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Abstract

Most data collected over time has some degree of periodicity (i.e. seasonally varying

traits). Climate, stock prices, football season, energy consumption, wildlife sightings, and

holiday sales all have cyclical patterns. It should come as no surprise that models that

incorporate periodicity are paramount in the study of time series.

The following work devises time series models for counts (integer-values) that are pe-

riodic and stationary. Foundational work is first done in constructing a stationary periodic

discrete renewal process (SPDRP). The dynamics of the SPDRP are mathematically inter-

esting and have many modeling applications, expositions largely unexplored here. This work

develops a SPDRP as a generation mechanism to produce a stationary count time series

models with many desirable characteristics, including periodicity, negative autocovariances

and long-memory.

After development of the SPDRP univariate count models are generalized into mul-

tiple dimensions. A multivariate renewal process has many interrelated stochastic processes.

The resulting multivariate model has all the desirable properties of its univariate kin, but

can also have negative autocovariances between marginal components of the series. To our

knowledge, this trait is seldom achieved in current multivariate count methods in tandem

with long-memory and periodicity.
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Chapter 1

Introduction

This work is aimed at advancing modeling and forecasting of count time series.

Along the way, many connections and work on discrete point processes will be discussed.

1.1 Time Series Overview

A time series is simply a sequence of random variables measured (typically) in a time-

ordered fashion. Usually, the time between observations is equally spaced. One example

would be the daily high temperatures in Clemson, SC. Time series assume a large variety of

forms and patterns. Some common types of time series are shown in figure 1.1. The values

of a time series can be periodically varying, trending, noisy, integer-valued, or any mix of

these patterns.

Time series are ubiquitous and are used for communication, visualization, decision

making, and description. Time series describe, for the most part, physical concepts and

thus have real-world interpretations and implications. It is said that time series plots are

the most frequently used form of graphic design. Examining any modern newspaper or

media publication would seemingly verify this claim.

The amount of work done on modeling and forecasting of time series is vast; see

[16], [6] and [7] and the references therein.
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Figure 1.1: Different types of time series
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Let X1, X2, . . . , Xn be a given time series of length n. Since many time series are

correlated in time, an important quantity is the autocovariance function,

γ(t, s) := Cov(Xt, Xs). (1.1)

For example, the first-order autoregressive model (AR(1)) model (which will be discussed

further in section 1.1.1 and is obtained by taking p = 1 and q = 0 in 1.5) has autocovariance

function

γ(t, s) =
σ2φ

|t−s|
1

1− φ21
(1.2)

for some σ2 > 0 and φ1 ∈ (−1, 1).

A time series {Xt} is said to be weakly stationary (also termed stationary) if E[Xt]

does not depend on t and γ(t, t + h) does not depend on t for each h. Similarly, a time

series {Xt} is strictly stationary if (X1, X2, . . . , Xn)′ and (X1+h, X2+h, . . . , Xn+h)′ have the

same joint distributions for all integers h and n > 0. Clearly, any strictly stationary series

is also weakly stationary.

It should be noted here that this work considers stationary time series models. In

this setting,

γ(t+ h, t) = γ(h, 0), (1.3)

and we will henceforth use a single argument in all autocovariance functions: γ(h) :=

γ(t+ h, t).

It is sometimes advantageous to look at correlations in lieu of covariance. The

autocorrelation function of the series is defined as

ρ(h) :=
γ(h)

γ(0)
. (1.4)

Other properties of time series that will be of interest in our work are long-memory

and periodicity. If
∑∞

h=0 |γ(h)| = ∞, a time series is said to have long-memory. Long-

memory indicates a slow rate of decay of statistical dependence between series values. Pe-

3



riodicity in time series is defined as a repetitive and predictable movement in mean or

covariance. Periodic time series exhibit cyclic variation that occurs in a regular or semi-

regular pattern; this is seen in the periodic/cyclic and quasi-periodic plots in figure 1.1.

1.1.1 ARMA Models

The most widely-used class of stationary time series are the autoregressive moving

average (ARMA) class. An ARMA(p, q) series obeys the linear difference equation

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q + Zt, (1.5)

where p and q are non-negative integers. ARMA(p, q) methods use the last p data values

and uncorrelated innovations {Zt}∞t=0 (noises) to describe the series at time t + 1. ARMA

models are flexible and extensively used in economics, finance, and the natural sciences;

they are popular because of their forecasting ability. When p = 0 in an ARMA(p, q) series,

it is referred to as simply a moving average of order q (MA(q)); when q = 0 the model is

called an auto regressive of order p (AR(p)).

1.2 Count Time Series

Autoregressive moving-average models work well when data is Gaussian; that is, the

joint distribution of (X1, X2, . . . , Xn)′ is Gaussian for any n ≥ 1. This is not always the

practical case. A simple illustration is in the bottom right plot in Figure 1.1. At each time,

the observed series value is an integer, which is clearly not normally distributed.

A count time series is a time series where the observed data is integer-valued. Other

examples include the yearly number of rare disease occurrences, the daily number of car

accidents, and the hourly number of people treated in a hospital emergency room. Discrete

counts may not be simply approximated by continuous variables, especially when the counts

are relatively small [8]. Many attempts to model discrete counts have been made; an

overview is given in [35].

4



0 10 20 30 40 50

0
1

2
3

4
5

6
7

Poisson count time series

time

co
un

t

0 10 20 30 40 50

0
1

2
3

4
5

6
7

Geometric count time series

time

co
un

t

Figure 1.2: Sample Poisson and Geometric count time series

Our work often assumes a fixed marginal distribution at a given time point that does

not change with time. This is particularly important in count settings since the number of

possible observed values is finite. Consider Figure 1.2. The left-hand plot is a sample count

time series where, at each time, the series has a marginal Poisson distribution with mean

3. The right-hand graph has a marginal distribution that is Geometrically distributed with

success probability 3/4. Figure 1.2 gives the flavor of the importance of incorporating the

knowledge of a marginal distribution into any model for count series.

1.2.1 DARMA Models

The first attempt to model stationary integer-valued time series was introduced in

the 1970’s by Jacobs and Lewis ([20], [21] and [22]). Their model, the discrete autoregres-

sive moving-average (DARMA) model, used mixing techniques to generate any marginal

distribution desired. Let

P (Xt ∈ A) = π(A), (1.6)
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denote the marginal distribution for any Borel set A. DARMA tactics are perhaps best

illustrated in the DAR(1) recursion

Xt = VtXt−1 + (1− Vt)At, t = 1, 2, . . . , (1.7)

where {At}∞t=1 is an independent and identically distributed (IID) sequence of random

variables with distribution π and {Vt}∞t=1 is an IID sequence of Bernoulli random variables

with success probability p. If X0 has distribution π, then induction shows Xt has marginal

distribution π for each t ≥ 1 as desired. The scheme is also stationary. The autocorrelation

function of the DAR(1) model mimics the AR(1) model:

ρ(h) = ph ∈ (0, 1) h = 0, 1, 2, . . . (1.8)

To obtain a model with a high lag one autocorrelation, p must be large. Inspection of

equation (1.7) reveals a large probability of repeated time series values: P (Xt+1 = Xt) = p.

Such a trait is seldom seem in real-world data. Moreover, observe that DAR(1) techniques

cannot produce negatively correlated series or series with long-memory. The same is true

for the DAR(1) extensions: DAR(p) and DARMA(p, q) series.

1.2.2 INARMA Models

Integer-valued autoregressive moving-average (INARMA) models were first intro-

duced in the 1980’s ([33] and [1]). INARMA models use Bernoulli trials coupled with

uncorrelated integer-valued random innovations to generate counts. Again, the INARMA

tactics are simply appreciated in the INAR(1) setup. Define a thinning operator ◦ via

α ◦X :=

X∑
i=1

Bi(α), (1.9)

where {Bi(α)}∞i=1 are IID Bernoulli random variables with success probability α, and X is

an integer-valued non-negative random variable. Since the resultant α ◦ X ∼ Bin(X,α),

6



this is known as binomial thinning [42]. The INAR(1) scheme is written as

Xt = α ◦Xt−1 + Zt, (1.10)

where α ∈ (0, 1) and {Zt}∞t=1 are independent and identically distributed non-negative

integer-valued random variables with Zt independent of Xt−1, Xt−2, . . .. Notice in equation

(1.10) that the thinning operator ◦mimics the scalar multiplication of the AR(1) to maintain

count values. Different distributional choices for Zt give rise to different marginal count

distributions. For example, picking Zt with a Poisson marginal distribution with mean λ

gives a count time series that is Poisson distributed with mean λ(α+1). Poisson, Geometric

and Negative Binomial marginal distributional structures, among others, can be produced

with INARMA methods ([33] and [34]).

INARMA methods still have deficiencies; in particular, they are unable to produce

count series with negative autocovariances. This is because all thinning probabilities must

be between 0 and 1.

1.3 Renewal Processes

A fundamental building block of this work is the discrete renewal process. A discrete

renewal process is a stochastic model for “events” that occur in discrete time. These events

will henceforth be referred to as renewals, indicating the regenerative nature of the overall

process. A simple interpretation of a renewal process visualizes a device in service until

it eventually fails. When it fails, a brand new device is immediately installed, that is

independent of all previous devices. This process continues indefinitely. All device life-

lengths are assumed independent and identically distributed. Each time a new device is

installed, it is said that a renewal occurs. The length of time each device lasts is called

a interarrival time or lifetime. This basic idea gives rise to many interrelated stochastic

processes, which will be more rigorously defined as needed throughout.

Let L denote a non-negative integer-valued random variable representing a generic

7



time 0 1 2 3 4 5 6 7 8 9 10

X

L1

X

L2

X

L3

X

L4

· · ·
L5

Figure 1.3: Sample discrete renewal process

lifetime. Then each lifetime Ln, n = 1, 2, . . . is equal in distribution to L. A simple example

is given in Figure 1.3, where renewals occur at times 2, 4, 5, 9, . . .. In chapter 2, we develop a

periodic version of discrete renewal processes that allows us to model count series that have

periodic dynamics - say, for example, the number of rainy days in each of the 52 calendar

weeks of the year.

1.4 Research Questions

Negatively correlated stationary time series are difficult to devise. In fact, generating

a simple bivariate vector (X,Y )′, with X and Y each marginally Poisson distributed with

the same mean λ, and where Cov(X,Y ) < 0, is not trivial.

Is it useful to produce a series with negative autocorrelations? If yes, then there

should be real-world data exhibiting negative covariances. It turns out that such data is not

difficult to find. For example, Canadian Lynx sightings are negatively correlated from year

to year. If in a given year Canadian Lynx sightings are high, the lynx over hunt the hare

in the area, depleting the food supply. Thus, the following year’s sightings of Canadian

Lynx are low (and vice versa). Another example of a negatively correlated data is the

major hurricane counts in the Atlantic Ocean and Pacific Ocean Basins shown in Figure

1.4. We select 1970 as a starting year because satellite reconnaissance was in full operation

then, making it unlikely that a storm of such severity formed over open waters and went

undocumented (this issue arises in early Atlantic Basin records). A Saffir-Simpson Category

3 or higher storm has wind speeds of 111 mph or more at some time during the storms life.

Notice that when the Pacific Basin count is high, the Atlantic Basin count is low, and vice

8
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Figure 1.4: Major hurricane counts by basin of origin

versa. The sample correlation between the components is -0.43539!

There does not currently exist a current class of multivariate time series models that

can easily achieve periodicity, long-memory, and negative autocovariances in tandem. In

what follows, we will construct models that capture such structure. In Chapter 2, the work

of Fralix, Livsey and Lund [14] is presented. Chapter 3 develops a multivariate count time

series model with flexible autocorrelation structure and returns to the above hurricane data

with some preliminary results.
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Chapter 2

Renewal Sequences with Periodic

Dynamics

Discrete-time renewal sequences play a fundamental role in the theory of stochastic

processes. This paper considers periodic versions of such processes; specifically, the length

of an interrenewal is allowed to probabilistically depend on the season at which it began.

Using only elementary renewal and Markov chain techniques, computational and limiting

aspects of periodic renewal sequences are investigated. We use these results to construct a

time series model for a periodically stationary sequence of integer counts.

2.1 Background and Notation

Discrete renewal processes are ubiquitous in stochastic phenomenon and are exten-

sively used in stochastic analyses (see Smith [41], Feller [13], Karlin and Taylor [25], Resnick

[39] and Ross [40] for renewal background, history, and applications). This paper develops

a periodic version of classical discrete-time renewal sequences. The period of the process,

denoted by T , is assumed known and fixed throughout. The fundamental difference from

an ordinary renewal process is that when a renewal occurs at time t, the time until the next

renewal is allowed to depend on the season corresponding to time t. In this manner, one

10



can build processes where renewals are more likely (or unlikely) during some seasons.

By superimposing or mixing versions of periodic renewal processes, one can construct

models for periodic sequences of counts. This is useful in climatology, for example, where

many phenomena have a definitive season of occurrence. Thunderstorms in the Southern

United States can take place at any time in the year, but are most likely during the sum-

mer. Hurricanes, tornados, and snowstorms are other meteorological count processes with

periodic features. Rare disease occurrences, accidental deaths, and animal sightings are

non-meteorological examples of count series with periodic structure. Section 6 shows how

periodic renewal processes can be used to describe periodically stationary count sequences.

Such processes have periodic means and autocovariances (the counts are not independent).

Processes with periodic dynamics have been previously studied. General time series

with periodic dynamics are overviewed in Hurd and Miamee [19] and Gardner, Napolitano,

and Paura [15] from a second-order point of view. Lund and Basawa [30] study periodic

time series via periodic autoregressive moving-average models. Markov chains with periodic

dynamics have been considered in queueing contexts (Harrison and Lemoine [17], Lemoine

[27], Heyman and Whitt [18], Asmussen and Thorisson [3]), branching processes (Jagers and

Nerman [23]), storage models (Phatarfod [38], Lund [28]) and general regenerative processes

(Çinlar [10], Thorisson [43]). While the analysis below is in discrete time and is somewhat

pedestrian compared to say [43], its utility lies with having results carefully stated with

explicit formulae supporting the theorems. Our arguments are elementary, developed fully,

and our end pursuit, the generation of a time series of counts with periodic features, departs

from the stochastic analysis slant of some of the above works.

2.1.1 Preliminaries

Our periodic discrete renewal process is described as follows. There are T possible

seasons, which are indexed in the order 1, 2, . . . , T . There are T lifetimes {Lk}Tk=1 that are

used as follows: if a renewal occurs in season ν ∈ {1, 2, . . . , T}, then the time until the next

renewal has the same distribution as Lν and does not depend on past lifetimes in any way.

11



Let s(t) = t − T b(t − 1)/T c denote the season of time t so that s(0) = T , s(1) = 1, . . . ,

s(T − 1) = T − 1, s(T ) = T , s(T + 1) = 1, etc..

Our periodic renewal process has renewals at the times R0 < R1 < R2 < . . . and

the kth lifetime is Ik, where I0 = R0 and Ik = Rk − Rk−1 for k ≥ 1. Conditional on

Rn−1, In has the same distribution as Ls(Rn−1). The interrenewal lifetimes are governed

by T independent and identically distributed (iid) sequences {L1,k}k≥1, {L2,k}k≥1, . . . ,

{LT,k}k≥1, with Lν,k
d
= Lν for each ν ∈ {1, 2, . . . , T} and k ≥ 1. The initial lifetime R0,

which may not be equal in distribution to Lν for any season ν, is assumed independent of

all other lifetimes. For each n ≥ 1, one has

Rn = Rn−1 + Ls(Rn−1),n.

In contrast to classical renewal theory, the interrenewal times are no longer iid. We call the

process pure if R0 = 0; otherwise, the process is termed delayed. Let un be the renewal

probability at time n, i.e.

un =
∞∑
k=0

Pr(Rk = n).

The sequence {un}n≥0 is called the renewal probability sequence. One goal of this paper

is to find an initial distribution of R0 that makes the renewal probabilities periodically

constant: unT+ν = uν , for all n ≥ 0. The utility of this will be seen in Section 6. Renewal

processes satisfying this condition are called periodically stationary. When T = 1, our

model reduces to the classical time-homogeneous renewal model.

The age chain {An}∞n=0 is defined as An = n− sup{Rk : Rk ≤ n}; that is, An is the

elapsed time since the most recent renewal previous to time n. If a renewal occurs at time n,

then An = 0. If the last renewal occurring at or before time n occurred at time k < n, then

An = n − k. Later, the derived limiting behavior of {An}∞n=0 will show what distribution

of the delay R0 is needed to generate a periodically stationary renewal sequence.
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2.2 Computation of Renewal Probabilities

As a ground zero issue, one would like to be able to compute {un}∞n=1. For this, let

u
(ν)
n be the probability of a renewal at time n ≥ 1 when R0 has the same distribution as Lν :

u(ν)n = Pr(A renewal occurs at time n when R0 is a Lν lifetime).

While a non-delayed setup involves the season ν = T renewal probabilities {u(T )n }∞n=1, it

will be convenient to calculate {u(ν)n }∞n=1 simultaneously for all seasons ν ∈ {1, 2, . . . T}.

The renewal probabilities at time one are simply u
(ν)
1 = Pr(Lν = 1) for each season

ν. Conditioning on the time of the first renewal gives the recursion

u(ν)n = Pr(Lν = n) +
n−1∑
k=1

Pr(Lν = k)u
s(ν+k)
n−k . (2.1)

From equation (2.1), it is a simple matter to compute the renewal probabilities in the order

u
(1)
1 , . . . , u

(T )
1 ; u

(1)
2 , . . . , u

(T )
2 ; . . ..

As an example of the above, consider the case where Lν has a geometric distribution

with success probability pν . For concreteness, suppose pν has the sinusoidal structure

pν = A+B cos

(
2π(ν − τ)

T

)
, (2.2)

where A, B, and τ are parameters rendering pν ∈ (0, 1) for all seasons ν. Selecting T = 3,

A = 1/3, B = 3/8, and τ = 3.2 gives p1 = 0.2941, p2 = 0.02995, and p3 = 0.6759 to four

significant digits. The season 3 renewal probabilities are plotted in Figure 2.1. Notice the

rapid convergence of the renewal probabilities to a periodic limit. In the limit, the season

three renewal probabilities are the largest and the season two probabilities are the smallest.
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Figure 2.1: Renewal probabilities starting with a season three lifetime

2.3 Limiting Properties

This section establishes a periodic limiting distribution for {An}∞n=0 and a determin-

istic periodic limit for {un}∞n=1. Since the interest here is only in limiting behavior and the

limits will not depend on the initial delay, we assume in this section that R0 = 0, making

A0 = 0.

Our first observation shows that {An}∞n=0 is a Markov chain with periodic transition

probabilities.

Proposition 2.3.1 {An}∞n=0 is a Markov chain with periodic transition probabilities. The

only non-zero transition probabilities are

Pr(An+1 = i+ 1 | An = i) = Pr(Ls(n−i) > i+ 1 | Ls(n−i) > i)

Pr(An+1 = 0 | An = i) = Pr(Ls(n−i) = i+ 1 | Ls(n−i) > i).

Proof Observe that if An = i, the only possible values for An+1 are i + 1 or 0. Also, if

An = i, then the last renewal previous to time n must have occurred at time n− i and this

item is known to have lasted more than i time units. Hence, given An = i, the item in use
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at time n has a distribution equivalent to that of Ls(n−i). Finally, conditional on An = i,

An+1 = i + 1 if and only if the item in use at time n lasts at least i + 1 time units. This

verifies the first equation in the proposition; similar reasoning (or complementation) verifies

the second equation. ♦

Unfortunately, the one-step-ahead transition probabilities Pr(An+1 = j | An = i)

change with n in a periodic manner. Thus, while the age process is a Markov chain, it is not

a time-homogeneous Markov chain. This observation leads us to the following proposition,

which shows that subsequences of the age process on a periodic lattice are time-homogeneous

chains.

Proposition 2.3.2 The sequence {AnT+ν}∞n=0 is a time-homogeneous Markov chain for

each fixed season ν.

Proof As any subsequence of a Markov chain retains the Markov property, we need only

verify the claimed time-homogeneity of transition probabilities. Given that AnT+ν = i, we

know that the item in use at time nT + ν is drawn from a season s(nT + ν− i) distribution

and is i units old at time nT + ν. Should this item fail within the next T time units, it

will be replaced by new item(s) whose distribution only depends on the season of failures(s)

and not on the cycle index n. Should such replacement(s) result in an age of j at time

(n+ 1)T + ν (note that A(n+1)T+ν can be no larger that T + i), then this same replacement

sequence would have produced an age of j at time (n + 2)T + ν should A(n+1)T+ν = i.

Invoking periodic IID renewals proves the time-homogeneity of transition probabilities. ♦

We now derive conditions that ensure that {AnT+ν}∞n=0 is irreducible, aperiodic, and

positive recurrent. It will be helpful to introduce a Markov chain {Sn}∞n=0 that keeps track

of the season which the nth item was generated from. Specifically, for ν ∈ {1, 2 . . . , T}, let

Cν = {ν, T + ν, 2T + ν, . . .} be the set of all times at which season ν takes place and for
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ν, ν ′ ∈ {1, 2, . . . , T}, set

pν,ν′ = Pr(Sn+1 = ν ′ | Sn = ν) = Pr(Lν ∈ Cs(ν′−ν)).

Proposition 2.3.3 If {Sn}∞n=0 is irreducible, aperiodic, and positive recurrent and E[Lν ] <

∞ for every season ν, {AnT+ν}∞n=0 is irreducible, aperiodic and positive recurrent for each

season ν and hence has a unique limiting distribution.

Proof It suffices to show that Eν [τν ] < ∞ for each season ν, where τν denotes the time

spent waiting for a future renewal to take place in season ν and Eν signifies that a renewal

has currently taken place at a time whose season is ν.

We first consider the case where p∗ := mini,j pi,j > 0. Under this assumption, there

is some positive probability that each and every new renewal will take place in the season ν

lattice set Cν . A geometric trials argument now shows that τν is stochastically bounded by

τν
st
≤
∑N

j=1M
∗
j , where {M∗j }j≥1 is an iid sequence, with M∗1

d
= max(L1, . . . , LT ), and N is

a geometric random variable with parameter p. Hence, Eν [τν ] ≤ E[M∗1 ]E[N ] < ∞ follows

from E[M∗1 ] ≤
∑T

j=1E[Lj ] <∞.

Now suppose that mini,j pi,j = 0. Since {Sn}∞n=0 is a finite state-space chain whose

transition matrix is irreducible, aperiodic, and positive recurrent, there exists an integer

k > 1 such that the k-step-ahead transitions of {Sn}∞n=0 are uniformly positive for all i

and j: mini,j p
(k)
i,j > 0 (Billingsley [5]). Given that we are currently experiencing a season

ν renewal, let τ
(k)
ν be the first time until ` more renewals occur where, (1) ` is a whole

multiple of k, and (2) the renewal puts the chain in season ν. Applying the above argument

shows that E[τ
(k)
ν ] <∞. But since τν ≤ τ (k)ν , E[τν ] < E[τ

(k)
ν ] <∞ and our work is done. ♦

For notation, let πk(ν) = limn→∞ Pr(AnT+ν = k) denote the stationary distribution

of {AnT+ν}∞n=0. Our next goal is to compute this distribution for each season ν. The

following result reduces this issue to the case where k = 0.
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Proposition 2.3.4 For each k ≥ 0 and each season ν,

πk(ν) = Pr(Ls(ν−k) > k)π0(s(ν − k)). (2.3)

Proof Simply use that

πk(ν) = lim
n→∞

Pr(AnT+ν = k)

= lim
n→∞

Pr(AnT+ν = k,AnT+ν−k = 0)

= lim
n→∞

Pr(AnT+ν = k | AnT+ν−k = 0)Pr(AnT+ν−k = 0)

= Pr(Ls(ν−k) > k)π0(s(ν − k)).

♦

When the lifetimes {Lν}Tν=1 are all identically distributed (seasonally non-varying),

the age process is time-homogeneous and there is only one stationary distribution to com-

pute. In this case, (2.3) gives

1 =
∞∑
k=0

πk(1) =
∞∑
k=0

Pr(L1 > k)π0(1) = π0(1)E(L1),

which yields the classical result π0(1) = E[L1]
−1.

An analogous approach will be used in our periodic setting, but will require slightly

more work. For each season ν, {πk(ν)}∞k=0 is a probability measure. Using this and Propo-

sition 4.4 provides, for each season ν,

1 =
∞∑
k=0

πk(ν) =
ν∑
j=1

π0(j)
∞∑
n=0

Pr(Lj > nT+ν−j)+
T∑

j=ν+1

π0(j)
∞∑
n=0

Pr(Lj > (n+1)T+ν−j).

(2.4)

Hence, ~π0 := (π0(1), π0(2), . . . , π0(T )) is a solution to a linear system of T equations.

Our immediate goal is to solve (2.4) for π0(1), . . . , π0(T ). To help solve this, we offer
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the following lemma. Here, bxc is the greatest integer less than or equal to x.

Lemma 2.3.1 Let X be a positive integer-valued random variable. Then for each season

ν
∞∑
n=0

Pr(X > nT + ν) = E [bX/T c] + Pr
(
X ∈ ∪T−1`=ν+1C`

)
. (2.5)

Proof Since Pr(X > nT+ν) = Pr(X ≥ (n+1)T )+Pr(X ∈ {nT+ν+1, . . . , nT+(T−1)}),

∞∑
n=0

Pr(X > nT + ν) =
∞∑
n=0

Pr(X ≥ (n+ 1)T ) + Pr(X ∈ Bν),

where Bν = ∪T−1`=ν+1C`. Using this and

∞∑
n=0

Pr(X ≥ (n+ 1)T ) =

∞∑
n=1

Pr (bX/T c ≥ n) = E[bX/T c]

finishes our work. ♦

Applying Lemma 2.3.1 to (2.4) for each season ν yields

1 =
ν∑
j=1

π0(j) [E(bLj/T c) + Pr(Lj ∈ Bν−j+1)]+
T∑

j=ν+1

π0(j) [E(bLj/T c) + Pr(Lj ∈ BT+ν−j+1)] .

(2.6)

Equation (2.6) shows that ~π0 lies in {x ∈ RT : Ax = ~1}, where ~1 is a T -dimensional

column vector containing all ones and A := [ai,j ]1≤i,j≤T is a matrix with entries

ai,j =

 E(bLj/T c) + Pr(Lj ∈ Bi−j+1), i ≥ j;

E(bLj/T c) + Pr(Lj ∈ BT+i−j+1), i < j
,

where the convention B0 = BT is used. We now show that ~π0 can be expressed purely in

terms of the stationary distribution of the seasonal chain and the first moment of the T

lifetime distributions.

Readers should note that the expressions in Theorem 4.1 for ~π0 are akin to those

found in Theorem 3 of [43], who studies periodic renewal processes in continuous time when
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the interrenewal distributions have some common absolutely continuous component over all

seasons.

Theorem 2.3.1 For each season ν,

π0(ν) = lim
n→∞

Pr(A(nT + ν) = 0) =
Tγν∑T

`=1E(L`)γ`

where ~γ = {γν}Tν=1 represents the stationary distribution of {Sn}∞n=0.

Proof Consider the linear system given by (2.6). Subtracting the second equation from

the first equation, the third equation from the second equation, the fourth from the third,

and so on, we observe that ~π0 must also satisfy a linear system of T equations, the first

T − 1 being of form

π0(ν)
∑
ν′ 6=ν

pν,ν′ =
∑
ν′ 6=ν

π0(ν
′
)pν′,ν , 2 ≤ ν ≤ T,

where pν′,ν is the (ν ′, ν)th entry in the transition matrix of {Sn}∞n=0. The last equation is

1 =

T∑
ν=1

π0(ν) {E(bLν/T c) + Pr(Lν ∈ BT−ν+1)} .

Adding π0(ν)pν,ν to both sides of the first T − 1 equations shows that ~π0 also satisfies

π0(ν) =
T∑
`=1

π0(`)p`,ν , 2 ≤ ν ≤ T,

1 =
T∑
ν=1

π0(ν) {E(bLν/T c) + Pr(Lν ∈ BT−ν+1)} .

This new system is extremely elegant; in particular, the first T − 1 equations are

the stationary balance equations of {Sn}∞n=0. From these first T − 1 equations, one can

show that ~π0 must satisfy all balance equations for the stationary distribution of {Sn}∞n=0.

Since {Sn}∞n=0 is irreducible and positive recurrent, all solutions of the balance equations
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are scalar multiples of the stationary distribution ~γ of the seasonal chain (for details see

e.g. [39]). Thus, there exists a constant c > 0 satisfying ~π0 = c~γ.

We finish by determining the unknown constant c. Summing all equations in (2.4)

and applying ~π0 = c~γ gives T = c
∑T

`=1E[L`]γ`. Hence,

c =
T∑T

`=1E[L`]γ`

and our derivation is complete. ♦

Our results are expressed in terms of the stationary distribution ~γ of {Sn}∞n=0, which

depends on terms of the form Pr(L ∈ Cν). Such probabilities are tractable for many classical

types of integer-valued random variables. For example, if L is geometric with parameter p,

then for each season ν,

Pr(L ∈ Cν) =
p(1− p)ν−1

1− (1− p)T
, ν = 1, 2, . . . , T. (2.7)

It is also possible to compute such probabilities when L is a negative binomial random

variable with parameters m ≥ 2 and p ∈ (0, 1). One efficient way of doing this is to

recognize that L is now an iid sum of m geometric random variables with parameter p.

Setting G to be a matrix with (i, j)th element

gi,j =
p(1− p)s(j−i)−1

1− (1− p)T
,

we see that Pr(L ∈ Cν) is simply the νth component of ~e1G
m, where ~e1 is the first basis

vector (1, 0, 0, . . . , 0).

These types of probabilities can also be computed explicitly when L is a Poisson random

variable. Interested readers will find that P (L ∈ Cν) can, in this case, be expressed rather

elegantly in terms of the T roots of unity (possibly complex-valued solutions to zT = 1).

Example 4.2 Suppose that T = 2. Then the transition matrix of {Sn}∞n=0 has (i, j)th
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element Pr(Li ∈ Cs(j−i)) for i, j ∈ {1, 2}. The stationary distribution of {Sn}∞n=0 hence has

form

~γ =

(
Pr(L2 ∈ C1)

Pr(L1 ∈ C1) + Pr(L2 ∈ C1)
,

Pr(L1 ∈ C1)

Pr(L1 ∈ C1) + Pr(L2 ∈ C1)

)
.

Hence,

π0(1) = lim
n→∞

unT+1 =
2Pr(L2 ∈ C1)

E[L1]Pr(L2 ∈ C1) + E[L2]Pr(L1 ∈ C1)

and

π0(2) = lim
n→∞

unT+2 =
2Pr(L1 ∈ C1)

E[L1]Pr(L2 ∈ C1) + E[L2]Pr(L1 ∈ C1)
.

Arguing with (2.3) gives

πk(1) = Pr(L2 > k)π0(2)1{k odd} + Pr(L1 > k)π0(1)1{k even}, k ≥ 1

and

πk(2) = Pr(L1 > k)π0(1)1{k odd} + Pr(L2 > k)π0(2)1{k even}, k ≥ 1.

Example 4.3 Consider a setting where a renewal always occurs during season one; that

is, there is always an annual replacement. If the item fails before season one, the item is

replaced at that time. Such a scenario occurs when the support of Lν is {1, 2, . . . , T −ν+1}

for each season ν. We start with a season T lifetime at time zero so that S0 = T .

The renewal probabilities can be obtained from the renewal equations of Section 3:

set u0 = 1, and for each season ν,

uν =

ν−1∑
k=0

ukP (Lk = ν − k).

One can easily verify that for each season ν,

π0(ν) =
Tuν∑T

`=1E[L`]u`

satisfy the limiting equations in Theorem 4.1.
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2.4 A Periodically Stationary Initial Lifetime

What should the law of the initial delay R0 be in order for our process to be exactly

periodically stationary from the onset? Specifically, we seek to identify the distribution of

R0 so that the renewal probabilities are exactly periodic: unT+ν ≡ π0(ν) for all n ≥ 0.

When T = 1, it is well-known that the law of R0 is simply

Pr(R0 = n) =
Pr(L1 ≥ n+ 1)

E[L1]
, n ≥ 0.

This is often referred to as the equilibrium distribution, or the first-derived distribution of

L1.

As our next result shows, if the law of A0 is set to ~π(T ), then the age chain is

put into a periodic state (exactly). Our notation uses Pν for the one-step-ahead transition

probability matrix whose (i, j)th element is Pr(Aν+1 = j | Aν = i).

Proposition 2.4.1 Interpreted periodically with period T , ~π(ν+1) = ~π(ν)Pν , where ~π(ν) =

{πk(ν)}∞k=0.

Proof The result follows from the fact that the stationary distribution of the subsequence

{AnT+ν}∞n=0 must be unique for each fixed season ν. In fact, the one-step-ahead transition

matrix of {AnT+ν}∞n=0 is Qν := PνPν+1 · · ·PTP1 · · ·Pν−1. Since ~π(ν) = ~π(ν)Qν , we have

~π(ν)Pν = ~π(ν)QνPν = ~π(ν) (PνPν+1 · · ·PTP1 · · ·Pν−1)Pν . (2.8)

Hence, ~π(ν)Pν = ~π(ν)PνQν+1. But since ~π(ν+ 1) = ~π(ν+ 1)Qν+1, uniqueness of stationary

distributions shows that ~π(ν)Pν = ~π(ν + 1). ♦

Deriving an expression for the probability mass function of R0 is now a simple task.

Suppose that the law of A0 is π(T ) so that the age chain is periodically stationary (exactly)

from the onset. Let f̃k = Pr(R0 = k) be the mass function of the initial delay. Conditioning
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on R0 gives the recursion

un = f̃n +
n−1∑
k=0

ukPr(Ls(k) = n− k).

Solving this for f̃n gives

f̃n = π0(s(n))−
n−1∑
k=0

π0(s(k))Pr(Ls(k) = n− k) (2.9)

when the fact that R0 was chosen to induce a periodically stationary renewal process is

applied (unT+ν = π0(ν) for all n and seasons ν).

2.5 A Count Time Series Model with Periodic Dynamics

Count time series models with periodic properties can be devised with the above

methods. For example, suppose one is interested in modelling the number of precipitation

days in a week at a fixed locality (a day is called a precipitation day if 0.1 inches or more

of rain or its snow water equivalent is recorded). Here, a binomial marginal distribution

with 7 trials plausibly describes the counts in any week. However, because adjacent weeks

experience similar weather, weekly counts are likely to exhibit positive correlation. Also,

some localities should display periodic features. For example, rain rarely occurs in Cali-

fornia during the summer, but is common during the winter. Figure 2.2 plots the number

of precipitation days observed in 728 successive weeks at Coldfoot, Alaska spanning the

14-year period January 1, 1996 — December 31, 2009. Coldfoot is noteworthy as it claims

North America’s lowest observed temperature of -82◦F. While this record is not officially

recognized due to gauge deficiencies, Coldfoot, lying near the Brooks Range, has a seasonal

but ephemeral climate. Leap year day (Feb 29) precipitations and December 31 precipita-

tions have been neglected to induce an “exact period” of T = 52 weeks in the counts. This

should not influence end inferences greatly. In fact, precipitation was observed on December

31 in only two of the 14 years in the record, for example.
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Figure 2.2: Weekly precipitation days at Coldfoot, Alaska
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A model for series with the above properties is easily devised from our work. Let

{Rt} be a renewal process that is periodically stationary (exactly); that is, Rt is unity if a

renewal occurs at time t and zero otherwise. Then Pr(RnT+ν = 1) = uν is the probability

of a renewal at time nT + ν. Now suppose that {Rt,1}∞t=1, {Rt,2}∞t=1, . . . are independent

copies of {Rt}. To model the precipitation count Nt of week t, set

Nt =

7∑
`=1

Rt,`. (2.10)

It is easy to see that {Nt} has marginal binomial distributions with 7 trials. Also, {Nt}

has a periodic mean and covariance structure. To see this, note that E[RnT+ν ] = uν , and

hence, E[NnT+ν ] = 7µν . By a periodic covariance structure, (frequently termed cyclosta-

tionary, periodically stationary, or periodicially correlated in the literature), we mean that

Cov(Nn+T , Nm+T ) = Cov(Nn, Nm) for all integers n and m. This is seen by noting that for

t < s,

Cov(Nt, Ns) =
7∑
i=1

Cov(Rt,i, Rs,i)

= 7ut [Pr(Rs = 1|Rt = 1)− us]

= 7π0(t)[Pr(Rs = 1|Rt = 1)− π0(s)],

and applying Pr(Rs+T = 1|Rt+T = 1) = Pr(Rs = 1|Rt = 1) and ut+T = ut = π0(t).

As an aside, observe that marginal distributions other than Binomial can be devised

with the above methods. For example, should one desire periodic Poisson marginals, then

(2.10) is modified to Nt =
∑Mt

`=1Rt,`, where {Mt}∞t=1 is a periodic random sequence having

Poisson marginal distributions, say E[Mt] = λt with λt+T = λt. Cui and Lund [11] show

how to generate geometric and other classical count structures from the above tactics. The

fundamental building block to all constructions is the renewal process, which is simply a

correlated sequence of zeros and ones.

Returning to the binomial problem at hand, we briefly attempt to fit a rudimentary
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statistical model to the Coldfoot series. For the renewal process, we posit that the season ν

lifetime Lν is geometrically distributed with success probability pν > 0; moreover, since pν

is periodic, we explore the first-order Fourier parametrization in (2.2), where A > 0, B ∈

[0, 1−A] are unknown amplitude parameters and τ ∈ [0, T ] is an unknown phase parameter.

We fit this model by minimizing a sum of squared prediction residuals. Specifically, arguing

as in [11], one can show that the weekly precipitation counts {Xt} obey a periodic Markov

structure and that

E[Nt+1|Nt] = E[Nt+1] +
Cov(Nt+1, Nt)

Var(Nt)
(Nt − E[Nt]).

Using E[Nt] = 7π0(t), Var(Nt) = 7π0(t)(1− π0(t)), Pr[Ls(t) = 1] = ps(t), and

Cov(Nt+1, Nt) = 7π0(t)[Pr(Ls(t) = 1)− π0(t+ 1)] = 7π0(t)[ps(t) − π0(t+ 1)],

a one-step-ahead prediction of the form

N̂t+1 = E[Nt+1|N1, . . . , Nt]

= E[Nt+1|Nt]

= 7π0(t+ 1) +
ps(t) − π0(t+ 1)

1− π0(t)
(Nt − 7π0(t))

is obtained.

A reasonable objective function for selecting A,B, and τ simply minimizes

d−1∑
`=0

T∑
ν=1

(N`T+ν − N̂`T+ν)2 =
n∑
t=1

(Nt − N̂t)
2 (2.11)

over feasible values of A, B, and τ . In (2.11), n = 728 is the total number of weeks and

d = n/T = 14 is the number of years of observed data. Observe that N̂t is a function of A,

B, and τ only and that Pr[Ls(t) = 1] = ps(t).

A numerical minimization routine was used to find parameter values that minimize
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(2.11): Â = 0.2225, B̂ = 0.08333, and τ̂ = 29.2770. The minimum sum of squares was

1588.9517. Elaborating, Theorem 4.1 was used to compute ~π0 for each feasible triple of A,B,

and τ . The values of {γν}52ν=1 needed were obtained numerically after explicit expressions for

the one-step-ahead transitions of the seasonal chain {Sn}∞n=0 were computed. Specifically,

Lν having a geometric distribution with parameter pν implies that

Pr(Sn+1 = j|Sn = i) =


pi(1−pi)j−i−1

1−(1−pi)T
, j > i

pi(1−pi)T+j−i−1

1−(1−pi)T
, j ≤ i

.

Numerical estimates of the Hessian of this fit indicate that B is significantly positive, im-

plying that periodic features are needed in the model. As an example of what the model

fit does, Figure 2.3 plots the weekly precipitation count segment during 2001 along with

one-step-ahead predictions. The one-step-ahead predictions track the observed counts rea-

sonably well. The estimated long run probabilities of a precipitation day peak during week

29 (summer) at 0.2950 and are minimal during week three (winter) at 0.1485.

While we leave issues of whether the fit is good, etc., to a statistical inference paper,

one appreciates that periodic renewal processes have utility in a variety of applications.
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Figure 2.3: Weekly precipitation days during 2001 (Circles) and their one-step-ahead pre-
dictions (Squares)
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Chapter 3

Multivariate Count Models

3.1 Preliminaries

Although much research considers the modeling of multivariate count time series,

no one class of models has emerged as the most flexible, parsimonious, and widely used.

This chapters develops a multivariate count time series model by superimposing stationary

renewal processes. This method, though radically different from current multivariate count

time series tactics, achieves a large range of autocorrelations and cross-correlations. Diffi-

culties in modeling multivariate count time series arise in concurrently dealing with both

auto and cross-correlations. We use a multivariate renewal process to help resolve issues.

Improved computing power has led to a surge in literature on generating IID, and

correlated random variables ([9],[4]), especially multivariate Poisson [44]. These methods,

coupled with multivariate renewal process results, will be used to increase both our model-

ing possibilities and our range of feasible correlations. Since multivariate time series appear

in a variety of applications, flexible multivariate count models are needed [35]. Currently,

the majority of multivariate count series models follow multivariate integer-valued autore-

gressive moving-average (MINARMA) recursions that generalize the univariate thinning

operator [2]. MINARMA models have been extensively researched in the past few years.

The bivariate INAR(1) (BINAR(1)) was defined in [36] and then generalized in [37]. This
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method uses Bernoulli trials to replace the scalar multiplication of Gaussian multivariate

ARMA models. The MINAR(1) model obeys

Xt = A ◦Xt−1 + Zt, (3.1)

where A is an n × n matrix of independent autocorrelation parameters and A◦ acts as

the usual matrix multiplication, where each scalar multiplication is a binomial thinning

as defined in Section 1.2.2. Here, {Zt} are IID integer-valued innovations where Zt is

independent of Xt−1, Xt−2, . . .. The ith marginal element of the vector Xt is then

Xi,t =
n∑
j=1

αi,j ◦Xj,t−1 + Zi,t, (3.2)

where αi,j is the (i, j)th element of A. In the multivariate setting, these methods induce

complicated estimation problems. Moreover, the autocorrelation function of each compo-

nent of (3.1) must be non-negative, a drawback that we will resolve with renewal methods.

The generalized integer-valued autoregressive (GINAR) model was generalized to

the multivariate setting (MGINAR(p)) in [26]. This work, analogous to the extension from

INAR to GINAR, created a stationary class of multivariate integer-valued autoregressive

series with autocovariance functions identical to Gaussian VAR(p) models. Instead of defin-

ing a single thinning probability, MGINAR(p) series have p mutually independent operators

A1, A2, . . . , Ap.

Xt =

p∑
j=1

Aj ◦Xt−j + εj .

However, this paper later goes on to show the autocorrelation structure of the MGINAR(1)

is exactly that of the AR(1) model. Thus, producing a long-memory series in this paradigm

is unobtainable.

Recently, negative correlation modeling issues have received attention in the count

literature. [24] attempts to introduce negative autocorrelation structure by rounding ordi-

nary ARMA models (as opposed to the thinning operator of the aforementioned MINAR
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model of 3.1). This rounded integer (RINAR) model,

Xt =

〈
p∑
j=1

αjXt−j + λ

〉
+ εt

where < · > is the standard rounding operator, can produce a series with negative auto-

correlations. Unfortunately, this method, due to the rounding, cannot produce a stationary

series with arbitrary marginal distribution. The ability to specify a marginal distribution

is one benefit of the renewal model. Our multivariate renewal count model will be able to

produce a negatively correlated series with long or short memory with ease.

In previous work, renewal chains have been superimposed to generate count time

series in univariate settings [11]. Stationary as well as periodic point process [14] have been

used to derive count models with desirable characteristics i.e., stationarity, negative lag one

correlations, seasonal properties, and both long and short memory. Count time series play

an important role in the modeling of small-integer valued natural phenomenon such as rare

disease occurrences, animal sightings, natural deaths, etc. Also, many meteorological phe-

nomena such as hurricanes, tornadoes, and severe snowstorms are small integers. Extending

our previous work to a multivariate setting affords greater flexibility in modeling and pre-

diction. For example, suppose one is interested in a count time series of severe snowstorms.

The ability to easily generate multivariate count time series with negative autocorrelations

allows snowstorm occurrences to be grouped by type, say lake-effect snowstorms and over-

running snow storms. Lake effect snow occurs when a mass of sufficiently cold air moves

over a body of warmer water, creating an unstable temperature profile in the atmosphere.

As a result, clouds build over the lake and eventually develop into snow showers and squalls

as they move downwind. Overrunning snowstorms occur when moist, warmer air is directed

up and over a mass of colder air at the surface of the earth. The warm air cools as it rises,

and its moisture condenses into precipitation-producing clouds. Disjoint formation condi-

tions make these two types of snowstorm counts negatively correlated. If a body of water

is still warm, we would expect lake effect snow storms - vice-versa after the lake has frozen
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over. Our multivariate count time series models permit negative correlations.

The rest of the chapter proceeds as follows. In section 3.2, we introduce a motivating

data set of hurricane counts. In section 3.3, we propose the renewal-based multivariate count

time series model, including notation and relevant stochastic processes background. Section

3.4 handles issues of estimation and statistical inference in fitting the renewal count model.

3.2 Hurricane Counts Data

Figure 3.1 shows the number of major hurricanes (Saffir-Simpson Category 3 and

above) recorded in the North Atlantic and North Pacific Basins since 1970. We select 1970 as

a starting year because satellite reconnaissance was in full operation then, making it unlikely

that a storm of such severity formed over open waters and went undocumented (this issue

arises in early Atlantic Basin records). A Saffir-Simpson Category 3 or higher storm has

wind speeds of 111 mph or more at some time during the storms life. Marginally, the two

component series pass most Poissonian diagnostic tests (there is a very slight amount of

overdispersion). What is perhaps unexpected is a negative sample correlation between the

components: -0.43539. Active North Atlantic seasons are typically accompanied by inactive

North Pacific seasons and vice versa.

Negatively correlated count series models are difficult to devise. Existing generalized

linear models and count time series methods cannot handle negatively correlated data, long-

memory autocovariance aspects, or periodic features. Below, we show how each of these

features can be made; one can even have any subset of the features in tandem.

3.3 Renewal-based Model

3.3.1 Notation

The primary building block of our count time series model will be a stationary

multivariate renewal process. Let L = (L(1), L(2))′ be a bivariate random variable taking

values in {1, 2, 3, . . .} × {1, 2, 3, . . .}. We assume knowledge of a joint probability mass
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Figure 3.1: Annual number of Saffir-Simpson category 3 and stronger hurricanes in the
North Pacific and North Atlantic Basins.

function fn,m = P (L(1) = n ∩ L(2) = m). Now let L1 = (L
(1)
1 , L

(2)
1 )′, L2 = (L

(1)
2 , L

(2)
2 )′, . . .

be IID with distribution equal to L. The former will henceforth be referred to as the lifetimes

of the two-dimensional renewal process. A renewal is said to have taken place at time t =

(t1, t2), ti ∈ {0, 1, 2, . . .} if and only if Sn = L1 +L2 + · · ·+Ln = t for some n ∈ {0, 1, 2, . . .}.

Thus, {Sn}∞n=0 forms the points of a bivariate renewal process. An important observation

is that this also defines two separate univariate renewal process times {S(i)
n }∞n=0, where

S
(i)
n = L

(i)
1 + L

(i)
2 + · · ·+ L

(i)
n , i = 1, 2. Univariate renewal processes have been extensively

studied ([41], [13], [25], [39], [40]). Define renewal probabilities wn,m = P (S` = (n,m)′) for

some ` ∈ {0, 1, 2, . . .}. Assuming S0 = (0, 0)′ and conditioning on the value of L1 gives the

computational formula

wn,m = fn,m +
n−1∑
i=1

m−1∑
j=1

wi,jfn−i,m−j . (3.3)
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Throughout, we define the multivariate renewal process {Rn}∞n=0 = (R
(1)
n , R

(2)
n )′,

where R
(i)
t = 1 if and only if a renewal occurs in the ith component at time t of the

bivariate renewal process; R
(i)
t = 0 otherwise. Let u

(1,2)
n,m = P (R

(1)
n = 1 ∩ R(2)

m = 1). Note

that S` = (n,m)′ for some ` implies that R
(1)
n = 1 and R

(2)
m = 1, but the converse is not

necessarily true. The renewal probabilities in one dimension are u
(i)
n = P (R

(i)
n = 1) for

i = 1, 2. The u
(i)
n for i = 1 or 2 can be calculated with the recursive relationship

u(i)n =
n−1∑
k=0

u
(i)
k P (L(i) = n− k), (3.4)

where the convention u
(i)
0 = 1 is used.

3.3.2 A Bivariate Count Time-series Model

Assume that the bivariate renewal process is stationary in the sense that E[Rn] is

independent of n and Cov(Rn,Rn+h) only depends on h (how to do this with an appropriate

initial lifetime will not be delved into here). Let {R1,t}∞t=0, {R2,t}∞t=0, {R3,t}∞t=0, . . . be IID

copies of the stationary bivariate renewal process. Then a bivariate count time series can

be defined as X(1)
n

X
(2)
n

 =

∑N
(1)
t

i=1 R
(1)
i,n∑N

(2)
t

i=1 R
(2)
i,n

 , (3.5)

where {Nt} = {(N (1)
t , N

(2)
t )′} is stationary multivariate count sequence with mean λ =

(λ1, λ2)
′ and autocorrelation function Λ(·).

For example, if Nt has a Poisson distribution, then each componentX
(i)
n is marginally

Poisson with mean λiE[L(i)]. Moreover, since the summands depend on the components in

{Nt}, non-zero cross-correlation is obtained. In fact, the lag h cross-correlation is

Cov(X
(1)
t , X

(2)
t+h) =

Λ12(h)

µ(1)µ(2)
+ E[min(N

(1)
t , N

(2)
t+h)]

(
∆0 −

1

µ(1)µ(2)

)
, (3.6)

where ∆h = limn→∞ u
(1,2)
n,n+h and Λij(·) denotes the (i, j)th element of Γ(·). It should be
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noted that the goal is to generate a stationary multivariate count sequence. With this in

mind, the multivariate renewal sequence {Rn}∞n=0 is needed to be stationary. For any choice

of joint lifetime distribution with Cov(L(1), L(2)) 6= ±1, we conjecture that

∆h = P (R(1)
n ∩R

(2)
n+h) → 1

(E[L(1)]E[L(2)])
as n→∞. (3.7)

Equations (3.6) and (3.7), if true, show that no flexibility in covariance is gained by assuming

dependence between L(1) and L(2); henceforth, we assume independence between component

lifetimes.

3.3.3 Renewal Count Model Covariance Structure

The covariance Cov(Xt,Xt+h) depends on {Nt} via (3.6). Since our goal is to

have a flexible correlation structure, choosing {Nt} with a flexible correlation structure is

paramount. Henceforth, we take Nt = (Nt, Nt−1)
′, where {Nt}∞t=1 is the univariate renewal

count process given by [11] with autocorrelation function γN (·):

Nt =

Mt∑
i=0

Qi,t, (3.8)

where {Mt} is an IID sequence of Poisson random variables with mean λM and {Qi,t}∞t=1

are identically distributed stationary renewal sequences generated by the renewal lifetime

L(Q). Independence between distinct copies of the renewal process are assumed. Thus,

(λ1, λ2)
′ = (λN , λN )′, where λN = E[Nt] = λM/E[L(Q)] and

γN (h) =
E[min(Mt,Mt+h)]

E[L(Q)]

(
u
(Q)
h − 1

E[L(Q)]

)
, (3.9)

where u
(Q)
t = P (Q1,t = 1) and is generated with a recursive relationship analogous to (3.4).

This choice allows both positive and negative covariances at all lags and gives the ability
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to produce long or short memory series. Now assuming E[L(1)] = µ1, E[L(2)] = µ2,

γX(h) = Cov(Xt,Xt+h) =

C(h)µ−11 (u
(1)
h − µ

−1
1 ) γN (h+ 1)µ−11 µ−12

γN (h− 1)µ−11 µ−12 C(h)µ−12 (u
(2)
h − µ

−1
2 ).

 (3.10)

Here, C(h) = E[min(Nt, Nt+h)]. One can derive a closed-form expression for C(h). This is

discussed later in Section 3.4. These choices give

E

[(
X

(1)
t

X
(2)
t

)]
=

(
λN/µ1
λN/µ2

)
. (3.11)

By selecting a lifetime L(i) such that u
(i)
1 = P (L(i) = 1) < 1/µi for i = 1, 2, the

resulting marginal component series will have negative lag one autocorrelation. In fact, let

ε > 0 be a small probability and consider the first component series lifetime to take values

1, 2, or 3 with probabilities P (L(1) = 1) = P (L(1) = 3) = ε and P (L(1) = 2) = 1− 2ε. Then

E[L(1)] = 2, u
(1)
1 = ε, and from (3.10),

Corr(X
(1)
t , X

(1)
t+1) = 2ε− 1

ε↓0−→ −1

(arbitrarily close to -1). This is but one choice for the lifetime. Other choices yield different

correlation structures. Picking L(i) such that Var(L(i)) = ∞ yields a long-memory series,

following the work of [11]. To see the effectiveness of this modeling technique, consider the

first component of a sample path of (3.5) with {N (1)
t } IID Poisson(λ = 10) and renewal

lifetimes Poisson(α)+1, where α = 5. The notation +1 is used to emphasize that P (L =

k) = eαα(k−1)/(k − 1)! for k = 1, 2, . . . to avoid a zero lifetime. The sample path is shown

in Figure 3.2 and its sample ACF and PACF are shown in Figure 3.3. The inference is that

we have produced a sequence with negative lag one autocorrelation.
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Figure 3.2: Univariate sample path of a Poisson count series
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38



3.4 Estimation and Inference

Fitting the multivariate count model in (3.5) requires selecting a lifetime distribution

for both components of L. It is speculated that major hurricane counts are influenced by

slowly varying natural phenomena. Thus, choosing a lifetime that can produce long-memory

in either Atlantic or Pacific marginal counts seems fruitful. Recall that a series {Xt} has

long-memory if
∑∞

h=0 |Cov(Xt, Xt+h)| = ∞. Hence, for each component series, a discrete

Pareto lifetime defined as

P (L(i) = k) =
A(α(i))

kα
(i)

i = 1, 2 (3.12)

where α(i) > 2 and A(α(i)) is a scaling constant that ensures
∑∞

k=1 P (L(i) = k) = 1 will be

used. Note that 2 < α(i) < 3 gives a long-memory covariance structure as Var(L(i)) = ∞

but E[L(i)] <∞.

With lifetimes selected for each marginal component series, it only remains to specify

a distribution for L(Q). For this, we use the zero-modified Poisson distribution

P (L(Q) = k) =
e−(λQ−1)(λQ − 1)(k−1)

(k − 1)!
k = 1, 2, . . . (3.13)

where λQ > 1. The only parameter governing this lifetime is E[LQ] = λ(Q).

We fit this model by minimizing a sum of squared prediction residuals. A reasonable

objective function for selecting α(1), α(2), λM , and λQ simply minimizes

n∑
t=1

(Xt − X̂t)
′V −1t (Xt − X̂t), (3.14)

where Vt is the prediction error covariance matrix

Vt = E
[
(Xt − X̂t)(Xt − X̂t)

′
]
. (3.15)

X̂t is calculated using best linear prediction (BLP) techniques; a multivariate version of the
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Innovations Algorithm ([7], Proposition 11.4.2) is employed for the BLP. Elaborating, for

a given set of parameters α(1), α(2), λM and λQ (3.10) is used to explicitly compute γX(·),

which requires the computation of C(h) = E[min(Nt, Nt+h)]. Calculating this expected

value requires the realization

Nt+h|Nt
D
= B1 +B2 +B3, (3.16)

where B1 ∼ Bin(Nt, u
(Q)
h ), B2 ∼ Bin(Mt − Nt,

1−u(Q)
h

λQ
), and B3 ∼ Bin(Mt+h − Mt, λ

−1
Q ).

In the case where Mt = Mt+h, the convention that B3 = 0 with probability 1 is used. If

Mt > Mt+h, a hyper-geometric conditioning argument is required to attain the number of

renewals that have occurred in the the first Mt+h trials at time t. These identities and a

sleepless afternoon allow us to evaluate C(h), and hence, the covariance structure of the

series.

A numerical minimization routine is utilized to find an optimal set of parameters

α(1), α(2), λM and λQ. While no rigorous parameter optimization is claimed, a preliminary

gradient step-and-search algorithm indicates parameter estimates of α(1) = 2.074712, α(2) =

2.3928, λM = 11.0221, and λQ = 1.4649. Even if these values end up being perturbed

slightly, they offer good insight. For example, the lifetimes for L(1) and L(2) are discrete

Pareto, given by (3.12). Hence, these α(i) values give µ1 = E[L(1)] = 2.8568 and µ2 =

E[L(2)] = 1.97380. They yield, λN = λM/λQ = 7.5241. Marginal component means, via

(3.5), are

E

[(
X

(1)
t

X
(2)
t

)]
=

(
λN/E[L(1)]

λN/E[L(2)]

)
=

(
2.63374

3.81199

)
. (3.17)

For comparison, the sample means of the marginal Atlantic and Pacific ocean basin major

hurricane counts are 2.4146 and 3.7317 respectively. Moreover, the fact 2 < α(i) < 3 for

both i = 1, 2 is an indicator that a long-memory count time series model is appropriate

for this data. What we have seemingly found is a count series with long-memory marginal

covariances and negative component correlations!

Recall, in section 3.2 the sample correlation between series was -0.43539. Taking
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the above set of parameter estimates as law, the lag zero cross-correlation structure of our

model, via (3.10)

Corr(X
(1)
t , X

(2)
t ) =

CM (1)

λQµ1µ2
(u

(Q)
1 − λ−1Q ), (3.18)

where CM (h) = E[min(Mt,Mt+h)] can be calculated in terms of Bessel functions.

CM (1) = λM

(
1− e−2λM (I0(2λM ) + I1(2λM ))

)
, (3.19)

where I0 and I1 denote Bessel functions of the first and second orders, respectively. For

λM = 11.0221, equation (3.19) gives CM (1) = 9.1597. Lastly, for the given λQ = 1.4649,

u
(Q)
1 is calculated via (3.13) as

u
(Q)
1 = e−(λQ−1) = e−4.649 ≈ 0.62819. (3.20)

These parameters produce a renewal count model with negative lag zero autocorrelation of

-0.0604. We are addressing whether this is significantly negative in a statistical sense.
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Chapter 4

Conclusions and Discussion

4.1 Answering the Research Questions

In the first paragraph of section 1.4, a challenge was issued to find a simple bivariate

vector (X,Y )′, with X and Y each marginally Poisson distributed with the same mean λ,

and where Cov(X,Y ) < 0. Our calculations show how to generate random pair (X,Y ) =

(Nt, Nt−1) via (3.8), each having a Poisson marginal distribution with the same mean λ =

λN , but with negative correlation out to −E[min(Mt,Mt+h)]/λ. This turns out to be very

close to the most negative correlation possible. Figure 4.1 shows that we come close to

the theoretical minimum correlation for differing λ values. The theoretical minimum is

derived/listed in [44] as

Corr(X,Y ) = Corr(F−1X (U), F−1Y (1− U)) (4.1)

where U is a uniform zero one random variable and the inverse CDF, F−1(p) is interpreted

as the smallest integer x such that P (X ≤ x) ≥ p. The fact that F−1 is discontinuous (in

fact, it is right continuous) accounts for the jaggedness of the theoretical minimum.
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4.2 Future Research

4.2.1 Spectral Theory

The constructions of chapter 2 and 3 connect count time series with renewal pro-

cesses. Consider the simple case of

Xt = 1{Rt}, (4.2)

where Rt is the event that a renewal occurs at time t and 1{·} is the indicator function. The

covariance function of the series {Xt} is related to the renewal probabilities {un}∞n=0 of a

non-delayed renewal process (non-delayed refers to a process where L0 = 0) via

γN (h) = Cov(Nt, Nt+h) = µ−1(uh − µ−1). (4.3)

There are immediate implication to (4.3): everything known about stationary time series

can now be applied to renewal theory (and vice versa). As one example, stationary series

have a well-developed spectral theory. From (4.3), a spectral theorem for the renewal

probabilities {un}∞n=0 follows with no work; specifically, the representation

uh =
1

µ
+ µ

∫
(−π,π]

eihλdF (λ) (4.4)

holds for some nondecreasing right-continuous function F (·) over (−π, π]. Here, F may not

be a proper cumulative distribution function, but rather has total mass µ−1(1−µ−1). While

a renewal spectral theorem is known from [12] via other methods, it follows with no work

here. What can be learned via this link could be vast. For example, the spectral theory of

stationary time series is well developed. Established bounds for eigenvalues of covariance

matrices, Whittle-based spectral likelihoods, and transfer function techniques can now be

used in renewal settings. In the other direction, rates of decay for the renewal function ([31]

and [32]) quantify the memory structure of the count series. Construction of an analogous
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result in the multivariate case should prove extremely useful; multivariate renewal theory

is notoriously difficult and underdeveloped. Much of this future work was proposed in [29].
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