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Abstract

Applications in engineering design and the material sciences motivate the development of

optimization theory in a manner that additionally draws from other branches of mathematics in-

cluding the functional, complex, and numerical analyses.

The first contribution, motivated by an automotive design application, extends multiob-

jective optimization theory under the assumption that the problem information is not available in

its entirety to a single decision maker as traditionally assumed in the multiobjective optimization

literature. Rather, the problem information and the design control are distributed among different

decision makers. This requirement appears in the design of an automotive system whose subsystem

components themselves correspond to highly involved design subproblems each of whose perfor-

mance is measured by multiple criteria. This leads to a system/subsystem interaction requiring a

coordination whose algorithmic foundation is developed and rigorously examined mathematically.

The second contribution develops and analyzes a parameter estimation approach motivated

from a time domain modeling problem in the material sciences. In addition to drawing from the

theory of least-squares optimization and numerical analysis, the development of a mathematical

foundation for comparing a baseline parameter estimation approach with an alternative parameter

estimation approach relies on theory from both the functional and complex analyses.

The application of the developed theory and algorithms associated with both contributions

is also discussed.
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Chapter 1

Introduction

The mutual benefit resulting from the interaction between mathematical analysis and en-

gineering application may be described in the following manner. While addressing the needs of

engineering design in detail, hidden nuances within mathematical theory may become evident, thus

motivating new research. On the other hand, the detailed exploration of mathematical concepts in a

holistic manner, even to a degree that is not immediately relevant to the engineering application at

hand, frequently provides an unexpected benefit to engineering design. Both of these observations

hold true for the two main contributions that are presented in this dissertation. The first contribu-

tion addresses multiobjective optimization under the assumption that the problem information is not

available in its entirety to a single decision maker, but rather, is distributed among different decision

makers. The research presented in this part of the dissertation is motivated by the engineering ap-

plication of designing an automobile system whose subsystem components themselves correspond to

highly involved design subproblems. This leads to system/subsystem interaction whose coordination

is to be mathematically analyzed.

The second contribution develops and analyzes a parameter estimation approach motivated

by a modeling problem in the material sciences. In addition to drawing from the theory of least-

squares optimization and numerical analysis, the analysis of the alternate parameter estimation

approach relies on theory from both the functional and complex analyses.

1



1.1 State of the art

Much has been laid in the way of foundations for the two main contributions that are the

subject of this thesis. For each main contribution, different areas of mathematics and engineering

that may not seem immediately related to one another are integrated in such a way as to shed light

on necessary refinements. This section discusses each foundational area in terms of mathematics or

engineering and what additionally is needed for the contributions of this thesis.

1.1.1 Multiobjective, Multidisciplinary Design Optimization

The design of engineering systems often makes use of an optimality concept based on multi-

ple measures of performance corresponding to multiple objective functions. While the optimization

of a scalar-valued function f : Rn → R, over a set X ⊂ Rn is commonly understood in terms of

minimization or maximization, the optimization of vector-valued functions f : Rn → Rp over a set

X requires the introduction of a different concept of optimality. Write the vector-valued objective

function as f = [f1, . . . , fp], and assume that each objective function fi, i = 1, . . . , p is to be min-

imized. The concept of minimization as immediately carried over from the single objective case is

not well-defined due to the issue of conflict that typically arises in the presence of more than one

objective. Conflict occurs where a minimizer for one objective function fi is not necessarily a mini-

mizer for another objective function fj , where i 6= j. Optimality for a multiobjective optimization

problem (MOP) of the form

min
x

f(x)

s.t. x ∈ X
(1.1)

for feasible set X ⊂ Rn is typically understood in terms of Pareto optimality according to which

a partial ordering ≤ is assigned to the objective space Rp. Given two points y1,y2 ∈ Rp in the

objective space, define y1 ≤ y2 whenever y1
i ≤ y2

i for each i = 1, . . . , p and y1 6= y2. When y1 ≤ y2,

it is said that y1 dominates y2 or that y2 is dominated by y1. Using this preference ordering ≤

defined in the objective space Rp, a point x∗ ∈ X is efficient for problem (1.1) if there does not exist

a solution x ∈ X for which f(x) ≤ f(x∗). The value y = f(x∗) corresponding to an efficient solution

x∗ is said to be nondominated. The set of solutions x∗ efficient for problem (1.1) is denoted by

E(f , X), and the corresponding image set, denoted by YN = f(E(f , X)) is referred to as the Pareto

2



set.

The definition of a preference ordering ≤ on the objective space is not unique, and may be

given more generally in terms of a closed cone C, where y1 ≤C y2 if (y2 − y1) ∈ C and y1 6= y2.

For Pareto optimality, C = R= := {y ∈ Rp : yi ≥ 0 for i = 1, . . . , p}.

While the optimal design for some engineering systems may be modeled with an MOP

presented in the form given by (1.1), the optimal design of certain complex engineering systems

must be modeled in terms of nonintegrable subproblems having the form

min
xi

f(xi, ẍ¬i)

s.t. h(xi, ẍ¬i) = 0

xi ∈ Xi,

i = 1, . . . ,m (1.2)

where x = [x1, . . . ,xm] is a partitioning of the solution x into block coordinates xi ∈ Rni ,
∑m
i=1 ni =

n; x¬i = [x1, . . . ,xi−1,xi+1, . . . ,xm] indicates the vector of block coordinates excluding xi; and the

umlaut notation ẍ is used to emphasize the role of x as a fixed variable.

A presentation of an engineering design problem as given by subproblems (1.2) arises natu-

rally where the design of an engineering system is multiobjective and multidisciplinary in the sense

that each discipline within a system corresponds to a subsystem whose performance is evaluated

with respect to multiple criteria. Distinct disciplines within a system originate from various science

and engineering areas, such as fluid dynamics, thermodynamics, structures, etc., that interact with

each other within the design process. These subsystems must be designed in a coordinated way due

to the likely systemwide influences present in each subsystem; hence the presence of a coordinating

constraints h(xi, ẍ¬i) = 0.

Underlying the nonintegrable subproblems (1.2) is an implicitly available all-in-one (AiO)

problem of the form (1.1) whose efficient points are to be computed. However, the explicit pre-

sentation of problem (1.1) is assumed to be unknown to the multiple decision makers, and so the

efficient points for (1.1) cannot be computed using existing methods from multiobjective optimiza-

tion theory. The efficient points for problem (1.1) must somehow be obtained from subproblem-based

computations on subproblems (1.2).

Approaching the solution of the AiO problem (1.1) through references to subproblems (1.2)

addresses the reality where the design of distinct subsystems is typically assigned to independent

3



engineering teams with complementary background and expertise. Each team has a limited un-

derstanding of the other disciplines, and the subproblems possess disparate domains and require

different solution algorithms. Thus, there is no single designer with knowledge or control of the

system-wide design problem data in its entirety. The incomplete flow of information and the frag-

mentation of design control across the disciplines is characteristic of multidisciplinary design opti-

mization (MDO), where an engineering design problem is never solved in its entirety, but is solved

through a coordination of subproblem solutions.

Within a multiobjective optimization setting, the following engineering papers address

MDO: Makinen et al. 1999 [79]; Peri and Campana 2003 [91]; Jilla and Miller 2004 [66]; Don-

ndelinger et al. 2006 [30]; Cristello and Kim 2007 [22]; Lee et al. 2007 [74]; and Dellino et al.

2007 [28]. Specific methodologies such as Multiobjective Collaborative Optimization are addressed

in Tappeta and Renaud 1997 [107] and in Rabeau et al. 2007 [95]. Multiobjective Concurrent

Subspace Optimization (CSSO) is addressed in Huang 2003 [61], Gunawan et al. 2003a [50], Huang

and Bloebaum 2004a, 2004b, 2004c [63, 64, 62] and in Huang et al. 2007 [60]. Another direction

of research involves the development of genetic algorithms for multiobjective MDO. Gunawan et

al. (2003a, 2003b, 2004) [51, 50, 52] develop genetic algorithms for MDO optimization problems

with global and local variables and demonstrate their applicability to engineering design problems.

Parashar and Bloebaum (2006) [88] propose a genetic algorithm for multiobjective CSSO.

Liu, Hoyle, and Chen [77] outline a technique for applying decomposition to a multidisci-

plinary problem where each discipline’s problem is multiobjective. The approach is framed with

ATC and Compromise Programming (CP) for generating Pareto sets. The algorithm starts out by

generating Pareto sets for each subproblem. These Pareto sets are interpolated by a function that is

used to form constraints in the system level. These constraints aid in the system level computation

of reasonable subproblem targets. The targets are meant to convey coordinating information to the

subproblems. Efficient points computed at the subsystem level are based on scalarizing and target

information determined at the system level.

Honda, Ciucci, and Yang [59, 20] present an information-passing strategy for achieving

Pareto optimality in the design of complex systems that applies a game-theoretic approach to coor-

dinating the designs of complex systems. Information is passed in the form of constraints enforcing

the requirement that no other systems’ objective is worsened as a result of improving the current

objective. These constraint are formulated from approximations of subsystem objective functions.

4



Efficient designs are computed in a nearly non-cooperative context, where information that is shared

is minimal.

The above methods are intended to address the issues resulting from the computation of

efficient points in a multiobjective, multidisciplinary setting. However, there is a need to gain a

better understanding mathematically, either with respect to the convergence of proposed algorithms,

or with respect to describing the coupling relationships between subproblem efficient sets and the

AiO efficient set.

The mathematical relationships between system-wide efficient sets and subsystem efficient

sets under various decomposition schemes have already been examined under a number of assump-

tions regarding the coupling of subsystems. Tarvainen and Haimes [108] derive necessary conditions

for AiO efficiency in terms of marginal trade-off information between objective values—both within

each subproblem and between the subproblems—based on the existence of some unknown util-

ity function. Multiobjective decomposition is stated in terms of the above necessary conditions

applied to existing single objective decompositions. Li and Haimes [76] develop a multiobjective

duality theory, based on an envelope analysis, that is used to propose a coordination algorithm

for the decomposition of a convex hierarchical MOP. Kopsidas [70] develops a two level approach

for Lagrange decomposable multiobjective optimization problem under an optimality concept of

equilibrium points that is more general than Pareto optimality. At one level, the subproblems

(subcommittees) decide on an optimal solution on its subproblems. At another level, there is co-

ordination. Engau and Wiecek [37] examine the relationship between the AiO Pareto set with the

observed Pareto sets for the pairwise biobjective subproblems over a unique feasible domain, but

not for disparate solution domains. Gardenghi and Wiecek [45] theoretically study the relationships

between necessary conditions for quasiseparable AiO MOP problem and the coordinated, separated

problem, but do not provide any computational methods. (Problem (1.1) is quasiseparable when it

can be written in the special form

min
x1,...,xm

[f1(x1), . . . , fm(xm)]

s.t. h(x1, . . . ,xm) = 0

xi ∈ Xi for i = 1, . . . ,m,

(1.3)

where fi : Rni → Rpi denotes the block i vector of objective functions, and the set Xi ⊆ Rni is the
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local feasible set for block i. Furthermore,
∑m
i=1 pi = p and

∑m
i=1 ni = n.

The mathematical theory described above characterizes various types of relationships be-

tween AiO efficient sets and the efficient sets of the coordinated quasiseparable problem in terms of

equivalence of necessary conditions and containment relationships, but the issues arising in multi-

objective MDO related to the disparate solution domains appearing in the subproblem formulations

(1.2) are not addressed.

In view of this review, it appears that the algorithmic developments on the engineering side

can benefit from an improvement in the mathematical foundation for multiobjective MDO. This

foundation is needed to provide algorithms with an accompanying convergence analysis including

the development of conditions under which the limit points of iterate sequences computed with the

algorithms are either locally or globally efficient for the AiO problem (1.1), and possibly a rate-

of-convergence result. In examining the existing work describing the mathematical relationships

between AiO problem efficient sets and coordinated decomposed problem efficient sets, it becomes

clear that the issues of fragmented availability of problem data and fragmented control over decision

variables that are specific to multiobjective MDO have yet to be addressed theoretically. On the

computational side, the existing approaches to generating solutions for multiobjective problems

assume a fully integrated problem of the form (1.1) and these need to be adapted for the requirements

of MDO.

1.1.2 Solution generating approaches for multiobjective optimization

Approaches to generating solution sets for fully integrated MOPs of the form (1.1) are well-

studied and generally fall into two categories: scalarization methods and nonscalarizing methods

[34, 36]. The scalarizing methods convert an MOP into a single objective problem (SOP) by replacing

the vector-valued objective f with a scalar-valued function f : Rn → R, and, possibly, by adding

additional constraints. Under certain assumptions, the optimal solutions of these new problems

yield efficient solutions of the original MOP. Each SOP instance typically yields one solution of the

MOP, and so multiple SOPs are formulated for a single MOP, and the optimal solutions of the SOPs

correspond to a subset of the efficient solutions of the MOP.

SOP reformulations of MOPs such as the weighted-sum method [46], weighted-tth power

method [119, 75], and weighted-quadratic method [112] introduce scalarizing functions f and do not

introduce additional constraints. The weighted-quadratic method as developed in [112] is motivated
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by the dual of a weighted-Chebyshev SOP reformulation of (1.1) given by

min
x∈X

max
1≤i≤m

{λi(z∗i − fi(x))},

and rewritten as

minα,x α

s.t. λifi(x)− α+ λiz
∗
i ≤ 0, i = 1, . . . ,m,

x ∈ X.

Because this problem may not be computationally practical, the dual problem is considered. The

dual problem is shown, under certain conditions, to have the form

max
x∈X

f(x)TQf(x) + qT f(x)

where symmetric square matrix Q and vector q are constructed in the proof. That is, both Q and

q depend on optimal dual multipliers from the weighted-Chebyshev problem.

SOP reformulations introducing additional constraints to the original problem include the

ε-constraint method [17], the Benson method [8, 18], and the weighted-Chebyshev method [121, 124,

13], and others.

Another notable scalarization method that introduces additional constraints is associated

with a multiobjective concept of optimality known as equitable optimality. The equitable concept

of optimality is a refinement of Pareto optimality that may be considered when the objectives

are comparable (e.g., same underlying phenomena being measured, same units), and distribution

of objective values is significant in addition to the scalar assessment of the objective values. For

example, it may be desirable to not only to maximize some measure of benefit for multiple clients,

but to make sure that this benefit is as evenly distributed as possible. Under the equitable concept of

optimality, the objective space points y1 and y2 that are noncomparable (i.e., y1 6≤ y2 and y2 6≤ y1)

with respect to Pareto optimality may become comparable with respect to equitable optimality.

These concepts are developed and analyzed in Kostreva et al. [71, 72] and in the Ph.D. dissertation

of Singh [100]. The latter two works state MOP reformulations whose efficient points are equitable

efficient for the original MOP. Important auxiliary concepts are also developed in Ogryczak and

Tamir [117] and Pan et al. [87]. Baatar and Wiecek [3] and Mut and Wiecek [82] provide additional
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analysis under the assumption of the general use of convex preference cones.

The equitable concept of optimality has been previously applied for financial allocation

problems and decision problems where an evenly distributed allocation of resources is desirable.

However, the application of the equitable concept of optimality is largely unexplored in engineering

design, which may provide various application contexts. In particular, the evaluation of certain

engineering subsystems, such as the lithium-ion battery, are well-suited for the equitable optimality

concept. Even when there is no special reason to prefer equitable efficient designs to, more generally,

efficient designs, engineering design can benefit from the introduction of equitable optimality as a

means to reduce the efficient set to a subset.

Nonscalarizing methods for computing efficient solutions include approaches using optimal-

ity concepts other than Pareto, (such as the lexicographic methods and max-ordering methods [33]),

descent methods transferred from nonlinear programming [39, 31, 38], and set-oriented methods

[41, 43, 42, 35, 99]. Lexicographic methods apply single objective minimization in a recursive man-

ner along some ordering of objective functions reflecting their importance. In the steepest descent

methods, a search direction is derived from the gradient and/or Hessian information of the objective

functions of the MOP. These methods include variants for the constrained and unconstrained case.

Set-oriented methods, in contrast to all previously presented approaches, find a solution set of the

MOP without using scalarizing functions or other optimality concepts.

The vast literature on the computation of efficient points does not provide a method for

computing these points in a distributed fashion, that is, when the MOP is available as a collection of

nonintegrable subproblems as given in (1.2). In particular, the role of scalarized SOP reformulations

of MOPs is well-examined in the setting where the MOP is presented as a fully integrated problem

of the form (1.1). This is not so where the MOP is given in the non-integrated fashion (1.2) arising

from the decomposition along multidisciplinary boundaries. In the multidisciplinary setting, the

interaction between the scalarization and the decomposition and coordination algorithm used to

compute efficient points needs to be examined carefully. Due to the lack of understanding regarding

this interaction, the use of simple scalarization methods such as the weighted-sum is usually employed

in a multidisciplinary setting. Although this is adequate for convex multiobjective MDO problems,

for nonconvex problems, this leaves much to be desired.

In this dissertation, the computation of efficient points for multiobjective nonconvex MDO is

of special interest. Once a suitable SOP reformulation is established that respects the requirements of
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MDO, then the adaptation of the tools of Gauss-Seidel decomposition and Lagrangian coordination—

as developed in the single objective setting—is addressed for use in MDO.

1.1.3 Alternating Direction Method of Multipliers (ADMM), Block Co-

ordinate Descent (BCD) method, and Method of Multipliers

Gauss-Seidel (GS) decomposition is originally developed as a means to solve large-scale linear

systems Ax = b in a decomposed manner where the solution space is partitioned Rn =
∏m
i=1Rni

and the corresponding solutions x ∈ Rn are partitioned into block coordinates x = [x1, . . . ,xm] with

xi ∈ Rni for each i = 1, . . .m. With Gauss-Seidel methods, a sequence xk of solution approximations

to a system of equations is computed by solving the system for one block xi at a time, using the

optimal solution x∗i as the update for that block, and fixing the values of the other blocks with their

most recent updates. This idea is extended for solving nonlinear systems of equalities/inequalities

whose solutions can correspond to 1st order necessary conditions for optimality. In the setting of

nonlinear optimization where the problem

min
x

f(x)

s.t. x ∈ X
(1.4)

is to be solved and the solution space is partitioned as above, the Gauss-Seidel method may be stated

as the generation of a sequence
{
xk
}

of approximations to optimal solutions for problem (1.4) with

the elements xk computed by

xki = argminxif(xi, ẍk−1
¬i ) s.t. (xi, ẍ¬i) ∈ X,

xk¬i = xk−1
¬i .

(1.5)

The convergence analysis for the GS method is based on certain assumptions of the problem or

system, such as the decomposability of feasible set X =
∏m
i=1Xi where the sets Xi ⊆ Rni are closed

and convex for i = 1, . . . ,m.

A related decomposition approach is the Jacobi method, likewise developed in the context of

solving large linear systems and extended for solving nonlinear systems and nonlinear optimization

problems. Like the GS method, the Jacobi method generates a sequence
{
xk
}

of solution approxi-

mations by computing single block xi updates. The difference, as stated in the context of nonlinear
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optimization, is that while the GS method computes a new sequence element xk after a single block

xi update, the Jacobi method computes each sequence element xk only after a full cycle i = 1, . . . ,m

of block xi computations, as stated below.

x̃ki = argminxi f(xi, ẍk−1
¬i ) s.t. (xi, ẍ

k−1
¬i ) ∈ X, for i = 1, . . . ,m

xk =
(
x̃k1 , . . . , x̃

k
m

)
.

(1.6)

Variations exist where xk = u(x̃k1 , . . . , x̃
k
m,x

k−1
1 , . . . ,xk−1

m ) for some function

u :

m∏
i=1

Rni ×
m∏
i=1

Rni →
m∏
i=1

Rni .

One such example of u is given by

u(x̃k1 , . . . , x̃
k
m,x

k−1
1 , . . . ,xk−1

m ) := (xk−1
1 , . . . ,xk−1

i−1 , x̃
k
i ,x

k−1
i+1 , . . . ,x

k−1
m )

where the block coordinate x̃ki on the right-hand side corresponds to the block coordinate xi update

that affects the most improvement for the objective value. The nonlinear Jacobi method is applied to

the distributed computation of solutions for convex, quasiseparable multi-commodity network flow

problems in the 1995 dissertation of Zakarian [123]. A detailed overview of both the GS method and

the Jacobi method may be found in the textbook of Bertsekas and Tsitsiklis [9].

GS and Jacobi methods are sometimes combined with Lagrangian coordination methods for

solving optimization problems of the form

min
x

f(x)

s.t. h(x) = 0

x ∈ X

(1.7)

where the constraint h(x) = 0 has been relaxed and added as a Lagrange term and a penalty term

in the objective function. Such augmented Lagrangian problems take the form

min
x

f(x) + vT · h(x) +
µ

2
‖h(x)‖22

s.t. x ∈ X
(1.8)
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Lassiter et al. (2005) [73] provides a mathematically rigorous examination of the application of

the subgradient method [4] for solving single objective, quasiseparable optimization problems of the

form (1.3) within the framework of ATC decomposition. Tosserams et al. (2006) [113] and Li et al.

(2008) [120] introduce the application of the GS methods such as the alternating direction method

of multipliers (ADMM) and the Block Coordinate Descent (BCD) method as tools for applying

decomposition in a single objective setting. In the case where problem functions are continuously

differentiable, the method of multipliers is integrated with BCD for the purpose of Lagrangian

coordination.

The Gauss-Seidel and Lagrangian coordination algorithm given by ADMM as stated in

the classical setting of two block decomposition originates in the mid-1970s from Glowinski and

Marrocco (1975) [47] and Gabay and Mercier (1976) [40]. ADMM generates a sequence
{

(xk,vk)
}

of approximations to an optimizer x∗ and a multiplier v∗ associated with constraints h(x) = 0 for

optimization problems of the form

min
x1,x2

f1(x1) + f2(x2)

s.t. h(x1,x2) = 0

x1 ∈ X1, x2 ∈ X2

(1.9)

where the functions f1 : Rn1 → R and f2 : Rn2 → R are continuous and convex (but not necessarily

differentiable) over the convex setsX1 ⊆ Rn1 andX2 ⊆ Rn2 , respectively; and the constraint function

h : Rn1 × Rn2 → Rq is linear. When the constraint h(x) = 0 is relaxed and added to the objective

as a Lagrange term and a penalty term, the following augmented Lagrangian problem is given by

min
x1,x2

f1(x1) + f2(x2) + vT · h(x1,x2) +
µ

2
‖h(x1,x2)‖22

s.t. x1 ∈ X1, x2 ∈ X2,

(1.10)

where v is a multiplier vector associated with the constraint h(x) = 0, and µ > 0 is a fixed penalty

constant. The ADMM sequence
{

(xk,vk)
}

is generated through the following sequence of updates
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starting with x0, v0.

xk1 ←arg min
x1∈X1

f1(x1) + vk−1 · h(x1,x
k−1
2 ) +

µ

2

∥∥h(x1,x
k−1
2 )

∥∥2

2
(1.11)

xk2 ←arg min
x2∈X2

f2(x2) + vk−1 · h(xk1 ,x2) +
µ

2

∥∥h(xk1 ,x2)
∥∥2

2
(1.12)

vk ←vk−1 + µh(xk1 ,x
k
2) (1.13)

The convergence analysis of ADMM is frequently examined under the more general setting

of proximal point algorithms and splitting methods. For example, Eckstein and Bertsekas [32]

discuss a convergence analysis for ADMM under the assumption of summably inexact updates as a

special case of a generalized Douglas-Rachford splitting method. Kontogiorgis et al. [69] provide a

convergence analysis that does not assume unique minimization in computing the block updates of

xi. A recent overview of ADMM and its history for the two-block case may be found in Boyd et al.

[14].

In recent years, research interest in ADMM for the general case ofm > 2 block decomposition

is evident. No known convergence analysis is available under the traditional convexity assumptions

on the objective function, although empirical observation in applications [105, 90] suggests that

such convergence may yet carry over for m > 2. Han and Yuan [53] establish convergence under the

assumptions of strong convexity on each term fi over set Xi of the objective function. A convergence

analysis is also established for predictor-corrector variants of ADMM in He et al. [54, 55].

A block nonlinear Gauss-Seidel iterative approach known as the Block Coordinate Descent

(BCD) method is applied for the distributed computation of critical points of optimization problems

having the form

min
x1,...,xm

f(x1, . . . ,xm)

s.t. x1 ∈ X1, . . . ,xm ∈ Xm,

(1.14)

where sets Xi, i = 1, . . . ,m, are closed and convex and the function f :
∏m
i=1Xi → R is continuously

differentiable and not required to be of the separable form assumed for ADMM. BCD generates

a sequence
{
xk
}

of approximations to a local minimizer x∗, where each approximation update xk

results from the update of a single block coordinate xi obtained by computing the block-wise optimal

solution x∗i ∈ Xi of f(xi, ẍ¬i); each block coordinate xj , j 6= i, is fixed at its most recently updated
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value denoted by ẍj . The sequence computed with the BCD method does not always possess limit

points, and limit points do not necessarily satisfy necessary conditions for optimality. Powell [94]

provides example problems where the sequence generated by BCD cycles and never approaches any

points satisfying necessary conditions for optimality. For each problem, the cause of this is either

nondifferentiability or nonconvexity of the function f .

Some early works related to BCD include the 1957 work of Hildreth [57] and the 1963 study

of Warga [118]. Convergence analysis for BCD under the assumption that function f is convex and

has bounded level sets is provided in a number of nonlinear optimization textbooks, such as [11]

and [9]. Convergence analysis under generalized convexity conditions on function f is provided by

Grippo and Sciandrone [49] and Tseng [114]. The latter also analyzes convergence under certain

relaxations on the differentiability assumption of the function f .

Unlike ADMM, the BCD method has no built-in mechanism for addressing the issue of

Lagrangian coordination. The Lagrangian coordination occurs independently of BCD and so is

discussed separately. For the general setting where problem data such as the objective function

f and the constraint function h are continuous but not necessarily differentiable, the subgradient

method [4, 11] may be applied. When additional assumptions such as differentiability of the objective

function f and the constraint function h are added, then the method of multipliers may be applied.

The method of multipliers has its origins in Hestenes [56] and Powell [93]. Under the assump-

tion that the objective function f and the constraint function h in problem (1.7) are continuously

differentiable, the method of multipliers generates a sequence
{

(xk,vk)
}

with a starting point v0

and a starting penalty weight µ0 > 0 where

1. the solution xk is a (locally) optimal solution for the augmented Lagrangian problem (1.8)

with v = vk and µ = µk,

2. the multiplier vector vk+1 = vk + µkh(xk),

3. the penalty coefficients satisfy 0 < µk ≤ µk+1 and limk→∞ µk =∞.

The properties of the limit points (x∗,v∗), when they exist, are given under various differentiability

conditions in the textbooks of Bertsekas [10] and [11]. For example, when the feasible set X = Rn

and the functions f and h are twice continuously differentiable, then conditions are given for local

linear convergence to (x∗,v∗), which in this case correspond to a local optimum point x∗ and a
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corresponding Lagrange multiplier v∗ associated with the constraints h(x) = 0 for problem (1.7).

The use of inexact updates xk is also addressed in the setting where feasible set X = Rn.

For the purposes of applying the method of multipliers to MDO, an additional analysis

of the method of multipliers under the setting of the inexact computation of the updates xk and

the presence of the feasible set X ⊂ Rn is required. A foundation for this development may be

found in Proposition 4.2.1 of [11]. This proposition claims that any limit point x∗ of a sequence{
xk
}

of globally optimal solutions for problem (1.8) with v = vk, µ = µk is globally optimal for

problem (1.7), where vk is any arbitrary bounded sequence and
{
µk
}

is a nondecreasing sequence

of positive penalty coefficients growing without bound. Note that the only other assumption on

problem (1.7) in Proposition 4.2.1 [11] is that of continuity of f and h. This result suggests an

algorithmic approach that is a generalized form of the penalty method that requires µk →∞. The

ill-conditioning that arises from the need to let µk → ∞ may be circumvented with a judicious

construction of the sequence
{
vk
}

, and so the next addition to the foundation of Proposition 4.2.1

[11] found in Proposition 1 of [120] addresses this.

Proposition 1 of [120] uses the same assumptions as in Proposition 4.2.1 [11] and the addi-

tional assumptions on problem (1.7) that X is closed and convex, and f and h are continuously dif-

ferentiable. Under these additional assumptions, a sequence
{
ṽk
}

is given where ṽk = vk+µkh(xk),

and whose limit points v∗, together with x∗ satisfy the necessary conditions of optimality for problem

(1.7) given by

[
∇f(x∗) + (v∗)T∇h(x∗)

]
(x− x∗) ≥ 0 for all x ∈ X (1.15)

h(x∗) = 0.

Algorithmically, if it becomes clear that the sequence
{
ṽk
}

is converging, this sequence may be

used in place of the original sequence
{
vk
}

in the subsequent computations of xk. Because
{
vk
}

is

converging to v∗ such that necessary conditions (1.15) are satisfied, the need to let µk go to infinity

and the resulting ill-conditioning may be dispensed with.

Like Proposition 4.2.1 [11], Proposition 1 of [120] requires xk to be a globally optimal solution

for problem (1.8). The computation of method of multiplier sequence elements xk using limit

points from the sequences generated with BCD under generalized convexity conditions motivates

the generalization of Proposition 1 [120] to address the the assumption where optimal solutions xk
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for problem (1.8) may be 1) nonglobally optimal and 2) inexact. Furthermore, rate-of-convergence

analysis is desirable, including the questions of when the sequences (xk, ṽk) generated in the manner

of Proposition 1 [120] actually have limit points.

Lagrangian coordination techniques related to method of multipliers are also developed in

the context where the sequence elements xk are computed inexactly in the manner resulting from the

use (quasi)-Newton step updates. Tapia [106] introduces diagonalized multiplier methods, where,

given the augmented Lagrangian L(x,v, µ) := f(x) + vT h(x) + µ
2 ‖h(x)‖22, a sequence

{
(xk,vk)

}
is generated with the update schemes

vk+1 = U(xk, vk, µk : Hk)

xk+1 = xk −Hk∇x L(xk, vk+1, µk)

Hk+1 = H(xk+1, xk, vk+1, µk+1, Hk),

where {Hk} is a sequence of positive-definite approximations to the Hessian∇2
x,xL. Various updating

formulas U for multiplier vector v are stated and analyzed. Bertsekas [11] also addresses the case of

xk obtained with a quasi-Newton descent step where step-sizes for computing xk are obtained with

the Armijo rule. The approaches based on quasi-Newton steps with Armijo rule step-sizes assume

that the augmented Lagrange problem is not decomposed. A similar analysis, in the setting of

BCD decomposition under generalized convexity assumptions and nonseparability of the objective

functions, is highly desirable from a theoretical and practical perspective, and to our knowledge has

not been carried out.

The application of Gauss-Seidel methods as tools in single objective MDO motivates ad-

ditional research in the convergence analysis for ADMM and for the integration of BCD with the

method of multipliers. As noted earlier, the convergence of ADMM in the multi-block case where

m > 2 is an active area of research whose results have benefits for MDO. Convergence analysis for

the method of multipliers has been extensively developed under various assumptions for problems

of the form (1.9), but these assumptions do not adequately address the requirements of MDO. In

particular, convergence of the method of multipliers is not well-examined under the assumptions of

1) proper containment for feasible set X ⊂ Rn 2) that each update xk is computed inexactly due

to its computation by the BCD method, and 3) that updates xk are computed with non-globally

optimal solutions for (1.8).
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Furthermore, the application of these methods to the distributed and coordinated computa-

tion of efficient points for MOPs requires an SOP reformulation. Even more challenging, in the case

of multiobjective MDO, this SOP reformulation needs to be compatible with the nonintegrable real-

ity as reflected in the requirements of ADMM and BCD. For example, the use of ε-constraint method

may lead to the introduction of global, nonconvex constraints, thus violating the requirements for

applying ADMM and BCD. SOP reformulations that do not add additional constraints, such as the

weighted-sum method and a quadratic scalarization, become an appealing option but have to be

implemented in such a manner so that the boundaries delimiting inter-subproblem knowledge are

respected. In conclusion, the application of SOP reformulations to MOPs for use in MDO needs

to be examined in the context of the Gauss-Seidel and Lagrangian coordination techniques used to

address the requirements of MDO.

1.1.4 Parameter estimation

The modeling of time-dependent properties of viscoelastic materials such as stress, and the

resulting deformation referred to as strain, is well-developed mathematically [116, 96, 111, 122].

Viscoelastic materials have memory in the sense that stress applied in the past can affect

strain at the present moment. The introduction of time dependence or memory effect leads to the

analysis of Volterra’s equation of second type [116, 96] that models the dependence of stress as a

functional of strain

ϕ(ε(t)) = σ(t) +

∫ t

0

K(p, t− τ)σ(τ)dτ, (1.16)

where the response functional ϕ(ε) = Eε is linear in ε; the passing of time in hours is denoted by t; the

applied stress in megapascals (MPa) at time t is denoted by σ(t); and the function K(p, ·) : R→ R

is a kernel parameterized by a vector of parameters p. In practice, (1.16) models the relations

between time, stress, and strain successfully for a wide range of materials such as polymers, metals,

and composites [96, 111, 122].

One of the most effective and universal kernels K(p, t) is based on the exponential of an

arbitrary order function [96]

K(p, t) := λ

∞∑
n=0

(−β)
n
tn(1−α)

Γ [(1− α)(n+ 1)]
, (1.17)
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where p = [α, β, λ] is the vector of parameters. The exponential of arbitrary order operators combine

several important features [96, 15]:

• The initial moment singularity at time t = 0 is integratable;

• The asymptotic exponential behavior with time t→∞;

• The resolvent operator is the same type of exponential of arbitrary order with a different set

of defining parameters.

Using the kernel given in (1.17) together with the assumption that the stress function

σ(t) := σ is a fixed known constant, then the integral in (1.16) can be evaluated, and so equation

(1.16) becomes

ϕ(ε(t)) = σ

[
1 + λ

∞∑
n=0

(−β)
n
t(1−α)(n+1)

Γ [(1− α)(n+ 1) + 1]

]
. (1.18)

Thus, equation (1.18) is used to model the relation between time t, strain ε, and load stress

σ as parameterized by material-specific values for parameters p = [α, β, λ]. The parameters p that

are not known beforehand are estimated with least-squares minimization techniques. Two least-

squares problems (LSP) are considered. Denoting the right-hand side of equation (1.18) by the

model function m(p, t), the time domain least-squares problem is given by

min
p∈P

N∑
i=1

(m(p, ti)− ϕi)2
(1.19)

where points (ti, ϕi), i = 1, . . . , N , are experimental observations of responses ϕi taken at time ti

from tested materials.

If a regression r(t) is applied to the observations (ti, ϕi), i = 1, . . . , N , then, substituting

the regression r(t) for the response functional ϕ(ε(t)) in equation (1.18) and taking the Laplace

transform of both sides (1.18) results in the following least-squares problem. Denoting R(s) and

M(p, s) as the Laplace transforms of time domain functions r(t) and m(p, t), respectively, then the

Laplace domain least-squares problem is given by

min
p∈P

∑
s∈SN

|M(p, s)−R(s)|2 ∆(s). (1.20)

The use of the least-squares problem (1.20) in place of (1.19) is introduced in [96, 122] with the

motivation that the transformed model M(p, s) is of a simpler form than the time domain model
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m(p, t). In particular, the series in the time domain model m(p, t) becomes a geometric series in

the Laplace domain model M(p, s) and so it may be written in a closed-form.

The Laplace domain least-squares problem for obtaining optimal parameter estimates is

applied in [122] using a sample of positive real-valued si. In general, the Laplace variable s takes

its value from the open half-plane H = {s ∈ C : Re(s) > 0}, and the use of the Euclidean 2-norm

in the statement of problem (1.20) make it clear that problem (1.20) makes sense as a minimization

problem over real-valued decision variables. Thus, the use of complex-valued s in formulating the

problem (1.20) merits examination.

Furthermore, the relationship between the time domain LSP and the Laplace domain LSP

is unclear, and so a mathematical foundation is needed to describe the relationship between the time

domain LSP and the Laplace domain LSP. This has the practical implication of evaluating the use

of the Laplace domain LSP as a tool for obtaining optimal parameter estimates for the time domain

model.

1.2 Research Goal

In light of the state of art described in Section 1.1, the following research goals are stated

in the two areas: multiobjective, multidisciplinary optimization; and Laplace domain estimation of

optimal parameter estimates for time domain models.

1.2.1 Multidisciplinary, multiobjective optimization algorithms

As was seen in the last section, much has been accomplished mathematically and algorith-

mically in multiobjective optimization, and in the coordination and distribution of single objective

optimization. But these results have yet to be adapted and integrated to meet the needs of multi-

objective MDO. Therefore, the research goals for multiobjective MDO are stated as follows:

1. Refine the theory of convergence for the coordinated, Gauss-Seidel computations applied in

a single objective MDO setting. In particular, the convergence analysis of an integration of

BCD decomposition and Lagrangian coordination using the the method of multipliers requires

an extension of the convergence analysis found in [10, 11, 120].

2. Adapt single objective reformulation of MOPs for application to nonconvex, multiobjective
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MDO, and examine necessary and/or sufficient conditions for the optimal solutions to these

scalarized SOPs to be efficient for the AiO MOP.

3. Integrate the above adaption of scalarization with the above Lagrangian coordination/Gauss-

Seidel refinement. Analyze sequences generated by algorithms using theory from ADMM,

BCD, the method of multipliers, and scalarized SOP reformulations for MOPs. Discuss pres-

ence of limit points, and conditions under which various necessary conditions for efficiency are

satisfied by limit points. Discuss the role of this theory against the issue of limited communica-

tion and distribution of design control within an algorithmic multiobjective, multidisciplinary

optimization setting.

4. Based on the above integrations, develop algorithms for the distributed computation of efficient

points for MOPs, and tie these algorithms to previously developed theory relating efficient sets

of AiO MOPs to efficient sets of decomposed MOPs.

5. Apply the proposed algorithms to mathematical examples and to real-world engineering de-

sign problems. One such application is to the multiobjective, multidisciplinary design of an

automobile using a lithium-ion battery. The design of such an automobile highlights the engi-

neering challenges of optimally packaging components within a system where the component

shapes are allowed to vary in order to optimize the functionality of each component. Both the

optimal placement of components, and the optimal design of the components themselves, are

measured by multiple criteria. The simultaneous placement of components and the design of

components are conceptually distinct, require distinct algorithmic concepts, and yet have an

unavoidable interaction, all of which fit the paradigm of multiobjective MDO.

The component whose design receives the most attention is the lithium-ion battery. The

optimal functioning of the lithium-ion battery requires the maintenance of a temperature

distribution that is not only as on target as possible, but that is also as evenly distributed as

possible. These conditions depend on the internal layout of the lithium-ion battery, which in

turn determines its shape and size as it is placed in the underhood of the automobile. Thus,

the apt application of the equitable concept of optimality to the design of the lithium-ion

battery is also to be explored.
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1.2.2 Parameter estimation problem

For the parameter estimation problem, equation (1.18) was stated in Section 1.1.4 describ-

ing the time-dependent relationship between stress and strain where the memory effect is modeled

with the Rabotnov kernel. A Laplace domain LSP for estimating parameters p for the time domain

model m(p, t) was developed, whose relationship with the original time domain LSP is unclear. Fur-

thermore, it is initially unclear how best to formulation a Laplace domain LSP. Thus, the following

goals become evident:

1. Establish a mathematical foundation using the tools of functional and complex analysis by

which to compare the time domain and Laplace domain least-squares parameter estimation

approaches. This foundation is to be established by viewing each LSP as a minimization of

distance as defined in some normed function space. Thus, the goal is to state a normed space

for each LSP, and use the tools of functional analysis to describe the relationship between the

two normed spaces.

2. Formulate a Laplace domain least-squares problem (1.20) that is 1) computationally stable,

and 2) whose optimal solutions are parameter estimates that yield a good model-to-data fit.

The main issue for addressing the first part of this goal is to develop a nonnegative-valued

regression functions r : [a, b]→ R for the experimental data that has a closed-form expression

for its Laplace transform R : H → C where

(a) the regression function r fits the data well,

(b) evaluations of the transformed regression function R at each s ∈ H are obtained in a

computationally stable manner,

(c) the end-behavior of the regression function r as time t→∞ is bounded from above by a

linear function of t, that is, r(t) ∈ O(t).

Addressing the second goal depends on the choice of the finite sample set SN ⊂ H. Thus, the

question of choosing good sample sets SN is addressed.

3. Apply the above formulated Laplace domain LSP to test data for various composite materials

under different loading conditions.
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1.3 Research Contribution

The following contributions have been realized in answer to the research goals in the two

stated areas: multiobjective, multidisciplinary optimization; and Laplace domain estimation of op-

timal parameter estimates for time domain models.

1.3.1 Contributions to multidisciplinary, multiobjective optimization

The contributions in answer to the stated goals for multidisciplinary, multiobjective opti-

mization are as follows:

1. Reprisals are given for some of the BCD proofs from [49, 114] with the goal of clarifying

pertinent issues related to the integration of BCD with the method of multipliers. From

a mathematical point of view, these rewritten proofs also provide a substantially different

viewpoint on the key proof ideas from the proof given in [114]. Furthermore, these rewritten

proofs lead to a proof of a new BCD convergence condition. This new convergence condition

is furthermore integrated with some existing BCD convergence conditions yielding yet another

new convergence condition.

2. An adaptation of a method of multiplier convergence result is presented for integration with

BCD. This adaptation extends Proposition 1 of [120], which, in turn was an extension of

Proposition 4.2.1 of [11]. The extension of the former result provides an analogous conver-

gence result for the method of multipliers under a relaxation of the assumption that each

computation of update xk needs to be computed with a globally optimal solution for problem

(1.8). Furthermore, this result is easily adapted to provide the same convergence result in the

presence of inexact computations of updates xk under the assumption that the magnitude of

inexactness vanishes in the limit.

3. Sufficient conditions are formulated and proven for the optimal solutions of a certain SOP

reformulation of an MOP to be efficient for the MOP. The SOP objective function is obtained

from the quadratic scalarization fq : Rp → R having the form

fq(f) =
1

2
(f − yr)TQ(f − yr) + (f − yr)Tq,
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where Q is a positive semidefinite p × p matrix, q is a length p vector, and yr is a reference

point in the objective space. Both local and global efficiency are considered.

4. A specific type of quadratic scalarization fq is suggested, based on desired properties of function

fq that are easily encoded into the construction of a matrix Q, a vector q, and a reference

point yr.

5. An Objective Space Decomposition Algorithm (OSDA) is proposed based on an integra-

tion of ADMM and the quadratic scalarization. OSDA computes efficient points for an

AiO multiobjective MDO problem based on a quasiseparable decomposition originating in

the objective space in the sense that the decomposition is stated in terms of the partition

f(x) = [f1(x1), . . . , fm(xm)] of the vector of objective functions. In OSDA, scalarization is ap-

plied in two stages. In the first stage, the quadratic scalarization is applied to each subproblem

(i.e., intra-subproblem scalarizations), so that each reformulated subproblem is single objec-

tive. The intra-subproblem scalarization furthermore induces a reformulation of the underlying

AiO MOP. In the second stage, the weighted-sum scalarization is applied to the reformulated

AiO problem (i.e., an inter-subproblem scalarization). Direct knowledge of the weighted-sum

weights associated with the second stage of scalarization may be hidden from the subproblems

by encoding this information into the values of the multiplier v and the penalty coefficient µ

that are passed to each subproblem.

6. A Decision Space Decomposition Algorithm (DSDA) is proposed based on the integration of

BCD, the method of multipliers, and the quadratic scalarization. DSDA computes efficient

points for an AiO multiobjective MDO problem whose decomposition is based on a partition

Rn =
∏m
i=1Rni of the solution space. When the AiO decomposable MOP (1.1) is also qua-

siseparable, then the application of the quadratic scalarization only requires the exchange of

objective function values under a distributed optimization approach based on a subproblem

decomposition.

7. Convergence analyses are given for OSDA and DSDA based on the theory developed for their

constituent parts. This analysis is provided under the following conditions for OSDA and

DSDA as shown in the following table.
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Assumptions for OSDA and DSDA

OSDA DSDA

Xi closed, convex closed, convex

f separable nonseparable

fq continuous, continuously differentiable,

convex generalized convexity

h linear continuously differentiable

8. The quadratic scalarization has been applied to compute efficient solutions for a mathematical

example problem taking the form of a nonconvex MOP having four objective functions. The

use of the quadratic scalarization is shown to be nontrivial for this example in the sense that

many efficient solutions are computed that are not computable using the weighted-sum method.

9. This same MOP example is then decomposed into two nonintegrable biobjective subproblems.

OSDA and DSDA are implemented and applied for solving the resulting multiobjective MDO

problem. Where necessary, the generated solutions are tested for satisfying the developed

quadratic scalarization sufficient conditions of efficiency for the AiO MOP. Plots of the effi-

cient solutions verify that coordination between subproblem copies of the variables has been

achieved, and that the region in the solution space in which the coordinated solutions lie cor-

responds to the region in the solution space of the efficient solutions priorly computed in the

AiO (nondecomposed) setting.

10. DSDA has been applied to a bilevel automotive design problem whose decomposition is pre-

sented as two nonintegrable subproblems. One subproblem aims to optimally package the

components of the automobile’s underhood using a genetic algorithm, while the other sub-

problem addresses the optimal design of one component in particular, the lithium-ion battery,

in terms of the equitable concept of optimality. Treating the design of the lithium-ion battery

as a separate design problem results in the morphing of its shape and size as it is being placed

in the underhood; hence the resulting coupling between the two subproblems as they are being

independently solved is coordinated with DSDA. The development of such solution approaches

for packaging problems where the components are subject to morphing in the design process

is an important contribution in engineering design.
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11. Introduced and proved the usefulness of the equitable optimality concept in engineering design.

In addition to being important for modeling the optimal functioning of the lithium-ion battery,

the application of the equitable preference reduces the efficient set to a subset, thus making

bilevel design easier.

1.3.2 Parameter estimation problem

The contributions in answer to the stated goals for the parameter estimation problem are

as follows:

1. Mathematical foundation is established by describing normed function spaces corresponding

to each of the two least-squares problems:

(a) The time domain least-squares problem is associated with the L2 topology on the space

of continuous functions C[a, b] defined on a real interval [a, b] equipped with the standard

L2 norm denoted by ‖·‖2.

(b) The Laplace domain problem is associated with a topology on the same space C[a, b] but

equipped with an alternative norm denoted ‖·‖S . Since ‖·‖S is not a standard norm, its

norm properties are verified.

Once each least-squares problem is understood as minimization of a norm, then equivalence

between the least-squares problems is identified with equivalence between the norms as defined

in [92]. This norm equivalence is characterized by the existence of fixed bounding coefficients `,

u, 0 < ` < u <∞ where the inequalities ` ‖f‖2 ≤ ‖f‖S ≤ u ‖f‖2 are satisfied for all functions

f ∈ C[a, b].

2. It is shown that an upper bound coefficient u exists, and the absence of the lower bound

coefficient ` > 0 is shown through a counterexample. The implications of the existence of an

upper bound coefficient u <∞ but nonexistence of a lower bound ` are briefly discussed.

3. Problem (1.20) is formulated in such a manner so that 1) the sample set SN , and 2) the

collection of least-squares weighting coefficients ∆(s) are motivated by the development of the

mathematical foundation. This formulation is applied to the test data described in [115].
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1.4 The content of the disseration

Chapters 2 through 6 present work that has either been published, is under review, or is

in the final stages before submission for publication. The multiobjective MDO contributions as

outlined in Section 1.3 are included in Chapters 2 through 4, while the contributions related to the

Laplace domain estimation of parameters are found in Chapters 5 and 6.

Chapter 2 contains the main mathematical contributions for multidisciplinary, multiob-

jective optimization. The content of this chapter starts with a mathematical formulation for a

multiobjective problem decomposed along multidisciplinary lines, and continues with a theoretical

refinement and integration of pre-existing tools to address the generation of efficient points in an

MDO setting. Algorithms based on this theory are developed and applied to mathematical examples,

one of which is a nonconvex multiobjective MDO problem.

The multiobjective, multidisciplinary automotive design problem motivating the develop-

ments of Chapter 2 is addressed in Chapters 3 and 4. Recall that this automotive design problem

features a component packaging problem where the shape and size of the components are also varied;

hence the role of multidisciplinary optimization. The shape and size of components vary as they

are part of a design process whose goal is an optimal functionality that is measured with multiple

criteria. Chapter 3 begins the presentation of this automotive application by addressing the optimal

design of one component in particular, the lithium-ion battery independent of its placement within

the underhood of the automobile. As explained in Section 1.1, the equitable optimality concept is

well-suited to the requirements for the optimal functioning of the lithium-ion battery, and so this

concept is introduced and applied to engineering design. Chapter 4 completes this automotive ap-

plication by integrating the design process of the lithium-ion battery with the automotive packaging

problem using the algorithms developed in Chapter 2. Both Chapters 3 and 4 state and discuss

computational results from an engineering perspective and from a mathematical perspective.

In presenting the contributions relating to Laplace domain parameter estimation, Chapter

5 develops a mathematical foundation for comparing the two least-squares parameter estimation

approaches under consideration: the time domain and the Laplace domain. With this foundation,

statements regarding this comparison are formulated and proven, and an improvement in the appli-

cation of the Laplace domain least-squares problem is obtained and applied to the test data.

The paper presented in Chapter 6 explores an application of the time domain least-squares
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problem from a numerical perspective, and may be viewed as motivating the developments of the

preceding chapter. In particular, the potential for catastrophic cancellation in the series term of the

model function m(p, t) for certain values of parameter vector p, and the typical ill-conditioning of

the time domain least-squares problem are explored.

Following the content chapters, Appendix A, Appendix B, and Appendix C record the latest

version of the code that is used to generate results and implement the algorithms provided in chapters

2, 4, and 5 of this dissertation, respectively.

1.5 Conclusion and Future Research

The contents of this dissertation make clear the need for refinement of currently available

mathematical theories, and their adaptation for the needs of engineering design. The mathematical

potential for such theoretical and practical refinements is realized in the following pages of this

dissertation in the areas of Lagrangian coordination, Gauss-Seidel decomposition, multiobjective

scalarization, and parameter estimation techniques.

On each of these fronts, the contributions of this dissertation, though nontrivial, are only a

beginning. In the way of Lagrangian coordination, the (not so) simple rewriting and repackaging of

the many results developed and/or presented in the textbooks [10, 11] may lead to a more integrated

framework that allows additional insight. The results presented along this vein in Chapter 2 may

be extended to address other necessary conditions for optimality that are met by the method of

multiplier limit points. More can also be said on any constraint qualification conditions that imply

the actual presence of limit points that are currently assumed to be present.

For Gauss-Seidel decomposition, the convergence of ADMM for the multi-block m > 2

decomposition is an active area of research as noted earlier. The integration of BCD and the method

of multipliers can be extended to address a variety of manners in which BCD updates and method

of multiplier updates are computed inexactly. Finally, the restrictions implied in MDO optimization

problems can be motivated by concepts from computer science taking the form of object-oriented

programming, and the role of mathematical tools such as Lagrangian coordination and Gauss-Seidel

decomposition can be explained along these concepts.

In the area of multiobjective scalarization, comparison of the use of quadratic scalariza-

tion with the use of weighted-tth power sum in multiobjective MDO is needed. Furthermore, the
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(pseudo)convexifying effect of the quadratic scalarizations warrants investigation. Conditions on

the objective functions, and conditions on the quadratic scalarization need to be examined to gain

insight.

Although the content of Chapter 2 is motivated by engineering MDO applications, the

developments in this chapter address more general types of MOP decomposition that are applicable,

for example, in business and military applications that also require the formulation of certain MOPs

as a collection of nonintegrable subproblems. For the former, an MOP may model the management of

business activities within a large international corporation, where decisions under multiple objectives

are made locally in each country so that the corporation performs at its best. For the latter, a

collection of MOPs may model military mission planning and execution under partial information

due to constraints in the communication bandwidth or due to required communication latencies [84].

Finally, the foundation established in Chapter 5 may be extended to examine special con-

ditions under which the imperfect equivalence between the two least-squares parameter estimation

approaches can be remedied. Applications of the Laplace domain least-squares as formulated in

Chapter 5 to different models and different types of loading assumptions may also be examined.
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Chapter 2

Distributed Computation of Pareto

Sets

[The contents of this chapter include material in a paper to be submitted (late June 2013)

to the SIAM Journal on Optimization titled “Distributed computation of Pareto sets”; the authors

are B. Dandurand and M. M. Wiecek. This chapter includes additional material not included in the

above paper.]

2.1 Introduction

This chapter addresses the computation of efficient points for multiobjective optimization

problems (MOPs) in a setting where the MOP is not available to one solver in an integrated form,

but rather is available to multiple solvers in terms of nonintegrable subproblems. This setting is

typical, for example, in multidisciplinary optimization (MDO), which addresses engineering design

problems whose complexity necessitates specialization in the design process along distinct disciplines

composing a system. Many papers present applications of multiobjective MDO in various areas of

engineering design [79, 91, 66, 30, 22, 74, 28]. Methodologies such as Multiobjective Collaborative

Optimization [107, 95], Multiobjective Concurrent Subspace Optimization (CSSO) [61, 63, 64, 62,

60], and a bilevel method [125] have also been developed. For multilevel systems, an approach

based on the use of lower-level efficient designs as targets for upper-level designs and the method of
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Analytical Target Cascading is proposed in [77].

Other settings requiring the formulation of an MOP as a collection of nonintegrable sub-

problems include, for example, business or military applications. For the former, an MOP may

model the management of activities in business within a large international corporation, where de-

cisions under multiple objectives are made locally in each country so that the corporation performs

at its best. For the latter, a collection of MOPs may model military mission planning and execu-

tion under partial information due to constraints in communication bandwidth or due to required

communication latencies [84].

2.1.1 Multiobjective optimization background

Let an integrated MOP be given by

min
x

f (x)

s.t. h(x) = 0

x ∈ X,

(2.1)

where the objective function f : Rn → Rp is vector-valued, X ⊆ Rn, the feasible set is given by

X ∩{x ∈ Rn : h(x) = 0}, and the specialized equality constraints h(x) = 0 are defined through the

constraint function h : Rn → Rq. The vector space Rn is referred to as the decision space, and

the vector space Rp is referred to as the objective space. The vector-valued function f = [f1, . . . , fp]

consists of component functions fi : Rn → R for i = 1, . . . , p, and the image Y ⊆ Rp is defined by

Y := f(X) := {y ∈ Rp : y = f(x) for some x ∈ X} .

Due to a conflict typically present among the objective functions fi for i = 1, . . . , p, there may be no

solution x ∈ X minimizing every objective function fi simultaneously. Thus, optimality for MOP

(2.1) is understood in terms of Pareto optimality [89, 34]. The following vector relations are useful
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for the description of Pareto optimality. For vectors y1,y2 ∈ Rp, define

y1 < y2 if y1
i < y2

i for all i = 1, . . . , p;

y1 5 y2 if y1
i ≤ y2

i for all i = 1, . . . , p;

y1 ≤ y2 if y1 5 y2 and y1 6= y2.

From these relations, the following conical sets are defined:

Rp< := {y ∈ Rp : y < 0}

Rp5 := {y ∈ Rp : y 5 0}

Rp≤ := {y ∈ Rp : y ≤ 0} .

The relations >, =, ≥ and sets Rp>, Rp=, Rp≥ are defined analogously. The negations of the relations

<, 5, and ≤ are denoted by ≮, �, and � and are given by

y1 ≮ y2 if y1
i ≥ y2

i for some i = 1, . . . , p;

y1 � y2 if y1
i > y2

i for some i = 1, . . . , p;

y1 � y2 if y1 � y2 or y1 = y2.

Note that for p ≥ 2, the relation ≮ is not equivalent to the relation =, and the relation � is not

equivalent to the relation >.

A solution x∗ ∈ X is weakly efficient for MOP (2.1) if f(x) ≮ f(x∗) for all x ∈ X. A solution

x∗ ∈ X is efficient for MOP (2.1) if f(x) � f(x∗) for all x ∈ X. (This strengthens the notion of weak

efficiency by adding the requirement that if any improvement in one objective’s value fi(x) < fi(x
∗)

is obtained by the substitution of solution x∗ with solution x, then deterioration of at least one

other objective’s value fj(x) > fj(x
∗) must also occur.) A solution x∗ ∈ X is locally efficient if

there exists a neighborhood N (x∗) of x∗ such that f(x) � f(x∗) for all x ∈ N (x∗)∩X. For (weakly)

efficient solutions x∗, outcome f(x∗) is (weak) Pareto. The set of (weak) Pareto outcomes is denoted

(YwN ) YN .

Approaches to generating solution sets of MOPs (2.1) fall into two categories: scalarizing

and nonscalarizing methods [34, 36]. The scalarizing methods convert an MOP into a single objective
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program (SOP) by replacing the vector-valued objective f with a scalar-valued function f : Rn → R,

and by the possible addition of constraints. SOP reformulations of MOPs such as the weighted-sum

method [46], the weighted-t power method [119, 75], and the weighted-quadratic method [112] intro-

duce scalarizing functions f and do not introduce additional constraints, while SOP reformulations

that introduce additional constraints include, for example, the ε-constraint method [17] and Ben-

son’s method [8, 18]. Under certain conditions, the optimal solutions of these SOPs yield efficient

solutions for the original MOP. Each SOP instance typically yields one efficient solution for the

MOP. Thus, a finite sample approximation of the efficient set may be obtained through the use of

multiple SOP computations of efficient points for the MOP.

Nonscalarizing methods for computing efficient solutions include approaches using optimal-

ity concepts other than Pareto, (such as lexicographic methods and max-ordering methods), descent

methods transferred from nonlinear programming, and set-oriented methods. Lexicographic meth-

ods [33], for example, apply single objective minimization in a recursive manner along some ordering

of objective functions reflecting their importance. In the steepest descent methods, a search direc-

tion is derived from the gradient and/or Hessian information of the objective functions of the MOP.

These methods include variants for the constrained and unconstrained case (see [39, 31, 38], for ex-

ample). Set-oriented methods [41, 43, 42, 35, 99], in contrast to all previously presented approaches,

find a solution set of the MOP without using scalarizing functions or other optimality concepts.

2.1.2 Problem Statement

The problem of generating efficient solutions for MOP (2.1) when the data of (2.1) is not

explicitly available to any one solver is now described. To this end, MOP (2.1) is assumed to be of

the following All-in-One (AiO) decomposable form given by

min
x1,...,xm

f (x1, . . . ,xm)

s.t. h (x1, . . . ,xm) = 0

xi ∈ Xi, i = 1, . . . ,m,

(2.2)

where X :=
∏m
i=1Xi, Xi ⊆ Rni , i = 1, . . . ,m, and x := [x1, . . . ,xm]. The AiO decomposable

format given by (2.2) corresponds to the division of MOP (2.1) along interdisciplinary boundaries

so that each subproblem i, i = 1, . . . ,m, has its own decision space Rni and its own local feasible
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set Xi ⊆ Rni . The constraint function h has an interdisciplinary scope and typically arises from the

copying of variables that may be necessary in order to obtain the decomposable format (2.2). Thus,

a distinction is made between the decomposable constraint x ∈ X :=
∏m
i=1Xi and the coordinating

constraint h(x) = 0.

By assumption, the AiO decomposable MOP (2.2) is not known explicitly to any solver,

but is implicitly available to multiple solvers through knowledge of the following nonintegrable

subproblems

min
xi

f(xi, ẍ¬i)

s.t. h(xi, ẍ¬i) = 0

xi ∈ Xi,

(2.3)

where the objective function f( · , ẍ¬i) : Rni → Rp and the constraint function h( · , ẍ¬i) : Rni → Rq

are parameterized by fixed values ẍ¬i := (ẍ1, . . . , ẍi−1, ẍi+1, . . . , ẍm) with ẍj ∈ Xj for j 6= i. (¬i

may be read as “not i”, referring to the indices j = 1, . . . ,m where j 6= i.) Subproblems (2.3) feature

the following knowledge and control assumptions:

1. Each subproblem i is associated with a solver having control over its decision variable xi and

knowledge of its feasible set Xi.

2. Each subproblem i solver may have either direct or indirect knowledge of fixed values ẍj ∈ Xj

determined from the other subproblem j 6= i solvers.

3. For each fixed solution ẍj ∈ Xj , j 6= i, each subproblem i solver has knowledge of its vector-

valued objective function f( · , ẍ¬i) : Rni → Rp and of its vector-valued constraint function

h( · , ẍ¬i) : Rni → Rq. Direct knowledge of the AiO functions f :
∏m
i=1Rni → Rp and

h :
∏m
i=1Rni → Rq are not available to any single solver.

4. However, the AiO functions f :
∏m
i=1Rni → Rp and h :

∏m
i=1Rni → Rq are available to a

master coordinator. The master coordinator is responsible for coordinating and updating the

subproblem (2.3) information and distributing this information to the solvers.

The solution approaches developed in multiobjective optimization assume explicit knowledge

of an MOP of the form (2.1) or (2.2), and so a new theory and methods are required to address the
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distributed computation of efficient solutions for the AiO decomposable problem (2.2) with the use

of coordinated computations based on the subproblems (2.3).

The coordinated distribution of optimization has a strong mathematical foundation in

the single objective optimization setting with the application [113, 120] of well-studied Gauss-

Seidel decomposition/coordination techniques such as the alternating direction method of multipliers

(ADMM) [47, 40, 9, 32, 69, 14], the block coordinate descent (BCD) method [118, 94, 12, 9, 49, 114],

and the method of multipliers [56, 93, 10, 11]. Most of the rigorously developed convergence theory

for the BCD method and the method of multipliers is developed without consideration of the ap-

plied requirements of coordinated, distributed optimization, while the convergence theory that does

consider this [120] may be extended to address the presence of generalized convexity in the objective

functions. This work adapts and extends some of these results to be applied to MOPs that have

been reformulated as SOPs.

The coordinated, distributed approaches to single objective optimization mentioned above

motivate the adaptation of existing SOP reformulation techniques for multiobjective optimization.

Such scalarizations need to respect limits placed on the ability of subproblems (2.3) to exchange

information, and so any feature of an SOP reformulation (such as the introduction of new constraints)

that could potentially violate such principles needs to be examined. Due to its simplicity, the

weighted-sum method is easily adapted for use in the coordinated and distributed computation

of efficient points for multiobjective problem. When all problem functions are convex and the

constraint set X is convex, the weighted-sum method is sufficient to compute any efficient solution

to MOP (2.1) [46]. In the case where f is more generally nonconvex, it is desirable to explore the

use of other scalarization techniques. One such possibility is the weighted-t power method [75].

Another possibility is a quadratic scalarization, which is initially proposed in [112] as a possible

form taken by the dual of the weighted-Chebyshev method. In this chapter, the role of the quadratic

scalarization in the coordinated, distributed computation of efficient solutions of MOPs is examined,

while conditions are developed under which the optimal solutions obtained with the use of this type

of SOP reformulation are efficient for the MOP.

The foundational developments in this paper proceed in three stages: scalarization, coordi-

nation, and distribution of optimization. Scalarization and coordination are addressed by the master

coordinator, while the distributed solution approach is carried out by the subproblem solvers based

on recurrent updates of the subproblem information passed from the master coordinator. In Section
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2.2, scalarization is addressed by posing SOP reformulations of MOP (2.1) having the form

min
x

fs (x)

s.t. h(x) = 0

x ∈ X,

(2.4)

where the scalarized objective function fs : Rn → R is real-valued, and X and h are modified

as necessary. SOP reformulations are developed with the needs of coordination and distributed

computation in mind while addressing the presence of nonconvex objective functions.

Once a suitable SOP reformulation (2.4) of (2.1) is established, the first step toward impos-

ing a decomposable structure on the SOP reformulation (2.4) is realized in Section 2.3 by addressing

solution techniques for the SOP (2.4) that rely on Lagrangian relaxation of the coordinating con-

straint h(x) = 0 resulting in the augmented Lagrangian problem

min
x

fs (x) + vTh(x) +
µ

2
‖h(x)‖22

s.t. x ∈ X,
(2.5)

where v ∈ Rq is a vector of multipliers associated with the relaxed coordinating constraint h(x) = 0,

and µ > 0 is a penalty coefficient determining the penalty magnitude resulting from violation of the

coordinating constraint h(x) = 0. Parameters v and µ are iteratively updated using adaptations

of Lagrangian coordination techniques such as the method of multipliers [10, 11] so that optimal

solutions for (2.5) are also optimal solutions for (2.4) when there is no duality gap in the setting of

quadratic Lagrangian duality [97].

Once the coordinating constraint h(x) = 0 is relaxed, only the decomposable constraint

x ∈ X is directly enforced in problem (2.5). Letting

f(x) := fs (x) + vTh(x) +
µ

2
‖h(x)‖22 ,

we have a problem of the form

min
x1,...,xm

f (x1, . . . ,xm)

s.t. x1 ∈ X1, . . . ,xm ∈ Xm.

(2.6)
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The distributed computation of an optimal solution for problem (2.6) using the block coordinate

descent (BCD) method is developed in Section 2.4. BCD convergence is studied with the requirement

that BCD be integrated with a coordination and scalarization approach.

The development and integration of scalarization, coordination, and distributed computa-

tion in Section 2.5 yield MultiObjective Decomposition Algorithms (MODAs) for computing efficient

solutions for an AiO decomposable MOP (2.2) while using only references to the subproblems (2.3).

Applications of the MODAs to a couple of example problems, one convex, the other nonconvex, are

given in Section 2.6. Section 2.7 concludes this paper and describes future work.

2.2 Decomposable single objective reformulations

While the generation of efficient solutions for MOPs (2.1) presented as a single integrated

problem is well-studied, the generation of efficient solutions for MOPs presented as nonintegrable

multiobjective subproblems (2.3) is not addressed. In this section, SOP reformulations (2.4) of MOP

(2.1) are developed to 1) address nonconvexity in the objective functions, and 2) be compatible with

the coordinated, distributed solution approach developed in Sections 2.3 and 2.4.

The weighted-sum scalarization obtained by replacing objective vector f in (2.1) with scalar

objective fw :=
∑p
i=1 wifi, wi ≥ 0, i = 1, . . . , p, is well-studied [46, 34] and analytically simple. The

resulting SOP reformulation is given by

min
x

fw(x)

s.t. h(x) = 0

x ∈ X,

(2.7)

where w := [w1, . . . , wp], w ≥ 0. Because the weighted-sum reformulation (2.7) does not require

any modification of the original constraints x ∈ X and h(x) = 0, problem (2.7) is compatible with

coordinated, distributed solution approaches that are based on the decomposition X :=
∏m
i=1Xi

and coordination by h. When the individual objective functions fi, i = 1, . . . , p, are convex, then

the weighted-sum scalarization is sufficient for generating any efficient solution (see, e.g., Theorem

4.1 of [34]).

However, when some components fi of f are nonconvex over X :=
∏m
i=1Xi, there may be
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efficient points for MOP (2.1) that cannot be computed as optimal solutions for any problem of the

form (2.7), w ≥ 0. Other scalarization methods that address the issue of nonconvexity include the

ε-constraint method [17] and the weighted-Chebyshev method [121, 124, 13, 103, 102, 67]. Both

of these methods introduce nonconvex, nondecomposable constraints when the objective functions

fi, i = 1, . . . , p, are nonconvex, and so these new constraints cannot be directly enforced in the

distributed solution approach of Section 2.4, where the decomposition X :=
∏m
i=1Xi assumes that

each Xi, i = 1, . . . ,m, is convex. A solution approach based on the treatment of such nonconvex,

nondecomposable constraints as augmented Lagrangian-relaxed constraints is addressed in Section

2.3.

The weighted-t power method [119, 75] is similar to the weighted-sum method, except that

each objective function fi, i = 1, . . . , p, is replaced with some power f ti , t > 0, i = 1, . . . , p. (Without

loss of generality, it may be assumed, by translating f as necessary, that f(x) > 0 for all x ∈ X.)

Thus, problem (2.4) takes the form

min
x

p∑
i=1

wi [fi(x)]
t

s.t. h(x) = 0

x ∈ X.

(2.8)

Li [75] shows that any efficient point for MOP (2.1) meeting certain sufficient conditions may be

computed using the weighted-t power method for some finite t > 0.

Like the weighted-sum method, the weighted-t power method is compatible with coordi-

nated, distributed solution approaches that are based on the decomposition X :=
∏m
i=1Xi and co-

ordination by h. While the weighted-sum method does not address nonconvexity well, the weighted-t

power method may introduce a high degree of nonlinearity for large values of t. In seeking a com-

promise between these two features, another related approach is considered based on a quadratic

form transformation of the objective space. This approach, referred to as the quadratic scalar-

ization method, generalizes the t = 2 weighted-t power method, and when suitably formulated, is

likewise compatible with coordinated, distributed solution approaches based on the decomposition

X :=
∏m
i=1Xi and coordination by h.
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The quadratic scalarization method applies an SOP reformulation to MOP (2.1) given by

min
x

fq(x)

s.t. h(x) = 0

x ∈ X,

(2.9)

where

fq :=
1

2
(f − yr)

T
Q (f − yr) + (f − yr)

T
q, (2.10)

Q is a positive semidefinite matrix, q is a p× 1 vector, and yr is a reference point in the objective

space Rp. The application of the scalarized reformulated problem (2.9) is motivated by the dual

of the weighted-Chebyshev method that has been shown in [112] to be equivalent, under certain

conditions, to solving a problem of the form (2.9).

Reference points yr are commonly taken to be either ideal points yI for MOP (2.1) or

utopia points yU for (2.1). The point yI , whose components yi, i = 1, . . . , p, are given by yi :=

minx∈X fi(x), is called an ideal point for MOP (2.1). Any point yU = yI − ε for some ε ∈ Rp> is a

utopia point for MOP (2.1).

2.2.1 Properties of quadratic scalarization

Lemmas 1 and 2 and Propositions 1 and 2 address the use of the quadratic scalarization

for the computation of efficient points for MOPs. The chief sufficient condition addressed in these

propositions is membership in the following critical set defined by

CQ,q,yr := {y : Q (y − yr) + q > 0} . (2.11)

The plots of Fig. 2.1 depict the parabolic level curves for two quadratic scalarization examples of

the form (2.10) along with their corresponding critical sets (2.11).

Lemma 1. Given a function f : Rn → Rp, let fq : Rp → R be defined as in (2.10) where Q is a

p× p positive semidefinite matrix, q a p× 1 column vector, and yr ∈ Rp is a reference point in the

objective space. Let y1 := f(x1) and y2 := f(x2) for some x1,x2 ∈ X. If y1 ≤ y2 and y1 ∈ CQ,q,yr ,

then fq(x
1) < fq(x

2).
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a = 1 a = 2

Figure 2.1: Level curves of two quadratic scalarizations (2.10) in the objective space with the

critical sets CQ,q,yr shaded in gray, where Q = a
[
−1/2,

√
3/2
]T [−1/2,

√
3/2
]
, q =

[√
3/2, 1/2

]T
,

and yr = [0, 0]T

Proof. Using (2.10), calculate

fq(x
2) =

1

2

(
y2 − yr

)T
Q
(
y2 − yr

)
+
(
y2 − yr

)T
q

=
1

2

(
y2 − y1 + y1 − yr

)T
Q
(
y2 − y1 + y1 − yr

)
+
(
y2 − y1 + y1 − yr

)T
q

=
1

2

(
y2 − y1

)T
Q
(
y2 − y1

)
+
(
y2 − y1

)T (
Q
(
y1 − yr

)
+ q

)
(2.12)

+
1

2

(
y1 − yr

)T
Q
(
y1 − yr

)
+
(
y1 − yr

)T
q

≥ 1

2

(
y1 − yr

)T
Q
(
y1 − yr

)
+
(
y1 − yr

)T
q (2.13)

= fq(x
1).

Inequality (2.13) holds since the first term of (2.12) satisfies

1

2

(
y2 − y1

)T
Q
(
y2 − y1

)
≥ 0

by the positive semidefiniteness of Q, and the second term also satisfies

(
y2 − y1

)T (
Q
(
y1 − yr

)
+ q

)
> 0
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by the assumptions that y1 ≤ y2 and y1 ∈ CQ,q,yr .

Note that the converse of Lemma 1 does not hold. That is, fq(x
1) < fq(x

2) may hold while

y1 6≤ y2. However, a partial converse of Lemma 1 exists, and this is stated in Lemma 2.

Lemma 2. Given a function f : Rn → Rp, let fq : Rp → R be defined as in (2.10) where Q is a

p × p positive semidefinite matrix, q is a p × 1 column vector, and yr ∈ Rp is a reference point in

the objective space. Let y1 := f(x1) and y2 := f(x2) for some x1,x2 ∈ X. If fq(x
1) ≤ fq(x

2) and

y2 ∈ CQ,q,yr , then y1 6≥ y2.

Proof. Assume the opposite, that y1 ≥ y2. Since y2 ∈ CQ,q,yr also holds, Lemma 1, applied with

the roles of y1 and y2 reversed, implies that fq(x
1) > fq(x

2). This contradicts the hypothesis that

fq(x
1) ≤ fq(x2), and so the lemma is established.

Using Lemma 2, Proposition 1 provides a sufficient condition for a locally optimal solution

x∗ for problem (2.9) to be also locally efficient for MOP (2.1).

Proposition 1. Let the objective function f : Rn → Rp in MOP (2.1) be continuous on X, and

let the objective function fq : Rn → R in problem (2.9) be computed as in definition (2.10) with

a positive semidefinite matrix Q. If x∗ ∈ X is a local optimal solution for problem (2.9) and

f(x∗) ∈ CQ,q,yr , then x∗ is locally efficient for (2.1).

Proof. By the continuity of f and the local optimality at x∗ for problem (2.9), there exists a nonempty

open neighborhood N (x∗) of x∗ such that the set

f(N (x∗)) := {y ∈ Rp : y = f(x) for some x ∈ N (x∗)}

is contained in CQ,q,yr and fq(x
∗) ≤ fq(x) for all x ∈ N (x∗) ∩ X. By Lemma 2, it follows that

f(x) 6≤ f(x∗) for all x ∈ N (x∗) ∩X and so x∗ is locally efficient for MOP (2.1).

Letting CQ,q,yr contain the set f(X) yields the following result on the computation of

globally efficient solutions for (2.1).

Proposition 2. Let the objective function f : Rn → Rp in MOP (2.1) be continuous on X,

and let the objective function fq : Rn → R in problem (2.9) be computed as in definition (2.10)

with a positive semidefinite matrix Q. If x∗ ∈ X is an optimal solution for problem (2.9) and

f(X) ⊂ CQ,q,yr , then x∗ is efficient for (2.1).
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Reference point yr = [1, 6]T Reference point yr = [0, 8]T

Figure 2.2: Applying the quadratic scalarization method to biobjective problem (2.70). Each Pareto
optimal point, depicted with a black dot, lies within the set CQ,q,yr depicted with the light-gray
shaded region. (Q = (1/2)[−1, 1]T [−1, 1], q = (

√
2/2)[1, 1]T .)

Proof. If x∗ is not efficient for (2.1), then there exists x ∈ X for which f(x) ≤ f(x∗). Furthermore,

f(x) ∈ CQ,q,yr for all x ∈ X. Therefore, it follows from Lemma 1 that fq(x) < fq(x
∗), contradicting

the hypothesis that x∗ is optimal for problem (2.9).

The plots of Fig. 2.2 illustrate the use of solving problems of the form (2.9) for computing

efficient points for the nonconvex biobjective problem (2.70) that is given in Section 2.6.

2.2.2 Quadratic scalarization and the weighted-Chebyshev method

Given a reference point z ∈ Rp and a weight w ≥ 0, the weighted-Chebyshev method for

computing efficient points for (2.1) is given by

min
x∈X,h(x)=0

max
1≤i≤p

{wi (fi(x)− zi)} . (2.14)
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Problem (2.14) may be reformulated by

min
x∈X,h(x)=0,

α∈R

α

s.t. wi (fi(x)− zi) ≤ α, i = 1, . . . , p,

(2.15)

or equivalently

min
x∈X,h(x)=0,

s=0, α∈R

α

s.t. wi (fi(x)− zi) + si = α, i = 1, . . . , p,

(2.16)

where s ∈ Rp= is a slack variable. Substituting α, problem (2.16) becomes

min
x∈X,h(x)=0,

s=0

p∑
i=1

wi (fi(x)− zi) + si

s.t. wi (fi(x)− zi) + si = wi+1 (fi+1(x)− zi+1) + si+1, i = 1, . . . , p− 1,

si ≥ 0, i = 1, . . . , p.

(2.17)

Problem (2.17) may furthermore be stated in matrix notation as follows:

min
x∈X,h(x)=0,

s=0

1T [Dw (f(x)− z) + s]

s.t. UT [Dw (f(x)− z) + s] = 0,

(2.18)

where 1 is the length-p column vector of ones, Dw := diag {w1, . . . , wp} is a diagonal p × p matrix

with entries [Dw]i,i = wi, U is a p× p− 1 matrix whose columns are 1) of unit length with respect

to the Euclidean norm, 2) orthogonal to 1, and 3) also pairwise orthogonal to one another. (Such

a matrix U may be constructed as a submatrix of an orthonormal matrix whose first column is 1.

UT projects any vector in Rp onto the subspace of vectors that are orthogonal to 1.)

Applying the augmented Lagrangian relaxation to the equality constraint of (2.18), we have

min
s=0, x∈X,h(x)=0

L((x, s), (v, a)), (2.19)
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where

L((x, s), (v, a)) := [Dw (f(x)− z) + s]
T

(1 + Uv) +
a

2

∥∥∥[Dw (f(x)− z) + s]
T
U
∥∥∥2

2
, (2.20)

a > 0 is a penalty weight, and v ∈ Rp−1 is the multiplier associated with the constraint

UT [Dw (f(x)− z) + s] = 0. (2.21)

The role of problem (2.19) as a relaxation of problem (2.18) implies that, in general, solutions (x∗, s∗)

for problem (2.19) are not feasible for (2.18). If w > 0, then the matrix Dw in (2.20) is invertible,

and the objective (2.20) has the form (2.10) with

Q = aDwU(DwU)T , q = Dw(1 + Uv), and yr = z−D−1
w s∗ (2.22)

Thus, if (x∗, s∗) is an optimal solution for problem (2.19) with w > 0, f(x∗) ∈ CQ,q,yr , and Q, q,

and yr as defined in (2.22), then x∗ is (locally) efficient for the MOP (2.1) by Proposition 1, even

if (x∗, s∗) is not feasible for problem (2.18).

In order to strengthen the tie between solutions (x∗, s∗) generated for problem (2.19) and

the solutions x∗ generated with the weighted-Chebyshev method (2.14), the role of the augmented

Lagrangian parameters v and a is now examined more closely. Motivated by the theory of duality

given in [112, 97], we use the augmented Lagrangian problem (2.19) to formulate the dual problem

to problem (2.18)

max
a>0,v∈Rp−1

min
x∈X,h(x)=0,

s=0

L((x, s), (v, a)) (2.23)

and describe two conditions [97] under which there is no duality gap between the optimal value of

the dual problem (2.23) and the optimal value of the primal problem (2.18) (that is, L has a saddle

point in the primal variables (x, s) and in the dual variables (v, a)):

1. The primal problem (2.18) meets the quadratic growth condition: that is, the dual problem

(2.23) is feasible, i.e., there exists a > 0, v ∈ Rp−1 such that problem (2.19) is bounded from

below.

2. The primal problem (2.18) is stable of degree 2 ; that is, in addition to meeting the quadratic
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growth condition, it also meets the second order sufficiency conditions for optimality [6].

Proposition 3. Let problem (2.18) meet the quadratic growth condition and the second order suf-

ficiency conditions for optimality, and let (x∗, s∗) be an optimal solution for problem (2.18). Then

there exist a multiplier v ∈ Rp−1 and a penalty coefficient a > 0 for which (x∗, s∗) is also an optimal

solution for problem (2.19).

Proof. Due to the quadratic growth condition and the second order sufficiency conditions for op-

timality, there is no duality gap between the primal problem (2.18) and the dual problem (2.23).

Letting v and a of problem (2.19) be set to the dual optimal values (v∗, a∗) for the dual problem

(2.23), the proposition is proven.

From Proposition 3, a necessary condition is stated for an efficient point x∗ for MOP (2.1)

generated with the weighted-Chebyshev method (2.14), w > 0, to be computable as an optimal

solution for an SOP reformulation (2.9) obtained with quadratic scalarization.

Corollary 1. Let x∗ be a weakly efficient solution for (2.1). Then, for any fixed utopia point zU ,

there exists a weight vector w∗ > 0 for which there is an optimal solution (x∗, s∗) for problem (2.18)

with w = w∗ and z = zU . Furthermore, if problem (2.18) with w = w∗ and z = zU meets the

quadratic growth condition and the second order sufficiency conditions for optimality, then x∗ is

also an optimal solution for an SOP reformulation (2.9).

Proof. The existence of w∗ > 0 for any fixed utopia point zU for which there exists an optimal

solution x∗ for problem (2.14) with w = w∗ and z = zU follows from Choo and Atkins (see

Theorem 4.24 of [34]). Because (2.18) is an equivalent reformulation of problem (2.14), then there

is an optimal solution (x∗, s∗) for problem (2.18) with w = w∗ and z = zU , where x∗ is the same

solution that is optimal for (2.14) with w = w∗ and z = zU . Because problem (2.18) with w = w∗

and z = zU meets the quadratic growth condition and the second order sufficiency conditions, then

by Proposition 3, there exists dual optimal (v∗, a∗) such that (x∗, s∗) is also optimal for problem

(2.19) with v = v∗ and a = a∗. Thus, x∗ is an optimal solution for a problem of the form (2.9)

where Q, q, and yr are given by (2.22) with v = v∗ and a = a∗, w = w∗, z = zU , and s∗ is taken

from the computed optimal solution (x∗, s∗) of problem (2.18).

In formulating the relaxed problem (2.19), one evaluates the tightness of the relaxation

in terms of the gap between the optimal value (2.19) and the optimal value (2.18). (Increasing
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tightness corresponds to decreasing gap.) The tightness of the relaxation depends on the multiplier

v and the penalty coefficient a > 0 of problem (2.19). The distributed approach of Section 2.4 also

requires the relaxation of the problem (2.4) coordination constraint h(x) = 0, resulting in problem

(2.5). In order to tighten the relaxation occurring in either problem (2.5) or problem (2.19), the

multiplier v and the penalty coefficients µ > 0 and a > 0 are iteratively updated using concepts

from Lagrangian coordination that are analyzed in Section 2.3. Without a loss of generality, the

Lagrangian coordination approach addresses the relaxation (2.5) of problem (2.4) in particular.

2.2.3 Generating a sample of weight vectors w

The need to construct finite samples of length p weight vectors w appears frequently in the

practical application of the weighted-sum scalarization. As observed at the end of Section 2.2.2, this

need also arises in the application of the quadratic scalarization as motivated by the dual of the

weighted-Chebyshev method.

The goal in this section is to describe the generation of w-samples in terms of probability

spaces. From probability theory (see, e.g., [48]), a probability space has associated with it a sample

space Ω, a collection E of subsets K ⊆ Ω called events, and a probability function P : E → [0, 1]

assigning a probability that a sampled point is contained in each event K ∈ E .

The collection of events E satisfies certain rules such as

1. ∅ ∈ E ,

2. K ∈ E implies Ω\K ∈ E ,

3. ∪i∈IKi ∈ E whenever Ki ∈ E for each i ∈ I. (I is a countable index set.)

The probability function P : E → [0, 1] is defined so that

1. P is additive under taking disjoint unions P (∪i∈IKi) =
∑
i∈I P (Ki), and

2. P (Ω) = 1.

Two sample spaces Ω are considered. In the continuous setting, define

Wp :=

{
w ∈ Rp> :

p∑
i=1

wi = 1

}
,
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where p ∈ Z, p ≥ 2, is the length of each weight vector. In the discrete setting, define the sample

space

WN,p :=

{
w : wi ∈

{
k

N
, k = 0, . . . , N

}
for i = 1, . . . , p, and

p∑
i=1

wi = 1

}
,

where p ∈ Z, p ≥ 2, is the length of each weight vector and N ∈ Z, N ≥ 1, is a parameter specifying

the refinement of the discretization. (That is, each element of WN,p is associated with an ordered

p-tuple of nonnegative integers such that the p components sum to N .)

We consider three probability spaces, where each probability space corresponds to a sampling

technique.

1. Let Ω = Wp, and let E = 2Ω where 2Ω is the set of all subsets of Ω. Let w be generated by

taking p uniformly sampled real numbers from the interval (0, 1) ⊂ R and then normalizing so

that
∑p
i=1 wi = 1. Although the probability function P is not specified here, insight into P

may be obtained from the left plot of Fig. 3 depicting a sample of weight vectors generated in

this manner for p = 3.

2. Let Ω = WN,p. Combinatorially, we have |WN,p| =
(
N+p−1
p−1

)
. If E = 2Ω, then P may be

defined in a number of ways. One definition of P is induced from the assumption that each

outcome of WN,p is equally likely to be sampled, that is, define P ({w}) := 1
|WN,p| for each

singleton event {w} where w ∈ Ω. This definition of P gives a uniform distribution on the

probability space. The possible sample points are depicted in the center plot of Fig. 3.

3. Let Ω =Wp. The collection of events E is generated by ∅ and all subsets S ⊆ Wp having the

following form:

(a) Define the p× p matrix Bk by

Bk[i, j] :=



1
2 i = j 6= k

1 i = j = k

1
2 i 6= j, j = k

0 otherwise.
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Figure 2.3: Three sampling techniques demonstrated

For example, for p = 4 and k = 2, we have

B2 =



1
2

1
2 0 0

0 1 0 0

0 1
2

1
2 0

0 1
2 0 1

2


.

(b) For n ∈ Z, n ≥ 0, define S := Conv(B), where p × p matrix B = Bi1Bi2 · · ·Bin ,

i1, . . . , in ∈ {1, . . . , p} and Conv(·) is the operation of taking the convex hull of a set

of vertices given by the rows of matrix B. In the case where n = 0, set B = I, the p× p

identity matrix.

The probability function P is uniquely determined once the values of P (K) are specified for

the events of the above form K = S such that the probability function requirements are not

violated. The probabilities P (K) for K not of the above form K = S may be inferred from the

requirements of the probability function P . For p = 3, the subsets S ⊆ Wp are visualized as a

nested pattern resembling the Sierpinski triangle. This is evident from the right plot of Fig. 3

whose points depict the barycenters of sets having the above form S. These same points may

be taken as the generated weight vectors w.

46



2.3 Lagrangian coordination

In the formulation of MOP (2.1), a distinction is made between the decomposable constraint

x ∈ X :=
∏m
i=1Xi and the coordination constraint h(x) = 0. The latter includes constraints that are

necessary for enforcing consistency between different subproblem solutions in the presence of inter-

subproblem coupling; other constraints included in h(x) = 0 result from the SOP reformulation

(2.18). Any distributed solution approach is based on a decomposition X :=
∏m
i=1Xi; any other

constraint h(x) = 0 must be relaxed under decomposition. In this section, an iterative Lagrangian

coordination technique is analyzed for solving the scalarized problem (2.4) by relaxing the constraint

h(x) = 0 and incorporating it into the objective function as augmented Lagrange terms. Due to the

intended use of iterative, distributed computation techniques, the Lagrangian coordination technique

is analyzed under the assumption that solution x updates are computed inexactly.

By setting f := fs, problem (2.4) is rewritten slightly for notational simplicity in the

following manner:

min
x

f(x)

s.t. h(x) = 0

x ∈ X.

(2.24)

Assuming that X is a convex set and that f and h are continuously differentiable, we examine

iterative approaches to generating a sequence
{

(xk,vk)
}∞
k=1

of approximations to (x∗,v∗), where

(x∗,v∗) satisfies the necessary conditions of optimality for problem (2.24) given by

[
∇f(x∗) + (v∗)T∇h(x∗)

]
(x− x∗) ≥ 0 for all x ∈ X (2.25)

h(x∗) = 0. (2.26)

After taking the augmented Lagrangian relaxation of problem (2.24) given by

min
x

f(x) + vTh(x) +
µ

2
‖h(x)‖22

s.t. x ∈ X,
(2.27)
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the following stationary point condition for problem (2.27) satisfied by x̃ ∈ X may be stated:

[
∇f(x̃) + (v + µh(x̃))T∇h(x̃)

]
(x− x̃) ≥ 0 for all x ∈ X, (2.28)

where v and µ are treated as fixed parameters.

The following proposition proven in Li et al. [120] states conditions on the sequence{
(xk,vk)

}∞
k=1

under which a critical pair (x∗,v∗) may be computed; the pair (x∗,v∗) is critical

in the sense that it satisfies the necessary conditions of optimality (2.25) and (2.26) for problem

(2.24).

Proposition 4. For problem (2.24), let the objective function f and constraint function h be con-

tinuously differentiable, and the set X ⊆ Rn be closed and convex. Given starting values v1 and µ1,

let a sequence
{

(x̃k, ṽk)
}∞
k=1

be generated satisfying the following assumptions for each k ≥ 1:

1. each x̃k is a global minimum for problem (2.27) with v = vk and µ = µk;

2. each multiplier vk is determined a priori and the sequence
{
vk
}∞
k=1

is bounded;

3. each penalty coefficient µk satisfies 0 < µk < µk+1; furthermore, limk→∞ µk =∞;

4. each ṽk is computed to satisfy

ṽk = vk + µkh(x̃k). (2.29)

If the sequence
{

(x̃k, ṽk)
}∞
k=1

has a limit point (x∗,v∗), then (x∗,v∗) satisfies the necessary con-

ditions of optimality (2.25) and (2.26) for problem (2.24). Furthermore, x∗ is a globally optimal

solution for problem (2.24).

When the third assumption of Proposition 4 that each x̃k, k ≥ 1, is a global minimum for

problem (2.27) with v = vk and µ = µk is weakened so that x̃k only satisfies the stationary point

condition (2.28), the following extension of Proposition 4 is stated and proven below in Proposition

5.

Proposition 5. For problem (2.24), let the objective function f and constraint function h be con-

tinuously differentiable, and the set X ⊆ Rn be closed and convex. Given starting values v1 and µ1,

let a sequence
{

(x̃k, ṽk)
}∞
k=1

be generated satisfying the following assumptions for each k ≥ 1:
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1. each x̃k satisfies the stationary point condition (2.28) for problem (2.27) with v = vk and

µ = µk;

2. each multiplier vk is determined a priori and the sequence
{
vk
}∞
k=1

is bounded;

3. each penalty coefficient µk satisfies 0 < µk < µk+1, and limk→∞ µk =∞;

4. each multiplier ṽk is computed by equation (2.29).

If the sequence
{

(x̃k, ṽk)
}∞
k=1

has a limit point (x∗,v∗), then (x∗,v∗) satisfies the necessary condi-

tions of optimality (2.25) and (2.26) for problem (2.24).

Proof. Due to (2.29), condition (2.28) may be rewritten for each k ≥ 1 as

[
∇f(x̃k) +

(
ṽk
)T ∇h(x̃k)

] (
x− x̃k

)
≥ 0 for all x ∈ X.

Let
{

(x̃k, ṽk)
}
k∈K be a subsequence converging to (x∗,v∗). The continuous differentiability of f

and h imply that [
∇f(x∗) + (v∗)

T ∇h(x∗)
]

(x− x∗) ≥ 0 for all x ∈ X

also holds. By the assumptions that sequence
{
ṽk
}∞
k=1

has a limit point v∗, sequence
{
vk
}∞
k=1

is

bounded, and limk→∞ µk =∞, it follows that h(x∗) = 0.

Propositions 4 and 5 suggest the iterative generation (as opposed to a priori generation) of

the multiplier sequence
{
vk
}∞
k=1

given by the following method of multipliers [56, 93, 10, 11] update

rule satisfying

vk+1 = vk + µkh(x̃k) k ≥ 1. (2.30)

In practical applications, update (2.30) is applied with the substitution x̃k = xk resulting in updates

satisfying

vk+1 = vk + µkh(xk) k ≥ 1 (2.31)

that are motivated by the approximate computations xk of x̃k. In order to gain insight into the

convergence of the sequence
{

(xk,vk)
}∞
k=1

satisfying (2.31), Proposition 6 is proven in the more

general context where xk is an approximation of x̃k for each k ≥ 1, but x̃k itself has no particular

meaning in the context of problem (2.27).
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Proposition 6. Let h : Rn → Rq, and µk ∈ R, k ≥ 1. If
{

(xk,vk)
}∞
k=1

is a sequence satisfying

(2.31) and
{
vk
}∞
k=1

converges, while
{

(x̃k, ṽk)
}∞
k=1

is a sequence satisfying (2.29) and

0 ≤
∥∥xk − x̃k

∥∥
2
< εk , k ≥ 1, lim

k→∞
εk = 0, lim

k→∞
µk
∥∥h(xk)− h(x̃k)

∥∥
2

= 0, (2.32)

then any limit point (x∗,v∗) of the sequence
{

(xk,vk)
}∞
k=1

is also a limit point of the sequence{
(x̃k, ṽk)

}∞
k=1

.

Proof. Let
{

(xk,vk)
}
k∈K be a subsequence converging to (x∗,v∗). By assumption (2.32),

∥∥xk − x̃k
∥∥

2
<

εk for each k ≥ 1, and εk → 0, and so
{
x̃k
}
k∈K converges to x∗. Also, combining (2.31) and (2.29)

yields ∥∥vk+1 − ṽk
∥∥

2
= µk

∥∥h(xk)− h(x̃k)
∥∥

2
k ≥ 1.

Since
{
µk
∥∥h(xk)− h(x̃k)

∥∥
2

}
k∈K converges to zero by assumption (2.32), and since

{
vk
}∞
k=1

con-

verges, it also follows that
{
vk − ṽk

}
k∈K converges to zero and so

{
ṽk
}
k∈K converges to v∗.

Thus, the limit point (x∗,v∗) of the sequence
{

(xk,vk)
}∞
k=1

is also a limit point of the sequence{
(x̃k, ṽk)

}∞
k=1

.

The assumption limk→∞ µk
∥∥h(xk)− h(x̃k)

∥∥
2

= 0 of Proposition 6 suggests that the rate-

of-increase of µk needs to be restrained, while the inexactness tolerance εk needs to vanish at a

sufficiently fast rate.

Propositions 4, 5, and 6 imply the convergence result stated in Corollary 2 addressing the

generation of
{
vk
}∞
k=1

using update (2.31) corresponding to inexact computations of xk, k ≥ 1.

Corollary 2. For problem (2.24), let the objective function f and the constraint function h be

continuously differentiable, and the set X ⊆ Rn be closed and convex. Given starting values v1 and

µ1 > 0, let a sequence
{

(xk,vk)
}∞
k=1

be generated satisfying (2.31),
{
vk
}∞
k=1

be convergent, and

limk→∞ µk = ∞, where µk > 0, k ≥ 1. If
{
x̃k
}∞
k=1

is a sequence whose elements x̃k, k ≥ 1, each

satisfy the stationary point condition (2.28) with v = vk and µ = µk, and (2.32) holds, then any

limit point (x∗,v∗) of the sequence
{

(xk,vk)
}∞
k=1

satisfies the necessary conditions for optimality

(2.25) and (2.26) for problem (2.24). Furthermore, if each x̃k, k ≥ 1 is a globally optimal solution

for problem (2.27) with v = vk and µ = µk, then x∗ is also a globally optimal solution for problem

(2.24).
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The generation of the sequence
{

(xk,vk)
}∞
k=1

, where xk is optimal for each problem (2.27),

k ≥ 1, with v = vk, µ = µk, vk+1 = vk + µkh(xk), and limk→∞ µk = ∞, corresponds to the

well-known method of multipliers. The textbooks of Bertsekas [10, 11] provide convergence analyses

of various strengths corresponding to different sets of assumptions on f , h, X, and on the accuracy

of updates xk, k ≥ 1. For example, under the assumption of twice continuous differentiability on

f , h, and the assumption X ⊆ Rn, proofs are provided for a linear rate of convergence to a local

minimum–Lagrange multiplier pair (x∗,v∗) for the sequence generated by the method of multipliers.

The conditions for the linear rate of convergence are proven most rigorously under the assumptions

that f , h are twice continuously differentiable, X = Rn, and updates xk, k ≥ 1 are exact. Corollary

2 provides an extension of these results with a study of convergence due to inexact updates xk,

k ≥ 1, where xk ∈ X ⊆ Rn. Each update xk, k ≥ 1, approximates either a globally optimal solution

for problem (2.27) with v = vk and µ = µk, or more generally, xk approximates a point satisfying

the stationary point condition (2.28) for the same problem.

In this section, we make no assumption on the convexity of the objective function of problem

(2.27), and so the convergence analysis for iterative solution approaches for solving problem (2.27)

focuses on the convergence of the iteration sequences
{
xk
}∞
k=1

to solutions x, where each xk, k ≥

1, (approximately) satisfies the stationary point condition (2.28). This continues to be the case

in Section 2.4, where a distributed solution approach is applied for computing approximations of

solutions satisfying the stationary point condition (2.28) for problem (2.27).

2.4 Distributed computation using the block coordinate de-

scent (BCD) method

Once a solution technique is established for solving the SOP reformulation (2.4) using refer-

ences to the relaxed problem (2.5), then (2.5) may be solved in a distributed manner. The decompos-

ability of problem (2.5) is stated through (2.6). The goal of this section is to study the convergence

of an existing Gauss-Seidel approach, known as the block coordinate descent (BCD) method, for the

distributed computation of optimal solutions for problem (2.6); the convergence analysis extends

existing analyses addressing certain generalized convexity assumptions that are found in [49, 114].

Given a decomposable SOP of the form (2.6) and a starting solution x0, BCD generates a sequence
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Algorithm 1 The BCD method

function BCD(f , X1 × · · · ×Xm, I, x0)
ẍ← x0

for k = 1, 2, . . . do
i← Ik, ẍi ← argmin

xi∈Xi
f(xi, ẍ¬i), xk ← ẍ

end for
return

{
xk
}∞
k=1

end function

{
xk
}∞
k=1

by applying the following updates for k ≥ 1 satisfying:

i = I(k), xki ∈ argmin
xi∈Xi

f(xi, ẍk−1
¬i ), xk¬i = xk−1

¬i , (2.33)

where f( · , ẍ¬i) : Rni → R is a function parameterized by a fixed ẍ¬i and I is a sequence whose

elements take on index values i = 1, . . . ,m with the kth element referenced by I(k). Thus, each

element xk, k ≥ 1, corresponds to an update of a single block coordinate xi, i = I(k), obtained as

an optimal solution of the subproblem

min
xi∈Xi

f(xi, ẍk−1
¬i ). (2.34)

In this section, I is assumed to give the fixed cyclic order of indices given by

I := {1, 2, . . . ,m, 1, 2, . . .} . (2.35)

That is, i := I(k) satisfies k − 1 ≡ i − 1 mod m. Generalizations of the index sequence (2.35) are

studied in Tseng [114]. The BCD method as described above is stated in Algorithm 1.

The presence of limit points x in the BCD sequence
{
xk
}∞
k=1

, and their properties in the

context of problem (2.6) are well studied [9, 49, 114]. Under the assumption that f is a differentiable

convex function, the optimality of x for problem (2.6) is examined (see, for example, [9]), while under

more generalized convexity assumptions, the stationary point condition

∇xf(x) (x− x) ≥ 0 for all x ∈ X (2.36)

corresponding to necessary conditions of optimality over convex set X is examined (see, for example,

[49]).
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In Proposition 7, convergence results similar to those given in [49, 114] are stated and proven

in terms of the limiting behavior of vicinities within a sequence, rather than in terms of the point-

wise limiting behavior within a sequence. Given a sequence
{
xk
}∞
k=1

and a subsequence
{
xk
}
k∈K ,

a vicinity sequence that is based on the subsequence
{
xk
}
k∈K within the sequence

{
xk
}∞
k=1

is a

sequence {(
xk−tl , . . . ,xk−1,xk,xk+1, . . . ,xk+tu

)}
k∈K

of finite-tuples, i.e., vicinities, of the form

(
xk−tl , . . . ,xk−1,xk,xk+1, . . . ,xk+tu

)
, k ∈ K,

where tl, tu ∈ Z≥ and k − tl ≥ 1. Each vicinity
(
xk−tl , . . . ,xk−1,xk,xk+1, . . . ,xk+tu

)
, k ∈ K,

includes, i.e., is based on some element xk, k ∈ K, within the subsequence
{
xk
}
k∈K , and consists

of consecutive neighbors within the original sequence
{
xk
}∞
k=1

.

Using the concept of the vicinity sequence, the convergence of the sequence
{
xk
}∞
k=1

gen-

erated by BCD applied to (2.6) with a starting point x0 ∈ X is examined under the following BCD

Problem Assumptions and BCD Sequence Assumptions:

BCD Problem Assumptions:

1. The objective function f : Rn → R is continuously differentiable;

2. The local constraint sets Xi, i = 1, . . . ,m, are closed and convex;

3. Given an initial point x0 ∈ X, the level set X0 defined by

X0 :=
{
x ∈ X : f(x) ≤ f(x0)

}
(2.37)

is compact;

BCD Sequence Assumptions:

1. The block index sequence I is defined as in (2.35);

2. The sequence
{
xk
}∞
k=1

satisfies (2.33) for all k ≥ 1.

The BCD Problem Assumption 3 and the BCD Sequence Assumption 1 in particular allow for the

extraction of the following vicinity subsequence from
{
xk
}∞
k=1

.
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Subsequence Extractions:

1.
{
xk
}
k∈K1

, K1 ⊆ {1, 2, . . .}, converges to x, a limit point of
{
xk
}∞
k=1

;

2.
{
xk
}
k∈K2

, K2 ⊆ K1, is such that each element xk, k ∈ K2, is the result of a specific block

coordinate xt update for some fixed t ∈ {1, . . . ,m};

3.
{
xk
}
k∈K3

, K3 ⊆ K2, is such that a vicinity sequence

{(
xk−t+1, . . . ,xk, . . . ,xk−t+m

)}
k∈K3

(2.38)

based on
{
xk
}
k∈K3

within
{
xk
}∞
k=1

converges to a limit vicinity(
x1,x2, . . . ,xm

)
for some t ∈ {1, . . . ,m}.

A limit vicinity
(
x1,x2, . . . ,xm

)
of a vicinity sequence (2.38) extracted from a sequence

{
xk
}∞
k=1

is

referred to as a limit vicinity
(
x1,x2, . . . ,xm

)
of
{
xk
}∞
k=1

for brevity.

The vicinity sequence terminology clarifies the connection between the optimality conditions

for the subproblems (2.34) that are directly enforced on the BCD-computed solutions xk, k ≥ 1,

and any satisfaction of optimality conditions for the underlying AiO problem (2.6) that is indirectly-

enforced on limit points x of
{
xk
}∞
k=1

. Consequently, this terminology results in an easier statement

of BCD convergence proofs and additional insight into BCD convergence.

The following lemma gives preliminary results concerning limit vicinities(
x1,x2, . . . ,xm

)
of a sequence

{
xk
}∞
k=1

generated with BCD.

Lemma 3. Given x0 ∈ X, let a sequence
{
xk
}∞
k=1

be generated with BCD applied to problem

(2.6). If, given the same x0 ∈ X, problem (2.6) satisfies the BCD Problem Assumptions and the

sequence
{
xk
}∞
k=1

satisfies the BCD Sequence Assumptions, then the following claims hold for any

limit vicinity
(
x1,x2, . . . ,xm

)
of
{
xk
}∞
k=1

:

1. f(x1) = f(x2) = · · · = f(xm),

2. x`−1
i = x`i for i = 1, . . . ,m, ` = 2, . . . ,m, and i 6= `.

Proof. Claim 1 follows from Proposition 2 of [49]. To prove claim 2, first observe that the consecutive

elements within each vicinity
(
xk−t+1, . . . ,xk, . . . ,xk−t+m

)
, k ∈ K3, correspond to consecutive

elements within the original BCD sequence
{
xk
}∞
k=1

. Second observe that, by the definition of
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a BCD update, each element xk, k ≥ 1, of the BCD sequence
{
xk
}∞
k=1

differs from its following

element xk+1 in at most one block coordinate, and so any two consecutive elements within each

vicinity(
xk−t+1, . . . ,xk, . . . ,xk−t+m

)
, k ∈ K3, differ in at most one block coordinate. Specifically, any

two consecutive elements xk−t+i−1 and xk−t+i, k ∈ K3, i = 2, . . . ,m, differ only in the values of

their block coordinates xi; this follows by the role of t in Subsequence Extractions 2 and 3. These

observations hold true in the limit
(
x1,x2, . . . ,xm

)
, and the claim of part 2 follows.

The statement of Proposition 7 requires the definition of pseudoconvexity. A continuously

differentiable function f : Rn → R is said to be pseudoconvex over a convex set X ⊆ Rn if the

implication

∇f(x1)(x2 − x1) ≥ 0 =⇒ f(x2) ≥ f(x1)

holds for all x1,x2 ∈ X. Of particular interest is the pseudoconvexity condition given by:

f(x`1, . . . ,x
`
a−1, · , . . . , · ,x`b+1, . . . ,x

`
m) :

∏b
i=aRni → R,

for each x`, a ≤ ` ≤ b, is pseudoconvex over
∏b
i=aXi,

(2.39)

where x` is a component of some limit vicinity
(
x1,x2, . . . ,xm

)
and a, b ∈ Z, 1 ≤ a ≤ b ≤ m, are

bounding indices.

Proposition 7. Given x0 ∈ X, let a sequence
{
xk
}∞
k=1

be generated with BCD applied to problem

(2.6). With the same x0 ∈ X, let problem (2.6) satisfy the BCD Problem Assumptions and let the

sequence
{
xk
}∞
k=1

satisfy the BCD Sequence Assumptions. If the pseudoconvexity condition (2.39)

holds for some limit vicinity (x1, . . . ,xm) of
{
xk
}∞
k=1

with bounding indices a, b ∈ Z, 1 ≤ a ≤ b ≤ m,

then, for each `, a ≤ ` ≤ b, we have

f(x`1, . . . ,x
`
m) ≤ f(x`1, . . . ,x

`
a−1,xa, . . . ,xb,x

`
b+1, . . . ,x

`
m)

for all xi ∈ Xi, i = a, . . . , b.
(2.40)

Furthermore, the following stationary point conditions are satisfied:
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1. for a > 1,

∇xa−1,xa,...,xbf(xa−1)



xa−1 − xa−1
a−1

xa − xa−1
a

...

xb − xa−1
b


≥ 0

for all xi ∈ Xi, i = a− 1, a, . . . , b,

(2.41)

2. for b < m,

∇xa,...,xb,xb+1
f(xb)



xa − xba
...

xb − xbb

xb+1 − xbb+1


≥ 0

for all xi ∈ Xi, i = a, . . . , b, b+ 1.

(2.42)

Proof. Taking the optimality of xb over xb ∈ Xb, implied by the inequality

f(xb1, . . . ,x
b
m) ≤ f(xb1, . . . ,x

b
b−1,xb,x

b
b+1, . . . ,x

b
m) for all xb ∈ Xb (2.43)

as the basis case, it is shown inductively for ` = a, . . . , b that

f(x`1, . . . ,x
`
m) ≤ f(x`1, . . . ,x

`
`−1,x`, . . . ,xb,x

`
b+1, . . . ,x

`
m)

for all xi ∈ Xi, i = `, . . . , b.
(2.44)

Assuming the inductive hypothesis (2.44) is true for some `, a < ` ≤ b, we show an analogous

inequality for ` − 1. Using the facts that f(x`−1) = f(x`) and x`−1
i = x`i for i 6= ` (Lemma 3),

inequality (2.44) becomes

f(x`−1
1 , . . . ,x`−1

m ) ≤ f(x`−1
1 , . . . ,x`−1

`−1,x`, . . . ,xb,x
`−1
b+1, . . . ,x

`−1
m )

for all xi ∈ Xi, i = `, . . . , b.
(2.45)

The inequality defining optimality at x`−1 over X`−1 given by

f(x`−1
`−1,x

`−1
¬`−1) ≤ f(x`−1,x

`−1
¬`−1) for all x`−1 ∈ X`−1, (2.46)

56



together with inequality (2.45) imply the following necessary conditions for minimization on the

convex set
∏b
i=`−1Xi given by

∇x`−1,...,xbf(x`−1)


x`−1 − x`−1

`−1

...

xb − x`−1
b

 ≥ 0 for all x`−1 ∈ X`−1, . . . ,xb ∈ Xb. (2.47)

The application of the pseudoconvexity condition (2.39) to inequality (2.47) implies the desired

result (2.44) for `− 1. Thus, inequality (2.40) has been verified once ` = a is taken and it is noted

by Lemma 3 that f(xa) = f(xa+1) = · · · = f(xb) and xaj = xa+1
j = · · · = xbj for j < a and j > b.

The stationary point condition (2.41) is proven by taking one more induction step from

` = a to ` = a−1, and identifying the resulting stationary point condition (2.47) with the stationary

point condition (2.41) that is desired.

The stationary point condition (2.42) is proven as the necessary condition for optimality

over the convex set
∏b+1
i=a Xi associated with the optimality implied by the following two inequalities.

The first inequality takes the form (2.40) with ` = b. The second inequality is obtained from the

inequality defining optimality at xb+1 over Xb+1 given by

f(xb+1
b+1,x

b+1
¬b+1) ≤ f(xb+1,x

b+1
¬b+1) for all xb+1 ∈ Xb+1. (2.48)

Inequality (2.48) becomes

f(xbb+1,x
b
¬b+1) ≤ f(xb+1,x

b
¬b+1) for all xb+1 ∈ Xb+1 (2.49)

by Lemma 3. Inequality (2.40) with ` = b and inequality (2.49) imply the stationary point condition

(2.42).

Proposition 7 yields conditions under which BCD produces a solution x∗ that is either

optimal for (2.6) or otherwise satisfies the stationary point condition (2.36). This is stated below in

Corollary 3. Analogues for implications 1 and 3 of Corollary 3 appear in [49] and [114], respectively,

while implication 2 is new.

Corollary 3. Given a starting point x0 ∈ X, let a sequence
{
xk
}∞
k=1

be generated with BCD applied
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to problem (2.6). With the same x0 ∈ X, let problem (2.6) satisfy the BCD Problem Assumptions

and let the sequence
{
xk
}∞
k=1

satisfy the BCD Sequence Assumptions. Let the pseudoconvexity

condition (2.39) hold for some limit vicinity (x1, . . . ,xm) of
{
xk
}∞
k=1

for some bounding indices a,

b, 1 ≤ a ≤ b ≤ m.

1. If a = 1, b = m, then each point x`, ` = 1, . . . ,m, is a globally optimal solution for problem

(2.6).

2. If a = 2, b = m, then the point x1 satisfies the stationary point condition

∇x1,...,xmf(x1)


x1 − x1

1

...

xm − x1
m

 ≥ 0 for all xi ∈ Xi, i = 1, . . . ,m (2.50)

for problem (2.6).

3. If a = 1 and b = m− 1, then the point xm−1 satisfies the stationary point condition

∇x1,...,xmf(xm−1)


x1 − xm−1

1

...

xm − xm−1
m

 ≥ 0 for all xi ∈ Xi, i = 1, . . . ,m (2.51)

for problem (2.6).

Conditions other than pseudoconvexity, such as the uniqueness of minimization for the

subproblems (2.34), have also been studied [114]. Proposition 8 is extracted from the proof of

Theorem 4.1(c) of [114] and is used in Corollary 4 as a bridge between the stationary point conditions

(2.41) and (2.42).

Proposition 8. Given a starting point x0 ∈ X, let a sequence
{
xk
}∞
k=1

be generated with BCD

applied to problem (2.6). With the same x0 ∈ X, let problem (2.6) satisfy the BCD Problem As-

sumptions and let the sequence
{
xk
}∞
k=1

satisfy the BCD Sequence Assumptions. If, for some limit

vicinity (x1, . . . ,xm) of
{
xk
}∞
k=1

, each function f( · ,xi¬i) : Rni → R, 1 ≤ c < i < d ≤ m, is uniquely

minimized over xi ∈ Xi, then xc = xc+1 = · · · = xd−1. Setting x := xc = xc+1 = · · · = xd−1, the
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stationary point condition

∇xc,...,xdf(x)


xc − xc

...

xd − xd

 ≥ 0 for all x ∈ X (2.52)

is satisfied for problem (2.6).

Proof. By Lemma 3, f(xi−1) = f(xi) and xi−1
¬i = xi¬i for i = 2, . . . ,m. Thus, f(xi−1

i ,xi¬i) =

f(xi−1
i ,xi−1

¬i ) = f(xii,x
i
¬i). Due to the assumption that f( · ,xi¬i) is uniquely minimized over xi ∈

Xi for i = c + 1, . . . , d − 1, we have xi−1
i = xii for i = c + 1, . . . , d − 1. Thus, it follows that

xc = xc+1 = · · · = xd−1 and so define x := x`, for any ` = c, . . . , d− 1. Then

f(xi,x¬i) ≤ f(xi,x¬i) for all xi ∈ Xi, (2.53)

for each i = c, . . . , d− 1. It remains to show that inequality (2.53) also holds for i = d. To this end,

consider the inequality implied by optimality over Xd given by

f(xdd,x
d
¬d) ≤ f(xd,x

d
¬d) for all xd ∈ Xd. (2.54)

Once Lemma 3 is used to substitute f(xd) with f(xd−1) and xd¬d with xd−1
¬d in (2.54), inequality

(2.53) follows for i = d since xd−1 = x. Combining the necessary conditions of optimality at x

implied by the inequalities (2.53), i = c, . . . , d, we have the desired inequality (2.52).

Corollary 4. Given a starting point x0 ∈ X, let a sequence
{
xk
}∞
k=1

be generated with BCD applied

to problem (2.6). With the same x0 ∈ X, let problem (2.6) satisfy the BCD Problem Assumptions

and let the sequence
{
xk
}∞
k=1

satisfy the BCD Sequence Assumptions. If, for some limit vicinity

(x1, . . . ,xm) of
{
xk
}∞
k=1

and for some indices c, d ∈ Z, 1 ≤ c < d ≤ m, the pseudoconvexity

condition (2.39) is satisfied with the bounding indices a = 1, b = c, and also with a = d, b = m;

and each function f( · ,xi¬i) : Rni → R, c < i < d, is uniquely minimized over xi ∈ Xi, then the

stationary point condition (2.36) is satisfied for problem (2.6) with x := xc = xc+1 = · · · = xd−1.
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Proof. By Proposition 7, the stationary point condition (2.42) with a = 1 and b = c given by

∇x1,...,xc,xc+1
f(xc)



x1 − xc1
...

xc − xcc

xc+1 − xcc+1


≥ 0

for all xi ∈ Xi, i = 1, . . . , c, c+ 1,

(2.55)

and the stationary point condition (2.41) with a = d and b = m given by

∇xd−1,xd,...,xmf(xd−1)



xd−1 − xd−1
d−1

xd − xd−1
d

...

xm − xd−1
m


≥ 0

for all xi ∈ Xi, i = d− 1, d, . . . ,m,

(2.56)

for problem (2.6) are met. By Proposition 8, the stationary point condition (2.52) holds with

x = xc = · · · = xd−1. Setting x := xc = · · · = xd−1, the stationary point conditions (2.52), (2.55),

and (2.56) are combined yielding (2.36).

Propositions 7, 8 and Corollaries 3, 4 build on the foundations established in [49, 114] in

the following manner:

1. The concepts of the vicinity sequence and the limiting vicinity are made more explicit, facil-

itating the development of proofs and improving theoretical insight. The role of the pseudo-

convexity condition (2.39) as a means of “gluing together” stationary point conditions is made

more clear.

2. The proof of inequality (2.40) in Proposition 7 is fundamentally different from the proof es-

tablishing the analogous inequality in Theorem 4.1 of [114]. The latter proof naturally leads

to the stationary point condition (2.42), whose analogs are present in Theorem 4.1(a) in [114];

the proof given in Proposition 7 leads more naturally to the stationary point condition (2.41),

which is new.

3. Finally, the integration of the uniqueness of minimization conditions (Proposition 8) and the
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pseudoconvexity conditions (2.39) allows for the “gluing together” of the stationary point

condition (2.52) with the two stationary point conditions (2.41) and (2.42). This integration

as accomplished in Corollary 4 is also new.

2.5 Multi-Objective Decomposition Algorithms (MODAs)

The developments of Sections 2.2, 2.3, and 2.4 are now ready to be integrated and applied

for the distributed computation of efficient points in a multiobjective optimization setting. The

integrated application of Lagrangian coordination and the BCD method to an SOP reformulation

(2.4) of MOP (2.1) is now addressed.

2.5.1 Integrating Lagrangian coordination with the BCD method

The goal of this subsection is to state and analyze an algorithm for generating a sequence{
xk
}∞
k=1

using BCD applied to problem (2.6) while applying updates of v and µ to tighten the

relaxation (2.6) of problem (2.4). Motivated by an integration of the convergence results given in

Corollaries 2, 3, and 4, Alg. 2 is stated. The first undefined argument τ1 > 0 is used to generate a

monotonically nonincreasing sequence
{
τk
}∞
k=1

of positive convergence tolerance values. The second

undefined argument ζ specifies the block update index i at which updates of v and µ can occur.

Proposition 9 provides conditions under which the sequence
{

(xk,vk)
}∞
k=1

generated by

Alg. 2 converges to a pair (x∗,v∗) satisfying the necessary conditions of optimality (2.25) for problem

(2.4).

Proposition 9. Let a sequence
{

(xk,vk)
}∞
k=1

be generated by Alg. 2 applied to problem (2.4), and

let
{

(xk,vk)
}∞
k=1

converge to (x∗,v∗). Let the decomposable relaxation (2.6) of problem (2.4) satisfy

the BCD Problem Assumptions for each v = vk, µ = µk, k ≥ 1, and for all starting points x0 ∈ X.

Define Lv,µ :
∏m
i=1Rni → R as in Alg. 2, and define K := {k1, k2, . . . , } ⊆ {1, 2 . . . , } as

the sequence of indices at which the calls to CheckConvergence within Alg. 2 return true. Let each

(x1,kj , . . . ,xm,kj ), kj ∈ K, denote a limit vicinity of the sequence computed with BCD applied to

problem (2.6) with v = vkj , µ = µkj . If there exists a sequence
{

(x1,kj , . . . ,xm,kj )
}
kj∈K

such that

the following assumptions hold:

1. limj→∞
∥∥xkj − xζ,kj

∥∥
2

= 0, where ζ such that 1 ≤ ζ ≤ m is an input to Alg. 2.
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2. For all (x1,kj , . . . ,xm,kj ), kj ∈ K, there exist indices c, d ∈ Z, such that 1 ≤ c ≤ ζ < d ≤ m

and

(a) pseudoconvexity condition (2.39) holds for both a = 1, b = c and a = d, b = m with

f = Lv,µ and (x1, . . . ,xm) = (x1,kj , . . . ,xm,kj );

(b) Lv,µ(xi,x
i,kj
¬i ) is uniquely minimized over Xi for c < i < d;

3. 0 < µkj < µkj+1 for all j ≥ 1, limj→∞ µkj =∞ and

limj→∞ µkj
∥∥h(xkj )− h(xζ,kj )

∥∥
2

= 0,

then (x∗,v∗) satisfies the necessary conditions of optimality (2.25) for problem (2.4). If assumption 2

is replaced with the alternative assumption that for all (x1,kj , . . . ,xm,kj ), kj ∈ K, the pseudoconvexity

condition (2.39) holds for a = 1, b = m, then x∗ is optimal for problem (2.4).

Proof. The BCD Sequence Assumptions as directly enforced in Alg. 2, the BCD Problem Assump-

tions, and assumption 2 imply by Corollary 4 that each limit point xζ,kj , kj ∈ K, satisfies the

stationary point condition (2.28) for problem (2.6) with v = vkj and µ = µkj (and each xζ,kj ,

1 ≤ ζ ≤ m, is optimal for problem (2.6) with v = vkj and µ = µkj for every kj ∈ K under the

alternative version of assumption 2 by Corollary 3). Once assumptions 1 and 3 are added, it follows

by Corollary 2 that (x∗,v∗) satisfies the necessary conditions of optimality (2.25) for problem (2.4)

(and x∗ is globally optimal for (2.4) under the alternative version of assumption 2).

2.5.2 Algorithm

The Decision Space Decomposition Algorithm (DSDA) is now stated for computing efficient

solutions for the AiO decomposable problem (2.2) using computations based on the subproblems

(2.3). First, a quadratic scalarization of the form (2.19) is applied to the AiO decomposable problem

(2.2). The resulting problem is given by

min
x1∈X1,...,xm∈Xm,s=0

1T
[
Dw

(
f(x1, . . . ,xm)− zU

)
+ s
]

s.t.

 UT
[
Dw

(
f(x1, . . . ,xm)− zU

)
+ s
]

h(x1, . . . ,xm)

 = 0,

(2.57)
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Algorithm 2 BCD and Lagrange Coordination Algorithm.

function Coor(f ,
∏m
i=1Xi, h, x0, v1, µ1, τ1, ζ)

ẍ← x0, Lv,µ(x)← f(x) + v1h(x) + µ1

2 ‖h(x)‖22
for k = 1, 2, . . . do

i← (k − 1 mod m) + 1, ẍi ← argmin
xi∈Xi

Lv,µ(xi, ẍ¬i), xk ← ẍ

if CheckConvergence(k, ζ, τk) then

vk+1 ← vk + µk h(xk), µk+1 ← cµk, 1 ≤ c ≤ 10, τk+1 ← τk

2

Lv,µ(x)← f(x) + vk+1h(x) + µk+1

2 ‖h(x)‖22
else

vk+1 ← vk, µk+1 ← µk, τk+1 ← τk

end if
end for
return

{(
xk,vk

)}∞
k=1

end function
function CheckConvergence(k, ζ, τk)

return (k > 2m and
∑m−1
i=0

∥∥xk−i−m − xk−i
∥∥

2
< τk and k − 1 ≡ ζ − 1 mod m)

end function

where zU ∈ Rp is a reference utopia point. The single objective reformulation (2.57) decomposes

into the subproblems

min
xi∈Xi

1T
[
Dw

(
f(xi, ẍ¬i)− zU

)
+ s̈
]

s.t.

 UT
[
Dw

(
f(xi, ẍ¬i)− zU

)
+ s̈
]

h(xi, ẍ¬i)

 = 0,

(2.58)

for i = 1, . . . ,m, with the addition of one more subproblem given by

min
s=0

1T
[
Dw

(
f(ẍ1, . . . , ẍm)− zU

)
+ s
]

s.t.

 UT
[
Dw

(
f(ẍ1, . . . , ẍm)− zU

)
+ s
]

h(ẍ1, . . . , ẍm)

 = 0.

(2.59)

DSDA consists of the repeated application of Alg. 2 to the subproblems (2.58), i = 1, . . . ,m, and to

the subproblem (2.59), while applying augmented Lagrangian relaxation to the equality constraint UT
[
Dw

(
f(x1, . . . ,xm)− zU

)
+ s
]

h(x1, . . . ,xm)

 = 0 of (2.57). Based on the use of the quadratic scalariza-

tion as analyzed in Proposition 3, Proposition 10 states conditions under which the points x∗ ∈ E

computed by Alg. 3 applied to the AiO decomposable problem (2.2) are weakly efficient for (2.2).
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Algorithm 3 Decision Space Decomposition Algorithm (DSDA)

function DSDA(f ,
∏m
i=1Xi, h, W, x0, v1, µ1, zU , τ1, ζ)

E ← ∅, S ← {s ∈ Rp : s = 0}
for w ∈ W do

U ← OrthonormalBasisMatrix( {w}⊥ ), Dw ← DiagonalMatrix( w )
f(x1, . . . ,xm, s)← 1T

[
Dw

(
f(x1, . . . ,xm)− zU

)
+ s
]

h(x1, . . . ,xm, s)←
[
UT

[
Dw

(
f(x1, . . . ,xm)− zU

)
+ s
]

h(x1, . . . ,xm)

]
s0 ← 0
(x, s,v)← LimitPoint( Coor(f , (

∏m
i=1Xi)× S, h, (x0, s0), v1, µ1, τ1, ζ) )

E ← E ∪ {x}
end for
return E

end function

Proposition 10. During the execution of Alg. 3, let the AiO decomposable MOP (2.2) be reformu-

lated as problem (2.57) for some fixed weight w > 0 and utopia point zU , and let problem (2.57)

meet the quadratic growth condition and the second order sufficiency conditions for optimality. If the

application of Alg. 2 applied to problem (2.57) with the subproblem decomposition (2.58) and (2.59)

produces an optimal solution (x∗, s∗) to problem (2.57), then x∗ is weakly efficient for MOP (2.1).

The optimality of (x∗, s∗) for (2.57) depends, of course, on certain conditions being met

during the execution of Alg. 2. Sufficient conditions for (x∗, s∗) to be optimal for (2.57) are given

in Proposition 9.

The second algorithm OSDA computes solutions for a decomposable MOP of the form

min
x1,...,xm

[f1(x1), . . . , fm(xm)]

s.t. h (x1, . . . ,xm) = 0

xi ∈ Xi, i = 1, . . . ,m.

(2.60)

The AiO problem (2.60) is a specialization of the AiO problem (2.2) in that the decision space

decomposition
∏m
i=1Rni is associated with an objective space decomposition

∏m
i=1Rpi appearing

in a partition f := [f1, . . . , fm], fi : Rni → Rpi , i = 1, . . . ,m, of the objective functions. OSDA

computes efficient solutions for the AiO decomposable problem (2.60) using computations based on
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the subproblem decomposition

min
xi

fi(xi)

s.t. h(xi, ẍ¬i) = 0

xi ∈ Xi.

(2.61)

The computations are performed on the following single-objective reformulations of (2.60) and (2.61).

First, apply a quadratic scalarizations fqi to each fi defined by

fqi :=
1

2
(fi(xi)− yri )

TQi(fi(xi)− yri ) + (fi(xi)− yri )
Tqi (2.62)

for i = 1, . . . ,m, where Qi is a pi×pi positive semidefinite matrix, qi is a pi×1 vector, and yri ∈ Rpi

is a reference point. After applying the scalarizations (2.62), the AiO decomposable problem (2.60)

becomes

min
x1,...,xm

[fq1(x1), . . . , fqm(xm)]

s.t. h (x1, . . . ,xm) = 0

xi ∈ Xi, i = 1, . . . ,m.

(2.63)

Applying the weighted-sum method to problem (2.63) yields problem (2.64) whose objective function

is additively separable.

min
x1,...,xm

m∑
i=1

αifqi(xi)

s.t. h (x1, . . . ,xm) = 0

xi ∈ Xi, i = 1, . . . ,m.

(2.64)

The additive separability of the objective function in problem (2.64) suggests the use of the al-

ternating direction method of multipliers (ADMM) as a solution approach [47, 40, 9, 32, 69, 14].

OSDA consists of the repeated application of ADMM to subproblems of the form (2.64) as given in

Algorithm 4.

Proposition 11 gives conditions under which OSDA computes efficient points for an objective

space decomposed problem (2.60).

65



Algorithm 4 Objective-Space Decomposition Algorithm (OSDA)

function OSDA(f1, . . . , fm,
∏m
i=1Xi, h,

∏m
i=1 Pi, A, x0, v0, µ, τ)

E ← ∅
for

∏m
i=1(yri ,qi, Qi) ∈

∏m
i=1 Pi and α ∈ A do

for i = 1, . . . ,m do
fi ← (fi − yri )

TQi(fi − yri ) + (fi − yri )
Tqi

fi ← αi fi
end for
(x,v)← ADMM(f1, . . . , fm,

∏m
i=1Xi, h, x0, v0, µ, τ)

if fi(xi) ∈ CQi,qi,yri for each i = 1, . . . ,m then
E ← E ∪ {x}

end if
end for
return E

end function

function ADMM(f1, . . . , fm,
∏m
i=1Xi, h, x0, v0, µ, τ)

ẍ← x0, v← v0

repeat
xlast ← ẍ
for i = 1, . . . ,m do

ẍi ← argmin
xi∈Xi

fi(xi) + vTh(ẍ1, . . . , ẍi−1,xi, ẍi+1, . . . , ẍm)

+µ
2 ‖h(ẍ1, . . . , ẍi−1,xi, ẍi+1, . . . , ẍm)‖22

end for
v← v + µh(ẍ1, . . . , ẍm)

until
(
||xlast − ẍ|| < τ

)
and ‖h(ẍ1, . . . , ẍm)‖ < τ

return (ẍ,v)
end function

Proposition 11. Let a two-block m = 2 objective space decomposition (2.60) be applied to problem

(2.1). Assume that the constraint sets X1 ⊆ Rn1 , X2 ⊆ Rn2 are closed and convex; that h :

X1 ×X2 → Rq is linear; that the set

(
m∏
i=1

Xi

)
∩ {x : h(x) = 0}

is nonempty; and the scalarized problem (2.64) has an optimal solution. If fqi is proper, continuous,

and convex for i = 1, . . . , p, then a solution x∗ ∈ E computed by Algorithm 4 is locally efficient for

the AiO problem (2.60).

Proof. The optimality of the solution x∗ ∈ E for the scalarized decomposable problem (2.64) follows

from the classic convergence results for the two-block m = 2 decomposition found, for example, in

[9, 32, 69]. Since the critical set (2.11) condition of Proposition 1 is tested for the generated x∗ in
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Algorithm 4, this same optimal solution x∗ is also locally efficient for the AiO problem (2.60) by

Proposition 1.

Studies of ADMM convergence is an active area of research, where the convergence of

ADMM for the general multi-block case m ≥ 3 under the same convexity assumptions on fi is still

an open question. In practice, the ADMM convergence results established for m = 2 seem to hold

in the general multi-block case m ≥ 3 [105, 90]; currently, proofs of convergence for the m ≥ 3 case

are given by imposing a stronger convexity requirement on the functions fi [53], or by introducing

a predictor-corrector mechanism into ADMM [55]. Needless to say, the ongoing developments of

ADMM convergence studies will impact the convergence studies of algorithms such as Algorithm 4.

In Section 2.6, examples are provided for illustrating the use of OSDA and DSDA applied to

a nonconvex MOP, and for demonstrating the weight-generating schemes and quadratic scalarization

presented in Section 2.2.

2.6 Examples

The first example, based on an MOP with four convex objective functions, serves to illustrate

the effect on the AiO computation of efficient points resulting from the use of different techniques

for generating weight vectors. OSDA is also applied to this example as a multidisciplinary MOP

decomposed into two subproblems in order to show the coordination of the two subproblems in

computing the AiO efficient points.

The second example is based on a nonconvex MOP with four objective functions. The

nonconvexity of this problem results in the weighted-sum scalarization being unable to compute

many of the efficient points. This example is first used in its AiO form to demonstrate the ability

of the quadratic form scalarization for computing efficient designs that are not computable using

the weighted-sum scalarization. The problem is then decomposed into two subproblems, and the

efficient points are computed using both DSDA and OSDA.
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Figure 2.4: Efficient set and pairwise efficient curves for problem (2.66)

2.6.1 Convex MOP

For the first example problem, define fi,j : R2 → R for i, j = 1, 2 as follows.

f1,1(x1, x2) := 4(x1 − 0)2 − 3(x1 − 0)(x2 − 3) + (x2 − 3)2

f1,2(x1, x2) := 2(x1 − 3)2 + 2(x1 − 3)(x2 − 0) + (x2 − 0)2

f2,1(x1, x2) := 5(x1 − 1)2 − 2(x1 − 1)(x2 − 1) + 5(x2 − 1)2

f2,2(x1, x2) := 17(x1 − 3)2 − 10(x1 − 3)(x2 − 2) + 11(x2 − 2)2

(2.65)

Defining f := [f1,1, f1,2, f2,1, f2,2], we have the following MOP.

min
x1∈R,x2∈R

f(x1, x2) (2.66)

Because each objective function fi,j , i, j = 1, 2 is a convex quadratic form, each efficient point for

(2.66) may be computed using the weighted-sum scalarization. The efficient set for problem (2.66) is

plotted in Fig. 2.4 together with equal-value level curves, objective-wise minima for each objective

function, and efficient curves taken for each pair of objectives.

Figure 2.5 shows the results of applying various weight sampling schemes for computing the
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efficient points for the AiO MOP (2.66).

Figure 2.5: Random sampling (364 pts), uniform sampling (364 pts), and Sierpinski sampling (341
pts) applied to problem (2.66)

In order to apply OSDA, the objective space is decomposed into two subproblems so that

Subproblem 1 is composed of f1,1 and f1,2 and Subproblem 2 is composed of f2,1 and f2,2. Based

on the decomposition in the objective space, we induce a decomposition on the decision space by

introducing copies of x1 and x2 written as

original variable subproblem 1 copy subproblem 2 copy

x1 x1,1 x1,2

x2 x2,1 x2,2

For compactness of notation, define

f1 := [f1,1, f1,2], f2 := [f2,1, f2,2],

w1 := [w1,1, w1,2], w2 := [w2,1, w2,2],

x1 := [x1,1, x1,2], x2 := [x2,1, x2,2].

The constraint for coordinating the copies is written h(x1,x2) = 0, where

h(x1,x2) =

 x1,1 − x2,1

x1,2 − x2,2

 .
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OSDA-generated approximations of the efficient set for problem (2.67)
using subproblems (2.68) and (2.69)
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Figure 2.6: Coordination of level-specific copies of the AiO efficient set. The subproblem (2.68)
approximations of the AiO efficient set are depicted with diamonds, and subproblem (2.69) approx-
imations of the AiO efficient set are depicted with open circles.
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The following AiO formulation for the decomposed problem is obtained

min
x1,x2∈R2

[f1(x1), f2(x2)]

s.t. h(x1,x2) = 0.

(2.67)

The subproblem decomposition is given by

min
x1∈R2

[f1(x1)]

s.t. h(x1, ẍ2) = 0

(2.68)

and

min
x2∈R2

[f2(x2)]

s.t. h(ẍ1,x2) = 0.

(2.69)

The application of OSDA to problem (2.67) is depicted in Fig. 2.6 for a given sample of

weight vectors. Each plot (xk1 , x
k
2), k ≥ 1, depicts the result of the previous iteration’s update of x1,

x2, and v. Subproblem (2.68) approximations to AiO efficient points for the AiO problem (2.67)

are given by open diamonds, and analogous subproblem (2.69) approximations are given by open

circles. In reviewing the plots of Fig. 2.6, satisfaction of the consistency constraints is realized for

the later iterations k due to the updates of v, which appears in the plots as the diamonds and

circles overlapping. Furthermore, the subproblem approximations also converge to efficient points

for the AiO problem (2.67); this appears in the plots as the diamonds and circles moving inside of

the shaded gray region.

2.6.2 Nonconvex MOP

We define two nonlinear subproblems that will later be coordinated into one AiO problem.

For subproblem 1, let f1 : R2 → R2 be defined by

f1(x1) :=

 − 1
3

(
x1,1

2 − 6x1,1x1,2 − 2x1,2
2 − 6

)
1
20

(
8x1,1

2 + 46x1,1 + 76− 14x1,2x1,1 − 60x1,2 + 16x1,2
2
)

T

,
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where x1 := [x1,1, x1,2]. For X1 :=
{
x1 ∈ R2 : 0 ≤ x1,1, x1,2 ≤ 2

}
, define the MOP

min
x1∈X1

f1(x1). (2.70)

For subproblem 2, let f2 : R2 → R2 be defined by

f2(x2) :=

 4x2,1
2 + 10x2,1x2,2 − 3x2,2

2 + 4

−5x2,1
2 + 2x2,1x2,2 + 2x2,2

2 + 6


T

,

where x2 := [x2,1, x2,2]. For X2 :=
{
x2 ∈ R2 : 0 ≤ x2,1, x2,2 ≤ 2

}
, define the MOP

min
x2∈X2

f2(x2). (2.71)

Because subproblems (2.70) and (2.71) are both nonconvex, the quadratic scalarization is employed.

Problem (2.70), a = 1 Problem (2.71), a = 0.5 Problem (2.71), a = 4

Figure 2.7: Applying the quadratic scalarization with Q = (a/2)[−1, 1]T [−1, 1], q = (
√

2/2)[1, 1]T ,
varied a > 0, and a collection of reference points yr. Each shaded gray region depicts the set Y
of feasible points in the subproblem-specific objective space, and circles are the computed Pareto
outcomes.

The application of the quadratic scalarization to subproblems (2.70) and (2.71) is depicted in Fig.

2.7.

Next, we compare the use of weighted-sum scalarization and quadratic scalarization applied
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to a combined, AiO problem

min
x1∈X1,x2∈X2

f(x1,x2) := [f1(x1), f2(x2)]

s.t. h(x1,x2) :=

 x1,1 − x2,1

x1,2 − x2,2

 = 0

(2.72)

where coupling between the subproblems (2.70) and (2.71) is embedded into problem (2.72) through

the constraint h(x1,x2) = 0. (Thus, problem (2.72) is of the form (2.2).) The efficient solutions

generated with each type of scalarization are presented in the top two plots of Fig. 2.8. The top-left

plot depicts the efficient solutions computed using the weighted-sum scalarization. The use of the

quadratic scalarization in the top-right plot of Fig. 2.8 is obtained from the reformulation of problem

(2.72) into a collection of problems of the form (2.18) with a fixed z = 0, and multiple w > 0 taken

from a collection of weight vectors. In comparing the top two plots of Fig. 2.8, one sees that the use

of the quadratic scalarization allows for the computation of efficient points that are not computable

using the weighted-sum scalarization.

The bottom two plot of Fig. 2.8 illustrates the use of the quadratic scalarization for com-

puting efficient points for problem (2.72) with the subproblem decomposition

min
x1∈X1

f1(x1)

s.t. h(x1, ẍ2) = 0

(2.73)

min
x2∈X2

f2(x2)

s.t. h(ẍ1,x2) = 0

(2.74)

using DSDA (left) and OSDA (right). (Thus, the subproblems (2.73) and (2.74) are of the form

(2.3).) The consistency between the two subproblem solutions in each plot is evidenced by the

diagonal crosses (subproblem (2.73) computations) being inside of the open circles (subproblem

(2.74) computations). For reference, the bottom two plots also shows the same points displayed in

the top-right plot as small gray dots.
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AiO AiO
weighted-sum quadratic scalarization

DSDA OSDA

Figure 2.8: Efficient points for problem (2.72) obtained with the weighted-sum and quadratic scalar-
izations applied to the AiO problem (2.72) (top), and efficient point obtained using DSDA and
OSDA applied to the subproblem decomposition (2.73) and (2.74) (bottom)

2.7 Conclusion

By refining and integrating previous analyses of scalarization methods, Lagrangian coordi-

nation methods, and the block coordinate descent (BCD) method, this paper sets a foundation for

the development of two MODA algorithms, DSDA and OSDA, that compute sequences of approx-
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imations to efficient solutions for an AiO MOP that is presented as a nonintegrable collection of

subproblems. Conditions for the convergence of these sequences to solutions that are efficient for the

AiO MOP, or at least satisfy relevant necessary conditions, are readily available from the theoretical

developments of the algorithms’ constituent parts. The application of DSDA and OSDA results in

a nontrivial computation of efficient points in a coordinated and distributed manner for an example

problem that is nonconvex, nonintegrated, and multiobjective.

In the way of future work, the following may be outlined. In the area of multiobjective scalar-

ization, comparison of the use of quadratic scalarization with the use of weighted-t power method is

needed. Furthermore, the (pseudo)convexifying effect of the quadratic scalarizations warrants inves-

tigation. Conditions on the objective functions and conditions on the quadratic scalarization need

to be examined to gain insight. For Lagrangian coordination, a rate-of-convergence analysis and

questions addressing the existence of limit points need to be addressed. For BCD, example prob-

lems can be developed and studied to provide insight into the new convergence results developed in

Section 2.4. Furthermore, the convergence of ADMM for the multi-block m ≥ 3 decomposition is an

active area of research. The integration of BCD and Lagrangian coordination can be extended to

address other assumptions about the inexact computation of BCD updates and method of multiplier

updates; for example, the block coordinate xi updates may be computed using approaches related to

sequential quadratic programming [106]. Finally, the restrictions implied in the presentation of MOP

(2.1) as the collection of nonintegrable subproblems (2.3) can be motivated from the object-oriented

programming concepts in computer science, and the role of mathematical tools such as Lagrangian

coordination and Gauss-Seidel decomposition can be explained according to these concepts.
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Chapter 3

Equitable Multiobjective

Optimization Applied to the

Design of a Hybrid Electric Vehicle

Battery

[This chapter contains the contents of a paper titled “Equitable Multiobjective Optimiza-

tion Applied to the Design of a Hybrid Electric Vehicle Battery”; authors are Brian Dandurand,

Paolo Guarneri, Georges Fadel, and Margaret M. Wiecek; this paper is published in the Journal of

Mechanical Engineering, Vol. 135, No. 4. Copyright c©2013 by ASME.]

3.1 Introduction

Due to the high energy density and high cell voltage, the Lithium-ion (Li-ion) battery is

a promising technology for propulsion applications. However, the performance of Li-ion batteries

worsens drastically at extreme temperatures (above 65 ◦C or below 0 ◦C) [2]. The thermal working

conditions affect the performance as well as the life and the safety [5] of batteries. Temperature

influences the electrochemical phenomena which determine the battery functioning. Performance
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degradation in terms of power and capacity fade is observed in [85, 86] when charge/discharge cycles

are repeated at high temperatures. Battery cells working at high temperatures may experience sta-

bility problem due to the exothermic chemical reactions. Such reactions will trigger other exothermic

reactions and the positive feedback between the temperature and current may lead to battery ex-

plosion. An efficient heat rejection from the cells is of primary concern to avoid this undesirable

situation. To achieve the desired voltage and current required for different applications, the cells

are packed together in modules which in turn are connected in parallel or in series (see Fig. 3.1).

Electrical unbalance among the cells limits the battery performance and reliability. The capacity

of elements connected in series is limited by the element with the smallest capacity that will po-

tentially experience the subsequent overcharging and premature failure. Uniform heat transfer and

even temperature distribution are key issues to guarantee electrical balance and depend strongly on

the cell packaging and layout [2] and on the thermal management strategies adopted.

The need for expensive and complex thermal management systems has in fact kept the Li-ion

technology from becoming the first choice for Hybrid Electric Vehicle (HEV) and Electric Vehicles

(EV) applications, however few studies systematically investigating thermal management strategies

can be found. In [126], the battery pack of the Toyota Prius battery is tested and monitored

under different conditions of driving cycles. The battery pack is cooled by the air conditioned

drawn from the cabin. Air cooling systems have the advantage of the simplicity while they do not

seem promising to achieve even temperature distributions due to the low convective heat exchange

coefficients and low densities. The latter results in large air temperature gradients. To mitigate

temperature unevenness, different layouts are adopted; in the Toyota Prius the air is divided into

parallel flows to be distributed to the battery modules arranged at different distances from the air

inlet while in the Honda Insight the batteries in the module are stacked in a single column [5]. Some

cells are properly screened to balance the difference in heat exchange coefficients. Air distributors are

used to increase the convective heat coefficient of the air flow near the outlet where the air reaches its

maximum temperatures. In [78] a reciprocating air flow is studied to overcome the one-directional

flow issue and improve evenness of temperatures. Beside air cooling, the usage of liquids is more

suitable despite the increased complexity required of the battery due to the larger density and better

heat exchange coefficients. In [65] the cells are cooled using plates as in the concept of cooling fuel

cells in which the evenness of temperatures is a major issue. In particular, the topology of air

channels in the plates is optimized considering the air pressure drop, the distribution of the plate
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Figure 3.1: The battery layout

temperature and the average temperature. A different approach based on phase change material

(PCM) is proposed in [1, 81, 98]. This design solution relies on the latent melting/solidification

heat of the paraffin wax melting at about 40 ◦C (close to the optimal cell operating temperature).

During the change of phase, the material is like a sink (or source) capable of exchanging heat while

keeping a constant temperature.

Since the cell layout determines the heat exchange uniformity, the layout can be defined

in order to ease the design of thermal management strategies. In literature, optimization has been

used to solve layout/packaging problems. The problem is defined in terms of the positioning of some

components in an available enclosure while satisfying geometrical constraints (i.e., no component

overlap). In [80] the layout of a truck is optimized considering criteria such as compactness, vehi-

cle dynamics and maintainability; in [104] the layout of mechanical components is defined through

optimization; the layout of electronic components is optimized in [16] while including thermal con-

straints. In this study, the cell spacing inside of a battery module is determined to target the optimal

operating cell temperature and evenness of temperature.

The goal of the presented research is the development of an optimization model and a

methodology to find configurations or layouts of the cell pack of a Li-ion battery which results in

optimal heat distribution of cells during operation. To this end, we represent the battery design

problem as a multiobjective problem and solve it using a refinement of the Pareto optimality in the

form of equitability (see [71, 72], for example). Pareto optimality can be refined in the equitability
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sense when the criteria have common meaning and units, the criteria are anonymous or symmet-

rically indistinguishable from one another, and when the Pigou-Dalton principle of transfer, which

implements a more even redistribution of the outcomes, results in improved outcomes. While the

Pareto optimality has been widely used to solve engineering problems, the application of the equi-

table preference is new. It yields a smaller set than the set of Pareto efficient designs with specific

equity properties that are desirable for the battery design problem.

The paper is structured as follows. Section 3.2 describes the problem of laying out the

internal components of the Li-ion battery so that a desirable thermal outcome is realized during

operation. This same section defines in more detail the concept of equitable optimality and works

toward developing a model formulation whose Pareto efficient designs are the equitable efficient

designs to the battery problem. Section 3.3 describes the optimization environment, the computation

of temperatures through simulation, and the computation of efficient battery designs based on

the models given in Section 3.2. Section 3.4 concludes the paper by summarizing what has been

accomplished and outlining the future work of refining the existing methodology to coordinate the

vehicle-level design problem with the battery-level design problem.

3.2 Development of the optimization model

In designing the internal layout of battery cells, thermal considerations are important. In

particular, good layout designs give cell temperatures that are close to a given target (40 ◦C) while

maintaining evenness of temperature distribution.

The thermal distribution of the cells depends on properties such as the shape of the cells,

the size of the cells, the configuration of cell layout, and the spacing of the cells. The cells are

assumed to be arranged in a triangular lattice. The diagram in Fig. 3.2 illustrates the appearance

of a possible internal design.

Let pcell be a unitless scalar that determines the uniform distance of adjacent cells from

one another. A value of pcell = 1 indicates that the centers of two adjacent cells are one cell

diameter distant from one another (i.e., the cells touch one another). This is not permissible and

so pcell > 1 is required. In general, pcell determines the spacing of adjacent cells via the relation

dcenter = pcell · ddiameter where dcenter denotes the distance between the centers of two adjacent

cells, and ddiameter denotes some measure of the cell size. In the case of circular cells, ddiameter
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Figure 3.2: Illustration of geometric layout of battery components (12 columns, 6 rows)

corresponds to the diameter of the cell. The scalar pcell is also referred to as the spacing factor.

The design problem in terms of maintaining a target operational temperature T0 for each

battery cell is a multiobjective optimization problem containing 72 objective functions corresponding

to the 72 battery cells. Due to the restrictions of the current thermal model, battery cells are

aggregated into columns. Each column has an equal number of battery cells. The thermal model is

designed to simulate one representative temperature for each column. Let the columns be indexed

by k ∈ K. Denote by Tk the temperature generated by the thermal model for column k.

The squared temperature deviation Dk from the target temperature T0 associated with

column k is obtained as the following (squared) difference

Dk := (Tk − T0)2 for each k ∈ K. (3.1)

The temperature Tk for each k ∈ K depends on the design variable x defined as x = [pcell, s].

The scalar variable pcell determines spacing of adjacent cells while the vector variable s denotes other

shape/layout parameters shared at the vehicle level. The design variable x is to be taken from an

unspecified feasible set X. Consequently, the squared difference Dk for each k ∈ K also depends on x

by the definition given in (3.1). The problem of minimizing column temperature squared deviations

becomes a multiobjective optimization problem and assumes the following form.

min
x∈X

[D1(x), . . . , Dm(x)] (3.2)
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The concept of Pareto optimality, being a standard way to approach multiobjective optimization

problems, can be applied to find the set of efficient battery designs for problem (3.2). A battery

design x ∈ X is said to be Pareto efficient provided any other design that improves the temperature

deviation of one column causes the deterioration of the temperature deviation of at least one other

column. A Pareto optimal outcome refers to the vector of temperature deviations associated with

the columns of battery cells corresponding to a Pareto efficient design.

3.2.1 Model in terms of spacing

In formulation (3.2), the design variables determine such properties as the shape of the

battery cells, the geometric layout of the cells, e.g., how many columns the cells are grouped into,

and how far apart adjacent cells are spaced. The following optimization problem is formulated

considering the spacing pcell as a design variable while any values associated with shaping parameter

s are fixed. Under this assumption, problem (3.2) becomes

min
pcell∈(1.0,2.0]

[D1(pcell), . . . , Dm(pcell)] (3.3)

As stated earlier, the lower bound pcell > 1 is necessary because the battery cells cannot touch one

another. The upper bound pcell ≤ 2 is set because of the restricted availability of space within the

battery pack.

As with problem (3.2), the designs for which the improvement of temperature deviation of

one column results in a degraded temperature deviation for at least one other column are referred

to as the Pareto efficient designs for problem (3.3), and the corresponding temperature deviations

are referred to as Pareto optimal outcomes.

There are two traditional ways to solve the multiobjective problem (3.3). One is to convert

it into a single-objective problem, whose optimal solution will also be a solution to problem (3.3),

and the other is to approximate the set of Pareto efficient designs of problem (3.3) and then select

a preferred Pareto efficient design [34]. In the first approach, the type of scalarization will heavily

affect the optimal solution found. In the other, the choice of a preferred Pareto efficient design may

be cumbersome if the approximation contains a large number of points. Making use of the battery

design context, the minimization of the highest squared temperature deviation, i.e., the min-max

formulation, or the minimization of the sum of the squared temperature deviations, i.e., the min-
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sum formulation, would be reasonable scalarizations of problem (3.3). However, this straightforward

observation can be taken much further for the battery design. First, optimal solutions to the min-

max problem or the min-sum problem are, under certain conditions, elements of a bigger set known

as the set of equitable efficient designs. Second, the battery design problem inherently satisfies the

properties required by the equitable efficiency to be the preference defining the solution set of a

multiobjective optimization problem.

To benefit from the special properties of the battery design problem and simultaneously

generalize the min-max scalarization we propose a new solution approach to the multiobjective

design problem (3.3) based on the concept of equitable efficiency. To explain this concept, we first

present the special properties of the objective functions in (3.2) and (3.3).

3.2.2 Equitable preference

The multiobjective problems (3.2) and (3.3) are of special form due to three properties of

the objective functions modeling optimal temperature of the cells.

1. Each objective function represents the same physical property (temperature) and hence assume

values that are measured on a common scale. The objective functions are therefore comparable.

2. The distribution of temperature among the cells is important while the assignment of the

specific temperature to a specific cell is not, which means that the cells remain anonymous

within the module and, consequently, the objective functions are anonymous (impartial). This

is demonstrated in Fig. 3.3.

3. Evenly distributed temperature deviations are preferred. That is, the cell temperatures satisfy

the Pigou-Dalton principle of transfers: given two distinct cell columns indexed with k1, k2 ∈ K

with temperature deviations Dk1 and Dk2 , if Dk1 > Dk2 , then the battery design with the tem-

perature deviations [D1, . . . , Dk1 −∆, . . . , Dk2 + ∆, . . . , Dm], where 0 < ∆ < Dk1−Dk2 , is pre-

ferred to the battery design with the temperature deviations [D1, . . . , Dk1 , . . . , Dk2 , . . . , Dm].

This is demonstrated in Fig. 3.4.

The three properties: comparability, anonymity, and the Pigou-Dalton principle of transfers

are characteristic for the equitable preference ([71, 72] ) which is a refinement of the Pareto preference.

According to the latter, a design is Pareto efficient if no objective function can be improved without
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Figure 3.3: Illustrating anonymity of objectives
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Figure 3.4: Illustrating Pigou-Dalton principle of transfers

deteriorating another one. However, there are situations in many areas of human activity where

an outcome whose objective values are more evenly distributed is considered better than another

outcome whose objective values are less evenly distributed, even if these two outcomes are non-

comparable in the Pareto sense. The Pigou-Dalton principle postulates that a transfer from a

higher-valued objective value of an outcome to a lower-valued objective value yields a better outcome.

The design of batteries creates an opportunity to introduce the equitable preference into

engineering design and investigate its significance. Due to mathematical properties, the set of

equitable designs is always a subset of the set of Pareto efficient designs and so equitable designs

are such Pareto efficient designs that preserve equity among the criteria which is understood in the

context of the three properties. The reduction of the set of optimal designs is desirable since it is

known that the Pareto preference does not restrict the available design choices sufficiently as the

number of objective functions increases [26].
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3.2.3 Obtaining equitable temperature deviations

In this section the methodology for obtaining equitable efficient designs is first presented on

a general multiobjective optimization problem and then applied to the battery design optimization

problem (3.3). Let f := [f1, . . . , fm] be the vector of objective functions. Using the results in [72]

and other references therein, the multiobjective problem

min
x∈X

f(x) (3.4)

is reformulated into another multiobjective problem whose Pareto efficient solutions are the equitable

efficient solutions of (3.4). To this end, define the ordering operator θq(f(x)), q = 1, · · · ,m, to return

the qth largest component of f . Consequently θ1(f(x)) ≥ · · · ≥ θm(f(x)) and so [θ1(f(x)), . . . , θm(f(x))]

is simply a reordering of the components of f(x) from largest to smallest. Next, define the sum of

the q largest components

θq :=

q∑
i=1

θi(f(x))

for q = 1, · · · ,m and formulate the multiobjective problem

min
x∈X

[θ1(f(x)), . . . , θm(f(x))]. (3.5)

Corollary 1 of [72] states that a feasible design of problem (3.4) is equitable efficient for problem (3.4)

if and only if it is Pareto efficient for problem (3.5). Thus, a solvable formulation for problem (3.5)

can be used to obtain the equitable efficient designs of problem (3.4).

The value θq(f(x)) is known to coincide with the optimal objective value of the following
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linear program

min
zq, tq, dq,k

zq

subject to

zq = q tq +
∑m
k=1 dq,k

tq + dq,k ≥ fk(x), dq,k ≥ 0, for k = 1, . . . ,m

(3.6)

where tq, dq,k, and zq are new auxiliary variables aiding in the computation of θq(f(x)). The variables

tq, dq,k, and zq have no meaning in the context of problem (3.4). Note that x is a fixed constant

in problem (3.6). The construction of linear program (3.6) and the fact that its minimum objective

value is θk is developed and proven in [117].

Using the optimal objective value of problem (3.6) to evaluate θq(f(x)) of problem (3.5) for

q = 1, . . . ,m, problem (3.7) may be stated as an equivalent reformulation of problem (3.5) [72].

min
x, zq, tq, dq,k

[z1, . . . , zm]

subject to

zq = qtq +
∑m
k=1 dq,k, tq free, q = 1, . . . ,m,

tq + dqk − fk(x) ≥ 0, dq,k ≥ 0, q, k = 1, . . . ,m

x ∈ X

(3.7)

Problem (3.7) with the identification fk = Dk, k = 1, . . . ,m, x = pcell, and X = (1.0, 2.0] can

therefore be used to compute equitable efficient designs of problem (3.3).

As an application of this theory, we revisit the mentioned earlier min-max formulation of
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the battery design problem (3.2) given as

min
pcell∈(1.0,2.0]

max
k∈K
{Dk(pcell)} (3.8)

With the identifications fk = Dk, k = 1, . . . ,m, x = pcell, and X = (1.0, 2.0] applied to prob-

lem (3.5), one may see that an optimal design of (3.8) corresponds to the single-objective opti-

mization problem of minimizing θ1 since θ1 is by definition the maximum value of the components

Dk, k ∈ K. In this manner, one sees that when an optimal design of (3.8) is unique, it is also Pareto

efficient for problem (3.5) (with fk = Dk, k = 1, . . . ,m, x = pcell and X = (1.0, 2.0]) [100] and thus

equitable for problem (3.3).

Similarly, the min-sum formulation of the battery design problem (3.2) given as

min
pcell∈(1.0,2.0]

∑
k∈K

Dk(pcell) (3.9)

is shown to be a special case of problem (3.5). Again, with the identifications fk = Dk, k = 1, . . . ,m,

x = pcell, and X = (1.0, 2.0] applied to problem (3.5), one may see that an optimal design of (3.9)

corresponds to the single-objective optimization problem of minimizing θm since, by definition,

θm =
∑
k∈K Dk. Therefore, when the optimal design of (3.9) is uniquely obtained, it is a Pareto

efficient design of (3.5) (with fk = Dk, x = pcell and X = (1.0, 2.0]) and thus equitable for (3.3).

Due to the relative ease of formulating a min-max or min-sum problem, the formulation of

either problem (3.8) or (3.9) is preferred to the formulation (via (3.7)) of problem (3.5) when one

equitable design is preferred to the range of equitable designs available by solving problem (3.5).

However, the battery layout design problem may benefit from the available range of equitable designs

obtainable by solving problem (3.5). The battery layout design is subject to some feasibility con-

straints related to the arrangement of the battery itself and other components inside of the vehicle.

Determination of optimal vehicle layouts is an optimization problem in which position of the battery

is one of the design variables. In this context, the battery is also a morphable component because

its aspect ratio is optimized to improve its performance. The optimal battery aspect ratio obtained

by either the min-max or min-sum formulation may be in conflict with some geometric constraints

and space availability at the vehicle level. With the availability of a range of equitable designs, the

designer has the possibility to choose a battery layout that is more suitable for the vehicle level
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Vehicle Layout Design

Battery Layout Design

Figure 3.5: The relationship between the layout designs at the battery and vehicle levels

layout. The relationship between the layout designs at the battery and vehicle levels is represented

in Fig. 3.5.

3.3 Optimization

In this section, the results of the implementation of both problems (3.3) and (3.7) using

MATLAB [109] interfaced with a SIMULINK [110] model are presented.

The temperature functions Tk for each column k ∈ K are not given in closed form and each

function evaluation Tk at a given spacing factor value of pcell must be computed through simulation

using a lumped parameter model1.

The model simulates steady state conditions with uniform heat generation in each cell and

coolant flow crossing the battery pack from one side to the other. The heat exchange coefficient is

1See Acknowledgments.
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estimated through classic numerical correlations involving Nusselt, Reynolds and Prandtl dimension-

less numbers. The flow is considered 1D and the cells in the same column have the same temperature

as mentioned in Section 3.2. At the current modeling stage, the design variables available to define

the layout determine the cell spacing and the number of cell columns used. The model is sufficiently

simple to keep the computational time reasonable yet meaningful to explore different packaging

solutions and test the proposed optimization based on the equitability.

3.3.1 Convexity of temperature deviations in terms of pcell

The temperature values Tk, k ∈ K, generated with the SIMULINK model in terms of

pcell are used to form the column temperature deviations Dk, k ∈ K, according to formula (3.1).

Figure 3.6 depicts the absolute values of the column temperature deviations obtained from the

simulated column temperatures. There are 72 cells grouped into 12 columns. For each column, the

temperature deviation follows a convex trend as pcell varies.

From Fig. 3.6 and Tab. 3.1, one can see the conflict among the twelve objective functions

as they reach their respective minima at different values of pcell. This conflicting behavior of the

objective functions (i.e., the deviations from the target temperature) reflects the thermodynamics

that is simulated in the model. Even if the battery layout is symmetric, the thermal conditions and

the consequent temperature distribution are not. The coolant flows, with a given mass flow rate,

from one side to the other increasing its temperature. Since the total heat rejected Q, the coolant

mass flow rate mcoolant and the coolant heat capacity ccoolant are constant parameters in the model,

the coolant temperature rise is not a function of the cell arrangement.

Tout − Tin =
Q

mcoolant · ccoolant

As qualitatively shown in Fig. 3.7, the only difference is the gradient of the coolant temperature and

the cell-to-coolant heat exchange coefficient.

The conflict and impossibility to achieve uniform temperature can be explained using the

following equation.

Tcell − Tcoolant = ∆T =
Q

hS
, (3.10)

where Q is the thermal power to be rejected, S is the cell outer surface and h is the convective heat
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Figure 3.6: Evaluating convexity of absolute temperature deviations in terms of spacing factor pcell.

Figure 3.7: Cell coolant temperature drop (black line is coolant temperature, gray line is cell tem-
perature)

transfer coefficient. Since Q and S are constant parameters, given the coolant temperature Tcoolant,

the cell temperature is determined by the coefficient h. More compact arrangements determine, for

a given coolant mass flow rate, higher flow velocities and, therefore, higher h. The temperature drop

∆T is lower allowing the cell close to the outlet to work at the ideal temperature T0 (left-hand side

of Fig. 3.7). On the other hand, increasing the cell spacing reduces the flow speed and the transfer

coefficient h. Due to higher temperature drop ∆T , the cells close to the inlet surrounded by cold

coolant can reach the ideal condition T0 (right-hand side of Fig. 3.7).
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Table 3.1: Individual design minima for the twelve columns

Column Optimal pcell Column Optimal pcell
1 1.1286 7 1.1174
2 1.1267 8 1.1155
3 1.1248 9 1.1137
4 1.1229 10 1.1119
5 1.1211 11 1.1101
6 1.1192 12 1.1084

3.3.2 Applying the weighted-sum scalarization

The weighted-sum scalarization is used to convert the multiobjective problem (3.4) into the

single objective optimization problem

min
x∈X

m∑
k=1

wk fk(x), (3.11)

where for each k, wk ≥ 0, and for at least one k, wk > 0. It is well-known that whenever the objective

functions of a multiobjective problem are convex over the feasible region that is also convex, then an

optimal solution to the weighted-sum scalarization (3.11) is a weak Pareto efficient design of problem

(3.4) [34]. That is, to each weak Pareto efficient design, there corresponds at least one nonnegative

w = [w1, . . . , wm]. Weak Pareto efficiency is a generalization of Pareto efficiency, where designs that

are alternatives to a weak Pareto efficient design may result in no change in at least one criterion

while all other criteria are improved. When the weighted-sum scalarization (3.11) has a unique

optimal solution, or when strictly positive weights are used, then the optimal solution of (3.11) is

a Pareto efficient solution of (3.4) [34]. In comparison to weak Pareto efficiency, Pareto efficiency

requires alternate designs to result in deterioration of at least one criterion when at least one other

criterion is improved. Thus, under the assumption that the temperature deviation functions Dk

are convex as suggested in Fig. 3.6, the weighted-sum scalarization with nonnegative weights is

sufficient for the computation of any weak Pareto efficient solution of (3.3). The convexity of the

constraints of (3.7) is inherited from the convexity of the objectives of (3.3), and so the weighted-sum

scalarization is sufficient to generate any weak Pareto efficient solution of (3.7) and thus also of (3.5).
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3.3.3 Constructing samples of weight vectors

The computation of efficient battery designs depends on the sample of weight vectors that

are applied to problems (3.3) and (3.7). Three problem specific schemes are suggested below for

constructing these weight vector samples.

Scheme 1: For problem (3.3), the following scheme is motivated by the observation that physically

close cell columns tend to have similar temperatures, and the conflict among the objectives based

on these temperatures is minimal. For this reason, most of the computational effort is allocated to

generating diverse weights corresponding to a representative subset of cell columns that are physically

separate and maximally conflicting. To each of these representative cell columns k, a positive weight

wk is assigned. Then, a (near) zero weight is assigned to each cell column that is not indicated as

representative. (Such non-representative cell columns should be physically close to a representative

cell column.) One possible implementation of this scheme is given below.

6 columns : Define w so that wk is positive for k = 1, 3, 4, 6. Set wk = 0 for k 6= 1, 3, 4, 6.

9 columns : Define w so that wk is positive for k = 1, 4, 6, 9. Set wk = 0 for k 6= 1, 4, 6, 9.

12 columns : Define w so that wk is positive for k = 1, 5, 8, 12. Set wk = 0 for k 6= 1, 5, 8, 12.

18 columns : Define w so that wk is positive for k = 1, 7, 12, 18. Set wk = 0 for k 6= 1, 7, 12, 18.

In order to guarantee that designs generated with Scheme 1 are Pareto efficient for prob-

lem (3.4), the zero-valued components of each weight vector are reassigned with positive values that

are small relative to the other nonzero components.

Scheme 2: For problem (3.7), an approach similar to Scheme 1 is employed with a slight mod-

ification. Objective values zq with consecutive indices q will have similar values analogous to the

similar temperature values of physically close battery cell columns. For each q < m, the difference

θq+1 − θq > 0 is large when q is close to one, and small when q is close to m. This follows from

the definition of θ. Thus, conflict among consecutive zq values will be most prominent for zq values

where q close to one. This motivates an allocation of nonzero wq weight values that is biased more

heavily toward indices q closer to one and less heavily toward indices q closer to m, as demonstrated

with the following implementation of this scheme.

6 columns : Define w so that wq is positive for q = 1, 2, 3, 6. Set wq = 0 for q 6= 1, 2, 3, 6.
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9 columns : Define w so that wq is positive for q = 1, 2, 4, 9. Set wq = 0 for q 6= 1, 2, 4, 9.

12 columns : Define w so that wq is positive for q = 1, 3, 6, 12. Set wq = 0 for q 6= 1, 3, 6, 12.

18 columns : Define w so that wq is positive for q = 1, 4, 9, 18. Set wq = 0 for q 6= 1, 4, 9, 18.

In order to guarantee that the designs generated with Scheme 2 are Pareto efficient for prob-

lem (3.7) and thus equitable efficient for problem (3.4), the zero-valued components of each weight

vector are reassigned with positive values that are small relative to the other nonzero components.

When it is desirable to compute only a few equitable efficient designs for problem (3.4),

then a scheme of the following form may be useful.

Scheme 3: The application of these three weight vectors to problem (3.7) is intended to supply a

small but diverse sample of equitable efficient designs to problem (3.4).

1. w = [100, 1, 0.1, 0.01, . . . , 10−(m−2)] is applied to (3.7) to approximate a min-max reformu-

lation of problem (3.4).

2. w = [1, 1, . . . , 1] is applied to (3.7) to obtain an equitable efficient design to problem (3.4)

that is intermediate to any design resulting from either a min-max or min-sum reformulation

of (3.4).

3. w = [10−(m−2), 10−(m−1), . . . , 0.1, 1, 100] is applied to (3.7) to approximate a min-sum refor-

mulation of problem (3.4).

3.3.4 Results

We consider four scenarios with the numbers of columns m = 6, 9, 12, 18. Therefore, the

multiobjective problems solved have between 6 and 18 objective functions. Computations are per-

formed for problems (3.3) and (3.7). For both the Pareto efficient designs resulting from (3.3) and

the equitable efficient designs resulting from (3.7), the corresponding outcomes are taken as the

temperature deviations Dk (rather than zq in the equitable case since these values have no meaning

in the design problem).

The results obtained for the four scenarios are reported in Tabs. 3.2-3.5 and Fig. 3.8. All

computed designs in Tabs. 3.2-3.5 are Pareto efficient, while some of them are additionally equitable.

The left-most columns of the Tabs. 3.2-3.5 report these designs, while the right-most columns indicate

92



This chapter contains the contents of a paper titled “Equitable Multiobjective Optimization Applied to the Design
of a Hybrid Electric Vehicle Battery”; by Brian Dandurand, Paolo Guarneri, Georges Fadel, and Margaret M.
Wiecek; published in Journal of Mechanical Engineering, Vol. 135, No. 4. Copyright c©2013 by ASME.

Table 3.2: Pareto efficient battery designs and condensed Pareto optimal temperature deviations (6
columns, 12 rows)

pcell D1:2 D3:4 D5:6 Classification
1.11270 0.5868 0.4316 0.1988 Pareto
1.11568 0.4573 0.2270 0.3257 Pareto
1.11683 0.3968 0.1984 0.3968 min-max
1.11683 0.3967 0.1984 0.3969 equitable
1.11683 0.3967 0.1984 0.3968 equitable
1.11684 0.3964 0.1984 0.3972 equitable
1.11684 0.3963 0.1984 0.3972 min-sum
1.11800 0.3245 0.2280 0.4575 Pareto
1.12101 0.1980 0.4302 0.5847 Pareto

Table 3.3: Pareto efficient battery designs and condensed Pareto optimal temperature deviations (9
columns, 8 rows)

pcell D1:3 D4:6 D7:9 Classification
1.11215 0.8891 0.6594 0.3247 Pareto
1.11694 0.6870 0.3435 0.4863 Pareto
1.11874 0.5947 0.2803 0.5947 min-max
1.11874 0.5947 0.2804 0.5946 equitable
1.11874 0.5947 0.2804 0.5946 equitable
1.11876 0.5936 0.2811 0.5957 equitable
1.11876 0.5936 0.2811 0.5957 min-sum
1.12060 0.4831 0.3459 0.6875 Pareto
1.12548 0.3231 0.6560 0.8842 Pareto

their classification. For reference, these same results associated with the min-max problem (3.8) and

the min-sum problem (3.9) corresponding to problem (3.3) are also given.

The designs reported in Tabs. 3.2-3.5 and Fig. 3.8 that are Pareto efficient but not equitable

efficient for problem (3.3) are computed with the use of weight vectors that are obtained using

Scheme 1 of Section 3.3.3. These weight vectors are applied to problem (3.3). Due to the narrow

range of points that are equitable efficient for problem (3.3), the equitable efficient points reported in

Tabs. 3.2-3.5 and Fig. 3.8 are those computed with the use of weight vectors obtained using Scheme

3 of Section 3.3.3. These weight vectors are applied to problem (3.7) with fk = Dk, k = 1, . . . ,m,

x = pcell and X = (1.0, 2.0].

The remaining columns of Tabs. 3.2-3.5 report the objective values of the multiobjective

problems solved, but condensed into 3-dimensional vectors A := [A1, A2, A3]. This reduction of

the objective space is done solely for reporting purposes after the computation of the Pareto and
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Table 3.4: Pareto efficient battery designs and condensed Pareto optimal temperature deviations
(12 columns, 6 rows)

pcell D1:4 D5:8 D9:12 Classification
1.10941 1.1880 0.8816 0.4365 Pareto
1.11587 0.9160 0.4717 0.6493 Pareto
1.11829 0.7931 0.3965 0.7931 min-max
1.11829 0.7930 0.3965 0.7931 equitable
1.11829 0.7930 0.3965 0.7931 equitable
1.11829 0.7931 0.3965 0.7930 equitable
1.11833 0.7911 0.3965 0.7950 min-sum
1.12080 0.6433 0.4738 0.9172 Pareto
1.12745 0.4342 0.8758 1.1793 Pareto

Table 3.5: Pareto efficient battery designs and condensed Pareto optimal temperature deviations
(18 columns, 4 rows)

pcell D1:6 D7:12 D13:18 Classification
1.10402 1.7746 1.3098 0.6424 Pareto
1.11364 1.3689 0.7066 0.9840 Pareto
1.11721 1.1902 0.5951 1.1902 min-max
1.11721 1.1901 0.5951 1.1902 equitable
1.11721 1.1901 0.5951 1.1902 equitable
1.11729 1.1856 0.5951 1.1946 equitable
1.11729 1.1856 0.5951 1.1946 min-sum
1.12103 0.9671 0.7167 1.3741 Pareto
1.13105 0.6374 1.2981 1.7562 Pareto

equitable efficient designs. For 0 < i < j ≤ m integers, define

Di:j(pcell) :=
∥∥∥[√Di,

√
Di+1, . . . ,

√
Dj−1,

√
Dj

]∥∥∥
2

where ‖·‖2 is the Euclidean 2-norm. Taking the square root of each Dk component in the definition

of Di:j turns the squared deviation Dk into the absolute deviation
√
Dk = |Tk − T0|. The following

condensed outcomes are given.

m = 6 : Outcomes are reported as A = [D1:2, D3:4, D5:6].

m = 9 : Outcomes are reported as A = [D1:3, D4:6, D7:9].

m = 12 : Outcomes are reported as A = [D1:4, D5:8, D9:12].

m = 18 : Outcomes are reported as A = [D1:6, D7:12, D13:18].
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Figure 3.8: Condensed Pareto optimal and equitable outcomes with line of equity (two views)

From Tabs. 3.2-3.5 it is seen that the computed equitable designs are contained between the

min-max and the min-sum designs as expected. In each of these tables, the values for pcell are given

to five decimal places to reveal the presence of a narrow equitable range. This amount of precision

otherwise has no practical value.

Figure 3.8 depicts the condensed Pareto optimal outcomes together with the condensed

equitable outcomes for all scenarios. These outcomes are plotted against the line of equity which

denotes where the three components of the condensed outcomes are equal to one another.

In general, the Pareto and equitable efficient design agree with the results presented in

Tab. 3.1. Due to the thermal conditions, it is not possible to achieve the ideal target temperature

for all the cells as explained in Section 3.3.1. The cell spacing that is optimal for the cells close

to the inlet is not optimal for the cells far from it and vice versa. The equitable efficient solutions

represent the designs in between the two designs that are depicted in Fig 3.7. The central columns of

Tabs. 3.2-3.5 show that the temperature deviations Dk are functions of the cells spacing. It is worth

noticing that for some Pareto efficient designs which are not equitable, a temperature unevenness of

about 1◦C is observed, while a 5◦C unevenness may be detrimental for the battery [78].

The effect of the aspect ratio is evident from the plots in Fig. 3.8 and the data from Tabs. 3.2-

3.5. When the constraints given from the vehicle level do not restrict the feasible choices for the

number of columns, the use of fewer columns clearly result in better sets of Pareto efficient designs

due to their smaller ranges and a location closer to the origin of the objective space.
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3.4 Conclusion

This paper outlines a methodology for finding optimal designs for the battery layout. The

battery cell temperatures need to meet two criteria: (i) closeness to target temperature, (ii) evenness

of temperature distribution. Because of these two needs, designs are sought that are not only

Pareto efficient (to address the first criterion) but are also efficient with respect to the equitable

preference relation. In effect, this work establishes a methodology based on the theory developed in

the optimization literature to obtain the equitable designs computationally.

In the current approach, only spacing of adjacent cells is varied. As improved battery models

become available, and as this battery design problem is interfaced with the design problem at the

upper (underhood) level, more design variables such as the shape of battery pack and the geometric

arrangement of cells will be considered. The methodology developed in this work will be adapted

for this purpose.
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Chapter 4

Bilevel multiobjective packaging

optimization for automotive design

[This chapter contains the contents of a paper submitted for review in the journal: Struc-

tural and Multidisciplinary Optimization on May 7th, 2013 titled “Bilevel multiobjective packaging

optimization for automotive design”; the authors are Brian Dandurand, Paolo Guarneri, Georges

Fadel, and Margaret M. Wiecek.]

4.1 Introduction

Multiobjective optimization problems (MOPs) having the integrated form

min f(x)

s.t. x ∈ X,
(4.1)

underlie many engineering design problems, where f = (f1, . . . , fp) is a vector of objective functions

and x is a vector of design variables taken from a feasible set X ⊆ Rn. Due to a conflict among the

objective functions, there typically is no x ∈ X minimizing every objective function simultaneously.

Thus, the concept of optimality is provided by Pareto efficiency. A solution x∗ ∈ X is weakly

(Pareto) efficient for problem (4.1) if there does not exist any other x ∈ X for which fi(x) < fi(x
∗)

for all i = 1, . . . , p. If, additionally, any improvement in one criterion fi(x) < fi(x
∗) resulting from
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the change of x∗ to x results in deterioration fj(x
∗) < fj(x) of at least one other criterion fj , then

x∗ is said to be (Pareto) efficient. The set of weakly (Pareto) efficient solutions for problem (4.1)

is denoted by EW (X, f), and the set of (Pareto) efficient solutions for problem (4.1) is denoted by

E(X, f).

There are many methods for computing efficient points for MOPs that are presented as

single integrated problems of form (4.1). In general, there are two classes of approaches: scalariza-

tion and nonscalarizing methods [36]. These approaches convert the MOP into a single objective

problem (SOP), a sequence of SOPs, or another MOP. Under some assumptions, solution sets of

these new programs yield solutions of the original problem. Scalarization methods explicitly em-

ploy a scalarizing function to accomplish the conversion while nonscalarizing methods use other

means. Among the nonscalarizing approaches there are methods using optimality concepts other

than Pareto, descent methods transferred from single objective optimization, and a new class of

set-oriented methods. The latter group also includes evolutionary algorithms that have become very

successful in engineering design [27, 101].

Complex systems engineering design has motivated the development of a new class of meth-

ods dealing with multiple design disciplines, with each discipline generating multiple design criteria.

The complexity is reflected in the system composition of subsystems and components. Multiple

disciplines originate from various science and engineering areas such as fluid dynamics, thermody-

namics, structures, etc., that interact with each other within the design process, while multiple

criteria are required to describe the system performance. In theory, the resulting all-in-one (AiO)

multiobjective and multidisciplinary design optimization (MDO) problem could be solved for its ef-

ficient set. In reality, the underlying AiO problem having form (4.1) is never solved directly because

the designs of the system, the subsystems, and the components are typically assigned to indepen-

dent engineering teams with complementary background and expertise. Each team deals with a

multiobjective optimization subproblem related to a discipline or subsystem or component. These

disciplines cannot be dealt with independently because they together contribute to the overall sys-

tem behavior. The distinction among the teams is in concert with the properties of the optimization

subproblems which, in general, have different domains and characteristics, belong to different disci-

plines, and require different solution algorithms. Due to the different backgrounds of the teams and

the limited understanding of each group towards the other disciplines, the information exchanged is

restricted only to some optimization quantities, either variables or functions. The flow of incomplete
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information across the disciplines, i.e., among the design teams, is a particular characteristic of the

multidisciplinary design.

Many papers present applications of multiobjective MDO in various areas of engineering

design ([79] [91] [66] [30] [22] [74] [28]). Methodologies such as Multiobjective Collaborative Opti-

mization ([107] [95]), Multiobjective Concurrent Subspace Optimization (CSSO) ([61] [63] [64] [62]

[60]), and a bilevel method ([125]) have also been developed. For multilevel systems, an approach

based on the use of lower-level efficient designs as targets for upper-level designs and the method of

Analytical Target Cascading is proposed in [77].

Another direction of research involves the development of genetic algorithms for multiob-

jective MDO. In [51], [50], [52] genetic algorithms are developed for MDO optimization problems

with global and local variables and demonstrate their applicability to engineering design problems.

A genetic algorithm for multiobjective CSSO is proposed in [88].

An approach to the computation of the AiO efficient designs with sharing of information

between subsystems is presented in [59], [20]. The information shared between the subsystems

is passed in the form of approximated objective functions. A comparison of information passing

strategies is performed in [58]. The set of AiO efficient designs is compared with the designs computed

for the decomposed counterpart which is coordinated with MDO and game-theoretic approaches.

Some of the proposed approaches and methodologies recognize the need for computing

tradeoffs within each subproblem and between the subproblems and some others capture the essence

of multidisciplinary design in which mathematical models are kept internal to each discipline and

may render a complete exchange of information impossible. However, a majority of these methods

are not supported with rigorous mathematical results on the convergence of proposed algorithms or

the completeness of the implicitly computed AiO efficient set. To address the latter and facilitate

tradeoff analysis for design problems with a large number of performance criteria, a reduction of the

original problem to a a family of bicriteria subproblems allowing designers to effectively use decision-

making in merely two dimensions is developed in [37]. In a similar vein, a theoretical examination

of the relationships between efficient solutions of a multiobjective quasiseparable MDO problem and

efficient solutions of its separable counterpart is provided in [44].

The work presented in this paper further contributes to the mathematical modeling and op-

timization of decomposable design problems. A Multiobjective Decomposition Algorithm (MODA)

is proposed for computing the efficient points of an MOP in a distributed manner, while only having
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access to the efficient points of the subproblems. The algorithm models the design process which

is conducted by two engineering teams working independently with distinct mathematical models.

The limited exchange of information between the subproblems is nevertheless sufficient for the com-

putation of the AiO efficient designs. The algorithm makes use of a Gauss-Seidel decomposition

technique, known as block coordinate descent (BCD), and the method of multipliers for coordinating

the subproblems. While the mathematical details on the convergence of MODA are contained in

[23], the current paper emphasizes the need to respect the autonomy of design disciplines within an

engineering context.

MODA is applicable to design problems of many types. In this paper, it is applied to

the vehicle layout design as a packaging problem approached with the paradigm of multiobjective

multidisciplinary optimization. In packaging optimization problems, the objective and constraint

functions are strongly related to the shape and the location of the components to be placed into a

given enclosure. The shape of the vehicle components shape depends on their functionality, that is,

the component design solutions that are based on engineering considerations affect the overall vehicle

layout. This results in components that morph during the optimization process as their performance

is optimized. A study of packaging optimization with morphing components is presented in [29],

in which a bilevel scheme is exploited to optimize the overall layout of the vehicle underhood at

the upper level while targeting the desired volume of the water reservoir at the lower level. In the

current paper, the layout of components in the underhood of the vehicle is optimized at the upper

level, while optimizing the design of one of these components, a Lithium-ion (Li-ion) battery, at the

lower level. The Li-ion battery pack must not only be designed under demanding thermal criteria,

but must itself be optimally placed within the underhood of the vehicle. The problem at each level

corresponds to the design of a system requiring highly specialized knowledge, yet the two problems

display a necessary interaction due to the placement of the battery within the vehicle underhood.

The paper is organized as follows. In Section 4.2, a bilevel formulation of the packaging

problem is proposed. MODA is developed in Section 4.3, and propositions are stated describing

convergence conditions. Once MODA is stated, a detailed description of the vehicle level subproblem,

the battery level subproblem, and a description of the solvers assigned to each subproblem are given

in Section 4.4. In Section 4.5, details on the implementation of MODA for the vehicle packaging

optimization are provided, including a discussion of favorable scaling of consistency constraints

and of weighting schemes that address the limited information flow that is allowed between the
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subproblems. Numerical results of the implementation are presented showing the MODA capability

of exploring the tradeoffs generated by the multiple criteria at each level. A brief discussion of the

weighting scheme for the scalarization is also given. Concluding remarks are given in Section 4.6.

4.2 Bilevel problem formulation

The vehicle layout design problem is modeled as a packaging optimization problem in which

the design variables define the locations of components inside an enclosure in order to optimize some

objective functions while satisfying design constraints. The typically utilized objective functions are

related to the layout compactness and the position of center of gravity. Other objective functions may

be chosen depending on the problem. In the case of vehicle optimization, vehicle dynamics, rollover

safety, or temperature distribution of underhood components may be considered as well. These

functions require dedicated simulation models which take as input the locations of components. It

should be noticed that vehicle dynamics and rollover safety could be, for simplicity, reconducted

to the optimization of the moment of inertia and the position of the center of gravity. Design

constraints will certainly include the overlapping between the components, which is not allowed.

It is clear that the design criteria, either objectives and constraints, strongly depend on the shape

of the components to be arranged. This tie between the criteria and the component shapes is a

peculiar feature of packaging optimization problems and is highlighted in the following formulation

of the optimization problem at the vehicle level.

min
xv

fv(xl, s)

s.t. xl ∈ Xl.

(4.2)

The vector of design variables xl collects the component locations and the vector s collects the

parameters describing the shape of the components. The vector of objective functions is specified

by fv. The set Xl contains the feasible values for xl.

The well-functioning within each component is also affected by component shape parameters.

For example, the radiator performance depends on its geometry and size, while the volume of the

water reservoir is decided based on thermal considerations. In electric or hybrid electric vehicles,

which are the subject of this paper, the battery geometrical dimensions are a consequence of the
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cell layout, which is optimized for thermal performance. The design of the components within the

vehicle layout leads to component level optimization problems having the following form.

min
xc

fc(xc)

s.t. xc ∈ Xc.

(4.3)

The vector of objectives for the component subproblems is specified by fc, and the vector of compo-

nent design variables xc is taken from component level feasible set Xc. The shape of the component

is a consequence of the design solution that is given by the design vector xc, that is, s = s(xc).

The component shape parameters occur at both the vehicle level and the component level

and simultaneously affect the measures of vehicle packing quality optimized in (4.2) and the measures

of component performance optimized in (4.3). Thus, the change of the component geometry during

the design phase should be considered when defining the vehicle layout and, on the other hand,

the available space in the vehicle should be considered when the components are designed. This

relationship would lead to a design problem (4.4) that is the collection of design problems (4.2) and

(4.3).

min
xl,xc

[fv(xl, s(xc)), fc(xc)]

s.t. xl ∈ Xl, xc ∈ Xc.

(4.4)

Problem (4.4) is nothing but a multiobjective optimizaton problem whose efficient designs

can be computed once all of the problem data are known. In practice, problem (4.4) is never solved

directly because vehicle and component designs are typically assigned to independent engineering

teams with complementary background and expertise. This distinction among the design problems

and their respective designing teams is in concert with the properties of problems (4.2) and (4.3),

which have different optimization domains and characteristics, belong to different disciplines, and

require different solution algorithms.

In the absence of the coupling parameter s(xc), the efficient points of (4.4) could be com-

puted as the Cartesian product of efficient points for the individual subproblems (4.2) and (4.3),

as shown in [44]. This decomposition methodology cannot be applied to problem (4.4) due to the

presence of coupling between the constituent subproblems (4.2) and (4.3) in the form of s(xc).
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The following variable definitions are useful to model this design scenario involving separate

design groups working on their subproblems in the presence of intersubproblem coupling.

xv = [xl,xs]

h(xv,xc) = xs − s(xc) = 0.

(4.5)

The introduction of the variable xs ∈ Xs gives the vehicle level designers the possibility to modify

the component shape to improve the vehicle layout, while the equality constraint h(xv,xc) enforces

the consistency between the component shapes at both levels. The shape variable xs is taken from

a set of feasible shapes Xs, and the aggregation xv of the position and shape variables is taken from

the set defined as Xv = X` ×Xs.

Consequently, the integration of design problems (4.2) and (4.3) considering definitions (4.5)

is formulated as problem (4.6)

min
xv,xc

[fv(xv), fc(xc)]

s.t. xv ∈ Xv, xc ∈ Xc

h(xv,xc) = 0.

(4.6)

The paradigm of decomposition must be considered in this multidisciplinary optimization

problem to really picture the design process with tasks assigned to different teams at different levels.

The reformulation of subproblems (4.2) and (4.3) induced from problem (4.6) reads

min
xv,xc

fv(xv)

s.t. xv ∈ Xv, xc ∈ Xc

h(xv,xc) = 0

(4.7)

and

min
xv,xc

fc(xc)

s.t. xv ∈ Xv xc ∈ Xc

h(xv,xc) = 0.

(4.8)
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In [37], it is shown that weakly efficient solutions for problem (4.6) may be obtained by

computing the efficient solutions of subproblems (4.7) and (4.8) separately. However, in the current

study, the information available to subproblems (4.7) and (4.8) is limited in the following sense. The

vehicle layout designer solving problem (4.7) has knowledge of a specific value xc communicated

from the component designer, but no knowledge of the set Xc and no control over the value of

xc. Similarly, the component designer solving problem (4.8) has knowledge of a specific value xv

communicated from the vehicle layout designer, but no knowledge of the set Xv and no control over

the value of xv. Problems (4.7) and (4.8) are restated under these assumptions as follows.

min
xv

fv(xv)

s.t. xv ∈ Xv

h(xv,xc) = 0

(4.9)

min
xc

fc(xc)

s.t. xc ∈ Xc

h(xv,xc) = 0.

(4.10)

Thus, efficient points for the all-in-one (AiO) problem (4.6) must be computed using only references

to subproblems (4.9) and (4.10), and so the above mentioned approach referred to in [37] is not

applicable.

4.3 Decomposition and coordination

Section 4.2 motivated and developed the formulation of the vehicle design problem (4.6) in

terms of the coordinated subproblems (4.9) and (4.10). By suitably reformulating subproblems (4.9)

and (4.10), a coordinated decomposition procedure may be stated for computing efficient points of

(4.6). This procedure respects the autonomous qualities of each subproblem, while incorporating

essential information about their relations to the all-in-one problem (4.6).

The use of the weighted-sum method for computing efficient points for subproblems (4.9)
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and (4.10) leads to the statement of single objective problems

min
xv

fv(xv)

s.t. xv ∈ Xv

h(xv,xc) = 0

(4.11)

and

min
xc

fc(xc)

s.t. xc ∈ Xc

h(xv,xc) = 0,

(4.12)

where fv = wv ·fv and fc = wc ·fc are computed using positive weight vectors wv ∈ Rp> and wc ∈ Rp>

normalized so that their vector components sum to one.

Fixing weight vectors wv and wc, the underlying AiO problem becomes the following biob-

jective problem

min
xv,xc

[fv(xv), fc(xc)]

s.t. xv ∈ Xv, xc ∈ Xc

h(xv,xc) = 0.

(4.13)

The weighted-sum scalarization applied to (4.13) takes the form

min
xv,xc

αvfv(xv) + αcfc(xc)

s.t. xv ∈ Xv, xc ∈ Xc

h(xv,xc) = 0,

(4.14)

for weights αv > 0, αc > 0 with αv + αc = 1.

Although weights for problem (4.6) could be given by the AiO weight vector w = [αvwv, αcwc],

the distinction between intra-subproblem weights, wv and wc, and inter-subproblem weights, αv

and αc, is maintained in line with the assumption that subproblem (4.9) has direct knowledge of

its intra-subproblem weight wv, and (4.10) has direct knowledge of its intra-subproblem weight wc,
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but neither subproblem has direct knowledge of either αv or αc. The implementation of this idea

and its motivation are made clear in Section 4.5.

Weighted-sum at both the intra-subproblem and inter-subproblem levels is used initially

due to its analytical simplicity. The use of weighted-sum may later be replaced with more elaborate

scalarization techniques as the problem properties warrant.

The equality constraints of problems (4.11) and (4.12) are relaxed and incorporated into

the objective function as Lagrange term and penalty term, resulting in the subproblems

min
xv

αv fv(xv) + vT · h(xv,xc) +
µ

2
‖h(xv,xc)‖22

s.t. xv ∈ Xv

(4.15)

and

min
xc

αc fc(xc) + vT · h(xv,xc) +
µ

2
‖h(xv,xc)‖22

s.t. xc ∈ Xc,

(4.16)

where v denotes the vector of Lagrange multipliers associated with the consistency equality con-

straints and µ > 0 is a penalty coefficient.

The resulting AiO augmented Lagrangian problem that is to be solved using only references

to problems (4.15) and (4.16) is given by

min
xv,xc

αvfv(xv) + αcfc(xc)

+ vT · h(xv,xc) +
µ

2
‖h(xv,xc)‖22

s.t. xv ∈ Xv, xc ∈ Xc,

(4.17)

where the manner in which information about αv and αc is communicated to subproblems (4.15)

and (4.16) is described in Section 4.5.

The distributed and coordinated computation of designs efficient for problem (4.6) using

subproblems (4.15) and (4.16) is based on the Block Coordinate Descent (BCD) method [11, 49, 114],

and the method of multipliers [10, 11], both of which have previously been developed in the single

objective optimization setting. The BCD method and the method of multipliers are described in

Section 4.3.1.
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4.3.1 Block Coordinate Descent (BCD) and the method of multipliers

The BCD method is applied to subproblems (4.15) and (4.16) with a Lagrange multiplier v

and a penalty coefficient µ treated as fixed parameters. In turn, the method of multipliers is applied

for updating v and µ.

BCD is a block nonlinear Gauss-Seidel approach to solving, in a distributed manner, the

single objective optimization problem having the form

min
x1,...,xm

f(x1, . . . ,xm)

s.t xi ∈ Xi for i = 1, . . . ,m,

(4.18)

where each Xi, i = 1, . . . ,m is a closed and convex set. The writing of the feasible set X as a

Cartesian product of local feasible sets Xi, i = 1, . . . ,m corresponds to a partition x = [x1, . . . ,xm]

of the design space in the sense that x ∈ X if and only if xi ∈ Xi for each i = 1, . . . ,m. Thus, each

constraint set Xi is local to block coordinate xi for each i = 1, . . . ,m.

BCD is applied to a problem of form (4.18) in the following manner. Each block coordinate

xi is updated separately in a fixed cyclic order using the computation

xki = arg min
xi∈Xi

fi,k(xi), (4.19)

where the function fi,k : Xi → R is defined by evaluating f at xj = xkj for j < i, and at xj = xk−1
j

for j > i, while leaving xi as a vector variable. In other words, the minimization of fi,k over xi ∈ Xi

amounts to the minimization of f over xi ∈ Xi while treating every other block coordinate xj , j 6= i,

as being fixed to its most recently updated value. Each instance (i, k) of problem (4.19) corresponds

to a subproblem of (4.18).

The iterative application of update (4.19) to each block coordinate in a fixed cyclic order

starting from an initial value x0 is stated in Algorithm 5. The algorithm takes as input the scalar-

valued objective function f , the sets X1, . . . , Xm containing the feasible values that each respective

block coordinate x1, . . . ,xm may take, and also the initial value x0. Termination of Algorithm

5 occurs when convergence within a specified tolerance is detected within the generated sequence{
xk
}

. The returned output x is taken as the value of xk when the repeat loop terminates. The

value x thus approximates a limit point to the sequence
{
xk
}

.
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Algorithm 5 BCD

function BCD(f , X1, . . . , Xm,x0)
k ← 0
repeat

Update: k ← k + 1
for i ∈ {1, . . . ,m} do

Set:
fi,k(xi)← f(xk1 , . . . ,x

k
i−1,xi,x

k−1
i+1 , . . . ,x

k−1
m )

Compute:
xki ≈ arg minxi∈Xi fi,k(xi)

end for
until

(
||xk − xk−1|| < tol

)
x← xk

return x
end function

The BCD method is applied to problem (4.17) with two blocks corresponding to subproblems

(4.15) and (4.16). During the application of BCD, the Lagrange multiplier v and the penalty

coefficient µ are treated as fixed parameters. By fixing these values, the constraint set of problem

(4.17) has the structure of problem (4.18) required for the application of BCD when the following

identifications

x1 = xv, x2 = xc

X1 = Xv, X2 = Xc

f = αvw
T
v · fv (xv) + αcw

T
c · fc (xc)

+vT · h(xv,xc) + µ
2 ‖h(xv,xc)‖22

are made. For fixed v and µ, the BCD subproblems are identified with the instantiations of sub-

problems (4.15) and (4.16) resulting from the updates of xc and xv, respectively.

For any given fixed values of the Lagrange parameters v and µ, the application of BCD

typically yields optimal solutions of (4.17) that are not feasible solutions for problem (4.14). Thus,

a process for adjusting v and µ needs to be included in addition to the updates of the BCD method.

The updates of v and µ leading to optimal solutions of problem (4.17) that are also feasible for

problem (4.14) are obtained using the method of multipliers.

The method of multipliers is applied to problems having the form

min
x∈X

f(x)

s.t. h(x) = 0

(4.20)
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with the use of the augmented Lagrangian reformulation given by

min
x∈X

fv,µ(x), (4.21)

where the augmented Lagrange function fv,µ is given by

fv,µ(x) := f(x) + vT · h(x) +
µ

2
‖h(x)‖22

for a vector v of Lagrange multipliers and a penalty parameter µ > 0.

An iteration of the method of multipliers takes the form

xk+1 = arg min
x∈X

fvk,µk(x) (4.22)

vk+1 = vk + µk(h(x)) (4.23)

µk+1 = cµk 2 ≤ c ≤ 10, (4.24)

where update (4.22) is obtained by computing an optimal argument to problem (4.21). Updates

(4.22), (4.23), and (4.24), when repeated, generate a sequence
{

(xk,vk)
}

. Under certain conditions,

any limit points (x,v) satisfy the Karush-Kuhn-Tucker conditions (e.g., see [10] or [11]) for problem

(4.20). The theory of convergence for the generated sequence
{

(xk,vk)
}

to Lagrange stationary

points ((x∗,v∗)) is explored in [10] under both exact and inexact minimizations in (4.22).

Method of multiplier updates may be applied to problem (4.14) as it has the form of problem

(4.20). Identifying problem (4.21) with problem (4.17), the BCD method is used to compute optimal

arguments to (4.17) in a distributed manner with v and µ treated as fixed parameters. Once BCD

terminates, v and µ are updated as in (4.23) and (4.24) with the necessary identifications with

problems (4.14) and (4.17).

The integration of the method of multipliers with BCD described above is presented in

Algorithm 6. This algorithm takes input f , Xi having the meaning given in problem (4.20), and x0

is the starting value for x as in Algorithm 5. Additionally, Algorithm 6 takes as input the vector

of linear functions h(x) defining the global linear constraints; v0, the initial value for the Lagrange

multiplier v; and µ0, the initial value for the penalty coefficient µ. The function fv,µ passed into

Algorithm BCD is updated whenever v and µ are updated. Once convergence of BCD is observed
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Algorithm 6 COOR integrates BCD and method of multipliers for single objective optimization

function COOR(f , X1, . . . , Xm,h,x0,v0,µ0)
k ← 0
repeat

fv,µ(x)← f(x) + vk · h(x) + µk
2 ‖h(x)‖22

xk+1 ← BCD(fv,µ, X1, . . . , Xm, xk)
vk+1 ← vk + µkh(x)
µk+1 ← cµk for 2 ≤ c ≤ 10
Update: k ← k + 1

until
(
‖h(x)‖ < tol AND

∥∥xk − xk−1
∥∥ < tol

)
(x,v)←

(
xk,vk

)
return (x,v)

end function

within the call to Algorithm 5, then updates of v and µ are performed using formulas (4.23) and

(4.24). This update process is repeated until
∥∥h(xk)

∥∥ < tol and
∥∥xk − xk−1

∥∥ < tol are observed for

tolerance tol > 0. The values xk and vk at termination are stored as the limiting values (x,v) of

the generated sequence
{(

xk,vk
)}

. The pair (x,v) is then returned as the output.

The decomposition and coordination approach stated in Algorithm 6 is the main engine

behind the decomposition and coordination approach in the multiobjective setting. Algorithm 6

may be applied to each instance of problem (4.14) specified by intra-subproblem weight vectors, wv

and wc, and inter-subproblem weights, αv and αc. The repeated application of Algorithm 6 over a

set W of scalarizations results in the Multiobjective Decomposition Algorithm (MODA) presented

in Algorithm 7. In addition to the inputs of Algorithm 6, Algorithm 7 takes set W containing

scalarizing functionals (determined by weight vectors) used to reformulate an MOP into a single

objective optimization problem. Each value (x,v) returned by Algorithm 7 is stored in set E. The

set E is returned as the output at the conclusion of Algorithm 7. The x values of each element of

E are candidate efficient points for problem (4.6).

The solution approach developed in this section is intended to model the design process in

which two engineering teams work independently on their design problems while sharing a limited

amount of information taking the form of subproblem specific targets that appear in the Lagrange

and penalty terms. The conditions under which this shared information is adequate for the compu-

tation of feasible efficient designs for the all-in-one problem (4.6) is discussed in Section 4.3.2.
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Algorithm 7 Multiobjective Decomposition Algorithm (MODA)

function MODA({fi}, X1, . . . , Xm,h,x0,v0,µ0,A,W)
E ← ∅
for ([wi] ∈ W do

for ([αi] ∈ A do
fw ←

∑m
i=1 αiwi · fi

(x,v)← COOR(fw,X1, . . . , Xm,h,x0,v0,µ0)
E ← E ∪ {(x,v)}

end for
end for
return E

end function

4.3.2 Convergence of MODA

The convergence analysis of MODA follows from the integration of the convergence analysis

of its constituent parts, the BCD method and the method of multipliers.

Proposition 12 states conditions under which the sequence
{

(xk,vk)
}

generated with Algo-

rithm 6 converges to (x∗,v∗), where x∗ = (x∗1,x
∗
2) is a global minimum for an optimization problem

of the form

min
x1,x2

f(x1,x2)

s.t. h(x1,x2) = 0

x1 ∈ X1, x2 ∈ X2,

(4.25)

and v∗ is the multiplier associated with constraint h(x) = 0 that, together with x∗, satisfies the

necessary conditions of optimality over convex set X for problem (4.25) given by

1. Stationary point condition:

[
(∇xf(x∗) + (v∗)T∇xh(x∗)

]T
(x− x∗) ≥ 0 (4.26)

for all x ∈ X, and

2. Feasibility condition: h(x∗) = 0.

Proposition 12. For problem (4.25), let X1 ⊂ Rn1 and X2 ⊂ Rn2 be closed, convex sets; let
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f : X1 ×X2 → R be continuously differentiable with bounded level sets

X 0 =
{

(x1,x2) ∈ X1 ×X2 : f(x1,x2) ≤ f(x0
1,x

0
2)
}

for a starting point (x0
1,x

0
2); and let h : X1×X2 → R` be continuously differentiable. Let a sequence{

(xk,vk)
}

be generated using Algorithm 6 under the following assumptions:

1. Each xk computed by update (4.22) using BCD is a global minimizer for the augmented La-

grangian problem

min
x1,x2

f(x1,x2)

+ (vk)T · h(x1,x2) +
µk

2
‖h(x1,x2)‖22

s.t. x1 ∈ X1, x2 ∈ X2;

(4.27)

2. The sequence
{
vk
}

generated using the method of multipliers is bounded;

3. The penalty parameter µ > 0 grows arbitrarily large.

Then any limit point (x∗,v∗) of the generated sequence
{

(xk,vk)
}

satisfies the necessary condition

for optimality stated in (4.26), and x∗ is a global minimizer for problem (4.25) satisfying h(x∗) = 0.

Proof. The continuous differentiability of f and the

boundedness of X0 are sufficient for each limit point xk obtained from the sequence generated with

BCD to satisfy the stationary point condition for problem (4.27) with v = vk, which is given by

[
(∇xf(xk) + (vk)T∇xh(xk)

]T (
x− xk

)
≥ 0

for all x ∈ X

(see Corollary 2 of [49]). When these limit points are furthermore global minima for (4.27), then

assumptions 2 and 3 of this proposition are sufficient for the application of Proposition 2.1 of [10], by

which it follows that the limit point x∗ of the sequence
{
xk
}

generated by Algorithm 6 is a global

minimizer for problem (4.25) satisfying h(x∗) = 0. By Proposition 1 of [120], the pair (x∗,v∗)

satisfies the stationary condition (4.26).

The computation of (x∗,v∗) satisfying the stationary condition (4.26) and the feasibility
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requirement h(x∗) = 0 for problem (4.25) allows for µ to grow more slowly, thus improving the

conditioning of the computations.

Using the foundation laid with Proposition 12, Proposition 13 establishes conditions under

which MODA computes efficient points for an AiO bilevel design problem

min
x1,x2

[f1(x1), f2(x2)]

s.t. h(x1,x2) = 0

x1 ∈ X1, x2 ∈ X2,

(4.28)

while using references to the nonintegrable subproblems

min
x1

f1(x1)

s.t. x1 ∈ X1

h(x1,x2) = 0

(4.29)

and

min
x2

f2(x2)

s.t. x2 ∈ X2

h(x1,x2) = 0,

(4.30)

where X1 and X2 are closed convex sets and h(x1,x2) = 0 are linear consistency constraints.

Proposition 13. Let W be a set of intra-subproblem

weight vectors and A be a set of inter-subproblem weight vectors for problems (4.28)-(4.30). For

subproblems (4.29) and (4.30), define the weighted-sum scalarizations f1 : X1 → R and f2 : X2 →

R by

f1(x1) = w1 · f1(x1)

and

f2(x2) = w2 · f2(x2),

respectively, for each [w1,w2] ∈ W.

Furthermore, let the assumptions of Proposition 12 apply to each instance of problem (4.25)

113



with objective function f : X1 × X2 → R defined by f(x1,x2) = α1f1(x1) + α2f2(x2) for each

(α1, α2) ∈ A. Then MODA generates efficient points for the AiO problem (4.28).

Proof. The proof follows from noting that MODA is just the repeated application of Algorithm 6 on

scalarized AiO problems of form (4.25) constructed for each w ∈ W and α ∈ A. Each BCD block

update corresponds to solving subproblems of forms (4.29) and (4.30).

Propositions 12 and 13 state assumptions on the AiO problem (4.28) under which the use

of MODA is justified. However, in applying MODA to engineering design problems such as the

vehicle design problem, the assumptions stated in Propositions 12 and 13 may be difficult to verify

beforehand. The application of MODA to the vehicle design problem therefore requires a deeper

understanding of the problem. The specific meaning that the design variables xv, xc; the feasible

sets Xv, Xc; the objective function vectors fv, fc; and the consistency constraint h(xv,xc) = 0 have

for the vehicle design problem is described in Section 4.4.

4.4 Models and algorithms for packaging optimization

The modeling and computational methodologies proposed in this paper are applied to vehicle

packaging optimization represented by problem (4.6). In this section models for subproblems (4.2)

and (4.3) are presented along with the utilized solution algorithms.

The vehicle layout problem is to place the components of the underhood compartment (see

Fig. 4.1). Besides the battery, other five components are considered, the engine, the radiator, the

coolant reservoir, the air filter, and the brake booster. Since the focus is on the battery design,

only the battery is considered as morphable component according to its functionality. As shown in

Fig. 4.1, the components are modeled using tessellated representation, i.e., the STL format. This

representation is used to conveniently generate voxel models of the components and the underhood

enclosure. The voxel representation allows the computation volume of intersecting components

and the enclosure, which have irregular and complex shapes. The intersection constraint is in

fact a peculiar characteristic of packaging optimization which subjects the objective and constraint

functions to geometric considerations.

In the vehicle layout problem, the vector

xv = (x, y, z, Lv,Wv)
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Figure 4.1: Vehicle underhood components
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collects the locations of the components (three coordinates, x, y and z) as well as the battery

component shape parameters Lv and Wv being, respectively, the length and width (in mm) of the

battery box. (Orientations of the components are not considered.) The vector fv = (JG, A, U)

has three objectives, layout compactness JG, accessibility A, and vehicle survivability U . The

compactness (also referred as compacity) is measured by the moment of inertia of the components

with respect to the vertical axis passing through the center of gravity G, with coordinates xG and

yG, of the underhood enclosure. Objective JG is to be minimized and is given by

JG(xv) =

6∑
i=1

(
Ji +

(
(xi − xG)2 + (yi − yG)2

)
mi

)
, (4.31)

where index i identifies all the six components under the hood and mi’s and Ji’s are their masses

and moments of inertia, respectively.

The accessibility of a component in a given layout is measured by the number of components

that have to be removed before accessing it from one direction. The layout accessibility is the sum

of all the component accessibilities. For the layout in Fig. 4.2, the component accessibilities are

reported in Table 4.1. A weight is associated with each component to determine its importance.

The components that require frequent access for maintenance are associated with larger weights.

For a given layout solution xv, the accessibility to be minimized is

A(xv) =

6∑
i=1

Ai(xv). (4.32)

Table 4.1: Accessibility values for the example in Fig. 4.2 (left)

Component Weight To be removed Accessibility Ai

1 3 2 6

2 3 0 0

3 1 1 1

4 9 1 9

5 1 0 0

6 1 0 0
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Figure 4.2: Example for accessibility computation

Vehicle survivability is intended here as the degree of protection offered to the components by

the other components from the impact with external bodies. The degree of protection is computed by

the overlapping area among components. For layout in Fig. 4.3, component 1 is partially protected

by components 2 and 3 due to the overlapping areas O12 and O13, respectively. The overlap area

for component 1 is

O1 = O12 +O13, (4.33)

which accounts for additional protection due to the double overlap offered by O123. Weights pi are

introduced considering that some components are more crucial than others. The overlap area Oi is

then normalized with respect to the area of the ith component surface Pi. The vehicle survivability

is given by

U(xv) =

6∑
i=1

pi
Oi(xv)

Pi
(4.34)

and is to be maximized.
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Figure 4.3: Example for survivability computation

The constraint set Xv for the vehicle design problem is given by

Xv :=



xv = (x,y, z, Lv,Wv) s.t.

`x,i < xi < ux,i

`y,i < yi < uy,i

`z,i < zi < uz,i

hoverlap(xi, yi, zi, Lv,Wv) = 0

for i = 1, . . . , Ncomps



.

The values `x,i, `y,i, and `z,i are lower bounds on the location parameters xi, yi, and zi, while ux,i,

uy,i, and uz,i are the corresponding upper bounds. The components are indexed by i, and Ncomps is

the number of components. The equality constraint hoverlap = 0 prevents the overlapping placement

of components.

As already mentioned, only the battery is considered at the component level. The driving
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design criterion for the layout of cells is the thermal behavior of the battery, as reflected in the

distribution of battery cell temperatures during the operation of the vehicle. A thermal model of the

battery simulates heat rejection through a liquid coolant at steady state conditions and provides the

cell temperatures Ti, for i = 1, . . . , N , as functions of certain layout variables, with the assumption

that the battery cells are arranged into a triangular lattice having Ncols columns and Nrows rows

(see Fig. 4.4 in which a column is highlighted in a layout with 12 columns and 6 cells per column).

Cell spacing parameter p determines the distance dcenter between the centers of two adjacent cells

by the equation dcenter = p · ddiameter, where ddiameter denotes the diameter of a cell. The battery

level requirements on the battery box length and width, Lc and Wc, are determined by the following

geometric formulas influenced by the values of p, Ncols, and Nrows.

Lc =
(
p · cos(π6 ) · (Ncols − 1) + 3

)
· dcell,

Wc = p · dcell ·
(
Nrows + 1

2

)
These layout variables are collected into the vector denoted by xc = (p,Ncol, Nrow, Lc,Wc).

Uniform heat rejection leads to uniform temperature distributions with beneficial effect on

the cell durability. Thermal unevenness may cause electrical unbalance with consequent reduced

lifetime and cell failure. Obtaining a uniform temperature distribution can be seen as the minimiza-

tion of the deviations of the N = 72 cell temperatures Ti, for i = 1, . . . , N , from the ideal operating

cell temperature To, as stated in the following problem with N objective functions,

min
xc∈Xc

[
(Ti(xc)− To)2

]
i=1,...,N

, (4.35)
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where Xc is the component level constraint set defined by

Xc :=



xc = (p,Ncols, Nrows, Lc,Wc) s.t.

1 < p ≤ 2,

Ncols ·Nrows = N,

Ncols ∈ {9, 12, 18}

Lc =
(
p · cos(π6 ) · (Ncols − 1) + 3

)
· dcell,

Wc = p · dcell ·
(
Nrows + 1

2

)



.

As reported in [24], these objectives are conflicting, so that problem (4.35) requires an optimality

concept such as Pareto efficiency. Due to peculiar characteristics of the objectives, three properties

apply to problem (4.35): comparability and anonymity of the objectives, and the Pigou-Dalton prin-

ciple of transfer. The objectives are comparable because they measure the same physical quantity,

deviations from To. The objectives are anonymous because the temperature is important but the

cell that specifically exhibits this temperature is not. The third property, the Pigou-Dalton principle

of transfer, is satisfied because evenly distributed deviations, resulting in uniform cell temperatures,

are preferred. Due to these properties, the equitability preference, a refinement of the Pareto effi-

ciency, can be applied to the cell layout optimization problem [72]. It is also shown in [72] that the

equitable efficient solutions of MOP (4.1) may be computed as the Pareto efficient solutions of the

following reformulated multiobjective problem

min
x∈X

[
θq(x)

]
q=1,...,N

, (4.36)

where θq(x) is the sum of the q largest components of the vector f(x) evaluated for some x ∈ X.

The objectives θq(x) may be computed as an optimal value of the following linear program (see
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Figure 4.4: Cell layout in the battery module

[24, 72] for details)

θq(x) = min
zq,tq,dq,i

zq

s.t. zq ∈ R, tq ∈ R, dq,i ≥ 0

i = 1, . . . , N

zq = q tq +

N∑
i=1

dq,i

tq + dq,i ≥ (Ti(xc)− To)2
,

i = 1, . . . , N

(4.37)

where tq and dq,i, q, i = 1, . . . , N , are auxiliary variables. Multiobjective problem (4.35) is thus

transformed into multiobjective problem (4.36), whose Pareto solutions are equitable for the original

problem (4.35) with the identifications fi(x) = (Ti(xc)− To)2
, X = Xc, and x = xc. In effect,

equitable efficient solutions can be obtained by the algorithms traditionally used for finding Pareto

efficient solutions.

To summarize, the bilevel formulation of the vehicle design problem is given by
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min
xv∈Xv

[
JG, A, −U

]
s.t. h(xv,xc) = 0

(4.38)

(U is negated because it is to be maximized) and

min
xc∈Xc

[
θq(xc)

]
q=1,...,N

s.t. h(xv,xc) = 0,

(4.39)

where

h(xv,xc) :=

 Lc − Lv

Wc −Wv

 .
Problems (4.38) and (4.39) belong to different disciplines of automotive design. The ob-

jective functions of problem (4.38) come from dynamics and safety while the objective functions

of (4.39) come thermodynamics. Two independent research efforts have been undertaken to pro-

pose algorithms for solving these problems separately. Subproblem (4.38) is solved using a genetic

algorithm since, as known from the literature, packaging problems are highly multimodal and not

suitable for gradient-based algorithms [68]. An archive-based micro genetic algorithm (AMGA) im-

plemented in JAVA is used. The voxelization required for the intersection constraint is conveniently

implemented in JAVA as well. The battery design problem (4.39) instead is solved using a sequen-

tial quadratic programming (SQP) algorithm since the layout is forced over a triangular grid. The

problem is implemented in Matlab which provides the SQP algorithm that is tied to the battery

model developed in Matlab/Simulink [24].

In the current work, we make use of these available methods and their implementations

to address the packaging problem with the proposed bilevel optimization approach accounting for

multiple design disciplines and teams. While the conditions under which MODA generates efficient

designs are stated in Section 4.3.2, the application of MODA to the vehicle design problem requires

problem-specific fine tuning as described in Section 4.5.
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4.5 Application of MODA to the packaging optimization prob-

lem

Algorithm MODA is applied to the vehicle design problem with the following identifications.

X = X1 ×X2 (m = 2)

X1 = Xv, X2 = Xc

x = [x1,x2] , x1 = xv, x2 = xc

f(xv,xc) = wT
v · fv (xv) + wT

c · fc (xc)

fv(xv) =

[
JG(xv), A(xv), U(xv)

]
fc(xc) = [ zq(xc) ]q=1,...,N

h(xv,xc) =

 Lc − Lv

Wc −Wv


The intra-subproblem weight vectors, wv and wc, and the inter-subproblem weights, αv and αc, are

specified later.

The application of MODA to the vehicle design problem needs to be subject to the following

considerations.

1. The use of metaheuristic approaches such as genetic algorithms for solving the vehicle level

problem introduces uncertainty and inexactness. Although this problem is never perfectly

addressed, its ill-effect on the performance of the BCD method can be mitigated by accepting

vehicle level updates under the condition that such updates result in AiO improvement of the

objective function for problem (4.17). Otherwise, the update is rejected and the vehicle-level

solver is called repeatedly until this condition is met.

2. AiO improvement for (4.17) resulting from a vehicle-level update cannot be meaningfully tested

immediately after a method of multipliers update of v and µ. Therefore, updates of v and µ

are followed immediately with a battery level update.

3. The presence of inexact minimization also requires that the global equality constraints h(x) = 0

and the penalty parameter µ be carefully scaled to avoid feasible but non-efficient convergence
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for problem (4.6). Rescaling of the constraints takes the form s · h(xv,xc) = 0 where s > 0 is

a real-valued scalar. The use of this rescaled consistency constraint in problem (4.17) results

in the formulation of the equivalent problem

min αvw
T
v · fv(xv) + αcw

T
c · fc(xc)

+ vT · s · h(xv,xc)

+
µ

2
[s · h(xv,xc)]

T
[s · h(xv,xc)]

s.t. xv ∈ Xv, xc ∈ Xc.

(4.40)

Subproblem solvers do not need direct knowledge of this rescaling. The statement of problem

(4.40) suggests that the constraint rescaling may be affected by passing v and µ to each

subproblem in the form v← sv, µ← s2 µ.

4. If subproblems (4.15) and (4.16) are assumed to have no direct knowledge of αv and αc,

respectively, then the effect of αv and αc can be encoded into the parameters v and µ. This

is accomplished through the reformulations of (4.15) and (4.16) taking the form

min
xv

fv(xv) + vTv · h(xv,xc) +
µv
2
‖h(xv,xc)‖22

s.t. xv ∈ Xv

(4.41)

and

min
xc

fc(xc) + vTc · h(xv,xc) +
µc
2
‖h(xv,xc)‖22

s.t. xc ∈ Xc,

(4.42)

where vv = v
αv
,vc = v

αc
and µv = µ

αv
, µc = µ

αc
.

An implementation of these ideas is depicted in Fig. 4.5.

4.5.1 Numerical results

Pareto efficient designs of the bilevel problem (4.6) are computed under the following sce-

narios implied by the assumption that the design variable Ncols ∈ {9, 12, 18} in subproblem (4.10)

is treated as a fixed parameter. (Thus, Nrows is also fixed due to the constraint
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Figure 4.5: Applying MODA to the vehicle design problem

NcolsNrows = 72.) Three scenarios (referred to as Ncols-scenarios) are considered corresponding to

battery box aspect ratios induced by the arrangement of battery cells into 9 columns, 12 columns,

and 18 columns.

Weights are specified as the intra-subproblem weight vectors, wv and wc, and a scalar β > 0

is used to construct the inter-subproblem weights

αv =
1

1 + β
, αc =

β

1 + β
,

whose purpose is to allocate relative importance between the two subproblems. The inter-subproblem

weights, αv and αc, may be constructed to reflect the designer’s preference.

For each Ncols-scenario, one vector of weights

wv = [0.01, 50, 50]

is considered at the vehicle level. This value for wv is for the purposes of favorably scaling the

problem and does not correspond to a designer’s preference.

For each Ncols-scenario, three vectors of weights wc of length Ncols are considered having
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Table 4.2: Solutions computed using MODA (9 columns, 8 rows)

Battery level weight: w1
c

β 1 10 100 1000
fv -32.822 -376.019 -255.698 -207.100
fc 35.906 5.920 0.864 0.059
JG 92823.050 77430.460 80928.470 89032.060
A 0.000 1.000 0.000 1.000
U 19.221 24.006 21.300 22.947
p 1.236 1.057 1.095 1.117
Lv 391.754 351.954 364.546 360.201
Lc 393.115 350.982 360.032 365.067
Wc 358.274 304.648 312.963 322.615
Wv 357.160 305.468 316.572 322.749
u1 -6.001 28.950 47.504 -0.985
u2 1.348 5.867 51.840 52.069
µ 128.000 128.000 128.000 128.000

Battery level weight: w2
c

β 1 10 100 1000
fv -660.469 -360.716 -293.274 260.857
fc 57.098 5.467 2.390 0.078
JG 74841.670 95503.230 79943.660 95781.840
A 1.000 0.000 2.000 0.000
U 29.177 26.315 23.852 13.939
p 1.015 1.078 1.150 1.118
Lv 339.914 351.809 370.395 364.494
Lc 341.122 355.902 372.958 365.315
Wv 294.315 314.821 336.940 322.606
Wc 293.372 311.505 332.430 323.054
u1 24.893 -69.704 -18.705 -10.833
u2 5.083 95.716 -85.468 98.262
µ 128.000 128.000 128.000 128.000

Battery level weight: w3
c

β 1 10 100 1000
fv -439.028 -182.589 6.555 -249.299
fc 2.123 1.863 0.116 0.125
JG 78804.310 83953.760 89331.580 95793.220
A 1.000 0.000 1.000 1.000
U 25.540 20.442 18.734 25.144
p 1.097 1.099 1.121 1.116
Lv 358.957 359.492 365.037 361.614
Lc 360.476 360.801 366.107 364.868
Wv 318.358 318.415 322.891 317.770
Wc 317.116 317.515 324.025 322.504
u1 -12.982 -57.624 -154.377 45.549
u2 13.311 66.812 34.555 67.426
µ 128.000 128.000 128.000 128.000
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Table 4.3: Solutions computed using MODA (12 columns, 6 rows)

Battery level weight: w1
c

β 1 10 100 1000
fv -563.563 -5.141 -357.208 -331.942
fc 40.688 3.286 1.085 0.102
JG 70667.080 72971.800 80529.730 91776.540
A 0.000 1.000 1.000 1.000
U 25.405 15.696 24.249 25.993
p 1.246 1.177 1.094 1.120
Lv 499.188 485.767 455.456 468.999
Lc 505.605 483.326 456.335 464.810
Wv 284.799 256.578 241.882 251.612
Wc 275.389 260.188 241.771 247.554
u1 36.349 46.953 46.711 20.438
u2 -57.962 -85.208 24.411 2.739
µ 128.000 128.000 128.000 128.000

Battery level weight: w2
c

β 1 10 100 1000
fv -325.756 -458.535 -267.731 -303.221
fc 4.676 7.703 0.289 0.177
JG 99526.140 71234.520 82173.020 76344.370
A 1.000 1.000 1.000 1.000
U 27.419 24.417 22.788 22.332
p 1.085 1.076 1.123 1.119
Lv 453.996 450.329 469.991 465.319
Lc 453.584 450.614 465.785 464.448
Wv 239.254 238.006 243.579 249.584
Wc 239.894 237.868 248.219 247.307
u1 4.002 30.085 -45.957 6.261
u2 -2.012 17.036 36.253 -15.480
µ 128.000 128.000 128.000 128.000

Battery level weight: w3
c

β 1 10 100 1000
fv -492.996 -299.608 -391.409 -486.777
fc 9.905 4.555 0.410 0.219
JG 105874.700 69555.240 82402.070 69050.710
A 1.000 1.000 1.000 1.000
U 32.034 20.902 25.308 24.545
p 1.166 1.092 1.113 1.118
Lv 482.218 457.171 463.061 466.849
Lc 479.759 455.549 462.337 464.184
Wv 254.149 238.650 242.595 242.803
Wc 257.754 241.235 245.866 247.127
u1 -2.585 8.915 26.695 -19.723
u2 -2.761 42.123 10.898 44.862
µ 128.000 128.000 128.000 128.000
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Table 4.4: Solutions computed using MODA (18 columns, 4 rows)

Battery level weight: w1
c

β 1 10 100 1000
fv -381.987 -178.959 -198.840 -210.174
fc 9.443 4.222 6.089 0.217
JG 82449.230 88616.670 94997.310 90771.990
A 1.000 1.000 2.000 0.000
U 25.129 22.302 24.974 22.358
p 1.046 1.181 1.060 1.116
Lv 626.270 691.875 633.499 661.222
Lc 625.697 693.344 632.358 660.779
Wv 158.204 185.554 159.469 164.043
Wc 160.071 180.748 162.107 170.794
u1 18.119 -5.603 171.838 43.624
u2 -51.428 -5.726 26.132 33.805
µ 128.000 128.000 128.000 128.000

Battery level weight: w2
c

β 1 10 100 1000
fv 453.512 -306.231 -145.122 -470.798
fc 7.039 4.141 0.631 0.589
JG 91212.830 79380.660 89841.730 89010.340
A 1.000 0.000 1.000 2.000
U 10.171 22.001 21.870 29.216
p 1.156 1.144 1.120 1.116
Lv 681.656 674.345 663.654 658.613
Lc 680.403 674.686 662.524 660.785
Wv 172.769 176.173 170.839 170.734
Wc 176.792 175.045 171.327 170.796
u1 37.650 -9.438 0.237 27.354
u2 -128.764 -27.447 6.704 2.046
µ 128.000 128.000 128.000 128.000

Battery level weight: w3
c

β 1 10 100 1000
fv 8.105 -315.012 -56.439 -137.478
fc 59.288 0.749 0.892 0.750
JG 83808.680 77789.670 82140.090 80704.000
A 1.000 0.000 1.000 1.000
U 17.599 21.858 18.556 19.889
p 1.047 1.117 1.122 1.117
Lv 627.401 660.511 665.146 658.588
Lc 625.990 661.347 663.430 661.042
Wv 155.530 173.699 172.065 167.233
Wc 160.161 170.968 171.605 170.875
u1 7.872 5.933 18.798 -40.661
u2 28.897 -19.857 -39.989 -40.121
µ 128.000 128.000 128.000 128.000

128



Table 4.5: Trajectory of computation for 9 columns, 8 rows, wc = w1
c , β = 1

µ p fv fc Lv Lc Wv Wc

0.000 1.119 -253.285 0.043 499.205 365.528 341.483 323.314
2.000 1.369 -253.285 69.552 499.205 424.481 341.483 395.643
2.000 1.205 -141.505 28.118 425.145 385.920 323.356 348.333
8.000 1.220 -141.505 31.805 425.145 389.339 323.356 352.528
8.000 1.236 -32.822 35.892 391.754 393.103 358.274 357.145

the form

w1
c =

[
1 2−1 2−2 . . . 2−(Ncols−2) 2−(Ncols−1)

]

w2
c =

[
1 1 . . . . . . 1 1

]

w3
c =

[
2−(Ncols−1) 2−(Ncols−2) . . . 2−2 2−1 1

]
,

where wi
c are subsequently normalized so that

∥∥wi
c

∥∥
1

= 1 for i = 1, 2, 3. The weight vectors wi
c,

i = 1, 2, 3, applied to problem (4.39) are used to compute the equitable efficient battery designs and

may reflect the designer’s preference.

For each Ncols-scenario and each battery level weight vector wi
c, , i = 1, 2, 3, four scalar

values βj , j = 1, 2, 3, 4, are considered: β1 = 1, β2 = 10, β3 = 100, and β = 1000. These β

values determine the relative importance between vehicle subproblem (4.9) and battery component

subproblem (4.10) in the following manner.

wi,j =

[
1

1 + βj
wv,

βj
1 + βj

wi
c

]
,

i = 1, 2, 3,

j = 1, 2, 3, 4
.

There are thus twelve all-in-one weight vectors wi,j corresponding to (i, j) pairs for i = 1, 2, 3 and

j = 1, 2, 3, 4. The inter-subproblem weights determined by β may also be chosen to reflect the

designer’s preference.

With the above initializations, the results obtained using MODA (Fig. 4.5) are given in

Tabs. 4.2–4.4. Each table corresponds to an Ncols-scenario and battery level weight wi
c, i = 1, 2, 3,

combination. In each table, the four right-most columns correspond to the use of a βj value for

j = 1, 2, 3, 4.

The rows of each table report the following computed values.
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1. fv = wT
v fv is the weighted-sum objective value of problem (4.15).

2. fc = wT
c fc is the weighted-sum objective value of problem (4.16).

3. JG, A, and U are the vehicle-level objective values.

4. p is the battery subproblem spacing factor.

5. Lv and Lc are the battery box component lengths in the vehicle subproblem and the battery

subproblem, respectively.

6. Wv and Wc are the battery box component widths in the vehicle subproblem and the battery

subproblem, respectively.

7. u1, u2, µ are the values for the Lagrange multiplier v and penalty coefficient µ.

Some interesting considerations can be made in support of the application of MODA for

the distributed computation of efficient solutions of the bilevel packaging problem. The algorithm

captures the negotiation between the design teams in the design process. This negotiation is demon-

strated by different values of the aggregated objectives fv and fc that are obtained as the inter-

subproblem weights are varied: as β increases from 1 to 1000, fv increases and fc decreases (check

Tabs. 4.2–4.4). This is possible due to the consistency constraint that is enforced and satisfied,

within engineering tolerances, at optimality (compare Lv and Lc to Wv and Wc in Tabs. 4.2–4.4),

which reflects the agreement between the teams that is required by the design of the decomposed

problem.

The results obtained for β = 1000, that is, when maximum importance is given to the

battery level, show the tradeoff exploration capabilities of MODA. In this case, each of the optimal

solutions present the same cell spacing p = 1.118, with some oscillations due to numerical tolerances.

This is the optimal (equitable) value that is reported for each aspect ratio considered in [24], where

the battery problem was formulated and solved without considering the vehicle level.

The effect of the bilevel interaction on the vehicle layouts obtained with a 9 × 8 aspect

ratio and wc = w2
c is shown in Figs. 4.6 and 4.7 for β = 1 and β = 1000, respectively. Two

different solutions in terms of cell spacing p resulted in different battery box dimensions, 340× 294

mm and 365 × 322 mm, and consequently in two distinct vehicle layouts. Expected tradeoffs are

noticed, with deterioration in compactness and survivability and improvement in accessibility and
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cell temperature uniformity (the latter occurs because for β = 1000 the battery solution approaches

the equitable one).

The effect of the aspect ratio also demonstrates the capability of MODA to handle bilevel

tradeoffs. The layout with the 18 × 4 battery, wc = w2
c , and β = 1000 represented in Fig. 4.8 can

be compared to the one in Fig. 4.7 with an aspect ratio of 9 × 8. As the number of cell columns

increases the cell temperature becomes less uniform. The different battery dimensions, 365×322 mm

and 660× 170 mm, affect the vehicle layout; in this case, the accessibility worsens but compactness

and accessibility improve.

When analyzing the computations resulting from MODA, the following properties of the

scalarized vehicle level problem (4.15) should be considered due to their contradiction of the as-

sumptions stated in Proposition 12:

• lack of convexity of the feasible set Xv;

• multimodality of fv implying that:

– the tradeoffs cannot be properly explored through the weighted-sum scalarization;

– the method of multipliers updates (4.22) computed with BCD are not guaranteed to be

globally optimal;

• optimality that is not guaranteed when genetic algorithms are utilized.

Although MODA has been successfully applied to modeling the bilevel negotiation and to achieving

satisfaction of the consistency constraints within engineering tolerances, future improvement in the

computed designs may be obtained by adapting the scalarized vehicle level problem (4.15) so that

its properties align more closely with the assumptions stated in Proposition 12.

4.6 Conclusion

The Multiobjective Decomposition Algorithm (MODA) proposed in this paper is motivated

by the design of engineering systems involving different disciplines and subsystems which require a

high level of specialization of the collaborating teams. MODA reflects the features of this design sce-

nario, i.e., the decomposition and multiple criteria, in the case of bilevel problems. The negotiation
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Figure 4.6: Vehicle layout with 9×8 aspect ratio, wc = w2
c , and β = 1
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Figure 4.7: Vehicle layout with 9×8 aspect ratio, wc = w2
c , and β = 1000
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Figure 4.8: Vehicle layout with 18×4 aspect ratio, wc = w2
c , and β = 1000
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between the two design teams generates tradeoffs that MODA captures as demonstrated by the engi-

neering example. The design of a hybrid vehicle layout is addressed at both the vehicle and battery

levels. The vehicle layout is designed considering that the battery, one of the main components of

hybrid vehicles, is optimized with respect to its design criteria. The numerical results demonstrate

the capability of MODA to obtain Pareto efficient solutions through distributed computation and

decomposition. The tradeoff exploration occurs by means of the weighted-sum method that, due to

the use of intra- and inter-subproblem weights, captures the tradeoffs within the subproblems (i.e.,

internal tradeoffs occurring at the vehicle and battery problems) and between the subproblems (i.e.,

tradeoffs between the vehicle and battery subproblems).

In future research, improvement in the bilevel computations using MODA will be realized

with the use of a scalarization method that addresses multimodality in the objective functions while

maintaining the decomposable structure of the problem. Extensions to multilevel problems, and

possibly to nonhierarchically decomposable problems, are encouraged by the results presented in

this paper and would broaden the application of MODA to other MDO problems.
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Chapter 5

A comparison of t-domain and

s-domain least squares parameter

estimation for modeling properties

of viscoelastic materials

[This chapter contains the contents of a paper submitted for review in the journal: Problems

of Machine Building and Automatization on May 3rd, 2013 titled “A comparison of t-domain and s-

domain least squares parameter estimation for modeling properties of viscoelastic materials”; authors

are B. Dandurand, I. Viktorova, and S. Alekseeva.]

5.1 Introduction

Let m(p, t) : Rn × [0,∞) → R be a parameterized time dependent stress model, where

t ∈ [0,∞) denotes the passage of time in hours, and p is a vector of real-valued parameters p =

[p1, . . . , pn] taking values from some set P ⊆ Rn. Let the time-dependent experimental stress

observations be denoted by y = [y1, . . . , yN ], where each yi is the experimental stress observation

for some time ti > 0 for i = 1, . . . , N . The problem of computing optimal-fitting parameters may
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be formulated as the following least squares problem (LSP)

min
p∈P

N∑
i=1

(m(p, ti)− yi)2
(5.1)

or alternately by

min
p∈P

N∑
i=1

(
m(p, ti)− yi

yi

)2

,

Certain models m(p, t), such as the model described in Section 5.3 do not yield computa-

tionally stable problems of form (5.1) [25]. This motivates the exploration of another approach for

computing optimal parameters p when the model m(p, t) simplifies under certain integral trans-

forms such as the Laplace transform. To develop this approach, first compute a regression function

r(t) : [0,∞) → R for the experimental data y. Regression function r(t) is assumed to have a

Laplace transform R(s) := L{r(t)} that is given in closed form. Once the Laplace transform is also

computed for the model M(p, s) := L{m(p, t)}, the Laplace domain least squares problem (LDLSP)

is given by

min
p∈P

∑
s∈SN

|M(p, s)−R(s)|2 ∆(s) (5.2)

where SN ⊂ S is a finite set of complex-valued sample points taken from a sample region S ⊂ H :=

{s ∈ C : Re(s) > 0}. ∆ : SN → R> is a function defined on SN that assigns a weight to each term

of (5.2) corresponding to each s ∈ SN .

This work contributes a mathematical foundation for the approach described in [115] by

which to compare the use of the LSP and the LDLSP. Each of the minimization problems (5.1) and

(5.2) is viewed as the minimization of distance between two functions from the same underlying

space C[a, b] of continuous functions f : [a, b] → R. However, the notions of distance on the space

C[a, b] are different for the two problems. Section 5.2 defines these two notions of distances in

terms of norms on C[a, b]. It is shown that the norm associated with problem (5.1) can serve as a

bound for the norm associated with problem (5.2), but not vice versa, and so the two norms are

not equivalent in the sense described in [92]. The implication of this fact for using problem (5.2) to

compute the optimal parameters for problem (5.1) is briefly discussed. Section 5.3 describes the use

of problem (5.2) for the computation of optimal parameter estimates for modeling certain properties

of viscoelastic nanocomposite materials. The specification of SN and ∆(s) for problem (5.2) in this

application is motivated from the development of Section 5.2. Section 5.4 summarizes the work and
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its relation to the results computed in Section 5.3.

5.2 Two optimization problems for obtaining optimal param-

eter estimates

The norm associated with the distance being minimized in problem (5.1) is identified with

the standard norm for the L2[a, b] space induced from the inner product

〈f, g〉 =

∫ b

a

f(t)g(t)dt,

defined for each f, g ∈ L2[a, b]. The induced norm is given by

‖f‖2 =
√
〈f, f〉,

The minimization of discrepancies between model m(p, t) and regression r(t) may thus be stated as

the minimization problem

min
p∈P
‖m(p, t)− r(t)‖22 , (5.3)

of which problem (5.1) is viewed as a computationally convenient approximation.

In order to describe the distance being minimized between continuous functions f, g ∈ C[a, b]

in problem (5.2), the following inner product

〈f, g〉S :=

∫ π
2

−π2

(∫ d

c

Fa,b
(
ρ eiθ

)
Ga,b (ρ eiθ)ρdρ

)
dθ (5.4)

is defined on C[a, b]× C[a, b] where

Fa,b(s) :=
∫ b
a
e−stf(t)dt

Ga,b(s) :=
∫ b
a
e−stg(t)dt

are “truncated” Laplace transforms of f and g defined on

H := {s ∈ C : Re(s) > 0} ,
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Figure 5.1: Region S ⊂ H

and ρ eiθ is the polar form of s with the region of integration

S :=
{
s ∈ H : c < Re(s) < d, −π

2
< arg s <

π

2

}

depicted in Figure 5.1. This region S is a specification of the region S mentioned in the discussion

surrounding the introduction of problem (5.2). The restriction of the integration over S ⊂ H is

motivated by the theory of analytical continuation, which specializes to the present context to imply

that if F : H → C and G : H → C are analytic functions defined on H, and if F (s) = G(s) for all

s ∈ S ⊂ H, then F = G holds over all of H [19, 21].

Proposition 14 verifies that the functional defined in (5.4) is, in fact, an inner product.

Proposition 14. The functional 〈·, ·〉S : C[a, b]× C[a, b]→ C defined in equation (5.4) is an inner

product on C[a, b].

Proof. The homogeneous property 〈µf, g〉S = µ〈f, g, 〉S and the additivity property 〈f, g + h〉S =

〈f, g〉S + 〈f, h〉S follow easily from elementary additive and multiplicative properties of integrals.

For showing the remaining inner product properties, we view Fa,b as the Laplace transform of the
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extended domain function f̂ : [0,∞)→ R defined by

f̂(t) =

 f(t) if a ≤ t ≤ b

0 otherwise
,

and Ga,b is viewed as the Laplace transform of a similarly extended function ĝ of g. Since Fa,b and

Ga,b are the Laplace transforms of the piecewise continuous function f̂ and ĝ, respectively, so Fa,b

and Ga,b are analytic in H (see Chapter 7, Theorem 1 of [19]), and therefore continuous.

Writing s = ρ eiθ, then for each fixed θ ∈ (−π2 ,
π
2 ), the expressions

√
ρFa,b(ρ eiθ) and

√
ρGa,b(ρ eiθ) may be used as definitions for continuous, complex-valued functions of ρ where ρ ∈ [c, d]

is real-valued. Applying the standard inner product for the space (CC[c, d], ‖·‖2) on these functions,

it follows that ∫ d

c

Fa,b(ρ eiθ)Ga,b(ρ eiθ)ρdρ =

∫ d

c

Ga,b(ρ eiθ)Fa,b(ρ eiθ)ρdρ (5.5)

for each fixed θ ∈ (−π2 ,
π
2 ). Substituting the right-hand side of (5.5) for the inner integral in (5.4),

it immediately follows that

〈f, g〉S =

∫ π
2

−π2

(∫ d

c

Fa,b(ρ eiθ)Ga,b(ρ eiθ)ρdρ

)
dθ

=

∫ π
2

−π2

(∫ d

c

Ga,b(ρ eiθ)Fa,b(ρ eiθ)ρdρ

)
dθ

=

∫ π
2

−π2

(∫ d

c

Ga,b(ρ eiθ)Fa,b(ρ eiθ)ρdρ

)
dθ

= 〈g, f〉S

and so the Hermitian/Conjugate symmetry is established.

The nonnegativity property 〈f, f〉S ≥ 0 for each f ∈ C[a, b] follows from the nonnegativity

of the integrand

Fa,b(ρ eiθ)Fa,b(ρ eiθ)ρ.

To show the implication 〈f, f〉S = 0 if and only if f ≡ 0, consider the continuity of the integrand of

(5.4), which follows from the continuity of Fa,b. With the nonnegativity of the same integrand, the

right-hand side of (5.4) is zero if and only if Fa,b is the zero function. Since Fa,b ≡ 0 if and only if

f̂ ≡ 0 (and thus also f ≡ 0) (see Chapter 6, Theorem 7 of [19]), then 〈f, f〉S = 0 if and only if f ≡ 0
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as was to be shown. Thus, 〈f, g〉S is an inner product on the space C[a, b].

Let LS := (C[a, b], ‖·‖S) be the topology defined on C[a, b] with the norm ‖·‖S : C[a, b]→ R

defined by ‖f‖S =
√
〈f, f〉

S
. The LDLSP is then approximated with the following minimization

problem

min
p∈P
‖m(p, ·)− r‖2S (5.6)

corresponding to the minimization of distance between functions m(p, ·) and r in LS .

Equivalence between problem (5.6) and problem (5.3) is understood in terms of the norm

equivalence, as defined in [92], of the two norms ‖·‖2 and ‖·‖S associated with L2 and LS , respectively.

The norm equivalence is characterized by the existence of `, u > 0 satisfying 0 < ` < u < ∞ such

that

` ‖f‖2 ≤ ‖f‖S ≤ u ‖f‖2 for all f ∈ C[a, b] (5.7)

The values of bounding parameters ` > 0, u > 0, when they exist, provide a measure for how well

the optimal solutions for problem (5.3) approximate the optimal solutions for problem (5.6), and

vice versa.

In Proposition 15, the existence of the upper bound u is established, while the lack of lower

bound ` > 0 is demonstrated with a counterexample. Thus, the norms are not equivalent. The lack

of a lower bound ` in (5.7) means that local minimizers p̂ for problem (5.2) may have no connection

with minimizers p∗ for problem (5.1). Nevertheless, the existence of upper bound u ∈ (0,∞) and

the continuity of the norms ‖·‖2 and ‖·‖S when viewed as functionals of p in the context of problems

(5.3) and (5.6) suggest that a minimizer p∗ for problem (5.3) lies within some bounded neighborhood

of a local minimizer p̂ for problem (5.6).

Proposition 15. For each closed bounded interval [a, b] and closed bounded region S, there exists

u ∈ (0,∞) satisfying the upper bound inequality (5.7).
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Proof. Write

‖f‖2S =

∫ π
2

−π2

∫ d

c

∣∣∣∣∣
∫ b

a

e−ρ eiθtf(t)dt

∣∣∣∣∣
2

ρdρ

 dθ

≤
∫ π

2

−π2

∫ d

c

(∫ b

a

∣∣∣e−ρ eiθtf(t)
∣∣∣ dt)2

ρdρ

 dθ

(by Cauchy-Schwartz inequality)

≤
∫ π

2

−π2

(∫ d

c

(∫ b

a

∣∣∣e−ρ eiθt
∣∣∣2 dt)(∫ b

a

|f(t)|2 dt

)
ρdρ

)
dθ

= ‖f‖22
∫ π

2

−π2

(∫ d

c

(∫ b

a

∣∣∣e−ρ eiθt
∣∣∣2 dt) ρdρ) dθ.

The upper bound is established by identifying u =

√∫ π
2

−π2

(∫ d
c

(∫ b
a

∣∣e−ρ eiθt
∣∣2 dt) ρdρ) dθ, which is

finite in value by the compactness of the sets S and [a, b].

To show there is no ` > 0 satisfying (5.7), consider functions f ∈ C[0, 1] of form f(t) = e−γt,

where γ > 0, and let S = [c, d] only take real values where 0 < c < d <∞. We have

‖f‖22 =

∫ 1

0

e−2γtdt =
1− e−2γ

2γ
. (5.8)

Furthermore, the value of the norm ‖f‖2S can be shown to satisfy the bounds

d− c− 2e−(γ+c) + e−2(γ+d)

(γ + c)(γ + d)
≤ ‖f‖2S ≤

d− c− 2e−(γ+d) + e−2(γ+c)

(γ + c)(γ + d)
. (5.9)

Using the value computed in (5.8) and the value for either bound in (5.9), taking the limit

lim
γ→∞

‖f‖S
‖f‖2

= 0

shows that there is no ` > 0 satisfying (5.7) for all f ∈ C[0, 1].

For computational purposes, problem (5.2) serves to approximate (5.6). In motivating
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Figure 5.2: Sample region SN ⊂ S. The individual s ∈ SN are depicted with dots.

problem (5.2) as a Riemann sum approximation of problem (5.6), the use of SN taking the form

SN =

 s ∈ S : s = ε+ ρ eiθ, ρ = c+ j
n−1 (d− c), θ = −π2 + k

m−1π

for ε > 0, j = 0, . . . , n− 1, k = 0, . . . ,m− 1

 (5.10)

together with the use of ∆(s) = ρ = |s| serves to aptly approximate the role of differential’s product

ρ dρ dθ in (5.4). Figure 5.2 illustrates the appearance of set SN having form (5.10).

Additional approximations appear in the use of the actual Laplace transforms M(p, s) and

R(s) in problem (5.2), replacing the truncations Ma,b(p, s) and Ra,b(s) as defined for problem (5.6).

5.3 Application for modeling time dependent properties of

viscoelastic materials

Viscoelastic materials have memory in the sense that stress applied in the past can affect

strain in the present time t. The introduction of time dependence or memory effect leads to the

analysis of Volterra’s equation of second type [116, 96] that models the dependence of stress as a
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functional of strain

ϕ (ε(t)) = m(p, t) (5.11)

where ϕ (ε(t)) := Eε is a linear response functional of ε (the so-called instantaneous loading diagram)

and m(p, t) models the material stress resulting from the memory effect and is taken to have form

m(p, t) := σ(t) +

∫ t

0

K(p, t− τ)σ(τ)dτ (5.12)

In practice, m(p, t) as defined in (5.12) models the relations between time, stress, and strain suc-

cessfully for a wide range of materials such as polymers, metals, and composites [96, 111, 122].

One of the most effective and universal kernels K(p, t) is based on the exponential of arbi-

trary order function [96]

K(p, t) := λ

∞∑
n=0

(−β)
n
tn(1−α)

Γ [(1− α)(n+ 1)]
(5.13)

where p = [α, β, λ] is the vector of parameters. The exponential of arbitrary order operators combine

several important features [96, 15].

• The initial moment singularity at t = 0 is integratable.

• The asymptotic exponential behavior with t→∞.

• The resolvent operator is the same type of exponential of arbitrary order with a different set

of defining parameters.

Using the kernel given in (5.13) together with the assumption that σ(t) := σ is a fixed

known constant, the integral in (5.12) can be evaluated, and so (5.12) becomes

m(p, t) := σ

[
1 + λ

∞∑
n=0

(−β)
n
t(1−α)(n+1)

Γ [(1− α)(n+ 1) + 1]

]
(5.14)

The use of model m(p, t) as given in (5.14) requires the specification of material-specific

kernel parameter values p = [α, β, λ]. The parameter α is determined from the first term of the

series (5.13) expansion [122]. Thus, α is assumed to be a known constant, while β and λ need to be

treated as unknown values to be determined through optimization techniques. Therefore, the set P
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from which p takes its values is given by

P = {p : α = α, β ∈ R, λ ∈ R}

for some fixed value α.

In setting up the application of problem (5.2), compute

M(p, s) := L{m(p, t)} =
σ

s

[
1 +

λ

s1−α + β

]

for m(p, t) as defined in (5.14) and R(s) as the Laplace transform of the regression function r(t)

computed to fit experimental observations ϕ (εi).

The creep experimental data used to generate the observations ϕ (εi) are described in detail

in [115]. These experiments were performed for three types of composites with nanofillers:

1. Pure polyamide (PA),

2. Polyamide with ultra-dispersed diamonds (PA+UDD),

3. Polyamide with carbon nanotube fillers (PA+CNT).

For each material, the tests with the corresponding three loading levels σ0.3, σ0.4, and σ0.5 are

performed, where the subscript of σ indicates that the stress applied to the materials is 30%, 40%,

and 50%, respectively, of the ultimate stress, which was taken equivalent to the yielding stress of

each of the tested materials.

Problem (5.2) is now formulated for each of the nine data sets with the following setup.

• ∆(s) = |s|.

• For each data set, regression functions having the form

r(t) =
∑
i

ci t
ai +

∑
j

cj e
−aj

are used (see [115] for more detail), where fixed values of ai ∈ (0, 1), aj ∈ (0, 1) are customized

for each data set. The regression functions r(t) used for each data set are given in Tab. 5.1.

• SN is of form (5.10) where ε = 10−6, n = 10, m = 20, c = 0.01, and d = 0.1.
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PA R(t)

σ0.3 36.03955 t
1
10 − 30.81646 t

1
15 + 6.13278 t

1
20

σ0.4 2.47000 t
1
5 + 31.31428 t

1
10 − 19.69854 t

1
20

σ0.5 9.47225 t
1
5 + 19.43801 t

1
10 − 11.84635 t

1
20

PA+UDD

σ0.3 2.91939 t
1
5 + 16.79958 t

1
10 − 9.30827 t

1
20

σ0.4 26.28460 t
1
8 − 13.06354 t

1
16

σ0.5 34.46006 t
1
8 − 18.58995 t

1
16

PA+CNT

σ0.3 5.68600 t
1
5 + 3.11726 t

1
10

σ0.4 113.44063 t
1
15 − 102.36318 t

1
20

σ0.5 7.13975− 7.13368 e−0.05 t + 141.34010 t
1
16 − 129.24869 t

1
20

Table 5.1: Regression functions obtained for creep experiments

• ϕ(ε) is of the form ϕ(ε) := Eε where E is stated for each material in Tab. 5.2.

• α = 0.83 for each material is estimated by the method described in [25].

• σ0.3, σ0.4, and σ0.5 are also stated in Tab. 5.2.

PA PA+UDD PA+CNT

st
ra

in
ε

[%
]

time t [hours]

Figure 5.3: Wellness of fit plots

The results of computing optimal parameter estimates using problem (5.2) are given in Tab.

5.3. Trends in the optimal parameter estimates may be observed, for example, along the following

patterns.

1. For the materials PA and PA+UDD, the increase of loading level σ results in decrease for both

β and λ. (This is not the case for PA+CNT).
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α σ0.3 σ0.4 σ0.5 E
PA 0.83 16.20 21.60 27.00 955

PA+UDD 0.83 15.90 21.20 26.50 1008
PA+CNT 0.83 18.72 24.96 31.20 1320

Table 5.2: Setup parameters

PA PA+UDD PA+CNT
load β λ β λ β λ
σ0.3 0.077 673.526 0.027 633.473 −0.008 563.191
σ0.4 0.018 605.099 0.012 606.490 0.028 604.076
σ0.5 −0.028 556.018 −0.006 579.757 0.002 593.923

Table 5.3: Optimal parameter estimates

2. One may observe an increasing trend in both parameters β and λ for the progression PA,

PA+UDD, PA+CNT for fixed loading level σ0.5.

Observations such as these may provide insight into the microstructure analysis.

Figure 5.3 gives plots depicting wellness of fit for the model m(p, t) against the experimental

data y and the regression function r(t) with the use of the parameters given in Tab. 5.3.

5.4 Conclusion

This work contributes a mathematical foundation for the comparison between the time

domain least squares parameter estimation problem given in (5.1) and the Laplace domain least

squares parameter estimation problem (5.2) introduced in [115, 122]. In developing this comparison,

problems (5.1) and (5.2) are viewed as approximations of problems (5.3) and (5.6), respectively. The

latter two problems allow for a comparison between the minimization of distance for two normed

function spaces defined on the same underlying set C[a, b] but with different norms. Using the

language of normed spaces, equivalence between the minimization of (5.3) and the minimization of

(5.6) are identified with the equivalence of the corresponding norms.

In exploring this equivalence, the existence of the necessary upper bound coefficient u,

0 < u <∞ was shown to exist in Proposition 15, but the non-existence of the corresponding lower

bound coefficient `, 0 < ` < u was demonstrated through the subsequent counterexample. Thus,

minimization problems (5.3) and (5.6) are not equivalent.
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Although minimization problems (5.3) and (5.6) are not equivalent in terms of the above-

stated norm equivalence, a connection between the two minimization problems may be obtained

from the existence of upper bound coefficient u, 0 < u < ∞, and from the observation that the

objective functions of problems (5.3) and (5.6) are both continuous functions of β and λ. Due to

this continuity, the existence of an upper bound coefficient u implies that for any parameters (β∗, λ∗)

optimal for the t-domain problem (5.3), there correspond parameters (β̂, λ̂) that are (locally) optimal

for the s-domain problem (5.6) for which (β̂, λ̂) ∈ N((β∗, λ∗); ε), ε > 0; that is, (β̂, λ̂) is bounded

within some ε-ball neighborhood of (β∗, λ∗), where ε depends on u. Due to the lack of a lower

bound coefficient ` > 0, the reverse claim does not hold; parameters (β̂, λ̂) (locally) optimal for the

s-domain problem do not have any analogous bounding influence on parameters (β∗, λ∗) optimal

for the t-domain problem. Thus, due to the non-existence of lower bounding coefficient ` > 0, each

computed parameter (β̂, λ̂) that is (locally) optimal for the s-domain problem (5.6) may or may not

serve as an approximation for some (β∗, λ∗) optimal for the t-domain problem (5.3). However, due

to the existence of u, 0 < u <∞, there is at least one such locally optimal parameter (β̂, λ̂)serving

as an approximation for (β∗, λ∗).

The application in Section 5.3 demonstrates an effective application of the s-domain problem

(5.6) for computing high-quality approximations to optimal parameter estimates for the t-domain

problem (5.3). An effective determination of ∆(s) and SN is motivated from the theoretical devel-

opments in Section 5.2. This, together with the fact that problem (5.2) was formulated without

using the linear least squares approximation used in [115], led to the computation of better fitting

parameter estimates as compared with those obtained in [115], especially for the PA+CNT σ0.5

model.
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Chapter 6

Initial exploration of estimating

model parameters in the t domain

for modeling the properties of

viscoelastic solids

[This chapter contains the contents of a paper titled “Nonlinear modeling and optimization

of parameters for viscoelastic composites and nanocomposites”; the authors are B. Dandurand, I.

Viktorova, S. Alekseeva, and S. Goodson; the paper is published in Problems of Machine Building

and Automatization, No. 3, pp. 51-57, 2011. Copyright c©2000-2013 owned by The Scientific

Company Electronic Library (www.elibrary.ru), and by the authors.]

The hereditary mechanics accounting for the time dependent stress-strain relationship (also

known as delay or memory effect) had started from Boltzman’s work in the middle of 19th century

and later was developed in fundamental research on integral equations by Volterra [116].The appli-

cation of this mathematical theory to the modeling of deformation processes in the viscoelastic solids

that are characterized by the memory of the history of loading had shown the tremendous potential

for various engineering applications [96] involving ranging loading conditions like short/longterm

creep, quasistatic loading, cyclic deformation for wide range of polymer based composites and as
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the recent studies show for the polymer based nanocomposites [111]. Consider the relationships

between the following properties of viscoelastic solids:

• ε-denotes strain [%].

• σ-denotes load stress [MPa].

• t-denotes elapsed time [hours].

In particular, these solids have memory in the sense that load stress applied in the past manifests

as present load stress.

The materials in question respond to stress in such a manner that stress applied in the past

can affect strain in the present time t. The introduction of time dependence or memory effect leads

to the analysis of Volterra’s equation of second type [15] to model the relationship between stress as

a functional of strain

ϕ(ε(t)) = σ(t) +

∫ t

0

K(t− τ)σ(τ)dτ (6.1)

where ϕ(ε(t)) is a response functional of ε (the so-called instantaneous loading diagram). In practice,

this models the relations between time, stress and strain successfully for a wide range of materials

such as polymers, metals, and composites [122]. This relationship appears visually in the graphs in

Figure 6.1 for fixed time values t.

Figure 6.1: Isochronic creep diagrams.

The most suitable kernel K(t) is based on the exponential of arbitrary order function and

for our purposes takes form

K(t) = λ

∞∑
n=0

βntn(1−α)

Γ[(1− α)(n+ 1)]
(6.2)
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The exponential of arbitrary order operators combine several important features

• The initial moment singularity at t = 0 is integratable.

• The asymptotic exponential behavior with t→∞.

• The resolvent operator is the same type of exponential of arbitrary order with different set of

defining parameters.

Initially, the goal of our work is to find the best way to estimate the kernel parameters p = {λ, α, β}

that most accurately models the relation between stress, strain, and time with the use of (6.1).

With the above kernel, the integral in equation (6.1) can be evaluated, and so (6.1) becomes

ϕ(ε(t)) = σ(t)

[
1 + λ

∞∑
n=0

(−β)nt(1−α)(n+1)

Γ[(1− α)(n+ 1) + 1]

]
(6.3)

The parameter α is called the singularity parameter. Singularity reflects the rate of change

for time t → 0 of the stress-strain diagrams. As pointed out in [122], the parameter α can be

determined readily from the first term of the above infinite series (6.3) given as

ϕ(ε(t)) = σ(t)

[
1 +

λt(1−α)

Γ[(1− α) + 1]

]
(6.4)

and from information given in the isochronic creep curves of Figure 6.1. For different materials, α

is different. The parameter α is estimated in this work in the context of optimization models.

Now consider finding the other two parameters λ and β for equation (6.3) that will model

the relationship between stress, strain, and time as accurately as possible. Start by restricting to

the low loading level of σ = 5MPa. (This corresponds to curve #1 in Figure 6.2.) For this low

loading level σ, and for strain ε < 1%, the working assumption is that material response is linear,

and therefore, one can obtain ϕ(ε) = Eε and σ0 = Eε0. Thus, substituting ϕ(ε) = Eε and σ = Eε0,

we obtain

ε(t) = ε0

[
1 + λ

∞∑
n=0

(−β)nt(1−α)(n+1)

Γ[(1− α)(n+ 1) + 1]

]
(6.5)

If α is determined beforehand, then three parameters ε0,λ, and β need to be determined. Formulate

the optimal parameter estimate objective function as the following sum of squares to be minimized.

F (p) =

n∑
i=1

[
ε[ti, p]− ε[ti]

ε[ti]

]2

(6.6)
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Figure 6.2: Progression of strain for three fixed levels of σ.

where ε[ti] are known data based on times ti around which optimal parameters p = {ε0, λ, β} are to

be obtained.

Two approaches are considered in obtaining these optimal parameter estimates.

1. Direct Optimization: Optimization occurs directly on the choice of parameters p. For

example, in [122], the material Nylon 6 is considered, and parameter estimates of α = 0.85,

ε0 = 0.2, λ = 1.47, and β = 0.13 are obtained. The wellness of fit for the model with obtained

parameters is shown in Figure 6.2 [122], where solid lines indicate the experimental results,

and dashed lines the predicted results from the model. Although the fit for Diagram #1 is

good, there is room for improvement in getting parameters that will allow a better fit for

Diagrams #2 and #3 and to predict the mechanical behavior of different types of loading

regimes in general.

2. Reparameterization: For the same assumptions [122] of loading level about σ = 5MPa

and strain ε < 1%, ε as a function of t can be well-approximated by ε(t) = atb for some values

a and b obtained through a power regression. Thus, substitute for ε = atb on the left-hand

side of (6.5) to obtain

atb = ε0

[
1 + λ

∞∑
n=0

(−β)nt(1−α)(n+1)

Γ[(1− α)(n+ 1) + 1]

]

Apply the Laplace-Carson transformation to both sides of the above equation to obtain

a
Γ(1 + b)

sb
= ε0

[
1 +

λ

s1−α + β

]
(6.7)
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The question then becomes one of how parameters ε0, λ, and β may be determined using the

above integral transform (α is fixed).

One approach involves formulating a minimization model where the parameters ε0, λ, and β

that most closely enforces equality (6.7) for an appropriately chosen sample of values s > 0.

This idea is appealing because by going from the t domain to the s domain, the need to

evaluate an infinite sum is removed.

Ideally, enforcing the equation (6.7) over an interval of s values should produce unique pa-

rameter estimates. In particular, let s1 denote the lower bound on the interval, s3 the upper

bound, and s2 some generic s value within the interval, so that 0 < s1 < s2 < s3. It can be

shown that any triple (s1, s2, s3) satisfying 0 < s1 < s2 < s3 can produce unique parameter

values ε0, λ, and β by substituting each of s1, s2, and s3 into (6.7) for s to get three equations

that are uniquely solvable for the parameter values. Ideally, these parameter values should be

the same or nearly the same regardless of the manifestation of s2, s1 < s2 < s3. (In other

words, one interval should determine unique parameter estimates). But experiments readily

verify that the parameters vary as s2 varies. Thus, an interval must be defined by three s

values rather than two.

With this in mind, the formulation of the optimization model (6.6) may be altered so that

optimization occurs in terms of the s interval determined by s1, s2 and s3 by reparameterizing

the parameters in terms of s1, s2, and s3. From a practical point of view, this approach is

not desirable to get optimal parameter estimates because function evaluations are much more

expensive and numerical instability arises for s1 near zero or when the three s values otherwise

get close to one another. From a theoretical point of view, the question of what kinds of

intervals correspond with optimal parameter estimates is of interest, but the remainder of

this paper focuses on obtaining the optimal parameter estimates by optimizing directly on the

parameters ε0, λ, β, and α.
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6.1 Addressing convergence issues arising from the evalua-

tion of a truncated infinite sum

In the expression for ε(t) given in (6.5), the need to evaluate an infinite sum arises. In the

absence of a closed form expression for this infinite sum, there is the need to determine a suitably

chosen truncated version of this infinite sum. Where truncation can occur depends largely on the

values that t, α, and β take.

The following approach is used to assess convergence. First, rewrite the infinite sum from

(6.5) (with t1−α factored out). For notational convenience, denote Γn = Γ[(1−α)(n+ 1) + 1]. Then

the rewrite is given as

∞∑
n=0

(−βt1−α)n

Γn
=

∞∑
n=0 by 2

(βt1−α)n

Γn

(
1− βt1−α Γn

Γn+1

)

=

∞∑
n=0

(βt1−α)2n

Γ2n

(
1− βt1−α Γ2n

Γ2n+1

)
(6.8)

The trailing term of (6.8) should be sufficiently close to zero to insure that the truncated

sum is a sufficiently accurate approximation of the infinite sum. Thus, in coding the optimization

model, a line of code checking whether the trailing term

(βt1−α)2N

Γ2N

(
1− βt1−α Γ2N

Γ2N+1

)

is close enough to zero within a specified tolerance is important to insure meaningful optimization

results. The number of summation terms N need not be large (N = 100 is sufficient) for the trailing

term to be very small if | − βt1−α| < 1.

If | − βt1−α| ≥ 1, then consider the cases

−βt1−α ≤ −1

−βt1−α ≥ 1
(6.9)

In the first case where −βt1−α ≤ −1, the size of the trailing term as discussed above is the only

thing to consider. In this case, if the trailing term is not small enough, summing more terms can

give a sufficiently small trailing term. If, on the other hand, −βt1−α ≥ 1, then the size of the trailing
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term is not the only problem to consider.

If −βt1−α ≥ 1 is too large, then the summation (6.8) involves a sum of large negative

terms followed by a sum of large positive terms that get smaller as the summation progresses. If

the summation (6.8) is supposed to take a value close to zero, then in finite precision calculation,

a loss of precision in the resulting calculation known as catastrophic cancellation occurs. For this

model, any use of sufficiently large β values will likely result in this and so appropriate bounds on

β must be enforced to insure −βt1−α < 1. In this work, lower and upper bounds on the β values

are determined separately. Typically, the lower bound will depend only on the available number of

terms N that are computed in the truncated sum. The upper bound depends on this and also on

the values of α and the largest value of t in the data. Namely, the upper bound on β must satisfy

−βt1−α < 1 for the set α value and the largest t value in the data set.

From the above considerations, it follows that there is room to relax the lower bound on

β by using as many terms in the infinite summation as possible. In a C++ programming context,

double precision arithmetic limits how far the summation can be evaluated. There is more than one

solution to this problem. The solution used here is to have ratios Γn
Γn+1

available to compute terms

in the summations recursively by multiplication. For example, given the term −βt1−α
Γn

, the next term

is obtained by multiplication by (−βt1−α) Γn
Γn+1

.

In doing this, the question arises, will the successive multiplications cause an accumulation

of roundoff error resulting from the nature of finite precision arithmetic. It will, but if N is the

length of the truncated sum, the expected accumulated error is
√
N ∗ ε where ε is machine epsilon.

Thus, for say, N = 10, 000 summation terms, an expected loss of 2 or 3 decimal points of precision

occurs. This is satisfactory for double precision arithmetic. For this work, N = 1, 000 terms are used

(finite precision only allows about N = 150 when α = 0.85 if the above approach is not used). Using

MAPLE 14, this problem does not arise, as the maximum magnitudes and precisions allowable with

MAPLE arithmetic computation are large enough for the optimization needs in this work.

6.2 Results

In finding optimal parameter estimates in the formulation (6.6), there is readily available

gradient and Hessian information. This makes the optimization model given by (6.6) solvable

using standard deterministic nonlinear optimization techniques presented in many textbooks, such
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as [83, 7]. This is a departure from previous works that normally use metaheuristic approaches such

as simulated annealing.

Optimization occurs on the functional (6.6) with respect to ε0, λ, β and α. However, the

cost of gradient and Hessian evaluations when α is included as an optimization variable is prohibitive,

so the model only considers ε0, λ, and β as decision variables, while α is treated as a constant in

the model that is manually varied before the running of the solver.

For each material and loading level, different α values are tried, e.g. α = 0.5, . . . , 0.8 and

the results for the best α value are given.

6.2.1 Results for C-type polymer nanocomposite

Given below are the data sets, the parameter estimates obtained from the data using the

MAPLE 14 command LSSolve, and the plots for each data set that shows how well the model fits

the data.

Data Set 1 for σ0.3

time (hours) 0.000 0.017 0.083 0.167 0.433 1.100 2.100 4.100

strain (%) 0.05 0.06 0.09 0.1 0.12 0.15 0.18 0.23

time (hours) 5.600 23.100 31.100 54.600 75.100 100.100 127.600 168.850

strain (%) 0.25 0.36 0.39 0.45 0.5 0.53 0.58 0.61

(6.10)

Data Set 2 for σ0.3

time (hours) 0.000 0.017 0.083 0.167 0.400 1.067 2.067 4.067

strain (%) 0.08 0.09 0.12 0.13 0.15 0.18 0.2 0.25

time (hours) 5.567 23.067 31.067 54.567 75.067 100.067 127.567 168.817

strain (%) 0.27 0.34 0.37 0.42 0.46 0.51 0.55 0.6

(6.11)

Data Set 1 for σ0.4

time (hours) 0.000 0.017 0.250 0.383 0.883 1.383 2.383 3.383 22.383

strain (%) 0.29 0.32 0.4 0.54 0.62 0.66 0.72 0.76 0.99

time (hours) 28.383 34.383 58.383 77.383 106.883 124.383 153.883 197.383

strain (%) 1.04 1.17 1.24 1.29 1.35 1.48 1.53 1.6

(6.12)
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Data Set 2 for σ0.4

time (hours) 0.000 0.017 0.250 0.333 0.833 1.333 2.333 3.333 22.333

strain (%) 0.36 0.42 0.54 0.67 0.77 0.82 0.87 0.92 1.18

time (hours) 28.333 34.333 58.333 77.333 106.833 124.333 153.833 197.333

strain (%) 1.23 1.36 1.44 1.5 1.56 1.69 1.73 1.81

(6.13)

Data Set 1 for σ0.5

time (hours) 0.000 0.017 0.083 0.167 0.250 0.333 0.500 0.667 0.833

strain (%) 0 0.23 0.36 0.41 0.45 0.49 0.53 0.57 0.59

time (hours) 1.000 1.250 1.500 2.000 2.500 3.000 3.500 19.483 23.483

strain (%) 0.61 0.63 0.65 0.69 0.72 0.74 0.76 1.17 1.22

time (hours) 44.483 51.983 75.983 90.483 120.150 164.483 170.983 194.983 214.983

strain (%) 1.39 1.43 1.54 1.59 1.65 1.71 1.73 1.76 1.79

time (hours) 242.483 308.483 312.983 327.983 358.983 376.983 404.983 424.983 452.650

strain (%) 1.83 1.9 1.91 1.92 1.95 1.96 1.97 2.01 2.05

(6.14)

Data Set 2 for σ0.5

time (hours) 0.000 0.017 0.083 0.167 0.250 0.333 0.500 0.667 0.833

strain (%) 0 0.27 0.37 0.43 0.46 0.49 0.53 0.56 0.58

time (hours) 1.000 1.250 1.500 2.000 2.500 3.000 3.500 19.550 23.550

strain (%) 0.6 0.63 0.64 0.68 0.7 0.72 0.74 1.07 1.11

time (hours) 44.550 52.050 76.050 90.550 120.217 164.550 171.050 195.050 215.050

strain (%) 1.27 1.3 1.4 1.44 1.5 1.55 1.56 1.6 1.63

time (hours) 242.550 308.550 313.050 328.050 359.050 377.050 405.050 425.050 452.717

strain (%) 1.67 1.75 1.77 1.78 1.8 1.82 1.83 1.88 1.91

(6.15)

Surface plots of equation (6.6) for fixed ε0 and α values

In Figure 6.3, 3-dimensional plots are given around the parameter estimates that are opti-

mal. The parameters ε0 and α are fixed at the obtained optimal value and λ and β are allowed to

vary. The following observations are warranted from the plots.

1. For each plot, the objective function surface, although not necessarily convex, seems to show

one local minimum located inside of the inner most elliptical contour depicted in the plot.
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Thus, the optimal solution obtained by the solver should be a globally optimal solution.

2. The elongation of the elliptical contours containing the optimal parameter estimates may lead

to the optimal parameter estimates being sensitive to small changes in the experimental data.

Parameter Estimates

Data Set 1 Data Set 2

σ0.3 σ0.4 σ0.5 σ0.3 σ0.4 σ0.5

α 0.59 0.66 0.70 0.67 0.69 0.76

ε0 4.697× 10−2 2.688× 10−1 7.548× 10−2 7.476× 10−2 3.406× 10−1 6.977× 10−2

λ 2.077× 100 1.159× 100 7.217× 100 1.226× 100 1.164× 100 7.457× 100

β 7.431× 10−2 1.015× 10−1 1.453× 10−1 1.728× 10−2 1.108× 10−1 8.300× 10−2

obj val 2.664× 10−3 4.328× 10−2 1.354× 10−2 6.289× 10−3 3.410× 10−2 7.330× 10−3

(6.16)

The objective values in the above table gives some measure of how well the model (6.5)

with the obtained parameter values fits the given data. The wellness of fit is also illustrated by the

plots given in Figures 6.4, 6.5, and 6.6.

6.3 Conclusion

Earlier, a classic formulation for the modeling of creep is given in terms of loading condition

σ and time t. From this formulation arises the need to obtain optimal parameter estimates. This

work presents a modeling framework using deterministic gradient-based optimization to obtain these

parameters. At the solver stage, three variables, ε0, λ and β are chosen along with α before the

solver stage, to obtain a function of form (6.5) that best fits the data.

These parameter estimates allow for the potential usability of functions of the form (6.5).

With this potential comes the following potential limitation. The usefulness of the model will be

limited by the value of β. A given value of β > 0 imposes an upper bound on the usable values of t

for a given availability of computational precision. Values of t that are too large given β and a given

availability of precision will result in catastrophic cancellation occurring in the summation of (6.5)

and the severe loss of precision in output resulting from this. This issue calls attention to the need

to use high enough precision arithmetic to insure that the loss of precision resulting from evaluating
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Figure 6.3: Contour plots illustrate surface over which optimization occurs for fixed ε0 and α.
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Figure 6.4: Plots illustrating wellness of fit for obtained parameter estimates (σ0.3)

Figure 6.5: Plots illustrating wellness of fit for obtained parameter estimates (σ0.4)

the infinite sum is within toleration.

For the purposes of parameter estimation, the use of appropriate transforms on the function

(6.5) set equal to a suitably good regression of the experimental data the and the use of appropriate

s intervals is an area of future work. In the formulation of the parameter estimation problem, an
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Figure 6.6: Plots illustrating wellness of fit for obtained parameter estimates (σ0.5)

approach using Laplace-Carson transformation is attempted as outlined above. If future research in

this approach can yield improvement in either the type of transform used or in knowledge of what

types of intervals to use, then a more elegant approach to obtaining optimal parameter estimates

will be available that does not rely on the evaluation of truncated infinite sums.
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Appendix A Maple Code for Chapter 2

The contents of Appendix A include the Maple code for implementing the algorithms de-

scribed in Chapter 2. These include BCD, BCDMM (referred to as Coor in Chapter 2), ADMM, two

weight vector generating methods, and the main procedures, DSDA and OSDA. The implementation

is specific to a decomposable example MOP with four objective functions and a constraint h(x) = 0

of global scope.

A.1 Implementation of two weight vector generating schemes

Both DSDA and OSDA require the use of a collection of weight vectors. The methods

genURandWeights() and genSierpinskiWeights() provide two such means of generating the re-

quired sample of weights based on the ideas of Section 2.2.3. The input p is the length of the weight

vector to be generated, and in the case of genURandWeights(), N is a positive integer parameter

whose increase corresponds to increased refinement of a finite discrete representation of the sample

space.
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A.2 Implementation of DSDA

The first main method, DSDA(), and its helper methods BCD() and BCDMM() are given.

The method DSDA() computes efficient points for an example MOP with four objective functions

given by input f1, f2, f3, f4 and a constraint function h. The method BCD() corresponds to

Alg. 1 of Chapter 2. It takes as input a scalarized objective function f, starting values for the

block coordinates x1start, x2start, sStart, and a small positive convergence tolerance value tol.

The method BCDMM() corresponds to Alg. 2 of Chapter 2. In addition to the inputs taken by

BCD, the method BCDMM() takes as inputs the coordinating constraint function h, the constraint

function needed due to the use of the quadratic scalarization method qsH, and starting values for

the augmented Lagrange parameters v0 and mu0.
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A.3 Implementation of OSDA

The second main method, OSDA() is given together with its helper methods testLegitPoint()

and ADMM(). The method OSDA() computes efficient points for an objective space decomposable

MOP with four objective functions given by the input f11, f12, f21, f22 and a constraint function

h.
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The method testLegitPoint() tests for membership of an outcome given by input fVec in

the critical set defined by (2.11) parameterized by the input matrix Q, vector PVec, and p specifying

the number of objective functions.

The method ADMM() used by OSDA() takes as input the subproblem scalarized objective

functions f1 and f2, with the other inputs having the same meaning as in OSDA().
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Appendix B Code for Chapters 3 and 4

Appendix B contains the Matlab code implementing the battery-level solver of the bilevel

vehicle design problem described in Chapter 3 and the coordination between the two subproblems

(vehicle level and battery level) described in Chapter 4. The vehicle-level solver is implemented in

Java and has been compiled into a Java executable named pack.jar. The Java implementation of

the vehicle-level solver is beyond the scope of this dissertation and so is not included. Also included

at the end of this appendix are the contents of the main batch file run vehicle design.bat.

B.1 Initialization and the main Matlab method

The method initializeMODA() performs prerequisite initializations in preparation for the

main iterations of the bilevel solution algorithm described in Chapter 4. The input variables are

as follows: nCols is the number of columns in the battery cell arrangement; weightIndex specifies

which battery-level weighted-sum weight to use (takes values 1,2, or 3 based on the three weights

generated by the method generateWeightsEquitable() ); betaExp specifies the weighting of im-

portance of the battery-level problem, typically takes values 1,2,3, or 4; scalCoeff is used to rescale

the consistency constraint for improved computational speed; and scalType specifies the type of

scalarization used at the vehicle-level and its only role in the displayed code is to determine part of

the output file’s name.

function initializeMODA(nCols,weightIndex,betaExp,scalCoeff,scalType)

global spacing_traverse t f w numCols numRows ...

numberOfColumns numberOfRows cell_diameter...

v penaltyWeight scalingCoefficient L_target W_target...

inputVals tempVals

%%Many of these initializations are necessary when Simulink is used to

%%compute battery cell temperatures

tau=0; %

t=[0:1:100]’;

numberOfColumns=nCols;

numberOfRows=72/numberOfColumns;

numCols=[t numberOfColumns*ones(size(t))];
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numRows=[t numberOfRows*ones(size(t))];

cell_diameter=0.034; %%Simulink model requires this be given in meters

%%%scaling is necessary for computational expediency

scalingCoefficient=scalCoeff;

%%Augmented Lagrange parameters initially set to 0

v=[0.0,0.0];

penaltyWeight=0.0;

%%Initial battery box dimension targets

L_target=300.0;

W_target=300.0;

%%Reference indices for data in output file

OI_PCELL=1;

OI_BATT_L=2;

OI_BATT_W=3;

OI_VEH_L=4;

OI_VEH_W=5;

OI_V1=6;

OI_V2=7;

OI_MU=8;

OI_TAU=9;

OI_BATT_OBJ=10;

OI_VEH_OBJ=11;

OI_VEH_OBJ1=12;

OI_VEH_OBJ2=13;

OI_VEH_OBJ3=14;

OI_AL_TERM=15;

OI_AIO=16;

outputVector=zeros(1,16);

%%Prepare for initial battery-level computation...

dataFileName=sprintf(’./TemperatureData/tempData%d.mat’,numberOfColumns);

load(dataFileName); %%%this initializes inputVals, tempVals
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weights=generateWeightsEquitable(numberOfColumns);

w=weights(weightIndex,:);

w=w*(10^betaExp);

[pcell, battObjValAL]=fminbnd(@computeZ_Approx,1.01,2.0);

[L W]=computeBoxDims(pcell);

%%Computing augmented Lagrange term

battBoxDiscreps=computeBBDiscreps([L;W],[L_target;W_target],scalingCoefficient);

ALTerm=v*battBoxDiscreps+(penaltyWeight/2)*norm(battBoxDiscreps,2)^2;

%%%%initialize the first row of the output vector as follows...

outputVector(1,OI_PCELL)=pcell;

outputVector(1,OI_BATT_L)=L;

outputVector(1,OI_BATT_W)=W;

outputVector(1,OI_VEH_L)=L;

outputVector(1,OI_VEH_W)=W;

outputVector(1,OI_V1)=v(1);

outputVector(1,OI_V2)=v(2);

outputVector(1,OI_MU)=4.0;

outputVector(1,OI_TAU)=0;

outputVector(1,OI_BATT_OBJ)=battObjValAL-ALTerm;

outputVector(1,OI_VEH_OBJ)=3e7;

outputVector(1,OI_VEH_OBJ1)=1e7;

outputVector(1,OI_VEH_OBJ2)=1e7;

outputVector(1,OI_VEH_OBJ3)=1e7;

outputVector(1,OI_AL_TERM)=ALTerm;

outputVector(1,OI_AIO)=battObjValAL+3e7;

%%Writing outputs...

outputResultsFile=sprintf(’./OutputFiles/%s%dCols/output%s%d_colsW%dBeta1e%d.txt’,...

scalType,numberOfColumns,scalType,numberOfColumns,weightIndex,betaExp);

%outputResultsFile=sprintf(’./Output/output%s%d_colsW%dBeta1e%d.txt’,...

% scalType,numberOfColumns,weightIndex,betaExp);

fidOut=fopen(outputResultsFile,’wt’);
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fprintf(fidOut,’%s\n’,num2str(outputVector,’%10.4f ’));

fclose(fidOut);

%%Prepare linking file to pass to vehicle-level subproblem

linkingFileName=’linking.dat’;

str=sprintf(’%e %e %e %e %e %e %e %e’,outputVector(1,OI_BATT_L),outputVector(1,OI_BATT_W),...

scalingCoefficient*outputVector(1,OI_V1),scalingCoefficient*outputVector(1,OI_V2),...

scalingCoefficient*outputVector(1,OI_MU)*scalingCoefficient,...

outputVector(1,OI_VEH_L),outputVector(1,OI_VEH_W),outputVector(1,OI_TAU));

fid=fopen(linkingFileName,’wt’);

fprintf(fid,’%s\n’,str);

fclose(fid);

exit;

end

The method solveBL() manages the main loop iterations of the bilevel solution approach.

Its main roles are to determine when to run the vehicle level solver and the battery level solver,

and to manage the communication of information between the two. The inputs in common with

initializeMODA() have the same meaning. The only new input is status: status 0 corresponds to

a normal run, status 1 corresponds to update of multiplier v and penalty coefficient penaltyWeight.

function retval=solveBL(status,nCols,weightIndex,betaExp,scalCoeff,scalType)

%status: 0-regular run, 1-update augmented Lagrange parameters,

global spacing_traverse t f w numCols numRows ...

numberOfColumns numberOfRows cell_diameter...

v penaltyWeight scalingCoefficient L_target W_target...

inputVals tempVals

%%In practice, Simulink simulation of battery temperatures is used.

%%For computational testing, this feature is commented out,

%%and interpolated function evaluations

%%for the battery cell temperatures are used instead

%addpath(’../SimulinkModels/’);

%%%%keep track of output column indices
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OI_PCELL=1;

OI_BATT_L=2;

OI_BATT_W=3;

OI_VEH_L=4;

OI_VEH_W=5;

OI_V1=6;

OI_V2=7;

OI_MU=8;

OI_TAU=9;

OI_BATT_OBJ=10; %scalarized battery objective (equitable formulation)

OI_VEH_OBJ=11; %scalarized vehicle objective

OI_VEH_OBJ1=12; %three battery-level objectives

OI_VEH_OBJ2=13;

OI_VEH_OBJ3=14;

OI_AL_TERM=15; %summed value augmented Lagrange terms

OI_AIO=16; %all-in-one, augmented Lagrange, scalarized objective value

newOutputVector=zeros(1,16);

%%indices referring to the vehicle-level battery box dimensions

%%from the output produced by the vehicle level

VLBBDimIndices=[26 27];

%%Set number of columns in the battery cell configuration

%%(This is treated as a constant integer-valued parameter)

numberOfColumns=nCols;

numberOfRows=72/numberOfColumns;

cell_diameter=0.034; %%Simulink model requires this be given in meters

%%This information is necessary when using Simulink

% t=[0:1:100]’;

% numCols=[t numberOfColumns*ones(size(t))];
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% numRows=[t numberOfRows*ones(size(t))];

%%%scaling is necessary for computational expediency

scalingCoefficient=scalCoeff;

tau=0; %this parameter is only used with the proximal variant of

%the block coordinate descent method (set to zero if not using)

%output files

%%This is the path for storing the most recent pareto.dat file

%%At the end of the MODA process, the pareto%d_colsW%dBeta1e%d.dat contains

%%the final vehicle-level computations

outputResultsFile=sprintf(’./OutputFiles/%s%dCols/output%s%d_colsW%dBeta1e%d.txt’,...

scalType,numberOfColumns,scalType,numberOfColumns,weightIndex,betaExp);

ParetoPathName=sprintf(’./ParetoFiles/%s%dCols/pareto.dat’,scalType,numberOfColumns);

ParetoPathNameSaved=sprintf(’./ParetoFiles/%s%dCols/pareto%s%d_colsW%dBeta1e%d.dat’,...

scalType,numberOfColumns,scalType,numberOfColumns,weightIndex,betaExp);

%%Initialize the latest design and objective data from

%%the last valid iteration of battery and vehicle-level computations

outputData=load(outputResultsFile);

[dm,dn]=size(outputData);

mostRecentData=outputData(dm,:);

%%penalty associated with violation of consistency constraints

penaltyWeight=mostRecentData(OI_MU);

%%multiplier values associated with consistency constraints

v=mostRecentData([OI_V1, OI_V2]);

if status==1
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%%Update Lagrange parameters v and penaltyWeight

%%using method of multiplier updates

%%Discrepancies between battery box dimensions determined at each level

battBoxDiscreps=computeBBDiscreps(mostRecentData([OI_BATT_L,OI_BATT_W]),...

mostRecentData([OI_VEH_L,OI_VEH_W]),scalingCoefficient);

v=v+penaltyWeight*battBoxDiscreps;

penaltyWeight=penaltyWeight*4;

%%Prepare for battery level computation, use latest output

%%information with with the AL terms and parameters updated

newOutputVector=mostRecentData;

newOutputVector(OI_V1)=v(1);

newOutputVector(OI_V2)=v(2);

newOutputVector(OI_MU)=penaltyWeight;

ALTerms=v*battBoxDiscreps’+(penaltyWeight/2)*norm(battBoxDiscreps,2)^2;

newOutputVector(OI_AL_TERM)=ALTerms;

L_target=newOutputVector(OI_VEH_L);

W_target=newOutputVector(OI_VEH_W);

%%continue with battery-level computation

else

%%Moving the pareto.dat file to another location is necessary to

%%indicate when another vehicle-level computation needs to be performed

movefile(’pareto.dat’,ParetoPathName);

vehData=load(ParetoPathName);

% select the global minimum (2nd column is the objective function)

[underhoodObjValAL,i]=min(vehData(:,2));

if(underhoodObjValAL < mostRecentData(OI_VEH_OBJ)+mostRecentData(OI_AL_TERM))

%%Save this most recent improving vehicle-level file

movefile(ParetoPathName,ParetoPathNameSaved);
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%augmented Lagrange parameters stay the same

newOutputVector([OI_V1,OI_V2,OI_MU,OI_TAU])=...

mostRecentData([OI_V1,OI_V2,OI_MU,OI_TAU]);

%%Write vehicle-level information into new output, prepare for new

%%battery-level computation

newOutputVector([OI_VEH_L,OI_VEH_W])=vehData(i,VLBBDimIndices);

L_target=newOutputVector(OI_VEH_L);

W_target=newOutputVector(OI_VEH_W);

newOutputVector([OI_VEH_OBJ1,OI_VEH_OBJ2,OI_VEH_OBJ3])=vehData(i,5:7);

battBoxDiscreps=computeBBDiscreps(mostRecentData([OI_BATT_L,OI_BATT_W]),...

newOutputVector([OI_VEH_L,OI_VEH_W]),scalingCoefficient);

AL_Terms=v*battBoxDiscreps’+(penaltyWeight/2)*norm(battBoxDiscreps,2)^2;

newOutputVector(OI_VEH_OBJ)=underhoodObjValAL-AL_Terms;

%%Continue with battery-level computation

else

%%Redo vehicle-level run

exit;

end

end

%%% NOW PERFORM OPTIMIZATION ON BATTERY LEVEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%loading the approximated temperature data that model would have generated

%(this is to save time when testing MODA)

dataFileName=sprintf(’./TemperatureData/tempData%d.mat’,numberOfColumns);

load(dataFileName); %%%this initializes inputVals, tempVals

%these are the weights for the battery level equitable,

%scalarized reformulation

weights=generateWeightsEquitable(numberOfColumns);
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w=weights(weightIndex,:);

w=w*(10^betaExp);

%%Run solver, obtain battery-level design updates

[pcell, battObjValAL]=fminbnd(@computeZ_Approx,1.01,2.0);

[L W]=computeBoxDims(pcell);

%%Computing updated augmented Lagrange term

battBoxDiscreps=...

computeBBDiscreps([L;W],[L_target;W_target],scalingCoefficient);

ALTerm=v*battBoxDiscreps+(penaltyWeight/2)*norm(battBoxDiscreps,2)^2;

newOutputVector(OI_PCELL)=pcell;

newOutputVector(OI_BATT_L)=L;

newOutputVector(OI_BATT_W)=W;

battObjVal=battObjValAL-ALTerm;

%%Set new battery-level outputs, updated augmented Lagrange information

newOutputVector(OI_BATT_OBJ)=battObjVal;

newOutputVector(OI_AL_TERM)=ALTerm;

newOutputVector(OI_AIO)= newOutputVector(OI_BATT_OBJ)...

+newOutputVector(OI_VEH_OBJ)+ newOutputVector(OI_AL_TERM);

%%%%% DONE WITH Battery level OPTIMIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Write/append to output files

fidOut=fopen(outputResultsFile,’a’);

fprintf(fidOut,’%s\n’,num2str(newOutputVector,’%10.4f ’));

fclose(fidOut);

%%Preparing linking file to be sent to vehicle level; containts battery

%%level linking information

str=sprintf(’%e %e %e %e %e %e %e %e’,L,W,scalingCoefficient*v(1),...

scalingCoefficient*v(2),scalingCoefficient*penaltyWeight*scalingCoefficient,...

L_target,W_target,tau);

%linking.dat contains the linking variable information passed to the

%vehicle level

linkingFileName=’linking.dat’;
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fid=fopen(linkingFileName,’wt’);

fprintf(fid,’%s\n’,str);

fclose(fid);

retval=0;

exit;

end

B.2 Helper methods:

The methods displayed below are invoked in either initializeMODA() or solveBL(). These

methods are mostly related to function evaluations within the implementation of the battery-level

solver.

The method computeApproxTemps() approximately evaluates the output that would have

been produced by the Simulink model for generating battery cell temperatures. Approximations are

based on a linear interpolation of a sample of output that are generated by a sample of input that

are near the input p cell value.

function TValsApprox = computeApproxTemps( p_cell )

global tempVals

%%Since p_cell is restricted to take value [1.01,2.0],

%%index should be a float ranging in value from 1 to 1000 (inclusive)

index= (p_cell-1.01)/(2.0-1.01)*999+1;

%%At this point, index is a float, but we need to work with integer

%%approximants

rv1=floor(index);

rv2=ceil(index);

%%linear interpolation of temperature values sampled from Simulink output

%%where p_cell is between two sampled inputs

alphaVal=(index-rv1); %%alphaVal takes values in [0,1]

TValsApprox=(1-alphaVal)*tempVals(rv1,:)...

+alphaVal*tempVals(rv2,:);

return
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end

The method computeTemperatures() is the interface through which battery cell tempera-

tures are provided in the battery-level solver. This function may either use computeApproxTemps()

or may invoke a Simulink model.

function TVals = computeTemperatures( x )

%%Simulink stuff is coded out

%Computes simulated temperatures of battery cell columns

%This function ultimately has to be embedded in a script with

%global variables declared as they are in this function.

%global spacing_traverse t yout numRows numCols numberOfColumns cell_diameter...

%spacing_traverse=[t cell_diameter*x*ones(size(t))];

%sim(’BTMS_MODEL_SJPARK_vML’);

%TVals=yout(1000,1:numberOfColumns)’;

%%Using approximations to what Simulink would have generated for the

%%purpose of testing MODA

TVals=computeApproxTemps(x);

%%%returns column vector

return;

end

The method computeBBDiscreps() computes the discrepancies between the vehicle-level

battery box measure and the battery-level battery box measure, taking into account the scaling of

the battery box consistency constraints.

function battBoxDiscreps = computeBBDiscreps( LW_Batt, LW_Veh, scalCoeff )

battBoxDiscreps=scalCoeff*(LW_Batt-LW_Veh);

return;

end

The method computeF() computes the battery cell temperature deviations from a target

temperature evaluated as least-square terms given an input x.
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function fVal=computeF(x)

global f numberOfColumns numberOfRows

TARGET=40; %40 degrees centigrade target temperature

temperatures=computeTemperatures(x);

fVal=(temperatures-TARGET).^2; %%computing least square terms

f=fVal; %%%%column vector

return;

end

The method computeBoxDims() computes the dimensions of the battery box based on a

spacing factor p, the aspect ratio layout of battery cells, and the battery cell diameters.

function [ L W ] = computeBoxDims( p )

global numberOfColumns numberOfRows cell_diameter

if p <=1.0

p=1.01;

end

%lgap=(p-1)*cell_diameter;

L= cell_diameter*(numberOfColumns-1)*(sqrt(3)/2)*p+cell_diameter*3;

W=cell_diameter*(numberOfRows+0.5)*p;

L=L*1000; %convert to mm

W=W*1000; %convert to mm

return;

end

The method computeZ Approx() evaluates the battery-level objective function summed

with the augmented Lagrange terms. The objective function is the weighted-sum scalarization of

the equitable reformulation of the battery-level multiobjective subproblem.

function zValWAL = computeZ_Approx( x )

global f numberOfColumns w v L_target W_target ...

penaltyWeight scalingCoefficient

[L W]=computeBoxDims(x);

f=computeF(x);
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%%Evaluate the block-diagonal linear programs’ optimal values

%%These are used in computing the objective values

%%of the equitable reformulation

zVals=zeros(numberOfColumns,1);

AEq=[];

bEq=[];

artificialBds=inf;

lb=[-artificialBds zeros(1,numberOfColumns)];

ub=artificialBds*ones(1,1+numberOfColumns);

A=[-ones(numberOfColumns,1) -eye(numberOfColumns)];

b=-f;

options=optimset(’LargeScale’,’off’,’Simplex’,’on’);

for i=1:numberOfColumns

c=[i ones(1,numberOfColumns)];

[~, zval]=linprog(c,A,b,AEq,bEq,lb,ub,[],options);

zVals(i)=zval;

end

%%Aggregate the LP optimal value evaluations using weighted-sum method

zValW=w*zVals;

%%now add augmented Lagrangian term

battBoxDiscreps=...

computeBBDiscreps([L;W],[L_target;W_target],scalingCoefficient);

zValWAL=zValW+v*battBoxDiscreps...

+(penaltyWeight/2)*(battBoxDiscreps’*battBoxDiscreps);

return

end

The method generateWeightsEquitable() generates three weighted-sum weights for the

equitable MOP formulation of the battery-level subproblem. The length of the weight vector is the

same as the number of battery cell columns specified by the input numberOfColumns.

%%Generates weights for the weighted-sum scalarization of the equitable
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%%reformulation of the battery-level subproblem

function weights = generateWeightsEquitable( numberOfColumns )

weights=zeros(3,numberOfColumns);

weights(1,1)=1;

for i=1:numberOfColumns

weights(1,i)=2^(-(i-1));

end

weights(1,:)=weights(1,:)/(sum(weights(1,:)));

weights(2,:)=1;

weights(2,:)=weights(2,:)/(sum(weights(2,:)));

for i=1:numberOfColumns

weights(3,i)=2^(-(numberOfColumns-i));

end

weights(3,:)=weights(3,:)/(sum(weights(3,:)));

return;

end

B.3 MS Batch file for running MODA:

The batch script run vehicle design.bat is invoked to run the bilevel solution approach imple-

menting MODA for the application of automotive design described in chapters 3 and 4. The Java

executable pack.jar takes as argument a string, either “QS”, indicating the vehicle-level use of

quadratic scalarization, or otherwise any other string such as “WS” indicates the vehicle-level use

of weighted-sum method.

set path=%path%;u:\profile.cu\Desktop\ARC_Battery\Bilevel_Vehicle_Design\MatlabCode

set NCOLS=12

set WT=2

set BETA=2

set SCALCOEFF=1/4

set SCALTYPE=WS

set JARFILE=.\JAR_FILES\pack.jar
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set JARARGS=%SCALTYPE%

set MATLABARGS=-nojvm -nosplash -nodesktop -minimize -wait -r

set PATHTOMAINDIR=u:\profile.cu\Desktop\ARC_Battery\Bilevel_Vehicle_Design

set ADDMLPATH=addpath(’%PATHTOMAINDIR%\MatlabCode’)

set OUTPUTFILE=’.\QSOutput%NCOLS%Cols\outputs%NCOLS%_colsW%WT%Beta1e%BETA%.txt’

set SOLVEBLARGS=%NCOLS%,%WT%,%BETA%,%SCALCOEFF%,’%SCALTYPE%’

set MATLABFNCT0="%ADDMLPATH%;solveBL(0,%SOLVEBLARGS%)"

set MATLABFNCT1="%ADDMLPATH%;solveBL(1,%SOLVEBLARGS%)"

del pareto.dat

matlab %MATLABARGS% "%ADDMLPATH%;initializeMODA(%SOLVEBLARGS%)"

for /l %%I in (1, 1, 8) do (

ECHO Iteration %%I Round 0

java -jar %JARFILE% %JARARGS%

matlab %MATLABARGS% %MATLABFNCT0%

)

for /l %%K in (1, 1, 4) do (

ECHO Update v and mu

matlab %MATLABARGS% %MATLABFNCT1%

for /l %%I in (1, 1, 8) do (

ECHO Iteration %%I Round %%K

java -jar %JARFILE% %JARARGS%

matlab %MATLABARGS% %MATLABFNCT0%

)

)
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Appendix C Maple Code for Chapter 5

The Maple code presented in Appendix C implements the parameter estimation approaches

for the modeling of viscoelastic materials carried out in Section 5.3.

C.1 Setup of experimental data:

The first segment of code displayed stores the experimental data for later use. This data

includes strain measurements (in %) on the three types of viscoelastic materials and the three loading

levels, along with the elapsed times (in hours) at which the strain measurements are taken.
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C.2 Setup of regression function terms and other experimentally deter-

mined parameters

These are experimentally determined regression function terms on the experimental data,

along with experimentally determined model parameters ε0 for each test.
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C.3 Time-domain least-squares parameter estimation

This code segment carries out time-domain least-squared optimal parameter estimates based

on the experimental data.
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C.4 Laplace-domain least-squares parameter estimation

The following segment of code initializes the sample of s values, sets plotting arguments,

and defines the method solveForBetaLambda used for solving the Laplace-domain least squares

problem.

Finally, the Laplace-domain least-squares optimization is carried out for the 9 tests, com-

puted parameters are stored, and plots are generated comparing the experimental data, the inter-

polated data, and the model obtained with the optimal parameter estimates.
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