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ABSTRACT 
 
 

Research on insects, the most successful group from all metazoans on earth, has 

important societal, as well as scientific benefits. Insects occupy a wide range of roles, 

which have an effect on human life either because the former pose serious threats to 

public health and commercial crops as well as in some cases represent the only way to 

propagate food resources. Despite their tremendous importance, insect genomics 

remained an uneven territory dominated by studies in the Drosophila group and the 

mosquitoes. This dissertation attempts to: 1) report on advances in the development and 

characterization of genomic tools for species of the order Hymenoptera in the hopes of 

helping to close this gap; and 2) to shed light on the organization, origin and evolution of 

genes of the Hox cluster in species of the order Hymenoptera through molecular 

evolution analyses that were possible thanks to the availability of the aforementioned 

genomic resources.  
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PREFACE 

 

Arthropods are the most diverse group of organisms on earth. With almost one 

million described species, insects outnumber all other known animal species. Their 

morphological complexity and developmental diversity have led to major breakthroughs 

in our understanding of ontogeny and developmental biology, even for distantly related 

organisms. The wide variety of extant insect forms and life styles has also made them 

subjects of phylogenetic, evolutionary and ecological studies. Research on insects has 

important societal, as well as scientific benefits, as many insects pose serious threats to 

public health and commercial crops. 

Despite their tremendous importance, insect genomics remained an uneven 

territory dominated by studies in the Drosophila group and the mosquitoes. Other than the 

well-developed genetic model Drosophila melanogaster, genomic resources for the 

remainder of the insects are surprisingly inadequate. EST libraries and genetic linkage 

maps have been constructed for several insects, but Bacterial Artificial Chromosome 

(BAC) libraries are available for only a few species such as the honey bee Apis mellifera 

(Tomkins et al., 2002), the mosquitoes Aedes aegypti (Jiménez et al., 2004) and 

Anopheles gambiae (Hong et al., 2003), the red flour beetle Tribolium castaneum (Brown 

et al., 2002) and the silk moth Bombyx mori (Mita et al., 2002). 

The following pages detail research conducted in an attempt to help closing the 

gap in insect genomics. With this idea in mind, the goal of this dissertation is twofold. 

First, is to report on advances in the development and characterization of genomic tools 
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for species of the order Hymenoptera in the form of BAC libraries for two species of 

parasitic wasps of the genus Nasonia, and one species of social Hymenoptera, the 

bumblebee Bombus terrestris. The availability of genomic resources will greatly facilitate 

comparative genomics and positional cloning projects between species of this order. 

Second, is to shed light on the organization, origin and evolution of genes of the Hox 

cluster in species of the order Hymenoptera through molecular evolution analyses, 

demonstrating also the utility of developing genomic resources of this kind. 

To highlight the most important points for each objective this dissertation is 

organized into one chapter of literature review followed by three research chapters, which 

are divided into two sections. The literature review presents a description of the most 

recent advances in the field of insect genomics, and discusses critical concepts on the 

theory and implementation of comparative analyses at the molecular level using genomic 

information. 

Following this review, there are two sections of research chapters. The first 

section includes chapters two and three, and is focused on the generation of genomic 

resources for the Hymenoptera research community. Chapter Two describes the 

construction of a publicly available BAC library for the bumblebee (Bombus terrestris) 

and it was published in Insectes Sociaux. [Wilfert, L, M Muñoz Torres, C Reber-Funk, R 

Schmid-Hempel, J Tomkins, J Gadau and P Schmid-Hempel. 2008. Construction and 

characterization of a BAC-library for a key pollinator, the bumblebee Bombus terrestris 

L. DOI: 10.1007/s00040-008-1034-1]. Bumblebee, a primitive social hymenopteran, is an 

ecological and evolutionary model species as well as an important agricultural pollinator 
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(Goulson, 2003). Recent studies on bumblebees have focused on ecological immunity 

and host-parasite interactions. Analysis of quantitative trait loci (QTL) yielded useful 

information to study the maintenance of genetic variation for fitness-relevant traits 

involved in host-parasite interactions in natural populations (Schmid-Hempel, 2001). 

However it is necessary to rely on the development of genomic resources to test the 

hypotheses generated through these studies by isolating the genes responsible for the 

observed variation in the studied populations regarding host-resistance. The development 

of large-insert libraries open the possibility to resolve this and similar situations in which 

traditional genetic studies have been exhausted and the need for a concrete answer is 

necessary in the absence of a whole genome sequence. 

Chapter Three is a contribution to a collection of companion papers to be 

published along with the first assembly of the genome sequence of the parasitic wasp 

Nasonia vitripennis. It constituted the first genome-wide survey of two species of the 

genus Nasonia, N. vitripennis and N. giraulti, through the construction, characterization 

and hybridization of BAC libraries. The completed manuscript will be submitted to Insect 

Molecular Biology. [Munoz-Torres, M, C Saski, B Blackmon, J Romero-Severson, J 

Tomkins and JH Werren. Development of BAC library resources for parasitic 

Hymenoptera: (Nasonia vitripennis and Nasonia giraulti. Pteromalidae). Insect 

Molecular Biology. In preparation]. Laboratory tractability, interesting and diverse 

biology, large family sizes, haplodiploidy, the ability to inbreed and produce healthy 

isogenic inbred lines, a wealth of visible and molecular markers, four closely related and 

interfertile species, the ease of performing complete genome screenings in the search for 
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mutations in the haploid sex and the capacity to produce genetically identical 

recombinant genotypes in the F3 generation have made the species of the genus Nasonia 

a primary model for parasitoid genetics (e.g. Werren, 2000, Gadau et al., 1999, Darling 

and Werren, 1990,Whiting, 1967). More is known about the biology of Nasonia than any 

other parasitic hymenopteran, and the species have a very active research community 

dedicated to study a diverse collection of aspects of its natural history, development, 

ecology, morphology, physiology and genetics, to name a few. Yet until recently, very 

little was known about the structure of the genome of Nasonia, and genomic resources to 

answer specific questions were scarce. This chapter describes a gateway into the genome 

of two species of Nasonia. 

The second section, chapter four, describes molecular and evolutionary analyses 

of Antennapedia (Antp) in the context of patterns observed among eight of the ten 

orthologs of the insect Hox cluster in Nasonia vitripennis. The experimental approach 

and results presented test hypotheses regarding nucleotide substitution patterns expected 

during alternative evolutionary processes. This chapter focuses on substitution rates to 

estimate divergence within the Antennapedia (Antp) gene among three species of 

Hymenoptera, and investigated the divergence among genes of the Hox cluster of genes 

of Nasonia vitripennis as a comparison to explain the observed patterns in the N. 

vitripennis Antp-gene nucleotide sequence. The manuscript for this chapter was prepared 

for submission to Insect Molecular Biology. [Muñoz-Torres, M and A Lawton-Rauh. 

Selection differential across Antennapedia among hymenopteran species suggest 
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homeodomain-specific purifying selection. Insect Molecular Biology. In preparation]. 

Appendix C contains supplementary data in support of this chapter. 

Events of gene transfers between organisms of different species provide yet a 

different perspective in studying the origin and evolution of genes; this equation becomes 

a bit more complex when the two organisms in question belong to distant branches of the 

evolutionary tree. Research reporting on widespread lateral gene transfer from 

intracellular bacteria to multicellular eukaryotes showed that some of the inserted 

bacterial genes are transcribed within eukaryotic cells (Dunning Hotopp et al., 2007); this 

suggests that these heritable lateral gene transfers may provide a mechanism for 

acquisition of new genes and functions. Which are these mechanisms? How do they drive 

gene evolution? How have both eukaryotic machinery and genes (and the genomic 

vicinity) changed since the bacterial insertion event? How is selection acting on the 

inserted DNA? Do endosymbiotic bacterial accelerate divergence and speciation of their 

eukaryotic host? These and many other questions regarding issues such as transmission of 

the inserted DNA and how endosymbionts, located in the germlines of their eukaryotic 

hosts, manipulate host cell biology and reproduction, still remain to be answered.  

Appendix A contains the published manuscript on evidence obtained for events of 

lateral gene transfer from Wolbachia to 11 different species of Eukaryotes. [Dunning 

Hotopp, JC, ME Clark, DCSG Oliveira, JM Foster, P Fischer, MC Muñoz Torres, JD 

Giebel, N Kumar, N Ishmael, S Wang, J Ingram, RV Nene, J Shepard, J Tomkins, S 

Richards, DJ Spiro, E Ghedin, BE Slatko, H Tettelin, and JH Werren. 2007. Widespread 

Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes. Science 
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317 (5845):1753-1756.]. Appendix B contains data concerning ongoing research to help 

answer these and other questions related to a lateral gene transfer event reported from 

endosymbiotic Wolbachia pipientis into the genome of the tropical fruit fly Drosophila 

ananassae. The appendix describes results of hybridization experiments with Wolbachia-

specific genes on a Drosophila ananassae (Hawai'i) BAC library. The BAC library was 

constructed with adult individuals of a non-cured strain, thus BACs may contain 

endosymbiont DNA or Wolbachia-inserted DNA. Using Finger Printed Contig (FPC) 

analyses and BAC-end sequence data, seven candidate BACs were chosen for full 

sequencing. 
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CHAPTER ONE 

LITERATURE REVIEW ON INSECT COMPARATIVE GENOMICS AND 

MOLECULAR EVOLUTION 

 

Genomics: definition and use 

Dr. Thomas H. Roderick coined the word genomics in 19861 (Kuska, 1998). At 

the time Roderick was a geneticist at the Jackson Laboratory in Bar Harbor, Maine and 

what was initially thought as the name of a journal dedicated to advancements in genome 

sequencing and mapping, would go on to become a very important part of biology. Today 

it is widely accepted that the overarching aim of genomics is to provide a comprehensive, 

genome-level understanding of the molecular basis of the structure, functions, and 

evolution of biological systems using whole-genome sequence information and high-

throughput genomic technologies (Zhou et al., 2004).  

When whole-genome sequences are not yet available for the organism of interest, 

it is necessary to resource to tools that will allow researchers to interrogate these 

genomes. Pursuing a wider understanding of evolution and development, and striving to 

provide stronger genetic foundations to research on the species of Insecta, genomic 

resources were developed for a number of insect taxa in recent years using the Bacterial 

Artificial Chromosome (BAC) system. Libraries were developed for a variety of 

representative species spanning a large evolutionary distance in the phylogeny of insects, 

including honey bee Apis mellifera (Tomkins et al., 2002), the mosquitoes Aedes aegypti 

                                                
1 While attending a meeting on “the feasibility of mapping the entire human genome”. The word was 
Roderick’s contribution to a discussion on the name of a new genome-oriented scientific journal. It stuck.  
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(Jiménez et al., 2004) and Anopheles gambiae (Hong et al., 2003), the red flour beetle 

Tribolium castaneum (Brown et al., 2002) and the silk moth Bombyx mori (Mita et al., 

2002). These species shared both the fact that they display attributes that have granted 

them scientific importance as model organisms for ecological or developmental studies, 

as well as the scarcity of existing genomic resources at the time. In combination with then 

extant whole genome sequences of Drosophila melanogaster, Anopheles gambiae and 

Apis mellifera, such libraries enabled the scientific community to test important 

hypotheses concerning insect genetics, genomics, development, ecology, systematics, and 

evolution. 

BAC libraries originated as a system to facilitate the construction of large-insert 

DNA collections of complex genomes with fuller representation and subsequent rapid 

analysis of complex genomic structure (Shizuya et al., 1992). BACs are not artificial 

chromosomes per se, but rather are modified bacterial F factors. Although they can carry 

inserts approaching 500 Kb in length, insert sizes between 80 and 300 kb are more typical 

(Budiman et al., 2000, Koike et al., 2003, Yu et al., 2000). BACs are relatively free of the 

chimerism and insert rearrangements that commonly occur in YACs (Woo et al., 1994; 

Boysen et al., 1997; Cai et al., 1995). BAC clones are relatively easy to manipulate and 

propagate, thus BAC libraries in which each clone is stored and archived individually 

(i.e., ordered libraries) have become a central tool in modern genomics research. The 

library construction process may introduce certain biases that could jeopardize the 

inclusion of all genomic regions in a single library. There may be overrepresentation and 

underrepresentation of certain regions of the genome due to the use of a single restriction 
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enzyme per library, partial digestion of genomic DNA, and the unavailability of certain 

regions of genomes such as centromeres, highly repetitive sequences and telomeres, due 

to their lack of recognition sites for common restriction enzymes (Mahtani and Willard, 

1998; Chew et al., 2002; Yuan et al., 2008). To ensure sufficient depth of genome 

coverage, attempts are made to redundantly represent the genome by robotically picking 

recombinant colonies in numbers up to ten times the minimum amount necessary to cover 

once the size of the genome. Despite these efforts gaps may still exist and alternative 

tools may be needed to reach the missing regions of the genome. Osegawa and colleagues 

(2001) and the Lucigen Corporation (2008) developed shearing techniques to partition 

megabase-sized DNA onto fragments, which can be then cloned onto BAC or fosmid 

vectors. Mechanical shearing of genomic DNA allows access to all portions of the 

genome regardless of their availability of restriction sites for the most commonly used 

cloning enzymes, avoiding bias of aberrant representation of certain regions and 

increasing genome coverage. 

 

Genomic research is comparative by nature 

The discovery of Mendel’s laws of heredity developed into a scientific quest to 

understand the nature and content of genetic information over the last century. The field 

of biology emerged as a discipline rooted in comparisons. Comparative physiology has 

assembled a detailed catalogue of the biological similarities and differences between 

species, revealing insights as to how life has adapted to fill a wide range of environmental 

niches (Nobrega and Pennacchio, 2003). Comparative studies in anatomy, biochemistry, 
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pharmacology, and immunology and cell biology have provided fundamental paradigms, 

which have contributed to the growth of each of these disciplines. Genomics is the most 

recent branch of biology to employ comparison-based strategies (Nobrega and 

Pennacchio, 2003). Comparative genomics provides a powerful and general approach for 

indentifying functional elements without previous biological knowledge. It aids in the 

identification of genes, gene structure, regulatory elements, and evolutionary forces 

acting on an organism’s biological processes surmounting the need for survival. Attaining 

this information might finally bring us closer to understanding how species have 

managed to maintaining entire sets of genes which are conserved among many species, as 

well as developing sets of genes unique to each of them.  

Comparative genomics analyses have lead to changes in our understanding of 

some phylogenetic relationships along the branches of the evolutionary tree. The beetle 

species richness is now better explained by high survival of lineages and sustained 

diversification in a variety of niches (Hunt, 2007) and evidence has now surfaced placing 

the species of the order Hymenoptera at the base of the radiation of Holometabolous 

insects (Zdobnov and Bork, 2006; Savard et al., 2006). In light of the possibilities offered 

by the availability of whole-genome sequences of three vector mosquitoes (Anopheles 

gambiae, Aedes aegypti and Culex pipiens) comparative genomics also helped 

researchers to study the mechanisms by which viruses are able to circumvent their host’s 

antiviral interference RNAi, as well as the limitations of this defense (Campbell et al., 

2008). Selective pressure exists on both the virus and the vector mosquito to modulate the 

immune response. The authors reported that in all three species of mosquito anti-viral 



 14 

defense effectors are evolving at a faster rate than those involved in housekeeping 

functions. Despite this some mosquito species are still effective transmitters of 

aborviruses regardless of the presence of an anti-viral response, suggesting that both 

vector and virus are continuously evolving to overcome the challenges posed by the 

biology of the other. Campbell and colleagues also reported that analysis of genes of the 

Argonaute protein family (involved in gene silencing pathways through the use of 

dsRNA) suggested that the small regulatory RNA pathways of A. aegypti and C. pipiens 

are evolving faster than those of A. gambiae and D. melanogaster. Further comparative 

genomics and functional analyses may be the key to understanding why A. gambiae 

displays a lower competence as a viral vector (it primarily transmits malaria parasites) in 

what appears to be a more effective antiviral immune response than either of the former 

species. 

Long, continuous segments of DNA and all characterization data available, 

including their association with chromosomes in our organism of interest, sit at the core 

of genomic research approaches to understanding evolutionary biology and phylogenetic 

relationships with respect to other species through comparative analysis. This clear 

necessity, and the successful stories reported for many animal and plant species, has 

increased our interest in developing genomic tools for a number of organisms. Currently 

such tools are being developed primarily in an attempt to understand more about the 

mechanisms of genome evolution, to better understand our own genome and those of 

model species involved in research concerning human health and agricultural practices. 
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Insect genomics 

In 2007 twenty-seven insect species had either been recently sequenced or were in 

the process of being sequenced (Grimmelikhuijzen et al., 2007). Currently, the National 

Center for Biotechnology Information (NCBI) lists a total of 59 public insect genome-

sequencing projects (www.ncbi.nlm.nih.gov/Genomes). There are at least preliminary 

assembly versions available for 31 species, such as the jewel wasp (Nasonia vitripennis) 

and the mosquito vector of lymphatic filariasis (Culex quinquefasciatus), and in some 

cases assemblies are available in revised versions (e.g. Apis mellifera Assembly v 4.0). 

To date the genome of the fruit fly Drosophila melanogaster is the most thoroughly 

annotated sequence and contains no gaps. The genomes of 27 additional insect species 

are still being sequenced and pending for a first assembly version. The list of insect 

projects currently undergoing covers an evolutionary distance of 310 - 325 millions of 

years (My) across six orders (Grimaldi and Engel, 2005). Overall, the outcome of these 

projects will provide genomic information immediately valuable to biochemists, 

molecular biologists, insect physiologists, and to many other disciplines on the long run. 

The findings obtained as a result of these genome projects will also very likely uncover a 

number of surprises such as smaller than expected genome sizes for a number of species 

(Johnston et al., 2007) or larger than expected numbers of paralogs in collections of 

insect-specific proteins, which may indicate adaptation to environment changes (Zhang et 

al., 2007).  

Based on their mode of development, insect species may be grouped into non-

holometabolous lineages and a monophyletic group that exhibits a holometabolous mode 
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of development as one of their synapomorphies, the Holometabola (Endopterygota) 

(Gullan and Cranston, 2004). Within non-holometabolous lineages, there are species with 

a hemimetabolous mode of development. In hemimetabolous insects early developmental 

stages resemble the adult forms and in holometabolous complete metamorphosis changes 

the appearance of the immature insect to adopt a fully developed adult form. Intricacies 

of the discussion defining the difference between hemimetabolous insects and other non-

holometabolous developmental schemes go beyond the scope of this review; additionally, 

all species of non-holometabolous insects included in this review do observe a 

hemimetabolous mode of development, thus the term hemimetabolous will be used 

hereafter to refer to all non-holometabolous insect species in this document. 

Genome sequencing efforts were initially concentrated on holometabolous insects 

but in the last few years an increasing number of hemimetabolous insect species have 

been selected for sequencing. Including species less derived than the predominantly 

holometabolous ones to the wealth of insect genome projects provides a source of 

important information for the advancement of research focused on the evolution of insect 

and arthropod genomes. Their characterization may provide insights into the implications 

of the enormous amounts of extra genomic DNA on chromosomal structure and 

organization, and on other basic biological aspects such as mitosis and meiosis.  

 

Public Genome Projects on Species of Holometabolous Insects. 

Their considerable impact on human health as vectors of infectious and 

sometimes fatal diseases, on human agricultural practices as the cause of damage to 
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several crops, and their potential role as model organisms for the study of biological, 

developmental and evolutionary studies, has granted species of holometabolous insects a 

darling place at the heart of the field of insect genomics. The following paragraphs 

describe a few highlights on the relevance and contributions of these genome-sequencing 

projects.  

DIPTERA. Besides the extensively studied Drosophilid group, the mosquitoes have 

been the only other group within the order subjected to genome-sequencing projects. I 

will leave the highlights of extensive contributions the research in Drosophilid species 

has made to science, a subject to be further explored by the interested reader on the many, 

many pages available. The range and scope of knowledge obtained from research on this 

group has been discussed on a myriad of manuscripts including documents in many 

scientific journals (including articles by FlyBase Consortium 2002, Celniker and Rubin 

2003, Ashburner and Bergman 2005, and Drysdale and FlyBase Consortium, 2008) and 

even a book that goes as far as describing the conflicting personalities of the researchers 

involved in the sequencing of the Drosophila Genome (Ashburner, 2006), among many 

others. As noted by Ashburner and Bergman (2005), one of the most important 

contributions of these projects was the establishment of unprecedented methodologies 

such as whole-genome shotgun sequencing and genome annotation by a community 

“jamboree”, which became the model to be followed by most genome projects after that. 

Beyond the D. melanogaster project, the genome sequences of other 23 species of 

Drosophila will provide more advances on sequencing strategies and techniques for 
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comparative analyses in addition to a platform for advancing our understanding of critical 

biological processes and their evolutionary history. 

Also from the infraorder Muscomorpha, although distantly diverged from 

Drosophila, the genomes of three other flies are currently being sequenced. Cochliomyia 

homnivorax is the new world screw-worm fly, a parasitic species that feeds on the living 

tissue of warm-blooded animals. The horn fly Hematobia irritans is a blood-feeding 

parasite of cattle. The former a predominant species of the tropics and the latter spread 

worldwide, both species represent a threat to the cattle industry throughout the globe and 

determining the genome sequences of these organisms will provide information necessary 

to develop new technologies for their control. The “third fly” is actually a group of them, 

the Glossina flies or tsetse flies. Flies of the genus Glossina are cyclical vectors of the 

pathogens that cause the human African trypanosomiasis (sleeping sickness) and nagana 

in animals. Because of the antigenic variation in the trypanosome no vaccines are 

available and they are unlikely to be developed (Askoy and IGGI, 2007). Hence 

determining the genome of the tsetse flies will contribute to our understanding of the fly-

trypanosome interactions during establishment of infections in the fly and such genomic 

tools will become elemental in developing new vector-based approaches to combat these 

diseases. Last in this list but not of least importance, two species of phlebotomine sand 

flies, Lutzomyia longipalpis and Phlebotomus papatasi, have been selected for whole 

genome sequencing. Sand flies are the transmitting vectors of bacterial, viral and 

protozoan pathogens, which are the causing agents of emerging and re-emerging human 

diseases such as bartonellosis (which may lead to fatal anemia or Oroya fever), sand fly 
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fevers and Leishmaniasis. Genomic analyses on these species will accelerate the progress 

of research on the interactions between vector, parasite and host. Kamhawi (2006) 

reported on the evolutionary adaptations that ensure the survival of the parasite that 

causes Leishmaniasis. Such adaptations include secretion of phosphoglycans, which 

protect the parasite from digestive enzymes, secretion of a neuropeptide that arrests 

midgut and hindgut peristalsis, and attaching to the midgut to avoid expulsion, among 

others. Uncovering the genome-sequences of these two species of sand flies will help 

with the identification of sand fly molecules pertinent to vector competence. Ivens and 

colleagues published the genome sequence of the parasite Leishmania major in 2005. 

Having the genome from both vector and parasite will enable us to take a global look at 

these interactions at a molecular level. 

Culicinae and Anophelinae are the two most medically important known 

mosquito subfamilies. The first includes Aedes aegypti, which is responsible for the 

transmission of the arbovirus that causes yellow fever and dengue fever, and Culex 

pipiens quinquefasciatus, which is responsible for the transmission of the West Nile virus 

and the nematode responsible for lymphatic filariasis (Wuchereria bancrofti). Anopheles 

gambiae from the Anophelinae is the primary vector for transmission of malaria. 

Mosquito control is still the only viable strategy for preventing dengue and other 

mosquito-borne diseases. The draft genome sequence of A. aegypti represents a 

significant technical achievement, which will stimulate efforts to elucidate interactions at 

the molecular level between mosquitoes and the pathogens they transmit (Nene et al., 

2007). Comparative analysis of all mosquito species will illuminate our understanding of 
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mosquito chromosome evolution, gene and gene function identification specific to host-

seeking and blood-feeding behavior, and innate immune response to pathogens 

encountered during blood-feeding behavior (Collins, 2008). As for the mosquito A. 

gambiae, outcomes of a genome-sequencing project combined with EST sequencing 

efforts will contribute to obtain substantial improvements on the control of malaria 

addressing three main aspects of mosquito biology: i) decreasing the number and 

longevity of infectious mosquitoes, ii) understanding what attracts them to human hosts 

and iii) decreasing the capacity of parasites to fully develop within them (Holt et al., 

2002). This genome represents yet another valuable molecular entomology resource that 

will hopefully lead to an effective intervention in transmission of malaria and perhaps 

other mosquito-borne diseases. Culex pipiens quinquefasciatus is the vector of the 

nematode that causes lymphatic filariasis and of West Nile virus (encephalitis). 

Determining the genome sequence of this organism will also contribute to the 

identification of mosquito genes required for pathogen transmission and will facilitate the 

development of new strategies for combating and controlling these diseases. This 

sequence will complement the ones from the mosquitoes A. gambiae and A. aegypti 

providing essential information for phylogenetic inferences and comprehensive 

comparisons within the group. It will also help to improve our understanding of genes 

involved in their capacity to act as vectors of disease-causing viruses and their adaptation 

to insecticides through the development of resistance. The possibility of performing 

genomic comparative analyses with the sequences from the C. p. quinquefasciatus, A. 
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gambiae, A. aegypti and the hornfly (H. irritans) genomes will be of paramount 

importance to study the physiological adaptations of a hematophagous diet. 

LEPIDOPTERA. The task of sequencing the genomes of species of the order 

Lepidoptera was the first attempt at generating information for comparative genomics 

and functional studies outside of the very well studied species of the order Diptera. 

Besides the displays of both beauty and evolutionary innovations offered by a large 

number of butterfly species, Lepidoptera includes insect pests of maize, cotton and 

soybean, among many other crops and garden plants. Examples of pest species are the 

helothines Helicoverpa armigera, H. zea and Heliothis virensces and the specialist 

Manduca sexta, which attacks species of the genus Nicotiana (tobacco). Lepidopteran 

species are considered models for a variety of biological processes such as interactions 

between plants and Lepidoptera, and between Lepidoptera and their pathogens (ILGP. 

2002). This order also includes an array of species important for agricultural use such as 

silk harvesting of Bombyx mori, and for offering research opportunities to study different 

models of phenotypic variations such as wing patterns on the African butterfly Bicyclus 

anynana (Wijngaarden and Brakefield, 2000) and metapopulation ecology on the 

fragmented landscape inhabited by the Glanville fritillary butterfly Melitaea cinxia 

(Orsini et al., 2008). The genome sequence of Bombyx mori has been determined to 

coverage of 90 - 97% of all known silkworm genes (Mita et al., 2004 and Xia et al., 

2004) and the two major repositories of data for this project are Silkbase 

(http://morus.ab.a.u-tokyo.ac.jp/cgi-bin/index.cgi) and the NCBI Silkworm Genome 

Project web page (http://www.ncbi.nlm.nih.gov/sites/entrez). In addition to B. mori, 
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sequencing of the genomes of Bicyclus anynana and Melitaea cinxia is currently under 

way. 

HYMENOPTERA AND COLEOPTERA. Uncovering the genome of the honey bee 

(HBGSC, 2006) opened up the possibility to study the species “from molecule to colony” 

(Wilson, 2006). Honey bee is a model species for social behavior and an essential species 

to global ecology as pollinators. The genome of A. mellifera was the third insect genome 

to be sequenced after Drosophila flies and the mosquito Anopheles gambiae. One of the 

most relevant quests for the honey bee research community, around which many research 

foci revolve, deals with the evolution of their social lifestyle. How did such lifestyle 

come into being? In fact, the reports from the HBGSC were our first genome-wide 

insights into the social life of insects. The main findings of research conducted using the 

first draft assembly of the A. mellifera genome were, among many others, a higher A+T 

and CpG contents than those of Drosophila and A. gambiae and the lack of major 

transposon families. The Consortium also reported on data suggesting that the genome of 

the honey bee evolves more slowly and seems to be more similar to vertebrates for 

circadian rhythm, RNAi and DNA methylation genes. There are fewer genes for innate 

immunity, detoxification enzymes, cuticle proteins and gustatory receptors, and more 

genes for odorant receptors than in all dipterans examined until 2006. Their findings also 

included novel genes for nectar and pollen utilization, as well as population genetics 

studies suggesting a novel African origin for the species. These features seem to be 

consistent with the ecology and social organization of the species. Conducting research 

that expands on the findings of an increase in odorant receptor genes and a decrease in 
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gustatory receptor genes may play a role in understanding the honey bee’s adaptation to 

the social life and the evolution of feeding behaviors as well as its interaction with the 

environment (Wilson, 2006). Beye and coworkers (2006) used the first draft of the honey 

bee genome sequence and the improved genetic maps to perform analyses on 

recombination rates, which led them to propose evolutionary explanations for an 

exceptionally high genome-wide recombination rate. Their analyses showed that the 

honey bee presents a genome-wide recombination rate of 19cM/Mb, and that it is 

approximately ten times higher than the one reported for humans, D. melanogaster and C. 

elegans (about 1.6 per chromosome pair); such recombination rate is not restricted to 

certain regions of the chromosomes or specific chromosomes. Even so, the relationship 

between GC content and recombination is consistent with that of mouse, human and fly, 

which may suggest a common cause or consequence of recombination. As mentioned 

before, one of the main points raised by the analyses on the honey bee genome sequence 

is that common types of transposons and retrotransposons are largely absent (HBGSC, 

2006). Beye’s team suggested that it is possible that the high recombination rate enables a 

more efficient removal of deleterious insertions, such as the ones caused by the insertion 

of mobile elements on functional genes. Lastly, this group reported that the genome-wide 

phenomenon of higher levels of recombination in the honey bee is not dependent on 

chromosome size, although it is associated with gene size. That is, introns tend to be 

larger in regions of low recombination. This may have developed as a mechanism to 

improve efficacy of selection in these regions (Beye et al., 2006). This is just one 
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example of the many applications that have been made possible with the availability of 

the Apis genome.  

The same is true for the possibilities already explored with the genome of the red 

flour beetle (Tribolium castaneum). T. castaneum belongs to the most specious and the 

most evolutionarily successful eukaryotic order, Coleoptera (Hunt et al., 2007). The 

genome sequence of this model beetle, and pest of every stored grain or dried food, was 

published in 2008 (TGSC). Tribolium became a model for the study of insect 

development thanks to many favorable traits. These traits include ease of culture, high 

fecundity, short life cycle, facility for genetic crosses and the findings that RNAi is 

systemically spread from the site of injection to neighboring tissues (Tomoyasu and 

Denell, 2004) and from females to their progeny (Bucher et al., 2002), which facilitates 

knockdown of specific genes. Tribolium embryos develop following a short-germ model 

in which additional segments are sequentially added from a posterior growth zone, and 

Tribolium larvae have eyes in a fully formed head and three pairs of thoracic legs (TGSC, 

2008). This developmental plan and such mechanism of segmentation are different from 

what is seen in Drosophila, and are believed to be more representative of other insects 

and basal arthropods (Tautz, 2004). The recently sequenced genome has already provided 

the tools to explore fascinating opportunities within the Tribolium research community as 

well as other insect orders. Lorenzen and coworkers reported on their findings on 

research conducted on the maternal-effect, selfish genetic element Medea1 and its 

association with a Tc1 transposon using the T. castaneum genome as a point of reference. 

Twenty-three beetle strains from 15 countries worldwide were tested for Medea1-
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associated maternal-lethal activity, and then subjected to sequence analysis in the vicinity 

of a Tc1 insertion site. Sequence comparisons suggested that the current distribution of 

Medea1 reflects global emanation after a single transpositional event in recent 

evolutionary time. The Medea system in Tribolium represents an unusual type of 

intragenomic conflict and could provide a useful vehicle for driving desirable genes into 

populations (Lorenzen et al., 2008). Its characterization was made possible thanks to the 

availability of genomic resources such as two BAC libraries (used to clone the region 

around Medea1 locus through BAC walking) and the newly available genome, which was 

used as reference sequence to characterize the 21.5 Kb insertion. Wanner and Robertson 

(2008) on the other hand, utilized the sequence of the T. castaneum genome along with 

the sequences of the Drosophilid flies, the mosquitoes and the honey bee, to annotate a 

total of 65 gustatory receptor genes from the silkworm Bombyx mori genome. This 

review can only attempt to scratch the surface of the collection of analyses that have been 

made possible thanks to the availability of these two holometabolous genomes. Neither 

Tribolium nor Apis is a vector of human diseases; rather both play an important role on 

human agricultural practices with the former acting as a pest and the latter as a pollinator. 

The genome sequences of both species constitute a landmark on the advancement of 

insect genomics and of our understanding of the evolutionary forces that shaped the most 

successful group of metazoans on the face of the earth, the Insects. 
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Public Genome Projects on Species of Hemimetabolous Insects 

One major concern when considering genome sequencing projects for 

hemimetabolous insect species is that approximately 70% of the genomes of species 

examined to date have very large genome sizes ranging from approximately 978 Mb for 

the termite Hodotermes mossambicus, up to over 16,000 Mb for a number of 

orthopterans, including the mountain grasshopper (Podisma pedestris) (Gregory et al., 

2006, Gregory, 2006). Large genome sizes complicate assembly efforts due to increased 

amounts of non-coding sequence populated with repetitive areas. In addition to this, the 

prevalence of holometabolous species in insect genome-sequencing projects adds a level 

of complexity to the assemblies of hemimetabolous ones due to the nucleotide sequence 

divergence inherent to such long evolutionary distances. Computational techniques used 

to generate ab initio prediction gene sets with genomic data rely on sequence similarity 

estimates obtained through algorithmic comparisons of the queried genome against all 

putative proteins available for all other insect genomes. The absence of other 

hemimetabolous insect species may then present a challenge when trying to establish a 

confident gene set for these organisms.  

Despite the potential challenges, four research groups have separately (but almost 

simultaneously) embarked in the task of sequencing the genomes of 4 hemimetabolous 

insects. These species include three hemipterans, the pea aphid, the Asian citrus psyllid 

and the blood-feeding vector of Chagas disease; the fourth hemimetabolous insect is the 

human body louse, from the order Phthiraptera. Their genome sizes are 

uncharacteristically smaller than that of the majority of hemimetabolous species studied 
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to date, ranging from approximately 100 Mb to just under 700 Mb. These smaller genome 

sizes may offer a lesser challenge for assembly. 

The pea aphid (Acyrthosiphon pisum) and the Asian citrus psyllid (Diaphorina 

citri) are the cause of crop damage representing enormous monetary losses each year. 

Aphids attack both common garden plants and several major crops, and are vectors for 

many plant viruses that cause more damage than the aphids themselves (Stern, 2008). A. 

pisum lives in obligate mutualism with the bacterium Buchnera aphidicola, a situation 

that may be similar to what might have happened in early organelle evolution, and the 

availability of a genome sequence will increase the reach of the studies on this 

relationship. 

Johnston and colleagues (2007) estimated what is believed to be the smallest 

genomes of hemimetabolous insects. The genome sizes of human body louse (Pediculus 

humanus humanus) and head louse (Pediculus humanus capitis) were estimated at 

approximately 107 Mb using flow cytometry determinations. P. humanus humanus is the 

primary vector which transmits three very specialized and diverse bacteria, which cause 

the historical human diseases louse-borne relapsing fever, trench fever and epidemic 

typhus. Preliminary assemblies of genome sequences of the bacterial agents of epidemic 

typhus (Rickettsia prowazekii) and trench fever as well as endocarditis (Borrelia 

quintana), a common infection among the homeless are currently available; thus, 

determining the genome sequence of the body louse will contribute to the advancement 

of studies of host-vector-pathogen interactions. Additionally, comparing the genome 

sequences of the aphid, the body louse and Rhodnius prolixus will shed light on the 
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relationship between hosts and their parasites and changes associated with smaller 

genome sizes, as well as will provide tools to identify conserved regions among species 

of the Paraneoptera (Paraneoptera, as defined by Gullan and Cranston, 2004). 

Rhodnius prolixus is the triatomid bug responsible for transmitting the pathogen 

Trypanosoma cruzi, which is the cause of Chagas’ disease (American Trypanosomiasis). 

The genome size of R. prolixus is approximately 670 Mb (Panzera et al., 2007). As is the 

case of research on the body louse, determining the genome of this hemipteran is a matter 

of medical as well as economical importance. This potentially fatal parasitic disease 

affects approximately 10 - 14 million or more people in Latin America, but is also a 

cause for epidemiologic concern for other countries such as the United States and Canada 

(Strosberg et al., 2007). Spelling out genomic information from these species may 

contribute to the development of new pharmaceuticals and research on the search for 

alternative ways of controlling the transmission of diseases. Comparative analysis 

between this, the genome sequence of the body louse (another blood-feeding species) and 

the genome sequences of the pea aphid and the Asian citrus psyllid, will also allow the 

study of mechanisms underlying cellular processes associated with feeding, digestion, 

excretion and reproduction in blood-feeding insects relative to those with phytophagus 

diets. 

Determining the genome sequences of these four species will provide valuable 

insights into the biology of animal interactions with microbes, among many other aspects 

of their natural history. It will also provide an outgroup for the study of evolution of 

holometabolous insects and in combination with genome sequences from the latter, it will 
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also allow identification of evolutionarily conserved genes, the study of evolutionary 

divergence and mechanisms of cell division and chromosome structure and function. 

Understanding the factors, both molecular and physiological, which allow insects to act 

as vectors may help in the development of novel biopharmaceuticals (Huebner et al., 

2005). And the use of genomic data on studies on adaptation in the form of insecticide 

resistance might also help to address the need for alternative methods of pest control, 

either through development of improved and more specific pesticides or through the more 

effective use of other insect species as agents of biological control. 

The large number of insect species, their biomass, diversity of adaptation, and 

ecological impact, support the structure and function of ecosystem and biodiveristy on 

the lands of the earth (Zhang et al., 2007). Through a computational method that uses 

genome analysis to characterize insect and eukaryote proteomes, Zhang and his team 

reported that stress and stimulus response proteins were found to constitute a higher 

fraction in the insect-specific ortholog than in the orthologs common to eukaryotes. They 

concluded that the prevalence of these types of proteins in the insect-specific sequences, 

plus a plethora of specific cuticle and pheromone/odorant binding proteins, might suggest 

that communication and adaptation to environments may distinguish insect evolution 

relative to other eukaryotes. However, the picture is not yet complete and the 

evolutionary steps that led the species of Insecta to be such a successful group, which has 

colonized such diverse environments, are not completely understood. As it has begun to 

surface, we hope that the wealth of knowledge that will be contributed by the field of 

insect genomics, the comparative analyses that will be possible once these sequences are 
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all available along with the hypotheses that researchers in this field will be able to test, 

will very likely help us increase our understanding of these critical evolutionary events. 

The focus of section has been primarily to report on the progress of publicly available 

insect genome projects and to briefly review some of the advances in the field on Insect 

Genomics. More exhaustive reviews on the topic may be found in Heckel, 2003, 

Robertson, 2005 and Grimmelikhuijzen et al., 2007. 

 

Comparative genomics and molecular evolution: Working hand in hand 

The field of molecular evolution was originated from two very different 

disciplines: population genetics, and molecular biology; a combination of the theory of 

the evolutionary process and the empirical data to test such theories. Molecular evolution 

seeks to describe the dynamics of evolutionary change at the molecular level, the driving 

forces behind this process and the effects of the various molecular mechanisms on the 

evolution of genomes, genes and proteins (Graur and Li, 2000). Researchers in this field 

have studied the evolution of genes by measuring the rates of synonymous and non 

synonymous substitutions at each site, using the codon as the unit of evolutionary change. 

Four decades ago Kimura (1968) concluded that the only viable explanation for the 

reported very high values of the rate of evolutionary change, in terms of nucleotide 

substitutions, was that many of the mutations involved must have been neutral ones. In 

other words, most of the variation within and between species does not affect the fitness 

of the organisms (Nielsen, 2005). This led Kimura to propose later the neutral theory of 

evolution, which additionally stated that new mutations arising in the population may 
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increase in frequency due to random factors. This process is called genetic drift (Kimura, 

1983). Since then, much debate has existed about the importance of natural selection in 

molecular evolution, and several methods have been designed to test for deviations from 

the neutral theory in an attempt to detect molecular adaptation (reviewed in Yang and 

Bielawski, 2000, Nielsen, 2001 and Nielsen, 2005) and re-examine the neutral theory of 

molecular evolution. How much of the sequence variation reported among species -even 

closely related ones- is the result of molecular adaptation, and how much is it the result of 

genetic drift? The publication of many genome sequences and the increasingly large 

amounts of DNA sequence diversity data available may bring researchers a step closer to 

answering the questions raised by this “neutralist-selectionist” debate (Eyre-Walker, 

2006).  

Gene duplication is widely accepted to be a major contributor to the origin of 

evolutionary novelties (Ohno, 1970). Many research groups have embarked on the task of 

exploring how duplicated genes survive acquiring novel functions, or become part of 

what Ohno believed was a collection of “now-extinct genes” making up the majority of 

our genomes (e.g.: Force et al., 1999, Doyle and Gaut, 2000, Lynch and Force, 2000, 

Lynch et al., 2001). These studies have demonstrated that a pair of gene duplicates may 

succumb to one of four evolutionary fates. One possibility is that i) both copies of the 

newly duplicated gene will be kept, and more RNA or more protein products constitute a 

benefit for the organism’s fitness. In other instances while one copy maintains the 

original function ii) the other copy may be silenced by losing its function, iii) or it may 

adopt a new beneficial function. Another possibility is that iv) both copies may be kept 
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through the fixation of complementary loss-of-function alleles, in which case the original 

function of the gene may be divided between the two in a process that Lynch and Force 

called subfunctionalization.  

Duplicate genes are often referred as paralogous genes that form gene families 

(Zhang, 2003), which vary in the number of members across all taxa. For example, on the 

one hand the Deleted in AZoospermia (DAZ) gene family consists of two members, DAZ 

and DAZL1. Azoospermia is believed to be the most common form of infertility in human 

males (Shinka and Nakahori, 1996). DAZ is located in the Y chromosome and is found 

only in Old World Monkeys; DAZL1, is an autosomal gene found in all vertebrates. On 

the other hand the family of odorant receptor proteins in the honey bee (A. mellifera) is 

made of 170 genes (seven of which are pseduogenes), most of which are localized in 

tandem arrays and are divided onto 5 subfamilies. Such expansion of odorant receptors 

compared to the 60-80 receptors found in species of Diptera lies at the core of their 

remarkable olfactory abilities such as perception of several pheromone blends, kin 

recognition signals, and diverse floral odors. (Robertson and Wanner, 2006). Most 

animals are found to share several families of genes that regulate major aspects of body 

pattern (Carroll, 2000). One example is the family of homeotic genes that make up the 

Hox complex. Studies on these families of transcription factors and their signaling 

pathways and on the changes in number, regulation, or function of members of these 

families over the course of evolution have facilitated the study of the genetic basis of 

animal diversity (Carroll, 2000).  



 33 

One hundred and eighty nucleotides constituting the homeobox, code for a highly 

conserved amino acid DNA-binding motif, the homeodomain, found in a family of 

related genes that encode transcription factors (Gehring, 1987). The Hox genes are a 

subset of these homeodomain-encoding transcription factors, which determine cell fate 

during the development of the animal embryo. Each of these genes is expressed along the 

anterior-posterior axis of the developing embryo to collectively determine segment 

identity in distinct domains by an orchestrated and complex interaction. With a few 

exceptions, these domains generally correspond spatially and temporally with their 

localization on the chromosome (Kaufman, 1990). A comprehensive review on the 

overall expression patterns of Hox genes in arthropods can be found Hughes and 

Kaufman, 2002. It is widely accepted that all paralogs of the Hox family of genes 

originated from a single ancestral gene by duplication. All arthropods and the 

Onychophora (velvet worms) share almost identical sets of Hox genes and most 

protostomes and deuterostomes (except vertebrates) posses roughly equivalent clusters of 

Hox genes possibly dating back to at least their Precambrian billaterial ancestor (Carroll, 

2000). It is hypothesized that two rounds of genome-duplication events occurred early in 

the evolution of chordates and vertebrates (Hoegg and Meyer, 2005), turning a single 

ancestral cluster into multiple clusters ranging from four in tetrapods up to eight in ray-

finned fish (Amores et al., 2004) and about fourteen in teraploid salmonid species 

(Moghadam et al., 2005). The ancestral arthropod had a single cluster of ten paralogs of 

the Hox family (Akam et al., 1994). In the grasshopper Schistocerca gregaria (Ferrier 

and Akam, 1996), the red flour beetle T. castaneum (Brown et al., 2002), the honey bee 
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A. mellifera (Dearden et al., 2006), and the jewel wasp N. vitripennis (Munoz-Torres, 

Unpublished data) Hox genes remain organized in a single cluster, and at least in the 

beetle and in both hymenopterans it is known that all members of the cluster are 

transcribed in the same orientation from the leading (positive) DNA strand. Insect 

evolutionary history shows that this cluster was split in the dipteran lineage (Lewis et al., 

1980a, 1980b, Lewis, 1978) and in this group genes are transcribed in both orientations. 

A duplication event of a single gene (Hox3) and further loss of Hox-like function took 

place giving rise to the zerknullt (zen) gene, of which there are two copies in Drosophila 

(Falciani et al., 1996) and in Tribolium (Brown et al., 2002). Zen genes are involved in 

dorsoventral patterning in Cyclorrhaphan flies. Bicoid (bcd) encodes a morphogen for the 

anterior development of the Drosophila embryo, and is a maternal gene believed to have 

also evolved from the Hox3 gene (Stauber et al., 1999). Another homeobox gene found 

throughout all arthropod lineages, but which has also lost its function as a Hox gene, is 

fushi-tarazu (ftz). Ftz acts as a Pair-Rule segmentation gene in Drosophila (Telford, 

2000). 

Over evolutionary time-scales, changes in the function or expression of these 

genes are associated with the diversification of segmental structures along the animal 

anterior-posterior axis (Hersh, 2007). Comparative studies of Hox genes have yielded 

much information regarding the genetic changes that lie behind the evolution of the 

arthropod body plan (Averof, 2002, Hughes and Kaufman, 2002, Deutsch and Mouchel-

Viehl, 2003, Hughes et al., 2004, Angelini and Kaufman, 2005). In arthropods, variations 

on the expression patterns of Hox genes and on the regulation of their downstream targets 
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govern the differences along the evolution of segmental specialization (Averof, 2002). 

These changes include large shifts in their regional domains of expression and the 

evolution of finer differences in their expression within individual segments. Despite the 

detailed picture available for the current state of Hox clusters, much controversy still 

exists as to the evolution of these clustered arrangements (Hersh, 2007). Contrasting 

models suggest on the one hand that the highly organized, compact clusters of vertebrates 

are derived from ancestral clusters that were less compact and less well organized 

(Duboule, 2007); on the other hand, evolution of Hox clusters is explained with the 

unequal crossing over that expanded a simple cluster consisting of only Hox1 and Hox 9 

genes into more gene-rich clusters; this latter model also assumes that the original 

clusters must have been organized, not disorganized, based on conservation of spatial 

colinearity (W. Gehring as reported in Hersh, 2007). At any rate, what happened to the 

newly formed copies after the duplication events? Perhaps events of subfunctionalization 

following gene duplications led the Hox genes to their current patterns of expression. It is 

possible that following the duplication events, there was relaxation of the constraining 

forces imposed by these genes’ roles in embryonic development, which might have led to 

a change of roles for some of the genes in the cluster. Perhaps also expansion and 

contraction of various genomic sequences may be just as important a mechanism of 

phenotypic evolution as changes at the nucleotide level. Spanning a genomic region of 

1.68 Mb (Munoz-Torres, Unpublished data), the Hox cluster in N. vitripennis is slightly 

larger than that of the honey bee (1.37 Mb as reported by Dearden et al., 2006), and both 

are much larger than all other holometabolus insects studied to date. Much of these 
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differences are accounted for by expansions of intronic and intergenic regions in the 

Hymenoptera, compared to all other insects studied to date. It is possible that besides the 

nucleotide changes these genome expansions also had a role in solidifying the separation 

of the Hymenoptera from all other lineages since they last shared a common ancestor. 

Given the more basal position of the Hymenoptera with regards to the orders Coleoptera, 

Lepidoptera and Diptera (as discussed above) this may indicate that a series of 

contractions of this genomic region in the latter after the Hymenoptera separated from 

their common ancestor may have occurred. Analyses of these non-coding regions may 

shed light on the role of cis-regulatory elements they contain in the evolution of 

morphological changes, as suggested by Averof (2002). It is possible that differences in 

the size of intronic and intergenic regions also have an effect on cis-regulatory elements 

and the way these interact with the genes they regulate, in this case a single Hox gene. 

These differences may have not represented changes in fitness (in other words, may have 

been neutral) during early stages of the duplication events if such regulatory regions were 

still interacting with their target genes. But if these regulatory elements became too 

dispersed or shuffled around enough to interrupt their role as regulator of target genes as 

a result of further duplication events, it may have had an important role on the evolution 

of gene functions in the long run. Studies on the origin and evolution of genes either by 

scrutinizing on the expansions of the single cluster in arthropods, or by looking at the 

molecular evolutionary history shaping the organization and function of individual genes 

from the cluster are now possible thanks to the availability of genomic data (Wolfe and 

Li, 2003, Averof 2002). Measurements of the rate of evolutionary changes between all 
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Hox paralogs in one species or between orthologs of the same Hox among species, at the 

nucleotide level, may yield information on the nature of the selective pressure acting 

upon the cluster. This may ultimately contribute to better understand the evolutionary 

forces that shaped these arrangements and provide a better look at the big picture in how 

these changes shaped the diversity we see today in the arthropod body plan. 
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CHAPTER TWO 

CONSTRUCTION AND CHARACTERIZATION OF A BAC-LIBRARY FOR A KEY 

POLLINATOR, THE BUMBLEBEE Bombus terrestris L. 

 

 

 

 

 

 

 

 

With kind permission from Springer Science+Business Media: Insectes Sociaux. Online 

First. October 11, 2008. Wilfert, L. 1, 5,6, Muñoz Torres, M.2, 5, Reber-Funk, C.1, Schmid-

Hempel, R.1, 7, Tomkins, J. 3, Gadau, J. 4, Schmid-Hempel P.1, 2 Figures. DOI: 

10.1007/s00040-008-1034-1. License number: 2071480913378. License Date: Nov 17, 

2008. 



 58 

Authors and Affiliations 

Wilfert, L. 1, 5,6, Muñoz Torres, M.2, 5, Reber-Funk, C.1, Schmid-Hempel, R.1, 7, 

Tomkins, J. 3, Gadau, J. 4, Schmid-Hempel P.1 

 

1 Institute of Integrative Biology (IBZ), ETH Zurich, CH-8092 Zurich, 

Switzerland; e-mail: lena.wilfert@ed.ac.uk 

2 Clemson University Genomics Institute, Clemson University, Clemson, SC 

29634, USA 

3 Clemson Environmental Genomics Lab, Clemson University, Clemson, SC 

29634, USA 

4 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, 

USA 

5 These authors contributed equally to this work. 

6 current address: Institute of Evolutionary Biology, University of Edinburgh, UK 

7 contact for data repository of this BAC library 

 



 59 

Abstract 

The primitively social bumblebee Bombus terrestris is an ecological model 

species as well as an important agricultural pollinator. As part of the ongoing 

development of genomic resources for this model organism, we have constructed a 

publicly available bacterial artificial chromosome (BAC) library from males of a field-

derived colony. We have shown that this library has a high coverage, which allows any 

particular sequence to be retrieved from at least one clone with a probability of 99.7%. 

We have further demonstrated the library’s usefulness by successfully screening it with 

probes derived both from previously described B. terrestris genes and candidate genes 

from another bumblebee species and the honey bee. This library will facilitate genomic 

studies in B. terrestris and will allow for novel comparative studies in the social 

Hymenoptera.  
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Introduction 

Many species of social insects are not only commercially important but have 

become model species for a wide range of basic questions such as social evolution, caste 

determination, sex ratio strategies, foraging behavior, social parasitism, ecological 

physiology, sensory ecology, evolutionary parasitology, ecological immunology, as well 

as pollination and community ecology. Bumblebees have served as subjects of study in 

all of these aspects (e.g. Goulson, 2003). Indeed, only the honey bee appears to rival the 

breadth of research done on this group. Despite the significant contributions that social 

insects have made, the genomic resources – so common and well developed for many 

other groups of insects or vertebrates – are quite limited. With a few exceptions 

(Hoffman and Goodisman, 2007; Wang et al., 2007), important genomic resources 

(genome sequence, libraries of genomic DNA and expressed sequences) are available 

only for the honey bee. Here, we report on a substantial genomic resource for a social 

insect outside the honey bee, a high-coverage bacterial artificial chromosome (BAC) 

library of genomic DNA for the bumblebee Bombus terrestris L.  

B. terrestris is a common European bumblebee species that is of importance as an 

ecological and evolutionary model organism (Goulson, 2003). The genomic tools 

promise to open up new avenues of research for ecological studies of organisms such as 

the bumblebee. For example, the evolution of sociality and caste determination is a 

research topic that has recently benefited from the application of genomic tools. 

Pereboom et al. (Pereboom et al., 2005) have identified genes that are differentially 

expressed in the development of queens and workers. This allows for comparative studies 
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of caste determination on a detailed molecular level. Much recent research on 

bumblebees has focused on ecological immunity (Sadd and Schmid-Hempel, 2006) and 

host-parasite interactions (i.e. Baer and Schmid-Hempel, 2001; Ruiz-Gonzalez and 

Brown, 2006). This research has been complemented by quantitative genetic studies 

identifying quantitative trait loci (QTL) explaining a part of the phenotypic variation of 

fitness-relevant traits such as the strength of innate immune mechanisms (Wilfert et al., 

2007b) and susceptibility to a protozoan parasite (Wilfert et al., 2007a). Such tools raise 

the opportunity to study the maintenance of genetic variation for fitness-relevant traits 

involved in host-parasite interactions in natural populations (Schmid-Hempel, 2001). To 

comprehensively test such hypotheses by studying the molecular signature of evolution, 

we need to identify the genes underlying the quantitative variation in host resistance.  

Identifying single genes in turn requires access to the physical genome. The 

genetic map used to identify QTLs, by contrast, is based on recombination distances. In 

B. terrestris, one centimorgan of genetic distance represents an average of 226 Kb of the 

physical genome (Wilfert et al., 2006). To integrate these two approaches, large-insert 

libraries such as bacterial artificial chromosome (BAC) libraries are extremely valuable 

tools because they allow the physical mapping of genes based on information from 

genetic linkage maps, expressed sequences or heterologous candidate genes. As previous 

studies have shown, this joint approach is very successful. For example, the gene 

underlying the sex determination locus has been isolated with the help of a BAC-library 

in the honey bee (Tomkins et al., 2002; Beye et al., 2003). In order to facilitate the 

identification and cloning of genes, and to eventually facilitate physical mapping and 
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genome assembly, we have here constructed a high coverage BAC-library of B. terrestris 

as one of the first such tools outside of Apis.  

 

Materials and Methods 

High-molecular weight DNA from fresh haploid male pupae was prepared 

following a procedure adapted for honey bees (Tomkins et al., 2002). DNA was partially 

digested with the restriction enzyme HindIII. Size selection was performed on the 

fragments via two consecutive rounds of pulse field electrophoresis (PFGE). Fragments 

were then ligated into the vector pIndigoBAC 536 (Peterson et al., 2000). Vectors were 

transformed into E. coli DH10B cells using electroporation. Recombinant colonies were 

picked using a Genetix Q-bot and stored individually in 384 well plates at -80° C.  

Additionally high-density colony filters for hybridization-based screening of the BAC 

library were prepared using a Genetix Q-Bot. Clones were arrayed in double spots using 

a 4 x 4 array with 6 fields, on 11.5 x 22.5 cm – Hybond N+ filters (Amersham). This 

pattern allows 18,432 clones to be represented per filter. Colony filters were grown and 

processed using standard techniques for alkaline lysis (Sambrook et al., 1989). 

 

Library Screening 

To screen the library, we developed PCR products from three B. terrestris-

specific sequences (Arginine Kinase, Elongation Factor 1 Alpha and Longwave-

Rhodopsin), one from a sequence from B. ignitus (Defensin) and two from Apis mellifera 

genes (Relish and Dscam) and used them as probes for hybridization. Primers and 
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accession numbers of these genes are detailed in Table 2.1. The PCR products obtained 

were 200 – 400 bp in length; approximately 100 ng of product were labeled 

independently using 30uCi of alpha-P32-dCTP following manufacturer’s instructions 

with the DECAprime II random priming DNA labeling kit (Ambion, Inc. ABI, Foster 

City, CA, USA). Hybridization of colony filters was performed using standard techniques 

(Sambrook et al., 1989) with the following modifications: hybridizations were performed 

for at least 16 h at 60º C (with B. terrestris probes) and 55º C (for heterologous probes); 

filters were washed twice at corresponding temperatures (30 min per wash) in a 2X 

SSC/0.1% SDS solution first, and in a 1X SSC/0.1% SDS solution the second time. 

Hybridized BAC-filters were imaged in a Storm Scanner (GE Healthcare, Piscataway, 

NJ, USA) and positive hits were scored with HybSweeper (Lazo et al., 2005). 

 

BAC-DNA preparation and fingerprinting analyses. 

Positive clones were fingerprinted using techniques established by Chen et al. 

(Chen et al., 2002) and Marra et al. (Marra et al., 1997). Briefly, DNA from BAC clones 

was prepared from 900 µL cultures of Terrific Broth (GIBCO)-Chloramphenicol (12.5 

ug/uL) in 96-well format, inoculated with 1.5 µL of BAC freezer stocks. After 18 h, 

cultures were treated with a modified alkaline lysis method. Samples for fingerprinting 

were digested with the restriction endonuclease HindIII, electrophoresed on 1% agarose 

gels for 15 h at 60 V, and stained with Sybr Gold (Invitrogen) for 1 h. Gels were imaged 

in a Storm Scanner (GE Healthcare, Piscataway, NJ, USA). Fingerprinting data were 

scored using Image3 software (v.3.10, www.sanger.ac.uk/software/Image/). 
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To determine average insert size of the library, 192 clones were randomly 

selected from the library, DNA was digested using the endonuclease NotI (NEB, Ipswich, 

MA, US) and analyzed by PFGE. 

 

Results 

The bumblebee BAC library consists of 36’864 clones. The average insert size (n 

= 186) was 102.9 ± 28.5 Kb (see Figure 2.1) with a range of 40 – 220 Kb. PFGE analysis 

revealed that the library contains 3.1% empty clones (6 of 192 clones assayed for insert 

size. See Figure 2.2). The bumblebee genome has been estimated as being 625 Mb in size 

(Wilfert et al., 2006). The library thus has an expected coverage of 6x genome 

equivalents, allowing any one particular B. terrestris sequence to be recovered with a 

probability of 99.7% from at least one clone.  

B. terrestris is a model organism for the evolution of the innate immune system. 

We therefore screened the BAC library with probes derived from candidate genes 

involved in antimicrobial defense pathways (NF-κB-like transcription factor Relish, 

Defensin) and in parasite recognition / phagocytosis (Dscam). As a positive control, we 

screened for genes that had previously been used to infer the phylogeny of the genus 

Bombus (Kawakita et al., 2004) (Long-wave Rhodopsin, Arginine Kinase, and Elongation 

Factor 1 alpha). An average of 27.5 ± 13.3 positive clones for each of six gene probes 

was retrieved, indicating a high redundancy of the library (Table 2.1). 

The BAC clones identified by hybridization are expected to contain some false 

positives. To obtain the clones most likely to contain the genes of interest, positive BAC 
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clones were fingerprinted with HindIII and then assembled into contigs using the 

Fingerprinted Contigs software (FPC (Soderlund et al., 2000)) at high stringency (using a 

tolerance value of 7 and a minimum cutoff value of 1e-10). This analysis allowed us to 

anchor genetic markers of the six genes analyzed here onto corresponding physical 

regions of the genome, represented by BAC clones. Markers generated from Dscam, 

Defensin, Long-Wave Rhodopsin and Elongation Factor 1 alpha were represented in four 

separate contigs containing 22, 8, 10 and 6 BAC clones respectively; the markers 

generated for Arginine kinase and Relish identified 9 and 8 clones respectively, which 

were represented in a single contig containing 17 BAC clones. These results provide 

supporting evidence for the quality of the library and constitute a first step in describing 

the location of these genes on the B. terrestris genome.  

The FPC analysis allowed us to drastically reduce the number of candidate clones 

that will become targets for sequencing, i.e. from 52 clones identified in the hybridization 

screen to 9 clones for Arginine Kinase. A common cause of high numbers of false 

positives in hybridization screens is the use of degenerate primers, which leads to some 

degree of unspecific binding, to obtain clones containing candidate genes known only in 

related species. We have used this approach to identify candidate BAC clones for the 

isolation of immune genes in B. terrestris based on sequence information from the honey 

bee A. mellifera. Additionally, several of the genes we screened for - Arginine Kinase, 

Defensin and Elongation Factor 1 alpha - are known to be double copy genes in A. 

mellifera (Consortium, 2006) and Nasonia vitripennis (Genome Assembly 1.0, personal 

communication; Stephen Richards, Human Genome Sequencing Center, Baylor College 
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of Medicine), this may also inflate the number of positive clones. FPC analysis is a 

powerful tool to deal with these issues common in genomic studies of non-model 

organisms: only those clones sharing statistically significant similar band patterns will 

become candidate clones for further analysis. 

Based on the average insert size and the number of BAC clones generated, we 

have estimated a 6x coverage of the bumblebee genome. The mean number of positive 

clones after FPC analysis for the genes used in this screen indicates an average 10x 

coverage. This discrepancy can be explained by over- and underrepresentation of certain 

regions of the genome. Such biases in genome coverage include the use of a single 

enzyme, a partial restriction digestion of genomic DNA, and the unavailability of certain 

regions of genomes such as centromeres, highly repetitive sequences and telomeres, due 

to their lack of recognition sites for common restriction enzymes (Mahtani and Willard., 

1998; Chew et al., 2002; Yuan et al., 2008). With an average 10x coverage of coding 

sequences, this library is likely to prove a valuable tool in the genomic analysis of B. 

terrestris and related social Hymenoptera. 

 

Discussion 

We here describe the construction and characterization of a BAC-library for the 

bumblebee Bombus terrestris. This high-quality library may serve as an important 

resource for genomic studies of bumblebees, such as gene isolation and genome mapping. 

We have screened the BAC library with several probes, demonstrating the library’s 

usefulness as a genomic tool for B. terrestris. We could retrieve not only clones positive 



 67 

for already described sequences specific to described B. terrestris genes (Long-wave 

Rhodopsin, Arginine Kinase, and Elongation Factor 1 alpha (Kawakita et al., 2004)) but 

also for probes derived from another species from the genus Bombus (Defensin from B. 

ignitus) and from the distantly related honey bee A. mellifera (Dscam (Graveley et al., 

2004) and Relish).  

Comparative research into the social Hymenoptera stands to gain much by 

combining information from the sequenced genome of the honey bee and genomic 

information from related species (The Honey Bee Genome Consortium, 2006). 

Understanding the genetics of sex determination in the haplo-diploid Hymenoptera may 

prove to be a case in point. In the social Hymenoptera, sex is determined by a single 

complementary locus that triggers male development in hemizygous and homozygous 

embryos (Cook and Crozier, 1995), while other mechanisms are used in many families of 

the Hymenoptera (Heimpel and de Boer, 2008). In honey bees, the genetics of 

complementary sex determination (CSD) was first investigated using linkage mapping 

(Hunt and Page, 1994). To identify the responsible gene, the identified genetic region was 

fine-mapped (Hasselmann et al., 2001). With the help of a honey bee BAC library, the 

csd gene was then identified and demonstrated to be functional (Beye et al., 2003). 

Similarly, the sex determination locus in B. terrestris has been genetically mapped to an 

approximate location (Gadau et al., 2001). Using information from the honey bee and the 

BAC library we here describe, it will be possible to rapidly investigate the molecular and 

genetic nature of sex determination in bumblebees. This BAC library thus is not only a 
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valuable tool for investigating the bumblebee genome, but vastly increases the potential 

for informative comparative studies in the social Hymenoptera. 

B. terrestris BAC resources (library and high density filters) may be ordered from 

the Clemson University Genomics Institute (http://www.genome.clemson.edu/). The use 

of this BAC library should make reference to this paper. To maximize the information 

gained from this resource, a data repository for the BAC library is managed by R. 

Schmid-Hempel, ETH Zürich (rsh@env.ethz.ch).  
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Table 2.1. Hybridization results of six gene probes using the Bombus terrestris BAC 
library. Probes were generated by PCR. Positive clones were fingerprinted by 
HindIII and assembled into contigs. 
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Figure 2.1: Histogram of insert size distribution of BAC clones (n = 186) of the 
bumblebee BAC-library.  
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Figure 2.2. Analysis of BAC clones by PFGE. Randomly picked recombinant BAC 
clones from our Bombus terrestris library were digested with NotI to release 
the cloned genomic insert. Sizes were separated on a 1% agarose CHEF gel 
(0.5X TBE) and stained with Ethidium bromide. This gel shows the results for 
42 BAC clones; the marker loaded in either end-well is Lambda Ladder 
(NEB). The marker in lane 23 is Midrange II (NEB). Fragment sizes for 
Lambda Ladders are indicated in Kb on the left. 
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CHAPTER THREE 

DEVELOPMENT OF BAC LIBRARY RESOURCES FOR PARASITIC 

HYMENOPTERA (Nasonia vitripennis AND Nasonia giraulti. PTEROMALIDAE). 
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Abstract 

The species of the genus Nasonia possess qualities that make them excellent 

candidates for genetic and genomic studies. To increase the wealth of genomic resources 

available for these organisms we constructed publicly available BAC libraries for 

Nasonia vitripennis and Nasonia giraulti. Each library contains 36,864 clones, average 

insert sizes estimated at 113.1 Kb for N. vitripennis and 97.7Mb for N. giraulti 

representing approximately 12 and 11 genome equivalents respectively, and empty-vector 

contents of approximately 2%. Additionally, we describe preliminary results on two 

research projects undertaken with the use of the N. vitripennis library. The first one, 

reports on steps taken towards positional cloning of a gene believed to affect wing size 

differences among three of the sibling species. The second is a report on a preliminary 

survey of the N. vitripennis genome, obtaining over 1400 BAC-end sequences. 
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Introduction 

Improving our wealth of knowledge about the structure and function of the 

genome of our organism of interest requires a set of crucial and necessary steps, the first 

of which is the development of tools that allow researchers to survey the genome. 

Genomic resources are utilized in a wide array of genetic studies ranging from projects 

such as the identification of individual genes responsible for an organism’s response to 

changing environmental conditions, or the characterization of genes for improvement of 

certain traits of agronomic importance in staple crops, all the way to functional studies on 

a genome-wide scale. Examples of the broad range of answers that may be obtained with 

the implementation of genomic resources include i) positional cloning of a gene partially 

responsible for structural changes in free-living adults of pacific oyster (Crassostrea 

gigas) upon fixation to a surface (Unpublished data, Andrew Mount, Department of 

Biological Sciences, Clemson University), ii) isolation of the gene underlying the sex 

determination locus in honey bee (Beye et al., 2003, Tomkins et al., 2002), iii) 

identification of candidate genes for drought-stress tolerance (Xu-Sheng et al., 2006) and 

iv) disease resistance (Ronald, 1997) in rice (Oryza sativa L), v) identification of genes 

encoding seed storage proteins in quinoa (Chenopodium quinoa Willd) (Stevens et al., 

2006) and vi) genome mapping in cassava (Manihot esculenta Crantz) as a way to 

identify candidate genes to overcome micronutrient malnutrition challenges worldwide 

(Fregene et al., 2001). Such diverse research projects have in common the use of a 

Bacterial Artificial Chromosome (BAC) Library as a way of interrogating the genome in 

search for practical answers to each problem. 
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Initially regarded as a system that could facilitate the construction of DNA 

libraries of complex genomes with fuller representation and subsequent rapid analysis of 

complex genomic structure (Shizuya et al., 1992), BAC libraries are nowadays a common 

entry point into projects involving functional and structural genomics, gene identification 

and construction of physical maps, to name a few. Here we describe the construction and 

characterization of BAC libraries for two species of parasitic wasps of the genus Nasonia, 

namely N. vitripennis (Jewel wasp) and N. giraulti. 

Parasitic wasps have been subjects of genetic, ecological, evolutionary and 

developmental research for almost 50 years; they belong to a large and extremely 

important group of Hymenoptera with more beneficial insects to humans than any other 

group. Nasonia is an excellent candidate for studies in genetics and genomics due to ease 

of insect rearing, small genome size, haplodiploidy, a wealth of visible and molecular 

markers available for mapping and healthy inbred isogenic lines. There are four closely 

related and interfertile species in the genus, the cosmopolitan N. vitripennis, and the 

North American N. longicornis, N. giraulti (Darling and Werren, 1990) and N. oneida 

(Unpublished data, R. Raychoudhury. Department of Biological Sciences, University of 

Rochester.), NV, NL, NG and NO respectively and hereafter. The estimated genome size 

of NV is approximately 335 Mb (Beukeboom and Desplan, 2003 and Rasch et al., 1975) 

(about two times greater than that of Drosophila melanogaster); however, the 

recombination rate in Nasonia is approximately four times greater than in D. 

melanogaster, resulting in an average recombination rate per kilobase approximately two 

times greater (around 410 Kb/cM (Gadau et al., 1999)). These features grant Nasonia the 
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potential to become a great model organism for several areas of research, and the 

development of genomic tools for this species group will offer an increased amount of 

resources to exploit the possibilities. 

The large diversity of extant insect forms and life styles has made them subjects 

for phylogenetic, evolutionary and ecological studies. Research on insects has important 

societal, as well as scientific benefits, as many insects pose serious threats to public 

health and commercial crops. Despite all of this, insect genomics has remained an uneven 

territory dominated by studies in Drosophilids and mosquitoes. EST libraries and genetic 

linkage maps have been constructed for several insects, but BAC libraries are available 

for only a few species; furtheremore, other than the well-developed genetic model D. 

melanogaster, genomic resources for the remainder of the insects have long been 

surprisingly inadequate. The availability of large-insert genomic libraries has propelled 

advances in gene discovery and genome-wide analysis for a reduced number of insect 

species. BAC libraries are now available for social hymenopterans, honey bee (Apis 

mellifera L.) (Tomkins et al., 2002) and bumblebee (Bombus terrestris L.) (Wilfert et al., 

2008), the mosquitoes Aedes aegypti (Jiménez et al., 2004) and Anopheles gambiae 

(Hong et al., 2003), the red flour beetle Tribolium castaneum (Brown et al., 2002) and the 

silk moth Bombyx mori (Mita et al., 2002). Except for bumblebee, genomes of all 

aforementioned species have now been sequenced, and BAC libraries were used to build 

preliminary physical maps or to provide sequence scaffolds to facilitate the assembly 

process in these projects. In a similar manner, both large-insert genomic libraries reported 



 84 

here will offer a starting point for the design of genomic projects for the genus Nasonia, 

and they constitute the first of their kind in the parasitic wasps. 

In support of this, federal resources were allocated to develop various genomic 

tools to exploit this organism. This report describes one of the key resources now 

publicly available for genomic studies, two NSF funded deep-coverage BAC libraries. In 

addition, the NIH selected NV for genome sequencing to produce a draft assembly 

(http://www.genome.gov/10002154). The Human Genome Sequencing Center (HGSC) at 

Baylor College of Medicine (BCM) has sequenced the genome of Nasonia vitripennis at 

six-fold sequence coverage, and a rough draft of the NG genome has also been produced 

(Personal communication. Stephen Richards, HGSC, BCM). At the time of this 

publication, version 1.0 of the assembly, Nvit_1.0, was available for download from the 

Baylor website. These BAC library resources provide a useful complement to the draft of 

sequence for a variety of genomic and genetic applications. The development of genomic 

resources for a parasitoid is also likely to yield many benefits for human health and our 

understanding of important biological processes. 

 

Results 

BAC Library Construction and Characterization 

NASONIA VITRIPENNIS. The NV BAC library consists of 36,864 clones. PFGE 

analysis of 384 randomly sampled clones allowed estimation of insert size at an average 

of 113.1 ± 39Kb (Figure 3.1) with a range of 8 – 300Kb. Less than 2% of the clones 

contained no inserts. Based on an estimated haploid genome size of 335Mb (Beukeboom 
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and Desplan, 2003 and Rasch et al., 1975), this library represents 12.4 genome 

equivalents and allows any one particular NV sequence to be recovered with a probability 

greater than 99% from at least one clone. 

 

NASONIA GIRAULTI. The NG BAC library counts with 36,864 clones. One hundred 

and ninety two clones were randomly selected and analyzed using PFGE to estimate 

library insert size and other features. Based on an estimated genome size of 330Mb 

(Unpublished data. John H. Werren, University of Rochester) our library covers the NG 

genome 10.9 times with an estimated average insert size of 97.7 ± 25.9Kb (Figure 3.2) 

and a range of 9 – 135Kb. Such coverage allows any particular species specific sequence 

to be recovered with a probability greater than 99% from at least one clone. 

Approximately 3.1% of the clones contained no inserts. 

 

BAC Library Screening and Fingerprinting Analysis 

Its natural history and genetic features, described above, grant Nasonia the 

potential to become a model organism for a number of studies ranging from 

pharmaceutical uses to increasing our knowledge in fundamental evolutionary biology. In 

order to test library coverage and isolate genomic regions putatively associated with 

genes of interest, we screened the BAC libraries with probes derived from candidate 

genes involved in evolution of wing cell size (ws1), insulin regulation pathway (target of 

rapamycin (tor) and S6 kinase (S6k)), tumor suppressing (phophatase and tensin homolog 

(Pten)) and embryonic development (zernkult (zen), hairy (hry), caudal (cad) and 
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Antennapedia (Antp)). Table 3.1 contains a list of all primers used to generate these 

probes. 

NG males have large wings and fly, NL males have intermediate wings, and NV 

males have small vestigial wings and are capable of limited flight. A QTL analysis 

revealed four to five genetic regions responsible for most of these differences (Weston, 

1999). ws1 is a QTL known to cause a 50% increase in wing cell size in Nasonia males 

and has evolved in NG. To further characterize our two BAC libraries we engaged in 

selecting a set of candidate BAC clones, which would presumably contain the gene or the 

tightly linked genes responsible for this trait. We developed a probe from an AFLP 

fragment, AF-1, located within QTL interval of ws1 in NG. Screening of NV BAC library 

filters yielded 19 positive hits, which were fingerprinted using HindIII; after manual 

analysis to filter out poorly resolved fingerprints, 17 clones were assembled into one 

contig using FPC. BAC end sequences of external most clones in the contig were used to 

obtain PCR products, which were also labeled to screen the BAC filters again. The 

probes used were labeled as 67D12.gg, 01N08.bb, 02K01.sp and 19G07.sp (Table 3.1, 

Figure 3.3). 

Thirty clones were brought together into a contig (Contig Nv1) which included 18 

hits from our initial hybridization experiment After two rounds of ‘end-probes’ 

hybridizations and analysis, we narrowed down the area containing the homolog (or 

homologs) responsible for ws1 in NV to a genomic region spanning approximately 150 - 

200Kb between the AF-1marker and the outer-most end of clone 19G07, with respect to 

Contig Nv1 (Figure 3.3). Using the ‘Minimum Tile’ function in FPC we chose three BAC 
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clones, which best represented this region. Using the original PCR primers we 

corroborated the presence of AF-1 and other corresponding ‘end-probes’. Clones 01N08, 

02K01 and 52F17 were selected for sequencing.  

To select candidate BACs for ws1 from NG we first identified the NG region 

corresponding to the genomic region around ws1 in NV. To do this we screened the 

library with the AF-1, 01N08.bb and 02K01.sp probes, and obtained a total of 10, 19 and 

12 positive hits, respectively. After FPC analysis, AF-1 and 01N08.bb hits formed a 

single contig (Contig Ng1) with 23 clones, and 7 of the 12 02K01.sp hits went into a 

separate contig (Contig Ng2). One possible explanation for this is that a smaller average 

insert size in the NG library might have impeded our efforts of bridging from BAC to 

BAC using the ‘ws1’ probes previously generated. Despite obtaining positive hits with all 

probes, it is possible that we are still faced with a gap and some parts of this region could 

be missing. Using the ‘Minimum Tile’ function in FPC we chose a set of three candidate 

BACs for sequencing. Clones 47D01 and 89M15 best spanned Contig Ng1, while clone 

61B24 spanned almost all of Contig Ng2, made up solely of 02K01.sp hits spanning 

approximately 210Kb of genomic DNA. All sequences were deposited to GenBank and 

identification numbers were assigned as shown in Table 3.1. Further annotation of all 

putative genes in the selected regions will provide data necessary to fully characterize 

ws1 in both species. 

In similar experiments, seven other gene probes were used to assess library 

coverage of the NV BAC library. Our goals were also to isolate additional regions of 

particular interest and to choose another set of candidate BACs for sequencing as a way 
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of highlighting the relevance of the availability of new genomic resources for the 

Hymenoptera research community. Excluding Pten and Antp, probes consisted of PCR 

products obtained with primers designed directly from Drosophila melanogaster 

sequences (see Table 3.1). The Pten and Antp probes were designed with degenerate 

primer approaches described in Baudry et al., 2006 and Munoz-Torres et al., In 

preparation, Chapter IV. As done with previously described probes, we used 

approximately 30uCi of radioactive phosphorus to label approximately 60ng of probe 

DNA in each hybridization experiment. We obtained a total of 12 positive hits with the 

tor probe, 5 positive hits with S6K, 27 with Pten, 8 hits with zen, 4 for hry, 12 for cad and 

11 positive hits with probe DNA from the Antp gene. All seven genes are known to be 

present in single copy in the D. melanogaster genome according to FlyBase (Wilson et 

al., 2008). These, and results obtained using the ws1 probe with both Nasonia species, are 

good indicators of the redundancy of the libraries. After insert size verification of all 

positive hits, clones with the largest inserts from the NV library were selected as 

candidate BACs for full length sequencing to make these resources available for further 

gene characterization in this species. Clone sequences were deposited in GenBank and 

identification tags are also shown in Table 3.1. 

 

BAC end sequencing 

We chose a random sample of clones for end-sequencing and annotation to 

perform a preliminary survey of the NV genome. The number of high-quality sequences 

was 1,217, with an average high-quality base count of 486bp. The highest quality match 
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for each sequence tag connector (STC) with a probability cutoff value (E value) of at 

least 10e-6 was used to assign putative identities to the STCs. The results from our 

FASTX searches and STC analysis can be obtained from our website at: 

http://www.genome.clemson.edu/downloadData/nasonia/NV__Bb.fasta.  

A BLAST search against the non-redundant collection of protein sequences in 

GenBank resulted in 178 (14.63%) of the sequences showing similarity to genes of 

known function. Significant search results were then sorted into seven different 

functional categories (Table 3.2). The largest group of hits belongs to the hypothetical or 

unclassified category representing 28% of the dataset. The next largest group (27%) 

shared sequences similar to insertion elements and encoded maturases, transposases, and 

integrases. Thirdly, 20% of the STCs are involved in regulatory roles, followed by 

metabolism (15%), cell communication/division (7%), structural roles (2%), and 

ribosomal proteins (0.5%). Of the highly significant STCs showing similarity to various 

proteins, 29 % were best matches to Apis mellifera proteins, 12 % shared matches to 

Drosophila buzzati, D. melanogaster, or D. pseudoobscura, and 6% were best to 

Anopheles gambiae. The rest of the hits were to a wide variety of eukaryotic organisms. 

 

Discussion 

We here describe the construction and characterization of BAC libraries for two 

species of parasitic wasps, N. vitripennis and N. giraulti. These deep coverage libraries 

are now available for research projects involved in individual gene isolation as well as 

functional genome-wide scale experiments. We screened our libraries with probes 
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generated from genes involved in a diverse arrange of biological processes; we retrieved 

a number of candidate BACs putatively containing these genes of interest demonstrating 

the high quality and usefulness of our libraries. Candidate BACs from both species were 

also chosen for full-length sequencing to provide resources for further characterization of 

such genes of interest. Choosing candidate BACs for sequencing also provided data for 

assembly verification performed by the Nasonia Genome Sequencing Consortium (The 

Nasonia Genome Sequencing Consortium, Unpublished data.).  

Identification of candidate genes responsible for variations in a certain trait of 

interest requires access to the physical genome, and not only to recombination rates. 

Combining both resources allows for the rapid identification of candidate genes. Our 

libraries have offered valuable genomic resources for the identification of a candidate 

gene (or group of tightly linked genes) responsible for a large wing size difference 

between males of two closely related species of the parasitoid wasp Nasonia. In addition 

to demonstrating the good quality of our libraries, this experiment also presents Nasonia 

as a good model system for genetic analyses of morphological differences between 

natural populations or closely related species. Traditionally these studies are posed with 

difficulties due to either small or subtle differences, or the impossibility to perform 

crosses, even between closely related species. However, in the case of Nasonia, the four 

species described in this genus are interfertile when cured of their cytoplasmic bacterial 

infections (Wolbachia), and they are able to form viable and fertile hybrids (Breeuwer 

and Werren 1995 and 1990, R. Raychoudhury, Unpublished data). 
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We carried a preliminary survey of the NV genome, choosing random BAC 

clones for end sequencing. The results of these experiments represent the first genome-

wide survey of NV. That only a small portion of annotated sequences showed similarity 

with genes of known function (15% of all sequences) may be due to the random process 

used to choose BACs for end-sequencing. Nonetheless, these results constitute additional 

demonstration of the high quality of the library and its usefulness. The second largest 

group of annotated end-sequences contained several proteins with high similarity to 

sequences of viral origin including insertion elements and transposases; these sequences 

were also commonly found in the honey bee genome, the only hymenopteran genome 

sequence finished to date (The Honey Bee Genome Sequencing Consortium, 2006). As 

expected, the vast majority of annotated sequences with highly significant similarity to 

known genes were associated with sequences from A. mellifera, A. gambiae and species 

of Drosophila, adding confidence to the measure of quality of the genomic resources here 

introduced. 

Tractability and all other features described for the species of the genus Nasonia 

have made them a primary model for parasitoid genetics (Whiting, 1967). More is known 

about the biology of Nasonia than any other parasitic hymenopteran, and an incredibly 

active research community will ensure that all resources generated for this group of 

species, such as the two BAC libraries presented in this report, are exhaustively utilized 

for advanced research. 

The clones and filters from the Nasonia vitripennis and the Nasonia giraulti BAC 

libraries are publicly available and may be ordered from the Clemson University 
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Genomics Institute (http://www.genome.clemson.edu/). The use of these BAC libraries 

should make reference to this resource.  

 

Experimental Procedures 

BAC Library Construction 

DNA for library construction was extracted from highly inbred lines of NV and 

NG. For both species, high-molecular-weight DNA from yellow pupae was prepared 

following a procedure adapted for honey bees (Tomkins et al., 2002). DNA was partially 

digested with HindIII for 20 minutes at 37°C. Size selection was performed on the 

fragments via two consecutive rounds of pulse field electrophoresis (PFGE). Fragments 

were then ligated into the vector pIndigoBAC 536 (Peterson et al., 2000, Luo and Wing, 

2003) for 16 hours at 16°C. Vectors were transformed into E. coli ElectroMAX DH10B 

cells (Invitrogen, Carlsbad, CA, USA) using electroporation, and allowed to replicate at 

325rpm for 1h at 37°C. Recombinant colonies were picked using a Genetix Q-bot 

(Genetics, Boston, MA, USA) and stored individually in 384-well plates at -80°C.  

 

BAC Library Characterization 

DNA from BAC clones was prepared from 900 uL cultures of Terrific Broth 

(GIBCO)-Chloramphenicol (12.5 ug/uL) in 96-well format, inoculated with 1.5uL of 

BAC culture. After 18h, cultures were treated with a modified alkaline lysis method. To 

determine insert sizes, their distribution, and percent of clones without an insert, 

approximately 200 ng of BAC DNA from randomly selected clones were digested using 
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7 units of NotI for 16h at 37°C. DNA digestions were analyzed by PFGE in 1% agarose 

gels for 15h at 14°C (6 v/cm, switch time of 5-15s) and stained with Ethidium Bromide 

for 20m.  

 

BAC Library Screening 

High-density colony filters for hybridization-based screening of the NV and NG 

libraries were prepared using a Q-bot (Genetics, Boston, MA, USA). Clones were 

gridded in double spots using a 4 x 4 array with 6 fields on 11.5 x 22.5 cm Hybond N+ 

filters (GE Healthcare, Piscataway, NJ, USA). This gridding pattern allows 18,432 clones 

to be represented per filter. Colony filters were grown and processed using standard 

techniques (Sambrook et al., 1989). Hybridization probes were designed by cutting PCR 

fragments from ethidium bromide-stained 1% agarose gels and DNA was extracted using 

a QIAEX II gel extraction kit (QIAGEN, Valencia, CA, USA). The NV library was 

screened with eight PCR products obtained from genes involved in evolution of wing cell 

size, insulin regulation, or embryonic development (i.e.: segment formation and Hox 

genes). The NG library was screened with the probe developed for the wing cell size gene 

and subsequent BAC-end probes designed for this experiment, as described in the results 

section. Radio labeling of probe DNA and hybridization of colony filters were performed 

using standard techniques (Sambrook et al., 1989) with the following modifications: 

hybridizations were performed for at least 16h at 65ºC and filters were washed twice at 

65ºC (30 min per wash) in a 1X SSC/0.1% SDS solution first, and a 0.5X SSC/0.1% SDS 

solution the second time. Preparation of single stranded radio labeled DNA probes from 
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PCR products was done according to manufacturer’s instructions using the Random 

Primed DNA Labeling Kit DECAprime II (Applied Biosystems, Foster City, CA, USA). 

Hybridized BAC filters were imaged in a Storm Scanner (GE Healthcare, Piscataway, NJ, 

USA) and positive hits were scored with HybSweeper (Lazo et al., 2005). 

 

Fingerprinting Analysis 

BAC-DNA fingerprinting was performed using techniques established by Chen et 

al., 2002 and Marra et al., 1997. Briefly, BAC DNA was prepared as described above and 

samples for fingerprinting were digested with the restriction endonuclease Hind III, 

electrophoresed on 1% agarose gels for 15h at 60V, and stained with SybrGold 

(Invitrogen, Carlsbad, CA, USA) for 1h. Gels were imaged in a Storm Scanner (GE 

Healthcare, Piscataway, NJ, USA) and fingerprinting data were scored using Image3 

(v.3.10, www.sanger.ac.uk/software/Image/). All bands were manually checked; bands 

below 1Kb were ignored due to bad image resolution; these accounted for <1% of the 

total length of BAC inserts. Contig building was done using FingerPrinted Contigs (FPC 

v.8; Souderland et al., 2000) at a high stringency, with a Tolerance value of 7 and a 

Minimum Cutoff value of 1e-9. Poorly resolved fingerprints, that is, clones with band 

patterns of 4 or less bands, were automatically excluded by Image3. FPC automatically 

excluded those clones with band patterns not significantly similar to any other clone in 

the data set from contig analysis. 
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BAC End Sequencing 

Preparation of high quality BAC DNA for end sequencing was done in a 96-well 

format using the standard alkaline lysis miniprep techniques described for BAC-DNA 

fingerprinting with some modifications. The difference lies in the use of 1.2mL of 2XYT 

(GIBCO)-Chloramphenicol (12.5 ug/uL) cultures. Sequencing was performed using a 

dye-terminator cycle sequencing kit (Perkin Elmer Applied Biosystems, USA). Reactions 

were performed in one direction with T7 on 1344 reads in total reaction volumes of 25uL. 

Reactions were separated on an ABI 3730xl DNA analyzer (Applied Biosystems, Foster 

City, CA, USA) for 90 min with an injection time of 15 seconds. Cycle sequencing 

reactions were done on PTC-200 Thermalcyclers (MJ Research) in 96-well format with 

the following parameters: 95ºC for 4min followed by 75 cycles of 95ºC for 15sec, 51ºC 

for 10sec and 60º C for 4min. Ethanol precipitation was applied to remove excessive 

terminators from sequencing reactions and purified reactions were resuspended in 8uL of 

HiDi-Formamide (Applied Biosystems, Foster City, CA, USA). Base-calling was 

performed using Phred (Ewing & Green, 1998; Ewing et al., 1998) and vector sequences 

were removed using CROSS-MATCH (Green, 1999). High quality sequences are those 

defined as having at least 100 high quality bases (greater than PHRED 20) other than E. 

coli or vector. These sequences were used as queries in searches against GenBankNR and 

SWISS-PROT databases using FASTX3.4 algorithms. Software was locally run on either 

a Macintosh G5 or SunBlade workstations using Solaris (v.9). 
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Table 3.1. Probes designed for hybridization of the N. vitripennis and N. giraulti BAC 
libraries. Positive clones were fingerprinted using HindII and assembled into 
contigs. Clones with largest inserts were selected for complete sequencing. 

 

 
 
 

 

 
§ Unpublished data 
* Includes abbreviated name, GenBankID and/or reference when available. See text for 

complete gene names. 
+ NV__Bb for Nasonia vitripennis BAC library, NG__Bb for N. giraulti. 
 

 



 98 

Table 3.2. BLAST results of 178 BAC end sequences from randomly chosen clones of 
the Nasonia vitripennis BAC library. 
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Figure 3.1. Histogram of insert size distribution of BAC clones (n = 384) of the Nasonia 
vitripennis BAC library. 
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Figure 3.2. Histogram of insert size distribution of BAC clones (n = 192) of the Nasonia 
giraulti BAC library. 
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Abstract 

Hox genes are a family of homeodomain-encoding transcription factors which 

activate and repress a plethora of downstream genes as they bind to DNA directly in a 

sequence-specific fashion. They control segment identity in the developing embryo of all 

Arthropods and help to establish the anterior-posterior body axis. Insects have maintained 

the ancestral Arthropod set of 10 orthologs in the cluster. Differences in life history and 

body plan of two species of social pollinator bees and one species of solitary parasitic 

wasps may have placed developmental constraints on the evolution of each of these genes 

and the cluster as a whole. Despite these differences, the majority of Hox display a high 

degree of conservation across hundreds of millions of years. In this study we conducted 

evolutionary genetic analyses of one Hox gene, Antennapedia (Antp) in three species of 

Hymenoptera. We report differential estimates of synonymous and nonsynonymous 

substitution rates (ω) along two different domains in the Antp coding sequence, 

indicating that selective pressure may not be occurring at a homogeneous rate throughout 

the gene. We further hypothesized that these rates may also be dramatically different 

when compared with those of other genes in the cluster, especially those which no longer 

play a homeotic role in development. 
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Introduction 

Hox genes are homeodomain transcription factors, very well conserved in 

sequence and expression across the arthropods and other animals (Hughes and Kaufman, 

2002a). This group of genes controls segmentation identities of developing animal 

embryos along the head-to-tail (anterior-posterior) axis. Nearly all bilaterians share a 

general genetic framework that forms their body structures, although their body forms are 

very diverse. Hox genes play a central role in the make up of this framework. Functional 

and evolutionary comparative analyses of homeotic genes across diverse organisms have 

provided important insights concerning the evolution of developmental patterns in the 

animal body plan facilitating our understanding of animal diversity (e.g.: Angelini and 

Kaufman, 2005, Deutsch and Mouchel-Vielh, 2003, Hoegg and Meyer, 2005). Thanks to 

the discovery of clustering of homeotic genes in Drosophila (Lewis et al., 1980a, 1980b, 

Lewis, 1978, Denell, 1994), the DNA binding domain they encode (McGinnis et al., 

1984, Gehring, 1987) and the knowledge that homologous homeotic genes are involved 

in development of both vertebrates and invertebrates (Bachiller et al., 1994, Carroll, 

2000), detailed molecular comparisons across large phylogenetic distances have been 

possible. Although with some variation, Hox function is conserved enough to make 

comparisons based on expression data reasonable, mainly thanks to the available Hox 

phenotypes (Hughes and Kaufman, 2002a). With a few exceptions, Hox genes are 

arranged in such a way that they are expressed in distinct domains along the anterior-

posterior axis, which generally correspond spatially and temporally with their location on 

the chromosome (Kaufman et al., 1990). It is widely accepted that all paralogs of the Hox 
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family of genes originated from a single ancestral gene by duplication. These series of 

duplication events are likely to be the origin of such spatial and temporal arrangement. 

Despite being the result of tandem duplication events, only a few cases are known where 

the cluster has been dispersed or the direction of transcription has changed for one or 

more genes (e.g. Lemmons and McGinnis, 2006), indicating that some type of selection 

must be acting on the organization of the cluster in order to maintain this arrangement. 

Further comparison of Hox genes across diverse organisms both at the functional and 

molecular level will provide important insights concerning the evolution of 

developmental patterns and may also provide a framework for exploring fundamental 

principles of regulatory gene evolution. 

In arthropods, variations on the expression patterns of Hox genes and on the 

regulation of their downstream targets govern the differences along the evolution of 

segmental specialization (Averof, 2002). These changes include large shifts in their 

regional domains of expression and the evolution of finer differences in their expression 

within individual segments. Comparative studies on the evolution of Hox genes through 

the analysis of the molecular evolutionary history shaping the organization and function 

of individual genes from the cluster are now possible thanks to the availability of 

genomic data (Wolfe and Li, 2003, Averof 2002). Measurements of the rate of 

evolutionary changes between orthologs of the same Hox gene among species may yield 

information on the nature of the selective pressure acting upon the cluster. At the protein 

level, estimates of the ratio of nonsynonymous (dN) to synonymous (dS) substitution 

rates (ω = dN/dS) represent an effective way of testing for patterns consistent with natural 
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selection. Lessons learned form other systems show that members of another family of 

transcription factors, found in animals, fungi and plants, which also contain a highly 

conserved DNA-biding domain, are evolving under strong purifying selection. Such is 

the case of a number of MADS-box genes associated with plant dormancy, the DAM 

genes (Sergio Jimenez et al., submitted). MADS-box genes are also known to have 

originated and evolved from a single gene through a series of duplication events and, 

similar to the role of Hox genes in animals, a subset of MADS-box genes exists with 

homeotic capabilities involved in the development of floral organ identity determination 

(Coen and Meyerowitz, 1991). Changes in both regulatory and non-regulatory regions of 

MADS-box genes seem to play important roles during evolution of phenotypic identities 

of floral organs. So too, such changes in Hox transcription factors are likely to play 

important roles during the evolution of the animal body plan.  

On the other hand in vertebrates research suggests that positive selection acted on 

the homeodomain immediately after Hox clusters duplications (Lynch et al., 2006). Given 

that the location of sites under positive selection in the homeodomain suggests that they 

are involved in protein-protein interactions, their results further suggest that adaptive 

evolution actively contributed to Hox-gene homeodomain functions, at least in some 

vertebrate orders. More recent studies performed on Atlantic Salmonid fishes, estimated 

evolutionary rates along this lineage to test whether positive natural selection is acting on 

the Homeodomain. After two rounds of genome duplications that predate the origin of 

vertebrates and third fish-specific duplication event, Salmonid fish underwent a fourth 
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round of genome duplication about 25 to 100 Million years ago (Allendorf et al., 1984). 

Positive selection could not be detected in this lineage (Mungpakdee et al., 2008).  

In this study we focused our attention on estimating and comparing rates and rate 

ratios of synonymous and nonsynonymous substitutions shaping the evolutionary history 

a Hox gene, Antennapedia (Antp) in the Insect order Hymenoptera. Our goal was to 

investigate whether Darwinian selection is currently acting uniquely on the homeodomain 

of Antennapedia in order to expand our knowledge of the evolution of the Hox Cluster in 

Insects. This research is the first study of its kind for the Arthropods.  

In insects, Antp is expressed in a restricted domain in the middle of the embryo 

(thoracic segments T1-T3) playing a role in patterning the thorax (Hughes and Kaufman, 

2002a); it is normally required for the development of the thoracic ectoderm and the 

formation of legs (Struhl, 1982); Antp is also involved in the development of the 

embryonic midgut (Reuter and Scott, 1990), and the peripheral nervous system (Heuer 

and Kaufman, 1992) and the central nervous system (Hayward et al., 1995). In the honey 

bee (Apis mellifera) Antp shows strong expression in the thorax and later expansion into 

the abdomen (Walldorf et al., 2000). Antennapedia (Antp) is one three genes which 

evolved very distinct functions after a series of gene duplication events in the ancestor of 

the Arthropods (de Rosa et al., 1999); the other two genes are Ultrabithorax and 

Abdominal-A. 

It is possible that different parts of a molecule are subject to different selective 

constraints (Halliburton, 2004). If positive selection causes divergence in a specific 

feature in which a protein is known to be involved, parts of the protein involved in such 
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feature would be more divergent than the parts that are not. And the same is true for the 

opposite case; where purifying selection acting in a specific region of the protein would 

make nearly any change have some effect in protein structure and/or function, almost 

certainly a deleterious one. In this case too, a different value of dN/dS (ω) is expected for 

the different portions of the protein. For instance in the insulin molecule, which is 

composed of two chains capable of forming disulfide bonds with each other and a third 

chain that is spliced out of the proinsulin peptide, replacement substitution rates are lower 

across former chains than it is for the spliced out chain (Halliburton, 2004).  

To test for natural selection differentially acting on different regions of the 

Antennapedia (Antp) gene, we set out to investigate whether the portion of (Antp) 

involved in binding DNA in a sequence-specific manner had different dN/dS ratios than 

portions of the protein which are not involved in the process. We here report results on 

the use of maximum likelihood methods to conduct molecular evolution analyses testing 

two hypotheses. First, that the homeodomain has a lower dN/dS ratio than the rest of the 

protein by virtue of the selective constraints acting on a motif that binds DNA in a 

sequence-specific manner. Second, that this ratio has a value smaller than one (ω < 1), 

consistent with the expected evolutionary footprint of selective pressure purifying 

deleterious mutations. 

To perform these analyses we sequenced the genomic region containing the 

Antennapedia gene in Nasonia vitripennis and Bombus terrestris implementing a 

degenerate PCR procedure to generate the species-specific Antp probes and chose 

candidate BACs for shotgun-sequencing. The deduced Antp sequences for these two 
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species of Hymenoptera are 352 (B. terrestris) and 362 (N. vitripennis) amino acids long. 

In both species the Antp gene comprises two exons and one intron. This paper represents 

the first study of molecular evolution of a developmental gene in the European 

bumblebee (B. terrestris) and a it takes a unique look at the evolutionary history of a Hox 

gene for both B. terrestris and the solitary parasitic jewel wasp (N vitripennis). The 

results show that estimates of the ratio of evolutionary rates (ω) are lower along the 

coding sequence of the Antp homeodomain compared with the rest of the protein, which 

may be the result of differential evolutionary constraints posed by how selected portions 

of the protein interact with other proteins or with other regions of the genome. 

 

Results and Discussion 

Newly deduced Antennapedia sequences for Nasonia vitripennis and  

Bombus terrestris: sequencing, annotation. 

We deduced the genomic sequences for the region containing the Antennapedia 

(Antp) gene in the solitary parasitic wasp Nasonia vitripennis and the social pollinator 

Bombus terrestris (Nv and Bt, respectively and hereafter). Sequences obtained from 

BACs from Nv and Bt spanned genomic regions of 180Kb and 130Kb in size, 

respectively. Using the program FGENESH+ (Softberry Inc, Mount Kisco, NY, USA) we 

were able to accurately predict the amino acid sequence of the Antp gene in both species. 

FGENESH (Salamov and Solovyev, 2000) is a popular Hidden Markov Model (HMM)-

based gene prediction program. FGENESH works through the recognition of different 

types of exons, promoters and polyA signals and an optimal combination of these 
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features is then found by dynamic programming and a set of gene models is constructed 

along the queried sequence. FGENESH+ is an FGENESH variant which incorporates 

information from known homologous proteins of the queried sequence for more accurate 

gene assembly from predicted exons. To run FGENESH+ predictions with the Nv BAC 

sequence, the Am amino acid sequence was used as a training peptide. In the case of Bt 

both the Am protein sequence and Nv predicted peptide were used as reference 

homologous sequences. Combined with one additional round of homology searches, 

which were performed manually on NCBI using BLAST, we finalized the manual 

annotation for both genes. The predicted peptides covered a genomic region of 11,883bp 

for Bt and 12,086bp for Nv. Using NCBI’s Conserved Domain Search engine (Marchler-

Bauer et al., 2007) we annotated the homeodomain on the Antp deduced protein 

sequences highlighting the position of each alpha-helix in the helix-turn-helix motif 

encoded by this conserved domain.  Figure 4.3 shows the relative position of the 

homeodomain and the helices along the length of the nucleotide alignment for the 

hymenopteran Antp. 

To optimize the annotation of Nv Antp we took advantage of the availability of a 

draft version (1.0) of the Nasonia Genome Assembly (Nvit 1.0. Personal 

Communication; Stephen Richards, Human Genome Sequencing Center, Baylor College 

of Medicine and Christine Elsik, Department of Biology, Georgetown University on 

behalf of The Nasonia Genome Sequencing Consortium [NGSC]) using an Apollo 

interface (Lewis et al., 2002). This genome annotation viewer also serves as an editing 

tool for predicted gene models and its implementation allowed us to simultaneously 
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compare our deduced sequence with Antp protein sequences from D. melanogaster, A. 

mellifera and Tribolium castaneum, as well as with EST supporting evidence for this 

region from N. vitripennis, and Solenopsis invicta; an additional gene model for the Nv 

Antp gene obtained as the result of a combination of homology searches and ab initio 

predictions performed with NCBI’s gene prediction method GNOMON (Nagy et al., 

2008) was also used in Apollo. Despite the amount of supporting information available 

through Apollo, detailed attention had to be paid when deducing the final annotation of 

Antp for Nv. Genomic sequences from NGSC contained an inserted Cysteine (C) residue 

in position 1,463,219 of SCAFFOLD23 in Nvit 1.0, which shifted the reading frame in 

the first exon of the predicted Antp gene model. After further inspection of 14 high 

quality reads of genomic sequences from our BAC shotgun-sequencing effort, which 

spanned this region, we were able to identify the insertion and correct this sequencing 

error. (Data not shown). Additionally, BAC shotgun sequencing data allowed us to close 

an overestimated genomic gap of 413 bp in the NGSC sequences (Positions 1468011-

1468423, SCAFFOLD23, Nvit 1.0. Personal Communication, NGSC). The actual length 

of the gap was 281 bp. These results highlight the monumental importance of performing 

manual annotations to review automated predictions. Regardless of the high fidelity of 

the sequencing process and the ever increasing efficiency of protein-prediction 

algorithms, it is the biological knowledge on each predicted peptide what will ultimately 

confirm any putative gene models as accepted or rejected. Genomic (gDNA), coding 

(cds) and amino acid sequences for NV and Bt as well as Nv’s genomic gap data may be 

found in Appendix C (Supplementary data C-1.). 
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Evolutionary genetic analyses 

MULTIPLE SEQUENCE ALIGNMENTS AND NUMBER OF SYNONYMOUS AND 

NONSYNONYMOUS DIFFERENCES. A multiple sequence alignment prepared with 

CLUSTAL 2.0.10 (Larkin et al., 2007) was used as input file for DnaSP (Rozas et al., 

2003) and is shown in Figure 4.1. The Nv Antp sequence contains 30 nucleotides more 

than those of Am and Bt. After removing alignment gaps, 347 codons were analyzed 

(1041 sites) with a total of 230 synonymous sites and 811 non-synonymous sites. The 

number of synonymous and non-synonymous differences (S-Dif and N-Dif, respectively) 

per total number of synonymous and non-synonymous sites was estimated using the Nei 

& Gojobori’s substitution model (NG86, Nei and Gojobori, 1986) in DnaSP (Table 4.1). 

In the coding region of Antp in the species of Hymenoptera here examined the majority 

of non-synonymous differences (N-Dif) are concentrated on regions outside the 

Homeodomain. For example, when doing a pairwise analysis of non-synonymous 

differences between Am and Bt 22 of the 23 observed differences occur outside the 

Homeodomain; the same is true for comparisons between Am and Nv and between Bt 

and Nv. These results indicate that the region outside the homeodomain may have a 

higher tolerance for non-synonymous substitutions than the portion of the protein 

involved DNA-binding, perhaps as a result of less evolutionary constraints. 

Implementing the Neighbor-Joining method (NJ) in MEGA4 we inferred the 

evolutionary history among the three Antp loci as shown in Figure 4.2. Evolutionary 

distances were computed using the Kimura 2-parameter method and are presented in 

number of base substitutions per site. Codon positions included were 1st + 2nd + 3rd + 
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Noncoding.  All positions containing gaps and missing data were eliminated from the 

dataset (complete deletion option). As expected both members of the family Apidae are 

shown to be more closely related to each other than either is to Nasonia.  

DnaSP is a program designed for analysis of DNA polymorphisms from 

nucleotide sequence data and it computes the synonymous and non-synonymous 

differences between a given pair of sequences as Nei and Gojobori (1986). If more than 

one nucleotide difference is present between two codons DnaSP considers all possible 

pathways of substitution with equal probability, deleting those that lead to stop codons. In 

instances in which codons differ by multiple changes, DnaSP is unable to report θ 

estimates per site (the total number of mutations (Watterson, 1975)). Our results showed 

that θ estimates were not reported for our analyses (data not shown), thus we assumed the 

occurrence of non-synonymous substitution sites with multiple (more than 1) changes per 

codon and decided to further investigate. The numbers and distributions of these sites 

were manually recorded by overlapping the nucleotide and amino acid sequence 

alignments (Supplementary data C-2.) and data were plotted across the length of the 

nucleotide alignment as shown in Figure 4.3. Only one such codon was observed inside 

the Homeodomain, suggesting also a lower tolerance for non-synonymous nucleotide 

changes in this region when compared to the rest of the protein. 

DnaSP also measures nucleotide diversity values (the average number of 

nucleotide substitutions per site between two sequences) using the Jukes and Cantor 

(1969) correction. It is possible that the proportion of differences may be so high that this 

correction cannot be computed (Rozas et al., 2003). Preliminary analyses with the 
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‘Synonymous and Nonsynonymous Substitutions’ command in DnaSP indicated that dS 

could not be computed (data not shown). We compared the nucleotide and amino acid 

sequence alignments in order to check for possible alignment gaps in the nucleotide 

sequence that did not correspond with gaps at the amino acid level, changing the frame. 

In fact in a few instances CLUSTAL inserted a gap in the middle of a codon triplet (data 

not shown), changing the translation of the deduced amino acid. Because we consider 

that biologically speaking it is more relevant to conserve the amino acid deduced 

sequences, we manually modified the location of gaps in the nucleotide sequence 

alignment to agree with the gaps in the amino acid one. This correction improved the 

outcome of DnaSP analyses and both evolutionary rates (dN and dS) were successfully 

reported, as described below. 

However, this also sparked our curiosity to further interrogate these genomic 

sequences in search for biases in codon usage, which could also account for an unusually 

high number of synonymous substitutions, skewing the data and making it impossible to 

calculate the Jukes and Cantor correction. It is widely accepted that codon usage is biased 

amongst organisms and that it reflects the selection on mutated nucleotides over time 

(Akashi and Eyre-Walker, 1998). The ‘Codon Usage’ command in DnaSP calculated the 

Effective Number of Codons (ENC, Wright, 1990), Codon Bias Index (CBI, Morton 

1993) and Scaled Chi Square (SChi2, Shields et al., 1998) for each species, to measure 

the extent of nonrandom usage of synonymous codons (Rozas et al., 2003). Maximum 

bias in terms of ENC results from the use of only one codon per amino acid, resulting in 

an ENC value of 20. No codon bias then is the result of equal usage of all synonymous 
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codons for each amino acid and an ENC value of 61. CBI measures the deviation from 

equal use of synonymous codons and a value of 0 represents the uniform use of these 

whereas the opposite, maximum codon bias, is represented by a value of 1. Similarly, 

SChi2 values range from 0 (no bias) to 1 (maximum bias).  

Results obtained (Table 4.2) suggest a significant bias in codon usage for Nasonia 

vitripennis, where only 31 of the possible 61 codons have been used in Antp. A CBI value 

of 0.766 and an SChi2 value of 0.825 also suggest a bias in codon usage in the Nv 

sequence. The conservation and evolution of codon usage patterns can be more 

discriminating in the level of genomic signature difference than nucleotide abundances 

on the third site within codons (Chantawannakul and Cutler, 2008). Additionally, these 

signature differences can also be measured and statistically quantified. Thus, although 

these values are the result of a single gene, they represent a starting point to inquire more 

about what appears to be an interesting and distinctive feature of the Nasonia genome. 

 

ESTIMATING RATES OF EVOLUTION IN THE ANTENNAPEDIA GENE. To estimate the 

extent of polymorphism and divergence along Antennapedia loci from Am, Bt and Nv, 

the ratio of rates of evolutionary change ω (dN/dS) was measured with DnaSP. We 

calculated the rates of synonymous and nonsynonymous substitutions for the complete 

coding sequence of Antennapedia gene among the three species (Am, Bt and Nv) and 

separately for partial coding sequences covering the homeodomain (hd) and non-

homeodomain (nhd) regions. Table 4.3 describes our findings. dN/dS rate ratio estimates 

obtained for the portion of the Antennapedia protein that binds to DNA in a sequence-
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specific manner were found to be smaller than those obtained for the complete coding 

sequence or the nhd coding sequence indicating that evolutionary pressure is not 

homogeneous among different domains within the same protein. 

Next the sliding window method was applied to calculate the degree of molecular 

variation in terms of rates of synonymous and non-synonymous substitutions across the 

Antp gene, moving a window of 60 nucleotides in steps of 20 nucleotides at a time. This 

window size was chosen because it is approximately one third of the size of the hd 

nucleotide sequences, which allows thorough sampling of the nucleotide diversity in this 

region. Results are reported in Figure 4.4, where all measures of dN/dS have been plotted 

against the mid-position of the window along the aligned nucleotide sequence for Antp. 

For this analysis DnaSP uses the substitution model proposed by Nei & Gojobori in 1986 

(NG86). In their original paper Nei and Gojobori explained that this simple substitution 

model gives no weights to different types of codon substitutions. In this model 

evolutionary rates of synonymous (dS) and non-synonymous (dN) substitutions are 

computed by using the two sequences to be compared and transitional and transversional 

nucleotide substitutions are not considered separately. Thus estimates of synonymous 

(dS) and nonsynonymous (dN) rates obtained with this method are slightly different than 

those obtained using the substitution models implemented by codeml from the PAML4 

package (see below). 

An increase in dN/dS values is observed between positions 551 and 698 in Figure 

4.4. A dN/dS value of 1.128 was observed between Am and Nv in mid-position 638bp. A 

value of ω ≥ 1 indicates that rare, favorable mutations are selected for, resulting in the 
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substitution of the new mutation for the previous best allele (Halliburton, 2004). In 

pairwise comparisons between species ω ≥ 1 indicates positive selection for divergence. 

In the amino acid alignment this region falls within a run of 8 amino acid residues in Nv, 

which are not present in Am or in Bt, and one more residue present both in Bt and Nv but 

not in Am, supporting the theory in favor of diversifying selection acting on this specific 

region of the gene.  

Orange and red boxes (Figure 4.4) denote the positions of the hd as well as a 

highly conserved run of four amino acid residues YPWM. The YPWM domain is known 

to be present across the majority of Hox genes in Arthropods (Rauskolb and Wieschaus, 

1994, Mann and Chan, 1996, Muñoz-Torres and Lawton-Rauh, Data not shown). In the 

case of Antp there is an additional run of 15 conserved amino acid residues located 

upstream (5’) of YPWM. This motif is required for function of most homeotic Hox 

proteins and it interacts with the Hox cofactor extradenticle (exd) in the regulation of 

expression of downstream genes in higher insects (Johnson et al., 1995). Our data show 

that in Nv the region between this motif and the homeodomain varies between 13 and 17 

amino acids across genes in the cluster (results not shown). The YPWM motif was either 

lost or modified in the evolution of the ‘honorary’ Hox genes fushi tarazu (ftz), and 

zerknüllt (zen). While the ftz homolog in Drosophila lost its YPWM motif, the locust 

Schistocerca americana and the red flour beetle Tribolium castaneum homologs 

maintained it in intact form (Downes et al., 1994 and Brown et al., 1994). Our analyses 

identified a modified motif FPWM in the Nv ftz homolog and the presence of the 

LXXLL motif (Figure C-1.), which in Drosophila has been shown to interact with Ftz-
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F1, a necessary cofactor in Ftz’s role in segment formation. All described homologous 

copies of zen in insects have lost this tetrameric motif. This indicates that YPWM was 

lost somewhere in the evolution of Holometabola. 

The dN/dS estimates along the hd are within the order of 0 to 0.16 units of 

evolutionary change, and sequences are highly conserved at the amino acid and 

nucleotide levels. Figure 4.1 reveals conservation in the Antp hd at the nucleotide level 

among the three species, and Fig 4.4 includes a graphic representation of the degree of 

conservation at the amino acid level and the amino acid frequency per site with WebLogo 

(Crooks et al., 2004 and Schneider and Stephens, 1990). Position 898 in the nucleotide 

alignment, however has an estimated dN/dS of 0.328 between Am and Bt, which deviates 

from the general trend along the homeodomain. In the nucleotide alignment, positions 

898-900 are a triplet coding for the amino acid Arginine (R), which may be encoded by 

six different codons. In this case, the only occurrence within the homeodomain, two 

different codons are used at this position AGG for Nv and CGC for Am and Bt. Given 

that position 898 is the midpoint of one of the window in this analysis, it is perhaps this 

variation what generated an abrupt change in the dN/dS rate ratio estimate in this region. 

It is prudent to remember here that the sliding window graph is a continuum 

representation of discrete data points, which may occasionally be misleading when 

interpreting these results. A continuous line between two discrete data points might 

enhance the effect of the differences between them.  

It is evident that peaks from the different pairwise analyses do not always 

coincide on the same position (e.g. around positions 276-319, 618-638 and 998-1018); 
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this might be an artifact of the differences in length between the three sequences and the 

need to choose only one series of ‘mid-point of window’ data points to visualize the 

graphic comparisons amongst sliding window analyses. In actuality, if it were possible to 

construct the graph using three X axes simultaneously, all peaks would coincide with 

each other.  Thus, Figure 4.4 is a generalized visual representation of the data amongst 

the three sequences.  

Those regions of the gene where dN/dS = 0.0000 are indicated in green rectangles 

along the length of the nucleotide and amino acid alignment (Figure 4.4). In one end of 

the spectrum, a value of ω=1 indicates that amino acid changes followed neutral-

equilibrium model expectations and they will be fixed at the same rate as a synonymous 

mutations (Yang and Bielawski, 2000). Estimates of ω ≤ 1indicate that amino acid 

changes are deleterious and that purifying selection will reduce fixation rate. Thus a 

dN/dS estimate of 0.0000 indicates strong purifying selection acting on the DNA 

sequence to eliminate deleterious mutations and preserve protein function. Hence, green 

rectangles in Fig 4.4 mark those regions of the gene where purifying selection is acting 

more strongly, compared to the rest of the protein. 

To test if these patterns in Antp represent evolutionary processes unique to the 

Antp gene, we compared these results with estimated dN/dS values for the antimicrobial 

peptide Defensin (def) among A. mellifera, B. terrestris and N. vitripennis. Defensins are 

small cationic peptides, which act primarily against Gram-positive bacteria by 

electrostatic and hydrophobic interactions leading to disruption of the bacterial membrane 

(Maget-Dana and Ptak, 1997). Viljakainen and Pamilo (2005) identified and 
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characterized the genomic structure of Defensin from the wood ant Formica aquilonia 

and compared its protein structure to that in A. mellifera and Bombus ignitus. The 

Defensin peptide is made of three domains: a signal peptide, a propeptide and a mature 

peptide (Fig 4.5). The signal and propeptide domains are proteolitically cleaved to release 

the active form of the mature peptide (Lazzaro and Clark, 2003). The mature peptide is 

the portion of the gene that interacts with microbial invaders. As it seemed to be the case 

with the two different domains in Antp (homeobox-encoding and non-homeobox-

encoding) we expected to observe a difference in the rates of evolution acting on the 

different def domains. Using SignalP 3.0 we deduced the putative cleavage sites for Bt 

and Nv defensin peptides (Bendsten et al., 2004). Table 4.3 reports the estimated pairwise 

dN/dS rates calculated for the complete def coding sequence, and separately for the partial 

sequences of ‘signal & propeptide’ and ‘mature’ domains among the three species 

following a procedure described by Vijakainen and Pamilo (2008). We found pairwise 

estimates of evolutionary rates for def to be generally slightly higher than those of Antp in 

the same three species by an order of magnitude. With certain exceptions (Lazzaro and 

Clark, 2003), generally it has been reported that genes involved in the immunity defense 

mechanisms of animals have faster rates of amino acid substitutions than other nuclear 

genes (Sackton et al., 2007). Additionally, as it was the case of the Antp homeodomain, 

portions of the def peptide which interact with the microbial wall showed lower dN/dS 

estimates than the rest of the protein. 
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Phylogenetic analyses 

Our results suggest that evolutionary changes might be occurring at a different 

rate along the DNA-binding domain of Antennapedia, compared with the rest of the gene. 

To test for the statistical significance of observed differences in estimated dN/dS ratios 

across the coding sequence of Antp we used a phylogenetic approach based on maximum 

likelihood (ML). Given the differential selective constraints that might be imposed on 

each codon position (Dónaill and Maktelow, 2004), it is important to consider programs 

with codon-substitution models that allow partitioning of a dataset according to codon 

position and consider the codon triplet the unit of evolution (Goldman and Yang, 1994). 

PAML4 is a package of programs for phylogenetic analyses of DNA and protein 

sequences that uses ML (Yang, 2007). codeml from PAML4 uses ML to estimate the 

sequence divergence (t), the transition/transversion ratio (κ) and the ratio dN/dS (ω) from 

the data using ML, in order to calculate dN and dS (Yang, 2007). Analyses were 

conducted for both the full coding sequence of Antennapedia (347 codons, excluding 

gaps) and separately for the homeodomain (59 codons) and nonhomeodomain (288 

codons) regions. Results of ML estimates (Table 4.1) confirmed our previous 

observations of a lower ω ratio found along the hd compared with the rest of the Antp 

peptide, and log-likelihood (ι) values confirm that ω is indeed different from 1 (Yang and 

Bielawski, 2000).  

 

EMPIRICAL BAYESIAN RECONSTRUCTION OF ANCESTRAL SEQUENCES. Antennapedia 

sequences of extinct ancestors of Apidae (node 5, Figure 4.2) and Aculeta (node 4, Figure 
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4.2) were reconstructed with codeml. Eighty-three synonymous and 14 nonsynonymous 

changes were observed along branch 1, where the direction of the change goes from the 

extinct ancestral sequence for the entire group to the extinct ancestral sequence of the 

bees (node 4 to node 5, Fig 4.1). This likelihood-based reconstruction uses information 

from branch lengths and relative substitution rates between codons and provides a 

measure of uncertainties in the form of posterior probabilities for reconstructed ancestral 

states (Yang, 2008, Yang, 2007). Except for changes observed in positions 172 (p=0.638) 

and 208 (p=0.559), nonsynonymous changes along branch 1 were estimated with 

posterior probabilities of 0.995 and higher. Most (13 out of 14) nonsynonymous 

replacements led to a change in the ionic charge per site (Table 4.4; Tables C-1.1 through 

C-1.4.).  

A summary of the occurrence of all changes along each branch and their posterior 

probabilities may be found in Appendix C. Worthy of notice is that only two 

nonsynonymous changes were observed in the homeodomain sequence through the 

reconstructed evolutionary history of the hymenopteran Antp gene. One is hypothesized 

to have occurred along branch 4, which describes changes occurred from the sequence of 

the extinct ancestor of Aculeta in the direction of Nv (node 3, Appendix C). The change 

from codon AAC (Asparagine) to codon ACC (Threonine) was calculated with a 

posterior probability of 0.571. The second change occurred in branch 2 from the ancestral 

Antp sequence of the Apidae in the direction of Am at position 286 with a posterior 

probability of 0.995. In this case the change was from TAC (Tyrosine) to TTC 

(Phenylananine). Despite the 5 - 37 nonsynonymous changes occurred along each branch 



 131 

(Table 4.4.), our data suggest that only two such changes have occurred in approximately 

195 million years since Chalcidoidea separated from Aculeta (Grimaldi and Engel, 2005). 

These results provide additional support for our findings of signatures of purifying 

natural selection along the homeodomain in the Hymenoptera Antennapedia gene. 

Calculated numbers of synonymous and nonsynonymous changes observed 

between reconstructed ancestral sequences and extant copies of Antp in Hymenoptera are 

summarized in Table 4.4. It is important to recognize that reconstructed ancestral 

sequences are not real observed data. Thus, one must practice caution when performing 

further analysis with them. Using CLUSTAL 2.0.10 we prepared an amino acid multiple 

sequence alignment including three extant Antp sequences and two reconstructed 

ancestral ones as a visual aid to better understand the natures of the changes here reported 

(Fig 4.6). 

What, then, is the cause of such a low ω rate ratios in Antp? Similar analyses with 

other Hox genes and their orthologs could be performed to test the hypothesis that ω 

estimates are lower in the homeodomain versus non-homeodomain regions in general 

across loci to see if Antp has an overall significantly lower ω estimate versus all other 

Hox genes. As discussed above, in some species of insects the genes zerknüllt (zen) and 

fushi tarazu (ftz) have either lost or posses a degenerate YPWM motif. Interestingly 

neither gene is expressed in a hox-like fashion in insects, i.e. their developmental roles no 

longer involve a homeotic function. The ftz gene plays a role in segmentation of the 

Drosophila embryo (Carroll and Scott, 1985) and is expressed in a modified pair-rule 

pattern during development of the short germband red flour beetle Tribolium castaneum 
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(Brown et al., 1994). It is believed that the role of ftz in segmentation evolved from that 

of a canonical Hox with a homeotic function, and that somewhere in between existed an 

intermediate that played both roles (Hughes and Kaufman, 2002b).  

It is now widely known that one duplication event in the ancestral Hox3 gene of 

Arthropods gave origin to two copies of zen and one of these copies further differentiated 

into the bicoid (bcd) gene copy in Drosophila. zen plays a role in the development of the 

extraembryonic ectoderm in Drosophila (Wakimoto et al., 1984) while bcd is an anterior-

determining morphogen, deposited maternally. In T. castaneum the duplication of zen 

was accompanied by subfunctionalization to specify the serosa and later fuse it with the 

embryonic amnion to complete the dorsal closure during early stages of embryogenesis 

(van der Zee et al., 2005). These changes in expression patterns, which have modified 

developmental roles, were also accompanied by sequence changes in which protein 

functional domains and motifs were added or deteriorated throughout the evolutionary 

history of these genes (Löhr et al., 2001). 

Since ftz and zen are Hox genes which no longer have a homeotic function, 

perhaps these two genes have different ω estimates when compared to other paralogs in 

the cluster. As we mentioned above, Hox3 is ancestral to two copies of zen-like genes in 

insects, with evidence of subfunctionalization occurring after the duplication event in at 

least one species; ftz has also undergone a dramatic change of anatomical domains of 

gene expression and protein motifs. Thus, if selective constraints are directly impacted in 

new gene copies such that more non-synonymous mutations accumulate in derived gene 

copies, then we should see a significant difference between dN/dS rate ratios in derived 
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versus ancestral gene copies. Analyses of seven other genes in the Hox cluster in Nv 

suggest an overall degree of conservation across a few structural features besides the 

homeodomain (Figure C-1.). Comparative analyses of the Nv proboscipedia (pb), labial 

(lab), ftz, zen, Sex combs reduced (Scr), Antp, Ultrabithorax (Ubx) and Abdominal-B 

(Abd-B) showed that other structural features conserved across the eight genes include a 

run of 10 amino acid residues located 80 to 81 positions upstream of the homeodomain, 

and conservation of the YPWM motif. The location of the motif varies from gene to 

gene, as does the spacer region between the motif and the homeodomain. Its sequence is 

conserved for the most part, with just a single amino acid change in ftz and lab (Figure C-

1.). Perhaps performing evolutionary analyses similar to the ones presented here with all 

other members of the cluster could shed some light on the effects of the apparent 

relaxation of evolutionary constraint on those paralogs, which have lost their homeotic 

role subsequent to duplication. Particularly, it would be interesting to explore how the 

rates of sequence evolution in these genes compare to the ones reported here for Antp.  

 

Conclusions 

Here we present the newly deduced amino acid sequence for the Antennapedia 

(Antp) gene for Bombus terrestris and Nasonia vitripennis using a BAC shotgun 

sequencing approach. Combined with currently available data for Antp from the genome 

of Apis mellifera, we have used these newly deduced data to study this gene’s 

evolutionary genetic relationships among species of Hymenoptera. 
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Using maximum likelihood analyses to estimate and compare the substitution rate 

ratio ω (dN/dS) across the Antp gene, amongst Antp gene regions, and in comparison to 

another gene (Defensin), we detected purifying selection in the overall Antp protein 

sequence. This suggests the paramount importance that this transcription factor plays in 

the development of the metazoan body plan in Hymenoptera. Additionally, ML analyses 

performed with codeml (PAML4) confirmed our hypothesis that ω <1 for both the full 

length and partial coding sequence of Antp, indicating that ω estimates are significantly 

lower along the coding sequence of the homeodomain compared with the rest of the 

protein. This pattern may be the result of differential evolutionary constraints posed by 

how selected portions of the protein interact with other proteins or with other regions of 

the genome. 

The fact that Antp is expressed and subjected to purifying selection suggests that 

duplicated gene copies have been maintained possibly by subfunctionalization and/or 

neofunctionalization (versus pseudofunctionalization and/or non-functionalization). In 

Arthropods the evolution of novelties in the body plan are believed to be the result of 

shrinking expression domains along the evolutionary history of the group. More 

overlapping, larger domains are evident in Chelicerates, with respect to Hox expression 

domains in insects (Averof, 2002). Our results are in agreement with this model because 

strong purifying selection observed in the Hox genes may indicate no functional 

redundancy among genes, despite similarities in coding sequences. In other words, the 

genes of the Hox Cluster are very conserved at the sequence level, but some sequence 



 135 

variation is maintained, which results in some functional variations that may preserve the 

genetic framework underlying the development of the Arthropod body plan. 

What we have learned so far about the evolutionary history of the genes of the 

Hox cluster, tells us that some members of the ancestral Arthropod cluster have changed 

so much over evolutionary time that some of them evolved functions which no longer 

have a homeotic effect and some of them have evolved up to the point where some of 

them may no longer play a role in development at all, as in the case of one of the copies 

of zen (zen2) in Drosophila (Pultz et al., 1988). If selective constraints are directly 

impacted in new gene copies such that more non-synonymous mutations accumulate in 

derived gene copies, then we should see a significant difference between dN/dS rate ratios 

in derived versus ancestral gene copies. We would also expect to see a difference in ω 

estimates for Hox paralogs with non homeotic functions compared those of Antp and all 

other Hox which have retained their homeotic capacity. 

Finally, we used an empirical Bayesian method of maximum likelihood to 

reconstruct the Antennapedia sequences of extinct ancestral nodes in the evolutionary 

history of the gene.  These sequences are reported here to further illustrate the 

hypothesized small number of accepted evolutionary changes that have occurred along 

the Antp homeodomain since the Aculeta and Chalcidoidea last shared a common 

ancestor approximately 195 million years ago. 
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Experimental Procedures 

DNA and amino acid sequences 

Sequences for the Antennapedia (Antp) gene from Apis mellifera (Am) were 

obtained from GenBank (Benson et al., 2008) and were chosen with supporting 

information from Walldorf and colleagues (2000). GenBank accession numbers for Am 

Antp are AME276511 for the nucleotide sequence and CAC06383 for amino acids. Antp 

sequences for Bombus terrestris and Nasonia vitripennis (Bt and Nv, respectively) were 

deduced using a degenerate PCR and BAC Library hybridization approach described in 

the following sections. Sequences will be deposited in GenBank (accession numbers 

pending) and are currently found in Supplementary data C-1. 

 

Library Screening 

Wilfert et al. (2008) and Muñoz-Torres and colleagues (Unpublished, Chapter III) 

constructed bacterial Artificial Chromosome (BAC) libraries for Bt and Nv, respectively. 

Both libraries are available through the Clemson University Genomics Institute (CUGI) 

at www.genome.clemson.edu. High-density nitrocellulose BAC library filters were 

screened using a genomic fragment obtained through a degenerate PCR approach. PCR 

amplification was conducted using primers designed from a multiple sequence alignment 

following specifications from Rose et al. (1998). Antp orthologs were chosen from 

sequences available at the National Center for Biotechnology Information (NCBI), 

relying on BLAST (Altschul et al., 1990) sequence-similarity scores with respect to the 

Drosophila melanogaster ortholog to choose the best-fit candidates from other insect 
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species. Selected sequences are listed with species names and GenBank nucleotide and 

amino acid accession numbers in parenthesis as follows: Drosophila melanogaster 

(AE001572, AAD19793), Anopheles gambiae (AF080565, AAC31945), Tribolium 

castaneum (AY043292, AAK96031), Bombyx mori (D16684, BAA04087) and 

Schistocerca americana (U32943, AAB03236). Using CLUSTAL X2 (Larkin et al., 

2007) we performed a multiple sequence alignment with amino acid sequences from the 

5 species. Two conserved motifs (YPRFPPY and VYASCKL) were chosen for primer 

design. Because we wanted to obtain genomic sequences exclusive of Antennapedia, and 

because both the Homeodomain and the YPWM motifs are highly conserved sequences 

across arthropods (Hughes and Kaufman, 2002a), conserved residues for primer design 

were chosen outside these two regions. We used nucleotide sequences corresponding to 

each conserved motif to design the following degenerate primers. antp_FORWARD (5’-

3’) CCS MGS TTY CCD CCS TAC and antp_REVERSE (5’-3’) HAR YTT RCA SSW 

SGY RTA VAC. PCR reactions were performed using species-specific genomic DNA 

and the Advantage®2 PCR Enzyme System from Clontech (Clontech Laboratories Inc, 

Mountain View, CA, USA) using the SAPCR buffer and following manufacturer’s 

instructions. Reactions were performed with the following steps 94ºC for 5 min, 94ºC for 

30 seconds, 55ºC for 40 seconds, 68ºC for one minute, go to second step 5 times, 94ºC 

for 30 seconds, 60ºC for 40 seconds, 68ºC for 30 minutes, go to step 6 for 25 cycles, 

extend at 68ºC for 10 minutes. PCR products were ethanol-purified and a 220bp fragment 

was gel-isolated using the QIAEX II gel extraction kit (QIAGEN, Valencia, CA, USA). 

Isolated fragments were cloned onto the pGEM-T Easy vector (Promega Corporation, 
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Madison, WI, USA) and sequenced. Sequenced products were analyzed using BLAST to 

corroborate that fragments represented indeed a portion of the Antp gene from each 

species. PCR fragments were labeled with 30uCi of radioactive γ-32P using the Random 

Primed DNA Labeling Kit DECAprime II (Applied Biosystems, Foster City, CA, USA), 

following manufacturer's specifications. Labeled products were used for hybridization of 

high density BAC filters using standard techniques (Sambrook et al., 1989) with 

modifications described in Munoz-Torres et al. (Unpublished, Chapter III). Hybridized 

BAC filters were imaged in a Storm Scanner (GE Healthcare, Piscataway, NJ, USA) and 

positive hits were scored with HybSweeper (Lazo et al., 2005). 

Plasmid DNA from positive BAC hits was prepared from 900 µL cultures of 

Terrific Broth (GIBCO/Invitrogen Inc. Carlsbad, CA, USA)-Chloramphenicol (12.5 

µg/µL) in 96-well format, inoculated with 1.5uL of BAC culture. After 18 hours (h), 

cultures were treated with a modified alkaline lysis method. To determine insert sizes, 

approximately 200 ng of BAC DNA from all positive hits were digested using 7 units of 

NotI for 16h at 37°C. DNA digestions were analyzed by PFGE in 1% agarose gels for 

15h at 14°C (6 v/cm, switch time of 5-15s) and visualized with Ethidium Bromide. To 

corroborate the identification of these hits as candidates containing Antp, approximately 

100ng of BAC DNA was also fingerprinted following standard procedures described in 

Chen et al., 2002 and Marra et al., 1997 using the library cloning enzyme (Hind III) for 

both BAC libraries. Fingerprinted BAC DNA was transferred onto a positively charged 

nitrocellulose Hybond membrane (GE Healthcare, Piscataway, NJ, USA) using a 

Downward Alkaline Transfer Method (Chomezynski, 1992) and transferred fingerprints 

were hybridized with the same Antp probe used on the BAC filters. Once the presence of 
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the Antp probe was confirmed, we chose the BAC containing the longest insert for full-

length sequencing.  

 

BAC shotgun sequencing 

Sub-clone libraries were constructed from candidate BACs from Bt and Nv. BAC 

DNA was prepared with two replicates per candidate as follows. Individual 3 mL cultures 

of LB broth (GIBCO/Invitrogen Inc. Carlsbad, CS. USA)-Chloramphenicol (12.5ug/uL) 

were incubated with a single colony forming unit (cfu) from each candidate BAC and 

allowed to grow for 4h at 37ºC with agitation at 225rpm. Volume was then raised to 50 

mL of LB (Luria broth) and allowed to grow for an additional 16h under equal 

temperature and shaking conditions. Plasmid DNA was prepared using a standard 

alkaline lysis method modified for larger volumes; approximately 2 to4µg of DNA were 

recovered per BAC. DNA was randomly fractured with hydrodynamic shearing forces 

using a HydroShear (Genomic Solutions, Ann Arbor, MI, USA) with specifications to 

produce a distribution of sizes with 90% of the DNA falling between 3Kb and 5 Kb 

according to manufacturer’s instructions. DNA was subject to end repair (End-It™ DNA 

End Repair Kit, Epicentre Biotechnologies, Madison, WI, USA), and posterior size-

selection by agarose gel electrophoresis. Fractions were eluted through electrophoresis 

and ligated into the vector pBluescript II KS+ (Stratagene, La Jolla, CA, USA). Libraries 

were plated and arrayed into 96-well microtitre plates. Sequencing was performed using 

the Dye-terminator cycle sequencing kit (Applied Biosystems, Foster City, CA, USA). 

Sequence data from the forward and reverse priming sites of the shotgun clones were 
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accumulated. Sequence data equivalent to eight (Nv) and six (Bt) times the size of the 

BAC clones were assembled using Phred-Phrap programs (Ewing and Green 1998). 

Sequence editing and assembly confirmation was performed with Consed (Gordon et al., 

1998). 

 

Sequence annotation 

The assembled consensus sequence from each BAC was analyzed implementing 

the FGENESH+ (Softberry Inc, Mount Kisco, NY, USA) prediction software combined 

with BLAST searches on the NCBI website to ascertain the accuracy of the automated 

prediction. In addition to FGENESH+, the Apollo Genomic Annotation Tool (Lewis et 

al., 2002) was used to deduce the complete sequence of the Nv Antp gene. Decisions on 

the final version of annotated gene sequences (nucleotide and amino acid) for Antp were 

made based on several factors including sequence similarity compared to other insect 

homologs, presence of canonical splicing sites in intron/exon boundaries and inspection 

on the quality of individual reads across the entire nucleotide sequence. Sequences were 

separately stored in FASTA format for further use. 

 

Molecular Evolution analysis 

Multiple Sequence Alignments of the Antp gene nucleotide and amino acid 

sequences were performed with CLUSTAL W 2.0.10 (Larkin et al., 2007). Nucleotide 

alignments were exported into a PHYLIP format for later use with PAML4. Aligned 

sequences were also imported into DnaSP (Rozas et al., 2003) to calculate the number of 
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synonymous and non-synonymous substitution differences (S-Dif and N-Dif, 

respectively) per total number of synonymous and non-synonymous sites (Table 4.1) 

using the Nei & Gojobori nucleotide substitution model (NG86, Nei and Gojobori, 1986). 

Occurrence of non-synonymous sites with multiple (more than 1) changes per codon was 

detected also with DnaSP and their number and distribution were manually scored on the 

multiple nucleotide sequence alignment. Data were plotted using MS Excel (Figure 3). 

Analyses to test for biases in codon usage in any of the species were performed using the 

‘Codon Usage’ command in DnaSP. Estimates of dN/dS rates were calculated using the 

‘DNA Polymorphism and Divergence’ command with and without a sliding window 

option. When the option was implemented, window length was 60 nucleotides with a step 

size of 20 as reported in Figure 4.4. Putative protein cleavage sites for analysis of 

Nasonia defensin sequences were predicted using SignalP 3.0. (Bendsten et al., 2004). 

WebLogo was used to measure amino acid frequency per site in the aligned sequences 

(Crooks et al., 2004 and Schneider and Stephens, 1990) and the results were plotted as 

shown in Figure 4.4. The logo consists of stacks of symbols, one stack for each position 

in the sequence. The overall height of the stack indicates the sequence conservation at 

that position, while the height of symbols within the stack indicates the relative frequency 

of each amino or nucleic acid at that position for the aligned sequences. 

The gene genealogy reconstruction was estimated in MEGA4 (Tamura et al., 

2007) using the Neigbor-Joining (NJ) method (Saitou and Nei, 1987) with a K 2-

parameter model of sequence evolution (Kimura, 1980). The resulting best-fit tree was 

exported in Newick format to be used with PAML4. 
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codeml from the PAML4 package was used to measure synonymous and 

nonsynonymous substitutions rate ratios using a maximum likelihood (ML) algorithm 

with a codon-based substitution model (Yang, 2007). Log-likelihood values to 

corroborate pairwise dN/dS differences across different portions of the gene were 

obtained using an F3x4 codon frequency, and assuming 2 or more dN/dS ratios for 

branches. Substitution rates (κ) and ω were also estimated using ML. Estimated ancestral 

sequence reconstruction was performed using equation 4 (eqn. 4) from Yang et al. (1995) 

and the Rate_Ancestor function from CODONML, part of the codeml script in 

PAML4 (Yang, 2007) with one ω (dN/dS) ratio assumed for all branches. The gene 

genealogy was provided in Newick format (Figure 4.2.). Changes in ionic charge and 

polarity were putatively identified in a simplistic manner by following the changes in a 

classification of the 20 amino acids (universal code) according to the character of their 

side chain or the R group that is bonded to the alpha-carbon in each amino acid available 

from The Biotechnology Project website (MATC, 2008).  
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Table 4.1. Maximum likelihood (ML) estimation of evolutionary rates in the 
Antennapedia (Antp) gene using a codon-based substitution model for three 
species of Hymenoptera. Results were obtained using codeml from the 
PAML4 package (Yang, 2007) except in the case of S-Dif and N-Dif. ML 
estimates of t, κ, and dN/dS were obtained separately for the complete coding 
sequence, the Homeodomain and the Non-Homeodomain containing portion 
of the gene. codeml uses these estimates to calculate dN and dS. Am = Apis 
mellifera. Bt = Bombus terrestris. Nv = Nasonia vitripennis. t = sequence 
divergence. S = total number of synonymous sites. S-Dif = total number of 
synonymous differences. N = the total number of nonsynonymous sites. N-Dif 
= total number of nonsynonymous differences. ‘*’ Indicates that this 
parameter was calculated with DnaSP (Rozas et al., 2003). § Marks the log-
likelihood (ι) values. (See text for more information). 
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Table 4.2. Codon bias measurements in three species Hymenoptera. Effective number of 
codons (ENC), codon bias index (CBI) and Scaled Chi Square (SChi2) were 
calculated with the Codon Usage command in DnaSP (Rozas et al., 2003) to 
measure the extent of nonrandom usage of synonymous codons along the 
sequence of the Antennapedia gene in Apis mellifera (Am), Bombus terrestris 
(Bt) and Nasonia vitripennis (Nv). Reference values are given below. Max – 
Non = Maximum codon bias – Non-bias. A significant codon bias is evident in 
the Nv sequence. (See text). 
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Table 4.3. Estimation of synonymous (dS) and nonsynonymous (dN) substitution rates in 
2 different protein-coding regions for three species of Hymenoptera. i) In the 
Antennapedia (Antp) gene, dN/dS rate ratio estimates obtained for the portion 
of the protein that binds to DNA in a sequence-specific manner are smaller 
than those obtained for the complete coding sequence and the non-
homeodomain coding sequence. ii) In the case of the antimicrobial peptide 
Defensin (def), estimates obtained for dN/dS are lower over the portion of the 
protein which becomes the mature peptide in charge of binding to bacterial 
cells changing their polarity and conformation to lyse them. These results 
suggest that selective pressure may be acting differently on regions of the 
protein under different evolutionary constraints, such as specific interactions 
with other portions of the genome in a sequence-specific manner, or 
interactions with other cells. Results were obtained using the ‘Synonymous and 
Nonsynonymous substitutions’ command in DnaSP.  Am = Apis mellifera. Bt 
= Bombus terrestris. Nv = Nasonia vitripennis. 
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Table 4.4. Number of nonsynonymous (n) and synonymous (s) changes observed in 
modern copies of the Antennapedia gene respect to their reconstructed 
ancestral sequences. Sequences from extinct ancestors of A. mellifera and B. 
terrestris and of this group (Apidae) and the N. vitripennis (Chalcidoidea) 
were reconstructed using the Rate_Ancestor feature of codeml from the 
PAML4 package (Yang, 2007). ‘Polarity’ and ‘Charge’ indicate the total 
number of nonsynonymous changes, which led to a change of this kind, per 
branch. All changes in polarity also led to changes in charge, but not all 
changes in charge were necessarily accompanied by changes in polarity. 
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Figure 4.1. Nucleotide sequence alignment of Antennapedia (Antp) gene complete-CDS 
from three species of Hymenoptera constructed using CLUSTAL 2.0.10 
(Larkin et al., 2007). The fourth track indicates the degree of nucleotide 
sequence conservation; ‘*’ denotes that nucleotides in that column are 
identical in all sequences. Pairwise alignment scores are as follows: sequences 
(1:2), score: 80; sequences (1:3), score: 77; sequences (2:3), score: 87. 
Sequence 1 corresponds to Nasonia vitripennis (nv), 2 to Apis mellifera (am), 
and 3 is its homolog in Bombus terrestris (bt). The homeobox (orange) and 
the conserved YPWM motif (red) are indicated with colored boxes. 

 

am_antp_CDS_1059bp      ATGAGTTCGTATTTCGCGAATTCGTACATCCCGGACCTGCGTAATGGCGGGGTGGAACAC 60 
bt_antp_CDS_1059bp      ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGACCTGCGTAATGGCGGGGTGGAACAC 60 
nv_antp_CDS_1089bp      ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGATCTGCGCAATGGCGGGGTGGAGCAT 60 
                        *********** *********************** ***** ************** **  
 
am_antp_CDS_1059bp      CCGCATCAGCATCAGCAGCACTACGGTGCGGCCGTCCAGGTGCCCCAGCAGACGCAGTCG 120 
bt_antp_CDS_1059bp      CCGCATCAGCATCAGCAGCACTACGGTGCCGCCGTCCAGGTGCCCCAGCAAACGCAGTCG 120 
nv_antp_CDS_1089bp      CCGCATCAGCACCAGCAGCACTACGGCGCGGCGGTCCAGGTGCCCCAGCAGCAGCAGGCC 120 
                        *********** ************** ** ** *****************   **** *  
 
am_antp_CDS_1059bp      GTGCAGCAACAGTCCCAGCAGGCCGGGGACCCGTGCGACCCGAGCCTGCTACGCCAGGGC 180 
bt_antp_CDS_1059bp      GTACAGCAGCCATCTCAGCAAACCGGGGATCCATGCGATCCTAGTCTCCTACGTCAGGGA 180 
nv_antp_CDS_1089bp      GTGCAGCAGCAGCCCCAGCAGGCGAGCGACCCCTGCGACCCGTCGATGCTGCGCCAAGGC 180 
                        ** ***** *   * *****  *  * ** ** ***** **     * ** ** ** **  
 
am_antp_CDS_1059bp      GTGCCCGGCCACCAT---TACGGGGCGGCGGGCAGCCAGCAA---GACATGCCTTATCCG 234 
bt_antp_CDS_1059bp      GTGCCTGGCCATCAC---TATGGGGCCGCTGGTAGCCAGCAA---GATATGCCTTATCCG 234 
nv_antp_CDS_1089bp      GTGCCGGGCCACCACGGCTACGGGGCCGCGACGGGCCAGCAGCCGGGCATGCCCTACCCC 240 
                        ***** ***** **    ** ***** **     *******    *  ***** ** **  
 
am_antp_CDS_1059bp      AGGTTCCCGCCCTACAACCGGATGGACATGCGTAACGCGACGTATTATCAGCACCAACAG 294 
bt_antp_CDS_1059bp      AGGTTTCCTCCGTACAATCGGATGGACATGCGGAACGCGACCTATTATCAGCATCAACAG 294 
nv_antp_CDS_1089bp      CGCTTCCCGCCCTACGACCGCATGGACATCAGGAACGCGGCCTACTACCAGCAGCAGCAG 300 
                         * ** ** ** *** * ** ********  * ****** * ** ** ***** ** *** 
 
am_antp_CDS_1059bp      GACCACGGGAGCGGGATGGACGGGATGGGTGGTTACAGGTCGGCGTCGCCGAGCCCTGGC 354 
bt_antp_CDS_1059bp      GAGCACGGCAGC---ATGGACGGGTTGGGTGGTTACAGGTCGACGTCCCCGAGCCCCGGT 351 
nv_antp_CDS_1089bp      CAGGAGCACGGC---ATGGAC---ATGGCCAGCTACCGGGCGAGCTCGCCGAGCGCGGGC 354 
                         *  *     **   ******    ***   * *** ** **   ** ****** * **  
 
am_antp_CDS_1059bp      ATGGGC------CACATGGGGCACACGCCGACCCCT---AACGGGCACCCG---TCCACC 402 
bt_antp_CDS_1059bp      ATGGGC------CACATGGGACACACACCGACCCCG---AACGGACATCCG---TCCACT 399 
nv_antp_CDS_1089bp      ATGGCCGGCCTCCACATGGGCCACACGCCGACCCCGGTCAACGGCCACCCCGCCAGCACG 414 
                        **** *      ******** ***** ********    ***** ** **  ***   *  
 
am_antp_CDS_1059bp      CCGATCGTGTACGCGAGCTGCAAGCTGCAGGCGGCGGCGGTCGATCACCAGGGGAGCGTG 462 
bt_antp_CDS_1059bp      CCTATTGTCTATGCGAGTTGCAAGCTTCAAGCGGCCGCGGTCGATCATCAGGGTAGCGTA 459 
nv_antp_CDS_1089bp      CCCATCGTCTACGCGAGCTGCAAGCTCCAAGCGGCGGCGGTCGACCACCAGGGCAGCGTC 474 
                        ** ** ** ** ***** ******** ** ***** ******** ** ***** *****  
 
am_antp_CDS_1059bp      CTCGACGGGCCGGACAGCCCGCCGCTGGTCGAGTCGCAGATGCACCACCAAATGCACACG 522 
bt_antp_CDS_1059bp      CTCGATGGACCGGACAGCCCGCCATTGGTCGAGTCGCAGATGCACCACCAAATGCATTCG 519 
nv_antp_CDS_1089bp      CTCGACGGGCCCGATAGTCCGCCGCTCGTCGACGCCCAGATGCACCACCAGATGCACCCC 534 
                        ***** ** ** ** ** *****  * *****  * ************** *****  *  
 
am_antp_CDS_1059bp      CAACACCCCCACATGCAGCCGCAGCAGGGCCAGCACCAGTCG------------------ 564 
bt_antp_CDS_1059bp      CAACATCCTCACATGCAGCCGCAACAGTCACAACATCAACAGCAG--------------- 564 
nv_antp_CDS_1089bp      CAGCACACGCACATGCAGGCCCAGCAGTCGCACCCCCAGCAGCAGCCCCAGCCTCAAGCG 594 
                        ** **  * ********* * ** ***   ** *  **   *                   
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am_antp_CDS_1059bp      ---------CAAGCACAGCAGCAGCATCTTCAGGCGCACGAGCAGCACATGATGTACCAG 615 
bt_antp_CDS_1059bp      ---------CAGCAGCAGCATCAACATCTTCAGGCGCAGCAGCAGCACATGATGTACCAA 615 
nv_antp_CDS_1089bp      CCTCACCAGCAGGCCCACATGCAACCCCAGCAGACGCAGCAGCAGCACATGATGTACCAG 654 
                                 **    **    ** *     *** ****  *******************  
 
am_antp_CDS_1059bp      CAGCAGCAGCAGTCGCAGGCTGCCTCGCAGCAGTCGCAGCCAGGCATGCACCCGCGACAG 675 
bt_antp_CDS_1059bp      CAGCAACAACAAACACAGGCGGCGTCGCAACAATCTCAGCCTGGCATGCATCCGCAACAA 675 
nv_antp_CDS_1089bp      CAGCAGACGCAGCCCCAG---------CAGCCCCAGCCCGCGGCGATGCACCCCCAGCAG 705 
                        *****    **  * ***         ** *     *   * *  ***** ** *  **  
 
am_antp_CDS_1059bp      CAGCAGCAAGCTCAGCAACACCAAGGGGTGGTCACGTCGCCGCTAAGCCAGCAGCAACAG 735 
bt_antp_CDS_1059bp      CAACAGCAACCTCAGCAACACCAAGGGGTGGTCACGTCGCCGCTTAGTCAGCAACAGCAG 735 
nv_antp_CDS_1089bp      CAGGCCCAGCAGCAGCAGCACCAGGGCGTCGTCGCCTCGCCGCTCGGCCAGCAGCAGCCC 765 
                        **    **    ***** ***** ** ** *** * ********  * ***** ** *   
 
am_antp_CDS_1059bp      GCCGCGCCTCAGGGCGCGGCAAGCGCCAACCTACCGAGCCCTCTGTACCCGTGGATGAGA 795 
bt_antp_CDS_1059bp      GCCGCTCCTCAAGGTGCGGCCACTGCCAACCTACCAAGTCCGCTCTACCCGTGGATGAGA 795 
nv_antp_CDS_1089bp      GGCACGCCCCAGAGCGCCGCGCCGACGAACCTGCCCAGTCCCCTCTACCCCTGGATGAGG 825 
                        *** * ** **  * ** **     * ***** ** ** ** ** ***** ********  
 
am_antp_CDS_1059bp      AGTCAATTCGAGAGGAAACGAGGCCGGCAAACGTACACCCGATACCAAACCCTCGAGCTC 855 
bt_antp_CDS_1059bp      AGTCAATTCGAGAGGAAACGAGGCCGGCAAACGTACACCCGATACCAAACCCTCGAGCTG 855 
nv_antp_CDS_1089bp      AGTCAGTTTGAGAGGAAGCGTGGCCGGCAGACGTACACGCGATACCAGACCCTCGAGCTC 885 
                        ***** ** ******** ** ******** ******** ******** ***********  
 
am_antp_CDS_1059bp      GAGAAGGAGTTCCACTACAACCGATACCTGACCAGGCGGCGTCGCATCGAGATCGCGCAC 915 
bt_antp_CDS_1059bp      GAGAAGGAGTTCCACTTCAACCGATACCTGACCAGGCGGCGGCGCATCGAGATCGCGCAC 915 
nv_antp_CDS_1089bp      GAGAAGGAGTTCCACTTCAACCGCTACCTGACCAGGCGACGCAGGATCGAGATCGCGCAT 945 
                        **************** ****** ************** **  * *************** 
 
am_antp_CDS_1059bp      GCCCTCTGCCTTACCGAGCGGCAAATCAAAATCTGGTTTCAAAACAGACGGATGAAATGG 975 
bt_antp_CDS_1059bp      GCACTCTGCCTGACGGAACGGCAAATCAAAATCTGGTTCCAAAACAGACGGATGAAATGG 975 
nv_antp_CDS_1089bp      GCGCTCTGCCTGACCGAGCGCCAGATCAAGATCTGGTTCCAGAACAGGCGCATGAAGTGG 1005 
                        ** ******** ** ***** ** ***** ******** ** ***** ** ** ** *** 
 
am_antp_CDS_1059bp      AAGAAGGAGAACAAGTCGAAGGGCACGCCCGGCTCGGGCGACGGGGACACCGAGATCTCG 1035 
bt_antp_CDS_1059bp      AAGAAGGAGAACAAGACGAAGGGCGAACCGGGCTCGGGCGACGGCGACACTGAAATCTCG 1035 
nv_antp_CDS_1089bp      AAAAAGGAGACCAAGACGAAGGGCGAGCCGAACTCGGGAGACGGTGACACCGACATCTCG 1065 
                        ** ************ ********   **   ****** ***** ***** ** ****** 
 
am_antp_CDS_1059bp      CCGCAGACGTCGCCGCAGGGTTGA 1059 
bt_antp_CDS_1059bp      CCGCAGACATCGCCGCAGGGTTGA 1059 
nv_antp_CDS_1089bp      CCCCAGACCTCGCCCCAGGGTTGA 1089 
                        ** ***** *************** 
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Figure 4.2. Gene genealogy of Antennapedia (Antp) from A. mellifera (am), Bombus 
terrestris (bt) and Nasonia vitripennis (nv). Reconstructed using the 
Neighbor-Joining (NJ) method (Saitou and Nei, 1987) in MEGA (Kumar et 
al., 2008). Diamonds represent ancestral species at nodes (n) 4 and 5. The 
optimal tree with the sum of branch length = 0.37038142 is shown. The scale 
bar represents estimates of evolutionary distances calculated with the Kimura 
2-parameter model (Kimura, 1980) as number of base substitutions per site 
and are as follows: ((amantp:0.04661,btantp:0.0884):0.0490,nvantp:0.1864). 
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Figure 4.6. Amino acid sequence alignment of Antennapedia (Antp) gene complete-CDS 
from three species of Hymenoptera and their reconstructed ancestral 
sequences. Nodes 4 and 5 in the phylogenetic tree reconstructed in Figure 1 
are considered the ancestral species to the extant hymenopterans here 
analyzed. Node 5 is the extinct ancestor of Apidae and node 4 the one for 
Aculeta 

 

CLUSTAL 2.0.10 multiple sequence alignment 
 
antp_am      MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQTQSVQQQSQQAGDPCDPSLLRQG 60 
antp_bt      MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQTQSVQQPSQQTGDPCDPSLLRQG 60 
Node_5       MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQTQSVQQQSQQAGDPCDPSLLRQG 60 
Node_4       MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQTQAVQQQSQQAGDPCDPTLLRQG 60 
antp_nv      MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQQQAVQQQPQQASDPCDPSMLRQG 60 
             ************************************* *:*** .**:.*****::**** 
 
antp_am      VPGHH-YGAAGSQQ-DMPYPRFPPYNRMDMRNATYYQHQQDHGSGMDGMGGYRSASPSPG 118 
antp_bt      VPGHH-YGAAGSQQ-DMPYPRFPPYNRMDMRNATYYQHQQEHGS-MDGLGGYRSTSPSPG 117 
Node_5       VPGHH-YGAAGSQQ-DMPYPRFPPYNRMDMRNATYYQHQQEHGS-MD-MGGYRSTSPSPG 116 
Node_4       VPGHH-YGAAGSQQ-DMPYPRFPPYNRMDMRNATYYQHQQEQDS-MD-MGGYRSTSPSPG 116 
antp_nv      VPGHHGYGAATGQQPGMPYPRFPPYDRMDIRNAAYYQQQQQEHG-MD-MASYRASSPSAG 118 
             ***** **** .** .*********:***:***:***:**:. . ** :..**::***.* 
 
antp_am      MG--HMGHTPTP-NGHP-STPIVYASCKLQAAAVDHQGSVLDGPDSPPLVESQMHHQMHT 174 
antp_bt      MG--HMGHTPTP-NGHP-STPIVYASCKLQAAAVDHQGSVLDGPDSPPLVESQMHHQMHS 173 
Node_5       MG--HMGHTPTP-NGHP-STPIVYASCKLQAAAVDHQGSVLDGPDSPPLVESQMHHQMHS 172 
Node_4       MG--HMGHTPTP-NGHP-STPIVYASCKLQAAAVDHQGSVLDGPDSPPLVEAQMHHQMHP 172 
antp_nv      MAGLHMGHTPTPVNGHPASTPIVYASCKLQAAAVDHQGSVLDGPDSPPLVDAQMHHQMHP 178 
             *.  ******** **** ********************************::*******. 
 
antp_am      QHPHMQPQQGQHQS---------QAQQQHLQAHEQHMMYQQQQQSQAASQQSQPGMHPRQ 225 
antp_bt      QHPHMQPQQSQHQQQ--------QQQHQHLQAQQQHMMYQQQQQTQAASQQSQPGMHPQQ 225 
Node_5       QHPHMQPQQSQHQQ---------QAQQQHLQAQQQHMMYQQQQQTQ---QQSQPGMHPQQ 220 
Node_4       QHPHMQPQQSQHQQ---------QAQQQHLQAQQQHMMYQQQQQPQ---QPPPPGMHPQQ 220 
antp_nv      QHTHMQAQQSHPQQQPQPQAPHQQAHMQPQQTQQQHMMYQQQTQPQ---QPQPAAMHPQQ 235 
             **.***.**.: *.         * : *  *:::******** *.*   *   ..***:* 
 
antp_am      QQQAQQHQGVVTSPLSQQQQAAPQGAASANLPSPLYPWMRSQFERKRGRQTYTRYQTLEL 285 
antp_bt      QQQPQQHQGVVTSPLSQQQQAAPQGAATANLPSPLYPWMRSQFERKRGRQTYTRYQTLEL 285 
Node_5       QQQPQQHQGVVTSPLSQQQQAAPQGAATANLPSPLYPWMRSQFERKRGRQTYTRYQTLEL 280 
Node_4       QPQPQQHQGVVASPLSQQQPAAPQGAATANLPSPLYPWMRSQFERKRGRQTYTRYQTLEL 280 
antp_nv      QAQQQQHQGVVASPLGQQQPGTPQSAAPTNLPSPLYPWMRSQFERKRGRQTYTRYQTLEL 295 
             * * *******:***.*** .:**.**.:******************************* 
 
antp_am      EKEFHYNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKSKGTPGSGDGDTEIS 345 
antp_bt      EKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKTKGEPGSGDGDTEIS 345 
Node_5       EKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKTKGEPGSGDGDTEIS 340 
Node_4       EKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKTKGEPDSGDGDTEIS 340 
antp_nv      EKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKETKTKGEPNSGDGDTDIS 355 
             *****:*************************************.*:** *.******:** 
 
antp_am      PQTSPQG 352 
antp_bt      PQTSPQG 352 
Node_5       PQTSPQG 347 
Node_4       PQTSPQG 347 
antp_nv      PQTSPQG 362 
             ******* 
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CHAPTER FIVE 

FUTURE PROSPECTS 

 

As for the development of genomic resources, comparative research into the 

social Hymenoptera stands to gain much by combining information from the sequenced 

genome of the honey bee (The Honey Bee Genome Consortium, 2006) and the jewel 

wasp (Nasonia Genome Sequencing Consortium, Unpublished), as well as genomic 

information from related species. Research communities will greatly benefit from 

orchestrating a concerted effort leading to sequencing the genome of their organisms of 

interest. For instance, other traditional genetic approaches to gene finding have been 

exhausted, and when obtaining the whole genome sequence is still in process or has not 

yet started, genomic libraries represent the most effective tool for interrogating the 

genome. 

Tools such as a BAC library represent a starting point for the generation of 

genomic data in species of interest. For example, with the help of a honey bee BAC 

library, the complementary sex determination gene (csd) was identified and demonstrated 

to be functional. Similarly, the sex determination locus in B. terrestris has been 

genetically mapped to an approximate location. Using information from the available 

genome projects in species of Hymenoptera, and the three BAC libraries described here, 

it will be possible to rapidly investigate the molecular and genetic nature of many 

important features in these species. The paramount importance of these species in 
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agricultural and public health affairs ensures the participation of a strong scientific 

community that will very likely use these resources exhaustively. 

After performing molecular evolution analyses on one of the Hox genes from 

three species of Hymenoptera, we were able to conclude that not only is the synonymous 

and nonsynonymous substitutions rate ratio (dN/dS) low for Antennapedia, (Antp), but 

also that dN/dS estimates are different between the homeodomain and non-homeodomain 

protein regions. What lies behind and beyond the estimation of these values? If selective 

constraints are directly impacted in new gene copies throughout evolutionary history such 

that more non-synonymous mutations accumulate in derived gene copies, then we should 

see a significant difference between dN/dS rate ratios in derived versus ancestral gene 

copies. We would also expect to see a difference in ω estimates for Hox paralogs with 

non-homeotic functions compared those of Antp and all other Hox which have retained 

their homeotic capacity. 

Evolutionary analyses similar those performed here with Antp on all other 

members of the cluster could shed some light on the effects of the apparent relaxation of 

evolutionary constraints on paralogs, which have lost their homeotic role. Estimates of 

the rates of evolution in all other genes compared to the ones reported here for Antp will 

very likely expand our understanding of the processes that shaped the evolution of the 

insect Hox cluster of genes, and thus improve our understanding of mechanisms 

responsible for large and small scale developmental differences in insects. 

The fact that Antp is expressed and subjected to purifying selection suggests that 

duplicated genes have been maintained possibly by subfunctionalization and/or 
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neofunctionalization (versus pseudofunctionalization and/or non-functionalization). Our 

results show that strong purifying selection is observed within the Hox genes, which may 

indicate no functional redundancy among genes, despite similarities in coding sequences. 

In other words, the genes of the Hox Cluster are very conserved at the sequence level, but 

some level of variation is maintained that translates into functional variations and 

presumably preserves the genetic framework underlying the development of the 

Arthropod body plan.  

In vertebrates, researchers have identified ultra-conserved regions outside the 

homeodomain across different orders. These are coding regions that are 120-nucleotide 

long in Hox genes, and are believed to have an important role in their expression and 

functions. In a similar manner, our analyses of all Nasonia Hox genes identified a 

conserved region of 30 nucleotides, located upstream from the homeodomain, in the 

coding region. Functional analyses with this conserved domain will help to test whether 

such region also plays a functional role in the observed patterns of Hox genes in Nasonia. 

Lastly, events of gene transfers between organisms of different species provide a 

different perspective in the study of the origin and evolution of genes. Such studies 

become more complex when the two organisms in question belong to distant branches of 

the evolutionary tree. As reported in Appendix A, research reporting on widespread lateral 

gene transfer (LGT) from intracellular bacteria to multicellular eukaryotes showed that 

some of the inserted bacterial genes are transcribed within eukaryotic cells; this suggests 

that these heritable lateral gene transfers may provide a mechanism for acquisition of new 

genes and functions. What are these mechanisms? How do they drive origins and 
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evolutionary diversification of genes? How have both eukaryotic machinery and genes 

(and the genomic vicinity) changed since the bacterial insertion event? The next step in 

this study could be to address these questions and others related to the transmission of the 

inserted DNA and how endosymbionts, located in the germlines of their eukaryotic hosts, 

manipulate host cell biology and reproduction. Additionally, Appendix B contains data 

concerning ongoing research to address similar questions related to a lateral gene transfer 

event reported from endosymbiotic Wolbachia pipientis into the genome of the tropical 

fruit fly Drosophila ananassae. Prospective goals stemming from this portion of this 

dissertation will be to study the sequence evolution and selection across insert variants in 

the Hawai’i and Mali D. ananassae strains. Studies of sequence variation along the insert 

are important to investigate selection acting on insert DNA and to elucidate what has 

happened to the LGTs since insertion. How is selection acting on the inserted DNA? Do 

endosymbiotic bacterial accelerate divergence and speciation of their eukaryotic host?  

Future studies conducted to answer these questions will also provide valuable 

information describing the patterns of evolution after the LGT event and shed light on the 

mechanisms underlying a wide range of genome processes ultimately responsible for 

evolutionary diversification of genes and genomes. 
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Appendix A 

 

Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular 

Eukaryotes. 

 

From Dunning Hotopp, JC, ME Clark, DCSG Oliveira, JM Foster, P Fischer, MC Muñoz 

Torres, JD Giebel, N Kumar, N Ishmael, S Wang, J Ingram, RV Nene, J Shepard, J 

Tomkins, S Richards, DJ Spiro, E Ghedin, BE Slatko, H Tettelin, JH Werren. 2007. 

Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular 

Eukaryotes. Science 317 (5845):1753-1756. Reprinted with permission from AAAS. 

License number: 2107690668137. License Date: Jan 14, 2009. 
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ABSTRACT 

 

Although common among bacteria, lateral gene transfer— the movement of genes 

between distantly related organisms— is thought to occur only rarely between bacteria 

and multicellular eukaryotes. However, the presence of endosymbionts within some 

eukaryotic germlines, such as that observed in Wolbachia pipientis, may facilitate 

bacterial gene transfers to eukaryotic host genomes. We therefore examined host 

genomes for evidence of gene transfer events from intracellular bacteria of the genus 

Wolbachia to their hosts. We found transfers into the genomes of 4 insect and 4 nematode 

species that ranged from nearly the entire Wolbachia genome (>1 Mb) to short (<500 bp) 

insertions. We also show that some of these inserted Wolbachia genes are transcribed 

within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer 

occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a 

mechanism for acquisition of new genes and functions.  
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The transfer of DNA between diverse organisms, lateral gene transfer (LGT), 

facilitates the acquisition of novel gene functions. Among Eubacteria, LGT is involved in 

the evolution of antibiotic resistance, pathogenicity, and metabolic pathways (1). Rare 

LGT events have also been identified between higher eukaryotes with segregated germ 

cells(2), demonstrating that even these organisms can acquire novel DNA. Although most 

described LGT events occur within a single domain of life, LGT has been described both 

between Eubacteria and Archaea (3) and between prokaryotes and phagotrophic 

unicellular eukaryotes (4, 5). However, few interdomain transfers involving higher 

multicellular eukaryotes have been found. 

Wolbachia pipientis is a maternally inherited endosymbiont that infects a wide 

range of arthropods, including at least 20% of insect species, as well as filarial nematodes 

(6). It is present in developing gametes (6) and so provides circumstances conducive for 

heritable transfer of bacterial genes to the eukaryotic hosts. Wolbachia-host transfer has 

been described in the bean beetle Callosobruchus chinensis (7) and in the filarial 

nematode Onchocerca spp. (8).  

We have found Wolbachia inserts in the genomes of additional diverse 

invertebrate taxa, including fruit flies, wasps, and nematodes. A comparison of the 

published genome of the Wolbachia endosymbiont of Drosophila melanogaster (9) and 

assemblies of Wolbachia clone mates (10) from fruit fly whole genome shotgun 

sequencing data revealed a large Wolbachia insert in the genome of the widespread 

tropical fruit fly Drosophila ananassae. Numerous contigs were found that harbored 

junctions between Drosophila retrotransposons and Wolbachia genes. The large number 



 180 

of these junctions and the deep sequencing coverage across the junctions indicated that 

these inserts were probably not due to chimeric libraries or assemblies. To validate these 

observations, five Drosophila-Wolbachia junctions were PCR amplified and three end-

sequence verified. Fluorescence in situ hybridization (FISH) of banded polytene 

chromosomes with fluorescein-labeled probes of two Wolbachia genes (11) revealed the 

presence of Wolbachia genes on the 2L chromosome of D. ananassae (Fig. 1). 

We found that nearly the entire Wolbachia genome was transferred to the fly 

nuclear genome as evidenced by the presence of PCR amplified products from 44/45 

physically distant Wolbachia genes from cured strains of D. ananassae Hawaii (those 

verified by microscopy to be lacking the endosymbiont after treatment with antibiotics) 

(11). In contrast, only spurious, incorrectly-sized, and weak amplification was detected 

from a cured control line lacking these inserts (Townsville). The 45 genes assayed (Table 

S1) are spaced throughout the Wolbachia genome. Thus the high proportion of amplified 

genes suggests gene transfer of nearly the entire Wolbachia genome to the insect genome.  

A14 kB region containing four Wolbachia genes with two retrotransposon 

insertions was sequenced (11) from a single BAC, constituting an independent source of 

DNA as compared to the largely plasmid-derived whole genome sequence of D. 

ananassae. The two retroelements each contained 5 bp target site duplications (9/10 bp 

identical), long terminal repeats, and gag-pol genes (Fig. 2A) indicating that the 

Wolbachia insert is accumulating retroelements. Insertion of this region appears to be 

recent, as shown by the nearly identical target site duplications and >90% nucleotide 
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identity between the corresponding endosymbiont genes and the sequenced homologs in 

the D. ananassae chromosome.  

Crosses between Wolbachia-free Hawaii males (with the insert) and Wolbachia-

free Mexico females (without the insert) revealed that the insert is paternally inherited by 

offspring of both sexes, confirming that Wolbachia genes are inserted into an autosome. 

Since Wolbachia infections are maternally inherited this also confirms that PCR 

amplification in the antibiotic treated line is not due to a low level infection. Furthermore, 

the Hawaii and Mexico crosses revealed Mendelian, autosomal inheritance of Wolbachia 

inserts (paternal N=57, k=0.49; maternal N=40, k= 0.58). Six physically distant, inserted 

Wolbachia genes perfectly co-segregated in F2 maternal inheritance crosses (11), 

suggesting they also are closely linked.  

PCR amplification and sequencing (11) of 45 Wolbachia loci in 14 D. ananassae 

lines from widely dispersed geographic locations revealed large Wolbachia inserts in 

lines from Hawaii, Malaysia, Indonesia, and India (Table S2). Sequence comparisons of 

the amplicons from these four lines revealed that all ORFs remained intact with >99.9% 

identity between inserts. This is compared to an average 97.7% identity for the inserts 

compared to wMel, the Wolbachia endosymbiont of D. melanogaster. These results 

indicate the widespread prevalence of D. ananassae strains with similar inserts of the 

Wolbachia genome, probably due to a single insertion from a common ancestor.  

In addition, RT-PCR followed by sequencing (11) demonstrated that ~2% of 

Wolbachia genes (28 of 1206 genes assayed; Table S3) are transcribed in cured adult 

males and females of D. ananassae Hawaii. The complete 5' sequence of one of the 
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transcripts, WD_0336, was obtained using 5'-RACE on uninfected flies (11) suggesting 

that this transcript has a 5' mRNA cap, a form of eukaryotic post-transcriptional 

modification. Analysis of the transcript levels of inserted Wolbachia genes with qRT-

PCR (11) revealed that they are 104-fold to107-fold less abundant than the fly’s highly 

transcribed Actin gene (act5C; Table S3). There is no cutoff that defines a biologically 

relevant level of transcription, and assessment of transcription in whole insects can 

obscure important tissue specific transcription. Therefore, it is unclear whether these 

transcripts are biologically meaningful, and further work is needed to determine their 

significance.  

Screening of public shotgun sequencing data sets has identified several additional 

cases of LGT in different invertebrate species. In Wolbachia cured strains of the wasp 

Nasonia, six small Wolbachia inserts (<500 bp) were verified by PCR and sequencing 

(11) that are >96% nucleotide identity to native Wolbachia sequences, in some cases with 

short insertion site duplications. These include four in Nasonia vitripennis; one in 

Nasonia giraulti; and one in Nasonia longicornis (Table S4; Fig. 2B). Amplification and 

sequencing of 14-18 geographically diverse strains of each species indicated that the 

inserts are species-specific. For example, three Wolbachia inserts in N. vitripennis are not 

found in the closely related species N. giraulti or N. longicornis, which diversified ~1 

million years ago (12). These data suggest that the Wolbachia gene inserts are of 

relatively recent origin, similar to the inserts in D. ananassae. 

Nematode genomes also contain inserted Wolbachia sequences. As Wolbachia infection 

is required for fertility and development of the worm Brugia malayi, the genomes of both 
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organisms were sequenced simultaneously complicating assemblies and leading to the 

removal of Wolbachia reads during genome assembly [>98% identity over 90% of the 

read length on the basis of the independent BAC-based genome sequence of wBm, the 

Wolbachia endosymbiont of B. malayi (13)]. Despite this, the genome of B. malayi 

contains 249 contigs with Wolbachia sequences (e-value<10-40); nine of which were 

confirmed by long range PCR and end sequencing (11). These include eight large 

scaffolds containing >1 kb Wolbachia fragments within 8 kb of a B. malayi gene (Table 

S5). Comparisons of wBm homologs to these regions suggested that all of these 

Wolbachia genes within the B. malayi genome are degenerate. In addition, a single region 

<1 kb was examined that contains a degenerate fragment of the Wolbachia aspartate 

aminotransferase gene (Wbm0002). Its location was confirmed by PCR and sequencing 

in B. malayi as well as B. timori and B. pahangi (11). 

Of the remaining 21 arthropod and nematode genomes in the trace repositories 

(11), we found six containing Wolbachia sequences. Potential host-Wolbachia LGT was 

detected in three: Drosophila sechellia, Drosophila simulans, and Culex pipiens (Table 

1). 

The sequencing of wBm also facilitated the discovery of a Wolbachia insertion in 

Dirofilaria immitis (dog heartworm). The D. immitis Dg2 chromosomal region encoding 

the D34 immunodominant antigen (14, 15) contains Wolbachia DNA within its introns 

and in the 5'-UTR (Fig. 2C). These Wolbachia genomic fragments have maintained 

synteny with the wBm genome (13), suggesting they may have inserted as a single unit 

and regions were replaced by exons of Dg2. A second chromosomal region (DgK) has 
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been identified in other D. immitis lines that has 91% nucleotide identity in the exon 

sequences but contains differing number, position, size, and sequence of introns (16) and 

has no homology to known Wolbachia sequences. 

Whole eukaryote genome sequencing projects routinely exclude bacterial 

sequences on the assumption that these represent contamination. For example, the 

publicly available assembly of D. ananassae does not include any of the Wolbachia 

sequences described here. Therefore, the argument that the lack of bacterial genes in 

these assembled genomes indicates that bacterial LGT does not occur is circular and 

invalid. Recent bacterial LGT to eukaryotic genomes will continue to be difficult to 

detect if bacterial sequences are routinely excluded from assemblies without experimental 

verification. And these LGT events will remain understudied despite their potential to 

provide novel gene functions and impact arthropod and nematode genome evolution. 

Because W. pipientis is among the most abundant intracellular bacteria (17, 18), and its 

hosts are among the most abundant animal phyla, the view that prokaryote to eukaryote 

transfers are uncommon and unimportant needs to be reevaluated. 
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Table A-1. Summary of Wolbachia sequences and evidence for LGT in public databases. 
 

 
* All whole genome shotgun sequencing reads were downloaded for 26 arthropod and 

nematode genomes (11). Organisms identified as lacking Wolbachia sequences either 
had no match or matches only to the prokaryotic rRNA. Since the Nasonia genomes are 
from antibiotic-cured insects, they were identified as having a putative LGT event 
merely on identification of Wolbachia sequences in a read. All other organisms were 
considered to have putative LGT events if the trace repository contained ≥1 read with 
(a) >80% nucleotide identity over 10% of the read to a characterized eukaryotic gene, 
(b) >80% identity over 10% of the read to a Wolbachia gene, and (c) manual review of 
the BLAST results for 1-20 reads to ensure significance (11).  

†This isolate was previously shown to have Wolbachia reads in its trace repositories that 
are contaminating reads from the D. ananassae genome sequencing project (10). 
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Figure A-1. Fluorescence microscopy evidence supporting Wolbachia/host LGT. DNA in 
the polytene chromosomes of D. ananassae are stained with propidium iodide 
(red) while a probe for the Wolbachia gene WD_0484 binds to a unique location 
(green, arrow) on chromosome 2L. 
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Figure A-2. Schematics of Wolbachia inserts in host chromosomes. A. Contigs 
containing Wolbachia sequences generated from the D. ananassae Hawaii 
shotgun sequencing project are segregated into sequences coming from the 
endosymbiont (wAna) or from the D. ananassae chromosome (Dana) based on 
the presence/absence  of eukaryotic genes in the contigs. These are compared to 
those from the reference D. melanogaster Wolbachia genome (wMel) and a D. 
ananassae BAC. B. Fragments of the Wolbachia gene WD_0024 gene have 
inserted into different positions in the N. giraulti (NG) and N. vitripennis (NV) 
genomes with unique insertions in each lineage, including N. longicornis (NL). 
C. A region in the D. immitis genome that is transcribed has introns similar to 
Wolbachia sequences. All matches in panels A and B have >90% nucleotide 
identity; those in panel C are >75% nucleotide identity. 
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Appendix B 

 

Supporting material for the characterization of the Wolbachia pipientis insert of 

Drosophila ananassae (Hawai’i). 

 

Table B-1. Results of hybridization experiments with Wolbachia-specific genes on the 
Drosophila ananassae (Hawai'i) BAC library. The BAC library was 
constructed with a non-cured strain of D. ananassae, thus BACs may contain 
endosymbiont DNA or Wolbachia-inserted DNA. Using Finger Printed 
Contig (FPC) analyses and BAC-end sequence data, we chose seven candidate 
BACs for full sequencing. 

 

 

 

a Clones were retrieved using pooled probes from Wolbachia-specific genes. Real No. of 
positive hits is undetermined; 42 of the pooled hits were used for FPC. 

b Contig numbers correspond to FPC analyses performed in June'08 
c Clones were retrieved using pooled probes from Wolbachia-specific genes. Positive hits 

were not fingerprinted.  
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d Library name is DA__Ba. Available from Arizona Genomics Institute. 
http://www.genome.arizona.edu/ 
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Appendix C 

 

Supporting material for CHAPTER FOUR. 

 

Supplementary data C-1. Genomic DNA (gDNA), coding nucleotide and deduced amino 
acid sequences for the Antennapedia (antp) gene in Apis 
mellifera (am), Bombus terrestris (Bt) and Nasonia vitripennis 
(Nv). 

 

Gap data 
 
A 281 bp gap was closed in SCAFFOLD23 of Nvit 1.0. First base pair in 
gap would become coordinate 1468011. Last base pair in gap would be 
coordinate 1468291. Information submitted to the Nasonia Genome 
Sequencing Consortium through the Nasonia annotation tool hosted by the 
Human Genome Sequencing Center (HGSC) at the Baylor College of Medicine 
(BCM). (Stephen Richards, Unpublished, HGSC, BCM). 
 
>antp_nv_gap_281_bp 
TTTTTCTCTTTGGCGACGACGACGACGACGACGACGTCTGCCTCGAATTTTTCTCTCTCGCTCTCTTCCCG
GGACGAGCCGCGTTACGCTCAGGCGAGCGCGTGTACATATAGGTATATATACGCGCTATCTCTTATTTTCT
CTCTACTCGAGCCCCCCTCGCGCGCTCCGTCTCTCTCTCTCATCTTTTTTATACGGTTATCCCTCGTTTCT
CGTTTCTCCTTTTTCCCAGAGAACGTCCGGTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT 
 

 
Genomic Data: 

 
>antp_nv_gDNA_FGENESH+_+_Apollo_+_manual_annotation_12086_bp 
ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGATCTGCGCAATGGCGGGGTGGAGCATCCGCATCAGCA
CCAGCAGCACTACGGCGCGGCGGTCCAGGTGCCCCAGCAGCAGCAGGCCGTGCAGCAGCAGCCCCAGCAGG
CGAGCGACCCCTGCGACCCGTCGATGCTGCGCCAAGGCGTGCCGGGCCACCACGGCTACGGGGCCGCGACG
GGCCAGCAGCCGGGCATGCCCTACCCCCGCTTCCCGCCCTACGACCGCATGGACATCAGGAACGCGGCCTA
CTACCAGCAGCAGCAGCAGGAGCACGGCATGGACATGGCCAGCTACCGGGCGAGCTCGCCGAGCGCGGGCA
TGGCCGGCCTCCACATGGGCCACACGCCGACCCCGGTCAACGGCCACCCCGCCAGCACGCCCATCGTCTAC
GCGAGCTGCAAGCTCCAAGCGGCGGCGGTCGACCACCAGGGCAGCGTCCTCGACGGGCCCGATAGTCCGCC
GCTCGTCGACGCCCAGATGCACCACCAGATGCACCCCCAGCACACGCACATGCAGGCCCAGCAGTCGCACC
CCCAGCAGCAGCCCCAGCCTCAAGCGCCTCACCAGCAGGCCCCACATGCAACCCCAGCAGACGCAGCAGCA
GCACATGATGTACCAGCAGCAGACGCAGCCCCAGCAGCCCCAGCCCGCGGCGATGCACCCCCAGCAGCAGG
CCCAGCAGCAGCAGCACCAGGGCGTCGTCGCCTCGCCGCTCGGCCAGCAGCAGCCCGGCACGCCCCAGAGC
GCCGCGCCGACGAACCTGCCCAGTCCCCTCTACCCCTGGATGAGGAGTCAGTTTGGTGAGTAGTGCAGTCT
ATACTATATAATATCGCGCATCCGAGTGCTCGGAAATAGGCGCGATGTCTCCAGCTTTCTACGTAGGCGCG
CACGTACGGCAGCCGGCGGCGCGTGCTCGAGTTATTTATTGCCCCGACCTTTTAGCCCGACTCCGCGCCGC
GGCTGCCGTGCGTTTCACCACCGCCGCGAACCAGTTTTGCGAGCGCGTTAAAGTTGCGTCGACCACCGGTG
CCGAAACTATGGTTACGCTCTCTTTGCACGATTTTCACCTCAACCCCGCATGCGAACGAACTGGATTTTTC
GAAAATTGCGCAACGCGCCTTCGAGCAGCGCCCGAATTCCAGCGCGAAGGGCTGCTCGGCTTCAAGGCCGC
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TTTAATGTATCCCGGTCGGAAATCCCGGCGCGCTGGCTGCGTACCGCATACGAACCGGTGAATGATCCCTC
GTCGGCACAATGTATGCAACAGCGGCGAGCCTCGACGCAACGAGCTCCGGGATTTATGGCAGCCATAACGA
AGTGATAATAGGCCGGGCTCGTAATTTATACACGCGCAGCTATAGCCAAGCGGCTGCAAGTATCGGCAGGA
GAGCCGGTCAAAGAGGTGCACAGGTTGAGGGACCCCCGCTGACTTTGCTCTCATTCCGTCGCTCTCCCCGC
TTGCGTCTAAGCCGATGACTCTATGCGCTCGTAACCCGGACGTAATTTACGCTATGAGTGACTCGACGGTT
ATCCAGAGATTTTCGGGTATAGGTAGTGTCTTGCGACAGCGACGGGGGCTCTCAGTCGCAGTTCGATTTCC
GCCGGGGTGAGATATGCGGACGCGAAAGTTTCCGAGTTGCCGATCGTCGTGCGAGTGTTTGCTGCGCGTTC
GGTTTCGATCGAAAAGTTTATTTAACTCGGTGCCGAATATTGTGATTAAGTGAGTGCGTTGGTGCTACGAA
AAAATTTCTCCGATCACGAGCACCTCGAGGATGAGAAAAATCGGTACGGCATTTCAAGCTCAAACGCGATC
CTACGCCACTGCAATTTCCAAATTCGAATCTCCTCAAAGGGAAAACTTCGCTCGTCCCATCTCTCGGCTGC
TCTCGGAAGCTGCGGGCCCCGCTAAAAGTGCCCTCCCGGTACACTCGCCGATCGTCGATCCGTATAGGGCC
TACATACCGGCAAGCGAGAACGTCTGCACGCATTCCCTGCATAACGACTCTCCCCACACACGGCCCCCCAG
TATAAAACCCGCCTCGTCTGCACACACGCCGGTTAGTTCTCACATATACCAACACACCGGCCTTGCCAGTC
GAACACCCGTCGAACTCGAGCGGGTTCCTGCATCGGCTCACAGATGTCGGCACCTGGACTTTTAGGACGAA
AAACCTGCTTCGATCCGTGTGCGGCCTCACCTTAATTTTGACTGCAGCGTGTATTTTTCGTACATATATAC
ATACCCGGGTAAATTCCTCGGGCAACGCGATAATCGCGAGAATCCCGCGGCGAGACTCTTATTGACCAAGC
ATCCCCCATGAATTATGCAAAGCCCAATTTCCTCCACGTATCGATGCGCGAGCGCGTGTGTTTATCCGATA
TACGTGTCGGGGCGAGGTTTTTGGAATCGACCGGTCGTTGCGATGGGTGGCGGTGTTTTTTCTTCTGTTTT
CCTGTTTTTATACTTCGCCACGCTATGCTTATCCGAGGTAAATATGTAAACGCGTGGGATAATGCGTGACT
GTGTGTGTGTGTGTATATACGTAGCGAAGCGACGGCTTTAATAATTAGCGGATGAACTTCCGAAATGGCTG
TTTCACGTGATCGAGGAAGGATTGAGCTTTCTATTTCGGCTCTGTACTGCTGATTCGATTAGGAAATTATT
CATGTCATCGAAAAACTCCTGAACACACACTTCTTCGAAAGCAGGAAGCCGCGGCGTTAAAAATCAATCAT
TTCCCGTGCGCGGCAACGCCCGGCGCGAAACAGCCGCGCACAGAGATATCGCACGTGCCTCCTGTATCCAT
AACAAATCGTTACTTAACGTGTATTAAAAATCAGATATCCGCTCCGCCTTGTGCTATACACACAACGAATC
GACTTTTCCATTAAAATTCACGCCGCTCTCCTTTTTGCGGCCATTTACCTCGACGAGCGAGAAAGGGAAGA
AAAGCCTAAACGCGCATTCGAATCGAATCTCCGCCGGCAAAACGAGAAAATAATTTCGCGCCTTATCGCGA
CGCGATATCGGTTCTCGGGGCTGTAAAGCCGGGGCATTATACAGGCCGGCACGCGAGTCGCCCATTACTCG
CGAATACACCCCGGCTATAGATTAATACTTGAAATATACGACGAGCTCGCGGTGTAATTTAACGCGACATG
CGCGCACCTATTCCAACTCTATACGCACATGCCGCATGGGGTATAGTGTATAATAATATGCATTAACGACT
CTGAGCGCGATGTACAAAAGCGACGACTGTCATTGGGCGCTGACGGACGCTCGAAGAACTGCCCCCCTCGA
TGATGGACGTCGCCGCGACTGTCATTATGTCGTACTGTACCGCGTTCTCCGTATAATATACCGTAAATAAA
TCAACAAACGTCGATTTTTTCACATCGAACAGAACTCGATCTCGCGCGTTTAATTTAAATTCGAAAACCCG
CGTGGCATTAAAAAATCCGATATCACAGCGAACTGTAAAGGAACCGCGTCGGCGTCTTCTCGCACACACAC
ACACATGCACACATACATACATTTAACACACAGAGCGAGAGCGAGAACCTGCAGCAACAACGGTGCTTTTA
ATATGCGCGAGATAATTGCGATGTGCTTCGTCGGGAGATTTATGGCATCGCCGCCGCTCTCATAAATATAA
GTGCGCGCGAGCTTGGCTCTCTCGAGAAAGCGATATACGATCGGAGCCGCGCGTCGCGGCTACCGTTAACG
CGAGCCGCACGGCCGATTTCGCGGATTTCACGGATCCTTCGTATTACACGCGCGCTTTTCATATACATCGT
GTTTCTTTCATTTTTTTTATCGTTCGATGCGTTACTTTTCGCGCGCGGATTAATTTTATCGCCGCGCACGC
TTATTATTATCATTATTATTACATACGAATAATGAGCTTTCGCGCGCCGTTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTCTCTCTCGATCGGATATTGAGATTGATATAATTTTTGGTGAAATTTTTCGGCGCGCGCGCG
TTTATTAAAAGCGGATTTTTGAAATTTTGGCCTTCGCAGCTCGCTTCGAGAGATTAATCATTATTATTATG
TCTGACGCGCTGCTCTCTCGCGTCGTATCGAGAATTATGGTTTGCATTTTTCACGAAGATTGCGTATGCTA
AACTTTTGTCAACAGTCGTTATTGGGGTTATTCATTTTTGTCGAATTTTTCATATAGAGAGCAAGCAGGAT
GATTCAAAGTCGTCCCTTTACAATATTACAGGCCGAAACTTCTCCCAAAAACACAGCGTTCTTCCATTTTC
CTCGCATACGCGCGCCGCATACGCATAGCCATCACACGTAAAACCACTCGCGGCGCTGCACCATCTGTCCC
TCGGCCAGCAGAGCGGGGCTGCGCACAAAGAAGGAAAAGCGCGGTCGGAACTTCTCCCCCGAAAACTTTCT
AAAAATTTTCCCTCGATATTCCATCCCATAATTACAACATCCGCGCGCTCGCAGCCGCTGCTCTATGCTCT
CTCTTTCTCTTTCTCCTCTAATTATTTCCTCGTGATTCGGCTGCTGCAGCAGCAAGAGAAAGGATATGGCT
GCCGCTGCATCTCTCTTGAGAAAGGGATGACGGGGAGGAGCGAGCGAGAGAGAGAGAGAGAGAGAGAGAGA
GAGAGAGAGAGAGAGAGAGAGAGAGAAAATGAGCCGACCTGTGCACGGAAGAGGGCATCGCATTAGAGAGA
AAGAGGGAAGAACAAGACGAGGAGCGGCAGACGTAGAAAACGATACACACGCGCGAGGGAGGAGAGAAAGG
AGGGGGAGGGACAAATGACGATGATGGATGAGCCGCGCACGAAAAGCTGCCCCGGGAACGTGTGTGCGCAC
TTCGCTTTTTGAGAGCCGCCATGTCTGCAGCGAGATGCTTTCTTTTTGTTTTTCGACTTTTAATCTTTAAC
GCTTTTTGAGAGCCGCTTTATCTCTCTGTCCCTTGAGTTCCTGTTTTTTTTCGCCGCCTGTGTTTCTCCAG
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AAGGAAGCAGCCGTTAATAGCACGTACGCGCCGAATATCTAATTGTGTTCTTTCGGTTCGAAAATAAGCTG
ACGCCGGAAAGTTTTCGCTGAATCTCGAAAAGTTGAAGAGAAACAAAAAAACTCTCCGATATCCCATAATT
CAAAAATTCTCTCGAATTCCAGTAAAACTGATTCGTGGTAAAAATCTCCGGTATTCCGAGGGGCTTTTTCC
TATTTTCTCTCTTTCTCTCGGCCTGCCTGCCTGCCTCCAGTCATTCTTCCTCTCCGGCTTTCAGGCAACGC
GGCGACTCGCCGCCGCACGCGATATGGCCAGCGAGATATGAGTGCAGCGCTCGCGCGCGCGTGCAGTGAAA
GCTTCTTTTTCTCTTTGGCGACGACGACGACGACGACGACGTCTGCCTCGAATTTTTCTCTCTCGCTCTCT
TCCCGGGACGAGCCGCGTTACGCTCAGGCGAGCGCGTGTACATATAGGTATATATACGCGCTATCTCTTAT
TTTCTCTCTACTCGAGCCCCCCTCGCGCGCTCCGTCTCTCTCTCTCATCTTTTTTATACGGTTATCCCTCG
TTTCTCGTTTCTCCTTTTTCCCAGAGAACGTCCGGTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTCTCTCTCTCTCTCTCTTCTCGTCTCCCGCCGCCTCTCGAACAAAAAAGAAACTTTCCTCCT
CTATTTGATTCGAAAGCCTGAGCTGCGCGCGCGCGAAAGACAGTGACTGCTTTGTTCGCAAATTTAATTAA
GGGGCGCGCAAAGCTCTCTGCTGCTGCTGCTGCCGTTGCTGCAGCGAGAAGAATTTTCAGCCCCGTTTTTA
CACGGCCTTCTCTTCTTTGTTCAGCCCTCAGCTCTCGCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTTGTAGAATCTTTTTGATGAATGCGCGCCCCGGCCCTTAGAGCATAAATAATTCAGAAGATA
TTAAAATAATGCACGGCTGAGATTTCGACACACACGCAGAGATAGAGAGAAAAAAACACAACGTGTTTACG
TATCCGAATAGCGGCGTTTAATGATAATACGAGAGGGCTATTTCTCGTATACGCGCGAGCGTTTATAATAA
AGCGATGTTTTGCGCGTGCGACATAAAGTATCAAAGGCTGGGCAGAAATTAAAGGAATCCCTTTGCAGTCG
CGCTCGCTGGGACGATGATGGATCTGGTGAGCAGCCCGCGCGCTCACTCTCGCGAGCGAGCGAGAGAGGAG
GAAGCAGACGTGAAAGAGGGGCACACGTGTCGCGTCTAAAAATAATTCGCCGCGCGGCGGCCCAAGAGAGC
CGCACGTGAAAGGAAGTGCGCGGAGAAAGCTTTTCTCTTCGCTCTCTTTCTTCTTTTCCCGATGTAGGAGG
AAACTCGCCCATCGGAAGGCAGGACCGGGCTAGGGTCGTGTGCACGGAGCAGTCGTGCGCCGTGAAAAATG
AGAGATCGATCCGCCTCTGAACTTGCGCGTGCAAGCTCGCGCGGCTGCCATCGCGTGTTTTTATCTGGCTT
TAACCGCGAGAGCTTGCAAAGAGGGATGCGTAACACACGATAAATTAATAGAAGCTATGCAGTGGTACACG
CGTAGGAGAGGTTCGCCGGGCCTAATTGGACCAAGCCGCGCCTTATTAGCGGTTAACATCCGGCTAGCTGT
TAATCTGAAAAGTATATCCTGCGTATCCTGTGGCAGCTATCCGATGCTACTCGCCTCCGAGATCGGCAGTG
ACTTTCATAGACAGAGGGAGAGAGAGAGAGAAAAGTCGCGGCCTATAATAAGCCAGGAGAGTGTGGGCAGC
CGATAGGTATACGTGTGTGTTTTGTTCCACCGCGCTTGCCTTGCGCTCCGTTCCTTCGGGTGAGAGAGAGA
GAGAGAAAGAGAGAGAGAGAGAATAAGGTAGACCCATAAATCTCTCGACATACTCCAGGGGACATTTGATC
CTTGCGTAACCCAACGCCGTTAATTTATTGCCCCGCGTTTAAAGTCACCTTTGTGCAGTGTATACCGTCCG
CGAGAAACCAAGTGCGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
GAGAGTACGTAGAGGAGAGGAGGCAAAGACAAGGAGAGGCGAGAAAGAGCGCCGATCTCAAACTCCACTCA
TTTACTCGGATAAACAAGTTTATCTCAAAGCGGGTGAGCTTTTCTCCGAAGCGTCGTCACTACAAAGCTGC
AAGAAACAATATGGCGCGTATAATTACCGGCTCTAAAATCGCACGCTCCGAATCTCCACAATTCGCATCGC
TCGCACTCGAGAGAACGACACCCGAGAATCTCAGTCTCTCCGCACTGTGTGACCCAGAAGCATTTCTAAAA
TCCGACGATCCGCCGTGGGCCGCAATAAATTTCAGTCAAACCGCGCATTCTTTCGCGCGTCGTTAATCTTT
ATCGCACGCGCCGAGCGCTTTTATTGTTAACGAGATAGCTGCTTCCTCGCGTATATTATAAAATGCGTCAT
CGCTTGTTGGCATACGTCTCTCTCTTGTTTGCCGCGGCCGAGACAATGTTTCCGCTGCTGCACTTGACTCG
TCATTAAGATAACGCGACTCTTGAGACGAGCACACTCGAGCGGCTGAATTAATCGCCGTGTTTTGTGGACG
ACGCGAGTGCCGTATGTCAATAGCACGTGTGAGGAAAATCGATCCTGGAATATATTGTCTCTCAATGAGAT
TGACGTCAAACACTCATAAATAATGCTGGCTTCTCACAATGCATACAGAGAGCAAAACAGTCGCGAGCGTC
GCGAAGATTGATGCCACGAGTCAGTCGGCGTTACGAAAATATATTCCTGGAAAAGAGGAGCGAAGAGTCGC
GCAGCGCCACACTGCATCACGCTCTCGCGCAACCTCTTTAATTAACCCCGCGTGTGCAGCTCTCGGCTCTA
ATCTCGGAGCGAGCGCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGGTAATAATAATACGCGCGAGACTGTCCGATCCGTCCGCGCACGTCTCTCTGATGGGA
TTTTAGACTCTGCTATAGCAGTCGGTTTTAGGAGATTCCGCGCGGAGAACGATTTACGAGCGCAACCTCTC
GGTTTGCTCTCAGCTCGGATGGTTTATCGCAGTTATCGACTATTTGCTTTTCTAATGCCGGCGGTTTGTAA
ACACTCGTGCGCAAAAAAATTATTGCAGCTGTAGAGTCGTCGCACTTTTTCTTTGCGACTTTTTAAGCGTC
TCTTGATTTACGCCAGTCGTTCAGAGCATCTTCCGGCACGTGTGCGAATCGAATCTCGTCAATGTACTTTC
ATTTGGGATAAGGTAATTAAACGCGATTGACACGGCTCCCTCGATAGGATTTATTAGCTCGGATCCTTTCT
TAAGGTACCCGCCTTTCTCGCGCCCATATTTATGGAATTTCTAATGCCTCTAAATCATTTCGACTCCTGAC
GTGGTCGTACGCGTACAATGTATATCGGCTCTACTGTAAATATAGTCTGAATAAACATTTCCAAGCTTACG
CTTCGACGAATGCGCGCATTATAAAAAGCGGCTTATAATCTCGTAAAAACGTGGGGTATAGAGCTTTCAAA
GAGCGCATGCATAATTAATTCTAATTGCCGCCACAGCCAAGACACTTTTCTGCTCGAGAGCTGCAGTGTCT
TGACATTCGGAATGTCCGTGTCCCGCTTGATGAATACGTTACCTCGCACCGTACAGATCTTGGTCAATAGC



 196 

GACGCTGGATCAAGTTTTCCTCGTGTATGCTCAGAGGAAAATCGCATTTTGATTTTACCGAGATTCTTCGA
ATTCCGAGAATCTCATCGTGGTATACCAATTAGCGTGCTGTATTAGCTTTCCTCTTCCCAAGTTTTCTGGG
GCGCGGATAGGCGCTAGAGATAGAGCTCGAACCGAATCAGGGATTCAAGCATATAAGAAAAGAGCTCTCTC
TCTCTCTCTCTCACACATTTCTCGGTATTTTTTGTCGCCGCTCTCGACACTCCGGCCTTGTAACCGAAGAA
GAAGCGCCTAGAGAGATTGTTAGCCAAGGAGGGAGCCTATAGGGAGATCGGTATGTTGTTAATTTGAGAGA
GATAGAGAAGGAGTAGAGACGACGGCCCGAGGGAAGGCTCATACACACACACACACACACACACAGAACGC
GTTCCCAGAGAGCCTTTAGCCCAGTTCGCGCTTGCGCCAGGCTATCTTTTTCCCTCTTTCTCCGCTCGCCC
TTTCTCCTTCTTCATTTTTTTTCTCCTCTCGGCCGCCGCCGCCGCCGGGAGAAAGAGAGCGATATTCTGAA
ACCCCGAAGAATCTTCTCCGTCTCGCTCGCTCTTGCGCGTGTAGAGGGAGAGAACCGCCATCCGTCTTCAT
CGGCCGACAGCGCGACGGGCGGCGTTTGCCTCGAATGCTCACCAAGGAGTTTTCTTCTTCTTCTTCTTTCT
TGCAGCTTTTTTCTTCCGCCGACGTCCTTCTTCTCGCCGGCTCATCCCACTCTTCGAATCTCCATGGCGCT
GTGGGCGCGCGTATCCAACCCTTTTTTTCGTATTTATATACGTACACGGGCAGGCTTCGCTCCGGCGAGAG
TATTATATTATATGCGTGTCATGCGCTGGAAGTTTGTTTGCGTTACAGACGCGTTGCGCAAATACTGTAAT
TACTCGATTGCGCTGCGTAATTATTGTTCCGAGAATGCGTGTAAGGTCTGCTTTGGTTTGTACGAAGCTCG
TGGATTGAAAAACCATCGCGTAATAAGCACGTGTCGACGGACAATGGCTGCGATGGGTGTGATTAAGCCGC
GGTGTGATCATACGGAGTTTTGGGTAACGGAAGCTTTACTTAAAATCGCATTACACTCGAAAGAATGTTTT
TGATTTTGTAATTTTGTTTTTTTTTATCATCGAATAAATTATCTCTCAGCTTCTCTTCCCAGCAATCGCAA
AACGAAATTCGCGAAATCAACATTTTAAAAACTCGTCTTACGCTTCTTCTTCTTCTTCTTCTTCTTCGGCT
TTTTCTGCGCATACTCGAAGATTAAACTCGCAGCGGCTCCCCTCTCGGCGCAATTAATATTCCGATTCGAA
TATAAGACTCTCTCGGAGAATGCGGTCCGATCGCCGAGGCGATAATACGTCATACGCGAGCTCATACGTCC
TCGTCGCATTACACGGCTAAATCTCCGAAAAATGGCATTATTCAGTCGGTGCGCGGCGATAAGGATTATAT
ACGCAAAGGCGAGGACGACTCATCGCAAATAAAAGCTCGCGAGGAACAGCTTCTATGCAAATACGCCACGG
GGATAAGGAGAATTTCGTTTTTGCAGGTCGCTTTTTTCGTCGAACCGTAAGCGAACACGAGTAACTCCCTG
CAGTCTTGGAAACGTCCGCTGTAGTTATATTGATGAGCTGCGATACATTATCGCGGGAATCGCGCTGTTTT
GCGATTCGCTCGTAAACTAACACGAGTTAGGATATAAACATTTAACGAAAATTCGCGATTTAGACGACTAT
AATTCACGAAGTTTGATTTTGTATACGTAAACACGGCTTTGAGCGCAGTATCCTATTTGCAAAACAAAGCG
ATATTAATGTAAGACAAGCCGCTAAAAATACTTTCCTCGAAAACCGTAACGTCTCGGAAATTTCAACCGTC
AAGATTGAGTTGGAGCGAGGAAAAAACGTCGAGAGATAGGAGAGAGAGTGAAAAAAGCATTTCTCGGACTT
TTTCTCGGAATATTCGTGAGAGTACGAGATTCGAAAGAGAGCATTATTAATGGGACCTCGGAGGAAGTGAC
GGCCCAGCGAGGCTCGAAAACACCGAAGAGCGAGAGAAAGAGACGTCGCGCGCATACAGTCGTTGCGTTGG
ATTCCCCGACTCGTGTCCGCAGCAGCGACTATGATATATAAAGTCCTTGTGGGTCGAATGACGGTAAACAG
CGGTAAATAAACGTCCGCGATAGAGGATGACGCCCTCTTACCTGACACTTTCTGAAATCCCACGCTCTTCG
AGTCTCGGGAATGTTGCTTCTTTCGAGCGATTGTTTAAAGTATAGTCGAATTCCCTAAATCGGGCGAGCGA
AACGCCAGGCTGCTTATAGTGTCCATAGTGATTTGCGCGCGCGGCTGGATGCGAGAGGGTTATTTCTGCCT
CGAGTCCAAGAATAATTGTCAATTACGAGGCTCTGATTGAAATGACTTGCAAATTGAATAACCTGTGTTTG
CTCTGCGCGGCGTCGGCTGATAAATCGCCTGGCGGTGGCATATTGGTGTTATTGCCAGTTTCTCATACACA
TAACGTATGTACGTGTGTACGTTTAGACCCACGCGCGCAGGCTCGGATAATTTTAACCGCGTCAGCCGATA
TCGAGTATTATTATACGTCTTATTAAAAAGCGAGAGTGTGCGTGCCATAATAAGCTTATAAATTATTTTTA
CCGTCTCTCAACCAGCGCGGATCGTAAATCTTGTCGCGAATCGCTAGAGATAATCAATGATCGCTCGCCAA
GTAGCAGCATCGTTACTTTGATCAGCTCTTATAGCTATATCTCATAGGAGTTTAAATTTACGAGCGATTCA
ACCATCAATCCGCGTTTGCTCTGTAAACGAAATCTCCTCACTCAATTATACATCGAACGATAATATCATTA
TACGATGATGACTAACGAGAGAACCTTCTTTTCGCTTGTTTTCCAGAGAGGAAGCGTGGCCGGCAGACGTA
CACGCGATACCAGACCCTCGAGCTCGAGAAGGAGTTCCACTTCAACCGCTACCTGACCAGGCGACGCAGGA
TCGAGATCGCGCATGCGCTCTGCCTGACCGAGCGCCAGATCAAGATCTGGTTCCAGAACAGGCGCATGAAG
TGGAAAAAGGAGACCAAGACGAAGGGCGAGCCGAACTCGGGAGACGGTGACACCGACATCTCGCCCCAGAC
CTCGCCCCAGGGTTGA 
 
>antp_bt_gDNA_FGENESH+_+_manual_annotation_11883 residues. 
ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGACCTGCGTAATGGCGGGGTGGAACACCCGCATCAGCA
TCAGCAGCACTACGGTGCCGCCGTCCAGGTGCCCCAGCAAACGCAGTCGGTACAGCAGCCATCTCAGCAAA
CCGGGGATCCATGCGATCCTAGTCTCCTACGTCAGGGAGTGCCTGGCCATCACTATGGGGCCGCTGGTAGC
CAGCAAGATATGCCTTATCCGAGGTTTCCTCCGTACAATCGGATGGACATGCGGAACGCGACCTATTATCA
GCATCAACAGGAGCACGGCAGCATGGACGGGTTGGGTGGTTACAGGTCGACGTCCCCGAGCCCCGGTATGG
GCCACATGGGACACACACCGACCCCGAACGGACATCCGTCCACTCCTATTGTCTATGCGAGTTGCAAGCTT
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CAAGCGGCCGCGGTCGATCATCAGGGTAGCGTACTCGATGGACCGGACAGCCCGCCATTGGTCGAGTCGCA
GATGCACCACCAAATGCATTCGCAACATCCTCACATGCAGCCGCAACAGTCACAACATCAACAGCAGCAGC
AGCAGCATCAACATCTTCAGGCGCAGCAGCAGCACATGATGTACCAACAGCAACAACAAACACAGGCGGCG
TCGCAACAATCTCAGCCTGGCATGCATCCGCAACAACAACAGCAACCTCAGCAACACCAAGGGGTGGTCAC
GTCGCCGCTTAGTCAGCAACAGCAGGCCGCTCCTCAAGGTGCGGCCACTGCCAACCTACCAAGTCCGCTCT
ACCCGTGGATGAGAAGTCAATTCGGTAAGATGGACTTTCAATGTAGATGCTCAAAATGTCTGTTGCGTGCG
TTAAAACCGTGCAAAAGTATATACAAATTCATTGATGTCTCTGATGGATATGATATTACTCATATTACAAT
AATACGCGATGTACTATATCGAGAATTTGAAGTCTCTTGAAATACACAAAATAGTTTTAGCTGAATGAGAA
TAATAATCGAATTTAGTGAAAGAAGTTTTCACGGTAAATACTGTCCAGTAGAATCATTCGAGAACGTTACC
TGGTCTATAAATTTAAAGGATTAGGAAGGCCAGTAGAGTAGTAAAAATCGAGAAGCAACCATGTTGAATCT
TGCATTTGCATGCGAATTACCCTGCTTGTTACCTCTATTTCTAAAATTGTACAATGAACGTTACTTCGAAG
CAAAGAATCTTCCTATCTCGGAGTGACAAAAAGAGAAGAAAAAGAAAGAAATAAGAGAAATGTTACATTCG
TATAGTCGGAGAGGAGATAATACGTGAGGCGGTTGTCGAAAATAGGCTCAAGGATTTTCCCGCGTGACCAA
AAGGTTCGGGTAGAAAGCAAGATTTCTAGAGAGGACGGCAGGTAGTCGGCCGCTTTCAGATTTATGCAACA
GTAGGTAAAACTAGACCACATTCGTACGGTTCGCAAGCCAAGATTGGCATAATGTCTCCAGTTTCTAGGTA
TACCGACATCCCGAGTTATTTATTGCCCTGACCTTTTAGCTCTCGCTGGTTTCACCACACGTAAGCGTATA
CCTCCCCATAAAAGTTCTCTTGCTGACTGTGCCCGTGTTGGCTCCACGGCTTGGCAGAGTCTCCGCTCATC
CACTTTTATTCCCATGATAACTCGCGGCTGCTTGCTTCCACTCAATGGTATGCTGAACTAGTTCGCTTGTT
TTCACTCACCTTCCCTCGTCTGTCTAGTTGGACAGGAATCTAGTATATTGAACGGCTACTGCTTCTTCTTT
CTAAATAAATGCTTTCTGCGAAGACGAGGGCAATTTCTATTTAGAATTCGTTCTATTTGACGAAATTCCAG
CCTCTTCGTGATCTTTATGAAGCTGAGCGTAATATATTCAAGGGAACAAGAAATACCACCTGCTTTTCAAA
TATAGGGTTGTAGCGGAAGAAAAGATTTAGGAAATCTGCTGGAGTCGACCGTGACTGCAAAGAATCGCACG
GGTAATTTCGGAATAATGAGTTGGGAATTTATGGCAGCAATAACCAAGTGATAATAGCCGTTTTCTTTAAC
CCAGAGGTATCTGTCCCGGGCTGGGTAAGAGCACAGGTTCCGGCGCTCCACTGTGCTTGCTCTTATTTTCT
TCACCCTTCCCCTGATTCTTCAAATCCGAGAAAATGCCGCAACCTTGCAAAGTCAGGCTCCCTCGACCCCT
TTTCTTTACTACCTTAGCACGTTCAGTTGCTCGATGAACTCTGTTCAAGTTAAATCTTCTCTTCTTCAACT
CGAATTATTACAAGTACTTACTTACATATATCGACTTTCAAGATGTGAATTTTTTTGCTGCTCTTATAAAA
TCGTTCACAAGCTGCCACCTGTTCTTTACTGGATATTTTTCACGTAAGTGTAATTCGAATTTTTATACGCT
TTTTACTGTTTATTTTTCACATTGGATATGGAGAATGTAATAATCTTACGAAACCATCTCTCGGTTCAATT
CGAAAGCTGGTACCAACCTGCTTGATTCGCCGATAAACGGTGTGGTACACGAATGACGAGACTGGTCCATA
CTCTTCGTTGCCAGTCAAAAGAAGAAAGAGGATCGAGTGCCTGAATCTGCTCACAGATGTCGGCACGCTTA
AGTCTTTCCGATGGGTTGTCCAACAATATATGTATTCGTTCCTCGTGGTTTATTTAGTAACCGTATTGATT
TCATACTATCTTCGCTATATCTTTTCATAAGTAAACAAAGATGATTCATATGGAAAGCACGATATCCATTT
ACACCATCTATCCTCGAGCAAATCTTACAGAGAGAATCTTCTATGATCATTTAAAACCAATAAAATATGTA
GCTTTGTATCAATAATTCTCTCGGTTTAACCATTATAAACATAGTTCCATGTTGTATATGTGTATTTCGAT
TCCACACGATTCCATCCATCGTGTATTTATTAGCCATTCGAAACAAGATCAATCGGCTCTCAGATCAGAGT
CGATGTATTCTAACAAACATCCTTCATATCTGGTTTCGATACTAATTCGATCTATGATTATCCACGAGCAT
TCGTTCTTCTCTGTTTAACACTGTTCATGAGGTTTGCCACTCGATCGTATTACCCTTACAGGTCTACCAAT
CATGATAAACCTCATATCAATTTATCTAGCTATCCATTCGTGGCCGTGGTTGCCTGTTTCTTTCCACGTTG
CAAAACACCAGCTGAGCTAAGCGTGCTATAAGCAGGACTCCATGAATAATGCATGGCTCAATTTTATAGAT
GCAGGTGCTCTCCCGGGCATTTGCCCGGTGAAACCGCCGAGATTCCCTGGCACCTTACGCGGGACATTTGC
GTTACATAGGTTAGGAAATTCCGGCATAGTTGGCTGGCTCGCGAAACCCCGGCATGCGAGTGCGCATCGGT
GTCGTTTACTGCCGAACATCATGAAACGCTTCGTGAACGTGCACAACTTTCATCGTGAAAGCTTCTTCTAT
ATACAATGCCCCTTTGCTCCGCCTTTGATTTCTTACGACGACGATTTTTATTAAATATCCCTAGCCACCTG
TCGAGTCACGTGACAGCTTCTGTCGCATTACCAGTCCTAACCATTGCATAATTAGCGTTTTTGTTAAGGTA
TAGAAGGATTCGGAAATACAAATAGTTTACTTTATTTCACACGCAACGGCTATACGTATATATTACACTCT
GAAGGCATCGATAACCTACTCGCACGCACGCTTGTTGTCAACCGACTCCTCTAGTCGACCTCTGACGCTTA
CACACACATTCACATGTACAGTGTAAATGTATCATCTACCTAAGAGTTTTTATTATTCTTCGAAATGCCAA
TATGTGTTACAATCCACGATAATTCCTGTTCGTTCTGAGAAAAGGTCGACGAAAGTAGCCAAGGCAGTTAA
ATCGGAAAAGAAAAATATTTGAAAGTGAAATTCATTCAGGCAAATCATTCATTTTCACAATCAGTGTATCT
CAAGGAAATTTAACATCTTTGCTAGTAAATATTGTTTTACGTGAAACGTTATGAGCTAGTGTAAATAATGT
CCACGATTTCGTTAGCGATTAATAGCTGCGGACGCGAACCATGTTTTCGTTGGAGATACGTAATTCTGTCG
ACGTTGCAAGTTCTCTCATCCGAAGTTTGCGGTTTACGCCGACACTGAACTTCGGTAAAATTGTTCATTGT
CATTCGTATCCTGCATTCGCATGCATGCATGCACTCACATGCATAAACTTTCATTGATTAGCATTTTCTTT
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TTCAAATTAATTCGCCAAGCAGATAAAATTAGAACCAATTGCGGAGAATGATAGTATTCGGGGTTCGTGAT
CAAGTTAATTAGCTGGATGGAAAAAGAAAACGCGAAAATTAGCTTGCGCAGGCTTATACGGATTCGACGAT
CGGTAATTGCGGTGTAACAACTGCAACAGCATACGCGTTATCTCAGTTTATTCCGCGAAACGCATTATCAT
ACGAAAAAATATAATATTTCTCGTAGCCAGGGCCCATGAAACACCATCGCGATACCATAAAAATAACATAC
AATGAAGTTATAATTCAGAGGTTGCAGGCACCGTGACGTTTTCACCATTCCACCGGATCTTACATTATAAG
ACAAGCAAATTTTTTATCCTTTTTCGTCATCGTTATTCTTTCGAAATCAAACTCGGAACGAAATTCTGATT
CAACGCTGATCGATTGTAATTATGTGTCGATATTGCGTCGTCGAACGTGGATCCACGTGAATTGGTCGGTT
TGATAGAAAGAAAAAGCCTATCGATATCGCTGATGCTTTTAATACGTAAGATAATTGCGATCCTTTTGCCT
GAAAAGATTTATGGTATCGAGTTCCTCCGGTTCTGCTTCGTCTCCCCTCCTCCACTTCGTCCCTTTTCTCC
CCCTCACAAATAAGCATGCAGCGGTGCAGTTATACATAGGTGTGAGGCTTCCGTTATTGCGTACACGTGTA
CGTGCTACGAGCGCCACATTTCTTATGTAATCCGAGCACTGACACGAATGCTTAGCGGACGAACAAAGTAC
CACGGCGAAGAAACCGCACTACCGTCGAATTAATCGCGCGAAATATCTACGTAAATGGCCAATAACCCGTG
CGCGTAATGAGGAATTAAAATGGCCCCTACTCCGCTCCCTGCTTCGTTTTATTTCTCCTTTTTCCTCCCAC
CTTTTTTTTTCTTTTTTTTCATACGACTTGGCTAATTGAGGGCGCAGATTTATAGACTGGACACCGTTTGT
TCATCGAGGCACGTGGCCGCGTTTATCTTTATCTTTACCAGATATTAGCGCGTATCTTTTAGTTATTTGTT
TTTTTACAGGTTCCTAACTTCTTCTCGTTTTTTCACCTTCACCTTTTTCACCGGATTTCGATACATAGCAG
CGCTGTGATTTTTTAAATTGAGTATATAGCAGCCTTAACTGCGGGCTACTCGCGATGCAGATATTTCACGT
TTATCGCGTTGTAAGATATATTCGGGTATTATTATTCCATCAAATGGTATAACTAGCCCTATTTTTGCACG
GCCAGTTTACTATCACGCAATTACACGTTACGTTTTGTTCTACAAAATAAAACGTCAGACGCTTACGGTAG
TAATAATCTACTTTTCAAGTTGAGGTTAGGAAAATCTGCAACACGCCATCTAAATGGAAGAGCGCGTGTGG
CGATAAAAATTCTTTCGCTTTTTCGTCCAAAATGAAATTTTCATTTAAAAAAAGCACAATTAGGTCGAACT
TCGATGCTTTCTTGCTCAAAGATATCCGAAAGAACGCACGAGGGTTAAGCGCAACCGCTCAACACCTGTAA
CCCTTTTCCCCCGATATGTGGGAAAGATAAAAAAAAGTCCCTAGATACCATGTGGCAGGCGTAGAGTTTTA
ATCTGCGTCTGTGCTGGCGGGGGTCGTGGCGATCAACATTCACATCTCGGAACGCGTTTCGTTCTAGTTCG
CGTAGTGTCAGACACCAGAGATTGGTGTCCGAAACGATGGCGGCTTCGTGAGATATTCAAAAAGAGATGGA
ACCCAAAGAGGCAAGAGAGGAGGAGCGTCGAGGAAATGACGTGAGGTCGAGAGACAGAAAAGGAGAAGGCG
AAGGAACGTGGTATACGGTGAAACAGAGAGGGAGCAAGTCGACCGGTGGAGGGCGTAGAAAACGTTGACGA
TGATGGATGAGGCCACAGAAATCCTATGTCCGTTTGCTTTTTGGGCCGCCGCCATAAACTCCTGAGACAAC
TATGGACGATAGCCGTTGGGATATGGGCTGCCTCACCCATCGAGCCTGCAAATGTGTGGAAATTGGGGCGA
AAAGGGTGTAAATCAATGATCTTCTTACGCGTATGAACTATAGTTCTTTTTCTACGATCGCTGGGAAGAGC
TCTTAAAATTCTGGAAATTTAATATCAAGCAGGAATTTAATATCGGTTAAGAATTCCAGATTTTTAACATG
TTTGCTTCAGTCGTTATTCCTTATCCGTAAGATAACGCGTTAAGACACTCCCAGTTTCAATATATTCGCTT
CATTTGTCACTGCTAATTCTCCAGATAACACATTCTCTGTGGTGAATTTTAAGATTCCCAGTTATCTCAAA
CCTTATCATCGTCTCTAGTTTCTCTGCGATAACTCGATGCACGAGCAGATGTAAACAAAGGGGCTGAGGGG
ACGATCGTAGATAAAGTAGAACACAACCAGCAAATCCAATAATTTTCTCTACAGATGCATACGTCGCATCG
GGCCCATTCTCGCTGCTCATTATCTCGACCTTCTGGCGCTCTCCTCGGGGCTCTCAGACTGCGTCTCCTCG
TCCGGTTCTGTCTGTTCGTCTGCGGTCGAAAGGCAAAAAAAAAGAAGAGAAAAAAAGAAGAAGGTGAAGGA
GAAGAGGGAAGGCCTGCTATCAGATACTCCGCTCTCCTCGAGGGCTTCTAAGACCCCTCTATGAGTGTCAG
TCGACTTGACGTTCTTCTTACTCCGGCGGCGACTTCTGTTGAATTCCTTTTTCTCTCTCGTCCTTTGCGAG
TGACGCTGCGCAGGTGGCTGTTCCAAGCTTACGATGCTTCCACTTGGTCCAGTTTCCTCAAACGAGAACAA
TCGCGTCCAGCTTGCAGAGGAAACTAAACCATAGTGATCGCAGTGGATAGGGCGAGCTGTCTCTGTTCTTG
AAATATTTTCCTGTTCATCGGCGATTACCAAAGACGCGTGCAACGTCCATGGCTTTGTTTTTAGATCGCAG
ATGCAGGAAGTTGGCGAAGCTTGGAACGCGACCCCGCGGATACCCGCGCCGATGCATAAACAACCGACGAA
ATTCCTGAACGAAGTTTGTCTTGACTGCGTGGCGCGACCCCTACGCTCGGGCCGTGCTGCCTGCCGGTCCT
TTTGCCGGGGAAAAAACGTCGCCTCCCCCCTTCGGGCGAAGAAAGTTCAACGAAAACAACGTGACATAAAG
CAGCCTAGGACGGAAATACAAAAAGCAAGACGGATTGCCGGGCTTAAAATATATGGAGAGTCAGACAGAGT
TGGGCAACCGGCTGCAAGTTCGATCACGTGTTCAGGATTAAAGAGACGCGCGCTATTTCGACGCGAACGTT
CAGCAGTTTCTGTATTTCGCTCGAAATCCGCCAACGTGTTTAGGCAATATTTTTCCCACCTATTACAACAT
ACTAACGGCAACAGAGTTGAATGAATCGGACCAAGGCAACTGAATCTTCGGGATACCCGTTCTGGAAGGTT
TTCCAAGGTGGTTCACCGGATTCCACGCAATTAATCTGAACCTCTGTCAGCGACGTGGACCGGTCATATAA
TCCGAGAGGCTGGTGTAGCGAGAGTGCCGCGTAGGGAGGCAGGAGAGAGGGCGAGCGATAAAATTAATGGG
ATATCTAGGGTATCTAATCGAAGAGCATTTCAAGGCCTGGCCTTAAGGTGGCCACGTAAAGCTTAGCTTAA
TTGGGCAGCGAGTGGTGGCCGCGCCTTATTAGCGGGTTACAACATCCGGCTAGCTGTTCATCTGAAAAGTC
CTGCATGTATCCTGCGGCGGGTCTGAAAGACCAGTCGGTCCGCAGAGAAGCGACAGAGAAAGAGAGGGCAA
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AGAGAGAGAAAGAGAGAAGCGGAGCAACTAGCCTATAATAAGCCGTACGGTTGTGTACGTTCTGTTCTGTT
CCGTTCCGTTCCTTCATGCTGCGCCAGTGAAGGCAGACCCATAAATCTCTCGGGCATACTCCAGGGGACAT
TTGATCCTTGCGTAACCCAACGCCGTTAATTTATTGCCCCGCGTTTAAAGTCACCTCCGTCCGCGAGAGAG
CAACGGCTACGCCGCCATCAGAACGCCGGTTCAGCATAAACCGACGGTTGTGGCTAGCTTTTCTTGTTATC
GACCTCTTTAACACGCCCTACACTTTGCTTCGTTCGCAACATCCATCCTTCGATCGAGAAAAAATTCCTGT
TCGCGGCGTCGTTATATCGGAATCGAGGTTGCCCACACCTACGGAGACCTTGCGATACAGCGTTGTTTCAG
CTGTTCGCTGTTCTTCCTTCTCGCGGTATTCCATTAGCAAAGAAAATCTCACACCCTCGCTATCTACATCG
TGTTTCCCACGACGCGTTCCTACAATGAAAACGCCATTAATTTCTTTTCAGCCGGCCAGAATGTATACCGG
TGATTAATTCGCCGGTGATGTTGCGCCCTGATAACGCTTTCACACCGTTTTCCAGGCACTCGGTTGCACCA
ATACAATTCAAGCATTTAGTATCGCACCCTACGTTTCATACGCTCGTTCGAAGAAGAGGAAAAAGCAAAGG
AAATGTTCATCGAACATTTTACAAGATAATTCGACTGTAGACTGTCGTGGCTTCTATCTGTTCGCTAAAAC
TACTGTTTAGGTTCTTATATCGTTTGCTGTAATTTGTCACGTGGTCGCTATGAACGTGTATTCTTATCCTT
AGCACGTGAACTTCCTCTTGTGTTTCACTCCAACGTATTTCCCTTGTCCTTGCAGGTCGAAAATTCGAATA
GCTCGTTTTCCATAAGTTACAAGTTTCCATAAGTTTACAAGGCGATTAAAGTTTCTGTTCACGTTGGCCAT
CGGACGTCTGTTTAATTAAGCTCGCATGTTGGACGCATGACGAGAAAAAGCCCGACGTCTAATTCAGCGGG
CGGACAGGGCCTAATCAAGATTCGAGTCCTCGCCGCTGGAATCGATCGTCTTCGAAACAGACAGCTGCATA
CGTAAGTCGAGAGGATATTGCCAATGTCCTTGCGCTGTCTTGTTGTTAGGATAATAGTTATCGTTCGTTTC
TGATTGTAGCATTTGCATGGCATTATAATATCGTCGCTATCTGCTTTACTATGAATACTCTTCAATTTCCA
ATGCAATCCACGCTAATGACAAATTATTCTTGAACCGAGAGAAGATCCTCTTCTACTATTTGGCGTTCTTC
GTTATAGAAATCTGATTGGTCGATCTACGTCGTATGTATTGCCCTCTATGGCATACGCTAGCCACGTGAAC
GTTGAGGATTCTCTTGCAATTAGGCAATGAGAGTGTTATCGATAAAGAGGCACGAACTAATCGGCACGGAG
CAGCTCGAGCGTGACTCGACACCGTTTCATTATTCCGTGAACGCTTTGATGATCTTCTGGGTTAGACGGCG
TACACCGTCTTCAAGAGGCACCTTCATTAACCGGCTGACGAATGAACATTAATAAGCCGGGCTTCCAAGTG
GAGGCGCGTTCGCGCGCGACTCATCAGCCTCTTTGATGAAACCCGAGATCTATGTTTATCCCGGGCATCCT
TTGATTGGCTGGCTAGGACTCCAATTTTGCGGTTTTGAACACGGCACGGCGTACAAACTCGTCGCTGATTG
CCCCAGCGTCTGTAAATTGGGCATCAAAGAATGTAGGTAATATTAGAAAGTTTAATTCTAATGTATTTTTA
AAAGCGCAGTTTACTCCGGCCGCTGAAGGATTCCAGCAAAAACTGTAGGCTGTGATGCTGAGTAATTGTTC
GCCAACAGGCAGCGAATCAGAGGAAGCTAGGCGAAATGGTTAAAAGTTATAAGAAAACGCTAGAGATTGGT
ATGTTGTTAATTTGAGAGCGTAGCCCGAGGGAGAGAGAAAGAAAAGGAGGAGAGGGCATGTTCCCAGAGTT
TCTCTCCTTCCCTTGGCGCGCTGCTCTTCGTCCGGTCGAGCAACGCTTGGAACCCTCCAAGAGAAGAGAAG
AGAATCTCCTCTTTCTCTCTCGCTGTGGAGGAGAGTCGCCATCCGTCTTCATCGGCCGACAGCGCGACGGG
CGGCGTTTGCCTCGAATGCTCACCAAGGAGTTTTCTTCTTCTTCTTCTACTCCTCCTCGTACTCCACCTCC
TCCTCCTCCTCTTCCTTCTTCTCGCTGCTGCTCATCCCTTCGCCCCCTCTTCTTTTTTCTCTCCATCGTAC
CACTCTGAAATATTCTCCTTTTGCCCTCTTGCACTCGTGTGGCAACAGCTAACCTAACCCTTTGAGATTAT
GTCTGGTGAGAGAGTATGCATACACATATACCTGGCCACCGCGCAAGTACCAATATAAACACGGACACGCG
GTCCCAGACGTTGCTTCCATACACAGAGTCCAGCTGGTTTTCTGTGTACGTCCGCGCTTCTCCCTTTCCCT
TGCTCCCTTGGCAAGTACAATTAATATTCTTGTTCGGGATTCGTGTACCGCCACACCGAGCGCAGATCATG
TCACGGATATCTGTAAGGTATCTATCATACGCGGAACTGCGCCTACGAACCGGCGGCCGAGAGCTTTTTCT
TCCTTGGACAGACATTTTTGTTTCGTCCCGAGCCCGTAAAAACTTTCCCGCGTGCCGAAGCAGGTTGCAGG
CCGTGGCGTTCATTAAATATCTCAGATTGCGGCCTCGAGCTCTCCCTGCCGAGTATACGCGCCTCTAACCA
AGCCTCCGTGTCTCCCATCATCCTCTTTCCCTATGCCATGGCTATTTCCAATGGATCGGGATGTCGCTGAA
CGCCAGAATTCGGCAATTCTTCTATTGTCTTTCTTTTTCTTGAGTTTTTTTTTAGGATTACACTGGAACAA
ATGTCGACAGTACAGAAGTTATTCTTATACCGAGTTGGAATCGTTCTGAAGAGGTTAGGATCAGACTGTAT
AGTTATCAAGTTACTCGGTAGCAGGATAATTAAGAAACAAAACTATTTCCAGTGATCGGATCACATTGGTA
TTGGCTTACAGTGGTCTTCTTACGTTTTAGCGAGAAACCAAGTTTCTTGGAACGACGTCGAAATTAGAGCG
CGCATAATGTTCGAGTATTATGCGAGCAGTTTTGAAACCACAGTACGTTTCAAGGGTAATTCGCGTGCACA
TGCGTCCGCGCAGTGTCTGTGAAATAAAGAGGAGGAATAAAAAAGAAGAACAAGTTACGGGGGTTACATGT
AACGTAGGATCGATCGTAGGATCAAGGACGCGAGTTGGTCTACATCGAACCTGCTCGTAAGAGACCTGGCG
GTGAAGGAAACGGACGCGTAGCCTCGATTCACGCCAGATCTCTGACGAGTATATATTCGTAGCCAGGGAAA
AAGGAGGAGAAACGCGAGACTAACGAGGAATCCGCGCGGTGATTTCCATGTTTCAGAGAGGAAACGAGGCC
GGCAAACGTACACCCGATACCAAACCCTCGAGCTGGAGAAGGAGTTCCACTTCAACCGATACCTGACCAGG
CGGCGGCGCATCGAGATCGCGCACGCACTCTGCCTGACGGAACGGCAAATCAAAATCTGGTTCCAAAACAG
ACGGATGAAATGGAAGAAGGAGAACAAGACGAAGGGCGAACCGGGCTCGGGCGACGGCGACACTGAAATCT
CGCCGCAGACATCGCCGCAGGGTTGA 
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Coding Sequence 
 
>antp_nv_cds_1089_bp 
ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGATCTGCGCAATGGCGGGGTGGAGCATCCGCATCAGCA
CCAGCAGCACTACGGCGCGGCGGTCCAGGTGCCCCAGCAGCAGCAGGCCGTGCAGCAGCAGCCCCAGCAGG
CGAGCGACCCCTGCGACCCGTCGATGCTGCGCCAAGGCGTGCCGGGCCACCACGGCTACGGGGCCGCGACG
GGCCAGCAGCCGGGCATGCCCTACCCCCGCTTCCCGCCCTACGACCGCATGGACATCAGGAACGCGGCCTA
CTACCAGCAGCAGCAGCAGGAGCACGGCATGGACATGGCCAGCTACCGGGCGAGCTCGCCGAGCGCGGGCA
TGGCCGGCCTCCACATGGGCCACACGCCGACCCCGGTCAACGGCCACCCCGCCAGCACGCCCATCGTCTAC
GCGAGCTGCAAGCTCCAAGCGGCGGCGGTCGACCACCAGGGCAGCGTCCTCGACGGGCCCGATAGTCCGCC
GCTCGTCGACGCCCAGATGCACCACCAGATGCACCCCCAGCACACGCACATGCAGGCCCAGCAGTCGCACC
CCCAGCAGCAGCCCCAGCCTCAAGCGCCTCACCAGCAGGCCCACATGCAACCCCAGCAGACGCAGCAGCAG
CACATGATGTACCAGCAGCAGACGCAGCCCCAGCAGCCCCAGCCCGCGGCGATGCACCCCCAGCAGCAGGC
CCAGCAGCAGCAGCACCAGGGCGTCGTCGCCTCGCCGCTCGGCCAGCAGCAGCCCGGCACGCCCCAGAGCG
CCGCGCCGACGAACCTGCCCAGTCCCCTCTACCCCTGGATGAGGAGTCAGTTTGAGAGGAAGCGTGGCCGG
CAGACGTACACGCGATACCAGACCCTCGAGCTCGAGAAGGAGTTCCACTTCAACCGCTACCTGACCAGGCG
ACGCAGGATCGAGATCGCGCATGCGCTCTGCCTGACCGAGCGCCAGATCAAGATCTGGTTCCAGAACAGGC
GCATGAAGTGGAAAAAGGAGACCAAGACGAAGGGCGAGCCGAACTCGGGAGACGGTGACACCGACATCTCG
CCCCAGACCTCGCCCCAGGGTTGA 
 
>antp_bt_cDNA_1059_bp 
ATGAGTTCGTACTTCGCGAATTCGTACATCCCGGACCTGCGTAATGGCGGGGTGGAACACCCGCATCAGCA
TCAGCAGCACTACGGTGCCGCCGTCCAGGTGCCCCAGCAAACGCAGTCGGTACAGCAGCCATCTCAGCAAA
CCGGGGATCCATGCGATCCTAGTCTCCTACGTCAGGGAGTGCCTGGCCATCACTATGGGGCCGCTGGTAGC
CAGCAAGATATGCCTTATCCGAGGTTTCCTCCGTACAATCGGATGGACATGCGGAACGCGACCTATTATCA
GCATCAACAGGAGCACGGCAGCATGGACGGGTTGGGTGGTTACAGGTCGACGTCCCCGAGCCCCGGTATGG
GCCACATGGGACACACACCGACCCCGAACGGACATCCGTCCACTCCTATTGTCTATGCGAGTTGCAAGCTT
CAAGCGGCCGCGGTCGATCATCAGGGTAGCGTACTCGATGGACCGGACAGCCCGCCATTGGTCGAGTCGCA
GATGCACCACCAAATGCATTCGCAACATCCTCACATGCAGCCGCAACAGTCACAACATCAACAGCAGCAGC
AGCAGCATCAACATCTTCAGGCGCAGCAGCAGCACATGATGTACCAACAGCAACAACAAACACAGGCGGCG
TCGCAACAATCTCAGCCTGGCATGCATCCGCAACAACAACAGCAACCTCAGCAACACCAAGGGGTGGTCAC
GTCGCCGCTTAGTCAGCAACAGCAGGCCGCTCCTCAAGGTGCGGCCACTGCCAACCTACCAAGTCCGCTCT
ACCCGTGGATGAGAAGTCAATTCGAGAGGAAACGAGGCCGGCAAACGTACACCCGATACCAAACCCTCGAG
CTGGAGAAGGAGTTCCACTTCAACCGATACCTGACCAGGCGGCGGCGCATCGAGATCGCGCACGCACTCTG
CCTGACGGAACGGCAAATCAAAATCTGGTTCCAAAACAGACGGATGAAATGGAAGAAGGAGAACAAGACGA
AGGGCGAACCGGGCTCGGGCGACGGCGACACTGAAATCTCGCCGCAGACATCGCCGCAGGGTTGA 
 

 
Deduced peptides 

 
>antp_nv_aa_362_residues 
MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQQQAVQQQPQQASDPCDPSMLRQGVPGHHGYGAAT
GQQPGMPYPRFPPYDRMDIRNAAYYQQQQQEHGMDMASYRASSPSAGMAGLHMGHTPTPVNGHPASTPIVY
ASCKLQAAAVDHQGSVLDGPDSPPLVDAQMHHQMHPQHTHMQAQQSHPQQQPQPQAPHQQAHMQPQQTQQQ
HMMYQQQTQPQQPQPAAMHPQQQAQQQQHQGVVASPLGQQQPGTPQSAAPTNLPSPLYPWMRSQFERKRGR
QTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKETKTKGEPNSGDGDTDIS
PQTSPQG 
 
>antp_bt_aa_352_residues 
MSSYFANSYIPDLRNGGVEHPHQHQQHYGAAVQVPQQTQSVQQPSQQTGDPCDPSLLRQGVPGHHYGAAGS
QQDMPYPRFPPYNRMDMRNATYYQHQQEHGSMDGLGGYRSTSPSPGMGHMGHTPTPNGHPSTPIVYASCKL
QAAAVDHQGSVLDGPDSPPLVESQMHHQMHSQHPHMQPQQSQHQQQQQQHQHLQAQQQHMMYQQQQQTQAA
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SQQSQPGMHPQQQQQPQQHQGVVTSPLSQQQQAAPQGAATANLPSPLYPWMRSQFERKRGRQTYTRYQTLE
LEKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKTKGEPGSGDGDTEISPQTSPQG 
 

 



 202 

Supplementary data C-2. Positions (bp) with multiple codon changes along the nucleotide 
alignment of the coding sequence for the Antennapedia gene 
from Apis mellifera, Bombus terrestris and Nasonia vitripennis.  

 

133, 145, 166, 211, 214, 256, 271, 289, 292, 295, 298, 319, 355, 505, 514, 538, 547, 568, 

619, 667, 673, 685, 691, 730, 766, 784, 793, 802, 805, 943, 1045. 
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Table C-1.Summary of synonymous and non-synonymous changes along branch 1 (C-
1.1) in the gene phylogeny reconstructed for Antennapedia (Antp). We used 
coding nucleotide sequences from three species of Hymenoptera Apis mellifera 
(am), Bombus terrestris (Bt) and Nasonia vitripennis (nv) to perform an 
empirical Bayes reconstruction of ancestral sequences. Data were obtained 
using the feature Rate_Ancestor in the program codeml from the 
PAML4 (Zang, 2007) package. p is the posterior probability. The columns 
‘Polarity’ and ‘Charge’ are labeled ‘yes’ (y) or ‘no (n) according to the effect 
of the observed nonsynonymous substitution in the ionic charge and polarity at 
each position. Shaded rows highlight the position of nonsynonymous 
substitutions. Check root of tree (Figure 4.1) for directions of change. (C-1.2. 
contains data for branch 2, C-1.3 for branch 3 and C-1.4 for branch 4). 
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Table C-1.1. 
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Table C-1.2. 
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Table C-1.3. 
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Table C-1.4. 
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Table C-1.4. 
Continued. 
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