
Clemson University
TigerPrints

All Theses Theses

12-2012

Development of a Two-dimensional Model of a
Pneumatic Tire
Timothy Lewis
Clemson University, tlewis3348@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Lewis, Timothy, "Development of a Two-dimensional Model of a Pneumatic Tire" (2012). All Theses. 1539.
https://tigerprints.clemson.edu/all_theses/1539

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268633374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1539?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


DEVELOPMENT OF A TWO-DIMENSIONAL MODEL OF A PNEUMATIC TIRE 

 

 

A Thesis 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Mechanical Engineering  

 

 

by 

Timothy R. Lewis 

December 2012 

 

 

Accepted by: 

Dr. Paul F. Joseph, Committee Chair 

Dr. Timothy B. Rhyne 

Dr. Gang Li 



 

ii 

 

ABSTRACT 

 

The pneumatic tire has been studied extensively since its invention in 1888.  With the 

advent of high-powered computers and the use of the finite element method, the 

understanding of the tire's complex non-linear behavior has grown tremendously.  However, 

one weakness of finite element models is that parameter studies are difficult and time 

consuming to perform.  In contrast, an analytical model can quickly and easily perform extensive 

parameter studies.  To the knowledge of the author, all existing analytical models of the tire 

make assumptions concerning the tire's behavior and construction that while useful for 

obtaining some of the first-order characteristics, are limited since they cannot relate tire 

behavior such as force-deflection to individual tire stiffnesses.  As such, an adequate two-

dimensional model of a pneumatic tire, including a finite element model, does not exist. 

Therefore, an analytical, two-dimensional model for a pneumatic tire in static contact 

with a rigid surface is developed and presented.  The case of a non-pneumatic tire can be 

obtained as a special case.  The quasi-static investigation concentrates on finding the 

relationships between the tire’s size and stiffness and its deformation under loading.  A total of 

seven stiffness parameters are accounted for.  The belt of the tire is modeled using curved beam 

theory, developed by Gasmi, et al. (2011), which accounts for bending (EI), shearing (GA), and 

extensional (EA) deformations.  The sidewall of the tire is modeled as a bi-linear spring (K
r

T
, K

r

C
) 

with pre-tensioning (F
P

*
) in the radial direction and a linear torsional spring (K

θ
) in the 

circumferential direction.  Application of virtual work leads to a set of sixth order differential 

equations for the displacements in the belt that must be solved in three distinct regions.  The 

first region is the region where the radial deformation is greater than the radial deformation of 
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the inflated and unloaded tire.  The second region is the region where the radial deformation of 

the sidewall is less than the inflated position but not in contact with the ground, and the third 

region is defined to be the region in contact with the ground. 

The length of the contact patch is represented by the angle enclosed by the edges of 

contact, and analytical expressions of stress resultants and displacements at the centroids of 

cross-sections are expressed in terms of this angle.  In order to improve the accuracy of the 

model for large deformations, a special inflation pressure was calculated that allowed the most 

accurate solution to the linear model to be obtained by minimizing the circumferential force in 

the region of the largest rotation of the curved beam.  This solution was then modified to 

account for the true inflation pressure.  This two-step solution procedure was validated with a 

geometrically nonlinear finite element model of a non-pneumatic tire. 

Force vs. deflection and force vs. counter deflection results were compared to 

experimental data for a pneumatic tire for a range of inflation pressures from zero to four bar.  

From this, it is concluded that while it is clearly possible to match the data, more work needs to 

be done to determine the best method for determining parameters that match a real tire. 

Extensive sensitivity analysis was performed on all the stiffness parameters. 
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CHAPTER 1 

– 

LITERATURE SURVEY 

 

Since its invention in 1888 by J.B. Dunlop, the pneumatic tire has been an integral part 

of the transition to motorized travel [1].  Due to the significant part that it plays in automotive 

design, much work has been done to understand how a tire responds in different situations.  

This has produced many different theoretical and empirical models to describe, among other 

things, the tire’s dynamic, thermodynamic, and mechanical behavior; and predict such things as 

high-speed stability, rolling resistance, force and moment response, and hydroplaning.  Due to 

its complexity, often the only viable approach is a fully non-linear three-dimensional finite 

element analysis.  A tire’s construction does not easily lend itself to a two-dimensional 

treatment.  However, depending on the desired result and the required accuracy of the 

prediction, much can be gained by appropriate simplifications and analytical means. 

The purpose of this research is to develop a two-dimensional analytical model of a 

pneumatic tire in static contact with a rigid ground.  As much as possible, all the stiffening 

mechanisms in the belt and sidewall will be accounted for and the contact problem will be 

addressed with mathematical rigor.  The model will predict the tire’s deformation and use that 

information to analyze other aspects of its behavior.  First, however, it is useful to survey the 

available literature on comparable approaches to pneumatic tires to determine how this 

research will further develop the understanding of tire behavior.  For an extensive literature 

review on the status of tire behavior research, see Clark [2] and Gent and Walter [3].  
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Additionally, Ghoreishy [4] reviews the research that has been accomplished in the finite 

element modeling of pneumatic tires. 

There are three different aspects of dynamic tire behavior that have been studied, 

namely, the natural frequencies and mode shapes, the force and moment response, and curve 

fitting of empirical data.  Kung, et al. [5] analytically predict the natural frequencies and modes 

shapes of a pneumatic tire represented by a two-dimensional ring on an elastic foundation with 

radial and circumferential stiffnesses.  The purpose for developing the analytical model was not 

to precisely predict the natural frequencies and mode shapes analytically, but rather to 

understand the cause of peculiarities in the solutions obtained using a finite element model.  

Therefore, because these peculiarities were observed over a wide range of parameters, there 

was no significant attempt to provide a means of accurately calculating parameters that 

correspond to a real tire.  Kindt, et al. [6] developed a similar two-dimensional analytical model 

that is compared with a finite element model evidencing a strong correlation.  The parameters 

for this model were calculated using modal analysis of experimental data.  From this, it may be 

observed that the tire can be accurately modeled in these situations with linear radial and 

circumferential springs representing the carcass of the tire.  The analytical model developed by 

Soedel and Prasad [7] allows the natural frequencies and mode shapes of a tire in contact with 

the ground to be determined from those found either experimentally or theoretically for a tire 

not in contact with the road.  Huang and Soedel [8] compare the natural frequencies and mode 

shapes for both extensible and inextensible rolling rings.  Additionally, the effect of the Coriolis 

forces that arise from a rolling ring as opposed to a stationary ring with a moving load is 

analyzed.  These models are important for determining such things as stability at high speeds.  
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All of these models, with the exception of [7] neglect shear deformation due to making Euler-

Bernoulli beam approximations, and assume a linear radial stiffness of the sidewall. 

Brush models, represent a tire as a ring with a “tread” made of bristles that represents 

the combined spring of the actual tread, the belts, and the carcass.  Pacejka [9], Chapter 3, gives 

an extensive literature review of the method as well as an extensive description of how the 

model is generally used.  Velenis, et al. [10] develop a friction model for use in a brush model, 

which gives accurate analytical predictions of the force response and less accurate results for 

the aligning moment.  The suggested likely cause of the reduced accuracy for the aligning 

moment is the approximation used to describe the contact pressure distribution.  Gim and 

Nikravesh [11] accurately predicted the tire’s lateral force using a model similar to the brush 

model but the model fails to produce accurate results for the predicted self-aligning torque.  

Shifrin [12] improved on Gim and Nikravesh’s model and found that the discrepancy between 

the actual and theoretically predicted values for the self-aligning torque was due to assuming 

that the contact pressure was symmetric about the center of contact.  In all of these models, the 

length of the contact patch is either used as an input parameter or approximated with the 

assumption that the tire behaves as a thin membrane. 

Pacejka’s “Magic Formula,” extensively described in Pacejka [9], Chapter 4, is a semi-

empirical model that allows accurate fitting of data from the tire’s force and moment response, 

and is the accepted standard for empirically predicting the force and moment response of the 

tire. 

Determining the rolling resistance of a tire is often done either empirically or 

computationally, due to the coupling of, among other things, internal pressure, temperature, 

loading, and velocity.  Grover [13] fit rolling resistance test data in terms of a realistic fitting 
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equation dependent on inflation pressure, vertical load, and velocity.  This fitting equation is 

now the standard in the industry (see SAE J2452).  Nielsen and Sandberg [14] assume that the 

curve relating steady-state velocity to internal tire temperature is already known and present a 

dynamic model of rolling resistance based on that curve and a time constant to account for how 

the rolling resistance coefficient changes due to relatively quick changes in velocity.  Hall and 

Moreland [15] give an extensive literature review on the study of rolling resistance.  To the best 

knowledge of the author, there has not been any analytical examination of the effect of the 

tire’s structural parameters on the rolling resistance. 

Hydroplaning is a complex phenomenon resulting from the fluid-structural coupling of 

the tire and water.  Sinnamon and Tielking [16] summarize the existing analytical analysis that 

has been done on the topic.  The most important characteristics of a tire that determine the 

speed at which it hydroplanes are its inflation pressure and tread pattern.  Since the publication 

of that paper, a significant amount of work has been done to predict the hydroplaning speed of 

a particular tire by numerical simulation in order to determine the effectiveness of the tread 

pattern.  Oh, et al. [17] and Seta, et al. [18] are examples of some simulations that have been 

developed. 

Koutný [19] and Rhyne [20] found the vertical stiffness of the tire in terms of air 

pressure, tire diameter, and tire width, with the assumption that the tire behaves as a 

membrane.  Since finite element modeling has allowed such precise predictions of the tire’s 

complex behavior, most of the analytical models of the tire considering the tire’s structural 

aspects are from early literature.  For example, Clark [21] attempts to predict the contact patch 

area of a rolling tire by modeling the tire’s belts as an Euler-Bernoulli beam and its sidewall as a 

radial linear spring-damper.  However, due to not accounting for a circumferential stiffness or 
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shear deformation, which are known to play significant roles in the deformation of the tire, it is 

unclear how useful this model is in representing a real tire.  Gasmi, et al. [22] uses Timoshenko 

assumptions in a two-dimensional model of a ring in contact and applied that model to a non-

pneumatic tire [23] and validated both models for small deflections with a finite element model.  

This model did not account for an internal pressure or the possibility of the spokes possessing 

any pre-tensioning, compressive stiffness, or shear stiffness.  Furthermore, the use of linear 

geometry prevented the model from being valid for large deflections.  Finally, when comparing 

the governing differential equations for the ring derived by Gasmi [22] for the Euler-Bernoulli 

case to those derived by Clark, it should be noted that significant differences exist.  

Furthermore, Gasmi [22] shows that for an Euler-Bernoulli beam, the pressure distribution 

should be characterized by spikes in pressure at the edge of contact.  This characterization is not 

consistent with the depictions of the contact pressure profile shown by Clark.  The source of this 

problem is difficult to pinpoint because although Gasmi clearly showed the derivation of his 

equations, Clark did not. 

In many of these models, either the contact pressure profile or the relationship between 

contact pressure and vertical deflection (or contact length) is of vital importance.  To find this 

relationship, the tire is often assumed to behave as either a thin membrane or an Euler-

Bernoulli curved beam.  The membrane approximation has been found to predict contact 

pressures that are between 85 and 90 percent of the actual contact pressures when the tire is 

inflated to a normal air pressure (see Gent and Walter [3], page 192) with lower accuracy at 

lower pressures.  This suggests that a significant portion of the load is being supported by the 

structure of the tire.  Additionally, it is known that the shearing mechanism plays a significant 

role in rubber deformation [24], and that the shear modulus can have a strong impact on the 



 

 

 

6

contact pressure [25].  Furthermore, knowing the effect the structure of the tire has on its 

stiffness and shape could be beneficial for improving tire design in the future.  This research 

presents an application of Gasmi’s ring model to the pneumatic tire with the assumption that 

the sidewall can be modeled as a bi-linear spring with pre-tensioning in the radial direction and 

a linear spring in the circumferential direction. 
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CHAPTER 2 

– 

THEORETICAL DEVELOPMENT 

 

2.1. Sidewall Characterization 

The model of the non-pneumatic tire developed by Gasmi represented the tire with a 

ring supported by spokes that buckled under a compressive load and did not produce a 

circumferential load in response to rotation.  These assumptions were valid for the particular 

non-pneumatic tire being studied, but they are not valid for a pneumatic tire.  Therefore, in 

order to determine how the sidewall should be modeled, its behavior in the radial and 

circumferential directions is described below. 

2.1.1. Sidewall Behavior in the Radial Direction 

The key to understanding the behavior of the sidewall in the radial direction is to know 

its shape before and after deformation.  Koutný showed that the inflated shape of the tire can 

be accurately calculated based on inextensible membrane assumptions [1].  Therefore, in order 

to gain a general understanding of the behavior of the sidewall in the radial direction, the shape 

of the sidewall is approximated as an inextensible membrane that is fully described by either R 

and θ or L and W, as defined in the figure below. 
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Figure 2.1. Tire sidewall dimensions 

Assuming that the cords in the carcass are inextensible results in the following 

relationship that must be enforced: 

 0 0 1 1R Rθ θ=   (2.1.1) 

where the subscripts represent dimensions in the original (0) and deformed (1) positions.  

Geometry of a circular segment gives expressions for R and θ in terms of L and W as 

 

2 2

2 2
1

2 2

4
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4
2cos

4

L W
R

W

L W

L W
θ −

+
=

 −
=  

+ 

  (2.1.2) 

Since only the radial stiffness of the sidewall is being considered here, it is reasonable to 

assume that the ends of the sidewall cords remain aligned before and after deformation (radial 

L

W

R

θ

Rim 

Belt 
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deformation for the tire being in the vertical direction for Figure 2.1).  Additionally, the following 

relationship is known: 

 1 0 0r rL L u u= + −   (2.1.3) 

where u
r
 – u

r0
 is the known radial deformation of the tire’s belt from its inflated position. 

The deformed width, W
1
, that preserves the sidewall length is unknown and is therefore 

related to the original width W
0
 by 

 1 0W W W= + ∆   (2.1.4) 

Substituting the known relationships into (2.1.1) gives 

 

( ) ( )
( )

( ) ( )

( ) ( )

2 22 2
1 0 00 0

2 2

0 00

2 2 2 2

0 0 0 0 0 01

2 2

0 0 0 0

44
cos

4

4 4
cos

4

r r r r

r r

L WL W

L WW

L u u W W L u u W W

W W L u u W W

−

−

 −+
 

+ 

 + − + + ∆ + − − + ∆
 =
 + ∆ + − + + ∆ 

 (2.1.5) 

The equation (2.1.5) is one equation in the single unknown,  ∆W, which can be easily solved for 

using a non-linear equation solver. 

Since circumferential tension in a pressurized membrane can be approximated to be 

 1T P R=   (2.1.6) 

and the radial load (i.e. the vertical load in Figure 2.1) exerted by the sidewall on the tire's belts 

can be written as 

 1cos
2

r
q b T

θ 
= −  

 
  (2.1.7) 

where b is the width of the tire, a numerical relationship between the radial load and the radial 

deformation can be obtained. 

A reference tire’s dimensions are known to be 
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90mm

20mm

L

W

=

=
  (2.1.8) 

Using these inputs, the normalized radial load can be plotted as a function of radial 

displacement as shown in Figure 2.2. 

 

Figure 2.2. Membrane force vs. displacement 

First, it should be noted from the figure above that the significance of the load crossing 

the horizontal axis is that this is where the top of the sidewall is parallel to the belts.  Because of 

the assumptions made here, this occurs when L = 2 W (i.e. when the sidewall is in the shape of a 

half-circle). 
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From this plot, it is quite apparent that radial sidewall stiffness can be modeled 

adequately by a bi-linear spring.  That is to say, the difference in accuracy between a linear and 

bi-linear spring would be significant due to the sidewall being significantly stiffer in tension than 

in compression.  Furthermore, it is noteworthy that there is a non-zero positive load at zero 

displacement, indicating that pressurizing the sidewall causes the sidewall cords to be in tension 

and places a non-zero load on the belts.  These two observations imply that the load on the 

belts due to the sidewall can be approximated with (2.1.9). 

 

0

0

0

,

,

,

T

r r

r r

P
r r r

C

r r

r r

K u
u u

b

F
q u u

b

K u
u u

b


− >



= − =



− <


  (2.1.9) 

where F
P
 is the tension in the cords produced as a result of inflation pressure, K

r

T 
is the stiffness 

of the sidewall in tension, and K
r

C
 is the stiffness of the sidewall in compression. 

Using  F
P
 = F

P

*
 + K

r

C
 u

r0
, (2.1.9) could also be written as 

 

*

0

*

0,

,
 

P

C

P r r

T

r r

r r

r

r r

F

b

F K

K u
u u

b
q

u
u

b
u

b


− − >

= 
− ≤


−


  (2.1.10) 

The difference between the two definitions is that in (2.1.9), F
P
 / P is the normalized 

radial load of the inflated sidewall at u
r
 – u

r0
 = 0 (i.e. the inflated position), and F

P

*
 / P is the 

normalized radial load of the inflated sidewall at u
r
 – u

r0
 = -u

r0
 (i.e. the uninflated position).  

Therefore, due to the tension in the sidewall created by inflation pressure, the pressure that 
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must be applied to the outside of the tire to compress the tire back to its uninflated radius is 

given by (2.1.11). 

 

*

 – P
r

b

F
q P=   (2.1.11) 

In fact, this is the effective inflation pressure seen by the belts of the tire. 

2.1.2. Sidewall Behavior in the Circumferential Direction 

The stiffness of the sidewall in the circumferential direction is due to two different parts 

of the tire.  At 2 bar, the amount of torque required to rotate the belts of a normal tire a specific 

amount is slightly less than twice as much as is required in a deflated tire.  This indicates that at 

2 bar, approximately half of the circumferential stiffness is due to the tire's structure and half is 

due to membrane effects resulting from the inflation pressure. 

Knowing that the sidewall is composed of nearly inextensible radial cords surrounded by 

rubber, the structural aspect of this stiffness is clearly due to the rubber between these cords 

resisting deformation.  The effect of the inflation pressure on the stiffness is caused by a 

component of the cord tension becoming tangential to the belts after they are rotated.  This 

effect can be calculated as explained below. 

The spring equation in (2.1.12) describes the inflated tire’s sidewall 

 
0

0

0 01 1

00

r rP
q uF

q K ub bθ θ θ

      
= − −      

      
  (2.1.12) 

This spring equation can be expanded to obtain the expressions for q
r
 and q

θ 
. 

 

0

P
r

F
q

b

K u
q

b

θ θ
θ

= −

= −

  (2.1.13) 
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It is important to determine the dependence of K
θ
 on inflation pressure.  This effect is because 

as the belts rotate, the radial load becomes de-radialized and a component of it acts in the 

circumferential direction.  The changes in the circumferential components of the tension in the 

cords will give rise to the dependence of K
θ
 on inflation pressure. 

In order to obtain a better understanding of what is physically occurring in the tire’s 

deformation, the belt and carcass structure are visualized using the following figure, where the 

“Undeformed” position is the position after inflation. 

 

Figure 2.3. The de-radialization of the radial load produces a circumferential load 

When the belts of the tire rotate, the distance between the two ends of the cords increases, 

thereby increasing their tension.  Therefore, q
cord

 is given as 

 

T

r P
cord

K F
q SW

b b
= − ∆ −   (2.1.14) 

The change in the distance between the two ends of a cord, ∆SW, can be calculated 

using trigonometry to be 

Deformed Belt 

u
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2 2

0 WW u W SS Sθ∆ = + −   (2.1.15) 

Substituting (2.1.15) into (2.1.14) gives 

 ( )2 2

0

T

r P
cord

K F
q u SW SW

b bθ
= −− −+   (2.1.16) 

The radial and circumferential components of this load are 
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SW
q q

u SW

u
q q

u SW

θ

θ
θ

θ

′ =
+

=
+

  (2.1.17) 

where the prime notation on q
r
 distinguishes the load after deformation from the load before 

deformation.  Substituting (2.1.16) gives 
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  (2.1.18) 

For small values of u
θ0

 (i.e. u
θ0

 << SW), the leading order terms of (2.1.18) can be expressed as 
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 

  (2.1.19) 

This reveals two things.  First, q
r
 depends on the square of u

θ0
, so that within a linear 

context, there is no variation of the radial load in response to circumferential deformation.  

Second, since the radial stiffness is predominantly due to the inflation pressure, the inflation 

pressure influences the circumferential load to first order in u
θ0

, which requires K
θ
 to be 
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proportional to the pressure.  Since the circumferential stiffness is already known to include a 

significant structural component, this is equivalent to having the torsional stiffness, 

 K C P Dθ = +   (2.1.20) 

where C is known to be given by 

 PF
C

P SW
=   (2.1.21) 

Equation (2.1.22) relates a torque, T, and the resulting rotation, u
θ0

, to the 

circumferential stiffness, K
θ 

. 

 
2

02

T
K

R u
θ

θπ
=   (2.1.22) 

Therefore, having access to experimental data relating an applied torque to the 

circumferential rotation at various inflation pressures and knowing the physical dimensions of 

the tire, one can easily calculate the value of F
P
. 

2.1.3. Summary 

A summary of the applied loads for the pneumatic and non-pneumatic tire is shown in 

Table 2.1 with the regions defined as in Figure 2.4.  The angle θ
L
 is the angle between the center 

and the edge of contact, and the angle θ
S
 is the angle between the center of contact and the 

location where the radial deformation of the belts from the inflated position switches from 

negative to positive. 
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Table 2.1. Comparison of pneumatic and non-pneumatic tire loads 

Region Non-Pneumatic Tire Pneumatic Tire 
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Figure 2.4. Regions defined in the pneumatic and non-pneumatic tire 
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2.2.  Governing Differential Equations 

In order to understand how applied  loads deform the tire, the governing differential 

equations are developed by using Timoshenko beam theory to model the belt.  This section 

follows Gasmi, et al. [2].  According to Timoshenko, the cross-section of a deformed beam can 

be approximated by a rotation from its original position, with shear correction factors used to 

compensate for the approximation.  From this, equations describing the displacement field can 

be derived.  First, it is assumed that the radial deformation of the ring, which is constant 

throughout the thickness of the ring, depends only on θ.  Second, because cross-sections may 

rotate, it is assumed that the circumferential deformation changes linearly through the 

thickness of the ring.  These assumptions result in deformations similar to those shown in Figure 

2.5. 

 

Figure 2.5. Depiction of deformations 
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Therefore, the radial and circumferential deformations can be written as 

 

0
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= =
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 (2.2.1) 

The standard expressions for strain in polar coordinates are 
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 (2.2.2) 

Substituting (2.2.1) into (2.2.2) and knowing that z = r – R allows the strain to be 

written as 
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 (2.2.3) 

Assuming plane stress and linear, elastic material behavior, the constitutive relations are 

 

r r
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θ θ

σ ε
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=

=
 (2.2.4) 

Substituting (2.2.3) into (2.2.4) gives expressions for the stress in terms of the 

deformations. 
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 (2.2.5) 

The virtual strain energy of a deformed material is 
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 ( )r r
U dθθ θθ θ θδ σ δε τ δγ

Ω
= + Ω∫  (2.2.6) 

Substituting (2.2.3) and (2.2.5) into (2.2.6) 
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Collecting the virtual displacements in (2.2.7) 
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The integral in (2.2.8) can be broken up into the double integral over the cross-sectional 

area, and over a piece of the ring from θ
1
 to θ

2
, as shown in (2.2.9). 
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Using the relationship between r, R, and z, and distributing the area integral to all the 

terms gives (2.2.10). 
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 (2.2.10) 

If the Young’s modulus, E, and the cross-section are assumed symmetric about the 

centroid, the terms with the first power of z go to zero.  Furthermore, assuming that R is much 

greater than z, allows (2.2.10) to be simplified to (2.2.11). 
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 (2.2.11) 

In the above expression, EA, EI, and GA for a general cross-section are defined by 

 
2

A

A

A

EA E dA

EI E z dA

GA G dA

=

=

=

∫

∫

∫

 (2.2.12) 

Integration by parts of (2.2.11) removes the derivatives from terms with the variations 

of the displacements in them. 
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 (2.2.13) 

The virtual potential energy for a ring when loaded with arbitrary distributed loads of 

q
r
(θ) in the radial direction and q

θ
(θ) in the circumferential direction is 

 ( )
2

1
0r rV q u q u R b d

θ

θ θ
θ

δ δ δ θ= − +∫  (2.2.14) 

When in equilibrium, the virtual work of a deformable elastic continuum is equal to 

zero, i.e., 

 0W U Vδ δ δ= + =  (2.2.15) 

Substituting (2.2.13) and (2.2.14) into (2.2.15) gives (2.2.16). 
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 (2.2.16) 

The internal forces and moments on a cross-section can be written as 
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 (2.2.17) 

Using the same assumptions as above and (2.2.3) and (2.2.4) allows (2.2.17) to be 

expressed in terms of displacements. 
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 (2.2.18) 

Therefore, from (2.2.16) and (2.2.18), the governing differential equations for a circular 

beam can be written as 
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 (2.2.19) 

with the boundary conditions 
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2.3.  Decoupled Differential Equations 

Solutions to these three differential equations can be found after decoupling them into 

three independent differential equations.  However, because a pneumatic tire has both radial 

and circumferential stiffnesses, it is necessary to substitute the spring relationships into the 

governing differential equations before they are decoupled in order to ensure an accurate fully 

decoupled result.  Therefore, the loads q
r
 and q

θ
 are defined as 
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* 0

r r
r r

K u
q q

b

K u
q q

b

θ θ
θ θ

= −

= −

 (2.3.1) 

where q
r

*
 and q

θ

*
 are arbitrary loads independent of the displacements, and K

r
 can be the radial 

stiffness in either stiffness or compression.  Note that the notation distinguishing the different 

stiffnesses in tension and compression for the carcass in the radial direction has been dropped 

since the stiffness is only discontinuous at θ
S
.  The governing differential equations then become 

(2.3.2). 
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 (2.3.2) 

Solving the (2.3.2)
1
 for ϕ and (2.3.2)

2
 for the derivative of ϕ gives 
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After taking the derivative of (2.3.2)
3
, (2.3.3)

2
 can be substituted into it, and (2.3.3)

1
 can 

be substituted into (2.3.2)
2
. This leads to 
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 (2.3.4) 

where the differential operators are 
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 (2.3.5) 

In order to obtain a single equation for u
r
, 
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 (2.3.6) 

Isolating u
r
 results in the differential equation 
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 (2.3.7) 

In expanded form this becomes (2.3.8). 
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where d
0
, d

2
, d

4
, and f are given by (2.3.9). 
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 (2.3.9) 

The integration constant, C in (2.3.8), is due to integrating both sides to reduce the 

overall order of the differential equation.  However, note that in order to obtain (2.3.4)
2
, the 

derivative of (2.3.2)
3
 was taken arbitrarily.  While this made it possible to decouple the 

differential equations, it also added a non-physical degree of freedom to the system.  Therefore, 

when C is carried through to the solution and substituted back into the coupled differential 

equations, it is observed that C must be zero for the equations to be satisfied. 

To obtain the simplest possible equation for u
θ0

, (2.3.4) are combined to eliminate the 

higher order derivatives in D
1
 and D

3
. 
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where Q
1
 and Q

2
 are 
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Therefore, the decoupled governing differential equations are (2.3.12). 
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 (2.3.12) 

2.4.  Solution 

2.4.1. Inflation Pressure Solution 

Because the sidewall springs are defined relative to the inflated position of the tire, u
r0

, 

it is important to first derive this solution before obtaining the solution for the loaded tire.  

Following the loads described in Table 2.1, the particular solution for the inflated tire can be 

found by using the pressures, 
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 (2.4.1) 

Since setting the radial stiffness equal to zero does not change the decoupled 

differential equations, the solution may be obtained by directly substituting (2.4.1) into (2.3.9)
4
 

with K
r
 = 0.  This gives 
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Using the method of undetermined coefficients, the particular solution can be found to 

be 
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 (2.4.3) 

2.4.2. Non-Contact Solution in the Tension Support Region 

In order to find the homogeneous solution for u
r
, the terms q

r

*
 and q

θ

*
 are set to zero 

(which makes f equal to zero) and the trial solution for u
r
 is used: 

 ( )T

ru e
λθθ =  (2.4.4) 

Note here that because u
r0

 consists of material properties and applied loads, it is 

associated with the particular solution.  Therefore, substituting (2.4.4) into the governing 

equation for u
r
 (i.e. (2.3.12)

1
) allows the characteristic equation to be written as 
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where the T-superscript denotes that d
4
, d

2
, and d

0
 were calculated using the radial carcass 

stiffness for when the carcass is in tension. Solving for λ 

 

( )

( )( ) ( ) ( )( )

2

1 4 4 1 2

1

2 2

2 1 4 21

2

4

1

2 2 12 
,

6 

12 2 3 12 4 

12 

T T T T T

T

T T TT TT

T

r d d r d

r

d r d I dr d

r

λ
− + −

= ±

− + ± + −

±

 (2.4.6) 

where r
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T
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Substituting (2.4.6) into (2.4.4) allows the homogeneous solution to be written as 



 

 

 

31 

 

( )

( )

( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( )

2

1 4 4 1 2

1

2

1 4 4 1 2

1

2 2 2

2 1 4 21 4

1

2 2 2

2 1 4 21 4

1

2 1 4

2 2 12 

6 

2 2 12 

6 

12 2 3 12 4 

12 

12 2 3 12 4 

12 

12 

θ

2

θ

3

θ

4

θ

5

6

2

θ

T T T T T

T

T T T T T

T

T T T T T

T

T T T T T

T T

T

T

T

r d d r d

r

r d d r d

r

d r d I dr d

r

d r d I dr d

r

d r

T

r

d

u c e

c e

c e

c e

c e

− + −

− + −
−

 
− + + + − 

 

 
− + − + − 

 

− +

−

=

+

+

+

+

( ) ( )( )

( ) ( ) ( )( )

2 2 2

21 4

1

2 2 2

2 1 4 21 4

1

3 12 4 

12 

12 2 3 12 4 

12

θ

7

 
θ

T T

T

T

T

T T T

T

T T

I dr d

r

d r d I dr d

r
c e

 
+ + − 

 

 
− + − + − 

 
−

+

 (2.4.8) 

Using Euler’s formula, (2.4.8) may also be written in the form 
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where A
2

T
 through A

4

T
 are given by (2.4.10). 
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Because (2.4.9) is the homogeneous solution independent of the inflation pressure, the 

particular solution for the inflation pressure must be added to it.  Therefore, the full solution for 

the support region is 
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 (2.4.11) 

Substituting (2.4.11) into (2.3.12)
2-3

 allows the circumferential deformation and cross-sectional 

rotation to be determined as 

 

( ) ( ) ( )( )

( )( ) ( )( )( )
( )( ) ( )( )( )

( ) ( ) ( )( )

( )( ) ( )( )( )
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+ − + −

 (2.4.12) 

where B
2

T
 through B

4

 T
 and C

1

 T
 through C

4

 T
 are 
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3

3 4
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+
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=
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=
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=
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=

 (2.4.13) 

The internal forces and moments in the support region are found by substituting 

(2.4.11) and (2.4.12) into (2.2.18) to obtain the expressions in (2.4.14). 
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5 3 4

6 3 4

4 3 4

7 3 4

cos
 

sin

cos
  

sin

T

T T
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T T T

T T

c A A
C A A

c A A

c A A
C A A

c A A

θ

θ

θ

θ

θ

    
  
  
 

  +
  + +
   + +
  

  −  + −   + − 
  

(2.4.14) 

While manipulating the differential equations to decouple them, derivatives are 

sometimes taken that produce extraneous integration constants in the solution.  The fact that 

this has occurred here is evidence that there are seven degrees of freedom in the solution for a 

six degree of freedom system of differential equations.  In order to determine the constraint 

equation to be placed on this extra degree of freedom, the solution is substituted into the 

coupled differential equations.  When this is done with the solution given in (2.4.11) and  

(2.4.12), the relation in (2.4.15) is obtained from (2.2.19)
3
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 3

1 0R K cθ− =  (2.4.15) 

Therefore, c
1
 is required to be zero.  The physical meaning of this is that when the ring is 

constrained in both the radial and circumferential directions by springs, all rigid body motions 

are eliminated.  Therefore, the condition in (2.4.15) is reasonable since it only appears when the 

circumferential stiffness is non-zero.  The true solution for the support region is given by (2.4.16) 

and (2.4.17). 
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6 3 4 7 3 4
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φ θ θ θ
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+ + + +

+ − + −

= −
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 (2.4.16) 
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T T

T T

T T T T

T T

r

T

c A
A B RC

c A

c A AGA
V A A B RC

R c A A

c A A
A A B RC

c A A

u A

EA
N

R

θ

θ

θ
θ

θ

θ

θ

θ
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  +  
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  + + +
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  −  + + −   + − 
  

 
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 
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  +
  + +
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  −  + −   + − 
  

 (2.4.17) 

2.4.3. Non-Contact Solution in the Compression Support Region 

Since the only difference between the non-contact tension (u
r
 > u

r0
) and compression 

(u
r
 < u

r0
)  solutions is the magnitude of the radial carcass stiffness, the form of the solution is 

the same and can be expressed as 
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( ) ( )

0 9 2 10 2

11 3 4 12 3 4
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= −
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 (2.4.18) 
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  

 (2.4.19) 

In these equations, the C-superscript denotes that the value is calculated using the radial 

carcass stiffness in compression instead of the radial carcass in tension. 

2.4.4. Contact Solution 

In this section, the approximate method proposed by Gasmi, et al. [2] is used to address 

the contact pressure.  Assuming frictionless contact, the contact pressure is normal to the rigid, 

flat ground (e.g. vertical), which results in radial and circumferential pressure distributions of 
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 (2.4.20) 
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Since the ground pressure is symmetric about the center of contact, it can be 

approximated by a series of cosines. 

 ( ) ( ) ( )
0 0

cos cos
m

g n n

n n

q q n q nθ θ θ
∞

= =

= ≅∑ ∑  (2.4.21) 

The particular solution for the n
th

 pressure term is determined using the method of 

undetermined coefficients and is given by (2.4.22). 
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 (2.4.22) 

The internal forces and moments due to the n
th

 contact pressure term are found by 

substituting (2.4.22) into (2.2.18) to obtain the expressions in (2.4.23). 
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 (2.4.23) 

The particular solutions given in (2.4.22) and (2.4.23) are used with (2.4.18) and (2.4.19) 

to obtain the full solution for the contact region given in (2.4.24). 
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 (2.4.24) 

The constants introduced in (2.4.22) and (2.4.23) are 
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Noting that in (2.4.22) n = 1 is a special case that requires a different solution, the 

equations are re-solved for n = 1 which gives 
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Substituting (2.4.26) into (2.2.18)  
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where the constants in (2.4.26) and (2.4.27) are given in  
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 (2.4.28) 

2.5. Solving for the Unknowns 

Three regions exist in a pneumatic tire: the contact region, the compressed support 

region, and the tensioned support region.  The boundaries of these regions are defined to be the 

contact angle (θ
L
) and the bifurcation (spoke) angle (θ

S
).  The solution to the governing 

differential equations gives the following expressions for each of these three separate regions of 

the tire. 

For the support region in tension (i.e. θ ≥ θ
S
), the displacements, forces, and moments 

are given as 
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For the support region in compression (i.e. θ
L
 ≤ θ ≤ θ

S
), the displacements, forces, and 

moments are given as 
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For the contact region in compression (i.e. θ ≤ θ
L
), the displacements, forces, and 

moments are given as 
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From these equations, it is apparent that there are 18 unknown integration constants 

(c
1
 has been eliminated to satisfy the coupled governing differential equations) and m + 1 

unknown pressure coefficients.  Additionally, the amount of vertical deflection and the value of 

the bifurcation angle (the angle at which the sidewall switches from compression to tension) for 

the specified contact angle are unknowns.  This gives 21 + m unknowns. 

The following symmetry conditions,  
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allow the three asymmetric integration constants in the contact and tensioned support regions 

to be eliminated.  This leaves 12 integration constants that must be found using the 12 

continuity equations given below. 
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 (2.5.5) 

In order to determine the relationship between the coefficients of pressure in (2.4.21), 

the vertical displacement of the ground, δ, and the known contact angle, θ
L
, the kinematic 

relationship between the vertical displacement of the tire, v(θ), the vertical displacement of the 

ground, and u
r
 and u

θ0
 is used. 

 ( ) ( )( ) ( ) ( )01 cos sin cosrv R u uθθ δ θ θ θ= − − = −  (2.5.6) 

For m < ∞, (2.4.21) is an approximation.  In order to determine the values of the 

pressure coefficients in (2.4.21) and the amount of vertical deflection, a Taylor series expansion 
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of (2.5.6) is taken.  The number of coefficients in (2.4.21) limits the number of terms that can be 

matched from the Taylor series expansion.  The vertical displacement of the ground and the m + 

1 pressure coefficients make for a total of m + 2 unknowns.  After the Taylor series expansion 

has been performed, (2.5.7) is obtained. 

 
( )

( )

( )

( )
2 2

0 2

1 1

1 1
δ θ θ

2 ! 2 !

i i
p p

i i

i

i i

R a a
i i= =

− −
+ = +∑ ∑  (2.5.7) 

where the constants, a
0
 and a

2i
, are known in terms of derivatives of u

r
(0) and u

θ
(0).  Therefore, 

matching coefficients on θ
2i

 gives (2.5.8). 

 0 2δ , 1...
i

a R a i p= = =  (2.5.8) 

Equation (2.5.8) is p + 1 equations for m + 2 unknowns.  Therefore, in order to have an 

equal number of equations and unknowns, p must be equal to m + 1, and the total number of 

terms that can be satisfied in the Taylor series is m + 2.  This allows (2.5.6) to be satisfied to 

order 2 (m + 1) with an error on the order of θ
 2 (m + 1)

.  Since the contact angle is much smaller 

than unity, the solution typically converges with m ≤ 12. 

Equations (2.5.5) and (2.5.8) give a 14 + m by 14 + m linear system of equations for a 

specified contact and bifurcation angle.  This system can be visualized below. 
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The bifurcation angle is defined as the angle at which there is zero radial displacement 

relative to the inflated position of the tire, i.e., 
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 ( ) 0

T

r S ru uθ =  (2.5.11) 

Since the amount of radial displacement is a non-linear a function of the bifurcation angle 

(because the integration constants and pressure coefficients are determined in terms of the 

bifurcation angle), it is first beneficial to obtain an idea of the magnitude of radial displacement 

for different bifurcation angles.  Therefore, plotting u
r

T
(θ

S
) – u

r0
 vs. θ

S
 with a reasonable set of 

inputs gives the following plot. 

 

Figure 2.6. Radial deformation vs. prescribed bifurcation angles 
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numerical roots of a user-defined function, a modified Brent algorithm was implemented that 

finds the root as follows: 

 

1. Check that the root of the function is bracketed by the input range. 

2. Evaluate the function at three points in the range (the two extremes and the 

midpoint). 

3. Using the three points, estimate the root of the function with a quadratic 

approximation. 

4. Determine which two of the four points bracket the root of the function. 

5. Restart from Step #2 using the two new points as the input range. 

 

Two iterations of this algorithm are illustrated in Figure 2.7. 
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Figure 2.7. Two iterations of the root-finding algorithm  

As long as there are no discontinuities in the function, the algorithm can converge reliably and 

quickly to the correct root. 

2.6. Accounting for Non-linear Geometry 

Obtaining the solution described above gives the straightforward linear solution to the 

problem.  However, when this is done within a linear context, the normal force in the belts can 

introduce considerable error, especially for non-zero inflation pressures, since this increases the 

normal force.  This can be observed by calculating the sum of the forces on the contact region.  

The loads on the contact region are depicted in the Figure 2.8. 
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Figure 2.8. Contact region loads 

The sum of the forces in the vertical direction on this section of the tire is therefore given by 

 ( ) ( ) ( ) ( )0 2 sin 2 cosy r L L L LF F F N Vθ θ θ θ θ+ ↑ = = − + + −∑   (2.5.12) 

where the radial load, F
r
, and the circumferential load, F

θ
, are calculated using (2.5.13). 
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2 sin
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r rF Rbq d

F Rbq d

θ

θ

θ θ

θθ

θθ

=

=

∫

∫
  (2.5.13) 

When the magnitude of the four force terms is compared for contact angles between 0 

and 20 degrees, Figure 2.9 is obtained. 
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(a) 

 

(b) 

Figure 2.9. Vertical loads on the contact region for P = 2 bar (a) and 0 (b) 

0 2 4 6 8 10 12 14 16 18 20
-3000

-2000

-1000

0

1000

2000

3000

4000

θL
 [deg]

L
o
ad

 [
N

]

P = 2 bar

N(θL
) sin(θL

)

F
θ

F
r

V(θL
) cos(θL

)

0 2 4 6 8 10 12 14 16 18 20
-800

-600

-400

-200

0

200

400

600

800

1000

1200

L
o
ad

 [
N

]

θL
 [deg]

F
r

V(θL
) cos(θL

)

F
θ

N(θL
) sin(θL

)

P = 0



 

 

 

53 

The results of Figure 2.9 show how the term coming from the normal force is excessively large in 

the linear theory.  If large deformations were taken into account, the contribution from this 

term would be horizontal due to the large rotation at the edge of contact and the normal force 

would not contribute to vertical force equilibrium.  As indicated in Figure 2.9, as the pressure 

increases the normal force in the belts of the tire increases, which increases the incorrect 

influence of this effect.  This normal force can be easily approximated (neglecting the sidewall 

effect) using Figure 2.10. 

 

Figure 2.10. Normal force due to inflation pressure 

Summing the forces in the horizontal direction in this figure gives 

 0 2 2xF Rb P N N Rb P
→

= = − ⇒ =+∑   (2.5.14) 
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Using dimensions of a standard reference tire and a typical inflation pressure, the normal force 

is then calculated to be 

 

326.3mm

11.9kN182.9mm

2bar

R

Nb

P

= 

⇒ == 

= 

  (2.5.15) 

In order to determine the location where a large normal force and a large rotation 

coincide in the tire, the normal force and cross-sectional rotation are plotted for a parameter set 

representing a normal tire. 
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(b) 

Figure 2.11. Normal force (a) and cross-sectional rotation (b) 

The results in Figure 2.11 show that the normal force at the edge of contact is a 
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Figure 2.12. Normal force at the edge of contact for various inflation pressures and 

contact angles 

From this figure, it is clear that the inflation pressure that produces zero normal force at 
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3. Obtain the full solution by adding the linear solution obtained in Step 2 to the 

non-linear inextensible membrane solution for an inflation pressure of P – P* 

Note that Step 3 only effects N and q
g
, which means that it is assumes that any change 

in the solution for a loaded tire as it is inflated is entirely due to membrane behavior (i.e. 

stiffening of the sidewall, increase of the load at a given contact angle, etc.).  While it is true that 

there would be some change in the internal moment and rotation of the belts at the edge of 

contact, it is believed that these effects are negligible for a typical tire.  The accuracy that results 

from this linear model will be determined by comparing it to a non-linear finite element model 

in Chapter 3. 
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CHAPTER 3 

– 

VALIDATION 

 

3.1. Introduction 

When the numerical solution is found using the procedure described in Chapter 2, it is 

necessary to ensure that the governing differential equations, as well as the symmetry, 

continuity, contact, and spoke angle equations are being satisfied.  Evidence that these 

equations are being satisfied is given in the following sections. 

3.2. Parameter Specification 

Being able to determine the parameters that represent an actual tire is important for 

two reasons.  First, without knowing how to determine what parameters allow the model to 

reproduce the behavior of the actual tire, it is impossible to confirm that the two-dimensional 

model accurately represents the behavior of the three dimensional tire.  Second, the purpose of 

the model is to predict analytically the behavior of an actual tire to assist in the design and 

selection of its stiffness parameters.  This can only be accomplished if the parameters that relate 

the model to a physical tire can be determined. 

The radius and width of the tire can be easily found from the tire’s size specification, 

and vehicle manufacturers typically specify that the tires should be inflated to approximately 2 

bars (or 200 kPa) of inflation pressure. 

The values used for EA, EI, and GA were provided by Dr. Tim Rhyne from the Michelin 

Americas Research and Development Corporation (MARC). 
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All the parameters describing the sidewall should be determined by finding values that 

allow the model to match experimental data provided by Michelin© for the load vs. deflection, 

load vs. counter-deflection, inflation pressure vs. expansion, and torque vs. rotation.  Currently, 

the parameters that most closely approximate the experimental data for inflation pressures of 

both 0 and 2 bar are compared in Table 3.1.  A more detailed explanation of how close these 

parameters approximate the experimental data is given in Section 3.5. 

Table 3.1. Pneumatic tire base-case parameters 

Parameter P = 0 P = 2 bar Units Description 

θ
L
 10 10 deg Contact Angle 

m 12 12 Unitless Precision 

EA 8×10
5 

1×10
7 N Extensional Belt Stiffness 

EI 15
 

6
 

N m
2 

Bending Belt Stiffness 

GA 923.45 800 N Shear Belt Stiffness 

K
θ
 6.82×10

5 
6×10

4 Pa Circumferential Carcass Stiffness 

K
r

T
 1×10

5 
1×10

5 Pa Radial Carcass Stiffness in Tension 

K
r

C 
0

 
0

 
Pa Radial Carcass Stiffness in Compression 

F
P
 0 0 N / m Pre-tensioning Sensitivity 

P 0
 

2
 

bar Air Pressure 

R 326.3 326.3 mm Tire Outer Radius 

b 182.9 182.9 mm Tire Width 

 

3.3. Numerical Validation 

In this section four different aspects of the structural part of the pneumatic tire solution 

procedure are validated.  These aspects include satisfaction of the governing equations, 

validation of the model for the case of a non-pneumatic tire, a presentation of results that show 

the overall symmetry and continuity of the solution is correct, and convergence of the pressure 

approximation.  Unless otherwise noted, the results shown here are for the parameter set that 

allows the experimental data to be matched for an inflation pressure of 2 bar.  The conclusions 
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concerning the accuracy of the model are the same no matter which set of parameters is used.  

The non-linear effects introduced at the end of Chapter 2 are validated in Section 3.4. 

3.3.1. Governing Differential Equations 

 The purpose of this section is to validate mathematically that the governing differential 

equations for the belt have been satisfied for all values of the angular coordinate.  This 

validation has nothing to do with the superposition procedure introduced at the end of Chapter 

2.  Rather, it focuses on the linear solution that accounts for the structural effects of the tire.  

The governing differential equations can be written in terms of both the forces and moments 

and the displacements in the belt of the tire as follows: 

 

( )

( )

2
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2
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2
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r

r
rr r

r

d u du d N
EA GAu EA GA RGA R b q V R b q

dd d

d Vdud u d
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d Mdud RVEI R GA RGA RGAu
ddd
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θ θ θ
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 

⇔ − =− + + + − =  
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 

− =− − + =  


 (3.2.1) 

Moving all the right-hand sides of (3.2.1) to the left-hand side and plotting the results, 

which should be zero if the equations are satisfied, produces the following plots for the three 

regions. 
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(c) 

Figure 3.1. The first governing differential equation for the (a) contact, (b) 

compression-support, and (c) tension-support regions 
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(b) 

 

(c) 

Figure 3.2. The second governing differential equation for the (a) contact, (b) 

compression-support, and (c) tension-support regions 
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(c) 

Figure 3.3. The third governing differential equation for the (a) contact, (b) 

compression-support, and (c) tension-support regions 

Because all the calculations done to produce the above plots were done while carrying 

70 digits of precision, it seems apparent that all the governing differential equations are being 

satisfied.  The reason for the greater amount of error in the plots of the differential equations in 

the contact region is due to the larger numbers existing in the calculations from the contact 

pressure in that region.  The scale on the plots for the contact region generally is always about 

10
7
 greater than the scale on the plots for the non-contact regions no matter how high of a 

precision was used in the calculations. 

3.3.2. Non-pneumatic Tire Comparison 

The results in the previous section show that the mathematical equations are satisfied. 

In this section the solution obtained by Gasmi, et al. [1] for a non-pneumatic tire can be used to 
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the pneumatic tire in this study. The principal differences are the pressure and the 

circumferential stiffness. While it is a simple matter to use a pressure of zero, it is nontrivial to 

use a very small circumferential stiffness since this significantly changes the decoupled 

governing differential equations.  The parameters that define the base-case non-pneumatic tire 

studied by Gasmi, et al. [1], are shown in Table 3.2. 

Table 3.2. Non-pneumatic tire parameters 

Parameter 
Tire 

Model 

Tweel 

Model 
Units Description 

θ
L
 10 10 deg Contact Angle 

m 12 12 Unitless Precision 

EA 9×10
6 

9×10
6 N Extensional Belt Stiffness 

EI 168.75
 

168.75
 

N m
2 Bending Belt Stiffness 

GA 3,600 3,600 N Shear Belt Stiffness 

K
θ
 Varies 0 Pa Circumferential Carcass Stiffness 

K
r

T
 1×10

6 
1×10

6 Pa Radial Carcass Stiffness in Tension 

K
r

C 
0

 
0

 
Pa 

Radial Carcass Stiffness in 

Compression 

F
P
 0 0 N / m Pre-tensioning Sensitivity 

P 0
 

0
 

Pa Air Pressure 

R 200 200 mm Tire Outer Radius 

b 60 60 mm Tire Width 

 

The comparison between the two models is shown in Figure 3.4 for the radial 

deformation and the contact pressure profile. 
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(a) 

 

(b) 

Figure 3.4. The radial deformation (a) and contact pressure profile (b) for several 

values of K
θ
 compared to the non-pneumatic tire (Tweel) model 
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The convergence of the current model to the non-pneumatic tire results confirms that 

the governing differential equations have been decoupled and solved correctly in this important 

limiting case. 

3.3.3. Symmetry and Continuity of the Pneumatic Tire Solution 

The symmetry of the pneumatic tire solution associated with the data in Table 3.1 and 

its continuity at the boundaries can be easily seen in the plot of the deformed shape shown 

below. 

 

Figure 3.5. The deformed shape of the tire 
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This is evidenced further when the deformation, forces, and moments are plotted.  Plots 

of the deformations are shown in Figure 3.6. 
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(b) 

 

(c) 

Figure 3.6. The radial (a) and circumferential (b) deformations and the cross-sectional 

rotation (c) in the tire 

The plots above show that the displacements are C
 1

 continuous.  Additionally, the plot 

of the radial deformation shows that, with the set of inputs used, the bifurcation angle is 31.68
o
 

and the radial displacement at the bifurcation angle is 0.3904 mm.  When the amount of 

expansion due to the air pressure is subtracted from the radial displacement at the bifurcation 

angle with the full number of available digits, the difference is 5.626 nm.  It is believed that this 

precision is entirely sufficient to model the tire accurately. 

Plots of the forces and moments in the tire are shown in Figure 3.7. 
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(a) 
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(c) 

Figure 3.7. The shear (a) and normal (b) forces and the internal moment (c) in the tire 

The plots above show that the forces and moments are C
 0

 continuous.  Additionally, the 

normal force at the edge of contact in Figure 3.7b includes the superposition effect from the 

inflation pressure.  Since the structural part of the problem required that N(θ
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) = 0, which was 
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-69

), the value of the normal force at the edge of contact in 
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the tire in the contact region, and the contact pressure.  In order to characterize these aspects 

adequately, plots are first qualitatively compared for various selected values of m to obtain an 

idea of the general behavior, and then a single characteristic value is plotted as m changes. 

For these results, because the method to account for non-linear behavior described in 

Chapter 2 requires that certain aspects of the tire's behavior be modified from what is 

predicted, convergence of the solution can only be observed before this modification occurs. 

3.3.4.1. Contact Condition 

The contact condition was given in Chapter 2 as 

 ( ) ( )( ) ( ) ( )01 cos sin cosrv R u uθθ δ θ θ θ= − − = −  (3.5.1) 

The left-hand side of (3.5.1) is known to be the exact displacement of the tire in the 

contact region, while the right-hand side is an approximation due to the approximation of the 

contact pressure profile.  Therefore, the absolute value of the difference quantifies how precise 

the result is.  When this difference is plotted as a function of θ, the result generally looks like 

those presented in Figure 3.8 for all values of m. 
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Figure 3.8. Relative error of the contact condition 
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Figure 3.9. Maximum relative error in contact condition vs. m 
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Parametric equations of the deformed shape of the tire can be derived from Figure 2.4 

as 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0

0

cos sin

sin cos

r

r

x R u u

y R u u

θ

θ

θ θ θ θ θ

θ θ θ θ θ

= + −

= + +
 (3.5.2) 

The curvature, κ, can be easily found using the typical curvature equation for a 

parametric curve given by 

 

( )
3/2

2 2

x y y x

x y
κ

−
=

+

ɺ ɺɺ ɺ ɺɺ

ɺ ɺ

 (3.5.3) 

where 

 

2

2
 and 

dx d x
x x

d dθ θ
= =ɺ ɺɺ  (3.5.4) 

Plotting (3.5.3) in the contact region for m = 0 and 12 produces Figure 3.10. 

 

Figure 3.10. Relative curvature in the contact region for m = 0 and 12 
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These plots qualitatively show that the curvature of the tire does converge to zero as m 

increases.  In order to examine the convergence more closely, the maximum relative curvature 

is plotted as m increases. 

 

Figure 3.11. Maximum relative curvature vs. m 
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As more terms are used in the Taylor series expansion of the contact condition, more pressure 
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Plotting (3.5.5) for different values of m produces Figure 3.12, which shows that with the inputs 

used in this study, the contact pressure profile has pretty much converged when more than 8 

terms (m = 7) have been used. 

 

Figure 3.12. Contact pressure in the contact region 
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Figure 3.13. Percent error in the total vertical force 

Ultimately, with these inputs, the total vertical load converges to 4.385 kN. 
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 ( )*
SF F AP P= + −   (3.5.6) 

where F
S
 is the load applied to the tire when it is inflated with an inflation pressure of P

*
, and A 

is the contact area.  When F
S
 is plotted along with the linear solution and the Abaqus non-linear 

solution, Figure 3.14 is obtained. 

 

Figure 3.14. Comparison of the load vs. deflection curves for F
S 

, the linear solution, 

and the Abaqus non-linear solution 
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added to F
S 

, which does introduce an approximation since superposition does not apply in this 

contact problem, the total load vs. deflection curve softens to match the Abaqus non-linear 

solution as shown in Figure 3.15. 

 

Figure 3.15. Comparison of the load vs. deflection curves for F
S 

, the linear solution, 

the Abaqus non-linear solution, and the current model's solution 
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quantify the error present in the calculation, the quantity N sin(φ) is presented in Figure 3.16 for 

both a non-pneumatic and a pneumatic tire.  This quantity corresponds to the force component 

that is not taken into consideration when equilibrium is based in the undeformed position. 
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(a) 

 

(b) 

Figure 3.16. The force component N sin(φφφφ) that is not taken into account when 

equilibrium is considered in the undeformed position for (a) a non-pneumatic tire and 

(b) a pneumatic tire.  In each case the P = 0 and P = P
*
 cases are presented. 

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-15

-10

-5

0

5

10

15

θ [deg]

N
 s

in
( φ

)  P = P
*
 

 P = 0 

TWEEL

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-15

-10

-5

0

5

10

15

θ [deg]

N
 s

in
( φ

)

 P = 0 

 P = P
*
 

Tire



 

 

 

85 

When the same quantity is plotted for both a non-pneumatic and pneumatic tire 

inflated to 2 bar, the results are similar to the P = 0 results for both tires except the maximum 

value for the non-pneumatic tire increases to about 21 N, and the maximum value for the 

pneumatic tire increases to about 850 N.  This shows that inflating the tire to an inflation 

pressure of P
*
 can significantly increase the accuracy of the result.  However, the results in 

Figure 3.16a raise the question of whether the solution could be improved further by choosing a 

different value of P
*
 such that, for example, it minimizes the maximum value of N sin(φ) in the 

entire tire.  Because the greatest concern at this point is that the vertical load is accurately 

calculated, in Figure 3.17 the magnitude of the vertical load from Figure 3.15 is plotted as a 

function of P
*
 for a given amount (22.6 mm) of vertical deflection.  In this figure, the non-linear 

force from Figure 3.15 and the special value of P* = P*
selected

 that corresponds to N(θ
L
) = 0 are 

indicted in the figure. 
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Figure 3.17. The calculated load for various magnitudes of the pressure, P
*
, compared 

to the true value of P
*
 = P*

selected
. 

From this figure, it is clear that the selected value of P
*
 that corresponds to  N(θ

L
) equal 

to  zero is the best choice and allows the calculated vertical load to precisely match the load 

from the non-linear finite element model. 
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experimental data obtained from Michelin for a load vs. deflection test at various inflation 

pressures. 

 

Figure 3.18. Comparison of the experimental data ( o ) and the 

theoretical prediction (   ) for the load vs. deflection (left) and 

load vs. counter-deflection (right) results using the parameter 

set that allows the results to come closest to matching 

the data for P = 2 bar 

These results show that the model gives a somewhat accurate prediction for an inflation 

pressure of 2 bar, but at lower pressures, the prediction is too soft and at higher pressures, the 

prediction is too stiff.  Possible reasons for these discrepancies will be presented in Chapter 4, 

which will also include sensitivity analyses of the stiffness parameters.  Additionally, these 

results are repeated for the set of parameters that allow the results to match the data for the 

uninflated tire.  These are shown in  

Figure 3.19. 
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Figure 3.19. Comparison of the experimental data ( o ) and the 

theoretical prediction (   ) for the load vs. deflection (left) and 

load vs. counter-deflection (right) results using the parameter 

set that allows the results to come closest to matching 

the data for P = 0 

It should be noted here that while the results over the entire range of inflation 

pressures are not as close using this parameter set as they were for the parameter set used in  

Figure 3.18, they do match the experimental data for greater magnitudes of 

deformation. 
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0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

Total Vertical Force vs. Vertical Deflection

δ [mm]

F
 [

N
]

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

λ [mm]

 

 

P = 0

P = 0.5 bar

P = 1.0 bar

P = 2.0 bar

P = 4.0 bar



 

 

 

89 

 

Figure 3.20. Contact pressure of both an inflated and uninflated tire compared to the 

inflation pressure used in the inflated tire 

This shows that the model is predicting the expected contact pressure for a given 

inflation pressure. 

3.6. Conclusion 
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data shows that more work needs to be done to be able to accurately calculate the stiffness 

parameters. 
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CHAPTER 4 

– 

SENSITIVITY STUDIES 

 

4.1. Introduction 

The model developed in Chapter 2 and validated in Chapter 3 can quickly calculate 

results for many cases over a wide range of parameters.  The two sets of inputs used in Chapter 

3 will now be used as base-cases to perform two sensitivity studies on all the parameters that 

are possible with the model. These parameters are presented in Table 3.1. 

4.2. Load vs. Deflection and Load vs. Counter-deflection 

The relationship between the total vertical load and the vertical deflection at the 

bottom of the tire is an important determining factor in vehicle ride.  The counter-deflection is 

the amount of deflection at the top of the tire in response to an applied load at the bottom of 

the tire and is a useful measure to check that the predicted deformed shape of the tire matches 

the actual shape.  Comparison with these two force-displacement measures is non-trivial 

validation tests for the model. 

The effect of the various structural parameters on this relationship is studied by varying 

individual parameters and calculating the total vertical load, the vertical deflection, and the 

counter-deflection that result from imposing contact angles ranging from 0 to 20 degrees on the 

tire. 
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4.2.1. P = 2 bar Sensitivity Study 

Figure 4.1 shows the sensitivity of these characteristics to the value of EA.  From this, it 

is clear that both the vertical deflection and the counter-deflection of the tire are mostly 

unchanged by changing the value of EA. 

 

Figure 4.1. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the axial stiffness of the belts, EA 
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deflection to produce a small contact length and a smaller vertical deflection to produce a large 

contact length, compared to the magnitude of the vertical deflection at the small EI.  This has an 

effect on the counter-deflection because the length of the belts must be mostly conserved (due 

to the high value for EA) and decreasing the contact length corresponding to a given vertical 

deflection requires a greater expansion at the top of the tire. 
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Figure 4.2. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the bending stiffness of the belts, EI 

For the results in Figure 4.3, the effect of the shear stiffness, GA, can be seen to have an 
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deformation becomes large.  Again this primarily due to the fact that increasing GA increases 

the amount of vertical deflection required to achieve a given contact length. 

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

δ [mm]

F
 [

N
]

 EI = 0.6 N m
2
 

 EI = 60 N m
2
 

 EI = 6 N m
2
 

0 0.5 1 1.5 2 2.5 3 3.5

λ [mm]

 EI = 0.6 N m
2
 

 EI = 60 N m
2
 

 EI = 6 N m
2
 



 

 

 

95 

 

Figure 4.3. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the shear stiffness of the belts, GA 

Figure 4.4 shows the sensitivity of the results to the circumferential stiffness of the 

sidewall.  These show that increasing this sidewall stiffness has more of an effect on the 

counter-deflection than on the vertical deflection.  This is again due to the effect of K
θ
 on 

vertical deflection for a given contact length, since the total load for a given contact length 

remains constant for the most part. 
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Figure 4.4. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the circumferential stiffness of the sidewall, 

K
θ

 

Figure 4.5 shows the effect of the radial stiffness of the carcass in tension on the load-

deflection relationship.  This shows that stiffening the sidewall in the radial direction 

corresponds to a significant increase in the vertical stiffness of the tire.  The effect is again 

largely due to a change in the vertical deflection corresponding to a given contact length.  

Additionally, the counter-deflection shows that as the radial stiffness of the tire's sidewall in 

tension drops below a certain point, the counter-deflection suddenly becomes negative.  This is 

primarily due to the tire expanding laterally in response to contact pressure, but not vertically.  

Therefore, all the length that previously went to expanding the top of the tire upward is going to 

expanding the tire laterally, in this case. 

 

Figure 4.5. Sensitivity of the relationship between the total vertical load, the vertical 
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In Figure 4.6, the radial stiffness of the sidewall in compression is observed to stiffen the 

initial stiffness of the tire, but as the bifurcation angle becomes larger, the change in the radial 

sidewall stiffness has less of an effect.  The total load in this case does change some due to 

increases in K
r

C
, but the dominant effect is still the change in vertical deflection corresponding 

to a given contact length. 

 

Figure 4.6. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the radial stiffness of the carcass in 

compression, K
r

C
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Figure 4.7. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the pre-tensioning of the carcass, F
P 

4.2.2. P = 0 Sensitivity Study 

Figure 4.8 shows the sensitivity of these characteristics to the value of EA.  From this, it 

is clear that while the vertical deflection is not very sensitive to the magnitude of EA (stiffening 

only slightly), the counter-deflection is much more sensitive to changes in EA. 

 

Figure 4.8. Sensitivity of the relationship between the total vertical load, the vertical 
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Figure 4.9 shows that both the vertical deflection and the counter-deflection stiffen 

equally with increasing EI.  This is primarily due to the fact that while increasing EI increases the 

vertical load corresponding to a given contact length only slightly, it requires a greater vertical 

deflection to produce a small contact length and a smaller vertical deflection to produce a large 

contact length, compared to the magnitude of the vertical deflection at the small EI.  This has an 

effect on the counter-deflection because the length of the belts must be mostly conserved (due 

to the high value for EA) and decreasing the contact length corresponding to a given vertical 

deflection requires a greater expansion at the top of the tire. 

 

Figure 4.9. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the bending stiffness of the belts, EI 
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Figure 4.10. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the shear stiffness of the belts, GA 
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Figure 4.11. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the circumferential stiffness of the sidewall, 

K
θ

 

Figure 4.12 shows the effect of the radial stiffness of the carcass in tension on the load-

deflection relationship.  This shows that stiffening the sidewall in the radial direction 
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Figure 4.12. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the radial stiffness of the sidewall in tension, 

K
r

T
 

In Figure 4.13, the radial stiffness of the sidewall in compression is observed to stiffen 

the initial stiffness of the tire, but as the bifurcation angle becomes larger, the change in the 

radial sidewall stiffness has less of an effect.  The total load in this case does change some due 

to increases in K
r

C
, but the dominant effect is still the change in vertical deflection 

corresponding to a given contact length. 
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Figure 4.13. Sensitivity of the relationship between the total vertical load, the vertical 

deflection, and the counter-deflection to the radial stiffness of the carcass in 

compression, K
r

C
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CHAPTER 5 

– 

DISCUSSION 

 

5.1. Improvements to the Non-pneumatic Tire Model 

The linear model of the non-pneumatic tire developed by Gasmi, et al. [1] has been 

improved to be able to represent a pneumatic tire.  These improvements include the following: 

• Addition of a torsional stiffness of the sidewall 

• Addition of inflation pressure 

• Addition of pre-tensioning 

• Addition of a non-zero stiffness of the sidewall when it is compressed beyond its 

inflated position 

• Accounting for the effects of non-linear geometry 

The overall procedure to solve the pneumatic tire problem requires a so-called 

superposition to address the effect of inflation pressure in a large deformation mechanics 

problem.  A structural solution, which is addressed within a linear context, is superposed to a 

non-linear membrane solution, in which the inflation pressure is easily accounted for.  In the 

structural solution, which allows for any combination of pressure and applied force, a special 

pressure, P
*
, is selected for a  given force to minimize the error associated with large 

deformation by making the normal force zero at the edge of contact.  As such, there is very little 

error associated with the structural solution.  However, in the membrane solution, there is error 

since the effect of pressure will be slightly different in the deformed state (resulting from the 

linear model) than in the undeformed state.  While this step does introduce some error, the 
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results have shown that it is sufficiently accurate to predict some behavior much more 

accurately than the original model can.  For example, the non-pneumatic tire's non-linear force-

deflection response was predicted almost exactly by adding back in the pressure P
*
 using this 

superposition procedure.  Furthermore, it has been shown that the inaccuracies produced by 

not making that assumption for an inflated tire are far more significant than the inaccuracies 

produced by it.  Therefore, the most difficult part of the solution has been obtained with a linear 

solution that does not seem to suffer from small deformation assumptions. 

The purpose of the model was to gain some insight into how the vertical stiffness of the 

tire was affected by the structural parameters describing the tire.  The sensitivity of the results 

to these parameters shows that indeed the vertical stiffness of the tire can be tuned by the 

structural parameters.  This is useful in both determining how standard tires should be designed 

as well as guiding the design of tires in the future that are entirely different from the dominant 

tire design right now.  For example, the developed model should be able to represent 

pneumatic tires for vehicles from golf carts to large earth-moving equipment.  Furthermore, 

several tire companies have begun to develop tires that do not need air.  A few examples are 

the run-flat tire, Michelin's TWEEL©, and Bridgestone's Air-Free Concept.  All these types of tires 

could be modeled with this model.  In fact, the only type of tire that the model would have 

difficulty modeling is a tire that requires a rounded cross-section, such as a motorcycle tire. 

5.2. Obtaining Belt Stiffnesses 

The belt stiffness parameters, EA, EI, and GA, were obtained by using analytical 

calculations to guide the matching of the experimental data.  The primary source for this was 

McGinty, et al. [1], where the Young's modulus of the tire is derived in terms of the cord-rubber 
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composite material definition, with the assumption that all deformation takes place in the 

rubber surrounding the cords. 

This initial prediction gave a value for EA that was too low to permit the results to 

match the experimental data.  This was primarily because the calculated EA, being too low, 

resulted in the counter-deflection being far too small. 

A different method to calculate EA involves the use of experimental data relating 

inflation pressure to the resulting radial expansion.  Knowing the dimensions of the tire and the 

amount of inflation pressure pre-tensioning in the tire (i.e. F
P
), the value of EA can be easily 

calculated.  This yields a much higher value for EA which increases the amount of counter-

deflection significantly. 

From there, EA and the other belt stiffness parameters were varied further, in 

collaboration with Dr. Timothy Rhyne from Michelin to obtain the current parameter set, which 

matches the experimental data very well. 

In this study, the belt parameters were not considered a function of the inflation 

pressure.  However, the three-dimensional complexity of a tire likely makes the choices of 

“equivalent” values of EA, EI and possibly GA, a function of pressure, via, a “Poisson” type 

effect. 

While all of these parameters can be permitted to become relatively small as far as the 

model’s ability to produce a converged result is concerned, when they become too small, a 

solution can become significantly more difficult to find.  Furthermore, the stiffness parameters 

cannot be permitted to become zero since that would significantly change the differential 

equations and therefore produce errors in the current solution. 
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5.3. Obtaining Sidewall Stiffnesses 

Due to the lack of extensive study on the sidewall in the currently available literature, 

much of the understanding explained in this study had to be developed through new research.  

The choice of two of these parameters (K
θ
 and F

P
) can be obtained using experimental data, as 

described at the beginning of Chapter 2. 

These parameters along with the other two parameters (K
r

T
 and K

r

C
) are then varied 

further in order to determine the set of parameters that permitted the best fit of the 

experimental data. 

For this solution, all three parameters describing the sidewall in the radial direction (i.e. 

K
r

T
, K

r

C
, and F

P
) can be permitted to become zero, since this does not significantly change the 

differential equations.  However, because a non-zero K
θ
 does significantly change the 

differential equations, it is required to be non-zero in this solution. 

The “pre-tensioning” parameter F
P
 was the most difficult to interpret within the context 

of the model results.  A simple sensitivity analysis of this parameter keeping all other 

parameters constant, which includes K
r

C
 = 0, produced contact pressures that were below the 

inflation pressure.  The reason for this is the incorrectly large tensile stress of F
P 

/ b applied to 

the belt from the sidewall in the contact region.  It appears as though a sensitivity analysis of the 

F
P
 parameter must also modify K

r

C
 to eliminate this effect, which means that K

r

C
 should be a 

function of the loading. 

Similar to the belt stiffnesses, the sidewall stiffnesses were not considered functions of 

the inflation pressure in the sensitivity analyses or in the comparisons with the results. 
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5.4. Conclusion 

In conclusion, it is apparent that the tire is a complex three-dimensional structure that is 

difficult to model; however, it seems that the model presented here can accurately predict its 

behavior under a static load very well.  To say the least, it has been shown that the developed 

model can predict the behavior of many different types of tires.  The evidence of this is two-fold.  

First, the non-linear finite element model of the non-pneumatic tire was matched precisely.  

Second, the pneumatic tire (with all of its non-linear behavior) is very difficult to model, and 

even in this case, the linear model does very well.  Furthermore, the practicality for studying, 

designing, and comparing the behavior of a wide variety of tires is very beneficial. 
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CHAPTER 6 

– 

CONCLUSIONS AND FUTURE WORK 

 

6.1. Conclusions 

The following conclusions can be made from the completed research: 

• The model developed by Gasmi, et al. [1] can be made much more general so 

that both pneumatic and non-pneumatic tires of many different types can be 

represented. 

• A linear model of a pneumatic tire is possible as long as an assumption is made 

for accounting for the inflation pressure.  This large deformation membrane 

assumption cannot be avoided when a linear model is used. 

• The difficult “structural” portion of the solution can be obtained by a linear 

model that does not suffer from small deformation assumptions.  This is 

accomplished by selecting loading parameters that minimize error due to the 

large deformation. 

• Force-deflection, force-counter deflection, and pressure distribution over a 

large range of inflation pressures are predicted with reasonable accuracy given 

that a two-dimensional analytical model is attempting to address a highly non-

linear three dimensional problem. 

• The determination of stiffness parameters that allow the model to match 

experimental data is not a trivial matter. 
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6.2. Future Work 

Several things could be done to improve upon the work that has been completed. 

• Several experiments could be done to obtain better calculations of the input 

parameters.  These experiments are the following: 

o Radial expansion resulting from inflation pressure 

o Rotation due to an applied torque at several inflation pressures 

o Measurement of both the stiffnesses of the sidewall in the radial 

direction at several different inflation pressures 

o Measurement of the belt's bending and shear stiffnesses 

The first two of these have already been done, but achieving greater resolution 

in the results could provide input parameters that are more accurate.  The 

easiest way perform the last two experiments would probably be through the 

use of a finite element model, since a physical test would require the 

destruction of a tire and would probably be significantly more difficult. 

• The model created by Gasmi, et al. [1] to validate the results for the non-

pneumatic tire could be re-created for a pneumatic tire.  The advantage of such 

a model is that the inclusion of geometric non-linearity can be easily turned on 

or off, which would allow for an evaluation of the superposition scheme 

required by the analytical model.  This superposition scheme would not be 

required by the non-linear finite element model. 

• Based on the above finite element model, it would be beneficial to find the 

conditions for which the assumptions made to account for the non-linear 
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geometry are not valid.  For example, it is known that the moment predicted by 

the current model is slightly different from the actual moment in the tire; 

therefore, it would be interesting to determine how this difference is affected 

by increasing inflation pressure. 

• Additional work could be done to determine whether the differences between 

the predicted results and the experimental data are the result of sidewall 

behavior not being captured by the current model or if this is merely caused by 

incorrect input parameters. 
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