
Clemson University
TigerPrints

All Dissertations Dissertations

5-2012

A Collection of Problems in Combinatorics
Janine Janoski
Clemson University, janinejanoski@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Janoski, Janine, "A Collection of Problems in Combinatorics" (2012). All Dissertations. 892.
https://tigerprints.clemson.edu/all_dissertations/892

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268633517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/892?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Collection of Problems in Combinatorics

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematics

by

Janine E. Janoski

May 2012

Accepted by:

Dr. Neil Calkin, Committee Chair

Dr. Kevin James

Dr. Gretchen Matthews

Dr. Colin Gallagher

Abstract

We present several problems in combinatorics including the partition function,

Graph Nim, and the evolution of strings.

Let p(n) be the number of partitions of n. We say a sequence an is log-concave

if for every n, a2n ≥ an+1an−1. We will show that p(n) is log-concave for n ≥ 26. We

will also show that for n < 26, p(n) alternatively satisfies and does not satisfy the

log-concave property. We include results for the Sperner property of the partition

function.

The second problem we present is the game of Graph Nim. We use the Sprague-

Grundy theorem to analyze modified versions of Nim played on various graphs. We

include progress made towards proving that all G-paths are periodic.

The third topic we present is on the evolution of strings. Consider a string of

length l over an alphabet of size k. At each stage of the evolution, with a probability

of q, we randomly select a new letter to replace a correct letter. Using the transition

matrix we will study the absorption rate to the correct string.

ii

Acknowledgments

I owe my deepest gratitude to my committee chair Neil Calkin, for his advice,

guidance, and wisdom on this endeavor. I would like to thank the members of my

committee, Colin Gallagher, Gretchen Matthews, and Kevin James. A special thanks

to thank Sarah Leggett, Bryce Richards, Nathan Sitaraman, and Stephanie Thomas

for their contribution to the Graph Nim problem and to Brian Bowers, Kerry Gannon,

Katie Jones, and Anna Kirkpatrick for their contribution to the Sperner property for

the partition function. I would like to express my love and gratitude to my family

and friends; for their understanding and support throughout this process.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Figures . vi

1 The Partition Function . 1
1.1 Introduction . 1
1.2 Log-Concavity of p(n) . 7
1.3 Unimodality . 23
1.4 Bipartite Matching . 24

1.4.1 Λn,1 to Λn,m . 25
1.4.2 Λn,m to Λn,dn2 e . 28

1.4.3 Λn,bn
2
c to Λn,n . 29

1.5 Conclusion . 31

2 Graph Nim . 33
2.1 Introduction . 33
2.2 Sprague-Grundy . 34
2.3 Graph Nim on Paths . 37
2.4 Graph Nim on Caterpillars . 39
2.5 Firework Graphs . 41
2.6 Cycle-Paths . 47
2.7 G-Paths . 49

2.7.1 General G-paths . 55
2.8 Graph Nim on Graphs . 60

2.8.1 Winning and Losing Complete Graphs 60
2.8.2 The Sprague-Grundy Approach 62
2.8.3 Heuristic Analysis of S-G Number Distribution 63

2.9 Conclusion . 69

3 The Evolution of Strings . 70

iv

3.1 Introduction . 70
3.2 Computing Eigenvalues . 72

3.2.1 Power Method . 73
3.2.2 Numeric Methods . 74
3.2.3 Second Eigenvalue Computations 79
3.2.4 Absorption . 80
3.2.5 Other Models . 83

3.3 Conclusion . 84

Appendices . 93
A Firework Graphs . 94

A.1 3-Firework Graphs . 94
A.2 4-Firework Graphs . 98

B Cycle Nim . 101
C Sage and Matlab Programs . 102

C.1 Unimodal Code . 102
C.2 Nim Code . 105
C.3 Evolution of Strings Code . 116

Bibliography . 126

v

List of Figures

1.1 A plot of exp(2c
√
t− c
√
t+ 1− c

√
t− 1) and exp

(
c

4t
3
2

+ 5c

64t
7
2

)
. . . . 12

1.2 A plot of 1− 3
2t2

and (t
3
2)2

(t+1)
3
2 (t−1)

3
2

. 13

1.3 A plot of 1 + 1
2t2

+ 3
4t5/2c

and (c
√
t−1)2

(c
√

(t−1)−1)(c
√

(t+1)−1)
. 14

1.4 A plot of 1− 4√
2

exp
(
− c
√
t−1
2

)
and p2(n)2

p2(n−1)p2(n+1)
. 16

1.5 A plot of 1− 2√
3

exp
(
−2c

√
t

3

)
and p3(n)2

p3(n−1)p3(n+1)
. 17

1.6 A plot of the exact value of p(n)2

p(n+1)p(n−1) and the approximation based
on estimates of Rademacher’s formula. 19

1.7 A plot of exp
(

c

4t
3
2

) (
1− 1

t2

)
and 1 + c

4t3/2
. 20

1.8 A plot of b+ d and 2 exp
(
− c
√
t−1
2

)
. 21

2.1 A table of S-G numbers for Pn. The column labels 0−11 represent the
least residues of the congruence n mod 12. The row labels represent
the length of path in intervals of 12. We see a periodic behavior starting
at length 72. 39

2.2 A table of S-G numbers for Cn,1. The column labels 0−11 represent the
least residues of the congruence n mod 12. The row labels represent
the length of path in intervals of 12. We see a periodic behavior starting
at length 156. 41

2.3 A table of S-G numbers for Cn,16. The column labels 0− 11 represent
the least residues of the congruence n mod 12. The row labels repre-
sent the length of path in intervals of 12. We see a periodic behavior
starting at length 204. 42

2.4 A table of S-G numbers for S1,1,m. The column labels 0 − 11 repre-
sent the least residues of the congruence m mod 12. The row labels
represent the length of path in intervals of 12. 45

2.5 A table of S-G numbers for S1,2,m. The column labels 0 − 11 repre-
sent the least residues of the congruence m mod 12. The row labels
represent the length of path in intervals of 12. 46

vi

2.6 A table of S-G numbers for S1,1,1,m. The column labels 0 − 11 repre-
sent the least residues of the congruence m mod 12. The row labels
represent the length of path in intervals of 12. 46

2.7 A table of S-G numbers for C3Pm. The column labels 0− 11 represent
the least residues of the congruence n mod 12. The row labels repre-
sent the length of path in intervals of 12. We see a periodic behavior
starting at length 84. 48

2.8 A table of S-G numbers for C4Pm. The column labels 0− 11 represent
the least residues of the congruence n mod 12. The row labels repre-
sent the length of path in intervals of 12. We see a periodic behavior
starting at length 84. 49

2.9 A table of exceptions for the path nimbers 56
2.10 The number in column m and row s indicates the percentage of 7-

vertex graphs of size m whose S-G number is s. For instance, 50% of
size-2 graphs have S-G number 2, 0% have S-G number 1, and 50%
have S-G number 0. 66

2.11 The number in column m and row s indicates the predicted percentage
of 7-vertex graphs of size m whose S-G number is s. For example, our
heursitic predicts that 6.1% of 7-vertex graphs of size 10 will have S-G
number 3. 67

2.12 The number in row m indicates the number of edges of a 7-vertex
graph and the column s indicates the S-G number. Here we compare
the heuristic and computed results, as indicated by type. 68

3.1 A plot of the length of the string vs. the second largest eigenvalue for
our model for an alphabet of size 4 when p = c

l
. 80

3.2 A plot of the length of the string vs. ε = (1− λ2) for our model when
p = c

l
and k = 4. 81

3.3 A plot of the length of the string vs. log(ε) for our model when p = c
l

and k = 4. 85
3.4 A plot of the number of correct letters vs. the absorption rate for our

model with l = 100, an alphabet of size 4, and p = c
l
. 86

3.5 A plot of the length of the string vs. the number of steps it will take
for a string with zero correct letters to reach a string with l correct
letters for an alphabet of size 4 for our model with p = c

l
. 87

3.6 A plot of the length of the string vs. the number of steps it will take
for a string with zero correct letters to reach a string with l correct
letters for an alphabet of size 4. our model with p = c

l
is in red and

the Wilf model is in blue. 88
3.7 A plot of the length of the string vs. ε = (1− λ2) for our model when

p = 3
√

c
l

and k = 4. 89

vii

3.8 A plot of the length of the string vs. the number of steps it will take
for a string with zero correct letters to reach a string with l correct
letters for an alphabet of size 4 for our model with p = 3

√
c
l
. 90

3.9 A plot of the length of the string vs. the number of steps it will take
for a string with zero correct letters to reach a string with l correct
letters for an alphabet of size 4. Our model with p = 3

√
c
l

is in red and
the Wilf model is in blue. 91

3.10 A plot of the length of the string vs. the number of steps it will take for
a string with zero correct letters to reach a string with l correct letters
for an alphabet of size 4. The plot shows our model with p = α

√
c
l

for
2 ≤ α ≤ 10 and the Wilf model. 92

viii

Chapter 1

The Partition Function

1.1 Introduction

We define a partition of a positive integer n to be a sequence of non-increasing

positive integers that sum to n. Partitions occur in many fields of math such as

Rogers-Ramanujan identities, symmetric polynomials and group representation the-

ory. The topic has been studied by many mathematicians such as Euler, Legendre,

Ramanujan, Hardy, Rademacher, Selber, and Andrews, to name just a few. We will

focus our research on properties concerning the number of partitions for a given n.

Definition. Let p(n) be the number of partitions of a nonnegative integer n.

For example, p(4) = 5, since

4 = 4

= 3 + 1 = 2 + 2

= 2 + 1 + 1 = 1 + 1 + 1 + 1.

1

Definition. A sequence an is log-concave if for every n

a2n ≥ an+1an−1.

In 1918, Hardy and Ramanujan proved that

p(n) ∼ 1

4n
√

3
eπ
√

2n/3, as n→∞.

In 1937, Rademacher improved this result by expressing p(n) as a convergent series.

In Section 1.2 we will show that p(n) is log-concave for n ≥ 26 [5]. We will also

discuss the alternating behavior for p(n) satisfying log-concavity and not satisfying

this property for n < 26. To prove log-concavity, we will use Rademacher’s formula

for the partition function.

In Section 1.3 and 1.4 we will discuss the Sperner property for partitions. This

work was joint work with Neil Calkin while advising Brian Bowers, Kerry Gannon,

Katie Jones, and Anna Kirkpatrick begun during the 2010 Clemson REU.

Definition. Let n be a non-negative integer. A rank k partition of n is a k-tuple of

positive integers (λ1, . . . , λk) satisfying

n =
k∑
i

λi, 1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λk.

We write

(1a12a2 · · ·) to represent

1, ..., 1︸ ︷︷ ︸
a1

, 2, ..., 2︸ ︷︷ ︸
a2

, . . .

 ,

where ∑
i≥1

iai = n.

2

For example the partitions of 4 are

First Representation Second Representation Rank

(1, 1, 1, 1) 14 4

(1, 1, 2) 122 3

(1, 3) 13 2

(2, 2) 22 2

(4) 4 1

Let p(n, k) denote the number of partitions of n into k parts, and P (n, k)

denote the number of partitions of n into at most k parts.

Definition. If λ and λ′ are two partitions of the same number, then we say that λ is

covered by λ′, written λl λ′, if two summands of λ can be added to form λ′.

Example. (1, 1, 2) l (1, 3)

Definition. We define Pn to be the set of all partitions of the non-negative integer

n with the ordering induced by the reflexive and transitive closure of the covering

relation. We will denote this transitive closure by 6. We have that, Pn is a partially

ordered set, poset, under the transitive closure.

Definition. We say that λ and λ′ are comparable if λl λ′ or λ′l λ. Two partitions

which are not comparable are called incomparable.

We can organize Pn using a graphical representation called a Hasse diagram.

We create the graph with vertices

V = {λ : λ ∈ Pn}

3

arranged in rows, called “level sets”, according to rank. The edge set is defined by

E = {{λ, λ′} : λ, λ′ ∈ Pn, λ and λ′ are comparable}.

Example. The Hasse diagram for P4:

4

13 22

112

1111

Definition. A chain is a set of partitions {λ′, λ′′, . . . , λ(r)} such that λ′lλ′′l. . .lλ(r).

Definition. We define a chain decomposition of Pn as a set of non-intersecting chains

whose union is Pn.

Definition. An antichain is a set of partitions which are pairwise incomparable.

Since elements within a level set are incomparable, every level set is an an-

tichain. For P4 the only antichain is {(1, 3), (2, 2)}.

Definition. A ranked poset is said to be Sperner if the size of its largest antichain is

equal to the size of its largest level set.

We are interested in determining if Pn is Sperner for all non-negative integers

n.

Example. In P4, since the size of the largest antichain is two and the size of the

largest level set is two, we can conclude that P4 is Sperner.

The following definitions are required to state an equivalent formulation of the

Sperner property.

4

Definition. We say that Pn is unimodal if there exists a number k1,n, called the mode,

such that p(n, k) ≤ p(n, k + 1) for k < k1,n, and p(n, k) ≥ p(n, k + 1) for k > k1,n.

Definition. We say that Pn has the bipartite matching property if, for any two con-

secutive level sets, Λn,a and Λn,b with p(n, a) < p(n, b), there is an injective matching

using the edges of the Hasse diagram of Pn from Λn,a onto Λn,b. We call such a

matching a maximum matching.

With these definitions, we can state our equivalent formulation of the Sperner

property. If a ranked poset has the bipartite matching property and it is unimodal,

then it is Sperner.

Example. Below we show that P8 is Sperner.

The Hasse diagram for P8:

8

17 26 35 44

116 125 134 224 233

1115 1124 1133 1223 2222

11114 11123 11222

111113 111122

1111112

11111111

We see that the largest anti-chain has size 5 which is the size of the largest

level set. Alternatively we can use the unimodal and bipartite matching properties.

It is easy to see that Pn is unimodal, since the first level set is size one and then the

level sets increase to a level set of size five and then decrease to a level set of size

5

one. Below we show that the bipartite matching property can be satisfied for each

consecutive level set.

8

17 26 35 44

116 125 134 224 233

1115 1124 1133 1223 2222

11114 11123 11222

111113 111122

1111112

11111111

In 1952, Szekeres proved that, for “sufficiently large n,” Pn is unimodal [18].

It has been previously computationally verified that Pn is unimodal for n ≤ 2000.

Canfield proved in 2003 that Pn is Sperner for all n ≤ 45 [7]. Canfield proved

this by using the Ford-Fulkerson Algorithm, to show that for 1 ≤ n ≤ 45, Pn has

the bipartite matching. Because Canfield proved that these integer posets had the

bipartite matching property, he was able to conclude that Pn is Sperner in each of

these cases since it had already been computationally verified that Pn is unimodal

[7].

In Section 1.3, we will discuss computational approaches we have used to push

the bounds of the unimodality of Pn. In Section 1.4, we will study the Bipartite

Matching Property of Pn.

6

1.2 Log-Concavity of p(n)

We first began to study the property of log-concavity for p(n, k) and discovered

that things did not appear to be log-concave. In fact, it appeared that p(n, k) satisfied

the log-concave inequality and then alternately satisfied and did not. It appeared that

p(n, k) is log-concave except when n− k is odd and at most 25.

The second half of the sequence p(n, k) is given by p(n − k), that is, the

reverse of the first n
2

terms of the partition function p(n). We then looked closely at

the log-concavity of p(n). We have proven the following theorem.

Theorem. For n ≥ 26, p(n)2 ≥ p(n+ 1)p(n− 1).

By Rademacher’s formula we have

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(
π
k

√
2
3
(n− 1

24
)
)

√
n− 1

24

=

1

π
√

2

∞∑
k=1

Ak(n)
√
kd(n, k).

The function Ak(n) is periodic in n with period k and is given by

Ak(n) =
∑

0≤m<k;gcd(m,k)=1

eπi(s(m,k)−2nm/k),

where s(m, k) is a Dedekind sum. That is,

s(m, k) =
∑

n mod k

((n
k

))((mn
k

))
,

7

where

((x)) =

x− bxc − 1

2
x ∈ Q

0 x ∈ Z
.

Letting t = n− 1
24

and c = π
√

2
3
, we can write

d(n, k) =
d

dt

sinh
(
c
√
t

k

)
√
t

 =
c
√
t

2kt3/2
cosh

(
c
√
t

k

)
− 1

2t3/2
sinh

(
c
√
t

k

)

=
1

2t3/2

(
c
√
t

k
cosh

(
c
√
t

k

)
− sinh

(
c
√
t

k

))
=

1

4t3/2

(
c
√
t

k
− 1

)
exp

(
c
√
t

k

)(
1 +

c
√
t+ k

c
√
t− k

exp

(
−2c
√
t

k

))
.

Note that, we will use the notation t and n interchangeably where appropriate.

We have that A1(n) = 1. Thus the first term in Rademacher’s formula is

1

π
√

2
d(n, 1) =

1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t)

(
1 +

c
√
t+ 1

c
√
t− 1

e−2c
√
t

)
.

We have that A2(n) = (−1)n. Thus the second term in Rademacher’s formula

is

(−1)n

π
d(n, 2) =

(−1)n

4πt3/2

(
c
√
t

2
− 1

)
exp

(
c
√
t

2

)(
1 +

c
√
t+ 2

c
√
t− 2

exp
(
−c
√
t
))

.

We have that

A3(n) = exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

))
.

8

Thus the third term in Rademacher’s formula is

1

4π
√

6t3/2

(
exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

)))
×

(
c
√

(t)− 3
)

exp

(
c
√
t

3

)(
1 +

c
√
t+ 3

c
√
t− 3

exp

(
−2c
√
t

3

))
.

We want to consider

1

π
√

2

c
√
t∑

k=3

Ak(n)
√
kd(n, k) > c

√
t

√
3

π
√

2
A3(n)d(n, 3)

=
c
√
t

4π
√

6t3/2

(
exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

)))
×

(
c
√

(t)− 3
)

exp

(
c
√
t

3

)(
1 +

c
√
t+ 3

c
√
t− 3

exp

(
−2c
√
t

3

))
.

For k large, let θ = c
√
t

k
and we have

1

2t3/2
(θ cosh(θ)− sinh(θ)) =

1

2t3/2

∞∑
j=1

θ2j+1

(
1

(2j)!
− 1

(2j + 1)!

)

=
1

2t3/2

∞∑
j=1

θ2j+1

(
1

(2j + 1)(2j − 1)!

)
=

1

2t3/2
θ3

3
(1 + o(1))

when θ is o(1) as k →∞.

So

∣∣∣∣∣ 1√
2π

∞∑
k=T

Ak(t)
√
kd(t, k)

∣∣∣∣∣ =
1√
2π

∞∑
k=T

∣∣∣∣Ak(t)√k c32k3

∣∣∣∣ (1 + o(1))

=
π2

3
√

3

∞∑
k=T

∣∣∣∣Ak(t)√k 1

k3

∣∣∣∣ (1 + o(1)) <
2π2

3
√

3
√
T

(1 + o(1)).

9

Thus
∞∑
k=T

∣∣∣∣√k 1

k2

∣∣∣∣ < 2√
T
.

If we increase the constant slightly, we can let T = 1 and get a contribution of O(1)

independent of n.

Thus, using the first three terms of Rademacher’s formula, we have the fol-

lowing estimate for p(n):

p(n) =

(
1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t)

(
1 +

c
√
t+ 1

c
√
t− 1

exp
(
−2c
√
t
)))

×(
(−1)n

4πt3/2

(
c
√
t

2
− 1

)
exp

(
c
√
t

2

)(
1 +

c
√
t+ 2

c
√
t− 2

exp
(
−c
√
t
)))

×(
c
√
t
(
c
√
t− 3

)
4π
√

6t3/2

(
exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

)))
×

exp

(
c
√
t

3

)(
1 +

c
√
t+ 3

c
√
t− 3

exp

(
−2c
√
t

3

)))
>

1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t)

(
1 +

(−1)n(c
√
t− 2)√

2(c
√
t− 1)

exp

(
−c
√
t

2

))
×(

1 +
c
√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

)
×(

exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

))))
.

If we consider just the real part of

(
exp

(
πi

(
1

18
− 2n

3

))
+ exp

(
πi

(
− 1

18
− 4n

3

)))
,

then we have

p(n) >
1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t)

(
1 +

(−1)n
√

2(c
√
t− 2)

(c
√
t− 1)

exp

(
−c
√
t

2

))
×

10

(
1− 2c

√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

))
.

We want to consider

p(n)2

p(n+ 1)p(n− 1)
.

We will first analyze

p1(n)2

p1(n− 1)p1(n+ 1)
, where p1(n) =

1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t).

We will first consider the ratio of the exponential parts. We have

2c
√
t− c
√
t+ 1− c

√
t− 1 =

c

4t
3
2

+
5c

64t
7
2

+
21c

512t
11
2

− 2
∞∑
i=1

(
1
2

2i+ 6

)
t
−(4i+11)

2 .

Since −2
(1

2
2i+6

)
> 0, we have that

2
√
t−
√
t+ 1−

√
t− 1 >

c

4t
3
2

+
5c

64t
7
2

.

Thus

exp(2c
√
t− c
√
t+ 1− c

√
t− 1) > exp

(
c

4t
3
2

+
5c

64t
7
2

)
.

Figure 1.1 plots this approximation.

Next we consider the rational function
√
t. We have that

(t
3
2)2

(t+ 1)
3
2 (t− 1)

3
2

= 1− 3

2t2
+

3

8t4
+ · · · > 1− 3

2t2
.

Figure 1.2 plots this approximation.

11

Figure 1.1: A plot of exp(2c
√
t− c
√
t+ 1− c

√
t− 1) and exp

(
c

4t
3
2

+ 5c

64t
7
2

)

Last we want to consider

(c
√
t− 1)2

(c
√

(t− 1)− 1)(c
√

(t+ 1)− 1)
.

We have that

(c
√
t− 1)2

(c
√

(t− 1)− 1)(c
√

(t+ 1)− 1)
= 1 +

1

2t2
+

3

4t5/2c
+ · · · > 1 +

1

2t2
+

3

4t5/2c
.

Figure 1.3 plots this approximation.

Now we want to be able to show this term actually works. Let’s consider only

12

Figure 1.2: A plot of 1− 3
2t2

and (t
3
2)2

(t+1)
3
2 (t−1)

3
2

the denominator

(c
√
t− 1− 1)(c

√
t+ 1− 1) = c2

√
t− 1

√
t+ 1− c

√
t+ 1− c

√
t− 1 + 1.

Now

c2
√

1/x− 1
√

1/x+ 1 = c2
(

1

x

√
1 + x

√
1− x

)
=
c2

x
− c2

∞∑
i=1

∣∣∣∣(1
2

i

)∣∣∣∣x2i−1

=
c2

x
− c2

2
x− c2

8
x3 − . . . ,

13

Figure 1.3: A plot of 1 + 1
2t2

+ 3
4t5/2c

and (c
√
t−1)2

(c
√

(t−1)−1)(c
√

(t+1)−1)

c
√

1/x+ 1 = c
∞∑
i=0

(
1
2

i

)
x(2i−1)/2,

and

c
√

1/x− 1 =
x√
x
− c

∞∑
i=01

∣∣∣∣(1
2

i

)∣∣∣∣x(2i−1)/2.
So we have

1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t) > exp

(
c

4t
3
2

+
5c

64t
7
2

)(
1− 3

2t2

)(
1 +

1

2t2
+

3

4t5/2c

)

> exp

(
c

4t
3
2

+
5c

64t
7
2

)(
1− 1

t2
+

3

4t5/2c

)
.

14

Next we want to consider

p2(n)2

p2(n− 1)p2(n+ 1)
, where p2(n) =

(
1 +

(−1)n(c
√
t− 2)√

2(c
√
t− 1)

exp

(
−c
√
t

2

))
.

We know that for n even this will contribute a positive amount, so we are only

interested when n is odd. Let

εi+2 =
(−1)n(c

√
t+ i− 2)√

2(c
√
t+ i− 1)

exp

(
−c
√
t+ i

2

)
.

So, for n odd, we can write

p2(n)2

p2(n− 1)p2(n+ 1)
=

(1− ε2)2

(1 + ε1)(1 + ε3)

= (1− 2ε2 + ε22)

(
1− ε1 +

ε21
1 + ε1

)(
1− ε3 +

ε23
1 + ε3

)
> (1− 2ε2)(1− ε1)(1− ε3)

= 1− 2ε2 − ε1 − ε3 + 2ε1ε2 + 2ε2ε3 + ε1ε3 − 2ε1ε2ε3

> 1− 2ε2 − ε1 − ε3,

as 2ε1ε2 + 2ε2ε3 + ε1ε2 > 2ε1ε2ε3.

Thus

p2(n)2

p2(n− 1)p2(n+ 1)
> 1− 1√

2

(
exp

(
−c
√
t− 1

2

)
+ 2 exp

(
−c
√
t

2

)
+ exp

(
−c
√
t+ 1

2

))
> 1− 4√

2
exp

(
−c
√
t− 1

2

)
.

Figure 1.4 plots this approximation.

15

Figure 1.4: A plot of 1− 4√
2

exp
(
− c
√
t−1
2

)
and p2(n)2

p2(n−1)p2(n+1)

Next we want to consider

p3(n)2

p3(n− 1)p3(n+ 1)
, where p3(n) =

(
1− 2c

√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

))
.

Let

ε′i+2 =
2c
√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

)
.

16

Then

p3(n)2

p3(n− 1)p3(n+ 1)
=

(1− ε′2)2

(1− ε′1)(1− ε′3)

= (1− 2ε′2 + (ε′2)
2

(
1 + ε′1 +

(ε′1)
2

1− ε′1

)(
1 + ε′3 +

(ε′3)
2

1− ε′3

)
> 1− 2ε′2

= 1− 2
2c
√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

)
> 1− 2√

3
exp

(
−2c
√
t

3

)
.

Figure 1.5 plots this approximation.

Figure 1.5: A plot of 1− 2√
3

exp
(
−2c

√
t

3

)
and p3(n)2

p3(n−1)p3(n+1)

17

So we have that, for n odd,

p(n)2

p(n+ 1)p(n− 1)
> exp

(
c

4t
3
2

+
5c

64t
7
2

)(
1− 1

t2
+

3

4t5/2c

)
×(

1− 4√
2

exp

(
−c
√
t− 1

2

))(
1− 2√

3
exp

(
−2c
√
t

3

))
> exp

(
c

4t
3
2

)(
1− 1

t2

)(
1− 4√

2
exp

(
−c
√
t− 1

2

))
×(

1− 2√
3

exp

(
−2c
√
t

3

))
.

Figure 1.6 shows a plot of the exact value p(n)2

p(n+1)p(n−1) and the estimate given

above.

We also have that

exp

(
c

4t
3
2

)(
1− 1

t2

)
> 1 +

c

4t3/2
.

Figure 1.7 shows this approximation.

So we have

p(n)2

p(n+ 1)p(n− 1)
>
(

1 +
c

4t3/2

)(
1− 4√

2
exp

(
−c
√
t− 1

2

))(
1− 2√

3
exp

(
−2c
√
t

3

))
.

Let

a =
c

4t3/2
, b =

4√
2

exp

(
−c
√
t− 1

2

)
, d =

2√
3

exp

(
−2c
√
t

3

)
.

We want to show that

(1 + a)(1− b)(1− d) > 1

18

Figure 1.6: A plot of the exact value of p(n)2

p(n+1)p(n−1) and the approximation based on
estimates of Rademacher’s formula.

for all t ≥ T . We need

1− d− b− ad− ab+ bd+ a+ abd > 1.

That is, we need to show that

a+ bd+ abd > a > (d+ b) + a(d+ b) = (d+ b)(a+ 1),

19

Figure 1.7: A plot of exp
(

c

4t
3
2

) (
1− 1

t2

)
and 1 + c

4t3/2

i.e.

a

1 + a
>
a

2
> d+ b.

Now we have that

2 exp

(
−c
√
t− 1

2

)
>

4√
2

exp

(
−c
√
t− 1

2

)
+

2√
3

exp

(
−2c
√
t

3

)
= b+ d.

Figure 1.8 shows this approximation.

So we want to show that

c

16t3/2
> 2 exp

(
−c
√
t− 1

2

)
>

4√
2

exp

(
−c
√
t− 1

2

)
+

2√
3

exp

(
−2c
√
t

3

)
.

20

Figure 1.8: A plot of b+ d and 2 exp
(
− c
√
t−1
2

)

That is, we want to show

2.5651 ≈ c > 32t3/2 exp

(
−c
√
t− 1

2

)
.

Note that

32(41)3/2 exp

(
−c
√

41− 1

2

)
≈ 2.5207.

Now

d

dt
32t3/2 exp

(
−c
√
t− 1

2

)
= 48t1/2 exp

(
−c
√
t− 1

2

)
− 8t3/2c√

t− 1
exp

(
−c
√
t− 1

2

)
< 0,

21

for t ≥ 41.

Since the derivative is negative, we know that

32t3/2 exp

(
−c
√
t− 1

2

)

is decreasing for t ≥ 41. Thus we have that

c > 32t3/2 exp

(
−c
√
t− 1

2

)

for t ≥ 41.

So we have

p(n)2

p(n+ 1)p(n− 1)
>
(

1 +
c

4t3/2

)(
1− 4√

2
exp

(
−c
√
t− 1

2

))(
1− 2√

3
exp

(
−2c
√
t

3

))
> 1

for t ≥ 41.

It is easy to computationally show that for 26 ≤ t ≤ 40 unimodality will hold.

When t < 26 we computationally notice that p(n) alternately satisfies and does not

the property of unimodality. Using our above estimates we can see that before 41 our

inequalities only hold for t even. Recall our estimate for p(n) is

p(n) >
1

4π
√

2t3/2
(c
√
t− 1) exp(c

√
t)

(
1 +

(−1)n
√

2(c
√
t− 2)

(c
√
t− 1)

exp

(
−c
√
t

2

))
×

(
1− 2c

√
t√

3

(
c
√
t− 3

c
√
t− 1

)
exp

(
−2c
√
t

3

))
.

When n = 2m, the sign on the second term is computed by (−1)2m; this term will

contribute a positive amount. When n = 2m + t the second term will be negative.

This negative term will contribute a large enough amount so that the condition of

22

log-concavity will not be satisfied.

1.3 Unimodality

Recall the definition for unimodality.

Definition. We say that Pn is unimodal if there exists a number k1,n, called the mode,

such that p(n, k) ≤ p(n, k + 1) for k < k1,n, and p(n, k) ≥ p(n, k + 1) for k > k1,n.

Using several computational approaches, we have determined that Pn is uni-

modal for all n ≤ 25, 000.

We have expanded the values of n for which Pn is known to be unimodal from

n ≤ 2, 000 to n ≤ 10, 000. To do accomplish this, we have created a Sage algorithm

that generates a matrix for which the (n, k) entry represents p(n, k) according to the

recursive formula p(n, k) = p(n− 1, k − 1) + p(n− k, k). We then checked that each

row of the matrix was unimodal. We also calculated the rank of the mode of Pn up

to n = 10, 000.

Additionally, we used an improved algorithm that deletes all p(n,k) values

which become unnecessary for future computations. This decreased the necessary

data storage by over 50% and allowed us to test the unimodality of larger values of

n. Using this improved algorithm, we found that Pn is unimodal for all n ≤ 25, 000.

We hoped to be able to expand on Szekeres’ paper on unimodality [18] to find

n large enough so that for all N > n, Pn is unimodal. We have not made enough

progress on this area of research to include it in this paper. We suspect that “large

enough” will not exceed 25,000, and so a proof of unimodality for all n would be

complete.

23

1.4 Bipartite Matching

Recall the definition of a bipartite matching.

Definition. We say that Pn has the bipartite matching property if, for any two con-

secutive level sets, Λn,a and Λn,b with p(n, a) < p(n, b), there is an injective matching

using the edges of the Hasse diagram of Pn from Λn,a onto Λn,b. We call such a

matching a maximum matching.

Recall we write

(1a12a2 · · ·) to represent

1, ..., 1︸ ︷︷ ︸
a1

, 2, ..., 2︸ ︷︷ ︸
a2

, . . .

 ,

where ∑
i≥1

iai = n

By examining many Hasse diagrams, we have determined several matching

schemes that can be used to help create maximum matchings for all n.

Remark. For even positive integers, 2n, the partition of (2n) always matches to

(2n−24).

Remark. For positive integers, 3n, the partition of (3n) always matches to (3n−26).

Remark. In general, for positive integers, bn, where b = 1, 2, 3, 4..., the partition of

(bn) always matches to (bn−22b).

So, if (bn−22b) is in the larger level set, it always has probability of 1 of being

included in a maximum matching.

We looked for patterns between many levels of our Hasse diagrams. We con-

sider 3 different types of level sets. Level sets from Λn,1 to Λn,m, level sets from Λn,m

to Λn,dn
2
e, and level sets from Λn,bn

2
c to Λn,n.

24

1.4.1 Λn,1 to Λn,m

The proof of the existence of a maximum matching from Λn,1 to Λn,2 is trivial.

We have proven the following theorems regarding maximum matchings:

Theorem. For all n > 6 there exists a maximum matching from Λn,2 to Λn,3.

Proof. Let λ ∈ Λn,2. Then λ = (x, y) where x ≤ y. If n is odd, then it follows that

x < y, and we can assign a mapping from Λn,2 to Λn,3 such that (1, x, y − 1) l (x, y)

for all (x, y) ∈ Λn,2. Since each pair (x, y) will be unique, it follows that this is an

injective mapping and thus will form a maximum matching.

When n is even, we must consider the exception where x = y = n
2
. This case

will occur only once for each n, and we use the mapping such that
(
2, n

2
− 2, n

2

)
l(

n
2
, n
2

)
. We know that

(
2, n

2
− 2, n

2

)
has not previously been covered by an element

of Λn,2 because each of our partitions in the level set above contains at least one

1, whereas
(
2, n

2
− 2, n

2

)
contains none when n > 6. Thus we create a maximum

matching between the two level sets.

Example. A mapping from Λ11,2 to Λ11,3.

1,10 29 38 45 56

119 128 137 146 155 227 236 245 335 344

Example. A mapping from Λ10,2 to Λ10,3.

19 28 37 46 55

118 127 136 145 226 235 244 334

25

Theorem. For all n ≥ 4 there exists a maximum matching from Λn,3 to Λn,4.

Proof. It has been proven computationally that Pn has the bipartite matching prop-

erty for all n ≤ 45. The following scheme proves that there is maximum matching for

n > 9.

Let λ ∈ Λn,3 such that λ = (x, y, z) where x ≤ y ≤ z.

Let φ : Λn,3 → Λn,4 be a function defined as follows:

1. For odd n, φ
((

2, n−5
2
, n+1

2

))
=
(
2, 3, n−5

2
, n−5

2

)
2. If y < z, then φ ((x, y, z)) = (1, x, y, z − 1) , unless it has already been matched

by (1)

3. If y = z, then φ ((x, y, y)) = (2, x, y − 2, y),

where φ(λ) = µ implies µ l λ. It is clear that (2) and (3) will form an injective

mapping. Note that we must take extra care in (1). Let λ′ = φ
((

2, n−5
2
, n+1

2

))
=(

2, 3, n−5
2
, n−5

2

)
. Since n > 9, it follows that n+1

2
> 4, thus n+1

2
− 3 > 1. Therefore

λ′ does not contain any 1’s, thus will not form a matching of type (2). If λ′ came

from our third class of matchings, then it would have come from
(
3, n−5

2
, n−5

2
+ 2
)
,

but clearly n−5
2
6= n−5

2
+ 2 and so it would not be matched under (3). Therefore it

is guaranteed that
(
2, n−5

2
, n+1

2

)
will map to a unique vertex in Λn,4. Thus φ is an

injective map and we can form a maximum matching from Λn,3 to Λn,4.

Example. A mapping from Λ11,3 to Λ11,4.

119 128 137 146 155 227 236 245 335 344

1118 1127 1136 1145 1226 1235 1244 1334 2223 2234 2333

26

Using schemes similar to the ones listed in the proofs above, we hope that we

may be able to categorize the way that mappings are formed from Λk to Λk+1 where

k + 1 < m.

Next we describe an alternate idea for finding maximum matchings from Λn,1

to Λn,m. We have produced a matching scheme which works from Λn,1 to Λn,m−1 for

n ≤ 34; we will call this scheme Leftmost to the Mode (LTM). To produce such a

matching, look at two consecutive levels, Λk and Λk+1, with lexicographic ordering,

where 1 ≤ k, k + 1 < m. First, take λ ∈ Λn,k and check if it covers the leftmost

element of Λn,k+1, call this µ. If this is so, we draw an edge between λ and µ. If

not, look at the next element in Λn,k+1 and apply the same process. We continue

this process until λ has been matched with some µ ∈ Λn,k+1. Then we repeat the

process with the next element in Λn,k, call this λ′. We repeat this process until we

have matched all of the elements in Λn,k with elements of Λn,k+1.

We have found that LTM fails at n = 35, but this scheme may still be useful

for improving algorithm efficiency. In cases where this rule fails for Λn,m−1 to Λn,m

we have observed that p(n,m− 1) ≈ p(n,m).

Example. A matching produced by this scheme for P12. Note that this is an excep-

tional case because our matching works to the mode at k = 4.

27

12

1,11 2,10 39 48 57 66

11,10 129 138 147 156 228 237 246 255 336 345 444

1119 1128 1137 1146 1155 1227 1236 1245 1335 1344 2226 2235 2244 2334 3333

1.4.2 Λn,m to Λn,dn2e

We tried applying several rules for this section of the graph, but all had multi-

ple exceptions which we expect to become increasingly more numerous and complex

as the size of n increases. If we again consider the partition λ =
(
jλ̄
)

where j is

the largest summand, then the rule such that λ maps to λ′ =
(
1(j − 1)λ̄

)
. In this

instance, our rule breaks down when our partition λ contains no ones, but instead

ends in repeated 2’s or 3’s. We suspect that this trend will continue for partitions

that end in repeated summands i such that i ≥ 2. In this instance, we were unable

to find any rule for exceptions that worked uniformly, but did consider the following

three ideas:

1. Whenever a vertex has a double matching, redirect the first matching by

adding the smallest two summands together.

2. Break the second-largest summand, i, into i− 2 and 2.

3. Match the vertex to any other vertex that will work.

The third rule worked in all examples we studied but is not very helpful in

terms of a proof. There is much work remaining for these types of level sets. Com-

28

putationally we can use the ideas above as partial matchings to seed a matching

algorithm, such as Ford-Fulkerson.

1.4.3 Λn,bn2 c to Λn,n

Lemma 1.4.1. Suppose n is a non-negative integer and 1 ≤ k ≤ n. If λ ∈ Λn,k, then

λ has at least max({(2k − n), 0}) summands equal to 1.

Proof. Suppose, for the sake of contradiction, λ ∈ Λn,k has (2k − n − δ) summands

equal to 1, for some δ ∈ N. Then there are k − (2k − n− δ) = n− k + δ summands

which are greater than or equal to 2. The sum of these (n − k + δ) summands is at

least 2(n − k + δ) = 2n − 2k + 2δ. Therefore the total of all of the summands is at

least (2n− 2k+ 2δ) + (2k−n− δ) = (n+ δ). This is a contradiction, since δ > 0 and

λ is a partition of n. Thus, it must be the case that λ has at least (2k−n) summands

equal to 1.

Theorem. For any positive integer n, for all integers dn
2
e ≤ k < n, there exists a

maximum matching from Λn,k+1 to Λn,k.

Proof. Suppose λ ∈ Λn,kwhere dn
2
e + 1 ≤ k ≤ n. By our previous lemma, we can

conclude that λ contains at least 2k − n ≥ 2(dn
2
e+ 1)− n ≥ 2 summands equal to 1.

So, we can write λ as 12λ̄, where λ̄ represents the (k− 2) other parts of the partition.

We define φ : Λn,k+1 → Λn,k by φ(12λ̄) = (2λ̄).

Now, suppose there exists another partition λ′ ∈ Λn,k such that φ(λ) = φ(λ′).

We know that λ and λ′ can be expressed as 12λ̄ and 12λ̄′, respectively. Thus,

φ(12λ̄) = φ(12λ̄′)

2, λ̄ = 2, λ̄′

29

λ̄ = λ̄′

λ = 12λ̄ = 12λ̄′ = λ′.

Therefore, φ is 1-1. Therefore, using φ to choose our edges, we have λl φ(λ),

and we create a maximum matching between Λn,k+1 and Λn,k.

Example. The partial Hasse diagram below shows our matching scheme φ applied to

the bottom half of P8.

k = d8
2
e = 4 1115 1124 1133 1223 2222

k = 5 11114 11123 11222

k = 6 111113 111122

k = 7 1111112

k = n = 8 11111111

Theorem. For all positive odd integers n, for k = dn
2
e, there exists a maximum

matching between the kth and the (k − 1)th, or bn
2
c, level.

Proof. Suppose λ ∈ Λn,dn
2
e. By our previous lemma, each partition of n into k parts

has at least (2k−n) summands equal to 1. For odd n, when k = dn
2
e = n+1

2
, we have

at least

2

(
n+ 1

2

)
− n = n+ 1− n = 1

summands equal to 1.

Let λ ∈ Λn,dn
2
e be denoted as (1λ̄lλ), where λ̄ is the (dn

2
e− 2) other summands

of the partition, and lλ is the largest summand of that partition.

Define φ : λk → λk−1 by φ((1λ̄l)) = (λ̄(1 + l)).

30

Suppose there exists a partition, µ ∈ Λn,dn
2
e, such that φ(λ) = φ(µ).

Then

φ((1λ̄lλ)) = φ((1µ̄lµ)).

That is, (λ̄(1 + lλ)) = (µ̄(1 + lµ)). Since lλ is our largest summand in λ, then 1 + lλ

is our largest summand in φ(λ). So lλ = lµ. Thus (λ̄(1 + lλ)) = (µ̄(1 + lλ)), so that

λ̄ = µ̄. Thus, λ = µ.

Hence, φ is injective. Since λl φ(λ), we have a maximum matching.

1.5 Conclusion

We have shown that p(n) is log-concave for n ≥ 26. We have also seen that

for n < 26, p(n) alternately does and does not satisfy the property of log-concavity.

We have found that Pn is unimodal for all n ≤ 25, 000.

We have also proven several matching schemes which apply for all n. There

are still many times of level sets which need matching schemes in order to prove the

Sperner property for Pn for all n.

There are several areas to continue working on this problem. The first is to

return to trying to find a large enough n so that PN is unimodal for all N > n. This

work would be based on tightening the asymptotics done by Szekeres.

We also hope to be able to show that the bipartite matching holds for all

level sets. We can also try a computational approach to pushing this bound. Using

an algorithm such as Ford-Fulkerson we can easily increase Canfield’s bound of 45.

Another idea would be to run Ford-Fulkerson with a partial matching. There are

31

certain edges that will be included with a high probability, so having the algorithm

run assuming these edges will help to speed up run time.

32

Chapter 2

Graph Nim

2.1 Introduction

Impartial two player games are games where players alternate turns with the

same rules on the same set of finite set moves. Since there are a finite set of positions

available in the game, the game must end when a player no longer can make a move.

Impartial games include nim, sprouts, tic-tac-toe, and chomp. Games such as chess

and go are not impartial.

Nim is a simple impartial two player game in which players take turns removing

rocks from disjoint piles until there are no rocks remaining. The player to pick up

the last rock or group of rocks is the winner [3].

The traditional game of nim has been studied on graphs with weighted edges

[9, 10]. The game begins by selecting a starting vertex where a game piece is placed.

Players then choose an edge incident to this vertex, and move the game piece along

that edge while decreasing the weight on the edge to any non-negative integer smaller

than it’s original weight. The game continues until a player cannot move because all

edges adjacent to the piece’s vertex have weight zero.

33

In our version of Graph Nim, the players take turns removing edges that are

incident to a given vertex. The maximum number of edges that can be removed in a

player’s turn is equal to the degree of a specific vertex. For example, if a vertex has

degree 4, a player can remove 1, 2, 3, or all 4 edges from that vertex. The object of

Graph Nim is to be the person to remove the last set of edges from a given vertex.

We are interested in studying several different types of graphs using the Sprague-

Grundy function. The analysis of paths, caterpillars, and G-paths is joint work with

Neil Calkin and Kevin James while advising Sarah Leggett, Bryce Richards, Nathan

Sitaraman, and Stephanie Thomas during the summer 2009 Clemson REU [6].

2.2 Sprague-Grundy

Definition. A follower is a position a player can obtain in one move in a game.

Definition. Given a finite set of integers S, x is the minimum excluded value, mex,

if it is the smallest non-negative integer such that x /∈ S.

Let F (x) denote the followers of a given position x. The Sprague-Grundy

function, g(x), is defined as

g(x) = mex {g(y) : y ∈ F (x)} .

Positions in impartial games, such as Nim, are either N-positions or P-positions.

A P-position is winning for the previous player, while the N-position is winning for

the next player. For the traditional game of Nim, the winning strategy is to finish

every move leaving the game’s Sprague-Grundy value at zero due to the following

theorem.

34

Theorem. A position in Nim is a P-position if and only if the nim-sum of its com-

ponents is zero. [8]

It follows from the definition of the Sprague-Grundy function that once a

player is given a position in a game with a Sprague-Grundy number equal to zero,

then any move that player makes will change the value of the game to some non-zero

Sprague-Grundy number. It is also known that a player can force a Sprague-Grundy

value of zero onto the next player only if the player was not handed a Sprague-Grundy

value of zero at the beginning of their turn.

Sprague-Grundy function values are helpful when analyzing Nim played on

graphs. The Sprague-Grundy theorem explains the reason why we take interest in

computing Sprague-Grundy numbers.

Theorem. (Sprague-Grundy Theorem) The Sprague-Grundy, S-G, value of a game

consisting of many disjoint games is the nim-sum of the Sprague-Grundy values of

those components.

In the case of traditional Nim, the S-G number of the entire game is the

addition of each pile’s S-G number. In other words, we can consider each pile as a

distinct game with its own S-G number. To calculate a nim-sum with traditional

Nim, we note that the S-G number for a pile of rocks is simply the number of rocks

in the pile. We then take the S-G numbers from all piles and convert them to binary.

The nim-sum is then found by the addition of all converted S-G numbers mod 2.

For example, in a game with two piles below,

35

we take the number of rocks in each pile, 5 and 3, and convert to binary. We then

nim-sum to find a value of 6. Since the S-G number for this game is greater than

zero, player one has a winning strategy.

With the nim-sum calculated for a given game, it is possible for a player to

determine whether a game win is achievable. We know that a game with a nim-sum

of zero is in P-position. Otherwise, if the nim-sum is non-zero, the game is in N-

position. So in order for a player to win a game of Nim from an N-position, he should

remove enough rocks to force the nim-sum to zero.

The strategy for forcing a nim-sum to zero is as follows:

1. Find the left most 1 in the calculated sum, say column k.

2. From that 1, trace up the column until you find a 1. Note that the row you

found this 1 in will be the only row to be modified, say row r.

3. Change the 1 is row r column k to a 0.

4. Manipulate the 1’s and 0’s in the same row we changed in the last step so that

each column’s nim-sum is zero.

5. Subtract the value of the altered form of row r from the original value of row r

to determine the winning move. The difference in the rows will be the number

of rocks you need to remove from the pile represented by row r.

Let’s demonstrate how this strategy works. Take into consideration the game

played on two piles mentioned earlier. The nim-sum we calculated was:

1 0 1

+ 1 1

1 1 0

36

Step 1: We see that the first 1 is in column one.

1 0 1

+ 1 1

1 1 0

Step 2: We will modify row one.

1 0 1

+ 1 1

1 1 0

Step 3: Change the 1 in row one column one to a 0.

0 0 1

+ 1 1

0 1 0

Step 4: Change the 0 in row one column two to a 1, forcing column two to

have a nim-sum of 0.

0 1 1

+ 1 1

0 0 0

Since 5 − 3 = 2, we remove 2 rocks from the pile represented in the first row. Since

the next player will have no choice but to change the nim-sum to a non-zero value, we

know that we are able to force the nim-sum to zero again. We continue this pattern

until the game is won.

2.3 Graph Nim on Paths

Definition. A path with n edges, denoted Pn, is a tree with two vertices of degree one

and all other vertices of degree two.

37

When playing Path Nim, we consider disjoint paths instead of disjoint piles

of rocks. A move is made by by removing either one edge, or two edges connected

to the same vertex. For example, from P5, we can take away one edge to create two

disjoint paths P1 and P3. Similarly, we can take away two edges to create disjoint

paths P1 and P2 as shown below.

P1 P3

P1 P2

We can also take away one edge, therefore creating two paths of equal length. Creating

two paths of equal length turns out to be the winning strategy for Player 1.

P2 P2

By creating two paths of equal length, we force each path to have the same

Sprauge-Grundy number. It is easy to see that when we nim-sum two equal numbers,

we get zero. Therefore, if we are faced with P2c, where c ∈ Z+, we remove the two

inner edges incident with the center vertex. Similarly, if we are faced with P2c+1, we

only need to remove the center edge. Therefore, since we know that Player 1 can

always force the nim-sum to zero at the end of their turn, paths can always be won

by Player 1. Figure 2.1 shows the Sprague-Grundy numbers for paths. The column

labels 0−11 represent the least residues of the congruence n mod 12. The row labels

represent the length of path in intervals of 12.

We notice that, a periodic behavior occurs, so that a path of length greater

than 72 has an easily computable S-G number. Say that we have a path of length

38

Figure 2.1: A table of S-G numbers for Pn. The column labels 0 − 11 represent the
least residues of the congruence n mod 12. The row labels represent the length of
path in intervals of 12. We see a periodic behavior starting at length 72.

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 1 4 3 2 1 4 2 6
12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 2 3 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7

n, where n ≥ 72, we can use modular arithmetic to calculate its S-G number. For

example, for n = 87, we have

87 ≡ 3 mod 12⇒ g(87) = 8.

Note that when we compute S-G numbers for paths of length less than 72

there are multiple exceptions before the S-G numbers become become periodic.

2.4 Graph Nim on Caterpillars

Definition. A caterpillar, Cn, is defined as a path consisting of n edges with one or

more edges appended to t vertices of the path, t ≥ 1. Any vertex not in the path has

degree one and distance one from the main path.

Definition. A caterpillar, Cn,k is defined as a caterpillar of length n, where n is the

number of edges, and consisting of one extra edge (or a leg) on index k, where the

leftmost vertex is index zero.

39

The gameplay of nim on caterpillars is similar to that on paths. Since there are

legs attached to the main path, there are more possible moves available to a player.

For example, consider C2,1 shown below:

We can obtain the following graphs and corresponding S-G values in one move:

g(P2) = 2 g(P2) = 2 g(P1) = 2

g(P1) = 1 g(P1) = 1 g(P2) = 2

g(P0) = 0

We see that the set of S-G values for followers of C2,1 is {0, 1, 2}. Taking the

mex of this set, we conclude that the S-G number of C2,1 is 3.

We can continue to analyze caterpillars in this way, obtaining the following

S-G numbers for caterpillars of length three:

g(C3,0) = 1 g(C3,1) = 4

g(C3,2) = 4 gC3,3) = 1

40

When we fix the index of the extra edge and increase the length of the main

path, the S-G numbers of caterpillars become periodic. These S-G values are similar

to that of paths in that we have discovered periods of 12 in both.

Figure 2.2 shows the S-G values of caterpillars of the form Cn,1 and figure 2.3

shows the S-G values of caterpillars of the form Cn,16. Note that the periodic behavior

of caterpillars does not always begin at the same length. The periodic behavior of

Cn,1 caterpillars begins at length 156, while the periodic behavior of Cn,16 caterpillars

does not begin until length 204.

Figure 2.2: A table of S-G numbers for Cn,1. The column labels 0− 11 represent the
least residues of the congruence n mod 12. The row labels represent the length of
path in intervals of 12. We see a periodic behavior starting at length 156.

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ 2 3 4 5 6 2 1 0 8 6 0
12 1 2 3 8 5 12 7 1 0 8 9 14
24 1 2 3 11 4 7 12 14 0 16 2 4
36 12 2 3 10 4 7 15 1 16 9 18 16
48 12 2 3 10 16 7 12 1 16 18 11 16
60 12 2 22 11 16 7 12 1 20 24 16 26
72 12 13 22 11 16 24 15 14 16 22 19 16
84 12 13 19 11 16 24 15 14 16 25 11 16
96 12 13 22 11 16 7 15 1 20 25 19 11
108 12 13 22 11 32 19 22 14 20 22 19 11
120 12 13 22 11 25 19 22 14 16 22 19 11
132 21 13 22 11 25 19 22 14 21 25 19 11
144 21 13 22 11 25 19 22 14 20 22 19 11
156 21 13 22 11 25 19 22 14 21 22 19 11

2.5 Firework Graphs

Definition. The star graph Sn is a tree on n vertices with one vertex having degree

n− 1 and n− 1 vertices with degree one.

41

Figure 2.3: A table of S-G numbers for Cn,16. The column labels 0− 11 represent the
least residues of the congruence n mod 12. The row labels represent the length of
path in intervals of 12. We see a periodic behavior starting at length 204.

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ 4 12 13 0 16 10 7 9
24 0 10 7 9 4 7 16 1 15 10 7 9
36 16 2 10 5 4 12 2 1 0 6 7 12
48 1 16 24 5 19 7 16 0 10 21 7 4
60 24 3 16 27 19 7 27 0 22 10 7 4
72 29 16 26 27 16 7 12 0 21 9 7 32
84 29 12 21 5 36 7 12 0 32 10 7 4
96 28 3 16 9 29 7 12 0 21 9 7 31
108 32 3 21 9 38 7 12 0 21 9 7 40
120 28 3 16 9 29 7 12 0 16 10 7 29
132 22 3 32 9 29 7 12 0 32 10 7 22
144 28 3 35 9 29 7 12 0 16 10 7 22
156 28 3 32 9 37 7 12 0 16 10 7 37
168 28 3 32 9 29 7 12 0 16 10 7 22
180 28 3 32 9 37 7 12 0 16 10 7 22
192 28 3 32 9 37 7 12 0 16 10 7 22
204 28 3 32 9 29 7 12 0 16 10 7 22

We are interested in graphs that are a generalization of a star graph.

Definition. A firework graph Sa1,a2,a3,...an is a tree on a1 + a2 + · · ·+ an + 1 vertices

with a center vertex of degree a1+a2+ · · ·+an, n leaves, and a1+a2+ · · ·+an−(n+1)

vertices of degree two. That is, we append the paths Pa1 , Pa2 , . . . Pan at a center vertex.

42

For example, S2,2,2,3,4.

If we consider a firework graph consisting of two paths Pa1 and Pa2 then this

graph is just a path of length a1 + a2. We will begin our analysis of fireworks with 3

paths.

We have two different types of moves we can make. We can remove edges that

are adjacent to the center vertex. These moves will result in followers that consist

only of paths. If we remove any other edges, the follower will be a path and a shorter

3-firework graph.

43

The followers for S1,2,2.

g(P4) = 1
g(P1)⊕ g(P3) = 2

g(P1)⊕ g(P1)⊕ g(P1) = 1

g(P1)⊕ g(P2) = 3

g(P3) = 3

g(S1,1,2) = 4

If we consider fixing two of the paths and letting the third path grow we notice

a periodic behavior of the S-G numbers. We see that for S1,1,m we have the same S-G

numbers as Cn,1. The data for S1,1,m is shifted to the left by one position because,

unlike for caterpillars, we can define S1,1,0.

Next we look at 4-firework graphs, which consisting of four paths. We have

two different types of moves we can make. We can remove edges that are adjacent

to the center vertex. These moves will result in followers that are smaller firework

graphs and paths. If we remove any other edges, the follower will be a path and a

shorter 4-firework graph. Figure 2.6 shows the periodic behavior for S1,1,1,m as m

grows.

44

Below are the followers for S1,1,1,2.

g(S1,1,2) = 4 g(P3) = 3 g(P2) = 2

g(S1,1,1)⊕ g(P1) = 2 g(P2)⊕ g(P1) = 3 g(P1)⊕ g(P1) = 0

g(S1,1,1) = 3 g(P1) = 1g(S1,1,1,1) = 4

Figure 2.4: A table of S-G numbers for S1,1,m. The column labels 0 − 11 represent
the least residues of the congruence m mod 12. The row labels represent the length
of path in intervals of 12.

0 1 2 3 4 5 6 7 8 9 10 11
0 2 3 4 5 6 2 1 0 8 6 0 1
12 2 3 8 5 12 7 1 0 8 9 14 1
24 2 3 11 4 7 12 14 0 16 2 4 12
36 2 3 10 4 7 15 1 16 9 18 16 12
48 2 3 10 16 7 12 1 16 18 11 16 12
60 2 22 11 16 7 12 1 20 24 16 26 12
72 13 22 11 16 24 15 14 16 22 19 16 12
84 13 19 11 16 24 15 14 16 25 11 16 12
96 13 22 11 16 7 15 1 20 25 19 11 12
108 13 22 11 32 19 22 14 20 22 19 11 12
120 13 22 11 25 19 22 14 16 22 19 11 21
132 13 22 11 25 19 22 14 21 25 19 11 21
144 13 22 11 25 19 22 14 20 22 19 11 21
156 13 22 11 25 19 22 14 21 22 19 11 21

It is easy to generalize to an n-firework. Removing edges adjacent to the center

vertex will give a follower consisting of paths and a k-firework graph where 0 ≤ k < n.

45

Figure 2.5: A table of S-G numbers for S1,2,m. The column labels 0 − 11 represent
the least residues of the congruence m mod 12. The row labels represent the length
of path in intervals of 12.

0 1 2 3 4 5 6 7 8 9 10 11
0 3 4 5 6 7 8 0 10 6 8 1 6
12 3 8 5 7 13 8 0 10 13 4 0 2
24 3 9 13 7 16 1 0 10 17 8 18 10
36 3 8 18 6 13 18 19 20 17 13 18 17
48 3 20 18 6 17 13 0 10 17 4 13 17
60 3 9 22 6 13 18 23 10 17 4 13 17
72 3 9 18 6 13 17 19 10 17 8 13 17
84 3 24 18 6 13 18 11 10 17 4 13 17
96 3 9 18 6 13 18 11 10 17 4 13 17
108 3 9 18 6 13 17 11 10 17 4 13 17
120 3 9 18 6 13 18 11 10 17 4 13 17

Figure 2.6: A table of S-G numbers for S1,1,1,m. The column labels 0 − 11 represent
the least residues of the congruence m mod 12. The row labels represent the length
of path in intervals of 12.

0 1 2 3 4 5 6 7 8 9 10 11
0 3 4 5 6 7 5 0 7 6 5 1 8
12 3 10 5 6 3 10 0 8 6 10 0 2
24 3 10 5 9 12 1 0 8 6 10 15 2
36 3 10 5 6 16 14 0 8 6 5 18 13
48 3 10 5 6 15 14 18 8 6 5 12 9
60 3 10 5 6 15 14 18 8 6 4 18 9
72 3 10 18 20 15 14 18 8 16 18 12 9
84 3 10 18 12 15 14 18 8 6 18 12 9
96 3 10 5 12 15 14 18 8 6 5 12 9
108 3 10 22 12 15 14 18 8 16 25 12 9
120 3 10 18 12 15 14 18 8 17 25 12 9
132 3 10 18 12 15 14 18 8 6 25 12 9
144 3 10 22 12 15 14 18 8 25 28 12 9
156 3 10 18 12 15 14 18 8 25 28 12 9
168 3 10 18 12 15 14 18 8 20 25 12 9
180 3 10 18 12 15 14 18 8 25 28 12 9

46

Removing edges along one of the paths will result in a smaller n-firework graph and

a path. Appendix A gives the periodic behavior for several firework graphs.

We note that, our firework graphs can be viewed as partitions. In particular,

a k-firework gives all the partitions with k parts. We hope to be able to prove that

all k-fireworks are periodic. If we can prove this, we can define equivalence classes

for the partitions. After running data to look at all partitions of n, we will be able

to determine if these equivalence classes are interesting.

2.6 Cycle-Paths

Next we want to explore what happens to the nimbers of cycles.

Definition. A cycle of length, Cn, with n ≥ 3 is a connected closed chain.

For a cycle Cn there are only two possible follower graphs. Removing one edge

will result in Pn−1 and removing two edges will result in Pn−2. Since g(Pm) > 0 for

all m > 0, g(Cn) = 0 for all n.

Next we want to study what will happen when we attach a path to a cycle.

Definition. A cycle-path CnPm is a cycle of length n with a path of length m attached

to one of the vertices of the cycle.

For example C3P2 is shown below.

Any move made on C3Pm will have followers which are combinations of paths

and S1,1,m. We see that the possible followers for C3P2 are

47

g(C3,1) = 4 g(P3) = 3 g(P4) = 1

g(P1)⊕ g(P2) = 3 g(P2)⊕ g(P1) = 3
g(P1)⊕ g(P1) = 0

g(C3)⊕ g(P1) = 1 g(C3) = 0 g(C3P1) = 4

Figure 2.7: A table of S-G numbers for C3Pm. The column labels 0 − 11 represent
the least residues of the congruence n mod 12. The row labels represent the length
of path in intervals of 12. We see a periodic behavior starting at length 84.

0 1 2 3 4 5 6 7 8 9 10 11
0 0 4 2 6 7 4 3 7 1 8 8 6
12 8 1 12 7 8 4 8 8 14 4 8 8
24 15 1 13 7 16 1 8 2 1 4 13 2
36 16 1 2 7 16 4 8 2 1 16 18 7
48 11 1 2 7 16 4 8 2 1 4 8 8
60 14 1 13 7 16 4 8 2 1 4 13 16
72 11 1 2 7 16 4 8 2 1 4 13 7
84 11 1 2 7 16 4 8 2 1 4 13 16

Next we want to consider the S-G numbers for C4Pm. We see that all the

followers are a combination of paths and stars-paths of the form S1,2,m. Figure 2.8

shows the periodic nimbers for C4Pm.

We note that computing the S-G numbers for cycle-paths CnPm will require

3-star paths. For example C5Pm will require S2,2,m and C6Pm will require S2,2,m and

S2,3,m. In general, C2k−1Pm will require a Sk,k,m and C2kPm will require Sk,k,m and

Sk,k+1,m. Appendix B gives the periodic behavior for several additional cycle-paths.

48

Figure 2.8: A table of S-G numbers for C4Pm. The column labels 0 − 11 represent
the least residues of the congruence n mod 12. The row labels represent the length
of path in intervals of 12. We see a periodic behavior starting at length 84.

0 1 2 3 4 5 6 7 8 9 10 11
0 0 5 6 7 5 0 2 6 5 9 2 8
12 0 5 6 9 0 5 3 9 5 10 2 9
24 0 10 6 9 5 0 15 9 5 11 6 9
36 0 10 6 9 5 0 3 12 5 11 2 9
48 0 16 6 9 5 15 3 9 5 15 2 9
60 0 10 6 9 5 10 3 9 5 15 2 9
72 0 10 6 9 5 0 3 9 5 11 2 9
84 0 10 6 9 5 16 3 9 5 15 6 9
96 0 10 6 9 5 16 3 9 5 15 2 9
108 0 10 6 9 5 15 3 9 5 15 6 9

2.7 G-Paths

After noticing eventual periodicity of the S-G numbers for caterpillars, firework

graphs, and cycle-paths, a natural question to ask is: Will the S-G numbers of any

similarly “shaped” graph eventually become periodic? In this section, we present the

progress we have made in this area.

Definition. We call path appended to one vertex of a graph G, a G-path. We say

that a G-path has length L if the appended path has L edges, and write GL

We have a G-path consisting of K4 and a path of length 4, i.e. G4.

If we make a move on a G-path that deletes any of the edges of the original

graph G, we say that we have made a move on G. Conversely, if we make a move that

49

deletes only edges from the appended path PL, we say that we have made a move on

PL.

Note that caterpillars, firework graphs, and cycle-paths are all unified under

the definition of a G-path. We now provide sufficient conditions for the S-G numbers

of a G-path of growing length to stay periodic once an initial period has developed.

Theorem. Suppose we have a G-path whose S-G numbers have started exhibiting

a period of p some time before the G-path has reached length L − 1. Suppose also

that all G′-paths have become periodic for every follower graph G′ by the time they

reach length L−1. Let d = lcm{p′ : p′is the period of the S-G numbers of a G′-path},

and let E = lcm{p, d}. Then if the G-path’s S-G numbers stay periodic past length

L+ 72 + E, they will remain periodic.

Proof. We want to show that g(GL+72+k) = g(GL+72+k+nE) for all n ∈ N, 0 ≤ k < E.

We will show that any S-G number obtainable by a move on GL+72+k is obtainable by

a move on GL+72+k+nE, and vice versa. Consider three positions of where the moves

can be made.

Case 1: Moves made on G yield identical S-G numbers for GL+72+k and

GL+72+k+nE, since L + 72 + k = L + 72 + k + nE mod d, and all G′-paths have

already become periodic by the time they reach length L− 1.

Case 2: Suppose we make a move on PL+72+k, leaving Gs and Pt where s+ t =

L + 72 + k − 1 or s + t = L + 72 + k − 2 and 0 ≤ s < L − 1. On PL+72+k+nE

make a move that leaves Gs and Pt+nE, where s + t + nE = L + 72 + k + nE − 1

or s + t + nE = L + 72 + k + nE − 2. Since t ≥ 72 and g(Pt) = g(Pt+nE), the two

disjoint components resulting from each move nim-sum to the same number.

Conversely, suppose we make a move on PL+72+k+nE, leaving Gs and Pt, where

s+ t = L+ 72 + k+ nE − 1 or s+ t = L+ 72 + k+ nE − 2 and 0 ≤ s < L− 1. Make

50

a move on PL+72+k that leaves Gs and Pt−nE, where s + t − nE = L + 72 + k − 1

or s + t − nE = L + 72 + k − 2. Since t − nE ≥ 72 and g(Pt) = g(Pt−nE), the two

disjoint components resulting from each move nim-sum to the same number.

Case 3: Suppose we make a move on PL+72+k, leaving Gs and Pt where s+ t =

L+72+k−1 or s+t = L+72+k−2 and L−1 ≤ s. Make a move on PL+72+k+nE that

leavesGs+nE and Pt where s+nE+t = L+72+k+nE−1 or s+nE+t = L+72+nE−2.

Since L − 1 ≤ s, s is periodic past this point, so g(Gs) = g(Gs+nE). Thus the two

disjoint components resulting from each move nim-sum to the same number.

Conversely, if we make a move on PL+72+k+nE, leaving Gs and Pt, where s+t =

L + 72 + k + nE − 1 or s + t = L + 72 + k + nE − 2 and L − 1 ≤ s − nE, make a

move on PL+72+k that leaves Gs−nE and Pt, where s − nE + t = L + 72 + k − 1 or

s−nE+ t = L+72+k−2. Since G is periodic at s−nE ≥ L−1, g(Gs) = g(Gs−nE).

Thus the two disjoint components resulting from each move nim-sum to the same

number.

Since these three cases cover all the possible moves we can make on the two

G-paths, we conclude that g(GL+72+k) = g(GL+72+k+nE) for all n ∈ N, 0 ≤ k < E.

Since p|E, the G-path retains its period p.

Theorem. The S-G numbers of a G-path become periodic if and only if they are

bounded.

Proof. (⇒) Immediate.

(⇐) Suppose the S-G numbers for a G-path are bounded above by N . Suppose

also that e(G) = m, and that all G′-paths with G′ ≤ G and e(G′) < m, are eventually

periodic. Since we know that the empty graph G0 (with e(G0) = 0) is a subgraph of

G, and that a G0-path is simply a path, we have a valid base case for our inductive

51

assumption on e(G). Let d = lcm{p : p is the period of a G′-path}. Note that since

G0 ≤ G, and a G0-path has eventual period 12, 12|d. And so g(Pm) = g(Pm+dt) for

all t ∈ N.

Consider any 72 consecutive G-paths, Gq, Gq+1, . . . , Gq+71; call these G-paths

a 72-block. Since there are at most N72 ways for the 72 S-G numbers to be distributed

over the 72-block, and since there are infinitely many disjoint 72-blocks, there must

exist a 72-long sequence of consecutive S-G numbers that is repeated infinitely many

times. Call this sequence a1, a2, . . . , a72.

Now consider G-paths (both on the same graph G) of length r and s,with

r + 72 ≤ s and s = r mod d,such that g(Gr) = a72 = g(Gs), g(Gr−1) = a71 =

g(Gs−1), . . . , g(Gr−71) = a1 = g(Gs−71). In other words, we have two sequences of S-G

numbers, one of length r and one of length s, that both terminate with “tails” of 72

identical numbers. Choose these G-paths such that all G′-paths have already become

periodic by the time they reach length r. Also choose these two G-paths such that

for every G-path Gk, with r < k < s − 71 there exists Gj with 0 ≤ j < r − 71 and

j = k mod d such that g(Gk) = g(Gj). We are guaranteed to have two G-paths that

meet these requirements.

We argue that the S-G number computed for the G-paths of length r+ 1 and

s+ 1 must be identical to each other, by showing that any S-G number obtained by

a move on Gr+1 can be obtained by a move on Gs+1, and vice versa. Consider three

cases of where the moves can be made.

Case 1: Suppose we make a move on G. We have r+ 1 = s+ 1 mod d. Since

all G′ paths are periodic by length r, we have Gr+1 and Gs+1.

Case 2: Suppose we make a move on Pr+1, leavingGk and Pv where k+v = r−1

or k + v = r and 0 ≤ k < r − 71. Make a move on Ps+1 that leaves Gk and Pv+dt for

some t ∈ N. Since g(Pv) = g(Pv+dt), the two disjoint components resulting from each

52

move nim-sum to the same number.

Conversely, if we make a move on Ps+1, leaving Gk and Pv, where k+v = s−1

or k + v = s and r < k < s − 71, by our choice of Gr+1 andGs+1 there exists Gj

with 0 ≤ j ≤ r and j ≡ k mod p, such that g(Gj) = g(Gk). So, consider the move

on Gr+1 that leaves Gj and Pv+dt for some t ∈ N. Since g(Pv) = g(Pv+dt), the two

disjoint components resulting from each move nim-sum to the same number.

Case 3: Suppose we make a move on Pr+1, leaving Gr−i and Pv with r−i+v = r

or r − i + v = r − 1 and 0 ≤ i ≤ 71. Make a move on Ps+1 that leaves Gs−i and

Pv. Since g(Gs−i) = g(Gr−i), the two disjoint components resulting from each move

nim-sum to the same number.

Conversely, if we make a move on Ps+1, leaving Gs−i and Pv with 0 ≤ i ≤ 71,

make a move on Gr+1 that leaves Gr−i and Pv. Since g(Gr−i) = g(Gs−i), the two

disjoint components resulting from each move nim-sum to the same number.

Since these three cases cover all of the available moves that we can make on

Gr+1 and Gs+1, we conclude that g(Gr+1) = g(Gs+1). By inductively extending this

argument, we see that g(Gr+t) = g(Gs+t) for all t ∈ N. And so the G-path’s S-G

numbers become periodic.

We now present a result about the periodicity of S-G numbers of what we call

a GH-path.

Definition. Let a GH-path be two graphs, G and H, joined together by a path that

meets each graph at exactly one vertex. We write GHL to be a GH-path where the

path has length L.

For example, below we show a GH path of length 5.

53

Theorem. If the S-G numbers of a G-path and an H-path become periodic, then the

S-G numbers of the GH-path formed by appending the path to the same vertices as

the G and H paths will also become periodic.

Proof. We proceed by induction on the total number of edges in G and H, e(G) and

e(H). For e(G)+e(H) = 0, the statement is trivial, since the GH-path is just a path.

So assume for all G-paths and H-paths with periodic S-G numbers and with

e(G) + e(H) < M , the S-G numbers of the GH-path become periodic, and consider

a GH-path with e(G) + e(H) = M .

Let d = lcm{p′ : p′ is the period of the S-G numbers of a HG′-path or a GH ′-path}.

Let E = d · pH · pG, where pH is the periodicity of the S-G numbers of the H-path

and pG is the periodicity of the S-G numbers of the G-path. Let Hs and Gr be the

shortest H-path and G-path whose S-G numbers have become periodic. Without loss

of generality assume s > r.

Consider GH2s+E+k and GH2s+2E+k for k ∈ N. By a similar argument as was

made in proving the preceding two theorems, we can show that any S-G number

obtained by a move on GH2s+E+k can be obtained by a move on GH2s+2E+k, and vice

versa. Consider three cases of where the moves can be made:

Case 1: Moves made on G yield identical S-G numbers for GH2s+E+k and

GH2s+2E+k since 2s + E + k ≡ 2s + 2E + k mod d and all the HG′-paths have

already become periodic by the time they reach 2s.

54

Similarly moves made on H yield identical S-G numbers for GH2s+E+k and

GH2s+2E+k since 2s+E+k ≡ 2s+2E+k mod d and all the HG′-paths have already

become periodic by the time they reach 2s.

Case 2: Consider a move made on P2s+E+k leaving Gt and Hu where t + u =

2s+E+k− 1 or t+u = 2s+E+k− 2 where 0 ≤ t ≤ 2s. A move made on P2s+2E+k

leaves Gt and Hu+r. Since g(Hu) = g(Hu+r) the move on P2s+E+k will give the same

nim-sum as the move on P2s+2E+k

Case 3: Consider a move made on P2s+E+k leaving Gt and Hu where t + u =

2s+E+k−1 or t+u = 2s+E+k−2 where 0 ≤ u ≤ 2s. A move made on P2s+2E+k

leaves Gt+r and Hu. Since g(Gt) = g(Ht+r) the move on P2s+E+k will give the same

nim-sum as the move on P2s+2E+k

Thus, g(GH2s+E+k) = g(GH2s+2E+k) for all k ∈ N. Thus the GH-path’s S-G

numbers become periodic.

2.7.1 General G-paths

Next we discuss some observations about the proofs in the pervious and the

implications for a general proof for all G-paths. We note that the work in this section

is not a proof that all G-paths are periodic. The techniques in this section may lead

to a complete proof after further work.

The proofs in the previous section are based on the fact that there are three

possible sets of moves we can make: moves on G, moves that give a shorter G-path

and a path of length greater than 72, and moves that result in a shorter G-path and

a path which is shorter than length 72.

In case one, we are considering moves made on the graph G. To prove this

case for a general G-path we would have to know that all G′-paths are periodic. We

55

can inductively assume this by inducting on the number of edges. Since the empty

graph will form a path as a G-path we will have a valid inductive step. Thus a proof

for a general G-path will follow as the proofs above.

In case two, we assume we make a move which results in a shorter G-path and

a path of length greater than 72. Since the paths are periodic, we need no assumptions

for our graph G. So a proof for a general G-path will follow as the above proofs.

Case three is where a general proof fails to follow as the above proofs. In this

case we have a shorter G path and a path of length 72. We can use extra assumptions,

such as the G-path displaying a period past some length to work around the fact that

the paths are not periodic before length 72. The question is, can we get around this

without extra assumptions on the shorter G-paths? We begin by noting, as in figure

??, there are only 14 cases before 72 where the path fails to be periodic.

Figure 2.9: A table of exceptions for the path nimbers

Path Length Path Length mod12 Nim Value Periodic Nim Value
0 0 0 4
3 3 3 8
6 6 3 7
9 9 4 8
11 11 6 7
15 3 7 8
18 6 3 7
21 9 4 8
22 10 6 2
28 4 5 1
34 10 6 2
39 3 3 8
57 9 4 8
70 10 6 2

Suppose we have Gs and Gs+nE, where E is a multiple of 12, we claim E is the

period of G, and n ∈ N. We want to show if we make a move on Gs that results in

56

Gt, Pr with t+ r = s− 1 or t+ r = s− 2 with r < 72 then we have a move on Gs+nE

which will result in the same nimber. If Pr is any value other than the exceptions

listed, then we are done. We can make the move on Gs+nE which results in Gt and

Pr+nE, since g(Pr) = g(Pr+nE). If r is one of the exceptions we need to find a move

on Gs+nE that will result in the same nimber as g(Gt) + g(Pr). We have been unable

to find a follower for all Gs+nE that will result in this nimber.

Another approach to this case would be to find a contradiction. Assume

that g(Gs) 6= g(Gs+nE for any n. Assume that x = g(Gs) < g(Gs+nE, where x =

g(Gt)+g(Pr) with t+r = s−1 or t+r = s−2, r < 72 and r is one of our exceptions.

Since g(Gs) < g(Gs+nE) there must be a follower of Gs+nE with nimber x. Since

there are only 14 exceptions, we can look directly at the different exceptions to find

a contradiction. It is unclear if each exception will lead to a contradiction.

Both of these directions seem promising. We are currently gathering data from

G-paths that we have studied to determine if there is any patterns to possible moves

from Gs and Gs+nE that will result in the same nimber. An analysis of this data

should give insight to if either of the above methods can prove case 3.

A third approach to a proof is by using the fact that the G-path is periodic

if and only if the nimbers are bounded. So we wish to show that no G-paths have

unbounded nimbers. We will try to prove this by contradiction: assume that there

are unbounded G-paths. Of all these, let us consider one with the smallest (in terms

of number of edges) base graph, G. Call this minimal unbounded G-path GP. Since

GP has the fewest edges, any move made on GP , i.e. deleting edges from GP will

produce a G-path with bounded nimbers. Thus, we can pick a number B such that for

any move made on the base graph of GP , the resulting graph has a nimber ≤ B. We

will use this fact in trying to prove that GP cannot in fact have unbounded nimbers.

If GP where unbounded, then it has some useful properties. Assume that

57

GP is unbounded when we consider the nimbers mod 12. That is, for all k ∈

{0, 1, 2 . . . , 11} and any N > 0, these exists n ≡ k mod 12 such that g(Gn) > N . De-

fine a 16-block {n0, n1, . . . , n15} to be a list of 16 nimbers. Since GP has unbounded

nimbers, after some length L, every GP path has a move that will result in a follower

with a nimber in the 16-block. Further we can assume that these moves are made

so that the follower is a shorter G-path and a path of length greater than 72. This

ensures that the path nimbers are non-exceptions.

The 16 block will give us information about which nimbers must appear in

shorter G-paths. Suppose we have a G-path of length l0 ≡ 0 mod 12, l0 > L. Since

l0 > L there is a move on Gl0 that will result in every number in the 16-block.

Consider all the moves that result in one of these nimbers, say n1. The follower that

will give us this nimber will be of the form Gk and Pm where k + m − 1 = l0 or

k+m−2 = l0. That is, g(Gk)⊕g(Pm) = n1. Note, we have k = l0−m−1 ≡ −m−1

mod 12 or k = l0 −m− 2 ≡ −m− 2 mod 12.

Write n1 = 16t+ 1, t ∈ N. Then n1 ⊕ g(Pm) = (16t+ 1)⊕ g(Pm) = 16t⊕ (1 +

g)Pm)), since g(Pm) < 9 for all m > 72. So, we can write g(Gk) = n1 ⊕ g(Pm) =

n1⊕g(Pm). This gives us information about the possible nimbers that can appear in a

G-path of length k. Working mod 12, k depends only on the length of the path, m

mod 12, and the number of edges, e = {1, 2}, that we deleted from GP . We can list

these possibilities as a tuple (m, e). There are 24 possible tuples that will result in a

nimber of n1⊕g(Pm). One of these 24 possibilities must be met.

We can generalize this idea for each nimber in the 16-block; that is we want

to consider how we can obtain nt from Gls , where t ∈ {n0, n1, . . . , n15}, ls > L, ls ≡ s

mod 12. We would have a move that would give us a G-path of length s − m − e

mod 12, such that, g(Gs−m−e) = n(t⊕g(Pm)). For each t we will have a list of 24

possibilities that must be met. For each t one of these conditions must be met. There

58

are 2416 possible combinations. We need be able to show that none of these conditions

can be met at the same time. To do this we will discuss restrictions as to which pairs

can appear at the same time.

Consider two G-paths, Gn and GN , where we consider n and N mod 12.

Suppose we know the value of g(Gn). If N > n, we can make a move on GN which

has Gn as part of a follower. So we have g(GN) 6= g(Gn)⊕g(PN−n−e), where e = {1, 2}

is the number of edges we removed from GN . If n > N , we can make a move on Gn

which will give GN as part of a follower. So we have g(Gn) 6= g(GN) ⊕ g(Pn−N−e),

i.e. g(GN) 6= g(Gn)⊕ g(Pn−N−e).

If g(Pn−N−e) = g(PN−n−e) then we have g(GN) 6= g(Gn)⊕ g(Pn−N−e). We can

consider a list of restrictions based on all the possible arrangements of n,N, e. For

example, consider n ≡ 2 mod 12, N ≡ 6 mod 12 and g(Gn) = 3. If N > n then we

have g(GN) 6= g(Gn) ⊕ g(PN−n−2) ≡ 3 ⊕ g(PN−n−e) mod 12. Although we do not

know g(PN−n−e), we have that N − n − e ≡ 2 mod 12 or N − n − e ≡ 3 mod 12,

where e = {1, 2}.

If n > N , then we have g(Gn) 6= g(Gn) ⊕ g(Pn−N−e). Rearranging we have

that g(GN) 6= g(Gn)⊕g(Pn−N−e). Note that, n−N−e ≡ 6 or n−N−e ≡ 7 mod 12.

We notice that g(P2) = g(P6) = 2. Thus it does not matter if n > N or N > n, in

either case we have, g(GN) 6= g(Gn)⊕ g(Pn−N−e) = 3⊕ 2 = 1. This is the restriction

we can place on GN .

Suppose we know g(Gn). Let N = n + k mod 12. As in the example above

we can examine possible restrictions by using the path nimbers. We have, g(GN) 6=

g(Gn)⊕ x for the following pairs

(k, x) : (2, 1), (3, 1), (3, 2), (4, 2), (6, 4), (7, 4), (8, 2), (9, 2), (9, 1), (10, 1).

59

Recall for each t value in our 16 block there are 24 possible conditions, one of

which must be met. We can use this restriction list to rule out possible configurations

from our list of conditions. After running the 2416 possible combinations verse the list

of restrictions above, we notice that there are still too many combinations to rule out.

We would need to consider extra restrictions based on how the nimbers can appear.

2.8 Graph Nim on Graphs

2.8.1 Winning and Losing Complete Graphs

Definition. A complete graph on n vertices, denoted Kn, is the simple graph in which

every pair of distinct vertices is connected by an edge.

At the outset of this project, it was known that K1 (trivially), K3, and K5

were losing graphs and K2, K4, and K6 were winning. We want to determine if this

pattern continues. We first state a proposition on the number of winning complete

graphs.

Proposition. There are infinitely many winning complete graphs.

Proof. If Kn is losing then Kn+1 will be winning, since on Kn+1 Player 1 can delete

the n edges incident to one vertex, leaving the Player 2 with Kn. Thus at least half

of the complete graphs must be winning.

Since K2(n+1) is winning if K2n+1 is losing, in order to see if the pattern above

continues we only must prove K2n+1 is losing.

We give the following definitions to allow us to talk about the relationship

between two graphs.

60

Definition. We call an addition of edges that are all incident to the same vertex an

anti-move.

Definition. We say that a graph G′ is a child of the graph G if G′ may be obtained

from G in a single move. Equivalently, if G may be obtained from G′ in a single

anti-move. We call G a parent of G′.

In order to compute whether K7 is a win or loss, we need to know the status

of all 1043 subgraphs of K7. Below we describe the program we wrote to find all

n-vertex losing graphs, which we were able to run for 1 ≤ n ≤ 11.

Algorithm 1. We use the fact that every parent of a losing graph is a winning

graph. We start by creating a list of losing graphs; initially this list consists only of

the empty graph on n vertices, letting n = 2k+1 where k ∈ Z. We then iterate through

the possible edge-numbers of n-vertex graphs, generating lists of all non-isomorphic

graphs with 1, 2, 3, ...,
(
n
2

)
edges, which we will call L1, L2, L3, ..., L(n2)

.

After Lm has been generated, we make anti-moves on each of the losing graphs,

which have fewer than m edges, in every way possible that leaves an m-edge graph.

Since all m-edge graphs obtained in this manner are the parents of losing graphs, they

must be winning; we delete them from Lm. After performing all possible anti-moves

on the losing graphs and deleting the resulting graphs from Lm, we will have eliminated

all of the winning graphs from Lm. Thus, we add any graphs remaining in Lm to our

list of losing graphs, generate Lm+1, and repeat the above process. In this fashion, we

determine whether every graph on n vertices is winning or losing.

This program computed that K7, K9, and K11 are losing graphs (and, by

implication, that K8, K10, and K12 are winning graphs). Thus, we have extended the

pattern of complete graphs alternating between winning and losing from n = 6 to

n = 12. We hope to extend this to find a winning strategy for player 2.

61

2.8.2 The Sprague-Grundy Approach

Rather than directly computing a list of the losing graphs on n vertices, we

now discuss the approach of computing the S-G numbers of all n-vertex graphs. Since

those graphs with S-G number 0 are the losing graphs, this approach encompasses the

approach of the previous section. However, what is gained in information is lost in

efficiency; computing the S-G numbers of every n-vertex graph is a more demanding

computational task than determining which graphs are losing. The program that

finds the S-G numbers of n-vertex graphs operates similarly to the program that

finds the S-G numbers for trees, and so we will provide just a brief description of how

it works.

Algorithm 2. Assuming we have calculated the S-G numbers for all graphs with

fewer than m edges, we describe how we will calculate the S-G numbers of the m-edge

graphs. For each graph G with m edges, we generate all the children of G. We then

find the minimal excluded number of the set of the S-G numbers of these child graphs;

this will be the S-G number of G. After computing the S-G numbers of all m-edge

graphs in this manner, we move up to (m + 1)-edge graphs, and continue likewise

until the S-G number of every graph on n vertices has been computed.

Figure 2.10 shows the distribution of the S-G numbers for 7-vertex graphs. A

few observations regarding the S-G number distributions can be made immediately.

For instance, graphs have the maximum possible S-G number (i.e., e(G) = g(G))

roughly half of the time. Also, for graphs of size m, the percentage of graphs with a

particular S-G number, s, tends to peak at s ≈ 0.6m, before bottoming out to nearly

zero for 0.6m < s < m. In order to understand these and other patterns in the S-G

number distribution, we conducted a heuristic analysis of the data.

62

2.8.3 Heuristic Analysis of S-G Number Distribution

Given the distribution of the S-G numbers for n-vertex graphs of size 0, 1, . . . ,m−

1, we want to predict what the distribution should be for graphs of size m. Here we

present a heuristic method for making this prediction.

We will try to predict the percentage distribution of the S-G numbers for

labeled graphs of order n and size m, given that we know the distributions for graphs

of order n and size < m. Working with labeled graphs has the advantage of allowing

us to consider the deletion of any two distinct subsets of edges to be distinct moves,

regardless of graph isomorphism.

Definition. We define a typical labeled graph on n vertices with m edges, Gn,m, to be

a graph whose degree sequence is the average of the degree sequences of all n-vertex,

m-edge labeled graphs when the degrees are ordered from least to greatest. We write

the degree sequence of Gn,m as (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn.

In order to predict the S-G number distribution for labeled graphs, we ask

ourselves the question: For the typical n-vertex, m-edge labeled graph, Gn,m, what is

the probability that the S-G number will be 0, 1, . . . ,m?

Once we have calculated the degree sequence of Gn,m, we will know how many

children of size (m − 1), (m − 2), . . . , (m − dn) Gn,m has. We make the assumption

that each of these children of size (m − k) for 1 ≤ k ≤ dn will be a random labeled

graph of size (m − k). That is, a child graph of size (m − k) will have the S-G

number 0, 1, . . . , (m− k) with probability equal to the percentage of labeled (m− k)-

edge graphs whose S-G numbers are 0, 1, . . . ,m − k. Since we know the number

of children, we can can calculate the probability that Gn,m will have S-G number

0, 1, . . . ,m.

In order to run this heuristic, we need the distribution of S-G numbers for

63

labeled graphs of size m − k. We find this by counting each graph’s S-G number N

times, where N is the number of unique relabelings of the graph. Figure 2.11 shows

the heuristic for labeled 7-vertex graphs:

We need the following definitions to describe our heuristic method.

Definition. Let Pe(s) to be the probability that a random labeled graph with e edges

will have S-G number s. Similarly, let PGn,m(s) to be the probability that our typical

graph Gn,m has S-G number s.

Definition. Let ck to be the number of children of Gn,m with m− k edges.

Definition. Let Ne(s, te) to be the probability that given te random labeled graphs with

e edges, none of them will have S-G number s. Note that Ne(s, te) = (1 − Pe(s))t.

Also note that Ne(s, te) = 0 if s > e, since g(H) ≤ e(H) for all graphs H.

Definition. Lastly, let NGn,m(s) to be the probability that Gn,m has no children with

S-G number s.

With this notation, we can describe the exact heuristic method used. Assume

that the probability that a child of Gn,m with (m − k) edges has S-G number s, is

equal to P(m−k)(s). Take 1 ≤ j ≤ n to be the maximum index s.t. m− dj ≥ s. Then

NGn,m(s) = Nm−1(s, c1)× . . .×Nm−dj(s, cdj).

We know that PGn,m(s) is equal to the probability that Gn,m has children with S-G

numbers 0, 1, . . . , (s− 1) and no children with S-G number s. Thus,

PGn,m(s) = {1−NGn,m(0)} × . . .× {1−NGn,m(s− 1)} ×NGn,m(s).

From the above equations, we see that if we can find the number of children of

64

Gn,m, c1, . . . , cdn , we will know the probability that Gn,m has S-G number 1 through

m. Since Gn,m is labeled, computing c1, . . . , cdn is a simple task.

This method yields reasonably accurate predictions of the S-G number distri-

butions. Figure 2.12 shows a table of our heuristic predictions of the S-G number

distributions compared to the actual distributions for n = 7 and m = 4, 5, . . . , 18.

65

F
ig

u
re

2.
10

:
T

h
e

n
u
m

b
er

in
co

lu
m

n
m

an
d

ro
w
s

in
d
ic

at
es

th
e

p
er

ce
n
ta

ge
of

7-
ve

rt
ex

gr
ap

h
s

of
si

ze
m

w
h
os

e
S
-G

n
u
m

b
er

is
s.

F
or

in
st

an
ce

,
50

%
of

si
ze

-2
gr

ap
h
s

h
av

e
S
-G

n
u
m

b
er

2,
0%

h
av

e
S
-G

n
u
m

b
er

1,
an

d
50

%
h
av

e
S
-G

n
u
m

b
er

0.

∗
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

0
1
0
0

0
5
0
.0

2
0
.0

2
0
.0

1
9
.0

1
2
.2

1
2
.3

8
.2

9
.2

4
.1

5
.4

8
.4

6
.2

0
4
.9

4
.8

1
0
.0

2
0
.0

0
0

1
0
0

1
∗

1
0
0

0
2
0
.0

2
0
.0

2
3
.8

9
.8

4
.6

1
7
.5

6
.1

2
.0

3
.4

1
2
.2

4
.1

0
7
.3

0
2
0
.0

0
0

0
0

2
∗

∗
5
0
.0

0
3
0
.0

9
.5

4
.9

1
3
.8

5
.2

5
.3

4
.1

8
.1

3
.1

5
.2

6
.2

2
.4

0
0

0
0

0
0

3
∗

∗
∗

6
0
.0

0
0

1
2
.2

1
6
.9

4
.1

4
.6

7
.4

4
.1

3
.1

1
2
.4

6
.2

4
.9

0
0

0
0

0
0

4
∗

∗
∗

∗
3
0
.0

4
.8

4
.9

9
.2

1
5
.5

5
.3

2
.7

2
.0

6
.9

4
.1

6
.2

0
2
3
.8

1
0
.0

0
0

0
0

5
∗

∗
∗

∗
∗

4
2
.9

0
0

5
.2

1
8
.3

8
.1

1
.4

1
.5

2
.1

9
.2

1
2
.2

4
.8

0
0

5
0
.0

0
0

6
∗

∗
∗

∗
∗

∗
5
6
.1

0
1
.0

0
.8

8
.1

1
9
.6

3
.8

0
0

9
.8

0
0

0
5
0
.0

0
0

7
∗

∗
∗

∗
∗

∗
∗

4
3
.1

0
0
.8

0
.7

9
.5

9
.9

5
.2

0
0

0
1
0
.0

4
0
.0

0
0

0
8

∗
∗

∗
∗

∗
∗

∗
∗

4
3
.3

0
.8

0
0

3
.1

1
2
.4

6
.2

2
.4

4
.8

0
0

0
1
0
0

0
9

∗
∗

∗
∗

∗
∗

∗
∗

∗
4
8
.9

0
0

0
3
.1

1
0
.8

1
7
.1

4
.8

0
0

0
0

0
1
0

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

6
2
.8

0
0

0
0

7
.3

9
.5

1
0
.0

0
0

0
0

1
1

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
4
6
.6

0
0

0
0

1
4
.3

0
0

0
0

0
1
2

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

4
8
.1

1
.0

0
0

0
2
0
.0

0
0

0
0

1
3

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
4
4
.3

1
.5

0
0

0
0

0
0

0
1
4

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

5
3
.8

0
0

0
0

0
0

0
1
5

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
3
1
.7

0
0

0
0

0
0

1
6

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

3
3
.3

0
0

0
0

0
1
7

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
2
0
.0

0
0

0
0

1
8

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

4
0
.0

0
0

0
1
9

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
0

0
0

2
0

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

0
0

2
1

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
0

66

F
ig

u
re

2.
11

:
T

h
e

n
u
m

b
er

in
co

lu
m

n
m

an
d

ro
w
s

in
d
ic

at
es

th
e

p
re

d
ic

te
d

p
er

ce
n
ta

ge
of

7-
ve

rt
ex

gr
ap

h
s

of
si

ze
m

w
h
os

e
S
-G

n
u
m

b
er

is
s.

F
or

ex
am

p
le

,
ou

r
h
eu

rs
it

ic
p
re

d
ic

ts
th

at
6.

1%
of

7-
ve

rt
ex

gr
ap

h
s

of
si

ze
10

w
il
l

h
av

e
S
-G

n
u
m

b
er

3.

∗
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

0
1
0
0

0
5
0
.0

2
.6

1
2
.3

1
4
.1

9
.0

6
.7

6
.9

4
.2

2
.1

4
.2

6
.1

3
.9

0
5
.2

6
.2

1
0
.5

2
.6

0
0

1
0
0

1
∗

1
0
0

0
7
.9

2
4
.6

1
3
.9

4
.7

4
.3

1
6
.8

3
.8

0
.3

0
.8

9
.4

3
.0

0
2
.0

0
1
0
.5

0
0

0
0

2
∗

∗
5
0
.0

0
3
3
.3

8
.3

0
.6

1
8
.4

3
.1

1
.7

2
.2

7
.3

3
.6

3
.0

2
.3

1
.2

0
0

0
0

0
0

3
∗

∗
∗

8
9
.5

0
0

9
.5

1
5
.1

2
.8

3
.7

6
.1

3
.1

1
.0

9
.1

3
.5

0
.8

0
0

0
0

0
0

4
∗

∗
∗

∗
2
9
.8

1
2
.4

3
.5

6
.7

1
2
.2

2
.6

2
.0

1
.5

6
.6

1
.0

1
.7

0
1
1
.2

1
.8

0
0

0
0

5
∗

∗
∗

∗
∗

5
1
.3

0
0

3
.4

2
2
.4

5
.1

0
.5

0
.2

1
.9

5
.1

1
4
.5

0
.5

0
0

5
0
.0

0
0

6
∗

∗
∗

∗
∗

∗
7
2
.6

0
0
.6

0
.0

5
.3

1
6
.0

0
.9

0
0

9
.4

0
0

0
5
0
.0

0
0

7
∗

∗
∗

∗
∗

∗
∗

4
8
.8

0
0
.1

0
.7

1
2
.7

1
0
.1

1
.8

0
0

0
1
.8

3
9
.5

0
0

0
8

∗
∗

∗
∗

∗
∗

∗
∗

5
4
.1

0
.9

0
0

2
.3

1
5
.1

3
.3

0
.1

6
.2

0
0

0
1
0
0

0
9

∗
∗

∗
∗

∗
∗

∗
∗

∗
6
0
.7

0
0

0
4
.3

9
.6

1
4
.3

1
.5

0
0

0
0

0
1
0

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

7
6
.1

0
0

0
0

3
.4

7
.2

2
1
.1

0
0

0
0

1
1

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
5
3
.9

0
0

0
0

1
0
.3

0
0

0
0

0
1
2

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

5
9
.9

0
.2

0
0

0
1
2
.3

0
0

0
0

1
3

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
5
6
.8

2
.2

0
0

0
0

0
0

0
1
4

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

7
2
.4

0
0

0
0

0
0

0
1
5

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
4
9
.1

0
0

0
0

0
0

1
6

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

5
6
.8

0
0

0
0

0
1
7

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
4
2
.1

0
0

0
0

1
8

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

5
7
.9

0
0

0
1
9

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
0

0
0

2
0

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

0
0

2
1

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
0

67

F
ig

u
re

2.
12

:
T

h
e

n
u
m

b
er

in
ro

w
m

in
d
ic

at
es

th
e

n
u
m

b
er

of
ed

ge
s

of
a

7-
ve

rt
ex

gr
ap

h
an

d
th

e
co

lu
m

n
s

in
d
ic

at
es

th
e

S
-G

n
u
m

b
er

.
H

er
e

w
e

co
m

p
ar

e
th

e
h
eu

ri
st

ic
an

d
co

m
p
u
te

d
re

su
lt

s,
as

in
d
ic

at
ed

b
y

ty
p

e.

ed
g
es

ty
p
e

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

4
h
eu
r
is
ti
c

2
2
.5

5
5
.8

5
.4

0
1
6
.3

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

4
co
m
p
u
te
d

1
2
.3

2
4
.6

3
3
.3

0
2
9
.8

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

5
h
eu
r
is
ti
c

2
2
.7

1
2
.5

4
.3

0
1
0
.3

5
0
.2

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
5

co
m
p
u
te
d

1
4
.1

1
3
.9

8
.3

0
1
2
.4

5
1
.3

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
6

h
eu
r
is
ti
c

1
7
.8

5
.7

4
.0

7
.6

3
.5

0
.8

6
0
.6

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

6
co
m
p
u
te
d

9
.0

4
.7

0
.6

9
.5

3
.5

0
7
2
.6

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

7
h
eu
r
is
ti
c

1
0
.1

9
.5

1
5
.7

3
2
.2

3
.8

0
0

2
8
.7

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
7

co
m
p
u
te
d

6
.7

4
.3

1
8
.4

1
5
.1

6
.7

0
0

4
8
.8

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
8

h
eu
r
is
ti
c

5
.4

1
0
.4

6
.0

5
.2

8
.1

0
.9

0
0
.3

6
3
.7

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

8
co
m
p
u
te
d

6
.9

1
6
.8

3
.1

2
.8

1
2
.2

3
.4

0
.6

0
5
4
.1

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

9
h
eu
r
is
ti
c

7
.2

5
.2

1
.8

2
.0

5
.5

2
7
.9

0
0

0
5
0
.3

∗
∗

∗
∗

∗
∗

∗
∗

∗
9

co
m
p
u
te
d

4
.2

3
.8

1
.7

3
.7

2
.6

2
2
.4

0
.0

0
.1

0
.9

6
0
.7

∗
∗

∗
∗

∗
∗

∗
∗

∗
1
0

h
eu
r
is
ti
c

6
.4

0
.9

5
.4

5
.4

2
.2

3
.2

5
.1

0
.1

0
0

7
1
.3

∗
∗

∗
∗

∗
∗

∗
∗

1
0

co
m
p
u
te
d

2
.1

0
.3

2
.2

6
.1

2
.0

5
.1

5
.3

0
.7

0
0

7
6
.1

∗
∗

∗
∗

∗
∗

∗
∗

1
1

h
eu
r
is
ti
c

2
.9

0
.5

5
.8

2
.4

1
.4

0
1
1
.6

0
.6

0
0

0
7
4
.7

∗
∗

∗
∗

∗
∗

∗
1
1

co
m
p
u
te
d

4
.2

0
.8

7
.3

3
.1

1
.5

0
.5

1
6
.0

1
2
.7

0
0

0
5
3
.9

∗
∗

∗
∗

∗
∗

∗
1
2

h
eu
r
is
ti
c

7
.0

9
.0

7
.6

2
.2

7
.0

0
1
.4

5
.2

0
.2

0
0

0
6
0
.4

∗
∗

∗
∗

∗
∗

1
2

co
m
p
u
te
d

6
.1

9
.4

3
.6

1
.0

6
.6

0
.2

0
.9

1
0
.1

2
.3

0
0

0
5
9
.9

∗
∗

∗
∗

∗
∗

1
3

h
eu
r
is
ti
c

2
.3

7
.9

1
.1

2
.1

6
.1

0
.6

0
0
.1

1
1
.2

0
0

0
0

6
8
.7

∗
∗

∗
∗

∗
1
3

co
m
p
u
te
d

3
.9

3
.0

3
.0

9
.1

1
.0

1
.9

0
1
.8

1
5
.1

4
.3

0
0

0
.2

5
6
.8

∗
∗

∗
∗

∗
1
4

h
eu
r
is
ti
c

0
.6

0
.6

0
.7

2
.3

1
.8

1
6
.9

0
.1

0
2
.7

6
.2

0
0

0
0

6
8
.1

∗
∗

∗
∗

1
4

co
m
p
u
te
d

0
0

2
.3

3
.5

1
.7

5
.1

0
0

3
.3

9
.6

0
0

0
2
.2

7
2
.4

∗
∗

∗
∗

1
5

h
eu
r
is
ti
c

0
.1

0
.1

0
.2

0
0
.6

6
.2

0
.3

0
0

0
.7

0
0

0
0

0
9
1
.9

∗
∗

∗
1
5

co
m
p
u
te
d

5
.2

2
.0

1
.2

0
.8

0
1
4
.5

9
.4

0
0
.1

1
4
.3

3
.4

0
0

0
0

4
9
.1

∗
∗

∗
1
6

h
eu
r
is
ti
c

0
.4

0
.5

0
.5

0
1
.9

0
.1

2
.9

0
.3

0
0

1
2
.8

0
.1

0
0

0
0

8
0
.5

∗
∗

1
6

co
m
p
u
te
d

6
.2

0
0

0
1
1
.2

0
.5

0
0

6
.2

1
.5

7
.2

1
0
.3

0
0

0
0

5
6
.8

∗
∗

1
7

h
eu
r
is
ti
c

0
1
.2

0
.8

0
0
.7

0
0

6
.4

0
0

2
.1

3
.0

0
0

0
0

0
8
5
.6

∗
1
7

co
m
p
u
te
d

1
0
.5

1
0
.5

0
0

1
.8

0
0

1
.8

0
0

2
1
.1

0
1
2
.3

0
0

0
0

4
2
.1

∗
1
8

h
eu
r
is
ti
c

0
1
.3

6
.2

1
.6

0
0

0
3
9
.6

0
0

0
0

0
.8

0
0

0
0

0
5
0
.5

1
8

co
m
p
u
te
d

2
.6

0
0

0
0

0
0

3
9
.5

0
0

0
0

0
0

0
0

0
0

5
7
.9

68

2.9 Conclusion

We have shown a periodic behavior for certain paths, caterpillars, star-paths,

and cycle-paths. We want to expand this research to all graphs where we fix a main

graph, G, and attach a path of increasing length to one vertex. We have also shown

that K2n+1 is a losing graph for 0 ≤ n ≤ 5. We want to determine if K13 will be

winning or losing. As future work we will explore the connection between star-paths

and equivalence classes of partitions.

69

Chapter 3

The Evolution of Strings

3.1 Introduction

In 2010, Ewens and Wilf considered the question of if there was enough time

for evolution to take place [20]. In their model they considered a string of length l

over an alphabet of size k. Assuming there exists a correct word, we want to know

the expected time it would take to converge from a string of random letters to the

correct word. The typical model would assume at every stage of evolution each of the

the L genes get replaced by a random letter from the alphabet, leading to an order

of kl. Ewens and Wilf considered a model where at a given stage in evolution, if a

letter was correct then it was not reselected. Using this model they found the order

for evolution to be k log l. In particular, the mean number of rounds necessary to

guess the correct word is log(l)

log(k
k−1)

.

We have studied a modification of this model. Consider a string of length l and

an alphabet of size k. We want to study the convergence to the correct string with

the following rules. If a letter in the string is incorrect, we replace that letter with a

random letter from our alphabet with probability 1. If a letter in the string is correct,

70

we replace that letter with a random letter from our alphabet with probability q and

we do not replace that letter with a random letter with a probability p = 1− q. For

our model, we assume that the probability p is a function of the number of correct

letters currently in the string, say c.

Let d the number of correct letters we have after one step in time. Let i

be the number of correct letters that become incorrect. Let j be the number of

incorrect letters that become correct at a given step. Then we have that d = c− i+ j,

max{0, c− d} ≤ i ≤ min{c, l − c}.

We want to examine the transition matrix for this markov chain. The entries

in the transition matrix can be computed as follows. For a given entry we have c

correct letters and want to have d correct letters at the next time step. Consider

making i correct letters incorrect. We can choose these letters in
(
c
i

)
ways. These

letters must get reselected at random, but cannot be the correct letters; we can do

this in
(
q
(
1− 1

k

))i
ways. There are c− i remaining correct letters with

(
p+ q

(
1
k

))c−i
possible arrangements.

From the l− c incorrect letters we need to choose j that become correct,
(
l−c
j

)
.

There are
(
1
k

)j
ways to make these correct. The remaining elements stay incorrect,(

1− 1
k

)l−c−j
. So an entry in our transition matrix will be

Ac,d =

min{c,l−d}∑
i=max{0,c−d}

(
c

i

)(
q

(
1− 1

k

))i(
p+ q

(
1

k

))c−i(
l − c
j

)(
1

k

)j (
1− 1

k

)l−c−j
.

We will focus on the transition matrix for different choices for p. For our first

model, let p = c
l
. Letting k = 1

x
, we have

Ac,d =

min{c,l−d}∑
i=max{0,c−d}

(
c

i

)((
1− c

l

)
(x− 1)

)i (
1 +

(
1− c

l

)
(x− 1)

)c−i(l − c
j

)
xj(1−x)l−c−j.

71

The complete transition matrix, A, is

A =

0.3164 0.2373 0.0791 0.0049 0

0.4219 0.4219 0.3164 0.0659 0

0.2109 0.2637 0.4043 0.2999 0

0.0469 0.0703 0.1758 0.4951 0

0.0039 0.0068 0.0244 0.1341 1.0000

,

with eigenvalues

1

0.9645

0.4974

0.0198

0.156

and associated eigenvectors

0.0000 0.1626 0.5457 −0.7132 −0.8277

0.0000 0.3343 0.5652 1.0000 0.2356

0.0000 0.3178 −0.3845 −0.3289 1.0000

0.0000 0.1853 −1.0000 0.0440 −0.4528

1.0000 −1.0000 0.2735 −0.0020 0.0449

.

3.2 Computing Eigenvalues

In this section, we are concerned with how to compute the eigenvalues for our

transition matrix. As l grows, it is not realistic to compute eigenvalues using typical

methods such as the QZ algorithm, which is a generalization of the QR algorithm

for dense matrices. This is the algorithm that software packages such as matlab use.

72

The QZ algorithm requires O(l3) operations with O(l2) memory locations. Instead

we will use other numerical approaches to compute the eigenvalues.

3.2.1 Power Method

The first numerical tool we will use to find the eigenvalue of a matrix A is the

power method. This method begins with a guess for the initial eigenvector, v0. We

then iterate through the following sequence

v1 = Av0

v2 = Av1 = A2v0

v3 = Av2 = A3v0

. . .

vi = Avi−1 = Aiv0

This method will find the largest eigenvalue with a convergence rate of
∣∣∣λ2λ1 ∣∣∣,

where λ1 is the dominant eigenvalue and λ2 is the second largest eigenvalue. We

can perform a slight modification of this algorithm which takes the vector vi and

normalizes according to the Euclidean norm before the next iterative step. That is

vi := vi
||vi|| .

Note that vi represents the probability of being in a given state after n steps.

We notice that the columns of A will sum to 1. It is easy to see that one of the

eigenvalues of A is 1. We will use the following parts of the Perron-Frobenius Theorem

to conclude that 1 is the largest eigenvalue.

Theorem. (Perron-Frobenius) Let A = aij be an n × n non-negative matrix. Then

the following statements hold.

1. There is a positive real number r, called the Perron root or the Perron-Frobenius

73

eigenvalue, such that r is an eigenvalue of A and any other eigenvalue λ is

strictly smaller than r in absolute value, |λ| < r.

2. There exists an eigenvector v = (v1, . . . , vn) of A with eigenvalue r such that all

components of v are positive.

3. There are no other positive (moreover non-negative) eigenvectors except positive

multiples of v.

Since A contains only non-negative entries and the eigenvector associate with

the eigenvalue of 1 is [0, 0, . . . , 0, 1]T , we can conclude that 1 must be the largest

eigenvalue of A.

We now turn our attention to finding the second largest eigenvalue.

3.2.2 Numeric Methods

The deflation method can be used in conjunction with the power method to

find subsequent eigenvalues of a matrix. Below we will discuss two different imple-

mentations of the deflation method. Before using any version of the deflation method,

we first use the power method to find the largest eigenvalue, λ1 and it’s associated

eigenvector, v1. For A, we have λ1 = 1 and v1 = [0, 0, . . . , 0, 1]T .

The first version of the deflation method is quite simple [11]. We start by

forming the matrix defined by A1 = A − λ1 ∗ v1 ∗ vT1 . We then perform the power

method on this new matrix, which will give λ2 and v′2, where λ2 is the second largest

eigenvalue of A. The associated eigenvector, v2, for A is constructed in the following

way. v2(i) = v2(i)′

λ2
for 1 ≤ i ≤ n− 1 and v2(i) = −1, i = n.

74

Recall for a string of length 5 over an alphabet with 4 letters. We have

A =

0.3164 0.2373 0.0791 0.0049 0

0.4219 0.4219 0.3164 0.0659 0

0.2109 0.2637 0.4043 0.2999 0

0.0469 0.0703 0.1758 0.4951 0

0.0039 0.0068 0.0244 0.1341 1.0000

.

We have λ1 = 1 and v1 = [0, 0, 0, 0, 1]T .

The new matrix we form is

A1 = A− λ1 ∗ v1 ∗ vT1 =

0.3164 0.2373 0.0791 0.0049 0

0.4219 0.4219 0.3164 0.0659 0

0.2109 0.2637 0.4043 0.2999 0

0.0469 0.0703 0.1758 0.4951 0

0.0039 0.0068 0.0244 0.1341 0

.

Applying the power method to A1, we find an eigenvalue of 0.9645 with asso-

ciated eigenvector of

v′2 =

0.1568

0.3224

0.3065

0.1788

0.0355

.

75

We then construct v2 for A, giving us the eigenvector

v2 =

0.1626

0.3343

0.3178

0.1853

−1

.

The next version of the deflation method, [19] uses a Householder matrix H1

such that H1x1 = k1e1, where k1 6= 0, e1 = [1, 0, . . . , 0]. We define H1 using the

following algorithm.

k1 = −sgn(eT1 v1)||1||2

β =
[
||v1||2(||v1||2 + ||eT1 v1||)

]−1
u = v1 − k1e1

H1 = I − βuuT

Then we define

A2 = H1AH
−1
1 =

λ1 bT1

0 B2

 ,
where B2 is an (n− 1)× (n− 1) matrix with the same eigenvalues as A. We can find

the largest eigenvalue of B2, say y2, where B2y2 = λ2y2. Suppose we want to find the

corresponding eigenvector to P , say v2. We have

v2 =

α
y

 ,

76

where

λ1α + bT1 y = λ2α

B2y = λ2y.

Let y = y2 and α =
bT1 y

λ2−λ1 . Note, this method makes it easy to compute the eigenvector

for A.

Using the length 5, alphabet size 4 as above we have

k1 = −2.2361, β = 0.1382

and

u =

3.2361

1.0000

1.0000

1.0000

1.0000

, H1 =

−0.4472 −0.4472 −0.4472 −0.4472 −0.4472

−0.4472 0.8618 −0.1382 −0.1382 −0.1382

−0.4472 −0.1382 0.8618 −0.1382 −0.1382

−0.4472 −0.1382 −0.1382 0.8618 −0.1382

−0.4472 −0.1382 −0.1382 −0.1382 0.8618

.

Then we have

B2 =

0.1062 0.0496 −0.1780 −0.2424

0.0197 0.2092 0.1278 −0.1706

−0.0690 0.0854 0.4276 −0.0659

−0.1718 −0.1054 0.0272 0.8947

.

Performing the power method on this we get the eigenvalue of 0.9645, eigenvec-

tor of [−0.7811,−0.7359,−0.2715, 2.8885]T and α = 3.3929×10−15. After normalizing

77

we have that

v2 =

0.1626

0.3343

0.3178

0.1853

−1

.

Finally, we can exploit the structure of A to find the second largest eigenvalue.

In particular we have

A =

Q 0

R 1

 .
We see that the eigenvalues of Q will be eigenvalues of A. Using the power method

on Q, we will have the correct eigenvalue but an n− 1 eigenvector, say v′2. To get the

corresponding eigenvector for A, we normalize v′2 and append −1 as the entry for the

last row.

For the above example we have

Q =

0.3164 0.2373 0.0791 0.0049

0.4219 0.4219 0.3164 0.0659

0.2109 0.2637 0.4043 0.2999

0.0469 0.0703 0.1758 0.4951

0.0039 0.0068 0.0244 0.1341

.

Using the power method on Q we find an eigenvalue of 0.9645 and eigenvector

v′2 = [0.1626, 0.3343, 0.3178, 0.1853]T . After normalizing this vector and appending a

78

−1 we have

v2 =

0.1626

0.3343

0.3178

0.1853

−1

.

3.2.3 Second Eigenvalue Computations

Using the Q matrix we can study the second eigenvalue. In Figure 3.1 we see

the second largest eigenvalues for l = 10 to l = 100. Using our numeric methods

at l = 71 we find the second largest eigenvalue is slightly larger than 1. By Perron-

Frobenius we know that that λ2 < 1. This happens due to roundoff errors in our

numeric methods.

Recall we have Qv′2 = λ2v
′
2. To find the second eigenvalue of A, we have

A

 v′2

−m

 = λ2

 v′2

−m

 ,

where
∑
v′2(i) = −m. Considering the last row, we have

∑
Anjv

′
2(j)−m = λ2(−m).

Thus

(1− λ2)m =
∑

Anjv
′
2(j).

To gain more precision we can compute ε = (1− λ2). Figure 3.2 shows a plot of the

ε values for l = 5 to l = 20. Figure 3.3 shows a plot of log(ε) for l = 5 to l = 100.

79

Figure 3.1: A plot of the length of the string vs. the second largest eigenvalue for our
model for an alphabet of size 4 when p = c

l
.

3.2.4 Absorption

Given c correct letters, we are interested in the time it takes to get to l correct

letters. Recall we have

A =

Q 0

R 1

 .
The matrix Q represents the transient states of the transition matrix. Consider the

matrix

An =

Qn 0

R′ 1

 .
80

Figure 3.2: A plot of the length of the string vs. ε = (1 − λ2) for our model when
p = c

l
and k = 4.

Qn tells us the probability of being in that transient state after n steps and R′ tells

us the probability that a state is absorbed by time n. Note that Qn → 0 as n→∞.

Then I − Q has an inverse, say N . Then nij ∈ N tells us the expected number of

times the markov chain is in state sj given we started in si. Let ti be the number of

steps before the chain is absorbed. Let t be the column vector whose ith entry is ti.

Then t = cN, where c = [1, 1, . . . , 1] [12].

81

Example. For example when l = 10, k = 4 we have

t =

522.2640

522.1904

521.9491

521.4529

520.4831

518.5066

514.1180

503.2075

472.3329

372.2371

.

Figure 3.4 shows the number of correct letters we start with vs. the absorption

rate for our model with l = 100, k = 4, p = c
100

.

This tells us that if we begin with a string with no correct letter the expected

number of steps to the correct string is 522. Figure 3.5 shows the number of steps it

will take to arrive in the absorbing state having started with no letters correct for an

alphabet of size 4 for lengths ranging from 5 to 20.

We can compare our estimate for the number of steps to absorption vs. the

estimate using Wilf’s model. Recall the mean number of rounds necessary to guess

the correct word is log(l)

log(k
k−1)

. In figure 3.6 we see that Wilf’s model shows a much

lower mean time than the absorption rate of our model. Recall that Wilf’s model

assume that once a letter is correct it cannot become incorrect letter.

Although the model when p = c
l

has a better absorption rate than the tradi-

tional model of kl, we see it has a much slower absorption rate of the Wilf model. For

82

example considering l = 20 and k = 4. The traditional model has a absorption rate

of 420 = 1.099 × 1012. Our model with p = c
l

has a absorption rate of ≈ 77106.46.

The Wilf model has a absorption rate of 10.4.

Our model depends on the probability that a correct letter is reselected or not.

Using p = c
l

considers a model where the probability of reselected a correct letter

decreases as the number of correct letters increases. To get a quicker absorption rate

we want to consider changing p to a function of c that increases the probability of

keep a correct letter. In the next section we discuss models using other probability

functions.

3.2.5 Other Models

3.2.5.1 p =
(
c
l

)(1
α)

We first consider p = 3
√

c
l
. For this model we see that as c increases the

probability of reselecting a correct letter is smaller than using p = c
l
.

Figure 3.7 shows a plot of the ε values for l = 5 to l = 20. Figure 3.5 shows

the number of steps it will take to arrive in the absorbing state having started with

no letters correct for an alphabet of size 4 for lengths ranging from 5 to 20. In figure

3.9 we see that Wilf’s model shows a much lower mean time than the absorption rate

of our model.

Our model with p = 3
√

c
l

has a absorption rate of approximately 35.249, when

l = 20, k = 4 and our starting string has no correct letters.

We now consider the absorption rate for p =
(
c
l

)(1
α)

for varying α. In Figure

3.10 we see that as α increases the absorption rate decreases.

83

3.3 Conclusion

We have begun to analyze our model for various probabilities. It appears that

although our model does not behave as well as the Wilf model, it behaves much better

than reselecting new letters at each step in the Markov chain. Further analysis needs

to be done to study how this behavior changes for larger strings. We note that this

analysis is not easy since our matrix is ill-conditioned as l increases. We hope to be

able to use our model to study a biological model such as protein mutations.

84

Figure 3.3: A plot of the length of the string vs. log(ε) for our model when p = c
l

and k = 4.

85

Figure 3.4: A plot of the number of correct letters vs. the absorption rate for our
model with l = 100, an alphabet of size 4, and p = c

l
.

86

Figure 3.5: A plot of the length of the string vs. the number of steps it will take for a
string with zero correct letters to reach a string with l correct letters for an alphabet
of size 4 for our model with p = c

l
.

87

Figure 3.6: A plot of the length of the string vs. the number of steps it will take for a
string with zero correct letters to reach a string with l correct letters for an alphabet
of size 4. our model with p = c

l
is in red and the Wilf model is in blue.

88

Figure 3.7: A plot of the length of the string vs. ε = (1 − λ2) for our model when
p = 3

√
c
l

and k = 4.

89

Figure 3.8: A plot of the length of the string vs. the number of steps it will take for a
string with zero correct letters to reach a string with l correct letters for an alphabet
of size 4 for our model with p = 3

√
c
l
.

90

Figure 3.9: A plot of the length of the string vs. the number of steps it will take for a
string with zero correct letters to reach a string with l correct letters for an alphabet
of size 4. Our model with p = 3

√
c
l

is in red and the Wilf model is in blue.

91

Figure 3.10: A plot of the length of the string vs. the number of steps it will take
for a string with zero correct letters to reach a string with l correct letters for an
alphabet of size 4. The plot shows our model with p = α

√
c
l

for 2 ≤ α ≤ 10 and the
Wilf model.

92

Appendices

93

Appendix A Firework Graphs

Below we give the periods associated with the nimbers of firework graphs.

Each star is viewed as Sa1,a2,a3,...,an where a1, a2, . . . an−1 are fixed lengths an varies.

A.1 3-Firework Graphs

S1,1,m (Period beginning at 156):

13, 22, 11, 25, 19, 22, 14, 21, 22, 19, 11, 21

S1,2,m (Period beginning at 120):

3, 9, 18, 6, 13, 18, 11, 10, 17, 4, 13, 17

S1,3,m (Period beginning at 156):

16, 11, 19, 28, 12, 30, 19, 8, 5, 14, 15, 19

S1,4,m (Period beginning at 108):

11, 14, 4, 13, 14, 1, 8, 13, 7, 19, 22, 26

S1,5,m (Period beginning at 228):

27, 17, 20, 23, 6, 7, 24, 1, 10, 20, 5, 30

S1,6,m (Period beginning at 360):

26, 4, 19, 2, 31, 19, 11, 21, 16, 31, 4, 21

S1,7,m (Period beginning at 276):

23, 29, 18, 19, 8, 36, 14, 30, 17, 16, 7, 38

S1,8,m (Period beginning at 192):

29, 20, 27, 4, 1, 14, 31, 13, 24, 7, 2, 37

S1,9,m (Period beginning at 240):

11, 16, 12, 22, 11, 28, 25, 16, 15, 21, 0, 31

S1,10,m (Period beginning at 144):

7, 4, 18, 3, 16, 1, 4, 7, 17, 1, 19, 10

S1,11,m (Period beginning at 276):

16, 1, 22, 13, 1, 34, 19, 2, 21, 14, 2, 32

S1,12,m (Period beginning at 168):

21, 14, 30, 1, 4, 11, 21, 12, 19, 32, 7, 8

S1,13,m (Period beginning at 120):

14, 18, 25, 11, 7, 2, 13, 4, 11, 7, 21, 1

S1,14,m (Period beginning at 360):

36, 24, 11, 20, 30, 13, 14, 11, 33, 34, 22, 14

94

S1,15,m (Period beginning at 240):

1, 4, 7, 6, 8, 21, 2, 7, 4, 5, 8, 18

S1,16,m (Period beginning at 348):

29, 7, 12, 0, 16, 10, 7, 22, 28, 3, 32, 9

S1,17,m (Period beginning at 276):

16, 32, 4, 35, 21, 36, 1, 35, 10, 19, 25, 35

S1,18,m (Period beginning at 228):

22, 4, 32, 2, 37, 13, 22, 15, 32, 1, 19, 14

S1,19,m (Period beginning at 312):

0, 29, 30, 37, 24, 20, 3, 18, 9, 24, 27, 23

S2,2,m (Period beginning at 168):

9, 0, 3, 12, 5, 15, 10, 3, 0, 5, 6, 12

S2,3,m (Period beginning at 96):

23, 18, 17, 4, 24, 11, 20, 17, 18, 7, 24, 8

S2,4,m (Period beginning at 156):

3, 2, 32, 16, 7, 18, 0, 9, 25, 14, 4, 17

S2,5,m (Period beginning at 252):

19, 12, 5, 10, 19, 5, 16, 15, 6, 9, 16, 25

S2,6,m (Period beginning at 384):

31, 13, 2, 19, 0, 21, 7, 14, 1, 16, 19, 22

S2,7,m (Period beginning at 252):

22, 2, 20, 29, 23, 15, 20, 9, 18, 14, 32, 29

S2,8,m (Period beginning at 144):

2, 3, 21, 30, 6, 25, 1, 0, 3, 15, 5, 26

S2,9,m (Period beginning at 252):

20, 0, 18, 11, 21, 5, 22, 29, 16, 0, 22, 6

S2,10,m (Period beginning at 312):

5, 30, 40, 24, 5, 31, 6, 34, 0, 20, 2, 23

S2,11,m (Period beginning at 252):

1, 19, 34, 4, 16, 11, 2, 21, 33, 15, 19, 0

S2,12,m (Period beginning at 312):

6, 22, 28, 12, 3, 18, 4, 13, 28, 18, 0, 17

S2,13,m (Period beginning at 432):

27, 13, 29, 3, 32, 9, 27, 15, 29, 0, 32, 10

S2,14,m (Period beginning at 132):

9, 0, 10, 19, 0, 16, 10, 3, 0, 12, 3, 19

95

S2,15,m (Period (60) beginning at 240):

28, 44, 26, 22, 25, 14, 16, 44, 25, 15, 31, 13

28, 41, 26, 22, 25, 14, 16, 44, 25, 15, 31, 13

28, 41, 26, 22, 25, 14, 16, 44, 25, 15, 31, 13

28, 44, 26, 22, 25, 14, 16, 47, 25, 15, 31, 13

28, 44, 26, 22, 25, 14, 16, 47, 25, 15, 31, 13

S2,16,m (Period beginning at 204):

6, 32, 0, 27, 3, 12, 13, 27, 3, 32, 0, 15

S2,17,m (Period beginning at 432):

42, 0, 5, 39, 16, 9, 19, 3, 6, 28, 19, 33

S2,18,m (Period beginning at 240):

12, 21, 2, 36, 40, 34, 7, 21, 5, 39, 40, 37

S2,19,m (Period beginning at 372):

17, 2, 37, 32, 35, 7, 32, 24, 38, 18, 30, 4

S3,3,m (Period beginning at 180):

18, 14, 4, 11, 18, 7, 24, 14, 7, 30, 17, 24

S3,4,m (Period beginning at 132):

24, 21, 10, 15, 19, 12, 15, 21, 9, 8, 21, 15

S3,5,m (Period beginning at 528):

29, 20, 11, 7, 20, 17, 14, 20, 24, 32, 23, 18

S3,6,m (Period beginning at 360):

32, 6, 22, 1, 33, 11, 34, 5, 30, 2, 13, 8

S3,7,m (Period beginning at 348):

2, 7, 4, 26, 14, 19, 8, 4, 7, 19, 1, 16

S3,8,m (Period beginning at 552):

42, 32, 25, 16, 2, 8, 28, 32, 26, 22, 37, 11

S3,9,m (Period beginning at 144):

13, 1, 27, 8, 1, 20, 29, 2, 23, 8, 2, 7

S3,10,m (Period beginning at 168):

19, 15, 16, 1, 19, 15, 16, 12, 1, 10, 16, 12

S3,11,m (Period beginning at 228):

15, 2, 8, 16, 14, 13, 31, 1, 11, 2, 13, 14

S3,12,m (Period beginning at 156):

7, 8, 20, 15, 6, 19, 24, 11, 23, 22, 5, 10

S3,13,m (Period beginning at 540):

8, 4, 23, 8, 13, 1, 11, 8, 17, 15, 24, 2

96

S3,14,m (Period beginning at 180):

23, 32, 13, 4, 1, 10, 38, 26, 14, 7, 29, 8

S3,15,m (Period beginning at 252):

11, 27, 30, 34, 24, 6, 8, 5, 29, 30, 18, 4

S3,16,m (Period beginning at 528):

38, 12, 29, 2, 7, 20, 5, 15, 27, 9, 24, 20

S3,17,m (Period beginning at 180):

8, 1, 10, 7, 12, 5, 40, 20, 8, 25, 37, 6

S3,18,m (Period beginning at 312):

18, 32, 35, 12, 1, 10, 16, 35, 23, 26, 6, 8

S3,19,m (Period beginning at 372):

2, 38, 21, 22, 7, 19, 1, 37, 32, 13, 4, 16

S4,4,m (Period beginning at 192):

22, 8, 16, 29, 23, 13, 21, 11, 19, 32, 7, 14

S4,5,m (Period beginning at 312):

20, 11, 19, 8, 1, 14, 22, 12, 16, 11, 2, 1

S4,6,m (Period beginning at 192):

14, 7, 13, 21, 3, 19, 16, 4, 14, 19, 0, 16

S4,7,m (Period beginning at 144):

24, 13, 12, 24, 25, 8, 27, 14, 15, 27, 30, 23

S4,8,m (Period beginning at 204):

0, 16, 15, 22, 5, 16, 2, 19, 22, 21, 6, 19

S4,9,m (Period beginning at 180):

26, 32, 24, 4, 26, 19, 25, 4, 30, 11, 25, 1

S4,10,m (Period (60) beginning at 204):

7, 37, 1, 27, 30, 32, 29, 37, 2, 7, 27, 32

7, 37, 1, 27, 30, 32, 29, 37, 2, 7, 32, 35

7, 37, 1, 27, 30, 32, 29, 37, 2, 7, 32, 35

7, 37, 1, 27, 35, 32, 29, 37, 2, 7, 32, 35

7, 37, 1, 27, 30, 32, 29, 37, 2, 7, 32, 35

S4,11,m (Period beginning at 180):

19, 8, 21, 11, 8, 1, 4, 14, 21, 8, 16, 2

S4,12,m (Period beginning at 156):

5, 17, 2, 18, 0, 12, 6, 18, 1, 2, 3, 15

97

S4,13,m (Period (60) beginning at 228):

31, 7, 35, 16, 27, 10, 7, 12, 16, 40, 35, 8

31, 7, 35, 16, 27, 10, 7, 12, 16, 40, 35, 8

31, 7, 35, 16, 27, 10, 7, 12, 16, 40, 35, 8

31, 7, 35, 16, 27, 10, 7, 12, 16, 40, 34, 8

31, 7, 35, 16, 27, 10, 7, 12, 16, 40, 35, 8

S4,14,m (Period beginning at 132):

2, 19, 4, 8, 7, 21, 1, 8, 7, 11, 1, 21

S4,15,m (Period beginning at 168):

1, 8, 13, 14, 4, 24, 2, 11, 14, 13, 4, 33

1, 8, 13, 14, 4, 24, 2, 11, 14, 13, 4, 33

1, 8, 13, 14, 4, 24, 2, 11, 14, 13, 4, 33

1, 8, 13, 14, 4, 24, 2, 11, 14, 13, 4, 32

1, 8, 13, 14, 4, 24, 2, 11, 14, 13, 4, 33

S4,16,m (Period (60) beginning at 312):

23, 25, 2, 33, 1, 28, 15, 32, 1, 28, 2, 36

23, 25, 2, 33, 1, 28, 15, 32, 1, 28, 2, 44

23, 25, 2, 33, 1, 28, 15, 32, 1, 28, 2, 36

23, 25, 2, 33, 1, 28, 15, 32, 1, 28, 2, 36

23, 25, 2, 33, 1, 28, 15, 32, 1, 28, 2, 36

S4,17,m (Period beginning at 312):

19, 7, 16, 1, 22, 2, 21, 26, 25, 2, 16, 1

S4,18,m (Period beginning at 216):

40, 14, 13, 21, 3, 33, 8, 4, 14, 19, 1, 16

S4,19,m (Period beginning at 312):

25, 13, 20, 7, 32, 9, 16, 32, 19, 4, 21, 10

A.2 4-Firework Graphs

S1,1,1,m (Period beginning at 168):

3, 10, 18, 12, 15, 14, 18, 8, 20, 25, 12, 9

S1,1,2,m (Period beginning at 144):

10, 1, 8, 7, 14, 4, 19, 18, 7, 16, 21, 7

S1,1,3,m (Period beginning at 144):

1, 2, 16, 5, 19, 7, 2, 1, 11, 6, 16, 4

S1,1,4,m (Period beginning at 204):

9, 3, 32, 9, 20, 6, 10, 32, 15, 10, 18, 5

98

S1,1,5,m (Period beginning at 156):

18, 10, 21, 27, 14, 15, 20, 2, 7, 25, 13, 7

S1,1,6,m (Period beginning at 204):

10, 15, 35, 18, 15, 24, 9, 12, 29, 17, 7, 24

S1,1,7,m (Period beginning at 168):

20, 9, 33, 15, 24, 9, 23, 10, 30, 23, 27, 17

S1,1,8,m (Period beginning at 96):

9, 2, 7, 14, 13, 7, 16, 17, 4, 19, 14, 4

S1,1,9,m (Period beginning at 132):

2, 1, 4, 13, 19, 4, 1, 2, 18, 25, 16, 7

S1,2,2,m (Period beginning at 132):

19, 15, 5, 6, 15, 5, 9, 12, 21, 22, 25, 6

S1,2,3,m (Period beginning at 180):

41, 3, 21, 32, 28, 6, 10, 32, 37, 21, 27, 32

S1,2,4,m (Period beginning at 132):

24, 18, 11, 17, 29, 7, 27, 21, 12, 32, 30, 20

S1,2,5,m (Period beginning at 204):

22, 11, 24, 35, 15, 14, 17, 8, 18, 24, 17, 6

S1,2,6,m (Period beginning at 168):

15, 23, 37, 20, 5, 19, 12, 35, 38, 22, 3, 17

S1,2,7,m (Period beginning at 228):

29, 8, 36, 14, 13, 8, 3, 29, 23, 6, 33, 24

S1,2,8,m (Period beginning at 120):

8, 18, 10, 24, 3, 6, 27, 21, 32, 24, 21, 5

S1,2,9,m (Period beginning at 252):

0, 10, 5, 6, 32, 10, 21, 12, 6, 15, 30, 9

S1,3,3,m (Period beginning at 204):

34, 19, 10, 33, 21, 5, 19, 3, 9, 5, 19, 6

S1,3,4,m (Period beginning at 232):

27, 1, 8, 6, 22, 4, 24, 2, 11, 16, 32, 7

S1,3,5,m (Period beginning at 144):

0, 3, 6, 5, 12, 6, 3, 0, 5, 6, 15, 5

S1,3,6,m (Period beginning at 264):

21, 12, 32, 22, 1, 32, 27, 15, 32, 21, 38, 10

S1,3,7,m (Period beginning at 240):

13, 1, 11, 32, 31, 4, 21, 2, 8, 16, 21, 7

99

S1,3,8,m (Period beginning at 204):

14, 27, 21, 28, 7, 22, 13, 28, 11, 27, 40, 21

S1,3,9,m (Period beginning at 228):

18, 24, 6, 27, 38, 6, 17, 0, 38, 6, 37, 23

S2,2,2,m (Period beginning at 108):

18, 9, 4, 7, 13, 4, 16, 10, 7, 13, 14, 7

S2,2,3,m (Period beginning at 228):

12, 22, 11, 35, 19, 18, 37, 38, 8, 19, 24, 17

S2,2,4,m (Period beginning at 132):

28, 11, 6, 27, 22, 6, 28, 18, 19, 24, 21, 5

S2,2,5,m (Period beginning at 156):

21, 10, 9, 16, 14, 15, 19, 9, 10, 16, 13, 7

S2,2,6,m (Period beginning at 156):

32, 29, 19, 10, 20, 8, 13, 17, 16, 9, 22, 11

S2,2,7,m (Period beginning at 168):

12, 17, 6, 18, 0, 20, 24, 18, 9, 20, 3, 13

S2,2,8,m (Period beginning at 108):

26, 10, 21, 22, 19, 7, 21, 9, 26, 21, 28, 4

S2,2,9,m Period beginning at 144:

14, 7, 16, 1, 26, 16, 7, 22, 11, 26, 32, 19

S2,3,3,m (Period beginning at 180):

8, 1, 13, 7, 31, 22, 7, 2, 13, 4, 11, 7

S2,3,4,m (Period beginning at 204):

21, 10, 5, 22, 14, 5, 18, 25, 10, 21, 36, 28

S2,3,5,m (Period beginning at 204):

32, 2, 17, 4, 24, 21, 11, 10, 22, 32, 14, 4

S2,3,6,m (Period beginning at 360):

37, 48, 3, 35, 17, 13, 23, 37, 17, 35, 18, 27

S2,3,7,m (Period beginning at 168):

24, 36, 9, 12, 23, 30, 8, 3, 10, 34, 12, 6

S2,3,8,m (Period beginning at 216):

18, 37, 4, 29, 37, 18, 35, 38, 15, 30, 1, 15

S2,3,9,m (Period beginning at 204):

33, 8, 11, 36, 14, 17, 34, 1, 2, 23, 14, 18

100

Appendix B Cycle Nim

Below we give the periods associated with the nimbers of cycle-paths.

C5Pm (Period beginning at 144):

12, 3, 10, 5, 17, 3, 3, 0, 9, 6, 12, 15

C6Pm (Period beginning at 144):

14, 3, 9, 16, 10, 7, 13, 16, 10, 6, 13, 4

C7Pm (Period (60) beginning at 156):

16, 16, 3, 25, 16, 10, 16, 16, 0, 16, 16, 13

21, 21, 3, 25, 16, 10, 21, 21, 0, 16, 16, 13

16, 16, 3, 25, 16, 10, 16, 16, 0, 16, 16, 13

16, 16, 3, 25, 16, 10, 21, 21, 0, 16, 16, 13

21, 21, 3, 25, 16, 10, 16, 16, 0, 16, 16, 13

C8Pm (Period beginning at 228):

0, 5, 16, 7, 9, 21, 3, 6, 5, 5, 31, 21

C9Pm (Period beginning at 132):

11, 2, 24, 5, 5, 16, 8, 1, 11, 20, 5, 18

101

Appendix C Sage and Matlab Programs

C.1 Unimodal Code

Below is the code used for testing Pn is unimodal.

def P(howfar):

#This function returns a matrix where each entry (n,k)

= #partitions of n into k summands

M = matrix(ZZ,howfar,howfar)

for n in range(howfar):

for k in range(n+1):

if (k==0 or n==k):

M[n,k]=1

else:

M[n,k]=(M[n-1,k-1]+M[n-k-1,k])

return M

def mode(M):

#This function takes a matrix as input and returns a list of

the positions of each row’s maximal element. mode(P(a))

#effectively calculates the rank of the mode of P_n for n<=a

List = []

for n in range(M.nrows()):

maxval = 0

for k in range(n+1):

if (M[n,k] > maxval):

max = k+1

maxval = M[n,k]

List.append(max)

return List

def unimodal(M):

#This function ensures that each row of the inputted matrix is

#unimodal.

for n in range(M.nrows()):

increasing = 1;

#This means that values should start out increasing.

value = 0

for k in range(n+1):

if (increasing == 1):

if (M[n,k] < value):

102

increasing = 0

#This means all values should decrease.

value = M[n,k]

else:

if (M[n,k] > value):

#If a row is not unimodal, the function terminates

#and displays the n-value which is not unimodal.

print ’n=’,n+1,’is not unimodal.’

return 0

value = M[n,k]

return 1

def improvedunimodal(input,start,finish):

#This function encompasses the utilities of P, unimodal,

#and mode to find the values of P(n,k) from

#n=start to n=finish. It determines if each P_n is unimodal

#and returns the k-value of the column of the first appearance of

#the mode if applicable. This function is an improvement over P

#It deletes all P(n,k) values which become unnecessary for

#future computations.

L = input

modes = []

for row in range(start-1,finish):

#First, delete unnecessary entries

for i in range(floor((row)/2)):

del(L[i][0])

#print L

#Then, we create the next row of entries

if (row!=0):

#The first column is always a 1

L[0].append(1)

#The 2 through floor((row-1)/2)+1 columns are calculated

#using both summands

for column in range(1,floor((row-1)/2)+1):

L[column].append(L[column-1][column-1]+L[column][0])

#The floor((row-1)/2)+2 through n-1 columns are calculated

#with P(n-1,k-1) only

for column in range(floor((row-1)/2)+1,row):

L[column].append(L[column-1][row-column])

#The last column is always a 1

if (mod(row,2)==0):

L[floor((row-1)/2)+1][len(L[floor((row-1)/2)+1])-1]=

103

L[floor((row-1)/2)][row-floor((row-1)/2)-2]

L.append([1])

#Then we find our mode (if it is unimodal).

value = 0

mode = 0

increasing = 1

center = (row-1)/2

maximum = ceil(row/2)+1

for column in range(row+1):

index = maximum-floor(abs(center-column))-1

if (increasing == 1):

if (L[column][index] < value):

increasing = 0

#This means all values should decrease.

if L[column][index]>value:

mode = column

value = L[column][index]

else:

if (L[column][index] > value):

#If a row is not unimodal, the function immediately terminates

#and displays the n-value which is not unimodal.

print ’n=’,n+1,’is not unimodal.’

return 0

value = L[column][index]

modes.append(mode+1)

print L

return [L,modes]

#import pickle

file=open(’logConcave.txt’,’w’)

num=10

pnk=P(num)

print "hi"

for n in range(num):

for k in range(1,n-1):

logConc=2*RDF(log(pnk[n][k]))-RDF(log(pnk[n][k-1]))

-RDF(log(pnk[n][k+1]))

if logConc<0:

string=’n=’, n, ’k=’, k, ’concavity is ’, logConc, ’-’

s=str(string)+’\n’

file.write(s)

else:

104

string=’n=’, n, ’k=’, k, ’concavity is ’, logConc

s=str(string)+’\n’

file.write(s)

#pickle.dump(unimodalList, open("unimodal.txt","w"))

#filename2=’logConcave.txt’

#save(unimodalList, filename2)

C.2 Nim Code

Below are a list of sage functions used for Graph Nim computations

import pickle

def binConvert(x):

"Converts a given number to a list of 1’s and 0’s,

its binary form. e.g. 6"

"gets returned as [1,1,0]"

i=0

rem=x

t=2

temp=[]

"change while loop to while rem>0"

while i==0:

if rem%t==0:

temp.append(0)

else:

temp.append(1)

rem=(x-x%t)

t=t*2

if rem==0:

i=1

temp.reverse()

return temp

def sum(list1, list2):

"you get two binary numbers in the form of lists, nimsum them,

and return the resulting list. e.g. sum([1,1,0], [1,1])

returns [1,0,1]"

if len(list1)>len(list2):

x=len(list1)-len(list2)

while x>0:

105

list2.insert(0,0)

x=x-1

else:

x=len(list2)-len(list1)

while x>0:

list1.insert(0,0)

x=x-1

temp=[]

x=0

while(x)<len(list1):

temp.append((list1[x]+list2[x])%2)

x+=1

return temp

def numConvert(temp):

"converts a given binary list back into a normal number"

x=0

y=0

while x<len(temp):

y=y+temp[x]*(2**(len(temp)-1-x))

x+=1

return y

#function to nim-sum two values

def nimSum(x,y):

xBin=binConvert(x)

yBin=binConvert(y)

sumBin=sum(xBin,yBin)

nimSumValue=numConvert(sumBin)

return nimSumValue

#function for path nim

def f(x):

grund=[0,1]

"grund is the ordered list of all the grundy numbers for paths"

"of lengths shorter than x. so 0 is f(0), 1 is f(1), and the

program starts computing grundy numbers for paths of length

2 and higher"

prev=[0]

"prev is the list of grundy numbers for all positions attainable"

"in one move from a path of length x"

106

while x<100:

prev.append(grund[x-1])

prev.append(grund[x-2])

"clearly the path of length x-1 and length x-2 are attainable

"in one move from path of length x, so right away we add

"the grundy numbers of these two shorter paths into prev"

y=1

while x-1-y>=0:

"Adds the nimsum of the f-g values after removing 1

vertex to prev"

bin1=binConvert(grund[y])

bin2=binConvert(grund[x-1-y])

binsum=sum(bin1, bin2)

s=numConvert(binsum)

prev.append(s)

y+=1

y=1

while x-2-y>=0:

"Adds the nimsum of the f-g values after removing 2

vertices to prev"

bin1=binConvert(grund[y])

bin2=binConvert(grund[x-2-y])

binsum=sum(bin1,bin2)

s=numConvert(binsum)

prev.append(s)

y=y+2

y=0

while y<len(prev):

"find the minimal excluded element of prev"

if prev.count(y)>0:

y+=1

else:

grund.append(y)

#print "The number ", x, " has grundy number ", y

y=y+len(prev)

prev=[0]

x+=1

return grund

#function to find the mex of a list of numbers

def findMex(mexList):

107

y=0

while y<len(mexList):

if mexList.count(y)>0:

y+=1

else:

mex=y

y=y+len(mexList)

return mex

#function to look up the path nimbler from the path nimbler list

def findPathNum(length):

if length < 72:

pathNimber=pathNum[length]

else:

pathNimber=pathNum[72+length% 12]

return pathNimber

#function of the caterpillar data at index 1

def catN():

catNum=[0,2,3,4,5,6,2,1,0,8,6,0,

1,2,3,8,5,12,7,1,0,8,9,14,

1,2,3,11,4,7,12,14,0,16,2,4,

12,2,3,10,4,7,15,1,16,9,18,16,

12,2,3,10,16,7,12,1,16,18,11,16,

12,2,22,11,16,7,12,1,20,24,16,26,

12,13,22,11,16,24,15,14,16,22,19,16,

12,13,19,11,16,24,15,14,16,25,11,16,

12,13,22,11,16,7,15,1,20,25,19,11,

12,13,22,11,32,19,22,14,20,22,19,11,

12,13,22,11,25,19,22,14,16,22,19,11,

21,13,22,11,25,19,22,14,21,25,19,11,

21,13,22,11,25,19,22,14,20,22,19,11,

21,13,22,11,25,19,22,14,21,22,19,11]

return catNum

#function to look up the nimbler of a C_{n,1} caterpillar

def findCatNum(length):

if length < 156:

catNimber=catNum[length]

else:

catNimber=catNum[156+length% 12]

return catNimber

108

#function for the C_{n,2} data

def catN2():

catNum2=[0,0,3,4,5,6,7,8,0,10,6,8,

1,6,3,8,5,7,3,8,0,10,13,4,

0,2,3,8,13,10,16,1,0,10,17,8,

18,10,3,8,18,6,13,9,18,20,6,5,

18,10,3,20,5,6,16,13,18,10,17,4,

18,10,3,8,19,6,16,13,22,10,17,4,

18,14,3,8,18,6,16,13,19,10,17,8,

4,14,3,8,18,6,16,13,18,10,17,4,

18,14,3,8,18,7,16,13,18,10,17,4,

18,14,3,8,18,7,16,13,18,10,17,4,

18,14,3,8,18,27,16,13,18,10,17,4,

18,14,3,8,18,7,16,13,18,10,17,4]

return catNum2

#function to look up the C_{n,2} nimber

def findCatNum2(length):

if length < 132:

catNimber=catNum2[length]

else:

catNimber=catNum2[132+length% 12]

return catNimber

#function to find the numbers of a cycle path. m is the length of

#the cycle, and n is the length of the path, from 1-n

def cyclePath(m,n):

S = pickle.load(open("StarData.txt"))

cycleNum=[0]

for i in range(1,n+1):

mexList=[]

#below are moves made on C

mexList.append(findPathNum(i+(m-1)))

mexList.append(findPathNum(i+(m-2)))

mexList.append(nimSum(findPathNum(m-2),findPathNum(i)))

mexList.append(nimSum(findPathNum(m-1),findPathNum(i-1)))

mexList.append(nimSum(findPathNum(m-2),findPathNum(i-1)))

mexList.append(findPathNum(i-1))

if m%2==1:

for j in range(1,(m-1)/2):

109

mexList.append(S[m-(j+1)][j][i])

mexList.append(S[m-(j+2)][j][i])

mexList.append(S[(m-1)/2][(m-1)/2][i])

else:

for j in range(1,(m-2)/2+1):

mexList.append(S[m-(j+1)][j][i])

mexList.append(S[m-(j+2)][j][i])

#We now give moves made on the path

#remove the two edges on the path closest to G

mexList.append(findPathNum(i-2))

#Now we can run a for loop to check the rest of the moves

made on the path

for k in range(1,i-2):

mexList.append(nimSum(cycleNum[k],findPathNum(i-k-1)))

mexList.append(nimSum(cycleNum[k],findPathNum(i-k-2)))

cycleNum.append(findMex(mexList))

return cycleNum

#function to run and store several cycle-paths.

#Change the range of i to change the cycle paths we want.

#It will print the C_mP_n in a latex format.

def findCyclePath():

for i in range (5,10):

print ’-----’, i, ’------’

cycleNum=cyclePath(i,400)

for i in range(len(cycleNum)):

if i%12==11:

print cycleNum[i], "\\"

print i+1, "&",

else:

print cycleNum[i], "&",

return cycleNum

#3-star paths

def Slkm(l,k,m):

Stemp=[]

mexList=[]

#Moves made from the central vertex

110

mexList.append(nimSum(findPathNum(k+m),findPathNum(l-1)))

mexList.append(nimSum(findPathNum(l+m),findPathNum(k-1)))

mexList.append(nimSum(findPathNum(l+k),findPathNum(m-1)))

mexList.append(nimSum(findPathNum(k-1),

nimSum(findPathNum(m),findPathNum(l-1))))

mexList.append(nimSum(findPathNum(l),

nimSum(findPathNum(k-1),findPathNum(m-1))))

mexList.append(nimSum(findPathNum(k),

nimSum(findPathNum(m-1),findPathNum(l-1))))

mexList.append(nimSum(findPathNum(k-1),

nimSum(findPathNum(m-1),findPathNum(l-1))))

#print mexList

#Moves made on l branch

if l>1:

mexList.append(nimSum(findPathNum(m+k),findPathNum(l-2)))

mexList.append(nimSum(S[1][k][m],findPathNum(l-2)))

for j in range(1,l-1):

mexList.append(nimSum(S[j][k][m],findPathNum(l-j-2)))

mexList.append(nimSum(S[j+1][k][m],findPathNum(l-j-2)))

#Moves made on k branch

if k>1:

mexList.append(nimSum(findPathNum(l+m),findPathNum(k-2)))

mexList.append(nimSum(S[l][1][m],findPathNum(k-2)))

for j in range(1,k-1):

mexList.append(nimSum(S[l][j][m],findPathNum(k-j-2)))

mexList.append(nimSum(S[l][j+1][m],findPathNum(k-j-2)))

#Moves made on m branch

if m>1:

#print S, S[l][k][1]

mexList.append(nimSum(findPathNum(l+k),findPathNum(m-2)))

mexList.append(nimSum(S[l][k][1],findPathNum(m-2)))

for j in range(1,m-1):

#print S

#print l, k, m, j

#print S[l][k][j]

#print S[l][k][j+1]

mexList.append(nimSum(S[l][k][j],findPathNum(m-j-2)))

mexList.append(nimSum(S[l][k][j+1],findPathNum(m-j-2)))

111

Stemp=findMex(mexList)

return Stemp

#function to run and store several 3-star paths.

#Change the range of l,k,m to change the cycle paths we want.

#It will print the out in a periodic latex format.

def find3Star():

S=[]

for l in range (0,20):

S.append([])

for k in range(0,20):

S[l].append([])

print "----------------"

print "l=", l, "k=", k

for m in range(0,1000):

#print S

S[l][k].append([])

if l==0 and k==0 and m==0:

S[l][k][m]=0

elif l==0 and k==0:

S[l][k][m]=findPathNum(m)

elif l==0 and m==0:

S[l][k][m]=(findPathNum(k))

elif k==0 and m==0:

S[l][k][m]=(findPathNum(l))

elif l==0:

S[l][k][m]=(findPathNum(k+m))

elif k==0:

S[l][k][m]=(findPathNum(l+m))

elif m==0:

S[l][k][m]=(findPathNum(k+l))

else:

S[l][k][m]=(Slkm(l,k,m))

if m%12==11:

print S[l][k][m], "\\"

print m+1, "&",

else:

print S[l][k][m], "&",

return S

#function to compute 4-star paths

112

def Slkmn(l,k,m,n):

#print ’l=’, l, ’k=’, k, ’m=’, m

Stemp=[]

#for i in range(1,m+1):

mexList=[]

#Moves made from the central vertex

mexList.append(nimSum(T[k][m][n],findPathNum(l-1)))

mexList.append(nimSum(T[l][m][n],findPathNum(k-1)))

mexList.append(nimSum(T[l][k][n],findPathNum(m-1)))

mexList.append(nimSum(T[l][k][m],findPathNum(n-1)))

mexList.append(nimSum(findPathNum(l+k),

nimSum(findPathNum(m-1),findPathNum(n-1))))

mexList.append(nimSum(findPathNum(l+m),

nimSum(findPathNum(k-1),findPathNum(n-1))))

mexList.append(nimSum(findPathNum(l+n),

nimSum(findPathNum(m-1),findPathNum(k-1))))

mexList.append(nimSum(findPathNum(k+n),

nimSum(findPathNum(m-1),findPathNum(l-1))))

mexList.append(nimSum(findPathNum(m+k),

nimSum(findPathNum(l-1),findPathNum(n-1))))

mexList.append(nimSum(findPathNum(m+n),

nimSum(findPathNum(l-1),findPathNum(k-1))))

mexList.append(nimSum(findPathNum(l),

nimSum(findPathNum(k-1),nimSum(findPathNum(m-1),

findPathNum(n-1)))))

mexList.append(nimSum(findPathNum(k),nimSum(findPathNum(l-1),

nimSum(findPathNum(m-1),findPathNum(n-1)))))

mexList.append(nimSum(findPathNum(m),nimSum(findPathNum(k-1),

nimSum(findPathNum(l-1),findPathNum(n-1)))))

mexList.append(nimSum(findPathNum(n),nimSum(findPathNum(k-1),

nimSum(findPathNum(m-1),findPathNum(l-1)))))

mexList.append(nimSum(findPathNum(l-1),nimSum(findPathNum(k-1),

nimSum(findPathNum(m-1),findPathNum(n-1)))))

#print mexList

#Moves made on l branch

if l>1:

mexList.append(nimSum(findPathNum(m+k),findPathNum(l-2)))

mexList.append(nimSum(S[1][k][m][n],findPathNum(l-2)))

for j in range(1,l-1):

mexList.append(nimSum(S[j][k][m][n],findPathNum(l-j-2)))

113

mexList.append(nimSum(S[j+1][k][m][n],findPathNum(l-j-2)))

#Moves made on k branch

if k>1:

mexList.append(nimSum(findPathNum(l+m),findPathNum(k-2)))

mexList.append(nimSum(S[l][1][m][n],findPathNum(k-2)))

for j in range(1,k-1):

mexList.append(nimSum(S[l][j][m][n],findPathNum(k-j-2)))

mexList.append(nimSum(S[l][j+1][m][n],findPathNum(k-j-2)))

#Moves made on m branch

if m>1:

#print S, S[l][k][1]

mexList.append(nimSum(findPathNum(l+k),findPathNum(m-2)))

mexList.append(nimSum(S[l][k][1][n],findPathNum(m-2)))

for j in range(1,m-1):

#print S

#print l, k, m, j

#print S[l][k][j]

#print S[l][k][j+1]

mexList.append(nimSum(S[l][k][j][n],findPathNum(m-j-2)))

mexList.append(nimSum(S[l][k][j+1][n],findPathNum(m-j-2)))

#Moves made on n branch

if n>1:

mexList.append(nimSum(findPathNum(l+k),findPathNum(n-2)))

mexList.append(nimSum(S[l][k][m][1],findPathNum(n-2)))

for j in range(1,n-1):

#print S

#print l, k, m, j

#print S[l][k][j]

#print S[l][k][j+1]

mexList.append(nimSum(S[l][k][m][j],findPathNum(n-j-2)))

mexList.append(nimSum(S[l][k][m][j+1],findPathNum(n-j-2)))

Stemp=findMex(mexList)

return Stemp

#function to run and store several 4-star paths.

#Change the range of l,k,m,n to change the cycle paths we want.

#It will print the out in a periodic latex format.

114

for l in range (0,5):

S.append([])

for k in range(0,5):

#print S

S[l].append([])

for m in range(0,10):

print "----------------"

print "l=", l, "k=", k, "m=", m

S[l][k].append([])

for n in range(0,500):

#print S

S[l][k][m].append([])

if l==0 and k==0 and m==0 and n==0:

S[l][k][m][n]=0

elif l==0 and k==0 and m==0:

S[l][k][m][n]=findPathNum(n)

elif l==0 and m==0 and n==0:

S[l][k][m][n]=(findPathNum(k))

elif k==0 and m==0 and n==0:

S[l][k][m][n]=(findPathNum(l))

elif k==0 and l==0 and n==0:

S[l][k][m][n]=findPathNum(m)

elif l==0 and n==0:

S[l][k][m][n]=(findPathNum(k+m))

elif k==0 and n==0:

S[l][k][m][n]=(findPathNum(l+m))

elif m==0 and n==0:

S[l][k][m][n]=(findPathNum(k+l))

elif l==0 and k==0:

S[l][k][m][n]=findPathNum(n+m)

elif l==0 and m==0:

S[l][k][m][n]=findPathNum(n+k)

elif k==0 and m==0:

S[l][k][m][n]=findPathNum(l+n)

elif l==0:

S[l][k][m][n]=T[k][m][n]

elif k==0:

S[l][k][m][n]=T[l][m][n]

elif m==0:

S[l][k][m][n]=T[l][k][n]

elif n==0:

S[l][k][m][n]=T[l][k][m]

115

else:

S[l][k][m][n]=(Slkmn(l,k,m,n))

if n%12==11:

print S[l][k][m][n], "\\"

print n+1, "&",

else:

print S[l][k][m][n], "&",

return S

C.3 Evolution of Strings Code

Below are some useful sage functions.

import random

from sage.rings.all import Integer

from sage.plot.scatter_plot import ScatterPlot

#create the transition matrix

def createMatrix(length):

#print ’length’, length

N=length+1

#mat2={}

mat2=matrix(QQ,N,N)#RealField(1000),N,N)

binList=listOfBinCoeff(length)

for tempd in range(0, length+1):

s2=0

for tempi in range(0 ,1):

s2=s2+myfun2(length, 0, tempd, tempi,1/4,binList)

mat2[(0,tempd)]=s2 #float(s2)

for tempc in range(1,length):

prob= 1-Integer(tempc)/Integer(length)

for tempd in range(0,length+1):

s=0

s2=0

for tempi in range(max(0,tempc-tempd) ,tempc+1):

s2=s2+myfun(length, tempc, tempd, tempi, prob,

1/4,binList)

mat2[(tempc,tempd)]=s2 #float(s2)

#print latex(s2), tempc, tempd, tempi

for tempd in range(0,length):

mat2[(length,tempd)]=0

mat2[(length,length)]=1

116

#print mat2

return mat2.transpose()

#function that computes the matrix entry for all rows except the

top and bottom rows

def myfun(l,c1,d,i,p,x,binList):

if c1<i:

fun=0

elif (l-c1)<(d-c1+i):

fun=0

else:

fun=binList[c1][i]*(p*(1/x-1)*x)^i*(1-p+p*x)^(c1-i)*

binList[l-c1][d-c1+i]

(x)^(d-c1+i)((1/x-1)*x)^(l-d-i)

return fun

#function that computes matrix entry for the top column of the matrix

def myfun2(l,c1,d,i,x,binList):

fun2=binList[(l-c1)][(d-c1+i)]*(x)^(d-c1+i)*((1/x-1)*x)^(l-d-i)

return fun2

#List all Binary coefficients so we only compute them once

def listOfBinCoeff(length):

var(’x,y’)

binList=[]

for x in range(0,length+1):

binList.append([])

for y in range(0,x+1):

binList[x].append(binomial(x,y))

return binList

#Power method to find the largest eigenvalue

def powerMethod(mat, N, tol):

u=matrix(RealField(1000),N,1)

count=0

err=1

for i in range(0,N):

u[i]=1

while(tol<err.abs() and count<10000):

err=u.norm(Infinity)

u=1/u[0,0]*u

#u=1/u.norm(Infinity)*u

117

u=mat*u

err -=u.norm(Infinity)

count+=1

#print u

return u

#Test to tell the probability we are in the absorbing state at time t

def convergenceTime(N, mat, num):

u=matrix(RealField(1000),N,1)

u[0]=1

for t in range(num):

u=mat*u

#print ’t=’, t, ’u’

#print u

return u

#The definition of absorption. t tells the number of steps to get

#to the absorbing state.

def absorption(len, mat):

Q=matrix(QQ,len,len);

for i in range(0,len):

for j in range(0,len):

Q[i,j]=mat[i,j]

N=identity_matrix(QQ,len)-Q

N=N.inverse()

c=matrix(RealField(25),1,len)

for i in range(0,len):

c[0,i]=1

t=c*N

print t

return t

#Wilf model estimate for time to absorption

def Wilf(len, alphabet):

wilfConvergence=log(len)/(log(alphabet/(alphabet-1)))

return wilfConvergence

#Plot for our absorbing state vs. Wilf’s model

def absorbVsWilf():

wilfList=[]

absList=[]

count=0

118

for len in range(5,11):

wilfList.append([])

absList.append([])

mat=createMatrix(len)

t=absorption(len,mat)

absList[count].append(len)

absList[count].append(t[0,0])

w=Wilf(len,4)

wilfList[count].append(len)

wilfList[count].append(w)

count=count+1

p1=points(absList, rgbcolor=(1,0,0))

p2=points(wilfList)

show(p1+p2)

#Plot for the absorbing states

def plotAbsorbingStates():

plotListAb=[]

count=0

for len in range(5,20):

plotListAb.append([])

mat=createMatrix(len)

#u=convergenceTime(len+1,mat,10)

#print u

t=absorption(len,mat)

plotListAb[count].append(len)

plotListAb[count].append(t[0,0])

count=count+1

s= points(plotListAb)

show(s)

def findSecondEigWithQ(mat,len):

Q=matrix(RealField(1000),len,len)

for i in range(len):

for j in range(len):

Q[i,j]=mat[i,j]

u2=powerMethod(Q,len,10^(-30))

return u2

119

#plot for second eigenvalues

def plotSecondEig():

plotList=[]

count=0

for len in range(10,101):

mat=createMatrix(len)

u2=findSecondEigWithQ(mat,len)

print "len=", len

print u2[0,0]

#If we want to collect a list of data points on the second

#largest eigenvalue for plotting purposes

plotList.append([])

plotList[count].append(len)

plotList[count].append(u2[0,0])

count=count+1

#print u2

#print u2[0]

#if u2[0]>1:

#print ’len’, len

#print plotList

s= points(plotList)

show(s)

def OneMinusLambda(len):

mat=createMatrix(len)

u2=findSecondEigWithQ(mat,len)

vecSum=0

for i in range(len):

vecSum=vecSum+u2[i,0]

u2=u2*1/vecSum

sum=0

for i in range(len):

sum=sum+mat[len,i]*u2[i,0]

return sum

def plotOneMinusLambda():

plotList=[]

count=0

for len in range(5,20):

sum=OneMinusLambda(len)

plotList.append([])

plotList[count].append(len)

120

plotList[count].append(sum)

count=count+1

s=points(plotList)

show(s)

Below are some useful matlab functions

function [] = eigenVal(len, k)

digits=50;

%Function that will create a matrix for a string of length l, over

%an alphabet of size k.

N=len+1;

matrix=zeros(N);

%Top row

for tempd=0:N-1

matrix(1,tempd+1)=matrix(1,tempd+1)+

matrixEntry(len,0, tempd, 0, 1/k, 0);

end

%Middle of the matrix

for tempc=1:len-1

prob=1-tempc/len;

for tempd=0:len

for tempi=max(0,tempc-tempd):tempc

matrix(tempc+1,tempd+1)=matrix(tempc+1,tempd+1)+

matrixEntry(len,tempc,tempd,tempi,1/k,prob);

end

end

end

%Bottom row

for tempd=0:(len-1)

matrix(len+1,tempd+1)=0;

end

matrix(len+1,len+1)=1;

matrix=matrix.’;

[V,D]=eig(matrix,’nobalance’);

eig(vpa(matrix));

en=zeros(len+1,1);

en(len+1,1)=1;

Q=zeros(len);

121

for i=1:(len)

for j=1:len

Q(i,j)=matrix(i,j);

Q(i,j)=matrix(i,j);

end

end

[vecQ, valQ]=powerMeth(len,Q)

end

function [matEntry]= matrixEntry(l, c, d, i, x, p)

if l-c<d-c+i

matEntry=nchoosek(c,i)*(p*(1/x-1)*x)^i*(1-p+p*x)^(c-i)*0*

(x)^(d-c+i)*((1/x-1)*x)^(l-d-i);

else

matEntry=nchoosek(c,i)*(p*(1/x-1)*x)^i*(1-p+p*x)^(c-i)*

nchoosek(l-c,d-c+i)*(x)^(d-c+i)*((1/x-1)*x)^(l-d-i);

end

end

function [B,eigenVal,eigenVector]=deflation(len,matrix,eigOld)

v=ones(len+1,1);

e1=zeros(len+1,1);

e1(1)=eigOld;

k1=-sign(e1’*v)*norm(v,2)

n=norm(v,2);

beta=1/(n*(n+norm(e1’*v)))

u=v-k1*e1

H1=eye(len+1)-beta*u*u’

Anew=H1*matrix*(eye(len+1)-beta*u*u’)

B=zeros(len);

b1t=zeros(1,len);

for i=2:len+1

for j=2:len+1

B(i-1,j-1)=Anew(i,j);

end

b1t(i-1)=Anew(1,i);

end

Anew;

B

[u,eig]=powerMeth(len,B)

alpha=(b1t*u)/(eig-1)

122

z=zeros(len+1,1);

z(1)=alpha;

for i=2:len+1

z(i)=u(i-1);

end

eigVec=H1*z;

eigenVal=eig;

eigenVector=eigVec/eigVec(len);

end

function [vec, val]=deflation2(len,matrix, eig1, eigVec1)

B=matrix-eig1*eigVec1*eigVec1.’;

[vec, val]=powerMeth(len+1,B);

vecSum=0;

for i=1:length(vec)

vecSum=vecSum+vec(i);

end

vec=vec*1/vecSum;

end

function []=deflation3(len,matrix, eig1, eigVec1)

x=eigVec1/(norm(eigVec1,2)^2);

B=matrix-eig1*eigVec1*x.’;

[vec, val]=powerMeth(len+1,B);

v=(val-eig1)*vec+eig1*(x.’*vec)*eigVec1;

end

function [t]=absorption(len, matrix)

Q=zeros(len);

for i=1:len

for j=1:len

Q(i,j)=matrix(i,j);

end

end

%[U1,V1]=eig(Q,’nobalance’)

N=inv(eye(len)-Q);

c=ones(len,1);

t=N*c;

end

function []=gramSchmidtPower(len,matrix)

v=ones(len,1);

123

u=zeros(len,1);

for i=1:(len-1)

u(i,1)=1/(len-1);

end

u(len,1)=-1;

for i=1:100

u=u-dot(u,v)/dot(v,v)*v;

u=matrix*u;

end

u;

end

function[]=timeToAbsorption(len,matrix)

e1=zeros(len);

e1(1)=1;

time=0;

while time<10

e1=matrix*e1

end

end

function [u, eigNew]=powerMeth(len,matrix)

count=0;

u=ones(len,1);

u(len-1)=0;

tol=1;

u1=matrix*u;

u=(1/(u1(1))*u1);

eigOld=u1(1);

%for tempi=0:200

while (tol > 10^(-40) && count<1000)

u1=matrix*u;

eigNew=u1(1);

u=(1/eigNew*u1);

tol=abs((eigNew-eigOld)/eigNew);

eigOld=u1(1);

count=count+1;

end

eigNew;

vecSum=0;

for i=1:length(u)

vecSum=vecSum+u(i);

124

end

u=u*1/vecSum;

end

125

Bibliography

[1] Theory of impartial games. Lecture Notes, MIT, 2009.

[2] Julius G. Baron. The game of nim-a heuristic approach. Mathematics Magazine,
1974.

[3] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for
your mathematical plays, second edition. A K Peters Ltd., 2001.

[4] Ivona Bezáková, Daniel Stefankovic, Vijay V. Vazirani, and Eric Vigoda. Ac-
celerating simulated annealing for the permanent and combinatorial counting
problems. In In Proceedings of the 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA, pages 900–907. ACM Press, 2006.

[5] Brian Bowers, Neil Calkin, Kerry Gannon, Janine E. Janoski, Katie Joes, and
Anna Kirkpatrick. The log concavity of the partition function. in preparation.

[6] Neil Calkin, Kevin James, Janine E. Janoski, Sarah Leggett, Bryce Richards,
and Stephanie Thomas. Computing strategies for graphical nim. Congressus
Numeratntium, 202:171–186, 2010.

[7] E. Rodney Canfield. Integer partitions and the sperner property. Theoretical
Computer Science, 307(3):515–529, 2003.

[8] Thomas S. Ferguson. Game theory. Lecture Notes, Math 167, School, 2000.

[9] Masahiko Fukuyama. A nim game played on graphs. Theoretical Computer
Science, 2003.

[10] Masahiko Fukuyama. A nim game played on graphs ii. Theoretical Computer
Science, 2003.

[11] E. Garcia. Matrix tutorial 3: Eigenvalues and eigenvectors.
http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-
eigenvalues-eigenvectors.htmlpower-method, 2006.

[12] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American
Mathematical Society, 2006.

126

[13] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries. Journal
of the ACM, 51(4), 2004.

[14] L. Lovasz and M. D. Plummer. Matching theory, volume 121 of North-Holland
Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals
of Discrete Mathematics, 29.

[15] R. C. Mittal and Ahmad Al-Kurdi. Efficient computation of the permanent of a
sparse matrix. Intern. J. Computer Math., 77:189–199, 2001.

[16] H.J. Ryser. Combinatorial Mathematics. Mathematical Association of America,
1963.

[17] G. Szekeres. Some asymptotic formulae in the theory of partitions. Quarterly
Journal of Mathematics, 2(2):85–108, 1951.

[18] G. Szekeres. Some asymptotic formulae in the theory of partitions(ii). Quarterly
Journal of Mathematics, 2(4):96–111, 1953.

[19] Xi-Fan Wang, Yonghua Song, and Malcolm Irving. Modern Power System Anal-
ysis. Springer, 2008.

[20] Herbert S. Wilf and Warren J. Ewens. There’s plenty of time for evolution.
arXiv:1010.5178v1, 2010.

127

	Clemson University
	TigerPrints
	5-2012

	A Collection of Problems in Combinatorics
	Janine Janoski
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Figures
	The Partition Function
	Introduction
	Log-Concavity of p(n)
	Unimodality
	Bipartite Matching
	n,1 to n,m
	n,m to n,"4264306 n2 "5265307
	n,"4262304 n2 "5263305 to n,n

	Conclusion

	Graph Nim
	Introduction
	Sprague-Grundy
	Graph Nim on Paths
	Graph Nim on Caterpillars
	Firework Graphs
	Cycle-Paths
	G-Paths
	General G-paths

	Graph Nim on Graphs
	Winning and Losing Complete Graphs
	The Sprague-Grundy Approach
	Heuristic Analysis of S-G Number Distribution

	Conclusion

	The Evolution of Strings
	Introduction
	Computing Eigenvalues
	Power Method
	Numeric Methods
	Second Eigenvalue Computations
	Absorption
	Other Models

	Conclusion

	Appendices
	Firework Graphs
	3-Firework Graphs
	4-Firework Graphs

	Cycle Nim
	Sage and Matlab Programs
	Unimodal Code
	Nim Code
	Evolution of Strings Code

	Bibliography

