl:Class rdf:ID="EE"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
    <Energy rdf:ID="EE_1"> 
        <hasHeadNode rdf:resource="#Convert_1"/> 
        <hasTailNode rdf:resource="#Distribute_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="EE_2"> 
        <hasHeadNode rdf:resource="#Conduct_EE"/> 
        <hasTailNode rdf:resource="#Distribute_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="EE_3"> 
        <hasHeadNode rdf:resource="#Convert_2"/> 
        <hasTailNode rdf:resource="#Conduct_EE"/> 
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        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="EE_4"> 
        <hasHeadNode rdf:resource="#Convert_2"/> 
        <hasTailNode rdf:resource="#Conduct_EE"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <owl:Class rdf:ID="EE_Static"> 
        <rdfs:subClassOf rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EW"/> 
    </owl:Class> 
    <owl:Class rdf:ID="EME"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
    <Verb rdf:ID="En_Air_1"> 
        <hasInput rdf:resource="#Air_1"/> 
        <hasInput rdf:resource="#MW_1"/> 
        <hasOutput rdf:resource="#Air_3"/> 
        <hasOutput rdf:resource="#KE_1"/> 
        <hasOutput rdf:resource="#Loss_4"/> 
    </Verb> 
    <Verb rdf:ID="En_Air_3"> 
        <hasInput rdf:resource="#Air_3"/> 
        <hasInput rdf:resource="#KE_1"/> 
        <hasInput rdf:resource="#ThE_3"/> 
        <hasOutput rdf:resource="#Air_4"/> 
        <hasOutput rdf:resource="#Loss_6"/> 
        <hasOutput rdf:resource="#MW_2"/> 
        <hasOutput rdf:resource="#ThE_1"/> 
        <hasOutput rdf:resource="#ThE_2"/> 
    </Verb> 
    <owl:Class rdf:ID="Energize_M"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
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    </owl:Class> 
    <owl:Class rdf:ID="Energy"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasTailNode"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Source"/> 
                            <owl:Class rdf:about="#Verb"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="#Noun"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#E_hasCarrier"/> 
                <owl:maxCardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#Material"/> 
        <owl:disjointWith rdf:resource="#Signal"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Env"> 
        <rdfs:subClassOf rdf:resource="#Node"/> 
        <owl:disjointWith rdf:resource="#Verb"/> 
    </owl:Class> 
    <Source rdf:ID="Env_1"> 
        <hasOutput rdf:resource="#Air_1"/> 
    </Source> 
    <Sink rdf:ID="Env_2"> 
        <hasInput rdf:resource="#Air_2"/> 
    </Sink> 
    <Source rdf:ID="Env_3"/> 
    <Sink rdf:ID="Env_4"> 
        <hasInput rdf:resource="#Loss_4"/> 
        <hasInput rdf:resource="#Loss_5"/> 
    </Sink> 
    <Sink rdf:ID="Env_5"> 
        <hasInput rdf:resource="#Loss_6"/> 
        <hasInput rdf:resource="#Loss_7"/> 
    </Sink> 
    <Sink rdf:ID="Env_6"> 
        <hasInput rdf:resource="#Loss_8"/> 
        <hasInput rdf:resource="#Loss_9"/> 
    </Sink> 
    <owl:Class rdf:ID="EW"> 
        <rdfs:subClassOf rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EE_Static"/> 
    </owl:Class> 
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    <owl:Class rdf:ID="Gas"> 
        <rdfs:subClassOf rdf:resource="#Gaseous"/> 
        <owl:disjointWith rdf:resource="#Vapor"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Gaseous"> 
        <rdfs:subClassOf rdf:resource="#Material"/> 
        <owl:disjointWith rdf:resource="#Liquid"/> 
        <owl:disjointWith rdf:resource="#Solid"/> 
    </owl:Class> 
    <owl:FunctionalProperty rdf:ID="GeometricCenter_X"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:FunctionalProperty rdf:ID="GeometricCenter_Y"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:FunctionalProperty rdf:ID="GivenName"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:FunctionalProperty> 
    <owl:InverseFunctionalProperty rdf:ID="hasBaggage_E"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Material"/> 
        <owl:inverseOf rdf:resource="#E_hasCarrier"/> 
        <rdfs:range rdf:resource="#Energy"/> 
        <rdfs:subPropertyOf rdf:resource="#hasBaggageFlow"/> 
    </owl:InverseFunctionalProperty> 
    <owl:InverseFunctionalProperty rdf:ID="hasBaggage_S"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Energy"/> 
                    <owl:Class rdf:about="#Material"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <owl:inverseOf rdf:resource="#S_hasCarrier"/> 
        <rdfs:range rdf:resource="#Signal"/> 
        <rdfs:subPropertyOf rdf:resource="#hasBaggageFlow"/> 
    </owl:InverseFunctionalProperty> 
    <owl:ObjectProperty rdf:ID="hasBaggageFlow"> 
        <owl:inverseOf rdf:resource="#hasCarrierFlow"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasCarrierFlow"> 
        <owl:inverseOf rdf:resource="#hasBaggageFlow"/> 
    </owl:ObjectProperty> 
    <owl:TransitiveProperty rdf:ID="hasChild"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <owl:inverseOf rdf:resource="#hasParent"/> 
    </owl:TransitiveProperty> 
    <owl:TransitiveProperty rdf:ID="hasChild_E"> 
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        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Energy"/> 
        <owl:inverseOf rdf:resource="#hasParent_E"/> 
        <rdfs:range rdf:resource="#Energy"/> 
        <rdfs:subPropertyOf rdf:resource="#hasChild"/> 
    </owl:TransitiveProperty> 
    <owl:TransitiveProperty rdf:ID="hasChild_M"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Material"/> 
        <owl:inverseOf rdf:resource="#hasParent_M"/> 
        <rdfs:range rdf:resource="#Material"/> 
        <rdfs:subPropertyOf rdf:resource="#hasChild"/> 
    </owl:TransitiveProperty> 
    <owl:FunctionalProperty rdf:ID="hasHeadNode"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Noun"/> 
        <owl:inverseOf rdf:resource="#hasInput"/> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Sink"/> 
                    <owl:Class rdf:about="#Verb"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
        <rdfs:subPropertyOf rdf:resource="#hasTerminal"/> 
    </owl:FunctionalProperty> 
    <owl:ObjectProperty rdf:ID="hasInOutFlows"> 
        <owl:inverseOf rdf:resource="#hasTerminal"/> 
    </owl:ObjectProperty> 
    <owl:InverseFunctionalProperty rdf:ID="hasInput"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Sink"/> 
                    <owl:Class rdf:about="#Verb"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <owl:inverseOf rdf:resource="#hasHeadNode"/> 
        <rdfs:range rdf:resource="#Noun"/> 
        <rdfs:subPropertyOf rdf:resource="#hasInOutFlows"/> 
    </owl:InverseFunctionalProperty> 
    <owl:InverseFunctionalProperty rdf:ID="hasOutput"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Source"/> 
                    <owl:Class rdf:about="#Verb"/> 
                </owl:unionOf> 
            </owl:Class> 
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        </rdfs:domain> 
        <owl:inverseOf rdf:resource="#hasTailNode"/> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Energy"/> 
                    <owl:Class rdf:about="#Material"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
        <rdfs:subPropertyOf rdf:resource="#hasInOutFlows"/> 
    </owl:InverseFunctionalProperty> 
    <owl:TransitiveProperty rdf:ID="hasParent"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <owl:inverseOf rdf:resource="#hasChild"/> 
    </owl:TransitiveProperty> 
    <owl:TransitiveProperty rdf:ID="hasParent_E"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Energy"/> 
        <owl:inverseOf rdf:resource="#hasChild_E"/> 
        <rdfs:range rdf:resource="#Energy"/> 
        <rdfs:subPropertyOf rdf:resource="#hasParent"/> 
    </owl:TransitiveProperty> 
    <owl:TransitiveProperty rdf:ID="hasParent_M"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Material"/> 
        <owl:inverseOf rdf:resource="#hasChild_M"/> 
        <rdfs:range rdf:resource="#Material"/> 
        <rdfs:subPropertyOf rdf:resource="#hasParent"/> 
    </owl:TransitiveProperty> 
    <owl:FunctionalProperty rdf:ID="hasTailNode"> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Energy"/> 
                    <owl:Class rdf:about="#Material"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <owl:inverseOf rdf:resource="#hasOutput"/> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Source"/> 
                    <owl:Class rdf:about="#Verb"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
        <rdfs:subPropertyOf rdf:resource="#hasTerminal"/> 
    </owl:FunctionalProperty> 
    <owl:ObjectProperty rdf:ID="hasTerminal"> 
        <owl:inverseOf rdf:resource="#hasInOutFlows"/> 
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    </owl:ObjectProperty> 
    <owl:FunctionalProperty rdf:ID="HeadPoint_X"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:domain rdf:resource="#Noun"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:FunctionalProperty rdf:ID="HeadPoint_Y"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:domain rdf:resource="#Noun"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:Class rdf:ID="Balance+"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <owl:Class rdf:ID="KE"> 
        <rdfs:subClassOf rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#MW"/> 
        <owl:disjointWith rdf:resource="#PE"/> 
    </owl:Class> 
    <Energy rdf:ID="KE_1"> 
        <E_hasCarrier rdf:resource="#Air_3"/> 
        <hasHeadNode rdf:resource="#En_Air_3"/> 
        <hasTailNode rdf:resource="#En_Air_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <owl:Class rdf:ID="KE_Linear"> 
        <rdfs:subClassOf rdf:resource="#KE"/> 
        <owl:disjointWith rdf:resource="#KE_Rotational"/> 
    </owl:Class> 
    <owl:Class rdf:ID="KE_Rotational"> 
        <rdfs:subClassOf rdf:resource="#KE"/> 
        <owl:disjointWith rdf:resource="#KE_Linear"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Liquid"> 
        <rdfs:subClassOf rdf:resource="#Material"/> 
        <owl:disjointWith rdf:resource="#Gaseous"/> 
        <owl:disjointWith rdf:resource="#Solid"/> 
    </owl:Class> 
    <Energy rdf:ID="Loss_4"> 
        <hasHeadNode rdf:resource="#Env_4"/> 
        <hasTailNode rdf:resource="#En_Air_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 



 

 449  

        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="Loss_5"> 
        <hasHeadNode rdf:resource="#Env_4"/> 
        <hasTailNode rdf:resource="#Convert_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="Loss_6"> 
        <hasHeadNode rdf:resource="#Env_5"/> 
        <hasTailNode rdf:resource="#En_Air_3"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="Loss_7"> 
        <hasHeadNode rdf:resource="#Env_5"/> 
        <hasTailNode rdf:resource="#Convert_2"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="Loss_8"> 
        <hasHeadNode rdf:resource="#Env_6"/> 
        <hasTailNode rdf:resource="#Transfer_Air"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="Loss_9"> 
        <hasHeadNode rdf:resource="#Env_6"/> 
        <hasTailNode rdf:resource="#Conduct_Heat"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <owl:Class rdf:ID="MagE"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
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    <owl:Class rdf:ID="Material"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasTailNode"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Source"/> 
                            <owl:Class rdf:about="#Verb"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="#Noun"/> 
        <owl:disjointWith rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#Signal"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ME"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ThE"/> 
    </owl:Class> 
    <owl:Class rdf:ID="MW"> 
        <rdfs:subClassOf rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#KE"/> 
        <owl:disjointWith rdf:resource="#PE"/> 
    </owl:Class> 
    <Energy rdf:ID="MW_1"> 
        <hasHeadNode rdf:resource="#En_Air_1"/> 
        <hasTailNode rdf:resource="#Convert_1"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="MW_2"> 
        <E_hasCarrier rdf:resource="#Air_4"/> 
        <hasHeadNode rdf:resource="#Transfer_Air"/> 
        <hasTailNode rdf:resource="#En_Air_3"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <owl:Class rdf:ID="Node"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasInOutFlows"/> 
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                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 
        <owl:disjointWith rdf:resource="#Noun"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Noun"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasHeadNode"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Sink"/> 
                            <owl:Class rdf:about="#Verb"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#HeadPoint_X"/> 
                <owl:cardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#HeadPoint_Y"/> 
                <owl:cardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#TailPoint_X"/> 
                <owl:cardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#TailPoint_Y"/> 
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                <owl:cardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#Node"/> 
    </owl:Class> 
    <owl:Class rdf:ID="PE"> 
        <rdfs:subClassOf rdf:resource="#ME"/> 
        <owl:disjointWith rdf:resource="#KE"/> 
        <owl:disjointWith rdf:resource="#MW"/> 
    </owl:Class> 
    <owl:Class rdf:ID="PE_Elastic"> 
        <rdfs:subClassOf rdf:resource="#PE"/> 
        <owl:disjointWith rdf:resource="#PE_Gravitational"/> 
    </owl:Class> 
    <owl:Class rdf:ID="PE_Gravitational"> 
        <rdfs:subClassOf rdf:resource="#PE"/> 
        <owl:disjointWith rdf:resource="#PE_Elastic"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Radiate_E"> 
        <rdfs:subClassOf rdf:resource="#Transfer_E"/> 
        <owl:disjointWith rdf:resource="#Conduct_E"/> 
        <owl:disjointWith rdf:resource="#Convect_E"/> 
    </owl:Class> 
    <owl:FunctionalProperty rdf:ID="S_hasCarrier"> 
        <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
        <rdf:type rdf:resource="&owl;ObjectProperty"/> 
        <rdfs:domain rdf:resource="#Signal"/> 
        <owl:inverseOf rdf:resource="#hasBaggage_S"/> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Energy"/> 
                    <owl:Class rdf:about="#Material"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
        <rdfs:subPropertyOf rdf:resource="#hasCarrierFlow"/> 
    </owl:FunctionalProperty> 
    <owl:Class rdf:ID="Signal"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#S_hasCarrier"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
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        <rdfs:subClassOf rdf:resource="#Noun"/> 
        <owl:disjointWith rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#Material"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Sink"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasInput"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="#Env"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Solid"> 
        <rdfs:subClassOf rdf:resource="#Material"/> 
        <owl:disjointWith rdf:resource="#Gaseous"/> 
        <owl:disjointWith rdf:resource="#Liquid"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Source"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasOutput"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="#Env"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Store_E"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Supply_E"> 
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        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Transfer_E"/> 
    </owl:Class> 
    <Signal rdf:ID="T"> 
        <hasHeadNode rdf:resource="#Conduct_EE"/> 
        <S_hasCarrier rdf:resource="#Air_2"/> 
    </Signal> 
    <owl:FunctionalProperty rdf:ID="TailPoint_X"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:domain rdf:resource="#Noun"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:FunctionalProperty rdf:ID="TailPoint_Y"> 
        <rdf:type rdf:resource="&owl;DatatypeProperty"/> 
        <rdfs:domain rdf:resource="#Noun"/> 
        <rdfs:range rdf:resource="&xsd;float"/> 
    </owl:FunctionalProperty> 
    <owl:Class rdf:ID="ThE"> 
        <rdfs:subClassOf rdf:resource="#Energy"/> 
        <owl:disjointWith rdf:resource="#AcE"/> 
        <owl:disjointWith rdf:resource="#ChE"/> 
        <owl:disjointWith rdf:resource="#EE"/> 
        <owl:disjointWith rdf:resource="#EME"/> 
        <owl:disjointWith rdf:resource="#MagE"/> 
        <owl:disjointWith rdf:resource="#ME"/> 
    </owl:Class> 
    <Energy rdf:ID="ThE_1"> 
        <E_hasCarrier rdf:resource="#Air_4"/> 
        <hasHeadNode rdf:resource="#Transfer_Air"/> 
        <hasTailNode rdf:resource="#En_Air_3"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="ThE_2"> 
        <E_hasCarrier rdf:resource="#Air_4"/> 
        <hasHeadNode rdf:resource="#Conduct_Heat"/> 
        <hasTailNode rdf:resource="#En_Air_3"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <Energy rdf:ID="ThE_3"> 
        <hasHeadNode rdf:resource="#En_Air_3"/> 
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        <hasTailNode rdf:resource="#Convert_2"/> 
        <HeadPoint_X rdf:datatype="&xsd;float">0.0</HeadPoint_X> 
        <HeadPoint_Y rdf:datatype="&xsd;float">0.0</HeadPoint_Y> 
        <TailPoint_X rdf:datatype="&xsd;float">0.0</TailPoint_X> 
        <TailPoint_Y rdf:datatype="&xsd;float">0.0</TailPoint_Y> 
    </Energy> 
    <owl:Class rdf:ID="ThE_Latent"> 
        <rdfs:subClassOf rdf:resource="#ThE"/> 
        <owl:disjointWith rdf:resource="#ThE_Sensible"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ThE_Sensible"> 
        <rdfs:subClassOf rdf:resource="#ThE"/> 
        <owl:disjointWith rdf:resource="#ThE_Latent"/> 
    </owl:Class> 
    <Verb rdf:ID="Transfer_Air"> 
        <hasInput rdf:resource="#Air_4"/> 
        <hasInput rdf:resource="#MW_2"/> 
        <hasInput rdf:resource="#ThE_1"/> 
        <hasOutput rdf:resource="#Air_2"/> 
        <hasOutput rdf:resource="#Loss_8"/> 
    </Verb> 
    <owl:Class rdf:ID="Transfer_E"> 
        <rdfs:subClassOf rdf:resource="#Verb"/> 
        <owl:disjointWith rdf:resource="#Balance-"/> 
        <owl:disjointWith rdf:resource="#Convert_E"/> 
        <owl:disjointWith rdf:resource="#DeEnergize_M"/> 
        <owl:disjointWith rdf:resource="#Distribute_E"/> 
        <owl:disjointWith rdf:resource="#Energize_M"/> 
        <owl:disjointWith rdf:resource="#Balance+"/> 
        <owl:disjointWith rdf:resource="#Store_E"/> 
        <owl:disjointWith rdf:resource="#Supply_E"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Vapor"> 
        <rdfs:subClassOf rdf:resource="#Gaseous"/> 
        <owl:disjointWith rdf:resource="#Gas"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Verb"> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasInput"/> 
                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasOutput"/> 



 

 456  

                <owl:someValuesFrom> 
                    <owl:Class> 
                        <owl:unionOf rdf:parseType="Collection"> 
                            <owl:Class rdf:about="#Energy"/> 
                            <owl:Class rdf:about="#Material"/> 
                        </owl:unionOf> 
                    </owl:Class> 
                </owl:someValuesFrom> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf rdf:resource="#Node"/> 
        <owl:disjointWith rdf:resource="#Env"/> 
    </owl:Class> 
</rdf:RDF> 
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Appendix C. Header Files for the ConMod Application  

 
// ChildFrm.h : interface of the CChildFrame class 
// 
 
 
#pragma once 
 
class CChildFrame : public CMDIChildWnd 
{ 
 DECLARE_DYNCREATE(CChildFrame) 
public: 
 CChildFrame(); 
 
// Attributes 
protected: 
 CSplitterWnd m_wndSplitter; 
public: 
 
// Operations 
public: 
 
// Overrides 
 public: 
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* 
pContext); 
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
 
// Implementation 
public: 
 virtual ~CChildFrame(); 
#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
 
// Generated message map functions 
protected: 
 DECLARE_MESSAGE_MAP() 
}; 
 

 

 
#pragma once 
#include "Template.h" 
 
 
// CConduct_E_Template dialog 
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class CConduct_E_Template : public CDialog, public CTemplate 
{ 
 DECLARE_DYNAMIC(CConduct_E_Template) 
 
public: 
 CConduct_E_Template(CWnd* pParent = NULL, CPoint InsertionPoint = 
(500,500),  
  CString* pCounterString_F = NULL, CString* 
pCounterString_InE = NULL,  
  CString* pCounterString_OutE = NULL, CString* 
pCounterString_OutE_Res = NULL); 
  
 virtual ~CConduct_E_Template(); 
 
// Dialog Data 
 enum { IDD = IDD_Conduct_E_TEMPLATE }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: // Instances that comprise the Convert_E template 
 CFunction* pFunctionBlock; 
 CEnergy* pEnergy_InE; 
 CEnergy* pEnergy_OutE; 
 CEnergy* pEnergy_OutE_Res; 
}; 
 
 

 

// ConMod.h : main header file for the ConMod application 
// 
#pragma once 
 
#ifndef __AFXWIN_H__ 
 #error "include 'stdafx.h' before including this file for PCH" 
#endif 
 
#include "resource.h"       // main symbols 
 
 
// CConModApp: 
// See ConMod.cpp for the implementation of this class 
// 
 
class CConModApp : public CWinApp 
{ 
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public: 
 CConModApp(); 
 
 
// Overrides 
public: 
 virtual BOOL InitInstance(); 
 
// Implementation 
 afx_msg void OnAppAbout(); 
 DECLARE_MESSAGE_MAP() 
}; 
 
extern CConModApp theApp; 
 

 

#include "Function.h" 
#include "Env.h" 
#include "Edge.h" 
#include "Material.h" 
#include "Energy.h" 
#include "Signal.h" 
#include "Convert_E_Template.h" 
#include "Conduct_E_Template.h" 
#include "Energize_M_Template.h" 
#include "Distribute_E_Template.h" 
#include "DeEn_M_Template.h" 
 
#pragma once 
 
 
class CConModDoc : public CDocument 
{ 
protected: // create from serialization only 
 CConModDoc(); 
 DECLARE_DYNCREATE(CConModDoc) 
 
// Attributes 
public: 
 
// Operations 
public: 
 
// Overrides 
public: 
 virtual BOOL OnNewDocument(); 
 virtual void Serialize(CArchive& ar); 
 
// Implementation 
public: 
 virtual ~CConModDoc(); 
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#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
 
protected: 
 
// Generated message map functions 
protected: 
 DECLARE_MESSAGE_MAP() 
 
public: 
 CList<CElement*, CElement*> CElementList;  // list of all 
elements of all types - reconstructed everytime OnDraw is called 
 CList<CNode*, CNode*> CNodeList; // List of Function blocks - 
appended upon ADD_FUNCTION, removed upon DELETE 
 CList<CEdge*, CEdge*> CEdgeList;    // List of 
flow arrows (edges) of all kinds - appended upon ADD_EDGE, removed upon 
DELETE 
 CList<CElement*, CElement*> PreselectionList; 
 
 CList<CFunction*, CFunction*> CFunctionList; 
 CList<CEnv*, CEnv*> CEnvList; 
 CList<CMaterial*, CMaterial*> CMaterialList; 
 CList<CMaterial*, CMaterial*> CMaterialList_IN_TEMP; 
 CList<CMaterial*, CMaterial*> CMaterialList_OUT_TEMP; 
 CList<CEnergy*, CEnergy*> CEnergyList; 
 CList<CEnergy*, CEnergy*> CEnergyList_IN_TEMP; 
 CList<CEnergy*, CEnergy*> CEnergyList_OUT_TEMP; 
 CList<CSignal*, CSignal*> CSignalList; 
 CList<CSignal*, CSignal*> CSignalList_IN_TEMP; 
 CList<CSignal*, CSignal*> CSignalList_OUT_TEMP; 
 
 CList<CTemplate*, CTemplate*> CTemplateList; // List of all 
templates of Layer 2 
 // The main purpose of this list is to store the "template" 
instances, while the individual 
 // elements in the templates, such as functions and flows, are 
stored in the CElementList. 
 // By storing the templates in this separate list, it will be 
easier to delete them 
 // during application exit (Destructor of the View class). 
 
 CList<CFunction*, CFunction*> CConvert_E_Function_List; 
 CList<CConvert_E_Template*, CConvert_E_Template*> 
CConvert_E_Template_List; 
 
 CList<CFunction*, CFunction*> CConduct_E_Function_List; 
 CList<CConduct_E_Template*, CConduct_E_Template*> 
CConduct_E_Template_List; 
 
 CList<CFunction*, CFunction*> CEnergize_M_Function_List; 
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 CList<CEnergize_M_Template*, CEnergize_M_Template*> 
CEnergize_M_Template_List; 
 
 CList<CFunction*, CFunction*> CDistribute_E_Function_List; 
 CList<CDistribute_E_Template*, CDistribute_E_Template*> 
CDistribute_E_Template_List; 
 
 CList<CFunction*, CFunction*> CDeEn_M_Function_List; 
 CList<CDeEn_M_Template*, CDeEn_M_Template*> 
CDeEn_M_Template_List; 
}; 
 

 

#pragma once 
 
#include "afxmt.h" 
#include "geometry.h" 
 
#define SELECTION_RADIUS 20 
 
class CConModView :  
 public CView, public CGeometry 
{ 
protected: // create from serialization only 
 CConModView(); 
 DECLARE_DYNCREATE(CConModView) 
 
// Attributes 
public: 
 CConModDoc* GetDocument() const; 
 
// Operations 
public: 
 
// Overrides 
public: 
 virtual void OnDraw(CDC* pDC);   
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
protected: 
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo); 
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo); 
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo); 
 
// Implementation 
public: 
 virtual ~CConModView(); 
#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
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protected: 
 
// Generated message map functions 
protected: 
 DECLARE_MESSAGE_MAP() 
 
 //===============================================================
============= 
 //===============================================================
============= 
 // END OF WIZARD-GENERATED CODE 
 //===============================================================
============= 
 //===============================================================
============= 
 
 //===============================================================
============= 
 // SELECTION OF REASONING OPTIONS - THREE MAIN TYPES 
 //===============================================================
============= 
 
public: 
 int ReasoningOption; 
  enum{QUALITATIVE_CONSERVATION,  
    QUALITATIVE_IRREVERSIBILITY, 
    QUANTITATIVE_EFFICIENCY, 
    QUANTITATIVE_POWERREQUIRED}; 
 
 //===============================================================
============= 
 // SELECTION OF MESSAGE HANDLER FUNCTIONS THROUGH ENUMERATED 
WHAT-TO-DO LIST 
 //===============================================================
============= 
 
public: 
 int WhatToDo;   
 enum  
 { 
  ESCAPE,  
  ADD_FUNCTION,  
  ADD_MATERIAL,  
  ADD_ENERGY, 
  ADD_SIGNAL, 
  ADD_ENV, 
  ADD_CONVERT_E_TEMPLATE,   
  ADD_CONDUCT_E_TEMPLATE,  // Add more todo items here 
  ADD_ENERGIZE_M_TEMPLATE,  // Add more todo items 
here 
  ADD_DISTRIBUTE_E_TEMPLATE,  // Add more todo items 
here 
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  ADD_DEEN_M_TEMPLATE  // Add more todo items here 
 }; 
 
 //===============================================================
============= 
 // MAIN MENU - REASONING OPTION SELECTION MESSAGE HANDLER 
FUNCTION 
 //===============================================================
============= 
 
public: 
 afx_msg void OnQualitativeConservation(); 
 afx_msg void OnQualitativeIrreversibility(); 
 afx_msg void OnQuantitativeEfficiency(); 
 afx_msg void OnQuantitativePowerRequired(); 
 
 //===============================================================
============= 
 // PRIMITIVES TOOLBAR MESSAGE HANDLER FUNCTIONS 
 //===============================================================
============= 
 
public:      
 void Handler_SaveFile(void); 
 
public:      
 void Handler_AddFunction(void); 
 void Handler_AddMaterial(void); 
 void Handler_AddEnergy(void); 
 void Handler_AddSignal(void); 
 void Handler_AddEnv(void); 
 void Handler_EditCut(void); 
 
 //===============================================================
============= 
 // FEATURES TOOLBAR MESSAGE HANDLER FUNCTIONS 
 //===============================================================
============= 
 
public:      
 void Handler_AddConvert_E_Template(void); 
 void Handler_AddConduct_E_Template(void); 
 void Handler_AddEnergize_M_Template(void); 
 void Handler_AddDistribute_E_Template(void); 
 void Handler_AddDeEn_M_Template(void); 
 
 //===============================================================
============= 
 // REASONING TOOLBAR MESSAGE HANDLER FUNCTIONS 
 //===============================================================
============= 
 
public:      



 

 464  

 void Handler_Qualitative(void); 
 void Handler_Quantitative(void); 
 //===============================================================
============= 
 // FUNCTIONS FOR ADDING INSTANCES TO THE MODEL 
 //===============================================================
============= 
public: 
 int Counter_F; 
 int Counter_Env; 
 int Counter_M; 
 int Counter_E; 
 int Counter_S; 
 CString CounterString; 
 
public:      
 void AddFunction(void); 
 void AddMaterial(void); 
 void AddEdge_Dynamic(void); 
 void AddEnergy(void); 
 void AddSignal(void); 
 void AddEnv(void); 
 
public: 
 void AddConvert_E_Template(void); 
 void AddConduct_E_Template(void); 
 void AddEnergize_M_Template(void); 
 void AddDistribute_E_Template(void); 
 void AddDeEn_M_Template(void); 
 
 // The following four members are used during construction of the 
dynamic 
 // instance of edges, and to pass their values to the final 
instance. 
 CElement* pTailElemDynamic; 
 CElement* pHeadElemDynamic; 
 bool TailNodeSelected; 
 
 //===============================================================
============= 
 // FUNCTIONS FOR SELECTING INSTANCES FROM THE MODEL TO DO EDIT 
OPERATIONS 
 //===============================================================
============= 
 
public:  
 void Preselect(CPoint* pMouseTip);  // Preselection of 
elements by mouse hover 
 void Highlight(CElement* pElement);  // Change color when 
preselected 
 void UnHighlight(CElement* pElement); // Reset color when 
released from preselection 
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 void SelectElement(CElement* pElement); // Finally select one 
element from the presel list 
 void ScrollThroughPreselection();  // Scrolling through 
preselected elements  
 POSITION ScrollPosition;    // Current 
position within PreselectionList that is selected 
 enum {NONE, TAIL, CENTER, HEAD};  // Grab handle 
locations 
 CElement* pElementToBeDeleted; 
 CElement* pSelectedElement;    // Pointer to 
store the currently selected element 
  
 //===============================================================
============= 
 // FUNCTIONS FOR STORING OBJECT POINTERS AND DETERMINING THEIR 
TYPE 
 //===============================================================
============= 
 
 // For basic elements (Layer 1) - Node, Edge, Function, Env, M, 
E, and S 
 
 bool ElementIsNode(CElement* pElement);   // TRUE if 
pSelectedElement is a member of CNodeList 
 bool ElementIsFunction(CElement* pElement);   // 
TRUE if pSelectedElement is a member of CFunctionList 
 bool ElementIsEnv(CElement* pElement);   // TRUE if 
pSelectedElement is a member of CEnvList 
 bool ElementIsEdge(CElement* pElement);   // TRUE if 
pSelectedElement is a member of CEdgeList 
 bool ElementIsMaterial(CElement* pElement);   // 
TRUE if pSelectedElement is a member of CEdgeList 
 bool ElementIsEnergy(CElement* pElement);   // TRUE if 
pSelectedElement is a member of CEdgeList 
 bool ElementIsSignal(CElement* pElement);   // TRUE if 
pSelectedElement is a member of CEdgeList 
  
 POSITION NodeIndexInNodeList;   // Gets set by 
SelectedElementIsNode so that it could be removed 
 POSITION FunctionIndexInFunctionList; // Gets set by 
SelectedElementIsFunction so that it could be removed 
 POSITION EnvIndexInEnvList; // Gets set by SelectedElementIsEnv 
so that it could be removed 
 POSITION EdgeIndexInEdgeList;   // Gets set by 
SelectedElementIsEdge so that it could be removed 
 POSITION MaterialIndexInMaterialList;   // Gets set 
by SelectedElementIsEdge so that it could be removed 
 POSITION EnergyIndexInEnergyList;   // Gets set by 
SelectedElementIsEdge so that it could be removed 
 POSITION SignalIndexInSignalList;   // Gets set by 
SelectedElementIsEdge so that it could be removed 
  
 // For templates 
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 bool ElementIsConvert_E_Function(CElement* pElement);    
 bool ElementIsConvert_E_Template(CElement* pElement);    
  
 bool ElementIsConduct_E_Function(CElement* pElement);    
 bool ElementIsConduct_E_Template(CElement* pElement);    
  
 bool ElementIsEnergize_M_Function(CElement* pElement);  
  
 bool ElementIsEnergize_M_Template(CElement* pElement);  
  
  
 bool ElementIsDistribute_E_Function(CElement* pElement);  
  
 bool ElementIsDistribute_E_Template(CElement* pElement);  
  
  
 bool ElementIsDeEn_M_Function(CElement* pElement);    
 bool ElementIsDeEn_M_Template(CElement* pElement);    
  
 POSITION Convert_E_Function_IndexInConvert_E_Function_List;  
  
 POSITION Convert_E_Template_IndexInConvert_E_Template_List;  
  
  
 POSITION Conduct_E_Function_IndexInConduct_E_Function_List;  
  
 POSITION Conduct_E_Template_IndexInConduct_E_Template_List;  
  
 
 POSITION Energize_M_Function_IndexInEnergize_M_Function_List; 
   
 POSITION Energize_M_Template_IndexInEnergize_M_Template_List; 
   
 
 POSITION Distribute_E_Function_IndexInDistribute_E_Function_List; 
   
 POSITION Distribute_E_Template_IndexInDistribute_E_Template_List; 
   
 
 POSITION DeEn_M_Function_IndexInDeEn_M_Function_List;    
 POSITION DeEn_M_Template_IndexInDeEn_M_Template_List;    
 
 void EmptyAllTempLists(); 
 //===============================================================
============= 
 // FUNCTIONS FOR EDIT OPERATIONS ON INSTANCES WITHIN THE MODEL  
 //===============================================================
============= 
public: 
 void MoveConnectDynamic(); 
 void MoveConnect(); 
 void DetachEdgesFromElement(CElement* pElement); 
 void DeleteElement(CElement* pElement); 
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 // The following four members stores the topology of a flow 
terminal 
 // (head or tail) that is moved by the MoveConnectDynamic 
function to a temp  
 // storage, so that the point can be reassigned in the case the 
operation  
 // was illegal.  The storage code is in the MoveConnectDynamic 
function. 
 // The reassignment code is in OnDraw (during gramamr chekcs). 
 CElement* pRememberHeadElement; 
 CPoint RememberHeadPoint;  
 CElement* pRememberTailElement; 
 CPoint RememberTailPoint; 
 
 //===============================================================
============= 
 // PARAMETERS AND FLAGS FOR CONTROLLING AND SIGNALLING MOUSE 
POINTS AND BUTTONS 
 //===============================================================
============= 
 
public:  
 //  Parameters 
 CPoint MouseLDownPoint; 
 CPoint MouseLUpPoint; 
 CPoint MouseRDownPoint; 
 CPoint MouseRUpPoint; 
 CPoint MouseMovePoint; 
 
 // Flags 
 bool LButtonIsDown; 
 bool RButtonIsDown; 
 
 //===============================================================
============= 
 // MESSAGE HANDLING FUNCTIONS FOR MOUSE EVENTS 
 //===============================================================
============= 
 
public:     // Mouse Button and Move Functions 
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point); 
 afx_msg void OnLButtonUp(UINT nFlags, CPoint point); 
 afx_msg void OnRButtonDown(UINT nFlags, CPoint point); 
 afx_msg void OnRButtonUp(UINT nFlags, CPoint point); 
 afx_msg void OnMouseMove(UINT nFlags, CPoint point); 
 afx_msg void OnMButtonUp(UINT nFlags, CPoint point); 
 
public: 
 afx_msg BOOL OnEraseBkgnd(CDC* pDC); // Flicker elimination 
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point); 
 
 //===============================================================
============= 



 

 468  

 // CONSERVATION CHECKING FUNCTIONS - TOPOLOGICAL CONSERVATION 
(WITHOUT VOCAB) 
 // REFERE TO:  ICED-2011 PAPER 
 //===============================================================
============= 
 
 bool GrammarCheckRequired; 
 
 CString Msg_OrphanFlow; 
 CString Msg_BarrenFlow; 
 CString Msg_OneInManyOut_M; 
 CString Msg_OneInManyOut_E; 
 CString Msg_ManyInOneOut_M; 
 CString Msg_ManyInOneOut_E; 
 CString Msg_ManyInManyOut; 
 CString Msg_MissingResidualEnergy; 
 CString Msg_MaterialChangeWithoutEnergy; 
 
 void Set_OrphanFlowMsg(); 
 void Set_BarrenFlowMsg(); 
 void Set_OneInManyOutMsg_M(); 
 void Set_OneInManyOutMsg_E(); 
 void Set_ManyInOneOutMsg_M(); 
 void Set_ManyInOneOutMsg_E(); 
 void Set_ManyInManyOutMsg(); 
 void Set_MissingResidualEnergyMsg(); 
 void Set_MaterialChangeWithoutEnergyMsg(); 
 
 void ComposeQualitativeMessage(); 
 
 //===============================================================
============= 
 // Quantitative Reasoning Methods 
 //===============================================================
============= 
  
 void VerifyPositivePowerOfFlows(); 
 void VerifyEnergyBalanceOfFunctions(); 
 void ComputeEfficiency(); 
 void ComposeQuantitativeMessage(); 
 bool ContinueReasoning; 
}; 
 
#ifndef _DEBUG  // debug version in ConModView.cpp 
inline CConModDoc* CConModView::GetDocument() const 
   { return reinterpret_cast<CConModDoc*>(m_pDocument); } 
#endif 
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#pragma once 
#include "Template.h" 
 
 
// CConvert_E dialog 
 
class CConvert_E_Template : public CDialog, public CTemplate 
{ 
 DECLARE_DYNAMIC(CConvert_E_Template) 
 
public: 
 CConvert_E_Template(CWnd* pParent = NULL, CPoint InsertionPoint = 
(500,500),  
  CString* pCounterString_F = NULL, CString* 
pCounterString_InE = NULL,  
  CString* pCounterString_OutE = NULL, CString* 
pCounterString_OutE_Res = NULL); 
  
 virtual ~CConvert_E_Template(); 
 
// Dialog Data 
 enum { IDD = IDD_CONVERT_E_TEMPLATE }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: // Instances that comprise the Convert_E template 
 CFunction* pFunctionBlock; 
 CEnergy* pEnergy_InE; 
 CEnergy* pEnergy_OutE; 
 CEnergy* pEnergy_OutE_Res; 
}; 
 

 

#pragma once 
#include "Template.h" 
 
 
// CDeEn_M_Template dialog 
 
class CDeEn_M_Template : public CDialog, public CTemplate 
{ 
 DECLARE_DYNAMIC(CDeEn_M_Template) 
 
public: 
 CDeEn_M_Template(CWnd* pParent = NULL,  
  CPoint InsertionPoint = (500,500),  
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  CString* pCounterString_F = NULL,  
  CString* pCounterString_InM = NULL,  
  CString* pCounterString_OutM = NULL,  
  CString* pCounterString_InE = NULL,  
  CString* pCounterString_OutE = NULL);   // standard 
constructor 
  
 virtual ~CDeEn_M_Template(); 
 
// Dialog Data 
 enum { IDD = IDD_DEEN_M_TEMPLATE }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: // Instances that comprise the Convert_E template 
 CFunction* pFunctionBlock; 
 CEnergy* pEnergy_InE; 
 CEnergy* pEnergy_OutE; 
 CMaterial* pMaterial_InM; 
 CMaterial* pMaterial_OutM; 
}; 

 

#pragma once 
#include "Template.h" 
 
// CDistribute_E_Template dialog 
 
class CDistribute_E_Template : public CDialog, public CTemplate 
{ 
 DECLARE_DYNAMIC(CDistribute_E_Template) 
 
public: 
 CDistribute_E_Template(CWnd* pParent = NULL,  
  CPoint InsertionPoint = (500,500),  
  CString* pCounterString_F = NULL,  
  CString* pCounterString_InE = NULL,  
  CString* pCounterString_OutE1 = NULL,  
  CString* pCounterString_OutE2 = NULL);   // standard 
constructor 
  
 virtual ~CDistribute_E_Template(); 
 
// Dialog Data 
 enum { IDD = IDD_DISTRIBUTE_E_TEMPLATE }; 
 
protected: 
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 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: // Instances that comprise the Convert_E template 
 CFunction* pFunctionBlock; 
 CEnergy* pEnergy_InE; 
 CEnergy* pEnergy_OutE1; 
 CEnergy* pEnergy_OutE2; 
}; 
 

 

#pragma once 
#include "element.h" 
#include "math.h" 
#include "node.h" 
 
#define EDGE_HEAD_SIZE 20 
#define EDGE_HEAD_HALF_ANGLE 0.25 // Radians 
 
class CEdge : public CElement 
{ 
public:  
 CEdge(void); 
 CEdge(CPoint TailClick, CPoint HeadClick); 
 ~CEdge(void); 
  
 // Head construction data 
 CPoint HeadLeftVertex, HeadRightVertex; 
 double HeadSize, HalfHeadAngle; 
 CPoint HeadVertexArray[3]; 
  
 // Topological information 
 void ComputeAnchorPoints(); 
 void AttachEdgeToNearestAnchor(); 
 void ResetGeometricCenter(); // Makes sure that the 
GeometricCenter is reset between the  
        // Tail and Head 
points, when an arrow is moved by grabbing  
        // Those terminal 
points 
 bool ThisFlowIsIncomingBaggage; 
 bool ThisFlowIsOutgoingBaggage; 
 
 // Drawing data 
 int StemThickness; 
 int StemLineFont; 
 enum {NONE, THIN, MEDIUM, THICK}; 
 int FontSize; 
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 void DrawOnDC(CDC* pDC); 
}; 
 

 

#pragma once 
#include "geometry.h" 
 
#define GENERIC_PEN_R 0 
#define GENERIC_PEN_G 0 
#define GENERIC_PEN_B 0 
 
#define GENERIC_BRUSH_R 0 
#define GENERIC_BRUSH_G 0 
#define GENERIC_BRUSH_B 0 
 
#define DANGLING_BRUSH_R 255 
#define DANGLING_BRUSH_G 0 
#define DANGLING_BRUSH_B 0 
 
#define PRESELECTION_PEN_R 200 
#define PRESELECTION_PEN_G 0 
#define PRESELECTION_PEN_B 200 
 
#define SELECTION_PEN_R 0 
#define SELECTION_PEN_G 200 
#define SELECTION_PEN_B 0 
 
#define RESIDUAL_PEN_R 255 
#define RESIDUAL_PEN_G 0 
#define RESIDUAL_PEN_B 0 
 
#define GENERIC_FONT_SIZE 16 
#define BAGGAGE_FONT_SIZE 12 
 
class CElement :  
 public CGeometry/*, public CDialog*/ 
{ 
public: 
 CElement(void); 
 virtual ~CElement(void); // Must be virtual, so that 
individual desctrutors of 
        // the derived classes 
are called when CConModView's  
        // destructor tries to 
close the session 
 
 // PARAMETERS OVERRIDEN IN BOTH CNode AND CEdge CLASSES 
 bool IsHighlighted; 
 bool IsSelected; 
 bool IsResidual; 
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 CPoint GeometricCenter;  
 CPoint Anchors[16]; 
 CPoint AnchorsForBaggageFlows[16]; 
  
 //CString GivenName;  // Unnecessary - the individual 
classes need their own 
        // GivenName attribute, 
because the dilaog constructor 
        // needs a GivenName 
that is not inherited.   
 
 
 int PenR, PenG, PenB; 
 int BrushR, BrushG, BrushB; 
 
 int GrabHandle;  // Stores where (Head, Tail, Center) an 
element is grabbed by the mouse 
 virtual void DrawOnDC(CDC* pDC); 
 
 //int ReasoningOption; 
  enum{QUALITATIVE_CONSERVATION,  
    QUALITATIVE_IRREVERSIBILITY, 
    QUANTITATIVE_EFFICIENCY, 
    QUANTITATIVE_POWERREQUIRED}; 
 
 // PARAMETERS OVERRIDEN IN CEDGE:  TOPOLOGY DATA 
 CPoint TailPoint, HeadPoint; 
 int HeadBrushR, HeadBrushG, HeadBrushB; 
 int TailBrushR, TailBrushG, TailBrushB; 
 CElement* pHeadElem; 
 CElement* pTailElem; 
}; 
 

 

#pragma once 
#include "Template.h" 
 
 
// CEnergize_M_Template dialog 
 
class CEnergize_M_Template : public CDialog, public CTemplate 
{ 
 DECLARE_DYNAMIC(CEnergize_M_Template) 
 
public: 
 CEnergize_M_Template(CWnd* pParent = NULL,  
  CPoint InsertionPoint = (500,500),  
  CString* pCounterString_F = NULL,  
  CString* pCounterString_InM = NULL,  
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  CString* pCounterString_OutM = NULL,  
  CString* pCounterString_InE = NULL,  
  CString* pCounterString_OutE = NULL); 
 virtual ~CEnergize_M_Template(); 
 
// Dialog Data 
 enum { IDD = IDD_ENERGIZE_M_TEMPLATE }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: // Instances that comprise the Convert_E template 
 CFunction* pFunctionBlock; 
 CEnergy* pEnergy_InE; 
 CEnergy* pEnergy_OutE; 
 CMaterial* pMaterial_InM; 
 CMaterial* pMaterial_OutM; 
}; 

 

#pragma once 
#include "edge.h" 
#include "afxcmn.h" 
#include "afxwin.h" 
 
// CEnergy dialog 
 
class CEnergy :  
 public CEdge, public CDialog 
{ 
 DECLARE_DYNAMIC(CEnergy) 
 
public: 
 CEnergy(CWnd* pParent = NULL,  
  CPoint TailClick = (0,0,0),  
  CPoint HeadClick = (100,100,0),  
  CString* pCounterString = NULL, 
  int ReasOpt = QUALITATIVE_CONSERVATION);   // standard 
constructor 
  
 virtual ~CEnergy();  
 
// Dialog Data 
 enum { IDD = IDD_ENERGY };  
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
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 DECLARE_MESSAGE_MAP() 
 
public: 
 
 CList<CEnergy*, CEnergy*> ChildList; 
 CList<CEnergy*, CEnergy*> ParentList; 
 CString GivenName; 
 void DrawOnDC(CDC*pDC);  
 int UI_IsResidual; 
 BOOL OnInitDialog(); 
 void OnOK(); 
 CTreeCtrl* pEnergyTaxonomy; 
 HTREEITEM hEnergyType; 
 CString EnergyTypeName;  
 
 // Quantitative data members 
 double Power; 
 double UI_ForceTerm, UI_RateTerm; 
 int ReasoningOption; 
 
}; 
 

 

#pragma once 
#include "node.h" 
 
#define ENV_SIZE 25 
 
#define ENV_BRUSH_R 255 
#define ENV_BRUSH_G 220 
#define ENV_BRUSH_B 210 
 
// CEnv dialog 
 
class CEnv :  
 public CNode, public CDialog 
{ 
 DECLARE_DYNAMIC(CEnv) 
 
public: 
 CEnv(CWnd* pParent = NULL, CPoint InsertionPoint = (500,500,0), 
CString* pCounterString = NULL);   // standard constructor 
 virtual ~CEnv(); 
 
// Dialog Data 
 enum { IDD = IDD_ENV }; 
 
protected: 



 

 476  

 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
public: 
 // Environment name within block 
 CString GivenName; 
  
 // Drawing functions 
 void ComputeBlockCoordinates(); 
 void DrawOnDC(CDC* pDC); 
}; 

 

#pragma once 
#include "node.h" 
 
#define BLOCK_LENGTH 80 
#define BLOCK_HEIGHT 40 
 
#define FUNCTION_BRUSH_R 150 
#define FUNCTION_BRUSH_G 175 
#define FUNCTION_BRUSH_B 200 
 
// CFunction dialog 
 
class CFunction :  
 public CNode, public CRect, public CDialog 
{ 
 DECLARE_DYNAMIC(CFunction) 
 
public: 
 CFunction(CWnd* pParent = NULL, CPoint InsertionPoint = 
(500,500,0), CString* pCounterString = NULL);   // standard constructor 
 virtual ~CFunction(); 
 
// Dialog Data 
 enum {IDD = IDD_FUNCTION}; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
public: 
 
 // Function name within block 
 CString GivenName; 
 
 // Drawing functions 
 void ComputeBlockCoordinates(); 
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 void DrawOnDC(CDC* pDC); 
 
 // Quantitative data 
 double Efficiency; 
}; 
 

 

#pragma once 
#include "math.h" 
 
class CGeometry 
{ 
public: 
 CGeometry(void); 
 ~CGeometry(void); 
 
 // Member Functions 
 int RoundToInteger(long n, int t); 
 CPoint SnapToGrid(CPoint p); 
 long distance(CPoint p1, CPoint p2); 
 CPoint* InterpolatePoints(CPoint p1,CPoint p2, double ratio); 
}; 
 

 

// MainFrm.h : interface of the CMainFrame class 
// 
 
 
#pragma once 
 
class CMainFrame : public CMDIFrameWnd 
{ 
 DECLARE_DYNAMIC(CMainFrame) 
public: 
 CMainFrame(); 
 
// Attributes 
public: 
 
// Operations 
public: 
 
// Overrides 
public: 
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
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// Implementation 
public: 
 virtual ~CMainFrame(); 
#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
 
protected:  // control bar embedded members 
 CStatusBar  m_wndStatusBar; 
 CToolBar    m_wndToolBar; 
 // Conmod custom toolbars 
 CToolBar m_primitivesToolBar; 
 CToolBar m_featuresToolBar; 
 CToolBar m_reasoningToolBar; 
 
// Generated message map functions 
protected: 
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 
 DECLARE_MESSAGE_MAP() 
}; 

 

#pragma once 
#include "edge.h" 
 
// CMaterial dialog 
 
class CMaterial :  
 public CEdge, public CDialog  
{ 
 DECLARE_DYNAMIC(CMaterial) 
 
public: 
 CMaterial(CWnd* pParent = NULL,  
  CPoint TailClick = (0,0,0),  
  CPoint HeadClick = (100,100,0),  
  CString* pCounterString = NULL, 
  int ReasOpt = QUALITATIVE_CONSERVATION);   // standard 
constructor 
 virtual ~CMaterial(); 
 
// Dialog Data 
 enum { IDD = IDD_MATERIAL }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
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public: 
 CList<CMaterial*, CMaterial*> ChildList; 
 CList<CMaterial*, CMaterial*> ParentList; 
 CString GivenName; 
 void DrawOnDC(CDC*pDC); 
 int UI_IsResidual; 
 BOOL OnInitDialog(); 
 void OnOK(); 
 CTreeCtrl* pMaterialTaxonomy; 
 HTREEITEM hMaterialType; 
 CString MaterialTypeName; 
 int ReasoningOption; 
}; 

 

#pragma once 
#include "afxwin.h" 
#ifndef _MEMDC_H_ 
#define _MEMDC_H_ 
  
////////////////////////////////////////////////// 
 
// CMemDC - memory DC 
// 
// Author: Keith Rule 
// Email:  keithr@europa.com 
// Copyright 1996-2002, Keith Rule 
// 
// You may freely use or modify this code provided this 
// Copyright is included in all derived versions. 
// 
// History - 10/3/97 Fixed scrolling bug. 
//               Added print support. - KR 
// 
//       11/3/99 Fixed most common complaint. Added 
//            background color fill. - KR 
// 
//       11/3/99 Added support for mapping modes other than 
//            MM_TEXT as suggested by Lee Sang Hun. - KR 
// 
//       02/11/02 Added support for CScrollView as supplied 
//             by Gary Kirkham. - KR 
// 
// This class implements a memory Device Context which allows 
// flicker free drawing. 
  
class CMemDC : public CDC { 
private:        
    CBitmap    m_bitmap;        // Offscreen bitmap 
    CBitmap*       m_oldBitmap; // bitmap originally found in CMemDC 
    CDC*       m_pDC;           // Saves CDC passed in constructor 
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    CRect      m_rect;          // Rectangle of drawing area. 
    BOOL       m_bMemDC;        // TRUE if CDC really is a Memory DC. 
 
public: 
    CMemDC(CDC* pDC, const CRect* pRect = NULL) : CDC() 
    { 
        ASSERT(pDC != NULL);  
  
        // Some initialization 
 
        m_pDC = pDC; 
        m_oldBitmap = NULL; 
        m_bMemDC = !pDC->IsPrinting(); 
  
        // Get the rectangle to draw 
 
        if (pRect == NULL) { 
             pDC->GetClipBox(&m_rect); 
        } else { 
             m_rect = *pRect; 
        } 
  
        if (m_bMemDC) { 
             // Create a Memory DC 
 
             CreateCompatibleDC(pDC); 
             pDC->LPtoDP(&m_rect); 
  
             m_bitmap.CreateCompatibleBitmap(pDC, m_rect.Width(),  
                                                  m_rect.Height()); 
             m_oldBitmap = SelectObject(&m_bitmap); 
  
             SetMapMode(pDC->GetMapMode()); 
  
             SetWindowExt(pDC->GetWindowExt()); 
             SetViewportExt(pDC->GetViewportExt()); 
  
             pDC->DPtoLP(&m_rect); 
             SetWindowOrg(m_rect.left, m_rect.top); 
        } else { 
             // Make a copy of the relevent parts of the current  
 
             // DC for printing 
 
             m_bPrinting = pDC->m_bPrinting; 
             m_hDC       = pDC->m_hDC; 
             m_hAttribDC = pDC->m_hAttribDC; 
        } 
  
        // Fill background  
 
        FillSolidRect(m_rect, pDC->GetBkColor()); 
    } 
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    ~CMemDC()       
    {           
        if (m_bMemDC) { 
             // Copy the offscreen bitmap onto the screen. 
 
             m_pDC->BitBlt(m_rect.left, m_rect.top,  
                           m_rect.Width(),  m_rect.Height(), 
                  this, m_rect.left, m_rect.top, SRCCOPY);             
              
             //Swap back the original bitmap. 
 
             SelectObject(m_oldBitmap);         
        } else { 
             // All we need to do is replace the DC with an illegal 
 
             // value, this keeps us from accidentally deleting the  
 
             // handles associated with the CDC that was passed to  
 
             // the constructor.               
 
             m_hDC = m_hAttribDC = NULL; 
        }        
    } 
     
    // Allow usage as a pointer     
 
    CMemDC* operator->()  
    { 
        return this; 
    }        
  
    // Allow usage as a pointer     
 
    operator CMemDC*()  
    { 
        return this; 
    } 
}; 
  
#endif 

 

#pragma once 
#include "element.h" 
 
class CNode :  
 public CElement 
{ 
public: 
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 CNode(void); 
 virtual ~CNode(void); // Must be virtual, so that individual 
desctrutors of 
       // the derived classes are 
called when CConModView's  
       // destructor tries to close 
the session 
  
 // Parameters to check for dangling functions and env instances 
 bool NoInputAttached; 
 bool NoOutputAttached; 
 
 void ComputeBlockCoordinates(); 
}; 

 

//{{NO_DEPENDENCIES}} 
// Microsoft Visual C++ generated include file. 
// Used by ConMod.rc 
// 
#define IDD_ABOUTBOX                    100 
#define IDP_OLE_INIT_FAILED             100 
#define IDS_STRING101                   101 
#define IDS_STRING102                   102 
#define IDD_CONVERT_E_TEMPLATE          104 
#define IDD_Conduct_E_TEMPLATE          105 
#define IDD_ENERGIZE_M_TEMPLATE         106 
#define IDD_DISTRIBUTE_E_TEMPLATE       107 
#define IDD_DEEN_M_TEMPLATE             108 
#define IDR_MAINFRAME                   128 
#define IDR_ConceptTYPE                 129 
#define IDC_CROSSHAIR                   130 
#define IDR_PRIMITIVES                  131 
#define IDD_FUNCTION                    138 
#define IDD_MATERIAL                    139 
#define IDD_ENERGY                      140 
#define IDD_SIGNAL                      141 
#define IDD_ENV                         142 
#define IDR_FEATURES                    143 
#define IDR_REASONING                   145 
#define IDR_HTML1                       147 
#define IDR_HTML2                       148 
#define IDC_FUNCTION_NAME               1006 
#define IDC_MATERIAL_NAME               1010 
#define IDC_ENERGY_NAME                 1011 
#define IDC_SIGNAL_NAME                 1012 
#define IDC_ENV_NAME                    1013 
#define IDC_RESIDUAL_ENERGY             1014 
#define IDC_RESIDUAL_MATERIAL           1021 
#define IDC_FORCE_TERM                  1023 
#define IDC_RATE_TERM                   1024 
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#define IDC_STATIC1                     1025 
#define IDC_STATIC2                     1026 
#define IDC_FORCE_STATIC_TEXT           1031 
#define IDC_FORCE_STATIC_TEXT2          1032 
#define IDC_RATE_STATIC_TEXT            1032 
#define ID_ADD_FUNCTION                 32779 
#define ID_ADD_SIGNAL                   32782 
#define ID_ADD_ENERGY                   32783 
#define ID_ADD_MATERIAL                 32784 
#define ID_ADD_ENV                      32785 
#define ID_IMPORT                       32786 
#define ID_CONVERT_E                    32787 
#define ID_BUTTON32789                  32789 
#define ID_CONDUCT_E_TEMPLATE           32789 
#define ID_ENERGIZE_M_TEMPLATE          32790 
#define ID_DISTRIBUTE_E_TEMPLATE        32791 
#define ID_BUTTON32792                  32792 
#define ID_DEEN_M_TEMPLATE              32792 
#define ID_BUTTON32794                  32794 
#define ID_QUANTITATIVE                 32795 
#define ID_REASONINGOPTION_QUALITATIVE  32796 
#define ID_REASONINGOPTION_POWERREQUIRED 32798 
#define ID_QUALITATIVE                  32799 
#define ID_HELP_CONMODDOCUMENTATION     32801 
#define ID_Menu                         32802 
#define ID_BUTTON32805                  32805 
#define ID_QUANTITATIVE_EFFICIENCY      32807 
#define ID_QUANTITATIVE_POWERREQUIRED   32808 
#define ID_QUALITATIVE_CONSERVATIN      32809 
#define ID_QUALITATIVE_IRREVERSIBILITY  32810 
#define ID_QUALITATIVE_CONSERVATION     32811 
#define ID_QUALITATIVE_CONSERVATI       32812 
 
// Next default values for new objects 
//  
#ifdef APSTUDIO_INVOKED 
#ifndef APSTUDIO_READONLY_SYMBOLS 
#define _APS_NEXT_RESOURCE_VALUE        149 
#define _APS_NEXT_COMMAND_VALUE         32813 
#define _APS_NEXT_CONTROL_VALUE         1032 
#define _APS_NEXT_SYMED_VALUE           109 
#endif 
#endif 
 

 

#pragma once 
#include "edge.h" 
 
// CSignal dialog 
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class CSignal :  
 public CEdge, public CDialog  
{ 
 DECLARE_DYNAMIC(CSignal) 
 
public: 
 CSignal(CWnd* pParent = NULL, CPoint TailClick = (0,0,0), CPoint 
HeadClick = (100,100,0), CString* pCounterString = NULL);   // standard 
constructor 
 virtual ~CSignal(); 
 
// Dialog Data 
 enum { IDD = IDD_SIGNAL }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
 
public: 
 //CList<CSignal*, CSignal*> ChildList; 
 //CList<CSignal*, CSignal*> ParentList; 
 CString GivenName; 
 void DrawOnDC(CDC*pDC); 
}; 

 

// stdafx.h : include file for standard system include files, 
// or project specific include files that are used frequently, 
// but are changed infrequently 
 
#pragma once 
 
#ifndef _SECURE_ATL 
#define _SECURE_ATL 1 
#endif 
 
#ifndef VC_EXTRALEAN 
#define VC_EXTRALEAN            // Exclude rarely-used stuff from 
Windows headers 
#endif 
 
#include "targetver.h" 
#include "memdc.h"    // Flicker prevention 
 
#define _ATL_CSTRING_EXPLICIT_CONSTRUCTORS      // some CString 
constructors will be explicit 
 
// turns off MFC's hiding of some common and often safely ignored 
warning messages 
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#define _AFX_ALL_WARNINGS 
 
#include <afxwin.h>         // MFC core and standard components 
#include <afxext.h>         // MFC extensions 
 
 
#include <afxdisp.h>        // MFC Automation classes 
 
 
 
#ifndef _AFX_NO_OLE_SUPPORT 
#include <afxdtctl.h>           // MFC support for Internet Explorer 4 
Common Controls 
#endif 
#ifndef _AFX_NO_AFXCMN_SUPPORT 
#include <afxcmn.h>                     // MFC support for Windows 
Common Controls 
#endif // _AFX_NO_AFXCMN_SUPPORT 
 
#ifdef _UNICODE 
#if defined _M_IX86 
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchitecture='x86' publicKeyToken='6595b64144ccf1df' 
language='*'\"") 
#elif defined _M_IA64 
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df' 
language='*'\"") 
#elif defined _M_X64 
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' 
language='*'\"") 
#else 
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchitecture='*' publicKeyToken='6595b64144ccf1df' 
language='*'\"") 
#endif 
#endif 

 

#pragma once 
 
// The following macros define the minimum required platform.  The 
minimum required platform 
// is the earliest version of Windows, Internet Explorer etc. that has 
the necessary features to run  
// your application.  The macros work by enabling all features 
available on platform versions up to and  
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// including the version specified. 
 
// Modify the following defines if you have to target a platform prior 
to the ones specified below. 
// Refer to MSDN for the latest info on corresponding values for 
different platforms. 
#ifndef WINVER                          // Specifies that the minimum 
required platform is Windows Vista. 
#define WINVER 0x0600           // Change this to the appropriate value 
to target other versions of Windows. 
#endif 
 
#ifndef _WIN32_WINNT            // Specifies that the minimum required 
platform is Windows Vista. 
#define _WIN32_WINNT 0x0600     // Change this to the appropriate value 
to target other versions of Windows. 
#endif 
 
#ifndef _WIN32_WINDOWS          // Specifies that the minimum required 
platform is Windows 98. 
#define _WIN32_WINDOWS 0x0410 // Change this to the appropriate value 
to target Windows Me or later. 
#endif 
 
#ifndef _WIN32_IE                       // Specifies that the minimum 
required platform is Internet Explorer 7.0. 
#define _WIN32_IE 0x0700        // Change this to the appropriate value 
to target other versions of IE. 
#endif 
 

 

#pragma once 
 
#include "Element.h" 
#include "Function.h" 
#include "Env.h" 
#include "Material.h" 
#include "Energy.h" 
#include "Signal.h" 
 
#define TEMPLATE_FLOW_LENGTH 120 
 
 
// CTemplate 
 
class CTemplate : public CElement 
{ 
public: 
 CTemplate(); 
 virtual ~CTemplate(); 
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}; 
 
/* 
 This is a high-level abstract class for all templates of the 
second layer. 
 The purpose is to provide one identity so that instances all 
Layer-2 versb, such as 
 Covnert_E and Energize_M, can be stored in a single list called 
CTemplateList,  
 declared in the Doc class as usual.  The template instances are 
not used in the 
 model in their own identity, they are only required to 
instnatiate the elements 
 such as functions and flows WITHIN the templates using one 
instance call in  
 View, such as in functions AddCovnert_E.  After that, the 
elements are used, while  
 the template instance must be deleted.  To facilitate this 
delete, the templates 
 are stored in this CTemplateList, which is emptied during 
application exit (View class 
 desctrictor). 
*/ 
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Appendix D. Source Files for the ConMod Application  

// ChildFrm.cpp : implementation of the CChildFrame class 
// 
#include "stdafx.h" 
#include "ConMod.h" 
 
#include "ChildFrm.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CChildFrame 
 
IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd) 
 
BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd) 
END_MESSAGE_MAP() 
 
 
// CChildFrame construction/destruction 
 
CChildFrame::CChildFrame() 
{ 
 // TODO: add member initialization code here 
} 
 
CChildFrame::~CChildFrame() 
{ 
} 
 
BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/, 
CCreateContext* pContext) 
{ 
 return m_wndSplitter.Create(this, 
  2, 2,   // TODO: adjust the number of rows, 
columns 
  CSize(10, 10), // TODO: adjust the minimum pane size 
  pContext); 
} 
 
BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 // TODO: Modify the Window class or styles here by modifying the 
CREATESTRUCT cs 
 if( !CMDIChildWnd::PreCreateWindow(cs) ) 
  return FALSE; 
  
 cs.style |= WS_MAXIMIZE; // This does not maximize the child 
window without the next line 



 

 489  

 cs.style |= WS_VISIBLE; // These pipe characters (|) are very 
important - try deleting them! 
 return TRUE; 
} 
 
 
// CChildFrame diagnostics 
 
#ifdef _DEBUG 
void CChildFrame::AssertValid() const 
{ 
 CMDIChildWnd::AssertValid(); 
} 
 
void CChildFrame::Dump(CDumpContext& dc) const 
{ 
 CMDIChildWnd::Dump(dc); 
} 
 
#endif //_DEBUG 
 
 
// CChildFrame message handlers 
 

 

// Conduct_E_Template.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Conduct_E_Template.h" 
 
 
// CConduct_E_Template dialog 
 
IMPLEMENT_DYNAMIC(CConduct_E_Template, CDialog) 
 
CConduct_E_Template::CConduct_E_Template(CWnd* pParent /*= NULL*/, 
CPoint InsertionPoint /*= (500,500)*/, 
        CString* pCounterString_F /*= NULL*/, 
CString* pCounterString_InE /*= NULL*/,  
        CString* pCounterString_OutE /*= 
NULL*/, CString* pCounterString_OutE_Res /*= NULL*/) 
 : CDialog(CConduct_E_Template::IDD, pParent) 
{ 
 pFunctionBlock = new CFunction(NULL, InsertionPoint, 
pCounterString_F); 
 
 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
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 CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y + 
TEMPLATE_FLOW_LENGTH); 
 
 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, 
pCounterString_InE); 
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE, 
pCounterString_OutE); 
 pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint, 
HeadOfOutE_Res, pCounterString_OutE_Res); 
 
 pEnergy_InE->pHeadElem = pFunctionBlock; 
 pEnergy_OutE->pTailElem = pFunctionBlock; 
 pEnergy_OutE_Res->pTailElem = pFunctionBlock; 
 pEnergy_OutE_Res->UI_IsResidual = true; 
} 
 
CConduct_E_Template::~CConduct_E_Template() 
{ 
} 
 
void CConduct_E_Template::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CConduct_E_Template, CDialog) 
END_MESSAGE_MAP() 
 
 
// CConduct_E_Template message handlers 

 

// ConMod.cpp : Defines the class behaviors for the application. 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "MainFrm.h" 
 
#include "ChildFrm.h" 
#include "ConModDoc.h" 
#include "ConModView.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 



 

 491  

// CConModApp 
 
BEGIN_MESSAGE_MAP(CConModApp, CWinApp) 
 ON_COMMAND(ID_APP_ABOUT, &CConModApp::OnAppAbout) 
 // Standard file based document commands 
 ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew) 
 ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen) 
 // Standard print setup command 
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup) 
END_MESSAGE_MAP() 
 
 
// CConModApp construction 
 
CConModApp::CConModApp() 
{ 
 // TODO: add construction code here, 
 // Place all significant initialization in InitInstance 
 EnableHtmlHelp(); 
} 
 
 
// The one and only CConModApp object 
 
CConModApp theApp; 
 
 
// CConModApp initialization 
 
BOOL CConModApp::InitInstance() 
{ 
 // InitCommonControlsEx() is required on Windows XP if an 
application 
 // manifest specifies use of ComCtl32.dll version 6 or later to 
enable 
 // visual styles.  Otherwise, any window creation will fail. 
 INITCOMMONCONTROLSEX InitCtrls; 
 InitCtrls.dwSize = sizeof(InitCtrls); 
 // Set this to include all the common control classes you want to 
use 
 // in your application. 
 InitCtrls.dwICC = ICC_WIN95_CLASSES; 
 InitCommonControlsEx(&InitCtrls); 
 
 CWinApp::InitInstance(); 
 
 // Initialize OLE libraries 
 if (!AfxOleInit()) 
 { 
  AfxMessageBox(IDP_OLE_INIT_FAILED); 
  return FALSE; 
 } 
 AfxEnableControlContainer(); 
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 // Standard initialization 
 // If you are not using these features and wish to reduce the 
size 
 // of your final executable, you should remove from the following 
 // the specific initialization routines you do not need 
 // Change the registry key under which our settings are stored 
 // TODO: You should modify this string to be something 
appropriate 
 // such as the name of your company or organization 
 SetRegistryKey(_T("Local AppWizard-Generated Applications")); 
 LoadStdProfileSettings(4);  // Load standard INI file options 
(including MRU) 
 // Register the application's document templates.  Document 
templates 
 //  serve as the connection between documents, frame windows and 
views 
 CMultiDocTemplate* pDocTemplate; 
 pDocTemplate = new CMultiDocTemplate(IDR_ConceptTYPE, 
  RUNTIME_CLASS(CConModDoc), 
  RUNTIME_CLASS(CChildFrame), // custom MDI child frame 
  RUNTIME_CLASS(CConModView)); 
 if (!pDocTemplate) 
  return FALSE; 
 AddDocTemplate(pDocTemplate); 
 
 // create main MDI Frame window 
 CMainFrame* pMainFrame = new CMainFrame; 
 if (!pMainFrame || !pMainFrame->LoadFrame(IDR_MAINFRAME)) 
 { 
  delete pMainFrame; 
  return FALSE; 
 } 
 m_pMainWnd = pMainFrame; 
 // call DragAcceptFiles only if there's a suffix 
 //  In an MDI app, this should occur immediately after setting 
m_pMainWnd 
 // Enable drag/drop open 
 m_pMainWnd->DragAcceptFiles(); 
 
 // Enable DDE Execute open 
 EnableShellOpen(); 
 RegisterShellFileTypes(TRUE); 
 
 // Parse command line for standard shell commands, DDE, file open 
 CCommandLineInfo cmdInfo; 
 ParseCommandLine(cmdInfo); 
 
 
 // Dispatch commands specified on the command line.  Will return 
FALSE if 
 // app was launched with /RegServer, /Register, /Unregserver or 
/Unregister. 
 if (!ProcessShellCommand(cmdInfo)) 
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  return FALSE; 
 // The main window has been initialized, so show and update it 
 pMainFrame->ShowWindow(m_nCmdShow); 
 pMainFrame->UpdateWindow(); 
 
 return TRUE; 
} 
 
 
 
// CAboutDlg dialog used for App About 
 
class CAboutDlg : public CDialog 
{ 
public: 
 CAboutDlg(); 
 
// Dialog Data 
 enum { IDD = IDD_ABOUTBOX }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
// Implementation 
protected: 
 DECLARE_MESSAGE_MAP() 
}; 
 
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 
{ 
} 
 
void CAboutDlg::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX);  
} 
 
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
END_MESSAGE_MAP()  
 
// App command to run the dialog 
void CConModApp::OnAppAbout() 
{ 
 CAboutDlg aboutDlg; 
 aboutDlg.DoModal(); 
} 
 
 
// CConModApp message handlers 
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// ConModDoc.cpp : implementation of the CConModDoc class 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
 
#include "ConModDoc.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CConModDoc 
 
IMPLEMENT_DYNCREATE(CConModDoc, CDocument) 
 
BEGIN_MESSAGE_MAP(CConModDoc, CDocument) 
END_MESSAGE_MAP() 
 
 
// CConModDoc construction/destruction 
 
CConModDoc::CConModDoc() 
{ 
 // TODO: add one-time construction code here 
 
} 
 
CConModDoc::~CConModDoc() 
{ 
} 
 
BOOL CConModDoc::OnNewDocument() 
{ 
 if (!CDocument::OnNewDocument()) 
  return FALSE; 
 
 // TODO: add reinitialization code here 
 // (SDI documents will reuse this document) 
 
 return TRUE; 
} 
 
 
 
 
// CConModDoc serialization 
 
void CConModDoc::Serialize(CArchive& ar) 
{ 
 if (ar.IsStoring()) 
 { 
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  // TODO: add storing code here 
 } 
 else 
 { 
  // TODO: add loading code here 
 } 
} 
 
 
// CConModDoc diagnostics 
 
#ifdef _DEBUG 
void CConModDoc::AssertValid() const 
{ 
 CDocument::AssertValid(); 
} 
 
void CConModDoc::Dump(CDumpContext& dc) const 
{ 
 CDocument::Dump(dc); 
} 
#endif //_DEBUG 
 
 
// CConModDoc commands 

 

// ConModView.cpp : implementation of the CConModView class 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "ConModDoc.h" 
#include "ConModView.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// MESSAGE MAPS 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
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IMPLEMENT_DYNCREATE(CConModView, CView) 
 
BEGIN_MESSAGE_MAP(CConModView, CView) 
  
 // Standard printing commands 
 ON_COMMAND(ID_FILE_PRINT, &CView::OnFilePrint) 
 ON_COMMAND(ID_FILE_PRINT_DIRECT, &CView::OnFilePrint) 
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, &CView::OnFilePrintPreview) 
 
 // ConMod Main Menu - Reasoning Options Message Handlers 
 ON_COMMAND(ID_QUALITATIVE_CONSERVATION, 
&CConModView::OnQualitativeConservation) 
 ON_COMMAND(ID_QUALITATIVE_IRREVERSIBILITY, 
&CConModView::OnQualitativeIrreversibility) 
 ON_COMMAND(ID_QUANTITATIVE_EFFICIENCY, 
&CConModView::OnQuantitativeEfficiency) 
 ON_COMMAND(ID_QUANTITATIVE_POWERREQUIRED, 
&CConModView::OnQuantitativePowerRequired) 
 
 // ConMod PRIMITIVES Toolbar Commands 
 ON_COMMAND(ID_ADD_FUNCTION, Handler_AddFunction)  
 ON_COMMAND(ID_ADD_MATERIAL, Handler_AddMaterial)  
 ON_COMMAND(ID_ADD_ENERGY, Handler_AddEnergy) 
 ON_COMMAND(ID_ADD_SIGNAL, Handler_AddSignal) 
 ON_COMMAND(ID_ADD_ENV, Handler_AddEnv) 
 
 // ConMod FEATURES Toolbar Commands 
 ON_COMMAND(ID_CONVERT_E, Handler_AddConvert_E_Template)  
 ON_COMMAND(ID_CONDUCT_E_TEMPLATE, Handler_AddConduct_E_Template)  
 ON_COMMAND(ID_ENERGIZE_M_TEMPLATE, 
Handler_AddEnergize_M_Template)  
 ON_COMMAND(ID_DISTRIBUTE_E_TEMPLATE, 
Handler_AddDistribute_E_Template)  
 ON_COMMAND(ID_DEEN_M_TEMPLATE, Handler_AddDeEn_M_Template)  
 
 // ConMod REASONING Toolbar Commands 
 ON_COMMAND(ID_QUALITATIVE, Handler_Qualitative)  
 ON_COMMAND(ID_QUANTITATIVE, Handler_Quantitative)  
 
 // ConMod Mouse Event Commands 
 ON_WM_LBUTTONDOWN() 
 ON_WM_LBUTTONUP() 
 ON_WM_RBUTTONDOWN() 
 ON_WM_RBUTTONUP() 
 ON_WM_MOUSEMOVE() 
 ON_WM_LBUTTONDBLCLK() 
 
 // Flicker prevention of the screen 
 ON_WM_ERASEBKGND() 
 
 // ConModKeyboard Event Commands 
 ON_COMMAND(ID_EDIT_CUT, Handler_EditCut) 
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 ON_WM_MBUTTONUP() 
END_MESSAGE_MAP() 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// CONSTRUCTOR and DESTRUCTOR 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
CConModView::CConModView() 
{ 
 ReasoningOption = QUALITATIVE_CONSERVATION; 
 ContinueReasoning = true; 
  
 WhatToDo = ESCAPE; 
 LButtonIsDown = false; 
 RButtonIsDown = false; 
 pTailElemDynamic = NULL; 
 pHeadElemDynamic = NULL; 
 TailNodeSelected = false; 
 pElementToBeDeleted = NULL; 
 
 // Conservation Checking Messages 
 Msg_OrphanFlow = ""; 
 Msg_BarrenFlow = ""; 
 Msg_OneInManyOut_M = ""; 
 Msg_OneInManyOut_E = ""; 
 Msg_ManyInOneOut_M = ""; 
 Msg_ManyInOneOut_E = ""; 
 Msg_ManyInManyOut = ""; 
 Msg_MissingResidualEnergy = ""; 
 Msg_MaterialChangeWithoutEnergy = ""; 
 
 Counter_F = 0; 
 Counter_Env = 0; 
 Counter_M = 0; 
 Counter_E = 0; 
 Counter_S = 0; 
 
 GrammarCheckRequired = true; 
} 
 
CConModView::~CConModView() 
{ 
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 CConModDoc* pDoc = GetDocument(); 
 
 for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  delete pDoc->CElementList.GetAt(pos); 
  pDoc->CElementList.GetNext(pos); 
 } 
 pDoc->CFunctionList.RemoveAll(); 
 pDoc->CEnvList.RemoveAll(); 
 pDoc->CNodeList.RemoveAll(); 
 pDoc->CMaterialList.RemoveAll(); 
 pDoc->CEnergyList.RemoveAll(); 
 pDoc->CSignalList.RemoveAll(); 
 pDoc->CEdgeList.RemoveAll(); 
 pDoc->CElementList.RemoveAll(); 
 
 for (POSITION pos = pDoc->CTemplateList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  delete pDoc->CTemplateList.GetAt(pos); 
  pDoc->CTemplateList.GetNext(pos); 
 } 
 pDoc->CTemplateList.RemoveAll(); 
} 
 
BOOL CConModView::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 // TODO: Modify the Window class or styles here by modifying 
 //  the CREATESTRUCT cs 
 cs.lpszClass = AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | 
CS_VREDRAW, 
  AfxGetApp()->LoadCursor(IDC_CROSSHAIR), (HBRUSH) 
(COLOR_WINDOW + 1)); 
 
 return CView::PreCreateWindow(cs); 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// DRAWING:  OnDraw FUNCTION 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::OnDraw(CDC* dc) 
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{ 
 CMemDC pDC(dc); 
 
 CConModDoc* pDoc = GetDocument(); 
 ASSERT_VALID(pDoc); 
 if (!pDoc) 
  return;  
 
 //===============================================================
========== 
 // Check for dangling CNodes (CFunctions and CEnvs) 
 //===============================================================
========== 
 
 if (pDoc->CNodeList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CNodeList.GetHeadPosition(); pos 
!= NULL; ) 
  { 
   pDoc->CNodeList.GetAt(pos)->NoInputAttached = true; 
   pDoc->CNodeList.GetAt(pos)->NoOutputAttached = true; 
 
   for (POSITION pos_inner = pDoc-
>CEdgeList.GetHeadPosition(); pos_inner != NULL; ) 
   { 
    if (pDoc->CEdgeList.GetAt(pos_inner)->pTailElem 
== pDoc->CNodeList.GetAt(pos)) 
     pDoc->CNodeList.GetAt(pos)-
>NoOutputAttached = false; 
    if (pDoc->CEdgeList.GetAt(pos_inner)->pHeadElem 
== pDoc->CNodeList.GetAt(pos)) 
     pDoc->CNodeList.GetAt(pos)-
>NoInputAttached = false; 
    pDoc->CEdgeList.GetNext(pos_inner); 
   } 
 
   pDoc->CNodeList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for baggage flows (incoming and outgoing) 
 //===============================================================
========== 
 
 if (pDoc->CEdgeList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos 
!= NULL; ) 
  { 
   if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem) &&  
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    (pDoc->CEdgeList.GetAt(pos)->pHeadElem-
>pTailElem == pDoc->CEdgeList.GetAt(pos)->pTailElem) && 
    ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pTailElem)) 
    pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsOutgoingBaggage = true; 
   else pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsOutgoingBaggage = false; 
 
   if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&  
    (pDoc->CEdgeList.GetAt(pos)->pTailElem-
>pHeadElem == pDoc->CEdgeList.GetAt(pos)->pHeadElem) && 
    ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem)) 
    pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsIncomingBaggage = true; 
   else pDoc->CEdgeList.GetAt(pos)-
>ThisFlowIsIncomingBaggage = false; 
 
   pDoc->CEdgeList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Update the ReasoningOption variable in Energy flows, so that 
dialogs 
 // show the correct reasoning option check box through 
ONInitDialog 
 //===============================================================
========== 
 if (pDoc->CEnergyList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   pDoc->CEnergyList.GetAt(pos)->ReasoningOption = this-
>ReasoningOption; 
   pDoc->CElementList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Update the ReasoningOption variable in Material flows, so that 
dialogs 
 // show the correct reasoning option check box through 
ONInitDialog 
 //===============================================================
========== 
 if (pDoc->CMaterialList.IsEmpty() == false) 
 { 
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  for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   pDoc->CMaterialList.GetAt(pos)->ReasoningOption = 
this->ReasoningOption; 
   pDoc->CMaterialList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 //===============================================================
========== 
 // Redraw all elements 
 //===============================================================
========== 
 //===============================================================
========== 
 
 if (pDoc->CElementList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CElementList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   pDoc->CElementList.GetAt(pos)->DrawOnDC(pDC); 
   pDoc->CElementList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 //===============================================================
========== 
 // ***************  APPLY GRAMMAR RULES  ****************** 
 //===============================================================
========== 
 //===============================================================
========== 
 
 //===============================================================
========== 
 // Check for uniqueness of GivenName of FUNCTIONS 
 //===============================================================
========== 
 if (pDoc->CFunctionList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); 
pos != pDoc->CFunctionList.GetTailPosition(); ) 
  { 
   if (pDoc->CFunctionList.GetAt(pos)->GivenName == 
pDoc->CFunctionList.GetTail()->GivenName) 
   { 
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    AfxMessageBox("ILLEGAL NAMING :: ABORTING 
INSTANCE.\n\n***** " +  
        pDoc-
>CFunctionList.GetAt(pos)->GivenName +  
        " *****\n\nFunction 
names must be unique."); 
    DeleteElement(pDoc->CFunctionList.GetTail()); 
    return; 
   } 
   pDoc->CFunctionList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for uniqueness of GivenName of ENV 
 //===============================================================
========== 
 if (pDoc->CEnvList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos 
!= pDoc->CEnvList.GetTailPosition(); ) 
  { 
   if (pDoc->CEnvList.GetAt(pos)->GivenName == pDoc-
>CEnvList.GetTail()->GivenName) 
   { 
    AfxMessageBox("ILLEGAL NAMING :: ABORTING 
INSTANCE.\n\n***** " +  
        pDoc-
>CEnvList.GetAt(pos)->GivenName +  
        " *****\n\nEnvironment 
names must be unique."); 
    DeleteElement(pDoc->CEnvList.GetTail()); 
    return; 
   } 
   pDoc->CEnvList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for uniqueness of GivenName of MATERIAL 
 //===============================================================
========== 
 if (pDoc->CMaterialList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); 
pos != pDoc->CMaterialList.GetTailPosition(); ) 
  { 
   if (pDoc->CMaterialList.GetAt(pos)->GivenName == 
pDoc->CMaterialList.GetTail()->GivenName) 
   { 
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    AfxMessageBox("ILLEGAL NAMING :: ABORTING 
INSTANCE.\n\n***** " +  
        pDoc-
>CMaterialList.GetAt(pos)->GivenName +  
        " *****\n\nMaterial 
flow names must be unique."); 
    DeleteElement(pDoc->CMaterialList.GetTail()); 
    return; 
   } 
   pDoc->CMaterialList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for uniqueness of GivenName of ENERGY 
 //===============================================================
========== 
 if (pDoc->CEnergyList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); 
pos != pDoc->CEnergyList.GetTailPosition(); ) 
  { 
   if (pDoc->CEnergyList.GetAt(pos)->GivenName == pDoc-
>CEnergyList.GetTail()->GivenName) 
   { 
    AfxMessageBox("ILLEGAL NAMING :: ABORTING 
INSTANCE.\n\n***** " +  
        pDoc-
>CEnergyList.GetAt(pos)->GivenName +  
        " *****\n\nEnergy flow 
names must be unique."); 
    DeleteElement(pDoc->CEnergyList.GetTail()); 
    return; 
   } 
   pDoc->CEnergyList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for uniqueness of GivenName of NEW SIGNAL 
 //===============================================================
========== 
 if (pDoc->CSignalList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CSignalList.GetHeadPosition(); 
pos != pDoc->CSignalList.GetTailPosition(); ) 
  { 
   if (pDoc->CSignalList.GetAt(pos)->GivenName == pDoc-
>CSignalList.GetTail()->GivenName) 
   { 
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    AfxMessageBox("ILLEGAL NAMING :: ABORTING 
INSTANCE.\n\n***** " +  
        pDoc-
>CSignalList.GetAt(pos)->GivenName +  
        " *****\n\nSignal flow 
names must be unique."); 
    DeleteElement(pDoc->CSignalList.GetTail()); 
    return; 
   } 
   pDoc->CSignalList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for the Env-Flow-Env construct 
 // Check for head node = tail node construct 
 // Check for the Double-Carrier construct 
 // Check for Wrong Carrier Hierarchy, e.g., E carrying M 
 // Check for Carried head != Carrier head construct 
 //===============================================================
========== 
 
 if (pDoc->CEdgeList.IsEmpty() == false) 
 { 
  for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); 
((pos != NULL) && (GrammarCheckRequired)); ) 
  { 
   //========================== 
   // Check for the Env-Flow-Env construct 
   //========================== 
   if (ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&  
    (pDoc->CEdgeList.GetAt(pos)->pTailElem == pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) 
   { 
    GrammarCheckRequired = false; // This call is 
very important. 
    // Without it, the same instance is attmepted 
to delete multiple  
    // times and the system crashes because it does 
not find the  
    // instance the second time around. 
    AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING 
OPERATION. \n\nA flow cannot have the same head and tail node.\n\n(Get 
real - This ain't no FunctionCAD)")); 
 
    // There are two ways to create the Head = Tail 
situation.    
    // (1) At creation time - by selecting the same 
node twice 
    // (2) by dragging an existing signal end to 
two Env's 
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    // These three situations are addressed here.  
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   //========================== 
   // Check for the Env-Flow-Env construct 
   //========================== 
   if (ElementIsEnv(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&  
     ElementIsEnv(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem)) 
   { 
    GrammarCheckRequired = false;  
 
    AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING 
OPERATION. \n\nA flow cannot connect to Env's.")); 
 
    // There are three ways to create the Env-flow-
Env construct:  
    // (1) by adding a flow between two Env 
instances, 
    // (2) by dragging an existing flow end to two 
Env's, and 
    // (3) by adding an Env instance to the end of 
a flow that  
    // already has an Env at the other end.  These 
three situations 
    // are addressed here.   
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
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    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   //========================== 
   // Check for the Double-Carrier construct 
   //========================== 
   if (ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pTailElem) &&  
     ElementIsEdge(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem)) 
   { 
    GrammarCheckRequired = false;  
    AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING 
OPERATION. \n\nA flow cannot have two carriers.")); 
 
    // There are two ways of creating the double-
carrier construct: 
    // (1) At the time of adding a flow, two other 
flows can be selected 
    // (2) by connecting the end of a flow to a 
carrier, while the 
    // other end already has a carrier 
    // Both cases are addressed here. 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
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     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   //========================== 
   // Check for Wrong Carrier Hierarchy 
   //========================== 
   if ( 
    ((ElementIsMaterial(pDoc-
>CEdgeList.GetAt(pos))) &&  
     ((ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) || (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)))) 
    || 
    ((ElementIsEnergy(pDoc->CEdgeList.GetAt(pos))) 
&&  
     ((ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) ||  
      (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) ||  
      (ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) ||  
      (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)))) 
    || 
    ((ElementIsSignal(pDoc->CEdgeList.GetAt(pos))) 
&&  
     ((ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) ||  
      ((ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) || (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos)->pTailElem))))) 
    ) 
   { 
    GrammarCheckRequired = false; 
 
    CString* pCarrierMessage = new CString; 
 
    if (ElementIsMaterial(pDoc-
>CEdgeList.GetAt(pos))) 
     *pCarrierMessage = "Material cannot be 
carried by another flow.  No, not even by another Material."; 
    if (ElementIsEnergy(pDoc-
>CEdgeList.GetAt(pos))) 
     *pCarrierMessage = "Energy can be carried 
by Material only.  Not by another Energy, not by a Signal."; 
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    if (ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos))) 
     *pCarrierMessage = "Signal must be 
carried by a M or E.  It can go ONLY from its carrier to ONLY a Node."; 
 
    AfxMessageBox(_T("ILLEGAL CARRIER HIERACHY :: 
ABORTING OPERATION.\n\n") + *pCarrierMessage); 
 
    delete pCarrierMessage; 
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   //========================== 
   // Check for Carried head != Carrier head construct 
FOR FLOW-to-NODE BAGGAGE 
   //========================== 
   if ( 
     (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) &&  
     (!ElementIsSignal(pDoc-
>CEdgeList.GetAt(pos))) && 
     (ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) &&  
     (pDoc->CEdgeList.GetAt(pos)->pHeadElem != 
pDoc->CEdgeList.GetAt(pos)->pTailElem->pHeadElem) 
    ) 
   { 
    GrammarCheckRequired = false;  
    AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING 
OPERATION. \n\nA carried Energy flow can be input to ONLY the function 
\nthat inputs its carrier.")); 
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    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   //========================== 
   // Check for Carried head != Carrier head construct 
for NODE-to-FLOW BAGGAGE 
   //========================== 
   if ( 
     (ElementIsNode(pDoc-
>CEdgeList.GetAt(pos)->pTailElem)) &&  
     (ElementIsEdge(pDoc-
>CEdgeList.GetAt(pos)->pHeadElem)) &&  
     (pDoc->CEdgeList.GetAt(pos)->pTailElem != 
pDoc->CEdgeList.GetAt(pos)->pHeadElem->pTailElem) 
    ) 
   { 
    GrammarCheckRequired = false;  
    AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING 
OPERATION. \n\nA carried Energy flow can be added to a flow ONLY by the 
function \nthat outputs its carrier.")); 
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    if (WhatToDo == ESCAPE)  // Case 2 
    { 
     pDoc->CEdgeList.GetAt(pos)->pHeadElem = 
pRememberHeadElement; 
     pDoc->CEdgeList.GetAt(pos)->HeadPoint = 
RememberHeadPoint; 
     pDoc->CEdgeList.GetAt(pos)->pTailElem = 
pRememberTailElement; 
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     pDoc->CEdgeList.GetAt(pos)->TailPoint = 
RememberTailPoint; 
    } 
 
    if ((WhatToDo == ADD_ENV) || (WhatToDo == 
ADD_FUNCTION)) // Case 3 
     DeleteElement(pDoc->CNodeList.GetTail()); 
 
    return; 
   } 
 
   pDoc->CEdgeList.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for grammar rules of the CONVERT_E Temaplate 
 //===============================================================
========== 
 
 if (pDoc->CConvert_E_Function_List.IsEmpty() == false) 
 { 
  for(POSITION pos = pDoc-
>CConvert_E_Function_List.GetHeadPosition(); ((pos != NULL) && 
(GrammarCheckRequired)); ) 
  { 
   bool* pThisConvEHasNoInputE = new bool; 
   bool* pThisConvEHasNoOutEResidual = new bool; 
   bool* pThisConvEHasMAttached = new bool; 
   bool* pThisConvDoesNotConvertAnything = new bool; 
 
   *pThisConvEHasNoInputE = true; 
   *pThisConvEHasNoOutEResidual = true; 
   *pThisConvEHasMAttached = false; 
   *pThisConvDoesNotConvertAnything = true; 
 
   for (POSITION pos1 = pDoc-
>CEnergyList.GetHeadPosition(); pos1 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == 
pDoc->CConvert_E_Function_List.GetAt(pos)) 
     *pThisConvEHasNoInputE = false; 
 
    if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem 
== pDoc->CConvert_E_Function_List.GetAt(pos)) && 
     (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual)) 
     *pThisConvEHasNoOutEResidual = false; 
 
    for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
    { 
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     if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>IsResidual == false) && 
      (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName != pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName)) 
       
      *pThisConvDoesNotConvertAnything = 
false; 
      
     pDoc->CEnergyList.GetNext(pos2); 
    } 
 
    pDoc->CEnergyList.GetNext(pos1); 
   } 
 
   for (POSITION pos1 = pDoc-
>CMaterialList.GetHeadPosition(); pos1 != NULL; ) 
   { 
    if ((pDoc->CMaterialList.GetAt(pos1)->pHeadElem 
== pDoc->CConvert_E_Function_List.GetAt(pos)) || 
     (pDoc->CMaterialList.GetAt(pos1)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos))) 
     *pThisConvEHasMAttached = true; 
 
    pDoc->CMaterialList.GetNext(pos1); 
   } 
 
   if ((*pThisConvEHasNoInputE) || 
(*pThisConvEHasNoOutEResidual) ||  
    (*pThisConvEHasMAttached) || 
(*pThisConvDoesNotConvertAnything)) 
   { 
    GrammarCheckRequired = false;  
 
    CString* pLine1 = new CString; 
    CString* pLine2 = new CString; 
    CString* pLine3 = new CString; 
    CString* pLine4 = new CString; 
    CString* pLine5 = new CString; 
 
    *pLine1 = "\n(1) Minimum one E in, "; 
    *pLine2 = "\n(2) Minimum one E out, "; 
    *pLine3 = "\n(3) Minimum one residual E out, 
which could be the only output, and"; 
    *pLine4 = "\n(3) At least one pair of Input E 
and Output E must be of different subtype."; 
    *pLine5 = "\n\n(5) No Material flows are 
allowed."; 
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    AfxMessageBox(_T("ILLEGAL TEMPLATE :: ABORTING 
OPERATION. \n\nConvert_E needs:") + *pLine1 + *pLine2 + *pLine3 + 
*pLine4 + *pLine5); 
 
    delete pLine1; 
    delete pLine2; 
    delete pLine3; 
    delete pLine4; 
    delete pLine5; 
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
     
    else if ((WhatToDo == ESCAPE) && 
(ElementIsEdge(pSelectedElement)))  // Case 2 
    { 
     pSelectedElement->pHeadElem = 
pRememberHeadElement; 
     pSelectedElement->HeadPoint = 
RememberHeadPoint; 
     pSelectedElement->pTailElem = 
pRememberTailElement; 
     pSelectedElement->TailPoint = 
RememberTailPoint; 
    } 
 
    else if (pSelectedElement == NULL) // When 
template violation occurs because of DELETING A REQUIRED FLOW 
    { 
     AfxMessageBox(_T("This action will delete 
the template function, \nsince a necessary condition is violated. 
\n\n(Sorry - Can't Undo.)")); 
     DeleteElement(pDoc-
>CConvert_E_Function_List.GetAt(pos)); 
    } 
 
    return; 
   } 
 
   delete pThisConvEHasNoInputE; 
   delete pThisConvEHasNoOutEResidual; 
   delete pThisConvEHasMAttached; 
   delete pThisConvDoesNotConvertAnything; 
 
   pDoc->CConvert_E_Function_List.GetNext(pos); 
  } 
 } 
 
 //===============================================================
========== 
 // Check for grammar rules of the Conduct_E Temaplate 
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 //===============================================================
========== 
 
 if (pDoc->CConduct_E_Function_List.IsEmpty() == false) 
 { 
  for(POSITION pos = pDoc-
>CConduct_E_Function_List.GetHeadPosition(); ((pos != NULL) && 
(GrammarCheckRequired)); ) 
  { 
   bool* pThisConductHasExactlyOneInputE = new bool; 
   bool* pThisConductHasMultipleUsableOutputE = new 
bool; 
   bool* pThisConductCausesTypeChangeOfUsableOutput = 
new bool; 
   bool* pThisConductHasNoResidualOutputE = new bool; 
   bool* pThisConductHasNoOutputOfSameTypeAsInput = new 
bool; 
   bool* pThisConductEHasMAttached = new bool; 
 
   *pThisConductHasExactlyOneInputE = false; 
   *pThisConductHasMultipleUsableOutputE = false; 
   *pThisConductCausesTypeChangeOfUsableOutput = false; 
   *pThisConductHasNoResidualOutputE = true; 
   *pThisConductHasNoOutputOfSameTypeAsInput = true; 
   *pThisConductEHasMAttached = false; 
 
   int* pInputECount = new int; 
   *pInputECount = 0; 
   int* pUsableOutputECount = new int; 
   *pUsableOutputECount = 0; 
 
   for (POSITION pos1 = pDoc-
>CEnergyList.GetHeadPosition(); pos1 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == 
pDoc->CConduct_E_Function_List.GetAt(pos)) 
     *pInputECount = *pInputECount + 1; 
 
    if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem 
== pDoc->CConduct_E_Function_List.GetAt(pos)) && 
     (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual == false)) 
     *pUsableOutputECount = 
*pUsableOutputECount + 1; 
 
    for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
    { 
     if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
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      (pDoc->CEnergyList.GetAt(pos2)-
>IsResidual == false) && 
      (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName != pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName)) 
       
     
 *pThisConductCausesTypeChangeOfUsableOutput = true; 
      
     if ((pDoc->CEnergyList.GetAt(pos1)-
>pHeadElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CConvert_E_Function_List.GetAt(pos)) && 
      (pDoc->CEnergyList.GetAt(pos1)-
>EnergyTypeName == pDoc->CEnergyList.GetAt(pos2)->EnergyTypeName)) 
       
     
 *pThisConductHasNoOutputOfSameTypeAsInput = false; 
      
     pDoc->CEnergyList.GetNext(pos2); 
    } 
 
    if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem 
== pDoc->CConduct_E_Function_List.GetAt(pos)) && 
     (pDoc->CEnergyList.GetAt(pos1)-
>IsResidual == true)) 
     *pThisConductHasNoResidualOutputE = 
false; 
 
    pDoc->CEnergyList.GetNext(pos1); 
   } 
 
   if (*pInputECount == 1) 
    *pThisConductHasExactlyOneInputE = true; 
   if (*pUsableOutputECount > 1) 
    *pThisConductHasMultipleUsableOutputE = true; 
 
   delete pInputECount; 
   delete pUsableOutputECount; 
 
   for (POSITION pos1 = pDoc-
>CMaterialList.GetHeadPosition(); pos1 != NULL; ) 
   { 
    if ((pDoc->CMaterialList.GetAt(pos1)->pHeadElem 
== pDoc->CConduct_E_Function_List.GetAt(pos)) || 
     (pDoc->CMaterialList.GetAt(pos1)-
>pTailElem == pDoc->CConduct_E_Function_List.GetAt(pos))) 
     *pThisConductEHasMAttached = true; 
 
    pDoc->CMaterialList.GetNext(pos1); 
   } 
 
   if ((!(*pThisConductHasExactlyOneInputE)) || 
(*pThisConductHasMultipleUsableOutputE) ||  
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    (*pThisConductCausesTypeChangeOfUsableOutput) 
|| (*pThisConductHasNoResidualOutputE) || 
    (*pThisConductHasNoOutputOfSameTypeAsInput) || 
(*pThisConductEHasMAttached)) 
   { 
    GrammarCheckRequired = false;  
 
    CString* pLine1 = new CString; 
    CString* pLine2 = new CString; 
    CString* pLine3 = new CString; 
    CString* pLine4 = new CString; 
    CString* pLine5 = new CString; 
    CString* pLine6 = new CString; 
 
    *pLine1 = "\n(1) Exactly one input E, "; 
    *pLine2 = "\n(2) Maximum one usable output E 
(if more than one, then it is branching), "; 
    *pLine3 = "\n(3) The usable output E, if 
present, must be of the same type as the input E,"; 
    *pLine4 = "\n(4) Minimum one residual output E, 
"; 
    *pLine5 = "\n(5) At least one output E must be 
of the same type as the input E, and"; 
    *pLine6 = "\n\n(6) No Material flows are 
allowed."; 
 
    AfxMessageBox(_T("ILLEGAL TEMPLATE :: ABORTING 
OPERATION. \n\nConduct_E needs:") + *pLine1 + *pLine2 + *pLine3 + 
*pLine4 + *pLine5 + *pLine6); 
 
    delete pLine1; 
    delete pLine2; 
    delete pLine3; 
    delete pLine4; 
    delete pLine5; 
    delete pLine6; 
 
    if ((WhatToDo == ADD_MATERIAL) || (WhatToDo == 
ADD_ENERGY) ||(WhatToDo == ADD_SIGNAL)) // Case 1 
     DeleteElement(pDoc->CEdgeList.GetTail()); 
 
    else if ((WhatToDo == ESCAPE) && 
(ElementIsEdge(pSelectedElement)))  // Case 2 
    { 
     pSelectedElement->pHeadElem = 
pRememberHeadElement; 
     pSelectedElement->HeadPoint = 
RememberHeadPoint; 
     pSelectedElement->pTailElem = 
pRememberTailElement; 
     pSelectedElement->TailPoint = 
RememberTailPoint; 
    } 
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    else if (pSelectedElement == NULL) // When 
template violation occurs because of DELETING A REQUIRED FLOW 
    { 
     AfxMessageBox(_T("This action will delete 
the template function, \nsince a necessary condition is violated. 
\n\n(Sorry - Can't Undo.)")); 
     DeleteElement(pDoc-
>CConduct_E_Function_List.GetAt(pos)); 
    }/**/ 
 
    return; 
   } 
 
   delete pThisConductHasExactlyOneInputE; 
   delete pThisConductHasMultipleUsableOutputE; 
   delete pThisConductCausesTypeChangeOfUsableOutput; 
   delete pThisConductHasNoResidualOutputE; 
   delete pThisConductHasNoOutputOfSameTypeAsInput; 
   delete pThisConductEHasMAttached; 
 
   pDoc->CConduct_E_Function_List.GetNext(pos); 
  } 
 } 
 
 GrammarCheckRequired = true; 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// PRINTING FUNCTIONS 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
BOOL CConModView::OnPreparePrinting(CPrintInfo* pInfo) 
{ 
 // default preparation 
 return DoPreparePrinting(pInfo); 
} 
 
void CConModView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) 
{ 
 // TODO: add extra initialization before printing 
} 
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void CConModView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) 
{ 
 // TODO: add cleanup after printing 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// DIAGNOSTICS AND EXCEPTION HANDLING 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
#ifdef _DEBUG 
void CConModView::AssertValid() const 
{ 
 CView::AssertValid(); 
} 
 
void CConModView::Dump(CDumpContext& dc) const 
{ 
 CView::Dump(dc); 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// DOCUMENT POINTER 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
CConModDoc* CConModView::GetDocument() const // non-debug version is 
inline 
{ 
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CConModDoc))); 
 return (CConModDoc*)m_pDocument; 
} 
#endif //_DEBUG 
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// 
=======================================================================
===== 
// 
=======================================================================
===== 
// STANDARD TOOLBAR EVENT HANDLER - FILE SAVE 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Handler_SaveFile(void) 
{ 
 AfxMessageBox(_T("Save File.")); 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// MAIN MENU - REASONING OPTION MESSAGE HANDLER FUNCTIONS 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
void CConModView::OnQualitativeConservation() 
{ 
 ReasoningOption = QUALITATIVE_CONSERVATION; 
 AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE 
CONSERVATION.")); 
} 
 
void CConModView::OnQualitativeIrreversibility() 
{ 
 ReasoningOption = QUALITATIVE_IRREVERSIBILITY; 
 AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE 
IRREVERSIBILITY.")); 
} 
 
void CConModView::OnQuantitativeEfficiency() 
{ 
 ReasoningOption = QUANTITATIVE_EFFICIENCY; 
 AfxMessageBox(_T("Reasoning Switched to: EFFICIENCY.")); 
} 
 
void CConModView::OnQuantitativePowerRequired() 
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{ 
 ReasoningOption = QUANTITATIVE_POWERREQUIRED; 
 AfxMessageBox(_T("Reasoning Switched to: POWER REQUIRED.")); 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// PRIMITIVES TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT 
TO DO" 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Handler_AddFunction(void) 
{ 
 WhatToDo = ADD_FUNCTION; 
} 
 
void CConModView::Handler_AddMaterial(void) 
{ 
 WhatToDo = ADD_MATERIAL; 
} 
 
void CConModView::Handler_AddEnergy(void) 
{  
 WhatToDo = ADD_ENERGY; 
} 
 
void CConModView::Handler_AddSignal(void) 
{ 
 WhatToDo = ADD_SIGNAL; 
} 
 
void CConModView::Handler_AddEnv(void) 
{ 
 WhatToDo = ADD_ENV; 
}  
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// FEATURES TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT TO 
DO" 
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// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Handler_AddConvert_E_Template(void) 
{ 
 WhatToDo = ADD_CONVERT_E_TEMPLATE; 
} 
 
void CConModView::Handler_AddConduct_E_Template(void) 
{ 
 WhatToDo = ADD_CONDUCT_E_TEMPLATE; 
} 
 
void CConModView::Handler_AddEnergize_M_Template(void) 
{ 
 WhatToDo = ADD_ENERGIZE_M_TEMPLATE; 
} 
 
void CConModView::Handler_AddDistribute_E_Template(void) 
{ 
 WhatToDo = ADD_DISTRIBUTE_E_TEMPLATE; 
} 
 
void CConModView::Handler_AddDeEn_M_Template(void) 
{ 
 WhatToDo = ADD_DEEN_M_TEMPLATE; 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// REASONING TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT 
TO DO" 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Handler_Qualitative(void) 
{ 
 ComposeQualitativeMessage(); 
} 
 
void CConModView::Handler_Quantitative(void) 
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{ 
 ComposeQuantitativeMessage(); 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// EDIT TOOLBAR EVENT HANDLER FUNCTIONS  
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Handler_EditCut() 
{ 
 if (pSelectedElement == NULL) 
  return; 
 if (WhatToDo == ESCAPE) 
 {  
  CConModDoc* pDoc = GetDocument(); 
  DetachEdgesFromElement(pSelectedElement); 
  DeleteElement(pSelectedElement); 
  pSelectedElement = NULL;  // Resets the pointer 
to NULL 
 } 
 
 //OnDraw(this->GetDC()); 
}; 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// MOUSE EVENT HANDLER FUNCTIONS - CALLS THE APPROPRIATE INSTANCE-
ADDING FNC. 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::OnLButtonDown(UINT nFlags, CPoint point) 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 MouseLDownPoint = point; 
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 LButtonIsDown = TRUE; 
 
 switch (WhatToDo) 
 { 
 case ESCAPE: 
  if (ElementIsEdge(pSelectedElement)) 
  { 
  // Remember head topology, in case you have to revert back 
to this state. 
  // This condition may arise if the new topology after move 
/ connect is 
  // unacceptable by the grammar rules, in which case the 
OnDraw function 
  // reverts the topology to the older "REMEMBERED" one. 
 
   RememberHeadPoint = pSelectedElement->HeadPoint;  
   pRememberHeadElement = pSelectedElement->pHeadElem; 
   RememberTailPoint = pSelectedElement->TailPoint;  
   pRememberTailElement = pSelectedElement->pTailElem; 
  } 
  break; 
 
 case ADD_FUNCTION: 
  AddFunction(); 
  break; 
 
 case ADD_ENV: 
  AddEnv(); 
  break; 
 
 case ADD_CONVERT_E_TEMPLATE: 
  AddConvert_E_Template(); 
  break; 
 
 case ADD_CONDUCT_E_TEMPLATE: 
  AddConduct_E_Template(); 
  break; 
 
 case ADD_ENERGIZE_M_TEMPLATE: 
  AddEnergize_M_Template(); 
  break; 
 
 case ADD_DISTRIBUTE_E_TEMPLATE: 
  AddDistribute_E_Template(); 
  break; 
 
 case ADD_DEEN_M_TEMPLATE: 
  AddDeEn_M_Template(); 
  break; 
 } 
} 
 
void CConModView::OnLButtonUp(UINT nFlags, CPoint point) 
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{ 
 MouseLUpPoint = point; 
 CConModDoc* pDoc = GetDocument(); 
 
 switch (WhatToDo) 
 { 
 case ESCAPE: 
  MoveConnect(); 
  break; 
 
 case ADD_MATERIAL: 
  AddMaterial(); 
  break; 
  
 case ADD_ENERGY: 
  AddEnergy(); 
  break; 
  
 case ADD_SIGNAL: 
  AddSignal(); 
  break; 
 } 
 
 LButtonIsDown = FALSE; 
} 
 
void CConModView::OnRButtonDown(UINT nFlags, CPoint point) 
{ 
 MouseRDownPoint = point; 
 RButtonIsDown = TRUE; 
 
 CConModDoc* pDoc = GetDocument(); 
  
 // IF PreselectionList IS EMPTY, RIGHT CLICK WILL SET WhatToDo = 
ESCAPE 
 // OTHERWISE, IF THE LIST IS FULL, IT SHOULD SCROLL THROUGH THAT 
LIST 
 if (pDoc->PreselectionList.IsEmpty()) 
  WhatToDo = ESCAPE; 
 else 
  ScrollThroughPreselection(); 
} 
 
void CConModView::OnRButtonUp(UINT nFlags, CPoint point) 
{ 
 MouseRUpPoint = point; 
 RButtonIsDown = FALSE; 
} 
 
void CConModView::OnMouseMove(UINT nFlags, CPoint point) 
{ 
 MouseMovePoint = point; 
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 // FOR ALL WHATTODO's, IF BOTH BUTTONS ARE UP, MOUSE MOVEMENT 
WILL PRESELECT ELEMENTS 
 
 if ((!LButtonIsDown) && (!RButtonIsDown)) 
  Preselect(&point);  
 
 switch (WhatToDo) 
 { 
  case ESCAPE: 
   if (LButtonIsDown && pSelectedElement != NULL) 
    MoveConnectDynamic(); 
   break; 
 
  case ADD_MATERIAL: 
   if ((LButtonIsDown) && (!RButtonIsDown)) 
   AddEdge_Dynamic(); 
   break; 
 
  case ADD_ENERGY: 
   if ((LButtonIsDown) && (!RButtonIsDown)) 
   AddEdge_Dynamic(); 
   break; 
 
  case ADD_SIGNAL: 
   if ((LButtonIsDown) && (!RButtonIsDown)) 
   AddEdge_Dynamic(); 
   break; 
 } 
} 
 
void CConModView::OnLButtonDblClk(UINT nFlags, CPoint point) 
{ 
 CConModDoc* pDoc = this->GetDocument(); 
  
 if (pSelectedElement == NULL) 
  ComposeQualitativeMessage(); 
 else if (ElementIsFunction(pSelectedElement)) 
  pDoc->CFunctionList.GetAt(FunctionIndexInFunctionList)-
>DoModal(); 
 else if (ElementIsEnv(pSelectedElement)) 
  pDoc->CEnvList.GetAt(EnvIndexInEnvList)->DoModal(); 
 else if (ElementIsMaterial(pSelectedElement)) 
  pDoc->CMaterialList.GetAt(MaterialIndexInMaterialList)-
>DoModal(); 
 else if (ElementIsEnergy(pSelectedElement)) 
  pDoc->CEnergyList.GetAt(EnergyIndexInEnergyList)-
>DoModal(); 
 else if (ElementIsSignal(pSelectedElement)) 
  pDoc->CSignalList.GetAt(SignalIndexInSignalList)-
>DoModal(); 
} 
 
void CConModView::OnMButtonUp(UINT nFlags, CPoint point) 
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{ 
 //if ((this->ElementIsEnergy(this->pSelectedElement)) ||  
 // (this->ElementIsMaterial(this->pSelectedElement))) 
 // this->pSelectedElement->IsResidual = !(this-
>pSelectedElement->IsResidual); 
} 
 
BOOL CConModView::OnEraseBkgnd(CDC* pDC) 
{ 
 return FALSE; 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// FUNCTIONS THAT ADD, DELETE, AND MODIFY INSTANCES IN THE MODEL 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::AddFunction() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 //===============================================================
========== 
 // Auto-increment the name counter 
 //===============================================================
========== 
 Counter_F = Counter_F + 1; 
 CounterString.Format(_T("%d"), Counter_F); 
 
 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == TAIL)) // Grabbed an edge at tail 
 { 
  CFunction* NewCFunction = new CFunction(NULL, 
SnapToGrid(pSelectedElement->TailPoint), &CounterString);   
  pSelectedElement->pTailElem = NewCFunction; 
  pDoc->CElementList.AddTail(NewCFunction); 
  pDoc->CNodeList.AddTail(NewCFunction); 
  pDoc->CFunctionList.AddTail(NewCFunction); 
 } 
 
 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == HEAD)) // Grabbed an edge at head 
 { 
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  CFunction* NewCFunction = new CFunction(NULL, 
SnapToGrid(pSelectedElement->HeadPoint), &CounterString);   
  pSelectedElement->pHeadElem = NewCFunction; 
  pDoc->CElementList.AddTail(NewCFunction); 
  pDoc->CNodeList.AddTail(NewCFunction); 
  pDoc->CFunctionList.AddTail(NewCFunction); 
 } 
 
 if (pSelectedElement == NULL) 
 { 
  CFunction* NewCFunction = new CFunction(NULL, 
SnapToGrid(MouseLDownPoint), &CounterString);   
  pDoc->CElementList.AddTail(NewCFunction); 
  pDoc->CNodeList.AddTail(NewCFunction); 
  pDoc->CFunctionList.AddTail(NewCFunction); 
 } 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
        // to TRUE, since a 
click was made on the 
        // screen to add the 
function.  When the button  
        // is lifted, it is 
usually in the Add Function 
        // Dialog, so the 
graphics window does not know 
        // that L Button was 
lifted.  Therefore,  
        // functions such as 
Preselect misbehave. 
} 
 
void CConModView::AddEdge_Dynamic() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 CEdge* NewCEdge = new CEdge(MouseLDownPoint, MouseMovePoint);  
  
 //NewCEdge->pTailElem = pTailElemDynamic;  
 if (pTailElemDynamic != NULL) 
 { 
  NewCEdge->pTailElem = pTailElemDynamic;  
  TailNodeSelected = true; 
 } 
 
 Preselect(&MouseMovePoint); 
 NewCEdge->pHeadElem = pHeadElemDynamic; 
 
 NewCEdge->DrawOnDC(this->GetDC()); 
 delete NewCEdge; 
} 
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void CConModView::AddMaterial() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 Counter_M = Counter_M + 1; 
 CounterString.Format(_T("%d"), Counter_M); 
 
 CMaterial* NewCMaterial = new CMaterial(NULL, MouseLDownPoint, 
MouseLUpPoint, &CounterString, this->ReasoningOption);   
  
 NewCMaterial->pTailElem = pTailElemDynamic; 
 NewCMaterial->pHeadElem = pHeadElemDynamic; 
 
 pDoc->CElementList.AddTail(NewCMaterial); 
 pDoc->CEdgeList.AddTail(NewCMaterial); 
 pDoc->CMaterialList.AddTail(NewCMaterial); 
 //OnDraw(this->GetDC()); 
 
 // Clear up the temporary edge creation data for the next use 
 pTailElemDynamic = NULL; 
 pHeadElemDynamic = NULL; 
 TailNodeSelected = false; 
} 
 
void CConModView::AddEnergy() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 Counter_E = Counter_E + 1; 
 CounterString.Format(_T("%d"), Counter_E); 
 
 CEnergy* NewCEnergy = new CEnergy(NULL, MouseLDownPoint, 
MouseLUpPoint, &CounterString, this->ReasoningOption);   
  
 NewCEnergy->pTailElem = pTailElemDynamic; 
 NewCEnergy->pHeadElem = pHeadElemDynamic; 
  
 pDoc->CElementList.AddTail(NewCEnergy); 
 pDoc->CEdgeList.AddTail(NewCEnergy); 
 pDoc->CEnergyList.AddTail(NewCEnergy); 
 //OnDraw(this->GetDC()); 
 
 // Clear up the temporary edge creation data for the next use 
 pTailElemDynamic = NULL; 
 pHeadElemDynamic = NULL; 
 TailNodeSelected = false; 
} 
 
void CConModView::AddSignal() 
{  
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 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 Counter_S = Counter_S + 1; 
 CounterString.Format(_T("%d"), Counter_S); 
 
 CSignal* NewCSignal = new CSignal(NULL, MouseLDownPoint, 
MouseLUpPoint, &CounterString);   
  
 NewCSignal->pTailElem = pTailElemDynamic; 
 NewCSignal->pHeadElem = pHeadElemDynamic; 
 
 pDoc->CElementList.AddTail(NewCSignal); 
 pDoc->CEdgeList.AddTail(NewCSignal); 
 pDoc->CSignalList.AddTail(NewCSignal); 
 //OnDraw(this->GetDC()); 
 
 // Clear up the temporary edge creation data for the next use 
 pTailElemDynamic = NULL; 
 pHeadElemDynamic = NULL; 
 TailNodeSelected = false; 
} 
 
void CConModView::AddEnv() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 Counter_Env = Counter_Env + 1; 
 CounterString.Format(_T("%d"), Counter_Env); 
 
 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == TAIL)) // Grabbed an edge at tail 
 { 
  CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement-
>TailPoint), &CounterString);   
  pSelectedElement->pTailElem = NewCEnv; 
  pDoc->CElementList.AddTail(NewCEnv); 
  pDoc->CNodeList.AddTail(NewCEnv); 
  pDoc->CEnvList.AddTail(NewCEnv); 
 } 
 
 if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement-
>GrabHandle == HEAD)) // Grabbed an edge at head 
 { 
  CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement-
>HeadPoint), &CounterString);   
  pSelectedElement->pHeadElem = NewCEnv; 
  pDoc->CElementList.AddTail(NewCEnv); 
  pDoc->CNodeList.AddTail(NewCEnv); 
  pDoc->CEnvList.AddTail(NewCEnv); 
 } 
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 if (pSelectedElement == NULL) 
 { 
  CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(MouseLDownPoint), 
&CounterString); 
  pDoc->CElementList.AddTail(NewCEnv); 
  pDoc->CNodeList.AddTail(NewCEnv); 
  pDoc->CEnvList.AddTail(NewCEnv); 
 } 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
        // to TRUE, since a 
click was made on the 
        // screen to add the 
function.  When the button  
        // is lifted, it is 
usually in the Add Function 
        // Dialog, so the 
graphics window does not know 
        // that L Button was 
lifted.  Therefore,  
        // functions such as 
Preselect misbehave. 
} 
 
 
void CConModView::AddConvert_E_Template() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 CString* pCounterString_F = new CString; 
 CString* pCounterString_InE = new CString; 
 CString* pCounterString_OutE = new CString; 
 CString* pCounterString_OutE_Res = new CString; 
 
 Counter_F ++; 
 pCounterString_F->Format(_T("%d"), Counter_F); 
 *pCounterString_F = *pCounterString_F + " [Conv_E]"; 
 Counter_E ++; 
 pCounterString_InE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE_Res->Format(_T("%d"), Counter_E); 
 
 
 if (pSelectedElement == NULL) // Create only in empty, white 
space of the screen - otherwise more  
  //attachment issues will arise 
 { 
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  CConvert_E_Template* NewCConvert_E_Template = new 
CConvert_E_Template(NULL, SnapToGrid(MouseLDownPoint),  
   pCounterString_F, pCounterString_InE, 
pCounterString_OutE, pCounterString_OutE_Res); 
 
  pDoc->CTemplateList.AddTail(NewCConvert_E_Template); 
  pDoc-
>CConvert_E_Template_List.AddTail(NewCConvert_E_Template); 
 
  pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pFunctionBlock); 
  pDoc->CNodeList.AddTail(NewCConvert_E_Template-
>pFunctionBlock); 
  pDoc->CFunctionList.AddTail(NewCConvert_E_Template-
>pFunctionBlock); 
  pDoc-
>CConvert_E_Function_List.AddTail(NewCConvert_E_Template-
>pFunctionBlock); // Enables grammr checking 
 
  pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_InE); 
  pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_InE); 
  pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_InE); 
 
  pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE); 
  pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE); 
  pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE); 
 
  pDoc->CElementList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res); 
  pDoc->CEdgeList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res); 
  pDoc->CEnergyList.AddTail(NewCConvert_E_Template-
>pEnergy_OutE_Res); 
 } 
 
 delete pCounterString_F; 
 delete pCounterString_InE; 
 delete pCounterString_OutE; 
 delete pCounterString_OutE_Res; 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
} 
 
 
void CConModView::AddConduct_E_Template() 
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{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 CString* pCounterString_F = new CString; 
 CString* pCounterString_InE = new CString; 
 CString* pCounterString_OutE = new CString; 
 CString* pCounterString_OutE_Res = new CString; 
 
 Counter_F ++; 
 pCounterString_F->Format(_T("%d"), Counter_F); 
 *pCounterString_F = *pCounterString_F + " [Cond_E]"; 
 Counter_E ++; 
 pCounterString_InE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE_Res->Format(_T("%d"), Counter_E); 
 
 
 if (pSelectedElement == NULL) // Create only in empty, white 
space of the screen - otherwise more  
  //attachment issues will arise 
 { 
  CConduct_E_Template* NewCConduct_E_Template = new 
CConduct_E_Template(NULL, SnapToGrid(MouseLDownPoint),  
   pCounterString_F, pCounterString_InE, 
pCounterString_OutE, pCounterString_OutE_Res); 
 
  pDoc->CTemplateList.AddTail(NewCConduct_E_Template); 
  pDoc-
>CConduct_E_Template_List.AddTail(NewCConduct_E_Template); 
 
  pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pFunctionBlock); 
  pDoc->CNodeList.AddTail(NewCConduct_E_Template-
>pFunctionBlock); 
  pDoc->CFunctionList.AddTail(NewCConduct_E_Template-
>pFunctionBlock); 
  pDoc-
>CConduct_E_Function_List.AddTail(NewCConduct_E_Template-
>pFunctionBlock); // Enables grammr checking 
 
  pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_InE); 
  pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_InE); 
  pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_InE); 
 
  pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE); 
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  pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE); 
  pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE); 
 
  pDoc->CElementList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res); 
  pDoc->CEdgeList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res); 
  pDoc->CEnergyList.AddTail(NewCConduct_E_Template-
>pEnergy_OutE_Res); 
 } 
 
 delete pCounterString_F; 
 delete pCounterString_InE; 
 delete pCounterString_OutE; 
 delete pCounterString_OutE_Res; 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
} 
 
void CConModView::AddEnergize_M_Template() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 CString* pCounterString_F = new CString; 
 CString* pCounterString_InM = new CString; 
 CString* pCounterString_OutM = new CString; 
 CString* pCounterString_InE = new CString; 
 CString* pCounterString_OutE = new CString; 
 
 Counter_F ++; 
 pCounterString_F->Format(_T("%d"), Counter_F); 
 *pCounterString_F = *pCounterString_F + " [En_Mat]"; 
 Counter_M ++; 
 pCounterString_InM->Format(_T("%d"), Counter_M); 
 Counter_M ++; 
 pCounterString_OutM->Format(_T("%d"), Counter_M); 
 Counter_E ++; 
 pCounterString_InE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE->Format(_T("%d"), Counter_E); 
 
 
 if (pSelectedElement == NULL) // Create only in empty, white 
space of the screen - otherwise more  
  //attachment issues will arise 
 { 
  CEnergize_M_Template* NewCEnergize_M_Template = new 
CEnergize_M_Template(NULL, SnapToGrid(MouseLDownPoint),  
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   pCounterString_F, pCounterString_InM, 
pCounterString_OutM, pCounterString_InE, pCounterString_OutE); 
 
  pDoc->CTemplateList.AddTail(NewCEnergize_M_Template); 
  pDoc-
>CEnergize_M_Template_List.AddTail(NewCEnergize_M_Template); 
 
  pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); 
  pDoc->CNodeList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); 
  pDoc->CFunctionList.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); 
  pDoc-
>CEnergize_M_Function_List.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); // Enables grammr checking 
 
  pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM); 
  pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM); 
  pDoc->CMaterialList.AddTail(NewCEnergize_M_Template-
>pMaterial_InM); 
 
  pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM); 
  pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM); 
  pDoc->CMaterialList.AddTail(NewCEnergize_M_Template-
>pMaterial_OutM); 
 
  pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE); 
  pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE); 
  pDoc->CEnergyList.AddTail(NewCEnergize_M_Template-
>pEnergy_InE); 
 
  pDoc->CElementList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE); 
  pDoc->CEdgeList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE); 
  pDoc->CEnergyList.AddTail(NewCEnergize_M_Template-
>pEnergy_OutE); 
 
 } 
 
 delete pCounterString_F; 
 delete pCounterString_InM ; 
 delete pCounterString_OutM; 
 delete pCounterString_InE ; 
 delete pCounterString_OutE; 
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 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
} 
 
void CConModView::AddDistribute_E_Template() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 CString* pCounterString_F = new CString; 
 CString* pCounterString_InE = new CString; 
 CString* pCounterString_OutE1 = new CString; 
 CString* pCounterString_OutE2 = new CString; 
 
 Counter_F ++; 
 pCounterString_F->Format(_T("%d"), Counter_F); 
 *pCounterString_F = *pCounterString_F + " [Dist_E]"; 
 Counter_E ++; 
 pCounterString_InE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE1->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE2->Format(_T("%d"), Counter_E); 
 
 
 if (pSelectedElement == NULL) // Create only in empty, white 
space of the screen - otherwise more  
  //attachment issues will arise 
 { 
  CDistribute_E_Template* NewCDistribute_E_Template = new 
CDistribute_E_Template(NULL, SnapToGrid(MouseLDownPoint),  
   pCounterString_F, pCounterString_InE, 
pCounterString_OutE1, pCounterString_OutE2); 
 
  pDoc->CTemplateList.AddTail(NewCDistribute_E_Template); 
  pDoc-
>CDistribute_E_Template_List.AddTail(NewCDistribute_E_Template); 
 
  pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); 
  pDoc->CNodeList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); 
  pDoc->CFunctionList.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); 
  pDoc-
>CDistribute_E_Function_List.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); // Enables grammr checking 
 
  pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE); 
  pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE); 
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  pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_InE); 
 
  pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1); 
  pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1); 
  pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE1); 
 
  pDoc->CElementList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2); 
  pDoc->CEdgeList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2); 
  pDoc->CEnergyList.AddTail(NewCDistribute_E_Template-
>pEnergy_OutE2); 
 } 
 
 delete pCounterString_F; 
 delete pCounterString_InE ; 
 delete pCounterString_OutE1; 
 delete pCounterString_OutE2; 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
} 
 
void CConModView::AddDeEn_M_Template() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 CString* pCounterString_F = new CString; 
 CString* pCounterString_InM = new CString; 
 CString* pCounterString_OutM = new CString; 
 CString* pCounterString_InE = new CString; 
 CString* pCounterString_OutE = new CString; 
 
 Counter_F ++; 
 pCounterString_F->Format(_T("%d"), Counter_F); 
 *pCounterString_F = *pCounterString_F + " [DeEn_M]"; 
 Counter_M ++; 
 pCounterString_InM->Format(_T("%d"), Counter_M); 
 Counter_M ++; 
 pCounterString_OutM->Format(_T("%d"), Counter_M); 
 Counter_E ++; 
 pCounterString_InE->Format(_T("%d"), Counter_E); 
 Counter_E ++; 
 pCounterString_OutE->Format(_T("%d"), Counter_E); 
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 if (pSelectedElement == NULL) // Create only in empty, white 
space of the screen - otherwise more  
  //attachment issues will arise 
 { 
  CDeEn_M_Template* NewCDeEn_M_Template = new 
CDeEn_M_Template(NULL, SnapToGrid(MouseLDownPoint),  
   pCounterString_F, pCounterString_InM, 
pCounterString_OutM, pCounterString_InE, pCounterString_OutE); 
 
  pDoc->CTemplateList.AddTail(NewCDeEn_M_Template); 
  pDoc->CDeEn_M_Template_List.AddTail(NewCDeEn_M_Template); 
 
  pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock); 
  pDoc->CNodeList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock); 
  pDoc->CFunctionList.AddTail(NewCDeEn_M_Template-
>pFunctionBlock); 
  pDoc-
>CEnergize_M_Function_List.AddTail(NewCDeEn_M_Template-
>pFunctionBlock); // Enables grammr checking 
 
  pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM); 
  pDoc->CEdgeList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM); 
  pDoc->CMaterialList.AddTail(NewCDeEn_M_Template-
>pMaterial_InM); 
 
  pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM); 
  pDoc->CEdgeList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM); 
  pDoc->CMaterialList.AddTail(NewCDeEn_M_Template-
>pMaterial_OutM); 
 
  pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pEnergy_InE); 
  pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pEnergy_InE); 
  pDoc->CEnergyList.AddTail(NewCDeEn_M_Template-
>pEnergy_InE); 
 
  pDoc->CElementList.AddTail(NewCDeEn_M_Template-
>pEnergy_OutE); 
  pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pEnergy_OutE); 
  pDoc->CEnergyList.AddTail(NewCDeEn_M_Template-
>pEnergy_OutE); 
 
 } 
 
 delete pCounterString_F; 
 delete pCounterString_InM ; 
 delete pCounterString_OutM; 
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 delete pCounterString_InE ; 
 delete pCounterString_OutE; 
 
 //OnDraw(this->GetDC()); 
 LButtonIsDown = FALSE;  // Without this line, LButtonIsDown 
remains set 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// FUNCTIONS TO SELECT AND UNSELECT OBJECTS FROM THE MODEL 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::Preselect(CPoint* pMouseTip) 
{ 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 // 
=======================================================================
===== 
 // RESET THE EXISTING CONTAINERS OF PRESELECTION DATA AT EVERY 
NEW CALL 
 // 
=======================================================================
===== 
 pDoc->PreselectionList.RemoveAll(); 
 ScrollPosition = NULL; 
 pSelectedElement = NULL; 
  
 // 
=======================================================================
===== 
 // SPECIAL REQUIREMENT FOR EDGES - CLEAR OFF THE TEMPORARY HEAD 
AND TAIL NODES 
 // 
=======================================================================
===== 
 if (!TailNodeSelected) 
  pTailElemDynamic = NULL; 
 pHeadElemDynamic = NULL; 
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 // 
=======================================================================
===== 
 // LOOK FOR PROXIMITY BETWEEN MOUSE TIP AND ALL CELEMENT 
INSTANCES. 
 // FOR ALL PROXIMAL CELEMENT INSTANCES, HIGHLIGHT, ASSIGN 
GRABHANDLE, AND ADD TO  
 // PRESELECTIONLIST (IF NOT ALREADY THERE). 
 //  THREE TESTS FOR GRABHANDLE ARE NECESSARY TO PERFORM 
THIS ACTION. 
 // IF NOT PROXIMAL, THEN UNHIGHLIHGT, RESET GRABHANDLE, AND 
REMOVE FROM  
 // PRESELECTIONLIST (IF NOT ALREADY REMOVED). 
 // 
=======================================================================
===== 
 
 if (!pDoc->CElementList.IsEmpty()) 
 { 
  for (POSITION pos = pDoc->CElementList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS)  
   { 
    pDoc->CElementList.GetAt(pos)->GrabHandle = 
CENTER; // Applies to both nodes and edges 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos))) 
     pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos)); 
   } 
   else if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->HeadPoint) <= SELECTION_RADIUS)  
   { 
    pDoc->CElementList.GetAt(pos)->GrabHandle = 
HEAD; // Applies to edges 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos))) 
     pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos)); 
   } 
   else if (distance(*pMouseTip, pDoc-
>CElementList.GetAt(pos)->TailPoint) <= SELECTION_RADIUS)  
   { 
    pDoc->CElementList.GetAt(pos)->GrabHandle = 
TAIL; // Applies to edges 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos))) 
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     pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos)); 
   } 
   else  
   { 
    UnHighlight(pDoc->CElementList.GetAt(pos)); 
    pDoc->CElementList.GetAt(pos)->GrabHandle = 
NULL; 
    if (pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos))) 
     pDoc->PreselectionList.RemoveAt(pDoc-
>PreselectionList.Find(pDoc->CElementList.GetAt(pos)));  // (pDoc-
>CElementList.GetAt(pos)); 
   } 
    
   pDoc->CElementList.GetNext(pos); 
  } 
 } 
 
 // 
=======================================================================
===== 
 // GET READY FOR SCROLLING: 
 // IF PreselectionList HAS THINGS IN IT, SELECT THE FIRST ITEM 
AND SET 
 // ScrollPosition AS THE HEAD POSITION WITHIN THAT LIST. 
 // OTHERWISE, THE EXISTING NULL VALUES SET AT THE BEGINNING OF 
THIS FUNCTION 
 // CALL WILL PREVAIL.   
 // 
=======================================================================
===== 
 
 if (!pDoc->PreselectionList.IsEmpty()) 
 { 
  SelectElement(pDoc->PreselectionList.GetHead()); // 
stroes pSelectedElement 
  ScrollPosition = pDoc->PreselectionList.GetHeadPosition(); 
   
  // SCPECIAL CASE - IF ADDING AN EDGE, STORE ITS temporary 
TAIL and HEAD  
  if ((WhatToDo == ADD_ENERGY) || (WhatToDo == 
ADD_MATERIAL)|| (WhatToDo == ADD_SIGNAL)) 
  { 
   if (LButtonIsDown) 
    pHeadElemDynamic = pSelectedElement; 
   else 
    pTailElemDynamic = pSelectedElement; 
    
   if (pHeadElemDynamic == pTailElemDynamic) 
    pHeadElemDynamic = NULL; // Prevents self-
cycling edges 
  } 
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 } 
 
 // Finally, redraw the screen 
 //OnDraw(this->GetDC()); 
} 
 
void CConModView::Highlight(CElement* pElement) 
{ 
 pElement->IsHighlighted = true; 
 pElement->IsSelected = false; 
} 
 
void CConModView::UnHighlight(CElement* pElement) 
{ 
 pElement->IsHighlighted = false; 
 pElement->IsSelected = false; 
} 
 
void CConModView::SelectElement(CElement* pElement) 
{ 
 pSelectedElement = pElement; 
 pElement->IsSelected = true; 
 pElement->IsHighlighted = false; 
} 
 
void CConModView::ScrollThroughPreselection() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 // Reset the current selection to PRESELECTION_PEN_ colors 
 Highlight(pDoc->PreselectionList.GetAt(ScrollPosition)); 
 
 // If the tail of PreselectionList has arrived, start over at the 
head 
 if (ScrollPosition == pDoc->PreselectionList.GetTailPosition()) 
  ScrollPosition = pDoc->PreselectionList.GetHeadPosition(); 
 else 
  pDoc->PreselectionList.GetNext(ScrollPosition); 
  
 // Select the element at this incremented ScrollPosition 
 SelectElement(pDoc->PreselectionList.GetAt(ScrollPosition)); 
  
 //OnDraw(this->GetDC()); 
 
 // 
=======================================================================
===== 
 // SCPECIAL CASE - IF ADDING EDGE, STORE ITS TAIL NODE and HEAD 
NODE.   
 // AN IDENTICAL IF STATEMENT IS ALSO USED IN Preselect, TO ENABLE 
THE  
 // SAME FEATURES IF TEH USER SELECTED THE FIRST SELECTED ELEMENT 
WITHOUT 
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 // SCROLLING. 
 // 
=======================================================================
===== 
 if (WhatToDo == ADD_ENERGY || WhatToDo == ADD_MATERIAL || 
WhatToDo == ADD_SIGNAL)  
 { 
  if (LButtonIsDown) 
   pHeadElemDynamic = pSelectedElement; 
  else 
   pTailElemDynamic = pSelectedElement; 
   
  if (pHeadElemDynamic == pTailElemDynamic) 
   pHeadElemDynamic = NULL; // Prevents self-
cycling edges 
 }  
} 
 
bool CConModView::ElementIsNode(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CNodeList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CNodeList.GetAt(pos) == pElement) 
  { 
   NodeIndexInNodeList = pos; 
   return true; 
  } 
  pDoc->CNodeList.GetNext(pos); 
 } 
 return false; 
} 
 
bool CConModView::ElementIsFunction(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CFunctionList.GetAt(pos) == pElement) 
  { 
   FunctionIndexInFunctionList = pos; 
   return true; 
  } 
 
  pDoc->CFunctionList.GetNext(pos); 
 } 
 
 return false; 
} 
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bool CConModView::ElementIsEnv(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CEnvList.GetAt(pos) == pElement) 
  { 
   EnvIndexInEnvList = pos; 
   return true; 
  } 
 
  pDoc->CEnvList.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsEdge(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CEdgeList.GetAt(pos) == pElement) 
  { 
   EdgeIndexInEdgeList = pos; 
   return true; 
  } 
 
  pDoc->CEdgeList.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsMaterial(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CMaterialList.GetAt(pos) == pElement) 
  { 
   MaterialIndexInMaterialList = pos; 
   return true; 
  } 
 
  pDoc->CMaterialList.GetNext(pos); 
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 } 
 
 return false; 
} 
 
bool CConModView::ElementIsEnergy(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CEnergyList.GetAt(pos) == pElement) 
  { 
   EnergyIndexInEnergyList = pos; 
   return true; 
  } 
 
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsSignal(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc->CSignalList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CSignalList.GetAt(pos) == pElement) 
  { 
   SignalIndexInSignalList = pos; 
   return true; 
  } 
 
  pDoc->CSignalList.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsConvert_E_Function(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CConvert_E_Function_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CConvert_E_Function_List.GetAt(pos) == pElement) 
  { 
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   Convert_E_Function_IndexInConvert_E_Function_List = 
pos; 
   return true; 
  } 
 
  pDoc->CConvert_E_Function_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsConvert_E_Template(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CConvert_E_Template_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CConvert_E_Template_List.GetAt(pos) == pElement) 
  { 
   Convert_E_Template_IndexInConvert_E_Template_List = 
pos; 
   return true; 
  } 
 
  pDoc->CConvert_E_Template_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsConduct_E_Function(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CConduct_E_Function_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CConduct_E_Function_List.GetAt(pos) == pElement) 
  { 
   Conduct_E_Function_IndexInConduct_E_Function_List = 
pos; 
   return true; 
  } 
 
  pDoc->CConduct_E_Function_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsConduct_E_Template(CElement* pElement) 
{ 
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 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CConduct_E_Template_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CConduct_E_Template_List.GetAt(pos) == pElement) 
  { 
   Conduct_E_Template_IndexInConduct_E_Template_List = 
pos; 
   return true; 
  } 
 
  pDoc->CConduct_E_Template_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsEnergize_M_Function(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CEnergize_M_Function_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CEnergize_M_Function_List.GetAt(pos) == pElement) 
  { 
   Energize_M_Function_IndexInEnergize_M_Function_List = 
pos; 
   return true; 
  } 
 
  pDoc->CEnergize_M_Function_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsEnergize_M_Template(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CEnergize_M_Template_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CEnergize_M_Template_List.GetAt(pos) == pElement) 
  { 
   Energize_M_Template_IndexInEnergize_M_Template_List = 
pos; 
   return true; 
  } 
 
  pDoc->CEnergize_M_Template_List.GetNext(pos); 
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 } 
 
 return false; 
} 
 
bool CConModView::ElementIsDistribute_E_Function(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CDistribute_E_Function_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CDistribute_E_Function_List.GetAt(pos) == 
pElement) 
  { 
  
 Distribute_E_Function_IndexInDistribute_E_Function_List = pos; 
   return true; 
  } 
 
  pDoc->CDistribute_E_Function_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsDistribute_E_Template(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CDistribute_E_Template_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CDistribute_E_Template_List.GetAt(pos) == 
pElement) 
  { 
  
 Distribute_E_Template_IndexInDistribute_E_Template_List = pos; 
   return true; 
  } 
 
  pDoc->CDistribute_E_Template_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsDeEn_M_Function(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CDeEn_M_Function_List.GetHeadPosition(); pos != NULL; ) 
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 { 
  if (pDoc->CDeEn_M_Function_List.GetAt(pos) == pElement) 
  { 
   DeEn_M_Function_IndexInDeEn_M_Function_List = pos; 
   return true; 
  } 
 
  pDoc->CDeEn_M_Function_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
bool CConModView::ElementIsDeEn_M_Template(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
  
 for (POSITION pos = pDoc-
>CDeEn_M_Template_List.GetHeadPosition(); pos != NULL; ) 
 { 
  if (pDoc->CDeEn_M_Template_List.GetAt(pos) == pElement) 
  { 
   DeEn_M_Template_IndexInDeEn_M_Template_List = pos; 
   return true; 
  } 
 
  pDoc->CDeEn_M_Template_List.GetNext(pos); 
 } 
 
 return false; 
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// FUNCTIONS TO EDIT OBJECTS WITHIN THE MODEL 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
 
void CConModView::MoveConnectDynamic() // Called by OnMouseMove 
{ 
 CConModDoc* pDoc = GetDocument(); 
 GrammarCheckRequired = false;  // This callis very important 
- without it,  
    // the grammr checks for topological error will 
take effect DURING 
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    // the move / connect operation BEFORE LIFTING 
UP THE MOUSE L  
    // BUTTON and throw errors for topology that 
the user has not  
    // committed to (by lifting mouse L button) 
 
 // 
=======================================================================
===== 
 // THIS IS A BASIC CHECK THAT AN ELEMENT IS SELECTED FOR MOVE OR 
CONNECT. 
 // PRACTICALLY, THIS CHECK IS REDUNDANT, SINCE THE ONLY CALLING 
FUNCTION 
 // OF THIS FUNCTION, OnMouseMove, MAKES SURE THAT AN ELEMENT IS 
INDEED SELECTED. 
 // 
=======================================================================
===== 
 if (!LButtonIsDown || pSelectedElement == NULL) 
  return; 
 
 // 
=======================================================================
===== 
 // IF AN EDGE IS ANCHORED ON ANY ONE SIDE, PREVENT MOVING IT BY 
ITS CENTER  
 // 
=======================================================================
===== 
 if ((ElementIsEdge(pSelectedElement))  
  &&  
  ((pSelectedElement->pHeadElem != NULL)  
   ||  
  (pSelectedElement->pTailElem != NULL))  
  &&  
  (pSelectedElement->GrabHandle == CENTER)) 
  return; 
 
 Invalidate(); 
 
 // 
=======================================================================
===== 
 // MOVE NODES AND DOUBLY-DANLGING EDGES BY THE CENTER GRABHANDLE 
 // 
=======================================================================
===== 
 
 if (pSelectedElement->GrabHandle == CENTER)  // Works 
for nodes and edges with both ends dangling 
 { 
  // First, compute the orientation and length of the arrow 
using its existing  
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  // center, tail and head points.  This check will workk 
even for the nodes, although 
  // that would not mean anything real.  So, it is 
unnecessary to check that the element 
  // is an edge.   
  long HalfDeltaX = pSelectedElement->HeadPoint.x - 
pSelectedElement->GeometricCenter.x; 
  long HalfDeltaY = pSelectedElement->HeadPoint.y - 
pSelectedElement->GeometricCenter.y; 
   
  // Then, move the center point.  This moves nodes directly.  
For edges, the ends  
  // need to be recalculated, as done next.   
  pSelectedElement->GeometricCenter = MouseMovePoint;  
   
  // Then re-compute the new head and tail poitns based on 
the new center point.  
  pSelectedElement->HeadPoint.x = pSelectedElement-
>GeometricCenter.x + HalfDeltaX; 
  pSelectedElement->HeadPoint.y = pSelectedElement-
>GeometricCenter.y + HalfDeltaY; 
  pSelectedElement->TailPoint.x = pSelectedElement-
>GeometricCenter.x - HalfDeltaX; 
  pSelectedElement->TailPoint.y = pSelectedElement-
>GeometricCenter.y - HalfDeltaY; 
 } 
 
 // 
=======================================================================
===== 
 // MOVE AND/OR CONNECT THE head POINT OF AN EDGE  
 // 
=======================================================================
===== 
 
 if (ElementIsEdge(pSelectedElement) && (pSelectedElement-
>GrabHandle == HEAD)) 
 { 
  pSelectedElement->pHeadElem = NULL; 
   
  for (POSITION pos = pDoc->CElementList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   if (distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS) 
   { 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos); 
   } 
   else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->TailPoint) <= SELECTION_RADIUS) && 
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    (ElementIsEdge(pDoc->CElementList.GetAt(pos))) 
&& 
    (pDoc->CElementList.GetAt(pos)->pHeadElem != 
NULL) && 
    (pDoc->CElementList.GetAt(pos)->pTailElem == 
NULL)) 
   { 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos)->pHeadElem; 
    pElementToBeDeleted = pDoc-
>CElementList.GetAt(pos); 
   } 
   else 
   { 
    UnHighlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->HeadPoint = MouseMovePoint; 
    if (pDoc->CElementList.GetAt(pos) == 
pElementToBeDeleted) 
     pElementToBeDeleted = NULL; 
   } 
 
   pDoc->CElementList.GetNext(pos); 
  } 
 } 
 
 // 
=======================================================================
===== 
 // MOVE AND/OR CONNECT THE tail POINT OF AN EDGE  
 // 
=======================================================================
===== 
  
 if (ElementIsEdge(pSelectedElement) && (pSelectedElement-
>GrabHandle == TAIL)) 
 { 
  pSelectedElement->pTailElem = NULL; 
   
  for (POSITION pos = pDoc->CElementList.GetHeadPosition(); 
pos != NULL; ) 
  { 
   if (distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->GeometricCenter) <= SELECTION_RADIUS) 
   { 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->pTailElem = pDoc-
>CElementList.GetAt(pos); 
   } 
   else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->HeadPoint) <= SELECTION_RADIUS) && 
    (ElementIsEdge(pDoc->CElementList.GetAt(pos))) 
&& 
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    (pDoc->CElementList.GetAt(pos)->pTailElem != 
NULL) && 
    (pDoc->CElementList.GetAt(pos)->pHeadElem == 
NULL)) 
   { 
    Highlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->pTailElem = pDoc-
>CElementList.GetAt(pos)->pTailElem; 
    pElementToBeDeleted = pDoc-
>CElementList.GetAt(pos); 
   } 
   else 
   { 
    UnHighlight(pDoc->CElementList.GetAt(pos)); 
    pSelectedElement->TailPoint = MouseMovePoint; 
    if (pDoc->CElementList.GetAt(pos) == 
pElementToBeDeleted) 
     pElementToBeDeleted = NULL; 
   } 
 
   pDoc->CElementList.GetNext(pos); 
  } 
 } 
 
 // OnDraw(this->GetDC()); // Do NOT call OnDraw here - it 
will fire the  
 // grammar checks before the move/connect is complete 
} 
 
void CConModView::MoveConnect()  // Called by OnLButtonUp, 
when moving edges (ESCAPE) 
{ 
 if (pSelectedElement == NULL) 
  return; 
 
 CConModDoc* pDoc = GetDocument(); 
 Invalidate(); 
 
 // SNAP THE NODES TO THE GRID AFTER MOVE IS OVER, WHEN L-BUTTON 
IS LIFTED  
 if (ElementIsNode(pSelectedElement)) 
  pSelectedElement->GeometricCenter = 
SnapToGrid(pSelectedElement->GeometricCenter); 
 
 if (pElementToBeDeleted != NULL) 
 { 
  DeleteElement(pElementToBeDeleted); 
  pElementToBeDeleted = NULL; 
 } 
  
 GrammarCheckRequired = true; 
 
 //OnDraw(this->GetDC()); 
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} 
 
void CConModView::DetachEdgesFromElement(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 for (POSITION pos = pDoc->CEdgeList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pElement == pDoc->CEdgeList.GetAt(pos)->pHeadElem) 
   pDoc->CEdgeList.GetAt(pos)->pHeadElem = NULL; 
  if (pElement == pDoc->CEdgeList.GetAt(pos)->pTailElem) 
   pDoc->CEdgeList.GetAt(pos)->pTailElem = NULL; 
 
  pDoc->CEdgeList.GetNext(pos); 
 } 
} 
 
void CConModView::DeleteElement(CElement* pElement) 
{ 
 CConModDoc* pDoc = GetDocument(); 
 DetachEdgesFromElement(pElement); 
 
 delete pElement; // Deletes the actual instance of the element 
        // pointed by pElement 
 
 POSITION pos = pDoc->CElementList.Find(pElement); 
 pDoc->CElementList.RemoveAt(pos); // Removes the pointer entry 
from CElementList 
  
 if (ElementIsNode(pElement)) 
  pDoc->CNodeList.RemoveAt(NodeIndexInNodeList); // Removes 
the pointer entry from CNodeList 
  
 if (ElementIsFunction(pElement)) 
  pDoc->CFunctionList.RemoveAt(FunctionIndexInFunctionList);
 // Removes the pointer entry from CFunctionList 
  
 if (ElementIsEnv(pElement)) 
  pDoc->CEnvList.RemoveAt(EnvIndexInEnvList); // Removes 
the pointer entry from CFunctionList 
  
 if (ElementIsEdge(pElement)) 
  pDoc->CEdgeList.RemoveAt(EdgeIndexInEdgeList); // Removes 
the pointer entry from CEdgeList 
  
 if (ElementIsMaterial(pElement)) 
  pDoc->CMaterialList.RemoveAt(MaterialIndexInMaterialList);
 // Removes the pointer entry from CEdgeList 
  
 if (ElementIsEnergy(pElement)) 
  pDoc->CEnergyList.RemoveAt(EnergyIndexInEnergyList); // 
Removes the pointer entry from CEdgeList 
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 if (ElementIsSignal(pElement)) 
  pDoc->CSignalList.RemoveAt(SignalIndexInSignalList); // 
Removes the pointer entry from CEdgeList 
 
 if (ElementIsConvert_E_Template(pElement)) 
  pDoc-
>CConvert_E_Template_List.RemoveAt(Convert_E_Template_IndexInConvert_E_
Template_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsConvert_E_Function(pElement)) 
  pDoc-
>CConvert_E_Function_List.RemoveAt(Convert_E_Function_IndexInConvert_E_
Function_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsConduct_E_Template(pElement)) 
  pDoc-
>CConduct_E_Template_List.RemoveAt(Conduct_E_Template_IndexInConduct_E_
Template_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsConduct_E_Function(pElement)) 
  pDoc-
>CConduct_E_Function_List.RemoveAt(Conduct_E_Function_IndexInConduct_E_
Function_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsEnergize_M_Template(pElement)) 
  pDoc-
>CEnergize_M_Template_List.RemoveAt(Energize_M_Template_IndexInEnergize
_M_Template_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsEnergize_M_Function(pElement)) 
  pDoc-
>CEnergize_M_Function_List.RemoveAt(Energize_M_Function_IndexInEnergize
_M_Function_List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsDistribute_E_Function(pElement)) 
  pDoc-
>CDistribute_E_Function_List.RemoveAt(Distribute_E_Function_IndexInDist
ribute_E_Function_List); // Removes the pointer entry from 
CEdgeList 
 
 if (ElementIsDistribute_E_Template(pElement)) 
  pDoc-
>CDistribute_E_Template_List.RemoveAt(Distribute_E_Template_IndexInDist
ribute_E_Template_List); // Removes the pointer entry from 
CEdgeList 
 
 if (ElementIsDeEn_M_Function(pElement)) 
  pDoc-
>CDeEn_M_Function_List.RemoveAt(DeEn_M_Function_IndexInDeEn_M_Function_
List); // Removes the pointer entry from CEdgeList 
 
 if (ElementIsDeEn_M_Template(pElement)) 
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  pDoc-
>CDeEn_M_Template_List.RemoveAt(DeEn_M_Template_IndexInDeEn_M_Template_
List); // Removes the pointer entry from CEdgeList 
 
 //for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos 
!= NULL; ) 
 //{ 
 // for (POSITION pos1 = pDoc->CMaterialList.GetAt(pos)-
>ChildList.GetHeadPosition(); pos1 != NULL; ) 
 // { 
 //  if (pDoc->CMaterialList.GetAt(pos)-
>ChildList.GetAt(pos1) == pSelectedElement) 
 //   pDoc->CMaterialList.GetAt(pos)-
>ChildList.RemoveAt(pos1); 
 //  if (pDoc->CMaterialList.GetAt(pos)-
>ParentList.GetAt(pos1) == pSelectedElement) 
 //   pDoc->CMaterialList.GetAt(pos)-
>ParentList.RemoveAt(pos1); 
 // } 
 // pDoc->CMaterialList.GetNext(pos); 
 //} 
 // 
 //for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 //{ 
 // for (POSITION pos1 = pDoc->CEnergyList.GetAt(pos)-
>ChildList.GetHeadPosition(); pos1 != NULL; ) 
 // { 
 //  if (pDoc->CEnergyList.GetAt(pos)-
>ChildList.GetAt(pos1) == pSelectedElement) 
 //   pDoc->CEnergyList.GetAt(pos)-
>ChildList.RemoveAt(pos1); 
 //  if (pDoc->CEnergyList.GetAt(pos)-
>ParentList.GetAt(pos1) == pSelectedElement) 
 //   pDoc->CEnergyList.GetAt(pos)-
>ParentList.RemoveAt(pos1); 
 // } 
 // pDoc->CEnergyList.GetNext(pos); 
 //} 
 
 //OnDraw(this->GetDC());  
} 
 
// 
=======================================================================
===== 
// 
=======================================================================
===== 
// FUNCTIONS FOR DERIVATIONAL TOPOLOGICAL CONSERVATION CHECKS 
// 
=======================================================================
===== 
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// 
=======================================================================
===== 
 
void CConModView::Set_OrphanFlowMsg() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_OrphanFlow = "";  
 
 CString* pEdgeNames = new CString; 
 *pEdgeNames = _T(""); 
 
 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CMaterialList.GetAt(pos)->ParentList.IsEmpty() && 
!ElementIsEnv(pDoc->CMaterialList.GetAt(pos)->pTailElem)) 
   *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMaterialList.GetAt(pos)->GivenName; 
   
  pDoc->CMaterialList.GetNext(pos); 
 } 
 
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CEnergyList.GetAt(pos)->ParentList.IsEmpty() && 
!ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pTailElem) && !(pDoc-
>CEnergyList.GetAt(pos)->ThisFlowIsIncomingBaggage)) 
   *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergyList.GetAt(pos)->GivenName; 
   
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 if (*pEdgeNames != "") 
  Msg_OrphanFlow = _T("\nOrphan Flow Detected: ") + 
*pEdgeNames + ("."); 
 
 delete pEdgeNames; 
} 
 
void CConModView::Set_BarrenFlowMsg() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_BarrenFlow = ""; 
 
 CString* pEdgeNames = new CString; 
 *pEdgeNames = _T(""); 
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 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CMaterialList.GetAt(pos)->ChildList.IsEmpty() && 
!ElementIsEnv(pDoc->CMaterialList.GetAt(pos)->pHeadElem)) 
   *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMaterialList.GetAt(pos)->GivenName; 
   
  pDoc->CMaterialList.GetNext(pos); 
 } 
 
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if (pDoc->CEnergyList.GetAt(pos)->ChildList.IsEmpty() && 
!ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pHeadElem) && !(pDoc-
>CEnergyList.GetAt(pos)->ThisFlowIsOutgoingBaggage)) 
   *pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergyList.GetAt(pos)->GivenName; 
   
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 if (*pEdgeNames != "") 
  Msg_BarrenFlow = Msg_BarrenFlow + _T("\nBarren Flow 
Detected: ") + *pEdgeNames + ("."); 
 
 delete pEdgeNames; 
} 
 
void CConModView::Set_OneInManyOutMsg_M() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_OneInManyOut_M = ""; 
  
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  CString* pInputEdgeName = new CString; 
  *pInputEdgeName = _T(""); 
  CString *pOutputEdgeNames = new CString; 
  *pOutputEdgeNames = _T(""); 
 
 
 //===============================================================
============ 
  // Inference of MATERIAL conservation - One In Many Out 
 
 //===============================================================
============ 
  for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition(); 
pos1 != NULL; ) 
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  { 
   if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem == 
pDoc->CFunctionList.GetAt(pos)) 
    pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1)); 
    
   pDoc->CMaterialList.GetNext(pos1); 
  } 
 
  if (pDoc->CMaterialList_IN_TEMP.GetCount() == 1) 
  { 
   for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CMaterialList.GetAt(pos2)->pTailElem 
== pDoc->CFunctionList.GetAt(pos)) 
     pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2)); 
 
    pDoc->CMaterialList.GetNext(pos2); 
   } 
 
   if (pDoc->CMaterialList_OUT_TEMP.GetCount() >= 1) 
   { 
    *pInputEdgeName = pDoc-
>CMaterialList_IN_TEMP.GetHead()->GivenName; 
 
    for (POSITION pos3 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     pDoc->CMaterialList_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CMaterialList_OUT_TEMP.GetAt(pos3)); 
     pDoc->CMaterialList_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CMaterialList_IN_TEMP.GetHead()); 
     *pOutputEdgeNames = *pOutputEdgeNames + 
_T(", ") + pDoc->CMaterialList_OUT_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos3); 
    } 
 
    Msg_OneInManyOut_M = Msg_OneInManyOut_M + 
("\nInferred Derivations: {") + *pInputEdgeName + ("} --> {") + 
*pOutputEdgeNames + ("}."); 
   } 
  } 
 
  delete pInputEdgeName; 
  delete pOutputEdgeNames; 
  EmptyAllTempLists(); // For every function block 
 
  pDoc->CFunctionList.GetNext(pos); 
 } 
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} 
 
void CConModView::Set_OneInManyOutMsg_E() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_OneInManyOut_E = ""; 
  
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  CString* pInputEdgeName = new CString; 
  *pInputEdgeName = _T(""); 
  CString *pOutputEdgeNames = new CString; 
  *pOutputEdgeNames = _T(""); 
 
 
 //===============================================================
============ 
  // Inference of MATERIAL conservation - One In Many Out 
 
 //===============================================================
============ 
  for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1)); 
    
   pDoc->CEnergyList.GetNext(pos1); 
  } 
 
  if (pDoc->CEnergyList_IN_TEMP.GetCount() == 1) 
  { 
   for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos2)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) 
     pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2)); 
 
    pDoc->CEnergyList.GetNext(pos2); 
   } 
 
   if (pDoc->CEnergyList_OUT_TEMP.GetCount() >= 1) 
   { 
    *pInputEdgeName = pDoc-
>CEnergyList_IN_TEMP.GetHead()->GivenName; 
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    for (POSITION pos3 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     pDoc->CEnergyList_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)); 
     pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetHead()); 
     *pOutputEdgeNames = *pOutputEdgeNames + 
_T(", ") + pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc->CEnergyList_OUT_TEMP.GetNext(pos3); 
    } 
 
    Msg_OneInManyOut_E = Msg_OneInManyOut_E + 
("\nInferred Derivations: {") + *pInputEdgeName + ("} --> {") + 
*pOutputEdgeNames + ("}."); 
   } 
  } 
 
  delete pInputEdgeName; 
  delete pOutputEdgeNames; 
  EmptyAllTempLists(); // For every function block 
 
  pDoc->CFunctionList.GetNext(pos); 
 } 
} 
 
void CConModView::Set_ManyInOneOutMsg_M() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_ManyInOneOut_M = ""; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  CString *pInputEdgeNames = new CString; 
  *pInputEdgeNames = _T(""); 
  CString *pOutputEdgeName = new CString; 
  *pOutputEdgeName = _T(""); 
 
 
 //===============================================================
============ 
  // Inference of MATERIAL conservation - Many In One Out 
 
 //===============================================================
============ 
  for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem == 
pDoc->CFunctionList.GetAt(pos)) 
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    pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1)); 
    
   pDoc->CMaterialList.GetNext(pos1); 
  } 
 
  if (pDoc->CMaterialList_IN_TEMP.GetCount() > 1) 
  { 
   for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CMaterialList.GetAt(pos2)->pTailElem 
== pDoc->CFunctionList.GetAt(pos)) 
     pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2)); 
 
    pDoc->CMaterialList.GetNext(pos2); 
   } 
 
   if (pDoc->CMaterialList_OUT_TEMP.GetCount() == 1) 
   { 
    *pOutputEdgeName = pDoc-
>CMaterialList_OUT_TEMP.GetHead()->GivenName; 
 
    for (POSITION pos3 = pDoc-
>CMaterialList_IN_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     pDoc->CMaterialList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CMaterialList_IN_TEMP.GetAt(pos3)); 
     pDoc->CMaterialList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CMaterialList_OUT_TEMP.GetHead()); 
     *pInputEdgeNames = *pInputEdgeNames + 
_T(", ") + pDoc->CMaterialList_IN_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc-
>CMaterialList_IN_TEMP.GetNext(pos3); 
    } 
 
    Msg_ManyInOneOut_M = Msg_ManyInOneOut_M + 
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") + 
*pOutputEdgeName + ("}."); 
   } 
  } 
  delete pInputEdgeNames; 
  delete pOutputEdgeName; 
  EmptyAllTempLists(); // For every function block 
  pDoc->CFunctionList.GetNext(pos); 
 } 
} 
 
void CConModView::Set_ManyInOneOutMsg_E() 
{ 
 CConModDoc* pDoc = GetDocument(); 
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 Msg_ManyInOneOut_E = ""; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  CString *pInputEdgeNames = new CString; 
  *pInputEdgeNames = _T(""); 
  CString *pOutputEdgeName = new CString; 
  *pOutputEdgeName = _T(""); 
 
 
 //===============================================================
============ 
  // Inference of MATERIAL conservation - Many In One Out 
 
 //===============================================================
============ 
  for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1)); 
    
   pDoc->CEnergyList.GetNext(pos1); 
  } 
 
  if (pDoc->CEnergyList_IN_TEMP.GetCount() > 1) 
  { 
   for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos2)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) 
     pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2)); 
 
    pDoc->CEnergyList.GetNext(pos2); 
   } 
 
   if (pDoc->CEnergyList_OUT_TEMP.GetCount() == 1) 
   { 
    *pOutputEdgeName = pDoc-
>CEnergyList_OUT_TEMP.GetHead()->GivenName; 
 
    for (POSITION pos3 = pDoc-
>CEnergyList_IN_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     pDoc->CEnergyList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetAt(pos3)); 



 

 562  

     pDoc->CEnergyList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetHead()); 
     *pInputEdgeNames = *pInputEdgeNames + 
_T(", ") + pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc->CEnergyList_IN_TEMP.GetNext(pos3); 
    } 
 
    Msg_ManyInOneOut_M = Msg_ManyInOneOut_M + 
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") + 
*pOutputEdgeName + ("}."); 
   } 
  } 
  delete pInputEdgeNames; 
  delete pOutputEdgeName; 
  EmptyAllTempLists(); // For every function block 
  pDoc->CFunctionList.GetNext(pos); 
 } 
} 
 
void CConModView::Set_ManyInManyOutMsg() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_ManyInManyOut = ""; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  CString *pInputEdgeNames = new CString; 
  *pInputEdgeNames = _T(""); 
  CString *pOutputEdgeNames = new CString; 
  *pOutputEdgeNames = _T(""); 
 
 
 //===============================================================
============ 
  // Inference of Impossible Conclusion - Many In Many Out 
 
 //===============================================================
============ 
  for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1)); 
    
   pDoc->CEnergyList.GetNext(pos1); 
  } 
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  if (pDoc->CEnergyList_IN_TEMP.GetCount() > 1) // Only 
then you investigate further, otherwise don't waste time 
  { 
   for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos2)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) 
     pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2)); 
 
    pDoc->CEnergyList.GetNext(pos2); 
   } 
 
   if (pDoc->CEnergyList_OUT_TEMP.GetCount() > 1) // 
Now both sides have too many flows to conclude 
   { 
    for (POSITION pos3 = pDoc-
>CEnergyList_IN_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     for (POSITION pos4 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos4 != NULL; ) 
     { 
      pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos4)->ParentList.AddTail(pDoc-
>CEnergyList_IN_TEMP.GetAt(pos3)); 
      pDoc-
>CEnergyList_IN_TEMP.GetAt(pos3)->ChildList.AddTail(pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos4)); 
      pDoc-
>CEnergyList_OUT_TEMP.GetNext(pos4); 
     } 
     *pInputEdgeNames = *pInputEdgeNames + 
_T(", ") + pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc->CEnergyList_IN_TEMP.GetNext(pos3); 
    }/**/ 
 
    for (POSITION pos5 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos5 != NULL; ) 
    { 
     *pOutputEdgeNames = *pOutputEdgeNames + 
_T(", ") + pDoc->CEnergyList_OUT_TEMP.GetAt(pos5)->GivenName; 
     pDoc->CEnergyList_OUT_TEMP.GetNext(pos5); 
    } 
 
    Msg_ManyInManyOut = Msg_ManyInManyOut + 
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") + 
*pOutputEdgeNames + ("}."); 
   } 
  } 
 
  *pInputEdgeNames = _T(""); 



 

 564  

  *pOutputEdgeNames = _T(""); 
  EmptyAllTempLists(); // For every function block 
 
  for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem == 
pDoc->CFunctionList.GetAt(pos)) 
    pDoc->CMaterialList_IN_TEMP.AddTail(pDoc-
>CMaterialList.GetAt(pos1)); 
    
   pDoc->CMaterialList.GetNext(pos1); 
  } 
 
  if (pDoc->CMaterialList_IN_TEMP.GetCount() > 1) // Only 
then you investigate further, otherwise don't waste time 
  { 
   for (POSITION pos2 = pDoc-
>CMaterialList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CMaterialList.GetAt(pos2)->pTailElem 
== pDoc->CFunctionList.GetAt(pos)) 
     pDoc-
>CMaterialList_OUT_TEMP.AddTail(pDoc->CMaterialList.GetAt(pos2)); 
 
    pDoc->CMaterialList.GetNext(pos2); 
   } 
 
   if (pDoc->CMaterialList_OUT_TEMP.GetCount() > 1)
 // Now both sides have too many flows to conclude 
   { 
    for (POSITION pos3 = pDoc-
>CMaterialList_IN_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     for (POSITION pos4 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos4 != NULL; ) 
     { 
      pDoc-
>CMaterialList_OUT_TEMP.GetAt(pos4)->ParentList.AddTail(pDoc-
>CMaterialList_IN_TEMP.GetAt(pos3)); 
      pDoc-
>CMaterialList_IN_TEMP.GetAt(pos3)->ChildList.AddTail(pDoc-
>CMaterialList_OUT_TEMP.GetAt(pos4)); 
      pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos4); 
     } 
     *pInputEdgeNames = *pInputEdgeNames + 
_T(", ") + pDoc->CMaterialList_IN_TEMP.GetAt(pos3)->GivenName; 
      
     pDoc-
>CMaterialList_IN_TEMP.GetNext(pos3); 
    }/**/ 
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    for (POSITION pos5 = pDoc-
>CMaterialList_OUT_TEMP.GetHeadPosition(); pos5 != NULL; ) 
    { 
     *pOutputEdgeNames = *pOutputEdgeNames + 
_T(", ") + pDoc->CMaterialList_OUT_TEMP.GetAt(pos5)->GivenName; 
     pDoc-
>CMaterialList_OUT_TEMP.GetNext(pos5); 
    } 
 
    Msg_ManyInManyOut = Msg_ManyInManyOut + 
("\nInferred Derivations: {") + *pInputEdgeNames + ("} --> {") + 
*pOutputEdgeNames + ("}."); 
   } 
  } 
 
  delete pInputEdgeNames; 
  delete pOutputEdgeNames; 
  EmptyAllTempLists(); // For every function block 
  pDoc->CFunctionList.GetNext(pos); 
 } 
} 
 
void CConModView::Set_MissingResidualEnergyMsg() 
{ 
 if (ReasoningOption == QUALITATIVE_CONSERVATION) 
  return; 
 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_MissingResidualEnergy = ""; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  for (POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos1)); 
    
   pDoc->CEnergyList.GetNext(pos1); 
  } 
 
  if (pDoc->CEnergyList_IN_TEMP.GetCount() >= 1) 
  { 
   for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
   { 
    if (pDoc->CEnergyList.GetAt(pos2)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) 
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     pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergyList.GetAt(pos2)); 
 
    pDoc->CEnergyList.GetNext(pos2); 
   } 
 
   if (pDoc->CEnergyList_OUT_TEMP.GetCount() >= 1) 
   { 
    // Testing if there is at least one residual 
energy flow at the output 
    bool ResidualEnergyFound = false; 
 
    for (POSITION pos3 = pDoc-
>CEnergyList_OUT_TEMP.GetHeadPosition(); pos3 != NULL; ) 
    { 
     if (pDoc-
>CEnergyList_OUT_TEMP.GetAt(pos3)->IsResidual) 
      ResidualEnergyFound = true; 
     pDoc->CEnergyList_OUT_TEMP.GetNext(pos3); 
    } 
 
    if (!ResidualEnergyFound) 
    { 
     Msg_MissingResidualEnergy = 
Msg_MissingResidualEnergy +  
      "\n::Warning:: Energy Loss Not 
Shown in Function: " + pDoc->CFunctionList.GetAt(pos)->GivenName + "."; 
    } 
   } 
  } 
 
  EmptyAllTempLists(); // For every function block 
  pDoc->CFunctionList.GetNext(pos); 
 } 
} 
 
void CConModView::Set_MaterialChangeWithoutEnergyMsg() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 Msg_MaterialChangeWithoutEnergy = ""; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  bool ThisFuncHasInputM; 
  bool ThisFuncHasOutputM; 
  bool ThisFuncHasInputEBaggage; 
  bool ThisFuncHasOutputEBaggage; 
 
  ThisFuncHasInputM = false; 
  ThisFuncHasOutputM = false; 
  ThisFuncHasInputEBaggage = false; 
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  ThisFuncHasOutputEBaggage = false; 
  
  for (POSITION pos1 = pDoc->CMaterialList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   if (pDoc->CMaterialList.GetAt(pos1)->pHeadElem == 
pDoc->CFunctionList.GetAt(pos)) 
   { 
    ThisFuncHasInputM = true; 
 
    for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
    { 
     if ((pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CMaterialList.GetAt(pos1)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>pHeadElem == pDoc->CFunctionList.GetAt(pos))) 
     { 
      ThisFuncHasInputEBaggage = true; 
      //return; 
     } 
     pDoc->CEnergyList.GetNext(pos2); 
    } 
   } 
 
   if (pDoc->CMaterialList.GetAt(pos1)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) 
   { 
    ThisFuncHasOutputM = true; 
 
    for (POSITION pos2 = pDoc-
>CEnergyList.GetHeadPosition(); pos2 != NULL; ) 
    { 
     if ((pDoc->CEnergyList.GetAt(pos2)-
>pHeadElem == pDoc->CMaterialList.GetAt(pos1)) && 
      (pDoc->CEnergyList.GetAt(pos2)-
>pTailElem == pDoc->CFunctionList.GetAt(pos))) 
     { 
      ThisFuncHasOutputEBaggage = true; 
      //return; 
     } 
     pDoc->CEnergyList.GetNext(pos2); 
    } 
   } 
 
   pDoc->CMaterialList.GetNext(pos1); 
  } 
 
  if ((ThisFuncHasInputM) && (ThisFuncHasOutputM) && 
!(ThisFuncHasInputEBaggage) &&!(ThisFuncHasOutputEBaggage)) 
   Msg_MaterialChangeWithoutEnergy = 
Msg_MaterialChangeWithoutEnergy +   
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   "\nEnergy must be exchanged to/from Material to 
transform Material (" + pDoc->CFunctionList.GetAt(pos)->GivenName + 
")."; 
 
  EmptyAllTempLists(); // For every function block 
  pDoc->CFunctionList.GetNext(pos); 
 } 
}/**/ 
 
void CConModView::EmptyAllTempLists() 
{ 
 CConModDoc* pDoc = GetDocument(); 
 
 pDoc->CMaterialList_IN_TEMP.RemoveAll(); 
 pDoc->CMaterialList_OUT_TEMP.RemoveAll(); 
 pDoc->CEnergyList_IN_TEMP.RemoveAll(); 
 pDoc->CEnergyList_OUT_TEMP.RemoveAll(); 
 pDoc->CSignalList_IN_TEMP.RemoveAll(); 
 pDoc->CSignalList_OUT_TEMP.RemoveAll(); 
} 
 
void CConModView::ComposeQualitativeMessage() 
{ 
 CConModDoc* pDoc = this->GetDocument(); 
 
 //============================== 
 // Derivation Check 
 //============================== 
 
 Msg_OneInManyOut_M = ""; 
 Msg_OneInManyOut_E = ""; 
 Msg_ManyInOneOut_M = ""; 
 Msg_ManyInOneOut_E = ""; 
 Msg_ManyInManyOut = ""; 
 Msg_MissingResidualEnergy = ""; 
 Msg_MaterialChangeWithoutEnergy = ""; 
 Msg_OrphanFlow = ""; 
 Msg_BarrenFlow = ""; 
 
 CString* pMsg_DerivationChecks = new CString; 
 *pMsg_DerivationChecks = _T("***** QUALITATIVE CONSERVATION 
REPORT *****\n"); 
 
 // First, clear all existing parent-child relations that are  
 // leftover from a previous call to this function.  
 // The relations will be recomputed during the next inferences 
anyways. 
 for (POSITION pos = pDoc->CMaterialList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  pDoc->CMaterialList.GetAt(pos)->ParentList.RemoveAll(); 
  pDoc->CMaterialList.GetAt(pos)->ChildList.RemoveAll(); 
  pDoc->CMaterialList.GetNext(pos); 
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 } 
 
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  pDoc->CEnergyList.GetAt(pos)->ParentList.RemoveAll(); 
  pDoc->CEnergyList.GetAt(pos)->ChildList.RemoveAll(); 
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 // Must finish drawing inferences before deciding barren and 
orphan flows,  
 // because it is during these inferences that parent and children 
are  
 // computed.  WIthout these inferences, all flows will return as 
both 
 // orphan abd barren.   
 Set_OneInManyOutMsg_M();   
 Set_OneInManyOutMsg_E();   
 Set_ManyInOneOutMsg_M(); 
 Set_ManyInOneOutMsg_E(); 
 Set_ManyInManyOutMsg(); 
 Set_MissingResidualEnergyMsg(); 
 Set_MaterialChangeWithoutEnergyMsg(); 
 
 // Now call orphan and barren flow messages 
 Set_OrphanFlowMsg(); 
 Set_BarrenFlowMsg(); 
 
 // Now compose all the messages generated by the above checks and 
display 
 *pMsg_DerivationChecks =  *pMsg_DerivationChecks +  
       Msg_OneInManyOut_M +  
       Msg_OneInManyOut_E +  
       Msg_ManyInOneOut_M +  
       Msg_ManyInOneOut_E +  
       Msg_ManyInManyOut +  
      
 Msg_MaterialChangeWithoutEnergy + 
       Msg_OrphanFlow +  
       Msg_BarrenFlow; 
 
 int* m = new int; 
 *m = MessageBox(*pMsg_DerivationChecks, _T("Qualitative 
Conservation Report"), MB_ICONWARNING | MB_OK); 
 delete m; 
 
 delete pMsg_DerivationChecks;  // Resets to empty string 
  
 //============================== 
 // Irreversivbility Check 
 //============================== 
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 CString* pMsg_IrrevChecks = new CString; 
 *pMsg_IrrevChecks = _T("***** QUALITATIVE IRREVERSIBILITY REPORT 
*****\n"); 
 
 if (ReasoningOption >= QUALITATIVE_IRREVERSIBILITY) 
 { 
  *pMsg_IrrevChecks = *pMsg_IrrevChecks + 
Msg_MissingResidualEnergy; 
  int* n = new int; 
  *n = MessageBox(*pMsg_IrrevChecks, _T("Qualitative 
Irreversibility Report"), MB_ICONWARNING | MB_OK); 
  delete n; 
 } 
 
 delete pMsg_IrrevChecks; 
} 
 
void CConModView::VerifyPositivePowerOfFlows() 
{ 
 CConModDoc* pDoc = this->GetDocument(); 
 
 ContinueReasoning = true; 
 
 CString* pNegativeEnergyReportString = new CString; 
 *pNegativeEnergyReportString = "***** NEGATIVE POWER REPORT 
*****\nThe following flows have negative power. \n"; 
 
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  pDoc->CEnergyList.GetAt(pos)->Power = pDoc-
>CEnergyList.GetAt(pos)->UI_ForceTerm *  
   pDoc->CEnergyList.GetAt(pos)->UI_RateTerm; 
 
  if (pDoc->CEnergyList.GetAt(pos)->Power < 0) 
  { 
   ContinueReasoning = false; 
   CString* pPowerString = new CString; 
   pPowerString->Format(_T("%4.1f"), pDoc-
>CEnergyList.GetAt(pos)->Power); 
 
   *pNegativeEnergyReportString = 
*pNegativeEnergyReportString + "\nFlow: " + pDoc-
>CEnergyList.GetAt(pos)->GivenName +  
   "\t\tPower = " + *pPowerString + " W"; 
 
   delete pPowerString; 
  } 
 
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 if (ContinueReasoning == false) 
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 { 
  int n = MessageBox(*pNegativeEnergyReportString, 
_T("Negative Power Report"), MB_ICONWARNING | MB_OK); 
  AfxMessageBox(_T("Quantitative reasoning (Energy Balance, 
Efficiency, Confluence) cannot continue with flows with negative 
power.")); 
 } 
 
 delete pNegativeEnergyReportString; 
} 
 
void CConModView::VerifyEnergyBalanceOfFunctions() 
{ 
 if (ContinueReasoning == false) 
  return; 
  
 CConModDoc* pDoc = this->GetDocument(); 
 
 CString* pEnergyBalanceReportString = new CString; 
 *pEnergyBalanceReportString = "***** ENERGY BALANCE REPORT 
*****\n"; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  double* pTotalInputPower = new double; 
  double* pTotalOutputPower = new double; 
 
  *pTotalInputPower = 0.0; 
  *pTotalOutputPower = 0.0; 
 
  for(POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   pDoc->CEnergyList.GetAt(pos1)->Power = pDoc-
>CEnergyList.GetAt(pos1)->UI_ForceTerm *  
    pDoc->CEnergyList.GetAt(pos1)->UI_RateTerm; 
    
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    *pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergyList.GetAt(pos1)->Power); 
 
   if (pDoc->CEnergyList.GetAt(pos1)->pTailElem == pDoc-
>CFunctionList.GetAt(pos)) 
    *pTotalOutputPower = *pTotalOutputPower + 
(pDoc->CEnergyList.GetAt(pos1)->Power); 
   
   pDoc->CEnergyList.GetNext(pos1); 
  } 
 
  if (*pTotalInputPower == *pTotalOutputPower) 
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   *pEnergyBalanceReportString = 
*pEnergyBalanceReportString + "\nFunction: " + pDoc-
>CFunctionList.GetAt(pos)->GivenName + "\tBalanced."; 
 
  else 
  { 
   ContinueReasoning = false; 
 
   CString* pInputPString = new CString; 
   CString* pOutputPString = new CString; 
 
   pInputPString->Format(_T("%4.1f"), 
*pTotalInputPower); 
   pOutputPString->Format(_T("%4.1f"), 
*pTotalOutputPower); 
 
   *pEnergyBalanceReportString = 
*pEnergyBalanceReportString + "\nFunction: " +  
    pDoc->CFunctionList.GetAt(pos)->GivenName + 
"\tInput = " + *pInputPString +  
    " W\tOutput = " + *pOutputPString + " W."; 
 
   delete pInputPString; 
   delete pOutputPString; 
  } 
 
  delete pTotalInputPower; 
  delete pTotalOutputPower; 
  
  pDoc->CFunctionList.GetNext(pos); 
 } 
 
 int n = MessageBox(*pEnergyBalanceReportString, _T("Energy 
Balance Violation Report"), MB_ICONWARNING | MB_OK); 
 
 if (ContinueReasoning == false) 
  AfxMessageBox(_T("Quantitative reasoning (Efficiency, 
Confluence) cannot continue without energy balance in each 
function.")); 
  
 delete pEnergyBalanceReportString; 
} 
 
void CConModView::ComputeEfficiency() 
{ 
 if (ContinueReasoning == false) 
  return; 
  
 CConModDoc* pDoc = this->GetDocument(); 
 
 //====================================== 
 // Compute function-wise efficiency 
 //====================================== 
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 CString* pEfficiencyMessage = new CString; 
 *pEfficiencyMessage = "***** INDIVIDUAL FUNCTION EFFICIENCY 
REPORT *****\n"  
  "\nFunction\tInput\tUsable\tLoss\tEfficiency"   
  "\n==========================================="; 
 
 for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  pDoc->CFunctionList.GetAt(pos)->Efficiency = 0.0; 
 // Reset the efficiency at the beginning of  
  // each run of this algorithm 
   
  double* pTotalInputPower = new double; 
  double* pTotalUsableOutputPower = new double; 
 
  *pTotalInputPower = 0.0; 
  *pTotalUsableOutputPower = 0.0; 
 
  for(POSITION pos1 = pDoc->CEnergyList.GetHeadPosition(); 
pos1 != NULL; ) 
  { 
   pDoc->CEnergyList.GetAt(pos1)->Power = pDoc-
>CEnergyList.GetAt(pos1)->UI_ForceTerm *  
    pDoc->CEnergyList.GetAt(pos1)->UI_RateTerm; 
    
   if (pDoc->CEnergyList.GetAt(pos1)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos)) 
    *pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergyList.GetAt(pos1)->Power); 
 
   if ((pDoc->CEnergyList.GetAt(pos1)->pTailElem == 
pDoc->CFunctionList.GetAt(pos)) && 
    (pDoc->CEnergyList.GetAt(pos1)->IsResidual == 
false)) 
    *pTotalUsableOutputPower = 
*pTotalUsableOutputPower + (pDoc->CEnergyList.GetAt(pos1)->Power); 
   
   pDoc->CEnergyList.GetNext(pos1); 
  } 
 
  if ((*pTotalInputPower != 0.0) && (*pTotalUsableOutputPower 
!= 0)) 
   pDoc->CFunctionList.GetAt(pos)->Efficiency = 
(*pTotalUsableOutputPower / *pTotalInputPower); 
 
  CString* pInputEString = new CString; 
  CString* pUsableOutputEString = new CString; 
  CString* pLossEString = new CString; 
  CString* pEffyString = new CString; 
 
  pInputEString->Format(_T("%5.1f"), *pTotalInputPower); 
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  pUsableOutputEString->Format(_T("%5.1f"), 
*pTotalUsableOutputPower); 
  pLossEString->Format(_T("%5.1f"), (*pTotalInputPower - 
*pTotalUsableOutputPower)); 
  pEffyString->Format(_T("%5.3f"), pDoc-
>CFunctionList.GetAt(pos)->Efficiency); 
 
  *pEfficiencyMessage = *pEfficiencyMessage +  
   "\n" + pDoc->CFunctionList.GetAt(pos)->GivenName +  
   "\t" + *pInputEString +  
   "\t" + *pUsableOutputEString +  
   "\t" + *pLossEString +  
   "\t" + *pEffyString; 
 
  delete pTotalInputPower; 
  delete pTotalUsableOutputPower; 
  delete pInputEString; 
  delete pUsableOutputEString; 
  delete pLossEString; 
  delete pEffyString; 
 
  pDoc->CFunctionList.GetNext(pos); 
 } 
  
 //====================================== 
 // Compute efficiency for the whole model 
 //====================================== 
 
 double* pModelInputPower = new double; 
 double* pModelLossPower = new double; 
 double* pModelEfficiency = new double; 
 
 *pModelInputPower = 0; 
 *pModelLossPower = 0; 
 *pModelEfficiency = 0; 
 
 for (POSITION pos = pDoc->CEnergyList.GetHeadPosition(); pos != 
NULL; ) 
 { 
  if ((ElementIsFunction(pDoc->CEnergyList.GetAt(pos)-
>pHeadElem)) &&  
   (pDoc->CEnergyList.GetAt(pos)->pTailElem != NULL) && 
   ((ElementIsEnv(pDoc->CEnergyList.GetAt(pos)-
>pTailElem)) || (ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pTailElem-
>pTailElem)))) 
   *pModelInputPower = *pModelInputPower + pDoc-
>CEnergyList.GetAt(pos)->Power; 
 
  if ((ElementIsFunction(pDoc->CEnergyList.GetAt(pos)-
>pTailElem)) &&  
   (pDoc->CEnergyList.GetAt(pos)->pHeadElem != NULL) && 
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   ((ElementIsEnv(pDoc->CEnergyList.GetAt(pos)-
>pHeadElem)) || (ElementIsEnv(pDoc->CEnergyList.GetAt(pos)->pHeadElem-
>pHeadElem))) && 
   (pDoc->CEnergyList.GetAt(pos)->IsResidual == true)) 
   *pModelLossPower = *pModelLossPower  + pDoc-
>CEnergyList.GetAt(pos)->Power; 
   
  pDoc->CEnergyList.GetNext(pos); 
 } 
 
 if ((*pModelInputPower != 0) /*&& (*pModelLossPower != 0)*/)
 // Have to set more traps 
  *pModelEfficiency = (*pModelInputPower - *pModelLossPower) 
/ *pModelInputPower; 
 
 CString* pModelEffyString = new CString; 
 pModelEffyString->Format(_T("%5.3f"), *pModelEfficiency); 
 
 *pEfficiencyMessage = *pEfficiencyMessage + "\n\nOVERAL MODEL 
EFFICIENCY: " + *pModelEffyString; 
 
 delete pModelInputPower; 
 delete pModelLossPower; 
 delete pModelEfficiency; 
 delete pModelEffyString; 
 
 int n = MessageBox(*pEfficiencyMessage, _T("Efficiency Report"), 
MB_ICONWARNING | MB_OK); 
  
 delete pEfficiencyMessage; 
} 
 
void CConModView::ComposeQuantitativeMessage() 
{ 
 //================================ 
 // Commented out for rolling back to Layer One (Chapter 6) 
 //================================ 
  
 if ((ReasoningOption == QUALITATIVE_CONSERVATION) || 
(ReasoningOption == QUALITATIVE_IRREVERSIBILITY)) 
 { 
  AfxMessageBox(_T("***** QUANTITATIVE REASONING NOT 
AVAILABLE *****\n\nTo turn on, choose \"Quantitative -> Efficiency\" 
from Reasoning Menu.")); 
  return; 
 } 
  
 if (ReasoningOption == QUANTITATIVE_EFFICIENCY) 
 { 
  VerifyPositivePowerOfFlows(); 
  VerifyEnergyBalanceOfFunctions(); 
  ComputeEfficiency(); // Resets every function's effy to 
zero, then recomputes 
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         // from present 
state of model 
 } 
 
 if (ReasoningOption == QUANTITATIVE_POWERREQUIRED) 
 { 
  AfxMessageBox(_T("Under Construction.")); 
 } 
} 
 
 
 

 

// Convert_E.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Convert_E_Template.h" 
 
 
// CConvert_E dialog 
 
IMPLEMENT_DYNAMIC(CConvert_E_Template, CDialog) 
 
CConvert_E_Template::CConvert_E_Template(CWnd* pParent /*= NULL*/, 
CPoint InsertionPoint /*= (500,500)*/, 
        CString* pCounterString_F /*= NULL*/, 
CString* pCounterString_InE /*= NULL*/,  
        CString* pCounterString_OutE /*= 
NULL*/, CString* pCounterString_OutE_Res /*= NULL*/) 
 : CDialog(CConvert_E_Template::IDD, pParent) 
{ 
 pFunctionBlock = new CFunction(NULL, InsertionPoint, 
pCounterString_F); 
 
 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y + 
TEMPLATE_FLOW_LENGTH); 
 
 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, 
pCounterString_InE); 
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE, 
pCounterString_OutE); 
 pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint, 
HeadOfOutE_Res, pCounterString_OutE_Res); 
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 pEnergy_InE->pHeadElem = pFunctionBlock; 
 pEnergy_OutE->pTailElem = pFunctionBlock; 
 pEnergy_OutE_Res->pTailElem = pFunctionBlock; 
 pEnergy_OutE_Res->UI_IsResidual = true; 
} 
 
CConvert_E_Template::~CConvert_E_Template() 
{ 
} 
 
void CConvert_E_Template::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CConvert_E_Template, CDialog) 
END_MESSAGE_MAP() 
 
 
// CConvert_E message handlers 

 

// DeEn_M_Template.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "DeEn_M_Template.h" 
 
 
// CDeEn_M_Template dialog 
 
IMPLEMENT_DYNAMIC(CDeEn_M_Template, CDialog) 
 
CDeEn_M_Template::CDeEn_M_Template(CWnd* pParent/* = NULL*/,  
  CPoint InsertionPoint /*= (500,500)*/,  
  CString* pCounterString_F /*= NULL*/,  
  CString* pCounterString_InM /*= NULL*/,  
  CString* pCounterString_OutM /*= NULL*/,  
  CString* pCounterString_InE /*= NULL*/,  
  CString* pCounterString_OutE /*= NULL*/) 
 : CDialog(CDeEn_M_Template::IDD, pParent) 
{ 
 pFunctionBlock = new CFunction(NULL, InsertionPoint, 
pCounterString_F); 
 
 CPoint TailOfInM(InsertionPoint.x - 1.5*TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutM(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
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 CPoint HeadOfOutE(InsertionPoint.x, InsertionPoint.y - 
TEMPLATE_FLOW_LENGTH); 
 
 pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint, 
pCounterString_InM); 
 pMaterial_OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM, 
pCounterString_OutM); 
 pEnergy_InE = new CEnergy(NULL, InsertionPoint /*Dummy*/, 
InsertionPoint, pCounterString_InE); 
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE, 
pCounterString_OutE); 
 
 pMaterial_InM->pHeadElem = pFunctionBlock; 
 pMaterial_OutM->pTailElem = pFunctionBlock; 
 pEnergy_InE->pHeadElem = pFunctionBlock; 
 pEnergy_InE->pTailElem = pMaterial_InM; 
 pEnergy_OutE->pTailElem = pFunctionBlock; 
} 
 
CDeEn_M_Template::~CDeEn_M_Template() 
{ 
} 
 
void CDeEn_M_Template::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CDeEn_M_Template, CDialog) 
END_MESSAGE_MAP() 
 
 
// CDeEn_M_Template message handlers 

 

// Distribute_E_Template.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Distribute_E_Template.h" 
 
 
// CDistribute_E_Template dialog 
 
IMPLEMENT_DYNAMIC(CDistribute_E_Template, CDialog) 
 
CDistribute_E_Template::CDistribute_E_Template(CWnd* pParent /*= 
NULL*/,  
              
CPoint InsertionPoint /*= (500,500)*/, 
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CString* pCounterString_F /*= NULL*/,  
              
CString* pCounterString_InE /*= NULL*/,  
              
CString* pCounterString_OutE1 /*= NULL*/,  
              
CString* pCounterString_OutE2 /*= NULL*/) 
 : CDialog(CDistribute_E_Template::IDD, pParent) 
{ 
 pFunctionBlock = new CFunction(NULL, InsertionPoint, 
pCounterString_F); 
 
 CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutE1(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y - TEMPLATE_FLOW_LENGTH); 
 CPoint HeadOfOutE2(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y + TEMPLATE_FLOW_LENGTH); 
 
 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, 
pCounterString_InE); 
 pEnergy_OutE1 = new CEnergy(NULL, InsertionPoint, HeadOfOutE1, 
pCounterString_OutE1); 
 pEnergy_OutE2 = new CEnergy(NULL, InsertionPoint, HeadOfOutE2, 
pCounterString_OutE2); 
 
 pEnergy_InE->pHeadElem = pFunctionBlock; 
 pEnergy_OutE1->pTailElem = pFunctionBlock; 
 pEnergy_OutE2->pTailElem = pFunctionBlock; 
} 
 
CDistribute_E_Template::~CDistribute_E_Template() 
{ 
} 
 
void CDistribute_E_Template::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CDistribute_E_Template, CDialog) 
END_MESSAGE_MAP() 
 
 
// CDistribute_E_Template message handlers 

 

#include "StdAfx.h" 
#include "Edge.h" 
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#include "math.h" 
 
CEdge::CEdge(void) 
{ 
} 
 
CEdge::CEdge(CPoint TailClick, CPoint HeadClick) 
{ 
 TailPoint = TailClick; 
 HeadPoint = HeadClick; 
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5); 
 StemThickness = THIN; 
 StemLineFont = PS_SOLID; 
 
 HeadSize = EDGE_HEAD_SIZE; 
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE; 
 
 ComputeAnchorPoints(); 
 pHeadElem = NULL;  
 pTailElem = NULL; 
 ThisFlowIsIncomingBaggage = false; 
 ThisFlowIsOutgoingBaggage = false; 
 
 FontSize = GENERIC_FONT_SIZE; 
} 
 
CEdge::~CEdge(void) 
{ 
} 
 
void CEdge::AttachEdgeToNearestAnchor() 
{ 
 FontSize = GENERIC_FONT_SIZE; 
 HeadSize = EDGE_HEAD_SIZE; 
 
 if (pTailElem != NULL) 
 { 
  // Initialize with any one anchor point - zeroth chosen 
arbitrarily 
  long double d = distance(HeadPoint, pTailElem->Anchors[0]); 
  TailPoint = pTailElem->Anchors[0]; 
 
  for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor 
points on both nodes and edges 
  { 
   if (distance(pTailElem->Anchors[n], HeadPoint) < d) 
   { 
    d = distance(HeadPoint, pTailElem->Anchors[n]); 
    TailPoint = pTailElem->Anchors[n]; 
   } 
  } 
 }  
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 if (pHeadElem != NULL) 
 { 
  // Initialize with any one anchor point - zeroth chosen 
arbitrarily 
  long double d = distance(TailPoint, pHeadElem->Anchors[0]); 
  this->HeadPoint = pHeadElem->Anchors[0]; 
 
  for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor 
points on both nodes and edges 
  { 
   if (distance(pHeadElem->Anchors[n], TailPoint) < d) 
   { 
    d = distance(TailPoint, pHeadElem->Anchors[n]); 
    HeadPoint = pHeadElem->Anchors[n]; 
   } 
  } 
 }  
 
 if (ThisFlowIsOutgoingBaggage) // i.e., this flow's is a 
baggage flow and its pHeadElem (carrier)  
         // is another 
flow that is exiting the same function as this one 
 { 
  for (int n = 0; n <= 15; n++) 
  { 
   if (this->pTailElem->AnchorsForBaggageFlows[n] == 
this->pHeadElem->TailPoint) 
    this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[n+2]; 
   // The following two conditional statements are 
special cases where 
   // the 14+2 = 16 and 15+2 = 17 -th elements do not 
exist in the array. 
   if (this->pTailElem->AnchorsForBaggageFlows[14] == 
this->pHeadElem->TailPoint) 
    this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[0]; 
   if (this->pTailElem->AnchorsForBaggageFlows[15] == 
this->pHeadElem->TailPoint) 
    this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[1]; 
   if (this->pTailElem->AnchorsForBaggageFlows[0] == 
this->pHeadElem->TailPoint) 
    this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[2]; 
    
   this->HeadPoint = this->pHeadElem->Anchors[5]; 
  } 
  // The following two lines improves readability of baggage 
flows 
  FontSize = BAGGAGE_FONT_SIZE; 
  HeadSize = EDGE_HEAD_SIZE / 2; 
 } 
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 if (ThisFlowIsIncomingBaggage) 
 { 
  for (int n = 0; n <= 15; n++) 
  { 
   if (this->pHeadElem->AnchorsForBaggageFlows[n] == 
this->pTailElem->HeadPoint) 
    this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[n+2]; 
   // The following two conditional statements are 
special cases where 
   // the 14+2 = 16 and 15+2 = 17 -th elements do not 
exist in the array. 
   if (this->pHeadElem->AnchorsForBaggageFlows[14] == 
this->pTailElem->HeadPoint) 
    this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[0]; 
   if (this->pHeadElem->AnchorsForBaggageFlows[15] == 
this->pTailElem->HeadPoint) 
    this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[1]; 
   if (this->pHeadElem->AnchorsForBaggageFlows[0] == 
this->pTailElem->HeadPoint) 
    this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[2]; 
    
   this->TailPoint = this->pTailElem->Anchors[10]; 
  } 
  // The following two lines improves readability of baggage 
flows 
  FontSize = BAGGAGE_FONT_SIZE; 
  HeadSize = EDGE_HEAD_SIZE / 2; 
 } 
} 
 
void CEdge::DrawOnDC(CDC* pDC) 
{ 
 AttachEdgeToNearestAnchor(); 
 
 CElement::DrawOnDC(pDC); // Call the drawing function of the 
parent class - sets pen color 
  
 // 
=======================================================================
===== 
 // Draw the STEM of the arrow using PenStem (No brush required) 
 // 
=======================================================================
===== 
 
 CPen PenStem; 
 PenStem.CreatePen(StemLineFont, StemThickness, RGB(PenR, PenG, 
PenB)); 
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 CPen* pOldPen = pDC->SelectObject(&PenStem); 
 CPoint* ArrowTerminalPoints = new CPoint[2]; 
 ArrowTerminalPoints[0] = TailPoint; 
 ArrowTerminalPoints[1] = HeadPoint; 
 pDC->Polyline(ArrowTerminalPoints, 2); 
 delete[] ArrowTerminalPoints; 
 
 ComputeAnchorPoints();  // Computes the eight anchor points 
along the stem of  
        // the edge whenever 
the edge is edited, moved, or whatever. 
 
 ResetGeometricCenter();  // Makes sure that the 
GeometricCenter is reset between the  
        // Tail and Head 
points, when an arrow is moved by grabbing  
        // Those terminal 
points 
 
 /*for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++) 
  pDC->Ellipse(Anchors[AnchorInx - 1].x - 1, 
Anchors[AnchorInx - 1].y - 1,  
    Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx 
- 1].y + 1);*/ 
 
 // 
=======================================================================
===== 
 // Draw the HEAD of the arrow using PenHead and BrushHead 
 // 
=======================================================================
===== 
 
 CPen PenHead; 
 PenHead.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB)); 
 
 if (this->pHeadElem == NULL) 
 { 
  HeadBrushR = DANGLING_BRUSH_R; 
  HeadBrushG = DANGLING_BRUSH_G; 
  HeadBrushB = DANGLING_BRUSH_B; 
 } 
 else  
 { 
  HeadBrushR = GENERIC_BRUSH_R; 
  HeadBrushG = GENERIC_BRUSH_G; 
  HeadBrushB = GENERIC_BRUSH_B; 
 } 
 
 CBrush BrushHead(RGB(HeadBrushR,HeadBrushG,HeadBrushB));  
 CBrush* pOldBrush = pDC->SelectObject(&BrushHead); 
 
 pOldPen = pDC->SelectObject(&PenHead); 



 

 584  

  
 double alpha = atan(abs(double(HeadPoint.y) - 
double(TailPoint.y)) / abs(double(HeadPoint.x) - double(TailPoint.x))); 
  
 int X_Factor, Y_Factor; 
 
 if (HeadPoint.x >= TailPoint.x) 
  X_Factor = 1; 
 else X_Factor = (-1); 
 
 if (TailPoint.y >= HeadPoint.y) 
  Y_Factor = 1; 
 else Y_Factor = (-1); 
  
 HeadLeftVertex.x = HeadPoint.x - HeadSize * cos(alpha - 
HalfHeadAngle) * X_Factor; 
 HeadLeftVertex.y = HeadPoint.y + HeadSize * sin(alpha - 
HalfHeadAngle) * Y_Factor; 
 
 HeadRightVertex.x = HeadPoint.x - HeadSize * cos(alpha + 
HalfHeadAngle) * X_Factor; 
 HeadRightVertex.y = HeadPoint.y + HeadSize * sin(alpha + 
HalfHeadAngle) * Y_Factor; 
 
 HeadVertexArray[0] = HeadPoint; 
 HeadVertexArray[1] = HeadLeftVertex; 
 HeadVertexArray[2] = HeadRightVertex; 
 
 pDC->Polygon(HeadVertexArray,3); 
 
 // 
=======================================================================
===== 
 // Draw the TAIL of the arrow using PenTail and BrushTail 
 // 
=======================================================================
===== 
 
 CPen PenTail; 
 PenTail.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB)); 
 
 if (this->pTailElem == NULL) 
 { 
  TailBrushR = DANGLING_BRUSH_R; 
  TailBrushG = DANGLING_BRUSH_G; 
  TailBrushB = DANGLING_BRUSH_B; 
 } 
 else  
 { 
  TailBrushR = GENERIC_BRUSH_R; 
  TailBrushG = GENERIC_BRUSH_G; 
  TailBrushB = GENERIC_BRUSH_B; 
 } 
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 CBrush BrushTail(RGB(TailBrushR,TailBrushG,TailBrushB));  
 pOldBrush = pDC->SelectObject(&BrushTail); 
 pOldPen = pDC->SelectObject(&PenTail); 
 
 pDC->Ellipse(TailPoint.x - 4, TailPoint.y - 4, TailPoint.x + 4, 
TailPoint.y + 4); 
 
 // 
=======================================================================
===== 
 // Put back the old objects, although I do not understand how 
this impacts anything. 
 // 
=======================================================================
===== 
 
 pDC->SelectObject(pOldPen); 
 pDC->SelectObject(pOldBrush); 
} 
 
void CEdge::ComputeAnchorPoints() 
{ 
 // First eight poitns - between tail and center 
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++) 
 { 
  Anchors[AnchorInx - 1] = *InterpolatePoints(TailPoint, 
HeadPoint, (0.5 / 9 * AnchorInx)); 
 } 
 
 // Second eight popints - between center and head 
 for (int AnchorInx = 1; AnchorInx <= 8; AnchorInx++) 
 { 
  Anchors[AnchorInx + 7] = *InterpolatePoints(TailPoint, 
HeadPoint, (0.5 + 0.5 / 9 * AnchorInx)); 
 } 
} 
 
void CEdge::ResetGeometricCenter() 
{ 
 GeometricCenter = *this->InterpolatePoints(this->HeadPoint, this-
>TailPoint, 0.5); 
} 

 

#include "StdAfx.h" 
#include "Element.h" 
 
CElement::CElement(void) 
{ 
 IsHighlighted = false; 
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 IsSelected = false; 
 IsResidual = false; 
 
 PenR = GENERIC_PEN_R; 
 PenG = GENERIC_PEN_G; 
 PenB = GENERIC_PEN_B; 
 
 GrabHandle = 0; // NONE 
} 
 
CElement::~CElement(void) 
{ 
} 
 
void CElement::DrawOnDC(CDC* pDC) 
{ 
 // 
=======================================================================
===== 
 // Decide the color, based on HIGHLIGHT, SELECTED, or GENERIC 
status 
 // 
=======================================================================
===== 
 
 if (this->IsHighlighted) // This ORDER of checks is very 
important.  If  
 {       // changed, this will 
change the highlight and  
  this->PenR = PRESELECTION_PEN_R; // unhighlight behavior 
of energies 
  this->PenG = PRESELECTION_PEN_G; 
  this->PenB = PRESELECTION_PEN_B; 
 } 
 
 else if (this->IsSelected) 
 {  
  this->PenR = SELECTION_PEN_R; 
  this->PenG = SELECTION_PEN_G; 
  this->PenB = SELECTION_PEN_B; 
 } 
 
 else if (this->IsResidual) 
 {  
  this->PenR = RESIDUAL_PEN_R; 
  this->PenG = RESIDUAL_PEN_G; 
  this->PenB = RESIDUAL_PEN_B; 
 } 
 
 else  
 {  
  this->PenR = GENERIC_PEN_R; 
  this->PenG = GENERIC_PEN_G; 
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  this->PenB = GENERIC_PEN_B; 
 } 
} 

 

// Energize_M_Template.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Energize_M_Template.h" 
 
 
// CEnergize_M_Template dialog 
 
IMPLEMENT_DYNAMIC(CEnergize_M_Template, CDialog) 
 
CEnergize_M_Template::CEnergize_M_Template(CWnd* pParent/* = NULL*/,  
  CPoint InsertionPoint /*= (500,500)*/,  
  CString* pCounterString_F /*= NULL*/,  
  CString* pCounterString_InM /*= NULL*/,  
  CString* pCounterString_OutM /*= NULL*/,  
  CString* pCounterString_InE /*= NULL*/,  
  CString* pCounterString_OutE /*= NULL*/) 
 : CDialog(CEnergize_M_Template::IDD, pParent) 
{ 
 pFunctionBlock = new CFunction(NULL, InsertionPoint, 
pCounterString_F); 
 
 CPoint TailOfInM(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint HeadOfOutM(InsertionPoint.x + 1.5*TEMPLATE_FLOW_LENGTH, 
InsertionPoint.y); 
 CPoint TailOfInE(InsertionPoint.x, InsertionPoint.y - 
TEMPLATE_FLOW_LENGTH); 
 
 pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint, 
pCounterString_InM); 
 pMaterial_OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM, 
pCounterString_OutM); 
 pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, 
pCounterString_InE); 
 pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutM 
/*Dummy*/, pCounterString_OutE); 
 
 pMaterial_InM->pHeadElem = pFunctionBlock; 
 pMaterial_OutM->pTailElem = pFunctionBlock; 
 pEnergy_InE->pHeadElem = pFunctionBlock; 
 pEnergy_OutE->pTailElem = pFunctionBlock; 
 pEnergy_OutE->pHeadElem = pMaterial_OutM; 
} 
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CEnergize_M_Template::~CEnergize_M_Template() 
{ 
} 
 
void CEnergize_M_Template::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CEnergize_M_Template, CDialog) 
END_MESSAGE_MAP() 
 
 
// CEnergize_M_Template message handlers 

 

// Energy.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Energy.h" 
 
IMPLEMENT_DYNAMIC(CEnergy, CDialog) 
 
CEnergy::CEnergy(CWnd* pParent,  
     CPoint TailClick,  
     CPoint HeadClick,  
     CString* pCounterString, 
     int ReasOpt) 
 : CDialog(CEnergy::IDD, pParent) 
 , GivenName(_T("E") + *pCounterString) 
 , UI_IsResidual(false) 
 , UI_ForceTerm(100) 
 , UI_RateTerm(1) 
 , ReasoningOption(ReasOpt) 
{ 
 TailPoint = TailClick; 
 HeadPoint = HeadClick; 
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5); 
 StemThickness = THIN;  // This sets the thickness of Energy 
arrows 
  
 HeadSize = EDGE_HEAD_SIZE; 
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE; 
 
 ComputeAnchorPoints(); 
 pHeadElem = NULL;  
 pTailElem = NULL; 
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 DoModal();  // Launches modal dialog 
} 
 
BOOL CEnergy::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 //============================== 
 // Grey Out Dialog Controls 
 //============================== 
 
 if (this->ReasoningOption == QUALITATIVE_CONSERVATION) 
  GetDlgItem(IDC_RESIDUAL_ENERGY)->EnableWindow(false);
 //Greys out control  
 
 if ((this->ReasoningOption < QUANTITATIVE_EFFICIENCY) /*|| 
(UI_IsResidual == true)*/) 
 { 
  GetDlgItem(IDC_FORCE_TERM)->EnableWindow(false);
 //Greys out control  
  GetDlgItem(IDC_RATE_TERM)->EnableWindow(false); 
 //Greys out control  
  GetDlgItem(IDC_FORCE_STATIC_TEXT)->EnableWindow(false); 
 //Greys out control  
  GetDlgItem(IDC_RATE_STATIC_TEXT)->EnableWindow(false); 
 //Greys out control  
 } 
 
 else 
 { 
  GetDlgItem(IDC_FORCE_TERM)->EnableWindow(true);  // 
Makes control available 
  GetDlgItem(IDC_RATE_TERM)->EnableWindow(true);  // 
Makes control available 
  GetDlgItem(IDC_FORCE_STATIC_TEXT)->EnableWindow(true); 
 // Makes control available 
  GetDlgItem(IDC_RATE_STATIC_TEXT)->EnableWindow(true); 
 // Makes control available 
 
  if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) 
  { 
   pEnergyTaxonomy = new CTreeCtrl; 
 
   pEnergyTaxonomy->Create(WS_CHILD | WS_VISIBLE | 
WS_BORDER | WS_TABSTOP | 
          TVS_HASLINES | 
TVS_HASBUTTONS | TVS_LINESATROOT | 
         
 /*TVS_SINGLEEXPAND | */TVS_SHOWSELALWAYS | TVS_TRACKSELECT, 
    CRect(11, 150, 248, 440), this, 0x1221); 
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   // Full List of all energy types (leaf nodes and 
intermediate nodes) 
   HTREEITEM hEnergy, // Primary 
    hME, hEE, hThE, hChE, hEME, hMagE, hAcE, // 
Secondary 
    hKinetic, hPotential, // Tertiary under hME 
    hLinear, hRotatinal, // Quaternary under 
hKinetic 
    hGravitational, hElastic; //Quaternary under 
hPotential 
 
   // PRIMARY LEVEL 
   hEnergy = pEnergyTaxonomy->InsertItem(_T("E"), 
TVI_ROOT); 
 
   // SECONDARY LEVEL (UNDER hEnergy) 
   hME = pEnergyTaxonomy->InsertItem(_T("ME"), hEnergy); 
   hEE = pEnergyTaxonomy->InsertItem(_T("EE"), hEnergy); 
   hThE = pEnergyTaxonomy->InsertItem(_T("ThE"), 
hEnergy); 
   hChE = pEnergyTaxonomy->InsertItem(_T("ChE"), 
hEnergy); 
   hEME = pEnergyTaxonomy->InsertItem(_T("EME"), 
hEnergy); 
   hMagE = pEnergyTaxonomy->InsertItem(_T("MagE"), 
hEnergy); 
   hAcE = pEnergyTaxonomy->InsertItem(_T("AcE"), 
hEnergy); 
 
   // TERTIARY LEVEL (UNDER hME) 
   hKinetic = pEnergyTaxonomy->InsertItem(_T("KE"), 
hME); 
   hPotential = pEnergyTaxonomy->InsertItem(_T("PE"), 
hME); 
    
   // QUARTERNARY LEVEL (UNDER hME -> hKinetic) 
   hLinear = pEnergyTaxonomy->InsertItem(_T("LinKE"), 
hKinetic); 
   hRotatinal = pEnergyTaxonomy->InsertItem(_T("RotKE"), 
hKinetic); 
 
   // QUARTERNARY LEVEL (UNDER hME -> hPotential) 
   hGravitational = pEnergyTaxonomy-
>InsertItem(_T("GrvPE"), hPotential); 
   hElastic = pEnergyTaxonomy->InsertItem(_T("ElPE"), 
hPotential); 
 
   pEnergyTaxonomy->SelectItem(hEnergyType); 
 
   pEnergyTaxonomy->Expand(hEnergy, TVE_EXPAND); 
   pEnergyTaxonomy->Expand(hME, TVE_EXPAND); 
   pEnergyTaxonomy->Expand(hKinetic, TVE_EXPAND); 
   pEnergyTaxonomy->Expand(hPotential, TVE_EXPAND); 
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  } 
 } 
 
 return TRUE; // return TRUE unless you set the focus to a control 
} 
 
CEnergy::~CEnergy() 
{ 
} 
 
void CEnergy::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 DDX_Text(pDX, IDC_ENERGY_NAME, GivenName);  // Connects 
variable IDC_ENERGY_NAME to member GivenName 
  
 DDX_Check(pDX, IDC_RESIDUAL_ENERGY, UI_IsResidual); 
 DDX_Text(pDX, IDC_FORCE_TERM, UI_ForceTerm);   
 DDX_Text(pDX, IDC_RATE_TERM, UI_RateTerm);   
} 
 
void CEnergy::OnOK() 
{ 
 CDialog::OnOK(); 
 
 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) 
 { 
  hEnergyType = pEnergyTaxonomy->GetSelectedItem(); 
  EnergyTypeName = pEnergyTaxonomy->GetItemText(hEnergyType); 
  delete pEnergyTaxonomy; 
 } 
 
 else 
  EnergyTypeName = "E"; 
} 
 
void CEnergy::DrawOnDC(CDC* pDC) 
{ 
 IsResidual = UI_IsResidual; 
 Power = UI_ForceTerm * UI_RateTerm; 
 
 CEdge::DrawOnDC(pDC);  // Execute the entire drawing code 
of the parent class CEdge 
 
 // 
=======================================================================
===== 
 // Write the name of CEnergy using a Font object 
 // 
=======================================================================
===== 
 
 // Initializes a CFont object with the specified characteristics.   
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 CFont font; 
 VERIFY(font.CreateFont( 
   FontSize,                        // nHeight 
   0,                         // nWidth 
   0,                         // nEscapement 
   0,                         // nOrientation 
   FW_NORMAL,                 // nWeight 
   FALSE,                     // bItalic 
   FALSE,                     // bUnderline 
   0,                         // cStrikeOut 
   ANSI_CHARSET,              // nCharSet 
   OUT_DEFAULT_PRECIS,        // nOutPrecision 
   CLIP_DEFAULT_PRECIS,       // nClipPrecision 
   DEFAULT_QUALITY,           // nQuality 
   DEFAULT_PITCH | FF_SWISS,  // nPitchAndFamily 
   _T("Arial")));                 // lpszFacename 
  
 CFont* def_font = pDC->SelectObject(&font); 
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE); 
 
 CString* pPowerString = new CString; 
 *pPowerString = ""; 
 
 if ((this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) /*&& 
(this->IsResidual == false)*/) 
 { 
  pPowerString->Format(_T("%2.0f"), this->Power); 
  *pPowerString = *pPowerString + _T("W"); 
 } 
 else  
  *pPowerString = ""; 
 
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, (GivenName + " 
[" + EnergyTypeName + "] " + *pPowerString)); 
 pDC->SelectObject(def_font); 
  
 // 
=======================================================================
===== 
 // Put back the old objects, although I do not understand how 
this impacts anything. 
 // 
=======================================================================
===== 
 
 font.DeleteObject(); 
 delete pPowerString; 
} 
 
BEGIN_MESSAGE_MAP(CEnergy, CDialog) 
END_MESSAGE_MAP() 
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#include "stdafx.h" 
#include "ConMod.h" 
#include "Env.h" 
#include "geometry.h" 
 
// CEnv dialog 
 
IMPLEMENT_DYNAMIC(CEnv, CDialog) 
 
CEnv::CEnv(CWnd* pParent, CPoint InsertionPoint, CString* 
pCounterString) 
 : CDialog(CEnv::IDD, pParent) 
 , GivenName("Env" + *pCounterString) 
{ 
 GeometricCenter = InsertionPoint; 
 ComputeBlockCoordinates(); 
 
 DoModal();  // Launches modal dialog 
} 
 
CEnv::~CEnv() 
{ 
} 
 
void CEnv::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 DDX_Text(pDX, IDC_ENV_NAME, GivenName); 
} 
 
void CEnv::ComputeBlockCoordinates() 
{ 
 Anchors[0] = CPoint ((GeometricCenter.x + ENV_SIZE), 
(GeometricCenter.y));  
 Anchors[1] = CPoint ((GeometricCenter.x), (GeometricCenter.y + 
ENV_SIZE * 0.866));  
 Anchors[2] = CPoint ((GeometricCenter.x - ENV_SIZE), 
(GeometricCenter.y)); 
 Anchors[3] = CPoint ((GeometricCenter.x), (GeometricCenter.y - 
ENV_SIZE * 0.866)); 
 Anchors[4] = CPoint ((GeometricCenter.x + 0.5*ENV_SIZE), 
(GeometricCenter.y + ENV_SIZE * 0.866));  
 Anchors[5] = CPoint ((GeometricCenter.x - 0.5*ENV_SIZE), 
(GeometricCenter.y + ENV_SIZE * 0.866));  
 Anchors[6] = CPoint ((GeometricCenter.x - 0.5*ENV_SIZE), 
(GeometricCenter.y - ENV_SIZE * 0.866)); 
 Anchors[7] = CPoint ((GeometricCenter.x + 0.5*ENV_SIZE), 
(GeometricCenter.y - ENV_SIZE * 0.866)); 
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 Anchors[8] = CPoint ((GeometricCenter.x + 0.75*ENV_SIZE), 
(GeometricCenter.y + ENV_SIZE * 0.433)); 
 Anchors[9] = CPoint ((GeometricCenter.x - 0.75*ENV_SIZE), 
(GeometricCenter.y + ENV_SIZE * 0.433)); 
 Anchors[10] = CPoint ((GeometricCenter.x - 0.75*ENV_SIZE), 
(GeometricCenter.y - ENV_SIZE * 0.433)); 
 Anchors[11] = CPoint ((GeometricCenter.x + 0.75*ENV_SIZE), 
(GeometricCenter.y - ENV_SIZE * 0.433)); 
 Anchors[12] = Anchors[0]; 
 Anchors[13] = Anchors[0]; 
 Anchors[14] = Anchors[0]; 
 Anchors[15] = Anchors[0]; 
 
 AnchorsForBaggageFlows[0] = Anchors[0];  
 AnchorsForBaggageFlows[1] = Anchors[11]; 
 AnchorsForBaggageFlows[2] = Anchors[7]; 
 AnchorsForBaggageFlows[3] = Anchors[3]; 
 AnchorsForBaggageFlows[4] = Anchors[6]; 
 AnchorsForBaggageFlows[5] = Anchors[10]; 
 AnchorsForBaggageFlows[6] = Anchors[2]; 
 AnchorsForBaggageFlows[7] = Anchors[9]; 
 AnchorsForBaggageFlows[8] = Anchors[5]; 
 AnchorsForBaggageFlows[9] = Anchors[1]; 
 AnchorsForBaggageFlows[10] = Anchors[4]; 
 AnchorsForBaggageFlows[11] = Anchors[8]; 
 AnchorsForBaggageFlows[12] = Anchors[0]; 
 AnchorsForBaggageFlows[13] = Anchors[0]; 
 AnchorsForBaggageFlows[14] = Anchors[0]; 
 AnchorsForBaggageFlows[15] = Anchors[0]; 
} 
 
void CEnv::DrawOnDC(CDC* pDC) 
{ 
 CElement::DrawOnDC(pDC); // Call the drawing function of the 
parent class - sets pen color 
 
 if (this->NoInputAttached && this->NoOutputAttached) 
 { 
  BrushR = DANGLING_BRUSH_R; 
  BrushG = DANGLING_BRUSH_G; 
  BrushB = DANGLING_BRUSH_B; 
 } 
 else  
 { 
  BrushR = ENV_BRUSH_R; 
  BrushG = ENV_BRUSH_G; 
  BrushB = ENV_BRUSH_B; 
 } 
 
 CPen Pen; 
 Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB)); 
 CPen* pOldPen = pDC->SelectObject(&Pen); 
 CBrush Brush(RGB(BrushR, BrushG, BrushB)); 
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 CBrush* pOldBrush = pDC->SelectObject(&Brush); 
 
 ComputeBlockCoordinates(); 
 
 CPoint AnchorsForHexagon[6]; 
 AnchorsForHexagon[0] = Anchors[0]; 
 AnchorsForHexagon[1] = Anchors[4]; 
 AnchorsForHexagon[2] = Anchors[5]; 
 AnchorsForHexagon[3] = Anchors[2]; 
 AnchorsForHexagon[4] = Anchors[6]; 
 AnchorsForHexagon[5] = Anchors[7]; 
 pDC->Polygon(AnchorsForHexagon,6); 
 
 //pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,  
  //GeometricCenter.x + 2, GeometricCenter.y + 2); 
 /* 
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++) 
  pDC->Ellipse(Anchors[AnchorInx - 1].x - 1, 
Anchors[AnchorInx - 1].y - 1,  
    Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx 
- 1].y + 1);*/ 
  
 // Initializes a CFont object with the specified characteristics.  
 CFont font; 
 VERIFY(font.CreateFont( 
   16,                        // nHeight 
   0,                         // nWidth 
   0,                         // nEscapement 
   0,                         // nOrientation 
   FW_NORMAL,                 // nWeight 
   FALSE,                     // bItalic 
   FALSE,                     // bUnderline 
   0,                         // cStrikeOut 
   ANSI_CHARSET,              // nCharSet 
   OUT_DEFAULT_PRECIS,        // nOutPrecision 
   CLIP_DEFAULT_PRECIS,       // nClipPrecision 
   DEFAULT_QUALITY,           // nQuality 
   DEFAULT_PITCH | FF_SWISS,  // nPitchAndFamily 
   _T("Arial")));                 // lpszFacename 
  
 CFont* def_font = pDC->SelectObject(&font); 
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE); 
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName); 
 pDC->SelectObject(def_font); 
  
 font.DeleteObject(); 
 pDC->SelectObject(pOldPen); 
 pDC->SelectObject(pOldBrush); 
} 
 
BEGIN_MESSAGE_MAP(CEnv, CDialog) 
END_MESSAGE_MAP() 
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// CEnv message handlers 

 

#include "stdafx.h" 
#include "ConMod.h" 
#include "Function.h" 
 
// CFunction dialog 
 
IMPLEMENT_DYNAMIC(CFunction, CDialog) 
 
CFunction::CFunction(CWnd* pParent, CPoint InsertionPoint, CString* 
pCounterString) 
 : CDialog(CFunction::IDD, pParent) 
 , GivenName("F" + *pCounterString)  // Populates the string 
in the GivenName field - default 
{ 
 GeometricCenter = InsertionPoint; 
 ComputeBlockCoordinates(); 
 Efficiency = 0;  
 
 DoModal();  // Launches modal dialog 
} 
 
CFunction::~CFunction() 
{ 
} 
 
void CFunction::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 DDX_Text(pDX, IDC_FUNCTION_NAME, GivenName); // Connects variable 
with dialog element 
} 
 
BEGIN_MESSAGE_MAP(CFunction, CDialog) 
 
END_MESSAGE_MAP() 
 
void CFunction::ComputeBlockCoordinates() 
{ 
 left = GeometricCenter.x - BLOCK_LENGTH / 2;  
 right = GeometricCenter.x + BLOCK_LENGTH / 2;  
 top = GeometricCenter.y - BLOCK_HEIGHT / 2;   
 bottom = GeometricCenter.y + BLOCK_HEIGHT / 2;   
 
 Anchors[0] = CPoint (right, (top + bottom)/2); // E 
 Anchors[4] = CPoint (right, top);    // NE 
 Anchors[1] = CPoint ((right + left)/2, top); // N 
 Anchors[5] = CPoint (left, top);    // NW 
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 Anchors[2] = CPoint (left, (top + bottom)/2); // W 
 Anchors[6] = CPoint (left, bottom);    // SW 
 Anchors[3] = CPoint ((left + right)/2, bottom); // S 
 Anchors[7] = CPoint (right, bottom);   // SE 
  
 Anchors[8] = CPoint (right, top + BLOCK_HEIGHT/4); // ENE 
 Anchors[9] = CPoint (right - BLOCK_LENGTH/4, top); // NNE 
 Anchors[10] = CPoint (left + BLOCK_LENGTH/4, top);  // 
NNW 
 Anchors[11] = CPoint (left, top + BLOCK_HEIGHT/4);  // 
WNW 
 
 Anchors[12] = CPoint (left, bottom - BLOCK_HEIGHT/4); // WSW 
 Anchors[13] = CPoint (left + BLOCK_LENGTH/4, bottom); // SSW 
 Anchors[14] = CPoint (right - BLOCK_LENGTH/4, bottom);// SSE 
 Anchors[15] = CPoint (right, bottom - BLOCK_HEIGHT/4); // 
ESE 
 
 // The following lines reorders the anchors to a different list, 
 // AnchorsForBaggageFlows.  This list is scrolled through when a  
 // baggage flow (incoming or outgoing) needs to be attached to 
 // the function with only two nodes apart from where the main  
 // flow is attached. 
 
 AnchorsForBaggageFlows[0] = Anchors[0];  
 AnchorsForBaggageFlows[1] = Anchors[8]; 
 AnchorsForBaggageFlows[2] = Anchors[4]; 
 AnchorsForBaggageFlows[3] = Anchors[9]; 
 AnchorsForBaggageFlows[4] = Anchors[1]; 
 AnchorsForBaggageFlows[5] = Anchors[10]; 
 AnchorsForBaggageFlows[6] = Anchors[5]; 
 AnchorsForBaggageFlows[7] = Anchors[11]; 
 AnchorsForBaggageFlows[8] = Anchors[2]; 
 AnchorsForBaggageFlows[9] = Anchors[12]; 
 AnchorsForBaggageFlows[10] = Anchors[6]; 
 AnchorsForBaggageFlows[11] = Anchors[13]; 
 AnchorsForBaggageFlows[12] = Anchors[3]; 
 AnchorsForBaggageFlows[13] = Anchors[14]; 
 AnchorsForBaggageFlows[14] = Anchors[7]; 
 AnchorsForBaggageFlows[15] = Anchors[15]; 
} 
 
void CFunction::DrawOnDC(CDC* pDC) 
{ 
 CElement::DrawOnDC(pDC); // Call the drawing function of the 
parent class - sets pen color 
  
 if (this->NoInputAttached && this->NoOutputAttached) 
 { 
  BrushR = DANGLING_BRUSH_R; 
  BrushG = DANGLING_BRUSH_G; 
  BrushB = DANGLING_BRUSH_B; 
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 } 
 else  
 { 
  BrushR = FUNCTION_BRUSH_R; 
  BrushG = FUNCTION_BRUSH_G; 
  BrushB = FUNCTION_BRUSH_B; 
 } 
 
 CPen Pen; 
 Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB)); 
 CPen* pOldPen = pDC->SelectObject(&Pen); 
 CBrush Brush(RGB(BrushR, BrushG, BrushB)); 
 CBrush* pOldBrush = pDC->SelectObject(&Brush); 
 
 ComputeBlockCoordinates(); 
 CRect VerbRect(left, top, right, bottom); 
 pDC->Rectangle(VerbRect); 
 
 //pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,  
  //GeometricCenter.x + 2, GeometricCenter.y + 2); 
 /* 
 for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++) 
  pDC->Ellipse(Anchors[AnchorInx - 1].x - 1, 
Anchors[AnchorInx - 1].y - 1,  
    Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx 
- 1].y + 1);*/ 
  
 // Initializes a CFont object with the specified characteristics.  
 CFont font; 
 VERIFY(font.CreateFont( 
   16,                        // nHeight 
   0,                         // nWidth 
   0,                         // nEscapement 
   0,                         // nOrientation 
   FW_NORMAL,                 // nWeight 
   FALSE,                     // bItalic 
   FALSE,                     // bUnderline 
   0,                         // cStrikeOut 
   ANSI_CHARSET,              // nCharSet 
   OUT_DEFAULT_PRECIS,        // nOutPrecision 
   CLIP_DEFAULT_PRECIS,       // nClipPrecision 
   DEFAULT_QUALITY,           // nQuality 
   DEFAULT_PITCH | FF_SWISS,  // nPitchAndFamily 
   _T("Arial")));                 // lpszFacename 
  
 CFont* def_font = pDC->SelectObject(&font); 
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE); 
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName); 
 pDC->SelectObject(def_font); 
  
 font.DeleteObject(); 
 pDC->SelectObject(pOldPen); 
 pDC->SelectObject(pOldBrush); 
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} 

 

#include "StdAfx.h" 
#include "Geometry.h" 
 
#define GRID_SIZE 20 
 
CGeometry::CGeometry(void) 
{ 
} 
 
CGeometry::~CGeometry(void) 
{ 
} 
 
int CGeometry::RoundToInteger(long Coordinate, int GridSize) 
{ 
 int GridCountLower = int(Coordinate)/GridSize;  
 if ((Coordinate - GridCountLower * GridSize) <= (GridSize / 2)) 
  return (GridCountLower * GridSize); 
 else return (GridCountLower * GridSize + GridSize); 
} 
 
CPoint CGeometry::SnapToGrid(CPoint p) 
{ 
 return CPoint(RoundToInteger(p.x, GRID_SIZE), RoundToInteger(p.y, 
GRID_SIZE)); 
} 
 
long CGeometry::distance(CPoint p1, CPoint p2) 
{ 
 return sqrt(pow((p1.x - p2.x), 2.0) + pow((p1.y - p2.y), 2.0)); 
} 
 
CPoint* CGeometry::InterpolatePoints(CPoint p1, CPoint p2, double 
ratio) 
{ 
 long x_new = ((p2.x - p1.x) * ratio) + p1.x; 
 long y_new = ((p2.y - p1.y) * ratio) + p1.y; 
 CPoint NewPoint(x_new, y_new); 
 return &NewPoint; 
}/**/ 
 

 

// MainFrm.cpp : implementation of the CMainFrame class 
// 
 
#include "stdafx.h" 
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#include "ConMod.h" 
 
#include "MainFrm.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CMainFrame 
 
IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd) 
 
BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd) 
 ON_WM_CREATE() 
 // Global help commands 
 ON_COMMAND(ID_HELP_FINDER, &CMDIFrameWnd::OnHelpFinder) 
 ON_COMMAND(ID_HELP, &CMDIFrameWnd::OnHelp) 
 ON_COMMAND(ID_CONTEXT_HELP, &CMDIFrameWnd::OnContextHelp) 
 ON_COMMAND(ID_DEFAULT_HELP, &CMDIFrameWnd::OnHelpFinder) 
END_MESSAGE_MAP() 
 
static UINT indicators[] = 
{ 
 ID_SEPARATOR,           // status line indicator 
 ID_INDICATOR_CAPS, 
 ID_INDICATOR_NUM, 
 ID_INDICATOR_SCRL, 
}; 
 
// CMainFrame construction/destruction 
 
CMainFrame::CMainFrame() 
{ 
 // TODO: add member initialization code here 
} 
 
CMainFrame::~CMainFrame() 
{ 
} 
 
 
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 
{ 
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1) 
  return -1; 
  
 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | 
WS_VISIBLE | CBRS_TOP 
  | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | 
CBRS_SIZE_DYNAMIC) || 
  !m_wndToolBar.LoadToolBar(IDR_MAINFRAME)) 
 { 
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  TRACE0("Failed to create toolbar\n"); 
  return -1;      // fail to create 
 } 
 
 if (!m_wndStatusBar.Create(this) || 
  !m_wndStatusBar.SetIndicators(indicators, 
    sizeof(indicators)/sizeof(UINT))) 
 { 
  TRACE0("Failed to create status bar\n"); 
  return -1;      // fail to create 
 } 
 
 // TODO: Delete these three lines if you don't want the toolbar 
to be dockable 
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY); 
 EnableDocking(CBRS_ALIGN_ANY); 
 DockControlBar(&m_wndToolBar);  
  
 // Custom ConMod toolbar controls:  PRIMITIVES TOOLBAR 
 
 if (!m_primitivesToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | 
WS_VISIBLE | CBRS_LEFT 
  | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | 
CBRS_SIZE_DYNAMIC) || 
  !m_primitivesToolBar.LoadToolBar(IDR_PRIMITIVES)) 
 { 
  TRACE0("Failed to create PRIMITIVES toolbar\n"); 
  return -1;      // fail to create 
 } 
 
 m_primitivesToolBar.EnableDocking(CBRS_ALIGN_ANY); 
 DockControlBar(&m_primitivesToolBar); 
 
 // Custom ConMod toolbar controls:  FEATURES TOOLBAR 
 
 //================== 
 // Commented out for rolling back to Layer 1 (Chapter 6) 
 //================== 
 
 if (!m_featuresToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | 
WS_VISIBLE | CBRS_BOTTOM 
  | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | 
CBRS_SIZE_DYNAMIC) || 
  !m_featuresToolBar.LoadToolBar(IDR_FEATURES)) 
 { 
  TRACE0("Failed to create FEATURES toolbar\n"); 
  return -1;      // fail to create 
 } 
 
 m_featuresToolBar.EnableDocking(CBRS_ALIGN_ANY); 
 DockControlBar(&m_featuresToolBar); 
 
 // Custom ConMod toolbar controls:  REASONING TOOLBAR 
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 if (!m_reasoningToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | 
WS_VISIBLE | CBRS_RIGHT 
  | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | 
CBRS_SIZE_DYNAMIC) || 
  !m_reasoningToolBar.LoadToolBar(IDR_REASONING)) 
 { 
  TRACE0("Failed to create REASONING toolbar\n"); 
  return -1;      // fail to create 
 } 
 
 m_reasoningToolBar.EnableDocking(CBRS_ALIGN_ANY); 
 DockControlBar(&m_reasoningToolBar); 
 
 return 0; 
} 
 
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 if( !CMDIFrameWnd::PreCreateWindow(cs) ) 
  return FALSE; 
 // TODO: Modify the Window class or styles here by modifying 
 //  the CREATESTRUCT cs 
 
 // Control the size of the main frame window 
 BOOL bRet = CFrameWnd::PreCreateWindow(cs); 
 cs.cx = 1200; 
 cs.cy = 800; 
 return bRet; 
 //return TRUE; 
} 
 
 
// CMainFrame diagnostics 
 
#ifdef _DEBUG 
void CMainFrame::AssertValid() const 
{ 
 CMDIFrameWnd::AssertValid(); 
} 
 
void CMainFrame::Dump(CDumpContext& dc) const 
{ 
 CMDIFrameWnd::Dump(dc); 
} 
 
#endif //_DEBUG 
 
 
// CMainFrame message handlers 
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// Material.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Material.h" 
 
IMPLEMENT_DYNAMIC(CMaterial, CDialog) 
 
CMaterial::CMaterial(CWnd* pParent,  
      CPoint TailClick,  
      CPoint HeadClick,  
      CString* pCounterString, 
      int ReasOpt) 
 : CDialog(CMaterial::IDD, pParent) 
 , GivenName(_T("M") + *pCounterString) 
 , UI_IsResidual(false)  
 , ReasoningOption(ReasOpt) 
{ 
 TailPoint = TailClick; 
 HeadPoint = HeadClick; 
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5); 
 StemThickness = MEDIUM;  // This sets the thickness of Material 
arrows 
  
 HeadSize = EDGE_HEAD_SIZE; 
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE; 
 
 ComputeAnchorPoints(); 
 pHeadElem = NULL;  
 pTailElem = NULL; 
 
 DoModal();  // Launches modal dialog  
} 
 
BOOL CMaterial::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 //============================== 
 // Grey Out Dialog Controls 
 //============================== 
 
 if (this->ReasoningOption == QUALITATIVE_CONSERVATION) 
  GetDlgItem(IDC_RESIDUAL_MATERIAL)->EnableWindow(false);
 //Greys out control  
 
 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) 
 { 
  pMaterialTaxonomy = new CTreeCtrl; 
 
  pMaterialTaxonomy->Create(WS_CHILD | WS_VISIBLE | WS_BORDER 
| WS_TABSTOP | 
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         TVS_HASLINES | 
TVS_HASBUTTONS | TVS_LINESATROOT | 
        
 /*TVS_SINGLEEXPAND | */TVS_SHOWSELALWAYS | TVS_TRACKSELECT, 
   CRect(11, 60, 248, 150), this, 0x1221); 
 
  // Full List of all energy types (leaf nodes and 
intermediate nodes) 
  HTREEITEM hMaterial, // Primary 
   hSolid, hLiquid, hGaseous; //Secondary under 
hMaterial 
 
  // PRIMARY LEVEL 
  hMaterial = pMaterialTaxonomy->InsertItem(_T("M"), 
TVI_ROOT); 
 
  // SECONDARY LEVEL (UNDER hMaterial) 
  hSolid = pMaterialTaxonomy->InsertItem(_T("S"), hMaterial); 
  hLiquid = pMaterialTaxonomy->InsertItem(_T("L"), 
hMaterial); 
  hGaseous = pMaterialTaxonomy->InsertItem(_T("G"), 
hMaterial); 
 
  pMaterialTaxonomy->SelectItem(hMaterialType); 
  pMaterialTaxonomy->Expand(hMaterial, TVE_EXPAND); 
 } 
 
 return TRUE; // return TRUE unless you set the focus to a control 
} 
 
CMaterial::~CMaterial() 
{ 
 //delete pMaterialTaxonomy; 
} 
 
void CMaterial::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 DDX_Text(pDX, IDC_MATERIAL_NAME, GivenName);  // Connects 
variable IDC_MATERIAL_NAME to member GivenName 
  
 DDX_Check(pDX, IDC_RESIDUAL_MATERIAL, UI_IsResidual); 
} 
 
void CMaterial::OnOK() 
{ 
 CDialog::OnOK(); 
  
 if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY) 
 { 
  hMaterialType = pMaterialTaxonomy->GetSelectedItem(); 
  MaterialTypeName = pMaterialTaxonomy-
>GetItemText(hMaterialType); 
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  delete pMaterialTaxonomy; 
 } 
 
 else 
  MaterialTypeName = "M"; 
} 
 
void CMaterial::DrawOnDC(CDC* pDC) 
{ 
 IsResidual = UI_IsResidual; 
 
 CEdge::DrawOnDC(pDC);  // Execute the entire drawing code 
of the parent class CEdge 
 
 // 
=======================================================================
===== 
 // Write the name of CMaterial using a Font object 
 // 
=======================================================================
===== 
 
 // Initializes a CFont object with the specified characteristics.  
 CFont font; 
 VERIFY(font.CreateFont( 
   FontSize,                        // nHeight 
   0,                         // nWidth 
   0,                         // nEscapement 
   0,                         // nOrientation 
   FW_NORMAL,                 // nWeight 
   FALSE,                     // bItalic 
   FALSE,                     // bUnderline 
   0,                         // cStrikeOut 
   ANSI_CHARSET,              // nCharSet 
   OUT_DEFAULT_PRECIS,        // nOutPrecision 
   CLIP_DEFAULT_PRECIS,       // nClipPrecision 
   DEFAULT_QUALITY,           // nQuality 
   DEFAULT_PITCH | FF_SWISS,  // nPitchAndFamily 
   _T("Arial")));                 // lpszFacename 
  
 CFont* def_font = pDC->SelectObject(&font); 
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE); 
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, (GivenName + " 
[" + MaterialTypeName + "]")); 
 pDC->SelectObject(def_font); 
  
 // 
=======================================================================
===== 
 // Put back the old objects, although I do not understand how 
this impacts anything. 
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 // 
=======================================================================
===== 
 
 font.DeleteObject(); 
} 
 
BEGIN_MESSAGE_MAP(CMaterial, CDialog) 
  
END_MESSAGE_MAP() 
 

 

#include "StdAfx.h" 
#include "Node.h" 
 
CNode::CNode(void) 
{ 
} 
 
CNode::~CNode(void) 
{ 
} 
 
void CNode::ComputeBlockCoordinates() 
{} 
 
/*void CNode::DrawOnDC(CDC* pDC) 
{}*/ 
 

 

// Signal.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Signal.h" 
 
 
// CSignal dialog 
 
IMPLEMENT_DYNAMIC(CSignal, CDialog) 
 
CSignal::CSignal(CWnd* pParent, CPoint TailClick, CPoint HeadClick, 
CString* pCounterString) 
 : CDialog(CSignal::IDD, pParent) 
 , GivenName(_T("S") + *pCounterString) 
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{ 
 TailPoint = TailClick; 
 HeadPoint = HeadClick; 
 GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, 0.5); 
 StemThickness = THIN;  // This sets the thickness of signal 
arrows 
 StemLineFont = PS_DOT; 
  
 HeadSize = EDGE_HEAD_SIZE; 
 HalfHeadAngle = EDGE_HEAD_HALF_ANGLE; 
 
 ComputeAnchorPoints(); 
 pHeadElem = NULL;  
 pTailElem = NULL; 
 
 DoModal();  // Launches modal dialog 
} 
 
CSignal::~CSignal() 
{ 
} 
 
void CSignal::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 DDX_Text(pDX, IDC_SIGNAL_NAME, GivenName);  // Connects 
variable IDC_SIGNAL_NAME to member GivenName 
} 
 
void CSignal::DrawOnDC(CDC* pDC) 
{ 
 CEdge::DrawOnDC(pDC);  // Execute the entire drawing code 
of the parent class CEdge 
 
 // 
=======================================================================
===== 
 // Write the name of CMaterial using a Font object 
 // 
=======================================================================
===== 
 
 // Initializes a CFont object with the specified characteristics.  
 CFont font; 
 VERIFY(font.CreateFont( 
   FontSize,                        // nHeight 
   0,                         // nWidth 
   0,                         // nEscapement 
   0,                         // nOrientation 
   FW_NORMAL,                 // nWeight 
   FALSE,                     // bItalic 
   FALSE,                     // bUnderline 
   0,                         // cStrikeOut 
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   ANSI_CHARSET,              // nCharSet 
   OUT_DEFAULT_PRECIS,        // nOutPrecision 
   CLIP_DEFAULT_PRECIS,       // nClipPrecision 
   DEFAULT_QUALITY,           // nQuality 
   DEFAULT_PITCH | FF_SWISS,  // nPitchAndFamily 
   _T("Arial")));                 // lpszFacename 
  
 CFont* def_font = pDC->SelectObject(&font); 
 pDC->SetTextAlign(TA_CENTER | TA_BASELINE); 
 pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName); 
 pDC->SelectObject(def_font); 
  
 // 
=======================================================================
===== 
 // Put back the old objects, although I do not understand how 
this impacts anything. 
 // 
=======================================================================
===== 
 
 font.DeleteObject(); 
} 
 
BEGIN_MESSAGE_MAP(CSignal, CDialog) 
END_MESSAGE_MAP() 
 
 
// CSignal message handlers 
 

 

// stdafx.cpp : source file that includes just the standard includes 
// ConMod.pch will be the pre-compiled header 
// stdafx.obj will contain the pre-compiled type information 
 
#include "stdafx.h" 
 

 

// Template.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "ConMod.h" 
#include "Template.h" 
 
 
// CTemplate 
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CTemplate::CTemplate() 
{ 
 
} 
 
CTemplate::~CTemplate() 
{ 
} 
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