
Clemson University
TigerPrints

All Dissertations Dissertations

8-2013

Automated Complexity Based Assembly Time
Estimation Method
Essam Namouz
Clemson University, enamouz@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Namouz, Essam, "Automated Complexity Based Assembly Time Estimation Method" (2013). All Dissertations. 1165.
https://tigerprints.clemson.edu/all_dissertations/1165

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1165?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

AUTOMATED COMPLEXITY BASED ASSEMBLY TIME ESTIMATION METHOD 

 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Industrial Engineering 

 

by 

Essam Zuhair Namouz 

August 2013 

 

Accepted by: 

Dr. Joshua D. Summers, Committee Co-Chair 

Dr. Mary Elizabeth Kurz, Committee Co-Chair 

Dr. David Neyens 

 Dr. Anand K. Gramopadhye 

  

http://www.ces.clemson.edu/~agramop/


ii 

ABSTRACT 

The overall goal of this research is to create an automated assembly time 

estimation method that is accurate and repeatable in an effort to reduce the analysis time 

required in estimating assembly times.  Often, design for assembly (DFA) approaches are 

not used in industry due to the amount of time required to train engineers in the use of 

DFA, the time required to conduct the analysis, and the product level of detail needed.  To 

decrease the analysis time and effort required in implementing the assembly time 

estimation portion of DFA, a tool is needed to estimate the assembly time of products 

while reducing the amount of information required to be manually input from the 

designer. 

The Interference Detection Method (IDM) developed in this research retrieves 

part connectivity information from a computer-aided design (CAD) assembly model, 

based on a parts’ relative location in the assembly space.  The IDM is used to create the 

bi-partite graphs that are parsed into complexity vectors used with the artificial neural 

network complexity connectivity method to predict assembly times.  The IDM is 

compared to the Assembly Mate Method which creates the connectivity graph based on 

the assembly mates used in creating the assembly model in CAD (SolidWorks).  The 

results indicate that the IDM has a similar but larger percent error in estimating assembly 

time than the AMM.  However, the variance of the AMM is larger than the variance 

observed with the IDM.   
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The AMM requires the assembly mates to create the connectivity graph, which 

may vary based on the designer creating the assembly model.  The IDM, based on part 

location within the assembly model, is independent of any mates used to create the 

assembly.  Finally, the assembly mate information is only stored in the SW assembly file, 

limiting the functionality of the AMM to SolidWorks assembly files.  The  IDM operates 

on the solid bodies in the assembly model, and therefore can be executed on an assembly 

after being imported by SW using common CAD exchange file types: assembly file 

(*.sldasm), IGES (*.iges), parasolid(*.x_t), and STEP (*.step;*.stp). 

The IDM was also trained and tested as a tool for use during the conceptual phase 

of the design process.  Assembly models were reduced in fidelity to represent a solid 

model created early in the design process when detailed information regarding the part 

geometry is not known.  The complexity vectors of the reduced fidelity model are used as 

the input into a modified complexity connectivity method to estimate assembly time.  The 

results indicate that the IDM can be used to predict the assembly time of products early in 

the design phase and performs best using a neural network trained using complexity 

vectors from high fidelity models. 

To explore the potential for separating the objective handling times from the 

subjective insertion times, a Split Interference Detection Method is developed to use 

CAD part information to determine the handling time of the Boothroyd and Dewhurst 

assembly time estimation method and a modified complexity connectivity method 

approach is used to determine the insertion times.  The handling and insertion times are 

separated because the handling times can be mostly determined using quantitative 
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objective product information, while the insertion questions are subjective and cannot be 

quantitatively determined.  The results suggest separation of the insertion and handling 

time does not reduce the percent error in estimating the assembly time of a product in 

comparison to the IDM.  The handling portion of the SIDM can be used as a separate 

automated tool to determine the handling code and handling time of a product.  The 

insertion portion of the Boothroyd and Dewhurst assembly time estimation method would 

still need to be calculated manually.  The ultimate goal of this research is to develop and 

automated assembly time estimation method. 
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CHAPTER ONE 

ASSEMBLY TIME ESTIMATION METHODS:  A REVIEW 

Design for assembly (DFA) is a well-accepted technique that is based on 

empirical time studies and is used for analyzing products with the goal of reducing the 

assembly time [1–4].  One popular method within the larger set of DFA approaches is the 

assembly time estimation method developed by Boothroyd and Dewhurst [4].  This 

research explores opportunities in automating the design for assembly time estimation 

method. 

Assembly time reduction has become a common focal point in an effort to reduce 

manufacturing costs [1–20].  Design for Assembly is an approach for reducing the 

manufacturing costs by improving the assemblability of a product  [21].  Use of the 

design for manufacturing and design for assembly approaches can help reduce the cost of 

manufacturing, reduce component count, and increase quality, while increasing yield 

manufacturing output [4].  Implementation of various DFA methods has shown financial 

gain to industry based on assembly time reduction for a product between 50-75% [4].  A 

number of different methods including Methods Time Measurement (MTM), Lucas 

Method, Complexity Connectivity Method, Hitachi Method, and Boothroyd and 

Dewhurst DFA method have been developed to help aid designers in improving assembly 

[4,9,22,23].  Each of these DFA approaches contains a method to estimate assembly time. 

The assembly time estimation methods of each approach can be further classified 

into two categories: process based or product based (see Table 1.1).  A review of both 
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process and product based approaches is included for completeness, but this research will 

focus on the product based approach. 

Table 1.1: Summary of Design for Assembly Methods 

Method Citations 
Stage of 

Design 

Process/ 

Product 

Based 

Information 

Required 

Outcome/ 

Output 

Methods Time 

Measurement 
[9,24] Redesign Process 

Assembly 

process  and 

part geometry 

Time or 

relative 

percentage 

Lucas Method [13,15,25,26] 
Detail Design/ 

Redesign 
Process 

Part geometry, 

mass 

properties, 

part feeding 

Manufacturing 

index (relative 

comparison) 

Hitachi [22] 
Detail Design/ 

Redesign 
Process 

Product 

assembly 

steps 

Assemblability 

score 

Boothroyd 

and Dewhurst 
[4] 

Detail Design/ 

Redesign 
Product 

Part geometry 

and mass 

properties 

Absolute Time 

or relative time 

Complexity 

Connectivity 
[23,27–31] 

Detail Design/ 

Redesign 
Product 

Graphical 

representation 

of the product 

assembly 

Absolute time 

or relative time 

1.1 Process Based Assembly Time Estimation 

The process based time estimates (Lucas, Hitachi, and MTM) are conducted by 

considering the operations or motions that are undertaken to assembly products 

[9,22,32,33].  These methods require minimal information about the parts themselves, but 

rather focus on the movements needed in the assembly process. 

1.1.1 Hitachi Assemblability Method 

The Hitachi Assemblability Evaluation Method (AEM) evaluates the ease of 

assembly of a product by using an assemblability evaluation score ratio (E) and assembly 
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cost ratio (K) [33].  The assembly evaluation score ratio is determined based on the 

difficulty of each of the operations needed to assemble the product.  The assembly cost 

ratio is used to project elements of the assembly cost.  The Hitachi AEM is unique from 

the other DFA methods as it takes quality into account as well as reducing assembly cost.  

The Hitachi AEM categorizes most assembly into twenty elementary, but non-exclusive, 

assembly tasks [33].  The Hitachi AEM focuses on the insertion and fastening of 

components, while other methods such as Boothroyd and Dewhurst assembly method is 

focused on the handling of the parts as well as the insertion.  Each part of an assembly is 

assigned a score indicating the difficulty of assembly for the part.  All the parts of the 

assembly are then summed to give the assembly an overall assemblability score. 

The Hitachi AEM, similar to the other methods, is implemented after a design has 

been created and then iterated on to improve assemblability.  A flowchart showing the 

general sequence of analyzing an assembly using the Hitachi AEM is shown in Figure 

1.1.   
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Figure 1.1: Hitachi Assemblability Method Flowchart (Adapted from [33]) 

Once the initial product design has been created including the conceptual design, 

prototyping, and engineering drawings, a sample product can be created.  The sample is 

then used to determine the assembly scores for each part which is used to estimate the 

assembly cost.  The assembly score is then used to compare the new design to current 

designs within the company, as well as benchmark against products developed by other 

companies in terms of assemblability.  Areas of potential improvement are identified and 

the ideas that show potential in improving assemblability are identified and improved 

upon.  This process is an iterative process, so once design improvements are 

implemented, new engineering drawings and samples/prototypes can be created for re-

evaluation. 

Comparisons 

Internal benchmarking 

External Benchmarking 

Identify area of improvement 

Estimate effects of improvement 

Assembly Evaluations 

Estimate degree of difficulty 

(assemblability evaluation score) 

Estimate assembly costs 

Product Design 

Conceptual Design 

Prototyping 

Design Drawings 

Production Sample 

Design 

Improvements 
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1.1.2 Lucas Method 

The Lucas Method, or more formally known as the Lucas Design for Assembly 

Method, is based on three separate sequentially conducted analyses: functional analysis, 

feeding analysis, and fitting analysis [33].  The first step, the functional analysis, requires 

that the parts be split into one of two groups.  The “A” group is reserved for parts that 

perform a fundamental function.  The “B” group is reserved for parts that are not 

essential to the assembly, such as fasteners [33].  A design efficiency factor (DE), can 

then be calculated using equation(1).  The target efficiency for a product based on the 

design efficiency equations above is approximately 60% [33].   

 / ( ) *1  00DE A A B   (1) 

Where: 

A:  Number of parts that perform a fundamental function 

B:  Number of parts that are not essential to the assembly 

The next part of the analysis is the feeding analysis.  The feeding analysis portion 

is focused on the difficulty of handling parts before they are added to the system [33].  

The feeding portion of the analysis is completed by answering a set of questions 

concerning the size, weight, handling difficulty, and orientation.  The answers to each of 

these questions results in a handling index and a fitting index which can be found in the 

handling analysis table (Table 1.2) and the fitting analysis table (Table 1.3).  
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Table 1.2: Lucas Method Handling Analysis [33] 

  Score 

A Size and weight of part  

 Very small, requires tools 1.5 

 Convenient, hands only 1 

 Large and/or heavy, requires more than one hand 1.5 

 Large and/or heavy, requires hoist or two people 3 

B Handling Difficulties  

 Delicate 0.4 

 Flexible 0.6 

 Sticky 0.5 

 Tangible 0.8 

 Severely Nesting 0.7 

 Sharp or abrasive 0.3 

 Untouchable 0.5 

 Gripping problem, slippery 0.2 

 No handling difficulties 0 

C Orientation of Part  

 Symmetrical, no orientation required 0 

 End to end, easy to see 0.1 

 End to end, not visible 0.5 

D Rotational Orientation of Part  

 Rotational symmetry 0 

 Rotational orientation, easy to see 0.2 

 Rotational orientation, hard to see 0.4 

The handling index is calculated by adding the score from each of the sections, A-

D, of the handling table.  The handling ratio can then be calculated from equation(2).  

The target value for the handling ratio is 2.5 [33]. 

     Handling Ratio = Handling Index  / Number of Essential Components A  (2) 

The fitting index is determined from the fitting table (Table 1.3).   
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Table 1.3: Lucas Method Fitting Analysis[33] 

  Score 

A Part Placing and Fastening  

 Self-holding orientation 1.0 

 Requires Holding 2.0 

 Plus one of the following:  

 Self-securing (snaps) 1.3 

 Screwing 4.0 

 Riveting 4.0 

B Process Direction  

 Straight line from above 0 

 Straight line not from above 0.1 

 Not a straight line 1.6 

 Bending 4.0 

C Insertion  

 Single insertion 0 

 Multiple insertions 0.7 

 Simultaneous multiple insertions 1.2 

D Access and/or vision  

 Direct 0 

E Alignment  

 Easy to align 0 

 Difficult to align 0.7 

F Insertion Force  

 No resistance to insertion 0 

 Resistance to insertion 0.6 

 Restricted 1.5 

To determine the overall fitting index, each of the fitting scores for parts A-F are 

summed for each part.  The fitting ratio can then be calculated by equation(3).  The target 

value for the fitting ratio is 2.5 [33] . 

     Fitting Ratio  Fitting Index / Number of Essential Components A  (3) 

The third and final part of the analysis is the cost of manufacturing.  This analysis 

does not return an absolute cost, but a relative cost that can be used to compare parts and 
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manufacturing processes [33].  The following part manufacturing cost index can be 

calculated from: 

 
i c c cM =R P +M  (4) 

Where: 

c c mp s t f

c

mp

s

c

c mt

mt

R = C C C *(C orC ): Relative Cost

R = Complexity Factor

C = Material Factor

C = Minimum Section

= Tolerance factor

=Finish Factor

=Processing cost

= VC

V = Volume (mm3)

C = Material Cost

 = Wast

t

f

c

C

C

P

M

W e coefficient
 

While the Lucas method can be used as a relative tool to compare multiple design 

ideas, it does not provide an absolute assembly time estimate.  It does however provide a 

manufacturing index, which many of the other DFA methods do not provide. 

1.1.3 Methods-Time Measurement 

The Methods-Time Measurement (MTM) method assembly time estimation 

method is based on the movements that an operator makes when assembling a product 

[9].  The MTM methods (developed by HB Maynard) is just a portion of a larger set of 

Methods Engineering developed by Frederick Taylor and Frank Gilbreth in the early 20
th

 

century [9].  Methods Engineering involves investigating every operation on a product to 
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eliminate any unnecessary actions and optimize the work process [9,24].  Based on the 

investigation of all the necessary operations needed to complete work on a product, the 

time required for a standard worker to complete the job can be estimated. Specifically, 

Methods-Time Measurement is defined as: 

“procedure which analyzes any manual operation or method into the basic 

motions required to perform it and assigns to each motion a 

predetermined time standard which is determined by the nature of the 

motion and the conditions under which it is made” [9] 

MTM is one of the first attempts at creating a tool to enable engineers to estimate 

assembly times without the need for stop-watch time studies, specifically to support 

product analysis before production [9].  The motion data originally started from analysis 

of shop workers using a drill press or fixture loading and positioning jig under spindle 

[9].  As the worker was conducting the work, they were being filmed the entire time and 

investigator was asked to fill out a methods analysis sheet which required information 

such as but not limited to: 

Date 

Part 

Material 

Description of Operation 

Machine Description 

Description of Method 

Diameter of tool 

Depth 

Speed 

Feed 
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From the collected work data (analysis sheet), the most observed motions or 

operations were noted for a total of 60 operations [9].  Using empirical data collected, the 

estimated time to complete the routines were measured.  The operations mentioned were 

combined into tabular form, and were broken down into the most basic forms of motion 

and are incorporated into the seven main tables developed: 

1.Reach 

2.Move 

3.Turn (Including apply pressure) 

4.Grasp 

5.Position 

6.Disengage 

7.Release 

Seven tables were created to classify each of the above motions with additional 

detail.  For reference, the table for grasp has been recreated (see Table 1.4).  The time for 

each operation is measure in a time measurement unit (T.M.U.).  One TMU unit is 

equivalent to 36 milliseconds.   

Table 1.4: MTM Grasp Table (Adapted from [9]) 

Grasp 

Case Description 
Time 

T.M.U 

1a 
Pick up grasp- Small, medium, or large object by itself – easily 

grasped 
1.7 

1b Very small object or tool handle lying close against flat surface 3.5 

1c Interference with grasp on bottom and one side of object 8.7 

2 Regrasp 5.6 

3 Transfer Grasp 5.6 

4 Object jumbled with other objects so that search and select occur 8.7 

5 Contact, sliding or hook grasp 0 

The MTM method has served as a basis for supporting automated assembly time 

estimation for an automotive OEM [34,35].  This method has been augmented with a 
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controlled vocabulary of assembly verbs and activities, building on previous work that 

seeks to demonstrate that the free text description of assembly activities can predict 

assembly times [29,36].  

1.2 Product Based Assembly Time Estimation 

The product based approaches (Connectivity Complexity and Boothroyd and 

Dewhurst) are based on the products themselves and do not require extensive knowledge 

of the assembly process [4,23,29].  To clarify, Boothroyd and Dewhurst does require 

knowledge of the assembly of one product to the other to determine insertion times, but 

does not require knowledge of the process to accomplish it such as where the parts are 

located on the assembly line and if the worker must walk to retrieve the parts before 

assembly. 

1.2.1 Boothroyd and Dewhurst DFA 

One method developed by Boothroyd and Dewhurst estimates the assembly time 

of a product by focusing on estimating a handling time and an insertion time. A user 

implements the assembly time estimation method by navigating a set of hierarchical 

charts in which each level requires additional information about the part to be input by 

the user [37].  The information provided by the user about the part determines the route 

that will be travelled down the chart, resulting in a handling code and insertion code, 

from which the user can directly retrieve the associated assembly times.  The handling 

time and insertion time are then summed to determine the overall assembly time of a part.   
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Boothroyd and Dewhurst empirically developed a set of charts  that are used to 

estimate the assembly time of different products [4].  The charts are used to estimate the 

assembly time of a product based on two categories:  handling and insertion.  The user 

determines a two-digit handling code based on part information such as number of hands 

needed to handle, the size of the part, and whether the parts nested or tangled together.  

The two-digit code can then be used to determine the estimated handing time of the part.  

The same procedure would be followed to determine the insertion time of the part.  The 

two times would then be summed to determine the total assembly time for that part.  This 

is repeated for all the parts of a system to determine the assembly time of the complete 

system.  Typically the best values of the charts, such as the lowest assembly times, are 

found in the upper left corner while the assembly time generally increases towards the 

lower right corner [38] (see Table 1.5). 
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Table 1.5: One Hand Handling Chart [4] 

  
Parts easy to grasp and manipulate Parts present handling difficulties 

  
T > 2mm T ≤ 2 mm T > 2 mm T ≤ 2 mm 

  

S > 15 

mm 

6 mm ≤ S 

≤ 15mm 

S < 6 

mm 

S > 6 

mm 

S ≤ 6 

mm 

S > 15 

mm 

6 mm ≤ S 

≤ 15mm 

S < 6 

mm 

S > 6 

mm 

S ≤  6 

mm 

  
0 1 2 3 4 5 6 7 8 9 

(α+β) < 

360 
0 1.13 1.43 1.88 1.69 2.18 1.84 2.17 2.65 2.45 2.98 

360 ≤ 

(α+β) < 

540 

1 1.5 1.8 2.25 2.06 2.55 2.25 2.57 3.06 3 3.38 

540 ≤ 

(α+β) < 

720 

2 1.8 2.1 2.55 2.36 2.85 2.57 2.9 3.38 3.18 3.7 

(α+β) = 

720 
3 1.95 2.25 2.7 2.51 3 2.73 3.06 3.55 3.34 4 

The tables are a collection of historical time data for assembly of different 

components.  A portion of the handling table is shown below in a decision tree type of 

representation (Figure 1.2) and based on a choice the user makes reveals more possible 

decisions until the user arrives at the associated handling or insertion code. 

 

Figure 1.2: Partial Handling Code Decision Tree (Adapted from [4]) 

parts are easy to 

grasp and 

manipulate 

thickness > 2 

mm 

size > 15 mm 
6 mm ≤ size ≤ 15 

mm 
size < 6 mm 

thickness ≤ 2mm 
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The time estimate charts are a manual method to estimate the assembly time of 

different parts.  Boothroyd and Dewhurst Inc. have implemented the time estimate 

method into a computer tool that can assist designers in estimating assembly time
1
. 

1.2.2 Complexity Surrogate Modeling 

The term complexity is used in various fields including engineering design, 

supply chain management, manufacturing, operations management, and assembly [39–

48].  Furthermore, these areas of complexity can be further generalized into market 

complexity, product complexity, process complexity, and organizational complexity [39] 

(see Figure 1.3).   

 

Figure 1.3: Aspects of Complexity (Adapted from [39]) 

                                                           
1
 http://dfma.com/ , accessed on 2/19/2012 

Product 
Complexity 

Process 
Compexity 

Organizational 
Complexity 

Market 
Complexity 



15 

All of these aspects of complexity are interrelated, while the definition of 

complexity varies between the different organizations.  Product complexity is generally 

used to represent the interrelatedness of an assembly, or the geometry that composes a 

part [49–52].  Recent research has used complexity representations to model and operate 

on difference phases of engineering design.  For example, product complexity has been 

used as a surrogate for a number of computer aided design tools including design for 

manufacturing and design for assembly [41,51,53–56].  Specifically the focus of this 

research is on the use of complexity as a surrogate model for assembly time estimation. 

1.2.2.1 Complexity Connectivity Method 

The complexity connectivity method uses a complexity vector composed of 

twenty-nine complexity metrics to estimate the assembly time of a product 

[23,27,28,30,31] (see Table 1.6).  
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Table 1.6: Complexity Metrics 
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The complexity metrics are calculated based on the bi-partite representation of a 

product (See Figure 1.4).  For brevity, the discussion, details, and calculations of the 

complexity metrics are not included here but can be found in previous literature 

[23,28,30]. 
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Figure 1.4: Bi-partite Graph [28] 

Initially the complexity connectivity method used a linear regression to model the 

relationship between the complexity metrics and the assembly time of a product [23].  To 

improve the predictive ability of the connectivity complexity method, the relationship 

model evolved from a linear regression to an artificial neural network [31].  The ANN 

complexity connectivity method (ANN-CCM) is trained using the complexity vector of a 

product as the input into the neural network and the known assembly time is the training 

target.  The neural network is used as a data mining tool to find the relationships between 

the complexity vector and the known assembly time to create predictive models.  The use 

of the artificial neural network was shown to improve the predictive ability of the method 

over initial regression fitting attempts [57], however the manual bi-partite graph 

generation was still time consuming and inherently subjective due to manual creation 

[27,29,31]. 
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1.2.2.2 Complexity Graph Generation- Assembly Mate Method 

The original complexity connectivity method (CCM) manually created the bi-

partite graph, but due to the extensive effort required to create the bi-partite graphs, an 

automated graph generation method is desired.  The next improvement to the complexity 

connectivity method was an automated graph generation tool based on the mates used to 

create the assembly model [30].  

The Assembly Mate Method (AMM) uses SolidWorks (SW) assembly mate 

information to create the connectivity graphs needed for the complexity connectivity 

method [30].  The mates in SW are the relationship that a user specifies to locate a part in 

the model relative to another part, assembly, or model feature such as a coincident mate 

or concentric mate (see Figure 1.5 for additional standard SolidWorks mate types).  

 

Figure 1.5: Standard SolidWorks Mates 
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The mate features create a relationship between two components and SolidWorks 

retains this relationship information as a parent/child relationship.  For example, consider 

a block with a circular hole and a pin (see Figure 1.6). 

 

Figure 1.6: Block and Pin Assembly 

The automated graph generation tool uses the “Parent/Child Relationship” 

information to find the connections between parts in the assembly (see Figure 1.7) [30].  

The concentric relationship exists between the “Block-1” and the “Pin-1” (see Figure 

1.7). 

 

Figure 1.7: Parent-Child Relationship 

The assembly mate method iterates through every mate in the assembly to create a 

list of parent/child relationships.  The list of parent/child relationships is output as a text 
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file which is parsed to create the bi-partite graph to find the values of the complexity 

vector.  The AMM is able to quickly create the relationship between parts in a product 

based on the assembly mates; however the method still has a few limitations [58].  One 

limitation of the AMM is its inherent variability based on the designer that created the 

assembly model.  An assembly model can be mated together in numerous ways based on 

the designer.  One designer may use different assembly mates when creating the model 

compared to another designer, and this would result in different parent child relationship 

lists.  Another current limitation of the AMM is that it requires an assembly model 

created in SW with all of the assembly mates included.  Ideally the system would be able 

to supports multiple CAD platforms and file types, including standard CAD exchange file 

types for collaboration between companies. 

The time and information input needed to conduct the aforementioned DFA 

assembly time estimation methods provide motivation for an automated assembly time 

estimation method.  This thesis will focus on the development and testing of an 

automated assembly time estimation method. 
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CHAPTER TWO 

DEFINING THE RESEARCH MOTIVATION 

To increase profit margins, companies are continually looking for ways to 

decrease the cost of products.  One major area of focus in reducing the cost of the product 

is by reducing assembly costs.  This motivated the development and application of design 

for assembly approaches and guidelines [4,9,10,49,50].  These guidelines are used as the 

basis for improving product design with a specific focus of decreasing the required 

assembly time.  To assess and measure the gained benefits of applying these DFA 

guidelines, a way to measure the expected assembly time savings is desired. Multiple 

methods have been developed that can estimate the assembly time of a product including 

the ones discussed in Chapter One (Hitachi Method, Lucas Method, Methods Time 

Measurement Method, Boothroyd and Dewhurst Method, and the Complexity 

Connectivity Method). 

While previous research has shown the large potential benefits of applying DFA 

methods, the analysis time required in analyzing products has discouraged application of 

the methods [4,49].  Specifically, estimating the assembly time of a product before and 

after application of DFA methods is very tedious and time consuming [4,27,49].  Another 

limitation of the identified assembly time estimation methods is the amount of detail 

required.  The identified methods are generally applied as a redesign approach or during 

detailed design when market ready prototypes have been prepared.  The assembly time 

estimation methods required detailed information about either the process with specific 

body movements required for the product assembly or the product based on geometry, 
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size, and symmetry to estimate assembly time.  This dissertation is focused on designing 

a tool which automates the assembly time estimation of products.  The goals of which is 

to increase the accuracy and repeatability of the assembly time estimation, decreasing the 

analysis time, and reducing the amount of information required by the designer to 

perform the analysis.  

The Complexity Connectivity Method and the Boothroyd and Dewhurst assembly 

time estimation method will be used as the backbone of this research.  A visual 

representation of the Complexity Connectivity Method process will help to illustrate the 

research that was conducted and how it impacts the overall process (see Figure 2.1). 
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Figure 2.1: Complexity Connectivity Process Flowchart with Research 

Contributions 

The summarized complexity method (illustrated in Figure 2.1) starts with an 

assembly model either represented in CAD or a physical model.  The assembly model is 

used to form the connectivity graph based on connections between parts in the assembly.  

The connectivity graphs are then operated on to calculate a complexity vector consisting 

of 29 metrics that represent the assembly.  The complexity vector is then used as the input 

into a neural network to estimate assembly time.  The neural network is trained using the 

complexity vectors of products with known assembly times, or assembly times estimated 
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by the manual Boothroyd and Dewhurst assembly time estimation method.  This research 

will study different aspects pertaining to each step of the complexity connectivity 

method.   

The experiments described in this research are not conducted in the same 

chronological order as the process of the complexity connectivity method.  First, the 

Interference Detection graph generation method (IDM) is created and tested (see Chapter 

Three and Chapter 0).  The IDM is a new method to create the connectivity graphs 

needed to calculate the complexity vector of an assembly.  The IDM will use part 

connections to create the connectivity graph required as the input into the neural network 

to estimate assembly time (Figure 2.2). 

 

Figure 2.2: Interference Detection Method (IDM) 

With increasing interest in developing design tools for use early in the design 

phase, the ability of the IDM to estimate the assembly time of products during the 

conceptual design phase will be analyzed (see Chapter Four) [59].  Part and assembly 

models are altered to represent low fidelity models which can be expected when little 

detail is known about the product.  The general process used for the IDM will be used in 

this portion of the research, but a low fidelity model will be used as the input to the ANN 

(see Figure 2.3). 
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Time Estimate Method 

CAD Assembly 

Model 



25 

 

Figure 2.3: Interference Detection Method (IDM) for Conceptual Design Stage 

The next portion of research is focused on the ANN training.  A set of products 

and actual assembly times were supplied by a local power tools manufacturer.  An ANN 

is trained using only products supplied by the power tools company and is compared to 

an ANN that was trained on a variety of consumer electromechanical products.  The 

ANNs are compared to determine if an ANN trained with company specific products can 

better estimate the assembly time of products from within that company, rather than an 

ANN trained on a wide variety of general products (see Chapter Five). 

The Complexity Connectivity Method is an alternate means to the Boothroyd and 

Dewhurst assembly time estimation method to calculate assembly times of a product.  

While the Boothroyd and Dewhurst assembly time estimation method is widely accepted 

in academia and industry, the information needed to conduct the analysis hindered the 

automation of the method.  The Boothroyd and Dewhurst assembly time estimation 

method is composed of a handling time and an insertion time.  The handling time is 

mostly quantitative while the insertion time is mostly qualitative (see Chapter 1.2.1).  The 

qualitative nature of information needed to determine the insertion portion prevented 

automation of the method, and motivated the development of the complexity connectivity 

method [27,57].  This portion of the research aims to determine if the complexity 

connectivity method and the Boothroyd and Dewhurst assembly time estimation method 
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can be combined to create a single tool that outperforms the complexity connectivity 

method alone (see Chapter Six).  The quantitative handling time will be calculated by 

retrieving part information from the CAD model, and a modified complexity connectivity 

method will be used to determine the insertion time (see Figure 2.4).   

 

Figure 2.4: Split Interference Detection Method 

The final portion of this research will explore the twenty nine complexity metrics 

which compose the complexity vector.  The complexity vector was introduced with the 

complexity connectivity method; however no work has been conducted to determine if all 

of twenty nine complexity metrics are necessary to represent a product beyond the initial 

subjective reduction to three metrics [23].  A statistical analysis is used to try to reduce 

the number of complexity metrics needed in the complexity vector, to ultimately reduce 

the computational effort required by the use of the complexity vector as a surrogate for 

assembly time estimation (see Chapter Seven). 
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2.1 Research Questions 

The focus of this research is designing and implementing a method to automate 

product assembly time estimation.  The Boothroyd and Dewhurst [4] assembly time 

estimation method and the complexity connectivity method [23,29–31] will be used as 

the backbone of this research.  Previous research has indicated that the use of CAD 

platforms is replacing sketching early in the design process [59].  In an effort to design 

this method for application throughout the design process, including early conceptual 

design, the focus will be on product based approaches.  The product design is captured 

using CAD and can be used as a source for analysis.  A commercial CAD package 

(SolidWorks) will be used to retrieve information about parts and assemblies to determine 

handling and insertion codes for the Boothroyd and Dewhurst assembly time estimation 

method.  In developing and implementing the tool, a number of research questions will be 

answered regarding the assembly time estimation method and the capabilities of 

implementing assembly time estimation with support from a CAD system: 

Can an assembly time estimation method be automated to estimate product 

assembly time based on the CAD models (part and assembly files)?  If so, what 

information is needed and where will this information be retrieved from? 

RQ1: How much variability can be expected in the current Boothroyd and Dewhurst 

assembly time estimation method? Answering this research question motivates the 

need for an assembly time estimate that is both accurate and repeatable. The 

automated assembly time should be able to accurately estimate the assembly time 

of a product without variation caused by detailed subjective user inputs. 
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RQ1.1. Is the predicted 50% variability indicated by Boothroyd and Dewhurst 

an accurate variability estimate when the method is applied by students 

to an existing product? 

RH1.1 The variability of the Boothroyd and Dewhurst Manual Assembly 

Time Estimation method is less than or equal to 50% [4]. 

RQ2: How can the connectivity complexity method be improved to provide more 

accurate and repeatable assembly time estimates? The current complexity method 

which utilizes the Assembly Mate Graph Generation method [30] is dependent on 

the designer that has created the model. Answering this question will provide an 

automated method that is not dependent on the designer that creates the model, 

while maintaining or improving the accuracy of the time estimate. 

RQ2.1. Can the accuracy and repeatability of the complexity connectivity 

method be improved by providing a method to objectively create the 

part connections graph independent of designer definition of assembly 

mates [30]? 

RH2.1 The accuracy and repeatability of the complexity connectivity method 

can be improved by creating assembly connectivity graphs based on 

physical locations and part interference in the assembly model space 

instead of depending on a designers definition of assembly mates [30]. 

RQ2.2. Which complexity metrics have the largest influence on the assembly 

time estimation?   
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RQ2.2.1. Are all of the current complexity metrics required to achieve an 

acceptable (within 50%) time estimate? 

RQ3: Can the Boothroyd and Dewhurst assembly time estimate method be automated by 

retrieving part and assembly information from a CAD model? Answering this 

question provides a tool to help designers analyze products and estimate the 

expected benefits of the proposed design for assembly efforts.  Currently the 

assembly time estimation method is tedious and time consuming resulting in 

resistance to application of design for assembly. 

RQ3.1. Does this automated method provide an improvement in assembly time 

estimate over the current complexity method and Boothroyd and 

Dewhurst time estimate method in terms of: accuracy, repeatability, 

and computation time, and level of detail of information input? 

RH3.1 The Boothroyd and Dewhurst assembly time estimation method can be 

automated by separating the handling and insertion time estimates.  

The objective information that is required to determine a handling 

code can be directly retrieved from the part models.  The subjective 

insertion information will be determined by using the assembly model 

to create part connectivity graphs and using a modified complexity 

connectivity method to estimate the insertion time.  With the 

combination of the two methods, an improved assembly time estimate 

method can be automated that is more accurate, repeatable, requires 
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less analysis time, and less detailed input information than the other 

estimate methods. 

RQ4: Can a modified complexity connectivity method, utilizing the interference 

detection method to create connection graphs be used to estimate assembly times 

of products in the conceptual design phase, based on low fidelity CAD models? 

Answering this question will provide designers a tool that can used early in the 

design process when detailed part information is not known. A tool that can be 

used early in the design process or in the conceptual phase of design can support 

design for assembly through the design process as opposed to only in the detailed 

design phase or as a redesign tool. 

2.2 Research Roadmap 

The table below summarizes the research questions that are answered, the topic of 

the research question, the expected research method to be used to answer the research 

question, and the deliverable (see Table 2.1). 
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Table 2.1: Research Questions 

Research 

Question 
Topic Research Method Deliverable Included in: 

RQ1     

RQ1.1 

Variability of the 

Boothroyd and 

Dewhurst 

Assembly Time 

Estimation Method 

Survey and User Study 

(ME455 Pen Study) 
[27,60]  Chapter Two 

RQ2     

RQ2.1 

An Objective 

Connectivity Graph 

Creation Method 

Statistical Test of 

assembly time 

estimates 

[61,62] Chapter Three 

RQ2.2 

Main Complexity 

Factors for 

Estimating 

Assembly Time 

Statistical Analysis 

(Factor Analysis) 
Dissertation Chapter Seven 

RQ3     

RQ3.1 

Automated 

Assembly Time 

Method - 

Algorithm and 

Demonstration 

Separation of Handling 

and Insertion Times 
Chapter Six Chapter Six 

RQ3.2 

Automated 

Assembly Time 

Estimation 

Method: A 

Validation Study 

Test Cases (Industry 

models and actual 

assembly times) 

Dissertation Chapter Five 

RQ4 Conceptual Models Test Cases [63] Chapter Four 
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To explain the formation of this research and the research questions associated 

with it, a brief review of the previous work completed in the CEDAR (Clemson 

Engineering Design Applications and Research) Group is provided (Figure 2.5).   

 

Figure 2.5: Progression of Connectivity Complexity Method (previous work) 
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The AMM uses part mating information from CAD assembly models to create the 

part connectivity graphs.  While this is an improvement in the complexity method, the 

part connection graphs are still dependent on the designer that created the model and the 

types of mates they chose.  The next transformation, Interference Detection Method, uses 

part interference to create the part connectivity graphs. The next step of this research Split 

Interference Detection Method (SIDM) will separate the insertion and handling times, 

which together form the total assembly time (see Figure 2.6).  Information from the part 

CAD model will be used to determine the handling time, and a new ANN will be trained 

to estimate only the insertion time based on the part connectivity graphs. 
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Figure 2.6: Progression of Split Interference Detection Method 
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To explore the variability inherent in the Boothroyd and Dewhurst manual 

assembly time estimation method and provide motivation for an automated assembly 

time estimation method, a pilot study was conducted to estimate the assembly time of a 

clicker pen using the manual charts. 

2.3 Exploratory Study 

An integrated senior and graduate level mechanical engineering class was trained 

on the Boothroyd and Dewhurst method and assembly time estimate charts as part of a 

design for manufacturing course (ME 455/655).  The students in the course were asked to 

complete an assembly analysis and estimate assembly time of a Pilot G-2 clicker pen 

(Figure 2.7) using the manual assembly time estimation charts.  This study was approved 

under IRB2012-250. 

 

Figure 2.7  Fully Assembled Clicker Pen
2
 

2.3.1 Participants 

The participants for the pilot study consisted of students from a senior and 

graduate level mechanical engineering manufacturing course.  The students were allowed 

to divide amongst themselves into groups of two.  The students were trained in the two 

previous lectures, each lasting one hour and fifteen minutes, on the use and application of 

the assembly time estimate method.  The students were all similarly trained with the 

method, and considered to be comparable in experience to an entry level manufacturing 

                                                           
2http://www.officespecialties.com/pilot_31277_g2_ultra_fine_retractable_pen_42038_prd1.htm, accessed on 2/19/2012 

 

http://www.officespecialties.com/pilot_31277_g2_ultra_fine_retractable_pen_42038_prd1.htm


36 

engineer.  Training for application of the method for an engineer may be conducted in a 

similar fashion, based on books or passed on from another engineer.  One option that 

Boothroyd and Dewhurst offer is a special course in assembly time estimation.  The 

course should improve the repeatability and use of the method by the engineer, but also 

has a number of drawbacks including cost and time required for training3.  The instructor 

applied the method during a lecture to a pneumatic piston for demonstration purposes.  

The pen is the first assembly that the students analyzed independently, although the 

instructor was available to answer general questions on application of the method, but not 

any specifics on how to analyze the assembly or on the handling or insertion codes to 

choose for the different parts of the pen.  The students conducted the time estimate in-

class, and the assignment would count as an “In-class Activity”, which as a category is 

worth 20% of the students’ overall grade.  This was not the first or last in-class activity 

that the students were given, so this particular assignment was typical and stylistically 

familiar to the students.  A total of twenty groups were formed for the in-class 

assignment. 

2.3.2 Process 

In a Design for Manufacturing course (ME455) at Clemson University, students 

were asked to apply the Boothroyd and Dewhurst manual assembly estimation method to 

a Pilot G-2 Clicker Pen (Figure 2.7).  The students were allowed a time limit of one class 

period (60 minutes) to complete the analysis with 15 minutes reserved for class 

discussion on the results.  Each student group had a pen that they were allowed to 

                                                           
3
 http://www.dfma.com/services/dfmacore.htm 

http://www.dfma.com/services/dfmacore.htm
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disassemble and reassemble to complete the assembly time estimate.  Each individual 

group discussed the assembly time estimate and, consensus was reached, the group 

completed the worksheet.  The students were provided a basic template to record the 

handling and insertion codes, as well as the handling and insertion times for each part, 

and additional cells to show the sum of the handling and insertion times for each of the 

individual parts resulting in a total assembly time.  An example of a completed results 

table is shown in Table 2.2. 

Table 2.2: Example Student Clicker Pen Time Estimate 

Task Description 
Handling 

Code 

Handling 

Time (s) 

Insertion 

Code 

Insertion 

Time (s) 

Total Time 

(s) 

1.1 Top 30 1.95 00 1.5 3.45 

1.2 Bottom 10 1.5 00 1.5 3 

1.3 Button 11 1.8 00 1.5 3.3 

1.4 Cartridge 10 1.5 00 1.5 3 

1.5 Spring 83 5.6 00 1.5 7.1 

1.6 Base 10 1.5 38 6 7.5 

1.7 Grip 10 1.5 31 5 6.5 

Total Assembly Time 33.85 

2.3.3 Results 

A summary of the results of the pilot study, including the handling time, insertion 

time, and total assembly time of the pen from the different groups is summarized in Table 

2.3.  
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Table 2.3  Pen Data from In-Class Activity 

Group 
Handling 

Time (s) 

Insertion 

Time (s) 

Total Assembly 

Time (s) 

1 11.77 25.50 37.27 

2 15.69 16.00 31.69 

3 8.58 25.35 33.93 

4 14.03 16.50 30.53 

5 15.83 18.00 33.83 

6 17.10 24.50 41.60 

7 17.10 24.50 41.60 

8 13.03 24.00 37.03 

9 11.77 25.50 37.27 

10 11.92 29.10 41.02 

11 12.60 26.00 38.60 

12 12.51 19.50 32.01 

13 14.14 23.50 37.64 

14 7.45 16.50 23.95 

15 11.14 12.50 23.64 

16 13.40 18.00 31.40 

17 13.70 26.50 40.20 

18 10.05 17.00 27.05 

19 13.39 31.50 44.89 

20 15.35 18.50 33.85 

The results of three of the groups (groups 3, 10, 18), shaded in Table 2.3 were 

eliminated due to incorrectly identifying a handling code for an insertion code or vice 

versa leaving a total of seventeen groups.  For example, group 3 provided an insertion 

code of “87” with an associated insertion time of 5.85 s.  The insertion charts do not 

include a value for an insertion code of “87”, and to ensure the students did not flip the 

designation of “row * column”, the value of insertion code “78” was also examined, 

recognizing that it also does not correspond to a value included in the insertion charts.  

However, a handling code of “87” does exist, and is associated with a time of 5.85 s.  

Each part requires a separate handling code and insertion code, and the two cannot be 
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interchanged.  While this is an error in the application of the method, this is not 

specifically the focus of this research and those values would influence the results.  

Therefore this, and similar results, were eliminated from the analysis. 

A statistical analysis of the results of the data shown above, excluding the three 

cases which were eliminated due to circumstances discussed earlier is summarized in 

(Table 2.4). 

Table 2.4  Clicker Pen Assembly Statistics 

 
Handling 

Time 

Insertion 

Time 
Total Time 

Average 13.53 21.59 35.12 

Standard Deviation 2.38 5.03 5.88 

Max 17.10 31.50 44.89 

Min 7.45 12.50 23.64 

Range 9.65 19.00 21.25 

The assembly time estimation for the clicker pen resulted in an average of 35.12 

seconds and a range of 21.25 seconds.  This suggests that multiple users that are 

equivalently trained and provided with the same product did not arrive at the same 

estimated assembly time.  Observations of the data suggest that the decisions that the user 

makes to the Level 1 subjective questions for handling and insertion, contributes to the 

variation in assembly time estimates. 

To determine the influence of answering the subjective question on the assembly 

time estimate, the alternate possible handling and insertion times assuming that Level 1 

subjective question was answered alternatively was retrieved.  The average of the two 

values was then used as the time estimate.  This serves to simulate the user not having to 

answer the subjective question, but instead using the average value that could result.  The 
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maximum and minimum values of the alternate decision were also investigated, but 

resulted in values that exaggerated the variability of the method.  The average value is 

used as a middle value to represent the user not making the decision and as a baseline 

time for this subjective question to add into the time analysis. 

This process is repeated for each handling time and insertion time for each group 

to determine the effect of estimating the assembly time of the pen, while replacing the 

Level 1 subjective values with the average of the two values.  The results of each group’s 

initial assembly time estimate, and the derived estimate using the average of the two 

subjective values is shown in Table 2.5. 

Table 2.5: Total Assembly Time Comparisons 

Group 
Total Assembly 

Time (s) 

Total Assembly Time using average 

of Level 1 Subjective Question 

Percent 

Difference 

1 37.27 38.67 3.8 

2 31.69 35.95 13.4 

4 30.53 43.60 42.8 

5 33.83 50.78 50.1 

6 41.60 45.00 8.2 

7 41.60 45.00 8.2 

8 37.03 41.72 12.7 

9 37.27 38.67 3.8 

11 38.60 46.62 20.8 

12 32.01 35.40 10.6 

13 37.64 45.30 20.3 

14 23.95 28.62 19.5 

15 23.64 27.05 14.4 

16 31.40 35.11 11.8 

17 40.20 41.42 3.0 

19 44.89 49.43 10.1 

20 33.85 38.50 13.7 
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The basic statistics of the total assembly time using the average of Level 1 

subjective questions indicates a mean of 40.4 seconds, with a standard deviation of 6.65 

seconds which is larger than the student assembly time standard deviation (see Table 2.6). 

Table 2.6: Statistical Comparison of Data Sets 

 

Student 

Assembly Time 

Assembly Time using Average of 

Level 1 Subjectivity 

Average 35.12 40.40 

St. Deviation 5.88 6.65 

Max 44.89 50.78 

Min 23.64 27.05 

Range 21.25 23.74 

A statistical normality test (Anderson-Darling) was conducted on each set of data 

to ensure that each data set was normally distributed.  The resulting p-values of the 

student estimates and the average of Level 1 subjectivity estimates are p = 0.49 and p = 

0.67 respectively.  This is required to justify the use a probability distribution plot to 

represent the data.  A curve is fit to both sets of data and the resulting density plot is 

shown in Figure 2.8.   
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Figure 2.8: Plot of Student Time Estimates and Level 1 Subjective Questions 

Average 

The mean of the estimates derived without the Level 1 subjective questions results 

in a conservative time estimate that is 5 seconds or 15% greater than the mean of time 

estimates from the in-class activity.  This indicates that had the students not made a 

subjective decision on Level 1, the difference in means of the results would still be within 

15%.  A variation of 15% is a reasonable range considering Boothroyd and Dewhurst 

state that a variation of up to 50% can be seen when conducting the assembly time 

estimate [4].  In this specific case the time estimates without Level 1 subjectivity resulted 

in a value that was greater than the student estimate.  If the students had selected a 

handling or insertion code with a higher time estimate, then the average may have 

resulted in a time that was less than the student estimated time.  The range of values 
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should also be considered to ensure that a lower estimate does not influence the designer 

to overlook a part with assembly difficulties. 

Furthermore the area underneath the average subjectivity curve (Figure 2.9), 

which is shared by the student estimate curve is approximately 63%. The range of times 

that were considered is from the student minimum time estimate of 23.64 s to the student 

maximum estimate of 44.89 s. This indicates that using the average value of the Level 1 

subjective questions would result in an estimated assembly time estimate which falls 

within the normal distribution of the student estimates 63% of the time.  

 

Figure 2.9: Area Overlap Under Data Curves 

2.3.4 Conclusions and Future Work 

The current assembly time estimation method requires subjective input from the 

individual conducting the analysis such as “is the part easy to grasp and manipulate”, “is 

the part easy to align and position during assembly”, “does the part present handling 
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suggest that the subjective questions in the Boothroyd and Dewhurst manual assembly 

time estimate charts has an effect on the estimated assembly time of part.  However, the 

results from the pilot study indicate that even if the user does not make the Level 1 

subjective decision, an assembly time estimate within approximately 15% can be 

predicted relative to if the subjective decision had been made.   

While the sample size used in the current pilot study is not large enough to 

generalize the conclusions, it does provide anecdotal evidence that there is an opportunity 

to reduce or eliminate the subjective questions in the Boothroyd and Dewhurst manual 

assembly time method.  Reducing or eliminating can allow the user to estimate the 

assembly time with a certain confidence, such as providing a range of estimated assembly 

time as opposed to a single assembly time with a false sense of confidence.  The 

assembly time estimate charts may be re-organized such that if the user is not confident in 

the answer of any of the questions, they may choose to not answer it.  This lack of 

additional information will then result in a larger range of estimated assembly time with a 

certain confidence that the actual assembly time falls within this range.  In order to 

accomplish this, further research is required to determine the specific effect of each 

subjective question on the overall assembly time estimate.  This is out of scope for this 

dissertation, but addressing this subjectivity issue is addressed. 

If an assembly time interval can be derived based on the questions that a user has 

answered (as discussed above), an opportunity exists to support assembly time estimation 

throughout the design process.  For example, if a part is being studied during the 

conceptual phase for feasibility, an assembly time estimate within 50% may be sufficient, 
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and if that is the case then less information may be needed about the part to provide the 

designer a rough estimate of the assembly time.  The user may be able to estimate an 

assembly time of a product by providing the answer to only one question of the assembly 

chart, but this will decrease the confidence in the assembly time estimate.  This will 

reduce the amount of time and information needed to implement the assembly time 

estimation method.  Early product design stages dictate between 70-80% of the cost of 

product development and manufacturing, therefore an opportunity to estimate the 

assembly cost of a product at the conceptual stage, even with a large confidence interval 

may be beneficial in reducing manufacturing costs [4,49,50,64,65].  This is addressed in 

Chapter Four. 

The results of the pilot study serve as the motivation for the overall objective of 

this research to automate the Boothroyd and Dewhurst assembly time estimate method as 

a tool that would interface with CAD software to retrieve required information.  The tool 

should retrieve information from CAD such as dimensions, weight, material, and 

symmetry to provide an assembly time estimate (Chapter Three).  This study 

demonstrates that the variation seen in the assembly time estimation of a simple product 

such as a pen may reach ranges of 30%, which conforms to the predicted 50% variation 

that Boothroyd and Dewhurst suggest.  Thus, the acceptable range of accuracy predicted 

assembly times for any developed tool is set to 50% of the actual assembly time. 
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CHAPTER THREE 

INTERFERENCE DETECTION METHOD – GRAPH GENERATION 

The assembly mate method provided an automated method for creating the 

complexity graphs based on the mates used to create an assembly.  The Interference 

Detection method is a tool for generating the complexity graphs using part interferences 

to create the complexity graphs. 

The Interference Detection Method (IDM) utilizes the interference detection tool 

in SolidWorks to determine the connectivity between parts (see Figure 3.1).  The 

interference detection tool detects overlapping part geometry between any two parts in 

the assembly.  Furthermore, the interference detection tool has additional options to “treat 

coincidence as interference” and to “treat subassemblies as components”.  The “treat 

coincidence as interference” allows for situations when an interfering part has the same 

nominal size of a piece it is fitting into or when a face of a part is coincident with another.  

For example, in block and pin assembly the nominal size of the pin is the same as the size 

of the hole in the block.  The interference detection tool detects this as interference when 

the option is enabled (see Figure 3.1). 
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Figure 3.1: Interference Detection Tool 

When a sub-assembly is placed into an assembly in SW, the entire subassembly is 

treated as one body or part.  The “Treat subassemblies as components” option in the 

interference detection tool allows the tool to look at each part in the subassembly 

separately.  The interference detection tool was run on the same block and pin assembly 

from earlier (see Figure 1.6).  The results indicate that a connection was detected between 
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the block and the pin (see Figure 3.1). Each portion of the part that is found to interfere is 

highlighted in red in (see Figure 3.2). 

 

Figure 3.2: Block and Pin Interference Detection Tool Result 

The process of finding interference is programmed in C++ using the SW API to 

find all interfering parts of the assembly and export a text file containing the part 

connection information.  The interference detection tool may be run directly from the SW 

menu, by accessing the evaluate tab in an assembly file.  The manual use of the 

interference detection tool results in a list of interferences in the SW GUI (see Figure 

3.1). 

3.1 Demonstration of IDM 

To compare the two methods, a demonstration of the analysis on an ink pen is 

provided (see Figure 3.3). 
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Figure 3.3: Ink Pen 

The pen was chosen for demonstration due to a limited complexity and number of 

parts.  This example does not demonstrate the full ability of the methods to create graphs 

for more complex products.  The assembly model of the pen was opened in SW and the 

IDM method was executed.  The output from the IDM is a text file indicating the 

connectivity between parts (see Table 3.1).  Each row of the text file indicates a 

connection between the part located in the first column and the part located in the second 

column. 

Table 3.1: Part Connections for IDM 

Grip Body-1 Rubber Grip-1 

Grip Body-1 Ink Body-1 

Grip Body-1 Spring-1 

Rubber Grip-1 Body-1 

Press Button-1 Indexer-1 

Press Button-1 Indexer-1 

Press Button-1 Indexer-1 

Press Button-1 Indexer-1 

Press Button-1 Body-1 

Spring-1 Ink Body-1 

The bi-partite graph for the pen was also created for the IDM (see Figure 3.4).  

The connectivity between parts does not need to be represented in a graphical format; 
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however the complexity of a product is more apparent when compared in this format. The 

input into the algorithm to determine the complexity vector requires a table with a part in 

the first column and the part that is it connected to in the second column (see Table 3.1). 

 
Figure 3.4: IDM Bi-Partite Graph of the Ink Pen 

3.2 Interference Detection Method Graph Generation - Test Cases 

To test the ability and limitations of the graph generation portion of the IDM, a 

number of test cases were developed.  The test cases (see Table 3.2) are used to determine 

the topological limitations of the IDM in identifying two parts as being connected.  The 

IDM detects overlapping or coincident interference between parts. 

Grip Body 

Spring 

Ink Body 

Rubber Grip 

Body 

Indexer 

 

  

  

  

  

  

Press Button 
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Table 3.2: IDM Graph Generation Test Cases 

Assembly  

Description 
Image 

Interference  

Detected 

Face to Face 

 

 

Partial Overlap 

 

 

Vertex Only 

 

× 

One part completely within 

the other 

 

 

Edge Only 

 

 

Vertex on Edge 

 

× 

Vertex on Face 

 

× 
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The IDM graph generation found a connection between parts for all of the test 

cases except for the cases with only a vertex connecting the two parts:  Vertex only, 

Vertex on Edge, and Vertex on Face.  While this is a limitation to the graph generation 

method, parts are generally not connected to another part by only a vertex.  Ideally the 

graph generation method would still capture this relationship. Generally speaking, models 

are not assembled based on the vertex of a part.  Connecting the parts based on the vertex 

does not completely restrict the movement of the part relative to another.  Face to Face 

assembly was created by using a coincident mate between the two faces of the cube.  For 

clarification, the IDM does not search the mate tree and does not require a list of 

SolidWorks mates to find the connectivity.  For example, the Partial Overlap model was 

created by dragging the second cube in the assembly model space so that it overlapped 

with the first cube.  There were no mates used to create the assembly model for the 

overlap, yet the IDM graph generation captures the connection between the parts. 

To detect connectivity the parts are forced to be either interfering (overlapping) or 

share a coincident edge or face.  One additional limitation that arises from this approach 

is often parts are designed with a tolerance in mind.  For instance, a two inch diameter 

shaft being inserted into a two inch hole may have a tolerance modeled to allow the pin to 

slide in the hole without interference.  If this tolerance is modeled in the solid model (pin 

nominal diameter is 2.000 inches, and the hole diameter is 2.002 inches) as opposed to 

only annotated on the engineering drawings, the IDM graph generation method will not 

identify the connection.  This limitation will be reserved for future work, and possible 

approach updates and improvements will be suggested in (Chapter Eight).   
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3.3 Comparison of Graph Generation Methods 

To compare the IDM and the AMM graph generation methods, a total of fourteen 

household products for which CAD models could be obtained or created were chosen for 

analysis.  From the fourteen products used in the analysis, three products are withheld for 

testing.  A summary of the products used for testing and training along with an image of 

each is presented in Table 3.3. 

Table 3.3: CAD Models Used for Training and Testing 

Product 

Name 

Training / 

Testing 
CAD Model Image Source 

Stapler Testing 

 

GICL Website [30] 

Flashlight Testing 

 

SW 3D Content [30] 

Blender Testing 

 

Reverse Engineered 

[30] 

Ink Pen Training 

 

Reverse Engineered 

[30] 
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Table 3.3: CAD Models Used for Training and Testing 

Product 

Name 

Training / 

Testing 
CAD Model Image Source 

Pencil 

Compass 
Training 

 

Reverse Engineered 

[30] 

Electric 

Grill 
Training 

 

SW 3D Content [30] 

Solar Yard 

Light 
Training 

 

Reverse Engineered 

[30] 

Bench Vise Training 

 

Reverse Engineered 

[30] 

Electric 

Drill 
Training 

 

Reverse Engineered 

[30] 

Shift 

Frame 
Training 

 

OEM [30] 
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Table 3.3: CAD Models Used for Training and Testing 

Product 

Name 

Training / 

Testing 
CAD Model Image Source 

Food 

Chopper 
Training 

 

Reverse Engineered 

[30] 

Computer 

Mouse 
Training 

 

Reverse Engineered 

[30] 

Piston Training 

 

Reverse Engineered 

[30] 

3- Hole 

Punch 
Training 

 

Reverse Engineered 

[30] 

3.3.1 Analysis Time 

The time required to train, load, and run an ANN for the assembly time estimation 

using both methods is equal since both methods input the same amount and type of 

information.  The required input for the ANN is simply the complexity vector.  However, 

the time required to generate the connectivity graph based on a CAD model is less for the 

AMM compared to the IDM (see Table 3.4).  The increase in analysis time for the IDM 
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can be attributed to the algorithm complexity.  The IDM must compare each part in the 

assembly to every other part to find interference, resulting in a computational complexity 

of O(N
2
).  The AMM simply retrieves the created mates list to generate the part 

connectivity graph, resulting in a computational complexity of O(N). 

Table 3.4: Graph Generation Time Comparison 

 AMM IDM 

 
Graph 

Generation 

Time [s] 

# of 

Elements 

# of 

Relations 

Graph 

Generation 

Time [s] 

# of 

Elements 

# of 

Relations 

Flashlight 5 18 36 30 16 55 

Stapler 1 14 27 43 14 20 

Blender 1 48 105 97 43 129 

The time to generate the graph for each of thirteen consumer products (see Table 

3.3) was recorded to compare the theoretical complexities of the algorithms to the actual 

implementation.  The graph generation time for the AMM and the IDM are plotted with 

respect to the number of elements and the number of relations (see Figure 3.5 and Figure 

3.6).  One may note that the number of elements and relations identified by each method 

are not identical and is not equal to the number of parts, therefore each graph generation 

time is plotted with respect to the number of elements and relations identified by the 

respective method. 
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Figure 3.5: Graph Generation Times for IDM 

Theoretically the IDM algorithm is polynomial, however the applied results of the 

graph generation times initially indicate that the polynomial fit based on number of 

elements or relations alone is not sufficient.  A number of factors could be considered to 

be the cause of the discrepancy between the theoretical and applied graph generation 

times.  First of all, the sample size is not sufficiently large to draw complete conclusions.  

A set of products with a larger range in number of parts and relations would need to be 

tested to further support the actual relationship between graph generation time and 

number of elements or relations.  Another possible contribution to the discrepancy is the 
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complexity of the part topology.  To find the interference of a part with multiple edges 

and faces requires greater computation than a part with a simple geometry.  This however 

will also need to be further tested.  To do this, a study can be conducted in which an 

assembly composed of parts with simple geometries is compared to a similar assembly in 

which the geometry of the parts is changed, but the interfering components should remain 

the same.  This is not the focus of this research and is reserved for future work. 

 

Figure 3.6: Graph Generation Times for AMM 

The AMM reveals a relatively linear trend with the increase in elements or 

relations having a minimal effect on the graph generation time (see Figure 3.6).  The 

AMM is traversing a list that has been created by the SW program during the assembly 

y = 0.0004x + 0.008 

R² = 0.6093 

y = 0.0002x + 0.0092 

R² = 0.6086 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20 40 60 80 100 120 140

G
ra

p
h

 G
e

n
e

ra
ti

o
n

 T
im

e
 [

s]
 

Number of Elements/Relations 

AMM Elements

AMM Relations

Linear (AMM Elements)

Linear (AMM Relations)



59 

modeling, and then writing this information to a text file.  For this reason the applied 

results generally follow the trend expected from the theoretical evaluation and are 

independent of factors such as part geometry and topology complexity.  

Cooperation with a local original equipment manufacturer (OEM) provided two 

additional models with a higher element and relation count.  While the sample size is not 

sufficient to make any general claims, the data still provides insight and demonstration 

that the IDM is capable of handling larger assemblies. The names of the products and the 

name of the local OEM are not disclosed due to proprietary reasons. 

Table 3.5: Graph Generation Time for Large Assemblies 

 IDM 

 Graph Generation Time [s] # of Elements # of Relations 

Assembly 1 6557 159 872 

Assembly 2 5012 75 367 

When the results of the graph generation time for the IDM are added to the chart 

along with the previous products, the general polynomial trend is still evident for the 

number of elements; however the number of relations is better fit by an exponential 

model (see Figure 3.7).  This case demonstrates that the IDM is able to handle larger 

scale assembly models, although the graph generation time appears to increase 

exponentially for the number of relations in the assembly. 
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Figure 3.7: IDM Graph Generation Time for Large Assemblies 

While the results generally follow the expected trends, the sample size and 

variation in number of elements and relations is still limited and requires additional 

testing to support these claims. 

3.3.2 Supported CAD File Types 

One advantage of the IDM over the AMM is the ability to handle additional file 

types other than SW Assembly Files.  The AMM is dependent on having a SW assembly 

file to retrieve assembly mates from. Using the import features built in and provided by 

SW, multiple file types may be imported and converted to SW assembly files.  However, 
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when these files (see Table 3.6) are saved into a generic CAD format for exchange 

between systems, the assembly mates are not preserved.  The IDM is able to create the 

connectivity graph of many different native file formats once imported using SW and has 

been tested on the following: SW assembly file (*.sldasm), IGES (*.iges), 

parasolid(*.x_t), and STEP (*.step;*.stp) (summarized in Table 3.6).  The STL file type is 

not currently supported by the IDM. 

Table 3.6: IDM Supported File Types 

File Type File Type Extension Supported 

SolidWorks Assembly *.asm;*.sldasm  

IGES *.iges; *.igs  

Parasolid *.x_t;*.x_b;*.xmt_txt;*.xmt_bin  

STEP *.step;*.stp  

STL *.stl,  

While the IDM can support multiple file types, SW is still required as the add-in 

to run the interference detection tool is built using the SW API and as the base software 

for importing the various CAD transfer formats.  However, the benefit is that files can be 

saved into a standard CAD file format from other CAD systems and imported into SW to 

run the IDM.  Moreover, the algorithm for interference detection is straightforward and 

can be implemented into similar commercial systems.  In fact, a major automotive OEM 

currently uses a similar algorithm, developed independently, to run clash and interference 

detection on vehicle assembly models.  The use of this algorithm to generate connectivity 

graphs is currently the focus of on-going work at the OEM in cooperation with 

researchers at the CEDAR Group. 
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3.3.3 Designer Dependency 

When creating a solid model, there are numerous ways a designer could model the 

product.  The actual geometry and technique used to create a part may slightly vary by 

designer, but this is out of scope of this research.  On the other hand, given a set of parts, 

different designers will mate them in different way to form the assembly.  For instance, 

based on the ink pen example from earlier, an alternate designer may mate multiple parts 

to a reference plane.  Furthermore, a designer may choose to limit the motion of all of the 

parts in the assembly to create a fully defined assembly in which all parts have zero 

degrees of freedom. [58]  This situation would result in an entirely different connectivity 

graph based on the AMM.  Since the AMM uses the mates from the assembly model to 

create the connection graph, all reference items which are used to mate the assembly are 

also included as entities (see Table 3.7). 



63 

Table 3.7: Part Connections for AMM 

Grip Body-1 Rubber Grip-1 

Grip Body-1 Ink Body-1 

spring-1 Rubber Grip-1 

Ink Body-1 Indexer-1 

Press Button-1 Indexer-1 

Grip Body-1 Body-1 

Grip Body-1 Rubber Grip-1 

spring-1 Grip Body-1 

Ink Body-1 Grip Body-1 

Press Button-1 Body-1 

Press Button-1 Indexer-1 

Rubber Grip-1 Body-1 

Rubber Grip-1 Front Plane 

spring-1 Front Plane 

Ink Body-1 Front Plane 

Press Button-1 Front Plane 

Indexer-1 Front Plane 

Body-1 Front Plane 
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These added relations increase the size of the connectivity graph and therefore 

also generate a different bi-partite graph and calculated complexity vector (see Figure 

3.8) 
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Figure 3.8: AMM Bi-Partite Graph of Fully Defined Ink Pen 
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Since the IDM is based on location of the parts in the modeling space, the 

connectivity graph is not dependent on the modeling style of the designer, but strictly on 

the location of the parts in the assembly space. 
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CHAPTER FOUR 

APPLICATION OF IDM DURING THE CONCEPTUAL DESIGN STAGE 

One shortcoming identified in earlier portion of this research is the limitation of 

application of design for assembly time estimation methods to the detailed design stage 

or for use as a redesign tool.  The majority of the cost of a product is determined during 

the conceptual design stage, and therefore a tool to support design for assembly during 

conceptual design is desired.  The connectivity complexity method does not require 

detailed information regarding the part (such as geometry), but strictly on the physical 

connection between the parts in a product.  The IDM can be used to generate connectivity 

graphs of low fidelity CAD models as inputs into the connectivity complexity method to 

predict assembly times of products early in the design stage. 

Previous work has focused on estimating assembly times from detailed 

component and assembly models [23,30,66].  This work evaluates the potential of using 

components represented at lower levels of detail, such as conceptual models or low-

fidelity models.  While the exact dimensions and features of the components are not 

known, the general system architecture and layout is captured early in design [50].  The 

form of the individual components are developed throughout the design process to create 

a completed CAD model with working drawings in the detailed design stage [50].  For 

clarity, low-fidelity models are those that are found in conceptual design and high-fidelity 

models are found in detailed design phases. 

This portion of the research explores the use a modified complexity connectivity 

method to estimate the assembly time of models in the conceptual design phase.  The 
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estimated assembly time of the conceptual models is compared to the estimated assembly 

time of the complete models using the same modified complexity connectivity method.  

4.1 Set of Models 

The experiment presented in this chapter uses a total of thirteen products (Table 

4.1) to compare the estimated assembly time of high-fidelity models and low-fidelity 

models.  The models were used in previous work and were created by multiple designers 

by physically reverse engineering existing products or downloading models from the 

public domain [30].  The first three models are withheld for testing purposes. 
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Table 4.1. Products Used in Training and Testing 

Common Name Training/Testing CAD Model Image 

Stapler Testing 

 

Flash Light Testing 

 

Ink Pen Testing 

 

Pencil Compass Training 

 

Indoor Electric Grill Training 

 

Solar Yard Light Training See Table 3.3 

Table Vise Training 

 

Drill Training See Table 3.3 

Shift Frame Training See Table 3.3 

Vegetable Chopper Training See Table 3.3 

Computer Mouse Training See Table 3.3 

Piston Assembly Training See Table 3.3 

3 Hole Punch Training See Table 3.3 
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4.2 Reducing Model Fidelity  

Low-fidelity CAD models are difficult to define and are often not distinctly saved 

by the designer before they are evolved to more detailed higher fidelity models.  For this 

work, the high-fidelity models were reduced in fidelity to represent low-fidelity models 

in the conceptual design phase.  

To do this, each part included in an assembly model was reduced to its lowest 

level feature.  In SolidWorks the feature tree stores the features used to create a part and 

the order in which those features were created.  To decrease bias in the reduction of 

fidelity of the parts, the feature tree was reduced to the top level feature for each part.  It 

should be noted that if multiple designers create the same part, a different conceptual 

model may result.  This uncertainty is not the focus of this research and is reserved for 

future work.  

As an example, the first feature used to create a bolt may be an extruded shaft 

(Boss-Extrude1).  Next, a swept extrusion (Sweep1) is used to create the threads around 

the shaft of the bolt. An additional extrude (Boss-Extrude2) is used to create the bolt head 

and then an extruded cut (Cut-Extrude1) is used to cut the hex in the top of the bolt head.  

Starting from the bottom of the feature design tree, the Cut-Extrude1 is deleted, followed 

by Boss-Extrude2 and Sweep1 leaving only the initial extrude as an example of a 

conceptual model for a bolt (see Table 4.2). 
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Table 4.2. Reduction of Fidelity of a Bolt Model to Create a Low Fidelity Model 

High Fidelity (final 

part) 
Intermediate 2 Intermediate 1 

Low Fidelity  

(raw part) 

     

Cut-Extrude1 Boss-Extrude2 Sweep1 Boss-Extrude1 

This removes detail from the parts in the CAD model, leaving a low-fidelity 

model of the product simulating a model created in the conceptual phase of the design 

process.  The indoor electric grill (Figure 4.1) is similarly reduced from a detailed model 

to an assembly of the low-fidelity part models.  Mating relationships may be lost in this 

transformation, precluding the use of previous graph generation tools [30].  Therefore, a 

mate-independent method for generating the connectivity graphs is used based on 

interference checks. 

  

Figure 4.1. Electric Grill from High Fidelity Model to Low Fidelity Model 

4.3 Artificial Neural Network Generation 

The artificial neural network (ANN) used for this research is a supervised back 

propagation network [30,31,67,68].  The ANN is trained by providing a set of input 

vectors and a set of target values.  The ANN then creates a relationship model between 
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the input values and the target value.  In this case, the complexity vector of 29 metrics is 

the input vector and the assembly time of the product will be used as the output.  Once an 

ANN is trained, a new complexity metric is input and the ANN provides an assembly 

time. 

4.4 Experimental Sets 

Two separate neural networks are defined, trained, and compared. The first ANN 

uses the complexity vector of the high-fidelity models as input and assembly times as the 

targets.  The second ANN uses the complexity vectors of the low-fidelity models as the 

training inputs and the same assembly times as target times.  The low fidelity complexity 

vector and high fidelity complexity vector for each product differ, since the physical 

connection between elements is altered. The low fidelity and high fidelity complexity 

vectors of a pen are included for reference (see Table 4.3). 
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Table 4.3 High and Low Fidelity Complexity Vector for Pen 

 High Fidelity Low Fidelity 
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sum 10.00 19.00 

max 2.00 3.00 

mean 1.43 2.71 

density 0.14 0.23 
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sum 10.00 19.00 

max 2.00 3.00 

mean 1.43 2.71 

density 0.14 0.23 
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This approach is used to test the ability to train a neural network to find a 

relationship between low-fidelity complexity vectors and product assembly times.  Each 

ANN is used to predict the assembly time of a test data set (three products) using the 

high-fidelity and low-fidelity models.  The experimental sets are summarized in Table 

4.4. 

Table 4.4. Experiment Design Sets 

Set Number ANN Trained on: Input Vector Set Type: 

1 High Fidelity Models Vectors High Fidelity Model Test Vector 

2 High Fidelity Models Vectors Low Fidelity Model Test Vectors 

3 Low Fidelity Model Vectors High Fidelity Model Test Vector 

4 Low Fidelity Model Vectors Low Fidelity Model Test Vectors 

4.5 Conceptual Model Time Estimate Results 

After the two ANNs are trained, the input vectors are passed back in to the neural 

network to gain a qualitative assessment of ANN fit to the training set.  The percent error 

is calculated as the normalized difference from the target time (see Eqn. (1)).  A positive 

percent error indicates that the predicted time was greater than the target time, and a 

negative percent error indicates that the predicted time is less than the target time. 

% Error =
𝑃 − 𝑇

𝑇
 𝑥 100 (1) 

The ANNs are able to estimate the training set assembly times within 70% of the 

target time, and does not visually appear to be over fit to the training set data (see Figure 

4.3).  Overtraining results in a model that represents the current data set, but limits the 

ability of the ANN to extrapolate to new data sets [67,69,70].  An over fit training set 
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would result in a predicted time that overlays the training data very closely. In an over fit 

case each point of the predicted time would fall on the training time. 

 

Figure 4.2: Training Times and Predicted Times 

Previous research offers numerical techniques to detect and prevent ANN over fit 

and improve performance of ANN by varying ANN parameters [71].  As the focus of this 

research is to demonstrate the potential to use ANN to predict assembly times of low-

fidelity models, the improvement in design of the ANN itself is reserved for future work. 

To test the performance of the two ANNs in predicting the assembly times, 

complexity vectors of three products, the stapler, flash light, and ink pen, not used in the 

training are used for testing.  For each of the test products the high fidelity and low 

fidelity graph complexity vectors were calculated and used as the input to both ANNs 

trained, both high fidelity and low fidelity.  
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Figure 4.3. Training Set Percent Error from Target Time 

The target time, the predicted time, and the percent error for each of the three test 

cases are presented in Table 4.5.  Each ANN predicted an assembly time greater than the 

target time for the test cases except for the high-fidelity ANN for the stapler.  The test 

products varied in target assembly times from 34 seconds to 123 seconds.  Additional test 

cases with a larger range of assembly times are needed to determine if the ANN time 

estimate accuracy is dependent on the assembly time or the complexity of the product 

being studied. 
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Table 4.5. Test Products Results Summary 

Fidelity Levels Predicted Time [s] (Percent Error) 

ANN Test Assembly Stapler Flash Light Ink Pen 

High High 115.84 (-6%) 107.65 (43%) 54.78 (59%) 

High Low 119.43 (-3%) 91.79 (22%) 46.41 (35%) 

Low High 157.19 (27%) 109.89 (46%) 72.36 (110%) 

Low Low 198.30 (61%) 95.19 (26%) 51.65 (50%) 

Target Time [s] 123.51 75.40 34.40 

The percent error from the target time was calculated for each of the outcomes 

(see Figure 4.4, Figure 4.5, and Figure 4.6). 

 

Figure 4.4. Test Case Results for Stapler 
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Figure 4.5. Test Case Results for Flash Light 

 

Figure 4.6. Test Case Results for Ink Pen 
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Visual inspection of the results suggests that both of the ANNs (high fidelity and 

low fidelity trained) were able to predict the assembly time of the test cases to within 

120% independent of the type of input vector used.  However, the low fidelity ANN was 

the generally the worst at predicting assembly time when presented with a high fidelity 

input vector.  The best combination of ANN and input vectors, based on the lowest 

percent error for all three test cases is the high fidelity ANN being provide low fidelity 

input vectors.  The focus of this research is if an ANN can predict the assembly time of a 

low fidelity model.  Both the high fidelity ANN and the low fidelity ANN were able to 

predict the assembly time of the conceptual test models to within 120% of the target time.   

To statistically investigate the results of the ANNs and the input vector fidelity, an 

analysis of variance (ANOVA) is used.  The fidelity level of the ANN (factor 1) and the 

input vector (factor 2) has either a low fidelity or a high fidelity.  Each experiment had 

three replications since it was tested using three products, stapler, flash light, and pen (see 

Table 4.6).   

Table 4.6: Experiment Design for Test Cases 

Experiment # 
ANN Fidelity 

(Factor 1) 

Input Vector Fidelity 

(Factor 2) 
Replications 

1 Low Low 3 

2 Low High 3 

3 High Low 3 

4 High High 3 

The effect of ANN fidelity was not significant (p = 0.147) and the effect of the 

model fidelity was also not significant (p = 0.4297) at an alpha value of 0.05.  Previous 

research has suggested using a more lenient alpha value when studying human subjects or 
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experiments with low sample sizes [72,73].  At an alpha value of 0.15 (85% confidence), 

there is some evidence to suggest that the fidelity of the ANN does reduce the % error in 

predicting the assembly time of a product. 

To further explore the effect of the fidelity of the ANN and the fidelity of the 

input vectors on the assembly time estimation, the entire set of thirteen products (training 

and testing) are considered (see Table 4.7).  The focus of this portion of the research is to 

determine if the assembly time of products early in the design stage (low model fidelity) 

can be estimated using the IDM, and the type of ANN training (low fidelity or high 

fidelity) should be used.  Theoretically, the training products should return an assembly 

time estimate with lower percent error since these products were used to train the neural 

network.  Therefore, the values for the percent error in this portion should not be used to 

generalize expected error for applying the method to future products, but only for 

comparison purposes. 

Table 4.7: Experiment Design for Entire Sample 

Experiment # 
ANN Fidelity  

(Factor 1) 
Input Vector Fidelity (Factor 2) Replications 

1 Low Low 13 

2 Low High 13 

3 High Low 13 

4 High High 13 

The results indicate that at an alpha value of 0.05, the fidelity of the ANN is a 

significant factor (p = 0.018).  The fidelity of the input vector is not significant (p = 

0.103).  The mean percent error of the low fidelity ANN and the high fidelity ANN are 

7.115 and 24.692 respectively.  The mean percent error seen by using the ANN trained 
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with the high fidelity vectors had less mean percent error than the ANN trained with the 

low fidelity vectors.  The numerical value or difference between the means is not 

meaningful for generalization because the training products are used in the analysis to 

increase the replication size.  The training sets and the test cases were limited in number 

and could potentially influence the results.  The results of this study serve as 

demonstration that there is potential to use an ANN to estimate the assembly time of 

models early in the design process. 

4.6 Conclusions and Future Work 

The ability of a neural network to create a relationship between input vectors and 

output vectors depends on the training set provided.  The larger the training set, to a 

degree to avoid over fitting, the better the neural network is at predicting the output.  

While the input vectors used to train the neural network in this research are limited to ten 

training products, future work includes increasing the training set to determine if the 

assembly time estimation can be further improved.  The number of test products will also 

be increased to ensure the trends in this limited population are valid. 

The findings of this study suggest that the high fidelity assembly model based 

neural networks provide good prediction tools for estimating assembly time for both high 

fidelity and low fidelity conceptual models.  This tool shows promise for providing 

engineers in conceptual stages of product development with useful information about 

production costs via assembly time estimation early in the design process.  The accuracy 

of these predicted times are sufficient to provide justification for alternative engineering 

selection decisions at early stages.  While this research is not specifically being 
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conducted for conceptual design, the application of a design for assembly method in early 

design stages is desirable.  This study provides suggests that the application of the IDM 

method for early design stages is viable.  More significantly, this approach is 

demonstrated to operate on assembly models in earlier stages of development than any 

other reviewed DFA methods and approaches. 
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CHAPTER FIVE 

TESTING OF INTERFERENCE DETECTION METHOD 

To test the performance of the IDM, the method is used for internal testing and 

external testing.  For internal testing, a set of fourteen products are reverse engineered 

and the assembly time of each is calculated using the Boothroyd and Dewhurst assembly 

time estimation manual chart method. The assembly times are used to train an ANN to 

estimate the assembly time of the product in comparison to times found the AMM (see 

Chapter 1.2.2.2).  For external testing, a local OEM has provided assembly models and 

actual in plant assembly times of fourteen products.  These models and assembly times 

are used to train another ANN. 

5.1 Internal Testing – CEDAR Products 

The connectivity graph for the eleven training products was obtained using both 

the AMM and the IDM methods.  The complexity metrics for each respective method was 

obtained and was used as the input for training of an artificial neural network.  The target 

time for each of the products was calculated using the manual Boothroyd and Dewhurst 

assembly time estimation charts [4]. 

The connectivity graphs and complexity vectors for the test products were then 

generated using each of the graph generation methods.  The previously trained neural 

networks were then used as a prediction tool to estimate the assembly time of the test 

products.  Each neural network is composed of 189 architectures and each architecture 

has 100 repetitions resulting in 18,900 predicted assembly time data points for each 

product.  The average time of all of the results of a neural network is the average 
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predicted assembly time (see Table 5.1).  The number of architectures as well as 

repetitions for each architecture may be reduced to decrease computational effort.  

Table 5.1: Predicted Assembly Times of Test Products 

 
Target 

Time 

AMM Average Predicted 

Time 

IDM Average Predicted 

Time 

Stapler 123.51 115.84 89.98 

Flashlight 75.40 107.65 65.96 

Blender 263.21 290.40 352.09 

To compare the predictive ability of each of the graph generation methods, the 

mean percentage error (MPE) was calculated for each neural network.  The MPE is 

calculated as the following: 

   E =
 

 
∑

   

 

 
  (1) 

Where: 

n = Number of Observations 

T: Target Time 

P: Predicted Time 

The MPE of each of the test cases is calculated, and all of the MPE values are less 

than 45% (Figure 5.1).  Graphically, neither method has a clear advantage based on MPE.  

The IDM has a lower MPE for the stapler and blender, but the AMM has a lower MPE 

for the maglight. 
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Figure 5.1: Mean Percent Error of Test Products 

To compare the mean percent error values a 2 sample t-test was conducted.  Based 

on the central limit theorem, the sample size is large enough to assume a normal 

distribution and therefore a two sample t-test with unknown variances is appropriate.  

The hypothesis test was used to test if the mean average error of the IDM was 

statically different than the mean of the AMM. The confidence interval used for this test 

was 95%. 

H0 ∶ μ0 = μ1 

H1 ∶ μ0 ≠ μ1 

The results indicate a p-value less than 0.05 providing evidence to reject the null 

hypothesis.  The t-test suggests that the mean percent error values of assembly time are 
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not equal.  While there is statistically significant evidence that the means are not equal, 

the practical difference in the means are not different.  Graphically, the mean percentage 

error of the IDM and the AMM are similar (see Figure 5.2).  The graphical depiction, 

however, does suggest that, while the means are similar, the variance observed with the 

AMM method is greater than that observed with the IDM.  The graphical evidence 

supports that both methods are relatively accurate in estimating assembly time, but the 

IDM method produces less variance. The results of the three test cases suggest that the 

AMM is more accurate in estimating assembly times however has a greater variance, 

indicating the time estimates are centered about the mean. 
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Figure 5.2: Comparison of IDM and AMM Assembly Time Estimates 

5.2 External Testing – Original Equipment Manufacturer Products 

The IDM has been shown to be able to estimate the assembly time of products 

that were reverse engineered, and the target assembly time was calculated using the 

manual Boothroyd and Dewhurst assembly time estimation method.  While previous 

literature has shown that the Boothroyd and Dewhurst assembly time estimation method 
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is well accepted in academia and industry, this research is further validated by applying 

the IDM to products currently in production with known assembly times. 

A local power tool manufacturing company provided CAD assembly models of 

fourteen products along with the actual in plant assembly times of each product.  The 

phrase “actual assembly time” is used to describe the measured assembly time required to 

assemble a product.  The times for each product are acquired directly from the 

manufacturing plant where the product is being assembled. 

This experiment was conducted to determine if a neural network trained with 

products from the same product family and manufactured by the same company would 

improve the methods ability to estimate the assembly time.  Previous work on manually 

constructed connectivity graphs for automotive sub-systems demonstrated that the 

method performed better to predict assembly times for products drawn from the same 

portion of the OEM’s assembly line [29].  This informs the following hypothesis for this 

experiment. 

Hypothesis 

Training an artificial neural network using products from 

within the same product family as the products for which be 

estimating the assembly time of will improve the overall 

accuracy of the time estimate. 

5.2.1 Artificial Neural Network Training 

To conduct this experiment, two previously trained ANNs are used to estimate the 

assembly time of the products provided by a local power tool OEM.  This OEM is a 

major competitor in the design and manufacturing of power tools, outdoor equipment, 
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and floor care.  Tools from the power tools division will be used for external testing in 

this research.  

The first ANN was trained using the CEDAR products (see Table 3.3).  The 

CEDAR products include consumer products mostly composed of electromechanical 

devices (see Table 5.2), for additional information and pictures see Chapter 3.3).  

Table 5.2: CEDAR Training Products 

Ink Pen 

Pencil Compass 

Indoor Electric Grill Model 

Solar Yard Light 

Pony Vise 

Electric Drill 

Shift Frame 

One Touch Chopper 

Computer Mouse 

Piston Assembly 

Three Hole Punch 

The second ANN is the OEM ANN which was trained using product models and 

actual assembly times provided by OEM.  The OEM ANN products are tools that are 

from the handheld power tools product family (Table 5.3).  To train the ANN, eleven of 

the fourteen products provided by the OEM were used as the training set (See Table 5.3).  

The remaining set of products will be used to test the ability of the ANN to estimate the 

assembly times once training is completed.  A supervised back propagation network is 

used to find a relationship between the complexity metrics of the training set and the 

respective assembly time. 
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Table 5.3: Training and Testing Products for OEM ANN 

Product 

Name 
Training/Testing Image 

Circular Saw Training 

 

Laminate 

Trimmer 
Training 

 

Reciprocating 

saw 
Training 

 

Compact 

reciprocating 

saw 

Training 
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Compact 

Jigsaw 
Training 

 

Drill Training 

 

Impact Training 

 

Angle Drill Training 
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Ratchet head Training 

 

Multitool Training 

 

Hammer Head Training 

 

Recip Saw 

Head 
Testing 
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Jig Saw Head Testing 

 

Hammer Drill Testing 

 

5.2.2 Assembly Time Estimation 

The trained ANN was used to estimate the assembly time of the three products 

that were withheld from the training set.  The estimated time is the average time of the 

result of 18,900 time estimates resulting from the ANN design of 189 architectures with 

100 repetitions. 

Table 5.4: OEM ANN Assembly Time Estimation Results 

 
Recip Head Jigsaw Head Hammer Drill 

Target Time [s] ~1200 ~1100 ~1400 

OEM ANN Average Estimated Time [s] 825 778 410 

Percent Error -35% -30% -70% 

The results of time estimate show that the mean percent error (MPE) of the 

reciprocating head, the jigsaw head, and the hammer drill was -35%, -30%, and -70% 

respectively.  The negative MPE indicates that the estimated time was less than the target 
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time.  Boothroyd and Dewhurst indicate that the user should expect an error of 

approximately 50%, and two of the three test products analyzed using the IDM fell within 

this expected error. 

To test the ability of the OEM ANN to estimate the assembly times of a the test 

products in comparison to the CEDAR ANN, a non-parametric test (Mann Whitney) test 

was used to compare the medians.  Each ANN results in 18,900 time estimates for each 

product.  The percent error for each of 18,900 per product per ANN was calculated and 

used as the basis of comparison.  The percent error was calculated as the difference 

between the predicted time and the target time, and normalized by the target time (see 

equation (2)). 

% Error =
𝑃 − 𝑇

𝑇
 𝑥 100 (2) 

Where: 

P: Predicted Time 

T: Target Time 

 

The alpha value used for this study is 0.05 and null and alternative hypothesis are 

the following: 

H0 ∶ The population medians are equal 

H1 ∶ The population medians are not equal 

The Mann-Whitney statistical test suggests that there is sufficient evidence to 

reject the null hypothesis of equal medians between the two ANNs with a p = 0.000 < 

alpha = 0.05.  The median percent error of the OEM ANN is -40.11 and the median 

percent error for the CEDAR ANN is -59.93.  The 95% confidence interval for the 
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percent error difference between the OEM ANN and the CEDAR ANN (OEM ANN - 

CEDAR ANN) is approximately between -18 and -13.  The median of the OEM ANN is 

less than the median of the CEDAR ANN.  The results suggest that the neural network 

trained on products from a specific company from within the same product genre results 

in a lower percent error when estimating the assembly time using the Interference 

Detection Method Assembly Time Estimation Method. 
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CHAPTER SIX 

SPLIT INTERFERENCE DETECTION METHOD 

In an effort to further improve the accuracy of the Interference Detection Method 

and the Boothroyd and Dewhurst assembly time estimation method, the handling codes 

and insertion codes are automated using separate techniques.  While prior research 

indicated that there is an opportunity to reduce subjectivity by statistical means [60], the 

resulting range from using statistics alone for the insertion would leave the method 

inaccurate by producing a range too large to be useful (see Section 2.3.2).  The handling 

codes are composed of mainly objective questions, and based on part geometry and part 

properties can be determined from the solid model (see Section 2.3.3).  The insertion 

codes on the other hand are composed of a majority of subjective questions (see Section 

2.3.3). Therefore, the insertion times are determined using a modified complexity 

connectivity method.  The modified complexity method used part connection information 

within the assembly model to calculate a complexity vector.  The complexity vector is 

then used as the input into the ANN to estimate an assembly time.  This method 

potentially eliminates the need of a human inputting subjective information by using the 

modified complexity connectivity as a surrogate to the insertion time.   The sum of the 

handling time and the insertion time for each part then results in the total assembly time 

of the product. This chapter will describe the approaches to estimate the handling and 

insertion codes respectively. 
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6.1 Handling Codes - Objective Questions 

Eighteen of the twenty options from the first chart of handling questions required 

in the Boothroyd and Dewhurst assembly time estimate consist of objective questions 

[27].  The Split Interference Detection Method (SIDM) will retrieve handling codes and 

times based on objective information gathered from CAD software such as part size, part 

weight, and material.  This portion of the method will need to calculate the following 

information related to each part: 

Symmetry (Alpha + Beta Symmetry) 

Size – longest bounding box edge length 

Thickness – shortest bounding box edge length 

Volume – related to weight by the mass density relationship 

Information retrieved from the part CAD model will be used to determine the 

handling time associated Boothroyd and Dewhurst estimated assembly time (see Figure 

6.1).  

 

Figure 6.1: Handling Code Flow Chart 
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To determine the handling code and handling time of a part, the size and thickness 

of the part need to be determined.  The envelope is the smallest rectangular box that can 

completely enclose the part (see Figure 6.2). The smallest box that can enclose the part 

and is aligned with the part global coordinate system is known as the bounding box (see 

Figure 6.2). The faces of the bounding box are aligned with the front, right, and top plane.  

The front, top, and right planes are the global part planes and are aligned with the global 

coordinate system shown by the triad showing the X, Y, and Z directions (see Figure 6.2).  

A survey of parts created by students indicated that generally parts are created by starting 

on one of the pre-created front, top, or right plane.  From 100 parts examined, 97 of the 

parts were started on one of the pre-created planes. 

 

Figure 6.2: Bounding Box Aligned to Part Global Coordinate System 
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The size of the part is determined by the length of the longest edge of the 

bounding box.  The length of the shortest edge of the bounding box is the thickness of the 

part (see Figure 6.3).  In the case where the bounding box has all edges with equal 

lengths (cube), then the size and thickness have the same value.  A call is then made to 

the mass properties function of the application protocol interface (API) to find the 

volume of the part.  The API is an interface that allows a programmer to make calls from 

a standard programming language (C++ is used for this research) to the SW program.  

The function calls are specific to each commercial CAD system, but are common 

function calls found in all systems [74].   

 

Figure 6.3: Bounding Box Aligned to Part Global Coordinate System 

To determine the symmetry of each part, an algorithm was developed that that 

creates multiple cuts on the part and compares the volume before and after the operations.  

Size 

Thickeness 



100 

This symmetry algorithm was specifically developed for the determining the handling 

code for Boothroyd and Dewhurst assembly time estimation method [4].  The handling 

portion of the Boothroyd and Dewhurst assembly time estimation method focuses on 

determining the alpha and beta symmetry of a part. 

This symmetry algorithm is designed to determine a range of symmetry instead of 

an exact symmetry.  This allows for the algorithm to operate on part geometry as opposed 

to previous symmetry detection methods which implement more computationally 

demanding techniques [26,75–77].  Previous methods often focus on topological features 

for comparison such as face loops or vertices, while others compare the arc lengths at 

different sectional views  of a part [26,75–77]. While previous more computational 

expensive techniques return exact symmetry, the symmetry needed in estimating 

assembly times is more approximate and is based on symmetry ranges as described by 

Boothroyd and Dewhurst (see Chapter 6.1.3).The algorithm determines the two 

symmetry values: alpha and beta symmetry. 

6.1.1 Alpha Symmetry Algorithm 

The alpha symmetry is the symmetry along a plane perpendicular to the axis of 

insertion[4,78].  The axis of insertion is the axis parallel to the insertion direction of one 

part into another [4].  The alpha symmetry indicates if a part can be inserted either end 

first, or if there is a specific orientation for the part.  For instance, a long slender cylinder 

(length > diameter) has an alpha symmetry of 180 degrees (see Figure 6.4).  This 

indicates that it is possible to insert the part at every 180 degree rotation of the part. A 
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bolt on the other hand is not symmetric about the alpha symmetry plane and can only be 

inserted every 360° rotation of the part (see Figure 6.4). 

  

α = 180 α = 360° 

Figure 6.4: Example of Alpha Symmetry 

The alpha symmetry algorithm is a multi-step approach focused on volume 

comparison (see Figure 6.5). 
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Figure 6.5: Alpha Symmery Algorithm Flow Chart 

To demonstrate the alpha symmetry algorithm, an abstract model of a bolt is used 

(see Figure 6.6).  The first step in the finding the alpha symmetry is to find the bounding 

box of the part.  The bounding box of the part is the smallest axially aligned orthogonal 

box that can enclose the part.  The term orthogonal is used in this case to indicate that 

Step 2: Find longest dimension 

Step 3: Set as insertion axis 

Step 5: Cut to geometric center 

α = 180° α = 360° 

true 

If V1 = V2 

false 

Step 1: Get bounding box 

Step 4: Create sketch on plane 

Step 6: Compare volumes 



103 

each face of the bounding box is aligned with the global part planes (see Figure 6.6).  The 

bounding box is the rectangular box outlined in black, and the part planes (“Front Plane”, 

“Right Plane”, and “Top Plane”) are the planes created by SolidWorks for every part.  

Each face of the bounding box is aligned (parallel) with the part planes.  In this step the 

size, volume, and thickness are captured by a call to the API. 

 

Figure 6.6: Bounding Box 

The second step in the alpha symmetry algorithm is to find the axis of insertion.  

The axis of insertion indicates the direction that the part will be inserted during assembly.  

The assumption that is used for this research and has been used in previous research is the 

axis of insertion is assumed to coincide with the longest dimension of the part [78]. The 

axis of insertion is created from the center point of the plane that is normal to the longest 

dimension of the bounding box of the part.  For the bolt, the longest dimension of the 

bounding box is along the right plane or top plane, therefore the front plane is the plane 
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normal to the right plane (see Figure 6.6 and Figure 6.7).  The axis is then created from 

the center point of the face of the bounding box that is aligned with the front plane.  The 

axis is then created to the opposite side of the bounding box (see Figure 6.7). The axis of 

insertion is shown only to clarify the approach taken.  The actual axis feature is not 

needed by the algorithm, but only the direction of the axis.  

 

Figure 6.7: Axis of Insertion 

After the axis of insertion and the associated normal plane are determined, 

creating a sketch is the fourth step in determining the alpha symmetry.  A sketch is 

created on the plane normal to the axis of insertion.  This algorithm sketches a circle (see 

Figure 6.8) on the normal plane, with two main conditions: 

1. The diameter of the circle must be such that it encompasses the entire part 

2. The center of the circle must be centered at the center of the normal plane.  

This is the point where the axis of insertion and normal plane intersect. 

Size 

Thickness 
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The radius of the circle is determined using the dimensions of the bounding box 

aligned with the normal plane.  The diameter of the circle is set to be twice the length of 

the edge of the bounding box aligned with the normal plane.  For instance, if the 

bounding box results in a dimension of 2x2x4 inches (height x width x length) and the 

normal plane is aligned with the height and width, the radius of the circle would be equal 

to four inches (2*2 inches).  This value is used to ensure that the circle drawn will 

encompass the entire part when used for the cut.  A circle is chosen for this research to 

reduce the number of input parameters needed.  A circle is defined by a center point and a 

radius/diameter.  A different shape such as a rectangle can be used with the same 

technique; however it would require additional parameters to define the shape and would 

therefore decrease the efficiency of the algorithm. 

 

Figure 6.8: Sketch to Create Cut 
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Once a sketch is created on the plane normal to the axis of insertion, the sketch is 

then used to create an extrude cut (see Figure 6.9).  The extruded cut is specified to a 

distance of half of the length of the longest edge of the bounding box of the part.   

 

Figure 6.9: Cut to Geometric Center 

The part can now be viewed as two separate bodies.  The volume of the part that 

is being cut away is referred to as V1 and the remaining part after the cut is completed is 

referred to as V2 (see Figure 6.10). 
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Figure 6.10: Compare Volumes 

The volume of the two bodies are then compared to determine if they are equal 

with a 0.2% tolerance in order to account for numerical rounding errors.  If the volumes 

are equal, then the part is considered to 180° or less in terms of alpha symmetry.  For 

instance, a sphere would have an alpha value of 0⁰, but this level of granularity is not 

necessary and is not captured in this symmetry algorithm.  However, if M1 and M2 are 

not equal, then the part would be considered to have an alpha value of 360⁰ (see Table 

6.1). 

Table 6.1: Alpha Values based on Part Volume 

If: Alpha Value (α) 

V1= V2 180
⁰ or less 

V1 ≠ V2 360
⁰
 

While this method provides a quick estimate of the alpha symmetry of a part, 

there are certain cases that result in an inaccurate alpha value prediction.  One example of 

V1 V2 
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a part that could return an inaccurate alpha value is a “dumbbell” that has different 

geometry but equal volume on each end (see Figure 6.11).   

 
Figure 6.11: Dumbell Alpha Example 

The algorithm to determine part symmetry is based on the part volumes, so unique 

cases exist such that the symmetry of the part is not correctly captured by the algorithm.  

When the dumbbell is cut to the geometric center, the volume V1 = V2, resulting in an 

alpha value of 180°.  Visual inspection reveals that the dumbbell is only symmetric at 

angle of 360°, indicating that the dumbbell can only be inserted in one way. This increase 

the row of the Boothroyd and Dewhurst assembly time estimation method from row 1 to 

row 3 ((see Table 6.2).  While unique cases exist that result in an incorrect alpha value, 

the effect this has on the handling time estimation is minimal when considering a full 

assembly model.  An incorrect alpha value may result in a maximum handling time error 

of one second per part that is incorrectly evaluated (see Table 6.2). 
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Table 6.2: Exerpt of One Hand Handling Chart [4] 

  
Parts are easy to grasp and manipulate 

  
T > 2mm T ≤ 2 mm 

  
S > 15 mm 6 mm ≤ S ≤ 15mm S < 6 mm S > 6 mm S ≤ 6 mm 

  0 1 2 3 4 

(α+β) < 360 0 1.13 1.43 1.88 1.69 2.18 

360 ≤ (α+β) < 

540 
1 1.5 1.8 2.25 2.06 2.55 

540 ≤ (α+β) < 

720 
2 1.8 2.1 2.55 2.36 2.85 

(α+β) = 720 3 1.95 2.25 2.7 2.51 3 

The alpha symmetry algorithm is generally able to determine the symmetry of the 

part and will be demonstrated against a set of test cases drawn directly from the literature 

in Section 6.1.3. 

6.1.2 Beta Symmetry Algorithm 

The beta symmetry determines the rotational symmetry of a part about its axis of 

insertion [4].  The beta symmetry algorithm uses a similar approach as alpha symmetry, 

requiring three additional steps (see Figure 6.12). 
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Figure 6.12: Beta Symmery Algorithm Flow Chart 

Step 2: Find longest dimension 

Step 3: Set as insertion axis 

Step 5: Identify remaining planes (Plane 2 

and Plane 3) 

β = 360° 

true 

If V2.1 = V2.2 
false 

Step 1: Get Bounding Box 

Step 4: Identify Alpha Plane (Plane 1) 

Step6: Create Sketch on Plane 2 

Step 7: Cut to through all in one direction 

Step 8: Create Sketch on Plane 3 

If V3.1 = 

(1/2)*V2.1 

β = 180° 

β = 90° 

false 

true 

Step 9: Cut to Geometric Center 
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The front plane was determined to be the plane normal to the axis of insertion 

from the alpha symmetry algorithm (see Figure 6.13).  For the beta symmetry, the 

remaining two planes (the right plane and the top plane in this case) that are normal to the 

plane used for alpha symmetry are used to create the sketches for cutting (see Figure 

6.13).  

 

Figure 6.13: Bounding Box for Beta Symmetry 

The first cut in determining the beta symmetry is created on the right plane (see 

Figure 6.14).  A circle sketch is created that is centered at the intersection of the right and 

front planes, which is also the center of the respective face of the bounding box.  The 

radius of the circle is determined based on the size of the bounding box measure for the 

part.  The radius is set as the minimum diameter to encompass the longest edge of the 

bounding box. The circle is again chosen as the cutting shape to minimize the number of 

parameters and to simplify the subtraction volume construction. 
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Figure 6.14: Circle Sketch for First Cut for Beta Symmetry 

The circle sketch created is then used to cut through all in one direction of the 

part.  This cut will remove half of the part based on the location of the bounding box 

enclosing the part.  The volume of the remaining body (V2.1) is compared to the volume 

of the cut body (V2.2) (see Figure 6.15).   
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Figure 6.15: First Cut for Beta Symmetry 

If the volume of V2.1 is not equal to the volume of V2.2 then the part has beta 

symmetry of 360°. If the volume of V2.1 is equal to the volume of V2.2, then additional 

steps are taken to determine the beta symmetry.  Continuing to operate on the remaining 

body (V2.1) a circle is sketched on the third and final part plane, the top plane (see Figure 

6.16).  Once again the diameter of the circle is determined from the size of the bounding 

box as discussed for first cut for beta symmetry. 

 

Figure 6.16: Circle Sketch for Second Cut for Beta Symmetry 

V2.2 – Cut Away 

V2.1 – Remaining Body 
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This circle is cut ‘through all’ in one direction to leave the body V3.1 (see Figure 

6.17).  The volume V3.1 is compared to the volume V2.1.  

 

Figure 6.17: Second Cut for Beta Symmetry 

If V3.1 is equal to half of V2.1 (or a quarter of the entire volume of the part), then 

the part has a beta symmetry of 90°.  If V3.1 is not equal to half of V2.1, or a quarter of 

the volume of the original part, then the part is only has beta symmetry of 180°.  Similar 

to the alpha algorithm, the beta algorithm only determines symmetry to a level of 

granularity of 90° increments.  A long slender cylinder should result in beta symmetry of 

0° since it can be inserted at any rotational angle; however this algorithm returns a value 

of 90°.  While this is a limitation of the algorithm in general, for this application in 

determining handling codes for the Boothroyd and Dewhurst assembly time estimation 

method, this level of granularity is sufficient because the row groupings are distinguished 

by 180°.  This limitation is further discussed in the next section as the symmetry 

algorithm performance in determining the value of alpha and beta is compared to 

previous literature. 

V3.1- Remaining Body 
V3.2 – Cut Away 
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6.1.3 Symmetry Test Cases from Literature 

To test the performance of the symmetry algorithm, a set of test cases from 

literature is used for evaluation purposes [78].  Twelve parts (see Table 6.3) are used to 

compare the performance of this symmetry algorithm to another symmetry algorithm 

found in research literature [78].  The benchmark parts are chosen from research 

literature source and are defined external of this research to ensure an objective 

demonstration of the symmetry method in comparison to previous research. 
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Table 6.3: Symmetry Test Parts (Adapted from [78]) 

 
 

 

Test Part 1 Test Part 2 Test Part 3 

 
  

Test Part 4 Test Part 5 Test Part 6 

   

Test Part 7 Test Part 8 Test Part 9 

 

 

 

Test Part 10 Test Part 11 Test Part 12 
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The specific ranges of symmetry that are required to determine the handling code 

from the Boothroyd and Dewhurst assembly time estimation method have been 

categorized for discussion in this research (see Table 6.4).  Each range of symmetry is 

directly linked to a row from the Boothroyd and Dewhurst assembly time estimation 

method. 

Table 6.4: Symmetry Ranges and Associated Boothroyd and Dewhurst Row 

Number 

Symmetry Range Symmetry Category 
Boothroyd and Dewhurst Row 

Code 

α+β < 360⁰ 1 1 

360⁰ ≤ α+β < 540⁰ 2 2 

540⁰ ≤ α+β < 720⁰ 3 3 

α+β = 720⁰ 4 4 

The alpha and beta values using the Ong algorithm are compared to the symmetry 

results from the SIDM symmetry algorithm.  Specifically, the total value of the alpha plus 

beta determines the symmetry category (see Table 6.4).  
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Table 6.5: Symmetry Test Case Results 

# 

Ong 

Alpha 

[78] 

Ong 

Beta 

[78] 

SIDM 

Alpha 

SIDM 

Beta 

Ong 

Total 

SIDM 

Total 

Ong  

Boothroyd and 

Dewhurst Row Code 

SIDM 

Boothroyd and 

Dewhurst Row Code 

1 360° 90° 360° 90° 450° 450° 2 2 

2 360° 360° 360° 360° 720° 720° 4 4 

3 360° 180° 360° 180° 540° 540° 3 3 

4 360° 0° 360° 90° 360° 450° 2 2 

5 360° 0° 360° 90° 360° 450° 2 2 

6 180° 360° 180° 360° 540° 540° 3 3 

7 360° 360° 360° 360° 720° 720° 4 4 

8 360° 90° 360° 90° 450° 450° 2 2 

9 360° 360° 360° 360° 720° 720° 4 4 

10 180° 120° 180° 360° 300° 540° 1 3 

11 180° 180° 180° 180° 360° 360° 2 2 

12 180° 90° 180° 90° 270° 270° 1 1 

Of the twelve parts tested, only part 10 symmetry row code did not match 

between SIDM and Ong.  The possible symmetry values that can be returned using the 

SIDM are 90°, 180°, and 360°.  Since the first cut created to determine the beta symmetry 

for part 10 results in two bodies that do not have an equal volume, the SIDM algorithm 

results in symmetry value of 360° for beta.  The correct beta value as determined from 

Ong is 120°.  This part serves as an example of a unique part in which the symmetry is 

not correctly determined using the SIDM.  As discussed earlier, an incorrect symmetry 

estimate results in a maximum of one second time estimation difference. 

One limitation of the SIDM is the symmetry algorithm was specifically designed 

to determine the symmetry for use in finding the handling code/time of a product.  The 

handling code does not require granularity for the individual alpha and beta values.  For 

instance, the SIDM cannot determine the beta granularity of a part that is completely 
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symmetrical resulting in a beta value of 0.  Instead, the minimum value returned by the 

SIDM is 90°.  Part 4 for example is completely symmetric about its axis of insertion (beta 

symmetry), and therefore has a beta value of 0°.  The SIDM algorithm returns a value of 

90° for beta, but due to the range of alpha plus beta values to remain within category 2, 

the distinction between 0° and 90° is not necessary for table value look-up within the 

Boothroyd and Dewhurst database. For this research, the symmetry accuracy is sufficient 

to quickly extract symmetry values.  Further refinement of the method is possible by 

introducing additional slicing volumes for additional symmetry granularity. 

6.2 Insertion Codes - Subjective Questions 

Unlike the handling codes, all of the insertions questions needed to determine the 

insertion codes are subjective (see Section 2.3.2)[27]. For humans, this may not seem 

problematic, but, as seen in the pen study, the insertion estimates resulted in a large 

variation in the time estimate, reducing the confidence in the estimated assembly time 

(see Section 2.3.3).  Therefore, the insertion times will be determined using a modified 

connectivity complexity method that is objectively calculated and based on historical data 

that can be updated to improve the accuracy. 

The eleven CEDAR products used to train the ANN for earlier research (see 

Chapter 5.1 and Table 6.6) will once again be used to train an ANN for the insertion 

times.  When the Boothroyd and Dewhurst assembly time estimation method was 

manually conducted for the CEDAR products, each product required a handling time and 

insertion time.  To train an insertion only ANN, the complexity vector for each product 

will be used as the input and the insertion portion of the assembly time will be used as the 
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target time.  The eleven products and the respective insertion times (see Table 6.6) are 

used to train an ANN and will referred to as ‘Insertion Only ANN’.  The same ANN 

design used earlier in this research will once again be used (see Chapter 4.3).  Three of 

the fourteen products will be withheld for testing purposes, and the remaining eleven 

products will be used to train the ANN. 

Table 6.6: Seperated Handling and Insertion Times of CEDAR Products 

Product Name 
Training / 

Testing 

Handling 

Time 

Insertion 

Time 

Total Assembly 

Time 

Stapler Testing 39.01 84.50 123.51 

Flashlight Testing 24.40 51.00 75.40 

Blender Testing 88.76 166.00 254.76 

Ink Pen Training 13.40 21.00 34.40 

Pencil Compass Training 22.83 46.50 69.33 

Electric Grill Training 44.08 77.00 121.08 

Solar Yard Light Training 32.29 96.50 128.79 

Bench Vise Training 32.69 111.00 143.69 

Electric Drill Training 45.65 144.00 189.65 

Shift Frame Training 65.70 248.00 313.70 

Food Chopper Training 88.12 228.50 316.62 

Computer Mouse Training 25.65 56.50 82.15 

Piston Training 15.01 33.00 48.01 

3- Hole Punch Training 42.38 103.00 145.38 

This portion of the research will implement a modified connectivity method to 

estimate only the insertion portion of the Boothroyd and Dewhurst assembly time 

estimation method. The ANN trained only to predict the insertion time of a product will 

be tested by adding the predicted insertion time to the calculated handling time, and 

compared to the overall assembly time of the product as determined by the IDM. 
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6.3 Comparison of Split Interference Detection Method to Interference Detection Method 

To test the complete SIDM, the handling time and insertion time for each of the 

three test products (stapler, flashlight, and blender) was calculated. The total assembly 

time estimate for each part is the sum of the handling time and the insertion time.  A 

modified complexity connectivity method uses an ANN to estimate the insertion time of 

each part.  The ANN returns 18900 insertion time estimates for each product.  Each of 

these 18900 time estimates is added to the single handling time objectively determined 

from the CAD model (see Figure 6.6). 

Table 6.7: Example SIDM Results for Stapler 

Estimate 

# 

Predicted 

Handling 

Time  

[s] 

Predicted 

Insertion 

Time  

[s] 

Predicted 

Total 

Time  

[s] 

Target 

Handling 

Time  

[s] 

Target 

Insertion 

Time 

[s] 

Target 

Total 

Time 

[s] 

1 

37.72 

27.56 55.22 

39.01 84.50 123.51 

2 33.40 61.06 

3    99.61 127.27 

…
  

…
 

…
 

18899 88.42 116.08 

18900 119.08 145.74 

To determine if there is a statistical difference between the total predicted 

assembly time from the SIDM and IDM methods, a Mann Whitney test (Wilcoxon rank-

sum test) will be used to compare the percent error of each of the methods[79–81].  The 

two ANNs were compared using the rank-sum test with a 0.95 confidence interval.  Due 

to a small sample size (three test products and eleven training products), a wider 

confidence interval is used.  The null hypothesis for this test is that there is no difference 
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in percent error from target time when predicting the assembly times of products using 

the Full ANN and the Reduced ANN.  To calculate the percent error for each ANN, the 

difference between the predicted time and the target time was normalized using the target 

time (see equation (3)). 

% Error =
𝑃 − 𝑇

𝑇
 𝑥 100 (3) 

Where: 

P: Predicted Time 

T: Target Time 

 

The percent error for each of the 18900 assembly time estimates for each of the 

three test products is calculated for the IDM and the SIDM. The results of the Mann 

Whitney test provide sufficient evidence that the medians of the IDM and the SIDM are 

not equal with a p-value of less than 0.0000.  The median percent error value of the IDM 

and SIDM are 11.72 and -35.12 respectively (see Table 6.8). 

Table 6.8: Median Values of IDM and SIDM for CEDAR Test Products 

Method 
Number of Estimates for Three Test 

Products 

Median Percent Error of Three Test 

Products 

IDM 56700 11.72 

SIDM 56700 -35.12 

The results of the statistical comparison of the IDM and SIDM suggest that the 

medians of the two methods are not equal.  The negative sign in the median error for the 

SIDM indicates that value of the predicted time is less than the value of the target time.  

Therefore, the absolute value of the error the IDM is less than the absolute value of the 
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error of the SIDM.  These results indicate that the IDM can predict the assembly time 

with a lower percent error than the SIDM.  
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CHAPTER SEVEN 

STATISTICAL ANALYSIS OF COMPLEXITY METRICS 

This research thus far has focused on exploring the extent to which the IDM and 

the SIDM can be used to predict assembly times.  This chapter focuses on the complexity 

vector that is used to represent the assembly model in the IDM and SIDM.  The goal of 

this chapter is to understand which of the twenty nine complexity metrics are most 

significant in estimating the assembly time of three test products.   

The complexity connectivity method is based on a complexity vector of twenty 

nine complexity metrics.  The complexity vector has been used as the input vector of 

information as the complexity connectivity method has evolved from a linear regression 

time estimate [66], to the use of an ANN [31] for the AMM and IDM/SIDM (Chapter 

Three and Chapter Six). However, the complexity vector itself has not been evaluated to 

determine the necessity of all of the complexity metrics. 

A statistical study is conducted to determine if all twenty nine of the current 

complexity metrics are significant and needed in the automated assembly time estimation 

method. Reduction of the number of complexity metrics being used can reduce the 

computation effort required by the method, and may provide an additional benefit of 

improving the accuracy and or the repeatability of the assembly time estimate [28].  This 

portion of the research will help determine the necessity of the current twenty nine 

metrics, and also provide a process for evaluating necessary metrics for future application 

of the complexity connectivity method.  This chapter uses a multistep approach to 
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determine the significant complexity metrics and test the reduced set to ensure that errors 

in time estimates are less than or equal to the full set of complexity metrics.   

A full linear regression analysis is used to determine the significant complexity 

metrics. The reduced set of complexity metrics is then be used to train a new ANN 

(Reduced ANN).  The reduced ANN is next used to predict the assembly time of the test 

products.  The estimated assembly times from the same training products and test 

products are compared for the full ANN and the reduced ANN. This multistep approach 

(see Figure 7.1) is used to determine significant factors and if the reduced set can 

estimate assembly times with equal or lesser error. The development of this process is not 

the focus of this research, but is a necessary step in the improvement and development of 

the complexity connectivity method. The study of the complexity metrics are used to 

answer RQ2.2 and can also be applied to improve previous and future research involving 

the use of the complexity metrics [23,28,30,63]. 
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Figure 7.1: Approach for Reduction of Complexity Metrics 

7.1 Regression Analysis 

The ANN design used in this research consists of 189 architectures with 100 

repetitions each.  This results in a total of 18900 assembly time point estimates.  A linear 

regression analysis is used to find a relationship between the assembly times and the 

complexity vector for each of these estimates.  The 18900 time estimates are used as the 

response variable for the regression analysis and each of the 29 complexity metrics are 

used as the dependent variables. 

The results of the regression analysis suggest that of the twenty nine complexity 

metrics, fifteen of the metrics are linear transformation of the others.  This is indicated by 

the “---” in the p-value column (see Table 7.1). From the remaining fourteen complexity 

metrics, two of the complexity metrics (x17 and x24) are not statistically significant 

variables (p > alpha = 0.05) in predicting assembly time.  

Full ANN 

Linear Regression Analysis to 
determine significant variables 

Reduced ANN - Trained with 
reduced set of complexity 

metrics 

Mann Whitney Test - Compare 
Full ANN and Reduced ANN 
for assembly time estimation 

error 
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Table 7.1: Regression Analysis of Complexity Metrics 

Complexity Metric: Coefficient pValue 

(Intercept) 0 --- 

x1 24.40 1.28e-217 

x2 0 --- 

x3 0 --- 

x4 -3.70 3.35e-128 

x5 0.75 9.17e-40 

x6 -10.10 2.38e-14 

x7 0 --- 

x8 0 --- 

x9 0.04 9.77 e-4 

x10 1.57 6.88e-22 

x11 24.35 7.46e-22 

x12 0 --- 

x13 -1.39 2.00e-59 

x14 0.49 4.39e-87 

x15 6.45 1.50e-64 

x16 0 --- 

x17 0.40 0.62 

x18 0 --- 

x19 0 --- 

x20 0 --- 

x21 0.54 5.46e-81 

x22 -9.83 9.11e-51 

x23 0 --- 

x24 1.51 0.74 

x25 0 --- 

x26 0 --- 

x27 0 --- 

x28 0 --- 

x29 0 --- 
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The resulting linear model for this data set is represented by the following 

equation: 

         𝑇   =     01  𝑥1 −    01  𝑥  0   1  𝑥 − 10 10  𝑥  
0 0      𝑥  1      𝑥10         𝑥11 − 1     
𝑥1  0       𝑥1         𝑥1  0       𝑥 1 −
       𝑥    

(4) 

Each x-value (see Equation (4)) represents one of the twenty nine complexity 

metrics.  The significant factors determined from the regression analysis are highlighted 

(see Table 7.2).  These significant dependent variables are used to train a new neural 

network to test the predictive ability using the reduced complexity vector.  One 

observation of interest is the regression analysis resulted in at least one significant metric 

form each of metric groupings: Decomposition, Centrality, Interconnections, and Size.  

Specifically, five of the fifteen identified significant metrics belong to the 

interconnections grouping.  This follows closely with the fact that the graphs are 

generated based connections between parts within the assembly. 
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Table 7.2: Statistically Significant Complexity Metrics  
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Sum x5 

Max x6 
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Sum x13 
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Sum x22 

Max x23 

mean x24 

density x25 

Out 

Sum x26 

Max x27 

mean x28 

density x29 

7.2 Reduced ANN Comparison to Full ANN 

The reduced set of complexity metrics were used to train a new ANN (named 

Reduced ANN) for comparison with the original ANN (named Full ANN) that included 

all twenty nine of the complexity metrics. The Full ANN (as discussed in section 4.3) and 

the Reduced ANN were both trained and tested using the set of fourteen 
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electromechanical products.  For each ANN, the same eleven products were used for 

training and three products were reserved for testing.  To compare the performance of the 

Full ANN and the Reduced ANN the percent error from the target times were evaluated 

using the Mann Whitney test (Wilcoxon rank-sum test). 

The two ANNs were compared using the rank-sum test with a 0.95 confidence 

interval.  The null hypothesis for this test is that there is no difference in percent error 

from target time when predicting the assembly times of products using the Full ANN and 

the Reduced ANN.  To calculate the percent error for each ANN, the difference between 

the predicted time and the target time was normalized using the target time (see equation 

(5)). 

% Error =
𝑃 − 𝑇

𝑇
 𝑥 100 (5) 

The percent error for each of the 18900 predicted time estimates from each ANN 

was calculated. The results provide sufficient evidence to reject the null hypothesis of the 

two ANNs having equal percent error in predicting assembly times. The median percent 

error for the Full ANN and the Reduced Set is 9.5% and 5.5% respectively.  The 95% 

confidence interval suggests that the difference percent error of the original set and the 

reduced set is [1.6, 3.9].  The statistical test provides evidence that the mean error of the 

Full ANN and the Reduced ANN are not equal.  The Reduced ANN has a mean error of 

5.5% which is less than the error of the Full ANN suggesting that the Reduced ANN can 

estimate the assembly time with less percent error than the Full ANN. However, this 

reduced set was only determined based on the exploration of the initial twenty nine 
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metric vector.  Without additional testing, the justification of the use of the reduced 

complexity vector is limited to this data set.  This portion of the research does provide a 

method that can be reapplied to other complexity based modeling schemes.  This results 

suggest that the full complexity vector should initially be used and the process used in 

this chapter can be applied to the data set at hand. 

7.3 Conclusions on Statistical Analysis of Complexity Metrics 

This study used a linear regression analysis to form a model representing the 

complexity vector composed of twenty nine metrics and the predicted assembly times 

resulting from the Full ANN. The model was then used to reduce the complexity vector 

from twenty nine metrics to twelve metrics. To test the performance of the ANN with the 

reduced set of complexity metrics a new ANN (Reduced ANN) was trained with the 

reduced complexity vector and was compared to the Full ANN using the Mann Whitney 

test.  The results indicate that error between the predicted times output by the Full ANN 

and the Reduced ANN are not equal and that the Reduced ANN has a lower percent error 

in the predicted assembly times.  The results of this study indicate that there is an 

opportunity to reduce the computational effort required in computing the complexity 

vector by using a reduced complexity vector.  Furthermore, anecdotal evidence suggests 

an opportunity to eliminate the need for the computationally expensive ANN, and replace 

it with a regression model to predict assembly times.  To obtain this type of relationship a 

larger product set would be required and statistical validation of using a linear model as 

opposed to an ANN, however this is out of the scope of this research. With low sample 
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size, the neural network provides a stochastic modeling approach for estimating assembly 

times. 
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CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 

The research presented in this dissertation focused on designing an automated 

assembly time estimation method that was accurate, repeatable, and minimized the 

amount and detail of information needed from designers.  Opportunities exist in academia 

and industry to apply this assembly time estimation tool, improve the tool, and also use 

the fundamental design of the method to improve other aspects of engineering design. 

8.1 Intellectual Merit 

The proposed research demonstrates an automated assembly time estimation tool 

that can support designers throughout the design process.  With increasing product costs, 

industry is looking for ways to maximize profit by decreasing manufacturing costs 

[3,4,13,15].  Previous research has shown that early stages of the design process account 

for approximately 50-70% of product cost [4,37,50].  However, one general limitation of 

design for assembly methods is the tools and methods are generally reserved for detailed 

design stage due to the amount of detail required about the parts and the time required to 

apply [82].  This research aims to provide a design for assembly time estimation tool that 

can be used iteratively throughout the design process by reducing the time required for 

analysis and the amount and level of detail of information required to perform the 

analysis.  This tool will allow the manufacturing industry gain the benefits of improving 

product design in the early stages of the design process, and in turn reduce time to market 

of products as well as providing customers with an increase in product quality 

[1,4,7,10,11,82,83]. 



134 

8.2 Broader Impact  

The focus of this research is designing an automated assembly time estimation 

method, but the core contributions of this research provide a basis for a variety of 

applications. This research can be applied to other areas of academia and manufacturing. 

An example of each of these includes the use of a similar method to predict the amount of 

credit that individual questions on a test should be worth [84]or for manufacturing to 

predict which design for assembly or design for manufacturing guidelines should be 

applied to a product. 

For example, a complexity vector can be created to represent the difficulty of 

problems on an engineering exam.  The complexity metrics for this type of application 

would be substantially different however and an opportunity exists to define a set of 

metrics to represent the difficulty of the problem.  These metrics may include factors such 

as the amount of time needed for the instructor to solve the problem, the college years 

standing (freshman, sophomore, junior, or senior) of the students taking the test, and the 

total number of problems on the test. A neural network would have to be trained on the 

input data set with provided problem difficulties, and may be applied to quickly distribute 

test points on future exams. 

One area of extreme interest is using a similar approach in predicting which 

design for assembly guidelines or design for manufacturing guidelines should be applied 

to a product.  For instance, based on the connectivity graph of a product, certain 

guidelines could be suggested for implementation.  A simple example can be perceived 

between the number of parts and the number of relations, to suggest implementing a 
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design for assembly guidelines of reducing the number of parts. By training a neural 

network on many products and the design for assembly or design for manufacturing 

efforts implemented to improve the design, a tool could be envisioned to help guide 

designers on how to improve a product. 

8.3 Future Work 

Based on the research conducted and presented in this dissertation, additional 

research has been identified to further improve the effort in designing an automated 

assembly time estimation method.  This research has identified areas of interest to further 

improve this method itself and motivate future research in this area. 

8.3.1 Training and Testing Sets 

One of the limitations of this research is the limited sample size for training and 

testing of the automated assembly time estimation method. This research can provide 

anecdotal evidence of the power of an automated assembly time estimation tool, and can 

be used as motivation to gather additional data from local manufacturers.  Increasing the 

sample size will help to further refine and validate the method, creating a better 

understanding of the ability of the tool to predict actual assembly times as seen in 

industry. 

8.3.2 Software Independence 

Another area of future work is the separation of the automated assembly time 

estimation method from the current implementation within Matlab. Currently, Matlab is 

used to analyze the connectivity graphs and calculate the connectivity vector.  The metric 
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values are then used to first train an artificial neural network, run through Matlab, and 

then for the prediction of assembly times.  Ideally this portion of the method will be 

transferred into a standard programming language, such as C++, and integrated into the 

SolidWorks API code.  This would fully automate and integrate the assembly time 

estimation process, allowing the add-in to find and create connectivity graphs, use the 

connectivity graph to calculate the complexity vector, and use the complexity vector(s) to 

train an ANN or to calculate the assembly time using the vector as the input into a 

previously trained ANN.  This level of integration and automation is appropriate for the 

potential commercialization of the solution. 

8.3.3 Neural Network Design 

Additional investigation can be conducted on the operation and use of artificial 

neural networks.  Many different types of artificial neural networks can be used as 

prediction and data mining tools [67–70,85]. This portion of the research is currently 

limited to a supervised back propagation network with one hidden layer as suggested in 

previous literature [23,28,29,31,68,85]. This research also used a “brute force” method in 

which each neural network was made of 189 architectures with 100 repetitions each in 

order to avoid the challenges of ANN architecture design while addressing the low 

training size hurdle.  Therefore, every product that was analyzed resulted in 18,900 

individual time estimates.  Further research can be conducted to improve the neural 

network design in terms of neural network type, the number of neurons and hidden layers 

required, and the number or repetitions needed.  Since the neural network returns 

multiple time estimates, based on the network design, work is also needed on how to 
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aggregate the data to arrive at a single point estimate.  Nonetheless, a large opportunity 

exists in further improving the artificial neural network design and training in predicting 

an output, assembly time or otherwise. 

8.3.4 Clearance Verification 

The IDM was limited in finding connections between parts that were in physical 

contact with one another or with faces or edges that were coincident (see Chapter Three).  

The IDM did not have an option to find additional connections between parts that were 

within a designated distance.  This is specifically important as products are often modeled 

with designed tolerances in mind.  The example discussed in Chapter Three presents the 

design of a shaft (pin) into a block with a hole in the center.  A designer creating the shaft 

and block assembly may model the shaft with a diameter of 1.000 inch and model the 

hole in the block with a diameter of 1.002 inch (see Figure 8.1). 

 

Figure 8.1: Shaft and Hole Modeled with a Tolerance 
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The IDM would not detect a connection between the shaft and the hole due to the 

0.002 inch size difference.  Similar to the interference detection tool used in the IDM, 

SW also includes a ‘clearance verification’ tool.  The clearance verification tool is used to 

verify if all the parts in an assembly model are correctly designed so that there is an 

acceptable clearance between parts.  The user of the clearance verification tool inputs the 

desired clearance (i.e. 0.001 inch), and SW finds all pairs of parts that are within that 

distance from one another.  The clearance verification tool can be used to in place of the 

interference detection tool to find the connections between parts in the assembly, while 

adding the flexibility of finding parts that are within a user specified distance of one 

another. The performance of the clearance verification tool needs to be compared to the 

interference detection tool with regards to time for analysis and ability to detection 

connections between parts such as face to face and vertex to vertex. 

8.3.5 Graph Modeling Refinement 

The IDM uses the interference detection tool, which is a function, built into 

SolidWorks.  One output of the interference detection tool that is not currently used is a 

volume overlap between parts.  The volume overlap between parts could potentially be 

useful information in the connectivity graphs of the assembly [86].  The volume overlap 

could additional insight in the interconnectedness of the assembly that is not currently 

captured. 
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8.3.6 Complexity Vector Metrics 

The twenty nine complexity metrics that form the current complexity vector are 

all used to represent the assembly model and used as a surrogate for assembly time.  This 

dissertation presented the results of statistical analysis in reducing the current set of 

complexity metrics, however did not explore the need of possible additional metrics.  

Furthermore the current metrics are developed to represent an assembly for assembly 

time estimation, additional complexity metrics can be developed to represent other areas 

of interest: product cost prediction, manufacturing processes, time to products, and design 

time needed.  Additional research is needed in the justification of the twenty nine 

complexity metrics and if these are sufficient to fully represent an assembly model and 

used as a surrogate for assembly time estimation. 

8.3.7 Automated Assembly Instruction 

Assembly instructions are authored by assembly planners and are manually 

created after a product has entered detailed design and production phase. Recent research 

has strived to standardize the work instruction authorship to a predefined list of verbs and 

nouns to assist in automating the authorship process [87].  The connectivity graphs found 

by the IDM could potentially be used to predict the assembly verbs.  If sub-graph patters 

can be found between part connectivity and assembly verbs, an opportunity exists to 

automate the work instructions based on the assembly model. 

8.4 Research Contribution 

This research dissertation has developed, presented, and demonstrated a new 

graph generation (Interference Detection) method that can be used with SolidWorks to 
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generate the connectivity graphs needed to apply the Complexity Connectivity Time 

Estimation method.  The algorithm is based on standard solid modeling operations and is 

therefore extendable to other commercial applications.  The IDM has three major benefits 

relative to the previous Assembly Mate Method (AMM). 

The first major contribution is the elimination of variability due to designer 

decision when creating the assembly model.  The AMM operated on the assembly mates 

that the designer chose to use in assembling the parts in the SW assembly file. While 

preliminary studies with the AMM demonstrated that this was a minor issue in prediction 

accuracy, it was still a variance between designers [58].  The IDM finds parts that are 

coincident or overlapping in the assembly space to create the connectivity graph 

eliminating the variability that is possible due to various designers. 

The second major contribution of the IDM is the support for multiple file types.  

The IDM can operate on the bodies imported by SW from a number of different file 

types.  The AMM is limited to SW assembly files because it requires the mate list which 

is specific to the SW software.  With increasing globalization in industry, organizations 

across the design chain are using different software and modeling environments 

[65,88,89].  This contribution allows the separate organizations to share the geometry 

modeled in different environments without the need for assembly constraints. 

The third benefit is a reduction of variance in the assembly time estimate while 

maintaining relatively the same accuracy as the AMM method. This research is another 

step in designing a fully automated assembly time estimate to provide design engineers 

with an accurate and repeatable tool that does not require substantial time or effort to 
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implement.  The estimated assembly times predicted by the IDM are similar to the AMM, 

have a lower variance, increasing the confidence of the actual assembly time falling in a 

range. 

The demand for design tools to support the conceptual design stage has increased 

in industry due to the significant portion of product cost determined early in the design 

process [50,90].  This research has demonstrated the application of the IDM to low 

fidelity conceptual models generated early in the design process. The assembly time of a 

product is unknown and difficult to estimate during the conceptual design phase, but the 

IDM can provide assembly planners an estimated assembly time based on low fidelity 

models for early assembly process design.  

The testing of the SIDM did not demonstrate an improvement over the IDM in 

estimating assembly time based on the percent error, but the sample size of products was 

limited.  The handling portion of the SIDM can however be used to calculate the 

estimated handling code and time of the Boothroyd and Dewhurst assembly time 

estimation method.  The use of the handling portion of the SIDM to calculate the 

handling code and time reduces the time and effort needed in applying the Boothroyd and 

Dewhurst assembly time estimation method. 

8.5 Conclusion 

This dissertation presents an automated assembly time estimation method based 

on the Boothroyd and Dewhurst assembly time estimation method and the complexity 

connectivity method.  The IDM is developed and demonstrated for creating the 

connectivity graphs needed to calculate the complexity vector as input into the 
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Complexity Connectivity Method.  The IDM is tested on products that are reverse 

engineered to determine a target assembly time, and product models provided by an 

industry sponsor with actual assembly times.  The SIDM presents the separation of the 

handling and insertion time to address the subjective questions inherent in the Boothroyd 

and Dewhurst assembly time estimation method.  The outcome of this research is an 

automated assembly time prediction tool that can be implemented throughout the design 

process. 
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