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ABSTRACT 

The rapid development of increasingly complex in-vehicle electronics now offers 

an unprecedented level of convenience and versatility as well as accelerates the demand 

for connected driving experience, which can only be achieved in a comprehensive 

Intelligent Transportation Systems (ITS) technology based architecture. While a number 

of charging and range related issues continue to impede the Electric Vehicle (EV) market 

growth, integrating ITS technologies with EVs has the potential to address the problems 

and facilitate EV operations. This dissertation presents an ITS based vehicle 

infrastructure communication architecture in which abundant information can be 

exchanged in real time through vehicle-to-vehicle and vehicle-to- infrastructure 

communication, so that a variety of in-vehicle applications can be built to enhance the 

performance of EVs. 

This dissertation emphasizes on developing two applications that are specifically 

designed for EVs. First, an Ant Colony Optimization (ACO) based routing and 

recharging strategy dedicated to accommodate EV trips was devised. The algorithm 

developed in this study seeks, in real time, the lowest cost route possible without 

violating the energy constraint and can quickly provide an alternate suboptimal route in 

the event of unexpected situations (such as traffic congestion, traffic incident and road 

closure). If the EV battery requires a recharge, the algorithm can be utilized to develop a 

charging schedule based on recharging locations, recharging cost and wait time, and to 

simultaneously maintain the minimum total travel time and energy consumption 

objectives. The author also elucidates a charge scheduling model that maximizes the net 
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profit for each vehicle-to-grid (V2G) enabled EV owner who participates in the grid 

ancillary services while the energy demands for their trips can be guaranteed as well. By 

applying ITS technologies, the charge scheduling model can rapidly adapt to changes of 

variables or coefficients within the model for the purpose of developing the latest optimal 

charge/discharge schedule. 

The performance of EVs involved in the architecture was validated by a series of 

simulations. A roadway network in Charleston, SC was created in the simulator and a 

comparison between ordinary EVs and connected EVs was performed with a series of 

simulation experiments. Analysis revealed that the vehicle-to-vehicle and vehicle-to- 

infrastructure communication technology resulted in not only a reduction of the total 

travel time and energy consumption, but also in the reduction of the amount of the 

recharged electricity and corresponding cost, thus significantly relieving the concerns of 

range anxiety. The routing and recharging strategy also potentially allows for a reduction 

in the EV battery capacity, in turn reducing the cost of the energy storage system to a 

reasonable level. The efficiency of the charge scheduling model was validated by 

estimating optimal annual financial benefits and leveling the additional load from EV 

charging to maintain a reliable and robust power grid system. The analysis showed that 

the scheduling model can indeed optimize the profit which substantially offsets the 

annual energy cost for EV owners and that EV participants can even make a positive net 

profit with a higher power of the electrical circuit. In addition, the extra load distribution 

from the optimized EV charging operations was more balanced than that from the 
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unmanaged EV operations. Grid operators can monitor and ease the load in real time by 

adjusting the prices should the load exceed the capacity. 

The ITS supported architecture presented in this dissertation can be used in the 

evolution of a new generation of EVs with new features and benefits for prospective 

owners. This study suggests a great promise for the integration of EVs with ITS 

technologies for purpose of promoting sustainable transportation system development.
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CHAPTER ONE 

 

INTRODUCTION 

 

Conventional transportation operations may need urgent changes to address main 

issues that have adversely impacted the development of a sustainable society. According 

to the 2012 Annual Energy Outlook published by the U.S. Energy Information 

Administration, of the total amount of fuel imported, 70% was consumed by the 

transportation sector in 2010 (Energy Information Administration 2012). The 

automobiles that are consuming the preponderance of this oil have the lowest energy 

efficiency among all energy market sectors, at a dismal 20% (Tulpule et al. 2009). In 

addition to the US transportation sector being heavily dependent upon the overseas oil 

imports, the US transportation industry accounts for one-third of all energy-related 

carbon dioxide emissions (Energy Information Administration 2012). Although these 

issues remain critical, an increasing number of measures have been implemented to break 

this oil dependency and reduce the associated environmental footprint. As the 

transportation sector is moving towards a sustainable transportation system, Electric 

Vehicles (EVs) have been recognized as promising alternative fuel vehicles and have 

drawn more attention in recent years. Indeed, EVs fueled by electricity from renewable 

energy sources can clearly result in a drop in overall gasoline consumption and 

substantially reduce life cycle Greenhouse Gas (GHG) emissions over the entire road 

network. Even if they were in widespread use and powered with coal-generated 



 2 

electricity (Samaras and Meisterling 2008), the direct development of a sustainable 

transportation system would nonetheless occur. 

Many predictions on the number of the EVs in the future automobile market have 

been made. It is envisioned that one million EVs, including Plug-In Hybrid Vehicles 

(PHEVs), Extended Range Electric Vehicles (EREVs) and Battery Electric Vehicles 

(BEVs), will be on the road by 2015 (Department of Energy 2011). A study by the Center 

for Entrepreneurship & Technology from University of California, Berkeley seems to 

validate such predictions, suggesting a market share of 3 million Electric Cars on the road 

by 2020 (Becker 2009). It is also expected that EVs will achieve a 24%-46% market 

share by 2030 if strong incentives are provided, resulting in a decrease in oil imports by 

2.0-3.7 million barrels a day (Becker 2009). Statistics, however, do not appear to reflect 

such a trend. Data from the Electric Drive Transportation Association in Figure 1 shows 

that only 70,915 EVs were sold by 2012, and while multiple incentives are granted to EV 

customers, the sales numbers are still growing slowly (Electric Drive Transportation 

Association 2013).  

1.1 RESEARCH BACKGROUND AND MOTIVATIONS 

1.1.1 EV CHARGING 

Several major deficiencies that currently hinder the commercial adoption of EVs 

may explain this phenomenon. The most significant challenge concerns the  
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Figure 1. Cumulative U.S. EV sales by 2012 (Electric Drive Transportation Association 2013) 

Table 1. Battery features of popular BEV models in the market 

BEV model Nissan Leaf Ford Focus Electric Honda Fit EV Mitsubishi i-MiEV 

Battery Type lithium-ion lithium-ion lithium-ion lithium-ion 

Battery Capacity 

(kWh) 
24 23 20 16 

EPA Label Range 

(miles) 
73 76 82 62 

EPA Combined 

(kWh/100 mi) 
34 32 29 30 

EPA Combined 

MPGe Rating 
99 105 118 112 

On-board charger 

(kW) 
3.3 6.6 6.6 3.3 

charging of these vehicles. Table 1 shows the battery features of several popular BEV 

models in the EV market (Department of Energy 2012, Federal Highway Administration 

2009). While the Environmental Protection Agency’s (EPA’s) certified all-electric falls 

within the range of 62-82 miles, the U.S. weighted average daily driven distance of 39.5 

miles (Federal Highway Administration 2009) indicates that BEV owners are likely to 



 4 

recharge their vehicles frequently in order to meet their daily driving demands. Unlike 

gasoline refueling, however, recharging BEVs takes much more time, often as much as 7 

hours for a Nissan Leaf BEV to reach a full charge using a level two home charging dock 

with a 240-volt supply, and 3.5 hours for a Ford Focus Electric using a similar charging 

station. Furthermore, the high initial manufacturing cost of BEVs, mostly due to the high 

battery cost, offsets any advantages of the inexpensive electrical energy used to power 

them. The vehicular battery life is typically defined as the cycle in which a battery can be 

fully charged and discharged before the battery capacity is degraded to 80% of its initial 

full charge capacity (Element Energy Limited 2012). Currently the average price of an 

EV lithium-ion battery pack is $800/kWh with a lifetime of approximately 1000 complete 

charge-discharge cycles (Element Energy Limited 2012), which is equivalent to a capital 

cost of approximately $19,200 for a Nissan Leaf battery. Therefore, replacing the battery 

before the end of the service life of the vehicle, should that be required, would greatly 

increase the total cost of ownership. 

A variety of federal and state incentives (i.e. tax credits, rebates, free parking and 

access to the HOV lanes) for EVs and charging stations have been introduced to reduce 

their prohibitive costs. For example, consumers purchasing EVs after December 31, 2008 

are eligible for a $2,500 to $7,500 tax credit depending upon battery size, and with an 

accompanying BV infrastructure tax credit of 30%, up to $1,000 (Department of Energy 

2013). Also, new research on the integration of BEV energy storage systems with 

vehicle-to-grid (V2G) technology has determined the feasibility of rerouting excess 

electricity from this V2G technology back into the grid. A V2G-enabled BEV can not 
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only draw the electricity from the grid to recharge the battery but also reverse the flow 

and provide a variety of ancillary services to ease the grid imbalance. With such 

technology, BEV owners stand to profit quite nicely when the vehicle is connected to the 

bi-directional charger to provide ancillary services to the power industry. However, 

estimates on how much profit BEV owners may earn from the surplus power are unclear 

based upon simple assumptions that disregard driving plans and other personalized user 

inputs. Though scattered BEVs in a certain area must be aggregated to enter the ancillary 

service market with sufficient power, very little research has been conducted to develop 

methods to efficiently control and manage those mobile storage resources, and little 

research has attempted to optimize the profit margins from V2G programs through 

scheduling of a sound charge and discharge plan encompassing smart grid technologies. 

Consequently, a comprehensive charge/discharge system in which BEV participants may 

maximize their V2G profits while ensuring adequate battery supply for driving demands 

is important for the viability of the system. Such a charge/discharge system is also 

required to communicate and coordinate with grid operators in order to maintain reliable 

grid operations. 

1.1.2 EV RANGE 

Driver worries regarding the likelihood of possible stranding from a dead battery 

given limited range per single charge is another predominant hindrance to higher EV 

market penetration. Though EVs are primarily recharged overnight at home, the public 

adoption of a publically available fast charging system is an absolute necessity, as EV 

drivers may have to recharge their vehicles in the middle of their long-distance trips and 
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possibly more than once due to battery capacity limitations. The Society of Automotive 

Engineers (SAE) defines three levels of charging power, as shown in Table 2 (Society of 

Automotive Engineers 2011). So far efforts to extend EV ranges are mainly focused on 

developing and deploying more Level 3 charging structures that can refuel up to 200 

miles for every hour of charging. Although EVs have the potential to rapidly recharge, an 

efficient recharging plan for an EV during a trip is difficult to arrange. For example, 

though EV drivers may well know the locations of the nearest charging stations, they will 

nonetheless have to detour for charging, thus increasing driving time and energy 

consumption. In the worst case, they would drain their battery on their way and thusly 

fail to reach the charging station. Furthermore, when there is more than one charging 

station en route, how to choose an appropriate one or an appropriate combination so that 

the overall travel time and energy consumption can be minimized becomes another 

problem.  

TABLE 2. SAE Charging Classification 

Level AC Charging 

(on-board charger) 

AC Estimated 

Charge Time 

DC Charging  

(off-board charger) 

DC Estimated 

Charge Time 

Level 1 120 V AC 

≤ 16 Amps  

≤ 1.9kW 

PHEV: 7hrs  

(SOC: 0% to full) 

BEV: 17hrs  

(SOC: 20% to full) 

200-450 V 

≤ 80 Amps 

≤ 36kW 

20kW charger: 

PHEV: 22 min 

(SOC: 0% to 80%) 

BEV: 1.2hrs 

(SOC: 20% to full) 

Level 2 240 V AC 

≤ 80 Amps 

≤ 19.2kW 

PEV: 22 min Max 

(SOC: 0% to full) 

BEV: 1.2hrs Max 

(SOC: 20% to full) 

200-450 V 

≤ 200 Amps 

≤ 90kW 

45kW charger: 

PHEV: 10 min 

(SOC: 0% to 80%) 

BEV: 20 min 

(SOC: 20% to 80%) 

Level 3 >20kW Proposed To be decided. Up to 240kW 

Proposed 

45kW charger: 

BEV: < 10 min 

(SOC: 0% to 80%) 
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Existing routing strategies generally fail to consider refueling problems because 

of the ubiquity of common gas stations, while electricity charging stations are much 

scarcer and it takes much more time for EVs to recharge their batteries even with fast 

charging facilities. In order to address the range issues, it’s critical to develop a routing 

strategy that is specifically designed to accommodate EV trips. 

1.1.3 EVS INTEGRATED WITH INTELLIGENT TRANSPORTATION 

SYSTEMS (ITS) TECHNOLOGIES 

Despite the fact that the EV technology is still in its nascent stage, this can be 

turned into a great opportunity to fully integrate advanced intelligent transportation 

systems (ITS) technologies with EVs in terms of relevant standards and policies. ITS, 

which is a broad concept, refers to any tools that can be applied to improve the efficiency, 

mobility and safety in transportation system operations (Chowdhury and Sadek 2003). 

Some of the tools, such as the on-board navigation system and the automatic crash 

response system, have already been placed not only in conventional internal combustion 

engine (ICE) vehicles but also in EVs, and interest in the concept of Connected Vehicle 

has surged dramatically over the past few years. Connected Vehicle technology, formerly 

known as Vehicle Infrastructure Integration (VII), seeks to deploy and enable 

interoperable wireless communication that supports vehicle-to-vehicle and vehicle-to-

infrastructure connectivity for numerous transportation operations (Stephen Ezell 2010). 

As envisioned in this concept, transportation system components will be able to 

intelligently communicate and coordinate with each other in real time through wireless 



 8 

communication networks, delivering and extracting a wealth of useful information in 

efforts to provide driver assistance and other potential services. 

Connected-vehicle-equipped EVs, or connected EVs, have several unique 

advantages over current ordinary automobiles and EVs. As traffic conditions change 

constantly, it’s difficult for motorists to find the best route based on previous experience. 

They cannot obtain information regarding traffic incidents, road closures and other 

situations causing traffic congestions before being notified,  and should that happen, they 

will get stuck in the congestion or have to search for detour routes raising risks of 

consuming much more travel time and energy. Connected EV drivers, however, can be 

diverted from congested areas through an on-board routing guidance service, which 

exchanges a variety of real-time data with roadside infrastructure in order to adapt each 

trip with the best  route based upon drivers’ preferences, either the one with the shortest 

distance, the lowest travel time, or the lowest energy cost. As the overall energy 

consumption for a trip can be estimated by the on-board routing system, should recharge 

activity be required, drivers will be navigated to a proper charging station before the 

battery is depleted while the overall time and cost can simultaneously be optimized. 

Through interaction with public charging stations, the battery’s State of Charge (SOC) 

can be monitored and managed in a timely matter so as to alleviate the concerns of range 

anxiety. Furthermore, the evolution of smart grid technologies permits the sharing of grid 

information between grid operators and EVs using Information and Communication 

Technologies (ICT) (Erol-Kantarci and Mouftah 2010). V2G-enabled EV owners are 

allowed to appropriately allocate time slots to recharge their vehicles when the electricity 
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time-of-use (TOU) price is relatively low and provide grid ancillary services when the 

selling prices are more attractive once the dynamic price of each item is provided. Such a 

connected driving experience is expected to improve the safety, comfort and convenience 

of EV drivers and passengers in an effort to enhance the EV market share. 

A sophisticated and comprehensive communication platform will play a key role 

in creating the vehicle-to-vehicle and vehicle-to-infrastructure connectivity together with 

more innovative in-vehicle applications. It’s essential to develop a seamlessly connected 

EV-infrastructure network with requisite components when very little research has been 

undertaken in this area. 

1.2 RESEARCH OBJECTIVES 

This research aims to develop an ITS-based architecture that integrates multiple 

cutting edge technologies and in-vehicle applications with EVs in order to address EV-

related issues and improve EV performance. To build the architecture three major tasks 

need to be completed corresponding to the three objectives of this dissertation: 

1) Develop a routing strategy that is dedicated to accommodate EV trips. With 

Connected Vehicle technologies, the routing strategy is expected to find the best path 

with minimum overall travel time and energy consumption. When unusual situations (i.e. 

traffic congestion, traffic incident, road closure etc.) are detected, the routing strategy is 

able to quickly provide an alternative route that avoids traffic delays and remains optimal. 

If the EV battery needs to be recharged, the routing strategy should develop an optimal 
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charging plan based on recharging cost and wait time while ensuring the minimum travel 

time and energy consumption in the scenario. 

2) Develop a scheduling model for V2G-enabled EVs that appropriately arranges 

charge and ancillary service activities so that the potential net profits can be maximized 

and the energy demand for driving can be met simultaneously. The scheduling model can 

also help grid operators leverage the additional load from EV charging by adjusting 

dynamic TOU electricity prices and ancillary service prices to prevent violations of the 

peak hour restrictions. 

3) Develop a vehicle-infrastructure communication network that seamlessly 

connects a slew of introduced system components through wireless technologies. The in-

vehicle applications and server side software should also benefit from such a 

communication network by sending and obtaining data in real time. 

While this research primarily focuses on facilitating EV adoptions and EV market 

growth, the ITS-based architecture will also be built in support of maintaining a reliable 

and robust power grid system. 

1.3 ORGANIZATION OF THE DISSERTATION 

This dissertation contains five additional chapters for presentation and elaboration. 

In addition to the first chapter that presents current EV-related issues and the objectives 

of this research, the second chapter demonstrates a review of relevant research in the 

fields of vehicle routing and refueling problems, grid ancillary services for EVs, and 

strategies for optimizing V2G implementations as well as vehicle infrastructure 
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communication technologies. In the third chapter, the author introduces all the theories 

and methods behind the integrated architecture, and devotes the fourth and fifth chapter 

to the EV routing and recharging strategy and the charge scheduling model, respectively, 

through simulation and analysis. The author then concludes with contributions and 

directions for future research in the sixth chapter. The scripts and simulation data are also 

provided in the appendices. 



 12 

CHAPTER TWO 

RELATED WORK 

 

Connected Vehicle technologies and alternative fuel vehicles are expected to have 

a significant impact across all sectors of the society in reducing dependence on fossil fuel 

use. A number of studies have focused on these topics, such as the routing and refueling 

strategies, V2G implementation for BEVs and Vehicle Infrastructure Integration. This 

chapter summarizes previous work on vehicle routing, V2G and Connected Vehicle 

technologies as they relate to the focus of this dissertation.  

2.1 VEHICLE ROUTING PROBLEM (VRP) 

The vehicle routing problem (VRP) is a classical optimization problem seeking to 

find the optimal route and schedule for passengers and goods mobility based on specified 

demands. In most cases VRP is formulated as an integer or mixed-integer linear 

programming model (Chabrier 2006; Omidvar and Tavakkoli-Moghaddam 2012; 

Erdoğan and Miller-Hooks 2012) and always augmented by various constraints from 

complex real world applications. Since VRP belongs to the category of NP-hard 

combinatorial optimization problems (Lenstra and Kan 1981) indicating that the 

computational complexity for exact solutions grows exponentially as the size of the 

problem increases, only small instances of the problem can be solved with exact solutions. 

For large instances in practice, exact approaches are too time consuming to be considered 

as viable while researches have emphasized on developing approximation algorithms 

with constructive metaheuristics which yield acceptable results within polynomial time 
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although the optimality cannot be guaranteed. Given the ability to tighten the feasible 

solution domain and guide the search toward a suboptimal solution quickly, metaheuristic 

methods have evolved as the most promising direction of research for the VRPs (Caric 

and Gold 2008). 

The fear of running out of electricity due to the constraints of limited range and 

scarce recharging infrastructure makes routing strategies more important to EV drivers 

when it comes to long distance travels. A significant amount of work has been done to 

tackle the linear integer programming problems in the field of VRP, in particular the local 

search based meta-heuristic techniques regarding the routing of Alternative Fuel Vehicles 

(AFVs) have been growing rapidly over the past few years. Carić et al. presented a 

modeling and optimization framework for solving VRPs with a list of available 

constructive heuristics for capacitated VRPs in which the uniform capacity of vehicles 

must service customer demands, including the heuristics of nearest neighbor, nearest 

addition, sweep and Clark & Wright (Carić et al. 2008). Erdogan and Miller-Hooks 

addressed a routing and refueling problem for AFV fleets considering limited fueling 

capacity and limited fuel station availability (Erdoğan and Miller-Hooks 2012). The 

problem was formulated as a mixed-integer linear program and solved by constructing 

two heuristics, the Modified Clarke and Wright Savings heuristic, assuming all the depots 

were served as refueling stations as well. The heuristics were performed well in 

minimizing the total traveled distances in the case studies. Nevertheless, sometimes 

drivers seem more concerned about the total travel time, fuel cost and perhaps GHG 

emissions for common vehicles rather than the minimal total travel distance which is 
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usually set as the only objective in classical VRPs, and apparently the minimization of 

distance does not imply minimization of other factors. As a result, Bektaş and Laporte 

extended the problem to employ a more comprehensive objective function considering 

fuel consumption and GHG emissions for the “environmental-friendly” routing (Bektaş 

and Laporte 2011). Similarly, Omidvar and Tavakkoli-Moghaddam introduced a routing 

model for AFVs to minimize the total cost of vehicles in terms of travelled distance, 

travel time and GHG emissions (Omidvar and Tavakkoli-Moghaddam 2012), and the 

intermediate depots were assumed to be alternative fuel stations. Both of the problems 

were treated as time-dependent VRPs that took different departure times with different 

travel times into consideration, nevertheless, the desired time-dependent travel time can 

become less accurate should any unexpected situations occur (e.g. incidents and closed 

lanes), and unlike fleet vehicles, EV charging stations may not be located along the travel 

route or even nearby. One EV may have to detour to recharge the battery and very little 

research has been undertaken to find the restricted optimal route when the reroute activity 

is needed. What’s more, traffic conditions change constantly. With the support of ITS 

technologies, real-time vehicle routing becomes possible. By continuously exchanging 

data with roadside infrastructure, the optimal route can always be updated when 

approaching a decision node where there is more than one ongoing route, and the 

accuracy of the routing strategy will be significantly enhanced compared to the time-

dependent routing approaches. Under this circumstance, however, the routing problem 

may have to be adjusted and reformulated as a new one for the next iteration due to the 

changes on variables, coefficients and corresponding constraints, which would 
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exponentially increase the complexity of the problem, especially for computer 

programming. In addition, most heuristics are only designed to solve specific VRPs and 

may not be applicable for other scenarios, while the distinction of traffic conditions over 

time can possibly violate the viability of the heuristics. Therefore, in efforts to solve real-

time VRPs with robust and general approaches, a number of researches have been 

conducted with regard to Artificial Intelligence (AI) algorithms other than conventional 

mathematical programming models. In the following sections, the author provides a 

review on the real-time vehicle routing problem, the vehicle refueling problem and the 

Ant Colony Optimization (ACO). 

2.1.1 REAL-TIME VEHICLE ROUTING PROBLEM 

Real-time vehicle routing with sufficient information can improve the accuracy of 

departure time and travel time prediction by quickly responding to uncertainties caused 

by accidents, congestions, and lane closures. Once the real-time communication 

capability among vehicles and infrastructure is enabled using ITS technologies, the 

optimal path will be built in an ongoing fashion at each time when a vehicle is 

approaching a decision node with more than one route to follow. To give the recurring 

updates real-world relevance, real-time vehicle routing must incorporate a fast and 

efficient algorithm to obtain the optimal result within a limited time. 

Before traffic data can be collected in real time, dynamic vehicle routing 

problems are studied in a time-dependent context and uncertain variables are typically 

modeled as random variables with time-dependent distributions in a stochastic network. 

Gao and Chabini proposed four approximations to solve the time-dependent stochastic 
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shortest path problem (Gao and Chabini 2002). It is assumed that the next move for one 

traveler is uncertain and the probability of all possible moves is determined by 

realizations of link travel times which vary from full to no knowledge of information. In 

their examination of the value of real-time traffic information for determining optimal 

routing policies and departure times in a nonstationary stochastic network, Kim et al. 

collected real traffic data in Southeast Michigan and implemented a Markov chain model 

for simulating real-time average travel speed (Kim et al. 2005). The vehicle also has the 

probability to choose an alternate adjacent link in case of an accident or unexpected road 

block. They concluded that using real-time information can significantly save total costs 

and improve delivery service level. Though these studies are of particular relevance to the 

real-time EV routing optimization classical shortest path algorithms cannot exactly solve 

the problem because the EV routing and recharging problem is NP-hard, especially when 

the recharging process is incorporated. In addition, vehicle-infrastructure communication 

contributes to the transition of the real-time VRPs from a stochastic to a deterministic 

problem because all the required data are known for calculation at a given time. In that 

only one least-cost route can be found at that particular time, it is then unnecessary to 

estimate the transition probability to choose an alternate path in the event of accidents. 

Nevertheless, transition probability is an essential component that can be integrated into 

the process of searching for the feasible solution in the constrained shortest path 

problems. 

2.1.2 EV RECHARGING PROBLEM 
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Unlike regular gas stations that are ubiquitous and convenient for use, the lack of 

charging infrastructure in both accessibility and usability makes EV routing an essential 

function to prevent battery drain. Previous studies were mainly conducted on refueling 

fleet vehicles and the refueling stations were always along the fixed route because only 

visited depots were assumed to have charging facilities (Omidvar and Tavakkoli-

Moghaddam 2012; Hong Lin et al. 2007). For common EVs, should the rerouting and 

recharging activity be required on the way to ensure adequate battery storage level for the 

entire trip, the location and selection of a proper charging station while maintaining an 

optimal route becomes a primary concern. In graph theory, a least-cost path from an 

origin node to a destination node over a network where each arc has its associated costs is 

typically determined by classical shortest path algorithms. Computer network and 

transportation related analyses (e.g. the Floyd-Warshall algorithm, the Bellman-Ford 

algorithm and the Dijkstra’s Algorithm) have been used to study least-cost pathway. An 

EV recharging problem, nevertheless, can be described as a shortest path problem with 

additional constraints that an EV must maintain adequate energy at any time and consider 

passing through certain nodes before arriving at the destination. This is defined as a 

restricted shortest path (RSP) problem and belongs to the class of NP-hard problems in 

combinatorial optimization (Hassin, 1992). 

Modern refueling problems for gasoline-powered vehicles mainly deal with 

minimizing total refueling cost with fuel stations located on the given path (Lin 2008; 

Suzuki 2008), while only little research has been undertaken on non-fixed-route vehicle 

refueling problems in the academic literature, let alone EV recharging problems. Khuller 
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et al. developed four different refueling scenarios and solved the NP-hard problems with 

approximation algorithms (Khuller et al. 2011). One of the models was developed to find 

the shortest and cheapest path that visits a collection of cities while ensure the vehicle 

never runs out of gas. Regrettably, it was assumed that every city has a gas station within 

certain distance, which can simply be reduced to the well-known Traveling Salesman 

Problem. Another closely related piece of work is done by Sweda and Klabjan who 

formulated a recharging model to find the minimum-cost path for EVs (Sweda and 

Klabjan 2012). Since recharging capability was enabled at every node in the directed 

network, the optimal recharging policy was converted into a fairly simple one regardless 

of the routing issue and could solve the problem by an exact solution method. As a matter 

of fact charging stations are scarce, charging time and location become uncertain factors 

in finding the shortest path for EVs, as a result, few approaches in the vehicle routing and 

refueling problems in the past can be appropriately applied in this situation. 

Although it seems unnecessary to deal with the shortest path problems in which 

charging stations are not located on or near the route, RSP methods have been regarded 

as one of the key components in the Quality of Service (QoS) routing problems for the 

wireless network since 1980s. As each link in the wireless network is associated with 

multiple parameters (e.g. delay, bandwidth and loss probability) , an essential challenging 

issue for QoS routing is to determine a feasible path that is subject to a set of QoS 

constraints while simultaneously achieve high utilization of network resources (Korkmaz 

and Krunz 2001). An EV recharging problem resembles the QoS routing problem 

because it has to deal with dynamic information with respect to link parameters (e.g. link 
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average speed, energy consumption and cost) as well, and they both aim at identifying an 

optimal path that satisfies multi-parameter constraints. 

A number of heuristics and approximation algorithms were proposed to address 

RSP problems for QoS routing. Hassin described two fully polynomial approximation 

schemes that were both solved by e-approximation algorithms, the principles of which 

are close to those of Warburton’s algorithm, using the basic rules of rounding and scaling 

(Hassin 1992). Widyono presented a constrained Bellman-Ford algorithm for RSP 

problems using a breadth-first search by discovering paths of monotonically increasing 

delay while updating the lowest cost paths (Widyono 1994). Dynamic routing with 

minimum bandwidth guarantee was also considered and formulated as an integer 

programming problem (Kodialam and Lakshman 2000). Another effective approach is 

the k-shortest path algorithm which computes k shortest paths based on weighted average 

cost of each link in increasing order and expects the k-th one is feasible (Skiscim and 

Golden 1989; Eppstein 1998). Other similar heuristics and improved works that cope 

with this NP-hard problem were also proposed (Blokh and Gutin 1996; Chen and 

Nahrstedt 1998; Chong et al. 1995). However, despite that the above algorithms can 

possibly solve the RSP problems, they only exhibit good performance at the expense of 

excessive computational efforts. The running time grows exponentially as the size of the 

network increases, and they are still deemed impractical for real-time operations in large 

networks due to excessive computational complexities.  

Other than building conventional mathematical programming models, Artificial 

Intelligence (AI) algorithms are considered as promising approaches to solve RSP 
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problems as well. The author gives a detailed review on the Ant Colony Optimization 

(ACO) which belongs to the category of swarm intelligence in the next section. 

2.1.3 ANT SEARCH ALGORITHM 

As a relative new search technique in the Swarm Intelligence family, Ant Colony 

Optimization (ACO) has drawn wide attention after first introduced by Marco Dorigo in 

his Ph.D. dissertation in 1992 (Dorigo 1992), and has been successfully applied across a 

plethora of domains, including traveling salesman problem, vehicle routing and 

scheduling, QoS routing in wireless networks and graph coloring. ACO is a widely 

recognized metaheuristic approach inspired by the behavior of real ants which have the 

ability to find the shortest path between the food source and their colony. Each ant acts as 

a mobile agent that individually and iteratively seeks the feasible path while a colony of 

ants cooperate by depositing a chemical substance called pheromone, which can be 

recognized by all the ants, on the trail (Dorigo and Gambardella 1997).  

To elaborate this behavior, consider a set of asynchronous agents wandering 

randomly from the starting node while laying down a certain amount of pheromone along 

the path, as shown in Figure 2. When arriving at a decision node to choose the next path 

segment (Figure 2(a)), each ant will move stochastically since they have no clue which 

route is the shortest one (Figure 2(b)). Assuming all ants move at the same speed, it can 

be expected that more pheromone will be left on the shorter link as they proceed back and 

forth within a shorter time, even though pheromone evaporates at a certain rate over time 

as well. Given that more pheromone on the path increases the probability of being 

followed, after a number of ants finish their tours, the choice of the following ants when 



 21 

they reach the decision node will be influenced by the pheromone concentration that they 

are more likely to select the way with higher accumulated pheromone (Figure 2(c)). 

Figure 2(d) illustrates that stimulated by the attractions of pheromone, some ants will end 

up sucessfully finding out the food source. Every finished tour becomes a feasible 

solution to the problem and the ant colony will eventually determine the shortest path 

possible if they iteratively exploit the graph. The convergence properties of the ACO 

algorithm have been proven (Onwubolu and Babu, 2004). 

Ants must follow the constructive decision policy when iteratively build their 

routes, including the state transition rule at the decision nodes and the pheromone 

updating rule after all ants have completed their tours in one iteration (Dorigo and 

Gambardella 1997). The state transition rule that computes the probability of moving to 

each adjacent node can be given by (Onwubolu and Babu, 2004): 

 

where k represents the increasing order number of the ants in one iteration u and 

 is the feasible neighborhood of node i. In this equation,  denotes the 

accumulated pheromone intensity on edge ij, indicating a posteriori desirability of the 

move, while   is the attractiveness of that move represented by priori heuristic 

information, and  are parameters reflecting the relative importance of  and .  

All the feasible solutions can be determined after iteration u and according to the 

pheromone updating rule, the pheromone value on each edge for the next iteration should 

be updated using the equation (Onwubolu and Babu, 2004): 
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Figure 2. Description of the ACO principle 
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where is the pheromone evaporation coefficient, which implies that the 

pheromone value reduces over time to avoid falling into a local optimum, and  

represents the amount of the pheromone contributions of the ants that used edge ij to 

build their solutions. Subsequently, each ant incrementally moves towards those nodes 

corresponding to its partial solution. The outline of the ACO algorithm in pseudo-code is 

presented in Figure 3. 

The ACO algorithm distinguishes itself with numerous features that differ from 

traditional RSP solving methods. The essential characteristic of ACO lies in the fact that 

every single agent in the colony can construct a possible solution by considering both 

heuristic and stochastic information exchange between the ants and the surroundings. 

More importantly, previous empirical studies from the ant colony allow the agent to 

evolve its search behavior iteratively and thus elucidate the most promising solution 

(Dorigo and Stützle 2003). As a probabilistic search technique, ACO is capable of 

solving a general class of path finding problems using problem specific heuristics in that 

parameters in the probabilistic decision and pheromone update equations can be adjusted 

accordingly to enhance the search efficiency. Unlike mathematical path searching 

methods whose computational complexity grows exponentially with the increase of the 

problem instance size, ACO algorithms are less sensitive to the scale of the problem and 

runs faster in large networks, which is of great importance to dynamic vehicle routing 

and refueling problems. For example, van Hemert and Solnon compared ACO with 
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constraint programming, a complete tree-search approach, for solving binary constraint 

satisfaction problems (van Hemert and Solnon 2004). They found that constraint 

programming is faster when the number of variables is low, whereas ACO becomes faster 

as the number of variables increases. Although it’s extremely difficult for artificial 

intelligence algorithms to perform a theoretical analysis, i.e. the result is empirical rather 

than theoretical, the feature of making random decisions based on empirical analysis 

renders ACO algorithms easy to program and quite efficient in discovering feasible 

solutions in a short time. 

ACO algorithms have been successfully applied in the QoS routing problems 

which are also classified into RSP problems (Liang and Smith 2004, Roy et al. 2011). 

However, since the state transition rule and pheromone updating rule in the ACO 

algorithm are highly problem-specific, further research needs to be done to determine the 

appropriate heuristic for the emerging EV routing and recharging problems. The 

efficiency of the ACO algorithms as well as the sensitivity analysis of parameters should 

also be evaluated. 
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Figure 3. The outline of the ACO algorithm in pseudo-code 

2.2 V2G IMPLEMENTATIONS 

Vehicle electrification is envisioned to seamlessly integrate electric power 

systems with EVs, including fast charging infrastructure and the vehicle to grid (V2G) 

function ACO (initial, target) 

initialize pheromone values on each edge of the graph 

for each ant colony as iteration number 

 for each ant in one colony as agent number 

  var open = node queue from initial 

var closed = empty set 

var current = remove the starting node from open 

  while an adjacent link exists 

   choose the next node using probabilistic equation 

   add current to closed 

replace current with selected node  

  loop 

 end for 

 store feasible routes and other information 

 update pheromone values 

end for 

return path 
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technology. EVs are expected to provide assistance for grid stability by charging and 

discharging EV batteries, while EV owners can obtain economic benefits from providing 

V2G services. This section gives a review on the development of the V2G 

implementations. 

2.2.1 ANCILLARY SERVICES FOR V2G-EQUIPPED BEVS 

Independent system operators (ISOs) and Regional Transmission Organizations 

(RTOs) deploy a variety of energy resources to provide ancillary services in an effort to 

maintain reliable and secure grid operations. BEVs can be treated as distributed mobile 

storage resources and would be competitive for the following four ancillary services 

(Kempton et al. 2008). Frequency regulation is the first service, which is responsible for 

rapidly correcting frequency deviations that can adversely affect electric equipment and 

appliances. Such control can be accessed as often as hundreds of times per day with a 

response time of no more than five minutes. Spinning reserve is the second service, 

which activates the backup energy resources to deliver electricity back in response to 

major outrages. The frequency of this service request ranges between 20-50 times yearly 

and can provide supply within 10 minutes of request. Peak load leveling is the third 

service, which typically occurs within a single hour of the day at peak demand times, 

finally with backup supply the fourth service, which engages during power outages. Of 

these four ancillary services, frequency regulation appears to be the most appropriately 

suited for V2G-enabled BEVs (Kempton et al., 2008; Brooks, 2002; De Los Rios et al., 

2012) because unlike spinning reserve and peak load leveling, frequency regulation 

requires no high battery capacity and allows for a shallow charge/discharge cycling 
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instead of deep depth of discharge (DoD) that is likely to degrade the lifecycle of the 

battery. The number of cycles of a lithium-ion battery can be estimated as a function of 

DoD, making it obvious that lowering DoD can extend the life cycle of the battery (De 

Los Rios et al. 2012). Therefore, providing frequency regulation services with low DoD 

will only minimally affect the battery cycle lifetime. While the power fluctuations of 

frequency regulation may change the battery’s state of charge (SOC) in a short time, the 

energy storage level is nonetheless retained over a certain period as opposed to other 

ancillary services that could drain the battery. Statistics also show that the frequency 

regulation is much more economically viable compared to other forms of V2G ancillary 

services. In the United States, ancillary services account for 5-10% of total electricity 

cost as $12 billion/year, 80% of which are for regulation and spinning reserve with an 

average value of $30-$45/MW per hour and $10/MW per hour respectively (Kempton et 

al., 2008).  

A vehicle can be V2G available for the majority of the day. A previous study 

shows that in the US typically only 4% to 5% of the vehicles are on the road with at least 

90% of vehicles parked and available for plug in even during peak hours (Tomic and 

Kempton, 2007). Although the uncertainty of a BEV’s battery SOC and plug-in duration 

may adversely affect the reliability of a BEV that is supposed to augment regulation 

resources, a group of BEVs in the same region can constantly provide an adequate energy 

level to enter the frequency regulation market. In this paper, we use frequency regulation 

for their V2G ancillary service studies and analysis of the architecture. 
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Currently frequency regulation is largely provided by generators specifically 

designed for this purpose. Replacing these generators with V2G-enabled BEVs as energy 

storage resources could save ISO/RTO a large amount of expenses. Since V2G-equipped 

BEVs can transmit the power flow bi-directionally, both “regulation up” and “regulation 

down” services representing power delivery to and from the grid respectively can be 

accessed as necessary. The gross revenue of frequency regulation consists of two main 

parts: the capacity value and the energy value. The capacity value is contracted based 

upon the vehicle’s available power capacity and the energy value is the sum of the hourly 

regulation up and regulation down prices. Though regulation up and regulation down can 

be procured separately, ISO may call for equal quantities of both services in a certain 

time to prevent discharge of EV batteries (Kempton et al. 2008). The architecture 

assumes that the amount of energies for both regulation up and regulation down at hourly 

intervals would yield a zero net energy delivered to the grid. 

Several studies were undertaken to calculate the potential revenue of offering 

ancillary services for EVs and PHEVs when V2G power transfer is enabled. A report 

from the California Air Resources Board and the California Environmental Protection 

Agency shows that frequency regulation results in an annualized gross value of $967 to 

$5038 to BEV owners when a BEV is assumed as plugged in 94.2% of the day (Brooks 

2002). Tomic and Kempton (Tomic and Kempton 2007) found that the annual net profit 

of 252 Toyota RAV4 fleets ranged from $135,000 to $450,000 when both up and down 

regulation services are provided, assuming they are available for V2G power delivery 

from 3PM to 8AM, or either 17 hours per day. Similarly, in their investigation of the 
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maximum average revenue for individual PHEVs in Sweden and Germany, Andersson et 

al. found that each PHEV in the German market generated 30 to 80 euros per month 

while the Swedish market provided no profit via grid ancillary services (Andersson et al., 

2010). All of these studies, however, considered neither the driving demands nor the 

dynamic regulation pricing, and they oversimplified available V2G hours as a 

consecutive time frame. Indeed, the BEV charging process must consider a real-time 

variation of regulation prices so they may provide the regulation services when the prices 

are relatively high and recharge the battery otherwise, thereby maximizing the profits. 

We explore the potential benefits and costs of V2G-equipped BEVs in the United States 

by intelligently arranging charging events (charging, regulation, driving and do nothing) 

through real-time communication with grid operators. 

2.2.2 APPROACHES FOR OPTIMIZING THE V2G IMPLEMENTATION 

Though the grid scheduling problem, which includes V2G-enabled vehicles, was 

the subject of recent studies, it has been done so only from the perspective of power 

systems. In their particle swarm optimization based approach for the distribution network 

scheduling problem, Soares et al. minimized the total generation cost for the power 

generators (Soares et al., 2011). Though they considered the V2G resources and driving 

pattern impacts on the smart grid, BEVs were only treated as discharge resources and 

they did not explore the potential of BEVs to act as ancillary service resources. Guille 

and Gross proposed a conceptual framework to integrate the aggregated battery vehicles 

which acted as distributed energy resources within the power grid (Guille and Gross, 

2009). Though they developed strategies to construct the information layer and design an 
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incentive program for V2G implementation, they did not validate the performance of the 

conceptual framework, nor did they consider the charge/discharge scheduling problem 

for aggregators and the management of customized BEV input. Clearly, much more 

research must be undertaken to accommodate individual BEVs. In that regard, Mal et al. 

presented a charge scheduling system to optimize charge/V2G activities in a parking 

garage using the own profiles of the vehicles (Mal et al., 2012). Regrettably, however, 

they only optimized the charge scheduling between the arrival and the departure times, 

not vehicles that may have been possibly plugged and unplugged multiple times a day. 

Such a scheduling optimized for the next couple hours may not be the best solution, 

particularly when compared to the optimal scheduling on a 24-hour basis. 

In an effort to fully explore the potential of V2G-equipped BEVs to enhance their 

performance, we developed a comprehensive smart charging architecture that is 

specifically designed for BEV owners in the distributed energy network. Under such a 

scheme, BEV owners are expected to become more motivated to participate in such V2G 

programs if they see the benefits of such participation. A communication network was 

developed to effectively enhance real-time communication and coordination among 

BEVs, aggregation servers and the ISO/RTO together with an optimal scheduling model 

for rapidly arranging the charge and ancillary service activities over a 24 period. A 

detailed description of the architecture is described in the next section. 

2.3 CONNECTED VEHICLE TECHNOLOGIES 

In-vehicle electronics are growing fast both in quantity and complexity, offering 

an unprecedented level of convenience and versatility as well as accelerating the demand 
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for connected driving experience, which can be achieved in a comprehensive ITS 

technology based architecture. A variety of technologies with regard to building the 

architecture are reviewed in the following sections. 

2.3.1 WIRELESS TECHNOLOGIES FOR MOVING VEHICLES 

Heterogeneous communication technologies must be integrated to support diverse 

services and functionalities in a sophisticated transportation communication infrastructure. 

A variety of wireless communication technologies are deemed viable under high vehicle 

speed mobility conditions. For example, Dedicated Short-Range Communications (DSRC) 

which links between the vehicles and the roadside infrastructure is specifically 

established for ITS applications and assigned 75 MHz of spectrum in the 5.9 GHz band 

(U.S. DOT, 2013). DSRC are designed to support a plethora of transportation 

applications, including collision avoidance, advanced vehicle control and electronic toll 

collection. Wi-Fi and WiMAX wireless protocols can also provide vehicle-vehicle and 

vehicle-infrastructure connectivity. Wi-Fi technology has been widely used on mobile 

devices but primarily covers a relatively short range using local area network (LAN) for 

Internet access. Since moving vehicles are likely to experience poor connectivity between 

two WiFi basestations, Wi-Fi technology is not deemed reliable for communication 

between moving vehicles and infrastructure.  In contrast, WiMAX technology has the 

ability to provide broadband connectivity services that a large number of end users can 

get access simultaneously at high speed within a range up to 30 miles. Unlike the Wi-Fi 

environment in which users may have to compete to get connected through a specified 

access point, WiMAX network supports Quality of Service (QoS) routing as mobile 
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devices can be automatically allocated to different WiMAX stations. A few studies have 

evaluated the feasibility of the WiMAX technology for vehicular networks. The mobile 

WiMAX-based Vehicle-to-Infrastructure (V2I) communication networks was tested 

through simulation by Msadaa et al. (Msadaa et al., 2010). Obtained results revealed that 

the mobile WiMAX technology will become a competitive solution in the context of V2I 

communications. In addition, as the cellular data usage has been soaring dramatically 

over the past years, there is a unique demand to connect in-vehicle applications and 

smartphone software platforms. The vehicle smartphone communication allows the 

smartphone to function as a remote control device so that the passengers can take full 

advantage of cellular data services, and as a result, the rapid evolution of cellular data 

networks has attracted a tremendous attention. The third generation (3G) and fourth 

generation (4G) standards have significantly increased the speed of mobile data 

transmission, which is expected to reach to the same speed as modern computer networks. 

Other than the familiar communication protocols above, the evolving Ethernet 

technology has increasingly been considered for automotive applications. Currently, 

Ethernet is restricted to onboard diagnostic access and camera-based driver assistance 

systems while further efforts must be made for Ethernet to be used for other in-vehicle 

applications, such as the electromagnetic compatibility and the automotive industry 

standard. 

2.3.2 VEHICLE INFRASTRUCTURE COMMUNICATION FRAMEWORK 

Vehicle infrastructure communication is generally divided into two parts: the 

vehicle-vehicle communication and the vehicle-infrastructure communication. The rapid 
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development of ITS technologies will have a significant influence on the transportation 

infrastructure in order to support transportation safety, efficiency and mobility, and the 

connected vehicles must collaborate with intelligent infrastructure to facilitate 

information and energy transfer. The trend of transportation electrification to replace 

traditional gasoline fuel stations with modern charging stations will urge the development 

of new standards to support power and data transfer through communication interfaces 

between EVs and charging facilities. A communication protocol is designed that the 

Electric Vehicle Supply Equipment (EVSE) will provide the bi-directional connection 

between the EV’s battery and the grid service infrastructure, which requires specific 

access and management tools. 

2.3.3 IN-VEHICLE APPLICATIONS 

The practical interest of the ITS has spawn a number of studies. More and more 

vehicle corporations are trying to build integrated in-vehicle platforms so that the driver 

assistant functions and vehicle enhancement services can be embedded into onboard 

applications to facilitate EV usage. Large auto companies like Toyota and Ford are all 

engaged in developing mobile applications and releasing them onto cell phone app stores. 

Take MyFord Mobile App as an example. All the Ford PHEV and EV owners are 

allowed to download and install this application on their smart phones by which EV 

owners are able to access this application and remotely control their vehicles, such as 

monitoring the remaining SOC, the charging settings and status as well as planning trips 

(Ford Automobile, 2013). In fact, mobile applications are capable of performing 
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functions that are compatible to all the vehicle models, like providing parking and tolling 

information, entertainment services and location technologies. 

Nevertheless, such applications need to be downloaded and installed on the smart 

phones, which is responsible for running all the programs. Due to hardware requirements, 

mobile applications always fail to perform large-scale tasks at a time, making Software as 

a Service (SaaS) more attractive as applications become more and more data-intensive. 

SaaS, newly referred to as Cloud Computing, can provide infinite computing resources 

on demand through web browsers which are universally compatible on different mobile 

devices. A number of large companies like Amazon, Apple and Google have become 

major cloud providers. SaaS can assist Connected EVs in remotely running complicated 

programs in a timely manner to improve efficiency and safety of EVs. 
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CHAPTER THREE 

METHOD 

This chapter provides the detailed methodology adopted for this research. The 

author starts with a description of the ITS-based architecture, followed by two major 

applications; the routing application and the V2G-equipped ancillary service application 

which are used to facilitate EV operations. The corresponding algorithms for these 

applications are elaborated in this chapter. 

3. 1 THE ITS-BASED ARCHITECTURE 

It is essential to define the communication interface associated with the key 

components among vehicles and between vehicles and the roadside infrastructure 

supported by wireless protocols. Figure 4 shows the interconnections among the 

components under the ITS-based architecture. Vehicles as the data transmission center 

can communicate with other vehicles and roadside units using the DSRC technology and 

also send and receive GPS signals. A cloud based server side architecture can also be 

built, under which a variety of ITS applications can be embedded, while the open 

interface also permits the compatibility and expandability of the architecture so that any 

application that is considered as a useful tool for EVs can be created in the future. Other 

than vehicles and transportation infrastructure, mobile devices, traffic management 

centers and other stakeholders can also get access to the cloud based server center to 

obtain valuable information and remote control the devices. As a result, drivers, vehicles 

and infrastructure in this architecture are inter-connected. 
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The proposed communication architecture is expected to fulfill the following 

tasks: 

1. Connect vehicles to the cloud based server side to retrieve information, such as 

the speed data and the accident records. The server which collects and stores a 

plethora of information should also have the ability to process complex models 

and return the results to the vehicle side. 

2. Connect other Internet accessible devices to the cloud based server to allow data 

flow between infrastructures. Authorized devices can exchange data with the 

server and acquire valuable collected information for their own use. 

3. Connect vehicles to each other so that they can share and exchange data among 

each other, and most importantly, avoid incidents and instantly response to 

emergencies through the DSRC communication. 

4. Connect mobile devices to the vehicle in order to take full advantage of the 

cellular data services and all the applications from the smartphones. The 

smartphone can also be regarded as a remote control so that the vehicle owners 

can monitor the status of vehicles at anytime, anywhere. 



 37 

 

 

Figure 4. Interconnections among architecture components 

 

3.2 THE ACO BASED ROUTING AND RECHARGING STRATEGY 

Let the entire network be a directed graph G = (V, E), where V is a set of vertices 

representing junctions in the traffic network and E is a set of edges representing road 

segments in the traffic network. Each edge has an associated cost and delay, which are 

average travel time and energy consumption through this road, respectively in this 

context. This multi-objective integer programming problem can be described as follows:  

Minimize 

 

 

Subject to 
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Where 

  i = index of selected edges 

  I = set of all O-D edges 

   = travel time consumed at edge i 

   = recharge time consumed at edge i 

   =  

j = index of recharge edges 

J = set of all O-D recharge edges 

 = amount of recharged electricity at recharge edge j 

 = electricity pricing of time point t at recharge edge j 

 =  

 = initial energy storage level in battery 

 = lower limit of energy storage in battery 

a = index of edges from origination to current edge 
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A = set of edges from origination to current edge 

 = overall energy consumption at edge a, can be negative at 

some edges where EVs can get recharged  

Note that the total delay, or total energy consumption in this context, cannot 

exceed the given bound , indicating the unlimited shortest travel time path 

may not be feasible as the EV battery may run out before reaching the destination unless 

it is recharged halfway. In order to efficiently assist EV drivers, a routing algorithm based 

on ACO is presented in this paper for path selection. 

The routing approach will be recursively called at every decision node with more 

than one ongoing route to continuously provide up-to-date EV driver assistance. Through 

Connected Vehicle technology, all the information needed in the process can be acquired 

from VII components. This acquisition involves a four step process: 

1. Initialization: information includes allowed maximum energy consumption, 

adjacency matrices of cost and delay, colony number and ant number in each 

colony, initial trail level, and the coefficient of pheromone and evaporation. 

2. Select proper heuristics and corresponding probability distribution function. 

Since EVs are not allowed to exceed the maximum energy consumption, the 

remaining delay should be considered as one of the heuristics. If the least total 

travel time is set as the first priority for optimization in this multi-objective 

problem, the Ant Colony Optimization algorithm can be implemented with the 

probability distribution below: 
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This probability distribution is the result of trade-off among previous learning 

experience, estimated remaining cost and remaining delay. The heuristics contain the 

shortest remaining travel time  and lowest remaining energy consumption  from the 

current point to the destination with their influence coefficients  and  respectively. A 

number of shortest path algorithms can be used to calculate  and , such as Dijkstra’s 

algorithm and Floyd’s algorithm. 

3. Store feasible solutions in each iteration, the delays of which are always 

within the limit. Update pheromone values using the formula mentioned 

above and iterate through the loop. 

4. Output the best feasible path with the least travel time and/or the lowest 

recharge cost among all the feasible solutions according to users’ optimization 

preference. 

3.3 THE ANCILLARY SERVICE OPTIMIZATION 

Figure 5 depicts the components and communication flow of the smart charging 

architecture in which BEVs get to control and switch the charging status automatically at 

optimal times by monitoring both the time varying pricing data and the ISO/RTO 

dispatch signals. BEVs can be plugged in either at home or public charging stations with 

each belonging to a single aggregation server that is connected through a wireless 
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network. To provide a greater power-on-demand reserve for use in the ancillary service 

market, BEVs in a certain area are aggregated as a centralized resource so that the 

ISO/RTO can interact with aggregation servers representing BEVs rather than thousands 

of individual vehicles. An aggregation server is responsible for collecting, storing and 

processing all the data regarding BEV charging activities as well as communicating with 

the ISO/RTO. The dynamic ancillary service pricing can make ancillary services more 

attractive when the demand is high, while the time-of-use (TOU) electricity rates that are 

released by ISO/RTO can ease the load during peak hours. Aggregation servers acquire 

the day-ahead and real-time price for electricity and ancillary services to support the 

bidding and scheduling strategies. After determining the aggregated available capacity in 

a given time frame, each aggregation server submits its ancillary service bid with the rate 

per MWh and the total capacity it offers to the ISO/RTO which controls all electrical 

transmission in a region. Once the bid is accepted, all the involved BEVs are placed on 

standby to respond automatically to dispatch signals sent by the ISO/RTO through 

aggregation servers. 

Since multiple BEVs are likely to share home and public charging systems, the 

communication architecture should encompass an ID authentication sub-system for 

personal configuration and billing purposes. In this architecture, an onboard radio-

frequency identification (RFID) tag is mounted where each BEV is assigned a unique 

vehicle identification when connected with the power grid system. The aggregation 

server then retrieves specific information (e.g. the user profile, scheduling preference, trip 

plan and billing history) from the database using the RFID reader. A corresponding 
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optimal charge/regulation schedule is determined for each BEV based on the associated 

information on the server side. Once all the schedules are updated, the aggregation server 

calculates the total available capacity for the next time interval and submits the bid offer 

to the ISO/RTO ancillary service market. The detailed components and connections 

between aggregation servers and BEVs are illustrated in Figure 6. 

 

Figure 5. Components and communication flow in the smart charging architecture 

In this architecture, all the aggregation servers are Internet-accessible. BEV 

owners are provided continuous access to the information management system from 
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which they can monitor the battery status, update BEV settings and upcoming trip plans, 

and access charging and billing histories via web browsers and mobile devices. The user 

interface as depicted in Figure 7 encompasses a variety of modules, including the 

management of BEV profiles, personal settings, upcoming trip plans, billing histories 

associated with the information of electric metering, optimal scheduling and bidding 

offers. Should any of the changes affect the coefficients or variables in the scheduling 

model, the aggregation server instantly updates the optimal scheduling to ensure a 

constant accuracy of the total available capacity. 

 

Figure 6. Detailed components and connections between aggregation servers and BEVs 
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To help BEV owners maximize their potential benefits and simultaneously satisfy 

driving energy demands, a charge/regulation scheduling model that optimizes and 

updates the schedule in a timely manner based on the time varying data is necessary. 

Since last-minute trip changes are always likely, aggregation servers must have the 

capability to update the charge/regulation schedule right before the start of each time 

interval. In this way, both aggregated servers and BEV participants can benefit from 

acquiring accurate optimal charge/regulation scheduling information. 

 

Figure 7. Interfaces of the charging management system on the web browser and mobile device 

In the scheduling model of this architecture, the charge/regulation plan of an 

individual BEV is optimized for the next 24 hours. Every hour is defined as a time 

interval (i.e. in which one BEV is sitting idle, in use, being recharged or providing 

regulation services) when parked and plugged in. Although the objective is to maximize 
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the net profit for BEV owners by providing regulation services, several constraints 

impede unlimited regulation supply in that BEVs will lose energy after driving and must 

recharge to prevent a battery drain. Optimizing the BEV charging schedule is considered 

as a binary linear programming problem. The objective is described as: 

Maximize   (1) 

Where  j: index of time intervals. j = 1, 2, …, 24 

 

 

Pv: Power of vehicle in kW 

  Rcj: Regulation capacity price at the time interval j in $/kW-h 

Pl: Power of line in kW 

 Ruj: Regulation up price at the time interval j in $/kWh 

 Rdj: Regulation down price at the time interval j in $/kWh 

Rsj: Electricity selling price at the time interval j in $/kWh 

E: Dispatched energy ratio 

In this binary problem, the net profit in the next 24 hours is defined as the total 

ancillary service profit subtracted from the charging cost. The first item of the objective 

function is the capacity value of frequency regulation while the second item is the energy 

value of frequency regulation. The dispatched energy ratio in the energy value portion is 
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defined as the ratio of the dispatched energy for regulation to the contracted power and 

time. As mentioned in the previous section, the energy delivered for regulation up and 

from regulation down in each hour is assumed as equal. Therefore, the energy value is 

projected as the sum of the 30-minute regulation up rate and the 30-minute regulation 

down rate in each time interval. 

The constraints of this problem are expressed as: 

 (2) 

(3) 

 

(4) 

 

(5) 

Where  k: index of unavailable time intervals.  

DISi: Driving distance at the time interval j in mile 

      Charging efficiency 

 M: MPGe in kWh/mile 

 Bat: Battery capacity in kWh 

 SOCi: Initial SOC 

 SOCb: SOC window minimum 

 SOCt: SOC window maximum 
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Constraints (2-3) indicate that a single BEV might be unavailable to plug in 

during several time intervals (e.g. in use with no equipment in proximity for grid 

connection). Both the charging binary value and regulation binary value are projected as 

zero under the circumstances. Constraints (4-5) suggest the SOC of the battery must fall 

in the allowed SOC window at any time, the lower limit of which is typically more than 

20% and the upper limit up to 90%. We do not suggest 0% to 100% availability, 

however, as a complete charge-discharge cycle will slightly diminish the battery capacity 

and a valid SOC window can extend the potential lifetime of the battery as mentioned in 

the previous section. BEV participants may then determine both the lower and upper 

limits of the SOC window through the information management system with additional 

constraints that are applicable based upon the user configurations. 

The scheduling model can adapt to various changes. For example, in the Great 

Britain, grid balancing market data is released every 30 minutes, for which the scheduling 

model can split each day into 48 time intervals instead for optimization. Similarly, the 

coefficients of this binary integer programming problem may vary over time as the TOU 

rates and dynamic ancillary service market prices can be measured hourly. The problem 

will be updated and solved iteratively at the beginning of each time interval to provide 

the latest optimal charge/regulation schedule according to the user preferences, driving 

plans and other information in the next 24 hours. If the solution cannot be determined, the 

aggregation server sends an alert to the participant who is responsible for changing 

associated settings to make the schedule possible, such as adjusting excessive driving 

mileages or trying to connect to the charging station before the trip. It’s also beneficial 
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for BEV participants to be aware whether or not their driving plan can be satisfied so as 

to relieve the concerns of range anxiety. 

The event sequence diagram in Figure 8 shows the processes by which the 

architecture works. BEVs become cash-back cars and can support the power grid system 

stability in this architecture.  

 

Figure 8. Event sequence diagram of how the system works 
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CHAPTER FOUR 

ROUTING AND RECHARGING APPLICATIONS 

A roadway network in Charleston, SC area was selected to evaluate the 

performance of the approach discussed in the earlier chapter, and the PARAMICS 

simulator was used to model the Charleston network. Figure 9 presents an overview of 

the entire network and a detailed simulated roadway in PARAMICS. 

 

Figure 9. Simulated Charleston, SC traffic network. 

4.1 SIMULATION CONFIGURATIONS 

The Electric Vehicle model for the simulation experiment was constructed using a 

simulation platform in Matlab-Simulink. To simplify the problem, it was assumed that 

vehicles precisely followed the driving cycle input to the model. The power request was 

first calculated through vehicle dynamic with the parameters of the EV model shown in 

Table 3, and then sent to the Motor/Generator (MG). The MG power in this model was 

set to 80kW, which satisfied the power request in all driving tasks considered in this 

study. Under normal driving conditions, MG works as an electric motor, transforming 
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electric power from the battery into mechanical power to yield vehicle power supply, 

while during braking it becomes a generator to recharge the battery, converting 

mechanical power from the wheel back to electric power. The range capacity of an EV 

battery is most important to EV operation, which is currently quite limited. For this study, 

the SOC of the battery was set between 30% and 90% with all electric range (AER) of 

approximately 100 miles in urban driving (UDDS cycle). 

TABLE 3. EV Model Specifications 

Total weight 1500 kg 

Projected frontal area 2.16 m
2
 

Aerodynamic drag coefficient 0.26  

Rolling friction coefficient 0.007 

Transmission efficiency 0.98 

Final gear ratio 4.11 

Motor/Generator (MG) power 80kW 

Battery construction 192 cells of 13-Ah lithium-ion battery 

Battery packs 4 

SOC window 30% ~ 90% (99.91mile for UDDS) 

50 base EVs together with 50 connected EVs were deployed with the same origin-

destination (OD) were randomly released over time in the simulation experiments. All the 

VII components were allowed to communicate with each other. Traffic information was 

updated and transmitted to EVs in real time. Current average speed of vehicles on the link 

was utilized as the predicted link speed at a certain time step, with a conservative 

coefficient to offset the forecasting errors. The user-specified lower bound of SOC was 

set to 40%, indicating the SOC of battery is expected to be above 40% anytime driving 

towards the destination. When the connected EV is approaching a decision point where 

there are more than one adjacent path in the same direction, the onboard routing 
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application will be triggered that helps drivers find the best routing and recharging plan in 

real time. A conservative adjustment strategy can be used to recharge for more energy in 

the event of an emergency, such as the involvement in an incident or unwanted 

forecasting errors. 

The dynamic electricity rates were also applied in this study and changed every 

30 minutes. Due to lack of proper data in South Carolina, the dynamic national electricity 

sell price in UK was used according to the real-time data on the Balancing Mechanism 

Reporting System website. The author selected dynamic IPT charging facilities over 

static charging stations in this study. For appropriately testing the proposed routing 

approach, six dynamic IPT tracks were evenly buried under the major roadway surface in 

the simulated network, each with a 30kW power supply. The length of the tracks was 

approximately 4000 feet. Moreover, the recharge efficiency was assumed to be 80% on 

average. Because of the high initial cost, we intended to minimize the length of the IPT 

tracks while offering an acceptable recharge capacity. Consequently, IPT tracks were 

placed under the roadway links where the average speed of vehicles passing by in the 

simulation is relatively low to maximize the valid recharge time and recharge volume.  

4.2 ANALYSIS 

We performed the simulation for the rush hour traffic which begins at 4 PM and 

lasts for 3 hours and 20 minutes, and the EVs were released from 4:20 PM. To evaluate 

the new approach in a comprehensive way, we intentionally created an incident on one 

six-lane highway, two southbound lanes of which were blocked from 4:30 PM to 6:30 

PM. Each EV starts at some point of time with a random initial SOC of battery between 
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43% and 44%. In addition, in order to appropriately weigh the effects of the Connected 

Vehicle-based new approach, 50 base EVs were leaded with a conventional navigation 

strategy for comparison, the logic of which is to guide EVs along the route with the 

shortest distance. Since the VII interaction is not available for base EVs, a fixed speed 

limit was used as an independent variable to predict the travel time and associated energy 

consumption. Considering the range anxiety, drivers were continuously detoured to the 

nearest charging tracks to obtain more energy if the SOC of battery was projected to drop 

below 40% in the end. The overall results of the simulation are shown in Table 4. 

TABLE 4. Comparative Simulator generated data of base EVs and Connected EVs in First Simulation 

Strategy Base Connected (Base-

Connected)/Base 

Average Travel Distance (mile) 4.092 3.763 8.04% 

Standard Deviation of Travel Distance 0.197 0.119  

Average Travel Time (sec) 1188.94 857.11 27.90% 

Standard Deviation of Travel Time 98.37 77.21  

Average Consumed Energy (kWh) 2.206 1.986 9.97% 

Standard Deviation of Consumed Energy 0.146 0.130  

Average Recharge Volume (kWh) 0.961 0.650 32.36% 

Standard Deviation of Recharge Volume 0.346 0.058  

Average Recharge Cost (cent) 61.98 41.70 32.73% 

Standard Deviation of Recharge Cost 28.078 11.406  

Average Starting SOC 43.41% 43.46%  

Average Final SOC 41.35% 41.05%  

Although base EVs used the shortest distance approach, they drove even longer 

than connected EVs because detours for recharging. Connected EVs also saved 27.90% 

of average travel time, 9.97% of average energy consumption, 32.7% of recharge energy 
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and 32.73% of recharge cost. The detailed comparisons of performances between the two 

types of EVs from 4:20 PM to 7:20 PM are represented graphically in Figure 10. From 

the scatter plots, it is evident that the total travel time and energy cost of connected EVs 

were generally lower than base EVs at each released time step. Also, the recharge 

electricity along with the recharge cost of connected EVs has a relatively tight range of 

values while the corresponding values of base EVs are widely dispersed, revealing a 

more consistent and reliable recharge navigation against base EVs’. Indeed, though base 

EVs were unable to control the recharge volume since it will only locate the nearest track 

and refuel, the nearest charging station did not always have the best charging capacity 

and charging price. As the deviation between predicted and actual energy consumption 

always exists, it was deemed prudent to charge more than required. 
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FIGURE 10 Performances of connected EVs vs. ordinary EVs from 4:20 PM to 7:20 PM in the first simulation. 

On the second round, the author again conducted simulations in which only the 

lower bound of SOC was set to 40.5% which is 0.5% higher than the setting on the first 

simulation. Results from the simulation experiments are in Table 5 and Figure 11. 

TABLE 5 Overall Results of Base EVs and Connected EVs in Second Simulation 

Strategy Base Connected (Base-Connected)/Base 

Average Travel Distance (mile) 3.994 3.868 3.15% 

Standard Deviation of Travel Distance 0.183 0.161  

Average Travel Time (sec) 1213.26 914.39 24.63% 

Standard Deviation of Travel Time 115.400 151.839  

Average Consumed Energy (kWh) 2.193 2.069 5.65% 

Standard Deviation of Consumed 

Energy 

0.135 0.130  

Average Recharge Volume (kWh) 0.817 0.698 14.57% 
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Standard Deviation of Recharge 

Volume 

0.321 0.194  

Average Recharge Cost (cent) 53.52 48.15 10.03% 

Standard Deviation of Recharge Cost 22.604 17.994  

Average Starting SOC 43.5% 43.39%  

Average Final SOC 41.12% 40.93%  
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Figure 11. Performances of connected EVs vs. base EVs from 4:20 PM to 7:20 PM in the second simulation 

Although the maximum allowable energy consumption was reduced by 14%, the 

routing strategy still managed to yield an appropriate route together with a recharging 

plan for connected EVs, indicating the possibility of shrinking the battery size to some 

extent while extending EV ranges by offering more access to charging facilities. In this 

case, ACO routing strategy still excels in all aspects against the base strategy. The author 

also observed a reduction in the average gap of recharge electricity volume and recharge 

cost between the conventional method and the ITS-based routing and recharging method, 

since both EV types went through more charging routes and were charged for more 

energy to satisfy the SOC threshold.  

 



 59 

CHAPTER FIVE 

CHARGE SCHEDULING APPLICATIONS 

5.1 SIMULATION SETUP 

To evaluate the performance of the BEVs within the architecture presented in this 

dissertation, the Nissan Leaf model was chosen as a study case for this dissertation, the 

Nissan Leaf model was chosen as the study case , the specifications of which are 

illustrated in Table 6. The scheduling model has to retrieve associated information, such 

as the TOU electricity rate, the regulation capacity price and the regulation up/down 

prices, from the database before yielding the optimal charge/regulation plan through the 

aggregation server. Here the author performed a number of simulations using the data of 

Electric Reliability Council of Texas (ERCOT) market for the year of 2009 (Electric 

Reliability Council of Texas, 2013). 

Table 6. Nissan Leaf Model Specification 

Base total weight 3385 lbs 

Maximum speed 90 mph 

Maximum torque 210 ft·lb 

Battery size 24 kWh lithium-ion battery 

Miles per gallon equivalent (MPGe) 34 kWh/100 miles 

Maximum range 73 miles 

Electric motor 80kW 

On-board charger 3.3 kW 

Lithium battery modules 48 
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In the experiments, the author assumed that on a typical work day, a Nissan Leaf 

is plugged in a public charging station and connected to the aggregation server that will 

derive a new charge/regulation schedule for the BEV. The driver uses the vehicle twice in 

a subsequent 24 hour period; the vehicle is disconnected from the power system between 

5:00 PM and 7:00 PM for a trip of 22 miles, and again between 8 a.m. and 9 a.m. the 

following day for another trip of 18 miles. Total driving distance in that 24-hour period is 

40 miles, quite close to the U.S. average daily driven distance of 39.5 miles. The total 

available plug-in parking time is 21 hours with a 240V and 30 Amps, i.e. 7.2 kW power 

of electrical circuit. The SOC window lies between 20% and 90% with an initial SOC of 

50%, and the charging efficiency is set at 90%. A value of 0.10 is applied for the 

dispatched energy ratio that came from a study using the data released by the California 

ISO (CAISO) (Kempton and Tomić, 2005). The hourly market prices for both the 

capacity and the ancillary service energy of our experiments are shown in Table 7 with 

the solver yielding an optimal solution as shown in Figure 12. For purposes of 

comparison, another V2G-equipped BEV with the same setting is parked and plugged in 

simultaneously. We assume that it is not involved in the proposed architecture and that it 

follows a fixed charge/regulation schedule which involves recharging the battery to full 

status (90% SOC) after the TOU pricing of the nighttime hours starts at 10:00 PM, and 

then serves as the regulation resource for the remainder of the available time intervals. 

This fixed charge/regulation schedule is shown in Figure 13, with the overall result of the 

two charging schemes shown in Table 8. Note that all the information can be accessed 

and clearly displayed with a user-friendly interface in the architecture. 
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Table 7. Hourly market clearing prices for capacity and frequency regulation (Electric Reliability Council of 

Texas, 2013) 

Time 12:00 13:00 14:00 15:00 16:00 17:00 

Capacity ($/MW-h) 9.85 8.82 9.73 8.50 8.79 13.01 

Regulation Up ($/MWh) 8.79 7.75 9.56 11.00 9.56 20.02 

Regulation Down ($/MWh) 10.9 9.89 9.89 6.00 8.01 6.00 

Time 18:00 19:00 20:00 21:00 22:00 23:00 

Capacity ($/MW-h) 25.39 40.61 23.01 17.88 11.12 20.00 

Regulation Up ($/MWh) 35.02 51.22 30.02 25.00 9.09 20.00 

Regulation Down ($/MWh) 15.76 30.00 16.00 10.75 13.15 20.00 

Time 00:00 01:00 02:00 03:00 04:00 05:00 

Capacity ($/MW-h) 16.01 8.46 6.05 6.00 7.07 9.47 

Regulation Up ($/MWh) 14.99 8.12 6.89 6.00 5.02 4.84 

Regulation Down ($/MWh) 17.02 8.80 5.20 5.99 9.12 14.10 

Time 06:00 07:00 08:00 09:00 10:00 11:00 

Capacity ($/MW-h) 26.02 29.35 21.70 18.10 11.76 9.05 

Regulation Up ($/MWh) 11.60 40.00 22.69 20.00 8.62 5.00 

Regulation Down ($/MWh) 40.43 18.70 20.70 16.20 14.89 13.10 

 

 

Figure 12. Optimized charge/regulation schedule in the next 24 hours 
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Figure 13. Fixed charge/regulation schedule in the next 24 hours 

5.2 ANALYSIS 

As Table 8 indicates, it is clear that although the regulation hours and charging 

hours of both schedules are very close, the fixed charge/regulation schedule renders a net 

profit of $0.54 in the next 24 hours without paying for the energy consumed by driving. 

The net profit based on the optimized schedule is almost twice as much as that of the 

fixed schedule, however, which appropriately allocates time slots by charging the vehicle 

when the electricity TOU price is relatively low and providing the regulation service 

when the up and down regulation prices are more attractive. Indeed, while the nighttime 

TOU pricing is the lowest of the entire day, it is sometimes unnecessary to require that 

the EV battery be fully recharged to meet the driving demand. It is also likely that BEV 

participants will increase their earnings if they choose to deploy the frequency regulation 

service during the nighttime hours rather than recharge the vehicles. In fact, the 

charge/regulation scheduling model integrated in this architecture is always the best 

option in that the optimization approach always yields an optimal solution. The optimized 
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charge/regulation schedule also ensures a sufficient SOC of battery for driving demands 

to mitigate any concerns of range anxiety. 

Table 8. An overall result of the optimized vs. fixed schedule 

Charge/regulation schedule 

(from 12:00 PM 01/05/2009 to 12:00 PM 01/06/2009) 

Optimized Fixed 

Regulation profit ($) 2.13 1.89 

Charging cost ($) 1.20 1.35 

Net profit ($) 0.93 0.54 

Regulation hours (h) 16 15 

Charging hours (h) 5 6 

Unavailable hours (h) 3 3 

We then calculated the annual profits and costs of popular BEV models in Table 1 

assuming an average daily driving distance of 40 miles associated with 20 available plug-

in hours each day using 7.2 kW as the power capacity of the line in a level two charging 

station. Here, as our results in Figure 14 indicate, the annual charging expense falls 

between $356.20 and $387.02, which is much less than conventional internal combustion 

engine (ICE) vehicles. The regulation service completely compensates for the energy cost 

with an annual driving distance of approximately 15,000 miles and all BEV models make 

a positive net profit through the application of the scheduling strategy. The regulation 

profit earned by V2G-enabled BEVs with 3.3 kW on-board chargers just offsets the 

energy payment for driving, while BEVs with 6.6 kW chargers earn approximately 7% 

more profits from regulation services since less time is required for battery recharge, 

thusly increasing the availability for deploying frequency regulation services.  
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 Figure 14. Annual charging profits and costs of BEV models with 7.2 kW power 

As the power capacity of the electrical circuit is another important coefficient that 

affects objective profits, we doubled the circuit’s ampere capacity to 60 Amps (i.e. 

increased the electrical circuit power capacity to 14.4 kW) which is close to the battery 

capacity of a Mitsubishi i-MiEV, to estimate the potential benefits under the 

circumstances. The annual profits and costs of the same BEV models under the same 

conditions are shown in Figure 15. As is evident, BEVs plugged in with a higher 

electrical circuit power capacity generate much greater profits than BEVs with a lower 

capacity. All the BEV models compensate the energy cost to generate a positive annual 

net profit between $393.57 and $493.68. 
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Figure 15. Annual charging profits and costs of BEV models with 14.4 kW power 

On the other hand, balancing the additional load from BEV charging can be 

challenging, while the smart charging architecture is also designed to support the 

ISO/RTO with load leveling by adjusting prices through real-time communication and 

coordination among BEVs, aggregation servers and the ISO/RTO. To elucidate the merits 

of the architecture under load management, we conducted a simulation that continued 

using 2009 ERCOT data for Texas, most particularly in our determination that 21.4 

million vehicles were registered in the state in 2009 (Texas Department of Motor 

Vehicles, 2010). The hourly trend of the ratio of the projected BEV regulation up and 

down capacity to the total regulation up and down demand in a typical day with an 

average power capacity of 7.2 kW and 14.4 kW is illustrated in Figure 16. This trend 
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assumes a V2G-enabled BEV market penetration rate of 10% with an average of 80% of 

BEVs plugged in at one time interval. 

Here, the aggregated regulation up and down capacity provided by BEVs with 

7.2kW power accounts for approximately 10%-17% of total regulation demand if 80% of 

2.14 million BEVs are deployed as regulation service resources in each hour interval. If 

the average power capacity of electrical circuits increases to 14.4kW, this supply share is 

doubled. As clearly indicate in Figure 16, there is a great demand for frequency 

regulation services in Texas. In our analysis, BEVs become a major regulation service 

supplier given a market penetration rate of 10%. As that number of BEVs expands, the 

ISO/RTO can anticipate saving more money on building frequency regulation generators 

by encouraging more BEVs to participate in the ancillary service program. 

 

Figure 16. The hourly trend of the ratio of EV power capacity/total regulation demand 
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We simulated two scenarios, unmanaged BEVs without performing optimized 

schedules and managed BEVs following the optimized charge/regulation schedules, and 

added the additional load from BEV charging to the grid system assuming all chargers 

deliver 7.2 kW and the BEV penetration is 10%. The load distribution is presented in 

Figure 17. 

 

Figure 17.  A comparison of added load distribution between unmanaged BEVs verses managed BEVs 

In the figure above, the added load under the managed scenario is particularly 

concentrated and the overall distribution is more balanced than that of the unmanaged 

distribution. BEV owners without the charging guidance prefer to recharge their vehicles 

during off-peak hours when the TOU electricity pricing is the lowest of the day, but this 

may give rise to excessive load from 8 p.m. to midnight and hence violate the peak hour 

restrictions. Aggregation servers in charge of the BEVs within the region appear more 
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sensitive to the hourly changes of the TOU electricity price and the regulation up/down 

prices given that most additional load is allocated between 2 a.m. and 6 a.m. to fill the 

grid valley. The unique variance can help ISO/RTOs monitor and ease the load in real-

time by adjusting the prices should the load exceed the capacity. 

5.3 INCREMENTAL COST ESTIMATE 

From an economic perspective it is essential to determine if the benefits of 

integrating V2G technology are worth the extra cost of building a smart charging system.  

In addition to the energy costs already considered in the charge/regulation scheduling 

model considered in this study, costs for both equipment and battery are the major extra 

expenses BEV owners will incur to enable V2G capabilities. Key equipment components 

that must be installed are a power connection and an on-board inverter for V2G flow, an 

accurate on-board metering, and a communication system among vehicles, charging 

stations, aggregation servers and the ISO/RTO to receive and respond to the signals. The 

incremental cost of the on-board power electronics system and the on-board electric 

metering system designed for this purpose can be estimated as $400 and $50, respectively 

(Tomic and Kempton, 2007). In order to provide 1 MW of power on demand, assuming 

an average plug-in connection power of 10 kW with 80% of BEVs available, 125 BEVs 

with an estimated value of $150 for each are required to share a single aggregation server 

associated with other communication components, such as the RFID reader and the 

wireless network deployment (De Los Rios et al., 2012; Tomic and Kempton, 2007). 

Thus the fixed total incremental cost for V2G support is equal to $600, while BEV 

owners can expect less extra cost as grid operators are likely to offer either price 
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incentives or financial subsidies to encourage V2G solutions due to the savings on the 

ancillary-service-specific utilities. 

The extra cycling of an EV battery as a storage device for the regulation service 

will adversely affect the battery life and result in additional depreciation cost. The 

capacity loss of an EV battery for a combined driving and V2G usage can be quite low, 

however, regardless of the DoD window experienced. Statistical analyses from a related 

study indicate that participating in the V2G application will lose 2.7x % of the 

capacity per normalized Wh or Ah processed compared to the loss of 6.0x % for the 

rapid cycling encountered while driving, and one year of driving/V2G incurs only 1% 

capacity loss no matter how much is used for V2G support (Peterson et al., 2010). 

Though our simulation results show that approximately one-third of the total capacity 

loss is from V2G usage, it is not necessary to replace the battery before the vehicle breaks 

down. The annual depreciation cost of a battery with the capacity of 24 kWh therefore 

can be estimated as $64 for V2G support. Although current battery pack cost appears 

expensive, we predict a price decline from $800 per kWh to approximately $300 per kWh 

by 2020 given scaled production and improved technologies (Element Energy Limited, 

2012) further decreasing the depreciation cost by more than 50%. 

The annual average cost of enabling V2G capacities would be approximately 

$124 if a BEV can last for ten years. Since the profits earned by providing frequency 

regulation services range from $386.54 to $424.94 for the 7.2 kW power and almost 

doubled for the 14.4 kW, V2G technologies are deemed beneficial for bringing a positive 

net profit to each BEV participant. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, an ITS-based architecture that integrates communication and 

coordination interfaces among vehicle and infrastructure is designed and evaluated for 

EVs. This dissertation primarily explores the effectiveness of routing and recharging 

applications on EV routing policies and charging schedules. This chapter also includes 

concluding remarks and proposed follow-up work. 

6.1 IMPACTS OF THE EV ROUTING AND RECHARGING APPLICATION 

The author presents an ACO based real-time routing and recharging approach 

supported by Connected Vehicle technology for the purpose of assisting EV drivers to 

find the lowest travel time or the lowest cost path without violating the energy constraint. 

Compared to conventional mathematical programming methods, the ACO based 

approach is more efficient in finding initial feasible solutions as it does not require an 

increase in the number of variables with the increase in the complexity of a network. The 

author also found that the ACO algorithm is efficient, in terms of minimizing travel time 

and energy consumption, to generate approximate solutions to multi-objective routing 

problem for connected vehicle supported EVs. EVs once tethered to short ranges could 

now travel greater distances without consideration of recharge delays, thus significantly 

reducing the range anxiety issue.  Furthermore, it was determined that, given more access 

to charging infrastructure, the battery pack size can be reduced, thereby the batteries 

could be more reasonably priced. The smart grid system permits dynamic pricing benefits 
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to both utilities and consumers in that it reduces critical peak demands and the expense of 

EV operations, thusly improving EV operational efficiency.  

6.2 IMPACTS OF THE CHARGING SCHEDULING APPLICATION 

The author presents a smart charging architecture that can boost the performance 

of V2G-enabled BEVs when a bi-directional power flow is available and in which each 

BEV is providing the ancillary service for the grid system. BEVs in the architecture are 

controlled and managed by an aggregation server and are eligible to bid their aggregated 

capacity into the ancillary service market. Through the real-time communication interface, 

the aggregation server obtained a variety of dynamic data in a timely manner in order to 

develop the latest and optimized charge/regulation schedule for BEVs so that BEV 

owners can simply park, plug in and control the charge/discharge process of the EV 

automatically. The scheduling model involved in the architecture always yielded an 

optimal solution by solving the binary integer programming problem and thusly the net 

profit can be maximized while the energy demand for driving can be guaranteed in the 

meantime. The aggregation server generates an optimal charge/regulation schedule for 

each BEV when plugged in, and responds to changes in the variables or coefficients of 

the scheduling model, such as the time-varying electricity price and the bidding rate of 

the regulation service, in real time and updates with a new optimal solution so as to 

constantly maximize dividends and ensure an accurate aggregated power capacity for 

bidding and billing purposes. The author evaluated the performance of BEVs by 

estimating potential annual profit of a single BEV upon optimization of the scheduling. 

Through a series of simulation analyses, the author concluded that the profit could 
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substantially offset the annual energy costs for EV owners and that BEV owners could 

even make a positive net profit with a high power of the electrical circuit. 

The ISO/RTO will also benefit from this architecture in that they can save 

substantial revenue on investment in utilities specifically equipped for regulation services 

by authorizing and encouraging BEVs as ancillary service providers. With the availability 

of BEVs as an additional power regulation resource, the ISO/RTO can leverage the 

additional load from BEV charging by adjusting TOU electricity prices and frequency 

regulation prices to enhance both the reliability and robustness of the power grid system. 

Policy makers can utilize the findings from this research to evaluate BEV related laws 

and incentives to help generate more interests in BEVs. 

6.3 RESEARCH CONTRIBUTIONS 

This dissertation develops a routing and recharging algorithm that is dedicated to 

enhance EV trips. The algorithm developed in this dissertation is able to reduce not only 

the total travel time and the energy consumption, but also the amount of charging 

required and corresponding cost, thus significantly relieving the concerns of range 

anxiety. This routing approach also potentially allows for a reduction in the EV battery 

capacity, in turn reducing the cost of energy storage systems to a reasonable level. 

It also involves developing a scheduling optimization approach to generate a 

charge/regulation schedule for BEVs so that these vehicles can automatically plan a 

charging schedule for maximizing the net profit for EV owners. The strategy presented in 

this dissertation can rapidly respond to changes of the scheduling model, adjust the plan 
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accordingly in real time, and always yields a global optimal solution under various 

circumstances which has rarely been considered before. The charging optimization 

approach presented in this dissertation can also help to enhance the reliability and 

robustness of the electricity grid as it is designed to avoid BEV charging during high-

priced and high-demand peak hours. 

A Connected Vehicle architecture to support EV operations is developed in this 

dissertation This architecture is designed to support the communication and coordination 

of a variety of EV applications in real time. Applications under this architecture are able 

to solve EV charging related problems rapidly without the need to consider hardware 

limitations, thus improving the performance of Connected EV applications. 
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Appendix A 

ROUTING APPLICATION SCRIPTS AND DATA 

 

A.1 SCRIPTS OF THE ROUTING API IN THE SIMULATION TOOL OF 

PARAMICS 

Plugin.c 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

 

#include "programmer.h" 

#include "route_p.h" 

#include "engine.h" // MATLAB header files 

 

/* ----------------------------------------------------------------------- 

 * link nodes in function qpx_NET_second 

 * check points in function qpx_VHC_transfer need to change if a new network is applied 

 * ----------------------------------------------------------------------- */  

 

char linklist[111], finalroute[111], vehicledata[111], linkinput[111]; 

float timesteps; 
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int v = 1; 

 

void qpx_NET_postOpen(void) 

{ 

    errno_t  err; 

    FILE     *kfile; 

 

    qps_VHC_recycle(FALSE); 

    err = fopen_s(&kfile,"J:\\Data\\Claire\\app\\files.txt","r"); 

 if (err==0) 

 { 

  while (!feof(kfile)) 

  { 

   fscanf_s(kfile,"%s\n", linklist, _countof(linklist)); 

   fscanf_s(kfile,"%s\n", finalroute, _countof(finalroute)); 

   fscanf_s(kfile,"%s\n", vehicledata, _countof(vehicledata)); 

   fscanf_s(kfile,"%s\n", linkinput, _countof(linkinput)); 

  } 

 } 

 else 

 { 

  qps_GUI_printf("File is not open, Check for Errors\n"); 
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  qps_SIM_close(); 

 } 

 err= fclose(kfile); 

} 

 

void qpx_VHC_release(VEHICLE* vehicle) 

{ 

    int vtype; 

 timesteps = qpg_CFG_simulationTime(); 

 if ((int)timesteps >= TIMEPOINT) 

 { 

  vtype=qpg_VHC_type(vehicle); 

  if (vtype==VEHTYPE) 

  {     

   qps_VHC_destination(vehicle, DEST, DEST); 

   qps_VHC_usertag(vehicle,TRUE); 

   v++; 

  }  

 }  

} 

 

void qpx_VHC_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2) 
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{ 

    errno_t err; 

    FILE    *kfile; 

    NODE    *nodetemp; 

    char    *snode, *endnode; 

 int     vid; 

 float   llength, ffs; 

 

 if(qpg_VHC_usertag(vehicle)==TRUE) 

 { 

  err = fopen_s(&kfile,vehicledata,"a+"); 

     if (err==0) 

     { 

   timesteps = qpg_CFG_simulationTime(); 

   vid = qpg_VHC_uniqueID(vehicle); 

      nodetemp = qpg_LNK_nodeStart(link1); 

      snode=qpg_NDE_name(nodetemp); 

      nodetemp = qpg_LNK_nodeEnd(link1); 

      endnode = qpg_NDE_name(nodetemp); 

      llength = qpg_LNK_length(link1); // get length of the link 

      ffs = qpg_VHC_speed(vehicle); // get speed of the link 
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      fprintf_s(kfile,"%d %9.2f %s %s %6.2f %9.5f\n", vid, timesteps, snode, 

endnode, llength, ffs); 

     } 

     else 

     { 

      qps_GUI_printf("Vehicle Data File is not open or Missing, Check for 

Errors.. stoped before Maltab module\n");  

      qps_SIM_close(); 

     } 

     err= fclose(kfile); 

 } 

} 

 

 

// called to set the exit number for vehicle (Vp) on link (linkp). Return  

// 0 to use defualt code in modeller or an index between 1 - No of exit  

// links, to specificaly set the exit link the vehicle should use. 

int qpo_RTM_decision(LINK *linkp, VEHICLE *Vp) 

{ 

    ROUTE*   routes = NULL; 

 VEHICLE* trueV; 

    NODE*    nodetemp; 
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    char     *snode; 

    int      vid, arriveTime; 

    char     buffer[BUFSIZE+1]; 

    char     varitemp[111]; 

 char     chknode[10]; 

    float    llength, ffs; 

    Engine*  ep; // matlab engine 

    mxArray* result = NULL; 

    double*  presult, trigger; 

    char     *chkpoint = "|569|431|571|64|517|13|10|590|611|99|471|";  

 

    if(qpg_VHC_usertag(Vp)==TRUE) 

 { 

  nodetemp = qpg_LNK_nodeStart(linkp); 

  snode = qpg_NDE_name(nodetemp); 

  sprintf_s(chknode, _countof(chknode), "|%s|", snode); 

  trueV = qpg_VHC_original(Vp); 

  vid= qpg_VHC_uniqueID(trueV); 

         

  if (strstr(chkpoint,chknode) && (!isRecord(vid, snode))) 

  {      

   timesteps = qpg_CFG_simulationTime(); 
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      arriveTime = (int)(timesteps - TIMEPOINT) / 60; 

 

   //   //Matlab code starts 

   //   qps_SIM_running(FALSE); 

   //   qps_GUI_printf("*****Simulation paused*****\n");  

   //   if (!(ep = engOpen("matlab")))  

   //   { 

   //    qps_GUI_printf("\nCan't start MATLAB engine Check errors 

and logs\n"); 

   //   } 

   //   buffer[BUFSIZE] = '\0'; 

   //   engOutputBuffer(ep, buffer, BUFSIZE); 

   //   engEvalString(ep, "cd('J:/Data/Claire/EV');path(pathdef);"); 

   //   sprintf_s(varitemp, _countof(varitemp), "[soc, stnode]=current(%d);", 

vid); 

   //   engEvalString(ep, varitemp); 

   //sprintf_s(varitemp, _countof(varitemp), "xchk = shortest(%d, 

stnode, %d, soc);", arriveTime, vid);       

   //qps_GUI_printf("%s %s", varitemp, snode); 

   //   engEvalString(ep, varitemp); 

   //   if ((result = engGetVariable(ep,"xchk")) == NULL) 

   //   { 
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   //    qps_GUI_printf("\r\nOops! You didn't create a variable to 

check (xchk)\n\n"); 

   //   } 

   //   else  

   //   { 

   //    result = engGetVariable(ep,"xchk"); 

   //    presult=mxGetData(result); 

   //    trigger=presult[0]; 

   //   } 

   

   //   engEvalString(ep, "clear all;"); 

   //   mxDestroyArray(result); 

   //   engClose(ep); 

   //   if (trigger==218) 

   //   { 

   //    qps_GUI_printf("Route is updated. Building Route 

information... \n"); 

   // qps_VHC_userdata(trueV, NULL); 

   // sprintf_s(varitemp, _countof(varitemp), "%s_%d.txt", 

finalroute, vid); 

   // routes = buildRouteInformation(varitemp); 

   // qps_VHC_userdata(trueV,(VHC_USERDATA*)routes); 
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   // buildRouteRecord(vid, snode); 

   //    qps_SIM_running(TRUE); 

   //   } 

   //   else if (trigger<218) 

   //   { 

   //    qps_GUI_printf("Reroute failed %5.2f\n",trigger); 

   //   } 

   //   else 

   //   { 

   //    qps_GUI_printf("something wrong with MATLAB, check 

errors, trigger is wrong \n"); 

   //    qps_SIM_close(); 

   //   }    

        } 

  return checkForcedRouteChoice(linkp, Vp); 

    } 

 return ROUTE_DEFAULT; // any vehicle 

} 

 

 

 

// called only once, return TRUE to enable calls to 'routing_decision' 
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Bool qpo_RTM_enable(void)  

{ 

 return TRUE; 

} 

 

void qpx_NET_second(void) 

{ 

    char varitemp[111], linkline[100], *onelink, *startlink, *endlink, templnk[100], 

*templink; 

    int     sec, llane, slimit, u = 1, vehtemp = 0, i = 0, j = 0, tstation = 0; 

    errno_t err, errs; 

    FILE    *kfile, *kv; 

    LINK    *tlink; 

    float   llength, ffs = 0, ffstemp = 0, ffstore = 0, tlength = 0, tffs = 0, tlimit = 0; 

     

    timesteps = qpg_CFG_simulationTime(); 

    sec = (int)timesteps % 60; 

 if((int)timesteps>=TIMEPOINT) 

 { 

  sprintf_s(varitemp, _countof(varitemp), "%s_%d.txt", linkinput,sec); 

  err = fopen_s(&kfile,varitemp,"w");// open link input file 

  if (err==0) 
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  { 

   errs = fopen_s(&kv, linklist,"r");// open link list file 

   if (errs==0) 

   { 

    while(!feof(kv)) 

    { 

     fscanf_s(kv,"%s\n", linkline, _countof(linkline)); // 

read link list 

     memcpy(templnk, linkline, sizeof(linkline)); 

     onelink = strtok(templnk, ","); 

     tlength = 0; 

     tffs = 0; 

     tlimit = 0; 

     i = 0; 

     j = 0; 

     while (onelink!=NULL) 

     { 

      tlink = qpg_NET_link(onelink); 

      llength = qpg_LNK_length(tlink);//get 

length of the link 

      llane = qpg_LNK_lanes(tlink);//get number 

of lane for the link 
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      slimit = qpg_LNK_speedlimit(tlink); // 

speed limit 

      ffs = 0; 

      for (u=1;u<=llane;u++) 

      { 

       ffstemp = qpg_STA_speed(tlink,u); 

       vehtemp = 

qpg_LNK_vehicles(tlink,u); 

       if (ffstemp<=0 && vehtemp<=0) 

       { 

        ffs = ffs+slimit; 

       } 

       else 

       { 

        ffs = ffs+ffstemp; 

       } 

      } 

      ffs = ffs/llane; 

      if(ffs<1){ffs=1;} 

      tlength = tlength + llength; 

      tffs = tffs + ffs; 

      tlimit = tlimit + llane*slimit; 
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      onelink = strtok(NULL, ","); 

      i++; 

      j = j + llane; 

     }      

     templink = strtok(linkline, ":"); 

     startlink = templink; 

     while (templink!=NULL) 

     { 

      endlink = templink; 

      templink = strtok(NULL, ":"); 

     } 

     tffs = tffs / i; 

     if (tffs<1) {tffs=1;} 

     tlimit = tlimit / j; 

     if (strcmp(startlink,"623")==0 && 

strcmp(endlink,"81")==0) {tstation = 250;} 

     else if (strcmp(startlink,"638")==0 && 

strcmp(endlink,"665")==0) {tstation = 251;} 

     else if (strcmp(startlink,"62")==0 && 

strcmp(endlink,"357")==0) {tstation = 252;} 

     else if (strcmp(startlink,"67")==0 && 

strcmp(endlink,"503")==0) {tstation = 253;} 
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     else {tstation = 0;} 

     fprintf_s(kfile,"%s %s %7.2f %5.2f 5.2f %d\n", 

startlink, endlink, tlength, tffs, tlimit, tstation); 

    } 

   } 

   else 

   { 

    qps_GUI_printf("Error opening Link list file..terminated 

before Maltab\n"); 

    qps_SIM_close(); 

   } 

   errs=fclose(kv); 

  } 

  else 

  { 

   qps_GUI_printf("Linkinput File is not open, Check for 

Errors..terminated before Maltab module\n");  

   qps_SIM_close(); 

  } 

  err= fclose(kfile); 

 } 

} 
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Routing.c 

/*----------------------------------------------------------------------- 

 * function needed to change when it applies to another network 

 * buildRouteInformation 

 * ----------------------------------------------------------------------- */ 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

 

#include "programmer.h" 

 

#include "route_p.h" 

#include "route_s.h" 

 

 

static ROUTE*  SampleRouteList = NULL; 

static RECORD* rec = NULL; 

 

// fill up the re routing information 

ROUTE* buildRouteInformation(char flnm[111]) 
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{ 

    char fn[21];// to read start node from route file 

 FILE *rfile; 

 errno_t err; 

 LINK *link; 

    ROUTE* newLink = NULL; 

 ROUTE* route = NULL; 

 int i = 1; 

 

 SampleRouteList = NULL; 

 newLink = malloc(sizeof(ROUTE)); 

 err = fopen_s(&rfile,flnm,"r"); 

 if (err==0) 

 { 

  while (!feof(rfile)) 

  { 

   fscanf_s(rfile,"%s\n", fn, _countof(fn));    

   link = qpg_NET_link(fn); 

   newLink->link = link; 

   newLink->next = NULL; 

 

   if (i==1) 
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   { 

    route = SampleRouteList = newLink; 

    i++; 

   } 

   else 

   { 

    route->next = newLink; 

    route = newLink; 

   } 

   newLink = malloc(sizeof(ROUTE)); 

   strcpy_s(fn,_countof(fn),""); 

  } 

  free(newLink); 

 } 

 else 

 { 

  qps_GUI_printf("Route File is not open, build route function, Check for 

Errors, %s\n", flnm); 

 } 

 err = fclose(rfile); 

 return SampleRouteList; 

} 
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// find the next link on the vehicles fixed route, if any? 

int checkForcedRouteChoice(LINK *link, VEHICLE *vehicle) 

{ 

    int    exitI = 0; 

    int    i = 0; 

    int    n_connected_links = 0; 

 int       vid = 0; 

    Bool   turn_found = FALSE; 

    LINK*   target;     

    VEHICLE*  trueV = NULL; 

    ROUTE*   route = NULL; 

    Bool   dummyV = FALSE; 

 NODE*     nodetemp; 

 char      *snode, *endnode; 

 

 

    // first, find out if the vehicle should be using a user defined route or not 

    // this complicated because during route choice the vehicle pased into this  

    // fucntion  - from qpo_RTM_decision() - *could* be a dummy vehicle.....  
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    // OK, so a dummy vehicle is a vehicle that is created from a parent source 

    // vehilce and projected foreward along the parent vehicles path in order to  

    // make choices on lane usage on links further along the path of the origional  

    // parent vehicle, confused? 

 

    // API makes it easy 

    trueV = qpg_VHC_original(vehicle); 

 vid= qpg_VHC_uniqueID(trueV); 

 nodetemp = qpg_LNK_nodeStart(link); 

 snode=qpg_NDE_name(nodetemp); 

 nodetemp = qpg_LNK_nodeEnd(link); 

 endnode=qpg_NDE_name(nodetemp); 

     

    if(trueV != vehicle) dummyV = TRUE; 

 

    // get back the vehicle data structure and cast to our structure 

    route = (ROUTE*)qpg_VHC_userdata(trueV); 

    // if the route in NULL then there is no data, and no route to follow 

 if(route==NULL) {  

   qps_GUI_printf("Vehicle Route does not exist, %d, %s, %s\n", 

vid, snode, endnode); 

   return ROUTE_DEFAULT; 
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 } 

    else 

    {  

  // are we on the fixed route 

  if(!isOnFixedReRoute(link, route)) {    

   qps_GUI_printf("Not on fixed route, %d, %s, %s\n", vid, snode, 

endnode); 

   return ROUTE_DEFAULT; 

  } 

 

  // the next link on route  

  target = nextFixedReRouteLink(link, route); 

 

  if(!target) { 

   qps_GUI_printf("No next route, %d, %s, %s\n", vid, snode, 

endnode); 

   return ROUTE_DEFAULT;  

  } 

 

  n_connected_links = qpg_LNK_links(link); 

    

  // exit links in the range 1 - n_conected_links 
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  i = 1; 

    

  while ((i <= n_connected_links) && (!turn_found)) 

  {  

   // compare the target against the next exit option 

   if (target == qpg_LNK_link(link, i)) 

   { 

   turn_found = TRUE; 

   exitI = i; 

   break; 

   } 

   else 

   { 

   // move to next exit link 

   i++; 

   } 

  } 

 

  if(turn_found) return exitI; 

    } 

     

 qps_GUI_printf("Still Default, %d, %s\n", vid, snode); 
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    return ROUTE_DEFAULT; 

} 

 

 

// is the given link at the *start* of a re-routing section 

Bool isStartOfFixedReRoute(LINK* link, ROUTE* route) 

{ 

    if(!link)      return FALSE; 

    if(!route)    return FALSE; 

 

    if(route->link != link) return FALSE; 

 

    return TRUE; 

} 

 

// is the given link at the *end* of a re-routing section 

Bool isEndOfFixedReRoute(LINK* link, ROUTE* route) 

{ 

    ROUTE* routes; 

 

    if(!link)      return FALSE; 

    if(!route)    return FALSE; 
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    // go to end 

    for (routes = route; routes != NULL && routes->next != NULL; routes = routes->next) 

    { 

    } 

 

    if(routes->link != link) 

    { 

 return FALSE; 

    } 

    else 

    { 

 return TRUE; 

    } 

} 

 

// is the given link part of a re-routing section 

Bool isOnFixedReRoute(LINK* link, ROUTE* route) 

{ 

    ROUTE* routes; 

 NODE*     nodetemp; 

 char      *snode, *endnode; 
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 LINK* links; 

 

    if(!link) return FALSE; 

    if(!route) return FALSE; 

 

    for (routes = route; routes != NULL && routes->next != NULL; routes = routes->next) 

    { 

  if(routes->link == link)  

  { 

   return TRUE; 

  } 

    } 

 

 qps_GUI_printf("Cannot find it on the fixed route."); 

 for (routes = route; routes != NULL && routes->next != NULL; routes = routes-

>next) 

    { 

  links = routes->link;   

  nodetemp = qpg_LNK_nodeStart(links); 

  snode=qpg_NDE_name(nodetemp); 

  nodetemp = qpg_LNK_nodeEnd(links); 

  endnode=qpg_NDE_name(nodetemp); 
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  qps_GUI_printf("The fixed route should be %s %s.\n", snode, endnode); 

 } 

    return FALSE; 

    // It is changed. The original code was always returning TRUE; 

} 

 

// find the *next* link on the route following the given link 

LINK* nextFixedReRouteLink(LINK* link, ROUTE* route) 

{ 

    ROUTE* routes; 

 NODE*     nodetemp; 

 char      *snode, *endnode; 

 LINK* links; 

 

    if(!link) return FALSE; 

    if(!route) return FALSE; 

 

    for (routes = route; routes != NULL && routes->next != NULL; routes = routes->next) 

    { 

 if(routes->link != link) continue; 

  

 // found link, what about the next one 
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 if(!routes->next) continue; 

 if(!routes->next->link) continue; 

 

 return routes->next->link; 

    } 

 

 qps_GUI_printf("Cannot find the next fixed route."); 

 for (routes = route; routes != NULL && routes->next != NULL; routes = routes-

>next) 

    { 

  links = routes->link;   

  nodetemp = qpg_LNK_nodeStart(links); 

  snode=qpg_NDE_name(nodetemp); 

  nodetemp = qpg_LNK_nodeEnd(links); 

  endnode=qpg_NDE_name(nodetemp); 

  qps_GUI_printf("The fixed route should be %s %s.\n", snode, endnode); 

 } 

    return NULL; 

} 

 

void buildRouteRecord(int vid, char* snode) 

{ 
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 RECORD* allRec = NULL; 

 RECORD* newRec = NULL; 

 int i = 1; 

 

 newRec = malloc(sizeof(RECORD)); 

 newRec->vid = vid; 

 newRec->node = snode; 

 newRec->next = NULL; 

 

 if (rec == NULL) 

 { 

  rec = newRec; 

 } 

 else 

 { 

  for (allRec = rec; allRec != NULL; allRec = allRec->next) 

  { 

   if (allRec->vid == vid) 

   { 

    allRec->node = snode; 

    i++; 

    break; 
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   } 

  } 

 

  if (i==1) 

  { 

   for (allRec = rec; allRec != NULL && allRec->next != NULL; 

allRec = allRec->next) 

   { 

   } 

   allRec->next = newRec; 

  } 

 } 

} 

 

Bool isRecord(int vid, char* snode) 

{ 

 RECORD* allRec; 

  

 for (allRec = rec; allRec != NULL; allRec = allRec->next) 

 { 

  if(allRec->vid == vid && allRec->node == snode)  

  { 
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   return TRUE; 

  } 

 } 

 return FALSE; 

} 

A.2 THE SCIRPTS OF THE ANT COLONY ALOGRITHM IN MATLAB 

Aca.m 

function xchk=aca(arrive, S, VID, soc) 

%% Ant Colony Algorithm for Restricted Shortest Path 

%% Created by Claire Zhiyun Li 

%% Input Parameters 

%  C            linkcost matrix (NxN) 

%  D            energy consumption matrix (NxN) 

%  S            start point 

%  E            end point 

%  VID          vehicle ID 

%  arrive       arrive time (minute) 

%  Dmax         maximum energy consumption 

%  K            loop times (the number of groups of ants) 

%  M            the number of ants in each group 

%  Alpha        history coefficient 

%  Beta         heuristic coefficient (linkcost) 
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%  Gamma        heuristic coefficient (energy consumption) 

%  Rho          decay factor 

%  Q            greediness factor 

%% Output Parameters 

%  MRT          optimum route (0/1 matrix) 

%  EDGES        optimum route with links 

%  cost         optimum linkcost 

%% 

%% Step 1: Initialization 

%  soc.SOC0 = 0.43; 

%  soc.T_amb = 20; 

%  arrive = 15; 

%  S = 23; 

%  VID = 10088; 

dataa = dlmread('linkinput.txt'); 

data = []; 

exchange = [12 23 62 63 67 81 107 357 432 466 487 503 563 591 604 613 623 638 659 

661 665]; 

for i=1:size(dataa,1) 

    data(size(data,1)+1,1) = find(exchange(1,:)==dataa(i,1)); 

    data(end,2) = find(exchange(1,:)==dataa(i,2)); 

    data(end,3:5) = dataa(i,3:5); 
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    data(end,6) = dataa(i,6)-220; 

end 

mx=max(max(data(:,1:2)))+12; 

mx_cost=inf*ones(mx,mx); % cost matrix 

mx_delay=inf*ones(mx,mx); % delay matrix 

cost_type = 2; 

predict_co = 1.1; 

 

for i=1:size(data,1) 

    [linkcosts,ttime] = linkcost(data(i,1),data(i,2),data,soc,cost_type);   

    mx_cost(data(i,1),data(i,2))=linkcosts; 

    [elet,end_state,chg_elet] = vehicle(data(i,4),data(i,3),soc,0); 

    mx_delay(data(i,1),data(i,2))=soc.SOC0-end_state.SOC0; 

    if data(i,6)>0 

        [elet,end_state,chg_elet] = vehicle(data(i,4),data(i,3),soc,1); 

        mx_delay(data(i,1),data(i,6))=(soc.SOC0-end_state.SOC0)/2; 

        mx_delay(data(i,6),data(i,2))=(soc.SOC0-end_state.SOC0)/2; 

        mx_cost(data(i,1),data(i,6))=linkcosts/2; 

        mx_cost(data(i,6),data(i,2))=linkcosts/2; 

    end 

end 
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C = mx_cost; % cost matrix 

D = mx_delay; % delay matrix (energy) 

% S = 23; % start point 

E = 613; % end point 

SS = find(exchange(1,:)==S); 

EE = find(exchange(1,:)==E); 

Dmax = soc.SOC0-0.4; % maximum restricted delay 

K = 20; % loop time 

M = 200; % ant number in each loop 

Alpha = 1; % attractive coefficient 

Beta = 2; % heuristic coefficient for cost 

Gamma = 1; % heuristic coefficient for delay 

Rho = 0.02; % decay factor 

Q = 20; % strength factor 

 

N=size(C,1); % number of nodes 

MRT=zeros(N,N); 

cost=inf; 

ROUTES=cell(K,M); % crawl route for each ant stored in the cell structure 

DELAYS=inf*ones(K,M); 

COSTS=inf*ones(K,M); 

Tau=ones(N,N); % initial matrix 
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ran=[]; 

 

for i=1:size(data,1) 

    num = length(find(data(:,1)==data(i,1))); 

    if (num>1 || data(i,6)>0) 

        [aa,plength] = dijkstra(C,data(i,2),EE); 

        elength = floyd(D,data(i,2),EE); 

        ran(size(ran,1)+1,1) = data(i,1); 

        ran(size(ran,1),2) = data(i,2); 

        ran(size(ran,1),3) = plength + C(data(i,1),data(i,2)); 

        ran(size(ran,1),4) = elength + D(data(i,1),data(i,2)); 

    end 

    if data(i,6)>0 

        ran(size(ran,1)+1,1) = data(i,1); 

        ran(size(ran,1),2) = data(i,6); 

        ran(size(ran,1),3) = ran(ran(:,1)==data(i,1) & ran(:,2)==data(i,2),3); 

        ran(size(ran,1),4) = ran(ran(:,1)==data(i,1) & ran(:,2)==data(i,2),4) - 

D(data(i,1),data(i,2)) + 2*D(data(i,1),data(i,6));     

    end 

end 

 

%% Step 2: start  
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for k=1:K 

    for m=1:M 

%% Step 3: status initialization 

        W=SS; % node 

        Path=SS; % path 

        PD=0; % energy consumption 

        PC=0; % link cost 

        CC=C; % backup 

        DD=D; 

%%      step 4: next available nodes 

        LJD=find(DD(W,:)<inf); % available nodes 

        Len_LJD=length(LJD); 

%%      when to stop: not able to find food or cannot reach the end point 

        while (W~=EE)&&(Len_LJD>=1) 

%%          step 5: choose which way to go             

            kk=0; 

            PP=[]; 

            if (Len_LJD>1) 

                kk = find(ran(:,1)==W); 

                for i=1:Len_LJD 

                    j = find(ran(:,1)==W & ran(:,2)==LJD(i));                     
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                    PP(i)=(Tau(W,LJD(i))^Alpha)*(((2*max(ran(kk,3))-

ran(j,3))/max(ran(kk,3)))^Beta)*(((1-ran(j,4)*50)/sum(1-ran(kk,4)*50))^Gamma); 

                end 

                PP=PP/(sum(PP)); % probability distribution 

                Pcum=cumsum(PP); 

                Select=find(Pcum>=rand); 

                to_visit=LJD(Select(1)); % next visiting point 

            else 

                to_visit=LJD; 

            end 

%%          step 6: update and record status 

            Path=[Path,to_visit]; % add the path 

            PD=PD+DD(W,to_visit); 

            PC=PC+CC(W,to_visit); 

            W=to_visit; % move to the next point 

            LJD=find(DD(W,:)<inf); 

            Len_LJD=length(LJD); 

        end 

%%      step 7: record the route for each ant 

        ROUTES{k,m}=Path; 

        if Path(end)==EE&&PD<=Dmax 

            DELAYS(k,m)=PD; 
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            COSTS(k,m)=PC; 

        else 

            DELAYS(k,m)=inf; 

            COSTS(k,m)=inf; 

        end 

    end 

%%  step 8: update the information 

    Delta_Tau=zeros(N,N); % initialize 

    for m=1:M 

        if COSTS(k,m)<inf && DELAYS(k,m)<Dmax 

            ROUT=ROUTES{k,m}; 

            TS=length(ROUT)-1; 

            Cpkm=COSTS(k,m); 

            for s=1:TS 

                x=ROUT(s); 

                y=ROUT(s+1); 

                Delta_Tau(x,y)=Delta_Tau(x,y)+Q/Cpkm; 

            end 

        end 

    end 

    Tau=(1-Rho).*Tau+Delta_Tau; % info strength updated 

end 
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%% step 9: result 

MINCOSTS=NaN*ones(1,K); 

allcost=zeros(1,0); 

for k=1:K 

    for m=1:M 

        COSTkm=COSTS(k,m); 

        DELAYkm=DELAYS(k,m);  

        if sum(COSTkm)<inf && sum(DELAYkm)<inf 

            Tree=zeros(N,N); 

            path=ROUTES{k,m}; 

            RLen=length(path); 

            for i=1:(RLen-1) 

                Tree(path(i),path(i+1))=1; 

            end 

            TC=Tree.*C; 

            TD=Tree.*D; 

            for ii=1:N 

                for jj=1:N 

                    if isnan(TC(ii,jj)) 

                        TC(ii,jj)=0; 

                        TD(ii,jj)=0; 
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                    end 

                end 

            end 

            mincost=sum(sum(TC)); 

            thedelay=sum(sum(TD)); 

            if mincost<cost 

                MINCOSTS(1,k)=mincost; 

                MRT=Tree; 

                cost=mincost; 

                delay=thedelay; 

            end 

            allcost=[allcost,cost]; 

        end 

    end 

end 

 

o = dlmread('iteration.txt'); 

u = find(o(:,1)==VID); 

if u>=1 

    i = o(u,2); 

    o(u,2) = o(u,2)+1; 

else 
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    o = [o;VID 2]; 

    i = 1; 

end 

 

if delay<Dmax 

    fid = fopen('iteration.txt','w'); 

    for j = 1:size(o,1) 

        fprintf(fid,'%d %d\r\n',o(j,:)); 

    end 

    fclose(fid); 

     

    T1=SS; 

    total_t=arrive; 

    initial=soc; 

    soc_file = []; 

    adjust = []; 

    while (T1~=EE) 

        soc_file(size(soc_file,1)+1,1) = exchange(1, T1); 

        T2=find(MRT(T1,:)==1); 

        if (floor((T2+220)/10)==25) 

            T2 = find(MRT(T2,:)==1); 

            soc_file(end,7) = 1; 
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        else 

            soc_file(end,7) = 0;    

        end        

        soc_file(end,2) = exchange(1, T2); 

        soc_file(end,3) = mx_cost(T1,T2); 

        soc_file(end,4) = data(T1==data(:,1) & T2==data(:,2), 3); % length 

        soc_file(end,5) = data(T1==data(:,1) & T2==data(:,2), 4); % speed         

        [elet,end_state,chg_elet] = 

vehicle(soc_file(end,5),soc_file(end,4),initial,soc_file(end,7));             

        ttime = soc_file(end,4) * 60 / soc_file(end,5) / 5280; % minutes 

        soc_file(end,6) = end_state.SOC0; 

        if (soc_file(end,7)==1) 

            soc_file(end,8) = chg_elet; 

            soc_file(end,9) = total_t; 

            soc_file(end,10) = soc_file(end,8)*pricing(floor(soc_file(end,9))); 

            adj = find(data(:,6)>0 & data(:,2)==T2); 

            adjust = [adjust; data(adj,1) data(adj,2) data(adj,6) (mx_delay(T1,data(adj,6))*2-

mx_delay(T1,T2)) soc_file(end,10)]; 

        else 

            soc_file(end,8) = 0; 

            soc_file(end,9) = 0; 

            soc_file(end,10) = 0; 
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        end 

        total_t = total_t + ttime; 

        initial=end_state; 

        T1=T2; 

    end 

     

    if (isempty(adjust)==0) 

        adjust = sortrows(adjust,-5); 

        Dleft = Dmax - delay; 

        for j = 1:size(adjust,1) 

            if (Dleft + adjust(j,4))>=0.002 

                Dleft = Dleft + adjust(j,4); 

                soc_file(soc_file(:,1)==adjust(j,1) & soc_file(:,2)==adjust(j,2),7)=0; 

            end 

        end 

    end 

     

    fid = fopen(strcat('SOC_',num2str(VID),'_',num2str(i),'.txt'),'w'); 

    initial=soc; 

    for j = 1:size(soc_file,1) 

        [elet,end_state,chg_elet] = vehicle(soc_file(j,5),soc_file(j,4),initial,soc_file(j,7)); 

        soc_file(j,6) = end_state.SOC0; 
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        soc_file(j,8) = chg_elet; 

        soc_file(j,10) = soc_file(j,8)*pricing(floor(soc_file(j,9))); 

        initial = end_state; 

        fprintf(fid,'%d:%d %6.3f %6.3f %6.3f %7.4f %d %6.3f %6.3f 

%6.3f\r\n',soc_file(j,:)); 

    end 

    fprintf(fid,'\r\nInitial SOC: %7.4f and T_amb: %6.3f',soc.SOC0,soc.T_amb); 

    fprintf(fid,'\r\nFinal SOC: %7.4f and T_amb: 

%6.3f',end_state.SOC0,end_state.T_amb); 

    fprintf(fid,'\r\nCost: %6.3f and Delay: %6.3f',sum(soc_file(:,3)),(soc.SOC0-

end_state.SOC0)); 

    fclose(fid); 

 

    fid = fopen(strcat('charging_',num2str(VID),'.txt'),'a');     

        if (i==1) 

            fprintf(fid,'0 1 2 %7.4f %7.4f\r\n', soc.SOC0, soc.T_amb); 

        end        

        charges = soc_file(soc_file(:,7)==1,:); 

        for j = 1:size(charges,1) 

            fprintf(fid,'%d %d %d\r\n',i,charges(j,1),charges(j,2)); 

        end 

    fclose(fid); 
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    finalroute = {}; 

    fid = fopen('linklist.txt','r'); 

    for k = 1:31 

        tline = fgetl(fid); 

        S = regexp(tline, ':', 'split'); 

        finalroute{k,1}=S{1}; 

        finalroute{k,2}=S{end}; 

        finalroute{k,3}=tline; 

    end 

    fclose(fid); 

    fid = fopen(strcat('finalroute_',num2str(VID),'.txt'),'w'); 

    for j = 1:size(soc_file,1) 

        for k = 1:31 

            if (strcmp(num2str(soc_file(j,1)),finalroute{k,1}) && 

strcmp(num2str(soc_file(j,2)),finalroute{k,2})) 

                S = regexp(finalroute{k,3}, ',', 'split'); 

                for m = 1: size(S,2) 

                    fprintf(fid,'%s\r\n',S{1,m}); 

                    m=m+1; 

                end 

            break; 
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            end 

        end 

    end 

    fclose(fid); 

    xchk=218; 

else 

    fid = fopen(strcat('SOC__',num2str(VID),'_',num2str(i),'.txt'),'w'); 

        fprintf(fid,'fail to get a route, please recharge before you leave.'); 

    fclose(fid); 

    xchk=222; 

end 

copyfile('linkinput.txt',strcat('linkinput__',num2str(arrive),'.txt'),'f'); 

dijkstra.m 

function [path,short]=dijkstra(input_weight,startpoint,endpoint)  

 

row=size(input_weight,1); 

s_path = startpoint; 

distance=inf*ones(1,row); 

distance(startpoint)=0; 

flag = zeros(700,1); 

flag(startpoint)=startpoint; 

temp=startpoint; 
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if (startpoint==endpoint) 

    path=startpoint; 

    short=0; 

else 

    while length(s_path)<row 

        pos=find(input_weight(temp,:)~=inf); 

        for i=1:length(pos) 

            if (isempty(find(s_path==pos(i),1)) && 

distance(pos(i))>(distance(temp)+input_weight(temp,pos(i)))) 

                distance(pos(i))=distance(temp)+input_weight(temp,pos(i)); 

                flag(pos(i))=temp; 

            end 

        end 

        k=inf; 

        for i=1:row 

            if (isempty(find(s_path==i,1)) && k>distance(i)) 

                k=distance(i); 

                temp_2=i; 

            end 

        end 

        s_path=[s_path,temp_2]; 
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        temp=temp_2; 

    end 

 

    path(1)=endpoint; 

    i=1; 

    short = 0; 

    while path(i)~=startpoint 

        path(i+1)=flag(path(i)); 

        if (path(i+1)==0) 

            short=-1; 

            break; 

        end 

        i=i+1; 

    end 

    path(i)=startpoint; 

    path=path(end:-1:1); 

    if short~=-1 

        short=distance(endpoint); 

    end 

end 

Floyd.m 

function d=floyd(a,sp,ep)  
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n=size(a,1);  

D=a;  

path=zeros(n,n);  

if (sp==ep) 

    d=0; 

else 

    for i=1:n  

       for j=1:n  

           if D(i,j)~=inf  

               path(i,j)=j; 

           end  

       end  

    end  

 

    for k=1:n  

       for i=1:n  

          for j=1:n  

             if D(i,j)>D(i,k)+D(k,j)  

                D(i,j)=D(i,k)+D(k,j);  

                path(i,j)=path(i,k);  

             end  

          end  
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       end  

    end  

 

    % p=sp;  

    % mp=sp;  

    % for k=1:n  

    %     if (mp~=ep && mp~=0) 

    %         d=path(mp,ep);  

    %         p=[p,d];  

    %         mp=d;  

    %     end  

    % end  

    d=D(sp,ep);  

    % path=p; 

End 

Vehicle.m 

function [elet,end_state,chg_elet] = vehicle(avg_speed,tlt,initial,chg_switch) 

%VEHICLE function is to calculate the consumption of eletricity 

% avg_speed: average speed in the given link, in mph 

% tlt      : total length of travel, length of the link, in ft 

% chg_switch: Boolean for charging, 1 is charging, 0 is no charging 

% elet     : the eletricity used for the given speed profile, in kwh 
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% initial and end_stat are the system states for the initial condition and 

% the end condition correspondingly. The structure is as follow: 

% 

% structure.old_data = system status 

% structure.SOC0 = start SOC 

% structure.T_amb = temperature 

 

%% Important parameters 

% For the very beginning, the initial state: 

% initial.SOC0 = 0.90; 

% initial.T_amb = 20; 

 

% range:    speed: 0 ~ 80 ft/s 

% segment length: 0~3.9338e+004 ft 

 

%% initialization 

load test1 

ceffi = 0.8; % IPT efficiency between 0 and 90% 

chg_power = 30000 * ceffi;   %power of charger, 30000w 

 

% match the average speed and driving cycle 

% 1ft =  0.3048 m 
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avg_speed = avg_speed * 1609.344 / 3600; %mph -> m/s 

tlt = tlt * 0.3048; % ft -> m 

time_est = ceil(tlt/avg_speed); 

avg_speed = tlt/time_est; 

acc = 1.4752*(rand(time_est,1)-0.5); 

diff_speed = zeros(time_est,1); 

for i = 2:time_est 

   diff_speed(i) = diff_speed(i-1) + acc(i); 

end 

speed_p = avg_speed + diff_speed; 

speed_p = speed_p - mean(speed_p) + avg_speed; 

 

% load udds % use udds cycle 

% l = length(V_z); 

% temp1 = avg_speed * ones(l) - avg_spd; 

% temp2 = tlt * ones(l) - tot_dist; 

% error = temp1.*temp1 + temp2.*temp2; 

%  

% [temp,start_p] = min(error); 

% [temp,end_p] = min(min(error)); 

% start_p = start_p(end_p); 
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% speed_p = V_z(start_p:end_p); 

 

tot_t = length(speed_p);   % get the total time of the cycle 

T_z = [1:tot_t]'; 

V_z = speed_p; 

GR = zeros(tot_t,1); 

G_z = 4* ones(tot_t,1); 

 

next = initial; 

 

 

%% run the model 

opts = simset('SrcWorkspace','current'); 

sim('EV',tot_t ,opts) 

 

end_state.SOC0 = SOC(end); 

end_state.T_amb = T(end); 

 

SOC_b = SOC(1); 

SOC_e = SOC(end); 

 

sim('battery', inf, opts) 
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elet = electricity; 

if chg_switch ==1 

    chg_elet = chg_power / ceffi * tlt / avg_speed / 3600 / 1000; % charging electricity 

else 

    chg_elet = 0; 

end 

end 

A.3 DATA OF THE FIRST SIMULATION 

ID ARRIVE TIME 

MINUTE 

TRAVEL 

LENGTH 

TRAVEL 

TIME 

ENERGY 

COST 

START 

SOC 

END 

SOC 

CHARGE 

ENERGY 

CHARGE 

COST 

9771 1.83 3.8912 1277.111 2.1672 0.4371 0.4078 0.575 77.2973 

10257 3.17 3.8912 1286.29 2.1148 0.4357 0.4083 0.6 80.658 

10903 4.87 4.1719 993.7613 2.2692 0.4303 0.4156 1.25 224.725 

11869 7.18 3.8912 1325.608 2.1817 0.4369 0.4085 0.6167 110.8643 

13679 11.86 3.8912 1241.866 2.2163 0.4379 0.4076 0.5667 101.8753 

14471 14.01 3.8912 1479.553 2.3014 0.4371 0.4085 0.7167 128.8423 

15167 15.77 3.8912 1236.79 2.1465 0.4367 0.4085 0.6083 109.3662 

16955 20.35 3.8912 1236.925 2.1078 0.4355 0.408 0.6 107.868 

18155 23.2 3.8912 1183.243 1.9605 0.4355 0.4098 0.55 98.879 

18459 23.96 3.8912 1151.473 1.9649 0.4359 0.4109 0.5917 106.3698 

20047 27.99 4.3574 1400.891 2.3236 0.4347 0.4104 0.9083 157.5282 

20277 28.56 3.8912 1243.008 2.0932 0.4377 0.4101 0.575 103.3735 

22893 35.22 3.763 1120.02 1.8098 0.4393 0.4195 0.6667 110.2333 

22943 35.31 3.8912 1319.248 2.3695 0.4343 0.403 0.6667 110.2333 

24507 39.47 4.1719 1202.894 2.2908 0.4307 0.4211 1.475 243.8912 

25967 42.97 3.8912 1340.108 2.238 0.4367 0.4062 0.575 95.0763 

28241 48.77 4.3574 1234.288 2.2685 0.4341 0.4123 0.975 161.2163 

32027 58.05 4.1719 1148.899 2.2331 0.4327 0.4178 1.2 171.9776 

32785 59.88 3.763 937.5537 2.0519 0.4385 0.4147 0.7 88.984 

33107 60.64 4.1719 1090.446 2.4268 0.4307 0.4202 1.5583 222.6262 

39565 76.8 3.8912 1380.973 2.0166 0.4365 0.4141 0.725 92.162 

40451 78.98 3.8912 1148.74 2.2348 0.4351 0.4038 0.5583 70.9753 

42773 84.74 3.8912 1204.352 2.1611 0.4373 0.4073 0.5417 68.8567 

43465 86.47 3.8912 1285.218 2.0566 0.4365 0.4086 0.5417 68.8567 



 128 

44405 88.73 4.1719 1069.322 2.2323 0.4305 0.4184 1.325 145.4293 

44743 89.46 3.8912 1298.845 2.3077 0.4343 0.4033 0.625 79.45 

44857 89.77 3.8912 1280.429 2.2764 0.4357 0.405 0.6 76.272 

45613 91.53 4.1719 1276.487 2.2951 0.4313 0.4153 1.225 135.0701 

45967 92.5 3.8912 1318.233 2.1083 0.4367 0.4089 0.5833 74.1533 

46259 93.15 3.8912 1373.861 2.0478 0.4359 0.409 0.5667 72.0347 

48903 99.87 4.1719 1080.473 2.3852 0.4303 0.4182 1.4417 138.0396 

48981 100.03 3.763 947.9726 2.0333 0.4381 0.4144 0.6917 66.2271 

49731 102.33 4.3574 1254.471 2.3389 0.4331 0.4103 0.9917 94.9521 

52959 112.37 3.8912 1323.262 2.2286 0.4359 0.407 0.6333 60.6417 

54243 116.43 3.8912 1262.531 2.1332 0.4343 0.4059 0.5917 56.6521 

54667 117.72 3.8912 1079.035 1.9993 0.4367 0.4101 0.5417 51.8646 

55123 119.13 4.1719 1235.003 2.4214 0.4323 0.4217 1.525 150.3707 

58661 130.24 3.8912 1195.361 2.0726 0.4361 0.4093 0.5917 59.8708 

61439 138.91 4.1719 1095.926 2.2222 0.4339 0.4201 1.25 126.4875 

63047 144.21 3.8912 1164.352 2.142 0.4347 0.4057 0.5667 57.341 

63069 144.28 3.8912 1171.361 2.0998 0.4369 0.4091 0.575 58.1843 

63735 146.38 4.3574 1236.594 2.2502 0.4335 0.4122 0.9667 95.4503 

64805 149.84 4.1719 1107.493 2.3195 0.4305 0.4148 1.25 122.7482 

65125 150.91 4.3574 1224.321 2.5388 0.4325 0.4065 1.0167 100.4152 

67983 160.03 3.763 1132.285 2.1075 0.4383 0.4174 0.8583 81.9794 

 

A.4 DATA OF THE SECOND SIMULATION 

ID ARRIVE TIME 

MINUTE 

TRAVEL 

LENGTH 

TRAVEL 

TIME 

ENERGY 

COST 

START 

SOC 

END 

SOC 

CHARGE 

ENERGY 

CHARGE 

COST 

10168 3 3.763 721.4203 1.997 0.4368 0.4107 0.5833 104.8717 

10216 3.1 3.763 726.2994 1.9045 0.4316 0.4087 0.6333 113.8607 

13608 11.75 3.763 773.852 2.0198 0.4308 0.4047 0.6 107.868 

14982 15.31 3.763 764.7478 2.0502 0.4382 0.4107 0.575 103.3735 

15200 15.93 4.173 1032.087 2.2277 0.43 0.417 1.3 233.714 

17998 22.77 3.763 992.4253 2.0343 0.4398 0.4148 0.6417 115.3588 

18230 23.45 3.763 829.7928 2.0786 0.433 0.4057 0.5917 106.3698 

18908 25.16 3.763 860.2051 1.884 0.4308 0.4065 0.575 103.3735 

18914 25.18 3.763 1024.738 1.7857 0.4314 0.4098 0.5917 106.3698 

20190 28.45 3.763 1147.925 2.0026 0.439 0.4168 0.725 119.8788 

22104 33.27 4.3607 1090.276 2.5092 0.4304 0.4059 1.0583 184.0142 

22862 35.13 3.9507 777.7428 2.1114 0.4362 0.4076 0.5833 96.4542 

24644 39.76 3.763 749.7394 1.9404 0.4344 0.4106 0.625 103.3438 

26796 45.11 3.9507 767.264 2.1308 0.4396 0.4123 0.6333 104.7217 

28014 48.14 3.9507 814.1023 2.1515 0.4314 0.4039 0.6583 108.8554 

30422 54.03 4.3574 1247.127 2.288 0.4322 0.411 1.0083 150.1616 

30580 54.37 3.763 974.6177 2.0084 0.438 0.4146 0.6833 112.9892 

31010 55.54 3.763 816.8039 1.9173 0.431 0.4106 0.7417 122.6346 
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31590 56.88 3.8912 1284.788 2.096 0.439 0.4099 0.5167 85.4308 

31760 57.39 3.9507 844.5286 2.0315 0.436 0.4104 0.625 103.3438 

32940 60.18 3.763 831.1659 1.8893 0.434 0.4119 0.6417 106.0996 

33248 60.94 3.763 974.9395 2.0396 0.4348 0.4089 0.6167 78.3907 

35216 65.85 3.763 759.3619 2.0048 0.4316 0.4077 0.6667 84.7467 

35652 66.89 3.763 917.4511 2.0111 0.4352 0.4096 0.6083 77.3313 

38406 73.91 3.763 838.7884 1.7756 0.4306 0.4094 0.5917 75.2127 

39646 77.08 3.763 945.0349 1.8987 0.4346 0.413 0.675 85.806 

39802 77.38 4.173 1134.048 2.1606 0.4302 0.4209 1.375 174.79 

39826 77.47 3.763 1017.582 1.9571 0.4326 0.4083 0.6083 77.3313 

39948 77.71 3.763 1021.973 2.0534 0.4348 0.4083 0.6167 78.3907 

42152 83.11 3.763 1100.085 1.999 0.4352 0.4106 0.6333 80.5093 

46272 93.24 3.8912 1273.552 2.1339 0.4372 0.408 0.5583 70.9753 

47060 95.32 3.9507 1011.79 2.1999 0.436 0.4086 0.6833 65.4292 

47816 97.28 3.9507 947.4928 2.0032 0.4316 0.4059 0.6 57.45 

49516 101.63 3.763 858.7884 1.6286 0.4316 0.4139 0.6167 59.0458 

52328 110.39 3.763 878.9084 1.9408 0.4328 0.4103 0.6667 63.8333 

52668 111.47 3.9507 832.5229 2.0116 0.4368 0.411 0.6083 58.2479 

55002 118.77 3.9507 773.6271 1.8606 0.4302 0.4064 0.575 55.0562 

55956 121.72 3.763 829.0756 2.1872 0.4356 0.406 0.625 59.8438 

56818 124.61 3.763 837.2389 2.0488 0.4318 0.4053 0.625 63.2437 

61140 138.06 3.763 1032.29 1.8829 0.434 0.4137 0.7167 72.5195 

63020 144.15 4.173 955.6941 2.2889 0.432 0.4149 1.175 118.8982 

66720 155.92 3.763 749.8818 2.0141 0.432 0.4072 0.6417 61.2856 

66766 156.07 3.9507 883.0579 2.1547 0.4366 0.4102 0.6917 66.0611 

67418 158.13 3.9507 781.352 2.1201 0.4318 0.4133 1.025 97.8978 

68410 161.99 3.9507 721.3039 2.0963 0.431 0.4028 0.6083 58.1019 
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Appendix B 

ANCILLARY SERVICE APPLICATION SCRIPTS AND DATA 

B.1 SCRIPTS FOR THE SCHEDULING MODEL IN LINGO 

model: 

data: 

 CHAC = 7.2; SOCB = 0.2; SOCC = 0.5; SOCT = 0.9; E = 0.1; U = 0.9; 

M = 2; N = 24; !CHAC; 

enddata 

sets: 

 NUM/1..M/:CHARGING; 

 PRD/1..N/:PERIOD,DIS,CAP,PRICE,ELEC; 

 LINKS(NUM,PRD):COST,CHOICE,COMPARE; 

 AVAN(PRD); 

 AVAS(PRD)|#NOT# @in(AVAN,&1); 

endsets 

data: 

 CHAV, BATT, ENEC = @OLE('final.xlsm', 'HONDA'); !NISSAN; 

 AVAN = @OLE('final.xlsm', 'AVAN'); 

 DIS = @OLE('final.xlsm', 'DIST'); 

 CAP = @OLE('final.xlsm', 'CAP'); 

 PRICE = @OLE('final.xlsm', 'CAP'); 

 ELEC = @OLE('final.xlsm', 'ELEC'); 

 SOCI = @OLE('final.xlsm', 'SOCI'); 

 @OLE('final.xlsm', 'RES') = @WRITE( @sum(LINKS: -COST*CHOICE), 

@sum(PRD(I):CHOICE(1,I)*ELEC(I)), @sum(PRD(I): -

ENEC/BATT*DIS(I)+U*CHAV/BATT*CHOICE(1,I))+SOCI); 

 !AVAN = 6 7 21; 

 !DIS = 0 0 0 0 0 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0;  

 !COMPARE = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

      1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1; 

 !COMPARE = 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

      1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1; 

 !@TEXT() = @WRITE( 'Several Output', @NEWLINE(1)); 

 !@TEXT() = @WRITE( @sum(LINKS: COST*COMPARE), @NEWLINE(1)); 

 !@TEXT() = @WRITE( @sum(PRD(I): -

ENEC/BATT*DIS(I)+U*CHAV/BATT*CHOICE(1,I))+SOCI, @NEWLINE(1)); 

enddata 

 @for(LINKS: 

  @bin(CHOICE); @free(COST)); 

  @for(LINKS(I,J): 

  COST(I,J)=@if(I #eq# 1, CHAV*ELEC(J), -CHAC*CAP(J)-

CHAC*E*PRICE(J))); 

 min=@sum(LINKS: COST*CHOICE); 

 @for(AVAS(I): 

  @sum(NUM(J):CHOICE(J,I))<=1); 

 @for(AVAN(I): 

  @sum(NUM(J):CHOICE(J,I))=0); 

 @for(PRD(J): 
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  @sum(PRD(I)|I #le# J: ENEC/BATT*DIS-

U*CHAV/BATT*CHOICE(1,I))<=SOCI-SOCB); 

 @for(PRD(J): 

  @sum(PRD(I)|I #le# J: -

ENEC/BATT*DIS+U*CHAV/BATT*CHOICE(1,I))<=SOCT-SOCI); 

 @sum(PRD(I): ENEC/BATT*DIS(I)-U*CHAV/BATT*CHOICE(1,I))<=SOCI-

SOCC; 

end 

 

B.2 DATA ON ANNUAL ANCILLARY SERVICE PROFIT 

NISSAN LEAF ANCILLARY NISSAN LEAF CHARGING END OF SOC 

657.756 252 0.718261 

994.3296 160 0.678261 

1178.866 136 0.638261 

1367.045 136 0.598261 

1349.462 136 0.558261 

874.1436 136 0.518261 

143.946 228 0.736522 

604.6656 160 0.696522 

668.382 160 0.656522 

741.3648 136 0.616522 

745.998 136 0.576522 

910.734 136 0.536522 

270.3492 228 0.754783 

556.2744 160 0.714783 

231.792 160 0.674783 

454.6608 136 0.634783 

331.4256 136 0.594783 

434.742 136 0.554783 

596.0724 136 0.514783 

155.9844 228 0.733043 

512.556 160 0.693043 

430.5048 160 0.653043 

656.8584 136 0.613043 

669.8868 136 0.573043 

630.4056 136 0.533043 

-183.506 228 0.751304 

435.93 160 0.711304 

334.9896 160 0.671304 

289.3308 136 0.631304 

355.2648 136 0.591304 

896.0424 136 0.551304 
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938.3352 136 0.511304 

-96.3072 228 0.729565 

206.7252 160 0.689565 

389.202 136 0.649565 

571.8768 136 0.609565 

922.2576 136 0.569565 

1799.992 136 0.529565 

1284.664 228 0.747826 

1056.898 160 0.707826 

922.218 160 0.667826 

392.4492 136 0.627826 

283.2324 136 0.587826 

223.3968 136 0.547826 

380.49 136 0.507826 

-276.844 228 0.726087 

153.8988 160 0.686087 

262.1256 136 0.646087 

168.8676 136 0.606087 

83.1732 136 0.566087 

51.0972 136 0.526087 

-504.821 228 0.744348 

-72.6528 160 0.704348 

19.0212 160 0.664348 

133.782 136 0.624348 

303.5472 136 0.584348 

61.1952 136 0.544348 

81.3516 136 0.504348 

-782.456 252 0.722609 

118.338 160 0.682609 

258.8388 136 0.642609 

322.674 136 0.602609 

350.8692 136 0.562609 

160.71 136 0.522609 

-499 228 0.74087 

259.1952 160 0.70087 

371.382 160 0.66087 

387.3804 136 0.62087 

376.332 136 0.58087 

239.514 136 0.54087 

265.4124 136 0.50087 

-274.23 252 0.71913 

134.6136 160 0.67913 

177.936 160 0.63913 
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535.4448 136 0.59913 

522.1392 136 0.55913 

594.726 136 0.51913 

-95.5152 228 0.737391 

828.3264 160 0.697391 

933.306 160 0.657391 

1112.734 136 0.617391 

929.6628 136 0.577391 

992.2308 136 0.537391 

116.8596 228 0.755652 

516.8724 160 0.715652 

417.4368 160 0.675652 

618.6444 136 0.635652 

541.6224 136 0.595652 

507.5268 136 0.555652 

427.218 136 0.515652 

-223.661 228 0.733913 

134.6928 160 0.693913 

177.6192 160 0.653913 

363.7392 136 0.613913 

312.6948 136 0.573913 

426.0696 136 0.533913 

-372.596 228 0.752174 

33.4356 160 0.712174 

19.9716 160 0.672174 

291.4296 136 0.632174 

385.5984 136 0.592174 

236.9796 136 0.552174 

164.6304 136 0.512174 

-536.224 228 0.730435 

-80.4936 160 0.690435 

-200.838 160 0.650435 

19.536 136 0.610435 

-3.7488 136 0.570435 

-76.9692 136 0.530435 

-625.046 228 0.748696 

91.4892 160 0.708696 

34.782 160 0.668696 

34.8216 136 0.628696 

-55.308 136 0.588696 

39.732 136 0.548696 

161.5416 136 0.508696 

-327.69 228 0.726957 
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-44.418 160 0.686957 

60.2448 136 0.646957 

-157.04 136 0.606957 

-189.156 136 0.566957 

-187.255 136 0.526957 

-805.464 228 0.745217 

-314.807 160 0.705217 

-338.844 160 0.665217 

-46.3188 136 0.625217 

-115.936 136 0.585217 

-68.9304 136 0.545217 

-53.0904 136 0.505217 

-586.238 228 0.723478 

-66.594 160 0.683478 

300.5376 136 0.643478 

453.9876 136 0.603478 

148.5132 136 0.563478 

89.628 136 0.523478 

-587.506 228 0.741739 

-72.4152 160 0.701739 

-129.083 160 0.661739 

108.24 136 0.621739 

102.9732 136 0.581739 

37.554 136 0.541739 

27.5748 136 0.501739 

-711.454 252 0.72 

-119.42 160 0.68 

-79.8204 136 0.64 

-72.8508 136 0.6 

-124.925 136 0.56 

-112.926 136 0.52 

-666.666 228 0.738261 

-51.942 160 0.698261 

-104.848 160 0.658261 

229.6536 136 0.618261 

128.2776 136 0.578261 

23.3376 136 0.538261 

-647.104 228 0.756522 

-168.604 160 0.716522 

-157.357 160 0.676522 

-235.171 160 0.636522 

-127.499 136 0.596522 

-95.1456 136 0.556522 
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-147.418 136 0.516522 

-631.739 228 0.734783 

-196.522 160 0.694783 

-215.53 160 0.654783 

66.858 136 0.614783 

-22.3212 136 0.574783 

-55.506 136 0.534783 

-571.309 228 0.753043 

-81.84 160 0.713043 

-137.834 160 0.673043 

50.7012 136 0.633043 

55.6116 136 0.593043 

-3.1548 136 0.553043 

29.3964 136 0.513043 

-375.17 228 0.731304 

556.2348 160 0.691304 

2001.278 160 0.651304 

1237.315 136 0.611304 

1217.634 136 0.571304 

914.1396 136 0.531304 

92.1888 228 0.749565 

-44.7744 160 0.709565 

16.7244 160 0.669565 

138.6924 136 0.629565 

86.3016 136 0.589565 

219.0804 136 0.549565 

170.61 136 0.509565 

-613.404 228 0.727826 

147.1668 160 0.687826 

1476.697 136 0.647826 

1605.912 136 0.607826 

255.156 136 0.567826 

564.5508 136 0.527826 

242.2728 228 0.746087 

363.5412 160 0.706087 

478.1436 160 0.666087 

289.4496 136 0.626087 

123.5256 136 0.586087 

67.0164 136 0.546087 

47.7708 136 0.506087 

-586.199 228 0.724348 

-180.167 160 0.684348 

-103.105 136 0.644348 
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-136.646 136 0.604348 

-121.004 136 0.564348 

-119.381 136 0.524348 

-631.937 228 0.742609 

-144.685 160 0.702609 

-266.772 160 0.662609 

118.734 136 0.622609 

28.2876 136 0.582609 

-181.79 136 0.542609 

-137.438 136 0.502609 

-782.377 228 0.72087 

-281.266 160 0.68087 

-129.479 136 0.64087 

-27.4296 136 0.60087 

374.7084 136 0.56087 

19.734 136 0.52087 

-666.824 228 0.73913 

-161.159 160 0.69913 

-197.987 160 0.65913 

61.1952 136 0.61913 

-44.6556 136 0.57913 

-113.599 136 0.53913 

-864.151 228 0.757391 

-189.077 160 0.717391 

-342.21 160 0.677391 

47.1768 136 0.637391 

-93.522 136 0.597391 

-166.98 136 0.557391 

-0.7788 136 0.517391 

-840.827 228 0.735652 

-340.745 160 0.695652 

-406.243 160 0.655652 

-23.0736 136 0.615652 

-150.467 136 0.575652 

-228.162 136 0.535652 

-966.082 228 0.753913 

-497.006 160 0.713913 

-545.12 160 0.673913 

-539.537 160 0.633913 

-315.361 136 0.593913 

-331.558 136 0.553913 

-400.976 136 0.513913 

-1029.4 228 0.732174 
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-605.352 160 0.692174 

-632.201 160 0.652174 

-443.903 136 0.612174 

-244.24 136 0.572174 

-269.386 136 0.532174 

-940.025 228 0.750435 

-547.694 160 0.710435 

-545.754 160 0.670435 

-416.302 136 0.630435 

-436.3 136 0.590435 

-423.232 136 0.550435 

-333.934 136 0.510435 

-813.503 228 0.728696 

-353.338 160 0.688696 

-278.296 136 0.648696 

-412.856 136 0.608696 

-277.266 136 0.568696 

-273.504 136 0.528696 

-935.827 228 0.746957 

-496.056 160 0.706957 

-472.534 160 0.666957 

-328.706 136 0.626957 

-242.616 136 0.586957 

164.7888 136 0.546957 

-119.064 136 0.506957 

-810.533 228 0.725217 

-376.86 160 0.685217 

-79.464 136 0.645217 

-163.97 136 0.605217 

-59.07 136 0.565217 

-206.54 136 0.525217 

-784.357 228 0.743478 

-317.262 160 0.703478 

-368.267 160 0.663478 

-109.283 136 0.623478 

-0.3828 136 0.583478 

42.2664 136 0.543478 

-17.49 136 0.503478 

-1774.3 379 0.721739 

872.0052 160 0.681739 

20.8428 136 0.641739 

106.1412 136 0.601739 

355.542 136 0.561739 
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621.5748 136 0.521739 

459.5184 228 0.74 

173.3028 160 0.7 

142.89 160 0.66 

278.0448 136 0.62 

197.0628 136 0.58 

413.754 136 0.54 

560.1948 136 0.5 

962.478 228 0.718261 

91.41 160 0.678261 

136.6728 136 0.638261 

101.8644 136 0.598261 

24.6444 136 0.558261 

344.1372 136 0.518261 

-292.644 228 0.736522 

330.8712 160 0.696522 

237.138 160 0.656522 

530.6928 136 0.616522 

312.774 136 0.576522 

583.044 136 0.536522 

-426.532 228 0.754783 

385.242 160 0.714783 

667.6692 160 0.674783 

475.8072 136 0.634783 

676.2228 136 0.594783 

715.4268 136 0.554783 

220.7436 136 0.514783 

-510.8 228 0.733043 

-7.2732 160 0.693043 

167.1648 160 0.653043 

130.416 136 0.613043 

74.8176 136 0.573043 

181.9752 136 0.533043 

-441.58 228 0.751304 

78.5004 160 0.711304 

115.0908 160 0.671304 

70.8576 160 0.631304 

592.7064 136 0.591304 

121.6248 136 0.551304 

199.9536 136 0.511304 

-312.088 228 0.729565 

108.1608 160 0.689565 

579.5592 136 0.649565 
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734.3952 136 0.609565 

391.8156 136 0.569565 

259.8684 136 0.529565 

-427.759 228 0.747826 

-7.6296 160 0.707826 

195.0036 160 0.667826 

169.9368 136 0.627826 

175.2432 136 0.587826 

996.7056 136 0.547826 

797.1612 136 0.507826 

-100.782 228 0.726087 

284.1828 160 0.686087 

466.818 136 0.646087 

816.486 136 0.606087 

1077.727 136 0.566087 

725.01 136 0.526087 

-123.196 228 0.744348 

208.8636 160 0.704348 

44.2068 160 0.664348 

394.2312 136 0.624348 

583.242 136 0.584348 

652.9776 136 0.544348 

1036.028 136 0.504348 

354.1428 252 0.722609 

656.898 160 0.682609 

701.6856 136 0.642609 

741.8796 136 0.602609 

737.3256 136 0.562609 

618.882 136 0.522609 

124.7004 228 0.74087 

884.9544 160 0.70087 

808.2492 160 0.66087 

869.352 136 0.62087 

 

MITSUBISHI I-MIEV ANCILLARY MITSUBISHI I-MIEV CHARGING END OF SOC 

1338.454 160 0.514 

1000.547 160 0.528 

1178.866 136 0.542 

1367.045 136 0.556 

1349.462 136 0.57 

874.1436 136 0.584 
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814.902 136 0.598 

779.1432 136 0.612 

842.622 136 0.626 

566.4516 160 0.64 

570.174 160 0.654 

717.6048 160 0.668 

752.928 160 0.682 

556.2744 160 0.696 

231.792 160 0.71 

274.4808 160 0.724 

163.9572 160 0.738 

268.1844 160 0.752 

411.4968 160 0.766 

644.7408 160 0.78 

512.556 160 0.794 

1091.917 68 0.511 

494.4192 160 0.525 

669.8868 136 0.539 

630.4056 136 0.553 

475.2132 136 0.567 

613.734 136 0.581 

515.0904 136 0.595 

289.3308 136 0.609 

355.2648 136 0.623 

896.0424 136 0.637 

788.964 160 0.651 

401.676 160 0.665 

206.7252 160 0.679 

225.5352 160 0.693 

440.1672 160 0.707 

744.612 160 0.721 

1520.336 160 0.735 

1777.142 160 0.749 

1056.898 160 0.763 

922.218 160 0.777 

234.6432 160 0.791 

767.6724 68 0.508 

77.352 160 0.522 

380.49 136 0.536 

365.4816 136 0.55 

318.318 136 0.564 

262.1256 136 0.578 

168.8676 136 0.592 
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83.1732 136 0.606 

51.0972 136 0.62 

209.2992 136 0.634 

-72.6528 160 0.648 

19.0212 160 0.662 

-29.172 160 0.676 

148.4736 160 0.69 

-100.373 160 0.704 

-77.1672 160 0.718 

-151.496 160 0.732 

118.338 160 0.746 

55.77 160 0.76 

127.3668 160 0.774 

160.0368 160 0.788 

637.6656 68 0.505 

30.5052 160 0.519 

423.0204 136 0.533 

564.9864 136 0.547 

387.3804 136 0.561 

376.332 136 0.575 

239.514 136 0.589 

265.4124 136 0.603 

617.0208 136 0.617 

351.186 136 0.631 

177.936 160 0.645 

349.2456 160 0.659 

364.9668 160 0.673 

422.9412 160 0.687 

403.1808 160 0.701 

828.3264 160 0.715 

933.306 160 0.729 

895.6068 160 0.743 

733.7616 160 0.757 

812.8824 160 0.771 

618.09 160 0.785 

1198.679 68 0.502 

442.7808 160 0.516 

494.538 160 0.53 

541.6224 136 0.544 

507.5268 136 0.558 

427.218 136 0.572 

448.8 136 0.586 

308.418 136 0.6 
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339.7416 136 0.614 

363.7392 136 0.628 

128.7924 160 0.642 

254.9184 160 0.656 

111.8436 160 0.67 

33.4356 160 0.684 

19.9716 160 0.698 

117.9024 160 0.712 

190.5684 160 0.726 

43.3752 160 0.74 

-1.1352 160 0.754 

-51.3084 160 0.768 

-80.4936 160 0.782 

-200.838 160 0.796 

490.9872 68 0.513 

-167.653 160 0.527 

-76.9692 136 0.541 

30.7824 136 0.555 

271.1544 136 0.569 

209.022 136 0.583 

34.8216 136 0.597 

-55.308 136 0.611 

39.732 136 0.625 

-12.0252 160 0.639 

152.3148 160 0.653 

-44.418 160 0.667 

-116.688 160 0.681 

-326.212 160 0.695 

-356.03 160 0.709 

-353.654 160 0.723 

-329.063 160 0.737 

-314.807 160 0.751 

-338.844 160 0.765 

-211.055 160 0.779 

-281.899 160 0.793 

407.5104 68 0.51 

-208.243 160 0.524 

51.7308 136 0.538 

94.6176 136 0.552 

300.5376 136 0.566 

453.9876 136 0.58 

148.5132 136 0.594 

89.628 136 0.608 
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52.4436 136 0.622 

-72.4152 160 0.636 

-129.083 160 0.65 

-43.5072 160 0.664 

-45.4872 160 0.678 

-128.172 160 0.692 

-135.577 160 0.706 

-80.0976 160 0.72 

-119.42 160 0.734 

-242.774 160 0.748 

-232.835 160 0.762 

-287.126 160 0.776 

-279.325 160 0.79 

449.13 68 0.507 

-23.0736 160 0.521 

64.0464 136 0.535 

229.6536 136 0.549 

128.2776 136 0.563 

23.3376 136 0.577 

-12.0252 136 0.591 

-0.7788 136 0.605 

4.29 136 0.619 

-235.171 160 0.633 

-290.849 160 0.647 

-264.436 160 0.661 

-310.768 160 0.675 

-162.743 160 0.689 

-196.522 160 0.703 

-215.53 160 0.717 

-103.541 160 0.731 

-188.245 160 0.745 

-229.984 160 0.759 

-102.234 160 0.773 

-81.84 160 0.787 

497.5212 68 0.504 

-126.152 160 0.518 

55.6116 136 0.532 

-3.1548 136 0.546 

29.3964 136 0.56 

258.6408 136 0.574 

720.3372 136 0.588 

2188.468 136 0.602 

1237.315 136 0.616 
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1027.99 160 0.63 

749.8788 160 0.644 

561.7788 160 0.658 

-44.7744 160 0.672 

16.7244 160 0.686 

-26.7168 160 0.7 

-77.5236 160 0.714 

56.6808 160 0.728 

2.508 160 0.742 

-142.824 160 0.756 

147.1668 160 0.77 

1308.674 160 0.784 

2075.7 68 0.501 

58.344 160 0.515 

564.5508 136 0.529 

873.1932 136 0.543 

525.3864 136 0.557 

640.464 136 0.571 

289.4496 136 0.585 

123.5256 136 0.599 

67.0164 136 0.613 

-116.965 160 0.627 

-116.767 160 0.641 

-180.167 160 0.655 

-263.96 160 0.669 

-300.115 160 0.683 

-282.533 160 0.697 

-281.226 160 0.711 

-159.258 160 0.725 

-144.685 160 0.739 

-266.772 160 0.753 

-47.2296 160 0.767 

-134.231 160 0.781 

-348.15 160 0.795 

336.3888 68 0.512 

-144.962 136 0.526 

-111.223 136 0.54 

-129.479 136 0.554 

-27.4296 136 0.568 

374.7084 136 0.582 

19.734 136 0.596 

-31.9044 136 0.61 

-161.159 160 0.624 
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-27.0732 136 0.638 

-112.015 160 0.652 

-207.134 160 0.666 

-287.324 160 0.68 

-396.304 160 0.694 

-189.077 160 0.708 

-342.21 160 0.722 

-119.341 160 0.736 

-260.99 160 0.75 

-333.142 160 0.764 

-172.564 160 0.778 

-374.009 160 0.792 

289.2252 68 0.509 

-240.398 136 0.523 

-23.0736 136 0.537 

-150.467 136 0.551 

-228.162 136 0.565 

-339.438 136 0.579 

-335.201 136 0.593 

-384.74 136 0.607 

-539.537 160 0.621 

-315.361 136 0.635 

-490.552 160 0.649 

-557.753 160 0.663 

-567.257 160 0.677 

-605.352 160 0.691 

-632.201 160 0.705 

-602.778 160 0.719 

-403.669 160 0.733 

-430.518 160 0.747 

-474.91 160 0.761 

-547.694 160 0.775 

-545.754 160 0.789 

50.556 68 0.506 

-436.3 136 0.52 

-423.232 136 0.534 

-333.934 136 0.548 

-175.93 136 0.562 

-192.086 136 0.576 

-278.296 136 0.59 

-412.856 136 0.604 

-433.132 160 0.618 

-273.504 136 0.632 
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-466.99 160 0.646 

-496.056 160 0.66 

-472.534 160 0.674 

-483.74 160 0.688 

-404.065 160 0.702 

3.6168 160 0.716 

-288.869 160 0.73 

-334.924 160 0.744 

-376.86 160 0.758 

-240.557 160 0.772 

-326.528 160 0.786 

410.9952 68 0.503 

-206.54 136 0.517 

-1156.1 287 0.531 

-158.862 136 0.545 

-202.739 136 0.559 

-109.283 136 0.573 

-0.3828 136 0.587 

42.2664 136 0.601 

-184.166 160 0.615 

-125.479 136 0.629 

872.0052 160 0.643 

-152.328 160 0.657 

-60.4164 160 0.671 

191.0436 160 0.685 

443.1768 160 0.699 

962.2536 160 0.713 

173.3028 160 0.727 

142.89 160 0.741 

116.7936 160 0.755 

38.7024 160 0.769 

236.742 160 0.783 

1043.843 68 0.5 

1621.079 136 0.514 

-749.602 287 0.528 

136.6728 136 0.542 

101.8644 136 0.556 

24.6444 136 0.57 

344.1372 136 0.584 

350.988 136 0.598 

330.8712 160 0.612 

388.6476 136 0.626 

386.7864 160 0.64 
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154.8096 160 0.654 

453.4728 160 0.668 

78.5796 160 0.682 

385.242 160 0.696 

667.6692 160 0.71 

338.6328 160 0.724 

537.8208 160 0.738 

568.4712 160 0.752 

69.8676 160 0.766 

-15.8268 160 0.78 

-7.2732 160 0.794 

813.2916 68 0.511 

-20.4996 160 0.525 

74.8176 136 0.539 

181.9752 136 0.553 

193.4592 136 0.567 

244.3452 136 0.581 

281.5692 136 0.595 

239.6724 136 0.609 

592.7064 136 0.623 

121.6248 136 0.637 

59.0964 160 0.651 

183.9948 160 0.665 

108.1608 160 0.679 

422.07 160 0.693 

597.1416 160 0.707 

244.1868 160 0.721 

96.2016 160 0.735 

67.65 160 0.749 

-7.6296 160 0.763 

195.0036 160 0.777 

-12.4212 160 0.791 

663.762 68 0.508 

863.412 160 0.522 

797.1612 136 0.536 

567.5604 136 0.55 

488.3208 136 0.564 

466.818 136 0.578 

816.486 136 0.592 

1077.727 136 0.606 

725.01 136 0.62 

543.3648 136 0.634 

208.8636 160 0.648 
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44.2068 160 0.662 

237.0192 160 0.676 

406.5864 160 0.69 

500.676 160 0.704 

869.6292 160 0.718 

1026.208 160 0.732 

656.898 160 0.746 

548.5524 160 0.76 

581.46 160 0.774 

560.7096 160 0.788 

1127.518 68 0.505 

663.2736 160 0.519 

1057.888 136 0.533 

972.0744 136 0.547 

869.352 136 0.561 

 

FORD FOCUS ELECTRIC ANCILLARY FORD FOCUS ELECTRIC CHARGING END OF SOC 

3104.191 364 0.552083 

2529.12 340 0.604167 

2955.48 272 0.5325 

2902.31 340 0.584583 

3350.53 272 0.512917 

2061.365 340 0.565 

1942.802 340 0.617083 

2207.674 272 0.545417 

1909.934 364 0.5975 

2151.996 272 0.525833 

1839.446 340 0.577917 

2511.406 272 0.50625 

2224.279 364 0.558333 

1842.06 340 0.610417 

1557.362 272 0.53875 

1262.554 340 0.590833 

1360.471 272 0.519167 

1243.704 340 0.57125 

1576.898 340 0.623333 

2324.177 272 0.551667 

1686.511 340 0.60375 

1896.18 272 0.532083 

1653.802 340 0.584167 

2028.682 272 0.5125 
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1660.138 340 0.564583 

1322.587 340 0.616667 

1963.579 272 0.545 

1511.4 340 0.597083 

1329.742 272 0.525417 

1041.19 340 0.5775 

2340.334 296 0.505833 

2118.547 340 0.557917 

1446.139 340 0.61 

1436.741 272 0.538333 

1153.733 340 0.590417 

1770.965 344 0.51875 

2159.81 436 0.570833 

3692.014 364 0.622917 

4505.978 296 0.55125 

2634.218 436 0.603333 

2771.34 368 0.531667 

1180.106 364 0.58375 

1313.426 272 0.512083 

847.5456 364 0.564167 

1125.221 364 0.61625 

1464.223 272 0.544583 

1045.387 364 0.596667 

1287.29 272 0.525 

750.7632 340 0.577083 

934.4544 272 0.505417 

534.864 364 0.5575 

892.9272 340 0.609583 

981.8952 272 0.537917 

846.9912 340 0.59 

1053.492 272 0.518333 

988.7592 340 0.570417 

528.528 340 0.6225 

932.1576 272 0.550833 

542.4672 340 0.602917 

1368.233 272 0.53125 

1043.486 340 0.583333 

1442.285 272 0.511667 

1075.087 340 0.56375 

783.156 340 0.615833 

1159.066 272 0.544167 

1263.583 364 0.59625 

1906.397 272 0.524583 
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1201.094 340 0.576667 

1509.922 272 0.505 

873.3648 364 0.557083 

944.4072 340 0.609167 

1976.41 272 0.5375 

1115.796 340 0.589583 

1489.092 272 0.517917 

1455.564 340 0.57 

1347.139 388 0.622083 

1838.206 296 0.550417 

1482.888 388 0.6025 

2657.213 320 0.530833 

2507.34 364 0.582917 

2834.7 296 0.51125 

2089.639 364 0.563333 

2193.391 388 0.615417 

2260.421 296 0.54375 

1705.519 364 0.595833 

1823.712 272 0.524167 

1532.309 388 0.57625 

1764.233 272 0.504583 

1371.374 364 0.556667 

1215.43 364 0.60875 

1597.358 272 0.537083 

988.5216 364 0.589167 

1401.734 272 0.5175 

1107.48 340 0.569583 

921.6768 364 0.621667 

1562.51 272 0.55 

951.2976 340 0.602083 

1145.285 272 0.530417 

840.6552 340 0.5825 

1352.155 272 0.510833 

1175.909 364 0.562917 

886.6704 364 0.615 

1065.055 272 0.543333 

655.248 340 0.595417 

912.1992 272 0.52375 

415.7472 340 0.575833 

831.4152 272 0.504167 

417.3312 364 0.55625 

323.2416 340 0.608333 

836.88 272 0.536667 
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998.5008 340 0.58875 

1126.91 272 0.517083 

507.2232 340 0.569167 

374.484 340 0.62125 

863.9664 272 0.549583 

776.9784 340 0.601667 

1432.781 272 0.53 

751.0008 340 0.582083 

917.8224 272 0.510417 

145.2792 364 0.5625 

148.764 340 0.614583 

435.0192 272 0.542917 

166.98 340 0.595 

499.3296 272 0.523333 

185.3544 340 0.575417 

702.4776 272 0.50375 

205.3128 364 0.555833 

340.5072 340 0.607917 

658.9968 272 0.53625 

537.7944 340 0.588333 

962.016 272 0.516667 

954.9408 340 0.56875 

1293.046 340 0.620833 

1085.014 272 0.549167 

652.1592 340 0.60125 

891.0528 272 0.529583 

490.7496 340 0.581667 

776.688 272 0.51 

112.9128 491 0.562083 

602.58 340 0.614167 

843.216 272 0.5425 

552.8424 340 0.594583 

891.4488 272 0.522917 

509.124 340 0.575 

635.4744 272 0.503333 

-118.668 491 0.555417 

241.1112 340 0.6075 

556.9872 272 0.535833 

468.8112 340 0.587917 

1040.424 272 0.51625 

608.6784 340 0.568333 

905.7576 340 0.620417 

1054.205 272 0.54875 
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521.2416 340 0.600833 

788.172 272 0.529167 

520.2912 340 0.58125 

802.5864 272 0.509583 

367.1184 340 0.561667 

272.9496 340 0.61375 

624.0696 272 0.542083 

228.1224 340 0.594167 

800.448 272 0.5225 

446.952 340 0.574583 

678.9552 272 0.502917 

626.0232 340 0.555 

465.168 340 0.607083 

686.004 272 0.535417 

634.4184 340 0.5875 

948.7896 272 0.515833 

521.4792 340 0.567917 

588.0072 340 0.62 

913.5456 272 0.548333 

509.6784 340 0.600417 

872.9952 272 0.52875 

1030.973 340 0.580833 

2248.224 272 0.509167 

4579.687 364 0.56125 

2959.176 340 0.613333 

3215.969 272 0.541667 

2320.111 340 0.59375 

2265.014 272 0.522083 

739.0416 340 0.574167 

1165.56 272 0.5025 

636.7152 364 0.554583 

698.8872 340 0.606667 

1240.087 272 0.535 

855.228 340 0.587083 

848.1264 272 0.515417 

1143.912 340 0.5675 

3490.054 340 0.619583 

4018.344 272 0.547917 

1035.725 340 0.6 

1938.235 272 0.528333 

2289.54 340 0.580417 

1858.243 272 0.50875 

1187.023 491 0.560833 
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1104.391 340 0.612917 

1042.008 272 0.54125 

655.8816 340 0.593333 

903.3288 272 0.521667 

622.6176 340 0.57375 

777.0048 272 0.502083 

-227.806 491 0.554167 

240.0024 340 0.60625 

548.592 272 0.534583 

268.356 340 0.586667 

800.7648 272 0.515 

568.4448 340 0.567083 

323.9544 340 0.619167 

1037.89 272 0.5475 

574.5432 340 0.599583 

429.396 272 0.527917 

220.2024 340 0.58 

499.4088 272 0.508333 

-194.621 491 0.560417 

268.356 340 0.6125 

746.9088 272 0.540833 

1268.969 340 0.592917 

835.5336 272 0.52125 

457.1688 340 0.573333 

810.1104 272 0.501667 

-64.3368 491 0.55375 

654.456 340 0.605833 

723.8616 272 0.534167 

316.9056 340 0.58625 

361.2048 272 0.514583 

484.0176 340 0.566667 

105.2832 364 0.61875 

911.1696 272 0.547083 

349.14 340 0.599167 

481.5888 272 0.5275 

542.4672 340 0.579583 

406.7448 272 0.507917 

86.592 364 0.56 

60.6936 340 0.612083 

771.6192 272 0.540417 

244.9128 340 0.5925 

366.7488 272 0.520833 

-112.754 340 0.572917 



 154 

153.6216 272 0.50125 

-293.726 364 0.553333 

-208.507 340 0.605417 

190.3704 272 0.53375 

-114.893 340 0.585833 

31.0992 272 0.514167 

-229.258 340 0.56625 

-311.15 340 0.618333 

-108.847 272 0.546667 

-304.656 340 0.59875 

344.9688 272 0.527083 

37.5672 340 0.579167 

191.5584 272 0.5075 

-311.546 364 0.559583 

-227.911 340 0.611667 

-18.48 272 0.54 

-316.457 340 0.592083 

-27.4296 272 0.520417 

-127.882 340 0.5725 

409.0416 272 0.500833 

76.1376 364 0.552917 

-28.1688 340 0.605 

-10.164 272 0.533333 

-5.28 340 0.585417 

262.4424 272 0.51375 

-72.7584 340 0.565833 

-149.503 340 0.617917 

170.412 272 0.54625 

-143.722 340 0.598333 

292.0632 272 0.526667 

818.1624 340 0.57875 

536.316 272 0.507083 

-347.556 491 0.559167 

54.516 340 0.61125 

644.1864 272 0.539583 

215.688 340 0.591667 

691.6272 272 0.52 

116.6088 340 0.572083 

497.9832 272 0.500417 

-290.532 491 0.5525 

115.2624 340 0.604583 

561.7392 272 0.532917 

504.372 340 0.585 
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850.6608 272 0.513333 

454.5552 340 0.565417 

254.892 340 0.6175 

2835.65 272 0.545833 

561.2376 340 0.597917 

989.4192 272 0.52625 

1096.313 340 0.578333 

1941.799 272 0.506667 

2544.802 364 0.55875 

954.228 340 0.610833 

1253.947 272 0.539167 

900.6096 340 0.59125 

1103.705 272 0.519583 

1157.059 340 0.571667 

1823.95 272 0.5 

3542.484 340 0.552083 

821.3304 340 0.604167 

1023.396 272 0.5325 

595.1352 340 0.584583 

797.5176 272 0.512917 

1132.982 340 0.565 

985.9872 388 0.617083 

1564.015 320 0.545417 

1045.15 412 0.5975 

1654.541 296 0.525833 

897.4416 364 0.577917 

1772.39 296 0.50625 

674.652 364 0.558333 

1332.17 388 0.610417 

2192.467 344 0.53875 

1188.818 412 0.590833 

1995.655 272 0.519167 

1596.698 364 0.57125 

719.004 364 0.623333 

915.684 272 0.551667 

584.9184 340 0.60375 

1293.072 272 0.532083 

673.068 340 0.584167 

915.288 272 0.5125 

649.9416 364 0.564583 

711.48 340 0.616667 

1155.977 272 0.545 

886.8288 340 0.597083 
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1170.708 272 0.525417 

1395.926 388 0.5775 

961.9368 272 0.505833 

711.5592 364 0.557917 

977.4336 340 0.61 

1155.185 272 0.538333 

1410.341 388 0.590417 

2070.578 296 0.51875 

1107.559 340 0.570833 

899.6592 340 0.622917 

1139.978 272 0.55125 

690.3336 340 0.603333 

1476.42 272 0.531667 

756.1488 340 0.58375 

1071.629 272 0.512083 

2193.312 388 0.564167 

1788.917 340 0.61625 

1820.702 272 0.544583 

1400.124 340 0.596667 

1628.959 272 0.525 

1873.265 388 0.577083 

2760.569 296 0.505417 

1698.55 364 0.5575 

1433.467 340 0.609583 

1481.568 272 0.537917 

796.3032 340 0.59 

1470.638 272 0.518333 

1492.867 340 0.570417 

1545.773 364 0.6225 

2638.442 296 0.550833 

2382.046 388 0.602917 

2251.392 272 0.53125 

1654.039 340 0.583333 

2089.824 272 0.511667 

1743.931 340 0.56375 

1501.738 340 0.615833 

2252.342 272 0.544167 

2359.474 340 0.59625 

2557.025 272 0.524583 

1958.642 340 0.576667 
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HONDA FIT ANCILLARY HONDA FIT CHARGING END OF SOC 

3054.691 388 0.678125 

2860.757 296 0.670625 

2825.671 296 0.663125 

3211.296 296 0.655625 

3261.984 296 0.648125 

2331.226 296 0.640625 

2209.02 296 0.633125 

2145.343 296 0.625625 

2263.114 296 0.618125 

2067.41 296 0.610625 

2081.033 296 0.603125 

2338.195 320 0.595625 

2391.418 320 0.588125 

1996.843 320 0.580625 

1391.834 320 0.573125 

1446.245 320 0.565625 

1324.039 296 0.558125 

1431.593 320 0.550625 

1844.858 296 0.543125 

2242.759 296 0.535625 

1996.051 296 0.528125 

1847.63 296 0.520625 

1950.274 296 0.513125 

1987.498 296 0.505625 

1488.907 388 0.68375 

1570.351 296 0.67625 

1855.471 296 0.66875 

1690.735 296 0.66125 

1240.404 296 0.65375 

1307.17 296 0.64625 

2263.034 320 0.63875 

2465.39 296 0.63125 

1738.097 296 0.62375 

1374.173 296 0.61625 

1416.149 296 0.60875 

1737.384 344 0.60125 

2358.312 344 0.59375 

3803.633 320 0.58625 

4505.978 296 0.57875 

2991.595 344 0.57125 

2771.34 368 0.56375 
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1482.518 296 0.55625 

1262.422 296 0.54875 

1153.205 296 0.54125 

1436.662 296 0.53375 

1335.602 320 0.52625 

1348.987 296 0.51875 

1233.83 296 0.51125 

1037.414 296 0.50375 

500.2536 388 0.681875 

805.0416 296 0.674375 

961.9368 296 0.666875 

885.0336 296 0.659375 

1065.134 296 0.651875 

976.0344 296 0.644375 

1314.298 296 0.636875 

825.4752 296 0.629375 

866.3424 296 0.621875 

741.6816 296 0.614375 

1281.667 296 0.606875 

1087.944 320 0.599375 

1219.97 320 0.591875 

1260.204 320 0.584375 

922.5744 320 0.576875 

910.2192 320 0.569375 

1563.778 296 0.561875 

1692.478 320 0.554375 

1487.666 296 0.546875 

1453.452 296 0.539375 

1173.163 296 0.531875 

1226.227 296 0.524375 

1944.73 296 0.516875 

1419 296 0.509375 

1475.945 296 0.501875 

1355.693 388 0.68 

1634.741 320 0.6725 

1761.54 296 0.665 

1711.882 320 0.6575 

2498.575 320 0.65 

2759.539 296 0.6425 

2657.134 320 0.635 

2346.907 296 0.6275 

2498.417 296 0.62 

2140.512 296 0.6125 
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1975.855 296 0.605 

1721.544 320 0.5975 

1782.528 320 0.59 

1627.534 296 0.5825 

1585.478 320 0.575 

1444.106 320 0.5675 

1574.866 296 0.56 

1307.249 296 0.5525 

1345.74 296 0.545 

1404.823 296 0.5375 

1188.766 320 0.53 

1515.307 296 0.5225 

1230.979 296 0.515 

1094.359 296 0.5075 

1099.428 296 0.5 

883.1064 388 0.678125 

1392.389 296 0.670625 

1098.002 296 0.663125 

973.3416 296 0.655625 

880.3608 296 0.648125 

840.84 296 0.640625 

628.3464 296 0.633125 

736.8504 296 0.625625 

682.6776 296 0.618125 

535.6032 296 0.610625 

655.0368 320 0.603125 

1139.899 320 0.595625 

991.0032 320 0.588125 

670.164 320 0.580625 

504.0024 320 0.573125 

691.7856 320 0.565625 

929.3064 320 0.558125 

1355.561 296 0.550625 

987.36 296 0.543125 

830.3064 296 0.535625 

416.4864 296 0.528125 

342.5928 296 0.520625 

351.9384 296 0.513125 

371.0256 296 0.505625 

-354.13 515 0.68375 

375.144 296 0.67625 

615.1992 296 0.66875 

485.7072 296 0.66125 
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562.056 296 0.65375 

584.4696 296 0.64625 

782.5488 296 0.63875 

886.776 296 0.63125 

1215.456 296 0.62375 

1572.727 296 0.61625 

989.736 296 0.60875 

759.8184 320 0.60125 

699.3888 320 0.59375 

788.964 296 0.58625 

242.352 447 0.57875 

399.0096 447 0.57125 

413.7408 447 0.56375 

782.0736 296 0.55625 

764.1744 296 0.54875 

838.5432 296 0.54125 

707.4672 320 0.53375 

129.492 423 0.52625 

153.1728 423 0.51875 

51.876 423 0.51125 

490.8552 296 0.50375 

294.4128 388 0.681875 

921.8616 296 0.674375 

834.504 296 0.666875 

1136.652 296 0.659375 

956.7888 296 0.651875 

749.5224 296 0.644375 

698.9136 296 0.636875 

719.1888 296 0.629375 

734.4744 296 0.621875 

579.084 296 0.614375 

472.2432 296 0.606875 

-27.0072 447 0.599375 

-102.485 447 0.591875 

577.7376 320 0.584375 

531.168 320 0.576875 

472.3224 320 0.569375 

702.3984 320 0.561875 

174.0024 423 0.554375 

122.364 423 0.546875 

361.152 423 0.539375 

815.0208 296 0.531875 

720.9312 296 0.524375 



 161 

781.5192 296 0.516875 

791.8152 296 0.509375 

232.6104 423 0.501875 

-70.9896 515 0.68 

1241.117 296 0.6725 

2164.906 296 0.665 

5040.578 296 0.6575 

3168.607 296 0.65 

3089.17 296 0.6425 

2539.442 296 0.635 

2173.618 296 0.6275 

952.5912 296 0.62 

1083.509 296 0.6125 

994.1712 296 0.605 

720.2184 320 0.5975 

1153.363 296 0.59 

455.4 447 0.5825 

188.892 447 0.575 

741.0744 447 0.5675 

3617.75 296 0.56 

3818.522 296 0.5525 

1163.897 296 0.545 

1688.755 320 0.5375 

1899.137 423 0.53 

1247.638 423 0.5225 

1454.983 423 0.515 

1237.394 296 0.5075 

904.2792 296 0.5 

433.884 388 0.678125 

812.1696 296 0.670625 

814.7832 296 0.663125 

689.8056 296 0.655625 

511.6056 296 0.648125 

443.8104 296 0.640625 

472.0848 296 0.633125 

474.6984 296 0.625625 

719.268 296 0.618125 

761.0064 296 0.610625 

-21.0672 447 0.603125 

375.804 447 0.595625 

622.8816 320 0.588125 

250.1664 320 0.580625 

351.7008 320 0.573125 
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333.168 320 0.565625 

82.4472 423 0.558125 

39.9168 423 0.550625 

235.8576 423 0.543125 

1399.913 296 0.535625 

697.6464 296 0.528125 

634.92 296 0.520625 

699.6264 296 0.513125 

210.8304 423 0.505625 

16.6056 515 0.68375 

639.276 296 0.67625 

485.7864 296 0.66875 

266.1648 296 0.66125 

678.7968 296 0.65375 

373.0056 296 0.64625 

818.5848 296 0.63875 

534.732 296 0.63125 

393.2808 296 0.62375 

709.1304 296 0.61625 

312.4968 296 0.60875 

266.3232 320 0.60125 

247.4736 296 0.59375 

154.3608 447 0.58625 

-89.496 447 0.57875 

-229.522 447 0.57125 

-25.9248 320 0.56375 

57.552 296 0.55625 

-30.0432 296 0.54875 

-97.9176 320 0.54125 

-329.155 423 0.53375 

-373.19 423 0.52625 

-496.188 423 0.51875 

-59.8224 296 0.51125 

-138.864 296 0.50375 

-524.515 388 0.681875 

-123.816 296 0.674375 

274.7976 296 0.666875 

218.8032 296 0.659375 

117.0312 296 0.651875 

-34.2408 296 0.644375 

-34.5576 296 0.636875 

-91.344 296 0.629375 

-126.826 296 0.621875 
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-101.957 296 0.614375 

66.66 296 0.606875 

-139.946 447 0.599375 

266.7192 320 0.591875 

84.1632 320 0.584375 

-162.624 320 0.576875 

190.0536 296 0.569375 

-243.936 423 0.561875 

-289.397 423 0.554375 

-381.982 423 0.546875 

100.3992 296 0.539375 

62.7 296 0.531875 

224.1888 296 0.524375 

985.1424 296 0.516875 

51.48 423 0.509375 

-63.5184 423 0.501875 

-497.402 515 0.68 

560.9472 296 0.6725 

396.6864 296 0.665 

610.2888 296 0.6575 

322.6344 296 0.65 

419.496 296 0.6425 

412.8432 296 0.635 

316.4568 296 0.6275 

467.3328 296 0.62 

710.7144 296 0.6125 

760.848 296 0.605 

666.6792 296 0.5975 

-68.8248 447 0.59 

2278.822 447 0.5825 

234.432 447 0.575 

837.1176 320 0.5675 

1385.419 296 0.56 

1872.737 296 0.5525 

2815.138 320 0.545 

864.468 423 0.5375 

782.6544 423 0.53 

787.9608 423 0.5225 

1037.969 296 0.515 

1464.065 296 0.5075 

1732.711 296 0.5 

3450.295 388 0.678125 

1142.75 296 0.670625 
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931.92 296 0.663125 

880.2816 296 0.655625 

740.256 296 0.648125 

1362.372 296 0.640625 

1322.138 320 0.633125 

1564.015 320 0.625625 

1353.264 320 0.618125 

1643.532 296 0.610625 

1193.755 320 0.603125 

1723.286 320 0.595625 

1026.089 320 0.588125 

1652.561 320 0.580625 

2165.143 344 0.573125 

1541.206 320 0.565625 

1941.166 296 0.558125 

1987.656 296 0.550625 

1073.609 296 0.543125 

890.4192 296 0.535625 

923.4456 296 0.528125 

1268.124 296 0.520625 

932.7912 296 0.513125 

841.3152 296 0.505625 

631.8048 388 0.68375 

1050.403 296 0.67625 

1089.607 296 0.66875 

1168.649 296 0.66125 

1081.766 296 0.65375 

1784.508 296 0.64625 

910.932 296 0.63875 

1054.838 296 0.63125 

1279.529 296 0.62375 

1113.684 296 0.61625 

1753.303 296 0.60875 

2070.578 296 0.60125 

1383.439 320 0.59375 

1109.17 320 0.58625 

1023.554 320 0.57875 

909.9024 320 0.57125 

1314.139 320 0.56375 

1007.952 296 0.55625 

922.0992 320 0.54875 

2583.715 296 0.54125 

2169.974 296 0.53375 
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1773.737 296 0.52625 

1655.095 296 0.51875 

1592.923 296 0.51125 

2250.125 296 0.50375 

2308.073 388 0.681875 

1999.694 296 0.674375 

1698.022 296 0.666875 

1389.934 296 0.659375 

1043.513 296 0.651875 

1400.863 296 0.644375 

1735.404 296 0.636875 

1904.813 296 0.629375 

2615.554 296 0.621875 

2815.375 296 0.614375 

2194.606 296 0.606875 

1922.395 320 0.599375 

1997.002 320 0.591875 

1960.332 320 0.584375 

1803.754 296 0.576875 

2101.308 320 0.569375 

2675.825 296 0.561875 

2477.508 296 0.554375 

2303.268 296 0.546875 
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