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ABSTRACT 

The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a mobile 

lunar lander under development by the National Aeronautics and Space Administration’s 

Lunar Architecture Team.  While previous lunar missions have lasted only a few days, 

the ATHLETE is designed to last for 10 years, which will enable a sustained U.S. 

presence on the moon and exploration of the more treacherous regions which are not 

suitable for landing.  Because the ATHLETE will carry entire astronaut habitats, its six 

wheels must be carefully designed to support a large load on soft lunar soil efficiently. 

The purpose of this thesis is to develop a finite element model that will allow 

designers to examine how the tractive performance of the lunar wheel is affected by 

changes in the wheel geometry through numerical analysis.  It has been shown in the 

literature that a wheel rolling on soil is not suited to a plane strain analysis.  Two different 

three-dimensional deformable wheel models are explored, a single-part shell model and a 

multi-part solid-shell model.  For the purposes of this research, the shell model offers 

sufficient detail with less computational expense.  The key to obtaining a smooth pressure 

distribution is in careful selection of the contact stiffness.  For the soil model, a set of 

parameters to represent a pressure-dependent elasto-plastic cap hardening lunar soil was 

assembled.  Two different methods of selecting an appropriate soil bed size are 

compared.  A holistic method that determines all dimensions at once was found to be 

quick and reliable.  Finally, the wheel and soil models were integrated into one finite 

element model in the commercial code, Abaqus™, and three small studies were 

conducted to demonstrate the utility of the model in predicting changes in traction dues to 
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change in wheel design and operation.  For example, the model can help determine how 

quickly the wheel can accelerate without significant slippage.  The model can also inform 

design decisions.  The pilot tests suggested that softening the cylinders and/or the spokes 

could improve traction, but softening the cylinders too much can lead to structural failure. 

 



iv 
 

DEDICATION 

To my wonderful husband for his love and support and to my parents for their 

lifelong encouragement.  I could not have done it without you. 



v 
 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank Clemson University and the South 

Carolina Space Grant Consortium for providing the funding that allowed me to complete 

this work.  I would also like to gratefully acknowledge the following people for their 

support.  Timothy Reeves has been a great sounding board for ideas and inspiration.  

Manoj Chinnakonda, Renuka Jagadish, and Balajee Ananthasayanam all made significant 

contributions to the numerical modeling of the Lunar Wheel and Balajee has taught me 

many tricks for dealing with ABAQUS.  My creative inquiry team challenged me and 

helped me learn about the design process.  Vivake Asnani at NASA Glenn shared helpful 

insights about sand modeling and behavior and also provided key literature. 

The guidance of my advisory committee has been invaluable.  Dr. Joshua 

Summers allowed me the opportunity to work on this project and has kept me focused on 

achieving practical, useful results.  Dr. Paul Joseph has an amazing ability of identifying 

the fundamental mechanics of a complex system such as the Lunar Wheel.  He has 

challenged me to really understand exactly what I am modeling.  Dr. Lisa Benson has 

been a fantastic advisor and mentor.  She has helped me maintain my sanity and my 

funding.  My committee chair, Dr. Sherrill Biggers has placed his confidence in me and 

allowed me the freedom to choose my own project path and develop as a well-rounded 

researcher.  My thanks to all of you. 

  



vi 
 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................ii 

DEDICATION ............................................................................................................... iv 

ACKNOWLEDGMENTS ............................................................................................... v 

LIST OF TABLES ......................................................................................................... ix 

LIST OF FIGURES ........................................................................................................ xi 

1. MOTIVATION ........................................................................................... 1 

1.1 Approach ................................................................................................ 5 

1.2 Research Objective ................................................................................. 5 

1.3 Research Questions ................................................................................. 7 

2. BACKGROUND AND LITERATURE REVIEW ..................................... 10 

2.1 Soil Mechanics ...................................................................................... 12 

2.2 Lunar Regolith ...................................................................................... 20 

2.3 Lunar Environment ............................................................................... 23 

2.4 Lunar Wheel Development .................................................................... 24 

2.5 Finite Element Analysis of Wheel-Soil Interaction ................................ 27 

3. LUNAR WHEEL MODEL........................................................................ 31 

3.1 Finite Element Code Selection .............................................................. 31 



vii 
 

3.2 Computation Time ................................................................................ 31 

3.3 Wheel Modeling and Element Selection ................................................ 33 

3.4 Contact.................................................................................................. 50 

3.5 Wheel Mesh Refinement ....................................................................... 53 

3.6 Calibration ............................................................................................ 53 

3.7 Summary............................................................................................... 56 

4. SOIL MODEL ........................................................................................... 60 

4.1 Material Model Selection ...................................................................... 60 

4.2 Soil Parameters ..................................................................................... 61 

4.3 Reduction of Edge Effects ..................................................................... 64 

4.4 Boundary Conditions ............................................................................ 72 

4.5 Friction Coefficient ............................................................................... 73 

4.6 Soil Mesh Refinement ........................................................................... 74 

5. DEMONSTRATION OF THE INTEGRATED MODEL .......................... 80 

5.1 Start-up Effects ..................................................................................... 80 

5.2 Cylinder Wall Thickness ....................................................................... 87 

5.3 Spoke Stiffness ..................................................................................... 90 

6. CONCLUSIONS AND FUTURE WORK ................................................. 96 



viii 
 

APPENDICES .............................................................................................................. 99 

Appendix A: The Stress Tensor................................................................. 100 

Appendix B: Characterization of Discrete Shear Band .............................. 102 

Appendix C: Implementation on the Palmetto Cluster ............................... 107 

Appendix D: Sample Abaqus Input File .................................................... 112 

REFERENCES............................................................................................................ 119 

 

  



ix 
 

LIST OF TABLES 

Table 1.1  Research Questions and Hypotheses ............................................................... 7 

Table 2.1 Ultimate Bearing Capacity (kPa) of a Square Footing 

with B = 200 mm. .............................................................................................. 19 

Table 2.2 Recommended Values for Lunar Soil Cohesion and 

Friction Angle [31] ............................................................................................ 21 

Table 3.1   Computational Efficiency on Multiple Nodes ............................................... 32 

Table 3.2  Element Types .............................................................................................. 47 

Table 3.3  Computation Times of Refined Wheel Meshes.............................................. 50 

Table 3.4 Effect of Contact Stiffness on Wheel Deflection ............................................ 52 

Table 3.5  Wheel Mesh Refinement ............................................................................... 53 

Table 3.6 Materials and Element Types by Section ........................................................ 59 

Table 4.1 Soil Model Properties .................................................................................... 61 

Table 4.2 Bulk Density and Shear Strength Parameters of Soil 

Model Layers ..................................................................................................... 62 

Table 4.3 Soil Model Properties [87] ............................................................................. 63 

Table 4.4 Sequential Sizing Method .............................................................................. 67 

Table 4.5 Summary of Holistic Sizing Method .............................................................. 71 

Table 4.6 Effect of Mesh Size on Holistic Method Results ............................................ 72 

Table 4.7  Effect of Boundary Conditions ...................................................................... 73 

Table 4.8  Effect of Friction Coefficient ........................................................................ 74 

Table 4.9  Soil Mesh Refinement ................................................................................... 75 



x 
 

Table 5.1  Effect of Start-up Time on Traction .............................................................. 84 

Table 5.2 Effect of Cylinder Wall Thickness ................................................................. 87 

Table 5.3  Effect of Spoke Stiffness on Displacement and Contact 

Area ................................................................................................................... 91 

Table 6.1 Research Questions Answered ....................................................................... 96 



xi 
 

LIST OF FIGURES 

Figure 1.1 All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer 

(ATHLETE), photo courtesy NASA/JPL-Caltech ................................................ 2 

Figure 1.2 Lunar Wheel Concept ..................................................................................... 4 

Figure 2.1 Literature Map .............................................................................................. 11 

Figure 2.2 von Mises (left) and Tresca (right) Yield Criteria .......................................... 13 

Figure 2.3 Drucker-Prager (left) and Mohr-Coulomb (right) Yield 

Criteria .............................................................................................................. 14 

Figure 2.4 Consolidation Test Results of GRC-1 Lunar Soil 

Simulant ............................................................................................................ 17 

Figure 2.5 General Shear Failure ................................................................................... 18 

Figure 2.7 Cap Hardening of GRC-1 (linear scale) ........................................................ 23 

Figure 2.8 Michelin Tweel™ ......................................................................................... 24 

Figure 2.9 First Generation Prototypes Designed by Clemson 

Students [5] ....................................................................................................... 25 

Figure 2.10  Prototype Wheel ........................................................................................ 26 

Figure 3.1 Physical Prototype with Close-up of Spokes ................................................. 34 

Figure 3.3 Shell Model .................................................................................................. 35 

Figure 3.4 Image of Full Solid-Shell Wheel Created by Mirroring 

Half Model ........................................................................................................ 36 

Figure 3.5 Finite Element Model of Lunar Wheel, 2D View .......................................... 37 

Figure 3.8 Shear Band ................................................................................................... 40 



xii 
 

Figure 3.9  Shear Band Cylinder .................................................................................... 40 

Figure 3.10  Contact Pressure - S4R Elements ............................................................... 43 

Figure 3.11  Contact Pressure - S4 Elements.................................................................. 43 

Figure 3.12 Contact Pressure - C3D8R Elements, 1 Element Thick ............................... 44 

Figure 3.13 Contact Pressure - C3D8R Elements, 2 Elements 

Thick ................................................................................................................. 44 

Figure 3.14 Contact Pressure - C3D8I Elements, 1 Element Thick................................. 45 

Figure 3.15 Contact Pressure - C3D8I Elements, 2 Elements Thick ............................... 45 

Figure 3.16 Contact Pressure - SC8R Elements, 1 Element Thick .................................. 46 

Figure 3.17 Contact Pressure - SC8R Elements, 2 Elements Thick ................................ 46 

Figure 3.18 S4R Elements, Refined Mesh ..................................................................... 49 

Figure 3.19 SC8R Elements, Refined Mesh ................................................................... 49 

Figure 3.20  Pressure Distribution for k=10 MPa/mm .................................................... 51 

Figure 3.21 Pressure Distribution for k=100 MPa/mm ................................................... 51 

Figure 3.22 Pressure Distribution for k=1000 MPa/mm ................................................. 52 

Figure 3.23  Experimental (gray) and Numerical (blue) Load-

Deflection Curves .............................................................................................. 55 

Figure 3.24 Final Wheel Model Showing von Mises Stress ........................................... 57 

Figure 3.25 Side View of Final Wheel Model ................................................................ 58 

Figure 3.26  Final Wheel Model Contact Pressure on Rigid Surface .............................. 58 

Figure 4.1 Initial Size .................................................................................................... 68 

Figure 4.2 Iteration 1 – Increased Size ........................................................................... 69 



xiii 
 

Figure 4.3 Iteration 2 - Decreased Size .......................................................................... 70 

Figure 4.4  Comparison of Tolerance Limits: 0.05 mm (left) and 

0.5 mm (right) .................................................................................................... 72 

Figure 4.5  Results of Mesh Refinement ........................................................................ 76 

Figure 4.6 Spokes Collapsing Under Gravity Load ........................................................ 77 

Figure 4.7 Spokes Collapsing due to Rotation................................................................ 77 

Figure 4.8  Contact Pressure due to Gravity Load  (bottom is 

outside edge of wheel) ....................................................................................... 78 

Figure 4.9 Contact Pressure due to Rotation (bottom is outside 

edge of wheel, rolling to the right) ..................................................................... 78 

Figure 5.1  Smooth Step Velocity Profile....................................................................... 81 

Figure 5.2  Smooth Step Acceleration Profile ................................................................ 81 

Figure 5.3  Soil Thrust over the Start-up Period ............................................................. 83 

Figure 5.4 Start-up: 0 to 1 kph in 20 seconds ................................................................. 85 

Figure 5.5 Start-up: 0 to 1 kph in 10 seconds ................................................................. 85 

Figure 5.6 Start-up: 0 to 1 kph in 5 seconds ................................................................... 86 

Figure 5.7 Start-up: 0 to 1 kph in 10 seconds, followed by constant 

speed for 5 seconds ............................................................................................ 86 

Figure 5.8 Cylinder Wall Thickness = 0.7 mm (baseline) .............................................. 88 

Figure 5.9  Cylinder Wall Thickness = 0.5 mm .............................................................. 89 

Figure 5.10  Cylinder Wall Thickness = 0.3 mm ............................................................ 90 

Figure 5.12  Spoke Thickness 0.01 mm ......................................................................... 93 



xiv 
 

Figure 5.13 Spoke Thickness 0.1 mm ............................................................................ 94 

Figure 5.14  Spoke Thickness 1 mm .............................................................................. 95 

Figure B.2 Case 1, Height = 31.2 mm, 1 cylinder set ................................................... 104 

Figure B. 3 Case 2, Height = 15.6 mm, 2 cylinder sets ................................................. 104 

Figure B.4 Case 3, Height = 7.8 mm, 4 cylinder sets .................................................... 104 

Figure B.5  Shear Stress vs. Strain for Three Shear Band Heights ................................ 105 

Figure B.6  Shear Stress vs. Strain for Three Glass Cylinder 

Thicknesses ..................................................................................................... 106 

Figure C.1  Writing the Input File ................................................................................ 108 

Figure C.2 Uploading to the Remote Directory ............................................................ 109 

Figure C.3 Creating a .pbs File .................................................................................... 110 

Figure C.4Submitting the .pbs File to the Queue .......................................................... 111 

  



1.  MOTIVATION 

 

As noted in The Vision for Space Exploration, a 2004 National Aeronautics and 

Space Administration (NASA) Report: 

The moon will provide an operational environment where we can 

demonstrate human exploration capabilities within relatively safe reach of 

Earth.  Human missions to the Moon will serve as precursors for human 

missions to Mars and other destinations, testing new sustainable 

exploration approaches, such as space resource utilization, and human-

scale exploration systems, such as surface power, habitation, and life 

support, and planetary mobility.  [1] 

Exploration of areas away from potential landing sites requires a new level of 

mobility.  One potential solution recommended by the National Aeronautics and Space 

Administration’s Lunar Architecture Team is the development of mobile lunar landers, 

such as the All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer (ATHLETE) [2].  The 

ATHLETE, as shown in Figure 1.1, is under development at the Jet Propulsion 

Laboratory (JPL) as part of the NASA Exploration Technology Development Program.   
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Figure 1.1 All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer (ATHLETE), photo 
courtesy NASA/JPL-Caltech 

 
 

The benefit of a mobile lander is that redundancy is reduced because many of the 

subsystems required for a surface vehicle are the same or identical to those required for a 

lander [2].  The most notable feature of the ATHLETE is the six-degree-of-freedom 

wheeled legs.  This spider-like design enables the explorer to roll through smooth terrain 

or lift one limb at a time to “walk” through rough terrain.  The vehicle can carry a small 

habitat that will allow astronauts to have a mobile base, thus allowing them to explore 

some of the more treacherous lunar regions.   

While the ability to “walk” is useful for rough terrain, on a flat terrain, it often 

requires four times as much energy as rolling [3].  Careful design of wheels will enable 

the vehicle to use energy efficiently as it traverses the moon’s surface.  Wheels used on 

the Lunar Roving Vehicle (LRV) were qualified to support a load of 254N  per wheel for 

up to 120 km [4], but the design specifications for the ATHLETE, which is designed to 
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house a mobile astronaut habitat on the moon, require wheels that will last for 10,000 km 

[5] and support a load of 2500N per wheel.  A simple terrestrial solution would be to use 

a pneumatic tire.  In a lunar environment, however, pneumatic tires are not a safe option 

for several reasons: 

a) Rubber properties would change with the large temperature swings 

experienced on the moon. 

b) The moon lacks the atmosphere necessary to protect rubber from solar 

radiation, hence it would deteriorate quickly. 

c) A flat-tire is a single point failure that renders the wheel useless. 

d) A tire explosion in a hard vacuum would be dangerous for astronauts. 

Mobility for a sustained presence on the moon requires a new level of wheel technology.  

One promising concept for the ATHLETE wheel is being jointly developed by Clemson 

University, JPL, NASA Glenn Research Center, Michelin, and Milliken through a grant 

from the South Carolina Experimental Program to Stimulate Competitive Research (SC 

EPSCoR).  The design is inspired by the Michelin Tweel™, a non-pneumatic structure 

that retains the important characteristics of the traditional tire while removing many of 

the design limitations [6].   

One key characteristic of pneumatic tires is that they are “top loaders,” that is, the 

hub is suspended from the top half of the tire.  Air pressure keeps the tire from collapsing 

on itself.  Rigid wheels do not have the constraints of maintaining air pressure, but their 

“bottom loader” design is not an efficient use of material.  Only the material directly 

under the hub is supporting the load at any given time.  The Tweel™ is a top loader, but 
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rather than air, a polyurethane shear band sandwiched between two inextensible 

membranes is utilized to maintain its shape.  Rather than sidewalls, spokes are used to 

support the load on the hub.  To prevent bottom loading, the spokes are designed to 

buckle under compression [6].   

 

 

Figure 1.2 Lunar Wheel Concept 
 

 
Because polyurethane cannot tolerate lunar conditions, the shear band for the 

lunar wheel had to be redesigned using meta-materials to replicate the shear 

characteristics of polyurethane.  The discrete nature of the meta-materials has disrupted 

the uniform pressure profile of the polyurethane Tweel™, and it is not yet known how 

this will affect the sinkage, slippage, and pulling capacity of the wheel on the lunar 

terrain. 
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1.1 Approach 

A computational continuum approach is chosen to explore the macroscopic 

effects of the wheel-soil interaction.  Analytical approaches, such as Bekker [7-8] and 

Wong [9], require simplification that will not capture the level of detail required in the 

wheel design, therefore a numerical solution is required.  The computational approaches 

can be divided into continuum and discrete approaches.  The discrete element method 

focuses on microscopic interactions and can be very detailed, but is computationally very 

expensive per volume of soil.  The region of sand affected by the ATHLETE wheel is 

expected to be quite large due to its load and radius (over 350 mm).  Modeling such a 

large volume with the Discrete Element Method would require unreasonable amounts of 

computational time and power.  For examining macroscopic measures such as traction, a 

finite element model using the continuum approach allows an appropriate level of wheel 

detail and a suitably-sized soil region at an affordable computational cost. 

1.2 Research Objective 

The overarching goal of this research is to develop a finite element model that 

will allow designers to predict the behavior of a lunar Tweel™ on lunar soil.  To be of 

practical use to designers, the model is subjected to the following constraints: 

1) The model will be created in an efficient, sustainable software package, which is 

widely available to designers and has a graphic interface that allows immediate 

visualization of design changes.   

a) Efficient – The code should have parallel processing capabilities, ideally at the 

domain-level. 
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b) Sustainable - One way to ensure the software is maintained is to select a 

commercial software package.   

c) Widely-available – Using an in-house code would hamper the dissemination of 

the model, therefore the selected code should be commercial or open-source. 

d) Graphic – A good graphic interface will allow designers to make changes quickly 

and easily with immediate visual feedback. 

2) The maximum runtime for cluster computing will be three days or less of wall time 

(the actual time the designer has to wait for results).  This would allow a designer to 

make changes throughout the week, submit a job on Friday, and have results by 

Monday.  A design limit is not imposed on the number of processors used in the three 

day period.  For MPI-based parallel processing, the model is divided into domains, 

each of which is assigned to a processor.  The division of the model into domains is 

constrained by the model definition.  For example, all elements involved in a 

particular contact interaction must be in the same domain.  The computation wall time 

is driven by the largest domain.  When the largest domain is as small as possible 

within the constraints of the model, additional processors will not decrease wall time.  

Three days is set as a maximum, but the wall time should be kept as small as possible 

to increase utility. 

3) Because the behavior of the lunar Tweel™ on soil is not well understood, the 

simulations will be as realistic as possible within the above constraints.  A realistic 

soil model will capture experimentally observed soil behaviors such as side berms 

and rutting.  A realistic lunar Tweel™ model will consist of parts with dimensions, 
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properties, and features that clearly replicate those of the physical lunar Tweel™ 

prototype.  Possible future work could include studying the wheel-soil model to 

determine which features may be simplified for quicker analysis without significant 

loss of fidelity.   

1.3 Research Questions  

The process of meeting the research objective can be partitioned into several 

components, each corresponding to a research question.  The research questions driving 

this research are detailed in Table 1.1 

Table 1.1  Research Questions and Hypotheses 

Research 
Question 
#1 

Does a wheel model with 3-D solid elements for some of its 
components offer visible improvements in the prediction of the 
pressure distribution of the prototype wheel over a shell-based 3-D 
model?   

1.1 Which of the following shell element types is sufficient to predict a 
smooth pressure profile? 

• Fully Integrated Conventional Shell (S4)  
• Reduced Integration Conventional Shell (S4R)  

1.2 Which of the following continuum element types is sufficient to predict 
a smooth pressure profile? 

• Solid (C3D8R) 

•  Incompatible mode (C3D8I) 
• Continuum shell (SC8R) 

1.3 Do the continuum elements offer enough improvement in the pressure 
profile to merit the added computational expense? 

1.4 How do contact conditions affect the wheel deflection and pressure 
distribution? 

Hypothesis 
#1 

Using 3-D solid elements for some components of the wheel model will 
offer visible improvements in the prediction of the pressure distribution 
over a shell-based model. 
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Research 
Question 
#2 

Can a constitutive model that captures experimentally observed soil 
behaviors such as side berms and rutting be implemented in the 
selected finite element code? 

2.1 Which models are currently available in the selected commercial code? 

2.2 Which models allow the use of an explicit solver? 

2.3 Which models include pressure dependence? 

2.4 Which models allow non-associated flow? 

2.5 Which models include plastic compaction effects under hydrostatic 
pressure? 

2.6 Which model best meets the requirements of this study? 

2.7 What soil parameters should be used? 

2.7.1 What soil parameters are known for lunar soil? 

2.7.2 What soil parameters are known for lunar soil simulant? 

2.7.3 For parameters for which no lunar soil or simulant data is available, 
what are reasonable approximations? 

Hypothesis 
#2 

Using a combination of parameter values from lunar soil, lunar soil 
simulant, and a mechanically similar terrestrial sand, a model can be 
selected that meets the above requirements and predicts experimentally 
observed soil behaviors such as side berms and rutting. 

Research 
Question 
#3 

How can the finite element model parameters (such as boundary 
conditions and soil bed dimensions) be systematically selected in 
order to improve efficiency and maintain accuracy? 

3.1 How do far-field boundary conditions affect simulation results? (sliding 
vs. pinned) 

3.2 How does the location of the boundaries relative to the wheel affect 
simulation results? 

3.2.1 What depth of soil is required for convergent results? 

3.2.2 What length of soil behind the wheel is required for convergent results? 

3.2.3 What length of soil ahead of the wheel is required for convergent 
results? 

3.2.4 What width of soil to the side of the wheel is required for convergent 
results? 
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Hypothesis 
#3 

The finite element model parameters for the soil bed can be 
systematically selected to maximize efficiency and maintain accuracy at 
the millimeter level.  

Research 
Question 
#4 

How can the model be used to inform wheel design and operation?   

4.1 Are the model predictions affected by the rate of acceleration at start-
up? 

4.2 Are the model predictions affected by the thickness of the cylinder 
walls in the shear band of the wheel? 

4.3 Are the model predictions affected by the stiffness of the wheel spokes? 

Hypothesis 
#4 

The model will predict differences in traction and sinkage in accordance 
with design changes in the wheel model. 

 

The first research question guides the development and selection of an appropriate 

wheel model.  It is addressed in Chapter 3.  The next two research questions guide soil 

model the selection and development.  They are covered in Chapter 4.  The goal in 

answering these questions is to identify the most efficient soil model in terms of 

providing the most realistic results within the three-day limit of cluster computing time.  

Research Questions #3 utilizes a rigid version of the prototype wheel to determine 

appropriate dimensions of the soil bed because the rigid wheel will be an extreme case 

that will maximize the requirements for the soil bed.  The size determined will be 

conservative when used with deformable wheels.  The deformable wheel defined in 

Chapter 3 is then used for determining the appropriate level of mesh refinement.  

Research Question #4 integrates the deformable wheel and soil models and explores the 

way that the integrated model can be used to inform wheel design and operation. 
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2.  BACKGROUND AND LITERATURE REVIEW 

 

This chapter begins with a concept map of the relevant literature (Figure 2.1).  

The map is composed of four main parts: Soil Characterization, Semi-Empirical 

Prediction, Modeling/Analytical Techniques, and Lunar Exploration.  Various aspects of 

soil mechanics are discussed in Section 2.1; information specific to lunar soil is next in 

Section 2.2.  Section 2.3 explains the lunar environment.   The next section gives a brief 

history of the development of the lunar wheel, and finally, Section 2.5 details prior work 

in finite element analysis of wheel-soil interaction.   



 

 

[1, 10-13, 7, 14-15, 8, 16-58, 6, 59, 5, 60-67, 2-3, 68-76, 9, 77-80] 
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2.1 Soil Mechanics 

Soil is a complex material to model and predict because it has such a wide range 

of admissible behaviors.  Macroscopically, it can behave similar to a solid or a liquid; it 

might hold its shape or flow, compress or expand.  Microscopically, particles can slide, 

roll, interlock, or crush.   Soil behavior depends on a range of criteria, including 

confining pressure, deviatoric stress, relative density, and stress history.   

2.1.1 Shear Strength 

Since the 1700’s, soil mechanists have realized that most soil deformation is 

irreversible, and therefore principles of elasticity are inadequate for predicting soil 

behavior. In fact, plasticity principles have been in use in the study of earth pressure even 

before plasticity theory formally existed.  Tresca’s 1868 yield criterion is actually special 

case of Coulomb’s 1773 theory of earth pressure [81].      

The Tresca and von Mises models are dependent on the maximum shear stress 

and second invariant, respectively.  These models were developed for metals but provide 

reasonable approximations for cohesive soils like clay.  In principle stress space, the von 

Mises criterion is an infinite cylinder around the hydrostatic stress axis (the line 

1 2 3σ σ σ= = ), and the Tresca criterion is an infinite hexagonal prism inscribed within the 

von Mises cylinder.  These are illustrated in Figure 2.2  Dry, sandy, lunar soil is 

considered a frictional soil.  Just as the force of friction that can be developed between 

two objects depends on the normal contact force, the shear stress that can be endured by a 

frictional soil without plastic deformation depends on the normal stress.   
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A common and relatively simple yield criterion for soil that includes the normal 

stress is the Mohr-Coulomb Criterion.  This criterion states that the shear strength of a 

soil at any point is equal to a cohesive component plus a frictional component that 

depends on the normal stress.  The cohesion, c, represents the shear strength of the soil in 

the absence of confining pressure.  As the normal stress, σn, increases, the shear strength 

of the soil, τ, increases by σn times the tangent of the internal angle of friction, φ .  The 

tangent of φ  is similar to a Coulomb friction coefficient.  The Mohr-Coulomb yield 

surface can be written: 

 tan 0ncτ σ φ− − =  (2-1) 

The sign convention adopted for this text is that compressive stresses are positive.  

This is a common practice in soil mechanics because tensile stresses are practically non-

existent.  In principal stress space, this creates a semi-infinite pyramid with a hexagonal 

cross-section around the hydrostatic axis.   

Figure 2.2 von Mises (left) and Tresca (right) Yield Criteria 
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 The Drucker-Prager yield criterion uses the mean pressure, p, to create a 

smoothed version of the above condition, which results in a semi-infinite cone, defined 

by equation (2-2),  

 tan 0t d p β− − =  (2-2) 

where d and β are soil parameters which can be chosen such that the cone circumscribes 

or inscribes a particular Mohr-Coulomb surface and t is a measure of the deviator stress.   

 

 

 
For three-dimensional problems, the Mohr-Coulomb parameters can be converted 

as shown in equations (2-3) and (2-4) to create a Drucker-Prager surface that 

circumscribes (using the minus signs) or inscribes (using the plus signs) the Mohr-

Coulomb surface [82]. 

 
6sin

tan
3 sin

φ
β

φ
=

±
 (2-3)  

 
6 cos

3 sin

c
d

φ
φ

=
±

 (2-4) 

Figure 2.3 Drucker-Prager (left) and Mohr-Coulomb (right) Yield Criteria 
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The variable t is a measure of the deviator stress which is related to the Mises equivalent 

stress, q, and the third invariant of the deviatoric stress, r, by parameter K as shown in 

equation (2-5) [83].  More detail about the stress invariants is given in Appendix A.  

 
3

1 1
1 1

2

q r
t

K K q

   = + − −   
    

 (2-5) 

When K is unity, the failure surface is a circle in the deviatoric plane, centered about the 

hydrostatic axis, and 

 ( ) ( ) ( )2 2 2

1 2 2 3 1 3

1

2
t q σ σ σ σ σ σ = = − + − + −   (2-6) 

When K is less than unity, the third invariant of the deviatoric stress, r, is incorporated 

into the rule.  In terms of principal stresses,  

 
( )( )( )1 2 3 1 2 3 1 2 32 2 2

27
r

σ σ σ σ σ σ σ σ σ+ − − + − −
=  (2-7) 

Because sand quickly becomes non-linear and inelastic, a common modification 

to the Drucker-Prager shear failure surface is to add an elliptical cap to the wide end and 

a smooth transition surface from the cone to the cap.  If the sand reaches the elliptical 

surface, the resulting plastic flow is assumed to be associated.  Most metals exhibit 

associated flow, which means that the strain increment aligns with the stress increment.  

In other words, the plastic potential surface is the same as the yield surface.  If the stress 

state reaches the Drucker-Prager surface, the sand is assumed to exhibit non-associated 

flow.  In this case, the plastic potential is assumed to be an elliptical surface.   
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2.1.2 Compressibility 

The cap is added to the Drucker-Prager model to capture the non-linear 

compressibility of soil.  Initially, the soil compresses easily as the individual grains 

resituate.  Once the sand is firmly packed, further compression requires crushing or 

compressing of the individual grains.  In terms of continua, this is modeled as a 

logarithmic strain hardening curve.  This curve is defined in equation (2-8) by the 

compression index (Cc) and swelling index (Cs) of the soil, as well as an initial pressure 

(p0) and initial void ratio (e0).  The plastic volumetric strain, pvolε , can be calculated as: 

 
0 0

ln
2.3(1 )

p c s
vol

C C p

e p
ε

 −
=  +  

 (2-8) 

The compression and swelling indices can be obtained from a consolidation test.  

The void ratio is a volumetric ratio of void to solid material. The void ratio plus one 

yields the total bulk volume of one unit of solid volume.  The results of a consolidation 

test of a lunar soil simulant, GRC-1 are shown in Figure 2.4.  The test begins at a known 

void ratio (top left corner of the graph) and then slowly consolidates the soil by 

increasing the pressure.  The slope of this line is the compression index.   The soil is then 

decompressed back to the initial pressure and then recompressed.  Because the soil does 

not expand all the way back to its initial void ratio, the decompression/recompression 

lines have a shallower slope, which is the swelling index. 
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Figure 2.4 Consolidation Test Results of GRC-1 Lunar Soil Simulant 
 

2.1.3 Bearing Capacity 

Another useful concept from geotechnical engineering is the calculation of 

bearing capacity.  This work began with Terzaghi in 1943 [63] who used Prandtl’s plastic 

failure theory [58] to predict bearing capacity for shallow strip footings.  He assumed the 

soil would fail by general shear failure, illustrated in Figure 2.5.  He removed any soil 

above the base of the foundation (the overburden) and replaced it with a surcharge 

pressure equivalent to its weight, q.  This effectively neglects any shear resistance 

developed in the overburden layer.  The wedge of soil right below the foundation (zone I) 
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is pushed downward.  The failure surface that develops pushes the radial zones (zones II) 

outward, which in turn push the Rankine passive zones (zones III) upward.   

 

 

 

Based on the failure mechanism shown in Figure 2.5, Terzaghi used 

superimposition to approximate the ultimate bearing capacity, qu.  Terzaghi’s work was 

later refined by Meyerhof [51, 84], Balla, and DeBeer and Vesic.  One refinement was 

the discovery that the upper vertices of zone I make an angle of 45+φ/2 degrees below 

horizontal, not φ degrees, as Terzaghi had predicted.  Although there has been some 

disagreement over the calculation of the bearing capacity factors, the form remains the 

same.  For a square footing, the ultimate bearing capacity, qu, is 

 1.3 0.4u c q c qq q q q cN qN BNγ γγ= + + = + +  (2-9) 

The bearing capacity depends on the cohesion of the soil, c; the surcharge (weight of the 

soil that was removed from the analysis), q; the bulk unit weight of the soil, γ; and the 

Figure 2.5 General Shear Failure 
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most narrow dimension, B, of the foundation.  The bearing capacity factors can be 

calculated as follows: 

 ( )1 cotc qN N φ= −  (2-10) 

 ( 1) tan(1.4 )qN Nγ φ= −  (2-11) 

 tan 2tan 45
2qN eπ φ φ = + 

 
 (2-12) 

These equations yield the bearing capacities listed in Table 2.1 for a situation where the 

overburden depth is zero. 

 
Table 2.1 Ultimate Bearing Capacity (kPa) of a Square Footing with B = 200 mm. 

Friction Angle, φ 
(degrees) 

Cohesion , c (kPa) 

0 0.01 0.1 1 10 100 

30 22 23 26 61 414 3940 

35 52 53 58 112 652 6049 

40 132 133 142 230 1111 9923 

45 371 373 389 545 2112 17775 

50 1234 1238 1269 1581 4704 35929 

 

2.1.4 Critical State Soil Mechanics 

Another way of studying soil mechanics is based on the concept of a critical state 

[85] at which a saturated soil will flow as a frictional fluid without further changes in 

stress or specific volume.  This behavior has been observed in saturated reconstituted 

clays.  The first models based on this theory are the Cam Clay and the Modified Cam 

Clay models, which, as their names suggest, were developed with the intention of 
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predicting the behavior of clay.  More recently, models based on critical state theory have 

been developed for sand, but typically require complex yield surfaces.  It is unclear 

whether these models predict the behavior of dry sand with any accuracy.  Furthermore, 

the critical state methods require many parameters, some of which have little or no useful 

physical meaning [81], and little critical state data is available for sands.  Because lunar 

soil can be described as a frictional-cohesive silty sand, and there is no water on the 

moon to saturate the soil, the critical state models will not be considered further in this 

research. 

2.2 Lunar Regolith 

One of the most comprehensive resources for lunar information is the “Lunar 

Sourcebook: A User’s Guide to the Moon” [31].  The moon is made up of relatively flat 

areas, called lunar maria that are covered with dry, frictional, silty sand and mountainous 

regions referred to as highlands [31].  The term “regolith” includes all loose rocks, sand, 

and silt that are not part of the lunar bedrock.  The lunar maria are fairly smooth regions 

comprised mainly of iron and titanium from basaltic lava flows.  Here the regolith is 

believed to be 4-5 m deep.  The highlands are mountainous regions largely made up of 

calcium and aluminum.  The regolith is believed to be roughly 10-15 meters deep in the 

highlands.  The entire surface is coated with a fine dust that is highly electrostatically 

charged.   

The lack of atmosphere (15 orders of magnitude less than Earth’s atmosphere) 

and water results in particles that are unweathered and angular.  They have been formed 

largely by meteoroids shattering the rock.  The jagged edges afford interlocking between 



21 
 

particles which produces unusually high shear strength.  The bulk density and shear 

strength varies with depth from the surface.  The Lunar Sourcebook [31] recommends the 

values shown in Table 2.2 for the bulk density and Mohr-Coulomb shear strength 

parameters.  Additionally, they proposed the following model for depths up to 3 meters: 

 
12.2

1.92
18

z

z
ρ

+
=

+
 (2-13) 

 

Table 2.2 Recommended Values for Lunar Soil Cohesion and Friction Angle [31] 

Depth Range 
(cm) 

Bulk Density, ρ 
(g/cm3) 

Cohesion, c 
(kPa) 

Friction Angle, ϕϕϕϕ    

(degrees)(degrees)(degrees)(degrees) 

0-15 1.50 0.52 42 

0-30 1.58 0.90 46 

30-60 1.74 3.00 54 

0-60 1.66 1.6 49 

  

The properties listed in Table 2.2 have been used by NASA’s Glenn Research 

Center to create a lunar soil simulant with mechanical properties similar to the lunar soil 

[56].  This soil, called GRC-1, is a mixture of terrestrial sands that can be easily and 

inexpensively obtained for testing purposes. 

He and Zeng [30] at Case Western Reserve reported the compression index and 

swelling index of GRC-1 to be 0.02 and 0.005, respectively.  This hardening curve, along 

with several experimental data points is shown in Figure 2.6 and Figure 2.7. 
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Figure 2.6  Cap Hardening of GRC-1 (semilog scale) 
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Figure 2.7 Cap Hardening of GRC-1 (linear scale) 
 

2.3 Lunar Environment 

Environmentally, the moon is a treacherous place.  The temperature ranges from 

100 to 400 Kelvin (-280 to 260 Fahrenheit).  Because the same side of the moon always 

faces the earth, one rotation corresponds to one complete orbit around the earth.  One 

lunar day is 27.3 earth days [86].  Long days and nights result in huge temperature 

swings.  The average daytime temperature is 107°C and the average nighttime 

temperature is -153°C [31].  Radiation is also a concern, as there is no atmosphere to 

shield the lunar surface from solar rays and meteors.  These conditions severely limit the 

material choices available for use on lunar missions.   
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2.4 Lunar Wheel Development 

The Tweel™ is the non-pneumatic integrated tire/wheel developed by Michelin 

and recognized as one of the TIME 2005 Inventions of the Year1 (shown in Figure 2.8).  

The benefit of the Tweel™ is that it can maintain relatively uniform contact pressure 

without pneumatics, which makes it a good candidate for lunar exploration; however, the 

design of the Tweel™ relies heavily on the low shear modulus and incompressibility of 

polyurethane, which cannot endure the extreme lunar temperatures.   

 

Figure 2.8 Michelin Tweel™ 
 
 

One key characteristic of pneumatic tires is that they are “top loaders,” that is, the 

hub is suspended from the top half of the tire.  Air pressure keeps the tire from collapsing 

on itself.  Rigid wheels do not have the constraints of maintaining air pressure, but their 

“bottom loader” design is not an efficient use of material.  Only the material directly 

                                                
1 http://www.time.com/time/business/article/0,8599,1129516,00.html 
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under the hub is supporting the load at any given time.  The Tweel™ is a top loader, but 

rather than air, a polyurethane shear band sandwiched between two inextensible 

membranes is utilized to maintain its shape.  Rather than sidewalls, spokes are used to 

support the load on the hub.  To prevent bottom loading, the spokes are designed to 

buckle under compression [6].   

On a flat, rigid surface, the contact pressure, pc, of a Tweel™ can be 

approximated by equation (2-14) 

 c

Gh
p

R
≅  (2-14) 

where G is the shear modulus of the circumferential elastic beam, h is the height of the 

beam, and R is the outer radius [6].    

 
Figure 2.9 First Generation Prototypes Designed by Clemson Students [5] 

 
 

Lunar wheels inspired by the Tweel™ have been under development at Clemson 

University since 2006 when a partnership was established with Michelin and JPL.  Soon 

after, Milliken and NASA Glenn Researchers were brought into the project as well.   The 
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first generation prototypes shown in Figure 2.9 were the result of a senior design project 

to redesign the Tweel™ using non-polymeric materials.  Their designs were then 

advanced by Conger and analyzed for wear and fatigue concerns by Stowe [5].   

 

 

 

Currently, a third generation lunar wheel has been constructed by Michelin, 

shown in Figure 2.10.  At the center of the prototype wheel is a metal truss system which 

represents the hub.  The wheel motor and tool attachments will eventually be housed in 

this area.  To allow counter-deflection, the spokes must be extensible; however, the 

sailcloth material used for the spokes has a large elastic modulus.  To combat this 

problem, the spokes are wrapped over a short curved plate made of a glass composite.  

Tension in the spoke causes the plate to bend, which results in an overall extensibility of 

the spoke system.  The outer edge of the spoke is connected to the inner membrane.  Both 

the inner and outer membranes are made from glass composite which has little 

Figure 2.10  Prototype Wheel  
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extensibility in the circumferential fiber direction.  The shear band between these two 

membranes is composed of concentric cylinders which are riveted to each membrane.  

Finally, a 2mm layer of a felt-like material is wrapped around the outer membrane.  This 

compliant layer helps to subdue the pressure spikes that arise from the discrete nature of 

the shear band. 

The hub is continuous along the axis of the wheel, but the spokes and inner 

membrane have two lobes with an 8 mm gap between them.  Each lobe is connected to 

two cylinder and outer membrane segments, with a 6 mm gap between them.   

2.5 Finite Element Analysis of Wheel-Soil Interaction 

Perumpral [57] is often credited with the first finite element prediction of soil 

deformation under a wheel.  A piecewise linear elastic model was used for the soil.  The 

initial shape of the soil included a wheel indentation with an equally deep rut behind it.  

As with all early models, the wheel was not actually modeled, but represented by a stress 

distribution  based on experimental data from Onafeko and Reece [55].     

In 1976, Yong and Fattah [80] used the elasto-plastic von Mises criterion to 

predict yield and incorporate the unloading response of a rigid wheel represented by a 

displacement boundary condition.   

Until Aubel [11] published his seminal work in 1993, the interaction between 

wheel and soil had been determined by hand, subject to many idealizations, and then 

input into the finite element code as a boundary condition.  Aubel coupled an elastic tire 

model and a Drucker-Prager soil model with non-associated plastic flow.   For the first 
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time, the external loading was used as an input to the simulation and the contact shape, 

stresses, and deformations were the resulting output. 

In the following year, Fervers [22] implemented a similar model that incorporated 

a rigid wheel with a lugged profile.  In later works, he developed a 2-D finite element 

model of an air-filled tire which included a rim, an air-filled volume, a belt, and a layer of 

tread [23].  The tire carcass is accounted for by imposing a load-deflection relationship 

between the rim and the outer edge of the tread. 

Hambleton and Drescher [26-28] used Abaqus/Explicit to show that three-

dimensional effects are significant for rigid wheels on sand and confirmed this 

experimentally using particle image velocimetry.  Plane strain simulations were matched 

with a cylinder that spans the width of the sand container.  In this case, shear bands 

imitating Prandtl’s solution for failure of a soft material under a punch (which is the basis 

for Terzaghi’s analysis of failure under a shallow foundation) were visible.  However, 

when a wheel that does not span the entire width of the container but is flush to one side 

is indented into the sand, the results are quite different.  In addition to the fact that a berm 

(upheaval of sand) develops to the side of the wheel, the displacement of the sand lacks 

the sharp gradients observed in the plane strain case.  Instead, the displacements are large 

near the wheel and gradual diminish with depth and horizontal distance away from the 

wheel.  This phenomenon was also observed in the simulations which modeled the sand 

using a modified Drucker-Prager model with a non-associated flow rule.  The goal of 

Hambleton and Drescher’s work was to develop approximate analytical prediction of rut 
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depth based on wheel and soil parameters (vertical and horizontal forces, wheel width, 

wheel diameter, soil density, friction angle, cohesion).   

Chiroux et al. [18] successfully modeled three-dimensional wheel-soil interaction 

including compaction effects in Abaqus/Explicit using a cap plasticity soil model.  The 

distinctive features of this study are; 

 (1) The wheel is dynamically loaded by a vertical weight force and a rotation, 

rather than a forced sinkage and/or translation. 

 (2) A dynamic analysis was used to provide a time history of the interaction and 

the dynamic behavior. 

(3) Although the number of elements was limited by computational resources (a 

single engineering workstation), dividing the soil into multiple, independently meshed 

parts connected by surface ties allowed the researchers to mesh efficiently.  Additionally, 

infinite elements were used at a distance in front of and behind the wheel. 

The Chiroux study provides a feasibility check for the study presented here, but 

lacks the rigor to draw any firm conclusions.  A shallow depth of soil (less than 0.4d) was 

modeled and there is no evidence of any convergence checks.   

The present study combines both a sophisticated soil model and a realistic wheel 

model that will enable a designer to make informed decisions about the wheel design.  

The soil model used is similar to that of Chiroux except that it is stratified to represent the 

variation of properties with soil depth, and rather than infinite elements, which are not 

well documented in the literature or fully explained in the software documentation, a 

larger region of soil is modeled using coarse elements far away from the wheel 
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interaction.  The lunar wheel is an entirely new concept, thus only simple 2D models 

have been generated prior to this work, and they have not yet been widely published.
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3.  LUNAR WHEEL MODEL 

3.1 Finite Element Code Selection 

In accordance with the research objectives outline in Chapter 1, Abaqus/CAE: the 

Complete Abaqus Environment™ was selected for the creating and analyzing the finite 

element model.  This product meets the constraints of being efficient, sustainable, widely 

available, and graphic.  Additionally and perhaps most importantly, it is licensed at the 

researcher’s home institution.  Abaqus™ is efficient because it has MPI (Message-

Passing Interface) parallel processing capabilities that allow the problem to be parallel 

processed at the domain level.  The model is actually partitioned between processors, 

which is more efficient than thread-based processing where lower-level tasks are parsed 

between processors.  Because the code is commercial, it is expected that it will be 

maintained by Dassault Systemes for the foreseeable future.  The software package is 

expensive, but available to any organization.  The graphic interface included in the 

Complete Abaqus Environment™ allows designers to graphically make changes to the 

model and see results instantly.   

3.2 Computation Time 

The Palmetto Cluster was used for parallel processing the simulations on multiple 

nodes.  Details of this process can be found in Appendix C.  Each node has a dual 

processor and each processor has four cores, for a total of 8 cores per node.  The 

relationship between cores and wall time is not linear because as the number of cores 
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increases, so does the interaction among cores.  Inevitably, one core will have to wait on 

output from another core.  Minimizing the wait time is known as load balancing.  The 

time spent actually executing tasks (not waiting on input) is called CPU time.  The actual 

elapsed time is called the wall time.  CPU usage is the ratio of the CPU time to the 

maximum possible CPU time, which, in this case is the eight times the wall time (because 

the master node has eight cores).  The CPU usage is essentially a measure of efficiency.  

A sample job of a rigid wheel on soil made up of 165672 elements was run multiple 

times to examine the effect of using multiple nodes.  As Table 3.1 shows, using multiple 

nodes decreases the wall time dramatically.  Even with 10 nodes, the CPU usage is over 

90%.  Using 20 nodes for the same simulation causes a significant drop in the efficiency 

of the individual cores, but the wall time is still reduced.  The efficiency with which a job 

can be parallel processed is problem dependent.  For small problems, such as those with 

only the wheel, two nodes were used.  Problems modeling the soil were run on 10 or 20 

nodes. 

 

Table 3.1   Computational Efficiency on Multiple Nodes 

Nodes Wall time 

CPU time of master node 
(8 cores) 

(hh:mm:ss) 

Max possible CPU 
time (wall time *8 

cores) 
hh:mm:ss CPU usage 

1 24:00:32 177:39:48 192:04:16 92%* 

2 10:24:32 82:16:40 83:16:16 99% 

10 2:39:30 19:22:57 21:16:00 91% 

20 1:58 11:37:06 15:44:00 74% 

* Job did not complete in the 24 hr time limit, so results may not be representative 
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3.3 Wheel Modeling and Element Selection 

Two finite element models of the wheel have been developed.  The first is an 

extrusion of a single wire frame; the second is built up of 175 part instances connected by 

surface-to-surface ties.  The physical prototype (Figure 3.1) is made up of rigid metal 

hub, collapsible spokes, and a shear band (double cylinders sandwiched between two 

inextensible rings).  The models are designed to mimic the mechanics of the prototype in 

an efficient way while maintaining a geometric configuration similar to the actual 

prototype wheel.  In both models, only the outer perimeter of the rigid hub is modeled.  In 

the figure, a tread covers the 6-8 mm gaps between the four lobes which are captured by 

the solid model, but not by the shell model.  Note that each of the spokes wraps over a 

curved piece of glass composite.  The spoke material is too stiff to allow the wheel to 

work properly, but as these springboards bend, the spoke is effectively lengthened.   

Each model is described in more detail in the Sections 3.2.1 and 3.2.2.  In section 

3.3.3, the different element types available for each are discussed and results are 

compared.   
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The actual wheel is made largely from a unidirectional glass composite; however, 

an explicit analysis in ABAQUS allows only isotropic materials.  Because of the 

geometry of the wheel, this simplification had little impact on the final results. 

3.3.1 Shell Model 

The basis for the shell model is the sketch shown in Figure 3.3.  This wire frame 

is then extruded to create one half of the wheel.  The figure shows the full wheel, but 

because of symmetry only half has to be modeled.  Although the wheel is one part, each 

section can have different properties.  Shell elements are used everywhere except the 

straight part of the spokes.  The springboards (curved part of the spoke that attaches to 

the hub) are meshed with shell elements that have bending resistance.  The actual spoke 

is meshed using membrane elements that do not support any bending or transverse shear 

loads.  Because they transmit only in-plane loads, membrane elements are ideal for 

representing the spoke material that has a large stiffness in tension but collapses easily in 

Figure 3.2  Prototype Wheel and close up of spokes Figure 3.1 Physical Prototype with Close-up of Spokes 
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compression.  The cylinders are connected to the inner and outer rings along an axial line 

and contact is not defined between them.  The lines in the left figure represent the 

midplane of each shell. 

 

 

Figure 3.3 Shell Model 
 

3.3.2 Solid-Shell Model 

 
The solid-shell model was built part by part and then assembled using surface-to-

surface ties.  The inextensible rings are modeled as three-dimensional solid parts.  Each 

double cylinder set and spoke is modeled separately as a shell.  The assembly as a whole 

is described first, followed by the individual parts. 
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Figure 3.4 Image of Full Solid-Shell Wheel Created by Mirroring Half Model 
 
 

Due to the symmetry of the problem, only half of the wheel is modeled.  In Figure 

3.4 above, the half-model is mirrored to give an image of the full wheel.  The hub is one 

solid piece, while the spokes and inner membrane have two 106 mm segments separated 

by an 8 mm gap.  Each 106 mm lobe has two cylinder and outer membrane segment that 

are 50 mm each, separated by a 6 mm gap.  With the exception of the gaps, the wheel is 

prismatic along the z-axis.  For the remainder of the document, only the modeled half 

will be shown. 
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Figure 3.5 Finite Element Model of Lunar Wheel, 2D View 
 

A two-dimensional view of the wheel is given in Figure 3.5.  The inner circle 

represents the hub and is rigidly tied to a reference point at the center of the wheel.  It is a 

discrete rigid cylindrical shell.  In the prototype wheel, the hub is a rigid truss system that 

will house the wheel motor.  At the central reference point, a translational inertia of 1500 

kg is added to represent the mass of the lunar rover.   

 

 

Inextensible 
Rings 

Shear 
Band 

Hub 

Spokes 

Concentric 
Cylinders 

Springs 
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Figure 3.6 Spoke 
 

The spoke system is modeled as one part with three sections (Figure 3.6).  The 

curved top section and the bottom flat section are made of shell elements, while the 

middle section is composed of membrane elements that do not support any bending or 

transverse shear loads.  Because they transmit only in-plane loads, membrane elements 

are ideal for representing the spoke material that has a large stiffness in tension but 

collapses easily in compression.  Technically, these elements can support pure in-plane 

compression, but the geometry is such that a compressive load also causes bending, 

which the membrane elements cannot resist, and therefore the spokes collapse as shown 

in Figure 3.7. 
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Figure 3.7 Deformed Wheel Shape 
 

 Each spoke is fixed to the inner ring of the shear band at the edge of the small 

cylinders, which are also fixed to the outer membrane (Figure 3.8).  As shown in Figure 

3.8 and Figure 3.9, the connected regions are modeled as flat surfaces which are joined 

by concentric elliptic semi-cylinders.  These are modeled with conventional thin shell 

elements.  A detailed analysis of the relationship between the cylinder properties and the 

effective shear modulus is given in Appendix B. 

The inextensible rings are modeled with solid continuum elements that allow 

transverse shear to develop through the thickness.  Surface-to-surface ties are used to 

connect the parts together.  
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Figure 3.8 Shear Band 
 

 

 

Figure 3.9  Shear Band Cylinder 
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3.3.3 Element Selection 

Multiple types of elements are available in Abaqus™, each with its own strengths 

and limitations.  The properties of each element type are discussed below.  In both the 

models discussed above, M3D4R elements were used for the spokes and S4R elements 

were used for the springboards and cylinders.  The two models vary in the way that they 

represent the inner and outer rings.  The elements that were tested on the inner and outer 

rings are indicated with an asterisk. 

*S4R (shell) – The default element for shell sections.  This four-noded doubly 

curved shell element uses reduced integration and includes displacement and rotational 

degrees of freedom.  S4R elements are suitable for both thick and thin shells.  They 

account for finite membrane strains, shear flexibility, and thickness change.  The 

formulation reflects Mindlin shell theory for thick shells and collapses to Kirchoff Theory 

as the shell thickness decreases. 

*S4 (shell) – Similar to S4R except full integration is used to compute the 

stiffness matrix. 

M3D4R (shell) – Membrane elements support only in-plane loads and have no 

bending stiffness. 

*C3D8R (solid) – The default element for solid sections.  This “brick” element 

has 8 nodes and has only displacement degrees of freedom.  It also uses reduced 

integration. 
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*C3D8I (solid) – This “incompatible mode” element is like C3D8R, but it has 13 

additional internal degrees of freedom which prevent the element from being overly stiff 

in bending.  Full integration is used in formulating the stiffness matrix 

*SC8R (solid) – The continuum shell family uses first-order composite theory.  

Unlike conventional shells, they can be stacked. Unlike continuum elements, they are 

formulated to model shell behavior without requiring multiple layers.  Continuum shells 

allow finite membrane deformation, transverse shear deformation, and thickness change. 

To test each element type, a wheel was loaded on a rigid surface by applying 

lunar gravity (1.600 m/s2) to the wheel mass as well as the 1500 kg point mass at the 

center of the hub.  The shell model was used for the shell elements and the solid-shell 

model was used for the solid elements.  The wheel models are not identical, so direct 

comparison of deflections is not appropriate.    In a first-order analysis of the terrestrial 

Tweel™, the predicted pressure distribution is uniform from front to back and side to side 

[6].  Testing of the prototype lunar Tweel™ showed that the pressure is highest near the 

edges of contact and lowest beneath the center cylinder.  Early numerical analysis have 

indicated distinct pressure spikes beneath each cylinder, with the outermost cylinders 

having the highest peaks [17], but the sharp peaks were not observed in the experiment.  

The goal is to find out which, if any, of the element types show potential to predict the 

pressure distribution that has been measured. The solid elements were tested using one 

and two elements through the thickness of the ring.  The first trials were run using a very 

coarse mesh.  The pressure profiles are shown in Figures 3.10-3.17.  The plane of 

symmetry is at the top of each image.   
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Figure 3.10  Contact Pressure - S4R Elements 
 
 

 

Figure 3.11  Contact Pressure - S4 Elements 
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Figure 3.12 Contact Pressure - C3D8R Elements, 1 Element Thick 
 

 

Figure 3.13 Contact Pressure - C3D8R Elements, 2 Elements Thick 
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Figure 3.14 Contact Pressure - C3D8I Elements, 1 Element Thick 
 

 

 

Figure 3.15 Contact Pressure - C3D8I Elements, 2 Elements Thick 
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Figure 3.16 Contact Pressure - SC8R Elements, 1 Element Thick 
 

 
 

 

Figure 3.17 Contact Pressure - SC8R Elements, 2 Elements Thick 
 

 
The computational times for each simulation are shown in Table 3.2.  Each job 

was run on two nodes.  For the solid model, default mesh settings were accepted for each 
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part, which resulted in a coarse mesh for the large parts and a more moderate mesh for 

the smaller parts like the cylinders.  One difficulty with the shell model is that because it 

is all one part, the element length in the axial direction must be the same throughout the 

wheel.  Working with the mesh is not as straightforward.  In this case, the default mesh 

was very fine, with over 50,000 elements.  To make a fair comparison, the shell model 

was remeshed to have similarly sized elements on the outer ring as the shell-solid model.    

 

Table 3.2  Element Types 

Element 
type 

Wheel 
Model Used 

Elements 
through 

thickness Elements 
Wall time 

(hh:mm:ss) 

Cylinders in 
Contact with 

ground 

Wheel 
Deflection 

(mm) 

S4 Shell 1 7047 0:33:20 -13.13  -13.13  

S4R Shell 1 7047 0:28:00 -13.33  -13.33  

C3D8I Shell-Solid 1 23307 3:16:33 3 -7.47 

C3D8I Shell-Solid 2 23587 3:15:05 3 -7.59 

C3D8R Shell-Solid 1 23307 3:19:26 1 -6.21 

C3D8R Shell-Solid 2 23587 3:20:25 1 -6.03 

SC8R Shell-Solid 1 23307 3:09:06 3 -7.82 

SC8R Shell-Solid 2 23587 3:57:10 3 -7.87 

 

For the 2400 N load used, the wheel deflection should be between 12 and 13 mm.  

The wheels have not yet been calibrated, but it is clear that the shell model is already 

closer to that target.  The pressure profiles looked similar for all the solid elements, but 

the C3D8R elements were overly stiff.  The Abaqus Documentation suggests that at least 

4 of these elements should be used through the thickness of a thick shell part.  For a large 

thin ring like the one studied here, this requires an impractical number of elements and an 
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unfeasibly small stable time step, so C3D8R elements were eliminated from further 

consideration.   

The C3D8I elements are less stiff than the C3D8R elements, but not as flexible as 

the SC8R elements.  The SC8R elements are selected for further refinement because they 

are can capture shell behavior with only one layer and are marginally less 

computationally expensive. All models except the C3D8R models have 3 cylinders in 

contact with the ground.  Only one cylinder contacts the ground in the overly stiff C3D8R 

models.   

A second round of simulations was completed for the S4R and SC8R elements 

using a refined mesh.  The pressure profiles as are shown in Figures 3.18-3.219.  
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Figure 3.18 S4R Elements, Refined Mesh 

 
 

 
Figure 3.19 SC8R Elements, Refined Mesh 

 

Even with a refined mesh, neither of the selected element types gave the smooth 

pressure profile observed in experiments.  Computation times are listed in Table 3.3.  The 

SC8R elements did not show any advantage over the S4R elements in predicting the 
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pressure profile, so the shell model with S4R elements was chosen for the rest of the 

study due to its computational efficiency.   

 

Table 3.3  Computation Times of Refined Wheel Meshes 

Element type Elements Wall time 
Wheel Deflection 

(mm) 

S4R 30800 3:36:41 -11.49 

SC8R 27427 5:39:58 -13.79 

 

3.4 Contact 

In all of the above simulations, a hard contact formulation was used which 

resulted in pressure spikes.  In order to smooth out the pressure profile, a softened contact 

formulation is examined in this section.  In the hard contact formulation, no penetration is 

allowed.  The Lagrange multiplier method of enforcement allows a virtually unlimited 

amount of pressure to build up between the wheel and the rigid surface.  In the following 

simulations, a linear pressure-overclosure relationship is used.  The constant k is the slope 

of the pressure-overclosure curve.  For example, when k = 10, 10 MPa is added for every 

mm of overclosure (penetration).   The pressure profiles were examined for three values 

of k: 10, 100, and 1000 (Figures 3.22-3.24). 



51 
 

 

Figure 3.20  Pressure Distribution for k=10 MPa/mm 
 

 

Figure 3.21 Pressure Distribution for k=100 MPa/mm 
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Figure 3.22 Pressure Distribution for k=1000 MPa/mm 
 

With a stiff pressure overclosure relationship (k=1000), pressure spikes are still 

observed below each cylinder.  The pressure distributions for k = 10 and k =100 are much 

smoother.  However, Table 3.4 shows that setting the contact stiffness to k = 10 changes 

the deflection of the wheel by more than a half a millimeter.  The contact stiffness k = 

100 MPa/mm is selected for the model. 

 

Table 3.4 Effect of Contact Stiffness on Wheel Deflection 

Contact Stiffness 
(MPa/mm) Elements Wall time Wheel Deflection (mm) 

10 37314 5:32:11 -13.00 

100 37314 5:35:24 -12.44 

1000 37314 5:29:10 -12.34 
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3.5 Wheel Mesh Refinement 

Three mesh sizes were used to check for convergence.  The driving factor in 

simulation time for the wheel is not the number of elements, but the size of the smallest 

elements.  The delicate wheel geometry has features that require small elements, and 

small elements have small stable time increments.  As shown in Table 3.5, setting the 

element size to 3 mm x 3 mm made almost no change in the wheel deflection, but 

significantly increased the computation time.  The coarse mesh allowed a significantly 

larger time increment; it reduced the wall time by over 90% yet still calculated the wheel 

deflection within a half a millimeter of the fine mesh.  Therefore, an element length of 12 

mm was selected.   

 

Table 3.5  Wheel Mesh Refinement 

Mesh 
Element Size on 
Outer Ring (mm)  Elements Wall time 

Wheel Deflection 
(mm) 

Coarse 12 16641 1:41:44 -12.73 

Medium 6 37314 5:35:24 -12.44 

Fine 3 89133 24:00:15 -12.33 

 

3.6 Calibration 

To ensure that the model is representative of the prototype wheel, parameters such 

as spoke thicknesses were adjusted until the load-deflection curve matched experimental 

data.  The wheel was placed on a rigid plate and gravity was applied slowly over 12 

seconds to the wheel, including a 1500 kg point mass at the center of the hub.  Lunar 

gravity (g = 1.6 m/s2), which is about 1/6 of earth’s gravity is used in the simulation.  A 
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1500 kg lunar load is equivalent by weight to a 250 kg load on earth.  The configuration 

of this simulation is as shown in Figure 3.5 with a cylinder set centered at the contact 

point.  The final result is shown in Figure 3.23.  The load-deflection curve of the finite 

element model wheel (blue) is plotted over the load-deflection curves obtained 

experimentally on the prototype wheel at the Michelin America Research Center (gray).  

Multiple experimental curves represent results for the same wheel rotated 0, 90, 180, and 

270 degrees from two symmetric conditions (a cylinder on the centerline and a space 

between cylinders at the centerline).  The finite element line follows the high side of the 

hysteresis loop.  The experimental hysteresis could be due to friction at the connection 

points, or friction and damping internal to the material, neither of which is included in the 

finite element model.  Internal friction and damping lead to viscoelastic, or in this case 

anelastic behavior.  Anelastic materials are a subset of viscoelastic materials in which the 

strain lags the stress but the equilibrium configuration is ultimately recovered after the 

removal of load.  Overall, the numerical results align very nicely with the experimental 

results. 

 

 

 



55 
 

 
 
 
 
 
 
 
 
  

0 2 4 6 8 10 12 14 16
0

500 

1000

1500

2000

2500

3000

Deflection (mm) 

Load (N) 

 

 

Figure 3.23  Experimental (gray) and Numerical (blue) Load-Deflection Curves 
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3.7 Summary 

After running multiple trials to select the element types, contact parameters, mesh 

refinement, and calibration the final wheel model is the shell model with reduced 

integration conventional shell elements.  This was counter to the hypothesis that 

modeling the inner and outer rings as solid parts could add accuracy.  It is still possible 

that solid elements could produce better results with further refinement, but within the 

resource constraints of this study, refining the solid elements to the point they would 

produce better results was not feasible.  With appropriate contact conditions, the shell 

model provides reasonable results in a much shorter time.  Soft contact with a stiffness of 

100 MPa/mm is used and 12 mm x 12 mm was found to be a suitable element size for the 

outer ring.  Results from the final model are plotted in Figure 3.24 through Figure 3.26 

below.  Table 3.6 summarizes the material properties and element types used for each 

component of the wheel 
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Figure 3.24 Final Wheel Model Showing von Mises Stress 
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Figure 3.25 Side View of Final Wheel Model 

 
 

 
Figure 3.26  Final Wheel Model Contact Pressure on Rigid Surface 
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Table 3.6 Materials and Element Types by Section 

Section Material Young’s 
Modulus 
E (MPa) 

Poisson’s 
Ratio, ν 

Thickness 
t (mm) 

Element 
Type 

Hub NA NA NA 1 R3D4 
(Rigid) 

Springboard 
(Curved Spoke-to-
Hub Connector ) 

Glass 
Composite 

39969 0.29 1.5 S4R 

Spoke Glass 
Composite 

39969 0.29 0.1 M3D4R 

Inner Ring Glass 
Composite 

39969 0.29 1.5 S4R 

Cylinders Glass 
Composite 

39969 0.29 0.7 S4R 

Outer Ring Glass 
Composite 

39969 0.29 1.5 S4R 
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4.  SOIL MODEL 

 
In the following sections this chapter will address Research Questions 2 and 3. 

Question 2, “Can a constitutive model that captures experimentally observed soil 

behaviors such as side berms and rutting be implemented in the selected finite element 

code?” is discussed in sections 4.1-4.3.   Question 3, “How can the finite element model 

parameters (such as boundary conditions and soil bed dimensions) be systematically 

selected in order to improve efficiency and maintain accuracy?” is answered in sections 

4.4-4.6.  

4.1 Material Model Selection 

A variety of material models are available for modeling soil, several of which are 

built into Abaqus™.  The advantages and disadvantages of each are summarized in Table 

4.1.  The table represents all the constitutive theories built into Abaqus™ that are relevant 

to soil modeling, hence they all meet the first constraint, that they are available in the 

selected code, Abaqus™.  The second constraint is that the model is available in 

Abaqus/Explicit™ so that dynamic effects can be captured.  As mentioned in Chapter 2, 

lunar soil is silty sand that exhibits frictional properties.  Predicting frictional behavior 

requires a pressure dependent model.  A model that uses non-associated flow is important 

for realistic dilatational behavior.  Finally, a good soil model will account for plastic 

compaction because the mechanism by which the soil compresses changes with specific 

volume.   
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Table 4.1 Soil Model Properties 

Soil Model 

Constraint 

Available in 
Abaqus 

Available in 
Abaqus/ 
Explicit 

Pressure 
dependence 

Non-
associated 

flow 

Plastic 
compaction/ 
hardening 

von Mises Y Y N N N 

Mohr-Coulomb Y N Y Y N 

Drucker-Prager Y Y Y Y N 

Drucker-Prager 
with Cap 
Plasticity Y Y Y Y Y 

Cam Clay 
(Critical State) Y N Y N Y 

 

The only material model that meets all the constraints is a Drucker-Prager Model 

with Cap Plasticity.  Another advantage of this model is that it is possible to change the 

cross-section of the Drucker-Prager surface from a circle to a rounded triangle in order to 

nearly match experimental results from both triaxial compression and triaxial extension 

tests.   

4.2 Soil Parameters 

As discussed in Section 2.2, recommended values are available for the bulk 

density and the Mohr-Coulomb strength parameters of lunar soil. The soil is divided into 

three layers, representing the change in bulk density and shear strength with depth.  For 

the third layer, equation (2-13) is used to compute an average value and the strength 

properties are continued from the second layer.  Each layer has a modified Drucker-

Prager material model with cap plasticity.  Table 4.2 summarizes the properties used in 
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each layer in terms of both Mohr-Coulomb and corresponding Drucker-Prager parameters 

(according to equations (2-3) and(2-4)).  The Mohr-Coulomb parameters are the 

recommended values from the Lunar Sourcebook [31].   

 

Table 4.2 Bulk Density and Shear Strength Parameters of Soil Model Layers 

Depth 
Range 

Bulk 
Density 
ρ 

[31] 

Mohr-
Coulomb 
Cohesion 

c 
[31] 

Mohr-
Coulomb 
Friction 
Angle 

ΦΦΦΦ    
[31] 

Inscribed 
Drucker-
Prager 

Cohesion 
d 

equation (2-4) 

Inscribed 
Drucker-
Prager 

Friction Angle, 
ββββ    

equation (2-3) 

(cm) (g/cm3) (kPa) (degrees) (kPa) (degrees) 

0-30 1.58 0.90 46 1.01 49.2 

30-60 1.74 3.00 54 2.78 51.9 

> 60 1.80 3.00 54 2.78 51.9 

 

The Cap Plasticity model requires elastic properties to be defined, although in this 

case they will have little impact on the simulated outcomes.  Data on the elastic 

properties of lunar soil are lacking, and a wide range of values have been reported for 

lunar soil simulant [29].  For simplicity, all elastic and cap plasticity parameters will be 

based on Ottawa sand [87].  Ottawa sand has strength properties similar to lunar soil and 

elastic properties within the range reported for lunar soil simulant.  Table 4.3 identifies 

these material properties which are consistent for all layers.   
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Table 4.3 Soil Model Properties [87] 

Property Value 

Elastic 
Young’s Modulus (MPa) 182 

Poisson’s Ratio 0.28 

Cap Plasticity 

Cap Eccentricity Parameter 0.4 

Initial Cap Yield Surface Position 0 

Transition Surface Radius Parameter 0.05 

Flow Stress Ratio (K) 1 

 

The cap hardening curve is tabulated according to (2-8) using the GRC-1 values 

of Cc = 0.02 and Cs = 0.005 with the initial void ratio equal to 0.5316 at p = 6.9 kPa [30].  

Figure 2.7 is reproduced here for convenience.  

 

Figure 2.7 (repeated) Cap Hardening of GRC-1 (linear scale) 
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4.3 Reduction of Edge Effects 

A sufficient amount of sand must be modeled so that edge effects are negligible.  

This size is determined by simulating a simple rigid wheel on a mass of sand and then 

iteratively adding and removing material until the remaining mass captures all the 

significant movement normal to the edges, without modeling unnecessary material.  A 

rigid wheel is used to capture the most extreme soil deformation.  Additionally, it saves 

computation time.  For computational efficiency, a symmetry condition is set up at the 

center of the wheel in the xy-plane (normal to the wheel axis); the nodes initially in the 

plane are forced to remain in the plane throughout the simulation.  The bottom and three 

remaining sides are constrained in all directions.  Early trials used a no-slip condition 

between the rigid wheel and soil, but it was found that this unrealistic condition created 

convergence problems at the mesh refinement stage.  The trials presented below define 

interaction between the wheel and soil as a hard contact with a friction coefficient equal 

to the tangent of the friction angle of the soil.  Contact is defined between the outer 

surface of the wheel and a 200 mm strip along the top of the sand, adjacent to the 

symmetry surface.   

Initially, a separate step was included to allow the soil to settle before the wheel 

load was applied; however, the settling of the soil under the lunar gravity (1.6 m/s2) was 

only about 6 microns.  Because the goal of this research is to be within the millimeter 

range of accuracy, this step was eliminated and gravity was applied to the wheel and soil 

simultaneously.  First, gravity is ramped up smoothly over 10 seconds and then held for 2 

seconds before angular velocity of the hub is added.  The angular velocity smoothly 
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ramps from zero to 0.8 rad/sec (equivalent to 1 kph on a rigid surface with no slip) over a 

twenty second period.  The smooth angular velocity ramp is a fifth-order polynomial, 

which makes the angular acceleration a fourth-order polynomial with a peak value of 

1.88 times the average angular acceleration.  In this case the peak equivalent horizontal 

acceleration on a rigid surface with no slip was 26 mm/s2. 

Two methods were considered for selecting the size of the soil bed.  Both started 

with the same initial size of 1.5d in width, depth, and distance ahead of and behind the 

wheel, based on a simulation reported by Hambleton [88].  The first method was 

sequential, varying one dimension at a time and using the horizontal and vertical 

displacement of the wheel as an indicator.  The second method was holistic, looking at all 

the dimensions at once and this approach proved to be simpler, quicker, and more 

reliable.   

4.3.1 Sequential Method 

In the sequential method, one dimension is varied at a time and the optimal length 

is selected and used for all successive iterations.  Holding all other dimensions constant, 

the width of the sample was varied from 1d to 2.5d in increments of 0.5d.  The percent 

difference in each indicator was checked against the 2.5d wide results to check for 

accuracy, as shown in Table 4.4.  To check for mesh dependence, this process was 

repeated using roughly twice as many elements (mesh size 25.4 mm).  A 0.5% tolerance 

was set for the vertical and horizontal displacement after rolling. Selecting the vertical 

depth proceeded in a similar manner.  However, the trends were not consistent, possibly 

due to the rearrangement of the nodes that must happen every time a dimension is 
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changed.  These criteria were sufficient for selecting a width and a depth, but showed no 

consistent trend in the dimension behind the wheel, so a third criterion had to be added.   

A 1% tolerance was set for the sinkage due to gravity alone.  The gravity tolerance was 

set larger because there seemed to be more variability in this measure.   

Several variations of this method were also tried, but there was too much noise in 

the data to clearly see how large each dimension needed to be.  The results are very 

sensitive to the tolerance values selected.  Additionally, this method requires many 

simulations to be run which makes using a fine mesh impractical and one dimension must 

be determined before the next set of simulations can be started, which makes it time 

consuming. 



Table 4.4 Sequential Sizing Method 
W

id
th

 
Soil Dimensions Soil Element Length = 32 mm Soil Element Length = 25.4 mm 

Width 
Vertical 
depth 

Behind 
wheel 

Ahead 
of 

wheel Elements 

% Change 
due to 
gravity 
from 

reference 
(max 1%) 

% Change 
Horiz. from 
reference 

(max 0.5%) 

% Change 
Vert. from 
reference 

(max 0.5%) Elements 

% Change 
due to 
gravity 
from 

reference 
(max 1%) 

% Change 
Horiz. from 
reference 

(max 0.5%) 

% Change 
Vert. from 
reference 

(max 0.5%) 

1750 1050 1050 3850 269280 Reference 559314 Reference 

1400 1050 1050 3850 215424 -0.30% -0.01% -0.03% 445830 -0.63% 0.02% -0.09% 

1050 1050 1050 3850 161568 -0.66% -0.02% -0.03% 332346 -0.19% 0.03% -0.20% 

700 1050 1050 3850 107712 -1.19% -0.25% 2.26% 226968 0.04% -0.11% 1.19% 

             

D
ep

th
 

Soil Dimensions Soil Element Length = 32 mm Soil Element Length = 25.4 mm 

Width 
Vertical 
depth 

Behind 
wheel 

Ahead 
of 

wheel Elements 

% Change 
due to 
gravity 
from 

reference 
(max 1%) 

% Change 
Horiz. from 
reference 

(max 0.5%) 

% Change 
Vert. from 
reference 

(max 0.5%) Elements 

% Change 
due to 
gravity 
from 

reference 
(max 1%) 

% Change 
Horiz. from 
reference 

(max 0.5%) 

% Change 
Vert. from 
reference 

(max 0.5%) 

1050 1750 1050 3850 269280 Reference 545997 Reference 

1050 1400 1050 3850 215424 -0.11% 0.01% -0.01% 435215 0.42% 0.00% 0.01% 

1050 1050 1050 3850 161568 0.53% -0.01% -0.06% 332346 0.49% 0.00% -0.07% 

1050 700 1050 3850 107712 0.72% 0.00% -0.06% 221564 0.33% -0.02% -0.04% 

1050 350 1050 3850 107712 -0.95% -0.04% -0.35% 110782 -0.72% -0.03% -0.94% 



4.3.2 Holistic Method 

A more efficient method for determining the size of the soil required was 

developed as outlined below: 

1) Using the initial dimensions described above and an average element length of 25.4 

mm (approximately 0.04d), the magnitude of the displacement was plotted with the 

lower limit set to 0.1 mm as shown in Figure 4.1 

 

 

Figure 4.1 Initial Size 
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2) Each edge was examined to determine if the displacement was greater than 0.1 mm 

within 0.5d (≈350 mm) from the edge.  The view cut tool is useful for this step.  In all 

dimensions except the depth, there was displacement greater than 0.1 mm within 350 

mm from the edge, so the dimensions were increased by 0.5 d and the simulation was 

repeated. 

 

 

Figure 4.2 Iteration 1 – Increased Size 
 

 
3) When the magnitude of displacement was less than 0.1 within 0.5d of all edges (as in 

Figure 4.2), the final dimensions were determined by removing regions of soil that 

had displacements less than 0.1, again using the view cut tool. 



70 
 

 

Figure 4.3 Iteration 2 - Decreased Size 
 

 
4) Wheel displacements were compared to ensure that accuracy was maintained.  The 

final dimensions are shown in Figure 4.3 and summarized in Table 4.5.  The wheel 

displacements calculated from the final model are all within 0.5% of the 

displacements calculated from the oversized model.   
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Table 4.5 Summary of Holistic Sizing Method 

  
Width 
(mm) 

Vertical 
Depth 
(mm) 

Behind 
Wheel 
(mm) 

Ahead of 
Wheel 
(mm) Elements 

Disp. due to 
Gravity 
(mm) 

Horiz. 
Disp. 
(mm) 

Vert. 
Disp. 
(mm) 

Initial Size 1050 1050 1050 3850  332346 -27.64 2752 -61.16 

Iteration 1: 
Increased 
Size 
(% Change 
from above) 1750 1050 1750 4550  508200 

-27.96 
(1.15%) 

2753 
(0.03%) 

-61.24 
(0.14%) 

Iteration 2: 
Decreased 
Size 
(% Change 
from above) 1000 600 800 3700  165672 

-27.85 
(-0.38%) 

2753 
(-0.02%) 

-61.02 
(-0.36%) 

 

 This more holistic method was much quicker than running multiple simulations to 

determine each dimension. Because the oversized model did not show any displacements 

near the edges, it is reasonable to use this model as a reference and then move the 

boundaries as close in as possible without changing the soil displacement by more than 

0.1 mm.   Figure 4.4 below shows that altering the displacement limit by a factor if 10 

from 0.05 mm to 0.5 mm makes little difference in the outcome.   
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Figure 4.4  Comparison of Tolerance Limits: 0.05 mm (left) and 0.5 mm (right) 
 

 
 To ensure that the results are not mesh dependent, the process was repeated with a 

coarser mesh.  The coarse mesh ran in about half the time.  The only difference in results 

is a slightly more conservative width dimension, shown in Table 4.6. 

 

Table 4.6 Effect of Mesh Size on Holistic Method Results 

Element size 
(mm) 

No. of 
elements in 
initial trial 

Final dimensions determined by holistic method 

Width Vertical depth Behind wheel Ahead of wheel 

25.4  332346 1000 600 800 3700 

32 161568 1100 600 800 3700 

 

4.4 Boundary Conditions 

Far field stresses and displacements are expected to be zero; therefore if the soil 

bed modeled is large enough, the far field boundary conditions should not have a 

significant effect on the simulation.  In reality, the boundaries would be subject to bearing 

pressure and friction from the sand around it.  Numerically it is much more efficient to 

model the boundaries as either pinned or sliding conditions because friction requires 
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using a contact algorithm.  At low shear stresses, a pinned condition acts similar to static 

friction.  The difference is that in the case of static friction, once the shear force exceeds 

the normal force times the static friction coefficient, slip occurs and dynamic friction 

takes over.  While it is expected that a pinned boundary condition is most realistic, if the 

boundaries are far enough away, they should have little effect.  As shown in Table 4.7, 

this is indeed the case.  Changing the boundary conditions at the sides to sliding 

constraints changes the results by less than two tenths of a millimeter.  This is further 

confirmation that the selected dimensions are appropriate.   

 

Table 4.7  Effect of Boundary Conditions 

 Disp. due to 
gravity (mm) 

Horizontal  
disp. (mm) 

Vertical disp. 
(mm) 

Boundary 
Condition 

Pinned -27.85 2752 -61.02 

Sliding -27.71 2752 -61.09 

Difference -0.14 -0.13 0.07 

% Difference -0.51% 0.00% 0.11% 

 

4.5 Friction Coefficient 

Unless otherwise noted, the simulations in this work use a friction coefficient of 

1.04 between the soil and the wheel.  This is equivalent to the tangent of the friction 

angle of the soil.  In other words, the friction between the wheel and soil is equal to the 

shear strength of the soil in the absence of any cohesion.  This essentially assumes that a 

thin layer of sand is adhered to the tread.  This variable is easily modifiable once a more 

reliable estimate of the coefficient of friction is known.   However, as Table 4.8 shows, 
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the coefficient of friction does not have a remarkable impact on the final result, thus a 

rough estimate is sufficient. 

 

Table 4.8  Effect of Friction Coefficient 

 
Displacement 
due to gravity 

(mm) 

Horizontal  
displacement 

(mm) 

Vertical 
displacement 

(mm) 

Friction 
Coefficient 

µ = 1.04 -27.85 2752.23 -61.02 

µ = 0.5 -27.48 2677.35 -61.81 

Difference 0.37 -74.88 -0.79 

% Difference -1.34% -2.72% 1.29% 

 

4.6 Soil Mesh Refinement 

With appropriate dimensions and boundary conditions in place, the model 

development can proceed with determining an appropriate mesh size.  This is especially 

important in a three-dimensional simulation because cutting the element length in half 

increases the number of elements eight-fold.  It is important that the elements be small 

enough that the solution is mesh-independent, but to reduce computation time, they 

should be as large as possible.  The initial element length was 32 mm; approximately 

0.05d.  To create a mesh with approximately twice as many elements, this length was 

multiplied by 2-1/3.  The mesh size, number of elements, and key indicators are 

summarized in Table 4.9.  For the mesh refinement simulations, the deformable wheel 

defined in Chapter 3 is used.  The simulation with 25.4 mm elements takes 30% less time 

to run than the simulation with 20.2 mm elements, and the results are within 5% of the 
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finer mesh.  For most studies, this is a reasonable amount of error.  The 25.4 mm element 

size could be used for comparison studies to determine optimal values of wheel 

parameters and a finer mesh could be used for final verification.  The remaining 

simulations in this document use the 25.4 mm mesh. 

 

Table 4.9  Soil Mesh Refinement 

Element 
size (mm) Elements Wall time 

Horizontal 
disp. (mm) 

Vertical 
disp. 

Horizontal  
% change 

from 
reference 

Vertical  % 
change from 

reference 

20.2 367950 15:37:22 2704 -71.19 reference reference 

25.4 190275 9:40:25 2719 -68.40 0.5% -3.9% 

32.0 91086 6:03:10 2702 -65.99 -0.1% -7.3% 

 
 

The selected model is shown in Figure 4.5 through Figure 4.9.  In Figure 4.5, the 

soil deformation looks smooth and there is no displacement greater than 1 mm close to 

the edges, which indicate that the mesh is reasonably refined and the soil bed is large 

enough, respectively.    The wheel shows only small deformation of the shear band, but it 

is enough that seven spokes collapse due to the weight (Figure 4.6).  The rotation of the 

hub winds the spokes tight so that at full speed only six spokes have visibly started to 

collapse (Figure 4.7). 
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Figure 4.5  Results of Mesh Refinement 
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Figure 4.6 Spokes Collapsing Under Gravity Load 
 
 

 

Figure 4.7 Spokes Collapsing due to Rotation 
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Figure 4.8  Contact Pressure due to Gravity Load  (bottom is outside edge of wheel) 
 

 

Figure 4.9 Contact Pressure due to Rotation (bottom is outside edge of wheel, rolling to 
the right) 
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Figure 4.8 and Figure 4.9 show that the pressure distribution on soil is quite 

different from that on a rigid surface.  On the outside edge of the wheel (shown at the 

bottom of the figure), red pressure peaks appear directly below the cylinders.  Away from 

the edge, smaller light blue peaks appear between cylinders.  This indicates that miniature 

berms are created in front of and behind each cylinder.  When the wheel is rolling, the 

contact pressure is shifted to the front half of the wheel with the highest peaks near the 

bottom where the soil is most compacted.  This is in keeping with experimental results 

from Onafeko and Reece [55]. 

Most importantly, these results indicate that rigid surface tests may not be a good 

indicator of the pressure distribution on soil.  It is very difficult to measure contact 

pressure on sand without interfering with the measurement.  Numerical modeling may be 

the best way to obtain information about the contact pressure. 
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5.  DEMONSTRATION OF THE INTEGRATED MODEL  

 

In this chapter, the utility of the developed model will be demonstrated with three 

studies.  The first study will examine how the start-up acceleration affects the distance 

traveled per revolution.  This information will be useful in setting the operation 

guidelines for the ATHLETE.  The second and third studies are relevant to the design of 

the wheel.  They explore the effects of the cylinder wall thickness and the spoke stiffness.  

Comparative studies like these can help designers optimize performance.  Physical testing 

is still essential, but for tests like these to be carried out, at least one physical prototype 

would be required for each data point.  Using the model, an optimal value for each 

variable can be selected and physical testing can be used for final verification. 

5.1 Start-up Effects 

The primary purpose of this study is to demonstrate the utility of the model in 

informing the operation of the ATHLETE and possibly the need to optimize the model 

further by uncovering the effects of the rate of start-up.  Three trials were run using the 

same angular velocity profile distributed over 5, 10, and 20 seconds.  The smooth step 

angular velocity profile is defined by equation (5-1) [83]: 

 3 2
1( ) ( ) (10 15 6 )i i iω ξ ω ω ω ξ ξ ξ+= + − − +  where 

1

i

i i

t t

t t
ξ

+

−
=

−
 (5-1) 

The velocity and acceleration for a rigid wheel with no slip are illustrated in 

Figure 5.1 and Figure 5.2. 
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Figure 5.1  Smooth Step Velocity Profile 
 

 

Figure 5.2  Smooth Step Acceleration Profile 
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The distance travelled by a rigid wheel assuming no slip can be found by 

integrating the product of the angular velocity and the radius over time (equation (5-2)). 

 
0 0 2

f ft t

f fr t
u vdt r dt

ω
ω= = =∫ ∫  (5-2) 

Angular velocity was selected as the cause of motion because all six wheels of the 

ATHLETE can be driving wheels.  A horizontal force is typically used for towed wheels.  

Controlling the torque is another valid option, but angular displacement can be easily 

related to the horizontal velocity specification.  It is anticipated that the ATHLETE with 

have adequate control systems to control the angular velocity.  The thrust (forward force) 

from the soil due to the angular rotation is plotted in Figure 5.3 for the three start-up 

times the 12 second gravity step is not shown because thrust is negligible during the 

application of gravity.  Thrust is also plotted for a 10 second start-up time followed by 

five seconds at constant speed using a dashed line.  This line corresponds with the 10 

second start-up line until the 22 second mark (12 seconds for the gravity step plus 10 

seconds of accelerating). 
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Figure 5.3  Soil Thrust over the Start-up Period 
 

The predicted values of distance (horizontal displacement) are calculated for three 

different start-up times in Table 5.1.  When the velocity is ramped up over 20 seconds, 

the wheel goes 97% of the maximum distance.  When that time period is halved, the 

wheel still achieves almost 96% of the maximum distance, although it does sink in 

slightly deeper, presumably because soil is displaced from under the wheel as it spins. As 

the start-up time is decreased, the wheel digs deeper and does not go as far per rotation.  

Although physical testing should also be completed for verification, this study implies 

that accelerating slowly is the most efficient use of energy. 
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Table 5.1  Effect of Start-up Time on Traction 

Start-up Time, 
0 to 0.8 rad/s 

 (s) 

Vertical 
Displacement 

(mm) 

Horizontal 
Displacement 

(mm) 

Expected 
Horizontal 

Displacement 
(mm) % Traction 

20 -68.40 2719 2804 97.0% 

10 -71.37 1345 1402 95.9% 

5 -77.73 663 701 94.6% 

10, plus 5 seconds of 
travel at constant 
angular velocity -68.06 2717 2804 96.9% 

 

Additionally, the results in Table 5.1 indicate that future simulations can use a 

start-up period of 10 seconds and a five second constant speed period with only a slight 

loss of traction.  The same travel distance will be covered, but the simulation will not take 

as long because less time increments will be required.  Graphical outputs are shown in 

Figure 5.4-Figure 5.7. 
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Figure 5.4 Start-up: 0 to 0.8 rad/s in 20 seconds 
 

 

Figure 5.5 Start-up: 0 to 0.8 rad/s in 10 seconds 
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Figure 5.6 Start-up: 0 to 0.8 rad/s in 5 seconds 
 

 

Figure 5.7 Start-up: 0 to 0.8 rad/s in 10 seconds, followed by constant speed for 5 
seconds 
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5.2 Cylinder Wall Thickness 

As described in Appendix B, the cylinder wall thickness has a direct impact on 

the effective shear modulus of the shear band, which in turn influences the contact 

pressure through equation (2-14).  The cylinder with baseline wall thickness, 0.7 mm, 

acted nearly rigid, so two experimental values were chosen to reduce the cylinder wall 

thickness and hence make the wheel more deformable.    The results are summarized in 

Table 5.2 and Figure 5.8-Figure 5.10.  Note that the color map of the magnitude of 

displacement is the same for all figures.  The 0.5 mm cylinders cause less movement of 

the sand which allows the wheel to travel farther than the 0.7 mm cylinders.  However, 

when the cylinder thickness is reduced to 0.3 mm, the shear band becomes so soft that the 

wheel collapses on itself.  Clearly the shear band would not actually pass through the hub 

as shown in the model, but a similar failure mechanism has been observed in a field trial 

after the prototype lunar wheel rolled over an obstacle.  To study the behavior after 

collapse, self-contact must be defined, which is a simple modification, but increases the 

computation time. 

 

Table 5.2 Effect of Cylinder Wall Thickness 

Cylinder wall 
thickness 

(mm) Wall time 
Disp. due to 
gravity (mm) 

Horiz. disp. 
(mm) 

Vert. disp. 
(mm) Notes 

0.7 8:13:23 -25.56 2717 -68.06 Baseline 

0.5 8:11:11 -26.45 2768 -60.62  

0.3 8:46:37 -126.37 2609 -151.37 
Wheel 
collapses 
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Figure 5.8 Cylinder Wall Thickness = 0.7 mm (baseline) 
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Figure 5.9  Cylinder Wall Thickness = 0.5 mm 
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Figure 5.10  Cylinder Wall Thickness = 0.3 mm 
 

 5.3 Spoke Stiffness 

According to Tweel™ mechanics [6], the spoke stiffness determines the length of 

the contact patch for a given displacement on a rigid surface.  In this study, three spoke 

stiffness values are compared to determine if the proposed model predicts any differences 

in traction as a result. Rather than altering the material stiffness directly, the spoke 

extensibility is controlled by altering the thickness and therefore cross-sectional area of 

the spoke. The properties of the curved springboards remain unchanged.  As shown in 

Figure 5.11, the contact area varies through the rolling step, to the contact area reported 
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in Figure 5.3 is taken from the two seconds after gravity has been fully applied and 

before rolling has begun.   

 

 
Figure 5.11  Contact Area vs. Time 

 
 

Table 5.3  Effect of Spoke Stiffness on Displacement and Contact Area 

Spoke thickness 
(mm) 

Disp. due to 
gravity (mm) 

Horizontal 
displacement 

(mm) 

Vertical 
displacement 

(mm) 
Contact area due 
to gravity (mm2) 

0.01 -28.23 2778 -60.34 143 

0.1 -25.56 2717 -68.06 138 

1 -25.39 2712 -69.20 137 
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Reducing the spoke thickness to 0.01 mm increased the distance travelled by 

slightly more than reducing the cylinder thickness did in the previous study.  A possible 

direction for future work could be exploring the relationship between these two variables 

and finding their optimal values for maximum traction.  Counter to analysis of a 

terrestrial Tweel™ on a rigid surface [6], for the lunar Tweel™ on sand, the contact area 

decreased with increasing spoke stiffness.  This is probably due to the fact that the 

conforming nature of the soil does not require the contact area to be flat like a rigid 

surface does.  Figures 5.12 - 5.14 show the wheel deformation. 
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Figure 5.12  Spoke Thickness 0.01 mm 
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Figure 5.13 Spoke Thickness 0.1 mm 
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Figure 5.14  Spoke Thickness 1 mm 
 

 



6.  CONCLUSIONS AND FUTURE WORK 

A finite element model that will allow designers to predict the behavior of a lunar 

Tweel™ on lunar soil has been developed and tested.  Of the options considered, a shell 

model wheel utilizing reduced integration S4R elements with length of 12 mm around the 

outer ring produced the most reasonable results in the least amount of time, especially 

with a contact stiffness of 100 MPa/mm.  A holistic method of determining the 

appropriate soil bed size was quick and efficient and found that the largest dimension 

required to capture the majority of the soil movement was the width.  This dimension was 

almost 10 times the width of the wheel.  Less than one wheel diameter was required of 

the depth.  The wheel and soil models were successfully integrated.  Studies of the rate of 

start-up, cylinder wall thickness, and spoke stiffness showed that the integrated model 

could predict differences in traction due to changes in the wheel design and operation.  A 

summary of the research questions is presented in Table 6.1. 

 

Table 6.1 Research Questions Answered 

Research 
Question 
#1 

Does a wheel model with 3-D solid elements for some of its 
components offer visible improvements in the prediction of the 
pressure distribution of the prototype wheel over a shell-based 3-D 
model?   

 No, at least not within the limits of a 3 day maximum computation time.  
A single-part shell model was just as effective as a multi-part solid-shell 
model.  This is may be due to the two-dimensional nature of the 
Tweel™ and may not hold true for other wheel designs.  It was found 
that the contact stiffness was the most important variable in predicting a 
smooth pressure distribution. 
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Research 
Question 
#2 

Can a constitutive model that captures experimentally observed soil 
behaviors such as side berms and rutting be implemented in the 
selected finite element code? 

 Yes, an elasto-plastic, pressure-dependent, Drucker-Prager model with 
Cap Plasticity has been implemented in Abaqus™ using a parameter set 
compiled from actual lunar soil, lunar soil simulant, and Ottawa sand.  
Results show rutting behind the wheel and berms to the side of the 
wheel. 

Research 
Question 
#3 

How can the finite element model parameters (such as boundary 
conditions and soil bed dimensions) be systematically selected in 
order to improve efficiency and maintain accuracy? 

 Soil bed dimensions can be systematically selected using a holistic 
method that accounts for interactions between the dimensions.  With 
appropriately selected soil dimensions, the boundary conditions have an 
insignificant effect on the results.   

Research 
Question 
#4 

How can the model be used to inform wheel design and operation?   

 The model can be used to inform wheel operation, for example, 
determining how quickly the wheel can accelerate without significant 
slippage.  The model can also inform design decisions.  The pilot tests 
in Chapter 5 suggested that softening the cylinders and/or the spokes 
could improve traction, but softening the cylinders too much can lead to 
failure. 

 

As with all research, generating answers always generates more questions.  Some 

of the new questions that can be studied in the future are: 

1. What aspects of the model can be simplified for efficiency? 

2. How does each individual wheel parameter affect performance? 

3. How do different wheel parameters interact? 

4. How does varying the soil parameters affect wheel performance? 
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Other possible future directions for this research involve modifying the model 

further, for example, an additional step could be added with a linearly increasing 

backward force to determine the drawbar pull.  The drawbar pull would be equal to the 

force at which the wheel stops moving forward.  Another option is to use a program such 

as Isight2 to simultaneously optimize multiple wheel parameters for given mobility 

requirements. 

The model presented here is a tool that can potentially impact future missions to 

the moon and perhaps one day Mars.  It will allow designers to see the effect of design 

changes in hours instead of weeks, and thus can enhance and expedite the lunar wheel 

design process.   

 

 

                                                
2 http://www.simulia.com/products/isight2.html 
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Appendix A: The Stress Tensor 

 

The state of stress for a point in 3-dimensional space can be defined in multiple 

ways.  Most familiar to many new engineers are the stress components, which can 

presented in matrix form with subscripts x, y, and z representing coordinate directions.  

The first subscript represents the plane in which the stress is acting and the second 

indicates its direction.  Often this matrix is written in indicial form, where the coordinate 

directions are represented by the numbers 1 through 3, as shown below.  

 
11 12 13

21 22 23

31 32 33

 for , 1,2,3
xx xy xz

yx yy yz ij

zx zy zz

i j

σ σ σ σ σ σ
σ σ σ σ σ σ σ
σ σ σ σ σ σ

   
   = = =   
     

   (A-1) 

Cauchy has shown that in the absence of body moments, the stress tensor is 

symmetric, thus ij jiσ σ= .  When the coordinate axes are transformed to align with the 

principal stress directions, the stress tensor takes the form 

 
1

2

3

0 0

0 0

0 0
ij

σ
σ σ

σ

 
 =  
  

 (A-3) 

where 1σ , 2σ , and 3σ are the major (largest positive or smallest negative),, intermediate, 

and minor (smallest positive or largest negative)  principal stresses.  Because this tensor 

can take many forms, it is often convenient to use the invariants of the stress tensor.  The 

invariants are subject to a variety of naming conventions.  Based on a compilation of 

multiple sources [89, 87, 81], the following nomenclature and definitions are selected for 

this document. 



101 
 

 
1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I

I

I

σ σ σ

σ σ σ σ σ σ

σ σ σ

= + +

= + +

=

 (A-4) 

The stress tensor can also be decomposed into hydrostatic and deviatoric 

components.  The mean stress, p, is one third of the first stress invariant, I1.  The 

deviatoric tensor, ijs , can then be calculated according to equation B-5 using the 

Kronecker delta, ijδ , which has a value of 1 when i j= and 0 when i j≠ . 

 ij ij ijs pσ δ= −  (A-5) 

The deviatoric stress tensor has its own invariants: 

 ( )
( )

1

21 1
2 1 32 3

31 1
3 1 1 2 33 27

0

2

2 9 27

kk

ij ij

ij jk ki

J s

J s s I I

J s s s I I I I

= =

= = +

= = + +

 (A-6) 

The second deviatoric stress invariant indicates the magnitude of shear stress, and the 

third represents the direction.   

In soil mechanics, common variables used to define yield surfaces can be defined 

in terms of the invariants described above.  These are the mean pressure, p; the 

generalized shear stress, q; and a manipulation of the third deviatoric invariant called r.  

Unlike the original invariants, these variables all have units of force per length-squared.   
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 (A-7) 
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Appendix B: Characterization of Discrete Shear Band 

 

Recalling equation (2-14), the  interesting parameters related to the shear band are 

the shear modulus, G, and the height, h.  The outer radius, R, cannot be increased due to 

design limitations.  Because the shear band is not composed of a continuous material, 

changing G is not straightforward.  A proxy parameter for the shear modulus, G, is the 

thickness, t, of the glass cylinder walls.  The height of the shear band can be easily 

changed; however, changing the height also changes the geometry of the cylinders and 

therefore the effective shear modulus, as well as the spacing between cylinders.  Before a 

factorial experiment is designed, it is prudent to explore the relationships between the 

variables of interest, t and h, and their effects on the effective shear modulus. 

To understand the effects of changing the geometric parameters on the meta-

material shear properties, two experiments were carried out.  The goal of the experiments 

was to find the effect of changing the cylinder height and thickness on the effective shear 

modulus, respectively.  Because the shear band is discontinuous, it does not truly have a 

single shear modulus, but by setting up a simple coupon test we can calculate an effective 

shear modulus as a ratio of shear stress (over a predetermined area) to shear deformation.   

 For the reference wheel configuration, the arc length between cylinder centers is 

39.4 mm at the outer radius.  For the experiment, each cylinder is sandwiched between 

two rigid plates that are 39.4 mm long and 50 mm deep (Figure B.1).  The bottom plate is 

fixed and the top plate is constrained to remain horizontal.   
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Figure B.1 Coupon Test 
 

A horizontal velocity is applied to the top plate, which is free to move vertically.  

The shear stress is plotted against the shear deformation, and the effective shear modulus 

is taken to be the slope of the linear portion of the graph. 

B.1 Coupon Test 1: Shear Band Height 

For all three cases, the cylinder wall thickness was held constant at the reference 

configuration value.  Case 1 is the reference configuration, with height 31.2 mm.  Case 2 

is half that height, and so it has 2 sets of cylinders.  Case 3 is one quarter of the height 

and has four cylinder sets.  These are shown in Figure B.2 through Figure B.4.  The color 

map of the von Mises stress is the same for all three figures and the size is approximately 

to scale. 
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Figure B.2 Case 1, Height = 31.2 mm, 1 cylinder set 
 

 

 

Figure B. 3 Case 2, Height = 15.6 mm, 2 cylinder sets 
 

 

Figure B.4 Case 3, Height = 7.8 mm, 4 cylinder sets 
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For each case, the shear stress was plotted against the shear strain in Figure B.5.  

This graph shows that in the linear region, the effective shear modulus is approximately 

inversely proportional to h3. 

 

 

Figure B.5  Shear Stress vs. Strain for Three Shear Band Heights 
 

B.2 Coupon Test 2: Cylinder Wall Thickness 

For the cylinder wall thickness coupon test, the height was held constant at the 

reference value and the cylinder wall thickness was set to 0.5t, t, and 2t, respectively for 

cases 1, 2, and 3.  These results are shown in Figure B.6.  As shown in Figure B.5 and 
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Figure B.6, the effective shear modulus is approximately proportional to t3/h3 in the linear 

region.   

 

 

Figure B.6  Shear Stress vs. Strain for Three Glass Cylinder Thicknesses 
 

 

 



Appendix C: Implementation on the Palmetto Cluster 

 

The Palmetto Cluster is a shared computing infrastructure operating at 66 

teraFLOPS (trillion floating point operations per second), which ranks 85th in the world3.  

It is the sixth most powerful supercomputing site at an academic institution in the US as 

of June 2010.  This section describes the process by which jobs can be created and run on 

the Palmetto Cluster.  The first step is creating the job in Abaqus/CAE.  This includes 

defining the geometry, boundary conditions, loads, and mesh.  Once this step is 

completed, the input file can be written, as shown in Figure C.1   A sample input file is 

included in Appendix D. 

                                                
3 http://www.top500.org/list/2010/06/100 
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Figure C.1  Writing the Input File 
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Next, the file must be uploaded to the server.  In this case the folder 

/lustre/marisaklustre/new was used (Figure C.2).  The /lustre folder is very large, but any 

files that have not been accessed in a month are deleted.  This makes it ideal for running 

simulations that create multiple extraneous output files. 

 

 

Figure C.2 Uploading to the Remote Directory 
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In order to submit the job to the cluster queue, a .pbs file is created like the one in 

Figure C.3, which is saved in /home/marisak/AB/submit.pbs 

 

Figure C.3 Creating a .pbs File 
 

This file tells the cluster the job’s name, how long to let it run, how many nodes to run it 

one, and where to write the output files.   

Job name 

Join the output and error files 

Email the user when the job aborts or ends 

Change directories 

Use this input file Double precision 
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Next, SSH Secure Shell is used to submit the .pbs file (Figure C.4).  The first 

command is to change the directory to where the .pbs file is located.  The second 

command, qsub, submits the file to the queue. 

 
Figure C.4Submitting the .pbs File to the Queue 

 

When the job completes, an email is sent to the user detailing the computer 

resources and wall time used.  The output database (.odb) file can then be downloaded 

from the /lustre directory and Abaqus/Viewer can be used to examine the results.   
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Appendix D: Sample Abaqus Input File 

The complete file may be obtained by contacting Marisa Orr, 

mkorr@alumni.clemson.edu 

 

*Heading 
** Job name: SU10-5 Model name: shell-soil 
** Generated by: Abaqus/CAE Version 6.8-3 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=extrudedwheel 
*Node 
      1,           0.,        350.5,           0. 
      2,           0.,        350.5,         110. 
 

…<8000 pages omitted for brevity> 

 

*Surface, type=ELEMENT, name=contact 
_contact_S5, S5 
** Section: sand2 
*Solid Section, elset=Layer2, material=LunarSand2inscr 
 
** Section: sand1 
*Solid Section, elset=Layer1, material=LunarSand1inscr 
 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=sand-1, part=sand 
        700.,           0.,       -1100. 
*End Instance 
**   
*Instance, name=extrudedwheel-1, part=extrudedwheel 
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          0.,        350.5,        -110. 
*End Instance 
**   
*Node 
      1,           0.,           0.,           0. 
*Surface, type=NODE, name=extrudedwheel-1_OuterMembrane_CNS_, 
internal 
extrudedwheel-1.OuterMembrane, 1. 
** Constraint: Hub 
*Rigid Body, ref node=extrudedwheel-1.HubRefPt, elset=extrudedwheel-
1.Hub 
*End Assembly 
*Amplitude, name=SU5, definition=SMOOTH STEP 
          0.,           0.,          10.,           1.,         
100.,           1. 
*Amplitude, name=SU10, definition=SMOOTH STEP 
          0.,           0.,          10.,           1.,         
100.,           1. 
*Amplitude, name=SU20, definition=SMOOTH STEP 
          0.,           0.,          20.,           1.,         
100.,           1. 
*Amplitude, name=gravity, definition=SMOOTH STEP 
          0.,           0.,          10.,           1.,          
20.,           1.,         100.,           1. 
**  
** MATERIALS 
**  
*Material, name=GlassCompositeIso40k 
*Density 
 1.89e-09, 
*Elastic 
39969., 0.29 
*Material, name=LunarSand1inscr 
*Cap Plasticity 
 0.00101, 49.2,  0.4,   0., 0.05,   1. 
*Cap Hardening 
 0.0069,       0. 
   0.01,  0.00158 
   0.02, 0.004532 
   0.04, 0.007483 
   0.06,  0.00921 
   0.08, 0.010435 
    0.1, 0.011385 
   0.15, 0.013111 
    0.2, 0.014336 
    0.3, 0.016063 
    0.4, 0.017288 
    0.5, 0.018238 
    0.6, 0.019014 
    0.7, 0.019671 
    0.8, 0.020239 



114 
 

    0.9, 0.020741 
     1., 0.021189 
    10., 0.030994 
*Density 
 1.58e-09, 
*Elastic 
 182.4, 0.3 
*Material, name=LunarSand2inscr 
*Cap Plasticity 
 0.00278, 51.9,  0.4,   0., 0.05,   1. 
*Cap Hardening 
 0.0069,       0. 
   0.01,  0.00158 
   0.02, 0.004532 
   0.04, 0.007483 
   0.06,  0.00921 
   0.08, 0.010435 
    0.1, 0.011385 
   0.15, 0.013111 
    0.2, 0.014336 
    0.3, 0.016063 
    0.4, 0.017288 
    0.5, 0.018238 
    0.6, 0.019014 
    0.7, 0.019671 
    0.8, 0.020239 
    0.9, 0.020741 
     1., 0.021189 
    10., 0.030994 
*Density 
 1.74e-09, 
*Elastic 
 182.4, 0.3 
*Material, name=LunarSand3inscr 
*Cap Plasticity 
 0.00278, 51.9,  0.4,   0., 0.05,   1. 
*Cap Hardening 
 0.0069,       0. 
   0.01,  0.00158 
   0.02, 0.004532 
   0.04, 0.007483 
   0.06,  0.00921 
   0.08, 0.010435 
    0.1, 0.011385 
   0.15, 0.013111 
    0.2, 0.014336 
    0.3, 0.016063 
    0.4, 0.017288 
    0.5, 0.018238 
    0.6, 0.019014 
    0.7, 0.019671 



115 
 

    0.8, 0.020239 
    0.9, 0.020741 
     1., 0.021189 
    10., 0.030994 
*Density 
 1.8e-09, 
*Elastic 
 182.4, 0.3 
*Material, name=leather 
*Density 
 1.9e-09, 
*Elastic 
500., 0.3 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=Smooth 
*Friction 
0., 
*Surface Behavior, pressure-overclosure=HARD 
*Surface Interaction, name=friction1 
*Friction 
1., 
*Surface Behavior, pressure-overclosure=HARD 
*Surface Interaction, name=friction104 
*Friction 
 1.04, 
*Surface Behavior, pressure-overclosure=LINEAR 
100.,  
*Surface Interaction, name=rough 
*Friction, rough 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: back Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
sand-1.back, 1, 1 
sand-1.back, 2, 2 
sand-1.back, 3, 3 
** Name: fixbottom Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
sand-1.bottom, 2, 2 
** Name: holdwheel Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
extrudedwheel-1.HubRefPt, 1, 1 
extrudedwheel-1.HubRefPt, 3, 3 
extrudedwheel-1.HubRefPt, 4, 4 
extrudedwheel-1.HubRefPt, 5, 5 
** Name: sides Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
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sand-1.sides, 1, 1 
sand-1.sides, 2, 2 
sand-1.sides, 3, 3 
** Name: symmetry Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
sand-1.symm, 3, 3 
sand-1.symm, 4, 4 
sand-1.symm, 5, 5 
** ---------------------------------------------------------------- 
**  
** STEP: gravity 
**  
*Step, name=gravity 
*Dynamic, Explicit 
, 12. 
*Bulk Viscosity 
0.06, 1.2 
** Mass Scaling: Semi-Automatic 
**               Whole Model 
*Fixed Mass Scaling, dt=1e-05, type=below min 
**  
** BOUNDARY CONDITIONS 
**  
** Name: back Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.back, 1, 1 
sand-1.back, 2, 2 
sand-1.back, 3, 3 
** Name: fixbottom Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.bottom, 2, 2 
** Name: holdwheel Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
extrudedwheel-1.HubRefPt, 1, 1 
extrudedwheel-1.HubRefPt, 3, 3 
extrudedwheel-1.HubRefPt, 4, 4 
extrudedwheel-1.HubRefPt, 5, 5 
** Name: sides Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.sides, 1, 1 
sand-1.sides, 2, 2 
sand-1.sides, 3, 3 
** Name: symmetry Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.symm, 3, 3 
sand-1.symm, 4, 4 
sand-1.symm, 5, 5 
**  
** LOADS 
**  
** Name: gravity   Type: Gravity 
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*Dload, amplitude=gravity 
, GRAV, 1600., 0., -1., 0. 
**  
** INTERACTIONS 
**  
** Interaction: ContactPatch-sand 
*Contact Pair, interaction=friction104, mechanical 
constraint=PENALTY, cpset=ContactPatch-sand 
sand-1.contact, extrudedwheel-1_OuterMembrane_CNS_ 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, overlay, number interval=24, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, time interval=3. 
*Node Output 
RF, U, V 
*Element Output, directions=YES 
LE, PE, PEEQ, S 
*Contact Output 
CSTRESS,  
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Output, history, time interval=0.5 
*Contact Output, cpset=ContactPatch-sand 
CAREA, CFN1, CFN2, CFN3, CFNM, CFS, CFT, CMN, CMS, CMT, XN, XS, XT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT, time interval=0.5 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: rotation 
**  
*Step, name=rotation 
*Dynamic, Explicit 
, 15. 
*Bulk Viscosity 
0.06, 1.2 
**  
** BOUNDARY CONDITIONS 
**  
** Name: angular_velocity Type: Velocity/Angular velocity 
*Boundary, op=NEW, amplitude=SU10, type=VELOCITY 
extrudedwheel-1.HubRefPt, 6, 6, -0.8 
** Name: back Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
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sand-1.back, 1, 1 
sand-1.back, 2, 2 
sand-1.back, 3, 3 
** Name: fixbottom Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.bottom, 2, 2 
** Name: holdwheel Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
extrudedwheel-1.HubRefPt, 3, 3 
extrudedwheel-1.HubRefPt, 4, 4 
extrudedwheel-1.HubRefPt, 5, 5 
** Name: sides Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.sides, 1, 1 
sand-1.sides, 2, 2 
sand-1.sides, 3, 3 
** Name: symmetry Type: Velocity/Angular velocity 
*Boundary, op=NEW, type=VELOCITY 
sand-1.symm, 3, 3 
sand-1.symm, 4, 4 
sand-1.symm, 5, 5 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, overlay, number interval=40, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, time interval=1. 
*Node Output 
RF, U, V 
*Element Output, directions=YES 
LE, PE, PEEQ, S 
*Contact Output 
CSTRESS,  
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Output, history, time interval=0.5 
*Contact Output, cpset=ContactPatch-sand 
CAREA, CFN1, CFN2, CFN3, CFNM, CFS, CFT, CMN, CMS, CMT, XN, XS, XT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT, time interval=0.5 
*End Step 
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