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ABSTRACT 

 

This dissertation is aimed at applying probabilistic approaches to evaluating the 

basal-heave stability and the excavation-induced wall and ground movements for 

serviceability assessment of excavation in clays. The focuses herein are the influence of 

spatial variability of soil parameters and small sample size on the results of the 

probabilistic analysis, and Bayesian updating of soil parameters using field observations 

in braced excavations.  

Simplified approaches for reliability analysis of basal-heave in a braced 

excavation in clay considering the effect of spatial variability in random fields are 

presented. The proposed approaches employ the variance reduction technique (or more 

precisely, equivalent variance method) to consider the effect of spatial variability so that 

the analysis for the probability of basal-heave failure can be performed using 

well-established first-order reliability method (FORM). Case studies show that simplified 

approaches yield results that are nearly identical to those obtained from the conventional 

random field modeling (RFM). The proposed approaches are shown to be effective and 

efficient for the probabilistic analysis of basal-heave in a braced excavation considering 

spatial variability. The variance reduction technique is then used in the probabilistic 

serviceability assessment in a case study.  

To characterize the effect of uncertainty in sample statistics and its influence on 

the results of probabilistic analysis, a simple procedure involving bootstrapping is 

presented. The procedure is applied to assessing the probability of serviceability failure in 

a braced excavation. The analysis for the probability of failure, referred to herein as 
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probability of exceeding a specified limiting deformation, necessitates an evaluation of 

the means and standard deviations of critical soil parameters. In geotechnical practice, 

these means and standard deviations are often estimated from a very limited data set, 

which can lead to uncertainty in the derived sample statistics. In this study, bootstrapping 

is used to characterize the uncertainty or variation of sample statistics and its effect on the 

failure probability. Through the bootstrapping analysis, the probability of exceedance can 

be presented as a confidence interval instead of a single, fixed probability. The 

information gained should enable the engineers to make a more rational assessment of the 

risk of serviceability failure in a braced excavation. The case study demonstrates the 

potential of bootstrap method in coping with the problem of having to evaluate failure 

probability with uncertain sample statistics. 

Finally, a Bayesian framework using field observations for back analysis and 

updating of soil parameters in a multi-stage braced excavation is developed. Because of 

the uncertainties in the initial estimates of soil parameters and in the analysis model and 

other factors such as construction quality, the updated soil parameters are presented in the 

form of posterior distributions. In this dissertation, these posterior distributions are 

derived using Markov chain Monte Carlo (MCMC) sampling method implemented with 

Metropolis-Hastings algorithm. In the proposed framework, Bayesian updating is first 

realized with one type of response observation (maximum wall deflection or maximum 

ground surface settlement), and then this Bayesian framework is extended to allow for 

simultaneous use of two types of response observations in the updating. The proposed 
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framework is illustrated with a quality excavation case and shown effective regardless of 

the prior knowledge of soil parameters and type of response observations adopted.  

The probabilistic approaches presented in this dissertation, ranging from 

probability-based design of basal heave, to probabilistic analysis of serviceability failure 

in a braced excavation considering spatial variability of soil parameters, to bootstrapping 

for characterizing the uncertainty of sample statistics and its effect, and to MCMC-based 

Bayesian updating of soil parameters during the construction, illustrate the potential of 

probability/statistics as a tool for enabling more rational solutions in geotechnical fields. 

The case studies presented in this dissertation demonstrate the usefulness of these tools. 
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CHAPTER I 

 

INTRODUCTION 

 

Background – Purpose of the Research 

In the urban environment, deep braced excavation is a commonly-used 

construction method for high-rise building basements, underground transportation 

stations, and underground parking and commercial spaces, etc.  In the design of a braced 

excavation in clays, two important issues are inevitable, namely, (1) basal-heave stability 

during the construction, and (2) the serviceability issues such as the excavation-induced 

wall and ground responses.  Basal-heave failure in a braced excavation in clays may be 

induced by insufficient shear strength, which supports the weight of soil within the 

critical zone around the excavation.  During an excavation, soil outside the excavation 

zone moves downward and inward because of its own weight and surcharge; this tends to 

cause soil inside the excavation zone to heave up, as shown in Figure 1.1.  Collapse of 

the bracing system may occur if the amount of basal-heave movement is excessive. On 

the other hand, even if the basal-heave stability can be achieved in the design, the 

adjacent structures may still be damaged because of the excessive wall deflection and 

ground surface settlement, as shown in Figure 1.2.   

Failures of excavation projects have been reported worldwide: e.g., Infopedia 

(2004) and Chen et al. (2007).  Considering that most braced excavation projects are 

conducted in the unban environment, the social, economic, and environmental impacts 

caused by the failure of an excavation project can be significant.  In the design of a 

braced excavation, both stability and serviceability requirements should be guaranteed.  
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Figure 1.1: Schematic diagram of basal-heave failure. 

 

 

 

 
 

Figure 1.2: Schematic diagram of excavation effects (Hsiao 2007). 
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Table 1.1: Criteria for excavation protection levels in Shanghai, China (PSCG 2000). 

Protection level Limiting wall deflection and ground surface settlement Requirements of the environmental protection 

I 

1. Maximum wall deflection ≤ H%14.0  

 

2. Maximum ground surface settlement ≤ H%1.0  

 

3. FS (basal stability) ≥2.2 

 

Metro lines and important facilities such as gas 

mains and water drains exist within a distance 

of H7.0  from the excavation; safety has to be 

ensured. 

II 

1. Maximum wall deflection ≤ H%3.0  

 

2. Maximum ground surface settlement  ≤ H%2.0  

 

3. FS (basal stability) ≥2.0 

 

Important infrastructures or facilities such as 

gas mains and water drains exist within a 

distance of (1-2) H  from the excavation. 

III 

1. Maximum wall deflection ≤ H%7.0  

 

2. Maximum ground surface settlement ≤ H%5.0  

 

3. FS (basal stability) ≥1.5 

 

No important infrastructures or facilities exist 

within a distance of 2 H  from the excavation 

 

Note: H  = final excavation depth; FS = factor of safety against basal heave, calculated using the slip circle method.  
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Conventionally, a safe design may be realized by satisfying the factor of safety (FS) 

requirements, as well as the wall and ground requirements as a means of preventing the 

excavation failure and damage to the adjacent infrastructures.  An example of the design 

codes for braced excavations used in China (PSCG 2000) is illustrated in Table 1.1.  The 

limiting FS, wall and ground deformations to prevent failure in the designs of excavations 

are suggested for various protection levels, depending on the requirements of the 

environmental protection.  It should be noted that a design based on those limiting 

criteria in a deterministic approach may not guarantee safety, since it is always difficult to 

estimate the FS, wall and ground responses with certainty mainly due to the uncertainty 

of design soil parameters.  The sources of parameter uncertainty include inadequate site 

investigation, measurement errors, as well as inherent and spatial variability of soil.  

Inherent variability of soil parameters is interpreted by their probability 

distributions or sample statistics (e.g., mean value and standard deviation). Spatial 

variability is generally described by the scale of fluctuation, which is the maximum 

distance within which the spatially random parameters are correlated (Akbas and 

Kulhawy 2009).  Spatial variability may be modeled with the random field theory 

(Vanmarcke 1977).  Recent studies of random field modeling (RFM) based on Monte 

Carlo simulation (MCS) demonstrate that spatial variability plays an important role in 

reliability-based design in geotechnical engineering (Griffiths and Fenton 2009; Huang et 

al. 2010). Neglecting spatial soil variability in reliability analysis of geotechnical 

problems can lead to either overestimation or underestimation of the failure probability in 

a given design, depending on the specified limiting FS, wall deflection or ground 
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settlement levels (Wang et al. 2011b).  In this regard, Chapters II and III of this 

dissertation are devoted to developing simplified approaches for the basal-heave stability 

analysis of braced excavations with the consideration of the effect of one-dimensional 

(1-D) and two-dimensional (2-D) spatial variability, respectively.  Further, the influence 

of spatial variability on the probabilistic serviceability assessment in braced excavation is 

presented in Chapter IV.  

Small sample size can lead to large uncertainty in soil parameters.  Because of 

budget constraints, the geotechnical engineers often have to derive sample statistics from 

a small sample (i.e., a small data set), which can lead to uncertainty in the sample 

statistics: the accuracy of the estimated mean and standard deviation of the uncertain soil 

parameters is questionable. This issue is important because it can significantly influence 

the results of the reliability/probability analysis (Schweiger and Peschl 2005).  

Considering that the problem of small sample size of soil parameters in geotechnical 

projects is not uncommon, the effect of this uncertainty on the failure probability in 

braced excavation in clays should be examined. Thus, Chapter V of this dissertation is 

devoted to developing a simple procedure involving bootstrapping approach (Efron 1979) 

for assessing the uncertainty of sample statistics caused by small sample size. The 

procedure is then applied to the analysis of the probability of serviceability failure in a 

braced excavation. The failure probability (or the corresponding reliability index) is 

interpreted using confidence intervals in order to take into account of those uncertainties 

caused by small sample size.  

Deep braced or supported excavations are generally performed with staged 
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construction.  The predictions of wall and ground responses may not be accurate due to 

the uncertainty of design soil parameters. However, the soil parameters may be updated 

with the observed wall and ground responses to “refine” the knowledge of them.  The 

predictions for the subsequent stages will be then improved with the updated soil 

parameters.  It should be noted that in the traditional back analysis, the focus is on 

finding a set of fixed values for the parameters of concern, without considering the 

uncertainty in the observations and model bias.  Because of the high degree of 

uncertainty involved in the soil-structure interaction, the fixed parameter values may not 

be feasible or physically meaningful.  Therefore, parameters of concern are preferably 

treated as a random variable and the updated parameters are expressed in terms of 

posterior distributions. Through comparison of model predictions against observations in 

field, soil parameters are updated using Bayes’ theory, which results in posterior 

distributions of soil parameters.  To this end, Chapter VI is devoted to developing such a 

Bayesian framework using field observations for updating soil parameters in braced 

excavation in clays. 

 

Objectives and Scope of the Research 

The scope of this dissertation focuses on the applications of probabilistic 

approaches to evaluate the basal-heave stability and the excavation-induced wall and 

ground movement in clays for serviceability assessment.  The specific objectives of this 

dissertation are:  

1. Study the influence of spatial variability on the reliability-based design against 
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basal-heave stability in braced excavation in clays using random field modeling.  

2. Develop simplified procedures for reliability-based design against basal-heave 

stability using equivalent variance technique.  

3. Perform a probabilistic evaluation of the excavation-induced wall and ground 

responses considering spatial variability.  

4. Study the influence of small sample size of soil parameters on the probabilistic 

serviceability assessment in braced excavation in clays.  

5. Develop a Bayesian framework for updating key soil parameters in braced excavation 

using observed excavation-induced wall and ground responses.  

 

Significance of the Research 

 The spatial variability of soil has significant influence on the reliability-based 

design in geotechnical engineering.  It is difficult to apply random field modeling 

(RFM), which necessitates the use of Monte Carlo simulation, in a complicated 

soil-structure problem such as braced excavation.  Therefore, the main contribution of 

this dissertation is the development of simplified approaches, which employ equivalent 

variance technique and first-order reliability method (FORM), for the reliability-based 

design against basal-heave stability considering spatial variability. Through properly 

selecting the characteristic lengths, those simplified approaches are shown to be 

equivalent to RFM. The simplified approaches are implemented in a spreadsheet and 

require much less computation effort. The simplified approaches are easy to use, and 

have potential as a practical tool for reliability-based design that has to deal with spatial 
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variability of soils.  

Another contribution of this dissertation is the development of Bayesian 

framework for the updating key soil parameters. In this framework, the updating 

procedure starts with an assumption for the prior distributions for soil parameters, based 

on published opinions and engineering judgment. After the initial excavation stage is 

conducted, the maximum wall deflection and maximum settlement are observed. Those 

observations are used to update the distributions of soil parameters, and the updated soil 

parameters are then used to predict the responses in the subsequent stages. This 

straightforward procedure is repeated as the staged excavation proceeds, and the soil 

parameters are updated accordingly. The predictions using updated soil parameters can 

reproduce the reality with improved fidelity, comparing to those obtained with the prior 

distributions. Furthermore, the two types of observations in the serviceability assessment, 

maximum wall deflection and maximum ground surface settlement, may be 

simultaneously employed to refine the knowledge of uncertain soil parameters and the 

predictions of the wall and ground responses. 

 

The Structure of the Dissertation 

 This dissertation consists of seven chapters.  In Chapter I, the current chapter, 

an introduction is presented to organize the entire dissertation.  The purpose and the 

scope of the research and the outline of the dissertation are also presented.  Chapter II 

through Chapter VI present the major contents of this dissertation and Chapter VII 

presents the conclusions of this dissertation.  In Chapter II, a simplified approach for 
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reliability analysis of basal-heave in a braced excavation considering the 1-D spatial 

variability of soil parameters is presented.  In Chapter III, the aforementioned simplified 

approach is extended to consider the 2-D spatial variability.  In Chapter IV, the 

simplified approach using equivalent variance technique is applied in the probabilistic 

serviceability assessment in braced excavation.  In Chapter V, the effect of small sample 

size of soil parameters on the probabilistic serviceability assessment is examined through 

bootstrapping approach. Chapter VI demonstrates the development of the Bayesian 

framework for updating soil parameters in braced excavation.  Finally, in Chapter VII, 

the main conclusions of this dissertation are presented.  
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CHAPTER II 

 

RELIABILITY ANALYSIS OF BASAL-HEAVE IN A BRACED EXCAVATION IN A 

ONE-DIMENSIONAL RANDOM FIELD
∗
 

 

Introduction 

Conventionally, basal-heave stability in a braced excavation in clay is evaluated 

with a factor of safety (FS), defined as the ratio of the resistance over the load (e.g., 

Terzaghi 1943; Bjerrum and Eide 1956).  In designs based on FS, soil parameters are 

generally considered as constant inputs for simplicity.  However, it is well known that 

FS greater than unity does not guarantee basal-heave stability in clay due to the inherent 

variability of soil parameters such as undrained shear strength and unit weight.  

Although uncertainty in the soil parameters is often dealt with by use of conservative 

parameter values, the probabilistic approach using reliability analysis offers a more direct 

and consistent way to consider soil variability explicitly. Examples of the reliability-based 

design for basal-heave stability of a braced excavation can be found in Goh et al. (2008) 

and Wu et al. (2010a), in which a design chart that relates the probability of basal-heave 

failure ( fp ) to the factor of safety FS is provided.  

In traditional reliability analysis, uncertain soil parameters are interpreted as 

continuous random variables defined by their probability distributions or sample statistics 

(e.g., mean value and standard deviation). The soil parameters are often considered as 

homogeneous or “spatially constant” fields in such analysis.  However, the uncertainty 

                                                 
∗ A similar form of this chapter has been published at the time of writing: Luo Z, Atamturktur S, Cai Y, 

Juang CH. Simplified approach for reliability-based design against basal-heave failure in braced 

excavations considering spatial effect. Journal of Geotechnical and Geoenvironmental Engineering, 

doi:10.1061/(ASCE)GT.1943-5606.0000621. 
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stems not only from the inherent variability, but also from spatial variability.  For the 

latter, the variation of soil parameters may be modeled with the random field theory 

(Vanmarcke 1977).  Spatial variability is generally described by the scale of fluctuation, 

which is the maximum distance beyond which the spatially random parameters are 

uncorrelated (Akbas and Kulhawy 2009).  As the scale of fluctuation decreases, the soil 

parameters in the random field tend to vary more rapidly; conversely, as the scale of 

fluctuation increases, the soil parameters in the random field tend to vary less and become 

more uniform.  

The effect of spatial variations of soil properties can be significant in many 

geotechnical problems, as demonstrated by recent studies of random field modeling 

(RFM) by Griffiths and his colleagues (Fenton and Griffiths 2003; Fenton et al. 2005; 

Griffiths and Fenton 2009; Huang, et al. 2010).  In their studies, Griffiths and his 

colleagues adopted local averaging subdivision techniques to model the random field. Of 

course, the random field can also be modeled using other approaches such as the 

Cholesky decomposition method (Fenton 1997; Haldar and Babu 2008; Srivastava et al. 

2010; Suchomel and Mašín 2010). The conventional random field modeling (RFM), 

however, has to be realized with Monte Carlo simulations (MCS), and a large number of 

simulations are needed to obtain convergent results.  

As an alternative to the conventional RFM, simplified methods that implement a 

proper spatial averaging strategy have been shown to be effective in considering the 

effect of spatial variability of soil properties (e.g., Phoon and Kulhawy 1999a,b; Goh et al. 

2008; Klammler et al. 2010; Most and Knabe 2010).  To consider spatial averaging in 
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the reliability analysis, variances of soil parameters are reduced by multiplying a 

reduction factor that is a function of scale of fluctuation and characteristic length 

(Vanmarcke 1983).  Typical scales of fluctuation for commonly used soil properties 

have been reported by Phoon and Kulhawy (1999b). The characteristic length often 

depends on the problem under investigation, and is generally assumed to be equivalent to 

the length of the failure surface (Schweiger and Peschl 2005; Most and Knabe 2010) or 

taken as the distance in the random field over which the variance reduction is calculated 

(Cherubini 2000; Babu and Dasaka 2008).  Recent studies (Peschl and Schweiger 2003; 

Suchomel and Mašín 2010) show that the variance reduction-based simplified approach 

can capture the overall trend derived from the conventional RFM approach.  

Although RFM coupling with Monte Carlo simulation (MCS) is a rigorous 

approach to account for spatial variability, use of this approach is quite limited in 

geotechnical reliability-based design for at least two reasons: (1) a rigorous simulation of 

the random field is very time-consuming, which is not practical, especially for 

complicated problems such as braced excavations; (2) MCS is further complicated by the 

lack of knowledge on spatial variability (for example, the scale of fluctuation could be 

uncertain). Contrarily, with the variance reduction-based simplified approach, traditional 

reliability methods can be adopted in lieu of MCS to reduce the computational effort.  

However, the application of such simplified approach requires a proper assessment of the 

characteristic length, which is problem-specific and may be difficult to determine.  

In this chapter, a simplified approach that considers the spatial variability of soil 

parameters for reliability analysis of basal-heave stability in a braced excavation in clay is 
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presented. This approach is developed and presented in 5 steps. Firstly, the conventional 

RFM using the exponential correlation function is conducted in a study of basal-heave 

stability to provide a reference for further development. Secondly, by trial-and-error, the 

variance reduction factor is determined, with which the simplified approach can yield 

results that are comparable to those obtained using the conventional RFM. Thirdly, the 

characteristic length for the stability analysis is back-calculated based on the derived 

variance reduction factors. Fourthly, the proposed approach, which is first-order 

reliability method (FORM) implemented with the variance reduction to account for the 

spatial variability, is adopted for reliability analysis of basal-heave stability. Lastly, the 

effect of uncertainty of the scale of fluctuation (because of the lack of knowledge) is 

further evaluated with the proposed approach. It concludes that the proposed simplified 

approach is easy to use and yields results that are comparable to those obtained with the 

computationally expensive RFM approach.  

 

Factor of Safety against Basal-Heave Failure 

Slip circle method 

The basal-heave failure in a braced excavation in clay occurs when the shear 

strength of the soil cannot support the weight of the soil within the critical zone around 

the excavation.  Soil outside the excavation zone moves downward and inward because 

of its own weight and the soil inside the excavation zone is forced to heave.  The 

bracing system will collapse if the amount of basal-heave movement is excessive.  

Traditionally, the basal-heave stability is evaluated with FS using the deterministic 
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approach.  Semi-empirical methods (Terzaghi 1943; Bjerrum and Eide 1956; Eide et al. 

1972; Chang, 2000) to estimate FS are widely used in the traditional deterministic design. 

In this chapter, the slip circle method adopted by Japanese, Chinese, and 

Taiwanese building codes (JSA 1988; PSCG 2000; TGS 2001) to calculate the FS against 

basal-heave is used for its simplicity to consider the increase of undrained shear strength 

with depth, and for its convenience to implement random field theory. With the slip circle 

method, the FS is defined below (see Figure 2.1):  

 

D

R

M

M
FS =                                 (2.1) 

 

where RM  and DM  are resistance moment and driving moment respectively.  The 

driving moment DM  is caused by the weight of soil and possible surcharge: 

 
2

2 2
D s

r r
M W q= ⋅ + ⋅                           (2.2) 

 

where W is the total weight of the soil in front of the vertical failure plane and above the 

excavation surface, sq  is the surcharge, r is the radius of the slip circle, and r = 

sw HH −  in which wH  is the length of diaphragm wall and sH  is the depth of the 

final strut.  The resistance moment RM  comes from three arcs (bc, cd, de) along the 

slip surface, as show in Figure 2.1. Although uniform undrained shear strength may be 

used in the computation of FS, the undrained shear strength generally increases with 

depth for most normally consolidated clay.  However, the ratio of undrained shear 
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strength over the effective overburden stress ( vus σ ′/ ) remains roughly constant (Ladd and 

Foott 1974).  For this reason, the slip circle method can be easily adapted to consider the 

increase of us  with depth. The total resistance moment RM  is computed by summing 

the resistances contributed by all the small arcs:  

 

β
απ

drsrM uR ⋅⋅⋅= ∫
+2/

0
             (2.3) 

 

where β  is the angle from ob  to the current slice as shown in Figure 2.1.  
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Figure 2.1: Geometry of slip circle method for basal-heave stability analysis  

(Adapted from Wu et al. 2010a). 
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In a deterministic analysis of basal-heave stability in a braced excavation in clay, 

the required FS generally depends on the method used.  The recommended minimum 

required FS is 1.2 (JSA 1988; PSCG 2000; TGS 2001) when the slip circle method is 

employed. In the slip circle method, the resistance is computed using the summation of 

the resistance of numerous small arcs [Eq. (2.3)]. This formulation makes it easy to 

implement the random field model, which is the main reason behind the choice of the slip 

circle method in this study. 

 

Gamma sensitivity index 

Many factors influence the basal-heave stability in a braced excavation in clay as 

reflected in Eqs. (2.2) and (2.3).  The relative importance of those input variables is first 

examined using the gamma sensitivity index (Der Kiureghian and Ke 1985), which is a 

by-product of reliability analysis. This index is expressed as:  

 

MJ

MJ

xy

xy

i

,

,

α

α
γ =                              (2.4) 

 

where iγ  = gamma sensitivity index for the i
th

 input variable, α  = directional cosine 

at the design point in the original random variable space, xyJ ,  = Jacobian matrix with 

element of xy ∂∂ /  with ( )xTy =  where ( )⋅T  is an orthogonal transformation 

function, iy  = uncorrelated standard normal random variable, and M  = diagonal 

matrix of the standard deviation of each parameter ix .  The uncertain variables 
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considered in this study include 1x = vus σ ′/  (normalized undrained shear strength), 

2x = eH  (excavation depth), 3x = wH  (length of diaphragm wall), 4x = sH  (depth of 

the final strut), 5x = D  (depth of ground water table), 6x =γ  (unit weight of soil), and 

7x = sq  (surcharge).  The gamma sensitivity index indicates the relative contribution of 

each of these input variables to the computed reliability index or failure probability. A 

higher gamma sensitivity index value indicates a greater influence of the variable of 

concern on the failure probability.  

 

Table 2.1: Parameters for a basal-heave stability problem shown in Figure 2.1. 

 

Statistics of parameter 
Parameters Notations 

Mean Coefficient of variation 

Normalized undrained 

shear strength 
su/σv′ 0.30 0.1 – 0.6 

Unit weight of soil γ 19 kN/m
3
 0.05

(1)
 

Surcharge qs 10 kPa/m 0.2
(2)

 

Depth of GWT D 2 m 0.05
(3)

 

Final excavation depth He 20 m 0.05
(3)

 

Final strut depth Hs 17 m 0.05
(3)

 

Penetration depth Hp 24 m 0.05
(3)

 
 

(1)
 Based on the COV values given by Harr (1987) and DiMaggio (2008)  

(2)
 Wu et al. (2010a) 

            (3)
 Hsiao et al. (2008) 

 

Based on the first order reliability method (FORM) analysis of basal-heave 

stability without considering spatial variability, the gamma sensitivity index for each of 

the seven input parameters is obtained with Eq. (2.4). The statistics of the uncertain 

parameters used in this FORM analysis are summarized in Table 2.1. For this gamma 



Ï
 18 

sensitivity analysis, the mean of vus σ ′/  (normalized undrained shear strength) is set at 

0.3 and the coefficient of variation (COV) of vus σ ′/  is varied between 0.1 and 0.6. As 

shown in Figure 2.2, the parameter vus σ ′/  is found to have the greatest influence on the 

probability of basal-heave failure, and all other factors are relatively insignificant. The 

gamma sensitivity index of vus σ ′/  is also found to increase drastically with the 

coefficient of variation (COV) of vus σ ′/ . Thus, this study is focused on the effect of the 

spatial variability of the normalized undrained shear strength vus σ ′/  on the probability 

of basal-heave failure in a braced excavation.  
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Figure 2.2: Gamma sensitivity index at various COVs of su/σ'v based on reliability 

analysis. 
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Stationary Random Field Modeling of su/σ'v 

To provide a reference for the proposed simplified approach for reliability-based 

design against basal-heave failure in a braced excavation considering spatial random 

effect, the conventional random field modeling of the normalized undrained shear 

strength vus σ ′/  is first conducted in this study. Here, the parameter vus σ ′/  is modeled 

using a stationary lognormal random field. It should be noted that the mean of the 

undrained shear strength us  of the clay often increases linearly with depth; however, 

this trend is removed herein by adopting the normalized parameter vus σ ′/ . The 

stationary random field of vus σ ′/  has the characteristics of a “second-order process” 

(Baecher and Christian 2003): (1) the mean and variance of / ( )u vs zσ ′ are the same 

regardless the “absolute” location of z, and (2) the correlation coefficient between 

1/ ( )u vs zσ ′  and 2/ ( )u vs zσ ′  is the same regardless of the “absolute” locations of z1 and z2; 

rather, it depends only on the distance between z1 and z2. All other input parameters are 

modeled as spatially-constant lognormal variables or constants.  The assumption of 

lognormal distribution for inherent variability for soil properties is not uncommon in the 

RFM (e.g., Akbas and Kulhawy 2009; Griffiths et al. 2009).  The assumption of 

lognormal distribution prevents negative values for soil parameters, and is supported by 

past studies (e.g., Phoon and Kulhawy 1999b).  

Variations of vus σ ′/  in the field are represented by its scale of fluctuation θ, 

mean value lnµ , and coefficient of variation lnCOV  (note: the subscript in the last two 

terms, “ln”, denotes the statistic for lognormal distribution).  The standard deviation and 
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mean of the equivalent normal distribution of vus σ ′/ , denoted as ( )vus σ ′/ln , are 

expressed as: 

 

( )2

ln1ln COVn +=σ                              (2.5) 

 

2

ln
2

1
ln nn σµµ −=                                (2.6) 

 

where the subscript “n” denotes normal distribution.  The lognormally distributed 

random field of vus σ ′/  can be obtained by the transformation (Fenton et al. 2005): 

 

( ) ( ){ }innnivu xGxs ⋅+=′ σµσ exp/                       (2.7) 

 

where nµ  and nσ  are determined from Eqs. (2.5) and (2.6); ix  is the spatial position 

at which vus σ ′/  is modeled; ( )in xG  is a normally distributed random field with zero 

mean, unit variance and correlation function ( )τρ , where ( )τρ  is defined as an 

exponentially decaying correlation function (Jaksa et al. 1999; Haldar and Babu 2008): 

 

( ) 






−=
θ
τ

τρ
2

exp                              (2.8) 

 

where ji xx −=τ  is the absolute distance between any two points in the random field 

and θ is the scale of fluctuation.  The correlation matrix is built with the correlation 

function and can be decomposed by Cholesky decomposition (Fenton 1997; Haldar and 

Babu 2008; Suchomel and Mašín 2010; Srivastava et al. 2010):  
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ρ=⋅ TLL                                  (2.9) 

 

With the matrix L, the correlated standard normal random field can be obtained by 

linearly combining the independent variables as follows (Fenton 1997):  

 

( ) ∑
=

=
i

j

jijin ZLxG
1

    Mi ,,2,1 ⋅⋅⋅=                    (2.10) 

 

where M is the number of points in the random field; jZ  is the sequence of independent 

standard normally distributed random variables.   

To begin with, two random variables uniformly distributed between 0 and 1, jU  

and 1+jU , are generated first.  Then two independent standard normally distributed 

variables are given by: 

 

)2cos()1ln(2 1+⋅−−= jjj UUZ π                     (2.11) 

 

)2sin()1ln(2 11 ++ ⋅−−= jjj UUZ π                     (2.12) 

 

The stationary random field of the normalized undrained shear strength vus σ ′/  at 

each spatial position is obtained by Eq. (2.7) for a specified mean, standard deviation, and 

scale of fluctuation. The Monte Carlo simulation (MCS) is then used to generate samples 

in the lognormal random field. Each simulation of the Monte Carlo process involves the 

same mean, standard deviation and scale of fluctuation of vus σ ′/ . However, the spatial 

distribution varies among these simulations. Given a sufficient number of simulations, the 
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output such as RM  [Eq. (2.3)] or FS [Eq. (2.1)] can be obtained and statistically 

analyzed to produce estimates of the probability density function of RM  or FS and the 

failure probability fp . The failure probability fp  is computed as the ratio of the 

number of simulations that yield failure (FS < 1) over the total number of simulations N.  

The number of MCS samples should be at least 10 times of the reciprocal of the target 

failure probability (Ang and Tang 2007; Wang et al. 2011a). In this study, the level of 

failure probability of interest is greater than 10
-4

, therefore N is set at 10
5
. 

 

Spatial Averaging Effect 

Spatial averaging is a concept with which, the spatial variability of the soil 

property is averaged in order to approximate a random variable that represents a soil 

parameter (Vanmarcke 1977).  The variability of the averaged soil property over a large 

domain is less than over a small domain.  The reduced variability of the soil properties 

over a large domain can be quantified with the variance reduction technique.  The 

reduction is computed using the variance reduction function, which is a function of the 

scale of fluctuation θ and characteristic length L. The form of the variance reduction 

function depends on the type of correlation function employed.   

To consider spatial averaging in a reliability analysis, the variances of soil 

parameters may be reduced by multiplying a factor known as the variance reduction 

factor which is computed using the variance reduction function (Vanmarcke 1983).  

Many successful applications of the variance reduction technique have been reported in 

the literature, e.g., constant model (Cherubini 2000; Schweiger and Peschl 2005), 
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triangular model (Babu and Dasaka 2008), exponential model (Most and Knabe 2010). 

The exponential model, which is often employed in the RFM in geotechnical engineering, 

is adopted herein.  The variance reduction function for the exponential model is given as 

follows (Vanmarcke 1983):  
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where θ  is the scale of fluctuation and L is the characteristic length. Given the variance 

reduction factor Γ 2
, the reduced variance σ Γ

2  can be obtained with the following 

equation: 

 

σ σΓ = Γ ⋅2 2 2             (2.14) 

 

where σ  is the standard deviation of the soil parameter of concern ( vus σ ′/  in this 

study).  It is noted that the positive square root of the variance reduction factor is 

referred to herein as the standard deviation reduction factor or simply the reduction factor 

( Γ ) to differentiate it from the variance reduction factor Γ 2
.  

Unlike RFM, the FORM analysis using the variance reduction technique does not 

require MCS. Therefore, this approach of using the variance reduction technique requires 

much less computational effort and is more practical than with RFM in engineering 

practice. Past investigators (Peschl and Schweiger 2003; Suchomel and Mašín 2010) have 

shown that the reliability analysis with the variance reduction method can capture the 

overall trend derived with RFM.    
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However, the choice of characteristic length is critical to the reliability analysis 

with the variance reduction technique.  For analysis of braced excavations in clay, it has 

been suggested that the characteristic length may be assumed to be the length of the 

sliding surface (Schweiger and Peschl 2005). In this study, an effort is made to 

investigate the appropriate characteristic length to use and to examine the effect of the 

variation of the characteristic length on the probability of basal-heave failure.  

 

Reliability Analysis of Basal-Heave Stability Considering Spatial Variability 

Random field modeling of clay for basal-heave stability analysis 

Past studies (e.g., Goh et al. 2008; Wu et al. 2010a) on basal-heave stability have 

shown that high failure probability fp  can exist in a design that meets the minimum FS 

requirement specified in the codes.  However, yielding high failure probabilities for 

those designs that are known to be “safe” raises questions, since the codes are generally 

conservative and thus exceeding the minimum FS requirement would indicate a safe 

design. One possible reason for having a higher computed failure probability than what 

the experience or the code would suggest is overestimation of the variation of soil 

parameters, which might be caused by the negligence of the effect of spatial variability in 

traditional reliability analysis.  

In this study, the above issue is examined within the context of basal-heave 

stability. Here, basal-heave stability in a braced excavation is examined using the 

conventional random field model with the Cholesky decomposition method.  The 

excavation case analyzed by Wu et al. (2010a), illustrated in Figure 2.1 and with 
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additional data shown in Table 2.1, is employed in this study.  In reference to Figure 2.1 

and Table 2.1, all soil and structural parameters, except the normalized undrained shear 

strength vus σ ′/ , are treated as spatially-constant random variables or constants.  The 

parameter vus σ ′/  is modeled as a spatially random variable.  

The COV of undrained shear strength us  can be as high as 0.8 but typically is 

about 0.3 (Phoon and Kulhawy 1999a).  In this study, the COV of vus σ ′/  is first 

selected as 0.3. However, the effect of the variation of this COV will be examined later.  

According to Phoon and Kulhawy (1999a), the average horizontal and vertical scales of 

fluctuation for clay are 50.7m and 2.5m, respectively.  Thus, only the vertical spatial 

randomness is modeled in this study, as the horizontal scale of fluctuation is much greater 

and its effect is far less significant.  It should be noted that for basal-heave stability 

analysis in a braced excavation, only the random field from the depth of the final strut to 

the bottom of the diaphragm wall (see Figure 2.1) needs to be considered since the 

resistance moment comes only from this region.  

It should be noted that the Cholesky decomposition method is not practical if the 

number of points in the random field exceeds 500 (Fenton 1997). In this study, Arc bcd 

on the slip circle, as shown in Figure 2.1, is subdivided by means of “equal vertical 

distance” into 100 small arcs (elements) which are considered sufficient in both stability 

analysis and random field modeling. Note that Arc de is subdivided in the same way as 

for Arc cd.  Further refinement with more than 100 elements (arcs) is not necessary as it 

yields practically the same results.   

Figure 2.3 shows an example of the simulated spatial variability of normalized 
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undrained shear strength vus σ ′/  with different scales of fluctuation (θ = 0.5m, 2.5m and 

10m).  As expected, the spatial variation in the case of smaller θ is much more 

significant than that for larger θ.  As θ decreases toward zero, the random field vus σ ′/  

tends to vary drastically from point to point; conversely, as θ increases toward infinity, 

the random field vus σ ′/  tends to become uniform (or spatially constant) in each 

simulation. Traditional reliability analysis often assumes the field to be spatially constant 

and the effect of spatial correlation is ignored.  
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Figure 2.3: Example of simulated spatial variability of normalized undrained shear 

strength su/σ'v by means of random field modeling. 
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Figure 2.4: Relative frequency of the computed factor of safety using random field 

modeling (under the scenario that mean su/σ'v = 0.3, COV of su/σ'v = 0.3 and θ = 2.5m). 

 

For a given mean, COV and θ of vus σ ′/ , Monte Carlo simulation (MCS) may be 

carried out and in each simulation, the same mean, COV and θ are used to generate the 

random field.  After a sufficient number of simulations (10
5
 in this study), the histogram 

or the probability density for the output variable (for example, FS) can be obtained.  

Figure 2.4 shows an example of histogram of the computed FS using the conventional 

RFM with 100,000 simulations under the following scenario: mean of vus σ ′/  = 0.3, 

COV of vus σ ′/  = 0.3 and θ = 2.5m.  The shape of the histogram suggests a lognormal 
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distribution.  The failure probability fp  is determined by the ratio of the number of 

simulations with 0.1<FS  over the total number of simulations, which is the area under 

the fitted curve for 0.1<FS . 
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Figure 2.5: Relationship between probability of failure and factor of safety at various 

scales of fluctuation generated with MCS-based random field modeling. 

 

To study the effect of spatial variability, a series of scales of fluctuation (θ = 0.5m, 

2.5m , 5m, 10m, 100m and 1000m) is selected in the reliability analysis.  For each scale 

of fluctuation, 10
5
 simulations using MCS are conducted and the results are shown in 
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Figure 2.5. Note that for each data point in Figure 2.5, the execution time for 10
5 

simulations is approximately 4 minutes on a laptop PC equipped with an Intel Pentium 

Dual CPU T2390 running at 1.86GHz. The effect of the scales of fluctuation is quite 

obvious: smaller scale of fluctuation results in smaller fp  at the same FS. As shown in 

Figure 2.5, if the target fp  is set at 10
-3

, the required FS is about 1.7 at θ = 2.5m [note: 

this θ value is mean of the vertical scale of fluctuation for clay as per Phoon and Kulhawy 

1999a], and is about 2.6 at θ = 1000m (note: this θ value is close to spatially-constant 

condition). On the other hand, for FS = 1.2, the minimum value that is adopted in many 

codes (JSA 1988; PSCG 2000; TGS 2001) for the design of excavations against 

basal-heave based on the slip circle method, the failure probability fp  is about 0.32 

under the condition of θ = 1000m (≈ spatial constant).  As basal-heave failure occurs 

infrequently, these codes are considered adequate in practice; therefore, the failure 

probability of 0.32 obtained from the reliability analysis that does not consider spatial 

variability (emulated by the case with θ = 1000m) is likely to be over-estimated.   

Finally, it should be noted that the analysis of basal-heave stability presented in 

this section for RFM of clay is primarily used as a reference for the subsequent study of 

the effect of spatial variability using the variance reduction-based simplified approach.  

 

Parametric study 

A series of parametric analyses are conducted to study the influence of spatial 

variability on the reliability-based design of braced excavation (basal-heave stability) in 

clay.  For these analyses, only the inherent variability and the spatial variability of 
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vus σ ′/  are considered to assess the effect of the spatial correlation.  All other input 

parameters are treated as constant parameters (only the mean values listed in Table 2.1 

are used in the analysis).  For vus σ ′/ , the following ranges of parameters are analyzed:  

 

COV = 0.1, 0.2, …, 1.0 

θ = 0.5m, 1m, 2.5m , 5m, 10m, 25m, 50m, 100m, ∞ 

 

For each pair of COV and θ, 10
5
 MCS runs are executed, and the mean and COV of the 

resulting 10
5
 resistance moments RM  are obtained.   
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Figure 2.6: Mean of normalized resisting moment as a function of the scale of fluctuation 

and COV of su /σ'v . 

 

Figure 2.6 shows how the mean of the normalized RM , defined as the ratio of the 



 31 

RM  obtained from MCS for a given pair of COV and θ values over the RM  obtained 

from a deterministic analysis that uses the mean values of all input parameters, varies 

with the COV and θ of vus σ ′/ .  The mean of the normalized RM  is shown to be 

around 1.0, indicating that the mean of the RM  through 10
5
 simulations is consistent 

with the deterministic solution regardless of the inherent variability and the spatial 

variability of vus σ ′/ .  This is expected as the resisting moment MR in the slip circle 

method is a linear function of undrained shear strength us .  

Figure 2.7 shows how the COV of RM  changes with the COV and θ of vus σ ′/ .  

Two observations can be made: (1) at the same θ level, the COV of RM  increases 

almost linearly with the COV of vus σ ′/ ;  (2) at the same COV of vus σ ′/ , the COV of 

RM  increases with increasing θ and reaches the maximum value at θ = ∞.  The COV of 

RM  at θ = ∞ approaches to the 1:1 line.  As shown in Figure 2.7, smaller θ results in 

smaller variability of RM , which corresponds to smaller variability of vus σ ′/ . This 

observation is consistent with the concept of spatial averaging effect that a smaller scale 

of fluctuation results in a larger variance reduction in the soil parameters, which would 

yield a smaller variation of output responses.   

Furthermore, the failure probability fp  for each combination of COV and θ is 

shown in Figure 2.8.  The fp  increases with both COV and θ of vus σ ′/ .  For a given 

COV, the maximum fp  is reached at θ = ∞; the implication is that the design can be too 

conservative without considering the effect of spatial variability of soil parameters.   
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Figure 2.7: COV of resisting moment (MR) as a function of the scale of fluctuation and 

COV of su /σ'v. 
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Figure 2.8: Influence of COV and scale of fluctuation of su /σ'v on the probability of 

failure. 
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Figure 2.9: Flow chart for searching for the reduction factor for a given pair of standard 

deviation σ and scale of fluctuation θ. 

 

Simplified approach using variance reduction technique 

As mentioned previously, the focus of this study is on the simplified approach 
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using the variance reduction technique. To apply this technique, it is necessary to 

determine an appropriate characteristic length L.  In this regard, the variance reduction 

factor Γ
2
 for the simplified approach is first established by matching the solutions 

obtained from the variance reduction-based simplified approach with those by RFM.  

Again, only vus σ ′/  is modeled as a spatially random variable herein in order to study the 

influence of the inherent variability and the spatial variability of vus σ ′/ .  All other 

parameters are treated as constants.  The criterion for matching the two approaches (the 

simplified approach versus RFM) is to achieve the same level of variability of the 

response ( RM  in this case), since the mean MR is expected to be approximately the same 

(as shown in Figure 2.6).  Through this calibration, the variance reduction factor Γ
2
 to be 

used in the simplified approach for a given case is obtained.  Figure 2.9 shows a 

flowchart for searching for the reduction factor Γ for a given pair of standard deviation (σ) 

and scale of fluctuation (θ) of vus σ ′/ .   

In Figure 2.9, the flow sequence on the left summarizes the procedure of the 

conventional RFM with the Cholesky decomposition method [Eqs. (2.7-2.12)]. After 10
5
 

simulations of the basal-heave stability analysis, the standard deviation of RM  (denoted 

as NSσ ) is obtained.  In Figure 2.9, the flow sequence on the right summarizes the 

procedure of simplified approach using the equivalent variance technique. First, an 

interval of the reduction factor, [ΓL ΓU], is assumed for this case (with the same σ and θ 

of vus σ ′/ ). ΓL and ΓU are the assumed lower and upper bounds, which may be set at 0 

and 1, respectively. Then the bisection method is used to search for the equivalent 
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variance: the interval is divided into two segments by the midpoint Γp = (ΓL + ΓU)/2, and 

the variance is reduced with Γp. With the reduced variance σΓ [obtained from Eq. (2.14)], 

MCS may be performed without the Cholesky decomposition. The standard deviation of 

RM , denoted herein as Sσ , is then obtained from 10
5
 MCS of the basal-heave analysis 

of the same case, as in the RFM analysis (left side of the flowchart shown in Figure 2.9).  

If the reduction factor Γp is correct, the two standard deviations, NSσ  and Sσ , will be 

equal to each other for the given pair of standard deviation σ  and scale of fluctuation θ 

of vus σ ′/ . In this study, the Γ value at which NSσ  ≈ Sσ  (or 3/ 10NS S NSσ σ σ −− ≤ ) is 

the target reduction factor for a given pair of σ and θ of vus σ ′/ . As shown in Figure 2.9, 

if the above stopping criterion ( 3/ 10NS S NSσ σ σ −− ≤ ) is not satisfied, the interval of Γ is 

shortened by setting ΓL = Γp (for 0NS Sσ σ− > ) or ΓU = Γp (for 0NS Sσ σ− < ). The new 

midpoint Γp is then computed and the aforementioned procedure is repeated until the final 

reduction factor for a given pair of σ and θ of vus σ ′/  is obtained.  It should be noted 

that for this “equivalency” analysis, the simplified approach is implemented with the 

MCS. As will be shown later, the simplified approach can also be implemented with 

FORM to further reduce the computational effort. 

Figure 2.10 shows the back-calculated Γ values for various pairs of σ (or COV) 

and θ of vus σ ′/  using the MCS-based RFM approach.  It is apparent that the inherent 

variability rarely influences the variance reduction at the same θ level.  The reduction 

factor Γ depends only on θ at the same COV level, which is consistent with the variance 

reduction models presented in the literature (e.g., Vanmarcke 1983).   
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Figure 2.10: Back-calculated reduction factor Γ for various scales of fluctuation. 

 

Alternatively, the reduction factor Γ can also be determined using the variance 

reduction function if the characteristic length is known.  To find an appropriate 

characteristic length for the basal-heave problem, the reduction factors are evaluated 

using the exponential model [Eq. (2.13)] with three assumed characteristic lengths: (1) L 

= 27m, (2) L = 39m, and (3) L = 98m.  The first characteristic length L = 27m is the 

distance od  (from the depth of the final strut to the bottom of the diaphragm wall), as 

shown in Figure 2.1. This length is the vertical scale of the spatially random region.  The 

second characteristic length L = 39m is the length of Arc cd, and the third characteristic 

length L = 98m is the length of the sliding surface (Arc abcde).  The reduction factors 

computed with the assumed characteristic lengths are shown in Figure 2.11 and compared 
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with the back-calculated reduction factors obtained previously.  As shown in Figure 

2.11, the assumption of L = 27m yields reduction factors that are most consistent with 

those back-calculated using the MCS-based RFM approach. This is reasonable as L = 

27m is actually the distance between the depth of the final strut to the bottom of the 

diaphragm wall, which is the only region that contributes to the resistance moment in the 

random field.  Thus, the above analysis shows that the vertical “averaging” length in the 

random field modeling of the basal-heave stability can be taken as the distance between 

the depth of final strut and the bottom of the diaphragm wall.  
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Figure 2.11: Comparison between the reduction factors back-calculated using the 

MCS-based RFM and those derived based on Eq. (2.13) with different assumed 

characteristic lengths. 
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In summary, the variance reduction-based simplified approach is suitable for 

basal-heave stability analysis if an appropriate characteristic length (and thus reduction 

factor) can be determined. The variance reduction-based simplified approach yields 

almost identical results with those obtained using the MCS-based RFM approach; 

however, the former is easy to apply, less demanding on resources, and offers significant 

advantages in engineering practice.   

It should be noted that the approach described above (Figure 2.9) for 

back-calculating the variance reduction factor and characteristic length is demonstrated to 

be effective for the problem of basal heave that involves a linear limit state that has an 

explicit form. For other geotechnical problems that involve more complicated and 

nonlinear limit states, further study is needed to examine its general applicability.  

 

Reliability-Based Design Considering Spatial Variability 

With the validated variance reduction technique for basal-heave stability, the 

reliability analysis using FORM, in lieu of MCS, can be performed, which is an effective 

and efficient means to consider spatial variability. The principle and procedure of FORM 

is well documented (e.g., Ang and Tang 1984).  A spreadsheet solution implementing 

FORM (Low and Tang 1997) has shown to be effective and can be a practical tool in 

engineering practice.  Figure 2.12 shows the setup of a spreadsheet solution for 

reliability analysis of the braced excavation case presented previously (see Figure 2.1 and 

Table 2.1).  
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Mean COV η λ x*  µ µ µ µN σσσσN

0.30 0.30 0.294 -1.247 0.26 0.2857 0.0225 L(m) 27.0

19.0 0.05 0.050 2.943 14.9 18.5 0.7439 Γ 0.298

10.0 0.20 0.198 2.283 10.0 9.8042 1.9777

2.5 0.10 0.100 0.911 2.5 2.4875 0.25 Variance reduction

20 0.00 0.000 2.996 20 20 0.002 factor computed

44 0.00 0.000 3.784 44 44 0.0044 using exponential

17 0.00 0.000 2.833 17 17 0.0017 reduction function

2 0.00 0.000 0.693 2 2 0.0002
9.81 9.81

Correlation Matrix ρρρρ

1 0 0 0 0 0 0 0 -1.253 r (m) = 27.0

0 1 0 0 0 0 0 0 -4.856 α (Deg) = 83.6

0 0 1 0 0 0 0 0 0.0921 M R = 225923

0 0 0 1 0 0 0 0 0.076 M D = 142155

0 0 0 0 1 0 0 0 -0.003 FS Original = 1.58927

0 0 0 0 0 1 0 0 -0.005 g(x) = -0.0043

0 0 0 0 0 0 1 0 -0.003 ββββ  = 2.706

0 0 0 0 0 0 0 1 -0.003 P f = 0.0034

γ w (kN/m
3
)

H e (m)

H w (m)

H s (m)

D (m)

s u /σ' v

γ(kN/m
3
)

q s (kN/m
2
)
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(x* - µµµµN
)/σσσσN

Initially, enter original mean values for x* column, followed by invoking Excel Solver, to automatically

approach the target reliability index ββββ, by changing x* column, subject to g(x) = 0.
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Figure 2.12: Reliability-based procedure for evaluating failure probability of basal-heave.
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Figure 2.13: Comparison between the MCS-based random field modeling and the 

simplified approach. 

 

Since the scale of fluctuation is found to be an important parameter, and 

knowledge about which is limited, it should be of interest to also examine the effect of 

the possible uncertainty of this parameter. Thus, the scale of fluctuation θ of vus σ ′/  is 

treated as a lognormally distributed random variable in the spreadsheet solution as shown 

in Figure 2.12. The simplified approach to consider the spatial effect of vus σ ′/  is 

realized using the exponential variance reduction function [Eq. (2.13)]. All other input 

parameters are treated as spatially-constant random variables or simply constants.  
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With the spreadsheet solution set up as shown in Figure 2.12, the influence of 

spatial variability can easily be assessed by considering several scales of fluctuation: θ = 

2.5m, 5m, 10m and 100m.  For this series of analysis, the scale of fluctuation is 

considered as a constant input, which is typical for these kinds of studies. The 

relationship between fp  and FS for each scale of fluctuation is numerically derived, as 

shown in Figure 2.13.  The reduction factor derived from the spreadsheet solution is also 

shown in Figure 2.13.  For comparison purposes, the results from the conventional RFM 

conducted in this study (presented previously in Figure 2.5) are re-drawn and also 

included in Figure 2.13.  Again, both approaches (RFM versus the simplified approach 

using FORM with variance reduction) yield approximately the same results. Furthermore, 

the significant effect of spatial variability on the computed failure probability can be 

observed.  

Finally, the effect of uncertainty in the scale of fluctuation in the reliability 

analysis of basal-heave stability is examined.  As an example in this demonstration 

analysis, the COV of the scale of fluctuation is set to 0.1, 0.3, 0.6 and 0.9; the scale of 

fluctuation is set to the typical mean value of 2.5m and the COV of su/σ'v is set to 0.3.  

The influence of uncertainty (in terms of COV) in the scale of fluctuation on the 

computed failure probability is shown in Figure 2.14.  It is found that for FS smaller 

than 1.2, the variability of the scale of fluctuation has virtually no effect on the computed 

failure probability fp .  For FS greater than 1.2, the predicted fp  increases with the 

increasing variability of the scale of fluctuation. Since the required minimum FS in the 

design against basal-heave using the slip circle method is 1.2 (JSA 1988; PSCG 2000; 
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TGS 2001), the effect of the variability of the scale of fluctuation is far less significant 

than the mean scale of fluctuation itself.   
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Figure 2.14: Effect of uncertainty in the scale of fluctuation on the probability of failure 

against basal-heave in a braced excavation in clay (scale of fluctuation = 2.5m, COV of 

su/σ'v = 0.3). 

 

Practical engineering application 

In the reliability-based design against basal-heave considering the effect of spatial 

variability, it is desirable to facilitate the design procedure with design chart that relates 

the traditional design index (such as the required factor of safety) to the degree of spatial 

effect (such as the scale of fluctuation). In this regard, the previous analysis results are 

further interpreted and the relationship between the required factor of safety and the scale 

of fluctuation at a certain failure probability can be obtained. Figure 2.15 shows such a 
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relationship at failure probability of 10
-3

.  It should be noted that 10
-3

 satisfies the 

expected performance level of above average as classified by U.S. Army Corps of 

Engineers (1997). Similar design charts may be obtained at various levels of target failure 

probability. Using the design chart such as Figure 2.15, the reliability-based design may 

be realized by meeting the required factor of safety at a project site that is characterized 

with a scale of fluctuation through site investigation.  
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Figure 2.15: Relationship between required factor of safety and scale of fluctuation at 

failure probability of 10
-3

. 

 

Procedure for applying the proposed approach 

The proposed simplified approach for reliability analysis of basal-heave stability 

in a braced excavation considering the spatial variability of soils is summarized into the 

following procedure:  
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1. Select the analytical model for the basal-heave stability analysis of a braced 

excavation in clay [for example, slip circle method as per JSA (1988)].  

2. Determine the variation of soil parameters (such as undrained shear strength) 

described with their COVs and the spatial variability, defined by the 

correlation function and scale of fluctuation, based on site investigation, soil 

testing, and engineering judgment guided by published literature. 

3. For the basal-heave stability analysis in a braced excavation in clay, the spatial 

variability of soil parameters such as undrained shear strength can be modeled 

with a one-dimensional (vertical) random field as stated previously. In this 

random field model, the characteristic length is taken as the distance from the 

final strut to the bottom of the diaphragm wall. The variance reduction factor 

( Γ2 ) is then evaluated using Eq. (2.13) with this characteristic length, and 

finally the reduced variance (σ Γ
2 ) for this spatially random soil parameter can 

be determined with Eq. (2.14).  

4. With the reduced variance of the undrained shear strength, reliability analysis 

can be performed using traditional reliability methods such as FORM for the 

probability of failure against the basal-heave. The solution can easily be 

implemented in a spreadsheet as shown in Figure 2.12.  Reliability or 

probability-based design can be realized by meeting a target probability of 

failure against the basal-heave.   
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Summary 

In this chapter, the influence of one-dimensional spatial variability of soil 

parameter on the reliability analysis of basal-heave stability is presented. The results of 

RFM of vus σ ′/  using the Cholesky decomposition method shows that the model with a 

smaller scale of fluctuation would yield a greater variance reduction in soil parameters 

(such as vus σ ′/ ), which in turn would yield a smaller variation in the output responses 

(for example, FS against basal-heave). The computed probability of basal-heave failure 

can be too high if the spatial variability is not considered in the reliability analysis. Thus, 

the basal-heave stability design will be too conservative if the effect of spatial variability 

is ignored.  

A variance reduction-based simplified approach for the reliability-based design 

against basal-heave failure in a braced excavation is presented. The proposed simplified 

approach with variance reduction technique is shown to be able to produce almost 

identical results with those obtained using the MCS-based RFM approach, provided that 

an appropriate characteristic length (and thus the reduction factor) can be determined.  

For the basal-heave stability case in this study, the appropriate characteristic length for 

the exponential reduction function is determined to be the distance from the final strut to 

the bottom of the diaphragm wall, which is the vertical scale of the random field in this 

case. This approach can be implemented in a spreadsheet and requires far less 

computational effort than the MCS-based RFM approach, is easy to use, and has potential 

in geotechnical reliability-based design that deals with spatial variability of soils.  
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CHAPTER III 

 

RELIABILITY ANALYSIS OF BASAL-HEAVE IN A BRACED EXCAVATION IN A 

TWO-DIMENSIONAL RANDOM FIELD
∗
 

 

Introduction 

As demonstrated in Chapter II, the traditional reliability analysis that does not 

account for the effect of one-dimensional (1-D) spatial variability tends to overestimate 

the failure probability in the study on basal-heave stability using the slip circle method. 

Similar conclusions have also been reported in the literature, e.g., Wu et al. (2010a) 

reported in their reliability analysis of basal-heave failure, it was found that the failure 

probability tends to be overestimated if the effect of 1-D spatial variability is neglected. 

Considering that none of the previous studies consider the effect of the two-dimensional 

(2-D) random field in the basal-heave problem, the methodology including the simplified 

approach for the 1-D random field study developed in Chapter II, is employed and 

extended herein for the 2-D random field study.  

In this chapter, a simplified approach to consider the effect of spatial variability in 

a 2-D random field for reliability analysis of basal-heave in a braced excavation in clay is 

formulated. This simplified approach is demonstrated through a case study. As the first 

step, the 2-D RFM analysis is performed in a study of basal-heave stability to provide a 

benchmark. Then, variance reduction factors for both vertical and horizontal directions, at 

which the simplified approach yields results that match well with those obtained with 

                                                 
∗ A similar form of this chapter has been published at the time of writing: Luo Z, Atamturktur S, Cai Y, 

Juang CH. Reliability analysis of basal-heave in a braced excavation in a 2-D random field. 

Computers and Geotechnics, doi:10.1016/j.compgeo.2011.08.005. 
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RFM, are back-calculated. Next, assumptions of the characteristic lengths of both vertical 

and horizontal directions in the stability analysis are verified based on the back-calculated 

variance reduction factors. Finally, a simplified approach which combines the first-order 

reliability method (FORM) and the variance reduction technique to account for spatial 

variability is proposed for reliability analysis of basal-heave stability. The proposed 

approach is easy to use, requires less computational effort, and yields results (in terms of 

probability of basal-heave failure) that are nearly identical to those obtained with the 

MCS-based RFM method.  

 

Two-Dimensional Random Field Modeling of su/σ'v 

Conventional random field modeling of su/σ'v 

In this chapter, the slip circle method (JSA 1988; PSCG 2000; TGS 2001) for 

determining FS against basal-heave in soft clay is adopted for its simplicity and 

suitability for modeling the random field of undrained shear strength.  The details of this 

method is documented in Chapter II [Eqs. (2.1-2.3)]. As reflected in the formulation [Eqs. 

(2.1-2.3)] of the slip circle method, the undrained shear strength ( us ) of clay plays a 

critical role in the design of a braced excavation against basal-heave. In other words, FS 

is a function of us  and other parameters.   

As noted previously, the first step toward developing a simplified reliability-based 

procedure for evaluating the probability of basal-heave failure in an excavation in clay 

with significant spatial variability is to establish a benchmark using the MCS-based RFM. 

A two-dimensional RFM approach is deemed especially suitable for the basal-heave 
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problem analyzed with the slip circle method (Figure 3.1). 
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Figure 3.1: Geometry of slip circle method and 2-dimensional random field modeling 

region for basal-heave stability analysis. 

 

The undrained shear strength generally increases with depth for most normally 

consolidated clay but the ratio of undrained shear strength over the effective overburden 

stress ( vus σ ′/ ) remains roughly constant (Ladd and Foott 1974). Thus, in this study the 

parameter vus σ ′/  is modeled using lognormal random field, and all other input 

parameters are modeled as spatially-constant lognormal variables or constants. The 

assumption of lognormal distribution for inherent soil variability assures positive soil 

parameters and has been widely advocated by past studies (e.g., Phoon and Kulhawy 
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1999b). In RFM, the uncertainty of vus σ ′/  is represented by its spatially-constant mean 

lnµ  and coefficient of variation lnCOV  and its scale of fluctuation θ. Thus, the basal 

heave problem here involves a stationary random field modeling of vus σ ′/ . The standard 

deviation and mean of the equivalent normal distribution of vus σ ′/ , denoted as 

( )vus σ ′/ln , are expressed as: 

 

( )2

ln1ln COVn +=σ                             (3.1) 

2

ln
2

1
ln nn σµµ −=                               (3.2) 

 

where “n” denotes normal distribution and “ln” denotes lognormal distribution. The 

lognormally distributed random field of vus σ ′/  can be generated through the following 

transformation (Fenton et al. 2005): 

 

( ) ( ){ }innnivu xGxs ⋅+=′ σµσ exp/                      (3.3) 

 

where ix  is the spatial position at which vus σ ′/  is modeled; ( )in xG  is a normally 

distributed random field with zero mean, unit variance and correlation function ( )τρ . In 

this study, the exponential correlation function, which is commonly used in random field 

modeling, is selected (Jaksa et al. 1999): 

 

( ) 






−=
θ
τ

τρ
2

exp                           (3.4) 
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where τ  is the absolute distance between any two points in the random field and θ is the 

scale of fluctuation.  As shown in a previous study, the vertical and the horizontal scales 

of fluctuation in the field for clay are generally different (Phoon and Kulhawy 1999a). In 

the 2-D RFM, Eq. (3.4) may be modified to consider the unequal scales of fluctuations 

(Suchomel and Mašín 2011): 
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v
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τ
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τ

τρ                      (3.5) 

 

where vτ  and hτ  are the absolute vertical and horizontal distance between any two 

points in the random field, respectively; and θv and θh are the vertical and the horizontal 

scales of fluctuation, respectively. In this study, the correlation matrix built with the 

correlation function is decomposed by Cholesky decomposition which has been proved 

simple and effective (Fenton 1997; Suchomel and Mašín 2010):  

 

ρ=⋅ TLL                               (3.6) 

 

With the matrix L, the correlated standard normal random field can be obtained by 

linearly combining the independent variables as follows (Fenton 1997):  

 

( ) ∑
=

=
i

j

jijin ZLxG
1

    Mi ,,2,1 ⋅⋅⋅=                    (3.7) 

 

where M is the number of points in the random field; jZ  is the sequence of independent 

standard normally distributed random variables.  
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The normalized undrained shear strength vus σ ′/  at each spatial position in the 

random field can be obtained with Eq. (3.3) for a specified mean, standard deviation, and 

scale of fluctuation using Monte Carlo simulation.  In each simulation, the same mean, 

standard deviation, and scales of fluctuation of vus σ ′/  are used.  The statistics of 

output such as FS [Eq. (2.1)] can be obtained after a sufficient number of simulations are 

carried out. The failure probability fp  is computed as the ratio of the number of 

simulations that yield failure (MR < MD or FS < 1) over the total number of simulations N. 

The number of MCS samples should be at least 10 times of the reciprocal of the target 

failure probability (Ang and Tang 2007; Wang et al. 2011a). In this study, the level of 

failure probability of interest is greater than 10
-4

, therefore N is set at 10
5
.  

Figure 3.2 shows the results of random field modeling at four combinations of θv 

and θh given as an example the mean of vus σ ′/  = 0.3 and coefficient of variation (COV) 

= 0.3: (a) θh = θv = 2.5m; (b) θh = θv = 10m; (c) θh = 2.5m, θv = 10m; and (d) θh = 10 m, θv 

= 2.5m. The RFM region shown in Figure 3.2 includes 36 by 18 square elements with 

element size of 1m. Considering that the aforementioned RFM procedure is defined at the 

point level, the local averaging over the square element size is performed to obtain the 

locally averaged statistics. The local averaging is realized through multiplying a variance 

reduction factor to the variance of a normal variable. Then the statistics of the equivalent 

lognormal variable are computed (Griffiths and Fenton 2004; Suchomel and Mašín 2011). 

As shown in Figure 3.2, the darker color represents higher vus σ ′/  and lighter color 

represents smaller vus σ ′/ . The effect of scales of fluctuation is apparent in the 2-D RFM: 



⺰-
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either in the vertical or horizontal direction, smaller θ corresponds to more drastic 

variation of vus σ ′/  in that direction of the random field; conversely, a larger θ 

corresponds to more uniform vus σ ′/  in that direction of the random field.  In either 

direction, the spatial variation in the case of smaller θ is much more significant than that 

for larger θ.  
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Figure 3.2: Influence of scale of fluctuation on the 2-D random field modeling of su/σ'v at 

given mean of 0.3 and COV of 0.3. 
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Simplified approach based on equivalent variance technique 

The second step toward developing a simplified reliability-based procedure for 

evaluating the probability of basal-heave failure is to establish a simplified solution that 

matches closely with the MCS-based RFM solution.  

The simplified approach is based on the concept of spatial averaging in which the 

spatial variability of the soil property is averaged in order to approximate a random 

variable that represents a soil parameter (Vanmarcke 1977). The averaged variability of 

the soil property over a larger domain can be quantified with an variance reduction 

technique in which the variances of soil parameters may be reduced by multiplying a 

factor known as variance reduction factor 2( ).Γ  With two inputs: scale of fluctuation 

and characteristic length, the variance reduction factor that adopts an exponential form is 

given as follows (Vanmarcke 1983):  
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where θ  is the scale of fluctuation and L is the characteristic length.  

In the 2-D random field, the variance reduction factor is expressed as the product 

of the variance reduction factors in the vertical and horizontal directions, computed with 

respective scales of fluctuation and characteristic length (Vanmarcke 1977): 

 

 222

hv Γ⋅Γ=Γ                (3.9) 

 

where 2

vΓ  and 2

hΓ  are the vertical and horizontal variance reduction factors, 
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respectively. The reduced variance σ Γ
2  can be obtained with the following equation: 

 

σ σΓ = Γ ⋅2 2 2           (3.10) 

 

where 2σ  is the variance of the soil parameter of concern ( vus σ ′/  in this study). In this 

study, the positive square root of the variance reduction factor is referred to herein as the 

reduction factor ( Γ ) to differentiate it from the variance reduction factor ( Γ 2
).  

It is noted that if the variance reduction technique is used to simplify the effect of 

the spatial variability of a lognormal distributed parameter, as is the case in this study, 

only the variance of its equivalent normal distribution, defined previously, should be 

reduced through the use of variance reduction factor.   

For the simplified approach using the equivalent variance technique, the analysis 

can be conducted either with MCS or with a reliability method. The latter is preferred, as 

it requires far less computational effort and is more practical than the MCS-based RFM. 

Implementation of the reliability methods in a spreadsheet has been demonstrated to be a 

practical approach to geotechnical problems (e.g., Low and Tang 1997; Juang et al. 2006; 

Juang et al. 2009). Past investigators (Peschl and Schweiger 2003; Suchomel and Mašín 

2010) have shown that reliability analysis with the equivalent variance technique can 

capture the overall trend of the MCS-based RFM. In this chapter, the two approaches are 

compared within the context of 2-D random field modeling.  
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Simplified Reliability Method for Assessing Probability of Basal-Heave Failure in 

Braced Excavation in 2-D Random Field 

RFM approach for probability of basal-heave failure 

The probability of basal-heave failure in a braced excavation in clay is first 

analyzed herein using the conventional random field modeling with Cholesky 

decomposition method. The geometry and input data for the excavation case employed in 

this study is illustrated in Figure 3.1 and listed in Table 3.1, respectively. The undrained 

shear strength vus σ ′/  is modeled as a spatially random variable, and the unit weight of 

soil and surcharge are modeled as spatially-constant random variables. All other 

geotechnical and structural parameters are treated as constants for simplicity, since the 

uncertainties in these parameters are relatively negligible.  

 

Table 3.1: Input parameters for a basal-heave stability problem shown in Figure 3.1. 

 

Values 
Parameters Notations 

Mean COV 

Unit weight of soil γ 19 kN/m
3
 0.1 

Surcharge qs 10 kPa/m 0.2 

Depth of GWT D 2m N/A 

Final excavation depth He 18m N/A 

Final strut depth Hs 15m N/A 

Penetration depth Hp 15m N/A 

 

*In this study, many basal-heave problems defined with this set of input parameters and 

geometry are analyzed. The difference in these problems is in the choice of the mean 

value of the normalized undrained shear strength ( vus σ ′/ ), which results in different 

factors of safety (FS).  
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Typical COV of the undrained shear strength us  is about 0.3, although it could 

be as high as 0.8 (Phoon and Kulhawy 1999a). In this study, the COV of vus σ ′/  is first 

set at 0.3 and the effect of assuming higher COVs is examined later.  Based on a 

statistical study by (Phoon and Kulhawy 1999a), the average vertical and horizontal 

scales of fluctuation for clay are 2.5m and 50.7m, respectively.  In a 2-D RFM, both 

vertical and horizontal spatial variability are considered.  It should be noted that for 

basal-heave analysis, only the random field shown in Figure 3.1 (the box region) needs to 

be modeled since the resistance moment [Eq. (2.3) in Chapter II] comes only from this 

region.  Here, the RFM region in Figure 3.1 is subdivided into 36 by 18 square elements 

(horizontal direction by vertical direction). The size of the square elements is 1m. For this 

2-D RFM, the total number of elements (648 elements in this case) is comparable to the 

suggested maximum number by Fenton (1997) for the Cholesky decomposition operation. 

Although a larger modeling region can be adopted, the region shown in Figure 3.1 is the 

minimum region that covers the slip circle where the resistance moment MR is derived.  

To provide a reference, the effect of vertical and horizontal scales of fluctuation is 

first examined separately (i.e., treating it like 1-D RFM). Thus, when vertical or 

horizontal spatial variability is considered, the other direction is assumed to be spatially 

constant. To study the effect of spatial variability, a series of scales of fluctuation (θ = 1m, 

2.5m, 10m, and 100m) for each direction is investigated.  

Thus, given a set of input data for a braced excavation (Figure 3.1 and Table 3.1), 

the probability of basal-heave failure is computed for a design with a given FS [say, FS = 

2.0 as per Eq. (2.1) in Chapter II] and a given scale of fluctuation that reflects the 1-D 
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random field of vus σ ′/ .  This probability can be calculated using the MCS. For each 

given scale of fluctuation and design FS, 10
5
 simulations are conducted. The probability 

of failure is determined by the ratio of the number of failure cases (defined here as FS < 

1.0) over the total number (i.e., 10
5
). This process is repeated for each series of scale of 

fluctuation and each series of “designs” (signaled by a series of FS values, which was 

realized by assuming different mean vus σ ′/  values while keeping the mean values of all 

other parameters the same). For a single run of MCS, the execution time for 10
5
 

simulations is approximately 4 minutes on a laptop PC equipped with an Intel Pentium 

Dual CPU T2390 running at 1.86GHz using MATLAB (MathWorks 2010). The results 

are shown in Figure 3.3(a) for vertical spatial variability and Figure 3.3(b) for horizontal 

spatial variability. The results presented in this figure provide the engineer a basis for 

selecting a factor of safety for design against basal-heave using the slip circle method 

[Eqs. (2.1-2.3)]. This basis is the target probability of failure that considers the spatial 

variability of soil parameters. The design, based on the target probability of failure is 

referred to herein as the probability-based (or reliability-based) design against 

basal-heave failure. 

The effect of scales of fluctuation in a 1-D random field is quite obvious: a 

smaller scale of fluctuation results in a smaller fp  at the same FS. As shown in Figure 

3.3(a), if the target fp  is set at 10
-3

, the required FS is about 1.85 at θv = 2.5m [note: 

this θv value is the mean of the vertical scale of fluctuation for clay as per Phoon and 

Kulhawy (1999a)], and is about 2.65 at θv = 100m (note: this θv value is close to a 

spatially-constant condition).  Similar conclusions may be drawn from Figure 3.3(b) for 
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Figure 3.3: Effect of 1-dimensional spatial variability on the relationship between failure 

probability and factor of safety in the reliability-based design. 
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Figure 3.4: Effect of 2-dimensional spatial variability on the relationship between failure 

probability and factor of safety in the reliability-based design. 

 

 

 



 60 

the effect of horizontal spatial variability. The implication is that the required FS will be 

overestimated for a target fp  if the effect of spatial variability is ignored. Thus, 

traditional reliability analysis that considers variation of input soil parameters (for 

example, through COV) but not spatial variability exhibited in a random field can 

over-estimate the probability of failure for a given deterministic-based design (i.e., a 

given FS).  

The effect of 2-D spatial variability is examined next. To begin with, three 

different horizontal scales of fluctuation (θh = 2.5m, 50m, and ∞) are considered 

simultaneously with the average vertical scale of fluctuation [θv = 2.5m as Phoon and 

Kulhawy (1999a)] to study the effect of θh at fixed θv. The results are shown in Figure 

3.4(a). Afterwards, three different vertical scales of fluctuation (θv = 2.5m, 50m, and ∞) 

are considered simultaneously with the average vertical scale of fluctuation [θh ≈ 50m as 

per Phoon and Kulhawy (1999a)] to study the effect of θv at fixed θh. The results are 

shown in Figure 3.4(b). The effect of the scales of fluctuation in a 2-D random field is 

also obvious: at a fixed scale of fluctuation in one direction, a smaller scale of fluctuation 

in the other direction results in a smaller fp  at the same FS. Furthermore, the required 

FS will still be overestimated for a target fp  if the soil parameter is modeled with only 

a 1-D random field, as opposed to a 2-D random field. Therefore, it is essential to 

consider 2-D spatial variability in the probability-based (or reliability-based) design 

against basal-heave failure in a braced excavation.  

One concern with traditional reliability-based design in geotechnical practice in 

the past is that the computed failure probability is often high in a design that satisfies the 
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minimum FS specified in the codes, but failure seldom occurs in such cases. For example, 

this concern has been reported by Goh et al. (2008) and Wu et al. (2010a) in their study 

of basal-heave stability in an excavation. Overestimation of variation in soil parameters is 

often pointed out as a possible cause for having a higher computed probability of failure. 

Based on the results presented (Figures 3.3 and 3.4), it is evident that negligence in the 

effect of spatial variability of soil parameters can lead to an overestimation, perhaps to a 

high degree, of the failure probability. Thus, to apply the traditional simplified 

reliability-based method for evaluating the failure probability, an adjustment is needed to 

model spatial variability.  

 

Equivalent simplified approach with variance reduction technique 

While the RFM analysis generally yields the most accurate results, it requires use 

of the MCS. On the other hand, the simplified approach can be implemented with 

reliability-based methods. Past studies have shown that simplified approaches with a 

proper variance reduction can match well with the RFM solution. In other words, for a 

RFM solution, an equivalent solution using simplified approach is possible. Therefore, 

the analysis for the probability of basal-heave failure in a braced excavation in a random 

field can be performed using traditional reliability-based methods, provided that an 

equivalent simplified approach can be established first.  

The desired equivalency between simplified approach and RFM solutions in this 

case is “equal” probability of failure, or [ ]f R Dp P M M= < . For the basal-heave 

problem analyzed herein using the slip circle method [Eqs. (2.1-2.3)], the undrained shear 
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strength is the only soil parameter that is treated as spatially random, while all other 

parameters are set as constants so that the spatially random effect of the undrained shear 

strength is examined explicitly. Here, in search for the equivalency between the RFM 

approach and the simplified approach, MD is treated as a constant and MR is treated as a 

random variable. Therefore, the equivalency in the computed failure probability can be 

achieved if MR, determined from the two approaches (simplified approach and RFM) 

agrees with each other at the same level of soil variability (i.e., the same level of COV 

and scale of fluctuation). Because the mean of MR is approximately the same regardless 

of which of the two approaches is employed [This is apparent since in this study MR is 

linearly correlated with us  as per Eq. (2.3) and Figure 2.6], it is considered appropriate 

and adequate to use the variation (or more precisely, the standard deviation) of the 

computed MR as a basis for establishing the equivalency.  

It should be noted that the mean of MR (and thus FS) may not be independent of 

the scale of fluctuation θ as observed from the results of the slip circle method, since the 

shear zone may develop through softer areas (Suchomel and Mašín 2010). If other 

approaches such as finite element method are employed for basal heave analysis, the 

computed mean of MR is likely to change with θ (Suchomel and Mašín 2010). This effect 

is not accounted with the slip circle method, which is a limitation of the proposed 

approach. However, this issue is beyond the scope of this study.  

Equivalency between simplified approach and RFM solution may be achieved by 

applying variance reduction to the former, which requires determination of the reduction 

factor (Γ). For the basal-heave problem, Γ values at various levels of variability (in terms 
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of standard deviation σ  and scale of fluctuation θ of vus σ ′/ ) can be back-calculated 

using the procedure illustrated in Figure 2.9 in Chapter II.  As shown in Figure 2.9, the 

flow sequence on the left summarizes the procedure of RFM with the Cholesky 

decomposition method [Eqs. (3.1-3.7)]. The standard deviation of RM , denoted herein as 

NSσ , is obtained from 10
5
 MCS of the basal-heave analysis for a braced excavation in 

clay with a given pair of standard deviation σ  and scale of fluctuation θ of vus σ ′/ .  

In Figure 2.9, the flow sequence on the right summarizes the procedure of 

simplified approach using the equivalent variance technique. First, an interval of the 

reduction factor, [ΓL ΓU], is assumed for this case (with the same σ and θ of vus σ ′/ ). ΓL 

and ΓU are the assumed lower and upper bounds, which may be set at 0 and 1, 

respectively. Then the bisection method is used to search for the equivalent variance: the 

interval is divided into two segments by the midpoint Γp = (ΓL + ΓU)/2, and the variance 

is reduced with Γp. With the reduced variance σΓ, MCS may be performed without the 

Cholesky decomposition. The standard deviation of RM , denoted herein as Sσ , is then 

obtained from 10
5
 MCS of the basal-heave analysis of the same case, as in the RFM 

analysis (left side of the flowchart shown in Figure 2.9). If the reduction factor Γp is 

correct, the two standard deviations, NSσ  and Sσ , will be equal to each other for the 

given pair of standard deviation σ  and scale of fluctuation θ of vus σ ′/ . In this study, 

the Γ value at which NSσ  ≈ Sσ  (or 3/ 10NS S NSσ σ σ −− ≤ ) is the target reduction 

factor for a given pair of σ and θ of vus σ ′/ . As shown in Figure 2.9, if the above 
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stopping criterion ( 3/ 10NS S NSσ σ σ −− ≤ ) is not satisfied, the interval of Γ is shortened by 

setting ΓL = Γp (for 0NS Sσ σ− > ) or ΓU = Γp (for 0NS Sσ σ− < ). The new midpoint Γp is 

then computed and the aforementioned procedure is repeated until the final reduction 

factor for a given pair of σ and θ of vus σ ′/  is obtained. It should be noted that for this 

“equivalency” analysis, the simplified approach is implemented with the MCS. As will be 

shown later, the simplified approach can also be implemented with FORM to further 

reduce the computational effort.  

Through the above back-calculation procedure (Figure 2.9), the reduction factor Γ 

for an equivalent simplified approach can be obtained. Figures 3.5(a) and 3.5(b) show the 

back-calculated Γ values for various pairs of σ (or COV) and θ of vus σ ′/ , for vertical and 

horizontal spatial variability, respectively. Two observations are made: (1) the inherent 

variability rarely influences the variance reduction at the same θ level; (2) the reduction 

factor Γ depends only on θ at the same COV level. These observations are consistent with 

the variance reduction models presented in literature [e.g., Eq. (3.8) from Vanmarcke 

(1983)].  

Finally, a comparison is made between reduction factors (Γ), computed using the 

variance reduction function [Eq. (3.8)] and those obtained through the back-calculation 

procedure discussed above. Note that the evaluation of Eq. (3.8) requires knowledge of 

the characteristic length. In this study, the vertical characteristic length Lv is assumed to 

be the vertical distance between the depth of the final strut and the bottom of the 

diaphragm wall (Lv = od  = 18m as in Figure 3.1);  horizontal characteristic length Lh is  
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Figure 3.5: Comparison between the reduction factors back-calculated using the 

MCS-based RFM and those computed using Eq. (3.8) with assumed characteristic lengths 

(Lv = 18m or Lh = 36m). 
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assumed to be the horizontal scale of the slip circle (Lh ≈ ec  ≈ 36m as in Figure 3.1). 

The rationale for these assumptions is that these lengths are the vertical and horizontal 

scales of the region that contributes to the resistance moment in the random field. With 

the assumed characteristic lengths, reduction factors are computed with Eq. (3.8), and the 

results are shown in Figure 3.5 for comparisons with those that are back-calculated based 

on the equivalency analysis presented previously.  

As shown in Figure 3.5, the assumptions of Lv = 18m and Lh = 36m yield 

reduction factors consistent with those that are back-calculated from the equivalency 

analysis. The implication is that for basal-heave analysis in a 2-D random field using the 

slip circle method (Figure 3.1), vertical characteristic length Lv can be taken as the 

vertical distance between the depth of the final strut and the bottom of the diaphragm wall 

(the length od  as in Figure 3.1) and horizontal characteristic length Lh can be taken as 

the horizontal scale of the slip circle (the length ec  as in Figure 3.1). This follows that 

variance reduction factor (Γ
2
) or reduction factor (Γ) can be computed for a given spatial 

variability level, and with the concept of spatial averaging, the reduced variation of the 

random variable for an equivalent simplified approach is obtained. Finally, the simplified 

reliability analysis can be performed in this equivalent stationary random field.  

 

Practical reliability analysis of basal-heave considering 2-D spatial variability 

Based on results presented in the previous sections, a step-by-step procedure is 

established for the simplified reliability analysis of basal-heave in a braced excavation in 

clay considering 2-D spatial variability:  



 67 

1. Select an analytical model for basal-heave analysis (for example, slip circle 

method).  

2. Obtain spatially-constant input parameters and random variables, such as unit 

weight of soils and applied surcharge. 

3. Characterize a spatially random variable (in this case, the normalized 

undrained shear strength) with its mean, COV and horizontal and vertical 

scales of fluctuation (θh and θv,) for this 2-D random field.  

4. Determine the vertical and horizontal characteristic lengths (Lv and Lh) based 

on the selected random field region (such as the one shown in Figure 3.1). 

Apply the equivalent variance technique [Eqs. (3.8-3.10)] to determine the 

reduced variance (σ Γ
2 ) of normalized undrained shear strength.  

5. When the equivalent variance technique is used to simplify the effect of the 

spatial variability of a lognormal distributed parameter, the variance of its 

equivalent normal distribution should be reduced in this process. 

6. Conduct FORM analysis (for example, using a spreadsheet implementation as 

shown in Figure 3.6) using the reduced variance of the normalized undrained 

shear strength. The reliability index and probability of failure can be 

determined using FORM. 
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Mean COV η λ x*  µ µ µ µN σσσσN

0.30 0.30 0.294 -1.247 0.26 0.2863 0.0225 L v (m) 18.0

19.0 0.10 0.100 2.939 16.1 18.694 1.6107 L h (m) 36.0

10.0 0.20 0.198 2.283 10.0 9.8046 1.9727 Γ v 0.36

2.5 0.00 0.000 0.916 2.5 2.5 0.0002 Γ h 0.81

50.0 0.00 0.000 3.912 50.0 50 0.005

18 0.00 0.000 2.890 18 18 0.0018

33 0.00 0.000 3.497 33 33 0.0033 Variance reduction

15 0.00 0.000 2.708 15 15 0.0015 factors computed

2 0.00 0.000 0.693 2 2 0.0002 using exponential

1.00 0.00 0.000 0.000 1.00 1 1E-04 reduction function

Correlation Matrix ρρρρ

1 0 0 0 0 0 0 0 0 0 -1.024 r (m) = 18.0

0 1 0 0 0 0 0 0 0 0 -1.581 α (Deg) = 80.4

0 0 1 0 0 0 0 0 0 0 0.0794 M R = 77899

0 0 0 1 0 0 0 0 0 0 -0.002 M D = 57024

0 0 0 0 1 0 0 0 0 0 -0.003 FS Original = 1.36607

0 0 0 0 0 1 0 0 0 0 -0.003 g(x) = 0.000

0 0 0 0 0 0 1 0 0 0 -0.003 ββββ  = 1.88558

0 0 0 0 0 0 0 1 0 0 -0.005 P f = 0.0297

0 0 0 0 0 0 0 0 1 0 0.0023

0 0 0 0 0 0 0 0 0 1 -0.002

θ v  (m)

w

H e (m)

H w (m)

H s (m)

D (m)

θ h  (m)

BF

s u /σ' v

γ(kN/m
3
)

(x* - µµµµN)/σσσσN

Initially, enter original mean values for x* column, followed by invoking Excel Solver, to automatically approach

the target reliability index ββββ, by changing x* column, subject to g(x) = 0.

Original input Spatial factorsParameters at design point

Results

equivalent normal

parameters

q s (kN/m
2

)

Model bias factor

 
 

Figure 3.6: Reliability-based procedure for evaluating failure probability of basal-heave. 
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Figure 3.7: Comparison between the MCS-based RFM solutions and those by the simplified approach. 
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As an example, basal-heave in a braced excavation shown in Figure 3.1 with input 

parameters listed in Table 3.1 is analyzed. All parameters except vus σ ′/  are treated as 

spatially-constant random variables or simply constants. The parameter vus σ ′/  is 

modeled with a 2-D random field, and characterized by a mean value of 0.30, a COV of 

0.3, and scales of fluctuation θh = 2.5 m and θv = 50 m. As shown in Figure 3.7, the 

equivalent simplified approach that considers the spatial variability of vus σ ′/  is realized 

using the variance reduction function [Eq. (3.8)] with characteristic lengths Lv = 18 m and 

Lh = 36 m. The reduced variance of vus σ ′/  in the equivalent simplified approach is thus 

obtained. FORM analysis is then performed using the spreadsheet as shown in Figure 3.6, 

which yields reliability index β = 1.8856 and probability of failure pf = 0.0297.  It 

should be noted that the model bias (BF) of the deterministic slip circle method is ignored 

at this point [as shown in Figure 3.6, mean value of model bias (denoted as BFµ ) is set as 

1.0 and the COV of the model bias (denoted as BFCOV ) is set as 0.0); the effect of model 

bias is examined later].  

To further examine the capability of the spreadsheet that implements the FORM 

procedure with the equivalent variance technique, the basal-heave problems that were 

analyzed with the MCS-based RFM approach (Figure 3.4), are re-analyzed. Comparisons 

with the previous results from Figure 3.4 are shown in Figure 3.7 for four different 

scenarios of constant vertical and horizontal scales of fluctuation: (a) θv = θh = 2.5m; (b) 

θv = 2.5m, θh = 50m; (c) θv = θh = 50m; (d) θv = 50 m, θh = 2.5m. Note that Case (b) 

represents the mean values for θv and θh suggested by Phoon and Kulhawy (1999a). As in 
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Figure 3.4, a series of basal-heave problems (signaled by different FS values, which were 

realized by assuming different mean vus σ ′/  values while keeping the mean values of all 

other parameters the same) are analyzed. In Figure 3.7, the results show that regardless of 

the chosen scales of fluctuation and design safety level (FS value), the probabilities of 

basal-heave failure obtained from the spreadsheet agree very well with those determined 

with the MCS-based RFM approach. At any given target probability of failure (Figure 

3.7), the maximum difference in the required FS between the two approaches (RFM vs. 

simplified approach) is less than 5%. Thus, the simplified approach is deemed effective.  

 

Effect of model bias on the computed probability of failure 

The analyses of basal-heave failure presented so far are performed assuming no 

model bias in the adopted slip circle method.  In the reliability analysis shown in Figure 

3.6, the model bias is implemented with a bias factor (BF), which is treated as a random 

variable.  To implement the assumption of no model bias, the mean of the model bias 

factor is taken as unity ( 0.1=BFµ ) with no variance ( 0.0=BFCOV ). Most geotechnical 

analysis models are biased one way or the other because they often represent a 

conservative approximation of the actual conditions. If the model bias exists but is not 

accounted for, the computed probability of failure may be either underestimated or 

overestimated. This is an additional source of uncertainty that could influence the 

selection of a required factor of safety for a target failure probability in a reliability-based 

design.  
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Figure 3.8: Effect of model bias of the slip circle method on the relationship between 

failure probability and factor of safety derived through reliability analysis. 

 

A recent calibration study on the slip circle method (Wu et al. 2011) reports that 

the mean value ( BFµ ) and the COV of model bias ( BFCOV ) of the method are 1.39 and 

0.21, respectively. To examine the effect of this model bias on the failure probability 

determined using the FORM-based spreadsheet solution, Case (b) in Figure 3.7(b), in 

which θv = 2.5m, θh = 50m, is reanalyzed with this model bias factor. The results with 

and without this model bias factor are compared in Figure 3.8.  It is observed that at the 

same FS level, the failure probability is smaller if the model bias of the slip circle method 

is considered. Thus, negligence of the model bias in the reliability analysis of basal-heave 

failure can lead to an overestimation of the failure probability. As shown in Figure 3.8, 

however, the effect of the model bias is less significant at smaller target probability level 

(e.g., pf = 10
-3

 to 10
-4

).  For example, at the target probability of failure pf = 10
-4

, the 
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difference in the required FS for the basal-heave design between the two conditions (with 

and without model bias consideration) is less than 1.5%. As a reference, at this target 

probability of failure, the difference in the required FS for the basal-heave design 

between the two conditions of spatial variability (with and without considerations of 

spatial variability of the undrained shear strength of clay) is approximately at 50%. Thus, 

at the generally accepted level of failure probability (pf = 10
-3

 to 10
-4

), the need to 

consider spatial variability in the analysis is clearly demonstrated while the effect of 

model bias of the slip circle method is relatively insignificant.   

 

Summary 

In this chapter, the simplified approach developed in Chapter II to consider the 

effect of 1-D spatial variability on the reliability analysis of basal-heave in braced 

excavation in clays, is extended for a 2-D random field. This simplified approach is 

demonstrated through a case study. As the first step, the 2-D RFM analysis is performed 

in a study of basal-heave stability to provide a benchmark. The results show that 

negligence of 1-D or 2-D spatial variability in reliability analysis can significantly 

overestimate the probability of basal-heave failure for a given deterministic design with a 

certain factor of safety (e.g., Figures 3.3 and 3.4). 

Then, variance reduction factors for both vertical and horizontal directions, at 

which the simplified approach yields results that match well with those obtained with 

RFM, are back-calculated. The assumptions of the characteristic lengths of both vertical 

and horizontal directions in the stability analysis are verified based on the back-calculated 
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variance reduction factors. This case study found that for basal-heave analysis in a 2-D 

random field using the slip circle method (Figure 3.1), the vertical characteristic length Lv 

can be taken as the vertical distance between the depth of the final strut and the bottom of 

the diaphragm wall (length od  in Figure 3.1) and the horizontal characteristic length Lh 

can be taken as the horizontal scale of the slip circle (length ec  in Figure 3.1). 

Finally, a simplified approach which combines the first-order reliability method 

(FORM) and the variance reduction technique to account for spatial variability is 

proposed for reliability analysis of basal-heave stability.  The proposed approach is 

implemented in a spreadsheet and thus is easy to use, requires less computational effort. 

The simplified approach yields results (in terms of probability of basal-heave failure) that 

are nearly identical to those obtained with the MCS-based RFM method.  

 



 75 

CHAPTER IV 

 

PROBABILISTIC SERVICEABILITY ASSESSMENT IN A BRACED EXCAVATION 

CONSIDERING SPATIAL VARIABILITY
∗
 

 

Introduction 

One of the main concerns in a braced excavation in an urban area is the risk of 

damage to adjacent infrastructures caused by the excavation-induced wall deflections and 

ground movements. Damage to the adjacent infrastructures caused by ground movements 

is referred to herein as the serviceability failure in a braced excavation. In many 

excavation projects, the owners or regulatory agencies establish the limiting wall and 

ground responses as a means of preventing excavation failure and damage to adjacent 

infrastructures. Table 1.1 shows an example of such limiting response criteria from China 

(PSCG 2000). Thus, it is essential to have the ability to accurately “predict” the 

maximum wall deflection and ground settlement during the design of braced excavations.   

Past experience has shown that construction details can have a great effect on the 

wall deflection and ground settlement that actually occur in the field. In this study, the 

effect of construction sequence is simulated in the finite element analysis, as braced 

excavations are carried out in stages. However, good workmanship is assumed in the 

excavation and no other construction related effect is considered in the analysis.  

To accurately predict the maximum wall deflection and ground settlement, it is 

essential to properly characterize the site conditions. An appropriate site investigation 

                                                 
∗ A similar form of this chapter has been published at the time of writing: Luo Z, Atamturktur S, Juang 

CH, Huang H, Lin PS. Probability of serviceability failure in a braced excavation in a spatially 

random field: Fuzzy finite element approach. Computers and Geotechnics, doi:10.1016/j.compgeo. 

2011.07.009. 
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program is needed; in particular, design soil parameters must be properly evaluated and 

selected.  For braced excavations in clays, Hsiao et al. (2008) pointed out that 

normalized undrained shear strength ( vus σ ′/ ) and normalized initial tangent modulus 

( viE σ ′/ ) are the most important soil factors. As in many geotechnical projects, however, 

it is difficult to determine the values of these parameters with certainty, especially with 

limited test data. Uncertainty in these parameters leads to uncertainty in the computed 

maximum wall deflection and ground settlement, which makes it more difficult to assess 

whether the predicted responses are excessive as compared to the specified limiting wall 

and ground responses. This problem could be complicated further with the inherent 

variability of soils and the spatial correlation. A sensible approach would be to consider 

all these uncertainties, derive the probabilities of exceeding the limiting wall and ground 

responses, then make the design decisions based on these exceedance probabilities. 

The effect of inherent spatial variation of soil properties has been demonstrated in 

many geotechnical problems, and modeling of this variation with random field theory has 

already been reported (Griffiths and Fenton 2009). However, a rigorous simulation of the 

random field using the finite element method (FEM) solution demands a large amount of 

computation time, which is not practical for analyzing complicated problems such as wall 

and ground responses in a braced excavation (Schweiger and Peschl 2005). To this end, 

the proposed approach, consisting of using fuzzy sets (Zadeh 1965) and a variance 

reduction technique (Vanmarcke 1977) to approximate the effect of a random field, 

appears to be a feasible alternative for analysis for the probability of serviceability 

failure.  
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In summary, this chapter focuses on a simplified approach for estimating the 

probability of serviceability failure (i.e., exceeding the limiting wall and ground 

responses) in a braced excavation in a spatially random field. Uncertain soil parameters 

are represented by fuzzy sets and spatial variability is considered by means of variance 

reduction. Propagation of the uncertainty of these soil parameters through finite element 

solution is carried out by the alpha-cut method (Juang et al. 1998). The FEM analysis of 

the braced excavation is conducted using a finite-element computer code with a 

constitutive model that can effectively model the small-strain nonlinear soil behavior. 

The results of the FEM-based fuzzy set approach are fuzzy numbers that represent wall 

and ground responses. The probability of exceeding a specified response is then 

computed from the resulting fuzzy numbers. A case study is presented to demonstrate the 

proposed simplified approach, which is shown to be effective and simple to use.   

 

Finite Element Modeling with a Small-Strain Nonlinearity Soil Model 

Numerical methods such as the finite difference method or finite element method 

are often used to analyze wall deflection and ground settlement in a braced excavation 

(Whittle and Hashash 1994; Ou et al. 1998; Hsieh et al. 2003; Kung et al. 2007a).  In 

this study, wall and ground responses in a braced excavation in clays are analyzed using a 

commercially available finite element code, Plaxis
TM

 (Brinkgreve and Vermeer 2002). It 

should be noted that use of this software in this study does not represent an endorsement 

of the software; other FEM codes can be employed.  

Kung et al. (2007a) indicated that wall deflection was relatively easier to predict 
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accurately than ground settlement and the accuracy of the prediction often depended on 

the capability of utilized soil models. They showed that proper modeling of small-strain 

nonlinearity soil behavior is essential for accurate predictions of ground settlement in a 

braced excavation using FEM. This view was shared by many previous investigators 

(Hsieh and Ou 1997).  In the work by Kung et al. (2007a), a small-strain nonlinear soil 

model, known as the Modified Pseudo Plasticity (MPP) model, was implemented in the 

computer code AFENA (Hsieh and Ou 1997) for the analysis of braced excavations. The 

MPP model was developed by Hsieh et al. (2003) for clays, with considerations for 

anisotropic properties, high stiffness at small-strain, and degradation behaviors. Here, the 

range of small strain is from 0 to 10
-5

. Through a series of analyses of laboratory tests 

(the conventional and small-strain CK0UC tests) and well-documented case histories of 

braced excavation, Kung et al. (2007a) demonstrated the validity of the MPP model and 

the accuracy of the FEM predictions of wall and ground responses in braced excavations 

using AFENA with the MPP soil model.  

Plaxis
TM

 (Brinkgreve and Vermeer 2002) is a proprietary FEM code, but it 

prescribes a programming format that the user can follow to implement a constitutive law 

of soils. To follow up on the previous work (Kung et al. 2007a), it is desirable to 

implement the MPP model as a user-defined model in Plaxis
TM

. Thus, Plaxis
TM

 with the 

MPP soil model (implemented by Dang 2009) is used in this study.  

To verify the accuracy of the FEM code, we re-analyze the excavation case at 

Taipei National Enterprise Center (TNEC) that was documented by Ou et al. (1998). The 

results are compared with those reported previously by Kung et al. (2007a), who analyzed 
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the same TNEC case using the AFENA code with the MPP model. In that previous study, 

the capability of the AFENA code with the MPP model for predicting wall and ground 

responses in a braced excavation was demonstrated. In the present study, we compare the 

maximum wall deflections and the maximum ground settlements at various stages of 

excavation of TNEC obtained by the two FEM codes (Plaxis
TM

 with MPP versus AFENA 

with MPP). Figures 4.1(a) and 4.1(b) compare the results of FEM predictions of the 

maximum wall deflections and the maximum ground settlements, respectively. The 

results show that the Plaxis
TM

 solutions in this study are as accurate as those obtained by 

Kung et al. (2007a) using AFENA, and both agree well with field observations. Thus, 

Plaxis
TM

 code with the MPP soil model is found to be satisfactory for predicting the wall 

and ground responses in a braced excavation.  Furthermore, in this study, Plaxis
TM

 code 

with the MPP soil model is further used to study the effect of the spatial variability of 

soils on the probability of exceeding the limiting responses in a braced excavation. For 

convenience, the software Plaxis
TM

 implemented with the MPP soil model is referred to 

hereinafter as “the FEM code.” 
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Figure 4.1: Maximum wall deflections and maximum ground settlements at various stages of excavation of the TNEC case – A 

comparison of the observed values with those obtained by Kung et al. (2007a) using AFENA and in this study using PlaxisTM; 

both FEM codes implemented with the MPP soil model. 
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Modeling Spatial Variability in Braced excavations in Clays 

Spatial variability 

In a traditional deterministic approach, the FEM solution generally assumes soil 

parameters to be spatially constant. In recent studies using random FEM to consider 

spatial variability, Griffiths et al. (2009) found the effect of inherent spatial variations of 

soil properties can be significant in FEM solutions of many geotechnical problems. The 

random FEM approach, however, is computationally intensive (Schweiger and Peschl 

2005). For the complex problem of staged, braced excavations, it can be considered 

appropriate to use a simplified model of spatial variability. Among the methods dealing 

with the spatial variability of soil, the spatial averaging of the variation of the soil 

properties has shown to be an effective tool (for example see, Phoon and Kulhawy 

1999a,b; Phoon et al. 2003; Klammler et al. 2010). In this study, the focus is to examine 

the effect of spatial variability of soil parameters on the wall and ground responses in a 

braced excavation using the FEM code; and to this end, the spatial averaging approach is 

adopted.  

 

Spatial averaging 

The concept of spatial averaging was described by Vanmarcke (1977) as follows: 

the variability of the average soil properties over a large domain is less than that over a 

small domain. The reduced variability of soil properties over a large domain can be 

characterized by the variance function, which is related to the autocorrelation function. 

The exponential model that is widely used in the study of spatial variability is selected 
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herein:  

 

( ) 








 ∆
−=∆

θ
ρ

z
z 2exp                        (4.1) 

 

where z∆  is the distance between any two points in the field; θ  is the scale of 

fluctuation that is used to normalize z∆ .  

To consider spatial averaging in a reliability analysis, variances of soil parameters 

are reduced by multiplying a factor that depends on the scale of fluctuation (Vanmarcke 

1983). This factor is the value of the variance reduction function that can be obtained by 

integration of an autocorrelation function such as Eq. (4.1). Thus, the variance reduction 

function may be expressed as (Vanmarcke 1983):  
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             (4.2) 

 

where L is the characteristic length with respect to a potential failure surface. In general, 

the value of the variance reduction function is less than 1, and as such, this value is often 

referred to as the variance reduction factor ( Γ 2
).   

The characteristic length may be assumed to be the length of the sliding surface 

(failure surface) in the stability analysis of a braced excavation, as suggested by 

Schweiger and Peschl (2005). A similar assumption was made by Most and Knabe (2010) 

in their study of bearing capacity of footings using variance reduction technique. Figure 

4.2 shows an example of the sliding surface based on the slip circle method (JSA 1988). 
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In this study, the characteristic length L is taken as the total length of the arc length bcd 

and the vertical length ab.  
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Figure 4.2: An example of failure surface in braced excavation. 

 

With the known characteristic length (L) and the scale of fluctuation (θ ), the 

reduced variance σ Γ
2  can then be obtained with the following equation: 

 

σ σΓ = Γ ⋅2 2 2                  (4.3) 

 

where 2σ  is the variance of the soil parameter, and Γ 2
 is the variance reduction factor.  

The spatial averaging approach has been shown to be an effective simplification 
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of the real random field. As pointed out by Schweiger and Peschl (2005), a more rigorous 

simulation of the random field demands a large amount of computational time, which 

may not be practical for complicated numerical simulations such as the problem of braced 

excavation. In this study, the spatial averaging effect is examined using the checkerboard 

approach (Griffiths and Fenton 2009) and the feasibility of the variance reduction 

technique to model the spatially randomness within the context of a braced excavation is 

demonstrated.  

 

Fuzzy Sets Methodology - Modeling and Processing of Uncertain Parameters 

Uncertainty modeling with fuzzy sets 

Geotechnical engineers almost always have to deal with uncertainty, whether it is 

formally acknowledged or not (Juang and Elton 1996). When input soil parameters 

cannot be ascertained due to limited data availability, engineering judgment is often 

exercised to select a conservative design parameter. Uncertainty in soil parameters may 

be dealt with by using an appropriate factor of safety. However, in many cases, it is 

advantageous to assess this uncertainty and to include it in the analysis so that a more 

informed design decision can be made.   

Fuzzy set theory (Zadeh 1965) has been shown effective and suitable for 

modeling uncertainty in soil parameters (Juang et al. 1991; Juang et al. 1992a,b; Juang 

and Elton 1996; Juang et al. 1998) when data are insufficient to fully define a probability 

distribution. A fuzzy set is a set of paired values [x, µA(x)], where an element x belongs to 

the set A to a degree defined by its membership function µA(x). The membership grade, 
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ranging from 0 to 1, is used to characterize the degree of belief that x belongs to A. The 

fuzzy set theory has been widely used in many engineering and non-engineering fields. 

Examples of the application of fuzzy sets in geotechnical engineering can be found in 

literature (e.g., Juang et al. 1991; Juang et al. 1992a,b; Valliappan and Pham 1995; Chen 

and Juang 1996; Juang and Elton 1996; Juang et al. 1998; Dodagoudar and 

Venkatachalam 2000; Peschl and Schweiger 2003; Saboya et al. 2006).  

For routine geotechnical uncertainty modeling, use of a subset of a fuzzy set, 

called fuzzy number, to represent an uncertain soil parameter may be sufficient (Juang 

and Elton 1996). A fuzzy number is a fuzzy set that is normal and convex—the shape of 

the membership function is single humped and has at least one value whose membership 

grade (or degree of belief) is 1. Figure 4.3(a) shows an example of a fuzzy number. If 

there is no reason to suggest otherwise (because of lack of data), the shape of the 

membership function may be assumed to be triangular, as shown in Figure 4.3(a), 

because of its simplicity in formulation and ease of computation (Juang et al. 1998). The 

triangular fuzzy number has been shown to be useful in many engineering applications 

(Elton et al. 2000). A triangular fuzzy number is characterized by three values: a lower 

bound, an upper bound, and a mode (most probable value). The mode has a membership 

grade of 1, the highest possibility, to represent uncertain soil parameter. As the value of 

the parameter departs from the mode, the degree of belief for this value to represent the 

soil parameter decreases, and when the value reaches the lower bound (or the upper 

bound), the degree of belief is reduced to zero.   
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Figure 4.3: Example of triangular fuzzy number and α-cut interval. 

 

 

The concept of a simple representation of an uncertain soil parameter is not new.  

In a widely cited paper, Duncan (2000) proposed the concept of the highest conceivable 
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value and lowest conceivable value as a way to estimate the uncertainty of a soil 

parameter. He initially suggested that the standard deviation (σ ) of a soil parameter may 

be estimated by taking the difference between the highest conceivable value and the 

lowest conceivable value and dividing it by 6. However, in the field of geotechnical 

engineering, lack of sufficient number of observations is often a norm rather than 

exception; as such, the variation of soil parameters can often be underestimated. Thus, it 

would be more appropriate to adopt a divider of less than 6 [for example, 4, as later 

recommended by Duncan (2001)].  

In many cases, the standard deviation may also be estimated by adopting the 

published coefficients of variation (COV) on a given soil parameter (e.g., Harr 1987; 

Phoon and Kulhawy 1999a). Of course, these COV values may not be accurate for local 

soils and some adjustment may be needed. Furthermore, the mean ( µ ) of the parameter 

of concern may be computed from a limited number of data points or simply estimated as 

the most probable value. With knowledge of the standard deviation and mean, simple 

reliability methods such as the first order second moment (FOSM) method can be used to 

compute the probability of “failure.” 

In this study, however, a different approach is employed. Assuming the engineer 

can estimate a soil parameter with three values, the highest conceivable value (upper 

bound), the lowest conceivable value (lower bound), and the most probable value (mode), 

then a triangular fuzzy number as illustrated in Figure 4.3(a) can be readily defined. 

Generally, the most probable value (mode) can be fairly accurately estimated by taking 

the mean of the available data (even with only a few data points). The upper and lower 
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bounds can be estimated based on published coefficient of variation (which yields 

standard deviation), for example, by taking ±2 standard deviations from the mean. The 

estimate of the mode and the upper and lower bounds with very limited data should be 

guided by local experience and engineering judgment. With the estimate of the mode, 

lower bound, and upper bound, the soil parameter can be modeled with a triangular fuzzy 

number.  

If the data are lacking or insufficient to fully define a probability distribution, as 

in many geotechnical engineering projects due to cost constraints, then as an 

approximation, use of a triangular fuzzy number to model uncertain soil parameter is 

considered appropriate. Such use of a fuzzy number allows us to analyze the effect of 

uncertainty and compute the probability of serviceability failure in an efficient way. Of 

course, probabilistic analysis of braced excavations can also be effectively analyzed using 

the probability theory (e.g., Baroth and Malécot 2010).  

 

Fuzzy data processing by means of vertex method 

Almost all routine geotechnical analyses are performed with deterministic models.  

If the input soil parameters are uncertain and take fuzzy numbers as their values, the 

output of the deterministic model will be a fuzzy number (or fuzzy numbers). In this case, 

uncertainties in the input parameters are propagated through the solution processes; and 

in this study, the processes primarily involve the finite element solution of wall and 

ground responses in braced excavations.  

The fuzzy finite element approach (FFEA) is taken in this study to handle the 
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uncertainty propagation through the finite element solution. To propagate fuzzy input 

through the FEM code, the vertex method proposed by Dong and Wong (1987) is adopted. 

This method is based on the α-cut concept. As shown in Figure 4.3(b), at a membership 

grade of iα , an interval with a lower bound of 
i

xα
−  and an upper bound of 

i

xα
+  can be 

formed.  Mathematically, it can be shown that any fuzzy number can be represented by a 

set of α-cut (or α-level) intervals with α ranging from 0 to 1. Thus, to propagate fuzzy 

input through the FEM code, fuzzy numbers are first discretized into a set of α-cut 

intervals (for example, taking ∆α at 0.2 for α ranging from 0 to 1 yields 6 different levels, 

α = 0, 0.2, 0.4, 0.6, 0.8, and 1.0). This changes the analysis from the operation of fuzzy 

numbers into the operation of intervals. However, the traditional interval analysis cannot 

handle complex computation processes that are involved in finite element solutions. The 

vertex method removes this difficulty with an effective “sampling” technique.  

At each α-level, the intervals of the fuzzy input variables are obtained and the 

combinations of vertexes (i.e., the lower bounds and the upper bounds of the α-cut 

intervals of all fuzzy input) are determined. Given n fuzzy input variables, the number of 

combinations of vertexes is 2
n
. Each vertex represents a set of fixed values of input 

variables that can be readily entered into the FEM code for a deterministic analysis. Each 

of the 2
n
 combinations of vertexes are used one-by-one in the FEM analysis, which yields 

a set of 2
n
 solutions.  Taking the minimum and the maximum of these solutions, an 

interval is obtained at the specified α-level. Dong and Wong (1987) has proven 

mathematically that at a given α-level, the interval solution obtained with this vertex 

method is an exact solution. Repeating the above process for a set of α values, a set of 
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interval solutions are obtained. Recalling that a fuzzy set is defined by a set of paired 

values [x, µA(x)], thus the lower bounds and the upper bounds of these intervals along 

with the corresponding α values define a fuzzy number that represents the outcome of the 

fuzzy FEM analysis.  

 

Define fuzzy 

 number su /σ'v 

Define fuzzy 

number Ei /σ'v 

Vertex method 

α -levels: 0, 0.2, 0.4, 0.6, 0.8, and 1.0 

FEM analysis for wall deflection and 

ground settlement using PLAXIS 

α -cut intervals 

of maximum 

ground settlement, 

δvm 

α -cut intervals 

of maximum  

wall deflection, 

δhm 

Fuzzy number δhm Fuzzy number δvm 

4 vertexes for eachα -level 

(4 combinations of su /σ'v and Ei /σ'v) 

Non-fuzzy 

parameters 

 
 

Figure 4.4: Vertex method for fuzzy FEM analysis of braced excavation. 

 



 91 

It is noted that the output fuzzy number is generally not sensitive to the number of 

α-levels, which depends on the magnitude of ∆α, adopted for discretization of fuzzy input 

variables. For most geotechnical problems, use of ∆α = 0.2 is adequate (see Figure 4.4). If 

in doubt, however, a sensitivity analysis can be performed using smaller ∆α values to 

confirm the convergence in the solution.   

In previous studies by Hsiao et al. (2008), wall and ground responses are reported 

to be strongly affected by variation in the normalized undrained shear strength ( vus σ ′/ ) 

and the normalized initial tangent modulus ( viE σ ′/ ). In this study, to deal with uncertain 

parameters using the proposed methodology, these two parameters are treated as fuzzy 

parameters and all other factors such as the stiffness of wall and strut, the excavation 

depth and width, etc. are treated as non-fuzzy parameters. Figure 4.4 shows a flowchart 

depicting the process of fuzzy data propagation through the FEM code by means of the 

vertex method.  

 

Interpretation of the resulting fuzzy number 

The resulting fuzzy number, obtained by applying the vertex method to a 

deterministic approach (such as Plaxis
TM

 solution), reflects the uncertainty in the model 

output. In this study, the model output is the maximum wall deflection and the maximum 

ground settlement in a braced excavation. An important design consideration is to ensure 

the probability of exceeding the maximum wall deflection (or ground settlement) is less 

than a threshold value. To this end, a simple way to compute such probability from the 

resulting fuzzy number is needed. Using the resulting fuzzy number shown in Figure 4.5 
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as an example, the probability of exceeding a limiting value can be computed as follows: 

 

( )
F

E
E

A

A
xxpp =>= lim             (4.4) 

 

where AE is the shade area depending on the limiting value limx  and AF is the entire area 

under the “curve” of the fuzzy number.  
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Figure 4.5: Fuzzy number that represents the model output. The shaded area normalized 

to the full area under the shape is the probability of exceeding the limiting response (xlim). 

 

It is noted that in Figure 4.5, normalization of the shade area with respect to the 

entire area under the curve is needed as the latter is not necessarily equal to 1. Although a 

more elegant formulation of the failure probability can be found in the literature (for 

example, Guo and Lu 2003), Eq. (4.4) is easy to follow and implement. 
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Case Study – TNEC Excavation Case 

The TNEC excavation case in Taiwan (Ou et al. 1998) is used herein as an 

example to illustrate the fuzzy finite element approach (FFEA) for the analysis of wall 

and ground responses in braced excavations in clay with a consideration for its spatial 

variability.   

In this case, the excavation width is 41.2 m and the length of the diaphragm wall 

is 35 m. The excavation is carried out using a top-down construction method in seven 

stages with support provided by steel struts and floor slabs. Excavation depths and 

support locations are detailed in Table 4.1. Soil parameters used in the FEM code are 

shown in Table 4.2.  In this study, the undrained condition for clay layers is modeled.  

It is noted that the second layer (8 m – 33m) in the soil profile is a clay layer that 

dominates the maximum wall and ground responses in this excavation. Hsiao et al. (2008) 

estimated the coefficient of variation (COV) of the strength and stiffness parameters of 

Taipei clay as 0.16.  In the present study, we consider the uncertainty in soil parameters 

as well as their spatial variability in the FEM solution. To model the uncertainty of this 

clay soil, the normalized undrained shear strength ( vus σ ′/ ) and normalized initial tangent 

modulus ( viE σ ′/ ) are treated as fuzzy parameters and all other factors such as the 

stiffness of the wall and strut, the excavation depth and width, etc. are treated as constant 

parameters in the analysis. 
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Table 4.1: Propping arrangement for the excavation and the stiffness of struts and floor 

slabs in the FEM analysis in TNEC case (after Kung et al. 2007a). 

 

Stage 
Excavation depth 

H (m) 

Depth of struts 

Hp (m) 

stiffness of struts and 

slab floor,  

EA [kN/(m·m
-1

)] 

1 2.8 2.0
*
 8240 

2 4.9 3.5
**

, 0
**

 125568 

3 8.6 7.1
**

 125568 

4 11.8 10.3
**

 125568 

5 15.2 13.7
**

 125568 

6 17.3 16.5
*
 24035 

7 19.7 17.1
**

 125568 

 

Note: *Steel strut; **Floor slab.  

 

 

 

 

Table 4.2: Soil profile and soil model parameters used in FEM analysis  

(from Kung et al. 2007a). 

 

Depth(m) 
Soil 

type 
Soil model 

γ  

(kN/m
3
) vus σ ′/  viE σ ′/  φ ′ (º) K=Kur n 

8.0-33.0 CL MPP 18.9 0.32 672    

37.5-46.0 SM Duncan-Chang 19.6   32 2500 0.5 

0-5.6 CL MPP 18.3 0.32 672    

35.0-37.5 CL MPP 18.2 0.34 714    

5.6-8 SM Duncan-Chang 18.9   31 750 0.5 

33.0-35.0 SM Duncan-Chang 19.6   31 2500 0.5 

 

Note: 

φ ′ = effective friction angle; Kur = elastic modulus of unloading-reloading stages; n = 

elastic modulus exponent; MPP = Modified Pseudo Plasticity model. 

 

Averaging the effect of spatial variation – A checkerboard study 

The effect of spatial variation of soil parameters may be analyzed with a 

checkerboard analysis (Griffiths and Fenton 2009). In this approach, the random field is 
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meshed to many small square areas where the upper bound and the lower bound of the 

soil parameters alternate in the two-dimensional array. The soil parameters in the 

horizontal direction have much larger scales of fluctuation and are generally spatially 

correlated when compared with the vertical direction (Phoon and Kulhawy 1999a). 

Therefore, for simplicity, only the variability through the excavation depth is considered 

in this study. The upper and lower bounds of the soil parameters ( vus σ ′/  and viE σ ′/ ) 

are assumed to be the mean, plus and minus one standard deviation respectively, and they 

only vary vertically on the checkerboard, as shown in Figure 4.6.   

Five scenarios are examined in the checkerboard study using the FEM code. In 

the “base” scenario (denoted as S0), the entire clay layer is assigned the mean soil 

parameters ( vus σ ′/  and viE σ ′/ ) as in a deterministic analysis. In the first scenario (S1), 

the scale of fluctuation is assumed to be infinite and the two soil parameters, vus σ ′/  and 

viE σ ′/ , are taken as the mean, minus and plus one standard deviation [S1(a) and S1(b), 

respectively].  In the second scenario (S2), the clay layer is subdivided into four 

sub-layers. The upper bound and lower bound of vus σ ′/  and viE σ ′/  alternate on the 

checkerboard and thus there are two sub-scenarios in the following sequence: 

“upper-lower-upper-lower bound sequence” [S2(a)] and “lower-upper-lower-upper bound 

sequence” [S2(b)]. In the third and fourth scenarios [S3 and S4], the clay layer is 

subdivided into eight and sixteen sub-layers respectively, with a similar alternating 

sequence of lower and upper bound. Examples of scenarios S3(a) and S4(a) are shown in 

Figures. 4.6(a) and 4.6(b), respectively, to illustrate the schematic of the checkerboard 
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study on the TNEC excavation case.   

 

 (a) Scenario Three: 8 sub-layers, Case (a) [denoted as S3(a)] 
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(b) Scenario Four: 16 sub-layers, Case (a) [denoted as S4(a)] 

 
 

Figure 4.6: Schematic of checkerboard study on the variation of soil parameters in an 

FEM model of TNEC case. 
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Figure 4.7: Influence of scale of fluctuation on wall deflection and ground settlement. 
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In reference to the “base” scenario, the other four scenarios are set up so that the 

scale of fluctuation decreases gradually from S1 to S4. Here, S1 is viewed as equivalent 

to the spatially-constant condition, while S4 has the smallest scale of fluctuation among 

all the scenarios with soil parameters varying drastically from sub-layer to sub-layer in 

the vertical direction. The rationale behind the division of the clay layer in the 

checkerboard study as described previously is consistent with the random field analysis 

conducted by Griffiths et al. (2006) ‒as the scale of fluctuation approaches to infinity, the 

shear strength at each point in the random field becomes uniform; on the other hand, as 

the scale of fluctuation approaches zero, the shear strength at each point in the random 

field becomes independent and fluctuates rapidly from point to point. 

The finite element analysis under different scenarios is aimed at investigating the 

averaging effect of spatial variation. The results of wall and ground responses through the 

checkerboard study are shown in Figures 4.7(a) and 4.7(b), respectively. The responses 

computed with the “base” scenario are shown with solid curves in these figures. The 

variations in wall deflection and ground-surface settlement for other scenarios are 

observed [for example, comparing the difference between S1(a) and S1(b), and between 

S2(a) and S2(b), and so on].  The variation in responses is the greatest under scenario S1, 

in which the scale of fluctuation is assumed to be infinite (and thus the soil parameters 

are spatially constant). The variation in responses decreases from S1 to S4 as the spatial 

variability increases (or the scale of fluctuation decreases). In conclusion, as the scale of 

fluctuation becomes smaller, the variation of wall and ground responses becomes smaller.   

Since the results from the previous geotechnical random field studies have shown 
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that variation of the output increases with variability of the input (e.g., Griffiths et al. 

2006), the conclusion from the checkerboard study in this study is consistent with the 

concept of the spatial averaging effect: a smaller scale of fluctuation results in a larger 

variance reduction in soil parameters, which would yield a smaller variation of wall and 

ground responses.   

The results of the checkerboard study show a strong averaging effect of the 

spatially random soil parameters exists in the braced excavation problem. Even though 

the checkerboard analysis is a simplified simulation of the real random field of soils, it 

ascertains the validity of the variance reduction technique in the finite element analysis of 

braced excavation in clays. This provides the basis for the proposed FFEA approach that 

takes into account the spatial variability of soil parameters.  

 

Fuzzy FEM analysis of TNEC case considering spatial variability 

As noted previously, the goal of this study is to demonstrate the proposed 

procedures for computing the probabilities of exceeding the limiting wall and ground 

responses in a braced excavation while taking into account spatial variability in key soil 

parameters. For this case study, the TNEC excavation, the normalized undrained strength 

vus σ ′/  and the normalized initial tangent modulus viE σ ′/  of the clay are vus σ ′/  = 

0.32 and viE σ ′/  = 672, respectively (Kung et al. 2007a). The standard deviations of the 

two parameters are estimated to be 0.05 and 108 respectively, based on a reported 

coefficient of variation (COV) of 0.16 (Hsiao et al. 2008). The two soil parameters are 

treated here as triangular fuzzy numbers, since the available data are not sufficient to 
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characterize them in terms of probability distributions.   
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Figure 4.8: Fuzzy input parameters at different scales of fluctuation. 

 

To consider the effect of spatial variability, let’s first assume that the field has an 
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infinite scale of fluctuation. The variance reduction factor ( 2Γ ) in this case is equal to 1 

(i.e., no reduction) and thus the standard deviations for vus σ ′/  and viE σ ′/  would be 

0.05 and 108, respectively. If we assume the mean plus and minus 2 times the standard 

deviation for the lower and upper bound, and conservatively assume the mode to be 

slightly less than the mean, then the fuzzy numbers for vus σ ′/  and viE σ ′/  can be 

readily constructed [see the triangular membership function labeled a-m-b in Figures 

4.8(a) and 4.8(b), respectively]. Of course, slightly different fuzzy numbers may be 

obtained by different individuals based on their own experience. This is the nature of 

geotechnical practice, due to limited data availability. Fortunately, similar conclusions are 

usually reached even with some differences in the assumed fuzzy numbers. When in 

doubt, however, a series of sensitivity analyses with different assumed fuzzy numbers 

should be performed to remove or reduce the uncertainty in the solution. 

Analysis of the braced excavation in the TNEC case is carried out using the FEM 

code. To deal with the fuzzy input, the vertex method is employed using the algorithm 

shown previously in Figure 4.4. The resulting fuzzy numbers obtained from the FEM 

code, as shown in Figure 4.9, represent the maximum wall deflection ( hmδ ) and 

ground-surface settlement ( vmδ ).  Under this scenario of an infinite scale of fluctuation, 

the computed maximum wall deflection ( hmδ ) is described by the triangular membership 

function labeled a-m-b in Figure 4.9(a), and the computed ground-surface settlement ( vmδ ) 

is described by the triangular membership function labeled a-m-b in Figure 4.9(b).   
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Figure 4.9: Resulting fuzzy numbers for maximum wall deflection and ground-surface 

settlement. 

 

It should be noted that the results shown in Figure 4.9 were obtained using the 
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vertex method with discretization increment ∆α = 0.2 (Figure 4.4). A series of analyses 

were also carried out using ∆α = 0.1 and 0.05 for discretization of the input fuzzy 

variables. The output fuzzy numbers for maximum wall deflection ( hmδ ) and 

ground-surface settlement ( vmδ ) for this TNEC case remain nearly the same with smaller 

∆α values. Thus, in this case, the analysis of wall deflections of ground settlement in an 

excavation, the use of ∆α = 0.2 is adequate.  

The entire processes described in the above FFEA analysis can be repeated for 

any assumed scale of fluctuation.  For simplicity, we can assume the scales of 

fluctuation of the two soil parameters in this TNEC case are the same; that is, 

vivu Es σσ θθθ ′′ == // . For demonstration purposes, let’s repeat the FFEA analysis for three 

additional scales of fluctuation (2.5m, 5m, and 25m). For each scenario involving a 

different scale of fluctuation, the variance reduction factor (Γ
2
) is first computed with Eq. 

(4.2), which requires knowledge of the characteristic length, L. At the TNEC site, and 

within the length of the diaphragm wall, the deposit consists primarily of a clay layer, the 

thickness of which is approximately equal to 90% of the wall length. Sensitivity analysis 

using the FEM code shows the clay layer dominates the wall and ground responses in this 

excavation, as expected. Therefore, it is considered appropriate to estimate the 

characteristic length L according to the procedure described previously (in reference to 

Figure 4.2). Following this argument, L is estimated to be 71 m in this case.  

Once the variance reduction factor is estimated for a given scale of fluctuation, 

the “reduced” standard deviations of the soil parameters ( vus σ ′/  and viE σ ′/ ) are then 
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computed with Equation (4.3). Thus, the fuzzy numbers that represent vus σ ′/  and 

viE σ ′/  for any given scale of fluctuation can be constructed with the results shown in 

Figures 4.8(a) and 4.8(b), respectively. Next, the analyses with the FEM code in the 

framework of the vertex method (Figure 4.4) proceeds. The resulting fuzzy numbers that 

represent maximum wall deflection ( hmδ ) and ground-surface settlement ( vmδ ) are shown 

in Figures 4.9(a) and 4.9(b), respectively.   

As shown in Figures 4.9(a) and 4.9(b), the variability of maximum wall deflection 

and ground-surface settlement increase significantly with the scale of fluctuation. The 

variance reduction in cases of smaller scales of fluctuation are reflected in reduced 

variability of the computed hmδ  and vmδ . Thus, neglecting spatial variability of input 

soil parameters (by assuming θ = ∞ ) can lead to an overestimation of variation of 

computed wall and ground responses in a braced excavation. 

 

Probabilities of exceeding the specified limiting wall and ground responses 

Because the predicted wall and ground responses in a braced excavation are fuzzy 

numbers, the assessment of whether predicted responses are excessive and intolerable can 

best be expressed in a probability term. In fact, the probability of exceeding a limiting 

value, such as limiting wall deflection ( hmlim,δ ) or limiting ground-surface settlement 

( vmlim,δ ), can be computed easily with Eq. (4.4). 

For illustration purposes, the probabilities of exceedance are computed for the 

TNEC case under a few assumed limiting wall and ground responses. The results are 
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plotted in Figures 4.10(a) and 4.10(b) for the probabilities of exceeding the chosen 

limiting wall deflection and ground settlement, respectively. The probability of 

exceedance is seen to decrease with the chosen limiting deformation (either wall 

deflection or ground settlement) which is consistent with the previous study (Hsiao et al. 

2008). The effect of the scale of fluctuation on the probability of exceedance is clearly 

observed. When relatively smaller limiting hmlim,δ  and vmlim,δ  are adopted, the scenario 

with a smaller scale of fluctuation yields a higher probability of exceedance. The trend 

reverses when relatively larger limiting hmlim,δ  and vmlim,δ  are adopted. For the 

probability of exceeding the limiting wall deflection, the reversal of the trend occurs 

when hmlim,δ  ≈ 108 mm is adopted. Similarly, for the probability of exceeding the 

limiting ground settlement, the reversal of the trend occurs when vmlim,δ  ≈ 72 mm is 

adopted. Of course, this observation may not be generalized as it may be specific to the 

TNEC case. Further studies are needed to confirm this observation. Nevertheless, the 

results show that neglecting spatial soil variability in the analysis can lead to either 

overestimation or underestimation of the probability of exceedance, depending on the 

chosen limiting wall and ground responses. Thus, it is important to assess spatial 

variability during site investigation and to incorporate this variability in the probability 

analysis.   
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Figure 4.10: Probability of exceedance computed at various levels of limiting wall 

deflection and ground surface settlement. 
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Summary and limitations of the proposed framework 

The proposed framework allows for evaluation of the probability of serviceability 

failure (i.e., the probability of exceeding limiting wall and ground responses) in a braced 

excavation. This framework consists of the following elements: 1) finite element method 

(FEM) for analyzing the wall and ground responses in a braced excavation, 2) fuzzy set 

modeling of parameter uncertainty, 3) spatial averaging technique for handling soils 

spatial variability, 4) vertex method for propagating fuzzy input through FEM model, and 

5) interpretation of fuzzy output. The proposed framework represents an efficient use of 

various existing methods for solving a complex braced excavation problem.  

The limitations of the proposed framework stem mostly from the limitations of 

component methods employed in this framework and the assumptions that are made in 

using these methods. These limitations are briefly discussed in the following.  

1) The accuracy of the computed probability of exceedance (i.e., exceeding 

limiting wall and ground responses) depends on the accuracy of the FEM 

model and the accuracy of the derived soil parameters. We assume that the 

two-dimensional (2-D) FEM solutions for wall and ground movements in a 

braced excavation obtained with Plaxis
TM

 are reasonably accurate.  

2) Fuzzy set modeling of parameter uncertainty represents an approximation that 

stems from the use of insufficient number of data that necessitates an exercise 

of engineering judgment. The accuracy of the computed probability of 

exceedance can certainly be affected by this approximation. On the other hand, 

fuzzy set modeling allows for an estimation of the probability of exceedance 
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with limited data. Furthermore, the fuzzy FEM analysis is well-defined and 

introduces no additional error, once uncertain parameters are properly 

modeled with fuzzy sets. 

3) The computed probability of exceedance can also be affected by the 

assumptions made in modeling spatial variability. In this study, the variance 

function is defined with an assumption that the autocorrelation function takes 

the form of a single exponential model. Although the effect of the type of 

autocorrelation function (for example, constant, triangular, or exponential) 

was found insignificant in a recent study of bearing capacity problems (Most 

and Knabe 2010), this issue needs further investigation. Furthermore, in this 

study the soil variability is considered only in the vertical direction. Although 

the horizontal scale of fluctuation for clay is generally much greater than the 

vertical scale of fluctuation (Phoon and Kulhawy 1999a), and thus, its effect is 

far less significant, the effect of the spatial variability assumption on the 

computed probability of exceedance needs further investigation (by 

considering 2-D or 3-D spatial variability models).  

     

Summary 

The focus of this chapter is to demonstrate a simplified approach for evaluating 

the probability of exceeding the specified limiting wall and ground response in a braced 

excavation as a means to prevent the excavation failure or damage to the adjacent 

infrastructures.  This approach (FFEA) consists of the following elements: 1) finite 
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element method (FEM) for analyzing the wall and ground responses in a braced 

excavation, 2) fuzzy set representation of parameter uncertainty, 3) spatial averaging 

technique for handling soil variability, 4) vertex method for propagating fuzzy input 

through FEM model, and 5) fuzzy probabilistic interpretation of the fuzzy output. A 

well-documented case history is analyzed to demonstrate this simplified approach. The 

results show that the proposed framework is effective for assessing probability of 

exceeding the limiting wall and ground responses in a braced excavation. 

Neglecting spatial variability of input soil parameters can lead to an 

overestimation of variation of wall and ground responses in a braced excavation. The 

effect of the scale of fluctuation on the “probability of exceedance” (exceeding the 

specified limiting response) is also observed in this study.  Neglecting spatial variability 

in the FFEA analysis can lead to either overestimation or underestimation of the 

probability of exceedance, depending on the specified limiting response. Thus, it is 

important to assess spatial variability during site investigation and to incorporate this 

variability into the FFEA analysis of braced excavation.  

The results presented in this chapter are limited to one-dimensional (1-D) spatial 

variability with an assumed exponential autocorrelation function. The effects of adopting 

other autocorrelation functions and/or considering 2-D (or 3-D) spatial variability on the 

computed probability of exceedance is beyond the scope of this study; however, further 

investigation of these issues is warranted.  
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CHAPTER V 

 

EFFECT OF SMALL SAMPLE SIZE ON THE PROBABILISTIC SERVICEABILITY 

ASSESSMENT
 ∗

 

 

Introduction 

An accurate calculation of the probability of exceeding a limiting deformation 

requires an accurate analysis model for the wall and ground responses (which can lead to 

a well-characterized and proper limit state or performance function) and an accurate 

statistical characterization of the input soil parameters. In this chapter, the KJHH model 

(Kung et al. 2007b), a semi-empirical model that was generated with hundreds of finite 

element simulations and validated with well-documented case histories, will be used for 

computing the excavation-induced wall and ground responses in an excavation in clays. 

The KJHH model is well characterized, and thus, the focus of this chapter is on parameter 

uncertainty and its effect on the computed probability of exceedance.  

The sources of parameter uncertainty include inadequate site investigation, 

measurement errors, as well as inherent and spatial variability of soil. Statistical methods 

have long been used for characterization of parameter uncertainty in geotechnical 

engineering (e.g., Lee et al. 1983; Harr 1987; Baecher and Christian 2003; Ang and Tang 

2007; Fenton and Griffiths 2008). Reliability analysis offers a means to explicitly account 

for the uncertainty in soil parameters (Harr 1987; Ang and Tang 2007). Previous studies 

on reliability analysis of excavation-induced deformation showed that uncertainties in 

                                                 
∗ A similar form of this chapter has been submitted at the time of writing: Luo Z, Atamturktur S, Juang 

CH. Bootstrapping for characterizing the effect of uncertainty in sample statistics – A case study of the 

serviceability failure probability in a braced excavation.  
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soil parameters can have a significant effect on the probability of serviceability failure in 

a braced excavation (e.g., Hsiao et al., 2008).  

Many reliability analyses are based on sample statistics of soil parameters that are 

derived from very limited data. These sample statistics are often assumed, out of 

necessity, to be the population statistics. Thus, the accuracy of a reliability analysis is 

affected by: (1) the accuracy of sample statistics (including mean and standard deviation 

in most applications) of the uncertain soil parameters, and also (2) type of the probability 

distribution of these parameters that often has to be assumed (Schweiger and Peschl 

2005). It is noted, however, that most soil parameters can be adequately modeled with a 

lognormal distribution (Phoon and Kulhawy 1999b) or truncated normal distribution 

(Most and Knabe 2010). Thus, the focus of this study is to examine the effect of 

uncertain sample statistics on the result of the reliability analysis. 

Because of budget constraints, the geotechnical engineer often has to derive 

sample statistics from a small sample (i.e., a small data set), which can lead to uncertainty 

in these statistics. Thus, the effect of this uncertainty on the probability of failure should 

be examined. In this study, we investigate this effect using the bootstrapping technique 

(Efron 1979). To demonstrate this technique, a case study investigating the effect of 

uncertain sample statistics of soil parameters on the computed probability of 

serviceability failure in a braced excavation is presented. Unlike traditional reliability 

analysis, where a single fixed probability is obtained with a set of fixed sample statistics, 

reliability analysis with the bootstrap method explicitly considers the uncertainty in the 

derived sample statistics. The latter approach enables an interval estimate of the failure 
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probability at a specified confidence level. The information gained through this approach 

is in the form of a confidence interval and can enable the engineer to make a more 

informed design decision. 

  

Performance Function for Probability of Exceedance 

As noted previously, the KJHH model (Kung et al. 2007b) is employed herein to 

compute the maximum wall deflection ( hmδ ) and maximum ground-surface settlement 

( vmδ ) in a braced excavation in clays. This model was derived based on multivariate 

nonlinear regression analysis with data derived from thirty-three excavation histories and 

hundreds of numerical simulations using finite element method (FEM). This model 

consists of a set of equations that collectively can be used to compute hmδ  and vmδ  

based on the following parameters: excavation depth (H); excavation width (B); the 

system stiffness [S = 4

w avgEI hγ  as defined in Clough and O’Rourke (1990), where E is 

the Young’s modulus of wall material, I is the moment of inertia of the wall section, 
w

γ  

is the unit weight of water, and havg is the average support spacing]; the normalized clay 

layer thickness wallclay HH /Σ  [where wallH  is the wall length and
 clayHΣ  is the total 

thickness of all clay layers within the wall length; in a clay only deposit, this ratio is 

equal to 1]; the normalized undrained shear strength (
vu

s σ ′ ); and the normalized initial 

tangent modulus ( /
i v

E σ ′ ). The maximum lateral wall deflection ( hmδ ) is determined as: 

 

0 1 1 2 2 3 3 4 4 5 5 6 1 2 7 1 3 8 1 5hm a a X a X a X a X a X a X X a X X a X Xδ = + + + + + + + +
  

 (5.1) 
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where ( )1X t H= , ( )( )4

2 /ln avgwhEItX γ= , ( )2/3 BtX = , ( )vustX σ ′= /4 , ( )viEtX σ ′= /5 . 

The mean and standard deviation of the model uncertainty or bias factor (BF) of this 

model are estimated to be at 1.0 and 0.25, respectively (Kung et al. 2007b). The 

coefficients for Eq. (5.1) determined through the least-square regression are as follows: a0 

= −13.41973, a1 = −0.49351, a2 = −0.09872, a3 = 0.06025, a4 = 0.23766, a5 = −0.15406, 

a6 = 0.00093, a7 = 0.00285 and a8 = 0.00198. Variables ( )5,1=iX i  are obtained 

through transformation: 

 

( ) 32

2

1 bxbxbxtX iiii ++==           (5.2) 

 

where ( )5,1=ixi  is the corresponding input parameter. The coefficients for the 

transformations in this model are summarized in Table 5.1.  

 

Table 5.1: Coefficients for transformation of input variables (Kung et al. 2007b). 

 

Coefficients in Eq. (5.2) 
Variables x  

1b  2b  3b  

H  (m) -0.4 24 -50 

)ln( 4

avgwhEI γ  11.5 -295 2000 

2/B  (m) -0.04 4 90 

vus σ ′  3225 -2882 730 

viE σ ′  0.00041 -1 500 
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To compute the maximum ground-surface settlement ( vmδ ), the KJHH model 

employs a deformation ratio R defined as follows: 

 

3218

3

373263152143322110 YYYcYcYYcYYcYYcYcYcYccR ++++++++=   (5.3) 

 

where 
wallclay1

HHY /∑= , vusY σ ′=2 , viEY σ ′= 10003 , and the coefficients for Eq. (5.3) 

determined through the least-square regression are as follows: c0 = 4.55622, c1 = 

−3.40151, c2 = −7.37697, c3 = −4.99407, c4 = 7.14106, c5 = 4.60055, c6 = 8.74863, c7 = 

0.38092 and c8 = −10.58958. Then, the maximum ground-surface settlement ( vmδ ) is 

obtained: 

 

hmvm R δδ ⋅=          (5.4) 

 

The mean and standard deviation of the model uncertainty or bias factor (BF) of this 

model are estimated to be at 1.0 and 0.34, respectively (Kung et al. 2007b).  

With the above set of equations [Eqs. (5.1) through (5.4)], the maximum wall 

deflection ( hmδ ) and maximum ground-surface settlement ( vmδ ) in an excavation in clays 

can be computed. These equations provide a fairly accurate estimate of the wall and 

ground responses. If so desired, more sophisticated methods such as well-calibrated FEM 

models can be used for determining the wall and ground responses. Nevertheless, the 

simplified approach using the above set of equations allows us to easily set up a 

performance function for evaluating the probability of exceeding the specified limiting 

wall and ground response:  
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  ( ) lim 0G x y y= − =                               (5.5) 

 

where G(x) is the limit state or performance function, x is a vector of parameters, y is the 

response (the maximum wall deflection or ground settlement) computed with the KJHH 

model, and limy  is the specified limiting response. 

 

Point Estimate Method for Uncertainty Propagation and Probability of Exceedance 

For a given braced excavation in clay, Hsiao et al. (2008) found that among all 

input parameters of the KJHH model, the wall and ground responses are most sensitive to 

the variation in 
vu

s σ ′  and /
i v

E σ ′ . Thus, for a given design of a braced excavation, all 

parameters but 
vu

s σ ′
 

and /
i v

E σ ′  may be considered as fixed variables, and as such, 

the wall and ground responses become only a function of these two soil parameters and 

the bias factor. For simplicity, the two random variables /u vs σ ′  and viE σ ′/
 

are denoted 

as x1 and x2 respectively; meanwhile, the model bias factor (BF) of the KJHH model is 

denoted as x3. Thus, the response y, either as the maximum wall deflection hmδ
 

or the 

maximum ground settlement vmδ , can be written as ( )321 ,, xxxfy = . Many different 

methods may be used to compute the mean and standard deviation of the response y. In 

this study, the point estimate method (PEM; see Rosenblueth 1975; Harr 1987; Christian 

and Baecher 1999) is chosen for this task for its simplicity and ease in Excel® 

implementation. With the PEM approach, the m
th

 moment for y can be readily expressed 

as (Harr 1987):  
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mmmm

mmmmm

ypypypyp

ypypypypyE

−−−−−−+−−+−−−+−−+−++−++−

−−+−−++−++−+−++−++++++++

++++

+++=

      

       ][
                  (5.6) 

where 

( )21 1 2[ ], [ ], [ ]y f x x x x x xσ σ σ± ±± = ± ± ±3 3
                       (5.7) 

( )
323121 ,,,1

8

1
xxxxxxp ρρρ ±±±=±±±                                   (5.8) 

 

and where 1x , 2x , 3x , ][ 1xσ , ][ 2xσ , ][ 3xσ are the mean values, and the standard 

deviations, for random variables x1, x2 and x3, respectively; ji ,ρ is the correlation 

coefficient between random variables i and j; sign preceding ji ,ρ  is determined by the 

sign of the multiplication of i and j. In this study, no correlation between BF and each soil 

parameter is assumed, while soil parameters /u vs σ ′  and viE σ ′/  are positively 

correlated (Hsiao et al. 2008).  

Once the first and second moments are obtained, the mean yµ  and the standard 

deviation yσ  of the response y can be computed as follows (Ang and Tang 2007): 

 

][yEy =µ                                       (5.9) 

 

( )22 ][][ yEyEy −=σ                            (5.10) 

 

Although both y and limy in Eq. (5.5) can be treated as a random variable, in this study 

limy  is treated as a constant, as it is almost always specified as a constant in an applicable 
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design code (for example, see Table 1.1). Thus, the reliability index β  can be computed 

as follows: 

 

lim y

y

y µ
β

σ

−
=                     (5.11) 

 

Then, the probability of exceeding the limiting response (
f

p ) can be computed as: 

 

( )lim[ ] 1
f

p P y y β= > = − Φ                  (5.12) 

 

where Φ  is the cumulative standard normal distribution, and in Excel®, it is 

implemented with a built-in function NORMSDIST.  

 

Variation of Sample Statistics Determined by Bootstrapping 

Because of the uncertainties in the adopted analysis model and the input 

parameters, the answer to the question of whether the maximum wall or ground response 

will exceed the specified limiting value in a given excavation design cannot be expressed 

as a simple “yes” or “no” with certainty. A logical, and more appropriate, answer would 

be a probability of exceedance, which gauges the likelihood of exceeding the specified 

limiting values. In other words, the uncertainty leads us to the use of probability as an 

answer. Of course, the probability is an estimate of the likelihood before the “event;” 

after the event, it can only be equal to either 0 or 1.  

In the procedure and formulation presented previously, the knowledge of mean 

and standard deviation of the two key soil parameters, /u vs σ ′  and viE σ ′/ , is needed. 
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Because geotechnical parameters, such as /u vs σ ′  and viE σ ′/ , are typically evaluated 

with a small sample size, the derived sample statistics (such as mean and standard 

deviation) are subjected to error. Therefore, the variation from the “true” mean and 

standard deviation (i.e., those of the population) is expected. As a result of this inevitable 

uncertainty in sample statistics, the probability of exceedance evaluated with the previous 

procedure can no longer be adequately expressed as a single, fixed value. By considering 

the effect of the variation of the derived sample statistics (mean and standard deviation), 

an estimate of the variation of the computed probability of exceedance (through an 

evaluation of reliability index), in the form of a confidence interval, can be made. To 

derive the confidence interval of the probability of exceedance, it is first necessary to 

estimate the variation of the derived sample statistics. 

Bootstrapping (Efron 1979) is a technique that can be used to estimate the 

variation of the sample statistics derived from a small sample. To begin with, the original 

set of observations (e.g., soil test data) are denoted as 1X , 2X , ···, nX  and a bootstrap 

sample set jB  with bn  samples is denoted as jB ,1 , jB ,2 , ···, jnb
B , . The number of 

samples bn  in a single bootstrap re-sampling is chosen to be equal to the number of 

observations n in our study. Then, a bootstrap sample set is constructed by random 

re-sampling with replacement from the original observations as illustrated in Figure 5.1.  

With the constructed re-sampling set, the sample statistics of concern (e.g., mean 

value and variance) can be obtained as follows:  
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Observations Bootstrap set j

X 1

X 2

X 3

X 4

X 5

B 1, j = X 4

B 2, j = X 1

B 3, j = X 2

B 4, j = X 5

B 5, j = X 2

 
 

Figure 5.1: Generation of one bootstrap sample from the original observations through 

random choice with replacement (adapted from Most and Knabe 2010). 
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The procedure for re-sampling described above is repeated many times and the 

estimated mean and variance are calculated for each bootstrap sample. To this end, each 

of statistics investigated can be estimated using its mean value, variance, and histogram. 
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Thus, the bootstrap mean and variance estimates of the sample mean value nM  can be 

expressed as follows: 

 

∑
=

≈
sn

j

jn

s

meann B
n

M
1

,,

1
                                  (5.15) 
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n

σ                          (5.16) 

 

Similarly, the bootstrap mean and variance estimates of the sample variance 2

nS  can be 

expressed as follows: 

 

∑
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≈
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n

σ                           (5.18) 

 

in which, sn  is the number of bootstrap sets and is generally chosen very large (e.g., 10
4
) 

to obtain converged results in the statistical analysis (Most and Knabe 2010).  

With the bootstrap method, the variation of the sample statistics of soil parameters 

can be estimated, and their effect on the computed probability of exceedance can be 

determined and expressed in terms of confidence intervals.   

 

Case Study – TNEC Excavation Case 

The Taipei National Enterprise Center (TNEC) case is a well-documented 
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excavation case history (Ou et al., 1998). This excavation in soft to medium clays in the 

Taipei basin was completed in seven stages with the support of steel struts and floor slabs. 

The excavation width is 41.2 m, the final excavation depth is 19.7 m, and the length of 

diaphragm wall is 35 m. The soil profile and the excavation depth of each stage are 

depicted in Figure 5.2.   

 

5

45

40

35

30

25

20

15

10

Depth

(m)
Soil Profile

Excavation

Depth (m)

CL, N = 9 - 11

SM, N = 22 - 24

CL, PI = 13 - 16

      LL = 33 - 36

SM, N = 4 - 11

CL, w = 32 - 40%

       PI = 13 - 16

      LL = 33 - 36

SM, N = 14 -37

Gravel, N > 100

2.8

4.9

8.6

11.8

15.2

17.3
19.7

(Stage 1)

(Stage 2)

(Stage 3)

(Stage 4)

(Stage 5)

(Stage 6)
(Stage 7)

 
 

Figure 5.2: Soil profile and excavation depth of TNEC case: LL,liquid limit; N, blow 

count; PI, plasticity index; w, moisture content (adapted from Kung et al. 2007a). 
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Reliability analysis based on the KJHH model 

The procedure described previously, formulated with Eqs. (5.1) through (5.12), is 

readily applicable for computing the probability of serviceability failure (
f

p ), defined 

herein as the probability of exceeding a specified limiting wall deflection or ground 

settlement. This probability of exceedance can be obtained once the mean and standard 

deviation of the response (i.e., maximum wall deflection and ground settlement) are 

determined. Thus, the key step in this solution process is to determine the mean and 

standard deviation of the response given uncertain soil parameters.  

Assuming that the mean values of vus σ ′/  and viE σ ′/ , denoted as Sµ  and Eµ  

respectively, and the standard deviation of vus σ ′/  and viE σ ′/ , denoted as Sσ  and Eσ  

respectively, are available, the mean value and standard deviation of the maximum wall 

deflection hmδ  (or the maximum ground settlement vmδ ) can be determined with the 

PEM approach. 

For the TNEC case, the sample mean and sample standard deviation of vus σ ′/  

and viE σ ′/  are given in Table 5.2, based on the 17 small-strain triaxial test data on the 

reconstituted and undisturbed clay samples reported by Kung (2003). Taking Sµ  = 0.31, 

Sσ  = 0.038, Eµ  = 581.7 and Eσ  = 129.8, the mean of hmδ , denoted as [ ]hmµ δ , is 

computed to be: [ ]hmµ δ  = 108.8 mm, and the standard deviation of hmδ , denoted as 

[ ]hmσ δ , is computed to be: [ ]hmσ δ  = 38.5 mm. If the limiting wall deflection is taken at 

0.7% fH  (PSCG 2000), where 
fH  is the final excavation depth (

fH  = 19.7 m in this 
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case), the probability of exceeding this limiting wall deflection for the final excavation 

stage can be computed with Eq. (5.12), which yields 
f

p  = 0.22. Similarly, the 

probability of exceeding the specified limiting ground settlement is determined to be 
f

p  

= 0.24. These results of the PEM analysis for the probability of exceedance are 

summarized in Table 5.3.  

 

Table 5.2: Small-strain triaxial test results for Taipei clay (adapted from Kung 2003). 

 

Test No. Type vus σ ′/  viE σ ′/  

1 Reconstituted 0.30 735.0 

2 Reconstituted 0.31 606.7 

3 Reconstituted 0.30 531.0 

4 Reconstituted 0.29 652.5 

5 Reconstituted 0.31 573.5 

6 Reconstituted 0.33 528.0 

7 Reconstituted 0.28 638.1 

8 Reconstituted 0.32 501.4 

9 Reconstituted 0.31 542.5 

10 Undisturbed 0.357 686.2 

11 Undisturbed 0.23 404.6 

12 Undisturbed 0.37 822.1 

13 Undisturbed 0.31 617.2 

14 Undisturbed 0.35 765.5 

15 Undisturbed 0.35 512.4 

16 Undisturbed 0.318 448.1 

17 Undisturbed 0.235 324.8 

Mean  0.31 581.7 

Std. deviation  0.038 129.8 
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Table 5.3: Probability of exceedance in the TNEC excavation using PEM and 

bootstrapping method with 17 data points. 

 

Ground or wall response hmδ  vmδ  

Limiting wall or ground responses* 0.7% fH  0.5% fH  

Probability of exceedance -- PEM results with 

mean and standard deviation of soil parameters 

derived from 17 data points 

0.22 0.24 

Mean 0.22 0.23 

Standard deviation 0.07 0.08 
Probability of 

exceedance -- based 

on bootstrapping 

analysis  
95% confidence interval 0.08-0.36 0.07-0.39 

   

*Level III requirements (PSCG 2000); fH  = final excavation depth (19.7 m). 

 

 

Bootstrapping to consider effect of the variation of sample statistics 

As an example, let’s consider the 17 pairs of small-strain triaxial test data listed in 

Table 5.2 (note: an analysis based on fewer data points is presented later). Here, the 

vus σ ′/  values range from 0.23 to 0.37, and the viE σ ′/  values range from 324.8 to 822.1. 

Figure 5.3 shows the histograms of vus σ ′/  and viE σ ′/ , respectively. These histograms 

do not seem to suggest a normal or lognormal distribution. However, no conclusion can 

be made regarding the distribution type as the sample size is rather small. For the same 

reason, there is also uncertainty regarding the derived mean and standard deviation of 

vus σ ′/  and viE σ ′/ .  
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Figure 5.3: Probability distribution of the small-strain triaxial test results listed in Table 5.2. 
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Figure 5.4: Bootstrap samples generated from the original test data listed in Table 5.2.  
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Figure 5.5: Probability distribution of the correlation coefficients for the generated 

bootstrap samples in Figure 5.4. 
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Figure 5.6: Bootstrap mean and standard deviation of su /σ'v and Ei /σ'v with respect to number of bootstrap simulations. 
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Figure 5.7: Probability distribution of the mean value and standard deviation of su /σ'v. 
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Figure 5.8: Probability distribution of the mean value and standard deviation of Ei /σ'v. 
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Thus, the bootstrapping analysis is performed to better characterize these soil 

parameters and their sample statistics. Figure 5.4 shows 10,000 bootstrap simulations of 

the small-strain triaxial test results following the procedure described previously. Here, 

each bootstrap simulation (sample) yields a mean and a standard deviation. Because 

vus σ ′/  and viE σ ′/
 

are determined from the same soil sample, they are treated as a pair 

of data when they are re-sampled. Figure 5.5 shows the probability density of the 

correlation coefficients between vus σ ′/  and viE σ ′/  for the 10,000 bootstrap samples. 

The distribution of the correlation coefficient is heavily left-skewed and almost all the 

values are positive, which indicates the positive correlation between vus σ ′/  and viE σ ′/ .  

The selection of 10,000 bootstrap simulations is based on a sensitivity analysis. 

The statistical fluctuation of the bootstrapped mean and standard deviation of vus σ ′/  

and viE σ ′/  with the number of bootstrap sets sn  is shown in Figure 5.6.  As seen, 

converged results of the estimated means and standard deviations are observed at 10,000 

bootstrap simulations.  

With the 10,000 sets of the mean ( Sµ ) and standard deviation ( Sσ ) of vus σ ′/  

being secured through bootstrapping (Figure 5.4), the histograms of Sµ  and Sσ can be 

derived (Figure 5.7). Both the mean ( Sµ ) and the standard deviation ( Sσ ) are found to 

essentially follow a normal distribution. The bootstrapped mean and standard deviation 

are 0.310 and 0.036, respectively. These numbers match well with the sample mean and 

sample standard deviation shown in Table 5.2, which indicates that the bootstrapped 

histograms reflect main characteristics of the original data set (sample). Furthermore, an 
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additional knowledge is gained from bootstrapping: the standard deviations of the mean 

( Sµ ) and standard deviation ( Sσ ), denoted respectively as [ ]Sσ µ  and [ ]Sσ σ , are 

obtained. Thus, an interval estimate of the mean and standard deviation of this uncertain 

parameter at a specified confidence level (say 95%) is readily available. In other words, 

there is 95% chance that “true” values for the mean and standard deviation fall within the 

respective confidence intervals. Finally, an observation can be made regarding the 

uncertainty or variation of the mean ( Sµ ) and standard deviation ( Sσ ) from Figure 5.7. 

The variation, in terms of coefficient of variation, of the mean ( Sµ ), as shown in Figure 

5.7(a), is much smaller than the variation of the standard deviation ( Sσ ), as shown in 

Figure 5.7(b). This confirms the expectation that the variation in the standard deviation 

due to small sample size is greater than the variation in the mean.  

Similarly, Figure 5.8 shows the histograms of the mean ( Eµ ) and the standard 

deviation ( Eσ ) of viE σ ′/  respectively; both the mean ( Eµ ) and the standard deviation 

( Eσ ) essentially follow a normal distribution. The bootstrap mean and standard deviation 

of viE σ ′/  are 581.9 and 124.3, respectively, which match well with the sample statistics 

shown in Table 5.2. This indicates, again, that the bootstrapped histograms reflect main 

characteristics of the original data set. Furthermore, an additional knowledge is gained 

from bootstrapping: the standard deviations of the mean ( Eµ ) and standard deviation 

( Eσ ), denoted respectively as [ ]Eσ µ  and [ ]Eσ σ , are obtained. Similarly, the variation, 

in terms of coefficient of variation, of the mean ( Eµ ), as shown in Figure 5.8(a), is much 
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smaller than the variation of the standard deviation ( Eσ ), as shown in Figure 5.8(b). 

Again, this confirms the expectation that the variation in the standard deviation due to 

small sample size is greater than the variation in the mean.  

The effect of the uncertainty or variation of the sample statistics on the computed 

probability of exceedance is investigated next. For each bootstrapped sample, the mean 

and standard deviation of the two critical soil parameters, vus σ ′/  and viE σ ′/ , are 

determined. With the known means ( Sµ  and Eµ ) and standard deviations ( Sσ  and Eσ ), 

the PEM analysis can be conducted to determine the mean and standard deviation of the 

response y based on the KJHH model. This follows that the reliability index ( β ) and the 

probability of exceedance (
f

p ) can be determined with Eq. (5.11) and (5.12) respectively. 

For demonstration purposes, the limiting wall deflection and ground settlement are set 

respectively at 0.7% fH  and 0.5% fH (where 
fH  is the final excavation depth). These 

limiting values are specified for excavation protection Level III in the design code 

adopted in Shanghai (PSCG 2000). Other criteria may be adopted depending on the local 

design codes or requirements of the client. Furthermore, also for demonstration purposes, 

the analysis is carried out at the final excavation stage in the TNEC case, as this stage is 

often the most critical. For each sample, a reliability index (and thus a probability of 

exceedance) is obtained.  
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Figure 5.9: Distribution of the reliability indices computed with the specified limiting (a) 

wall deflection and (b) ground settlement (at final excavation stage). 
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After repeating the analysis with all 10,000 bootstrapped samples, the same 

number of β  is obtained. Figure 5.9(a) shows a distribution of β  when the limiting 

wall deflection is set at 0.7% fH ; and Figure 5.9(b) shows a similar plot of the 

distribution of β  when the limiting ground settlement is set at 0.5% fH . The variation 

in the computed reliability index due to the variation in the sample statistics can be 

observed. Assuming a normal distribution for the computed β , a confidence interval at, 

say, 95% level can be derived; this follows that the probability of exceedance can be 

expressed in terms of a confidence interval at the 95% level. The results, the probability 

of wall deflection exceeding 0.7% fH  in the TNEC case ranging from 0.08 to 0.36 at 

95% confidence level, and the probability of ground-surface settlement exceeding 

0.5% fH  in the TNEC case ranging from 0.07 to 0.39, are also shown in Table 5.3. The 

knowledge of the variation of the sample statistics, which is derived through 

bootstrapping, allows us to infer the probability of exceedance in terms of a confidence 

interval, instead of a single fixed probability.  

 

Further Discussions 

Effectiveness of bootstrapping method 

The analyses presented previously are based on a sample of 17 small-strain 

triaxial test data. In many instances, the available data may be fewer than this number. To 

get a preliminary estimate of this effect and to examine the effectiveness of the 

bootstrapping method, all of the previous analyses are repeated with only 8 data, taking 
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only those data from undisturbed samples as shown in Table 5.2. 

Based on the 8 data points of small-strain triaxial tests on the undisturbed clays, 

the sample statistics are determined as follows: Sµ  = 0.32, Sσ  = 0.055, Eµ  = 572.6 

and Eσ  = 178.5. The mean values are found to be comparable to those computed with 

17 data, while the standard deviations are found to be greater than those computed with 

17 data. Using the new data, the mean of the maximum wall deflection hmδ , denoted as 

[ ]hmµ δ , is computed to be: [ ]hmµ δ  = 107.3 mm, and the standard deviation of hmδ , 

denoted as [ ]hmσ δ , is computed to be: [ ]hmσ δ  = 37.8 mm. If the limiting wall 

deflection is taken at 0.7% fH  (PSCG 2000), where 
fH  is the final excavation depth 

(
fH  = 19.7 m), the probability of exceeding this limiting wall deflection at the final 

excavation stage will be 
f

p  = 0.21.  Similarly, the probability of exceeding the 

specified limiting ground settlement is determined to be Ep  = 0.21, as listed in Table 

5.4.  

To consider the variation of sample statistics due to use of a small sample (in this 

case, sample consisting of only 8 data points), bootstrapping is again applied and all the 

previous analyses are repeated. The new results are summarized in Table 5.4. The 

probability of the maximum wall deflection exceeding 0.7% fH  in the TNEC case 

ranges from 0.06 to 0.34 at the 95% confidence level; and the probability of the 

maximum ground settlement exceeding 0.5% fH  in the TNEC case ranges from 0.04 to 

0.36 at the 95% confidence level. These results (Table 5.4) that relied on 8 data points are 
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comparable with the previous results (Table 5.3) that relied on 17 data points. Thus, 

bootstrapping is shown to be an effective technique to estimate the variation of sample 

statistics, as demonstrated with two different sizes of small samples.  

 

Table 5.4: Probability of exceedance in the TNEC excavation using PEM and 

bootstrapping method with only 8 data points. 

 

Ground or wall response hmδ  vmδ  

Limiting wall or ground responses* 0.7% fH  0.5% fH  

Probability of exceedance -- PEM results with 

mean and standard deviation of soil parameters 

derived from 8 data points 

0.21 0.21 

Mean 0.20 0.20 

Standard deviation 0.07 0.08 
Probability of 

exceedance -- based 

on bootstrapping 

analysis 
95% confidence interval 0.06-0.34 0.04-0.36 

   

* Level III requirements (PSCG 2000); fH  = final excavation depth (19.7 m). 

 

The implication is that the bootstrap method can be an effective tool in 

geotechnical engineering to capture the variation of sample statistics due to the use of a 

small sample. Considering that it is a norm in geotechnical practice to have limited data 

availability, it is essential to estimate the variation of the derived sample statistics, and to 

assess the effect of this variation. In this regard, the bootstrap method has potential to be 

indispensible tool in geotechnical engineering. The case study presented in this study 

shows that additional information (such as the confidence interval of the probability of 

serviceability failure, as opposed to a single, fixed probability) can be “gained” through 

bootstrapping analysis. The gained information enables the engineer to make a more 
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informed decision. 

 

Predicting performance of an excavation design 

In this section, the predicted performance of the previously discussed excavation 

design for the TNEC case is re-assessed considering the Level I and II design 

requirements for urban excavation protection in Shanghai, China (PSCG 2000). The 

probabilities of exceedance presented previously were computed for Level III scenario 

where no important infrastructures or facilities exist within a distance of 2
f

H from the 

excavation. An excavation with Level III scenario requires that hmδ ≤ 0.7% fH  and 

vmδ ≤ 0.5% fH . Herein, the probabilities of exceedance are also analyzed for Level II 

scenario where important infrastructures or facilities such as gas mains and water drains 

exist within a distance of 1 to 2
f

H from the excavation, and for Level I scenario where 

metro lines and important facilities such as gas mains and water drains exist within a 

distance of 0.7
f

H from the excavation. As summarized in Table 1.1, an excavation with 

Level II scenario requires that hmδ ≤ 0.3% fH  and vmδ ≤ 0.2% fH , and an excavation 

with Level I scenario requires that hmδ ≤ 0.14% fH  and vmδ ≤ 0.1% fH . The computed 

probabilities of exceedance in the TNEC case for all three protection levels are 

summarized in Table 5.5.  
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Table 5.5: Probability of exceedance in the TNEC excavation under three excavation protection scenarios. 

 

Excavation 

protection level 

(PSCG 2000) 

Level I Level II Level III 

Limiting criterion hmδ ≤ 0.14% fH  vmδ ≤ 0.1% fH  hmδ ≤ 0.3% fH  vmδ ≤ 0.2% fH  hmδ ≤ 0.7% fH  vmδ ≤ 0.5% fH  

Mean of 

probability of 

exceedance 

0.98 0.91 0.90 0.79 0.20 0.20 

Standard deviation 

of probability of 

exceedance 

0.007 0.02 0.02 0.04 0.07 0.08 

95% confidence 

interval of 

probability of 

exceedance 

0.97-0.99 0.87-0.95 0.86-0.94 0.71-0.87 0.06-0.34 0.04-0.36 

  

 * fH  = final excavation depth = 19.7 m. 
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For the TNEC excavation case, the maximum wall deflection hmδ
 

predicted 

using the deterministic KJHH model is 107.3 mm, which is less than 0.7% fH (137.9 mm) 

and is greater than 0.3% fH (59.1 mm) or 0.14% fH (27.6 mm). Thus, in terms of the 

maximum wall deflection, the excavation design would be satisfactory under a Level III 

protection scenario ( hmδ ≤ 0.7% fH ) and unsatisfactory under a Level II scenario 

( hmδ ≤ 0.3% fH ) or a Level I scenario ( hmδ ≤ 0.14% fH ). Similar assessment and 

conclusion can be reached when the TNEC case is evaluated based on the maximum 

ground settlement vmδ . 

Although the deterministic solutions appear to be able to offer a clear-cut answer 

to the question of whether the excavation design would satisfy design code requirements, 

as shown in the previous analysis, the uncertainties in the analysis model (the KJHH 

model in this case) and the input parameters ( vus σ ′/  and viE σ ′/
 

in this case) can hinder 

such ability. In many cases, it would be difficult to judge whether the limiting wall 

deflection or ground settlement would be exceeded because of the uncertainty in the 

computed wall and ground responses. Facing such uncertainties, the probabilities of 

exceedance (or the probability of failure to meet the criterion of a limiting maximum wall 

deflection or ground settlement) offer a complementary tool to assess the likelihood of 

unsatisfactory design. As shown in Table 5.5, the confidence intervals of the probability 

of exceedance at the 95% confidence level are obtained for all three excavation protection 

levels. If an excavation design with the probability of exceedance of less than 0.35 is 

considered “acceptable” (note: the acceptable probability should be determined based on 
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an additional study of risk and agreeable among the parties involved), the TNEC case 

under Level III scenario would be satisfactory as far as the maximum wall deflection or 

ground settlement is concerned. Under Level II and Level I scenarios, however, the 

TNEC case would be unsatisfactory because of the high probability of exceedance even 

at the lower end of the confidence interval. 

The gained knowledge (i.e., the confidence interval of the probability of 

exceedance in this case) enables the engineer to make a more informed decision. 

Furthermore, this knowledge may be carried over to the task of evaluating the risk of 

damage to the adjacent infrastructures and facilities. The latter task, however, is beyond 

the scope of this study which focuses on the estimate of confidence intervals of the 

probability of exceedance using bootstrapping method. 

Finally, an interesting observation is made of Table 5.5, in which the range of the 

confidence interval can be relatively small or large, depending on the value of the chosen 

limiting wall deflection or ground settlement relative to the mean of the computed 

response. To further elaborate this observation, the probability of exceedance in the 

TNEC excavation is computed for a series of limiting wall deflection and ground 

settlement values. Figure 5.10 shows the confidence intervals of the probability of 

exceedance obtained for various limiting wall deflection values (Figure 5.10a) and 

ground settlement values (Figure 5.10b). When the limiting wall deflection or ground 

settlement values are either very small or very large (relative to the mean of the computed 

responses), the confidence interval of the computed probability of exceedance is very 

narrow. This phenomenon is easily understood because when the chosen limiting 
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response approaches to the left tail or the right tail of the probability distribution of the 

computed response, the variation of the probability of exceedance caused by the 

uncertainties in the mean and standard deviation of the computed response is naturally 

small. On the contrary, the range of the confidence interval increases as the chosen 

limiting response approaches to the mean of the computed response. For example, when 

the limiting wall deflection is at approximately 110 mm, which is close to the mean of the 

computed wall deflection (107.3 mm in TNEC), the range of the confidence interval is 

the widest, as shown in Figure 5.10(a), indicating the greatest variation in the computed 

probability of exceedance. Similar observation can be made from Figure 5.10 (b) 

regarding the confidence interval of the probability of exceedance with respect to the 

computed maximum ground settlement. 

Figure 5.10 can also be treated as a case-specific design curve. For a given 

excavation design at a given site (with limited number of data on key soil parameters), 

the curve presents the confidence intervals (at 95% level) of the probability of 

exceedance at a range of limiting wall deflection or ground settlement. This curve enables 

the designer to make a more informed decision. For example, the designer can easily see 

the change in the probability of exceedance when a different limiting response value is 

selected. This is significant because in an assessment of the risk of damage to adjacent 

infrastructures, the engineer would want to explore the probability of exceedance for a 

range (however narrow it should be) of limiting responses, rather than for a fixed level of 

responses.  
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Figure 5.10: Confidence intervals for probability of exceedance in the TNEC excavation 

computed with various levels of limiting wall deflection and ground surface settlement. 

 

 



 144 

Summary 

This chapter focuses on the effect of small sample size of soil parameters on the 

reliability analysis of the serviceability failure in braced excavation in clays. A simple 

procedure for assessing the probability of serviceability failure, is presented and 

demonstrated with a case study. This simple procedure consists of the following 

components: (1) simulation of performance function using the well-established model 

KJHH (Kung et al. 2007b) as a response surface; (2) uncertainty propagation using the 

point estimate method; (3) characterization of the uncertainty of sample statistics using 

bootstrap method (Efron 1979); (4) confidence interval analysis of the probability of 

serviceability failure. This simple procedure is demonstrated through a case study to be 

effective for assessing the effect of small sample size of soil parameters on the 

probability of serviceability failure.  
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CHAPTER VI 

 

BAYESIAN UPDATING OF SOIL PARAMETERS IN BRACED EXCAVATIONS
 ∗

 

 

Introduction 

Back analysis or inverse analysis based on field observations (or measurements) 

in a braced (or supported) excavation process has been widely reported (e.g., Whittle et al. 

1993; Calvello and Finno 2004; Hashash et al. 2004; Chua and Goh 2005; Hsiao et al. 

2008; Tang and Kung 2009; Hashash et al. 2010). Back analysis with field observations 

is usually performed for important and/or difficult excavation projects only. Since braced 

excavations are generally carried out in stages, back analysis to update “key” soil 

parameters (such as the normalized undrained shear strength and the normalized initial 

tangent modulus in an excavation in clays) is generally realized in multiple stages: before 

the first excavation stage, the wall and ground responses are predicted with limited field 

tests and/or laboratory data. Since such data often involve significant uncertainty, the 

predictions of the wall and ground responses, even those made with the more advanced 

finite element method (FEM), often fail to match the observed responses at the end of this 

excavation stage. After the first-stage excavation is completed and wall and/or ground 

responses are measured, the key soil parameters can be updated with the observed 

responses to “refine” the knowledge of the soil parameters. With the updated soil 

parameters, the wall and/or ground responses in the subsequent excavation stages may be 

predicted with improved fidelity. This process can be repeated stage by stage until the 

                                                 
∗ A similar form of this chapter has been submitted at the time of writing: Juang CH, Luo Z, 

Atamturktur S, Huang H. Bayesian Updating of Soil Parameters in Braced Excavations Using Markov 

Chain Monte Carlo Simulation with Metropolis-Hastings Algorithm.  
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final excavation depth is reached.    

The soil parameters updated with field observations through back analysis are not 

necessarily the “true” values of these parameters, since the wall and ground responses in 

a supported excavation may also be affected by construction quality (workmanship) and 

other environmental factors (such as temperature variation), in addition to soil-structure 

interaction mechanism. Nevertheless, updated soil parameters allow for more accurate 

predictions of the wall and ground responses in the subsequent stages of excavation, 

which can be critical in some projects for developing remedial measures for preventing 

damage to adjacent buildings and infrastructures.  

It should be noted that in the early stages (the first or second stage) of excavation 

using diaphragm wall, the deformation of the wall generally assumes a cantilever shape, 

and then changes into a concave shape at latter stages (e.g., after the first or second stage). 

Thus, back analysis in the early stages may not be as effective or necessary as in latter 

stages. Furthermore, the responses (wall deflection and ground settlement) in an 

excavation with good workmanship are generally negligible in these early stages.   

Many approaches are available for back analysis of soil parameters, e.g., least 

squares method (Xu and Zheng 2001), maximum likelihood method (Ledesma et al. 

1996), Bayesian method (Zhang et al. 2009), and so on. The Bayesian probabilistic 

framework is demonstrated to be a robust approach for updating input parameters and 

response predictions (Beck and Au 2002; Zhang et al. 2009) and it offers a procedure to 

update the probability distribution function of input parameters provided that the 

observations are available (Miranda et al. 2009). Many successful applications of 
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Bayesian updating approach in geotechnical engineering have been reported, e.g., pile 

capacity analysis (Kay 1976), study on embankment on soft clay (Honjo et al. 1994), 

serviceability assessment of braced excavations in clay (Hsiao et al. 2008), and slope 

stability study (Zhang et al. 2010). In the work reported by Hsiao et al. (2008), the 

Bayesian observational method is implemented with a semi-empirical model known as 

KJHH (Kung et al. 2007b) for predicting wall and ground settlement, and the refinement 

of settlement predictions are realized in a stage-by-stage manner through updating of the 

bias factor of the prediction model.  

The goal of this chapter is to develop a framework that combines the Bayesian 

analysis and the observational method for updating soil parameters in a braced excavation 

in clay. The updated soil parameters are represented by their posterior distributions and 

sample statistics. In this framework, the updating process starts with an assumption for 

the prior distributions for soil parameters. After the initial excavation stage is conducted, 

the maximum wall deflection and maximum ground settlement are observed (or 

measured). Those observations are used to update the soil parameters through comparison 

with the predictions, and the updated soil parameters are then used to predict the 

responses in the subsequent stages. This procedure is repeated stage-by-stage as the 

excavation proceeds, and the soil parameters are updated accordingly.  

It should be noted that in the traditional back analysis, the focus is on finding a set 

of fixed values for the input parameters of concern. Because of the high degree of 

uncertainty involved in a braced excavation, the fixed parameter values may not be 

feasible or physically meaningful. In the present study, parameters of concern are treated 
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as random variables and the updated parameters are expressed in terms of posterior 

distributions. To update these parameters, Markov chain Monte Carlo (MCMC) 

simulation is carried out using Metropolis-Hastings algorithm. In this solution process, a 

prior distribution of each of the parameters of concern is needed. The prior distribution 

may be assumed based on prior knowledge (i.e., published literature and/or local 

engineering experience). As is shown later, converged results can be obtained even the 

prior knowledge is imperfect. Finally, the proposed framework for updating soil 

parameters can be implemented with one type of field response observations (in this 

study, either the maximum wall deflection or maximum settlement observation) or 

multiple types of observations. While use of Bayesian updating with MCMC method is 

not new in geotechnical engineering (for example, Zhang et al. 2010), updating with 

multiple types of observations presented herein is a new contribution. The proposed 

framework, which deals with updating of multiple soil parameters using multiple 

response observations from multiple stages of a braced excavation, a complex 

soil-structure interaction problem, is considered significant. The comprehensive updating 

analyses of braced excavations through MCMC simulations in this study produce many 

critical insights. 

 

Framework of Bayesian Updating with Markov Chain Monte Carlo Simulation 

Updating soil parameters using one type of response observation 

In this study, the Bayesian updating framework is adapted for the KJHH model. 

The implementation starts with expressing the KJHH model for predicting the maximum 
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wall deflection or maximum settlement as follows: 

 

( )y c δ θ= ⋅                                (6.1) 

 

where y  is the predicted hmδ  or vmδ  in a braced excavation; ( )δ θ  denotes the 

prediction model for either hmδ  or vmδ  [Eq.(5.1) or Eq.(5.4) in Chapter V]; θ  is the 

vector of the soil parameters ( vus σ ′/  and viE σ ′/  in this study); c is the model bias 

factor (ch for hmδ model, cv for vmδ  model), which represents the model uncertainty. For 

both hmδ  and vmδ , the previous study (Kung et al. 2007b) showed that c can be 

approximately modeled as a normally distributed random variable with a mean value of 

1.0; for the adopted hmδ  prediction model, the standard deviation of cv (denoted as 
vcσ ) 

is found to be 0.25; for the adopted vmδ
 

model, the standard deviation of ch (denoted as 

h
cσ ) is found to be 0.34.  

Based on Eq. (6.1), the likelihood that the prediction ( y ) is equal to the 

observation ( obsY ) can be expressed as a conditional probability density function (PDF) of 

θ :  

 

( ) ( )( )/obs obsL y Y N Yθ δ θ= =               (6.2) 

 

where ( )obsL y Yθ =
 

is the likelihood; and the notation N  denotes a normal PDF 

which is a function of ( )/obsY δ θ   . It is noted that at a given 
obsY , the term 
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( )( )/obsN Y δ θ  is a function of θ  only.  Recalling that ( )/c y δ θ= , this normal PDF 

can be characterized with a mean of cµ
 

and a standard deviation of cσ . In a Bayesian 

framework, given a prior PDF, ( )f θ , the posterior PDF of θ  can be obtained as 

follows (Wang et al. 2010; Zhang et al. 2010): 

 

( ) ( )( ) ( )1 /obs obsf y Y m N Y fθ δ θ θ= = ⋅ ⋅               (6.3) 

 

where m1 is a normalization factor that guarantees a unity for the cumulative probability 

over the entire range of θ .   

 

Updating soil parameters using two types of response observations 

To update the soil parameters with the observations of both hmδ  and vmδ  

(denoted herein as 1obsY  and 2obsY , respectively), we note that the likelihood that the 

predicted wall deflection 1y  and the predicted settlement 2y  are equal to the 

corresponding observations is a conditional probability density function (PDF) of θ : 

 

( ) ( ) ( )( )1 1 2 2 2 1 1 2 2, / , /obs obs obs obsL y Y y Y N Y Yθ δ θ δ θ = = =             (6.4) 

 

where ( )1δ θ  and ( )2δ θ  denote Eqs. (1) and (4) respectively; N2 denotes the PDF of a 

bivariate normal distribution with a mean vector [ ] [ , ]
h vc cµ µ µ=  and a covariance matrix 

of: 
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2
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h hv

vh v

c c

c c

σ σ
σ

σ σ

 
  =   

  
                              (6.5) 

 

where 2 2

hv vh h vc c c cσ σ ρ σ σ= =  and ρ is the correlation coefficient between the two model 

bias factors ch and cv. The above formulation is simply an extension of the formulation 

presented in Eq. (6.2) from using one type of observation to using two types of 

observation. Similarly, the posterior PDF of θ  updated with two types of observations 

can be obtained as follows: 

 

( ) ( ) ( )( ) ( )1 1 2 2 2 2 1 1 2 2, / , /obs obs obs obsf y Y y Y m N Y Y fθ δ θ δ θ θ = = = ⋅ ⋅       (6.6) 

 

where m2 is a normalization factor that guarantees a unity for the cumulative probability 

over the entire range of θ .  

The posterior distribution may be obtained through optimization or sampling 

techniques. In this study, Markov chain Monte Carlo (MCMC) simulation method, an 

efficient sampling technique that can yield samples of a posterior distribution (Beck and 

Au 2002), is adopted. One advantage of MCMC is that the computation of the 

normalization factor may be avoided, which is generally difficult for multiple 

dimensional problems (Gamerman 1997). Furthermore, the Metropolis-Hastings 

algorithm (Hastings 1970) is adopted in this study for its efficiency to implement MCMC 

sampling of key parameter θ  for its posterior PDF [see Eq. (6.6)]. 

 

Procedure of MCMC simulation using Metropolis-Hastings algorithm 
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The procedure for MCMC simulation (or sampling) of θ  for its posterior PDF 

using the Metropolis-Hastings algorithm can be summarized as follows: 

1. At Stage k = 1, determine the first point 1θ  in the Markov chain. This first 

instance 1θ  may be obtained by random selection from the prior distribution or 

may simply be assigned the mean value.  

2. At next stage k (k starts from 2), randomly generate a new 
pθ  from a proposal 

distribution ( )1p kT θ θ −  which is assumed to be a multivariate normal 

distribution where the mean is set to be the current point 1kθ −  in the Markov 

chain and the covariance matrix is equal to s Cθ⋅ , where s is a scaling factor and 

Cθ  is the covariance matrix of the prior distribution of θ . The multivariate 

normal distribution is chosen for its good convergence properties in the Bayesian 

inference (Draper 2006).  

3. Generate a random number u from a uniform distribution ( )0,1U .  

4. Compute the ratio of densities r:  

 

( )
( )1

1
p obs

k obs

q y y
r

q y y

θ

θ −

=
= ≤

=
                        (6.7) 

 

where ( )obsq y yθ =  is the un-normalized posterior PDF. In this study, 

( )obsq y yθ =  is essentially Eq. (6.3) or Eq. (6.6) without the normalization 

factor. Note that ( )obsq y yθ =
 

is ( )  evaluated at   .obsq y yθ =  
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5. Determine whether 
pθ
 

is acceptable (and thus yields a new point in the Markov 

chain) with the follow acceptance rule: if u r≤ , then 
pθ
 

is acceptable and set 

k pθ θ= ; otherwise, set 1k kθ θ −= . Then go back to Step 2. 

6. Repeat Step 2 to Step 5 until the target number of samples (i.e., Markov chain 

“length”) is reached.  

 

The Metropolis-Hastings algorithm randomly samples from the posterior 

distribution.  Typically, initial samples are not completely valid because the Markov 

Chain has not stabilized.  These initial samples may be discarded as burn-in samples. 

Several factors influence the efficiency of sampling posterior distribution with MCMC 

approach, such as the proposal distribution, Markov chain length, and number of 

“burn-in” samples. Therefore, the construction of a Markov chain is problem-specific and 

needs to be examined case by case. We do not impose which MCMC algorithm is used as 

long as efficient Markov chains can be guaranteed.  

 

Example Application: TNEC Excavation Case 

A well-documented excavation case, known as TNEC case in Taiwan (Ou et al. 

1998) is used herein as an example to illustrate the Bayesian framework for updating soil 

parameters using observed wall and/or ground responses in the staged excavation. At 

TNEC, the excavation width is 41.2 m and the length of diaphragm wall is 35 m. The 

excavation was performed using top-down construction method in seven stages with the 

support of steel struts and floor slabs. The soil profile and excavation depths are shown in 
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Figure 5.2, which is basically a clay site. Thus, the maximum wall and ground responses 

in this excavation are mainly influenced by the normalized shear strength ( vus σ ′/ )
 
and 

normalized initial tangent modulus ( viE σ ′/ ) of the clay (Hsiao et al. 2008). In this study, 

the focus is to update these parameters with field observations in the staged excavation 

using the Bayesian framework.  

 

Parametric study on the construction of Markov chains 

Effectiveness and efficiency of the MCMC approach depend on the parametric 

setting. First, the prior distribution of soil parameter θ  (i.e., vector of soil parameters) 

must be assumed. As an example, Prior distribution 1, listed in Table 6.1, is assumed in 

the parametric analysis presented herein. The effect of choosing other prior distributions 

on the MCMC solutions is examined later.   

 

Table 6.1: Statistics of four prior distributions used in the Bayesian updating scheme. 

 

/u vs σ ′  /i vE σ ′  
Parameter 

Mean COV* Mean COV* 

Prior distribution 1 0.25 0.16 500 0.16 

Prior distribution 2 0.31 0.16 650 0.16 

Prior distribution 3 0.27 0.16 550 0.16 

Prior distribution 4 0.35 0.16 750 0.16 

 

*COV suggested by Hsiao et al. (2008) for Taipei clays. Effect of assuming other 

COVs is examined separately.  

 

Next, proper selection of the scaling factor s is deemed critical to an efficient 

MCMC simulation. To test this notion, three Markov chains are simulated using the 

following scaling factors: (a) s = 0.01; (b) s = 3; (c) s = 20. For this analysis, the updating 
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of soil parameters is based on two types of response observations (both maximum 

settlement and maximum wall deflection observations). The first 2000 samples of vus σ ′/  

in the Markov chains are shown in Figure 6.1. It is apparent that s has a significant effect 

on the efficiency of the MCMC simulation. The low efficiency of the MCMC simulation 

is observed when s is either too small or too large as shown in Figures 6.1(a) and 6.1(c), 

respectively: in Figure 6.1(a) the overall trend of the samples fluctuates drastically which 

means longer time is needed to reach a steady state of the generated samples; and in 

Figure 6.1(c) a large number of the simulated samples are of the same values since many 

horizontal segments are observed, which also indicates low efficiency in the sampling 

process (as many rejections occurred). As a comparison, when s = 3, the Markov chain 

samples shows an active simulation behavior as in Figure 6.1(b).  

To further examine the effect of scaling factor s on the Markov chain construction, 

Figure 6.2 shows the relationship between the acceptance rate and the scaling factor. 

Gelman et al. (2004) suggested that the Markov chain simulation is most efficient when 

the acceptance rate is between 20% and 40%. In our case, the acceptance rate falls within 

20% to 40% if s is equal to 3 for each of the excavation stages. Therefore, in this study 

the scaling factor is set as 3 when updating with both observed maximum settlement and 

observed maximum wall deflection. It is found that when the soil parameters are updated 

with just one type of field observation (either observed maximum settlement or observed 

maximum wall deflection), a scaling factor of 2 yields most efficient Markov chain 

construction. However, determination of s should be carefully evaluated for other 

excavation cases.  
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Figure 6.1: Effect of scaling factor on the efficiency of Markov chain sampling: (a) s = 

0.01, (b) s = 3, (c) s = 20. 
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Figure 6.2: Relationship between acceptance rate and scaling factor updated with both 

observed δhm and δvm. 
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Figure 6.3: Influence of Markov chain length on the mean values and standard deviations 

of the posterior distributions estimated from 30 different Markov chains with s = 3. 
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With a properly selected scaling factor (s = 3), the soil parameters can be updated 

stage by stage with the observations. In this study, the first 100 samples in the Markov 

chains are discarded as the “burn-in” samples. The updated probability density and 

sample statistics are obtained after the burn-in samples are discarded. The MCMC 

samples should be continuously generated until the sample statistics of the posterior 

distribution has converged within a preset tolerance (Wu et al. 2010b; Zhang et al. 2010). 

Figure 6.3 shows an example of the variation of the sample statistics with the chain 

length obtained with 30 different Markov chains that were performed with s = 3. As can 

be seen from the results, at a Markov chain length of 50000, the coefficient of variation 

(COV) for all statistics of the posterior distribution of θ  from the 30 Markov chains is 

less than 1%, the preset tolerance in this study. Therefore, it is concluded that robust 

posterior statistics can be achieved with the aforementioned parametric settings (e.g., 

scaling factor, burn-in sample, chain length) in the MCMC simulation. 

Based on the selected parametric settings, the updating of soil parameters is 

carried out using the MCMC simulation with field observations in the TNEC excavation. 

As an example, Figure 6.4 shows the MCMC sampling process with a Markov chain 

length of 50000 based on the observations from Stage-6 excavation at TNEC (when the 

excavation reached the depth of 17.3 m, which is prior to the start of Stage-7 excavation). 

Figure 6.5 shows the histograms of the Markov chain samples in Figure 6.4. It is 

observed that the posterior distributions of both vus σ ′/  and viE σ ′/  are very close to a 

normal distribution. The updated distributions of these soil parameters from other stages 

of excavation all follow approximately a normal distribution.  
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Figure 6.4: Sampling process of MCMC simulations with the observations from the 6th 

excavation stage (s = 3). 
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Figure 6.5: Histograms of posterior distribution for su/σ'v and Ei/σ'v with data from Figure 

6.4. 

 

Previous reliability analysis of braced excavations using KJHH model as a 

performance function shows that the discrepancy between normal and lognormal 

assumptions has a negligible influence on the predicted excavation-induced serviceability 
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failure probability (Hsiao et al. 2008). Furthermore, the MCMC sampling using prior 

distributions as listed in Table 6.1 seldom generates negative numbers. The very rarely 

generated negative numbers may be disregarded and a truncated normal distribution may 

be used (Most and Knabe 2010). Thus, normal distribution is assumed for both prior and 

posterior distributions of soil parameters in this study. For simplicity, the predictions of 

the wall and ground responses in the subsequent stages can be realized with the mean 

values of the posterior distributions, and the reliability assessment of the wall and ground 

responses can be evaluated with the obtained posterior distribution and its statistics. 

 

Updating soil parameters using one type of response observation 

As noted previously, back analysis in the early stages (the first or second stage) of 

excavation may not be effective because of the change of deformed shape of the wall 

from the cantilever to concave-type shape and because the responses in these early stages 

under normal workmanship are generally negligible (Kung et al. 2007c; Hsiao et al. 

2008).  

In this section, the updating is carried out with only one type of response 

observation. First, the soil parameters are updated using the observed settlements only. 

Prior to Stage-3 excavation (starting from the depth of 4.9 m; see Figure 5.2), the 

predicted maximum settlement for the current stage is 47 mm based on the mean values 

of the assumed Prior distribution 1 ( vus σ ′/  = 0.25 and viE σ ′/  = 500) using the KJHH 

model. The predicted maximum settlements at various target depths are shown in Figure 

6.6 (a). As an example, the predictions made prior to Stage-3 excavation (with a target 
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depth of 8.6 m; see Figure 5.2) are labeled with a square symbol “□” in Figure 6.6(a). As 

can be seen in this figure, the predictions at this point using the assumed prior 

information are far away from the 1:1 line (predicted settlement versus observed 

settlement). After Stage-3 excavation is completed, the maximum settlement at the depth 

of 8.6 m is observed to be at 18 mm. Using this new observation and the Bayesian 

updating framework presented earlier, the MCMC samples for posterior distributions of 

parameters vus σ ′/  and viE σ ′/
 

are generated. For simplicity, sample statistics (mean 

and COV) of these posterior distributions are obtained. The mean values of the updated 

parameters vus σ ′/  and viE σ ′/  are then used to predict the maximum settlement at 

various target depths prior to Stage-4 excavation (starting from the depth of 8.6 m). These 

maximum settlement predictions are labeled with symbol “×” in Figure 6.6(a). After 

Stage 4 is completed, the maximum settlement at the depth of 11.8 m is observed to be 

34mm and this new observation is used to further update vus σ ′/  and viE σ ′/ . The above 

process is repeated stage by stage till the end.  

The maximum settlement predictions at the final excavation depth (19.7 m in this 

case), which are generally of primary concern, made prior to the start of Stages 3-, 4-, 5-, 

6-, and 7- excavations are shown in Figure 6.7. Note that the depths at which the 

maximum settlement predictions were made prior to the start of Stages 3, 4, 5, 6, and 7 

are 4.9m, 8.6m, 11.8m, 15.2m, and 17.3m, respectively. Prior to Stage 7 (when the 

excavation reached the depth of 17.3 m), the mean of the maximum settlement prediction 

for the final excavation depth of 19.7 m is 79 mm, which compares very well with the 

observed maximum settlement of 78 mm at the final excavation depth. For comparison, it 
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is noted that the maximum settlement prediction for the final excavation depth of 19.7 m 

is 114 mm prior to Stage 3 when the excavation reached the depth of 4.9 m. The accuracy 

of the predictions made with the updated soil parameters increases in the Bayesian 

updating process, as shown in Figure 6.7. In fact, for this TNEC excavation, the 

maximum settlement predictions for the final excavation depth prior to Stage 5 (starting 

at 11.8 m) and Stage 6 (starting at 15.2 m) are already very close to the observed 

maximum settlement of 78 mm. Figure 6.7 also shows the one-standard-deviation bounds 

of the predicted maximum settlement at the final excavation depth of 19.7 m in this 

TNEC case. The variation of the predictions is discussed later.  

Next, the soil parameters are updated using the observed wall deflections only. 

Using the same procedure, the soil parameters are updated with the observed maximum 

wall deflections, and then the predictions for the subsequent stages are obtained 

accordingly, as shown in Figure 6.6(b). The updated wall deflection predictions for the 

final excavation depth (19.7 m in this TNEC case) made prior to Stages 3, 4, 5, 6, and 7 

(with the corresponding starting depths of 4.9m, 8.6m, 11.8m, 15.2m, and 17.3m, 

respectively) are shown in Figure 6.8. The predicted maximum wall deflection for the 

final excavation depth of 19.7 m made prior to Stage 7 excavation is 116 mm, and the 

one-standard-deviation bounds are 102 mm to 130 mm. The observation at the final 

excavation depth is 106 mm, which falls within the predicted one-standard-deviation 

bounds. Meanwhile, the predicted mean (116 mm) at the final excavation depth is 

significantly improved over the mean prediction (143 mm) prior to Stage 3. 
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Figure 6.6: Maximum settlement and wall deflection predictions prior to excavation stages 3, 4, 5, 6, 7 

 (using Prior distribution 1).  
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Figure 6.7: Updated mean value and one standard deviation bounds of the settlement 

predictions at target depth of 19.7 m prior to Stages 3, 4, 5, 6, and 7 of excavations (using 

Prior distribution 1 and the maximum settlement observations). 
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Figure 6.8: Updated mean value and one standard deviation bounds of wall deflection 

predictions at target depth of 19.7 m prior to Stages 3, 4, 5, 6, and 7 of excavations (using 

Prior distribution 1 and the maximum wall deflection observations). 

 

The Bayesian framework is shown to be effective and efficient when the soil 

parameters are updated with only one type of response observation (either maximum 

settlement or maximum wall deflection) in a braced excavation. Updating with two types 

of response observations is presented in the next section.  

 

Updating soil parameters using two types of response observations 

In this section, updating of soil parameters using observations of both maximum 

settlements ( vmδ ) and maximum wall deflections ( hmδ ) is demonstrated with TNEC case. 
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As in the previous section, Prior distribution 1 (listed in Table 6.1) is assumed for the 

two key soil parameters, vus σ ′/  and viE σ ′/ . The procedure for MCMC sampling of the 

posterior distribution of θ using the Metropolis-Hastings algorithm is basically the same 

as described previously for updating using one type of response observation except that 

Eq. (6.6) is used in lieu of Eq. (6.3). Note that in the analysis presented herein, the 

correlation coefficient between the two model bias factors (ch and cv), which is defined in 

the covariance matrix [Eq. (6.5)], is assumed to be ρ = 0. The effect of this correlation is 

examined later in a separate section.  

Figure 6.9(a) shows the updated maximum settlement predictions using the 

posterior distribution of θ that is updated based on two types of observations (both 

maximum settlement and maximum wall deflection). For comparison, the updated 

maximum settlement prediction using the posterior distribution of θ that is updated based 

on one type of observation (either maximum settlement or wall deflection) is also 

included in Figure 6.9(a). Similarly, Figure 6.9(b) shows the updated maximum wall 

deflection predictions based on the three updating schemes. In Figure 6.9, all predictions 

are for the final excavation depth of 19.7 m in this TNEC case, and these predictions are 

made prior to Stages 3, 4, 5, 6, and 7 (with the corresponding starting depths of 4.9 m, 8.6 

m, 11.8 m, 15.2 m, and 17.3 m, respectively). The following observations are made from 

Figure 6.9: (1) all three updating schemes (based on observations of maximum wall 

deflection only, maximum settlement only, and both maximum wall deflection and 

maximum settlement) are effective, (2) wall deflection is the easiest to measure in the 

field but the updating based on the wall deflection is the least effective among the three 
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schemes (note: the effectiveness here is based on the rate of changes and how close the 

prediction at the final stage is to the field measurement), and (3) updating with both types 

of observations is the most effective among the three schemes.        

The results presented in Figure 6.9 are the mean values of the updated predictions 

of the wall and ground responses. It should be of interest to examine the variation of the 

updated predictions. As an example, Figure 6.10 shows the distribution of the final 

predictions (i.e., prior to the final stage of excavation) of the maximum settlement and 

maximum wall deflection with each of the three updating schemes. The observed 

responses at the end of excavation are also shown in Figure 6.10. Two observations can 

be made out of Figure 6.10. First, among the three updating schemes, the one using two 

types of response observations (maximum wall deflection and maximum settlement 

observations) yielded the smallest variation. Thus, the updated results are more robust 

using both types of response observations. This finding is not possible by examining only 

the mean values of the responses (as in Figure 6.9). Second, the claim of “excellent 

agreement” between the prediction and the observation in the traditional back analysis or 

after-the-fact prediction of the responses of an excavation case history, often reported in 

the literature, may not be all that meaningful if the variation in the input parameters 

and/or the variation in the computed responses are not full characterized.  
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Figure 6.9: Comparisons of updated predictions with three updating schemes (using Prior 

distribution 1). 
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Figure 6.10: Distributions of predictions prior to final stage of excavation (using Prior 

distribution 1). 
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Effect of prior distribution on the outcome of Bayesian updating 

In this section, the effect of the assumed prior distribution of soil parameters on 

the outcome of the Bayesian updating is examined. The focus is to determine whether the 

same final outcome can be obtained after various stages of Bayesian updating regardless 

of what the initial assumption regarding the prior distribution is. To this end, three other 

prior distributions are assumed (Table 6.1), in addition to Prior distribution 1 that has 

been used in all previous analyses. These four prior distributions represent a wide range 

of parameter values such that the final response in TNEC excavation will be 

underestimated in some cases, and overestimated in others. Initially, the COVs of those 

prior distributions are set to be 0.16 (Hsiao et al. 2008). The influence of various assumed 

COV values will be examined next.  

The same Bayesian updating procedure is performed with the assumption of Prior 

distributions 2, 3, and 4, and the updated mean values and COVs of vus σ ′/  and viE σ ′/
 

are shown in Figures 6.11 and 6.12, respectively. As evidenced in Figure 6.11, the 

updated mean values tend to converge to the “true” value as the excavation progresses. 

Figure 6.12 shows that with more observations from multiple stages, the COVs of the 

updated parameters tend to decrease; in other words, the updating with more information 

reduces the uncertainty of soil parameters.  

The effect of the assumed COVs of soil parameters are further examined within 

the Bayesian framework. For demonstration purpose, the mean values of Prior 

distribution 2 (Table 6.1) are adopted and a series of prior COVs for vus σ ′/  and viE σ ′/
 

are selected: 0.10, 0.16, and 0.30. Then the same updating procedure is performed with 
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the above selected COVs and the updated soil parameters are obtained. It is found that the 

updated mean values of vus σ ′/  and viE σ ′/
 

are almost the same regardless of what 

levels of prior COVs are used. Figure 6.13 shows the COVs of the updated soil 

parameters prior to Stages 3, 4, 5, 6, and 7 of excavations (at the corresponding starting 

depths of 4.9 m, 8.6 m, 11.8 m, 15.2 m, and 17.3 m, respectively). As shown in Figure 

6.13, regardless of the level of the assumed COV in the prior distribution, the COVs of the 

updated soil parameters decreased from earlier stages to latter stages (i.e., with increasing 

number of observations and updating from multiple stages). Figure 6.14 further compares 

the variation of soil parameters before and after updating, using the case of prior COV = 

0.3 from Figure 6.13 as an example. The COVs for both vus σ ′/  and viE σ ′/
 

after 

multi-stages updating with field response observations are reduced to less than 0.10. Thus, 

the uncertainty of soil parameters is shown to reduce significantly with the application of 

the Bayesian updating framework. 

The above results show that while the prior knowledge is important, the Bayesian 

updating with observations through stages of excavation can reduce the influence of this 

prior knowledge, and converged results can be obtained even if the prior knowledge is 

imperfect. The results demonstrate that the proposed Bayesian updating framework is 

effective regardless of the assumption of the prior distribution.  
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Figure 6.11: Updated mean of soil parameters prior to Stages 3, 4, 5, 6, and 7 of 

excavations using various prior distributions. 
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Figure 6.12: Updated COV of soil parameters prior to Stages 3, 4, 5, 6, and 7 of 

excavations using various prior distributions. 
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Figure 6.13: Updated COV of soil parameters prior to Stages 3, 4, 5, 6, and 7 of 

excavations using mean value of Prior distribution 2 and various COVs. 
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Figure 6.14: Updated distribution of soil parameters prior to final stage of excavation 

using mean value of Prior distribution 2 and COV = 0.30. 
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Effect of the correlation between bias factors of the two response models 

When both observations of maximum wall deflection and maximum settlement 

are employed within the proposed Bayesian updating framework, the effect of the 

correlation between bias factors ch and cv [Eq. (6.5)] on the updating outcome needs to be 

assessed. Previous studies indicate that the maximum settlement generally increase with 

maximum wall deflection (e.g., Clough and O’Rourke 1990; Hsieh and Ou 1998; Kung et 

al. 2007a,b,c). Therefore, the effect of the coefficient of correlation ρ is examined by 

repeating the previous analysis with positive correlation assumptions of ρ = 0.5 and 0.8, 

respectively. Figure 6.15 shows the updated predictions of the maximum settlement (part 

a) and maximum wall deflection (part b) made prior to Stages 3, 4, 5, 6, and 7 of TNEC 

excavations (at the corresponding starting depths of 4.9m, 8.6m, 11.8m, 15.2m, and 

17.3m, respectively) with three correlation scenarios. A couple of observations are 

perhaps worth mentioning: (1) the effect of this correlation on the outcome of Bayesian 

updating appears to be quite limited; and (2) the assumption of no correlation (ρ = 0) 

appears to yield no inferior outcome in the Bayesian updating. This finding is of course 

based on analysis of a single excavation case, and further study to confirm the finding is 

warranted. Nonetheless, the results of the analysis of the effect of the correlation between 

bias factors, along with those results on the effects of the prior distributions of soil 

parameters and the levels of coefficient of variation, clearly demonstrate the effectiveness 

and high flexibility of the proposed Bayesian updating framework.  
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Figure 6.15: Influence of correlation coefficient ρ between model biases on predictions 

updated with observed maximum settlement and wall deflection (using Prior distribution 

1). 
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Summary 

The proposed Bayesian framework for updating soil parameters in a braced 

excavation is presented in this chapter. This framework uses KJHH model as an example 

for predicting maximum wall deflection and maximum settlement prior to a given 

excavation stage, and Bayes’ theorem to update key soil parameters so that model 

predictions prior to next stage of excavation match well with field observations 

afterwards. Unlike the traditional back analysis, in which fixed parameter values are 

back-calculated based on observations, the proposed framework allows for consideration 

of the variation in these parameters and yields their posterior distributions. Thus, not only 

the “mean” prediction is improved but also the variation of the prediction is reduced. The 

proposed framework uses the Metropolis-Hastings algorithm-based Markov chain Monte 

Carlo (MCMC) method to construct the posterior distributions of soil parameters. The 

effectiveness and flexibility of the proposed framework is examined through a case study 

of TNEC excavation. 
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

The following conclusions are drawn from the study on the effect of 

one-dimensional spatial variability on the basal-heave stability analysis in Chapter II:  

(1) Study of the gamma sensitivity index for all input parameters shows that the 

normalized undrained shear strength vus σ ′/  is the most influential factor in the 

basal-heave stability in a given braced excavation in clay, with the unit weight of 

clay being a distant second.  This confirms the common understanding reflected 

in the existing stability theories on basal-heave stability. 

(2) The results of RFM of vus σ ′/  using the Cholesky decomposition method are 

deemed reasonable.  The parametric study with the conventional RFM shows 

that the model with a smaller scale of fluctuation would yield a greater variance 

reduction in soil parameters (such as vus σ ′/ ), which in turn would yield a 

smaller variation in the output responses (for example, FS against basal-heave). 

The computed probability of basal-heave failure can be too high if the spatial 

variability is not considered in the reliability analysis. Thus, the basal-heave 

stability design will be too conservative if the effect of spatial variability is 

ignored.  

(3) The algorithm (Figure 2.9) developed in this chapter for deriving the reduction 

factor, based on a prescribed equivalency of the first two moments obtained by 
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the RFM approach and the variance reduction-based simplified approach, for a 

given standard deviation and scale of fluctuation of a spatially random variable 

vus σ ′/  is found to be effective.  For other geotechnical problems that involve 

more complicated and nonlinear limit states, further study is needed to investigate 

general applicability of this algorithm. 

(4) For the analysis of basal-heave stability, the proposed simplified approach with 

variance reduction technique is shown to be able to produce almost identical 

results with those obtained using the MCS-based RFM approach, provided that an 

appropriate characteristic length (and thus the reduction factor) can be determined.  

For the basal-heave stability problem, the appropriate characteristic length for the 

exponential reduction function is determined to be the distance from the final 

strut to the bottom of the diaphragm wall, which is the vertical scale of the 

random field in this case.  

(5) For the braced excavation case examined, when the safety factor (FS) against 

basal-heave is less than 1.2 using the slip circle method, the variation in the scale 

of fluctuation has virtually no influence on the computed failure probability. For 

FS > 1.2, the computed failure probability increases with the increasing 

variability of the scale of fluctuation but the effect of the variability of the scale 

of fluctuation is far less significant than that of the magnitude of the scale of 

fluctuation itself.  

(6) The proposed simplified approach for basal-heave analysis, which adopts the 

variance reduction technique, enables the traditional reliability methods such as 
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FORM to account for the spatial variability of soil parameters in an efficient way.  

This approach can easily be implemented in a spreadsheet for probabilistic 

analysis of basal-heave stability. Reliability or probability-based design can be 

realized by meeting a target probability of failure against basal-heave.  

 

The following conclusions are drawn from the study on the effect of 

two-dimensional spatial variability on the basal-heave stability analysis in Chapter III:  

(1) Traditional reliability analysis that considers variation of input soil parameters, 

but not spatial variability in a random field, can significantly overestimate the 

probability of basal-heave failure for a given deterministic design with a certain 

factor of safety (e.g., Figures 3.3 and 3.4). Negligence of the model bias of the 

slip circle method also leads to an overestimation of failure probability (Figure 

3.8), albeit at a much lesser degree. The results help explain the unreasonably 

high probability of failure that is often reported in a traditional reliability analysis 

of a basal-heave design that achieves a satisfactory safety factor (for example, FS 

> 1.2). Thus, spatial variability must be properly accounted for in the reliability 

analysis.  

(2) When proper characteristic lengths are selected, the reduction factor (Γ) computed 

using Eq. (3.8) agrees extremely well with that which was back-calculated from 

the “equivalency” analysis using the MCS-based RFM solution (Figure 3.5). This 

study found that for basal-heave analysis in a 2-D random field using the slip 

circle method (Figure 3.1), the vertical characteristic length Lv can be taken as the 
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vertical distance between the depth of the final strut and the bottom of the 

diaphragm wall (length od  in Figure 3.1) and the horizontal characteristic length 

Lh can be taken as the horizontal scale of the slip circle (length ec  in Figure 3.1). 

With these characteristic lengths, the reduction factor (Γ) can be accurately 

computed using the equivalent variance technique.  

(3) A procedure for conducting reliability analysis of basal-heave in a braced 

excavation in a 2-D random field is presented. This reliability-based analysis 

procedure that considers spatial variability in the 2-D random field is based on an 

equivalent simplified approach. The equivalency in the computed probability of 

basal-heave failure is established through equivalent variance technique. The 

results presented in this study show the probability of basal-heave in a given 

braced excavation in clay with spatial variability can be determined through 

traditional reliability analysis of basal-heave using the equivalent simplified 

approach, in lieu of the Monte Carlo simulation (MCS) analysis. The developed 

procedure is implemented in a spreadsheet, which is shown to be an effective and 

efficient tool for performing reliability analysis that takes into account 2-D spatial 

variability of soils.  

(4) The spreadsheet that implements the developed simplified approach facilitates 

reliability-based design of braced excavation against basal-heave, as the 

probability of basal-heave failure can be easily calculated even when spatial 

variability must be considered. Reliability-based design can be realized by 

satisfying a target reliability index or the acceptable probability of failure against 
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basal-heave. The developed reliability-based procedure (and spreadsheet), on the 

other hand, can accurately evaluate the probability of basal-heave failure because 

soil spatial variability is properly counted for through variance reduction. The 

developed reliability-based procedure is easy to use, especially with a spreadsheet 

tool which requires far less computational effort than the MCS-based RFM 

approach. Thus, this simplified approach can be a practical tool for 

reliability-based design against basal-heave failure.  

 

The following conclusions are drawn from the study on the effect of 

one-dimensional spatial variability on the probabilistic serviceability assessment in 

Chapter IV:  

(1) The fuzzy finite element approach (FFEA) is shown to be effective in the analysis 

of wall and ground responses in a braced excavation through a study of a 

well-documented excavation case history. The approach uses fuzzy sets to model 

uncertain soil parameters and allows for consideration of soil variability through 

variance reduction. The propagation of fuzzy input through finite element solution 

is carried out by means of the vertex method, which is shown to be an effective 

and efficient computational technique. The fuzzy output (the wall and ground 

responses expressed as fuzzy numbers) can readily be used to compute the 

probability of exceeding the specified limiting response in a braced excavation.  

(2) Plaxis
TM

 with the modified pseudo plasticity (MPP) soil model is found to be 

satisfactory for predicting wall and ground responses in a braced excavation. The 
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Plaxis
TM

 solutions in this study are found to be as accurate as those obtained using 

the AFENA code with the same MPP soil model by Kung et al. (2007a). Both 

Plaxis
TM

 and AFENA predictions agree closely with field observations in a 

well-documented case history.  

(3) The validity of the variance reduction technique in FEM analysis of braced 

excavation in clays is ascertained by the results of the checkerboard study. 

Although the checkerboard analysis in this study is not as rigorous as the random 

FEM method, it does demonstrate the effect of spatial correlation of soil 

properties on the responses in a braced excavation. The results (i.e., the 

demonstrated applicability of the variance reduction technique in braced 

excavations) provide a basis for incorporating soil variability into the fuzzy set 

model of the uncertain soil parameters, which in turn, allows for a simple FFEA 

analysis.  

(4) Neglecting spatial variability of input soil parameters can lead to an 

overestimation of variation of wall and ground responses in a braced excavation. 

The effect of the scale of fluctuation on the “probability of exceedance” 

(exceeding the specified limiting response) is also observed in this study. 

Neglecting spatial variability in the FFEA analysis can lead to either 

overestimation or underestimation of the probability of exceedance, depending on 

the specified limiting response. Thus, it is important to assess spatial variability 

during site investigation and to incorporate this variability into the FFEA analysis 

of braced excavation.  
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The following conclusions are drawn from the study on the effect of small sample 

size of soil parameters on the probabilistic serviceability assessment in Chapter V: 

(1) A simple procedure for assessing the probability of serviceability failure in a 

braced excavation, where the failure is defined as the state that the response of an 

excavation system, in terms of the maximum wall deflection or ground settlement, 

exceeds the specified limiting value, is presented and demonstrated with a case 

study.  

(2) Because of the uncertainties in the analysis model and the input parameters, the 

question of whether the response of an excavation system will exceed the 

specified limiting value cannot be answered with certainty. Thus, it is useful to 

evaluate the probability of failure (or in this study, probability of exceedance) 

taking into account of these uncertainties explicitly. The probability of exceedance 

allows for a more informed decision to be made regarding the risk of 

serviceability failure in a braced excavation. However, use of reliability analysis 

for the probability of exceedance necessitates an evaluation of the means and 

standard deviations of critical soil parameters. In geotechnical practice, these 

means and standard deviations are often estimated from limited data, which leads 

to uncertainty in the derived sample statistics. Thus, there is a need to characterize 

the uncertainty in the sample statistics derived from a small sample, and to 

determine the effect of such uncertainty.  

(3) Through the case study presented, this study demonstrates that the bootstrap 
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method is an effective tool for characterizing the uncertainty (or variation) in the 

sample statistics derived from a small sample, and that additional information 

(such as the confidence interval of the probability of serviceability failure, as 

opposed to a single, fixed probability) can be “gained” through bootstrapping 

analysis. The gained information enables the engineer to more rationally assess 

the probability serviceability failure (and the associated risk) in a braced 

excavation. The case study shows the potential of the bootstrap method in coping 

with the problem of having to evaluate failure probability with uncertain sample 

statistics. 

 

The following conclusions are drawn from the study on Bayesian updating of soil 

parameters in braced excavation in Chapter VI: 

(1) The proposed Bayesian framework is shown effective for updating key soil 

parameters in the staged excavation based on either maximum settlement or 

maximum wall deflection observation or both types of observations. Updating 

with both types of observations (i.e., maximum wall deflection and maximum 

settlement) is the most effective overall, and the updated predictions of the 

maximum wall and ground responses have the least variation. In the event that 

only the wall deflection is measured during the excavation, the updating of soil 

parameters and response predictions in the subsequent stages of excavation with 

the proposed framework still yields almost equally satisfactory results. 

(2) Bayesian updating is shown effective in reducing the uncertainty (in terms of 
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coefficient of variation) of the updated soil parameters and model predictions 

through multi-stage of observations and updating. In the case study of the staged 

excavation, the mean values of the response predictions are getting increasingly 

closer to the field observations as the excavation proceeds. However, both the 

updated soil parameters and the updated response predictions still have to be 

expressed with a probability distribution to capture and reflect the uncertainty that 

cannot be removed completely in the updating process.  

(3) The uncertain nature of the updated soil parameters and response predictions, 

even after multi-stage Bayesian updating, has an important implication. The claim 

of “excellent agreement” between the prediction and the observation in the 

traditional back analysis of an excavation case history, often reported in the 

literature, may not be all that meaningful if the variation in the input parameters 

and/or in the computed responses are not full characterized and reported.    

(4) The final outcome of the Bayesian updating is not much affected by the assumed 

prior distributions and the levels of the coefficient of variation of the soil 

parameters. Thus, while the prior knowledge is important, the Bayesian updating 

with observations through stages of excavation can reduce the influence of this 

prior knowledge, and converged results can be obtained even if the prior 

knowledge is imperfect.  

(5) Effect of the correlation between the maximum wall deflection and the maximum 

settlement, through the model factors, on the outcome of Bayesian updating 

appears to be quite limited. The assumption of no correlation appears to yield no 
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inferior outcome in the Bayesian updating in the case study of TNEC excavation. 

Although further study to confirm this finding is warranted, it is postulated that 

the proposed framework through multi-stages of observations and updating is able 

to compensate for the deficiency, if any, of this assumption. 

(6) Markov chain Monte Carlo (MCMC) simulation implemented with 

Metropolis-Hastings algorithm is shown effective in this study. The construction 

of an effective Markov chain is, however, problem-specific and should be 

examined case by case through a proper parametric analysis. The MCMC 

parameter settings are likely to be valid for similar excavation problems. 

 

Recommendations 

To further expand the work presented in this dissertation, a number of research 

topics can be undertaken, which include the following: 

(1) The proposed simplified approach for basal-heave stability analysis considering 

spatial variability of soil parameter is based on slip circle method, which is an 

empirical model. It is also advisable to perform the basal-heave stability analysis 

using finite element analysis through strength reduction method. The feasibility of 

using finite element method for basal-heave stability analysis in conjunction with 

the proposed simplified approach should be investigated.  

(2) The probabilistic study on basal-heave stability and serviceability failure in this 

dissertation is limited to the 2-D empirical/finite element model. It should be of 

interest to consider the effect of 3-D spatial variability of soil parameters on the 
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reliability analysis, especially if 3-D modeling of the stability and deformation 

problems in braced excavations is desired.  

(3) Within the Bayesian framework proposed for updating soil parameters in this 

dissertation, the uncertainty of the observed wall and ground responses may be 

considered. This can be realized by considering the uncertainty of observations in 

the covariance matrix of model bias (or model error) within the current Bayesian 

framework in this dissertation.  

(4) The proposed Bayesian framework for updating key soil parameters in this 

dissertation does not simultaneously update the model bias of the semi-empirical 

model KJHH in the updating process. Considering that the KJHH model is a 

data-driven model, the model bias should also be calibrated in the Bayesian 

updating process. Thus, it should be of interest to improve the proposed Bayesian 

framework in this regards.  
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