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Abstract

Given two graphs G and H sharing the same vertex set, the edge-intersection spectrum of

G and H is the set of possible sizes of the intersection of the edge sets of both graphs. For example,

the spectrum of two copies of the cycle C5 is {0, 2, 3, 5}, and the spectrum of two copies of the star

K1,r is {1, r}. The intersection spectrum was initially studied for designs by Lindner and Fu and

others and was originally extended to graphs by Eric Mendelsohn. Several examples are studied,

both when G and H are isomorphic and when they are not isomorphic. It will also be shown any

set S of positive integers is the edge-intersection spectrum of some pair of connected graphs.

The other two chapters cover the area of conflict-tolerance graph representations. These

representations consist of rules for measuring the rank and tolerance of each vertex, and for deter-

mining if two vertices are in conflict, by combining and comparing the ranks and tolerances of the

vertices. The edge set of the graph is then the pairs of vertices which are in conflict.

In the odd-intersection interval model, each vertex is represented by a subpath of a host path

P , and two vertices are in conflict if and only if their corresponding subpaths intersect in an odd

number of nodes. This model is not universal; in particular, the complete 4-partite graph K3,3,3,3

is a minimal forbidden subgraph. The parity of the subpaths affects the representation; graphs in

which the subpaths are of a fixed odd order are strongly chordal (in fact, these are precisely the

unit interval graphs), and graphs in which the subpaths are all of even order are bipartite. The

converse of the latter statement is not true, as it will be shown that the number of bipartite graphs

is asymptotically larger than the number of possible representations.

A cross-comparison graph model is one in which each vertex v is assigned a rank rv and a

tolerance tv, and two vertices u and v are in conflict if rv ≥ tu and ru ≥ tv. Jamison showed that the

cross-comparison model is universal, using n-dimensional vectors and coordinatewise comparison to
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represent a graph on n vertices.

The inefficiency of a vector representation is the smallest number of dimensions d for which

we can represent a graph G using d-dimensional vectors. The set of all graphs which can be repre-

sented using one-dimensional vectors (efficient cross-comparison graphs) is precisely the set of graphs

which are the complement of a threshold tolerance graph (known as co-TT graphs; these were defined

by Monma, Reed, and Trotter in [31]). The efficient cross-comparison graphs are characterized as

those graphs which are chordal, and contain no strongly asteroidal triple — a set of three vertices,

such that there is a path between any two of these vertices which contains no neighbor of the third,

and which does not contain two consecutive vertices adjacent to every neighbor of the third. In

addition, a graph with a d-dimensional vector representation is the intersection of d efficient graphs.

The inefficiency of G is bounded below by its chordality, and above by its boxicity; both of these

bounds are tight. In addition, the graph Kn(2) has chordality and boxicity (and thus inefficiency)

equal to n, and this is known to be the upper bound for boxicity, which shows that the efficiency of

a graph is at most half its order, and that this bound is tight.
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Chapter 1

Introduction

1.1 Definitions

A graph G is an ordered pair (V,E), where V (G) is the set of vertices (also called nodes)

and E(G) is the set of edges, which are unordered pairs of vertices. The order of G is the cardinality

of the vertex set, and the size of G is the cardinality of the edge set. If the edge e = uv ∈ E(G),

then vertices u and v are said to be adjacent, and e is incident with u and v. Edges are adjacent if

they are incident with a common vertex. The open neighborhood of a vertex v, denoted N(v), is the

set of vertices adjacent to v; the closed neighborhood of v, denoted N [v], also includes v.

The degree of a vertex v in G, denoted degG(v), is the number of edges in G that contain

v as an endpoint. If degG(v) = 0, v is an isolated vertex. If degG(v) = 1, v is a pendant vertex. If

degG(v) = n − 1 (where n = |V (G)|), then v is a dominating vertex. The maximum degree of G,

denoted ∆(G), is defined as ∆(G) := max{degG(v) : v ∈ V (G)}. The degree set of G, denoted D(G),

is the set of unique degrees of vertices in V (G); i.e.

D(G) = {k : degG(v) = kforsomev ∈ V (G)} .

The complement of G, denoted G, has V (G) = V (G) and E(G) = {uv : uv /∈ E(G)}. A

graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph of G, then we

say G contains H, and write H ⊆ G. A vertex-induced subgraph of G is a subset of the vertices of
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G together with any edges whose endpoints are both in this subset; i.e.,

V (H) ⊆ V (G)andE(H) = {uv : u, v ∈ V (H) and uv ∈ E(G)} .

The complete graph on n vertices, denoted Kn, contains every possible edge. If Kn is a

vertex-induced subgraph of G, then G contains a clique of order n. An independent set, denoted

Kn, contains an empty edge set. The star K1,r has a central vertex adjacent to the other r vertices

(which are not adjacent to each other). A path in a graph is a sequence of vertices a1− a2− · · ·− an

such that the vertex ai is adjacent to ai+1 for 1 ≤ i ≤ n − 1, and ai = aj if and only if i = j. If

ai and aj are adjacent if and only if |i − j| = 1, then the path is irreducible. A graph which is an

irreducible path of order n is denoted Pn. A graph is connected if there is a path between any two

vertices. A graph which is not connected is disconnected, and each maximal connected subgraph of

this graph is a component.

The path gives rise to a distance metric on graphs: the length of a path is the number of

edges in that path. The distance between two vertices in a graph is the length of the shortest path

between these vertices.

A cycle is a path in which the end vertices are also adjacent. A cycle may be called even

or odd; this refers to the number of vertices in the cycle. A forest is any graph which contains no

cycles; a forest with only one component is a tree. A caterpillar is a tree which contains a path so

that every vertex is either on this path, or adjacent to a vertex on this path. The Petersen Graph is

the graph whose vertices are the 2-element subsets of a 5-element set and whose edges are the pairs

of disjoint 2-element subsets. The n-dimensional hypercube, denoted Qn, is a graph whose vertex

set is the set of all n-tuples with entries in {0, 1} and whose edges are the pairs of n-tuples which

differ in exactly one position. The Möbius ladder M2n is a cycle of length 2n in which each vertex

is also adjacent to the vertex opposite it in the cycle; i.e., V (M2n) = {v1, v2, . . . , v2n} where vi is

adjacent to vj if and only if j = i± 1 ( mod 2n) or j = i + n ( mod 2n).

A vertex whose neighborhood is a clique is called a simplicial vertex; if the vertices of N(v)

can also be ordered u1, u2, . . . , uk, such that N [ui] ⊆ N [uj ] if i ≤ j, then v is a simple vertex.

Simplicial and simple vertices are useful when studying chordal graphs. A chord in a cycle of a

graph is an edge between two vertices which are not adjacent in the cycle. A graph is chordal if

every cycle of order at least 4 contains a chord, and strongly chordal if it is chordal, and every even
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cycle of order at least 6 contains an odd chord (a chord between two vertices an odd distance apart).

Chordal and strongly chordal graphs can be characterized by elimination orderings. A

perfect elimination ordering on G is an labeling of the vertex set V (G) with the values 1, 2, . . . n =

|V (G)|, such that, for the vertex labeled i, the neighbors of this vertex with a label larger than

i form a clique. In other words, if we remove the vertices 1, 2, . . . i − 1 from G, and examine the

vertex-induced subgraph Gi that results, the vertex i is simplicial. A strong elimination ordering is

a labeling of V (G) with the values 1, 2, . . . , n = |V (G)|, such that the vertex i is simple in Gi.

Proposition 1.1.1 (Fulkerson and Gross [16]) A graph is chordal if and only if it has a perfect

elimination ordering.

Proposition 1.1.2 (Farber [14]) A graph is strongly chordal if and only if it has a strong elimi-

nation ordering.

A graph is bipartite if its vertex set can be broken into two independent subsets (or parts);

this is equivalent to having no cycles of odd length. The complete bipartite graph Kr,s has parts V1

of order r and V2 of order s, such that each vertex in V1 is adjacent to every vertex in V2. Similarly,

a k-partite graph is a graph whose vertex set can be divided into k parts, and a complete k-partite

graph such that two vertices are adjacent if and only if they are not in the same part. If each part

in a complete k-partite graph has order r, then this graph is denoted Kk(r). A graph is chordal

bipartite if it is bipartite, and every cycle of length at least 6 has a chord.

A graph G is the intersection of a set of graphs G1, G2, . . . , Gk if V (G) = V (G1) = · · · =

V (Gk) and E(G) = E(G1) ∩E(G2) ∩ · · · ∩E(Gk). The direct product of G and H, denoted G×H,

has vertex set V (G) × V (H), where (u, v) is adjacent to (u′, v′) if and only if uu′ ∈ E(G) and

vv′ ∈ E(H).

1.2 Intersection Graphs

1.2.1 Overview

In intersection graph theory, the vertices of a graph are usually represented by the members

of some family F of sets (often, the set [k] = {1, 2, . . . , k}, for some finite k) and two vertices are

adjacent if the intersection of their corresponding sets satisfies some specified condition. The set of
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rules used to define the vertex and edge sets is known as a model. In an intersection model, the choice

of sets to represent the vertices of a graph pre-determines the edges; the specific sets corresponding

to each vertex are a representation of the graph. A graph G is representable with respect to a given

model if there is some representation of G under that model; i.e., there is some choice of sets for

V (G) that produce precisely the edges of E(G). If every graph is representable in a given model,

that model is universal.

One of the most interesting questions surrounding a given model is that of how to represent

a given graph G. For models which are not universal, this problem is how to determine whether G is

representable; in particular, it is interesting whether a polynomial-time algorithm exists to determine

a representation (or lack thereof). For many models, this problem is NP-complete. However, if a

model can be characterized by minimal forbidden subgraphs (a collection of graphs for which the

representable graphs are precisely those graphs which contain none of the collection as a vertex-

induced subgraph), a polynomial-time algorithm is guaranteed.

For models which are universal, the problem is one of the “best” representation. This could

be the smallest number of sets in the family F , or, in the case where F are subsets of some host set,

the smallest cardinality of these subsets.

1.2.2 Applications

A basic motivating example of intersection graph models is the room scheduling problem.

Suppose that several departments at a company have meetings scheduled on a given day.

If one department has a meeting scheduled from 9:30-11:00, and another department has a meeting

scheduled from 10:30-11:30, then at least two conference rooms are needed to accomodate both

departments. The scheduling problem can be represented by a graph G, where each vertex is

represented by the interval of time required for each meeting, and two vertices are adjacent if two

meetings are scheduled for the same time. The number of rooms required to host all the meetings

is then the chromatic number of the corresponding graph, which is the smallest number k such that

G is k-partite, but not (k − 1)-partite.

A key problem in genome research is that of finding genes that exhibit similar expression

patterns. DNA microarray technology has made it possible to obtain large amounts of gene expres-

sion data, but the problem of efficiently and effectively analyzing the data remains. Tanay, Sharan,
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and Shamir searched for significant biclusters (subsets of genes with similar expressions across a

subset of experiments) in [36] by representing the data as a weighted bipartite graph (where the

vertices in one part represent genes, and the vertices in the other part represent experiments), and

then searching for complete bipartite subgraphs. Another potential representation of this problem

assigns each vertex v a k-tuple (v1, v2, . . . , vℓ) representing the expression level of each gene in ℓ

experiments, and assigns an edge between u and v if a predetermined number of elements in their

k-tuples are close in value (indicating similar expression levels across a significant number of ex-

periments); significant biclusters would then be represented by cliques in the resulting graph. This

model would require two (or more) threshold parameters: one parameter specifying the number of

elements required for adjacency, and one parameter (which may be different for each experiment)

for determining whether two gene expression values are “close”.

1.2.3 Graph Models

The following are some of the intersection graph models that have been studied. In some of

these models, the family F is the set of subgraphs of some host graph H. As a matter of notation

in these models, the term “node” will refer to the an element of V (H), and a “vertex” will be an

element of V (G), where G is the graph being represented under the model.

1.2.3.1 Set-Intersection Graphs

The most basic intersection graph is the set-intersection graph, in which each vertex is

represented by a subset of some set S, and two vertices are adjacent if their corresponding sets have

a nonempty intersection.

Proposition 1.2.1 (Marczewski [35]) The set-intersection graph model is universal.

Proof. For a graph of size m, label the edges 1, 2, . . . ,m, and assign each vertex v ∈ V (G) the set

Sv ⊆ [m], where i ∈ Sv if and only if v is incident with the edge labeled i. Then, for vertices u and

v, Su ∩Sv is nonempty if and only if u and v are incident with the same edge; in other words, if and

only if u and v are adjacent. 2

A host set with as many labels (elements) as edges is not likely to be the smallest possible.

As the size of the graph approaches its maximum (
(

n
2

)

for a graph of order n), fewer labels will be

needed; in fact, Kn requires only one label, regardless of n. If we allow vertices to be represented
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by the empty set, fewer labels are needed for sparse graphs (graphs with very few edges, relative

to their order) as well; in this case, Kn requires no labels at all! This illustrates a key point

in intersection graph theory: the problem in intersection representations is not how to represent

cliques (in which the closed neighborhoods of every vertex are the same), nor independent sets (in

which the open neighborhoods of every vertex are the same), but graphs which have a large variation

in the neighborhoods their vertices.

1.2.3.2 Tree Intersection Graphs

In the tree-intersection model, each vertex is represented by a subtree of a host tree T (a

subtree being a connected subgraph of a tree). This model is also assigned a tolerance t, and two

vertices are adjacent if their corresponding subtrees intersect in at least t nodes. For t = 1, Gavril

showed in [17] that the graphs representable by this model are precisely the chordal graphs.

1.2.3.3 Odd-Intersection Graphs

An odd-intersection graph is one in which two vertices are adjacent if the intersection of

their corresponding sets contains an odd number of elements. In the case where F is the power

set of the set [n] (where n = V (G)), this model is universal; Eaton demontrated an algorithm in

[9] which assigns each vertex a subset of cardinality at most n − 1. In chapter 3, we will study a

combination of this model and the tree-intersection model, in which F are subpaths of a host path

H.

1.2.3.4 Interval Graphs and Box Graphs

In an interval graph, each vertex is represented by an interval on the real line. The interval

graph model is not universal; Lekkerkerker and Boland characterized the interval graphs in [26],

both by a specific unrepresentable condition, and by a collection of minimal forbidden subgraphs.

Similar to the interval graph is the d-box graph, in which each vertex is represented by a box

in R
d. For an unbounded number of dimensions, the box model is universal; a graph G has boxicity

d if d is the minimum number of dimensions for which G has a d-box representation. Because a

d-dimensional box is the intersection of d intervals, a graph with boxicity d are the intersection of

d interval graphs. Several results concerning box graphs and interval graphs will be examined in

chapter 4.
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1.2.3.5 Threshold Graphs

In the threshold graph model, each vertex v is assigned a weight wv, and vertices u and v

are adjacent if and only if wu + wv ≤ 1. Threshold graphs were originally studied by Chvátal and

Hammer [7], who showed that if G is a threshold graph, then G is also a threshold graph; and, that

a new threshold graph can be obtained by adding either an isolated vertex or a dominating vertex

to V (G).

Related to threshold graphs are threshold tolerance graphs, or TT graphs, first defined by

Monma, Reed, and Trotter in [31]. In this model, each vertex v is assigned a weight wv and

tolerance tv, and uv ∈ E(G) if and only if wu + wv ≥ min {tu, tv}. If every vertex is assigned the

same tolerance, then G is a threshold graph. If the inequality is reversed, the graphs represented are

the complements of the threshold tolerance graphs, known as co-TT graphs. These graphs were also

studied in [31], and were characterized using a total ordering of the vertices which avoided certain

directed configurations. We will examine co-TT graphs more closely in chapter 4

1.2.3.6 Conflict-tolerance Graphs

Consider the following extension of the interval graph model: in addition to an interval

on the real line, each vertex v is assigned a tolerance tv, and two vertices are adjacent, not if the

intersection of their intervals is nonempty, but if the length of the intersection exceeds the minimum

of the corresponding tolerances. This model, introduced in [19] was the first conflict-tolerance model

to be studied.

The conflict-tolerance models were defined by Golumbic and Jamison in [18], and extended

in [23]. In these broadly-defined models, each vertex is assigned a rank and tolerance, and edges are

defined using a “conflict rule” which compares the weights and tolerances of two vertices; vertices

which are adjacent according to this rule are said to be “in conflict”.

The TT and co-TT graphs are very specifically conflict-tolerance models, but all of the

above models can be considered to fall under the conflict-tolerance umbrella. For example, to obtain

a set-intersection graph, the weight of each vertex is still some subset of a host set (exactly as in

the original model), but each vertex is also assigned a constant tolerance 1, and two vertices are in

conflict if the intersection of their weights is at least the tolerance. This simple modification allows

us to see how the set-intersection model could be extended to one in which the tolerances can vary,
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and the “conflict rule” can be modified so that the intersection of the sets must exceed the minimum

or maximum tolerance of the vertices. These variations might have a great effect on the minimum

number of labels required for the host set. Models in which the tolerance is a constant k have already

been studied [10, 11, 12].

While many conflict-tolerance models use real-valued ranks and tolerances, combine these

using specific binary operations (sums, products, minima and maxima), and directly compare com-

bined ranks and tolerances, more abstract rules for conflict are possible. Chapters 3 and 4 will study

two such models.
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Chapter 2

Edge-Intersection Spectra

2.1 Introduction

For two graphs G and H of order n, we define the edge-intersection spectrum of G and H

to be:

Spec(G,H) = {k : k = |E(G′) ∩ E(H ′)| whereG′ ∼= G,H ′ ∼= H, and V (G′) = V (H ′)}.

In other words, if we place copies of G and H onto the same vertex set, then Spec(G,H) is the

possible number of edges that will be used in both graphs.

Eric Mendelsohn initially posed the problem of finding the edge-intersection spectrum of

two cycles [30]. Suppose G = H = C5. If we label the vertices of our 5-cycles {a, b, c, d, e}, and let

a-b-c-d-e-a be the order in which G travels these vertices, then the representations of H in table 2.1

give us intersections of 0, 2, 3, and 5 edges.

However, there is no way to share exactly four edges between two copies of C5; if the cycles

H k
a− c− e− b− d− a 0
a− b− d− e− c− a 2
a− b− c− e− d− a 3
a− b− c− d− e− a 5

Table 2.1: The edge-intersection spectrum of two copies of C5.
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share four edges, then they must share the fifth. Also, there is no way to share exactly one edge;

because C5 is self-complementary, if G and H were two copies of C5 which share exactly one edge,

then G and H would share four edges. Thus, we say that Spec(C5, C5) = {0, 2, 3, 5}.

Note that while G and H may be isomorphic, this is not necessary. We will assume, however,

that G and H are both connected; specifically, G and H have no isolated vertices.

2.2 Examples when G and H are isomorphic

To gain a better understanding of the edge-intersection spectrum, we will look at some

examples, starting with the case where G = H.

2.2.1 Cycles

We have already seen the spectrum of 5-cycles. For longer cycles, we can state a stronger

result:

Proposition 2.2.1 For n ≥ 6,Spec(Cn, Cn) = {0, 1, . . . , n− 2} ∪ {n}.

Proof. We note that n edges can always be shared, by using the same edge set for both graphs.

Also, 0 edges can always be shared, as Kn contains at least two distinct hamiltonian cycles for n ≥ 5

[6, 275-277]. However, we can never share n − 1 edges; at this point, the final edge of the cycle is

’fixed,’ and must also be shared.

For 0 < k ≤ n− 2, if k − 1 ∈ Spec(Cn−1, Cn−1), we can show that k ∈ Spec(Cn, Cn) using

the following construction:

Let G and H be two copies of Cn−1 in Kn−1 sharing exactly k−1 edges. Since k−1 < n−1,

the components of G ∩ H are paths. For the moment assume 1 ≤ k − 1 as well, so at least one

component path P is nontrivial. Let a be an end point of P and let v be its unique neighbor in P .

Then va ∈ G ∩H. Let b [resp., c] be the other neighbor of a in the cycle G [resp., H].

Now add a new vertex x to Kn−1 to get Kn. Remove edge ab [resp., ac] from G [resp.,

H] and replace it by edges ax and xb [resp., ax and xc] to get an n-cycle G′ [resp., H ′]. In other

words, G′ = G − ab + ax, xb, and H ′ = H − ac + ax, xc. A similar construction works if the

components of G ∩ H are all isolated vertices — that is, if k = 0. Using this construction and
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Figure 2.1: Extension of two cycles.

G

H

P

x

c

b

v a

Spec(C5, C5), we can share 0, 1, 3, 4, or 6 edges between two copies of C6. If we label the vertices

of K6 with a − f , representing G by a-b-c-d-e-f -a and H by a-b-d-f -e-c-a shares two edges, giving

us Spec(C6, C6) = 0, 1, 2, 3, 4, 6. We can then use the construction iteratively to show the result for

larger values of n. 2

2.2.2 Paths

Two copies of a path can intersect in any number of edges, up to the size of the path:

Proposition 2.2.2 For n ≥ 4,Spec(Pn, Pn) = {0, 1, . . . , n− 1}.

Proof. This follows directly from the result for cycles: If k ∈ Sp(Cn, Cn), then we can delete an

unshared edge (if k 6= n) from each cycle to get two paths that share k edges, or a shared edge (if

k 6= 0) to get two paths sharing k − 1 edges. 2

2.2.3 Stars

The star gives us the first example of a graph with serious restrictions on the edge -

intersection spectrum:

Proposition 2.2.3 Spec(K1,n−1,K1,n−1) = {1, n− 1}.

Proof. Let u and v be the central vertices of G and H, respectively. If u = v, then obviously G

and H share n− 1 edges. If u 6= v, then the only edge that G and H can (and do) share is uv. 2
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2.2.4 Double Stars

The double star has a complicated spectrum with large gaps. In this case, DS(r, s) refers to

a tree with two adjacent vertices (u and v), with r additional vertices adjacent to u and s additional

vertices adjacent to v.

Proposition 2.2.4 For r ≥ s,Spec(DS(r, s),DS(r, s)) =

{0, 1, . . . , s + 1} ∪ {r − s + 1, . . . , r + 1} ∪ {2k + 1 : 0 ≤ k ≤ s} ∪ {r − s + 2k + 1 : 0 ≤ k ≤ s}

Proof. Given isomorphic double stars G,H, let uv and ab be the central edge of G and H,

respectively, where degG u = degH a = r + 1 and degG v = degH b = s + 1. There are five cases to

consider:

Case I: u = a and v = b. For 0 ≤ k ≤ s, if there are k peripheral vertices that are adjacent to

v in both G and H, then there are s − k such vertices adjacent to v in G but not in H, as well as

s− k vertices adjacent to v in H but not in G. This leaves r− s + k peripheral vertices adjacent to

u in both G and H. Then G and H share r − s + 2k + 1 edges (k edges connecting v to peripheral

vertices, r − s + k edges connecting u to peripheral vertices, and uv).

Case II: u = b and v = a. For 0 ≤ k ≤ s, if there are k peripheral vertices that are adjacent to v

in both G and H, then there are s− k vertices that are adjacent to v in G but not in H, and r − k

vertices that are adjacent to v in H but not in G. This leaves k peripheral vertices adjacent to u in

both graphs. Then G and H share 2k + 1 edges.

Case III: u = a, v 6= b. There are r+2 edges that could possibly be shared; the r+1 edges incident

with u in G, plus the edge vb. There are s vertices (besides a) adjacent to b in H; if k of these

vertices are adjacent to u in G, then there are r − k vertices besides v that must be adjacent to u

in both G and H, so at least this many edges are shared. However, if k = s, then ab cannot be a

shared edge. In this case, either va or vb must be shared, so the fewest edges that can be shared is

r − s + 1. Also, we cannot share both va and vb, so at most r + 1 edges can be shared.

Case IV: v = a, u 6= b. There are s+2 edges that could possibly be shared; the s+1 edges incident

with v in G, plus the edge ub. It is possible to share any number of the edges incident with v in G,

or none of those edges if ab /∈ E(G). However, if ab is not a shared edge, then either ua or ub must

be shared, so at least one edge must be shared. Also, ua and ub cannot both be edges of H, so it is

not possible to share more than s + 1 edges.
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Because this case depends only on the degree of v, this is identical to the case where v = b

and u 6= a. Also, because G and H are isomorphic, this is also identical to the case where u = b and

v 6= a.

Case V: a, b, u, and v are all distinct. There are two subcases here. First, if a and b are both

adjacent to the same vertex in G, then without loss of generality, we may assume that they are

adjacent to u. Then exactly one edge (either ua or ub) must be shared. If, on the other hand, a and

b are adjacent to different vertices in G, say ua and vb ∈ E(G), then only these two edges can be

shared, and we can share no edges by allowing ub and va ∈ E(H). It is also possible to share only

one of these edges, unless r = s = 1. 2

It is possible to minimize the gaps in this spectrum; in fact, they can be eliminated entirely

in one case.

Corollary 2.2.5 For r ≥ s,Spec(DS(r, s),DS(r, s)) = {0, 1, . . . , r + s + 1} if and only if r = s = 1

or r = s + 1.

Proof. Note that DS(1, 1) = P4, so proposition 3.2 gives us our result in that case. If r > 1, it is

impossible to share r+s edges unless r = s+1. If this equality is satisfied, then note that r+s+1 =

2s + 2, which is an even number. Then from the theorem above, 0 ∈ Spec(DS(r, s),DS(r, s)), the

set {2k + 1 : 0 ≤ k ≤ s} contains all odd numbers from 1 to 2s + 1, and the set {r− s + 2k + 1 : 0 ≤

k ≤ s} = {2k + 2 : 0 ≤ k ≤ s} contains all even numbers from 2 to 2s + 2. 2

Note that it is possible (likely, even) for many values to be repeated in this formula, especially

in the case where r = s. For this case the set notation can be simplified.

Corollary 2.2.6 The spectrum of DS(r, r) with itself is

{0, 1, . . . , r + 1} ∪
{

2r + 1− 2k : 0 ≤ k ≤
⌊

r − 1

2

⌋}

Table 2.2 shows the edge-intersection spectra for several values of r and s. While many of the gaps

in the spectra are of size one, it is possible to have large gaps when r is very large in relation to s.

13



r s Spec(DS(r, s),DS(r, s))
6 1 {0, 1, 2, 3} ∪ {6, 7, 8}
6 2 {0, 1, 2, 3} ∪ {5, 7, 9}
6 3 {0, . . . , 8} ∪ {10}
6 4 {0, . . . , 7} ∪ {9, 11}
6 5 {0, . . . , 12}
6 6 {0, . . . , 7} ∪ {9, 11, 13}
7 2 {0, 1, 2, 3} ∪ {5, 6, 7, 8} ∪ {10}
8 2 {0, 1, 2, 3} ∪ {5, 7, 8, 9, 11}
20 2 {0, 1, 2, 3} ∪ {5, 19, 20, 21, 23}
20 5 {0, . . . , 6} ∪ {7, 9, 11} ∪ {16, . . . , 22} ∪ {24, 26}

Table 2.2: Edge-intersection spectra for selected double stars.

2.3 Examples when G and H are NOT isomorphic

2.3.1 G = K1,n−1

A simple example involving nonisomorphic graphs is the example of the path and the star.

We see immediately that if one graph is the star, the edge-intersection spectrum becomes very

specific.

Proposition 2.3.1 Spec(K1,n−1, Pn) = {1, 2} when n ≥ 3.

In fact, the star forces a specific spectrum on any graph G.

Theorem 2.3.2 If G is a graph of order n with degree set D(G), then

Spec(K1,n−1, G) = D(G).

Proof. if we choose a vertex v to be the central vertex of the star, then precisely the edges incident

with v in E(G) are shared, so degG(v) ∈ Spec(K1,n−1, G). 2

This leads us to the interesting result that an arbitrary set of positive integers is always the

edge-intersection spectrum of some pair of graphs:

Theorem 2.3.3 If S = {a1, a2, . . . , ak} is a set of positive integers with a1 < a2 < · · · < ak, then

there exist graphs G and H such that Spec(G,H) = S. Specifically, S is the intersection spectrum

of K1,n−1 and a graph of order ak + 1 with degree set S.

Proof. This follows from the previous theorem and a result of Kapoor, Polimeni, and Wall stating

that a graph of order ak + 1 exists with degree set S [25]. 2
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Figure 2.2: Two maximum linear subforests.

Note that S above specifically does not include zero. A spectrum including zero can be

obtained by adding an isolated vertex to the non-star graph, but that violates our assumption (in

the introduction) that both graphs are connected. It remains an open question whether an arbitrary

set of nonnegative integers is always the edge-intersection spectrum of two connected graphs.

2.3.2 G = Pn

We now examine the spectrum of the path and a tree. We begin with a definition.

Definition 2.3.4 The pathic number of a graph G, denoted τ(G) is the maximum number of edges

in a linear subgraph of G: a vertex-induced subgraph H ⊆ G such that every component of H is a

path or an isolated vertex. Note that the linear subgraph of maximum size is not unique in many

cases; see Figure 2.2.

While most components of a maximum linear subforest of a tree will contain an end-vertex

of the tree, it is possible for components to contain no end-vertices. It is also possible (and in many

cases likely) that a maximum linear subforest will contain isolated vertices; see Figure 2.3. Every

maximum linear subgraph of a tree must contain a pendant edge; we will need the following lemma

in the next theorem.

Lemma 2.3.5 Let T be a tree of order n, and F a linear subgraph of T of order n and maximum

size. Then F has at least one component of nonzero size that contains an end-vertex of T .

Proof. The proof is by induction on n. If n = 2, then F = T = K2. For n > 2, assume that the

lemma is satisfied for trees of all orders less than n. Assume to the contrary that all end-vertices

of T are isolated in F , and consider the tree T ′ obtained by removing all the end-vertices of T .

The corresponding vertex-induced subgraph of F is a maximum linear subgraph of T ′, and by the

15



Figure 2.3: Note the isolated vertex, and the component containing no end-vertices.

inductive hypothesis has a nontrivial component that contains an end-vertex of T ′; call this vertex v.

Because v could not be an end-vertex of T , it must be adjacent to an end-vertex of T ; call this vertex

u. But then appending the edge uv to F gives a linear subgraph of larger size, which contradicts

our assumption that F is maximum. 2

We claim that the edge-intersection spectrum of a path and a tree of the same order includes

every integer from zero to the pathic number of the tree. To show this, we will need one further

lemma.

Lemma 2.3.6 Let F be a forest of order n. If ∆(F ) < n− 2, then F is hamiltonian.

Proof. The proof is by induction on m, the size of F . If m = 0, then F = Kn, and note that n ≥ 3,

so F is hamiltonian.

For m > 0, assume that any forest of order n and size m − 1 with maximum degree less

than n− 2 has a hamiltonian complement. Let uv be an edge in E(F ) such that degF (u) = 1. Then

degF (u) + degF (u) ≥ n, so F is hamiltonian if and only if F + uv is [5, 111-136]. But F + uv is the

complement of F − uv, which is a forest of size m− 1. Thus F is hamiltonian. 2

Theorem 2.3.7 For T a non-star tree, Spec(Pn, T ) = {0, 1, . . . , τ(T )}.

Proof. Note that Spec(Pn, T ) ⊆ {0, 1, . . . , τ(T )} as Pn and T cannot share more than the maximum

number of edges in a linear subgraph of T . Thus, we must show that k ∈ Spec(Pn, T ) for 0 ≤ k ≤

τ(T ).
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If ∆(T ) < n−2, then T is hamiltonian by the above lemma. If ∆(T ) = n−2, then T contains

a hamiltonian path: if u is the vertex of degree n−2, v is the vertex not adjacent to u, w is the vertex

adjacent to both u and v, and a1, . . . , an−3 are the remaining vertices, then u, v, a1, . . . , an−3, w is a

hamiltonian path. In either case, 0 ∈ Spec(Pn, T ).

Suppose T ′ is a linear subgraph of T of maximum size with V (T ′) = V (T ) and path

components a1, . . . , b1; a2, . . . , b2; . . . ; ar, . . . br of sizes t1, t2, . . . , tr, such that a1 is an end vertex of

T and t1 > 0. We note the following:

1.
∑r

i=1 ti = τ(T )

2. It is possible that T ′ contains isolated vertices; in other words, for one or more values of

i, ai = bi and ti = 0.

3. for 1 ≤ i ≤ r − 1, the edge biai+1 cannot be in E(T ); otherwise, T ′ would not be the linear

subgraph of maximum size. Similarly, the edge bra1 /∈ E(T ).

Then if we let P be the path of order n formed by T ′ plus the edges biai+1 for 1 ≤ i ≤ r − 1, then

P intersects T in exactly τ(T ) edges. Thus, τ(T ) ∈ Spec(Pn, T ).

For 0 < k < τ(T ), there is a number s < r such that
∑s

i=1 ti < k and
∑s+1

i=1 ti ≥ k; if it

happens that t1 ≥ k, then we consider s to be zero. We construct a path P that intersects T in

exactly k edges as follows:

We begin with P ′ consisting of exactly k edges of T ′. If s = 0, then P ′ is the subpath

a1, . . . , c, where the vertex c is chosen such that the size of P ′ is k. If s > 0, P ′ consists of the paths

a1, . . . , b1; . . . ; as, . . . , bs and the subpath as+1, . . . , c plus the edges biai+1 for 1 ≤ i ≤ s. In this

case, c is chosen so the size of P ′ is k + s; note that in either case, it is possible that c = bs+1.

Consider the vertex-induced subgraph of T formed by the vertex c and all vertices of T not in V (P ′),

which is a forest of order x = n − (k + s); call this graph F , and note that by our construction of

T ′, a1 cannot be adjacent to any vertex of F , except possibly v. There are several cases.

If ∆(F ) < x − 2, then F contains a hamiltionian cycle v-u1-u2-· · · -ux−1-v. Then by ap-

pending the edges vu1, u1u2, . . . , ux−2ux−1 to P ′, we obtain the desired path P .

If ∆(F ) = x− 2, there are three subcases to consider:
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• If v is a vertex of degree x − 2 in F (note that there could be two such vertices if and

only if F is a copy of P4), w is the lone vertex of F not adjacent to v, and u1, u2 . . . , ux−2

are the vertices adjacent to v, then we can complete the path P by appending the edges

a1w,wu1, u1u2, . . . , ux−3ux−2 to P ′.

• If v is adjacent to the unique vertex w of degree x− 2 in F , u is the lone vertex not adjacent

to w, and u1, u2, . . . , ux−3 are the remaining vertices, then we can complete P by appending

the edges a1w,wu, uu1, u1u2, . . . , ux−4ux−3 to P ′.

• If w is a vertex of degree x− 2 in F that is not adjacent to v (this includes the case where F

is a copy of P4 and degF (v) = 1), and u1, u2, . . . , ux−2 are the vertices adjacent to w, then we

can complete P by appending the edges a1u1, u1u2, . . . , ux−3ux−2 and the edge vw to P ′.

If ∆(F ) = x− 1 (in other words, F is a star), there are two subcases to consider:

• If v is the central vertex, and u1, u2, . . . , ux−1 the peripheral vertices, then we complete P

by appending the edges a1u1, u1u2, . . . , ux−2ux−1 to P ′. Note that in this case, a1 cannot be

adjacent to v because T is not a star.

• If w 6= v is the central vertex, and u1, u2, . . . , ux−2 are the other peripheral vertices, then we

append the edges vu1, u1u2, . . . , ux−3ux−2 and the edge wa1 to P ′.

2

2.4 Open Problems

As stated earlier, it is an open question whether an arbitrary set of nonnegative integers

can always be the edge-intersection spectrum of two graphs.

The edge-intersection spectrum of two non-star trees is also an interesting problem. We

know that the spectrum always includes zero [13], and suspect it includes one, but further results

are unknown.

18



Chapter 3

Odd-Intersection Interval Graphs

3.1 Introduction

An odd-intersection interval model is a special case of a conflict-tolerance set model in which

the host H is a path and the allowable sets are subpaths of H, and two sets are in conflict if their

intersection contains an odd number of nodes. A graph G is an odd-intersection interval graph if it

has a representation under this model; i.e., we can assign each vertex v to a subpath such that two

vertices are adjacent if and only if their corresponding subpaths have an odd intersection. Figure 3.1

shows two odd-intersection interval representations of C6. Note that there is no simple permutation

of the intervals of one representation into the other (by re-ordering the intervals, deleting vertices,

etc.); thus there is no canonical representation of this cycle. In fact, many graphs have multiple

representations under this model.

To simplify descriptions, we will always consider the intervals to be oriented horizontally, as

can be noted from the figures. While disjoint intervals can certainly be placed on the same ”line” to

save space in a representation, in general we will consider the intervals to be arranged vertically in

such a way that no two intervals are collinear. This allows us to use directional terms to describe the

relative locations of intervals. It must be noted, however, that these terms will refer only to a specific

representation of a graph, as the relative positions of intervals are not fixed between representations

(as a simple example, re-arranging the vertical positions of intervals without shifting any horizontally

gives a new representation of the same graph).

Note that there are three ways for intervals to interact:

19



Figure 3.1: Two representations of C6.

• The intervals could overlap, with neither contained in the other.

• One interval could be completely contained in the other, in which case the intervals represent

adjacent vertices if and only if the contained interval is of odd length.

• The intervals could be completely disjoint, in which case they must always represent non-

adjacent vertices.

Appendix A contains odd-intersection representations of selected graphs.

When attempting to represent a graph, the parity of interval lengths is often important. We

will call an interval even (odd) if it has an even (odd) number of nodes, and refer to two intervals

as (non)adjacent if they represent (non)adjacent vertices.

Lemma 3.1.1 Given three pairwise intersecting intervals,

1. If the intervals are odd, they cannot represent an independent set.

2. If the intervals are even, they cannot represent a three-cycle.

Proof. For both cases, we cannot have any of the three intervals contained in another, as it would

immediately cause two odd intervals to be adjacent, and two even intervals to be nonadjacent. Thus

the intervals must have intersections as shown in Figure 3.1 (possibly after re-arranging the order

of the intervals).

To represent an independent set, the intersections marked a, b, and c must all have even

length. But the length of interval v2 is a + b + c, so this must be an even interval. Similarly, if we
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Figure 3.2: A generalized view of three pairwise-intersecting intervals.

wish to represent a three-cycle, b must have odd length, while a and c must have even length, so v2

must be odd. 2

3.2 Representability

This brings us to the question of what graphs are representable as odd-intersection interval

graphs. We will refer to a graph G as representable if an odd-intersection interval representation

exists. Otherwise, G is non-representable.

Theorem 3.2.1 All rooted trees are representable. In particular, every rooted tree has a represen-

tation in which each interval is of even length, and the unique leftmost interval represents the root

vertex.

Proof. The proof is by strong induction on the order of the tree.

There is only one tree of order 1, and it can be represented by a single interval with two

nodes.

If T is a rooted tree of order n > 1, then assume inductively that any rooted tree of order

k < n can be represented as above. Let r be the root vertex, and v1, v2, . . . , vm be the vertices

adjacent to r; note that deleting the vertex r leaves m trees, and that we can choose v1, v2, . . . , vm

as the roots of these trees. We represent T as follows:

• r is represented by a single interval with two nodes.
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• The trees with v1, v2, . . . , vm as roots have order less than n, and therefore have representations

by the inductive hypothesis. The representation of the subtree rooted by v1 is placed below

the interval representing r, with each interval shifted one to the right, so that v1 overlaps r by

one node (and no other vertices of the subtree overlap r).

• The process is iterated for the subtrees rooted by v2, . . . vm by representing the root vertex

vi with an even interval that overlaps r by one node and extends at least one node past the

rightmost interval in the previous construction. The remainder of the representation of the

subtree is then placed below this interval. All intervals above vi besides r are contained in vi;

because all of the intervals are even, non of them are adjacent to vi. The remaining intervals

in the subtree do not overlap any other interval in the previous construction, and so are not

adjacent to any interval in the previous construction.

2

Corollary 3.2.2 All trees are representable.

Several other classes of graphs are known to be representable.

• Clearly, all complete graphs are representable, as we can simply repeat the same odd interval

for each vertex.

• By repeating the same even interval and/or using disjoint intervals, we can represent an inde-

pendent set.

• We have already seen that all cycles are representable.

• Ka,b is representable. We represent the vertices of one part with a repeated even interval, and

the vertices of the second part with a second repeated even interval which has an odd overlap

with the first.

• Ka,b,c is representable. In this case, the vertices of the third part are represented by disjoint odd

intervals. The even intervals used to represent the other two parts must then be of sufficient

length that their intersection completely contains these odd intervals.

In fact, we can extend complete multipartite graphs indefinitely, so long as each part beyond

the third contains at most two vertices (Figure 3.2 is a representation of K3,3,3,2). However, if there

are four parts with more than two vertices, a representation is impossible:
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Figure 3.3: A representation of K3,3,3,2.
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Theorem 3.2.3 K4(3) is not representable.

Proof. If we choose a vertex from each of three partitions, those three vertices must form a three-

cycle. By Lemma 3.1.1, at least one of these vertices must be odd. Then at most two parts (call

these a and b) may have any vertices represented by even intervals. The other two parts must be

represented by all odd intervals. One of these parts (part c) may be represented using at least

two disjoint intervals. This leaves one part (part d), whose vertices must all be represented by odd

intervals, all of which must have an odd overlap with the intervals of part c. Because there are two

disjoint intervals in part c, the space between these two intervals (horizontally) must be completely

contained in each interval of part d. Then part d is represented by three pairwise intersecting odd

intervals. But this is a contradiction, because by Lemma 3.1.1, three pairwise intersecting odd

intervals cannot represent an independent set. 2

Now that we know that not all graphs can be represented, we have new questions to answer:

• Are there necessary and/or sufficient conditions for a graph to be representable?

• What is the “smallest” non-representable graph?

In general, it is difficult to prove that a graph G is not representable. Certainly, if any

vertex-induced subgraph of G is not representable, then G is not representable. (Note that the term

“vertex-induced” is important - adding any edge to K4(3) gives a representable graph.)

3.3 Parity in Intervals

In some cases, the parity of the intervals is irrelevant. For example, Figure 3.1 shows that

C6 can be represented by either all even intervals or odd intervals. These representations can be

extended to any cycle; for example, the representation on the left can be extended to C7 by adding

one node to the right side of the longest interval, and adding a new interval of order two that overlaps

both the longest interval and the current rightmost interval. The study of the representation of cycles

gives the following result:

Proposition 3.3.1 Under the odd-intersection interval model,

1. Any cycle may be represented using only odd intervals.
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2. Any even cycle may be represented using only even intervals.

To further investigate the properties of intervals of a specific parity, let us consider a

“number-line” representation of the intervals; in other words, the vertices of the host path H are

labeled 0, 1, 2, . . . , and a subpath of order m can be thought of as a set of m consecutive integers

{a, a + 1, . . . , a + m− 1 = b}; we will refer to this interval using the notation [a, b]. The intersection

of two intervals is then either the empty set, or itself a set of consecutive integers [a′, b′]; the intervals

are adjacent if the cardinality of this set is odd; in other words, if b′−a′ ≡ 0 mod 2 (NOT 1 mod 2,

because the interval contains b′ − a′ + 1 nodes).

In the case of even intervals, we can state a few generalizations. If Ii = [ai, bi], then bi−ai ≡ 1

mod 2. If Ii and Ij are adjacent, then the intervals must overlap (one cannot be contained in the

other); without loss of generality, assume that ai < aj ≤ bi < bj (note that aj = bi gives an overlap

of exactly one vertex). Then [aj , bi] has odd cardinality, so bi − aj ≡ 0 mod 2. But then

aj − ai = (bi − ai)− (bi − aj) ≡ 1 mod 2.

The fact that the left endpoints of adjacent even intervals must have an odd difference leads to an

important discovery:

Theorem 3.3.2 If a graph G has an odd-intersection interval representation using only even inter-

vals, such a representation is a 2-coloring of G.

Proof. Suppose V (G) = {I1, I2, . . . , In}, where Ii = [ai, bi]. Then let

V1 = {Ii : ai − a1 ≡ 0( mod 2)}, and V2 = {Ii : ai − a1 ≡ 1( mod 2)}. Because the left endpoints

of even intervals in conflict must have an odd difference, both V1 and V2 must represent independent

sets, and thus G has a 2-coloring. 2

The following corollaries are an immediate consequence of this theorem.

Corollary 3.3.3 If G has an odd-intersection interval representation using only even intervals, then

G is bipartite.

Corollary 3.3.4 If G contains an odd cycle, then any odd-intersection interval representation of G

must contain at least one odd interval.

25



The converse of Corollary 3.3.3 (that any bipartite graph is representable using only even intervals)

is not true, because the number of bipartite graphs grows more quickly than the number of possible

representations.

In a similar vein, the left endpoints of adjacent odd intervals must have an even difference.

This leads us to another interesting result, using intervals of a fixed odd order.

Theorem 3.3.5 If G has an odd-intersection interval representation using only odd intervals of the

same order, then G is chordal.

Proof. Consider the leftmost interval in the representation (if more than one interval shares the

leftmost endpoint, any one can be chosen). Call this interval v; without loss of generality, let its

endpoints be [0, 2k]. If two intervals u and w are adjacent to v, then they cannot be disjoint (as

they are the same length, and v is the leftmost interval). Further, the left endpoints of u and v must

have an even difference, as must the left endpoints of v and w. But this means the left endpoints of

u and w have an even difference, and because they overlap, u and w are adjacent. Thus, the vertices

adjacent to v form a clique.

Now, suppose u is left of w (i.e., the left endpoint of u has a smaller index than the left

endpoint of w). Any vertex to the right of u that is adjacent to u must also be adjacent to w, using

a similar argument to the above. Further, as v is the leftmost interval, and v is adjacent to w, any

vertex to the left of u that is adjacent to u is also adjacent to w. Then, by ordering the vertices

in N(v) by their left endpoints, we also order the neighborhoods of those vertices by inclusion. We

can then eliminate v, and repeat this process on G − v; iterating, we obtain a strong elimination

ordering for G. 2

Finally, using intervals of a fixed even order gives a result we might guess from the previous

two theorems:

Theorem 3.3.6 If G has an odd-intersection interval representation using only even intervals of

the same order, then G is chordal bipartite.

Proof. By Corollary 3.3.3, G is bipartite.

Suppose that v1, v2, . . . , v2k form a cycle of length at least 6 in G, where vi is adjacent to

vi+1 and vi−1. Assume, without loss of generality, that v1 is the leftmost interval in this cycle,

and consider v2 and v2k. If the endpoints of these intervals are the same, then these vertices are
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(false) twins, and therefore v3 must be adjacent to v2k. If the endpoints are not the same, assume

(again, without loss of generality) that the left endpoint of v2 comes before that of v2k. Because

the intervals are of fixed length, and because v1 is the leftmost interval, v3 must then overlap v2k.

Further, because the left endpoints of v2 and v3 have an odd difference, and the left endpoints of v2

and v2k have an even difference, the left endpoints of v3 and v2k must have an odd difference, so

v3 is adjacent to v2k. Thus, every cycle of length at least 6 in G contains a chord, and G is chordal

bipartite. 2

We can also establish a link between odd-intersection interval graphs and interval graphs

(in which each vertex is represented by an interval on the real line, and two vertices are adjacent

if the corresponding intervals have nonempty intersection) and unit interval graphs (a subclass of

interval graphs in which each interval is of fixed length).

Theorem 3.3.7 a. If G is an interval graph, then G has an odd-intersection interval representation

using only odd intervals.

b. A graph G is a unit interval graph if and only if G has an odd-intersection interval

representation using only intervals of fixed odd order.

Proof. a. Create a path H ′ with twice as many nodes as there are intervals of G ); number the

nodes of H ′ from left to right. The endpoints of the intervals of G form an ordered set left-to-right

(note that G has a representation in which no interval shares an endpoint); each interval I then leads

to a subpath S′ whose endpoints correspond to the ordinality of the endpoints of I. To guarantee

that overlapping intervals have an odd intersection, create the host path H and subpaths {S} by

subdividing every edge of H ′ and the subpaths {S′}.

b. If G is a unit interval graph, G is also equivalent to an ñ-graph, in which vertices

are represented by sets of n consecutive integers [34]. This leads to a path H ′ and collection of

subpaths {S′} whose nodes have the integer coordinates corresponding to these sets. To guarantee

that overlapping intervals have an odd intersection, create the host path H and subpaths {S} by

subdividing every edge of H ′ and the subpaths {S′}.

Now, suppose G has a representation using only intervals of fixed odd order. If v has

endpoints [2i, 2k], then if u has left endpoint 2i < 2j + 1 < 2k, then the intersection of u and v

contains 2(k − j) endpoints, so u and v are not adjacent. If we number the vertices of the host

path H, the set of vertices whose left endpoints have even index and the set of vertices whose left
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endpoints have odd index will have no edges between them. Then we can obtain a representation of

the same graph by “shifting” all of the vertices in one of these sets so that they have no intersection

whatsoever with any vertex in the other set. Thus, we may assume that the left endpoint of every

vertex has an even index. Then, by replacing each subpath with a real interval with the same

endpoints, we obtain an interval graph where each interval has the same length, which can be scaled

so that each interval has unit length. 2

Note that the converse of part (a.) is not true, due to the possibility of containment with

intervals of different orders. In particular, recall that chordless cycles are representable using only

odd intervals.

3.4 Counting Representations

3.4.1 Regular and Canonical Representations

We are interested in a method for determining the number of possible (distinct) arrange-

ments of n intervals in the odd-intersection interval model. To begin, we will examine the question

of whether there exists a canonical form for a set of similar arrangements of intervals.

Given a host path H and a set of intervals S = I1, I2, . . . , In, if we subdivide any edge of

H twice (similarly subdividing each interval that shares this edge), then the arrangement of the

intervals in S remains essentially the same: Any interval which did not already contain this edge

is unaffected, and if two intervals share this edge, then the number of nodes in their intersection

increases by two, so neither the parity of the intersection, nor that of the intervals themselves, is

changed. In addition, if two intervals are disjoint, and this edge is part of the ”space” between those

intervals, the parity of the space is likewise unchanged.

Similarly, if H contains three consecutive nodes such that every interval contains either all

three nodes or none of them, then we can perform two edge contractions without changing the parity

of any interval, any intersection of two intervals, or the distance between any two disjoint intervals;

and thus without changing the arrangement of the intervals.

Also, we can extend any interval Ik by appending two nodes to one endpoint (we will assume

that H is sufficiently long that Ik remains a subpath of H), provided that neither of the appended

nodes is the endpoint of any other interval (in several cases, the nodes can be the endpoint of another
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interval without changing the graph, or even the basic form of the arrangement of intervals, but this

condition allows us to avoid unnecessary case analysis).

Theorem 3.4.1 If a graph G is representable, then G has a representation such that the endpoints

of each interval are unique.

Proof. We may assume a number-line representation, as in Section 3.3, with the interval I = [a, b]

identified by its endpoints. Begin by ordering the intervals I1, I2, . . . , In, such that, for 1 ≤ i ≤ n

and Ii = [ai, bi]:

1. ai ≤ ai+1

2. If ai = ai+1, then bi ≤ bi+1

Then the following algorithm produces a representation in which all of the endpoints are

distinct; i.e., ai = aj if and only if i = j, bi = bj if and only if i = j, and ai 6= bj for any i, j.

1. Beginning with i = 1, if ai = ai+1, or if ai = bj for j < i, then:

• subtract 2 from ai.

• For j < i, subtract 2 from aj

• For j < i, subtract 2 from bj if bj < ai.

This is equivalent to twice subdividing the edge of the host path H directly before ai (as well

as any interval containing that edge), then appedning two vertices to the left end of Ii. Repeat

this process for i = 2, . . . , n. After this step, a1 < a2 < · · · < an, and ai 6= bj for any i, j.

2. starting now with i = n, if bi = bj for any j < i, then:

• add 2 to bi.

• For k > i, add 2 to ak if bi < ak. Note that if k ≤ i, ak < bi necessarily.

• For ℓ 6= i, add 2 to bℓ if bi < bℓ.

This is equivalent to twice subdividing the edge of the host path H directly after bi (as well as

any interval containing that edge), then appedning two vertices to the left end of Ii. Repeat

this process for i = n− 1, . . . , 1. After this step, each right endpoint will be unique, giving us

the desired representation.
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2

With this knowledge, given any set S of subpaths of H, we can construct a set S′ of subpaths

of a host H ′ that represents the same graph, such that each node of H ′ is the endpoint of at most

one interval. We will call the representation (H ′, S′) a regular representation.

Remark 3.4.2 The algorithm in Theorem 3.4.1 produces a representation which first orders the

intervals by their left endpoints, and then, given identical right endpoints, chooses to “shift” the

endpoint of the interval with the rightmost left endpoint. In this way, the algorithm minimizes the

number of intersections in which one interval is contained in another. While containment in a

representation is often unavoidable, having intervals overlap instead is usually more desirable when

attempting to find a representation of a specific graph, as it allows more flexibility in the possible

neighborhoods of the intervals involved.

We can simplify a representation by creating a “code” that allows us to view a representation

as a line of data, rather than a large number of drawn intervals. One possible implementation of

such a code is as follows:

• Number the intervals in order of their left endpoints; the interval with the leftmost left endpoint

is interval 1, then next left endpoint is interval 2, and so on.

• Traversing H from left to right, whenever an endpoint is reached, append the number of that

interval to the code. Because the code will be read from left to right, there is no need to specify

whether it is the left or right endpoint of the interval. The first entry in the code will always

be 1, and each number will appear twice in the code.

• If the number of nodes between consecutive endpoints is odd, place an ”o” between the corre-

sponding numbers in the code; if it is even, place an ”e” there.

For example, the code 1e2o3o1e3o2 corresponds to the representation in Figure 3.4.1. The

graph represented is P3. Note that a representation with n intervals will have a code of length 4n−1.

We can now create an equivalence relation between arrangements of intervals. We can say

two regular representations (S,H) and (S′,H ′) are equivalent if their representation code is the

same. Furthermore, we can create a canonical representation for each equivalence class of regular

representations, using the code. Traversing the code from left to right:

30



Figure 3.4: A regular representation of P3.

• When you reach a number for the first time, create a new interval, and add a node to the host

path, and to any intervals which have not yet reached their right endpoint.

• When you reach a number for the second time, append the right endpoint to the corresponding

interval, and append a node to the host path, and to all intervals which have not yet reached

their right endpoint.

• When you reach an ”o,” append a node to the host path, and to all intervals which have not

yet reached their right endpoint.

• When you reach an ”e,” do nothing.

The creation of a canonical representation leads to our first result about the maximum order

of the host path H:

Theorem 3.4.3 If G is a graph of order n, and G is representable, then there is a representation

(H,S) of G in which the order of H is at most 4n− 1.

Proof. Given any canonical representation of G, the length of the corresponding representation

code is 4n−1. If every non-endpoint entry is an ”o,” then every single character in the code requires

the creation of exactly one node in H. 2

Note that while a canonical representation is unique in its equivalence class, that equivalence

class may not be the unique representatives of a graph. For example, P3 is also represented by the

code 1e2o3o1e2o3. Note also that the actual upper bound on the order of H is certainly less than

4n − 1; for example, if the code begins ”1o2,” then removing the two leftmost nodes of interval 1

will lead to a representation of the same graph with a host path of length at most 4n − 3, simply
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by allowing two intervals to share an endpoint. In fact, P3 can be represented using a host path of

order 2.

3.4.2 Counting Canonical Representations

We can use canonical representations to count the number of unique representations on n

vertices:

Theorem 3.4.4 The number of canonical representations on n vertices is 2n−1 (2n)!
n! .

Proof. The proof is inductive on n. There are two canonical representations for one vertex: an even

interval and an odd interval. For n > 1, we can obtain any canonical representation on n vertices by

adding a leftmost interval to a canonical representation on n− 1 vertices. The left endpoint of this

interval comes before the previous first interval; the distance between these two endpoints can be

chosen to be even or odd. The right endpoint of this interval can now be placed after any endpoint

(left or right), including the newly placed left endpoint, for a total of 2n−1 places to place the right

endpoint. Finally, the difference between the right endpoint and the point before it may be chosen

to be even or odd, subdividing intervals if necessary — note that if this point is placed between two

points in the previous representation, this creates two new sub-intervals, and choosing the parity of

one will force the parity of the other. Then there are (2)(2n− 1)(2) = 2 (2n)(2n−1)
n possible ways to

add the new interval. By the inductive hypothesis, the number of representations on n− 1 vertices

is 2n−2 (2n−2)!
(n−1)! , so the number of representations on n vertices is 2n−1 (2n)!

n! , proving the induction.

2

If, in the previous proof, we require that all of the intervals are of a specific parity, either

even or odd, then setting the parity of the distance between the left endpoint of the new interval

and the first interval in the previous representation will force the parity of any subintervals created

by placing the right endpoint. This divides the number of possible new representations by 2 at each

step, which leads to the following count of canonical representations of specific parity:

Theorem 3.4.5 The total number of canonical representations on n vertices, in which all intervals

are even or all intervals are odd is (2n)!
2(n!) .
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3.4.3 Counting Bipartite Graphs

Our goal in this section is to show that not all bipartite graphs are representable as odd-

intersection interval graphs using only even intervals. To do this, we will show that the number of

bipartite graphs grows more quickly than the number of possible representations. We first define

G (n,m, p) to be the model which generates a bipartite graph with parts of order n and m, by

including each possible edge with probability p.

Lemma 3.4.6 Almost all bipartite graphs are connected, with diameter 3. In particular, almost all

balanced bipartite graphs are connected.

Proof.

Let G ∈ G (n,m, 1
2 ) have parts U (order n) and V (order m), and suppose u, v ∈ V (G).

If u and v are in the same part, WLOG U , then for each vertex w in V , the probability that

w is adjacent to both u and v is 1
4 . The probability that no vertex in V is adjacent to both u and v

is then
(

1− 1
4

)m
=

(

3
4

)m
, which goes to 0 as m→∞.

If u ∈ U and v ∈ V , there is a u− v path of length 3 if u is adjacent to some vertex w in V

which is distance 2 from v. For each w 6= v in V , then, the probability that there is no w − v path

of length 2 is
(

3
4

)n−1
(n− 1 because we will assume that this path does not travel through u). The

probability that there is no path of the form u − w − x − v (where x is some vertex in U) is then

the probability that there is no uw /∈ E(G), plus the probability that uw ∈ G, but there is no w− v

path of length 2. This probability is given by the expression
[

1
2 + 1

2

(

3
4

)n−1
]m−1

, which goes to 0

as m and n increase to ∞. We note that 1
2 + 1

2

(

3
4

)n−1
< 1, and thus this probability tends to 0 as

m→∞ for any fixed n.

Finally, note that all of the above statements hold if m is fixed equal to n. 2

The next result relies on a a modification of a result by Bollobás [4]. As preliminaries,

denote the normal density function by ϕ(x), and the normal distribution function by Φ(x). Note

that, as x→∞,

1− Φ(x) ∼ 1√
2π

1

x
e−x2/2 (3.4.1)

For a given n, choose G ∈ G (n, n, 1/2). We are interested primarily in the degree sequence

dU
1 ≥ dU

2 ≥ · · · ≥ dU
m of U , and the analogous degree sequence in V . Note that, for any vertex v ∈ G,
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deg(v) ∼ bin(n, p). Let

b(n; k) =

(

n

k

)

pkqn−k

S(n;K,L) =

L
∑

k=K

b(n; k)

(if no L is given, assume L = n). Note that, if x = o(n1/6), then for K = pn + x(pqn)1/2 =

pn + o(n2/3),

S(n;K) ≈ 1− Φ(x). (3.4.2)

Finally, let XU
K (resp. XV

K) be the number of vertices in U (resp. V) of degree at least K.

The next fifteen statements are adapted from [4]. If the proof is not supplied, it may be assumed

that the proof from the original paper is essentially identical. Unless otherwise stated, the results

will be for vertices in partition U ; in each case, there is an analogous result for vertices in V .

Lemma 3.4.7 Let 1 ≤ K ′ ≤ K ′′ ≤ n. Let µ′ = E(XU
K′), σ′2 = E((XU

K′ − µ′))2, and define µ′′ and

σ′′2 analogously. If a is an integer satisfying µ′′ < a ≤ µ′ then

P (da ≥ K ′′) ≤ min

{

µ′′

a
,

σ′′2

(a− µ′′)2

}

and

P (da < K ′) ≤ σ′2

(µ′ − a + 1)2
.

Lemma 3.4.8 For every integer K, 0 ≤ K ≤ n, we have E(XU
K) = nS(n;K).

Proof. The probability that any vertex in U has degree k is
(

n
k

)

pkqn−k. The probability that said

vertex has degree at least K is then S(n;K), and there are n vertices in U . 2

Lemma 3.4.9 Let K be an integer, 1 ≤ K ≤ n. Let µ = E(XU
K) and σ2 = E((XU

K − µ)2). Then

σ2 = µ(1− S(n;K)).

Proof. Let Y U
K =

(

XU

K

2

)

. Then E((XU
K)2) = E(XU

K) + 2E(Y U
K ). Note that, because the degrees of

each vertex in U are independent and identically distributed, the probability that any two vertices
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have degree at least K is (S(n;K))2, so E(Y U
K ) =

(

n
2

)

(S(n;K))2. Then:

σ2 = E((XU
K)2)− µ2

=
(

µ + (n2 − n)[S(n;K)]2
)

− n2[S(n;K)]2

= µ− n[S(n;K)]2

= µ (1− S(n;K))

2

Lemma 3.4.10 Let K = pn + x(pqn)1/2 = pn + o(n2/3). Let µ = E(XU
K) and σ2 = E((XU

K − µ)2).

Then σ2 ≤ µ.

Proof. This follows immediately from the fact that S(n;K) is a probability, namely the probability

that a given vertex in U has degree at least K. 2

Theorem 3.4.11 Let K ′ > K ′′ be such that K ′ = pn + o(n2/3) and K ′′ = pn + o(n2/3). Suppose

µ′′ = E(XU
K′′) < a < µ′ = E(XU

K′ . Then

P (da ≥ K ′′) ≤ min

{

µ′′

2
,

µ′′

(a− µ′′)2

}

and

P (da < K ′) ≤ µ′

(µ′ − a)2
.

Theorem 3.4.12 Let a be a fixed natural number and let f1, f2 be fixed real numbers satisfying

ef1 < a < ef2 . Then

P (da ≥ K ′′) ≤ min

{

ef1

a
,

ef1

(a− ef1)2

}

+ o(1)

and

P (da < K ′) ≤ ef2

(ef2 − a)2
+ o(1).

Corollary 3.4.13 If a is fixed and C(n) → ∞ arbitrarily slowly, then almost every graph in

G (n, n, 1/2) satisfies

K∗ + C(n)

(

n

log n

)1/2

≥ dU
1 ≥ dU

2 ≥ · · · ≥ dU
a ≥ K∗ − C(n)

(

n

log n

)1/2

,
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where

K∗ = pn + (2pqn log n)1/2 −
(

pqn

8 log n

)1/2

log log n.

Theorem 3.4.14 Suppose a→∞ and K ′ < k < K ′′ are such that with µ = E(XU
k ), µ′ = E(XU

K′),

and µ′′ = E(XU
K′′) we have

|µ− a| ≤ a1/2 (3.4.3)

C(n)µ1/2 ≤ µ′ − µ ≤ µ (3.4.4)

and

C(n)µ1/2 ≤ µ− µ′′ ≤ µ (3.4.5)

where C(n)→∞ arbitrarily slowly. Then almost every bipartite graph satisfies K ′ ≤ dU
a ≤

K ′′.

Lemma 3.4.15 Let c > 2 be a constant and suppose K = pn+x(pqn)1/2 = pn+o(n2/3) is such that

µ = E(XU
K) → ∞. Suppose furthermore that C(n) ≤ µ1/2 and C(n) → ∞. Then the inequalities

3.4.4 and 3.4.5 are satisfied for K ′ = K − ǫ(pqn)1/2 and K ′′ = K + ǫ(pqn)1/2, where ǫ is chosen as

follows:

• If |x| ≥ c, then ǫ = C(n)/(xµ1/2).

• If |x| < c, then ǫ = C(n)n−1/2.

Theorem 3.4.16 Let a ≤ n/2 be a natural number and let C(n)→∞ arbitrarily slowly. Define x

by 1− Φ(x) = a/n. Then almost every graph in G (n, n, 1/2) satisfies

∣

∣

∣
dU

a − pn− x(pqn)1/2
∣

∣

∣
≤ C(n)

(

n

a log(n/a)

)

.

Corollary 3.4.17 Let C(n)→∞ arbitrarily slowly. Then
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1. If a = O
(

log n/(log log n)4
)

then almost every graph in G (n, n, 1/2) satisfies

∣

∣

∣

∣

∣

dU
a − pn− (2pqn log n)1/2 + (log log n)

(

pqn

8 log n

)1/2

+ log(2π1/2a)

(

pqn

2 log n

)1/2
∣

∣

∣

∣

∣

≤ C(n)

(

n

a log n

)1/2

.

2. If a = O((log n)2), then define x by ϕ(x)
x = a

n . Then almost every balanced bipartite graph

satisfies
∣

∣

∣
dU

a − pn− x(pqn)1/2
∣

∣

∣
≤ C(n)

(

n

a log n

)1/2

.

3. If a−m/2 = O(n1/2, then almost every graph in G (n, n, 1/2) satisfies

∣

∣dU
a − pn

∣

∣ ≤ C(n).

Theorem 3.4.18 Suppose a→∞ and a = o(n). Set

K = K(a, n)

= pn + (2pqn log(n/a))1/2 −

(log log(n/a) + log4π)

(

pqn

8 log(n/a)

)1/2

.

Then almost every graph in G (n, n, 1/2) satisfies
∣

∣dU
a −K

∣

∣ = O
(

n
log(n/a)

)1/2

.

Theorem 3.4.19 Let a = o(n) and let c(n) be a positive function tending to 0 arbitrarily slowly.

Then almost every graph in G (n, n, 1/2) satisfies

dU
i − dU

i+1 ≥
c(n)

a2

(

n

log(n/a)

)1/2

for every i < a.

Theorem 3.4.20 Suppose a → ∞ and a = o(n). Let C(n) → ∞ arbitrarily slowly. Then almost

every graph in G (n, n, 1/2) satisfies

dU
i − dU

i+1 ≤
C(n)

a2

(

n

log(n/a)

)1/2
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for some i < a.

Corollary 3.4.21 If a = o(n1/4)/(log n)1/4 then almost every graph in G (n, n, 1/2) is such that

dU
1 > dU

2 > · · · > dU
a . If a 6= o(n1/4)/(log n)1/4 then almost every graph in G (n, n, 1/2) is such that

dU
i = dU

i+1 for some i < a.

Now that we have the number of terms which are strictly decreasing, we can use this

information to create a canonical labeling of the vertices in each part (this method was used in [1]

to show that almost every graph admits only the trivial automorphism.)

Theorem 3.4.22 Almost every graph in G (n, n, 1/2) has trivial automorphism group.

Proof. Let G ∈ G (n, n, 1/2) have parts U and V as above. Order the vertices of U in descending

order of degree, i.e., d(u1) ≥ d(u2) ≥ · · · ≥ d(un). Order the vertices of V in the same manner.

Set k = 3log2n, and note that k = o(n1/4)/(log n)1/4.

For each vertex ui ∈ U , define a function gU : U ← N by

gU (ui) =

k
∑

j=1

a(i, j)2j

where a(i, j) is 1 if ui is adjacent to vj and 0 otherwise. In other words, f assigns a binary string to

ui based on its adjacencies to the k highest-degree vertices in V . Similarly, gV : V ← N is defined

by

gV (vi) =

k
∑

j=1

b(i, j)2j

where b(i, j) is 1 if vi is adjacent to uj and 0 otherwise.

We first check that there is no automorphism which maps ui to uj or vi to vj for some i 6= j.

This may be possible if:

1. d(ui) = d(ui+1) or d(vi) = d(vi+1) for 1 ≤ i ≤ k.

2. gU (ui) = gU (uj) or gV (vi) = gV (vj) for any i 6= j.

By Corollary 3.4.21, the k highest degrees in U and the k highest degrees in V will almost

surely be unique, so the probability of the first condition occurring approaches 0 as n→∞. For the

second condition to occur, both ui and uj must be adjacent to the same vertices in the set {v1, . . . , vk}
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or vi and vj must be adjacent to the same vertices in the set {u1, . . . , uk}. The probability of either

case is (1/2)k = n−3, so the probability over all i and j is at most
(

n
2

)

n−3 = O(n−1), which is also

approaching 0 as n→∞.

So, there is almost surely no automorphism which re-arranges the vertices within either

part. By Lemma 3.4.6, G is connected, so the partitioning is fixed; in other words, if there is an

automorphism ϕ such that ϕ(ui) = vj for any i or j, then ϕ(U) = V (and, conversely, ϕ(V ) = U).

Suppose, then, that G does not satisfy either of the above conditions, but an automorphism

ϕ exists with ϕ(U) = V . Consider ϕ2(ui) = ϕ(ϕ(ui)) = uj . If i 6= j, then ϕ2 is an automorphism

that re-arranges the verices of U , which we have assumed is not the case. Then ϕ2(ui) = ui and

ϕ(vi) = vi for 1 ≤ i ≤ n, so ϕ is an involution.

If ϕ(ui) = vj , then d(ui) = d(vj). So, for 1 ≤ i ≤ k, it must be the case that i = j. But if

this is the case, gU (ui) must be equal to gV (vi) for each of these vertices as well; specifically, gU (u1) =

gV (v1). Thus, the probability that there is an automorphism is at most P (gU (u1) = gV (v1)). Be-

cause these strings are always equal in the first position, this probability is (1/2)k−1 = O(n−3),

which approaches 0 as n→∞. Therefore, G almost surely has no non-trivial automorphisms. 2

This, at last, leads to the promised result of this section:

Theorem 3.4.23 Not all bipartite graphs are representable.

Proof. It will suffice to show that the number of balanced bipartite graphs grows asymptotically

more quickly than the number of representations. To simplify the arithmetic somewhat, we will

consider graphs on 2n vertices.

Let Bu(2n) be the number of unlabeled balanced bipartite graphs of order 2n, and let Bℓ(2n)

be the number of labeled balanced bipartite graphs of order n. Because a balanced bipartite graph

almost surely has no non-trivial automorphism, Bu(2n) ∼ 1
(2n)!Bℓ(2n) asymptotically [3]. We are

then interested in the asymptotic growth rate of Bℓ(2n). We can create a labelled balanced bipartite

graph as follows:

Let vertex 1 be in part U , and choose n of the remaining vertices to be in part V . There

are then n2 possible edges, and thus 2n2

possible ways for the edges to be arranged between the two

parts.

This method produces
(

2n−1
n

)

2n2

labelled bipartite graphs. However, any graph with multi-

ple components has isomorphic graphs, in which the parts of one or more components are switched.
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But, because Lemma 3.4.6 states that almost all balanced bipartite graphs are connected, we con-

clude that Bℓ(2n) grows asymptotically like
(

2n−1
n

)

2n2

.

The asymptotic growth rate of Bu(2n) is then 2n
2

2(n!)(n!) . The number of possible representa-

tions on 2n vertices is R(2n) = 22n−2 (4n)!
(2n)! . The ratio Bu(2n)/R(2n) = 2(n−1)2

(4n)!

(

2n
n

)

. Using Stirling’s

approximation, the ratio 2(n−1)2

(4n)! has a growth rate of O
(

2n
2

(4n)n

)

. This can be simplified to
(

2n

4n

)n
,

and because 2n is growing faster than 4n, the ratio is tending towards infinity. The binomial is also

growing to infinity, so Bu(2n) is growing faster than R(2n). Then there is a number N such that

Bu(2n) > R(2n) for all n > N . In other words, for n > N , there are more balanced bipartite graphs,

and therefore more bipartite graphs, then there are possible odd-intersection interval representations

(regardless of the parity of the intervals). 2

A study of the sequence of bipartite graphs on n nodes (a partial sequence is available

at http://www.research.att.com/˜njas/sequences/A033995) indicates that the number of bipartite

graphs exceeds the number of even-interval representations sometime after n = 20. However, it is

likely that there is an unrepresentable bipartite graph on fewer nodes. In fact, we have a specific

candidate in mind:

Conjecture 3.4.24 The hypercube Q4 is not representable using even intervals.

3.5 Open Problems

Only one minimal forbidden subgraph is known; others must exist, particularly in light of

the result of Theorem 3.4.23. In particular, it is not known whether K4(3) is the smallest non-

representable graph. Possible candidates for this graph include the Petersen graph, and the Möbius

ladder M8.

At present, no algorithm exists for determining whether a graph is representable.

In addition, while Theorems 3.4.4 and 3.4.5 give formulae to count the number of represen-

tations of order n, many of these representations have an empty edge set. Further combinatorial

study of canonical representations is warranted.
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Chapter 4

Cross Comparison Graphs

4.1 Introduction

A cross comparison graph model is a model in which each vertex v is assigned a rank rv and

a tolerance tv, and two vertices u and v are in conflict if rv ≥ tu and ru ≥ tv. A cross comparison

representation of a graph G is a representation in which each vertex v ∈ V (G) is assigned a rank

and a tolerance, such that the vertices u and v are in conflict if and only if uv ∈ E(G).

A vertex v is referred to as bounded if tv ≤ rv. A vertex v is a retro vertex if rv ≤ tv (we do

not refer to these vertices as unbounded, because of the possibility that rv and tv are incomparable).

Jamison showed in [24] that the cross comparison representation is universal. This was done

using vector representations, in which the rank and tolerance of each vertex v are vectors (ρ(v) and

ϕ(v), respectively) in R
d, and the comparison rule between vectors is that a ≥ b if and only if

ai ≥ bi for 1 ≤ i ≤ d, where ai and bi are the ith coordinates of the vectors a and b, respectively.

Because all graphs can be represented using cross comparison vectors, it is of some interest

to find the lowest value of d for which a graph G can be represented using vectors in R
d. We will call

this value the inefficiency of G, and denote it dG. A graph with a cross comparison representation

on R
d will be referred to as d-representable. A one-dimensional cross comparison representation is

referred to as an efficient representation, and G is an efficient graph if dG = 1.
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4.2 Vector Representations of Cross Comparison Graphs

We can quickly get the order of G as an upper bound on dG, by labelling the vertices of G

v1 through vn. For vertex v, the tolerance vector ϕ(v) has a 1 in position i if v = vi and 0 in that

position otherwise; and the rank vector ρ(v) has a 1 in position i if v is adjacent to vi and 0 in that

position otherwise. This was, in fact, the representation used by Jamison in [24] to show that cross

comparison graphs are universal. However, by making use of the fact that the vector coordinates do

not have to be limited to 0 and 1, we can improve the efficiency of our representation.

4.2.1 A “Canonical” Representation

It is sometimes difficult to keep track of comparisons when the ranks and tolerances of several

different vertices are equal. It is useful, then, to look at graphs in which each rank and tolerance

has a distinct value, so that we can focus on strict inequality in our comparisons. Fortunately, this

requirement does not restrict the number or efficiency of representable graphs.

Theorem 4.2.1 If G has a cross comparison representation using vectors in R
d, then G has a

representation using vectors in R
d such that the ith coordinate of every vector (rank and tolerance)

has a distinct value, for 1 ≤ i ≤ d. Further, if G has order n, the coordinate values are integers

between 1 and 2n.

Proof. The following algorithm may be used to re-label the ith coordinate of every vector. The

process may be repeated for each coordinate, re-labeling the vertices as necessary. Label the vertices

v1, v2, . . . , vn, such that:

1. If j < ℓ, then ti(vj) ≤ ti(vℓ).

2. If j < ℓ and ti(vj) = ti(vℓ), then ri(vj) ≤ ri(vℓ).

3. If two vertices have equal rank and tolerance in the ith coordinate, their ordering is arbitrary.

Assign each coordinate the labels 1, 2, . . . , 2n, such that:

1. The labels are assigned in ascending order of the original values of the coordinates; i.e., if

ri(vj) < ti(vℓ), then ri(vj) is assigned a lower label than ti(vℓ), regardless of j and ℓ.

2. If ti(vj) = ri(vℓ), then ti(vj) is assigned the lower label, regardless of j and ℓ.
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3. If j < ℓ and ti(vj) = ti(vℓ), then ti(vj) is assigned the lower label.

4. If j < ℓ and ri(vj) = ri(vℓ), then ri(vj) is assigned the lower label.

The first condition on this labeling ensures that if ri(vj) < ti(vℓ) in the original representation, this

inequality still holds under the new labeling. The second condition ensures that if ti(vℓ) ≤ ri(vj) in

the original labeling, that now ti(vℓ) < ri(vj). Therefore, the new labeling preserves all adjacencies

in the original representation, so the new labeling is still a representation of G. 2

This theorem can easily be extended to make every value unique, not just the values within

a specific coordinate.

Corollary 4.2.2 If G has a cross comparison representation using vectors in R
d, then G has a

representation using vectors in R
d such that every coordinate of every vector (rank and tolerance)

has a distinct value. Further, if G has order n, the coordinate values are integers between 1 and 2dn.

Proof. After applying the algorithm of Theorem 4.2.1 to obtain unique values within each coordi-

nate, it is sufficient to add the value (2n)(i− 1) to each value in the ith coordinate of every vector.

Thus, the ith coordinate contains the values (2n)(i− 1) + 1 through 2ni. 2

Remark 4.2.3 The algorithm of Theorem 4.2.1 produces a representation which attempts to mini-

mize the number of situations in which ti(u) < ti(v) < ri(v) < ri(u) for some pair of vertices u and

v. The algorithm is similar to that of Theorem 3.4.1 in the previous chapter. The reasoning behind

the algorithm is also similar, and will become clearer in the next section.

4.3 Efficiency

While we now know a representation with all coordinate values distinct is possible, it will

often be convenient to allow some coordinate values to be equal in our representations. A path,

for example, can be represented by assigning a set of n vertices the ranks 1, 2, . . . , n, and respective

tolerances 0, 1, . . . , n− 1. Then every path has an efficient representation. To see what other graphs

might have efficient representations, we will reprint two lemmas from [24]:

Lemma 4.3.1 Every retro vertex in a cross comparison graph is simplicial.
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Lemma 4.3.2 If P is linearly ordered, then every bounded P -cross comparison graph is an interval

graph. Conversely, every interval graph is a bounded P -cross comparison graph for some linear order

P .

For d > 1, R
d is not linearly ordered, but we can still extend Lemma 4.3.2 for R

d.

Lemma 4.3.3 Every bounded cross comparison graph on R
d is a d-box graph. Conversely, every

d-box graph is a bounded cross comparison graph on R
d.

Proof. Suppose G is a bounded cross comparison graph on R
d. For each vertex v with rank

ρ(v) = (r1, r2, . . . , rd) and tolerance ϕ(v) = (t1, t2, . . . , td), then these vectors map to a d-box in

which the ith coordinate of each corner is either ρi(v) or ϕi(v). Conversely, if G is a d-box graph,

the box that represents vertex v has an “upper corner” A = (a1, a2, . . . , ad) and a “lower corner”

B = (b1, b2, . . . , bd), such that ai ≥ bi for 1 ≤ i ≤ d. Then by letting ρ(v) = A and ϕ(v) = B, we

create a bounded cross comparison representation for G on R
d. 2

Because, in R, every vertex is either bounded or retro (or both, if rv = tv), we can begin to

characterize graphs with efficient representation.

Theorem 4.3.4 Suppose G is a graph with dG = 1. Then G is chordal.

Proof. We show this by finding a perfect elimination ordering for G. Let S be the set of retro

vertices in the representation of G. Each of these vertices is simplicial by Lemma 4.3.1, and so these

vertices can be eliminated first, in any order we like. The remaining vertices are bounded, and, by

Lemma 4.3.2, form an interval graph. This subgraph is chordal, and thus has a perfect elimination

ordering of its own. This gives us a perfect elimination ordering for G. 2

The converse of this theorem is not true; a computer algorithm can find chordal graphs with

no efficient representation. The 3-sun, a graph of order 6, is the smallest order chordal graph with

no efficient representation. The “bad aster,” with 6 edges, is the chordal graph of smallest size with

no efficient representation.

The depth of a rooted tree T is the number of levels in T , where the root counts as level 0.

The depth δ(x) of a particular vertex x is the level number of that vertex; i.e., the distance to the

root.

Proposition 4.3.5 Let T be a tree of maximum degree ∆. T has a vector comparison representation

for d = 2.
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Proof. Select a vertex r to be the root of T . We can assume that the children of any node are

ordered in a birthorder. Let β(v) denote the birthorder of v; then β(v) then takes on integer values

between 1 and ∆. Assume that b(r) = 1.

Our representation will depend on vertices with the same depth having different tolerance

vectors. Define (v)k to be the kth direct ancestor of v, where 0 ≤ k ≤ δ(v); so, (v)0 = v, (v)1 is the

parent of v, (v)2 is the parent’s parent, and so on, until we reach (v)δ(v) = r. Then, we define a

tolerance function B(v) by

B(v) =

δ(v)
∑

k=0

β((v)k)

(∆ + 1)δ(v)−k
.

Lemma 4.3.6 If u is any descendant of v, then B(u) > B(v). If δ(u) = δ(v) and B(u) < B(v),

then if w is any descendant of u, B(w) < B(v).

Proof. For the first statement, it is sufficient to show B(u) > B((u)1), and for this, it is sufficient

to note that B(u) = b(u)
(∆+1)δ(u) + B((u)1).

For the second statement, because u and v are on the same level, B(v)−B(u) ≥ 1
(∆+1)δ(u) .

If w is any descendant of u, then

B(w)−B(u) ≤ ∆

(∆ + 1)δ(u)+1
+

∆

(∆ + 1)δ(u)+2
+ · · ·+ ∆

(∆ + 1)δ(w)

<
1

(∆ + 1)δ(u)

⇒ B(w)−B(u) < B(v)−B(u)

⇒ B(w) < B(v)

2

Lemma 4.3.7 The function B(v) assigns a unique label between 1 and 2 to each vertex v.

Proof. By Lemma 4.3.6, B(v) ≥ B(r) = 1. The upper bound comes from the fact that B(v) ≤

1 +
∑δ(v)

k=1
∆

(∆+1)δ(v)−k
≤ 2.

Uniqueness can be shown inductively on δ(v). If δ(v) = 0, then v = r, the only vertex of

depth 0. For larger values of d(v), let B(u) = B(v); note that Lemma 4.3.6 implies that δ(u) = δ(v).

Then

(∆ + 1)δ(v)−1
B(v) = (∆ + 1)δ(v)−1

B(u) = N + b
(∆+1)δ(v) ,
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where N is an integer and 1 ≤ b ≤ ∆. Because birthorder is also between 1 and ∆, it follows that

b = b(v) = b(u). Then B(v)− b(v)
(∆+1)δ(v) = B(u)− b(u)

(∆+1)δ(u) . But this means B((v)1) = B((u)1). By

the inductive hypothesis, u and v have the same parent. But, u and v also have the same birthorder,

so u = v. 2

We are now ready to create our vector representation. Define ϕ(v) as follows:

ϕ(v) =







B(v)

δ(v)







Define ρ(v) as follows:

ρ(v) =







B(v) + ∆
(∆+1)δ(v)+1

δ(v) + 1







To show that this representation gives us the tree T , select vertices u, v ∈ V (T ), and examine

their vectors. If |δ(u)− δ(v)| > 1, then either ρ2(u) < ϕ2(v) or ρ2(v) < ϕ2(u), so we do not have

ϕ(v) ≤ ρ(u), and thus there is no edge between u and v.

If δ(u) = δ(v), then |B(v)−B(u)| ≥ 1
(∆+1)δ(v)−1 , so either ρ1(u) < ϕ1(v) or ρ1(v) < ϕ1(u),

and again there is no edge between u and v.

We are left with the case where |δ(u)− δ(v)| = 1; in this case, ρ2(v) = ϕ2(u) and ρ2(u) =

ϕ2(v). Without loss of generality, let δ(u) = δ(v) + 1. If v is the parent of u, then B(v) < B(u) ≤

B(v) + ∆
(∆+1)δ(v) , so ρ1(v) > ϕ1(u) and ρ1(u) > ϕ1(v). Suppose, then, that v is not the parent of u.

If B((u)1) < B(v), we must have ρ1(u) < ϕ1(v). If B((u)1) > B(v), then ρ1(v) < B((u)1) < B(u),

so ρ1(v) < ϕ1(u). In either case, there is no edge between u and v. Thus we get the tree T . 2

Corollary 4.3.8 Let T be a tree. If T is a caterpillar, then dT = 1. Otherwise, dT = 2.

Proof. If T is a caterpillar, then T has an interval representation, and dT = 1 by Lemma 4.3.2.

If T is not a caterpillar, then T contains a copy of the bad aster, and has no one-dimensional

representation, but dT = 2 by Theorem 4.3.5. 2

It is worth examining, then, how retro vertices interact with bounded vertices in a cross

comparison model, particularly one with one-dimensional vectors. If u is a retro vertex and v

a bounded vertex, then u is in conflict with v if and only if u is “contained” in v; that is, if
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tv ≤ ru ≤ tu ≤ rv. We could then think of an efficient representation as an interval graph, in which

the intervals corresponding to retro vertices are only adjacent to regular intervals, and only those

which completely contain them.

Retro vertices cannot be adjacent to each other, regardless of dimension, as the next lemma

shows.

Lemma 4.3.9 The set of retro vertices which are not also bounded vertices in a cross comparison

graph form an independent set.

Proof. Let u and v be retro vertices, and assume, without loss of generality, that rv ≥ ru. Then

ru ≤ rv ≤ tu, so ru ≥ tv if and only if ru = rv = tv. Also, ru ≤ tu, so u and v are adjacent if and

only if ru = tu = rv = tv. However, in this case, both u and v are also bounded vertices. 2

The next theorem shows that, if we can characterize the graphs with efficient representations,

we can characterize the graphs with d-dimensional representation for any d. Suppose G is a cross

comparison graph, and for v ∈ V (G), ρ(v) and ϕ(v) are the respective (d-dimensional) rank and

tolerance vectors of v. We define the graph Gi by letting V (Gi) = V (G), and giving each vertex

v rank r(v) = ρi(v) and tolerance t(v) = ϕi(v). By definition, Gi is an efficient cross comparison

graph.

Lemma 4.3.10 The graph Gi contains G as an edge-induced subgraph.

Proof. If uv ∈ E(G), then ρ(u) ≥ ϕ(v) and ρ(v) ≥ ϕ(u). By our comparison rule, this means, that

ρi(u) ≥ ϕi(v) and ρi(v) ≥ ϕi(u), so uv ∈ E(Gi). 2

Theorem 4.3.11 Let G be a cross comparison graph with d-dimensional ranks and tolerances. Then

G is the intersection of d graphs with efficient cross comparison representation.

Proof. For 1 ≤ i ≤ d, let Gi be the efficient cross comparison graph defined as above. The edges of

G must be in each graph Gi, by Lemma 4.3.10. Conversely, if any edge uv is in all d of these graphs,

then ρi(u) ≥ ϕi(v) and ρi(v) ≥ ϕi(u) for 1 ≤ i ≤ d, so ρ(u) ≥ ϕ(v) and ρ(v) ≥ ϕ(u), and therefore

uv ∈ E(G). Thus, G is precisely the intersection of these efficient cross-comparision graphs. 2

The boxicity of a graph G is the minimum number k for which G is a k-box graph. The

chordality of G is the minimum number of chordal graphs whose intersection is G. It has been shown

that the upper bound on both chordality and boxicity of a graph of order n is ⌊n/2⌋, and that the
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graph formed by removing ⌊n/2⌋ non-adjacent edges from the complete graph Kn has been shown

to have have boxicity and chordality both equal to ⌊n/2⌋ [33, 29]. Because all interval graphs are

efficient, and all efficient graphs are chordal, Theorem 4.3.11 gives us bounds on dG:

Corollary 4.3.12 Let C(G) be the chordality of G, and Box(G) be the boxicity of G. Then

1. C(G) ≤ dG ≤ Box(G).

2. dG ≤ ⌊n/2⌋

3. The above bounds are tight.

4.4 Characterization of efficient cross comparison graphs

We are still left with the question of how to characterize the efficient cross comparison

graphs. While a characterization based on minimal forbidden subgraphs might still be out of reach,

a more-studied class of graphs from [31] offers a partial solution.

Definition 4.4.1 A threshold tolerance graph, or TT graph, is a graph G in which each vertex v

is assigned a weight wv and tolerance tv, and uv ∈ E(G) if and only if wu + wv ≥ min {tu, tv}.

The complements of TT graphs, in which u and v are adjacent whenever wu + wv ≤

min {tu, tv}, are called co-TT graphs. However, Monma, Reed, and Trotter use a slightly differ-

ent definition for these graphs in [31]:

Definition 4.4.2 A graph G = (V,E) is a co-TT graph if, for each v ∈ V , there are real numbers

av and bv such that

xy ∈ E ⇔ ax ≤ by and ay ≤ bx.

To see that the two definitions are equivalent, set av = wv and bv = tv − wv. The second

definition, however, is exactly the definition of an efficient cross-comparision graph! This gives us

an immediate characterization of graphs with dG = 1.

Theorem 4.4.3 A graph G is an efficient cross comparison graph if and only if G is a co-TT graph.

A polynomial-time algorithm for recognition of these graphs was given in [31]. The charac-

terization of co-TT graphs by minimal forbidden subgraphs was left as an open problem. However,
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I II

IIIn(n + 4 points, n ≥ 2) IVn(n + 5 points, n ≥ 1)

Figure 4.1: The minimal asteroidal graphs. An interval graph is chordal and contains none of the
graphs above.

the equivalency of co-TT graphs and efficient cross comparison graphs will allow us to characterize

these graphs.

A graph G is asteroidal if it contains three vertices a1, a2, a3, and paths W1, W2, W3, such

that each path Wi connects the vertices aj , j 6= i, and contains no neighbor of ai. In this case, the

vertices a1, a2, and a3 are an asteroidal triple. Lekkerkerker and Boland characterized the interval

graphs in [26] as all chordal graphs which do not contain an asteroidal triple. They also characterized

the interval graphs by minimal forbidden subgraph.

Theorem 4.4.4 A graph G is an interval graph if and only if G is chordal and contains none of

the graphs in Figure 4.1 as a vertex-induced subgraph.

Recall that every interval graph is also an efficient cross comparison graph, and that every

efficient cross comparison graph is chordal. To begin working on a characterization of efficient cross

comparison graphs, recall that each efficient cross comparison graph is also a co-TT graph. The

following theorem from [31] strengthens the condition of chordality:
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Theorem 4.4.5 Every co-TT graph is strongly chordal.

Farber gives a characterization of strongly chordal graphs in [14]:

Definition 4.4.6 A complete sun, or k-sun is a G on 2k vertices for some k ≥ 3, such the vertex

set can be partitioned into sets U = {u1, . . . , uk} and W = {w1, . . . , wk} such that U is a clique, W

is independent, and for each i and j, wj is adjacent to ui if and only if i = j or i ≡ j + 1( mod n).

If the vertex-induced subgraph G(U) is chordal, but not a clique, G is an incomplete sun.

Lemma 4.4.7 Every incomplete sun contains a complete sun.

Theorem 4.4.8 A graph is strongly chordal if and only if it is chordal and sun-free.

This gives us a set of forbidden subgraphs for the efficient cross comparison graphs:

Corollary 4.4.9 If G contains a sun, G does not have an efficient cross comparison representation.

We may, without loss of generality, assume that all ranks and tolerances in a cross compar-

ison representation have distinct values, and thus all inequalities will be strict. All proofs in the

remainder of this section will make this assumption.

Lemma 4.4.10 The representation of the interior vertices of an irreducible path is unique, up to

reversing the order of the vertices.

Proof. Let v1, v2, . . . , vn be the consecutive vertices of a path, ordered left to right, with ranks

r1, r2, . . . , rn and tolerances t1, t2, . . . , tn. For 1 ≤ j < i ≤ n, if i− j = 1, we must have ri ≥ tj and

rj ≥ ti, but for i− j > 2, we must have ti > rj . This leads to the condition that

t2 < r1 < t3 < r2 < · · · < tn−1 < rn−2 < tn < rn−1

Additionally, t1 < r2 and rn > tn−1, but there is some freedom in the ordinality of these two values.

The ordering of the remaining n− 2 values relative to each other is fixed. 2

Theorem 4.4.11 Suppose G is an efficient cross comparison graph, and v1, v2, . . . , v5 are the con-

secutive vertices of an irreducible subpath of G.
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1. If x is adjacent to v3, but not v2 or v4, then every vertex adjacent to x is also adjacent to v3.

2. If x is adjacent to all five vertices in this path, then every vertex adjacent to v3 is also adjacent

to x.

Proof. Let the vertices in the path have ranks and tolerances as in Lemma 4.4.10, and let the rank

and tolerance of x be, respectively, rx and tx.

1. As a consequence of Lemma 4.4.10, t2 < t3 < rx and tx < r3 < r4. We must then have r2 < tx

and rx < t4 to avoid this adjacency, so t3 < r2 < tx and rx < t4 < r3. Suppose vertex y, with

rank and tolerance (resp.) ry and ty, is adjacent to x. Then ry > tx > t3 and ty < rx < r3, so

y is also adjacent to v3.

2. As a consequence of Lemma 4.4.10, tx < r1 < t3 and r3 < t5 < rx. Suppose vertex y, with

rank and tolerance (resp.) ry and ty, is adjacent to v3. Then ty < r3 < rx and tx < t3 < ry,

so y is also adjacent to x.

2

Corollary 4.4.12 Graphs I and II in Figure 4.1 are not efficient cross-comparision graphs.

Proof. The solid vertex in graph I violates condition 1 of Theorem 4.4.11, and the solid vertex in

graph II violates condition 2 of the same theorem. 2

From Corollary 4.4.9 above, the k-suns are forbidden subgraphs. We now show that they

are minimal.

Theorem 4.4.13 Let G be a k-sun, and v be any vertex of G. Then G − v has an efficient cross

comparison representation.

Proof. Removing any vertex from the 3-sun leaves an interval graph, so we may assume k ≥ 4. By

symmetry, it suffices to consider the cases v = wk and v = uk from Definition 4.4.6 above. Note also

that if we remove the vertex uk, we are left with wk and wk−1 as pendant vertices; for k ≥ 4, if we

also remove these two vertices, the remaining graph is isomorphic to a (k − 1)-sun with the vertex

wk−1 removed. Thus, we need only consider the case v = uk.

We can obtain a representation for this case as follows:

• The vertex ui, 1 ≤ i ≤ k − 1, is assigned tolerance t(ui) = 2i− 1 and rank r(ui) = 2(k + i).

51



• The vertex wj , 1 ≤ j ≤ k, is assigned tolerance t(wj) = 2(k + j)− 3 and rank r(wj) = 2j.

The vertices in part U all have tolerance at most 2k − 3, and rank at least 2k + 2, so ui and uj are

adjacent for 1 ≤ i, j ≤ k − 1. The vertices in part W are all retro, and are thus independent. If ui

and wj are adjacent, then we must have 2(k + j)− 3 < 2(k + i) and 2i− 1 < 2j. The first inequality

implies j ≤ i + 1, and the second implies that i ≤ j, so wj and ui are adjacent if and only if j = i

or j = i + 1. This gives the desired representation. 2

The graphs from families IIIn and IVn in Figure 4.1 (except for graph IV1) have efficient

cross comparison representations, but since they have no interval representations, each must include

at least one retro vertex. Further, because retro vertices are simplicial, only the three shaded vertices

in these subgraphs can be retro. Note that these are precisely the vertices that form the asteroidal

triple that prevents each graph from having an interval representation. The remaining forbidden

configurations are supergraphs of these families.

Given an asteroidal triple a1, a2, a3 in a simply representable graph, a2 is called the middle

vertex if r(a1) < r(a2) < r(a3) and t(a1) < t(a2) < t(a3). The following lemma shows that, in each

representation of a graph, each asteroidal triple has a middle vertex, and that the middle vertex is

retro.

Theorem 4.4.14 Suppose G is an efficient cross comparison graph, and that G has an asteroidal

triple a1, a2, a3, where t(a1) < t(a2) < t(a3). Then r(a1) < r(a2) < r(a3). Further, a2 is retro.

Proof. If r(a2) < r(a1), then any vertex adjacent to a2 must also be adjacent to a1. Then there

would be no path between a2 and a3 that does not contain a neighbor of a1, so this is not an

asteroidal triple. Similarly, if r(a3) < r(a2), then any neighbor of a3 would be adjacent to a2, so it

must be that r(a1) < r(a2) < r(a3).

Now, consider an irreducible path from a1 to a3; by Lemma 4.4.10, the interior vertices of

this path are bounded. If a2 is bounded, then for at least one vertex v on this path, r(v) ≥ t(a2)

and r(a2) ≥ t(v), which again violates the definition of an asteroidal triple. Therefore r(a2) < t(a2).

2

Note that if a1 and a3 are bounded, then r(a1) < r(a2) < t(a2) < t(a3). The presence of an

asteroidal triple in an efficient graph does not necessarily mean a specific vertex must be a middle

vertex. In particular, any of the asteroidal vertices the complement of the 3-sun (graph III2) may

be a middle vertex. However, other asteroidal graphs do have specific middle vertices.
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The relationship between the neighborhood of the middle vertex and the paths between the

other vertices in the asteroidal triple is the first step in characterizing efficient graphs. We will refer

to a vertex as v-heavy if it is adjacent to every neighbor of v, and define a v-heavy path as one which

contains at least two consecutive v-heavy vertices. A vertex or path which is not v-heavy is v-light.

Lemma 4.4.15 Suppose G is an efficient cross-comparison graph, and that G has an asteroidal

triple a1, a2, a3, in which a2 is the middle vertex. Let W be any path from a1 to a3 which contains

no neighbor of a2. Then W is a2-heavy.

Proof. Because a1 and a3 are necessarily a2-light, we must show that the interior of W contains

at least two consecutive a2-heavy vertices. Assume, without loss of generality, that t(a1) < t(a2) <

t(a3), and (by Theorem 4.4.14) r(a1) < r(a2) < r(a3). If W has only one interior vertex x, then

r(x) > t(a3) > t(a2) and t(x) < r(a1) < r(a2), so x would be adjacent to a2 as well. Thus, W must

have at least two interior vertices; let the interior of W be denoted c1-c2-· · · -ck. The remainder of

the proof is inductive on the number of retro vertices in W .

Suppose all of the interior vertices of W are bounded. For each interior vertex w, if r(w) >

t(a2), then t(w) > r(a2), or w is adjacent to a2. There must be an interior vertex x = ci such that

t(x) < r(a2) < r(x) < t(a2), and a vertex y = cj such that r(y) > t(a2) > t(y) > r(a2). If more

than one vertex on W satisfies these inequalities, we may choose ci to have the highest possible

index and cj to have the lowest possible index such that j > i. If v is any neighbor of a2, then

r(v) > t(a2) > t(x) > t(y), and r(x) > r(y) > r(a2) > t(v), so v is adjacent to x and y, and to each

vertex between x and y on W ; because x and y cannot be the same vertex, this means that there

are at least two consecutive a2-heavy vertices.

Suppose now that not all of the interior vertices are bounded, and choose a retro vertex u

from the interior of W . Because u is retro, all of its neighbors must be bounded (and adjacent to

each other).

Case I: r(u) < r(a2) < t(a2) < t(u). In this case, every neighbor of u would also be

adjacent to a2; thus, W would contain neighbors of a2. Therefore, this case is impossible.

Case II: r(a2) < r(u) < t(u) < t(a2). In this case, every neighbor of a2 is adjacent to u,

and to every neighbor of u, so u and either of its neighbors in W give us our consecutive vertices.
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Case III: r(u) < r(a2) < t(u) < t(a2) or r(u) < t(u) < r(a2) < t(a2). Note that some

subset of the vertices of W form an irreducible path P . All of the interior vertices of P are bounded,

and so by the inductive hypothesis must contain vertices x and y as above. Because u is a vertex

of W , there is a subpath of W from u to a3 which contains no neighbor of a2; call this subpath

W ′. In addition, there is an subpath of W from a1 to u. This subpath contains an irreducible path;

the interior vertices of this path cannot be adjacent to a3 (or they would also be adjacent to a2).

Thus, there is a path from u to a1, and therefore to a2, which contains no neighbor of a3. Finally,

because u cannot be adjacent to y, nor any vertex right of y in P , there is a path from a2 to a3 which

contains no neighbor of u. Then u, a2, and a3 form an asteroidal triple, in which a2 is the middle

vertex, and W ′ is a path with fewer interior retro vertices than W . By the inductive hypothesis,

W ′, and therefore W , are a2-heavy.

By symmetry, the cases where r(a2) < r(u) < t(a2) < t(u) and r(a2) < t(a2) < r(u) < t(u)

are the same. 2

Lemma 4.4.15 gives a very specific condition under which a vertex may be a middle vertex.

We must note that this condition only applies to one asteroidal triple at a time; in other words, if

a vertex is in more than one asteroidal triple, it may be a middle vertex in one triple, even if it

is prevented from being so in another. If a1, a2, and a3 are an asteroidal triple in which none of

the vertices may be the middle vertex, then a1, a2 and a3 are unrepresentable as an efficient cross

comparison graphs. We are now ready to characterize efficient cross comparison graphs, beginning

by defining the unrepresentable condition.

Definition 4.4.16 A graph G is strongly asteroidal if it contains three distinct points a1, a2, a3,

such that each pair of these points is connected by a path which contains no neighbor of the third

vertex, and which does not contain two consecutive vertices adjacent to every neighbor of the third

vertex. The three points are referred to as a strongly asteroidal triple.

The paths in this definition are not necessarily irreducible. In fact, it is often the case that

a v-light path is not irreducible. For example, given a k-sun, with vertices labeled as in Definition

4.4.6, the path u1-w1-u2 is u3-light, and the path u2-w2-u3 is u1-light. If k = 3, then u3-w3-u1 is

u2-light. For k ≥ 4, the only u2-light path between u1 and u3 is u3-w3-u4-· · · -uk-wk-u1. In any case,

every k-sun contains a strongly asteroidal triple.
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Theorem 4.4.17 Let G be a chordal graph. Then G has an efficient cross-comparison representa-

tion if and only if G contains no strongly asteroidal triple.

Proof. The “only if” portion of the theorem follows directly from Lemma 4.4.15 and Theorem

4.4.14; a strongly asteroidal triple has no middle vertex, and is therefore not representable.

Let G be a chordal graph on n vertices without a strongly asteroidal triple; we may assume

that G is connected. Also, because the k-suns contain strongly asteroidal triples, we may assume

that G is not just chordal, but strongly chordal. The proof that G has an efficient cross-comparison

representation is inductive on n. For n = 1, the representation is trivial.

For n > 1, if G has no asteroidal triple, then G is an interval graph, and thus has a

representation in which every vertex is bounded. Suppose, then, that G contains an asteroidal triple

a1, a2, a3. Because this triple is not strongly asteroidal, one of these vertices could be a middle

vertex. Let us assume, without loss of generality, that vertex is a1; then every path between a2 and

a3 either contains a neighbor of a1, or is a1-heavy. Because G is strongly chordal, this also implies

that a1 is simplicial. Let W be an irreducible a2-a3 path which contains no neighbor of a1. By our

inductive hypothesis, H = G − a1 has an efficient cross-comparison representation. We claim that

H has a representation which satisfies the following two conditions:

1. Every vertex of N(a1) is bounded.

2. Let I =
⋂

u∈N(a1)
[t(u), r(u)] = [T,R]. If v is a bounded vertex such that I ⊆ [t(v), r(v)], then

v ∈ N(a1).

To show (1), let b be a neighbor of a1 which is retro. Because W is irreducible, its interior vertices

have a unique representation by Lemma 4.4.10. Because W must contain at least two consecutive

a1-heavy vertices, b must be adjacent to exactly two vertices of W . Specifically, for some vertices

w1, w2, we must have t(w1) < t(w2) < r(b) < t(b) < r(w1) < r(w2). Suppose there is a bounded

vertex c not adjacent to a2, such that t(c) < r(b) < r(c) < t(b), r(b) < t(c) < t(b) < r(b), or

r(b) < t(c) < r(c) < t(b); or that there is a retro vertex c such that r(b) < r(c) < t(c) < t(b). In any

of these four cases, c is adjacent to both w1 and w2, and so W can be extended to an a1-light path,

contradicting the assumption that a1 may be a middle vertex. However, if no such vertex exists,

then b can be given a bounded representation (simply by switching r(b) and t(b)) without affecting

any adjacencies.
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To show (2), recall that W must have a subpath W ′ of consecutive a1-heavy vertices. Let

x and y be the end-vertices of this subpath, so that t(x) < T < r(x), and t(y) < R < r(y). We may

assume that W ′ has minimum length; i.e., no other irreducible a2-a3 path has a shorter subpath of

a1-heavy vertices. Let v be a vertex not adjacent to a1. We wish to show that it is impossible for

t(v) < T and r(v) > R. Note that if this is the case, then v is adjacent to both x and y (or is one

of these vertices), so we may replace all of the interior vertices of W ′ with v. If W ′ contains more

than three vertices, then this contradicts the assumption that W ′ has minimum length. Therefore,

we may assume that W ′ has at most three vertices.

In order for it to be necessary that t(v) < T and r(v) > R, v must be adjacent to a vertex u1

with r(u1) < T and a vertex u2 with t(u2) > R. In addition, both u1 and u2 must have adjacencies

that force them to be on opposite sides of I. There are three cases to consider.

Case I: u1 is adjacent to a neighbor of a1 that is not adjacent to u2, and u2 is adjacent to

a neighbor of a1 that is not adjacent to u1. Then these four vertices, along with a1 and v, form a

3-sun, which contradicts the assumption that G is strongly chordal.

Case II: u1 is adjacent to x and u2 is adjacent to y. If v is neither x nor y, then x-u1-v-u2-y

is part of an a1-light path. Suppose, then, that v is one of these vertices; without loss of generality,

suppose v = x. Then v-u2-y is part of an a1-light path.

Case III: At least one of u1 and u2 — without loss of generality, u1 — is retro, and not

adjacent to x (note that v 6= x in this case), but is adjacent to another vertex b1. Then b1 is bounded,

and adjacent to x, v, and I. If r(b1) > t(y), then u1 can be moved so that T < r(u1) < R < t(u1),

so we may assume b1 and y are not adjacent; this implies that b1 and u2 are not adjacent, and that

x and y are also not adjacent. Either u2 is adjacent to y, or is similarly adjacent to a vertex b2,

which we may assume is adjacent to neither x nor u1. Finally, there is a vertex c adjacent to a1

which is adjacent to neither u1 nor u2 (if not, then we have case I). Then u1-v-u2 contains only

one a1-heavy vertex, a1-c-b1-u1 does not contain consecutive u2-heavy vertices, and a1-c-y-u2 (or

a1-c-y-b2-u2) does not contain consecutive u1-heavy vertices. Then u1, u2, and a2 form a strongly

asteroidal triple, which contradicts the assumption that G is not strongly asteroidal.

Because none of these cases is possible, it is not necessary that I ⊆ [t(v), r(v)]. Therefore,

there is a representation where both (1) and (2) hold. Then, by letting T < r(a2) < t(a2) < R, we

have a representation of G. 2
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We are now left with the problem of determining the minimal subgraphs which contain an

unrepresentable triple. Certainly, these graphs must all contain an asteroidal triple, so we look at

the graphs in Figure 4.1. Graphs I and II contain a strongly asteroidal triple, as do the k-suns. For

each pair of vertices in any asteroidal triple in these graphs, there is a path which does not contain

two consecutive vertices adjacent to every neighbor of the third. The remaining graphs contain a

triple which is asteroidal, but not strongly asteroidal. We can obtain the remaining minimal strongly

asteroidal graphs by adding vertices to these graphs in such a way as to create a strongly asteroidal

triple.

4.5 Open Problems

The first step in the future study of cross comparison graphs is a characterization of efficient

graphs by minimal forbidden subgraphs. There are at least 52 specific forbidden graphs, plus four

infinite families (including chordless cycles and suns). Appendix B contains a partial characteriza-

tion.

Much like odd-intersection interval graphs, cross comparison models have “canonical” rep-

resentations, but many of these representations give the same graph (in particular, the graph Kn

has more than n!
2n

(

2n
n

)

representations). Probabilistic study of random representations to determine

such attributes as expected edge densities or the probability of representing a specific graph could

yield interesting results.

Studies of d-representable graphs for values of d greater than 1 is another area with a number

of open problems. Trees, cycles, and cubes are all 2-representable, but little else is known. Is there

a bound on dG if G is bipartite? What if G is chordal? It is also worth investigating whether a

polynomial-time algorithm exists to determine whether a graph is d-representable, or to determine

dG.
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Appendix A

Some Odd-intersection Interval

Representations

Figure A.1: Two representations of C6.

59



Figure A.2: K4

Figure A.3: K3,3
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Figure A.4: A representation of K3,3,3,2.
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Figure A.5: P4 ×K2
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Figure A.6: P3 × P3
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Figure A.7: The Möbius ladder M10.

x

y

a z

b c

Figure A.8: The 3-sun.
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y

a z b

c

Figure A.9: The complement of the 3-sun.
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Appendix B

Forbidden Subgraphs

I II

IIIn (n + 4 points, n ≥ 2) IVn (n + 5 points, n ≥ 1)

Figure B.1: The minimal asteroidal graphs. An interval graph is chordal and contains none of the
graphs above as a vertex-induced subgraph.
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1 2

Figure B.2: Graphs which are neither interval graphs nor efficient cross comparison graphs.

3 4

5 6

Figure B.3: Minimal strongly asteroidal graphs formed from graph III2.
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7 8 9

Figure B.4: Minimal strongly asteroidal graphs formed from graph III2.

10 11 12

13 14

Figure B.5: Minimal strongly asteroidal graphs formed from graph III2.

68



15 16

17 18

Figure B.6: Minimal strongly asteroidal graphs formed from graph III2.

19 20 21

Figure B.7: Minimal strongly asteroidal graphs formed from graph III2.
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22 23 24

25 26

Figure B.8: Minimal strongly asteroidal graphs formed from graph III2.
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31 32

33 34

Figure B.9: Minimal strongly asteroidal graphs formed from graph III2.

35 36

Figure B.10: Minimal strongly asteroidal graphs formed from graph III2.
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37 38 39

Figure B.11: Minimal strongly asteroidal graphs formed from graph III2.

40 41 42

Figure B.12: Minimal strongly asteroidal graphs formed from graph III2.

43 44 45

Figure B.13: Minimal strongly asteroidal graphs formed from graph III2.
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46 47 48

Figure B.14: Minimal strongly asteroidal graphs formed from graph III2.

49 50

Figure B.15: Minimal strongly asteroidal graphs formed from graph III2.

51 52

Figure B.16: Minimal strongly asteroidal graphs formed from graph III2.
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53n (n + 5 points, n ≥ 3) 54n (n + 6 points, n ≥ 2)

Figure B.17: Minimal strongly asteroidal graphs formed from graphs IIIn (n > 2) or IVn (n ≥ 2).
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