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ABSTRACT 
 

Many industrial firms seek the systematic reduction of variability as a primary means 

for  reducing production cost and material waste without sacrificing product quality or 

process efficiency.   Despite notable advancements in quality-based estimation and 

optimization approaches aimed at achieving this goal, various gaps remain between current 

methodologies and observed in modern industrial environments.  In many cases, models rely 

on assumptions that either limit their usefulness or diminish the reliability of the estimated 

results.  This includes instances where models are generalized to a specific set of assumed 

process conditions, which constrains their applicability against a wider array of industrial 

problems.  However, such generalizations often do not hold in practice.  If the realities are 

ignored, the derived estimates can be misleading and, once applied to optimization schemes, 

can result in suboptimal solutions and dubious recommendations to decision makers.  The 

goal of this research is to develop improved quality models that more fully explore innate 

process conditions, rely less on theoretical assumptions, and have extensions to an array of 

more realistic industrial environments.  Several key areas are addressed in which further 

research can reinforce foundations, extend existing knowledge and applications, and narrow 

the gap between academia and industry.  These include the integration of a more 

comprehensive approach to data analysis, the development of conditions-based approaches to 

tier-one and tier-two estimation, achieving cost robustness in the face of dynamic process 

variability, the development of new strategies for eliminating variability at the source, and 

the integration of trade-off analyses that balance the need for enhanced precision against 

associated costs.  Pursuant to a detailed literature review, various quality models are 

proposed, and numerical examples are used to validate their use. 
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CHAPTER ONE 
 
 

INTRODUCTION TO RESEARCH 
 

1.1  Introductory Remarks 

In the age of global markets and competition, efforts to ensure that products and 

processes satisfy technical specifications have yielded to a growing focus on ensuring 

that certain quality  characteristics of interest adhere to desired target values with as little 

variability as possible.  The philosophy and methods of Taguchi (1986, 1987), 

collectively referred to as robust parameter design, or RPD, evolved to provide a cost-

effective approach for improving product and process quality.  In the context of quality 

improvement, RPD is often identified as one of the most critical design approaches 

currently examined within the research community.  Consequently, many industries have 

implemented robust design techniques to generate improvements in the quality of their 

products and production methods.  Bendell et al. (1987), Dehnad (1989), Dobrzanski et 

al. (2007), and Dasgupta et al. (2010) provide a number of examples of RPD applications 

to various engineering problems in the automotive, process and health care industries, as 

well as in the information technology, plastics development, and nanotechnology sectors.  

Taking a systems approach to products and processes, Taguchi defined two 

classes of factors that act upon the system to transform the inputs to outputs: control and 

noise factors.  Control factors represent those variable components of the system that can 

be readily controlled.  Thus, once the control factors are set at specified levels, they do 

not change and, therefore, do not contribute to undesired system variation.  Noise factors, 
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on the other hand, consist of a variety of system variables that we generally cannot 

control during normal process operations or product development.  Because of their 

resistance to control, these variables can change quickly and without warning, inducing 

unwanted variation in system outputs.   

The response variables denote the observed system output, or quality 

characteristic of interest.  Taguchi used three classes for response variables: smaller-the-

better (S-type), larger-the-better (L-type), and nominal-the-best (N-type).  Within this 

system framework, the primary objective of robust design is to identify the optimum 

operating conditions for a set of control factors by minimizing the associated variability 

in the quality characteristic of interest while simultaneously keeping that characteristic’s 

mean value or response at the threshold specified by the customer or decision maker.  

These solutions are said to be robust in the sense that they render the system relatively 

impervious to the effects of variation induced by the noise factors. 

While much research effort has been placed on developing better and more 

efficient optimization schemes to determine the best and most robust operating 

conditions, there are other aspects of the design process that can and should be 

considered in order to achieve that goal.  These include the initial analysis of the 

collected data, the distributional approaches to modeling realistic process characteristics, 

the estimation process for process parameters and regression coefficients that facilitate 

model development and response surface estimation, as well as the approaches to 

optimization in which we determine an optimal solution to the robust design problem.  

This dissertation focuses on these critical areas with an overarching objective of creating 
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quality models and refinements to existing approaches that achieve the best possible RPD 

solutions under realistic process conditions.  The deeper aims of this objective, however, 

are twofold.  First is the development of methodologies that facilitate the attainment of 

enhanced degrees of precision and accuracy than would otherwise be achieved by 

assuming away true process conditions.  The second is to provide engineers and decision 

makers greater awareness, improved guidelines, and flexibility in applying the best and 

most appropriate statistical tools and techniques to determine optimal process settings. 

1.2  Research Background 

Robust design comprises an engineering methodology that aims to optimize 

product and process conditions in such a way that the outputs are high-quality and cost-

efficient products that are minimally sensitive to causes of variation.  Within this 

methodology, there are three principal design steps: system design, parameter design, and 

tolerance design.  The System Design step involves the development of a prototypical 

design that meets customer requirements, as well as the determination of the materials, 

parts, components, assembly system, and manufacturing technology required to produce 

it.  Emphasis is placed on using the best available methods and/or technology at the 

lowest cost to achieve customer specifications through quality function deployment 

(QFD).  Parameter Design focuses specifically on the design variables (or control factors) 

that affect the functional aspects of a product in terms of a particular “quality 

characteristic of interest.”  That is, how should a particular manufacturing process be set 

up to achieve the desired results or customer specifications.  Finally, the Tolerance 

Design step is applied if the results obtained via parameter design are insufficient.  In 
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short, we look at how we can modify process tolerances to achieve the desired/required 

results and delineate the associated costs.  The emphasis in this step is determining the 

trade-offs between achieving process targets with further reductions in variability and the 

associated increases in manufacturing costs. 

This dissertation is focused specifically on the robust parameter design step.  In 

this step, the objective is to determine the levels of the control factors that are robust to 

the various influencers of variability that affect product quality, will get the average 

output (or value) of the quality characteristic at a desired or specified target with minimal 

variation, and minimize the associated manufacturing costs.  This characteristic is often 

referred to as the response variable, as the value it assumes is in “response” to the settings 

of the control factors.  The resulting control factor settings are referred to as the optimal 

operating conditions (OOC) for the process. 

Determining the optimal process factor settings usually requires an experimental 

design approach to develop regression models for the average output and the variance 

associated with it.  These models serve to explain the relationship between the various 

factors and the response, or quality characteristic of interest. Thereafter, we may apply of 

any one of a considerable suite of alternative optimization methods and schemes to 

determine the specific levels for the various factors that achieve the desired result which 

is essentially achieving the least variation in the product’s response function relative to 

the specified or desired target value.  The flowchart in Figure 1.1 provides an overview of 

the traditional RPD process. 
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Figure 1.1.  Flowchart of the Robust Parameter Design process. 

 
While each of the steps within each phase bears significance, three are more 

critical than the others.  These are the data analysis that completes Phase I, the estimation 

process used to develop fitted functions that estimate the process parameters (mean and 

variance), and the selection of appropriate optimization schemes and methods.  

Data analysis is intended to be a comprehensive examination of the data collected 

via experimentation.  If done correctly and thoroughly, it can help to answer basic 

questions about inherent conditions in the process under study, as well as to verify 

preliminary assumptions made to support the use of various experimental and statistical 
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analysis methods.  We can investigate these questions in a number of ways, both 

subjectively (using plots, histograms, and other graphical methods) and objectively (using 

various statistical tests), and each has its advantages and disadvantages, which will be 

discussed in greater detail in Chapters 2 and 4.   

In either event, as the first (and arguably most critical) component in any design 

of experiments and robust design problem, the data analysis will essentially set the tone 

for everything that follows.  It will serve as the foundation for, and therefore drive all 

assumptions and approaches to estimation used to develop response surface models in 

Phase II, as well as the optimal conditions determined in Phase III.  Thus, the quality and 

“structural integrity” of that foundation (and the models and optimization results we build 

upon it) will only be as good and reliable as the effort committed to doing a proper and 

thorough data analysis from the outset. 

The estimation process that makes up Phase II is basically a three-tiered effort.  In 

the first tier, we must select estimators that will facilitate the estimation of the initial 

parameters that define the location and scale of the underlying distribution.  It is worth 

noting that the location simply tells us where the preponderance of values in the 

distribution falls, or where the process is targeted.  In the normal (or symmetric) case, this 

will generally be defined by the sample mean or the center of the distribution; in the 

asymmetric case, however, it will not.  In either instance, the scale is a measure of the 

dispersion that indicates how much the process varies around that location.  It also is 

important to distinguish between an estimator and an estimate.  The former is a 

mathematical formula that evaluates the available data in a certain way; for example, the 
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familiar sample mean given by ( )1=
= ∑

n

ii
y y n where each of the yi’s is a value within an 

observed set of n data points.  The latter is simply the numerical result obtained via the 

estimator.   

The initial estimates obtained in tier one form the basis for the estimation method 

applied in tier two whereby we estimate coefficients of the regression function, denoted 

by the β’s in the  function 0 1 1 2 2 1 , 1β β β β ε− −= + + + + +Li i p i p iY X X X .  Here, the 

coefficients define a relationship between the factors (the Xi’s) and the response or 

quality characteristic we’re interested in (the Y).  In short, they help us understand how 

changes in the factor settings affect process outputs.   When combined in the form of the 

above function, these estimates now comprise the estimator used in the third tier, wherein 

we use the function to compute the mean or average process response at pre-selected 

settings for the various factors (Xi’s).   

What should be clear is that we essentially derive an estimate of distribution 

parameters to obtain estimates for regression or response surface coefficients, and then 

obtain estimates for both the mean process response and its variance.  Given the nested 

nature of this estimation process, it is obvious that they are all inter-related.  

Consequently the quality of the ultimate estimates generated in tier three will depend 

upon two critical choices: the initial tier-one estimators used to “classify” the process in 

terms of location and scale, and then the tier-two approach used to estimate the regression 

coefficients in the response surface functions.  Many researchers have developed a 

considerable assortment of approaches to estimation in each case.  But what is not clear is 
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when, or under what conditions are certain approaches better, or more appropriate, than 

others?  This question requires more attention, particularly since researchers and 

practitioners have begun to acknowledge that traditional theoretical assumptions made to 

support the use of certain analytical methods often fail to hold in industrial processes.  

Chapters 5-8 will address these concerns in detail. 

The selection of an optimization scheme and method is similarly driven by a 

variety of factors.  Foremost, we recognize from the first paragraph of this section what it 

is, exactly, that we are trying to optimize.  It boils down to the identification of the best 

settings for each of the controllable process factors being considered, such that we 

achieve a mean process result that is as close as possible to some desired target with 

minimal variation.  Beyond this, a number of other criteria can guide the decision.  For 

example, it will depend on the quality characteristic type(s).  These can either be smaller-

the-best (S-type) characteristics, such as the weight of a body armor plate; larger-the-best 

(L-type) characteristics, such as the strength of the body armor plate; or nominal-the-best 

(N-type) characteristics, such as the size or thickness of the body armor plate.  

Considerations for each of these characteristic types may include the specification limits 

and/or desired target levels and the degree to which the decision maker is willing to allow 

deviation from these tolerances in the interests of less variability, or vice versa.  As a 

final example, the selection might depend on the number of quality characteristics under 

consideration.  Sometimes, the decision maker is only interested in a particular quality 

characteristic.  However, given a greater interest in the larger “system of systems”, it is 

often more realistic to consider multiple characteristics simultaneously, and quite often 
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these are at odds with each other.  In the case of the body armor plate, two conflicting 

characteristics might be the weight of the plate and its strength (in terms of its ability to 

stop different types of bullets and shrapnel).  Cleary, the goal would be to minimize the 

weight while maximizing the strength.   However, making it lighter may suggest less 

material, thereby reducing its strength.  Conversely, making it stronger implies more or 

denser material, which tends to add weight.  When we expand these considerations to the 

broader system of systems that includes the soldier, the armor plate characteristics must 

also be considered in the context of the higher level characteristics that impact the 

soldier’s performance, such as his/her ability to shoot, move, and communicate.  Clearly, 

tradeoffs must be considered and so these types of situations require alternative 

approaches to optimization.  These might include developing alternative ways to achieve 

greater precision in our results, or employing different optimization approaches such as 

desirability functions, goal programming, or perhaps compromise programming.   

Understanding such conditions, as well as the preferences of the decision maker 

or customer will inform our selection of a particular optimization scheme and/or method.  

Much like estimation procedures, researchers have developed numerous schemes that 

employ a variety of different methods to obtain the optimum operating conditions.  

However, once again, it is not entirely clear in what situations a particular scheme and/or 

method becomes better than the others.  This, too, requires more comprehensive 

attention. 

Ultimately, these three components influence quality in the following way:  the 

level of quality we can achieve stems from the results we obtain through optimization.  It 



 
 

10 

follows, then,  that the optimization results depend on the “quality” of the estimates we 

obtain at each tier in the estimation process.  Likewise, the “quality” of these estimates 

depends upon the appropriateness of the estimators selected, a decision based on the 

results of the initial data analysis we perform.  Thus, if we presume that the definitive 

purpose of robust parameter design is to allow us as industrial engineers to make reliable 

recommendations to decision makers that assure the highest levels of quality we can 

achieve, then the quality and reliability of the results we recommend depend very heavily 

on the decisions we make regarding the data and approaches to estimation and 

optimization.  Inadequate analysis will lead to poor decisions, which will inevitably 

translate to suboptimal recommendations and diminished product quality.  Following an 

extensive literature review associated with each component in Chapter 2, the motivation 

for additional research in these areas is delineated in Chapter 3.  Thereafter, proposed 

methodologies for improvement and the associated analyses are provided in Chapters 4-

10.  Finally, overarching conclusions and potential areas for further research are provided 

in Chapter 11. 

1.3  Notation and Abbreviations 

 As a reference, a list of many of the common notations and abbreviations used 

throughout this manuscript are provided in Table 1.1.  Most, if not all, are re-introduced 

in throughout the dissertation in the context of the chapter in which they are used. 
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Table 1.1.  Common notation and abbreviations used throughout research. 

Notation Meaning / Representation 

Y Quality characteristic of interest (univariate)  

Y Quality characteristics (multivariate), where Y = (Y1, Y2, ..., Yw)  

y Observations made on a quality characteristic  

y  Mean of responses for a quality characteristic  

X Design matrix for least squares regression containing predictor variables  

x Vector of v control factors, where x = (X1, X2, ..., Xv)  

x*  Optimal factor settings, where x* = (X1*, X2*, ..., Xv* )  

s Standard deviation of responses for a quality characteristic  

ln s Logarithm of the standard deviation of responses for a characteristic  

s2 Variance of responses for a quality characteristic  

sij Covariance between the ith and jth characteristics  

τ Desired target value for a characteristic (univariate)  

ττττ    Desired target vector for characteristics (multivariate), where t= (ττττ1, ττττ2, ..., ττττw) 

γ3 sample skewness of responses for a quality characteristic  

µ Process mean for a characteristic (univariate)  

µ∗ Optimal process mean for a characteristic (univariate)  

µµµµ Process mean vector for characteristics (multivariate), where µµµµ= (µ1, µ 2, ..., µ w)  

µµµµ∗ Optimal process mean vector (multivariate), where µµµµ * = (µ 1*,  µ 2*, ..., µ w*)  

ΛΛΛΛ    Covariance matrix  

ˆ ( )qµ x  Response surface design for the mean of the qth characteristic  

ˆ ( )qσ x  Response surface design for the standard deviation of the qth characteristic  
2( )qσ x  Response surface design for the variance of the qth characteristic  

ˆ ( )ijσ x  Response surface design for covariance between the ith and jth characteristics  

LSLq Lower specification limit for the qth characteristic  

USLq Upper specification limit for the qth characteristic  

n Number of design points or treatments used in any given experiment  

m Number of replications per design point used in any given experiment  

k Number of parameters used within a regression model  
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CHAPTER TWO 
 
 

LITERATURE REVIEW  
 

2.1  Robust Parameter Design  

The concepts and methods collectively referred to as robust parameter design 

(RPD) evolved from the works of Taguchi (1986, 1987) as a way to provide a cost-

effective approach for improving product and process quality.  Although, as several 

contributors to Nair (1992) point out, the concept of minimizing variability in production 

process responses has roots dating back more than half a century, it was not until the 

early 1980’s that Taguchi’s approach to quality helped the idea go mainstream.  

Consequently, they have become known as the ‘Taguchi method’ to achieving quality. 

In the context of Taguchi’s philosophical stance, the customer’s perspective 

demands that manufacturers consider both the mean (or target specification) and the 

variability for a particular quality measure in order to improve the quality of the delivered 

product, as well as the quality of the process used to manufacture it.  Taking a systems 

approach to products and processes, Taguchi defined two classes of factors that act upon 

the system to transform the inputs to outputs.  Control factors represent those variable 

components of the system that we can readily control.  Thus, once set at specified levels, 

they do not change and therefore do not contribute to undesired system variation.  Noise 

factors, on the other hand, consist of a variety of system variables that generally cannot 

be controlled during normal process operations or product development.  Because of their 

resistance to control, these variables can change quickly and without warning, inducing 
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unwanted variation in system outputs.  Within this system framework, the goal of RPD is 

to achieve system robustness by selecting control factor settings that help to render the 

system impervious to the effects of variability. 

Taguchi’s methodology for realizing this goal incorporated orthogonal crossed-

array designs and signal-to-noise ratios (SNR) to determine the optimal factor settings.  

The orthogonal arrays were two: a control, or inner array for the control factors, and a 

noise, or outer array for the noise factors.  From the responses at each control factor 

setting, the mean and variance were combined to establish the signal-to-noise ratio.  The 

particular SNR defined for a response depended on the classification of that response.  

Taguchi used three classes: smaller-the-better (S-type), larger-the-better (L-type), and 

nominal-the-best or specific target value (N-type).   

Despite the widely recognized contributions of Taguchi’s philosophical 

approaches to quality engineering, various aspects of his methods have received 

considerable scrutiny (see Box (1988) and Box et al. (1988)).   In a well-known panel 

discussion that brought together a number of leading researchers in the field, Nair (1992) 

codified three general criticisms of Taguchi’s methods:  1) his use of signal-to-noise 

ratios as a basis for analysis, 2) his approaches to experimental design, and 3) his 

analytical methods.   Numerous others, including Tsui (1992), Robinson, et al. (2004), 

Park et al. (2006), Arvidsson and Gremyr (2008), Kovach and Cho (2007a), and 

Hasenkamp et al. (2009) echoed portions of this, citing the use of crossed arrays as a 

particularly disadvantageous practice that leads to a prohibitive number of observations 

and fails to incorporate the analysis of interaction effects between factor settings, which 
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is a critical component for accurately estimating optimal operating conditions.  

Accordingly, much of the research in this field over the past two decades has revolved 

around developing and improving the analytical methods used to enhance quality.  

Briefly stated, a number of researchers concluded that Taguchi’s methodology merely 

facilitated process improvement instead of optimization.   In response, many of them 

proposed RPD models that investigated a variety of alternative optimization 

methodologies that were more firmly grounded in well-established approaches to 

experimental design, most notably response surface methodology, or RSM, which 

predates Taguchi’s methods by more than three decades. 

2.1.1  Response Surface Methodology 

RSM is an experimental methodology that evolved from the work of Box and 

Wilson (1951) in support of a chemical processing facility.  Through experimental 

designs, they endeavored to determine the optimal levels for various process settings that 

would, in turn, result in optimal process yield and purity.  As part of this, they developed 

and used the central composite design (CCD) concept, which would allow them capture 

any inherent curvature in a response surface more effectively than was possible using a 

common factorial design.  In particular, by adding axial points to the design space at two 

levels, and thereby expanding the feasible region from a cuboidal one to a spherical one, 

the design becomes “rotatable.”  This is achieved by setting the axial points equal to

( )1/4
F± , where F represents the number of factorial points in the experimental 

framework.   
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The advantage of rotatability is that it essentially guarantees that the variability in 

the fitted value obtained at Xh (the vector of values for the various factors used) will be 

the same for all fitted values at a given distance from the center, regardless of the point 

Xh used or the direction from the center.  Accordingly, a design that possesses this 

property assures the experimenter that the precision in the fitted values depends solely on 

the distance from the center and not the direction.  Figure 2.1 portrays a rotatable CCD 

for three factors in two levels each using coded values, along with four center point 

replications.  The axial point levels are determined by 3 1/4 1/4(2 ) (8) 1.6818α = ± = ± = ± .  It 

is worth noting here that the number of center point replications for a three-factor CCD is 

typically set to 6, but, as Kutner et al. (2005) note,  this number may be too large to 

achieve uniform precision in the estimated mean response.  Thus, the actual number may 

be modified based on experimental conditions. 

 
Figure 2.1.  Experimental design space for a hypothetical CCD in three factors. 
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At the time, Box and Wilson considered second-order functions sufficient for 

modeling response surface designs, as higher-order terms were believed to have 

negligible effects on a given regression model.  Equation (2.1) denotes the standard form 

of the second-order response surface designs used, in which X1, X2, ..., Xk-1 represents a 

set of experimental control factors and Y represents the response variable, or quality 

characteristic of interest for the process under study. 

1 1 1 1
2

0
1 1 1 1

ˆ
k k k k

i i i i ij i j
i i i j

Y X X X Xβ β β β ε
− − − −

= = = =

= + + + +∑ ∑ ∑∑                                        (2.1) 

Here, the first term represents the intercept, the second represents the main factor effects, 

the third and fourth correspond to second-order and interaction effects, and ε is the 

associated error.  Since the initial efforts of Box and Wilson, a number of other 

researchers, including Bose and Carter (1959), Bose and Draper (1959), Box and 

Behnken (1960a, b), Box and Draper (1959, 1963), and Das (1963) further explored the 

use of second-order designs as a basis for RSM.   

While second-order functions are useful in finding optimal solutions in the 

presence of curvature for most processes, there are some emerging fields in the 

contemporary engineering and science environment, such as nano-science and molecular 

biometrics, where significantly elevated levels of precision require alternative estimation 

methods.  Goethals and Cho (2011c) explored this by incorporating higher-order 

polynomial response surface methods combined with a desirability function approach to 

achieve higher precision in multi-response optimization problems.  Rather than creating 

higher-order polynomial models simply by adding terms, their proposed method searches 
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for the best combination of terms based upon the results of various screening criteria.  In 

some cases, the number of model parameters that most appropriately estimates the true 

response may be less than or equal to the number of terms in the second-order model.  By 

incorporating screening tests to espy potential issues in using higher-order terms along 

with a procedure using multiple criteria for model selection, they demonstrated increased 

assurance that increased precision with minimal bias will result.   

 Early applications of RSM tended to be limited to the chemical processing field in 

which Box and Wilson conceived the approach.  Since that time, however, the benefits of 

RSM have become much more widely known, resulting in applications across a large 

swath of the engineering and other sciences, including physical, social, and biological 

science disciplines.  Within the industrial engineering field, RSM approaches have 

become one of the foremost tools applied in contemporary research efforts.  Furthermore, 

many researchers have investigated ways to improve upon RSM methods in all three 

phases of the RSM framework (development of the experimental framework, 

determination of the estimator functions for the response surface design, and 

optimization).  Among the enhancements in the first two phases, the use of optimal 

designs and Taguchi’s robust parameter design modifications stand out.  Enhancements 

in the third phase stemmed from the aforementioned concerns that many researchers 

shared regarding Taguchi’s approaches.  Whereas Taguchi’s methods were addressed 

previously, the remaining two will be discussed in the following paragraphs. 
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2.1.1.1  Phase I/II RSM Enhancements – The Integration of Optimal Design 

The need to consider optimal design strategies arises when certain conditions 

render the use of traditional experimental approaches inappropriate.  Such conditions 

include instances where time, resource limitations, or some physical restrictions constrain 

the experimental region.   Although the earliest traces of optimal design theory may be 

attributed to Smith (1918), its contemporary form has its origins in the late 1950’s/early 

1960’s with the works of Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959).  Their 

early efforts, and the extensions that evolved since, have guided the use of optimal 

designs, establishing a variety criteria as bases for an array of optimal designs.  These 

include the works of numerous researchers, including St. John and Draper (1975), Ash 

and Hedayat (1978), Silvey (1980), and Atkinson (1982), among others. 

The objective for any optimal design is to determine the set of design points from 

among a list of candidate points that best satisfy the selected criterion.  Most often, the 

optimality criterion used is a function of the variance of the estimated model parameters.  

Moreover, due to the iterative nature and the complexity involved, these designs typically 

require the use of sophisticated computer algorithms.  Traditional optimality criteria 

involve invariants of the information matrix( )TX X , where X is the design matrix and XT 

is its transposed form.  Among these are A-optimal designs, which focus on minimizing 

the trace, or the sum of the elements on the principal diagonal of T 1( )−X X ; D-optimal 

designs, which seek to minimize the determinant of T 1( )−X X  or, equivalently, to 

maximize T( )X X ; E-optimal designs, which maximize the minimum eigenvalue of the 
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information matrix by invoking convex minimization methods that use sub-gradients as 

opposed to gradients at non-differentiable points; and T-optimal designs, which maximize 

the trace of the information matrix.  Among these, the D-criterion stands out as the most 

widely used, in large part due to its availability in a suite of contemporary software 

packages. 

In contrast, other optimality criteria focus instead on the variances of predicted 

responses.  This class of optimal designs includes G-designs, which seek to minimize the 

maximum entry in the diagonal of the hat matrix, T 1 T( )−=H X X X X and has the 

consequential effect of minimizing the maximum variance of the predicted values.  I-

optimal designs minimize the average prediction variance across the entire design space, 

whereas V-optimal designs denote a slightly constrained version of I-designs in that they 

minimize the average prediction variance over a specified set of m distinct points in the 

design space. 

A number of researchers have addressed the use of optimal designs in their work.  

Hardin and Sloane (1993) developed an algorithm that combined a modified version of 

Hooke and Jeeve’s pattern search approach with Monte Carlo methods for computing 

exact calculations in order to identify A-, D-, E-, and I-optimal designs for a range of 

response surface design problems.  Kovach and Cho (2007a) evaluated situations in 

which both experimental constraints exist and noise factors are considered in conjunction 

with control factors.  Seeking an alternative to Taguchi’s crossed-array designs and 

SNR’s, they invoked a response model approach involving a combined array design that 

facilitates the inclusion of both control and noise factors in a single design.  Compared to 
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traditional approaches typically (and sometimes erroneously) applied in these situations, 

the result is a more efficient methodology that uses a D-optimality approach to generating 

robust solutions.   

Ultimately, one of the chief advantages afforded by optimal design is that it 

provides the researcher with the flexibility to design a tailor-made experiment in an 

objective way.  Atkinson and Donev (1992), Pukelsheim (1995), Montgomery et al. 

(2002), as well as Kovach and Cho (2007b) provide considerable detail regarding optimal 

design theory applications. 

2.1.1.2  Phase III Enhancements – Integration of the “Dual Response” Approach  

Advancements in the Optimization Phase of RSM (Phase III) derived from the 

aforementioned skepticism surrounding the experimental and analytical methods 

proposed by Taguchi in his RPD framework.  Vining and Myers (1990) (hereafter 

referred to as VM) were among the first to craft a refinement to Taguchi’s method by 

incorporating the “dual response” approach to multi-response optimization introduced by 

Myers and Carter (1973) into the RPD framework.  For a set of control factors,

1 2 1( , ,..., )kX X X −=x , their dual response approach used separate response function 

estimates for the process mean and standard deviation given byˆ ( )xµ and ˆ ( )xσ , 

respectively.  Using these estimates, they then proposed to determine optimal factor 

settings by minimizing the standard deviation while adjusting the process mean to the 

desired target value, shown by the following scheme: 

ˆMinimize     ( )

ˆSubject to:  ( ) , where  is the target value

σ
µ τ τ=

x

x
                                  (2.2) 
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Pursuant to VM’s work, Del Castillo and Montgomery (DM) (1993) proposed the use of 

nonlinear programming techniques, specifically the generalized reduced gradient 

algorithm (GRG), to achieve the same results more efficiently.  In particular, they showed 

the GRG method as a viable means to formulate problems using a broader array of 

response surfaces and constraints and thereby, in some cases, achieve improved results. 

Cho (1994) and Lin and Tu (LT) (1995) focused on VM’s modeling approach, 

arguing that restricting the mean response to a specific value could potentially eliminate 

better operating conditions from consideration.  Accordingly, their extension uses the 

mean squared error (MSE) criterion to allow for bias between the mean response and 

target value in the following manner: 

2ˆ ˆMinimize     = ( ( ) ) ( )MSE µ τ σ− +x x                                              (2.3) 

Copeland and Nelson (CN) (1996) agreed with the assessment to incorporate bias, 

but challenged the idea of allowing unlimited deviation from the target.  Hence, they 

modified the MSE-based approach by restricting the amount of bias that could be 

allowed.  The generalized result was the following optimization scheme that blended the 

target-constrained and MSE-based schemes: 

2 2

ˆMinimize     ( )

ˆSubject to:  ( ( ) ) , where  denotes the amount of allowable bias

σ

µ τ− ≤ ∆ ∆

x

x
        (2.4) 

Like DM, CN also viewed nonlinear programming as a more efficient way to obtain 

optimal results using their approach.  However, they advocated the Nelder-Mead simplex 

method as a potentially more effective tool for optimizing dual response schemes in RPD. 
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More recently, Costa (2010) proposed another method to simultaneously optimize 

the mean and standard deviation of a particular response.  Costa’s optimization scheme, 

an extension of the global criterion method developed by Tabucanon (1988), seeks to 

minimize the deviation of the mean and standard deviation from specified target values as 

a ratio to the considered range as follows: 

ˆ( ) ˆ ( )
Minimize   

u

U L U L

µ σ
ω ω

µ σ

µ µ σ σ

τ σ τ −  −
  +   − −  

x x
                                    (2.5) 

where τi represents the target value and (L , U) denote the lower and upper specification 

limits for µ and σ, respectively.  The incorporation of weights ωµ and ωσ  establishes 

relative priorities between the mean and standard deviation, allowing experimenters to 

explore varying magnitudes for each, and thus evaluates trade-off analyses between them.  

Similarly, the inclusion of the ratio 1/ (U - L) also affords practical flexibility to evaluate 

trade-offs between different limit settings. 

Figure 2.2 shows several of the more commonly used optimization schemes in the 

literature, delineated where appropriate by the quality characteristic type to which they 

apply.  Many other researchers have developed extensions of these models, contributing 

to the growing wealth of knowledge in the field.  For example, Ding et al. (2004) 

proposed a data-driven approach to determine the weights for use in the Cho/LT MSE 

weighting scheme, which Jeong et al. (2005) echoed.  Shaibu and Cho (2009) offered 

another angle to LT’s approach that considers the degree to which the standard deviation 

varies from a specified target in the objective function for all types of responses.   These 

and a number of others, including Kim and Lin (1998, 2006), Tang and Xu (2002), Kim 
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and Cho (2002), and Koksoy and Yalcinoz (2008), are extensively delineated in 

Robinson et al.(2006), Costa (2010), Shin and Cho (2008, 2009), Shin et al. (2011), 

Kovach and Cho (2007a, 2007b, 2008), Shaibu et al. (2009), and Kovach et al. (2009). 

 

 
Figure 2.2.  Optimization schemes used in contemporary RPD research. 

 
2.1.2  The Optimal Process Mean (OPM) Component of the RPD Problem 

 A key aspect of the RPD problem focuses determining the optimal process mean 

that results from the identification of the optimal factor settings obtained through 

optimization.  A subtle distinction between this component and traditional RPD 

approaches is the target itself.  Whereas traditional RPD optimizes based on a customer-

specified target, the OPM problem seeks to optimize what that target should be.  
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mean represents a classical problem in quality control that actually predates it by more 

than 30 years.  C.H. Springer’s (Springer, 1951) efforts in determining optimal fill levels 

for cans in a canning process with given specification limits generally mark the advent of 

research in this area.  Whereas Springer’s experiments focused on optimal fill levels 

given predetermined lower and upper specification limits, Bettes (1962) extended this by 

fixing one of the specification limits and then optimizing the process mean and tolerance 

settings for the other limit. 

Since these early initiatives took root, many researchers have promulgated and 

expanded upon the ideas of Springer and Bettes, applying a variety of models to the same 

types of problems but with alternative methods for defining cost and profit relationships.  

These researchers include Hunter and Kartha (1977), Bisgaard et al. (1984), Golhar and 

Pollock (1988, 1992), Rahim and Shaibu (2000), and Chen (2004).  However, according 

to the recent review of process mean literature by Tahera et al. (2008), most of the 

research to this point has focused on processes with single quality characteristics.  As 

they note, customers typically judge product quality by more than one characteristic.  

Thus, models should incorporate the effects of multiple quality characteristics.  Several 

researchers have endeavored to rectify this gap by developing models that address the 

effects and interactions among multiple quality characteristics.  Arcelus and Rahim 

(1990) are considered among the first to do so.  Since then, a number of others have 

examined situations involving multiple N-type characteristics, including Elsayed and 

Chen (1993), Teeravaraprug and Cho (2002), Chen and Chou (2003), and Chan and 

Ibrahim (2004). 
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For more than thirty years after Springer’s initial work, researchers defined 

quality loss based on whether or not a product conformed to given specification limits.   

Namely, quality loss did not occur unless the product exceeded the specification limits, 

implying that any results within the limits were equally good regardless of how far they 

deviated from the target.  Taguchi’s introduction of a quadratic loss function in the mid 

1980’s altered the classical step-loss approach, suggesting that any deviation from the 

target, regardless of size, should result in a loss of quality from the customer’s 

perspective.  Following this lead, a number of researchers developed extensions to 

Taguchi’s approach in order to incorporate the customer’s voice more efficiently and 

effectively.  Spiring (1994) applied an inverse normal function to model quality loss, 

which provided a boundary as a means to associate economic loss with target deviation.  

Cho and Leonard (1997) developed a class of quasi-convex quality loss functions that 

viewed loss as proportional to the deviation of the characteristic of interest from its 

specification limit.  Still others, such as Moorhead and Wu (1998) and Chen (2004), have 

examined the use of asymmetric loss functions to more accurately portray situations in 

which symmetry is not practical. 

In cases involving multiple quality characteristics, overall product quality depends 

on the consolidated effects of the target deviations for each of the characteristics.  

However, because of potential interactions between responses (characteristics), the loss 

incurred may not be simply an additive function of the losses realized for each of the 

individual responses.  Byrne and Taguchi (1987) used a connector and tube example to 

show that, in the case of conflicting characteristics, evaluating quality loss based on each 
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separately inadequately accounts for the interactions between them.  Pignatiello (1993) 

considered a multivariate loss function to measure quality based on the interactions 

among multiple N-type characteristics; Tsui (1999) extended this work to include S- and 

L-type characteristics.  Many others have continued to explore this area, including Kapur 

and Cho (1996), Teeravaraprug and Cho (2002), and Chan et al. (2004, 2005).   The 

amassed effects of both univariate and multivariate quality loss efforts ultimately have 

resulted in the integration of the customer’s perspective into the process mean problem, 

marking a significant shift from the traditional focus on meeting the manufacturers’ needs 

in conforming to specifications. 

When it comes to process variance, it is generally understood that increases in 

variability translate to an increase in nonconformance and quality characteristic deviation 

from pre-defined target settings.  In the interest of tractability, most studies to date have 

assumed a known and constant process variance.  As Tahera et al. (2008) note, however, 

many processes actually exhibit some degree of autocorrelation due to various 

influencers inherent to or impacting on the process.  A number of researchers have 

acknowledged this reality and examined the effects of variance reduction.  Schmidt and 

Pfeifer (1989) made one of the first attempts to explore the effects of variance reduction 

on expected total cost.  Gohlar and Pollock (1992) scoped their approach, looking 

specifically at the effects of variance reduction on production costs.  A number of others 

have investigated the problem of simultaneously choosing the most economical process 

mean and variance in continuous production processes, including Rahim and Shaibu 

(2000), Kim et al. (2000), and Chen et al. (2002).   
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2.2  Approaches to Parameter and Regression Estimation 

Regardless of the optimization scheme applied to obtain the optimum operating 

conditions for a given process, the results invariably depend upon the initial estimates 

used to derive the response surface functions that essentially define the process.  In robust 

design, as in any methodology involving design of experiments and regression analysis, 

estimation occurs in two tiers.  Tier One involves estimation of the location and scale 

parameters from the data, which serve to describe distributional properties inherent to 

system outputs.  These estimates then form the basis for regression analysis and are used 

in Tier Two to estimate the coefficients of the regression models for the mean response 

and the standard deviation or variance, which describe inherent process relationships 

between the various factors and a particular system response (or quality characteristic of 

interest).  In turn, these models are used in conjunction with a particular optimization 

scheme to determine the optimal factor settings or operating conditions. 

Estimation theory pertains to the branch of statistics that focuses on the use of 

measured or empirical random data to obtain estimates for parameters of interest.  

According to Hayter (2006), we can think of parameters as denoting quantities of interest 

that define certain properties of an underlying distribution governing a particular 

observation from a larger population.  Since the available data almost always comprise a 

relatively small sample of the population, the underlying distribution and its associated 

parameters are often unknown.  Thus, the initial objective for any experimenter is to 

ascertain as much as possible about these parameters via estimation, since they provide 
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the required understanding of the underlying distribution that characterizes the 

population.   

Since robust design focuses on achieving a mean performance level as close to a 

specified target as possible with minimal variance therein, the parameters we typically 

seek to estimate from the data are location and scale, as these values will form the basis 

of our regression analysis.  The location parameter refers to a data value that essentially 

demarks the middle or origin of the dataset or population.  Estimates for this parameter 

typically involve the mean, the median, the mid-range, or perhaps the mode of the data.  

The scale parameter essentially defines the spread or dispersion of the distribution 

relative to its location; the larger the scale, the greater the spread.  The literature indicates 

that researchers typically use the standard deviation, the variance, or the logarithmic 

transformation of the standard deviation to estimate the scale.  Goethals et al. (2009) 

investigated the differences between these estimators in terms of the effects they have on 

the optimal operating conditions.  Regardless of the method used, the presence of outliers 

can significantly affect the estimate, as the squares of the deviations from the mean enter 

into the calculation and thereby exacerbate the effects of any outliers on the estimate 

(Ripley, 2004). 

Characteristics of a good estimator include its bias, variance, breakdown point, 

consistency, and efficiency; concepts largely attributed to the seminal work of Fisher 

(1922).  The bias of an estimator denotes the degree to which its expected value differs 

from the true parameter being estimated.   The variance indicates the average degree to 

which a collection of estimates deviates from the expected values of those estimates.  It is 
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worth noting that a useful relationship exists between the bias, variance, and the mean-

square error (MSE) of any estimator.  Manipulation of the typical rules associated with 

the expectation of squares yields the following: 

( )22
ˆ ˆ

ˆ( ) ( ) ( )MSE E B Vθ θ θ
θ θ θ θ = − = +                                         (2.6) 

Thus, the mean square error of an estimator simplifies to the sum of two terms: one that 

measures the average difference between the estimator and the true parameter and 

another that measures the variability of the estimator.   

An estimator’s breakdown point refers to the proportion of arbitrarily large 

observations an estimator can handle before giving an arbitrarily large result.  

Consistency is used to describe how an estimator “acts” as the amount of available data 

increases.  An estimator is said to be consistent if, as more data is collected and new 

estimates are generated, the distributions of the estimators become increasingly 

concentrated near the true value of the estimated parameter.  Finally, efficiency refers to 

how accurate a particular estimator is in terms of the number of samples required.  That 

is, an efficient estimator requires fewer samples to achieve an accurate estimate than a 

less efficient alternative.  Often, efficiency is viewed as a relative measure between two 

estimators.  That is, 

Relative Efficiency
MSE estimator B

MSE estimator A
=  

The resulting value is commonly expressed as a percentage and so theoretically ranges 

between zero and one.  However, it can obviously exceed one if the MSE of the 

numerator is higher.  Regardless, higher percentages are more desirable.  The following 
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subsections provide brief historical foundations and a review of contemporary literature 

associated with tier-one and tier-two estimation approaches. 

2.2.1  Tier-one Estimation 

Point estimation of a parameter or set of parameters refers to a decision problem 

in which we observe independent and identically distributed data, Xi, drawn from some 

probability distribution pθ(x) and our goal is to estimate the parameter θ from the data.  

An “estimator” is any decision rule or function from the data space XN into the parameter 

space (i.e., the sample mean, in the Gaussian case).  The literature contains myriad 

approaches and techniques to parameter estimation, as it comprises one of the most 

fundamental problems in statistics. 

Robust design uses the ordinary least squares method to obtain response function 

estimates for the process (or response) mean and variance.  This corresponds to an 

inherent assumption that the experimental data are normally distributed and relatively 

devoid of outliers (i.e., uncontaminated).  Under these assumptions, the standard methods 

for estimating the process mean and variance are the sample mean and sample variance 

given by  

1
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y yn
=

= ∑
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n
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−

=
−

∑                                                 (2.7) 

The former simply denotes the arithmetic average of the data observations, while the 

latter is comprised of the sum of the squared deviances of the data observations about the 

sample mean.   
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While the sample mean is the most common method for estimating the location 

parameter, the most common method for estimating the scale tends to fluctuate between 

the sample variance, the sample standard deviation, and the logarithm of the sample 

standard deviation, which tends to be applied when data transformations are required.  

Different researchers have applied one method or another to demonstrate superior results 

in comparative studies.  Although likely the most common approaches to estimating 

location and scale, the estimates generated by these sample statistics are known to be 

vulnerable to outliers and other violations of assumed distributional characteristics. 

The method of moments (MoM) is another method largely attributed to Karl 

Pearson in the late 1800’s (see Bera and Bilias, 2002).  In short, after he developed his 

self-named class of distributions to fit data that could not be modeled using a normal 

distribution, he had to develop a new way for estimating the five parameters associated 

with his model, as methods at the time could not deal with so many parameters.  His 

solution was to equate the sample moments to the population moments and then solve the 

set of highly non-linear equations sequentially, eliminating one parameter in each step.  

The first moment is defined to be the mean, the second moment the variance, the third 

moment is the skewness, and the fourth moment is excess kurtosis. In complex models, 

with more than one parameter, it can be difficult to solve for these moments directly.  

Consequently, moment generating functions were developed using sophisticated 

analytical techniques. These moment generating functions can also be used to estimate 

their respective moments.  Koutrouvelis and Canavos (2000) conducted a comparison of 

moment-based methods for estimating the log Pearson type 3 distribution, using Monte 
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Carlo simulation to demonstrate the effectiveness of the method for flood events in high-

return periods with large sample size and low-return periods irrespective of sample size.  

As Hayter (2006) and a number of other statistical textbooks or sources attest, the 

advantage of this particular method lies in the ease with which estimates may be 

computed by hand.  However, the estimators generated by this method tend to have 

problems with relatively small samples and are sometimes insufficient in the sense that 

they fail to account for all relevant information in the data sample. 

Probably one of the most well-known and most often used parameter estimation 

methods is the method of maximum likelihood (MLE).  Originally developed and 

introduced by R.A. Fisher in 1922 as a counterweight to Pearson’s MoM, the MLE 

method simply posits that the desired probability distribution is the one that makes the 

observed data “most likely” to have occurred.  Hence, it is based on maximizing the 

likelihood function ( , )L x θ  where 

1

( , ) ( , )
n

i
i

L x f xθ θ
=

=∏                                                           (2.8) 

Typically, this function is maximized by taking the derivative with respect to the 

parameter of interest, setting it equal to zero, and solving for the parameter estimate.  

Most often, it is more convenient to take the natural logarithm of the likelihood function, 

as this yields a monotonic function that is equivalent to simply maximizing( , )L x θ .  As 

Hayter (2006) and Fernandez (2004) note, the MLE method generally produces good 

estimates with good theoretical properties when the sample size is reasonably large.  

Moreover, it generalizes to situations involving two or more parameters.  The literature is 
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replete with research studies and applications involving the MLE method across a broad 

swath of disciplines and fields of study since its inception nearly a century ago.  More 

contemporary examples include Tsai and Bockenholt (2001) who used MLE for  

estimating probabilistic paired comparison models, Holmstrom and Petersson (2002) 

used a weight-based approach with MLE to develop acceptable estimates for applications 

involving exponential sums, Pisarenko and Sornette’s (2004) use of MLE and a “piece-

wise” application of MLE to compute parameter estimates for deterministically chaotic 

time series, Bera and Bilias’ (2002) review and comparison of MLE and five other 

estimation pedagogies, and Myung’s (2003) tutorial on the application of the MLE 

method, to name just a few. 

Since Fisher’s work in the 1920’s, many researchers have developed a variety of 

extensions of MLE aimed at addressing peculiarities of particular situations and achieving 

better estimators in general.  Quasi-likelihood estimation approaches allow greater 

degrees of variability in data than would typically be allowed or expected from the 

statistical model used.  Within this class are two commonly used estimators which are 

usually applied to fit binary or count data.  The first of these is the marginal quasi-

likelihood (MQL) method developed by Breslow and Clayton (1993), which Robinson et 

al. (2006) applied to their analysis of data from quality-improvement experiments 

involving generalized linear models (GLM) but found that the method tended to yield 

large biases when the variance is large.  In situations involving binomial GLMs, Noh and 

Lee (2007) showed the penalized quasi-likelihood (PQL) method to outperform the MQL 
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estimator.  Nonetheless, this method, too, suffered from significant biases in the face of 

large variance components. 

As an alternative to the quasi-likelihood approaches, Lee and Nelder (2006) 

showed the hierarchical likelihood (H-likelihood) method to be free of such bias issues.  

Lee and Nelder (1996) initially advocated this method in conjunction with hierarchical 

generalized linear models (HGLM), and have continued to champion its viability and 

utility since then.  The H-likelihood refers to a function of both fixed parameters and 

random instances of missing data and/or latent variables and then maximizing over the 

random instances, using an adjusted profile likelihood for predictive estimation.  Several 

have taken issue with the value of the H-likelihood method as a good estimator.  Namely, 

Kuk and Cheng (1999) and Waddington and Thompson (2004) challenged its ability to 

generate satisfactory estimates in situations involving binary data.  Kuk and Cheng 

(1999) went so far as to challenge the theoretical basis for the method.  Nevertheless, Lee 

and Nelder (2006, 2007) refuted these concerns and showed the method to be free of the 

various issues affecting the MQL and PQL methods. They reinforced their findings even 

more recently in Lee et al. (2011), in which they advocated its usefulness in robust 

parameter designs for quality improvement. 

Still other estimation methods, among myriad more may be explored.  These 

include resampling methods, such as bootstrapping or the Jack knife approach which 

focus on estimates of standard error, Maximum spacing estimation which maximizes the 

geometric mean of the spacings in the data, and maximum a posteriori estimation. 
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Overviews and applications of these methods may be found in Shao and Tu (1995), 

Ranneby (1984), and Degroot (1970), respectively. 

Robust estimation methods arose in the 1950’s and 1960’s out of concerns with 

the impact of outliers on existing estimation approaches.  In particular, researchers had 

become increasingly aware that many of the most common procedures that were 

optimized under assumptions of normality were grossly sensitive to even the most minor 

deviation in the data and from the assumptions.  Hence, according to Huber (2009), in 

this context, robust denotes insensitivity to small deviations from the assumptions.  More 

specifically, the concept pertains to distributional robustness.  That is, the shape of the 

actual underlying distribution exudes only minor deviations from the assumed model.  

Essentially, robust statistical methods seek to outperform classical statistical methods in 

the presence of outliers, or, more generally, when underlying parametric assumptions are 

not quite correct, although more contemporary application of these methods has focused 

predominantly on handling the effects of outliers.  

Examples or robust estimators for the location, or mean, include the sample 

median and M-, L-, and R-estimators, which actually denote broader classes of estimators.  

The sample median represents probably the oldest robust method for estimating the 

location.  Defined simply as the numerical value that separates the lower half of a sample 

or distribution from the higher half, this approach tends to be comparatively impervious 

to the effects of outliers.  That is, whereas the sample mean could be affected 

significantly by the introduction of a single outlier, the median would remain unchanged.  

As an example, consider a set of data comprised of ten observations and calculations for 
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the mean and median as shown in the left column of Table 2.1.  The right column 

contains the same data with the value in the lower right corner changed to reflect an 

outlier.  The results show how the introduction of a single outlier, either through 

experimental error, process nuances, or data entry errors, induces a 25% shift in the 

sample mean, which, in the context of robust design, can have enormous impacts on the 

optimal solution achieved.  By comparison, the median is unaffected and therefore 

considered robust to the effects of the outlier.  In terms of contemporary application to 

robust parameter design, Park and Cho (2003) proposed the use of the median in 

conjunction with the median absolute deviation method for estimating the scale 

(discussed in subsequent paragraphs) to achieve more robust solutions in situations 

involving data that is either contaminated with outliers or violates assumptions of 

normality. 

Table 2.1.  Mean and median for datasets with and without a single outlier 

No outlier Outlier Present 
34.4 49.7 34.4 49.7 
46.7 54.1 46.7 54.1 
48.1 54.6 48.1 54.6 
48.1 55.3 48.1 55.3 
49.4 59.2 49.4 159.2 
mean:  49.96 mean:  59.96 

median:  49.55 median:  49.55 
 

Among more contemporary approaches for dealing with the effects of outliers, the 

M-estimator proposed by Huber (1964) is one of the first robust methods adopted.  The M 

stands for “maximum likelihood type” and these estimators essentially amount to a 

generalization of MLEs.  Whereas MLEs involve maximizing 
1
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n
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f x
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∏ or, equivalently, 



 
 

37 

minimizing
1

log ( )
n

i
i

f x
=

−∑ , Huber (1964) suggested generalizing this to minimizing 

1

( )
n

i
i

xρ
=
∑ where ρ is some arbitrary function.  He notes further that when the selection for 

ρ is ( ; ) log ( ; )x f xρ θ θ= − , the result is the ordinary maximum likelihood estimate.  Thus, 

MLEs are a special instance of M-estimators.   

L-estimators and R-estimators are not as widely used as the M-estimator, as they 

tend to be less flexible and do not generalize as easily to multi-parameter situations.  

Nonetheless, they present viable alternatives for parameter estimation that should not be 

overlooked.  L-estimators correspond to linear combinations of order statistics and 

include measures such as the median, the trimmed mean, and the “Winsorized” mean.  R-

estimators, on the other hand, are obtained through inverting the rank tests and are often 

preferred to L-based methods due to their global robustness and less restrictive 

assumptions concerning the underlying distribution(s).   

It should be noted that M-, L-, and R- estimators may also be used to obtain robust 

estimates for the scale, or variability in the data.  Huber (2009) provides a detailed 

overview and theoretical underpinnings for each.  Other examples of robust estimators 

for the scale include the median absolute deviation (MAD) method and S-estimators.  The 

MAD is defined as the median of the absolute deviations from the median of a set of data.  

Simply stated, after determining the residual between each data point and the median of 

the data, the MAD is the median of the subset of data created by the absolute values of 

these residuals.  This estimator is robust to outliers in the sense that, like the median 
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previously discussed, the sizes of the residuals associated with a relatively small number 

of outliers does not really impact the estimate.  By comparison, the sample standard 

deviation and sample variance estimators require that we square the deviations from the 

mean.  This ultimately means that the deviations associated with outliers receive more 

weight and therefore exert considerable influence on the resulting estimate.  As 

previously noted, Park and Cho (2003) incorporate this scale estimator as part of a 

broader proposal to achieve better robust design solutions.  Lee et al. (2007) also 

examined the combination of the median and the MAD in comparison to M-estimators for 

achieving optimal robust design solutions. 

 S-estimators were developed by Rousseeuw and Yohai (1984) as a way to 

streamline the multi-dimensionality associated with M-estimators for scale without 

sacrificing their inherent flexibility and asymptotic properties.  The result is an approach 

that seeks the line that minimizes the scale of the residuals.  In spite of the resistance of 

this estimator to outliers in both the predictors (leverage points) and the responses, its 

creators also found it to be comparatively inefficient.  Rousseeuw and Yohai (1984) and 

Rousseeuw and Leroy (1987) provide a detailed overview of the S-estimator and various 

other robust estimators that researchers have developed since 1940.  Despite the various 

approaches to robust estimation heretofore described and/or cited, Huber (2009) points 

out that M-estimators tend to dominate contemporary usage in the field due to their 

generality, high breakdown point, and efficiency. 

Tau estimators for location and scale are still another set of alternative 

approaches.  Developed by Maronna and Zamar (2002), these estimators aim to reduce 
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the computational complexities commonly associated with most other high-breakdown 

robust estimators.  In short, the location component uses a weighted mean that 

incorporates median statistics in establishing the weight, whereas the scale estimator uses 

a truncated standard deviation that invokes the MAD as a starting point.  The combined 

effect as a high-efficiency estimator (80% in each case) that is also highly resistant to the 

effects of outlying data points.   

Because distributional assumptions underlying most traditional parametric 

statistical tests often fail to hold for a variety of reasons (such as asymmetry or excess 

kurtosis), it may become necessary to invoke non-parametric methods as a recourse.  A 

common complaint regarding such methods is that while they allow for an assessment of 

statistical significance, they disallow any measurement of effect size in terms of the 

differences between samples from a data set.  The Hodges-Lehmann (1963) estimator for 

location overcomes this issue by evaluating said differences using pairwise comparisons 

and median-based statistics.  As Serfling (2011) noted, this estimator is highly 

competitive with the sample mean under normality, can be “infinitely more efficient” 

under some other symmetric distributions with heavier tails, and is “never much less 

efficient” at any distribution. 

Ultimately, a cursory review of statistics-based literature will highlight the wide 

variety of estimation methods and further demonstrate that much has been done with 

respect to estimation techniques, as myriad alternatives have evolved over the last 

century.  Concomitantly, a number of researchers, such as Koutrouvelis and Canavos 

(2000) and Bera and Bilias (2002) have also examined the differences between the 
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performances of various estimators.  Several of these, including Simpson and 

Montgomery (1998), Muhlbauer (2009), and Weins and Wu (2010), specifically 

examined robust estimators, focusing primarily on relative efficiencies, breakdown 

points, and robustness as means for ascertaining the superiority of one method relative to 

others.  However, the investigated conditions almost singularly focus on cases involving 

outliers.  This is unsurprising, though, as most alternative techniques to the estimation 

methods used in the OLS framework grew out of concern for the impact of outliers on 

data and subsequent estimates.   But a variety of other conditions, such as asymmetry and 

high variability, can also exist and have equally detrimental effects on the quality of the 

estimates.   

Interestingly, despite of the very large pool of alternative estimators, comparatively 

few research efforts have explored them in the context of RPD, and among these, the 

only conditions examined include outliers.  Table 2.2 summarizes the works pulled from 

contemporary RPD literature. 

Table 2.2.  Summary of works examining estimator selection in RPD problems. 

Author(s) Year Conditions Examined Estimators Compared 

Park and Cho 2003 
Outliers and non-normal 
symmetric distributions 

2( , ) . ( , )y s vs y MAD%  

Lee et al. 2007 
Outliers and non-normal 
symmetric distributions 

2( , ) . ( , )

. Huber 'Proposal2' estimators

y s vs y MAD

vs

%
 

Goethals et al. 2009 
Impact of variability measure 

selection under normal 
conditions  

2( , ) . ( , ) . ( , ln( ))y s vs y s vs y s 

 

The works of Park and Cho (2003) and Lee et al. (2007) investigate alternative 

RPDs in the face of outliers and non-normal, but symmetric conditions.  In particular, the 

authors examine alternative location and scale estimators to achieve better RPD solutions 
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under the stated conditions.  Each of these is discussed in greater detail in Chapter 5.  The 

work by Goethals et al. (2009) differs in that it examines and compares three commonly 

used variability measures under normal conditions to determine which, if any tends to 

result in better RPD solutions when the degree of variability in system outputs changes. 

At this point, three things become quite clear: 1) the quality and reliability of the 

optimization results depend quite heavily on the initial process estimates used, 2) innate 

process conditions may affect the quality of those estimates, and 3) very little has been 

done in the RPD research field to explore alternatives to traditional estimation approaches 

when certain conditions exist.  For these reasons, this chapter will outline a conditions-

based approach for working with non-standard conditions.  In particular, modifications to 

traditional RPD methodology are proposed that incorporate the various aspects of data 

analysis outlined in Chapter 4 in order to ascertain underlying data conditions and then 

use this information to drive the selection of tier-one estimators.  Numerical examples 

and Monte Carlo simulation will serve to illustrate how the proposed methodology is 

used, as well as which estimators tend to perform best under asymmetric and highly 

variable conditions. 

2.2.2  Tier two Estimation 

As with tier-one estimators, many alternatives to tier-two estimation exist, as well.  

The traditional, and by far the best known and most applied approach to estimating the 

coefficients of a linear regression function is the method of ordinary least squares (OLS).  

Although Carl Friedrich Gauss claimed to have first used the least squares method as 
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early as 1795, it was actually first published by Legendre in 1805 as an appendix to his 

work titled Nouvelles m´ethodes pour la d´etermination des orbites des com`etes.   

The OLS method minimizes the sum of squared errors or residuals between the 

observed responses in a dataset and the responses predicted by the linear approximation, 

shown as follows: 

     2

ˆ
1

n

i
i

Minimize
β

ε
=
∑                                                   (2.9) 

where iε denotes the residual of the i th design point and 

0 1 1 1 , 1...i i i p i pY X Xε β β β − −= − − − −
 

The result is a computationally simple and straightforward estimator that is consistent 

when the predictor variables are independent and non- multicollinear, and optimal when 

the residuals possess constant variance (homoscedasticity) and are uncorrelated.  When 

these conditions hold, and the residuals have finite variances, the method of OLS 

provides minimum-variance mean-unbiased estimation.  

Once again, the method of maximum likelihood provides an alternative approach 

to OLS when the assumptions required by the latter fail to hold.  When applied to a 

known, fixed dataset with an underlying statistical model, the MLE method identifies 

model parameters that result in the distribution that yields the highest probability for the 

observed data.  The MLE method requires distributional assumptions for purposes of 

assigning a likelihood function that invokes the associated density function and 

parameters of the assumed distribution.   
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It is important to note that, under the added assumption of normally distributed 

residuals, the MLE and OLS methods are equivalent.  In the case of normally distributed 

response variables and residuals, this can be done analytically; however, in many others, 

closed-form analytical solutions are not available.  This typically requires a 

generalization of the traditional linear model to accommodate the unique features of 

various types of data.  However, this tends to introduce some key complications; notably, 

that the mean response may now by nonlinear model, and then the variance may now 

depend on the mean response.  The result of the increased complexity is a necessity to 

derive estimates numerically using iterative approaches and algorithms, such as the 

iteratively reweighted least squares approach or the expectation maximization algorithm.  

In the case of the former, Nelder and Wedderburn (1972) used IRWLS in their 

generalized linear model approach to obtain MLE’s of the regression coefficients in 

situations involving non-normal data and systematic effects requiring some form of linear 

transformation.  Using the latter, Lim (2007) showed that through the expectation 

maximization algorithm, the MLE will tend to produce better results in situations 

involving missing covariate data.  

It is well known that, for a linear model in which the above assumptions hold, the 

OLS estimator yields the best linear unbiased estimator of the coefficients.  However, in 

situations where these assumptions do not hold, it may very likely generate misleading 

results.  Consequently, the OLS method is said to be “non-robust” to violations of its 

underpinning assumptions.  In particular, as Huber (1973) points out, OLS estimates have 

been shown to be highly vulnerable to outliers, which refer to observations that deviate 
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from the patterns established by the rest of the observations. Although this may not pose 

an issue if the outlier is actually an extreme observation drawn from either tail of a 

normal distribution, if it stems from non-normal measurement error or some other 

violation of typical OLS assumptions, then the regression results may be compromised.  

Referring back to the breakdown point previously discussed, since a single outlier can 

corrupt the least squares line, the OLS method is said to have a breakdown point equal to 

zero and thus is not a robust regression procedure. 

In response to the risks posed by certain conditions (namely outliers), numerous 

researchers starting in the 1970’s undertook efforts to develop alternatives to the OLS 

method that would provide greater resistance to the leverage exerted by outlying 

observations.  Enter the concept of “robust regression.”  Robust regression is a form of 

regression analysis designed to circumvent the limitations associated with traditional 

parametric and non-parametric methods.  More specifically, the underlying methods are 

designed such that violations of supporting assumptions yield little impact on the 

regression results. 

One of the simplest alternatives for estimating robust regression coefficients is 

least absolute deviations (LAD).  Interestingly, the LAD method predates OLS by nearly 

half a century.  Boscovich actually introduced LAD in 1757 as a means for overcoming 

inconsistent measurements in estimating the shape of the earth.  Despite early interest in 

LAD among researchers, the advent of the OLS method supplanted its use and interest 

waned.  Karst (1958) is considered among the first of contemporary researchers to 

suggest the use of least deviations to overcome the issues of OLS regarding the influence 
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of outliers.  Schlossmacher (1973) and a number of others extended Karsts work to yield 

more precise and robust regression models using the absolute deviations approach.  In the 

last decade, researchers have continued to employ the LAD method.  Notably, Li and 

Arce (2004) developed a modified LAD approach that invoked a weighted median 

operation as the basis for a sequence of maximum likelihood estimates of location.  

Kumar and Shunmugam (2006) proposed the use of LAD regression for fitting an 

engineering reference surface that remains robust to the presence of outliers, namely deep 

grooves in the surface material.  Similarly, Choi and Buckley (2007) used LAD to 

overcome the loss of accuracy caused by the OLS method in their fuzzy regression 

model.  Using simulation, they showed the LAD approach to be superior to OLS when 

“fuzzy outliers” exist in the data. 

Although the LAD method has proved more robust than OLS, significant outliers, 

particularly on the predictor variables, can still bear negatively on the model.  Several 

researchers, including Rousseeuw and Leroy (1987) noted this shortcoming relatively 

early on, which motivated research into even more robust approaches. 

Among the first to spearhead the drive for more robust regression methods, Huber 

(1973) introduced M-estimation for regression, which he basically modeled as an 

extension of the tier-one M-estimation method previously discussed. Various researchers 

such as Wu (1985) noted the relative efficiency of M-estimators compared with other 

robust alternatives for samples of 40 or more, and that this efficiency increased with the 

sample size.  Thus, the method proved to be a viable estimator that was robust to outliers 

in the response variable.  However, it was also found to be not so resistant to outliers in 
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the predictor variables, commonly referred to as leverage points.  Consequently, in such 

situations, the method loses most of the advantages it otherwise enjoyed over the OLS 

method.  Absent these conditions, however, Andersen (2008) notes that proper 

formulation of M-estimates yields very robust results, particularly in terms of location (or 

the mean).  Notwithstanding, the method’s vulnerability to leverage points led a number 

of researchers including Mallows (1975),  Hill (1977), Hampel (1978), Krasker (1980), 

Marazzi (1993), and Simpson and Montgomery (1998) to contribute to the development 

of the generalized M-estimator, or GM-estimator.  This modification included a weight 

function to establish a bound on the influence exerted by any one outlier.    

In the 1980s, a number of researchers offered several alternatives to M-estimation 

in an effort to overcome its susceptibility to outliers in the predictor variables.  These 

included least median squares (LMS), least trimmed squares (LTS), S-estimation, and M-

M estimation among.  The following paragraphs offer a brief overview of each of these 

methods; a more thorough discussion of these and those above is provided in Chapter 7.  

For additional comprehensive discussions and derivations, see Rousseeuw and Leroy 

(1987), McCullagh and Nelder (1989), and Venables and Ripley (2002).   

Rousseeuw (1984) introduced the LMS method as an alternative robust regression 

method that could “resist the effect of nearly 50% of contamination in the data.”  

Rousseeuw showed this method to be very robust to false matches as well as outliers due 

to bad localization.  However, he also showed it to perform poorly in terms of asymptotic 

efficiency.  Accordingly, Rousseeuw (1984) also proposed the LTS method.  This method 

has grown in popularity and has been used considerably in the literature.  Among more 
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recent applications, Atkinson and Cheng (1999) used the LTS method in conjunction with 

a forward search algorithm and simulation to determine the amount of data that should be 

trimmed.  Using the commonly-used Brownlee stack loss plant data (Brownlee, 1960), 

they demonstrated improved efficiency and asymptotic properties relative to the LMS 

method proposed by Rousseeuw.  Willems and Van Aelst (2005) pointed out the 

considerable computational expense of the LTS method.  To overcome this issue, they 

proposed augmenting the LTS method with a modified bootstrap approach that retained 

the robustness of the LTS estimator while alleviating its otherwise intensive 

computational requirements. 

The fact that both the LMS and LTS methods involve the minimization of a robust 

measure of the scatter of the residuals gave rise to a generalization in the form of S-

estimators.  Introduced by Rousseeuw and Yohai (1984) as a means for performing 

robust regression in time series analysis, this method finds a line (plane or hyperplane) 

that minimizes a robust estimate of the scale (hence the S in its name) of the residuals.  

This method is highly resistant to leverage points, and is robust to outliers in the 

response. However, it also was found to be inefficient and computationally expensive 

(Rocke, 1996). 

 Yohai (1987) proposed the M-M-estimator as an improved alternative to LMS and 

LTS that would retain the high breakdown points these methods achieved but would also 

achieve higher efficiency.  Yohai’s approach essentially blended earlier methods in order 

to retain the robustness and resistance of LMS, LTS, and S-estimation, while gaining the 

efficiency of M-estimation.  This particular method has seen considerable use in the 
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literature.  For example, a study by Simpson and Montgomery (1998) involved several 

simulations to assess the performance of various robust regression techniques in the face 

of outliers.  Their results confirmed the superiority of the M-M estimation method.  Ch’ng 

et al. (2005) echoed the findings of Simpson and Montgomery (1998), proposing M-M 

estimation as a preferable means for obtaining optimal operating conditions in dual 

response surface and multiple response optimizations when responses are non-normal and 

outliers exist, particularly the latter.  It should be noted, however, that although the data 

examined were non-normal, they were symmetric.  Most recently, Maronna (2011) 

proposed a combination of M-M-estimation with ridge regression to overcome inherent 

susceptibilities of the latter to outliers in the predictor variables (leverage points) and low 

performance in instances where the number of predictors exceeds the number of 

observations or design points. 

The weighted least squares (WLS) method developed by Aitken in 1935 offers  

yet another way to address the issue of outliers.  Here, if the residual of the ith point is 

relatively small then it will be retained in the analysis.  Conversely, if the ith residual is 

large, it will be identified as an outlier and then significantly down-weighted to mitigate 

its influence on the model.  The selection of weights is generally a subjective exercise, 

but typically they are determined to be inversely proportional to the error variance.  Thus, 

the higher the error variance, the lower the associated weight for that observation, and 

vice versa.  WLS is also useful in cases in which the error variances are not constant or 

are heteroscedastic.  Heteroscedasticity can result from high degrees of inherent 

variability in process responses, lack of normality in the data, or in cases of unbalanced 
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experimental designs in which the number of observations taken at each design point are 

unequal for a variety of possible reasons.  In such situations, the existence of 

heteroscedasticity suggests that the OLS standard errors are potentially wrong, which 

calls into question any statistical inference based on them, and further suggests that the 

OLS method will not produce the best (or most efficient) estimates for the regression 

coefficients.   

In cases involving non-normality, researchers typically apply transformations or 

GLMs.  Transformations typically serve any of four purposes.  These include 1) 

transforming a non-linear model to one that is linear, 2) transforming the predictors (Xi) 

or the responses (Yi) to enhance the linear relationships between the two and thereby 

improve the fit, 3) correcting for heteroscedasticity in the residuals, and 4) overcoming 

issues with non-normality.  Often times, it is preferable to transform Y rather than X, as 

changing the latter usually does very little to alter the distribution of the data relative to 

the regression line.  Conversely, transforming Y induces changes in both the distribution 

of data about the regression line and the vertical spacing of the observed values.  In either 

case, transformations require prudence, as the implied need to transform may stem from 

just a few influential observations.  As Ryan (2009) noted, it is preferable that the data set 

as a whole drive the need for any transformation, rather than a few outlying observations. 

GLMs, on the other hand, have received considerable attention as a practical 

alternative to data transformations (see McCullagh and Nelder (1989), Myers and 

Montgomery (1997), Hamada and Nelder (1997), Venables and Ripley (2002), and 

Myers et al. (2002)).  In short, they expand approaches to linear modeling to account for 
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non-normal response distributions, as well as the need for linear transformations. 

Consider the linear model yi=X iβ + εi, where εi~N(0,σ2).  This may be rewritten as 

µi=X iβ, where yi~N(µi,σ2) and  µi=E[yi].  A GLM extends this by stating g(µi)=X iβ, 

whereby yi~EF(µi,φ).  In this case, g(•) denotes any smooth monotonic link function, 

EF(µi,φ) is any exponential-family distribution (such as normal, gamma, Poisson, 

binomial, etc.), φ is a known or unknown scale parameter, and Xβ is the linear predictor.  

Typical link functions include log, square root, and/or logit arguments (i.e., (log{µi/(1-

µi)}).  In some ways, g(•) acts like a transformation, except that it transforms E[yi] rather 

than yi itself.  Thus, it facilitates transforming the systematic part of a particular model 

without altering the distribution of the associated random variation.   

A number of other estimation regression estimation methods exist.  These include 

maximum entropy methods, nonlinear least squares, and ridge regression, just to name a 

few.  Detailed exposition of these methods may be found in Golan et al. (1996), Kutner et 

al. (2005), and Gruber (1990), respectively.   However, just as in the case of tier-one 

estimators, despite the extensive pool of alternative regression approaches, comparatively 

few quality engineering efforts have explored them as alternatives for obtaining RPD 

solutions, and among these, the only conditions examined include outliers and 

unbalanced data sets, as once again even non-normal conditions focused on symmetric 

distributions.  Table 2.3 summarizes contemporary research efforts found in the RPD 

literature. 
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Table 2.3.  Summary of works examining estimator selection in RPD problems. 

Author(s) Year Conditions Examined Regression Estimators Compared 

Simpson and 
Montgomery 

1998 Outliers under normality 
OLS, M, Most-B Robust, LTS, S, M-
M, various versions of Generalized 

M 

Lee and 
Nelder 

2003 
Non-constant variance and non-

identity (Gaussian) link 
functions 

GLM 

Cho and 
Park  

2005 Unbalanced datasets OLS vs. WLS 

Ch’ng et al.  2005 
Non-normal responses and 

outliers 
OLS vs. M-M  

Robinson et 
al.  

2006 
non-normal (gamma) and batch-

to-batch variation (random 
block design) 

GLMM  
(gamma with log link) 

Lee et al. 2007 
Outliers, non-normal symmetric 

distributions 
OLS vs. M-M 

Goethals 
and Cho 

2011 
Heteroscedastic conditions and 

unbalanced data 
OLS vs. WLS  

 

Regarding GLMs, Lee and Nelder (2003) examined their use as a generalization of 

data transformation and RSM approaches that allows for “arbitrary variance and link 

functions.”  In a more recent effort, Robinson, et al. (2006) examined generalized linear 

mixed models (GLMM) specifically in an RPD context to address the non-normality 

encountered with a resistivity quality characteristic, using the known distribution for the 

response (gamma) combined with a log link.  While the results in each of these works 

clearly demonstrated the benefits of utilizing GLMs, they were not necessarily 

comparative studies, per se.  

The remaining works shown in Table 2.3 pertain to more direct comparisons 

between traditional and robust regression approaches.  Simpson and Montgomery (1998) 

examined alternative regression techniques when dealing with outliers within normally 
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distributed data.  However, this study focused more on statistical estimator performance 

measures such as efficiency, consistency, and breakdown points rather than any optimal 

RPD solutions obtained through application.  Cho and Park (2005) specifically 

considered RPD solutions in the case of unbalanced data and proposed the integration of 

a WLS approach in which the weighting scheme is based upon the number of 

observations at each design point, as this value is inversely proportional to the variance 

associated with the response surface functions obtained for the process parameters.  In the 

interests of finding better optimal settings in dual-response surface optimization problems 

when non-normal conditions and/or outliers exist, Ch’ng et al. (2005) performed a study 

that compared OLS to the M-M robust estimation technique developed by Yohai (1987), a 

well-known robust regression technique that will be described in greater detail in Section 

6.2.2.  In their examination of tier-one estimators in robust designs involving 

contaminated data, Lee et al. (2007) also included a comparison of the OLS method to the 

M-M regression technique, but their work investigated the differences in the context of 

robust design.  Goethals and Cho (2011) extended the work of Cho and Park (2005) to 

the optimal process target problem, considering heteroscedastic conditions in addition to 

the unbalanced data case.   

2.3  The Use of Graphical Methods and Statistical Tests to Support Data Analysis 

Just as the initial phases of estimation will affect the outcome of the RPD problem 

in terms of the solution obtained, the quality and reliability of the estimates used to obtain 

those solutions will invariably depend upon the quality analysis used to derive those 

estimates.  A recurrent theme in each of the preceding sections is that all of the 
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applications of the experimental approaches, estimation methods, and optimization 

schemes heretofore addressed rely upon a variety of assumptions about the process and 

the underlying conditions of data obtained from it.  These include assumptions about the 

responses, as well as the residual errors obtained through regression.  In the case of the 

responses, most research efforts assume normality, which implies symmetry; moderate to 

low variability commensurate with a stable process; and, in some cases, such as in 

specific applications of the optimal process mean problem, fixed process variability.  For 

the residual errors, the basic assumptions that underpin the OLS method are that they are 

independent and identically distributed normal random variables. 

 In either case, these assumptions are, as Hasenkamp et al. (2009) noted, 

“propositions that are taken for granted, that is, as if they were known to be true.”  

However, as our knowledge and understanding of industrial processes has evolved, it has 

become apparent that they quite often do not hold in practice.  As Hasenkamp et al. 

(2009) further note,  

“Doubtless, the checking of assumptions... cannot be left to some standardized 
tool.  It must be done by engineers who will have to revert to experience and 
prior knowledge.”   

 
This underpins the criticality of data analysis to the RPD problem, a methodology that 

involves a blending of both graphical and objective approaches, but which, based on the 

engineer’s “experience and prior knowledge,” depend more heavily on the former. 

For many decades, statisticians have invoked a variety of graphical methods for 

examining data to determine how they are distributed and what sorts of characteristics 

those distributions have.  Such graphical methods have included histograms, half-normal 
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plots, percentile-percentile (P-P) plots, or quantile-quantile (Q-Q) plots, among others.  

Of these, Q-Q plots, also known as probability plots, are the most often used means for 

comparing the actual distribution for a set of data against a hypothesized distribution for 

the population.   

Although such plots can be constructed for any distribution, we most often hear of 

them in the context of normal probability plots.  The reason for this stems from the 

typical assumptions of normality inherent in many statistical procedures.  Beyond this, 

however, the use of normal probability plots as an initial basis for data analysis makes 

logical sense.  In general, most people, both statisticians and non-statisticians alike, are 

very familiar with the bell-shaped curve associated with the normal distribution 

compared with the appearance of other more obscure distributions.  Yet, detecting 

departures from a particular curved shape can be difficult compared to assessing 

deviations from a straight line.  By invoking a straight line to represent normality within a 

dataset, the use of normal probability plots provides a way to quickly and effectively 

analyze data in ways that facilitate understanding as to how the data relate to or deviate 

from a normal distribution.  The sample plots in Figure 2.3 provide a comparison of data 

sets derived from a skew normal distribution with common values for the location and 

scale (150 and 15, respectively) but different degrees of inherent skew (0 and 15, 

respectively).  As expected, the data in the left plot generally fall along the reference line, 

indicating normality.  By comparison, the data in the right plot clearly deviate from the 

line, suggesting non-normality.   
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(a)                                              (b) 

Figure 2.3.  Normal probability plots for (a) normal and (b) asymmetric data. 

 
Pursuant to constructing a probability plot based on a selected plotting position, 

many researchers have proposed a variety of techniques for objectively evaluating the 

information in the plot to assess the fit against the hypothesized distribution.  Several 

have offered the use of the correlation coefficient in support of a goodness-of-fit test 

statistic derived from the plot. These included Filliben (1975), Shapiro and Francia 

(1972), Johnson and Wichern (1982), and Looney and Gulledge (1985), among others.  

However, one of the most powerful tests for normality is the Shapiro-Wilk (1965) test, 

which considers a ratio of two estimators of σ2.  In short, if the normality assumption is 

valid, then this ratio will be very close to one.  Looney and Gulledge (1985) highlighted a 

number of other researchers who proposed extensions of other familiar tests, such as the 

Kolmogorov-Smirnov test and the Lilliefors statistic.  However, they also pointed out that 

these, along with the Shapiro-Wilk test, fail to address the linearity of the probability plot 

as well as methods that invoke the correlation coefficient.  The Anderson-Darling (A-D) 

test provides another objective basis for investigating assumptions of normality. 

Although, as Vining (2010) pointed out, for small sample sizes this test often fails to 

-2 -1 0 1 2

1
20

1
40

16
0

1
80

Normal Probability Plot: Normal Data

Theoretical Quantiles

S
am

p
le

 Q
u
an

til
es

-2 -1 0 1 2

15
0

1
60

17
0

18
0

1
90

Normal Probability Plot: Asymmetric Data

Theoretical Quantiles

S
am

p
le

 Q
u
an

til
es



 
 

56 

identify issues with such assumptions.  Conversely, for large sample sizes in which 

departures from normality are less consequential, it tends to overcompensate and signal 

even small deviations from normality.  Chi-squared analysis is also a well-known avenue.  

However, chi-squared analysis is fairly restrictive, as the data can have more departure 

from normality than the chi-squared analysis is willing to allow.   

While such methods for examining the normality of data are time-tested, they do 

little beyond confirming that a particular set of data are either normally distributed or not.  

That is, in the cases whereby the data are not normally distributed, they provide no 

information as to what the underlying distribution might be.  We certainly could perform 

hypothesis tests for other distributions but we would need to have an idea as to what 

distribution the data might follow. A good and relatively simple alternative for deriving 

information the distribution of data is the normal probability plot.  Wilk and 

Gnanadesikan (1968) suggested the use of Q-Q plots, P-P plots, and a variety of 

derivatives of these plots as effective informal statistical methods that are “suggestive and 

constructive rather than formal procedures to be applied in the light of a tightly specified 

mathematical model.”  Since then, a number of other researchers and statisticians, such as 

Snedecor and Cochran (1980), Nelson (1982), and Johnson and Wichern (1982), have 

also recommended the use of these plots for assessing the goodness of fit of a 

hypothesized distribution.  Some, including Shapiro and Brain (1981), suggested that any 

formal goodness-of-fit test include a probability plot simply because visual inspection 

afforded by the plot usually provides more descriptive information about the data than 

any single test statistic.  Looney and Gulledge (1985) approached this from the opposite 
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direction, suggesting that probability plots be examined first and then augmented by 

formal statistical testing based on information deduced from the plot.  

Although predominantly used for residual analyses, a number of contemporary 

research efforts have incorporated these plots in other ways.  Yang and Qi (2010) 

invoked the Q-Q distance calculated from Q-Q plots as the basis for a distribution-free 

nonparametric quickest detection procedure.  Through experimental studies, their use of 

the Q-Q plot and associated distance measure yielded results comparable to or better than 

those achieved using classical parametric and nonparametric methods.  In their study on 

processing observational data obtained from global navigation satellite systems, Luo et 

al. (2010)  proposed the use of Q-Q plots in conjunction with analysis of the first four 

sample moments to facilitate statistical inferences drawn to illustrate the discrepancies 

between the common assumption of normality and what is more realistically found in 

practice.  Azadeh et al. (2011) used normal probability plots to identify the presence of 

outliers as part of two nonparametric efficiency frontier analysis sub-algorithms based on 

the Artificial Neural Network (ANN) technique and a combination of ANN and Fuzzy C-

Means for measuring efficiency.  Their methodology incorporated plots as both a visual 

and objective means to identify the presence of outliers and then select one of the two 

sub-algorithms to determine the stochastic frontier. 

Regardless of the motivations behind its use, the normal probability plot produces 

a curve that reflects the distribution of the data relative to the normal distribution, which 

is denoted by a straight line.  As DeCarlo (1997) pointed out, typical introductory courses 

in statistics comment on the ability to characterize a distribution in terms of its “central 
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tendency, variability, and shape.” While most textbooks define and illustrate shape in the 

context of skewness, kurtosis is another aspect of shape that has equally important 

implications for the data.  In any event, these qualities essentially correspond to the 

moments of a distribution.  Thus, the shape of the curve in the probability plot and the 

manner in which it deviates from the reference line provide information about the 

characteristics of the underlying distribution in terms of the first four sample moments.   
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CHAPTER THREE 
 
 

RESEARCH MOTIVATION 
 

3.1  Introductory Remarks 

Since the introduction of Taguchi’s robust parameter design approach to quality, 

the industrial and manufacturing environments have evolved significantly.  In particular, 

advancements in computing and robotics have expanded many engineering capabilities, 

including the ability to operate at infinitesimal levels.  This, in turn, has led to demands 

for increased precision and accuracy in all facets of the engineering design process.  

Irrespective of the levels at which a process operates, the global nature of today’s market 

typically judges its products according to multiple characteristics, each of which are 

influenced by any number of controllable or uncontrollable factors within the process.  

While modern industrial practices have needed to adjust somewhat to account for this, the 

underlying economic objectives have not - the intent remains to reduce production cost 

and material waste without sacrificing product quality or process efficiency.  

Consequently, the criticality of quality control and assurance programs in process and 

product optimization will continue to expand.  

While advancements in research have been made in the design of quality 

optimization models, significant gaps exist between current methodologies and the 

realities typically observed within contemporary industrial engineering systems.  In many 

cases, engineers base their models upon assumptions that either limit their usefulness or 

diminish the reliability of the estimated results.  This includes instances whereby 
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engineers generalize the models to a specific set of assumed process conditions, which 

invariably constrains the applicability of the models against a broader selection of 

industrial problems.   

However, as collective understanding of industrial and other processes has 

evolved, many such assumptions and generalizations often do not hold in practice.  If 

ignored, the estimates derived in such instances are likely to be problematic and 

misleading.  Moreover, once applied to optimization schemes to determine optimal 

operating conditions, they cannot help but generate suboptimal solutions and uncertain 

recommendations to decision makers.  Take the sample meany , for example.  While 

commonly used to estimate the location or distributional average of observed data, it can 

be grossly upset by the presence of a single outlier (Ripley, 2004) or if the underlying 

distribution deviates from the assumed normal one (Huber, 1964).   When assumptions of 

normality are violated, there are in fact rigorous ways to overcome it, including non-

parametric approaches or data transformation techniques, such as a logarithm or a Box-

Cox transformation.  While these approaches work in theory, there is no guarantee that 

they will yield a result commensurate with the normality assumption.  Alternatively, we 

can attribute outliers to experimental error or other extraneous effects and therefore 

remove them from the data.  In fact, a major reason for discarding data points is that, 

under the OLS method, a fitted regression function is disproportionately pulled toward 

outlying observations as a consequence of using squared deviations in the approach. 

But it is not enough to simply eradicate or assume away existing conditions, as 

they could very well be inherent process realities that must be accounted for.  Park and 
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Cho (2003) noted that such conditions may actually convey important information, such 

as interactions with other response variables, and therefore should be retained and 

addressed.  For example, in the case of outliers, Ripley (2004) articulated four cautionary 

notes against screening data and removing these points: 

1. Users, including expert statisticians, quite often do not screen the data. 
2. The decision to retain or remove an outlier is wasteful; the analysis would be 

better-served by incorporating a weighting scheme whereby questionable 
observations get down-weighted.  Completely wrong observations would an 
exception. 

3. Identifying outliers can be difficult, if not impossible in multivariate or highly 
dimensional data.   

4. Removing outliers affects the theorized distribution, which then must be adjusted 
to avoid underestimating variability measures from the ‘cleaned’ data. 
 

In many cases, research efforts to date have avoided some of these issues due to 

the mathematical complexity and associated difficulty in modeling some conditions.  The 

result is extremely limited documentation in the quality engineering literature.  However, 

the fact that increases in computing power and speed have rendered historically 

complicated and difficult problems comparatively tractable suggests that we should 

continually seek ways to better understand and implement alternative approaches that 

facilitate more precise and robust results.   The literature review in Section 2 highlights 

the breadth and depth of the many ways in which researchers have answered the call to 

improve the statistical underpinnings of and approaches to quality engineering.  Yet, in 

their review of practices for RPD methodology, Hasenkamp et al. (2009) note that RPD 

research has predominantly focused on developing an array of new statistical techniques 

rather than a refined understanding of how to use existing techniques better.  A direct 
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consequence of this tool-based research focus is the evolution of different, often 

conflicting ideas regarding the scope and framework of RPD, namely in terms of the 

preferred application of the various statistical tools.   This, in turn, has induced stagnation 

in the application of RPD principles in many industrial settings. 

Ultimately, applying a tool without regard for its underlying and motivating 

practice may very well lead to incorrect or suboptimal applications, and eventually 

misinformed decisions.  There is a need for clarification about the activities required to 

achieve robust design solutions.  Such activities should not be confused with the 

development of yet more specific tools instructing on how to fulfill or accomplish these 

activities.  Rather, they should maintain and clarify the right purposes and conditions for 

utilizing existing tools appropriately.  Currently, there is a lack of such clearly identified 

practices as the literature has focused instead on technical details of statistical tools for 

RPD.  Thus, the goal of this research is to create more accurate and applicable quality 

models that more fully explore inherent process conditions, rely less on theoretical 

scientific assumptions, and have extensions to an array of more realistic process 

conditions.  Pursuant to this, the following sections address key areas wherein further 

research can reinforce foundations, extend existing knowledge and applications, and 

perhaps narrow the gap between academia and industry.  These include the integration of 

a more comprehensive approach to data analysis based on normal probability plot 

analysis, the development of conditions-based approaches to tier-one and tier-two 

estimation, achieving cost robustness in the face of dynamic process variability, and the 
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integration of a trade-off analysis that balances the need for enhanced precision against 

associated costs. 

3.2  Improving Data Analysis Using Normal Probability Plots 

Ultimately, effective quality improvement programs begin with the collection and 

subsequent examination of data.  Given this, the importance of proper data analysis in the 

initial stages of cannot be overstated, as this analysis underpins our assumptions for and 

approaches to process modeling, estimation, and ultimately optimization.  However, 

merely analyzing data is not sufficient from the point of view of making decisions. How 

and what one interprets from the analyzed data may be more important. Thus, data 

analysis comprises a decision support system rather than a decision making system.   

Thus, we need to know, up front, what is happening in the data.  This will help to inform 

us about inherent “peculiarities” in the process (such as skewness or kurtosis), the degree 

of variability and sources of influence (such as outliers in the responses or predictors), all 

of which will better inform our underlying assumptions about the data and drive our 

selection of parameter and regression estimation approaches. 

The question becomes how to proceed with data analysis to develop and 

eventually validate those assumptions.  Many statistical tests have evolved over time and 

are widely used to provide an objective basis for answering this question.  These tests are 

important, as an assumption about a particular distribution affects how we estimate 

parameters, which in turn influence the estimation of statistical models, and ultimately 

optimization results. However, these tests essentially only answer one question: the data 

either are or are not distributed as hypothesized.  While we generally hope for the former 



 
 

64 

result, as it provides statistical support for our assumptions, the latter is problematic 

simply because it provides no other information as to what the underlying distribution 

might be. 

This dichotomy highlights the utility and importance of graphical methods in 

understanding what the data are communicating in terms of distributional properties and 

other underlying conditions.  Such graphical methods might include histograms, half-

normal plots, percentile-percentile (P-P) plots, or quantile-quantile (Q-Q) plots, among 

others.  Of these, Q-Q plots, also known as probability plots, are used more often as a 

graphical means for comparing the actual distribution for a set of data against a 

hypothesized distribution for the population. Despite the variety of graphical techniques 

available, a full analysis of these plots and the information they can provide about data 

has yet to be done.  Chapter 4 endeavors to fill this gap by providing a comprehensive 

analysis of the various data characteristics and properties that a fuller use of the normal 

probability plot can provide.  This includes analysis of how efforts to modify system 

properties with the overarching aim of variance reduction can reveal underlying 

properties in the data that may have been otherwise undetectable. 

3.3  Conditions-Based Approaches to Tier One and Tier Two Estimation 

Response surface methodology (RSM), which is a key statistical method for 

modeling robust design problems, explores the functional relationship between an array 

of predictor variables, or factors, and a response variable, or characteristic of interest.   

The many research efforts discussed in Chapter 2 demonstrate that, since the 1980’s, 

much of the extensive attention paid to the RPD problem in terms of the RSM-based dual 
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response approach has focused on alternative optimization techniques for obtaining 

robust design solutions.  In the interests of promoting various statistical and optimization 

approaches, the response surface models used with the optimization approaches described 

in Chapter 2 are typically assumed to be good fits and that ordinary least squares 

assumptions hold.  However, the degree to which a response surface yields a good fit is, 

in large part, attributable to the quality of the estimates used to develop the fitted models.  

Thus, in presuming that all procedures preceding the optimization phase have been 

performed correctly, it is also presumed that the estimates derived in both tiers are good 

and have been obtained using appropriate estimators.  

3.3.1 Conditions-based selection of Tier-One Estimators 

Typical RPD approaches invoke least squares methods to obtain appropriate 

response functions for the mean and standard deviation (or variance) by assuming that the 

experimental data follow a normal distribution and are relatively free of contaminants or 

outliers.  Consequently, the most common estimators used in the initial tier of estimation 

are the sample mean and sample standard deviation, as they are very good estimators 

when these assumptions hold.  However, when asymmetric conditions persist, they can 

have tremendous impacts on the estimates and subsequent results if unaccounted for.  For 

example, in cases involving smaller-the-best (S-type) or larger-the-best (L-type) 

characteristics, the distribution will almost invariably assume the shape of an asymmetric 

or skewed distribution, which actually would be preferred.  And this could even occur in 

the case of certain instances of nominal-the-best (N-type) characteristics.  Two important 

factors to recognize under these circumstances are that 1) depending on the degree of 
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variability and skew, the mean will shift away from the central tendency of the 

distribution; and 2) the standard deviation will not accurately describe the dispersion in 

the distribution as it will be significantly affected by the “play” in the skewed or long tail 

of the distribution.  If true contamination exists, the effects worsen.   

Certainly, in the case of a normal or other symmetric distribution (Laplace, 

uniform, Cauchy, etc.), the sample mean will correspond to the value that possesses the 

greatest probability of occurring.  However, in asymmetric cases, it will not.  Consider a 

comparison between the probability densities of samples drawn from a skew normal 

distribution with positive skewness and a normal distribution with the same mean shown 

in Figure 3.1 below.  In the normal case, the mean corresponds to the peak in the density 

function, indicating that the likelihood of obtaining that value or values very close to it in 

a random draw exceeds all others in the distribution.  In the skew normal or asymmetric 

case, the mean clearly lies to the right of the preponderance of probabilities, whereas the 

median of the asymmetric example falls very close to the peak of the distribution.  Thus, 

in the latter instance, while the mean certainly still defines central tendency in terms of 

the population mean, it does not necessarily correspond to central tendency in terms of 

the values of greatest likelihood.   This demonstrates that, when actual conditions deviate 

from traditional assumptions, alternatives to the sample mean and variance should be 

considered for estimating the predominant location and scale of the underlying 

distribution. 
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Figure 3.1.  Comparison of normal and skew normal densities with a common mean. 

 
The selection of estimators in highly variable conditions follows logic very 

similar to that described for asymmetric conditions.  Consider a situation in which a 

process possesses inherently high degrees of variability.  Under such circumstances, the 

likelihood of obtaining “extreme” responses increases considerably.  Figure 3.2 portrays 

this reality using densities from two normal distributions with a common mean, but 

drastically different standard deviations (one low and the other high).  From the figure, it 

is obvious that the propensity for observations in the tails increases with increases in 

variability. 

 
Figure 3.2.  Comparison of normal densities with different degrees of variability. 
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In many cases, because of underlying assumptions of normality with reasonably 

low to moderate variability, such observations would be treated as outliers and potentially 

“cleaned” from the dataset.  However, in highly variable conditions, there is a much 

greater probability that such an observation is not only legitimate but a likely result and 

therefore should not be omitted from the data, as it changes the underlying distribution of 

the data.  Notwithstanding, such observations could disproportionately influence the 

sample mean and standard deviation, which could drastically affect the quality of the 

estimate used.   

This is important.  Given that most RPD problems contain only a handful of 

observations at each experimental design point, the quality of the estimates used to 

support regression analysis and thus optimization approaches will be affected 

considerably by inherent system variability.  If this is known to be low, then “extreme” 

observations might be treated with a greater degree of scrutiny; if it is known to be 

elevated or high, then they are more likely to be valid.  However, this valid point may 

very well induce an errant shift in the estimate nonetheless.  For example, consider the set 

of four observations in Table 3.1 taken at a particular design point in an RPD experiment 

involving a highly variable process.  Three of the four points are clearly grouped 

relatively close together, with the fourth, Y4, deviating from this group noticeably.  The 

sizeable standard deviation reflects the elevated variability.  Note further the mean of the 

observations both with this extreme point and without.  Lastly, note the median of the 

four observations.   
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Table 3.1.  Sample of replicates taken from a single design 
point in a hypothetical experiment. 

Y1 Y2 Y3 Y4 
192 186 208 279 

------------------------------------ 
Standard Deviation: 42.85  

Mean with y4: 216.25  
Mean without y4: 195.33  

Median of all obs.: 200.00  

 

According to Willinger, et al. (2004), high variability is a phenomenon by which 

a set of observations assumes values that vary over orders of magnitude, with most 

observations taking values that are relatively close together, with a few extreme 

observations attaining values that deviate considerably from this first group with non-

negligible probabilities, and with intermediate-sized observations occurring with 

appreciable frequencies.  Thus, we would expect the tighter grouping of the three 

observations to be more reflective of the actual location of the process at the factor 

settings used for this particular design point.  While using the mean of these points 

without including the “extreme” observation provides an estimate better aligned with this 

expectation, it completely disregards the data point which would be wrong, as it alters the 

underlying distribution of the data.  On the other hand, using the mean for all four 

observations causes a moderate shift in the estimate due to the leverage imposed by the 

extreme point.  The median, however, seems to provide a compromise between the two 

that acknowledges the location of the preponderance of observations without discounting 

the presence of observations in the tails, and therefore may be a better alternative.  Once 

again, this illustrates the point that when actual conditions deviate from traditional 

assumptions, alternatives to the sample mean and standard deviation should be 
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considered for estimating the predominant location and scale of the underlying 

distribution. 

3.3.2  Conditions-based selection of Tier-Two Estimators 

In the traditional robust parameter design research, researchers usually assume that 

normality, homoscedasticity, and independence among the residuals are valid within a set 

of observational data so that the method of ordinary least squares may be used to obtain 

unbiased, minimum variance estimates.   Realistically, however, asymmetry is much 

more likely to prevail in many industrial settings, particularly when S- and L-type quality 

characteristics and certain N-type characteristics are involved; effects that can become 

amplified if coupled with elevated degrees of process variability, which is also relatively 

common in practice.  Under such conditions certain characteristics emerge.  Namely, the 

combination of asymmetry and high variability would increase the propensity for 

outlying observations in the long tail of the distribution.  We do not want to treat these as 

“errant” observations because they are actually indicative of “typical” process operations 

given the inherent conditions.  Thus, the question becomes one of how to address the 

process conditions without discounting them altogether via assumptions. 

Again, customary approaches to addressing high variability and asymmetry (each of 

which can also induce heteroscedasticity) include transformations or GLMs.  However, 

the use transformations to deal with such situations can be problematic.  We can rely on 

empirically chosen transformations using either logarithmic approaches, or other well-

known methods to make the data conform to assumptions.   However, as Counsell, et al. 

(2011) noted, identifying a suitable transformation is not always possible, and analyzing 
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data on a different scale could compromise interpretability.  That is, rather than dataset 

properties informing the statistical analyses, often inappropriate or non-optimal methods 

that fail to fully exploit the data are used, and violations of key assumptions are deemed 

unavoidable nuisances rather than inherent aspects of true process conditions.  Beyond 

this, there is simply no guarantee that a particular transformation will satisfy all the 

required properties for analysis.  

GLMs, on the other hand, have been shown to be viable RPD alternatives under 

non-normality, but questions arise as to which distribution-link function combination 

should be used to model the responses.  Often, GLM-based analyses of non-normal 

responses assume a known Poisson or gamma distribution, or perhaps an inverse 

Gaussian distribution.  The Poisson works well for count data, but not for continuous 

data, and is often too inflexible to accommodate asymmetric situations.  The latter two, 

on the other hand, work well for continuous positive data, but may be too different to the 

normal to be useful.  In some cases, particularly in multi-response problems, it is often 

necessary to account for both the symmetry typically anticipated with N-type responses, 

as well as the asymmetry expected with S- and L-type responses.  While the gamma 

distribution can be used to model asymmetric circumstances, it suffers in comparison to 

the normal when zero skewness is observed; and the inverse Gaussian can achieve some 

semblance of normality only when the variance becomes extremely large. 

These potential issues with more traditional approaches suggest a need to consider 

other, non-traditional alternatives to the OLS approach when asymmetry and high 

variability pervade process outputs.   A considerable array of alternative resistant and 
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robust approaches has evolved over the years, but only a handful of these have been 

examined in the context of RPD problems, which leads to the logical question that asks 

why.  In fact, proponents of these alternative methods have demonstrated their superior 

performance over OLS regression in certain situations (namely those involving outliers).  

Notwithstanding, their use continues to be limited, particularly in the fields of quality 

engineering and robust parameter design.  Hampel (1986) point out several reasons for 

this; most notably, that many of the alternative methods are significantly more 

computationally intensive than the OLS approach and that most statistical software 

packages at the time neglected to include implementations of them.  Consequently, 

engineers and analysts, particularly those with less statistical background, tend to avoid 

their use.  However, the advent and availability of considerably improved computing 

power coupled with much more refined statistics-based software (such as R) has rendered 

such concerns more or less irrelevant.  Accordingly, engineers and researchers should be 

more aggressive in actively investigating ways to employ these alternative methods in the 

interests of finding the best RPD solutions possible.   

As will be discussed in greater detail in Chapter 5, true normality is actually quite 

improbable in most applications. Realistically, asymmetry is much more likely to prevail, 

particularly in situations involving S- and L-type quality characteristics, and certain cases 

of N-type characteristics; a condition likely to be amplified if occurring concomitantly 

with high variability in process outputs.  Two factors to recognize when asymmetric 

conditions exist are that the mean will shift away from the central tendency of the 

distribution, and the standard deviation will no longer accurately describe the dispersion 



 
 

73 

as a result of the “play” in the long tail of the distribution.  Recalling the comparison 

between a skew normal density and a normal density with a common mean in Figure 3.1, 

it is clear that in the normal case, the mean and values immediately adjacent to it 

correspond to the peak in the density function, indicating that the likelihood of those 

values exceed all others in the distribution.  In the asymmetric case, the mean clearly lies 

to the right of the preponderance of probabilities, whereas the median of the asymmetric 

example falls very close to the peak of the distribution.  Thus, in the latter instance, while 

the mean certainly still defines central tendency in terms of the population mean, it does 

not necessarily correspond to central tendency in terms of the values of greatest 

likelihood.  What is more, the non-normality in such cases tends to also correspond to 

non-constant variance, or heteroscedastic conditions, which complicates the use of OLS 

even further.  

Chapter 2 illustrated the wide array of both tier-one and tier-two estimation 

methods that has evolved and that several researchers have examined the differences 

between the performances of various estimators.  However, the investigated conditions 

almost singularly focus on situations involving outliers.  But this should come as no 

surprise, as most alternative techniques to the estimation methods used in the OLS 

framework grew out of concern for the impact of outliers on data and subsequent 

estimates.   But a variety of other conditions, such as asymmetry, can also exist and have 

equally detrimental effects on the quality of the estimates in both tiers.  Despite the large 

pool of potential alternatives, few efforts have explored them in the context of robust 
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parameter design, and among these, the only conditions examined include outliers (see 

Tables 2.2 and 2.3).  

Depending on which estimator is used in a given situation, different sets of 

optimum operating conditions will likely result, which complicates comparison studies 

and data analysis.  As such, given the considerable array of available choices, the 

intrinsic question centers on which method(s) to use and when.  More specifically, how 

do inherent conditions in the data or the actual process influence the selection of 

estimation approaches in order to achieve the best robust design solutions?  In spite of the 

numerous comparative studies available in statistical literature, these questions have not 

been adequately addressed in the robust design research community.  Accordingly, what 

is needed for engineers is clarification as to which estimators should be used under 

certain sets of conditions.  This requires analysis that examines conditions beyond just 

outliers to determine which estimators deliver optimal performance in terms of achieving 

the best RPD solutions.  Chapters 6 and 7 will address these questions, the former 

proposing a conditions-based approach to tier-estimation and the latter focusing on tier-

two, or regression estimation. 

3.4  Achieving Cost Robustness Under Dynamic Process Variability 

The primary goal of robust design is to identify the optimal process settings that 

achieve desired targets for mean performance while simultaneously minimizing 

variability in the results.  Despite extensive effort across a broad array of topics in RPD 

research, robustness in almost universally considered in the context of variability among 

process outputs.  Sometimes, however, dynamic process variability cannot be avoided.  In 
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such cases, it may be more appropriate to focus attention on stabilizing associated costs.  

Thus, considerable room for further advancement exists, particularly in the context of 

attaining cost-robust solutions.  There are essentially four motivating factors that will be 

explored in detail in Chapter 7: 

(i)  Mixed multiple quality characteristics:  Generally, the average customer will 

examine multiple characteristics to assess the quality of a particular product.  While a 

variety of papers have addressed multiple quality characteristics to incorporate the 

realities found in application, these efforts have typically confined themselves to like-

type characteristics.  Consequently, very few have adequately addressed mixed multiple 

characteristics, which is even more realistic than considering like-type multiples alone.   

(ii)  Integrating disparate degrees of skewness between multiple characteristics: 

Because contemporary research has really only examined like-type characteristics in the 

multiple-characteristic problem, researchers have only addressed skewness in the limited 

context of the characteristic type they used.  That is, they only considered asymmetric or 

symmetric distributions in their models, but not both.  For N-type characteristics, 

virtually all researchers assume a symmetric normal distribution.  In S- and L-type cases, 

researchers commonly assume distributions that exhibit positive and negative skewness, 

respectively.  For example, Chan et al. (2003) employed a bivariate exponential 

distribution to model the positive skewness associated with S-type responses.  However, 

when considering multiple mixed-type responses, it is important to account both for the 

asymmetry typically observed with S- and L-type responses and the symmetry associated 

with N-type responses.  This cannot be done using different distributions for each of the 
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characteristics but rather through a multivariate version of a particular distribution.  

While various alternatives exist, this paper invokes the multivariate skew normal (MSN) 

distribution which allows us to integrate and examine the varying degrees of symmetry or 

asymmetry through the skewness parameter.  

(iii)   Known constant variability vs. range of variability: Nearly all process target 

efforts to date have assumed prior knowledge of the process mean and variance.  While 

this common assumption certainly enhances the tractability of the problem, in real-world 

settings engineers rarely know these parameters with certainty.  This is particularly true 

in industrial settings in which phenomena impacting the process cause the mean and 

variance to shift or drift.  These phenomena could include environmental conditions such 

as temperature, humidity, and pressure; operator arrangement in the workplace; seasonal 

demand; or perhaps a change in product output.  Whatever the causes, it seems more 

realistic to assume that an engineer would be aware of a range of variability and 

recognize that, as the process transitions through this range, the location of the optimal 

process target vector, E[Y*], that minimizes total cost will likely shift with it.   

(iv)  Achieving cost robustness:  While the process mean literature is replete with 

discussions about process variance, it is comparatively rare to see this problem discussed 

in the context of robust design.  Pioneered by Taguchi (1984 and 1986), robust design 

methods focus on improving engineering and manufacturing productivity by actively 

considering the effects of system variation on process performance.  In short, the 

customer’s perspective demands that manufacturers consider both the target value and the 

variability in the response for a particular quality characteristic in order to improve both 
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the quality of the delivered product and the process used to deliver it.  Many researchers 

have explored this particular area within quality engineering, focusing predominantly on 

model estimation and optimization schemes for determining the optimal process settings 

that achieve specified target settings while minimizing variability.  In virtually all of the 

research in this area, “robustness” is typically assessed in the context of system 

responses.  That is, determining the process settings that will render these responses or 

quality characteristics of interest insensitive (or robust) to influencers of variability.  

However, we have yet to find an example wherein solutions are sought to achieve 

robustness in minimum cost. 

3.5  Strategies for Improving Precision in Highly Variable Processes 

In many cases, including each of the research efforts delineated in Section 2.1.1.2 

of Chapter 2, researchers have developed optimization procedures using data sets from 

highly variable processes.  This is not to imply that the developed procedures are faulty, 

as their proponents have clearly demonstrated improved results through a range of 

comparative analyses.  Rather, it is to point out that the data used are so variable, that 

with only a handful of replications (typically three or four) these models would likely 

generate drastically different results spanning the breadth of the design space every time.  

Moreover, it is almost equally probable in such highly variable situations that any one of 

the schemes would produce the best result in a particular situation. 

Perhaps one of the most widely used data sets for comparing RPD optimization 

schemes is the printing press study data introduced by Box and Draper (1987).  Vining 

and Myers (VM) (1990) used the experiment to illustrate the effectiveness of the dual 
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response surface approach in identifying the optimal factor settings for the process.  In 

the two decades since, a number of other researchers have used the same experimental 

data to propose a variety of RPD extensions to the dual response approach (Del Castillo 

and Montgomery (DM) (1993), Lin and Tu (LT) (1995), Copeland and Nelson (CN) 

(1996), Del Castillo et al. (1997), Kim and Lin (1998), Fan (2000), Tang and Xu (2002), 

Ding et al.(2004), Jeong et al.(2005), Kazemzadeh et al.(2008), Koksoy and Yalcinoz 

(2008), Chen and Ye (2009), and Das and Lee (2010)). 

In this experiment, the printing machine’s index in applying coloring inks to 

package labels is a normally distributed N-type quality characteristic of interest, Y.  The 

control factors known to influence Y include the speed (X1), pressure (X2), and distance 

(X3) settings for the machine, which are evaluated at three levels each. The desired target 

value for the machine's index is τ = 500.  The experiment considers the control factors at 

three levels for each and consists of three replications at each of the twenty-seven design 

points of the full factorial design.  Table 3.2 displays the printing press data, along with 

the calculations for the mean and standard deviation at each design point.  

Using this example, previous researchers developed second-order response 

surface designs for the mean and standard deviation and then applied their particular 

optimization scheme to find optimal solutions x* = (X1*, X2*, X3*).  Suppose we repeat 

this experiment 500 times using Monte Carlo simulation, using a random number 

generator to create observations following the mean and standard deviation specified at 

each design point in Table 3.2.   
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Table 3.2.  Experimental Design for the Printing Press Study. 

 Coded Units Labeling Index Y  Standard 
Deviation  Speed Pressure Distance (3 replications) Mean 

Run X1 X2 X3 y1 y2 y3 y  s  
1 –1 –1 –1 34 10 28 24.00 12.490 
2 0 –1 –1 115 116 130 120.33 8.386 
3 1 –1 –1 192 186 263 213.67 42.829 
4 –1 0 –1 82 88 88 86.00 3.464 
5 0 0 –1 44 188 188 140.00 83.138 
6 1 0 –1 322 350 350 340.67 16.166 
7 –1 1 –1 141 110 86 112.33 27.574 
8 0 1 –1 259 251 259 256.33 4.619 
9 1 1 –1 290 280 245 271.67 23.629 
10 –1 –1 0 81 81 81 81.00 0.000 
11 0 –1 0 90 122 93 101.67 17.673 
12 1 –1 0 319 376 376 357.00 32.909 
13 –1 0 0 180 180 154 171.33 15.011 
14 0 0 0 372 372 372 372.00 0.000 
15 1 0 0 541 568 396 501.67 92.500 
16 –1 1 0 288 192 312 264.00 63.498 
17 0 1 0 432 336 513 427.00 88.606 
18 1 1 0 713 725 754 730.67 21.079 
19 –1 –1 1 364 99 199 220.67 133.822 
20 0 –1 1 232 221 266 239.67 23.459 
21 1 –1 1 408 415 443 422.00 18.520 
22 –1 0 1 182 233 182 199.00 29.445 
23 0 0 1 507 515 434 485.33 44.636 
24 1 0 1 846 535 640 673.67 158.210 
25 –1 1 1 236 126 168 176.67 55.510 
26 0 1 1 660 440 403 501.00 138.935 
27 1 1 1 878 991 1161 1010.00 142.454 

 

Figure 3.3(a) shows the set of all points x* identified using LT’s optimization scheme 

outlined in Equation (8.2).  The corresponding figures in (b)-(d) depict the position of this 

set of solutions as it relates to each cross-section of factors.  A random search technique 

with a large search point array facilitates obtaining global solutions at each simulation 

iterate.   
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                            (a)                        (b)                             (c)                            (d) 

Figure 3.3.  Identification of x*, Printing Press Study, −1 ≤ Xi ≤ 1. 

 
As is the case with most of the solutions generated by previous researchers 

examining the printing process data, the experimental region −1 ≤ Xi ≤ 1 is found to be 

binding.  When we relax this constraint and repeat the simulation, we readily observe the 

extent of the extrapolated optimal operating region for this example (see Figure 3.4).  It is 

noteworthy that although this is an extrapolated view of the design space, it is necessary 

in order to actually see what is transpiring.  Nevertheless, in spite of this, it still captures 

the imprecision among the generated solutions. 

 
                              (a)                        (b)                           (c)                           (d) 

Figure 3.4.  Identification of x*, Printing Press Study, −4 ≤ Xi ≤ 4. 

 
Suppose now we perform 1,000 iterations of the simulation, evaluating the more 

commonly used optimization models proposed by VM (1990), LT (1995), CN (1996), and 

Costa (2010) at each iterate.  Assuming each of the researchers uses the same full second-

order model, a comparison of the optimal factor settings x* is performed using the MSE 
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criterion shown in Equation (8.4).  Table 3.3 depicts the results as a proportion of the 

1,000 iterations a particular model generated the best solution.  It is interesting to note 

that, while each researcher indicated either an improvement or equally acceptable result 

in the literature, it is the original model by VM (1990) that more consistently results in a 

lower overall MSE.  Thus, as these results show, the inherent variability of this particular 

data set greatly influences the ability of any one optimization model to achieve superior 

results with any certainty. 

Table 3.3.  Model Comparison – Printing Press Study. 

 Results (% of 1000 iterations with Minimum MSE) 
Model Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Vining and Myers (1990) 55.2% 58.1% 56.7% 55.8% 57.8% 

Lin and Tu (1995) 39.2% 37.2% 37.3% 38.7% 37.0% 

Copeland and Nelson (1996) 2.5% 0.9% 2.1% 2.2% 2.0% 

Costa (2010) 3.1% 3.8% 3.9% 3.3% 3.2% 

 

This brief illustration demonstrates the drawbacks in the design of the RPD 

problem for processes that exhibit elevated degrees of variability.  Since the number of 

replications at each design point is low, repeating the experiment under the same 

conditions (i.e. same number of replications) can result in the identification of settings 

that may span the entire length or more of the factor space. This indicates considerable 

imprecision in the estimated functions used to generate the factor settings.  More 

importantly, it creates a false perception in the superiority of one optimization model over 

another; the data are so variable that the results should not be trusted with any degree of 

certainty. 
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Ultimately, in answering the call for methods and techniques that will help 

manufacturers and decision makers improve the quality of their processes and products, 

engineers should examine various trade-offs to best support the decision making process.  

Certainly, time, costs, and other resource constraints will impact the experimental 

approaches employed, but this should be weighed against the need for elevated levels of 

precision.  In short, if a model is imprecise in estimating the appropriate response surface, 

then optimizing that model is going to yield equally imprecise results as they relate to the 

true optimal settings.  Accordingly, the results and recommendations provided to decision 

makers could generate suboptimal modifications to processes and products alike.  Thus, 

an obvious question arises: once an estimation approach has been selected, what 

measures can be taken to ensure the most precise result possible, particularly in processes 

with naturally high variability?  Several alternatives exist, such as increased replication, 

the development of higher order response surface models, or even removing sources of 

excessive variability. Chapter 8 examines this question in terms of the latter, proposing a 

technique based on the coefficient of variation as a way to identify and remove influential 

sources of process variability, thereafter incorporating optimal design concepts to 

rebalance the experimental framework .  Chapter 9 addresses the question of precision 

using all the alternatives together, proposing the integration of a trade-off analysis that 

weighs the need for enhanced precision to determine the true optimal process settings 

against the costs of obtaining it.  
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CHAPTER FOUR 
 
 

IMPROVED ANALYTICAL APPROACHES USING PROBABILITY PL OTS 
 

4.1  Introductory Remarks 

Effective quality improvement programs begin with the collection and subsequent 

examination of data.  Given this, the importance of proper data analysis in the initial 

stages of  process analysis cannot be overstated, as it underpins all assumptions for and 

approaches to process modeling, estimation, and ultimately optimization.  However, 

merely analyzing data is not sufficient from the point of view of making decisions. How 

and what one interprets from the analyzed data may be more important. Thus, data 

analysis comprises a decision support system rather than a decision making system; and 

as with any such system, the quality and reliability of the decisions that emanate from it 

will be only as good as the quality and depth of the analysis put into it.  In particular, 

effective data analyses can offer the following benefits: 

• Structuring the findings from research or other means of data collection 

• Decomposition of a macro picture into a micro one 

• Acquiring meaningful insights from the dataset that facilitate better 

understanding of inherent statistical characteristics 

• Basing critical decisions from the findings 

• Ruling out human bias through proper statistical treatment 

 

Many of the statistical procedures used in quality engineering require the validity 

of certain assumptions as they relate to the distribution of the data.  Recognizing the 

critical role that such assumptions play in nearly all formal statistical analyses, the 
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question becomes how to proceed with data analysis to develop and eventually validate 

those assumptions.  Many statistical tests have evolved over time and are widely used to 

provide an objective basis for answering this question.  These tests are important, as an 

assumption about a particular distribution affects how we estimate parameters, which in 

turn influence the estimation of statistical models, and ultimately optimization results. 

However, these tests essentially only answer one question: the data either are or are not 

distributed as hypothesized.  While we generally hope for the former result, as it provides 

statistical support for our assumptions, the latter result is problematic simply because it 

provides no other information as to what the underlying distribution might be. 

This highlights the utility and importance of graphical methods in understanding 

what is communicated by the data in terms of how they are distributed and what sorts of 

characteristics that distribution has.  Such graphical methods might include histograms, 

half-normal plots, percentile-percentile (P-P) plots, or quantile-quantile (Q-Q) plots, 

among others.  Of these, Q-Q plots, also known as probability plots, are used more often 

as a graphical means for comparing the actual distribution for a set of data against a 

hypothesized distribution for the population.   

Although such plots can be constructed for any distribution, we most often hear of 

them in the context of normal probability plots.  The reason for this stems from the 

typical assumptions of normality inherent in many statistical procedures.  Beyond this, 

however, the use of normal probability plots as an initial analytical basis for evaluating 

normality within a set of data makes logical sense.  In general, most people, both 

statisticians and non-statisticians alike, are very familiar with the bell-shaped curve 
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associated with the normal distribution compared with the appearance of other more 

obscure distributions.  However, detecting departures from a particular curved shape can 

be difficult compared to assessing deviations from a straight line.  Thus, the use of 

normal probability plots provides a way to quickly and effectively analyze data in ways 

that facilitate understanding as to how the data relate to or deviate from a normal 

distribution. 

Most of the statistical analyses put forward in the continuous quality improvement 

literature place little emphasis on the up-front data analysis that provides the basis for 

their assumptions and ensuing selection of approaches to addressing a particular problem.  

The focus of this chapter is to digress momentarily from that avenue in the interests of 

revisiting some of the basic principles of data analysis that buttress virtually all of the 

assumptions for and approaches to modeling and optimization.  Thus, the goal is to 

provide a comprehensive investigation of shape analyses of normal probability plots that 

allow a fuller understanding of data and how certain efforts and actions to improve 

process performance may influence them in terms of revealing or masking their 

underlying characteristics.  The original work for this research is published, with 

reference Boylan and Cho (2012a).   

4.2  Background 

4.2.1 Normal Probability Plots 

Of the various assumptions required by most statistical procedures used in quality 

engineering, one of the most common is that process data follow a normal distribution.  

Consider statistical process control as an example, wherein an assumption of normality 
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underpins the calculation of control limits in the control charts for both individuals and 

averages. If analysts use these charts for situations in which the data in fact are not 

normally distributed, points outside the control limits may be due to the skew of the data 

and not due to special-cause variation.  As is well known, the normal distribution yields 

values that range from minus infinity to plus infinity.  However, it is equally well known 

that this rarely reflects real life. Fortunately, statistical procedures are fairly robust in the 

sense that the underlying distribution need not be precisely normal.  Instead, they require 

that the data be “near-normal.”  So if data need to be near-normal, how does one test for 

that?  For many decades, statisticians have invoked a variety of graphical methods for 

examining data to determine how they are distributed and what sorts of characteristics 

those distributions have.  Such graphical methods have included histograms, half-normal 

plots, percentile-percentile (P-P) plots, or quantile-quantile (Q-Q) plots, among others.  

Of these, Q-Q plots, also known as probability plots, are the most often used means for 

comparing the actual distribution for a set of data against a hypothesized distribution for 

the population.   

Although such plots can be constructed for any distribution, we most often hear of 

them in the context of normal probability plots.  The reason for this stems from the 

typical assumptions of normality inherent in many statistical procedures.  Beyond this, 

however, the use of normal probability plots as an initial basis for data analysis makes 

logical sense.  In general, most people, both statisticians and non-statisticians alike, are 

very familiar with the bell-shaped curve associated with the normal distribution 

compared with the appearance of other more obscure distributions.  Yet, detecting 
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departures from a particular curved shape can be difficult compared to assessing 

deviations from a straight line.  By invoking a straight line to represent normality within a 

dataset, the use of normal probability plots provides a way to quickly and effectively 

analyze data in ways that facilitate understanding as to how the data relate to or deviate 

from a normal distribution. 

Simply stated, a probability plot is a graph of the relative cumulative frequencies 

of the data, using a specific, and relatively straightforward plotting convention.  Let (y(1), 

y(2), ..., y(n)) denote an ordered sample of data from a hypothesized distribution with a 

cumulative distribution function of the form ( ) [( ) / ]F Y y µ σ= − , where µ and σ represent 

the location (mean) and scale (standard deviation) parameters, respectively.  Building a 

probability plot then proceeds by plotting the sample order statistic y(i) on the horizontal 

axis against 1
( ) ( )i iz F p−= on the vertical axis.  The result is a plot that appears as the 

example shown in Figure 4.1.  Data strewn along the 45o reference line in the plot would 

suggest normally distributed data.  Conversely, deviations from this line would suggest 

otherwise.   

 
Figure 4.1. Example of a normal probability plot. 

 



 
 

88 

The term, pi represents an estimate of the probability associated with 

( )[( ) / ]iF y µ σ−  and is commonly referred to as the plotting position.  Over the last 

century, a number of researchers have developed a variety of approaches for establishing 

plotting positions in probability plots.  Those developed by Hazen (1914) and Weibull 

(1939) are among the earliest and are still commonly used.  As Vining (2010) points out, 

most statisticians continue to use the plotting position developed by Hazen (1914) which 

is denoted by: 

0.5
i

i
p

n

−
=   where n is the sample size                 (4.1) 

Another approach commonly used in various textbooks, such as Kutner et al. (2005), is 

that of Blom (1958), who defined the plotting position for the normal distribution by: 

0.375

0.25i

i
p

n

−
=

+                                                                     (4.2) 

As noted in Chapter 2, a number of researchers examined the topic of plotting positions 

and developed a variety of approaches to it.  Looney and Gulledge (1985) provided an 

overview of these works as they relate to normal probability plots.   

4.2.2  Sample Moments 

Regardless of the purposes behind its use in a particular study, the normal 

probability plot produces a curve that reflects the distribution of the data relative to the 

normal distribution, which is denoted by a straight line.  As DeCarlo (1997) points out, 

typical introductory courses in statistics comment on the ability to characterize a 

distribution in terms of its “central tendency, variability, and shape.” While most 

textbooks define and illustrate shape in the context of skewness, kurtosis is another aspect 
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of shape that has equally important implications for the data.  In any event, these qualities 

essentially correspond to the moments of a distribution.  Thus, the shape of the curve in 

the probability plot and the manner in which it deviates from the reference line provide 

information about the characteristics of the underlying distribution in terms of the first 

four sample moments. 

From a statistical or mathematical perspective, moments denote quantitative 

measures that define the shape or density of a set of points.  More specifically, moments 

represent the expected value of various powers of a random variable.  Thus, for each 

random variable X and every positive integer, r, the r th moment of X is denoted by [ ]rE X .  

According to DeGroot and Schervish (2002), the r th moment is said to exist if and only if

[| | ]rE X <∞ .  Furthermore, if X is bounded by finite numbers a and b such that the

Pr( ) 1a X b≤ ≤ = , all moments of X must exist.   

Central moments differ from ordinary moments in that they examine the spread 

about the mean.  Mathematically, [ ]rE X  changes such that, for every positive integer r, 

the r th central moment of X is given by [( ) ]rE X µ− .  Said differently, this equation 

represents the r th moment of X about the mean.  In general, many prefer the use of central 

moments as a more useful means for characterizing a distribution, mainly because the 

higher-order moments then relate solely to the spread and shape of the distribution as 

opposed to just its location.  In general, we consider four central moments to characterize 

the distribution of a particular population.  The first two consist of the population mean 

and variance, respectively.  The third and fourth moments measure the degree to which 
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the distribution is skewed from or peaked around the mean, more commonly known as 

skewness and kurtosis.  Each will be examined in detail in the following paragraphs. 

Analysis of the sample central moments themselves says very little regarding the 

details of the associated probability density of a distribution.  Rather, it provides 

descriptive information about the characteristics of the density.  For a univariate real-

valued random variable X with an independent observations (x1, x2, ..., an), the sample 

statistic for the r th sample central moment is defined as: 

( )1
( ) , for 2

n r
r ii

m x m n r
=

= − ≥∑ ,                                                  (4.4) 

Here, m corresponds to the sample mean and is defined as the expectation of X, or 

( )1
[ ]

n

ii
E X x n

=
= ∑  which is an unbiased estimator for the population mean µ.  It follows 

that the first central moment for any distribution must equal 0, as 

1 [( )] [ ] 0m E X E Xµ µ µ µ= − = − = − = .  Thus, using Equation (4.4), the first sample 

central moment is given by  

( )1 1
( ) 0

n

ii
m x m n

=
= − =∑                                                             (4.5) 

The second moment about the mean is the population variance, σ2.  Thus, when r 

= 2 in Equation (4.4), we can exchange the denominator n for n-1, due to the fact that µ is 

unknown, and then easily obtain the unbiased estimator for the population variance which 

is given by ( )2 2

1
( ) 1

n

ii
s x x n

=
= − −∑% .  This translates to the second sample central moment 

which is 
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( )2
2 1

( ) 1
n

ii
m x m n

=
= − −∑ .                                                        (4.6) 

Although these first two moments completely characterize the distribution in the context 

of its location and scale, the third and fourth moments facilitate the examination and 

understanding of any inherent asymmetry and peakedness in the probability density 

function.   

Skewness(γ) comprises the third central moment and measures the asymmetry of 

the distribution relative to the mean.  It can be positive or negative, or 0 in the case of a 

normal distribution, which is symmetric.  Quantitatively, the sample skewness g1 is given 

by: 
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∑

∑
    (4.7) 

Qualitatively, this implies that when γ > 0, the right tail of the distribution is longer and 

heavier and the preponderance of values, including the median and the mode, generally 

lay to the left of the mean.  Conversely, γ < 0 implies a heavier and longer left tail, with 

the bulk of values laying to the right of the mean.  Figures 4.2(a) and (b) portray negative 

and positive skew, respectively. 

 
                                                  (a)                                       (b) 

Figure 4.2. Portrayals of (a) negative and (b) positive skewness. 
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The fourth moment of a distribution is called kurtosis, which represents a classical 

measure of non-Gaussianity.   Sheskin (2007) notes that the primary reason for measuring 

kurtosis is to determine whether or not sample data derived from a normally distributed 

population.  Whereas skewness refers to the asymmetry in the distribution with respect to 

the mean, population kurtosis measures the peakedness of the density and is typically 

defined as the fourth moment about the mean divided by the square of the variance minus 

three.  This is shown mathematically by ( )4 4( ) 3Kurtosis X Nµ σ = − − ∑ .  As DeCarlo 

(1997) and a number of others point out, because the natural kurtosis of the normal 

distribution is 3, the “– 3” in this formula serves to make the “excess” kurtosis of the 

normal distribution equal to 0.  For a sample of size n, the measure to estimate population 

kurtosis g2 is determined by:   

( )
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         (4.8) 

In practical terms, values of g2 > 0 result in a distribution with a high or sharp 

peak about the mean and heavier tails, formally referred to as a leptokurtic distribution.  

This translates to a lower probability of achieving values near the mean and a higher 

probability of extreme values, as compared with a normally distributed random variable.   

That is, higher excess kurtosis implies that the variance is more heavily influenced by 

infrequent outliers rather than more frequent and modestly-sized deviations from the 

mean.  Values of g2 < 0 result in platykurtic distributions that possess a lower, flatter 

peak about the mean and lighter or thinner tails.  In this case the comparisons to the 

normal distribution are precisely the opposite of those in the leptokurtic case just 
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described.   The case of g2 = 0 describes a mesokurtic distribution that possesses zero 

excess kurtosis, such as the normal distribution.    

Figure 4.3(a) depicts several examples of distributions exhibiting varying degrees of 

kurtosis where J, N, and U denote Johnson, normal, and uniform distributions, 

respectively.  It is important to note that, in each case, the distributions with positive or 

negative kurtosis cross the normal curve twice on each side of the mean, which is a 

common trait of distributions with excess kurtosis.  For distributions with excess positive 

kurtosis, such as the J(0,1,0,10), this results in a pattern of higher-lower-higher 

probabilities on each side of the peak, relative to each crossing point.  For example, 

consider the J(0,1,0,10) relative to the N(0,1) in Figure 4.3(a).  For values near the mean, 

the probabilities are higher for the J(0,1,0,10) distribution.  Moving left or right from the 

mean, the densities cross and the relationship shifts to lower probabilities for the 

J(0,1,0,10) and then shift back to higher probabilities moving further to the left or right.  

For distributions with negative excess kurtosis, such as the uniform, the pattern becomes 

lower-higher-lower.  This is a very important distinction, as when they cross only once, 

this is indicative of changes in variability vice kurtosis.  The example of the normal 

distributions with different variances in Figure 4.3(b) depicts this.  Although the 

estimators for sample skewness and kurtosis are biased and therefore tend to 

underestimate the true values for the population, the consideration of these moments is 

necessary, as no probability distribution could technically be described as Gaussian 

normal unless both equal zero. 
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(a)                                                             (b) 

Figure 4.3. Graphical representations of (a) distributions possessing varying degrees of 
excess kurtosis relative to a N(0,1) and (b) three normal distributions with different 

variances and zero excess kurtosis. 

 

4.3  Proposed Shape Analysis of Probability Plots 

4.3.1   Methodology 

In order to perform the shape analysis, plots are required using data that possess 

predetermined values for each of the first four moments about the mean.  This would 

facilitate an investigation of the effects of modifying one parameter at a time, while 

keeping the other three fixed in order to observe the impact on the probability plots.  In 

turn, this would allow us to develop inferences about the data.  Given the need to specify 

values for each of the sample moments, we used Monte Carlo simulation in the R 

statistical software package to generate random samples from predetermined 

distributions.  Within R, we used two different distributional packages to examine the 

effects of skewness and kurtosis.   

Due to the inherent relationship between the normal and skew normal 

distributions, the skew normal package in R (Package “sn”, Azzalini (2011)) is used to 

examine the effects of asymmetry or skewness on the probability plots.   First introduced 
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by O’Hagan and Leonhard (1976) and addressed more recently by Azzalini (1985), 

Azzalini and Valle (1996), and Arellano-Valle, et al. (2004), the skew normal extends the 

normal distribution by invoking a third parameter, α, to account for non-zero skewness.  

Taking this third parameter into account, the probability density function for the skew 

normal relative to the normal distribution is given by ( ) ( ) ( )2f x x xφ α= Φ . Adding 

location (x) and scale (w) parameters to this density function using the transformation

( ) /x x ξ ω→ − , yields: 

2 2

2

( )

2 2
1

x x t

e e dt
ξ ξ

α
ω ω

ωπ

− − − − 
 

−∞∫               (4.9) 

It can be shown that when α = 0, the skew normal distribution reduces to the normal.   

Using the following syntax in R, myriad samples of 100 variates are simulated and 

stored: 

require(sn) 
x <- rsn(100, 0, 1, 4) 
write.csv(x, file="skewdata1.csv") 
 

where the command in the second line actually pertains to the simulation of random 

variates from a skew normal distribution with location = 0, scale = 1, and shape = 4 (i.e., 

SN(0, 1, 4)). 

To examine kurtosis, and ultimately the combined effects of variability, skewness, 

and kurtosis, we turned to the Johnson family of distributions in R.  Specifically, we used 

the JohnsonFit(●) function, which invokes the algorithm of Hill et al. (1976) to estimate 

the Johnson parameters (γ, δ, ξ, λ, type) using the sample moments.  The syntax for the 

function is simply JohnsonFit(t, moment=”xx”)  where t  denotes either an 
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observation vector, t=x , or moment vector, t=[mean, m2, m3, m4],  and moment 

is a character scalar that specifies how to interpret the vector t .  As an example, the 

following R code demonstrates an instance of this function: 

require(SuppDists) 
parms<-JohnsonFit(c(0,1,-5,4),moment="use") 
x <- rJohnson(100, parms) 
write.csv(x, file="data1.csv") 

 

Here, the values of 0, 1, -5, and 4 denote the vector t.  The “use”  command specifies 

this as the vector of moments, which the program then uses to estimate the parameters of 

the distribution.  Thereafter, we simply simulate 100 random variates using these 

parameters and write these data to an Excel-based file for analysis.  Using this particular 

function allows for quickly and easily varying the levels for each of the for sample 

moments in order to assess the impact on the shape of the curves in the normal 

probability plots.  

In each case of the analysis, simulation is used in R to generate data samples 

according to the specified distributions and imported them into Excel for some 

preliminary analysis and spreadsheet calculations.  Thereafter, they are imported into 

Minitab to generate normal probability plots for visual analysis of the results.  It is 

noteworthy that all of this could have been performed easily within R.  However, the use 

of Excel and Minitab provide a more practical means for comparative analysis and the 

simultaneous visual inspection of multiple data sets and plots.  The next two sections will 

investigate skewness and kurtosis, respectively.  Thereafter, the combined effects of the 

four moments on the data shall be examined and the findings summarized. 
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4.3.2   Investigating the Impacts of Skewness on the Shape of the Probability Plot 

The investigation of skewness began with the establishment of a base case from 

which to deviate to examine the effects on the curves in the probability plots.  For this 

purpose, a sample of 100 random variates was generated from a skew normal distribution 

with location = 5, scale = 2, and shape = 0.  The probability plot associated with these 

data is shown in Figure 4.4.  As expected, with the scale parameter set to zero, the 

resulting distribution essentially follows a normal distribution with a mean of 5 but with a 

variance closer to 4 than 2.  The associated A-D statistic and p-value for the plot confirm 

the normality of the underlying distribution. 

 
Figure 4.4. Normal probability plot for the base case of data 

sampled from a SN (5, 2, 0). 

 

From here, we can begin to examine how this plot changes as a result of changes 

to the skewness in the data.  Because changing the mean merely shifts the distribution 

along the x-axis without changing the visual properties of the plot, we only examined two 

cases.  In the first, the location and scale parameters are fixed while varying the shape (or 

skewness) parameter.  In the second, the location and the shape are fixed while varying 

the scale (or variability). 
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4.3.2.1  Assessing the Effects of Varying Degrees of Skewness  

 To examine the effects of the skewness parameter on the probability plot, the 

location and scale parameters were fixed at 5 and 2, respectively.  Thereafter, six levels 

are considered for both positive and negative skewness: ±2, ±5, ±10, ±15, ±30, and ±100.  

Pursuant to generating the random variates for each of these twelve distributions, the 

simulated data were imported into Minitab to create the normal probability plots 

displayed in Figures 4.5 and 4.6; Tables 4.1 and 4.2 contain the sample statistics 

associated with each, respectively. 

 
Figure 4.5.  Normal probability plots showing the effects of positive skewness. 

 

Table 4.1. Sample statistics associated with probability plots in Figure 4.5. 

 
Baseline Fig 4(a) Fig 4(b) Fig 4(c) Fig 4(d) Fig 4(e) Fig 4(f) 

SN (5,2,0) SN(5,2,2) SN(5,2,5) SN(5,2,10) SN(5,2,15) SN(5,2,30) SN(5,2,100) 
Mean: 5.090 6.260 6.608 6.549 6.643 6.788 6.385 

 Standard Dev: 1.969 1.352 1.314 1.222 1.174 1.245 1.187 
Sample Skew: -0.056 0.476 1.036 1.010 0.655 0.587 1.080 

 

(a) (c)

(e)

(b)

(d) (f)
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Figure 4.6.  Normal probability plots showing the effects of negative skewness. 

 

Table 4.2. Sample statistics associated with probability plots in Figure 4.6. 

 
Baseline Fig 5(a) Fig 5(b) Fig 5(c) Fig 5(d) Fig 5(e) Fig 5(f) 

SN (5,2,0) SN(5,2,-2) SN(5,2,-5) SN(5,2,-10) SN(5,2,-15) SN(5,2,-30) SN(5,2,-100) 
Mean: 5.090 3.519 3.434 3.280 3.413 3.096 3.230 

 Standard Dev: 1.969 1.344 1.259 1.172 1.277 1.397 1.298 
Sample Skew: -0.056 -0.370 -0.722 -0.591 -0.696 -0.496 -0.786 

 

Focusing on the positively skewed plots in Figure 4.6, several key observations 

emerge.  Foremost, relative to the base case shown in Figure 4.4, as the skewness 

parameter increases, the associated asymmetry becomes more visibly apparent by the 

concavity of the plot.  This should make sense based on the previous discussion of 

positive versus negative skewness.  That is, since the bulk of the values in the distribution 

fall to the left of the mean due to the positive skewness, we would expect the percentage 

(or probability) to rise much more sharply moving toward the mean from left to right, 

followed by a more tapered increase thereafter.   

(a) (c)

(e)

(b)

(d) (f)
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A close examination of the plots relative to the base case also shows changes in 

the likely range of values of the samples.  Although asymptotic to the x-axis in both 

directions, a shortening and thinning of the left tail of the distribution is observed while 

the right tail elongates and grows heavier.  This is important, particularly when 

considering that an increasing trend in skewness seems to correspond to a slightly 

increasing trend in the sample mean coupled with a moderately decreasing trend in the 

sample standard deviation.  Thus, as the right tail grows heavier, the variability grows 

much more sensitive to extreme observations.  The observations for the negatively 

skewed plots in Figure 4.5 mirror those for Figure 4.6 from precisely the opposite 

viewpoint. 

4.3.2.2.  Effects of Increasing/Decreasing Variability in the Presence of Skewness 

  Investigating the effects of variability on the asymmetry of the data required 

fixing the location and shape parameters, while incrementally increasing and decreasing 

the scale or variance parameter.  For the purposes of this experiment, a base case was 

established using a skew normal distribution with a mean of 5, variance of 2, and a 

skewness of 5.  Six variations were then created on this case, three of which involved 

increasing values for the variance while the remaining three involved decreasing values.  

After using R to generate 100 random variates for each of these six distributions, Excel 

and Minitab are again used to generate sample statistics and normal probability plots.  

Figure 4.6 shows the six variations examined and the corresponding normal probability 

plots generated in Minitab.  Table 4.3 contains the sample statistics for each. 
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The plots in Figure 4.7 impart several interesting observations.  As expected, the 

positive skew incorporated in the base case in Figure 4.7(a) evinces the characteristic 

concavity previously described in Section 4.3.2.1, along with a shortening and thinning of 

the left tail coupled with a corresponding elongation of the right tail.  Beyond this, the 

plots clearly show that changes in variability have a much greater effect on the shape of 

the plot than changes in skewness.  With each exponential increase in variability in 

Figures 4.7(e), (f), and (g), we observe a corresponding right shift in the mean as the right 

tale expands and thickens.  This shift essentially causes the tell-tale “hump” of the 

distribution to expand to the right as well, which simultaneously induces a slight 

lengthening of the left tail.  It is also noteworthy that, as we would expect, the residual 

error in the plots increases with the variability as evidenced by the increasing scale on the 

x-axis for each subsequent plot. 

Figures 4.7(b), (c), and (d) depict plots in which we sequentially reduce the 

variance from 2, to 0.5, 0.4, and finally to 0.125.  In contrast to the examples with 

increasing variability, here we observe the distribution shorten in both tails as the bulk of 

the values push in towards the mean of 5.  Also note that the variance reduction begins to 

offset the skewness, inducing a degree of symmetry about the mean.   Obviously, as the 

variance approaches zero, we would expect to observe a straight line, perpendicular to the 

x-axis, situated at the mean.  The plots are clearly trending this way, as shown by Figure 

4.7(d). 
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Figure 4.7.  Normal probability plots showing the impact of decreasing and increasing 

variability. 
 

Table 4.3. Sample statistics for the six variants depicted in Figures 4.7(b)-(g). 

  Fig 6(b) Fig 6(c) Fig 6(d) Fig 6(e) Fig 6(f) Fig 6(g) 
Sample Mean: 5.1801 5.3157 5.4263 8.0998 10.1469 17.9946 

Sample St Dev: 0.1538 0.2541 0.3411 2.5393 4.7193 10.9273 

 

Notwithstanding, in spite of the evolving symmetry, reducing the variance exacerbates 

the departure from normality, as demonstrated by the density plot in Figure 4.8, which is 

associated with the probability plot in Figure 4.7(d).  Figure 4.8 also suggests that the 

variance reduction also increases (or, more correctly, reveals) the presence of excess 

kurtosis.  To examine this, a Monte Carlo simulation was developed in R to generate 
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1,000 random variates from three skew normal distributions with decreasing variance and 

then compute the sample kurtosis for each.   

 

 
Figure 4.8. Density Plot for SN(5, 0.125, 5). 

 

Upon replicating this 25 times for each distribution, the average sample kurtosis is 

computed across all 25 replications.  As Table 4.4 shows, the change in the average 

sample kurtosis from one distribution to the next is quite negligible, although a slight 

downward trend is evident.  This effect will be addressed in greater detail in the next 

section. 

4.3.3  Investigating the Impacts of Kurtosis on the Shape of the Probability Plot 

The investigation of kurtosis necessitated the use of the Johnson distribution due 

of the ease associated with modifying its characteristics in terms of the first four sample 

moments.  Thereafter, it progressed in much the same way.  As with skewness, a base 

case was first established that followed a normal distribution and possessed zero excess 

kurtosis.  Shown in Figure 4.9(a), a sample of 100 random variates was simulated from a 

Johnson distribution with parameters (0, 1, 0, 3), which denote the values for each of the 

first four standardized sample moments, respectively.  Given the absence of skewness 
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and excess kurtosis, shown by the last two parameters, this essentially mirrors a standard 

normal distribution.  

 
Table 4.4.  Simulation results showing the effects of decreasing variability on kurtosis. 

Distribution   
Replication SN(5, 2, 5) SN(5, 0.125, 5) SN(5, 0.000001, 5) 

1 3.8443 4.4361 4.6599 
2 3.3164 3.8242 3.7289 
3 3.6749 3.5820 3.7146 
4 4.1430 4.1273 3.5713 
5 3.4125 3.2447 3.5153 
6 3.7120 4.0332 3.4886 
7 3.1549 3.2256 3.7964 
8 3.5791 3.9068 3.6698 
9 4.0171 3.7396 3.1812 
10 3.1560 3.1909 3.9925 
11 4.2931 3.6938 3.5839 
12 3.7077 4.4886 3.0338 
13 4.2205 3.3399 3.7171 
14 4.6252 3.7137 4.0824 
15 4.1962 3.5054 3.3999 
16 3.6051 4.0770 3.7087 
17 3.6405 3.8258 3.5915 
18 3.3797 3.9733 3.8604 
19 3.5710 4.0638 3.6055 
20 3.5938 3.4656 3.3789 
21 3.3048 3.6741 3.6527 
22 4.4158 3.7355 3.8506 
23 3.4050 3.5457 3.2789 
24 4.4480 3.2999 4.5962 
25 3.5878 3.1402 4.1615 

Avg Kurtosis 3.7602 3.7141 3.7128 

 

4.3.3.1 Assessing the Effects of Varying Degrees of Kurtosis  

To examine the effects of kurtosis, six variants in two categories were 

subsequently generated from the base case, varying the parameter associated with the 

fourth moment in each instance.  The probability plots shown in Figures 4.9(b), (c), and 

(d) reflect instances for Category 1 in which increasing values were used for the fourth 

moment.  As is clearly evident, the increased positive excess kurtosis induces an obvious 
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deviation from the normality established in the base case, resulting in an S-shaped curve 

which becomes visibly more pronounced with each subsequent increase in the fourth 

standardized moment.   

 

 
Figure 4.9.  Normal probability plots showing the effects of decreased and increased 

levels of excess kurtosis. 

 
This is interesting and logical, as the shape reflects the manner in which the distribution 

is peaking about the mean while the tails grow heavier and longer.  Consequently, we 

would expect probabilities to flatten along the tails but to increase very rapidly 

approaching the mean from the left and then decreasing equally rapidly moving away 

from the mean to the right.  Thus, the sporadic data points that comprise the left and right 

“tips” of the s-shape indicate the growing influence of outliers or extreme occurrences on 
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the variability in the data set.  Similarly, the angle of the body of the S-shaped yields 

information about the peak in the distribution; the more vertical the line becomes 

suggests a high, narrow peak about the mean, thereby indicating significant levels of 

positive excess kurtosis likely exist. 

For Category 2, decreasing values were used for the fourth moment to investigate 

the effects of negative kurtosis on the probability plots.  Bearing in mind that this value 

must exceed 1.0 per the discussion in Section 4.2.2, values of 2, 1.5, and 1.1 were used, 

respectively.  Figures 4.9(e), (f), and (g) depict the probability plots for these three 

instances.  In contrast to the S-shaped curve realized in the cases with positive excess 

kurtosis, the presence of negative excess kurtosis exhibits the opposite effects as the 

distribution flattens about the mean.  That is, we observe a comparatively gradual 

transition from the mean in either direction that becomes considerably steeper as the 

distance increases.  Furthermore, we note the effect of increasing negative kurtosis on the 

curves in Figures 4.9(f) and (g), whereby the tails begin to push in toward the mean, 

becoming nearly vertical in the latter figure.  This suggests a trend toward bimodality in 

the data as the fourth moment approaches 1.0.   

4.3.3.2  Effects of Increasing or Decreasing Variability in the Presence of Kurtosis 

Generally, we cannot control whether kurtosis exists or not.  It is simply a 

characteristic of the data set that we should consider during analysis.  On the other hand, 

as has been noted several times in Chapters 1-3, efforts to control or eliminate product 

and process variability are paramount goals for engineers and manufacturers dealing with 

the robust parameter design problem.  With this in mind, an investigation was performed 
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to determine how decreasing or increasing levels variability in the data would affect the 

nature of kurtosis in the probability plots, using the examples of extreme positive and 

negative excess kurtosis from each category (Figures 4.9(f) and (g), respectively) as 

starting points.    

Since typical quality engineering efforts focus on reducing variability, this case 

was examined first.  Figure 4.10(a) shows the probability plots for the extreme case from 

Category 1 and the corresponding plots for reduced variability and increased variability 

in Figures 4.10(b) and (c), respectively.  The density plots adjacent to each probability 

plot provide an alternative means to visualize the effects on the data.  Figure 4.11 

contains comparable plots for Category 2. 

The probability and density plots in Figures 4.10(a) and (b) seem to imply that 

decreasing variability in the data effectively increases the degree of positive excess 

kurtosis.  This is evidenced by a steepening of the central portion of the plot about the 

mean and the lengthening of the tails, once again implying the growing influence of 

extreme observations on the variance.  Examination of the density plots confirms this 

assessment, clearly showing a narrower peak that doubles in height about the mean.  

However, as DeCarlo (1997) notes, kurtosis represents a “movement of mass in the 

distribution” that has no bearing on the variance.  Likewise, the measure used to describe 

kurtosis presented in Section 4.2.2 is scaled with respect to the variance and therefore is 

not affected by it.  That is, kurtosis serves to describe the shape of a distribution 

irrespective of the variance.  Notwithstanding, the plots portray a clear relationship.  
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Thus, the deeper implication appears to be that the kurtosis existed from the start but was 

masked by the variability. 

Given this reaction in the data to decreased variability, it seemed logical that 

inducing variability in the data would therefore yield the opposite effect.  The probability 

and density plots in Figure 4.10(c) confirm that it does, as the plot forms a nice straight 

line about the 45 degree index line, thereby implying normality in the data.  The A-D test 

statistic of 0.246 and a p-value of 0.751 provide a more objective basis to support this 

implication.  However, what is particularly noteworthy here is the significant degree of 

variability that had to be introduced to compensate for excess positive kurtosis, a twelve-

fold increase from 1 to 12.  This is very interesting, as it suggests that if we fail to inspect 

for the presence of excess kurtosis in the initial data analysis, it will not reveal itself until 

we have induced efforts to reduce variability.  Moreover, it implies that visual inspections 

of plots, absent deeper analysis of all of the distribution’s characteristics, are insufficient.   

Thus, in this particular case, inspection of the plot and the summary statistics 

accompanying it would have caused us to assume normality in the data.  However, once 

efforts to reduce the significant variability are initiated, it would become apparent that 

our data may not be normal at all, which could indicate that that methods used to 

optimize process parameters were inappropriate and thus compromise the results. 

Since increasing the variability tended to compensate for positive excess kurtosis, 

it was surmised that a similar increase in the case of negative excess kurtosis would only 

exacerbate the effect.  Consequently, in dealing with the negative excess kurtosis in 

category 2, incremental reductions in variability were examined to determine if there is a 
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point of diminishing returns.  In fact, the sequence of plots in Figures 4.10(a)-(c) suggests 

such a conclusion.   

 

                     (a)                                             (b)                                             (c) 
Figure 4.10.  Effects of changing variability on positive excess kurtosis. 

 
The transition from the probability and density plots in Figure 4.11(a) to those in 

11(b) clearly shows that a 50% reduction in variability (from 1 to 0.5) mitigates the 

effects of negative excess kurtosis, resulting in a probability plot that suggests normality.  

Again, the A-D statistic and p-value would provide objective support to such a 

conclusion.  It is interesting to note, however, that the appearance of the density plot in 

Figure 4.11(b) suggests that positive excess kurtosis is now present.  A sample kurtosis 

calculation in R confirms this, yielding a modest value of 1.4.  Recall that normally 

distributed data have zero excess kurtosis.   

If the variability is reduced even further, shown in Figure 4.11(c), we readily 

observe the introduction of positive excess kurtosis through the emergence of the S-

shaped curve coupled with an elongation of the tails in the probability plot.  The A-D 
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statistic and p-value confirm the departure from normality and a calculation for sample 

kurtosis performed in R shows an increase in sample kurtosis to 107.   

 
                      (a)                                             (b)                                          (c) 

Figure 4.11.  Effects of changing variability on negative excess kurtosis. 

 
Overlaying the two density plots in Figure 4.12(a) lends further weight to the 

analysis, showing a peak about the mean that has clearly narrowed in breadth and 

quadrupled in height with the decreased variability and the increased (albeit slight) 

heaviness in the tails, which is more clearly evident in Figure 4.12(b).    This is not to 

suggest that we can either induce or remove kurtosis within a data set, but rather that 

variance reduction measures can reveal its underlying presence in the data. 

 
              (a)              (b) 

Figure 4.12.  Overlays of the density plots from Figures 11(b) and (c), revealing 
increased peakedness (a) and heaviness in the tails (b).  Note that scales on both axes 

have been adjusted to facilitate a “zoomed in” effect in figure (b). 
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4.3.4  Impacts of Combined Effects of Multiple Moments on the Probability Plot 

The final set of experiments sought to ascertain the effects reducing variability on 

normal probability plots for distributions that possess elevated levels of skewness and 

kurtosis.  As a starting point, 1000 random variates were generated from a J(10, 8, -5, 

100) distribution.  Thereafter, four additional samples were simulated consisting of 1000 

variates each, reducing the variability in each case by 50% from 8 down to 1, and then by 

20% from 1 to 0.8.  Figure 4.13 displays the resulting probability plots, density plots, and 

several sample statistics for each of the five cases examined. 

Continued variance reductions to 2 and then 1 in Figures 4.13(c) and (d) reinforce 

the expectations we derived from the analysis in Section 4.3.3.2.  That is, once again 

reductions in variability beyond some threshold actually begin to exacerbate the levels of 

positive excess kurtosis.  In the normal probability plots we see the familiar S-shaped 

curve emerge as the peakedness increases about the mean in each case and the tails grow 

longer and heavier, particularly to the left.  The associated density plots provide a clearer 

demonstration of these effects, showing both the narrowing of the peak in the distribution 

coupled with a nearly two-fold increase in its height.    The sample statistics for Figures 

4.13(c) and (d) certainly show the effects on excess kurtosis, but they also show a clear 

impact on the asymmetry, as the negative skewness increases by a factor of three in each 

case.  This is further evidenced by the continued, albeit slight leftward shift in the mean. 

Reducing the variance to 0.8 yields interesting results as shown in Figure 4.13(e).  

Here, the normal probability plot clearly evinces the concave shape associated with 

negative skew discussed in Section 4.3.2.1.  Furthermore, we observe the elongation of  



 
 

112 

 Normal Probability Plot Density Plot Sample Statistics 

(a) 

  

Kurtosis: -1.4517 
Skew: -0.2288 
Mean: 10.0369 

Variance: 7.9787 
 

(b) 

  

Kurtosis:   4.7384 
Skew:   -0.9664 
Mean:   9.6142 

Variance:   3.8143 
 

(c) 

  

Kurtosis:   28.0845 
Skew:   -3.0817 
Mean:   9.7673 

Variance:   2.1576 
 

(d) 

  

Kurtosis:   200.0263 
Skew:   -10.2808 
Mean:   9.7326 

Variance:   1.5078 
 

(e) 

  

Kurtosis:   81.4372 
Skew:   -6.6978 
Mean:   9.7094 

Variance:   0.8333 
 

Figure 4.13.  Normal probability and density plots portraying the effects of decreasing 
variability in the presence of non-zero skewness and kurtosis. 

 
the left tail coupled with the shortening of the right tail.  The shape of the density plot in 

4.13(e) conveys similar information and the sample statistics for skewness and the mean 

reinforce this, showing a further shift to the left by the mean as the bulk of the 

distribution piles up to the right.  However, the statistics also show that considerable 

excess positive kurtosis remains, despite the lack of visual evidence in the normal 
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probability plot.  Essentially, the reduced variability has caused the distribution to peak to 

such a degree about the mean that, in the presence of negative skew, the right tail 

becomes nearly non-existent. 

4.4  Summary of Findings   

 Normal probability plots play a very important role in the analysis of data.  While 

still a critical part of any good residual analysis of regression models, the investigations 

and analysis we have heretofore described reinforce their equally critical role in 

facilitating data analysis in general.  A basic understanding of how the characteristics of 

the data in terms of the four sample moments influence the properties of the probability 

plot can yield significant information about those data that will, in turn influence certain 

approaches to model estimation and optimization.  We summarize the findings from these 

investigations in (i)-(iii) below: 

(i)  In the most basic sense, a detailed visual inspection of the curve in a 

probability plot will reveal information about the presence of asymmetry and kurtosis 

along and suggest the degree to which they influence the data and how.  Concavity versus 

convexity will typically indicate the presence of either positive or negative asymmetry or 

skewness, respectively.  Moreover, the nature of the tails provides a hint of how 

variability affects the data.  That is, whereas the nature of the curve can impart 

knowledge as to skewness about the mean, the nature of the tails can impart knowledge 

about the degree of variability present in the data.  The plots in Figures 4.7(c), (e), and (g) 

serve as a good example of this, showing a clear elongation of the right tail in the face of 

increasing variability.  However, the nature of the concave or convex curve may also 
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reveal the presence of kurtosis in the data, suggesting a combined effect of distribution 

characteristics at work within the data.  The probability plot in Figure 4.13(e) provides a 

stark example of this, depicting the convex curve illustrative of negative asymmetry 

about the mean, but also a significant degree of positive excess kurtosis suggested by the 

dense, near-vertical curve in the immediate proximity of the mean. 

Similarly, an S-shaped curve either with a denser, largely vertical base and 

elongated horizontal tails or a denser horizontal base with elongated vertical tails 

provides a very good indication of positive or negative excess kurtosis within the data.  

This is important on a number of levels.  First, density and degree to which the main 

portion of the curve about the mean are vertical or horizontal coupled the heaviness of the 

tails yield important information.  In one sense, they very quickly show us the likelihood 

of achieving values close to the mean.  In another, particularly in the case of the tails, 

they provide an idea as to the increased or decreased propensity for outliers to occur and 

the subsequent degree to which they influence variability in the process.  This particular 

point is noteworthy insofar as positive kurtosis can arise either due to the presence of 

outliers within data that are otherwise normally distributed, or because the underlying 

distribution is simply not normal.  In the latter case, then, the curve would suggest 

consideration of heavy tailed non-normal distributions for modeling.  Second, as several 

researchers have noted, including Browne (1984), the presence of kurtosis can have large 

effects on tests for significance and standard errors associated with parameter estimates.  

Thus, a probability plot that suggests potential issues with the presence of kurtosis would 
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likewise suggest the need to consider alternative tests and estimators that are more robust 

to detecting departures from normality. 

(ii)  Virtually all process optimization schemes strive for a reduction in variability 

to improve process performance.  The analysis in Sections 4.3.2 and 4.3.3 demonstrates 

that efforts to either reduce or, in some potentially unique situations, induce variability 

within a process can affect what we thought or assumed to be true about the data.  In the 

case of skewness, as the analysis in Section 4.3.2.2 shows, a reduction of variance within 

asymmetric data produces precisely the effect we would expect in terms of an increased 

departure from normality as the bulk of the distribution begins to stack up and peak about 

the mean.  What is particularly interesting here, however is the plot result shown in 

Figure 4.7(f), which reinforces the importance of understanding what the data are 

conveying via the curve.  Consider a situation involving a smaller-the-better type quality 

characteristic.  In this case, we would expect a degree of positive asymmetry and so 

would expect to observe a concave plot similar to the plot in Figure 4.7(b).  However, the 

near-vertical line and mirror-image tails in Figure 4.7(f) imply symmetry rather than 

asymmetry, which might lead to suspicion about the data, the manner in which they were 

collected, or about the process itself.    But what the analysis shows is that asymmetry is 

present but is being masked by low levels of variability.   

Kutner et al. (2005) pointed out that, in the case of analysis of variance, kurtosis 

generally bears more importance than skewness.  This is attributed to general findings 

that whereas skew has a more profound impact on tests for means, kurtosis has greater 

effect on tests for variance and covariance.  Instances of positive and negative kurtosis 
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are often considered indications of large or small variance respectively.  However, as 

previously noted, kurtosis neither affects nor is affected by the variance.  Nevertheless, as 

the analysis in Section 4.3.3 suggests, increasing or decreasing variability can reveal or 

mask its presence.  This is important to note, since the concepts associated with kurtosis 

such as tail weight and peakedness play a critical role in descriptive and inferential 

statistics. As noted in (i), kurtosis can induce considerable effects on significance tests 

and standard errors of parameter estimates.  Thus, using normal probability plots to 

decipher the presence and degree of excess kurtosis can also help to indicate whether we 

need to consider a number of alternative (and possibly more robust) tests and estimators 

for modeling. 

4.5  Conclusion  

The knowledge and use of normal probability plots dates back many decades and 

for a period of time received considerable attention in the literature as a viable and 

particularly useful tool in data analysis and the substantiation of statistical assumptions.  

However, little has been mentioned about their role in data analysis beyond the “fat 

pencil” test used in residual analysis.  That is, the use of these plots as a critical analytical 

tool outside of residual analysis seems to be largely overlooked.  This is not to say that 

researchers or analysts ignore them, but rather because of the subjective and simplistic 

nature of their application, there is considerable potential for many to take what they 

offer for granted.    

The work set forth in this chapter, the first of its kind in terms of the breadth and 

scope of the analysis performed, has both reaffirmed and expanded the usefulness of an 



 
 

117 

old, reliable, and particularly powerful tool for statistical inference and analysis.  The 

contribution is a comprehensive demonstration and analysis of how various statistical 

properties within a data set can influence the shape and corresponding properties in a 

normal probability plot.   This should, in turn, provide analysts with a better 

understanding of the ways in which data communicate through the plot.  Thus, using this 

information, analysts can observe a normal probability plot and derive a better and fuller 

understanding of the underlying properties in the data that are associated with the 

skewness, the presence and degree of excess kurtosis, the combined effects of both, and 

the extent to which variability may be influencing the plot.  In turn, this will inform them 

as to other distributions to consider, as well as possible transformations if normality is 

required.   

The criticality of this analysis is that our initial assumptions concerning the actual 

experimental data will ultimately drive model estimation and any optimization results 

thereafter.  Consequently, it is of particular importance that we understand the data as 

completely as possible in order to identify the most precise means for estimating 

parameters that will, in turn, facilitate better estimation of our fitted models.  Failure to 

examine the data could lead to inappropriate assumptions and faulty distribution fitting, 

which would impact both tier-one and tier-two estimates, and ultimately the optimization 

results themselves.
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CHAPTER FIVE 
 
 
ANALYZING THE EFFECTS OF VARIABILITY MEASURE SELECT ION ON 

PROCESS AND PRODUCT OPTIMIZATION 
 
 

5.1  Introductory Remarks 

The numerous efforts examining the dual response surface approach or a branch 

of robust parameter design use one of three variability measures to evaluate process 

variability − the standard deviation, variance, or logarithm of the standard deviation.  In 

most cases, upon developing a response surface design for their variability measure, the 

response model is then normalized to the variance.  For instance, as indicated in Chapter 

1, a review of the literature indicates that many researchers chose to model the standard 

deviation and square it before applying an optimization scheme.  In the last decade, 

however, a number of researchers have either directly modeled the variance in the 

experimental framework or have selected an alternative measure such as the logarithm of 

the standard deviation.  They then perform comparison studies with previous work, in 

order to identify improvements within the research field.  Table 5.1 provides a list of 

several researchers and the measure(s) of variability they used in the context of their 

work. 

When seeking the optimal factor settings using the dual response surface 

approach, a variety of solutions may result depending on the variability measure used.  In 

addition, a statistical evaluation of each measure's fitted function may indicate different 

degrees of precision in their respective estimation of the response.  As a result, it is 
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difficult to ascertain the accuracy among comparison studies using the dual response 

surface approach.  Contemporary robust design research has yet to fully address this 

problem.  Thus, the goal of this paper is to identify how and why one variability measure 

may perform better than another under a given set of conditions, and to suggest a uniform 

approach to the selection of a variability measure.  The original work for this research is 

published with reference Goethals and Boylan (2011).  Following a description of the 

methodology used to investigate this problem, an analysis of the results is provided and 

the findings summarized. 

Table 5. 1.  Variability Measure Selection in contemporary quality-based research. 

  Variability Measure 

Researcher(s) Year σ̂  2σ  ln σ  
Vining and Myers 1990 X   
Del Castillo and Montgomery 1993 X   
Cho 1994  X  
Lin and Tu 1995 X   
Copeland and Nelson 1996 X   
Kim and Lin 1998 X   
Kim and Cho 2002  X  
Kim and Rhee 2003 X   
Koksoy and Doganaksoy 2003 X   
Kulkarni and Mariappan 2003  X X 
Cho and Park 2005  X  

Chen et al. 2006   X 
Anderson and Whitcomb 2007 X  X 
Pickle et al. 2008  X X 
Giovagnoli and Romano 2008  X  
Kwon et al. 2008 X   
Johnson et al. 2009  X  
Kovach et al. 2009  X  
Costa 2010 X   

5.2  Methodology 

5.2.1  Establishing an Experimental Framework  

Upon identifying a quality characteristic of interest Y that is influenced by a set of 

control factors x = (X1, X2, ..., Xv) for a given process, suppose we conduct an experiment 
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to identify the optimal factor settings x* = (X1*, X2*, ..., Xv* ).  The experimental 

framework consists of n runs with m replications for these factors.  Let yjk be the kth 

response at the jth design point, where j = 1, 2, ..., n and  k = 1, 2, ..., m.  The mean, 

standard deviation, variance, and logarithm of the standard deviation at the jth design 

point are found using the formulas at Equation 5.1.  Table 5.2 outlines the format for such 

an experiment.   
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Using least squares regression, we develop response surface designs for the mean 

and each variability measure.  In particular, the general form of the response surface 

design for the mean including the intercept with p parameters or p−1 predictor variables 

may be written as: 

ˆˆ( ) µµ β=x X , where T Tˆ (µβ = -1X X) X y ,
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Table 5.2.  Experimental Response Surface Methodology Format 

Run X1   X2 ………  Xv Replications (Y) 
y  s s2 ln s 

1 

Control 
Factor 
Settings 

y11  y12 … y1k … y1m 1y  s1 s1
2 ln s1 

2 y21  y22 … y2k … y2m 2y  s2 s2
2 ln s2 

M     M   M         M         M  M  M  M  M  

j yj1  yj2 … yjk … yjm jy  sj sj
2 ln sj 

M     M   M         M         M  M  M  M  M  

n yn1  yn2 … ynk… ynm ny  sn sn
2 ln sn 
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We develop response surface designs for each variability measure in a similar fashion:  

ˆˆ ( ) σσ β=x X , where T Tˆ (σβ = -1X X) X s , and T
1 2[ , ,..., ]ns s s=s                                     (5.3) 

              2
2 ˆ( )

σ
σ β=x X , where 2

T Tˆ (
σ

β = -1 2X X) X s , and 2 2 2 T
1 2[ , ,..., ]ns s s=2s                         

            ln
ˆln ( ) σσ β=x X , where T T

ln
ˆ ( lnσβ = -1X X) X s , and T

1 2ln [ln ,ln ,..., ln ]ns s s=s            

         
To ensure a fair and valid comparison between each variability measure, we use the same 

full order array of predictor variables to model each measure.  We then consider a variety 

of criteria to evaluate the fit of each response surface design.  Since the observations on 

the variance response are naturally at a higher scale than either the standard deviation or 

logarithm of the standard deviation, the error sum of squares (SSE) for the variance 

response will naturally be higher.  Thus, evaluation criteria such as the prediction error 

sum of squares (PRESS) and Akaike's Information Criterion (AIC) that are primarily 

based upon the value of SSE do not serve as useful tools for comparison.  The coefficient 

of determination R2 for a given model, however, involves a ratio of the regression sum of 

squares (SSR) or SSE to the total sum of squares (SSTO) and therefore may provide some 

value in the comparison of designs. 

2 1
SSR SSE

R
SSTO SSTO

= = −                                                 (5.4) 

5.2.2  Investigating the Variability Measures 

In order to identify when and under what conditions one variability measure may 

outperform another measure, we conduct several experiments.  Since the amount of 

variability in the data or the response surface design itself may affect the performance of 

a specific measure, examining the results while adjusting these conditions may be useful.  

In addition, constraining the mean to its target and subsequently optimizing the 



 
 

122 

variability measure may produce different results than when we optimize the mean and 

variance simultaneously.  Thus, alternative optimization methods should be observed to 

differentiate among the schemes previously used by researchers.  Finally, it is not 

completely clear what effect the fit of each surface is having on the performance of the 

variability measure.  To consider each of these factors, four experiments are conducted, 

labeled Parts A, B, C, and D, respectively. 

Part A and B:  The method used by Vining and Myers (Equation 5.5) is used to 

compare and contrast solutions.  This involves using an iterative Nelder-Mead direct 

search method within the experimental region of interest to identify a global maximum.  

In particular, for an N-type characteristic, where ˆ( )θ x represents the normalized variability 

measure of interest, the optimization scheme is: 

T 2

2 2

ˆMinimize: ( )
ˆSubject to: ( )

                   (central composite design), or
                 1,  for 1,2,...,  (factorial design),

ˆ ˆ                  where ( ) ( ),  ( ),  or {exp

N

iX i v

θ
µ τ

ρ

θ σ σ

=
≤
≤ =

=

x
x

x x

x x x 2[ ln ( )]}σ x

                         (5.5) 

For Part A, the data are slightly adjusted to support testing the measures against different 

variability conditions, specifically when 1,s < 1,s ≈ 5,s ≈ 10,s ≈ 30,s ≈ and where the mean 

coefficient of variation 1CV ≈  and 1CV > .  For Part B, the variability in each response 

surface is adjusted to identify the effect on the measure of interest, specifically when 

Var(s) ≈ 0.05, Var(s) ≈ 0.50, Var(s) ≈ 2, Var(s) ≈ 5, Var(s) ≈ 60, and Var(s) ≈ 120. 

Part C and D:  For these experiments, the objective is to simultaneously optimize 

the process mean and variance.  Xu et al. (2004) developed a modified desirability 
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function approach using a goal attainment technique to identify the optimal factor settings 

when considering several characteristics.  The method was specifically designed to 

provide greater weight to those fitted response surfaces with a higher R2.  Although 

designed for multi-response problems, one can easily adapt the approach to consider the 

mean and the variability measure as two separate characteristics.  The procedure consists 

of three distinct steps, outlined in (i)-(iii): 

(i)  Individual desirability functions are developed for the mean and the normalized 

variability measure, ˆ[ ( )]µd x and ˆ[ ( )],θd x  respectively.  In particular, considering the 

mean of an N-type characteristic and treating the variability measure as an S-type 

characteristic, we have: 

ˆ ˆ0 if ( )  or ( )
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ˆ ˆ[ ( )] if ( )
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where γN and γS represent the shape parameters for the individual desirability functions, 

chosen based upon the degree of importance in obtaining the corresponding target τN  or 
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τS.  The range of each individual desirability function is [0, 1], where values close to or 

equal to 1 are considered ideal and values at or near 0 are considered undesirable.   

(ii)   Weights are established for each of the individual desirability functions, denoted 

w, based upon the established fit of the response surface designs.  Here, the weighting 

system proposed by Xu et al. (2004) is invoked: 

, 2

1
,w

R
µ θ = where 20 1R≤ ≤                                                        (5.7) 

(iii)  Given the weights for the mean and variability measure of interest, the objective 

is then to determine the factor settings x* = (X1*, X2*, ..., Xv*) that maximize the 

weighted geometric mean of the individual desirability functions, referred to as the 

composite desirability function D: 

{ }1/( )
ˆˆ[ ( )] [ ( )]

w ww wD d d
µ θ

µ θµ θ
+

= ⋅x x                                                   (5.8) 

As with the individual desirability functions, a composite desirability function with a 

value close to or equal to 1 is considered ideal, whereas a value at or near zero is 

completely undesirable.   

 Similar to the experiment in Part A, Part C examines the performance of the 

variability measures against different variability conditions, specifically when 1,s < 1,s ≈

5,s ≈ 10,s ≈ 30,s ≈ and where the mean coefficient of variation 1CV ≈  and 1CV > .  And as 

in Part B, Part D involves adjusting the variability within each response surface, namely 

when Var(s) ≈ 0.05, Var(s) ≈ 0.50, Var(s) ≈ 2, Var(s) ≈ 5, Var(s) ≈ 60, and Var(s) ≈ 120. 

Finally, using the optimal factor settings x* identified for each experimental 

condition, we may calculate the mean square error (MSE) using Equation (5.9).  This 
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criterion will serve as the primary tool for comparing the performance among the 

different variability measures. 

 2 ˆˆ[ ( *) ] ( *),MSE µ τ θ= − +x x  where 2 2 2ˆ ˆ( *) ( *),  ( *),  or {exp[ln ( *)]}θ σ σ σ=x x x x               (5.9) 

5.3   Numerical Example 

5.3.1  Examining a Semiconductor Manufacturing Process 

Consider the experiment shown in Table 5.3 where the effect of various factor 

settings on the coating thickness (Y) of silicon wafers, measured in micrometers, is 

investigated for a semiconductor manufacturing process.  A central composite design is 

used, consisting of 13 runs among two control factors − the temperature of the molding 

stage (X1) measured in degrees Fahrenheit, and the injection flow rate (X2) measured in 

pounds per second.  As an N-type characteristic, a desired target value of τ = 77.5 µm is 

established for the coating thickness in this experiment, with a lower and upper 

specification limit of 73.5 µm and 81.5 µm, respectively.  Four replications of the 

experiment are performed; Table 5.3 depicts the calculations for the mean and each 

variability measure for the case when 1s <  ( 0.686s = ).  We then develop a full second-

order response surface design for the mean and each variability measure, as noted below: 

          2 2
1 2 1 2 1 2ˆ( ) 75.5701 0.6509 0.6120 0.0125 0.3867 0.2822X X X X X Xµ = − − − − +x  

          2 2
1 2 1 2 1 2ˆ( ) 0.5540 0.0476 0.0069 0.0556 0.1021 0.1122X X X X X Xσ = + − − + +x  

          2 2 2
1 2 1 2 1 2( ) 0.3396 0.0650 0.0024 0.0958 0.1291 0.1402X X X X X Xσ = + − − + +x  

          2 2
1 2 1 2 1 2ln ( ) 0.6538 0.0705 0.0164 0.0649 0.1776 0.1960X X X X X Xσ = − + − − + +x  
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Table 5.3. Semiconductor Manufacturing Process − Experimental Framework ( 1s < ) 

 Coded Units      
 Temp Flow Rate Coating Thickness (µm)     

Run X1 X2 Y (4 replications) y  s s2 ln s 

1 –1 –1 76.3 78.0 76.5 77.0 76.950 0.759 0.577 −0.275 
2 1 –1 74.0 75.5 73.4 74.8 74.425 0.918 0.843 −0.086 
3 –1 1 75.2 76.1 77.0 74.9 75.800 0.949 0.900 −0.053 
4 1 1 72.0 73.5 74.1 73.3 73.225 0.885 0.782 −0.123 
5 –1.41 0 74.9 75.1 76.0 74.8 75.200 0.548 0.300 −0.602 
6 1.41 0 75.6 75.9 74.3 74.7 75.125 0.750 0.563 −0.288 
7 0 −1.41 78.5 77.0 77.2 76.9 77.400 0.744 0.553 −0.296 
8 0 1.41 76.0 75.9 76.1 76.7 75.600 0.594 0.353 −0.520 
9 0 0 76.1 77.0 75.9 76.7 76.425 0.512 0.263 −0.669 
10 0 0 75.1 75.3 76.1 74.0 74.800 0.572 0.327 −0.559 
11 0 0 75.5 76.0 75.8 76.1 75.850 0.265 0.070 −1.330 
12 0 0 74.0 75.2 75.1 74.3 74.650 0.592 0.350 −0.525 
13 0 0 76.2 75.0 77.0 76.3 76.125 0.830 0.689 −0.186 

 
 

For Part A and B, we use the Vining and Myers optimization scheme to identify 

the optimal factor settings for the process.  In Part A, the conditions as shown in Table 

5.3 where 1s <  are considered, and in Part B, the conditions are adjusted slightly such 

that Var(s) ≈ 0.05.  Shown in Tables 5.4 and 5.5 are the results for Part A and B, 

respectively, examining each of these specific cases when the normalized variability 

measure is used.  The most favorable results in terms of MSE are highlighted. 

For Part C and D, we observe the effects of performing a simultaneous 

optimization of the mean and variance using a modified desirability function approach.  

The same conditions used in Parts A and B are applied to Parts C and D, respectively; 

Tables 5.6 and 5.7 portray the results looking specifically at these specific cases 

involving the normalized variability measure.  The shape parameter is established at γ = 1 

for each of the individual desirability functions. 
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Table 5.4.  Results for Part A  

Condition Measure x* ˆ( *)µ x  ˆ( *)θ x  MSE 

1s <  
σ (−0.358864, −1.42299) 77.19 0.576 0.672 
σ2 (−0.358849, −1.42300) 77.19 0.571 0.667 

ln σ (−0.358899, −1.42299) 77.19 0.584 0.679 

1s ≈  
σ (0.639456, 0.157584) 77.50 1.023 1.023 
σ2 (0.639724, 0.153632) 77.50 1.134 1.134 

ln σ (0.639589, 0.155577) 77.50 0.822 0.822 

5s ≈  
σ (0.590287, 0.733351) 77.50 28.88 28.88 
σ2 (0.579087, 0.695808) 77.50 29.04 29.04 

ln σ (0.603747, 0.776081) 77.50 28.72 28.72 

10s ≈  
σ (−0.707010, −1.22480) 77.50 104.14 104.14 
σ2 (−0.707010, −1.22480) 77.50 104.08 104.08 

ln σ (−0.707011, −1.22480) 77.50 104.18 104.18 

30s ≈  
σ (−0.828696, 1.14598) 77.50 872.76 872.76 
σ2 (−0.828695, 1.14598) 77.50 867.84 867.84 

ln σ (−0.828696, 1.14598) 77.50 876.98 876.98 

1CV ≈  

σ (−0.714443, 0.090337) 580.00 3.35e+05 3.35e+05 
σ2 (1.41287, 0.061710) 580.00 3.42e+05 3.42e+05 

ln σ (0.140391, 0.464538) 580.00 3.22e+05 3.22e+05 

1CV >  

σ (−0.111354, −0.099333) 580.00 4.98e+05 4.98e+05 
σ2 (−0.136141, −0.201816) 580.00 5.08e+05 5.08e+05 

ln σ (−0.085403, −0.040233) 580.00 4.88e+05 4.88e+05 

 
Table 5.5.  Results for Part B  

Condition Measure x* ˆ( *)µ x  ˆ( *)θ x  MSE 

Var(s) ≈ 0.05 
σ (−0.322639, −1.39602) 77.41 0.895 0.903 
σ2 (−0.322949, −1.39592) 77.41 0.915 0.922 

ln σ (−0.322926, −1.39594) 77.41 0.877 0.884 

Var(s) ≈ 0.5 
σ (−0.650584, 0.060606) 77.50 0.893 0.893 
σ2 (−0.829865, 0.243073) 77.50 0.955 0.955 

ln σ (−0.557127, −0.057275) 77.50 0.725 0.725 

Var(s) ≈ 2 
σ (−0.408740, −1.35386) 77.50 11.73 11.73 
σ2 (−0.408740, −1.35386) 77.50 12.65 12.65 

ln σ (−0.408740, −1.35386) 77.50 11.42 11.42 

Var(s) ≈ 5 
σ (−0.234457, 0.428894) 77.50 14.69 14.69 
σ2 (−0.020587, 0.405397) 77.50 20.36 20.36 

ln σ (−0.483806, 0.486030) 77.50 7.63 7.63 

Var(s) ≈ 60 
σ (1.12756, 0.853585) 77.50 160.93 160.93 
σ2 (1.12756, 0.853585) 77.50 145.37 145.37 

ln σ (1.12756, 0.853585) 77.50 161.14 161.14 

Var(s) ≈ 120 
σ (−0.801505, −1.16516) 77.50 42.05 42.05 
σ2 (−0.767158, −1.13274) 77.50 0.011 0.011 

ln σ (0.541847, 1.30629) 77.50 64.33 64.33 
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The weighting of the composite desirability function D is based upon the 

coefficient of determination, as described in Section 2.  While the response surface 

design for the mean naturally has the same fit for all three measures, the values of R2 for 

the variability measures differ as shown in the table.  For this experiment, the quality of 

the fit for the response surface corresponding to a particular variability measure is of little 

concern; the comparison of the fit among response surfaces is of greater concern, as they 

are all designed using the same terms.  The most favorable results in terms of the MSE 

and composite desirability (D) are highlighted. 

Table 5.6.  Results for Part C. 

Condition Measure x* ˆ( *)µ x  ˆ( *)θ x  MSE R2 D 

1s <  
σ (−0.631033, −1.00624) 76.72 0.422 1.030 38.1% 0.745 
σ2 (−0.730602, −1.14028) 76.89 0.466 0.838 38.7% 0.743 

ln σ (−0.545607, −0.896334) 76.58 0.368 1.214 34.8% 0.754 

1s ≈  
σ (0.639450, 0.157666) 77.50 1.023 1.023 63.3% 0.893 
σ2 (0.639724, 0.153633) 77.50 1.134 1.134 75.5% 0.892 

ln σ (0.639583, 0.155669) 77.50 0.822 0.822 44.1% 0.897 

5s ≈  
σ (0.590353, 0.733567) 77.50 28.88 28.88 49.9% 0.426 
σ2 (0.579091, 0.695822) 77.50 29.04 29.04 50.4% 0.424 

ln σ (0.603748, 0.776092) 77.50 28.72 28.72 49.3% 0.431 

10s ≈  
σ (−0.707010, −1.22480) 77.50 104.14 104.14 54.5% 0.414 
σ2 (−0.707010, −1.22480) 77.50 104.08 104.08 55.4% 0.418 

ln σ (−0.707010, −1.22480) 77.50 104.18 104.18 53.6% 0.410 

30s ≈  
σ (−0.828695, 1.14598) 77.50 872.76 872.76 51.3% 0.280 
σ2 (−0.828695, 1.14598) 77.50 867.84 867.84 51.5% 0.289 

ln σ (−0.828695, 1.14598) 77.50 876.98 876.98 51.0% 0.272 

1CV ≈  

σ (1.27569, −0.610416) 509.27 2.60e+05 2.65e+05 47.3% 0.598 
σ2 (0.916154, −1.07734) 497.06 2.38e+05 2.45e+05 50.0% 0.612 

ln σ (0.298050, −0.189638) 528.44 2.74e+05 2.77e+05 43.9% 0.596 

1CV >  

σ (−0.111354, −0.099331) 580.00 4.98e+05 4.98e+05 51.9% 0.716 
σ2 (−0.136142, −0.201827) 580.00 5.08e+05 5.08e+05 51.8% 0.709 

ln σ (−0.085424, −0.040272) 580.00 4.88e+05 4.88e+05 51.3% 0.722 
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Table 5.7.  Results for Part D. 

Condition Measure x* ˆ( *)µ x  ˆ( *)θ x  MSE R2 D 

Var(s)  
≈ 0.05 

σ (−0.633500, −0.670144) 76.43 0.425 1.553 48.6% 0.718 
σ2 (−0.695300, −0.599372) 76.36 0.450 1.744 51.2% 0.701 

ln σ (−0.557368, −0.707802) 76.47 0.380 1.439 42.5% 0.739 

Var(s) 
 ≈ 0.5 

σ (−0.649855, 0.059772) 77.50 0.893 0.893 84.4% 0.919 
σ2 (−0.828640, 0.241932) 77.50 0.955 0.955 92.2% 0.918 

ln σ (−0.555983, −0.058904) 77.50 0.725 0.725 62.0% 0.922 

Var(s) 
 ≈ 2 

σ (−0.408740, −1.35386) 77.50 11.73 11.73 35.8% 0.794 
σ2 (−0.408751, −1.35389) 77.50 12.65 12.65 33.3% 0.771 

ln σ (−0.408740, −1.35386) 77.50 11.42 11.42 38.6% 0.806 

Var(s)  
≈ 5 

σ (−0.219517, −1.02140) 77.50 11.84 11.84 13.3% 0.728 
σ2 (−0.410969, −1.32174) 77.50 13.71 13.71 15.0% 0.689 

ln σ (−0.483759, 0.486018) 77.50 7.63 7.63 15.0% 0.831 

Var(s)  
≈ 60 

σ (1.12756, 0.853585) 77.50 160.93 160.93 61.7% 0.956 
σ2 (1.12756, 0.853585) 77.50 145.37 145.37 64.6% 0.962 

ln σ (1.12756, 0.853585) 77.50 161.14 161.14 57.3% 0.954 

Var(s)  
≈ 120 

σ (−0.801510, −1.16516) 77.50 42.05 42.05 64.2% 0.982 
σ2 (−0.767175, −1.13276) 77.50 0.002 0.002 69.5% 0.999 

ln σ (−0.801504, −1.16516) 77.50 56.09 56.09 51.1% 0.973 

 
 

5.3.2  Analysis of Results 

Upon examining the results in Tables 5.4-5.7, the most obvious finding is that the 

results for MSE and D never indicate the standard deviation as outperforming either the 

variance or logarithmic transformation as a variability measure.  In fact, the performance 

of the measure always appears to be second among the three choices.  The reason for this 

behavior is best explained by examining the situation graphically.  As discussed in (i)-

(iii) below, we encounter three separate situations in the results: 

(i)  Consider the conditions established for the experiment in Part A, specifically the 

case where 1s ≈ .  Figure 5.1 depicts the contour plots for each of the normalized 

response surfaces, along with the circular experimental region (–––) and the target line 
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(▪▪▪▪▪), indicating all of the points by which the process mean is equal to the target of 77.5 

µm.  

 
                              (a)                                    (b)                                    (c) 

Figure 5.1.  Comparison of Optimal Factor Settings (•) for Variability Measures 
(a) Standard Deviation, (b) Variance, and (c) Logarithm of the Standard Deviation 

 
The fitted response surfaces within Figure 5.1 are slightly different.  The surfaces for the 

normalized standard deviation and variance measures are more elongated than that of the 

logarithmic function, and the latter appears to be centered more within the experimental 

region of interest.  Suppose we overlap the contour surfaces in Figure 5.1 and the 

minimum for each surface is identified in relation to the target line and the experimental 

region of interest, as shown in Figure 5.2.  The minima within the region of interest are 

labeled S, V, and L for the standard deviation, variance, and log functions, respectively.  

For this case, a comparison of the surfaces at an identical contour value indicates that the 

logarithm function is able to achieve a minimum closer to the target line within the 

experimental region of interest.  The numerical results indicate the same outcome − the 

logarithm function is able to achieve a smaller MSE and the resulting optimal factor 

settings for each of the variability measures are slightly different. 
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Figure 5.2.  Relation between Response Surfaces at Identical Contour Heights and the 
Target Line ( 1s ≈ ) for the Standard Deviation (–•–), Variance (▪▪▪▪), and Logarithm of 

the Standard Deviation (–––) 

 
 (ii)  With some of the experimental conditions, however, the optimal factors 

identified among the different variability measures are found to be the same, as in Part A 

for (a) 10s ≈ and (b) 30s ≈ .  In this situation, the minima for the unconstrained surfaces 

are likely found outside the experimental region of interest; when the surfaces are then 

constrained, it creates a situation where each minimum within the experimental region of 

interest aligns at the same point on the boundary.    

 
                                   (a) 10s ≈                                              (b) 30s ≈   

      Figure 5.3.  Relation between Response Surfaces at Identical Contour Heights 
and the Target Line for the Standard Deviation (–•–), Variance (▪▪▪▪), and 

Logarithm of the Standard Deviation (–––) 
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As shown in Figure 5.3 (a) and (b), corresponding to the numerical results, the variance 

estimator actually achieves a value closer to the target line when performing an identical 

contour height comparison. 

(iii)   In addition, the numerical output indicates that there are situations, specifically 

when 1s < , where the desired target of 77.5 µm is not achievable, and some process bias 

results.  This particular situation occurs when the target line lies outside the experimental 

region of interest, as observed in Figure 5.4.  In this case, given identical contour heights 

for each of the surfaces, it is the variance estimator which achieves a value closer to the 

target line. 

 

Figure 5.4.  Relation between Response Surfaces at Identical Contour Heights and the 
Target Line ( 1s < ) for the Standard Deviation (–•–), Variance (▪▪▪▪), and Logarithm of 

the Standard Deviation (–––) 

 
The analysis in (i), (ii), and (iii), reveals several findings.  First, the primary 

reason that the standard deviation appears to perform unsatisfactorily from a numerical 

perspective as compared to the variance and logarithm function is due to the scaling 

associated with each measure.  The scale of the functions naturally increases when one 

transitions from the logarithm function to the standard deviation to the variance.  Thus, 
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the contours of the surface associated with the standard deviation are naturally bounded 

by the contours of the logarithm function and variance for any condition.  Depending on 

the orientation of the surfaces within the experimental region of interest, it is then either 

the contours of the logarithm function or variance that are aligned closer to the target line.  

Figure 5.5 captures this concept graphically; the results from adjusting the target line in 

the case when 1s <  are shown in the upper left portion of each graph.    

 

Figure 5.5.  Relation between Response Surfaces at Identical Contour Heights and the 
Target Line ( 1s < ) for the Standard Deviation (–•–), Variance ( ▪▪▪▪  ), and Logarithm of 

the Standard Deviation (–––) 

 
Another finding from the analysis is the fact that the apparent quality of the fit for 

each response surface has little effect on the performance of the variability measure in 

terms of MSE or composite desirability D.  Nearly one-half of the experiments conducted 

in Part C and D produced results where the measure with the lowest R2 value produced 

the lowest MSE and highest D.  In addition, for a given set of conditions, the optimization 

scheme selected appears to have only a minor effect on the performance of the variability 

measure − in only one instance did the measure with the lowest MSE change upon 

transitioning from a constrained to an unconstrained mean problem.  The simultaneous 

optimization of the mean and normalized variance, however, can result in optimal factor 
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settings that are slightly different than in the constrained problem.  Finally, there appears 

to be little to no effect of increasing the mean or variance of the standard deviation on the 

performance of any one measure − the optimal solutions continue to shift between the 

variance and logarithm function measures.  In sum, the overwhelming factor in the 

performance of each measure is the location of the target line with respect to the minima 

for the normalized surface, as the variation among the minima is slight in nearly every 

case.  Thus, the problem is data-driven; the performance of any two measures may 

change just by examining a different data set.  

5.3.3  Further Discussion 

While the analysis in Section 5.3.2 offers insight into why one variability measure 

may outperform another measure, it does not indicate which measure may be more 

suitable to use.  Researchers generally use the logarithm function when the values of the 

standard deviation are extremely close to zero in order to avoid cases where a fitted 

function may result in values less than zero.  In contrast, they will either use the standard 

deviation or variance for any other set of experimental conditions, so further discussion is 

limited to these estimators.    

For the purpose of illustration, consider a basic example where replicated 

observations are collected on a single factor over multiple levels.  Given the calculations 

for the standard deviation (•) and the variance (▲), first-order fitted functions are 

developed for s and s2.  Figure 5.6 portrays the general relationship between these 

functions and the square of the fitted functionˆ( )σ x .  A second-order fitted function for s2 

is also shown for comparison. 
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Figure 5.6.  Example − Comparison of 2ˆ ( )xσ and 2( )xσ  

 
When the first-order fitted function for the standard deviation ˆ ( )xσ is squared, the result 

is a second-order polynomial.  As the data for the variance maintains a quadratic 

relationship, this function is naturally able to provide a more suitable estimation.  The 

precision of the function 2ˆ ( )xσ , however, is insufficient when compared to the second-

order fitted function for the variance2( )xσ .  The same general result is observed when 

the standard deviation and variance are estimated using second-order fitted functions, as 

shown in Figure 5.7. 

 

Figure 5.7.  Example − Comparison of 2ˆ ( )xσ and 2( )xσ  

 

 

                    

   x      s       s2 
   1    2.0    4.0 
   2    3.0    9.0 
   3    2.0    4.0 
   4    4.0  16.0 
   5    3.0    9.0 
   6    4.0  16.0 
   7    5.0  25.0 

σσσσ(x) = 1.5714 + 0.4286x 

σσσσ2(x) = 0.1430 +2.929x 
 SSE = 106.71, R2 = 69.2% 

 σσσσ 2(x) = 2.469 + 1.347x + 0.1837x2 
  SSE = 95.22, R2 = 72.5%  

x 

σσσσ2(x) = 6.143 −−−−1.071x + 0.5000x2 
  SSE = 85.71, R2 = 75.3%  

 

      

σσσσ(x) = 2.143 + 0.0476x + 0.0476x2 

σσσσ2(x) = 6.143 −−−− 1.071x +0.5000x2 
 SSE = 85.71, R2 = 75.3% 

  σσσσ 2(x) = 4.592 + 2.040x + 0.2064x2 + 0.0045x3 + 0.0023x4 
  SSE = 82.17, R2 = 76.3%  

σσσσ2(x) = 6.140 −−−− 5.090x + 4.370x2 −−−− 1.023x3 +0.0795x4 
 SSE = 69.35, R2 = 80.0%  
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The example above presents the pattern which is observed when two, three, or 

higher-factor experiments are performed.  When both 2ˆ ( )xσ and 2 ( )xσ are of the same 

order, the latter is able to provide a more suitable estimation of the response, as it is 

designed to provide the least squares fit for the data.  In contrast, when ˆ ( )xσ and 2 ( )xσ

are of the same order, and ˆ ( )xσ is then squared for normalization, 2ˆ ( )xσ is able to 

provide a more suitable estimation.  This presents a tradeoff which describes exactly 

when one variability measure should be used over another.  There are additional 

considerations, however, that make using 2 ( )xσ over 2ˆ ( )xσ more difficult.   

Consider, for instance, the same conditions outlined within Section 5.3.1; the 

fitted functions for 2ˆ ( )σ x and 2 ( )σ x are shown below: 

            2 2 2
1 2 1 2 1 2( ) 0.3396 0.0650 0.0024 0.0958 0.1291 0.1402X X X X X Xσ = + − − + +x                

            

2 2 2 2
1 2 1 2 1 2 1 2

2 3 3 3 3 2 2
1 2 1 2 1 2 1 2 1 2
4 4
1 2

ˆ ( ) 0.3069 0.0527 0.0076 0.0623 0.1154 0.1243 0.0067

0.0114 0.0097 0.0015 0.0114 0.0125 0.0260

0.0104 0.0126

X X X X X X X X

X X X X X X X X X X

X X

σ = + − − + + −

+ + − − − +

+ +

x

 

In this case, the predictive ability of the fourth-order model 2ˆ ( )σ x is much greater than 

the second-order model2 ( )σ x .  In order to overcome this problem and continue to 

achieve a least squares fit of the data, a fourth-order model for 2 ( )σ x is then constructed.  

Pursuant to a screening test for multi-collinearity between the predictor variables, the 

variance inflation factors for the terms in2 ( )σ x all tend to infinity, as the variables are 

found to be perfectly correlated with one another.  Furthermore, the terms X1X2, X1
3X2, 

and X1X2
3 are aliased within the factor space for the fourth-order model, so the columns 
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of the design matrix X are found to be linearly dependent.  Even if we remove the fourth-

order terms and retain the third-order terms, more than one-half of the predictor variables 

in the resulting model produce variance inflation factors that tend to infinity.  Although a 

more accurate estimate of σ2 may be obtained through using 2 ( )σ x the confidence 

intervals for each of the regression coefficients in the model are extremely wide, thus 

wrongly influencing the identification of the optimal factor settings x*.  The reason

2ˆ ( )σ x is not affected by the same issue is due to the reduced parameter space it contains 

compared to 2 ( )σ x .  Given parameters α0, α1, ..., αp for ˆ ( )xσ and parameters β1, β2, ..., βp 

for 2 ( )xσ , Table 5.8 presents the general construct of different response surface designs 

for a single-factor case. 

Table 5.8.  Comparison of Parameter Space for2ˆ ( )xσ and 2 ( )σ x  

 
 
Thus, 2ˆ ( )xσ is able to achieve the higher-order estimation without the over-

parameterization that results from developing a higher-order regression model as shown 

for 2 ( )xσ .   

In most dual response approach experiments, second-order designs are established for

ˆ( )σ x and 2 ( )σ x .  If the experiment has only two factors, it is not possible for 2 ( )σ x to 

Basis Model Order # Parameters 

Given: 

0 1ˆ ( )x xσ α α= +  

(First Order) 

2 2 2 2
0 0 1 1ˆ ( ) 2x x xσ α α α α= + +  2 2 (α0, α1) 

2
0 1( )x xσ β β= +  1 2 (β0, β1) 

2 2
0 1 2( )x x xσ β β β= + +  2 3 (β0, β1, β2) 

Given:
2

0 1 2ˆ ( )x x xσ α α α= + +  

(Second Order) 

2 2 2 2 3 2 4
0 0 1 0 2 1 1 2 2ˆ ( ) 2 (2 ) 2x x x x xσ α α α α α α α α α= + + + + +  4 3 (α0, α1, α2) 

2 2
0 1 2( )x x xσ β β β= + +  2 3 (β0, β1, β2) 

2 2 3 4
0 1 2 3 4( )x x x x xσ β β β β β= + + + +  4 5 (β0, β1, β2, β3, β4) 
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upgrade to a fourth-order model without violating the prescribed limits of multi-

collinearity.  Given a three-factor experiment, some of the terms would likely be aliased 

and would therefore have to be removed.  In this case, it is possible that the resulting 

fourth-order model for 2 ( )σ x with less terms than 2ˆ ( )σ x might serve as a more suitable 

estimate for the response; given a particular example, each measure would have to be 

analyzed statistically.  Finally, given four or more factors, it is likely that 2 ( )σ x is able to 

achieve a fourth-order fit without the presence of undue correlation within the model, and 

thus would be more suitable to use.  Thus, in sum, the dimensions of the factor space play 

the most crucial role in variability measure selection; the variance estimator becomes 

increasingly more accurate as the number of factors in an experiment increase.     

5.4  Conclusion  

When using response surface methods to model the process variability in a robust 

design approach, several different variability measures may be considered.  Typically, the 

standard deviation, variance, or logarithm of the standard deviation is modeled within an 

experimental framework.  The response surfaces for each of these measures differ, 

however, leading to optimal factor settings that also vary slightly from one another.  To 

further complicate the matter, most researchers will use existing data sets in the literature 

to demonstrate an improvement of performance in one model over another.  Thus, an 

analysis of variability measure selection is warranted.  The analysis conducted in this 

chapter suggests that the performance of each variability measure is completely driven by 

the data in an experiment, regardless of the conditions and whether the process mean is 

constrained or unconstrained.  Therefore, in terms of an evaluation criterion such as the 
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mean square error or desirability index, a researcher may demonstrate an improvement 

over an existing model just by changing the variability measure or by examining a 

different data set.  It is important to also note that each measure has specific attributes 

that make it more attractive to use over another under a given set of conditions.  Given 

normalized response surface designs of the same order, the models using the standard 

deviation and logarithm function can never achieve the least squares fit that a model 

using the variance can obtain.  Fitted functions for the variance, however, face challenges 

with multi-collinearity when attempting to model a response using higher-order terms.  If 

the tradeoff between these measures is recognized, it becomes more feasible to compare 

and contrast existing models in robust design.    
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CHAPTER SIX 
 

 
DEVELOPING A CONDITIONS-BASED APPROACH TO TIER-ONE 

ESTIMATION IN ROBUST PARAMETER DESIGN 
 

6.1  Introductory Remarks 

Practically every form of statistical analysis relies upon the validity of certain 

assumptions associated with the inherent conditions of the data being examined.  In fact, 

most of the statistical procedures used by researchers throughout the quality engineering 

literature are based upon underlying assumptions of normality and only moderate 

variability among system outputs.  Similarly, even analyses absent any distributional 

context typically require independence between observed data.   However, many such 

assumptions about the data are made in the interests of tractability and time.  As an 

example, consider the ordinary least squares (OLS) approach to regression.  Huber (1973) 

noted that Gauss’ original justification for OLS regression was “somewhat circular.”   

That is, while OLS estimates are optimal only if the errors are independent and identically 

distributed normal random variables with constant variance, Gauss only assumed this 

about the errors so that he could then use the sample mean, which was (and still is) 

“generally accepted as a good [tier-one] estimate” for the location and which turns out to 

be the optimal estimate in the simplest – or normal case. 

Plainly, when statisticians and mathematicians of the day began using OLS 

regression they did not have the computational capabilities we have at our disposal today.  

Thus, what made OLS regression particularly advantageous was the simplistic and 

explicit manner in which it could be computed from the data.  As a testament to these 
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qualities, Rousseeuw and Leroy (1987) noted its continued widespread use after more 

than 200 years due to “tradition and computational speed;” a fact that remains true to this 

day. 

As our collective understanding of industrial and other processes has evolved, 

researchers and practitioners have begun to accept that the assumptions of normality, 

moderate system variability, and constant variance in the data quite often do not hold in 

practice.  Realistically, industrial processes often exhibit elevated levels of variability, 

particularly in mass production lines, which can confound many of the modeling 

assumptions behind the robust parameter design models available in the literature.  

Furthermore, it is also accepted that perfect normality rarely, if ever, exists in practice.  

Even Walter Shewhart, a notable pioneer in quality engineering, acknowledged the dearth 

of normally distributed data in industrial settings.  Similarly, Pyzdek (1995) observed the 

following: 

“For instance, most… processes don’t produce normal distributions. 
There are many reasons for this.  One important reason is that the 
objective of most management and engineering activity is to control 
natural processes tightly, eliminating sources of variation whenever 
possible.”  

 
These efforts to mitigate variation cause distortions in the data.  Thus, as Pyzdek (1995) 

points out, some asymmetry is not only realistic but practically inevitable – particularly in 

situations involving smaller-the better (S-type), larger-the-better (L-type), and select 

instances of nominal-is-best (N-type) quality characteristics; a condition that could 

become even more pronounced under conditions of elevated variability, especially when 

the number of observations or replicates at each design point is small.   
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Many contemporary quality assurance programs incorporate OLS methods to 

solve a variety of robust design problems as they endeavor to maintain a competitive 

edge in the industrial market.  Pursuant to this, engineers develop linear or non-linear 

optimization schemes that most appropriately and accurately portray a given process to 

determine a set of optimal operating conditions that will assure minimal deviation from a 

specified mean performance target with minimum variability. However, if the true 

underlying process conditions are overlooked or otherwise assumed away, the estimates 

derived using the traditional least squares approach are likely to be problematic and 

misleading.  Moreover, once applied to optimization schemes to determine optimal 

operating conditions, they may very well generate suboptimal solutions and lead to 

dubious recommendations to decision makers.   

At this point, three things should be clear: 1) the quality and reliability of the 

optimization results depend quite heavily on the initial process estimates used, 2) innate 

process conditions may affect the quality of those estimates, and 3) very little has been 

done in the RPD research field to explore alternatives to traditional estimation approaches 

when certain conditions exist.  For these reasons, this chapter will outline a conditions-

based approach for working with non-standard conditions.  In particular, modifications to 

traditional RPD methodology are proposed that incorporate the various aspects of data 

analysis outlined in Chapter 4 in order to ascertain underlying data conditions and then 

use this information to drive the selection of tier-one estimators.  Numerical examples 

and Monte Carlo simulation will serve to illustrate how the proposed methodology is 

used, as well as which estimators tend to perform best under asymmetric and highly 
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variable conditions.  The original work for the research outlined in and otherwise 

associated with this chapter is published with references Boylan and Cho (2012b, 2012c, 

and 2013a). 

6.2  Methodology Development 

While a variety of conditions could affect estimator selection, this paper focuses 

on inherent asymmetry and elevated variability in process outputs.  A conditions-based 

approach to the RPD problem is proposed, whereby a more comprehensive data analysis 

is used to illuminate intrinsic process conditions that will, in turn, inform the selection of 

appropriate tier-one estimation approaches and the development response surface 

functions for the process mean and variability.  The result is a methodology that is based 

on a fuller understanding of innate process characteristics that will, in turn, facilitate a 

more realistic and accurate portrayal of the process under investigation.  A proposed 

sequence for implementing this approach is portrayed in Figure 6.1, wherein the 

highlighted portions in Phase Ib (sub-steps (i) and (ii)) encompass proposed 

enhancements to the RPD methodology. 

At this point, it is important to distinguish between the goals of this chapter and 

the proposed methodology that will evolve based upon the results to be shown.  Because 

this chapter aims to demonstrate the differences between estimator performances given 

intrinsic process conditions, the integration of the estimation approaches into the RPD 

framework includes all of the candidate estimators under consideration to facilitate 

comparisons and to support conclusions.  However, as the results will eventually show, 

certain estimators will indeed tend to perform best when certain conditions prevail. Thus, 
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the proposed methodology actually advocates an in-depth analysis to ascertain those 

conditions and then the selection of the most appropriate location and scale estimators 

based upon the identified conditions.  

 
 

Figure 6.1.  Process map of proposed methodology for selecting tier-one estimators 

 
6.2.1  Establishing an Experimental Framework 

The procedures described in this chapter focus on the selection of appropriate tier-

one estimators when non-standard conditions such as asymmetry and/or high variability 

prevail.  Although addressed in the context of the general univariate problem, these 

procedures can be extended to the multivariate case, as well as to other conditions.  
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Hereafter, Section 6.2.1.1 will lay out a general experimental framework for the RPD 

problem.  Section 6.2.1.2 will delineate the procedures for selecting appropriate tier-one 

estimators under asymmetric conditions.  Lastly, Section 6.2.1.3 will address procedures 

for estimator selection when high variability pervades system outputs. 

6.2.1.1  The General Univariate Problem 

Experimentation and analysis begin with the specification of response variables, 

factors or predictors influencing the responses, and region of interest for a designed 

experiment.  Suppose the objective is to identify the optimal factor settings x*=(X1* ,X2* , 

..., Xk* ) that support achieving a mean process performance with minimal deviation from 

a desired target and with minimum variability in the result.  Pursuant to this, consider an 

experimental framework whereby a quality characteristic, Y, is influenced by a set of 

control factors X1, X2, …, Xk.  The experiment consists of n design points, or runs, each of 

which contains m replicates for the observed response.  Let yqj denote the jth response at 

the qth design point, where q = 1, …, n and j = 1, …, m.  Table 6.1 portrays the 

framework for such an experiment. 

Table 6.1.  Experimental response surface methodology framework. 

Design Point X1  X2 .... Xk Replications y  s γ3 

1 

Control 
Factor 

Settings 

y11……………….y1m 1y  s1 γ31 

M   M                          M  M  M  M  

q yq1……………… yqm qy  sq γ3q 

M  M                          M  M  M  M  
n yn1………………ynm ny  sn γ3n 

 

The replicates at each design point are then used to obtain parameter estimates for the 

data.  Traditionally, this includes the sample mean ( y ) and standard deviation (s) (or 
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variance, s2), as these obviously define the assumed normal distribution.  However, when 

asymmetry is suspected or expected, the mean and the standard deviation no longer 

completely define the distributional properties inherent to the data.  Thus, the sample 

skewness (γ3) must also be obtained to account for the non-normality in the responses. 

These estimates for the first three sample moments in the data are found using the 

following formulas: 

( )

3
1 1 1

3 3
22
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1

1
1
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y y
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−
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−

∑ ∑ ∑

∑
                         (6.1) 

  Prior to the estimation of response surface functions for the mean and variability 

of the process, a comprehensive data analysis of both the responses and the residuals 

(obtained through preliminary regression analysis using estimators for the mean and 

standard deviation) must be performed to ascertain the underlying conditions in the data.  

This includes an investigation of normality and variability in the process responses, as 

well as the verification of the assumptions of normality, homoscedasticity, and 

independence in the residuals.  These are investigated using both graphical and objective 

methods, which may include the following approaches briefly discussed in the following 

paragraphs. 

Given the focus on inherent process conditions, namely asymmetry and high 

variability, a thorough analysis of the process outputs, or observed responses for the 

quality characteristic of interest, must be performed.  This is accomplished in two ways.  

The first consists of a comprehensive analysis using the graphical techniques outlined in 

Chapter 4.  In particular, these methods will serve to determine whether the distribution is 
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symmetric or asymmetric, the degree of positive or negative skewness, the degree of 

variability, as well as whether or not kurtosis is present.  The second consists of more 

objective approaches that serve to reinforce deductions inferred from the graphical 

analysis.  In this particular case, we are interested in asymmetry and high variability, 

which will drive the choice of the objective methods used.  Parts (a) and (b) address each 

condition, respectively. 

(a) Assessing asymmetry.  Since most statistical tests relating to distributional 

contexts focus on whether data are normally distributed or not, testing for asymmetry is 

best achieved by approaching the hypothesis from the opposite context.  That is, by 

testing for normality.  This can be accomplished via a variety of well-established 

methods, such as the Kolmogorov-Smirnov test for large samples (> 2000), or the 

Shapiro-Wilk test for small or medium-sized samples.  Generally, due to a variety of 

reasons including experimental costs, the sample sizes obtained in RPD experimentation 

typically fall in the latter category.  Thus, for the Shapiro-Wilk test, when the p 

observations made on quality characteristic are sorted in ascending order, the alternative 

hypotheses 2
0 : ( , )H Y N µ σ∈ and 2

1 : ( , )H Y N µ σ∉ are evaluated using the W statistic given 

by:  

2

*
1 ( 1)

1

,    where 
1

p l p l l
l

b
W b a y y

s p

κ

− + − +
=

 
 = = −   −  

∑ .  Here, κ is the largest integer that 

is less than or equal to p/2, and s denotes the sample standard deviation.  For a given 

significance level α, tables are then used to reference the coefficients a and the critical 

values Wα.  Different from most statistical tests, since the critical region lies in the small 

tail of the distribution, if W* > Wα then H0 is concluded (that is, sufficient evidence exists 
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to suggest the observations follow a normal distribution).  It is important to note that one 

drawback to these objective tests is that if the data are not normally distributed they 

provide no information regarding the manner in which they are distributed.  This 

highlights the importance of first using the graphical approaches described in Chapter 4 

to overcome this shortfall and to provide more salient information about the data.   

 (b) Assessing high variability.  Determining whether a process is highly variable 

is somewhat of a subjective matter delineated in objective terms.  A trademark of high 

variability data is that their sample standard deviation is in general quite large, implying a 

“largely uninformative” sample mean that fails to adequately describe the location of the 

bulk of the observed values.  Using this concept, a highly variable process is classified as 

one in which the range of variability in the responses is noticeably large and where one or 

more of the responses lies more than three standard deviations (+/-3σ) from the mean 

response. 

Since OLS regression is applied in the development of response surface designs in 

this Chapter, the necessary assumptions underpinning this particular approach must first 

be validated. Regardless of the distribution used to model Y, the residuals in fitting a 

response variable should be normally distributed, uncorrelated, and exhibit 

homoscedasticity or constant variance.  As in the analysis of the responses, a variety of 

graphical methods may be used to ascertain the degree to which the residuals comply 

with these assumptions and more objective hypotheses tests may be conducted to confirm 

the feedback from these visual results. As with the responses, normality in the residuals 

may also be examined using graphical measures such as the normal probability plot, 
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followed by the more objective methods provided by the Kolmogorov-Smirnov or 

Shapiro-Wilk tests.  To investigate independence, the Durbin-Watson test is usually 

sufficient to detect a lack of randomness in the residuals.  Should remediation be 

necessary, one can add predictor variables or use transformations in the variables to 

eliminate interdependencies.  Heteroscedasticity, or non-constant variance, is most often 

investigated graphically using a plot of the residuals against the fitted values, as well as 

objectively using either the Brown-Forsythe test, which is more robust to departures from 

normality in the data, or the Breusch-Pagan test.  For the purposes of this chapter, it is 

assumed that these assumptions hold, thereby eliminating the need to illustrate the 

graphical and objective analyses in detail.  Chapter 7 will examine them more closely in 

the context of tier-two estimation. 

6.2.1.2  Modeling Asymmetry 

In traditional RPD applications, asymmetric conditions typically observed in the 

univariate S- and L-type problem are often modeled via a Weibull or gamma distribution.  

Ideally, however, it would be preferable to use a distributional model capable of 

supporting both the symmetry usually assumed in the N-type model, as well as the 

asymmetry of the S-, L-, and certain N-type models.  Although some common 

distributions (such as the gamma, Weibull, and unbounded Johnson distributions) can 

effectively portray processes with innate skewness, they present challenges in modeling 

normality when zero skewness exists.  

Due to its inherent relationship to the normal distribution, the skew normal (SN) 

distribution provides a suitable alternative for modeling both symmetric and asymmetric 
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situations.   First introduced by O’Hagan and Leonhard (1976) and addressed more 

recently by Azzalini (1985), Azzalini and Dalla-Valle (1998), and Arellano-Valle et al. 

(2002), the skew normal distribution extends the normal by incorporating a third 

parameter, α, as a shape parameter to account for non-zero skewness.  Incorporating this 

shape parameter, the probability density function for the skew normal relative to the 

normal distribution is given by:  

( ) ( ) ( )| 2f x x xα φ α= Φ , � � � 

where ( )φ x and ( )αΦ x (with 0α = ) correspond to the probability density and cumulative 

distribution functions of the normal distribution.  Recall that the normal probability density 

function for some random variable Z with parameters µ and σ2
 can be rewritten in terms of 

the standard normal density function 

2

22

1 ( ) 1
( ) exp

22

µ µ
φ

σ σσπσ

 − − = − =   
  

z

z z
f z                                 (6.2) 

We can easily extend this by adding location (ξ) and scale (ω) parameters to the density 

function, using the transformation ( ) /x x ξ ω→ − .  This yields:  

2

2

2

2

2 ( )
( )

2 1 ( ) 1 ( ) /
exp 1 erf

2 22 2
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2 22 2
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x x
f x

x x

x x

ξ α ξ
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σ ω σ

ξ α ξ ω
ω ωπ

ξ α ξ
ωω π ω

 − −   = Φ        

    − − 
= − × +      

     

  − − 
= − × +    

    

                        (6.3) 
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It can be shown that when α = 0, the skew normal distribution reduces to the normal, 

making normality a special case of the SN(ξ, ω, α) distribution.  From Azzalini (1985), 

the mean and standard deviation of a SN(ξ,ω,α) distribution are given by: 

            [ ] ˆ  = 2E y µ ξ ωδ π= +                                                     (6.4) 

( )2 21 2s ω δ π= − ,                                                     (6.5) 

where 21δ α α= + .  The SN distribution is a relatively new distribution compared to 

the more commonly observed family of continuous distributions.  Since it derives from 

the normal distribution, which remains widely used among quality engineers for N-type 

characteristics, its extension to S and L-type characteristics may help to overcome many 

of the modeling complexities encountered in asymmetric situations.   

As Goethals and Cho [53] showed, modeling system properties with the skew normal 

distribution can be achieved by first calculating estimates for the first three sample 

moments (mean, standard deviation, and skewness) for the qth design point.  Although 

the location and scale of a skew normal distribution are not equivalent to the mean and 

standard deviation as they are in the normal case (unless the shape parameter α = 0), 

since the number of replicates m at any one design point are usually low (i.e., m<5) we 

may assume normality among the replicates.  Under this assumption, the sample mean qy

and standard deviation sq then correspond to the location (ξq) and scale (ωq) parameters at 

the qth design point.  Thereafter, these estimates are used to derive estimates for the skew 

normal process mean and standard deviation by applying them to Equations (4) and (5) as 

follows: 
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( ) qˆ  = 2q SN q qy sµ δ π+                                                   (6.6) 

( )2 2
( ) 1 2q SN q qs s δ π= −                                                (6.7)                                                                   

Here, the parameter δq is estimated using the sample skew.   In short, using an alternative 

formulation for sample skew provided by Azzalini (1985), an estimate for δq can be 

derived as follows: 

( )
( )

3 2/3

3

3 3/2 2/3 2/32
3

2 ˆ4 ˆˆ
2 2 ˆ ((4 ) / 2)1 2

q

q q

q

δ π γπ π
γ δ

γ πδ π

−
= ⇒ = ⋅

+ −−
 

where the sign of 3ˆ qγ determines the sign of δq.  For the purposes of simulation, the 

estimate for δq may then be used to estimate the shape parameter directly by rearranging 

the previously stated relationship in the following way: 

                                    
2 2

ˆ
ˆ

ˆ1 1
q

q q
q

q q

α δ
δ α

α δ
= ⇒ =

+ −
    

This step is necessary in R, as the shape parameter and sample skew are scaled differently 

in the context of the skew normal distribution.   

As Equations (6.6) and (6.7) suggest, the estimates for the process mean and standard 

deviation are influenced by the inclusion of the sample skew.  Thus, by using this 

method, we ensure that inherent process skewness is accounted for in the ultimate 

response surface estimates used for the process mean and standard deviation, and so 

further ensure that actual process characteristics are more accurately represented. 
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6.2.1.3  Estimator selection under asymmetric conditions 

Statistical literature is replete with myriad estimators for location and scale.  A 

great many of these, commonly known as robust estimators, evolved to address the 

problems presented by outliers.  In this instance, the term robust describes an estimator’s 

ability to overcome the influences or leverage exerted by outliers on the estimate.  

However, whereas outliers are often viewed as anomalies and errant data, asymmetry can 

be an inherent and intricate part of a process, particularly in the case of certain types of 

quality characteristics.  But the idea of asymmetry or skewness is not so far removed 

from the discussion about outliers.  In fact, but for the inherent heaviness in the long tail 

of a skewed distribution, the distribution might not be skewed at all.  In examining 

asymmetric conditions, four location and five scale estimators are considered as potential 

alternatives to the sample mean and standard deviation (base case), listed in Table 6.2. 

 
Table 6.2. Location and scale estimators examined as potential RPD alternatives. 

 Location Estimators Scale Estimators 

Base Case sample mean (y ) sample standard deviation (s) 

Alternatives  
for  

Comparison 

, 2

,

median ( )

Huber 'Proposal 2' M-estimator ( )

Hodges-Lehmann estimator ( )

Tau (y )

n H

n

n

y

y

HL

τ

%

%

%

 
, 2

,

median absolute deviation ( )

Huber 'Proposal 2' M-estimator ( )

 estimator

 estimator

Tau ( )

n H

n

n

n

MAD

s

S

Q

s τ

 

 

The reasons for selecting this particular set of alternative estimators are quite 

simple.  First, the top two alternatives in each category are the only tier-one estimation 

alternatives that have been examined in RPD settings.  Consequently, the prior efforts 
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involving them, listed in Table 2.3 in Chapter 2, provide a logical basis of comparison for 

the conditions examined in this paper.  The remaining candidates are well-known in 

statistical circles for their robustness and efficiencies but are, as of yet, untested in the 

context of RPD and so are examined as potential alternatives here.  The following 

paragraphs provide some basic background on these estimators and the reasons for 

including them; Table 6.3 summarizes them in the context of their mathematical 

formulations.   

  Park and Cho (2003) suggested the use of the sample median and the MAD as 

alternatives to the sample mean and standard deviation in RPD approaches where outliers 

contaminate the data.  Although these estimators are well-known for their resistivity to 

the effects of outliers, they are equally well-known for their comparative lack of 

efficiency under normality.  But in the case of the mean, this is not surprising, as the 

sample mean is known to be the maximum likelihood estimator of the population mean in 

the Gaussian case.  However, it should be noted that this result reflects the limiting case 

and is more correctly referred to as the asymptotic relative efficiency (ARE) or the large-

sample limit of the ratio of the variances.  As Serfling (2011) notes, for smaller sample 

sizes the relative efficiency of the median to the mean improves.  In particular, when n=5 

in the normal case, the ARE jumps to 95%, and then decreases to 80% when n=10, 70% 

for n=20, and ultimately to 64% as→∞n .  The MAD fairs even worse at 37% efficiency 

relative to the standard deviation, suggesting an even greater need for considerably larger 

samples to achieve equivalent performances.  In terms of resistivity to the leverage of 

outliers, however, each possesses a breakdown of 50%, which is the highest possible.  



 
 

155 

This simply refers to the proportion of outlying observations that can be accommodated 

before the estimator “breaks down.”  By comparison, the mean and standard deviation 

have a breakdown of 0% since even a single outlying observation can induce a significant 

shift in the estimate. 

To overcome the efficiency issues with the median and MAD, Lee et al.36 

extended the Park and Cho (2003) proposal by incorporating Huber’s M-estimation 

approach to provide a highly efficient and resistant alternative for robust design solutions 

in situations involving outliers.  The ‘Proposal 2’ estimator suggested by Huber (2009) 

uses a bounded monotone function to incorporate resistivity to outlying influencers 

without discounting them altogether.  This so-called ‘psi’ function forms the basis of two 

equations which are solved simultaneously to obtain robust estimates for location and 

scale parameters.  Relative to the sample mean and standard deviation, these estimators 

have AREs of 96% and 80%, respectively, which are marked improvements over the 

median and MAD. 

Another well-established estimator yet to be applied in RPD problems is the 

Hodges-Lehmann location estimator (HLn).  Proposed by Hodges-Lehmann (1963) in the 

early 1960s, the HLn estimator evolved as a robust nonparametric estimator of a 

population’s location parameter, also referred to as the pseudo-median.  Computed as the 

median of all pairwise averages the sample observations, the HLn estimator is known for 

its excellent overall performance in terms of its efficiency and resistivity to outliers.  In 

fact, with 2( , , ( , )) 96%nARE HL y Nθ σ ≈ , this estimator is highly competitive with the 

sample mean under normality, can be “infinitely more efficient” under some other 
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symmetric distributions with heavier tails, and is “never much less efficient” at any 

distribution, thereby making it a viable alternative to consider under the asymmetric 

conditions examined here (Serfling, 2011). 

Table 6.3.  Estimators and associated formulae compared in hypothetical example. 

 
 

Sn and Qn estimators for scale were developed by Rousseeuw and Croux (1993) as 

alternatives to the MAD that can be used as initial or ancillary scale estimates but that are 
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more efficient and not “slanted” toward symmetric distributions.  The MAD’s partiality 

toward symmetry lies in the fact that, after estimating a central value (the median), it 

assigns equal importance to positive and negative deviations from that value.  This 

clearly presents potential issues in asymmetric cases where such deviations may not bear 

equal importance.  The Sn estimator uses median statistics to achieve the same high 

breakdown of the MAD (50%) but with greater efficiency (~58%).  The Qn uses a 

different order statistic that facilitates an equally high breakdown as the Sn, but with an 

even better efficiency at Gaussian distributions (~82%).  More importantly in the context 

of this paper, both are equally suited for asymmetric distributions, as well. 

Finally, tau estimators for location and dispersion were developed by Maronna 

and Zamar (2002) to reduce the computational complexities and times associated with 

other high-breakdown robust estimators.  The location estimate uses a weighted mean 

that incorporates median statistics in establishing the weight; the scale estimate uses a 

truncated standard deviation that invokes the MAD as a starting point.  These two 

estimators also combine relatively high efficiency (80% in each case) with high 

resistivity, but have yet to be examined in RPD problems. 

6.2.1.3  Estimator selection in highly variable processes 

As has been noted previously, elevated degrees of variability increase the 

potential for extreme observations from one tail or the other of the distribution.  While 

such data points are often perceived as anomalies and therefore errant observations, under 

highly variable conditions they can be an inherent part of process performance that must 

be accounted for.  This makes robust estimators particularly interesting because they 
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mitigate the leverage exerted by extreme observations without discounting them 

altogether.  In examining high-variability conditions, five location and six scale 

estimators are considered as potential alternatives to the sample mean and standard 

deviation.  As Table 6.4 shows, these are precisely the same estimators considered in the 

asymmetric case with one additional estimator each for the location and the scale.  These 

are the maximum likelihood estimators (MLE) for the mean and standard deviation, 

which are obtained using the SN distribution previously described.   

 
Table 6.4. Location and scale estimators examined in the high-variability case. 

 Location Estimators Scale Estimators 

Base Case sample mean (y ) sample standard deviation (s) 

Alternatives  
for  

Comparison 
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The inclusion of the MLE in this case may seem somewhat redundant and 

therefore make little sense, recognizing that the location of a normal distribution equates 

to the population mean, for which the sample mean is the MLE.  However, it is also 

widely acknowledged that true normality rarely, if ever, exists and that some asymmetry 

is not only realistic but practically unavoidable; a situation that could become even more 

pronounced under conditions of elevated variability, particularly when the number of 

observations or replicates at each design point is small.   



 
 

159 

As was previously mentioned, it can be shown that when α = 0, the skew normal 

distribution reduces to the normal, making normality a special case of the SN distribution 

(Azzalini (1985), Arellano-Valle (2002)).  Thus, using the skew normal distribution 

works to overcome problems presented by inherent asymmetry by allowing us to model 

both situations.  If the data are “perfectly” normal or even very close, then it will treat the 

situation as a special case of the SN distribution with zero or negligible skewness.  If they 

are not, however, it will capture any inherent skewness (rather than assume it away) and 

provide a more precise estimate with respect to the location and scale of the distribution.  

Since no closed form expression for the SN(ξ, ω, α) parameters exists, they are estimated 

numerically by maximizing the likelihood function with respect to the components of θ = 

(ξ, ω, α): 

2
2

2
1 1

( )1
log ( ) log ( ) log

2 2 2

n n
i

i
i i

yn
L y

α ξπω
θ ξ

ω ω= =

− = − − − + Φ   
∑ ∑                  (6.8) 

This can be achieved using the sn.mle()  function from Package (sn) in R. This 

function fits a set of data to the SN distribution and then, using the obtained estimates for 

the three parameters, computes maximum likelihood estimates for the mean, standard 

deviation, and skewness for the set of observations. 

6.2.2  Incorporating estimator selection into the RPD framework  

Under either set of conditions, the procedures for integrating the estimators into 

the RPD framework are the same.  Consider an industrial process involving a nominal-

the-best (N-type) quality characteristic as the response of interest, Y, which depends on 

the selected levels of k control factors, x = (x1,…, xk).  Within this system, assume that the 
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levels of xi for i = 1, 2,…,k  are quantitative, continuous, and can be controlled by the 

experimenter.  Further consider a response surface design consisting of m experimental 

runs performed at n design points.  Let yqj denote the j th response at the qth design point, 

where j = 1,…,m and q = 1,…,n.   

Using the formulations shown in Table 6.3 for each of the estimators under 

consideration, estimates for the location and scale are obtained at the qth design point.  

Using these estimates, fitted response functions are then developed for the process 

location and scale using traditional least squares regression.  In particular, assuming 

second-order polynomials for the response functions in each case, the general form of the 

estimated response functions for the process location and scale with k parameters or k –1 

predictor variables appear as:  

Location:  T T
,0

ˆ ˆ ˆˆ ( ) µ µ µ µµ β ε= + + +x X b X B X                                               (6.9) 

 Scale:  T T
,0

ˆ ˆ ˆˆ ) σ σ σ σσ β ε= + + +x X b X B X                                                 (6.10) 
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and where ,0
ˆ

µβ (and ,0
ˆ

σβ ), ˆ ˆ (and )µ σb b and ˆ ˆ (and )
µ σ

B B reflect the estimates of the 

intercept, linear, and second-order coefficients for the process location and scale, 

respectively.  The term εµ and εσ correspond to the residual error for the mean and 

standard deviation.  In similar fashion, fitted response surface functions are developed for 

each of the estimate vectors containing the supporting information for each parameter.   
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From here, typical approaches to RPD use the sample mean and standard 

deviation (or variance) as the basis for estimating the regression coefficients in Equations 

(6.9) and (6.10), respectively.  With this in mind, seven additional combinations of the 

alternative estimators (Models B – H in Table 6.5) are considered for the purposes of 

performance comparison.  Note that Model H is used only in the high-variability case. 

 
Table 6.5.  Estimator combinations used in comparative analysis. 

Model  
A 

Model 
 B 

Model  
C 

Model  
D 

Model  
E 

Model  
F 

Model  
G 

Model  
H 

y
s

 ymedian  
MAD 

Huber ‘Proposal 
2’ estimators 

HLn  
Sn 

HLn  
Qn 

Taum  
Taus 

HLn  
MAD  

MLE

MLE

y
s

 

 

To investigate the effects of the fitted functions at estimating a response, the MSE-based 

optimization scheme for an N-type quality characteristic developed by Cho (1994) and 

Lin and Tu (1995), denoted by 

2ˆ ˆMinimize     = ( ( ) ) ( )MSE µ τ σ− +x x                                            (6.11) 

is applied to either a spherical region of interest (in the case of a central composite 

design) such that 2ρ′ ≤x x , whereρ defines the spherical experimental region, and∈x  the 

domain of the control factors, ΩΩΩΩ, or a cuboidal region (in the case of a full factorial 

design) whereby x is bounded on the range (-1, 1) based on coded units.  Using this 

approach as a framework, appropriate combinations of location and scale estimators are 

tested in their ability to determine optimal operating conditions for the system. 



 
 

162 

6.3  Numerical Examples and Simulation 

In this section, several examples are used to illustrate both the impacts of inherent 

conditions on estimator performance and the utility of the proposed methodology as a 

result. Specifically, Section 6.3.1 will examine the effects of asymmetric conditions on 

estimator performance, while Section 6.3.2 will extend the problem to high variability 

processes to ascertain the impacts on estimator selection under this set of conditions.  The 

numerical code used to solve the examples may be found in Appendix A. 

6.3.1  Investigating estimator performance under asymmetric conditions 

The following analysis of estimator selection under asymmetric conditions 

involves two numerical examples to motivate and illustrate the concepts discussed in this 

chapter.  The first consists of a hypothetical example examined via simulation, whereas 

the second is more of a case study using actual industrial data drawn from the literature as 

a basis for additional simulation.  The results from both are used to draw conclusions 

regarding the effects of asymmetry on estimator performances. 

 
6.3.1.1  Hypothetical example via simulation 

A Monte Carlo simulation was constructed using the R software package.  At 

each iterate, two central composite designs (CCD) are constructed, one using normal data 

and the other using skew normal data with a common mean.  This approach allows for a 

more direction comparison between estimator performances in the normal case versus the 

asymmetric case, thereby facilitating an examination of how the presence of skewness 

affects the estimators in an RPD context.  Each CCD consists of 18 total design points 

with 100 replicates for the response at each point.   
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Replicates at each design point are obtained by generating two sets of random 

variates from both normal and skew normal distributions.  In doing so, an existing 

asymmetric data set consisting of replicated responses at each design point serves a basis 

from which to derive the first three sample moments for each design point (which, from 

Equation (6.1) for the qth design point, are the mean (qy ), standard deviation (sq), and 

skewness (̂qk )).  To generate normally distributed data, the first two sample moments at 

the qth design point are used to create 100 random variates from a ( , )q qN y s distribution.  

The generation of skewed data in R requires inputs for the location, scale, and shape 

parameters.  Moreover, the location and scale of a skew normal distribution are not 

equivalent to the mean and standard deviation as they are in the normal case (unless the 

shape parameter α = 0).  Thus, the skew normal approach delineated in Section 6.2.1.2 is 

applied to generate the appropriate estimates for the mean and standard deviation from 

the skewed distribution that more accurately account for inherent process asymmetry.  

Thereafter, response surface functions are developed and the MSE-based optimization 

scheme in Equation (6.11) is applied to obtain optimum operating conditions.  Table 6.6 

depicts a generalized version of the CCD construct used. 

A total of 1,500 iterations of the simulation were performed using freshly 

generated random variates for each CCD at each iterate.  As the objective of robust 

parameter design is to determine the optimum operating conditions that facilitate target 

achievement with minimal bias and variability, comparisons are made using the bias and 

mean squared error resulting from the applied optimization scheme.   
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Table 6.6.  Central composite design (CCD) comprised of eight corner 
points, six axial points, and four center points, used at each iterate. 

Run X1 X2 X3 

Replications 
(newly generated 
at each iteration) 2, , , , τ% % % %H HLy y y y y  2,, , , , τH n ns MAD s S Q s 

1 -1 -1 -1 y1,1 ….. y1,100 

Location  
Estimates 

Scale  
Estimates 

2 1 -1 -1 Y2,1 …. y2,100 
3 -1 1 -1 Y3,1 …. y3,100 
4 1 1 -1 
5 -1 -1 1 

 

6 1 -1 1 
7 -1 1 1 
8 1 1 1 
9 -1.68 0 0 

 

10 1.68 0 0 
11 0 -1.68 0 
12 0 1.68 0 
13 0 0 -1.68 
14 0 0 1.68 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 Y18,1 …. y18,100 

 

Assuming a customer-specified process target of t0 = 350, Table 6.7 shows the estimated 

bias and MSE of the optimal mean responseˆ ( )m x* .  The mean squared error (MSE) for 

each model is also included for comparison purposes. 

Table 6.7. Simulation results showing the average MSE and bias of the optimal mean 
response and the average squared residual error for each model across 1,500 iterations. 

  Model A Model B Model C Model D Model E Model F Model G 

  
y
s

 ymedian  
MAD 

Huber  
‘Proposal 2’  

HLn  
Sn 

HLn  
Qn 

HLn  
MAD 

Taum  
Taus 

Normal 

MSE of m(x* ) 1541.433 1745.370 1597.847 1640.447 1573.517 1703.918 1573.214 

Bias of m(x* ) 5.862 7.244 5.935 5.998 5.885 6.284 6.362 

Model Error 761.195 821.726 766.193 767.326 767.326 767.326 797.567 

Skew 
Normal 

MSE of m(x* ) 665.009 641.212 586.543 602.040 592.576 620.946 565.565 

Bias of m(x* ) 8.592 7.167 7.910 7.635 7.503 7.410 7.318 

Model Error 847.503 869.485 838.530 839.215 839.215 839.215 852.689 

 

From the results in Table 6.7, two observations are immediately clear.  First, as 

expected, under normal conditions, the sample mean and standard deviation outperform 

…
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the other models in all three comparison categories.   It is noteworthy that the 

median/MAD combination in Model B performed the worst.  Given the previous 

discussion concerning efficiencies of these two estimators under normality, this result is 

consistent with expectations.  Similarly, recognizing the improved efficiencies of the 

other estimators in Models C-G relative to those in Model A, the results reaffirm the idea 

that these estimators will perform nearly as well as the sample mean and standard 

deviation under normal conditions.   

Second, when asymmetric conditions prevail, it is clear that Model A performs 

considerably worse in the first two comparison categories relative to all other models 

considered.  Interestingly, while the median/MAD combination (Model B) does not result 

in the smallest MSE for the optimal response on average, it does tend to produce the least 

bias among the alternative models.  Moreover, it is clear from an examination of the 

results from all 1,500 iterations (not shown) that no one model is the best, although the 

tau estimators in Model G tended to yield the best results in both optimization criteria 

categories.  This suggests that tradeoff analyses could be performed between bias and 

variability to narrow the estimator selection field even further.  In order to facilitate a 

more transparent comparison between models in terms of MSE and bias, we graphically 

portray the results in Figure 6.2.    
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ˆ of ( )MSE mx*                                            ˆBias of ( )m x*  

 
Figure 6.2.  Histograms facilitating visual comparison of estimated MSE and bias of the 

optimal mean response for all models considered under normal and skew normal 
conditions.  Model associations are shown across the base of each histogram. 

 
6.3.1.2.  Case Study – A Ceramic Coating Process 

Tillman et al. (2010) used experimental design to determine the optimal settings 

for a carbide coating process designed to strengthen various ceramic materials.  The 

coating mechanism consisted of a high-velocity oxygen fuel spray technique, which 

generated different results depending on the kerosene level (X1), oxygen level (X2), and 

stand-off distance (X3) used.  To maintain adequate levels of resistivity in the fiber, they 

specifically sought the factor settings that produced optimal responses with respect to the 

material hardness (Y1) and the porosity (Y2).  As we are concerned about the univariate 

case in this particular paper, we will only address the latter.   Porosity is an S-type 

characteristic with an upper acceptable threshold of 3% and an associated objective of 

minimizing as close to 0% as possible.  Note that this could also be treated as an N-type 

characteristic with lower and upper limits of 0% and 3%, respectively, and a desired 

target, τ=0.  

Since Tillman et al. were concerned solely with the mean response, an adaptation 

of the experiment developed by Goethals and Cho (2011d)  that includes replication is 

A AB BC CD DE EF FG G
200

400

600

800

1000

1200

1400

1600

1800

Normal Skew Normal

A AB BC CD DE EF FG G
0

3

6

9

Normal Skew Normal



 
 

167 

used to facilitate estimates for the variability and skewness of the responses as well.   

Pursuant to the methodology described in Section 6.2.1.1, a graphical analysis of the data 

is performed to investigate the assumptions regarding normality and variability in the 

responses.  While Figure 6.3(a) indicates a reasonable, albeit elevated degree of 

variability in the responses, the curved plot in Figure 6.3 (b) clearly suggests a fair degree 

of asymmetry.   Note that the spacing between the points in the plot in Figure 6.3(b), 

which appears to widen moving from left to right, reinforces the elevated variability 

inferred from Figure 6.3(a). 

 
                                         (a)                                                        (b) 
Figure 6.3.  Graphical investigation of variability (a) and normality (b) in the responses. 

 
Application of the Shapiro-Wilk test yields * 0.8186  vs.  =0.946W Wα= which supports 

the alternative hypothesis H1 (that sufficient evidence exists to suggest non-normality), 

and further reinforces the graphical analysis. 

Following the approach outlined in the previous section, the first three sample 

moments (mean (y ), standard deviation (s), and skew (k)) are then used to obtain 

estimates for the location, scale, and shape parameters of the skew normal distribution.  

These estimates, in turn, are used to collect ten replicates at each design point. Table 6.8 
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shows the central composite design used for this experiment, including the calculations 

for the sample moments and the generated replicates at each design point. 

Table 6.8.  Adapted experimental design for the ceramic coating process 

 

The replicates yq1, ..., yq10 are then used to compute estimates for the sample mean and 

standard deviation     (  and q qy s ), the median and the MAD (ymedian and MAD), Huber’s 

Proposal 2 estimates for location and scale (yq,H2 and sq,H2), the Hodges-Lehmann location 

estimator (yq,HL), the Sq,n and Qq,n scale estimators, and the tau estimators for location and 

scale (yq,τ and sq,τ) for the qth design point; Table 6.9 contains the estimates obtained in 

R.   

Using the same seven models previously defined for estimator combinations, full 

second order polynomial response surface models were developed for each model, 

followed in turn by the application of the MSE-based optimization scheme (Equation 

(6.5)) to identify the optimum operating conditions.   Table 6.10 provides a summary of 

 
Coded  
Units 

Sample Moments 
used to estimate 

(ξ,ω,α) parameters  

Randomly Generated Replicates for Porosity (Y, %) 
from SN(ξ,ω,α) 

Run X1 X2 X3 y  s   k  y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 

1 –1 –1 –1 1.22 0.19 0.36 1.04 1.25 1.14 1.02 1.08 1.17 1.35 1.11 1.10 1.19 
2 −1 –1 1 1.73 0.42 0.58 1.51 2.97 2.60 1.47 1.88 1.70 1.25 1.84 1.94 1.73 
3 –1 1 –1 4.68 0.39 −0.67 4.12 3.93 3.93 4.49 4.31 4.50 4.38 4.60 4.66 3.99 
4 −1 1 1 2.14 0.51 0.59 2.00 1.54 2.12 3.02 1.85 2.41 2.25 2.13 1.88 2.61 
5 1 –1 −1 1.96 0.42 0.58 1.53 1.56 2.10 2.32 1.65 2.29 1.48 2.32 2.66 1.81 
6 1 –1 1 1.73 0.47 0.66 1.35 1.63 1.86 1.36 1.57 1.37 1.86 1.61 2.14 1.41 
7 1 1 −1 1.35 0.34 0.67 2.11 1.17 1.04 1.27 1.14 1.00 1.23 2.34 1.08 1.73 
8 1 1 1 1.17 0.24 0.37 1.69 1.04 1.17 1.17 0.92 1.64 1.02 1.00 1.53 0.90 
9 –2 0 0 1.99 0.45 0.52 2.75 1.91 1.80 2.11 2.18 1.81 2.19 1.67 2.11 1.85 
10 2 0 0 1.89 0.46 0.27 2.00 2.41 1.57 2.47 1.97 2.06 1.61 1.87 1.57 1.84 
11 0 –2 0 3.19 1.05 −0.53 4.48 2.33 3.05 3.98 1.67 4.13 1.67 3.19 4.18 3.14 
12 0 2 0 1.47 0.43 0.44 1.30 1.58 1.38 2.33 1.19 1.13 1.40 1.55 1.21 1.27 
13 0 0 –2 1.87 0.21 0.17 1.80 1.93 1.91 2.35 2.10 1.93 2.43 1.97 2.17 1.95 
14 0 0 2 2.70 0.58 −0.71 3.18 3.23 3.27 3.32 2.69 3.04 2.98 2.46 2.32 2.35 
15 0 0 0 0.90 0.06 0.53 0.97 0.91 0.85 0.91 0.87 0.87 0.97 1.01 0.96 0.89 
16 0 0 0 1.36 0.43 0.25 1.07 1.64 1.60 1.52 2.01 1.13 1.30 1.08 1.63 1.84 
17 0 0 0 1.69 0.24 0.37 1.61 1.65 1.63 1.84 1.68 1.76 1.65 1.55 1.51 1.82 
18 0 0 0 2.15 0.51 0.70 2.23 1.83 2.09 2.04 1.96 2.14 2.20 1.63 2.15 1.84 
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the results for each model, including the estimated regression coefficients of the mean 

response (µ(x)), the optimal factor settings (x*), and the optimal mean response (ˆ ( *)µ x ), 

standard deviation (̂( *)σ x ), and MSE.  Note that, given τ = 0, the value for ̂ ( *)µ x also 

denotes the corresponding bias. 

Table 6.9. Estimates generated using the various estimators in Table 6.3. 

y  s ymedian MAD  yH2 sH2 yHL Sn Qn yτ sτ 
1.15 0.10 1.12 0.08 1.14 0.10 1.14 0.10 0.10 1.12 0.09 
1.89 0.52 1.78 0.32 1.85 0.51 1.80 0.43 0.38 1.71 0.37 
4.29 0.28 4.34 0.36 4.29 0.32 4.29 0.35 0.30 4.31 0.28 
2.18 0.42 2.13 0.39 2.16 0.43 2.13 0.41 0.44 2.12 0.40 
1.97 0.42 1.96 0.54 1.97 0.47 1.94 0.61 0.44 1.96 0.41 
1.62 0.27 1.59 0.33 1.60 0.27 1.61 0.30 0.35 1.59 0.26 
1.41 0.48 1.20 0.20 1.39 0.49 1.27 0.23 0.25 1.15 0.25 
1.21 0.30 1.10 0.20 1.21 0.34 1.17 0.29 0.22 1.06 0.25 
2.04 0.31 2.01 0.26 2.00 0.26 2.00 0.37 0.28 1.97 0.25 
1.94 0.32 1.92 0.34 1.94 0.36 1.94 0.43 0.37 1.91 0.32 
3.18 1.03 3.16 1.33 3.18 1.17 3.16 1.18 1.29 3.22 1.02 
1.43 0.35 1.34 0.21 1.37 0.21 1.37 0.21 0.23 1.33 0.20 
2.05 0.20 1.96 0.14 2.05 0.22 2.03 0.17 0.21 1.96 0.16 
2.88 0.39 3.01 0.42 2.88 0.45 2.86 0.35 0.36 2.96 0.40 
0.92 0.05 0.91 0.07 0.92 0.06 0.92 0.06 0.06 0.92 0.05 
1.48 0.33 1.56 0.40 1.48 0.37 1.47 0.40 0.35 1.50 0.32 
1.67 0.11 1.65 0.10 1.67 0.12 1.66 0.12 0.12 1.66 0.11 
2.01 0.19 2.06 0.18 2.02 0.20 2.02 0.20 0.19 2.06 0.18 

 
Per the results in Table 6.10, Model B outperforms the other models in terms of both the 

bias and  MSE of the optimization result.  It is also noteworthy that, once again, the 

models using the HLn location estimator and the tau estimators (Models D-G) follow in 

very close succession to Model B, further suggesting the superiority of median-based 

estimators under asymmetric conditions.   

To verify these findings, we performed 500 iterations of the experiment using 

newly generated random data from the same SN(ξ,ω,α) distribution at each iteration.   

Table 6.11 contains the average performance measures across the 500 iterations for the 
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MSE and bias (relative to τ = 0).  The results reinforce our deductions, demonstrating the 

superior performance of the median-based estimators, on average.  

Table 6.10. Summary of optimization results for the ceramic coating process.   

 
Model A Model B Model C Model D Model E Model F Model G 

β0 1.537 1.564 1.539 1.536 1.536 1.536 1.551 
β1 -0.254 -0.270 -0.247 -0.254 -0.254 -0.254 -0.264 
β2 -0.035 -0.055 -0.042 -0.046 -0.046 -0.046 -0.067 
β3 -0.039 -0.019 -0.041 -0.039 -0.039 -0.039 -0.028 

β11 0.092 0.067 0.087 0.083 0.083 0.083 0.060 
β22 0.206 0.169 0.195 0.187 0.187 0.187 0.178 
β33 0.263 0.252 0.262 0.253 0.253 0.253 0.243 
β12 -0.551 -0.601 -0.555 -0.575 -0.575 -0.575 -0.617 
β13 0.101 0.136 0.108 0.133 0.133 0.133 0.143 
β23 -0.337 -0.326 -0.333 -0.324 -0.324 -0.324 -0.312 
x1 1.682 1.682 1.682 1.682 1.682 1.682 1.682 

x*    x2 1.670 1.577 1.660 1.682 1.681 1.682 1.427 
x3 1.309 1.154 1.237 1.167 1.117 1.000 0.878 

ˆ( *)µ x  0.222 0.024 0.179 0.093 0.083 0.062 0.045 

ˆ( *)σ x  0.377 0.096 0.358 0.233 0.205 0.132 0.202 

MSE 0.191 0.010 0.160 0.063 0.049 0.021 0.043 

 

Table 6.11.  Average results across 500 iterations of simulated replications. 

Model A B C D E F G 

 
y
s

 ymedian  
MAD 

Huber  
‘Proposal 2’  

HLn  
Sn 

HLn  
Qn 

HLn  
MAD 

Taum  
Taus 

Avg MSE for ˆ ( *)µ x  0.094 0.076 0.095 0.086 0.087 0.082 0.069 

Avg Bias for ˆ ( *)µ x  0.162 0.130 0.156 0.147 0.145 0.145 0.123 
Proportion of Runs 
Best MSE Achieved 24.70% 20.80% 9.90% 13.00% 9.90% 9.40% 12.30% 

 

6.3.2  Investigating estimator performance under high-variability conditions 

As in the previous section, the numerical example used to illustrate the impacts of 

high-variability conditions on estimator performance is approached in two parts.  In the 

first, a pilot study using highly variable data from an actual industrial process is used to 

motivate the concepts and suggestions heretofore discussed.   The second serves to 
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expand the analysis via simulation in order to facilitate the broader comparisons between 

estimators under the stated conditions.  

6.3.2.1  Part 1 – Pilot Study Using the Box and Draper (1987) Printing Press Study  

Perhaps one of the most widely used data sets for comparing RPD optimization 

schemes is the printing press study data introduced by Box and Draper (1987) and 

discussed in Chapter 3.  In this experiment, the printing machine’s index in applying 

coloring inks to package labels is a normally distributed N-type quality characteristic of 

interest, Y.  The control factors known to influence Y include the speed (X1), pressure 

(X2), and distance (X3) settings; the desired target value for the machine's index is τ = 

500.  The experiment considers the control factors at three levels and consists of three 

replicates at each of the twenty-seven design points of the full factorial design.  Table 

6.12 displays the original printing press data, including the calculations for the mean and 

standard deviation at each design point.  It should be noted that, in order to evaluate the 

performance of the tau estimators without incurring a value error in R, minor adjustments 

were required in the data.  Specifically, in cases where two or more observations within a 

particular design point assumed the same value, we adjusted one down by 0.01 and 

another up by 0.01.  The design points requiring these modifications are indicated by 

those having real numbers vice integer values in the y1, y2, and y3 columns. 

Using this example, previous researchers developed second-order response 

surface designs for the mean and standard deviation and then applied their particular 

optimization scheme to find optimal solutions x* = (X1*, X2*, X3*).  The preliminary 
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estimates for the sample mean and standard deviation shown for each design point in 

Table 6.12 allow for the assessment of high variability in the system. 

Table 6.12.  Experimental design for the printing press study. 

 Coded Units Labeling Index (Y)      Standard 
 Speed Pressure Distance (3 replications) Mean Deviation 

Run X1 X2 X3 y1 y2 y3 y  s 
1 - 1 - 1 - 1 34 10 28 24 12.49 
2  0 - 1 - 1 115 116 130 120.33 8.39 
3  1 - 1 - 1 192 186 263 213.67 42.83 
4 - 1  0 - 1 82 87.5 88.5 86.00 3.46 
5  0  0 - 1 44 187.99 188.01 140 83.14 
6  1  0 - 1 322 349.99 350.01 340.67 16.17 
7 - 1  1 - 1 141 110 86 112.33 27.57 
8  0  1 - 1 258.99 251 259.01 256.33 4.62 
9  1  1 - 1 290 280 245 271.67 23.63 
10 - 1 - 1  0 81 80.99 81.01 81 0 
11  0 - 1  0 90 122 93 101.67 17.67 
12  1 - 1  0 319 375.99 376.01 357 32.91 
13 - 1  0  0 179.99 180.01 154 171.33 15.01 
14  0  0  0 372 371.99 372.01 372 0 
15  1  0  0 541 568 396 501.67 92.50 
16 - 1  1  0 288 192 312 264 63.50 
17  0  1  0 432 336 513 427 88.61 
18  1  1  0 713 725 754 730.67 21.08 
19 - 1 - 1  1 364 99 199 220.67 133.82 
20  0 - 1  1 232 221 266 239.67 23.46 
21  1 - 1  1 408 415 443 422 18.52 
22 - 1  0  1 181.99 233 182.01 199 29.44 
23  0  0  1 507 515 434 485.33 44.64 
24  1  0  1 846 535 640 673.67 158.21 
25 - 1  1  1 236 126 168 176.67 55.51 
26  0  1  1 660 440 403 501 138.94 
27  1  1  1 878 991 1161 1010 142.45 

 

This idea reveals itself in two ways.  First, casual inspection of the standard deviations in 

the right-most column highlights a number of fairly large values, pointing to elevated 

variability within the design points.  Second, observe the average and standard deviation 

of the means themselves, noting in particular the relatively large value of the latter 

measure, which points to considerable variability between the design points.  It should be 

noted in the latter case that, although each design point technically denotes a unique 

population due to the different control factor settings, we would still reasonably expect 
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only a moderate degree of variability within the response vector.  As Figure 6.4 shows 

below, the process associated with the print press study qualifies as a highly variable 

process based on the first aspect of the definition provided in Section 4.   

 
Figure 6.4.  Variability of Observations in the Printing Press Study. 

 
The three replicates at each design point are used to compute estimates using each of the 

various location and scale estimators.  Table 6.13 contains the estimates obtained via R.  

Using the eight models defined for estimator combinations, full second order polynomial 

response surface models are developed for each and then identified the optimum 

operating conditions by applying the MSE-based optimization scheme (Equation 6.11) on 

a cuboidal region of interest in which each of the factor settings can assume a value on 

the range of (-1, 1).   Table 6.14 provides a summary of the results for each model, 

including the estimated coefficients of the mean response (̂ ( )m x ), the optimal factor 

settings (x*), the optimal mean response ˆ ( *)m x , standard deviation ˆ( *)s x , and MSE. 

 

 

 

 

 y

 3σ+



 
 

174 

Table 6.13.  Estimates generated using the various estimators in Table 6.3. 

 

 
Table 6.14.  Results of pilot study using print press data. 

 Model A Model B Model C Model D Model E Model F Model G Model H 

β0 328.123 347.350 329.506 332.930 332.930 351.076 332.930 322.285 
β1 177.000 177.026 176.519 177.007 177.007 175.177 177.007 177.013 
β2 109.426 108.945 109.574 109.306 109.306 105.235 109.306 109.631 
β3 131.278 120.196 131.130 128.507 128.507 125.740 128.507 134.773 

β11 31.630 30.862 31.815 31.438 31.438 47.085 31.438 31.766 
β22 -22.759 -37.222 -23.574 -26.375 -26.375 -48.809 -26.375 -18.010 
β33 -28.870 -43.972 -29.685 -32.646 -32.646 -53.150 -32.646 -24.020 
β12 66.028 62.918 66.028 65.250 65.250 64.373 65.250 67.174 
β13 75.472 75.042 75.472 75.365 75.365 75.916 75.365 75.721 
β23 43.583 36.667 43.361 41.854 41.854 41.216 41.854 45.907 
x1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

x*    x2 0.060 -0.097 0.037 -0.079 -0.079 -0.135 -0.071 0.016 
x3 -0.243 -0.203 -0.236 -0.165 -0.165 -0.247 -0.155 -0.172 

ˆ( *)µ x  494.657 497.473 493.547 493.478 493.491 497.942 496.916 496.964 

Bias 5.343 2.527 6.453 6.522 6.509 2.058 3.084 3.036 

ˆ( *)σ x  44.596 14.539 48.122 24.570 24.547 15.958 17.118 29.548 

MSE 2017.325 217.774 2357.385 646.243 644.901 258.885 302.541 882.277 

 
 

y  s y%  MAD  2Hy%  2,Hs  
HLy%  nS  nQ  yτ%  sτ  MLEy  MLEs  

24.00 12.49 28.00 8.90 24.00 14.16 25.00 13.25 13.23 27.94 11.37 22.85 8.45 
120.33 8.39 116.00 1.48 120.33 9.51 119.25 2.21 2.21 115.53 1.85 123.99 0.00 
213.67 42.83 192.00 8.90 213.67 48.54 208.25 13.25 13.23 189.15 11.10 220.20 26.00 
86.00 3.50 87.50 1.48 86.00 3.97 86.38 2.21 2.21 87.97 1.85 85.49 2.29 
140.00 83.14 187.99 0.03 140.00 94.23 152.00 0.04 0.04 188.00 0.04 125.07 47.70 
340.67 16.17 349.99 0.03 340.67 18.32 343.00 0.04 0.04 350.00 0.04 337.95 9.17 
112.33 27.57 110.00 35.58 112.33 31.25 111.75 52.98 52.92 111.61 23.42 113.54 20.88 
256.33 4.62 258.99 0.03 256.33 5.23 257.00 0.04 0.04 259.00 0.04 255.35 2.78 
271.67 23.63 280.00 14.83 271.67 26.78 273.75 22.08 22.05 281.74 18.71 269.13 15.83 
81.00 0.01 81.00 0.01 81.00 0.01 81.00 0.02 0.02 81.00 0.01 81.00 0.01 
101.67 17.67 93.00 4.45 101.67 20.03 99.50 6.62 6.62 91.58 5.55 104.10 10.72 
357.00 32.91 375.99 0.03 357.00 37.30 361.75 0.04 0.04 376.00 0.04 351.28 18.80 
171.33 15.01 179.99 0.03 171.33 17.01 173.50 0.04 0.04 180.00 0.04 168.95 8.40 
372.00 0.01 372.00 0.01 372.00 0.01 372.00 0.02 0.02 372.00 0.01 372.00 0.01 
501.67 92.50 541.00 40.03 501.67 104.84 511.50 59.60 59.54 553.82 49.97 489.68 59.35 
264.00 63.50 288.00 35.58 264.00 71.97 270.00 52.98 52.92 296.96 44.49 256.68 41.98 
427.00 88.61 432.00 120.09 427.00 100.43 428.25 178.81 178.61 428.41 75.25 427.00 72.35 
730.67 21.08 725.00 17.79 730.67 23.89 729.25 26.49 26.46 726.59 18.39 732.42 14.73 
220.67 133.82 199.00 148.26 220.67 151.67 215.25 220.75 220.50 211.53 114.02 228.70 98.57 
239.67 23.46 232.00 16.31 239.67 26.59 237.75 24.28 24.26 231.79 20.85 242.09 16.04 
422.00 18.52 415.00 10.38 422.00 20.99 420.25 15.45 15.44 412.39 12.98 424.06 12.18 
199.00 29.44 182.01 0.03 199.00 33.37 194.75 0.04 0.04 182.00 0.04 204.07 16.77 
485.33 44.64 507.00 11.86 485.33 50.59 490.75 17.66 17.64 510.80 14.81 478.83 27.46 
673.67 158.21 640.00 155.67 673.67 179.31 665.25 231.79 231.53 655.72 135.62 685.02 113.79 
176.67 55.51 168.00 62.27 176.67 62.91 174.50 92.72 92.61 173.10 47.28 179.90 40.96 
501.00 138.94 440.00 54.86 501.00 157.47 485.75 81.68 81.59 422.44 68.47 519.57 88.40 
1010.00 142.45 991.00 167.53 1010.00 161.46 1005.25 249.45 249.17 1002.89 121.18 1017.65 106.12 

y MLEys ymedian MAD yH2 sH2 yHL Sn Qn yτ sτ sMLE
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Overall, the results from this singular instance suggest that considerable 

improvements stand to be gained by using the estimator combinations in Models B or G.  

Not only to they produce results with less deviation from the desired target, but they yield 

marked reductions in variability of the optimal mean response in terms of the MSE.  The 

regression coefficients and optimal factor settings, x*, are included to show the subtle 

differences in the results obtained for each model.  Note that the differences in the 

optimal factor settings (coded units) apply only to the x2 and x3 factors and that these 

differences are measured, for the most part, in hundredths of a point. Notwithstanding, 

the differences are enough to induce added precision that results in significant reductions 

in bias and MSE. 

It is important to note here that, recognizing the inherent elevated variability in 

the print press study, it is quite likely that the results obtained Table 6.14 are simply the 

circumstance of the data used.  That is, under similar conditions with a different set of 

data, the results could be different in terms of which models perform best.  Thus, to 

verify our findings, and to more clearly determine the impacts of high versus low levels 

of variability on estimator selection, we performed Monte Carlo simulations to facilitate 

comparisons of estimator performances in obtaining robust design solutions.  The next 

section describes this process and the results. 

6.3.2.2  Part 2 – Simulation to identify trends 

The purpose of the simulation was to facilitate a broader comparison between 

estimator performances in both high-variability and low-variability situations that would 

serve to verify the inferences derived from the case study.  This would, in turn, facilitate 
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more definitive conclusions regarding the impact of variability conditions on estimator 

selection by allowing us to analyze trends over multiple iterations of simulated 

conditions.   

The simulation was constructed using R.  At each iterate, two full-factorial designs 

(FFD) of three factors at three levels each are created using the original print press data 

as a source data from which to generate normally distributed random variates (using the 

rnorm()  function in R).  The first of these consists of a high-variability design in which 

the original sample means and standard deviations at each design point are used to 

generate normal random variates.  The second is a low-variability design that is created in 

the same way except that the standard deviations are multiplied by 0.25 to generate 

normal random variates with 75% less variability. 

The simulation experiment examined 15 different combinations of design point 

replicates and simulation iterations for both the high- and low-variability cases using 

freshly generated random data for each simulation run.  This would enable analysis of the 

impacts of increases in observations per design point and the number of iterations on 

estimator performance trends.  Thus, the number of random variates generated in each 

case depended on the number of replicates, m, being examined in a particular instance of 

the experiment.  In every case, however, the m replicates within each of the design points 

in both FFDs are then used to obtain estimates using each of the location and scale 

estimators under consideration. Table 6.15 depicts a generalized version of the FFD 

framework used, consisting of 27 total design points.  The experimental framework for 

the simulation is portrayed in Figure 6.5. 
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Table 6.15.  Full factorial design (FFD) framework used in the pilot study. 

 
 
 

 
Figure 6.5.  Experimental framework used at both levels of variability in the simulation. 

 
Thereafter, response surface designs are developed and the MSE-based optimization 

scheme is applied using a target value of τ = 500 to obtain optimum operating conditions 

in each iteration. The results for model error, optimization MSE, and optimization bias 

are tallied across the various numbers of iterations and then averaged to yield trends for 

each experimental combination of design point replicates and simulation iterations.   

Figure 6.6 contains the output for both the high and low variability scenarios. 
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Figure 6.6. Simulation output depicting the average modeling and optimization results 
across the experimental framework for High and Low Variability cases. 

 

What is immediately clear from the overall results in Figure 6.6 is the superior 

performance delivered by Models B and G in the vast majority of experimental 

combinations.  In fact, it is not until both the number of design point replicates and the 

number of simulation iterations are increased that the traditional approach in Model A 

and the MLE-based approach in Model H surpass them.  Thus, although the results reflect 

Obs/
DP A B C D E F G H A B C D E F G H

Mod Err 6877.10 7413.49 6895.77 6881.11 6881.11 7673.95 6881.11 6936.28 6618.43 6582.23 6621.51 6589.56 6589.56 7089.07 6589.56 6655.00
MSE 426.26 283.87 555.73 525.33 560.69 432.72 288.52 310.30 60.52 37.36 74.52 73.88 69.72 59.53 36.96 41.00
Bias 2.33 1.56 3.06 3.23 3.40 2.19 1.59 1.75 0.21 0.16 0.27 0.27 0.29 0.23 0.16 0.18

Mod Err 6483.86 6729.93 6500.82 6510.58 6510.58 7134.15 6510.58 6458.81 6517.25 6551.62 6524.42 6523.91 6523.91 7021.18 6523.91 6523.44
MSE 859.47 722.40 835.78 898.60 889.74 1275.75 715.40 829.01 101.99 98.83 108.33 108.03 106.65 143.74 98.77 101.48
Bias 3.82 3.06 3.74 3.86 3.80 4.45 3.03 3.69 0.42 0.35 0.42 0.41 0.42 0.45 0.36 0.41

Mod Err 6633.30 6744.14 6667.10 6689.27 6689.27 7204.21 6689.27 6645.69 6511.45 6524.10 6518.24 6518.90 6518.90 7008.36 6518.90 6512.71
MSE 748.23 771.18 787.14 734.84 764.40 1210.25 765.30 727.88 89.86 94.34 92.51 94.31 90.38 141.34 94.43 89.34
Bias 3.64 3.40 3.71 3.52 3.63 4.56 3.42 3.56 0.41 0.40 0.42 0.42 0.41 0.50 0.40 0.41

Mod Err 6719.83 6699.83 6688.24 6714.98 6714.98 7144.92 6714.98 6729.32 6492.23 6479.89 6485.49 6483.65 6483.65 6955.17 6483.65 6492.72
MSE 805.94 783.71 837.35 833.06 831.38 1290.24 792.07 795.06 54.32 57.19 55.31 54.18 54.77 84.52 57.26 53.66
Bias 3.77 3.66 3.88 3.88 3.87 4.97 3.69 3.72 0.24 0.23 0.24 0.24 0.24 0.30 0.23 0.24

Mod Err 6674.22 6743.62 6682.89 6669.01 6669.01 7190.85 6669.01 6674.29 6569.43 6565.17 6568.49 6570.42 6570.42 7045.37 6570.42 6570.68
MSE 842.11 782.32 853.14 849.67 846.02 1350.19 782.81 836.05 55.20 58.70 57.90 57.34 56.99 89.10 58.75 54.79
Bias 3.75 3.51 3.71 3.67 3.73 4.95 3.51 3.72 0.25 0.24 0.25 0.25 0.25 0.32 0.24 0.24

Mod Err 6903.73 7220.55 6904.97 6831.82 6831.82 7658.04 6831.82 7009.19 6714.47 6775.37 6713.72 6740.73 6740.73 7267.67 6740.73 6707.45
MSE 783.95 415.78 973.62 634.05 691.47 607.85 415.93 505.18 97.07 63.97 105.73 98.98 93.59 81.69 63.49 57.85
Bias 3.30 1.83 4.10 2.80 3.04 2.30 1.82 2.22 0.37 0.28 0.43 0.41 0.41 0.29 0.28 0.24

Mod Err 6592.70 6720.41 6585.54 6606.83 6606.83 7159.01 6606.83 6577.89 6576.05 6591.43 6580.01 6586.28 6586.28 7076.42 6586.28 6574.49
MSE 841.69 747.23 870.65 880.22 860.81 1222.63 751.62 817.92 90.88 79.13 99.24 94.61 93.02 135.91 79.36 88.38
Bias 3.77 3.17 3.87 3.81 3.83 4.37 3.15 3.68 0.42 0.34 0.43 0.41 0.40 0.50 0.34 0.40

Mod Err 6532.35 6552.73 6532.90 6542.17 6542.17 7024.29 6542.17 6528.92 6562.02 6550.89 6559.46 6558.07 6558.07 7026.00 6558.07 6559.45
MSE 847.96 820.26 837.19 909.01 864.35 1332.92 818.12 830.88 92.82 95.03 92.67 95.11 94.76 146.39 95.16 91.64
Bias 3.93 3.75 3.93 4.06 3.94 5.11 3.74 3.87 0.42 0.41 0.42 0.42 0.42 0.53 0.41 0.41

Mod Err 6625.73 6634.99 6613.11 6615.71 6615.71 7098.08 6615.71 6623.69 6536.51 6532.27 6535.78 6534.72 6534.73 7003.50 6534.73 6537.18
MSE 733.16 695.98 734.09 725.43 726.02 1167.89 696.54 726.27 50.21 50.87 50.51 51.98 50.83 80.80 50.92 49.50
Bias 3.60 3.30 3.54 3.49 3.51 4.65 3.30 3.56 0.24 0.23 0.24 0.24 0.24 0.31 0.24 0.24

Mod Err 6680.17 6713.85 6664.68 6672.82 6672.82 7160.99 6672.82 6677.29 6560.25 6546.28 6556.78 6557.53 6557.53 7024.51 6557.53 6560.13
MSE 805.31 774.17 812.15 782.61 800.04 1292.56 772.07 799.86 51.80 52.84 53.43 51.95 51.89 83.95 52.92 51.57
Bias 3.69 3.56 3.68 3.61 3.66 4.86 3.56 3.67 0.24 0.24 0.24 0.24 0.24 0.32 0.24 0.24

Mod Err 7210.38 7436.24 7215.91 7176.52 7176.52 7983.83 7176.52 7305.01 6589.07 6644.11 6593.26 6593.65 6593.65 7110.51 6593.65 6591.00
MSE 656.22 351.53 792.90 579.09 551.63 520.68 357.71 439.93 78.32 46.62 96.87 67.54 71.20 69.00 45.05 52.01
Bias 2.93 1.58 3.58 2.68 2.41 2.18 1.60 1.95 0.29 0.21 0.38 0.31 0.30 0.25 0.21 0.20

Mod Err 6684.14 6745.37 6687.47 6684.16 6684.16 7217.11 6684.16 6696.35 6582.30 6587.25 6582.29 6585.42 6585.42 7069.66 6585.42 6585.20
MSE 851.07 807.77 864.85 926.15 880.42 1238.81 813.65 836.47 90.70 88.95 95.15 97.82 94.99 137.02 88.27 88.14
Bias 3.66 3.19 3.67 3.70 3.60 4.26 3.25 3.59 0.39 0.38 0.41 0.42 0.41 0.49 0.38 0.39

Mod Err 6557.69 6638.67 6569.63 6574.12 6574.12 7099.57 6574.12 6564.21 6534.04 6546.62 6534.18 6533.69 6533.69 7009.86 6533.69 6530.69
MSE 793.20 798.85 820.43 828.14 819.51 1258.27 797.43 789.53 87.42 82.04 86.79 88.30 85.65 138.24 81.95 86.20
Bias 3.73 3.62 3.79 3.79 3.79 4.84 3.62 3.69 0.40 0.39 0.40 0.41 0.40 0.51 0.39 0.39

Mod Err 6602.21 6611.14 6604.88 6608.39 6608.39 7092.02 6608.39 6594.45 6545.26 6541.48 6544.98 6545.87 6545.87 7017.32 6545.87 6545.92
MSE 836.84 820.22 851.51 851.31 844.63 1333.38 820.91 830.38 53.57 55.53 55.49 55.31 55.27 85.92 55.53 53.26
Bias 3.78 3.68 3.84 3.83 3.81 4.89 3.68 3.75 0.24 0.25 0.25 0.25 0.25 0.31 0.25 0.24

Mod Err 6607.08 6666.27 6619.77 6613.28 6613.28 7130.93 6613.28 6605.88 6555.91 6551.75 6554.58 6555.69 6555.69 7026.37 6555.69 6556.48
MSE 791.08 757.49 783.56 794.21 789.08 1254.83 755.43 782.91 51.14 51.99 51.31 52.11 51.30 83.15 52.03 50.72
Bias 3.68 3.60 3.70 3.71 3.70 4.86 3.60 3.65 0.24 0.24 0.24 0.24 0.24 0.31 0.24 0.23
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tendencies across the simulation runs, they clearly suggest that the degree of variability 

inherent to the system or process impacts estimator performance in terms of the RPD 

solutions attained.  The following paragraphs delve into the results of each variability 

case more closely. 

(i) High variability case: In this case, Models B and G outperform all others in 

nearly every experimental combination.  For fewer observations, the trends separating 

these models from the others are the most pronounced.  Again, given the high variability 

conditions, extreme observations incurred in smaller sample sizes will create a 

“perception” of asymmetry and thus cause considerable shift in the sample mean and 

standard deviation, whereas the median-based location estimators of B and G and the 

MAD will tend to resist such leverage and remain closer to the central tendency of the 

bulk of the observations.  As the number of observations and the number of iterations are 

increased, the gap does appear to narrow somewhat; notwithstanding, as is made clear in 

the (100, 50) combination of observations and iterations, the trends clearly identify 

Models B and G as the preferred set of estimators in highly variable conditions, 

irrespective of the number of design point replicates obtained or the number of simulation 

iterations performed. 

(ii) Low variability case: Again, at low numbers of observations per design 

point, Models B and G tend to outperform the others, including the traditional approach 

in Model A, although only slightly.  This makes sense, however, given previous 

discussions about efficiency at lower sample sizes and estimator breakdown.  

Additionally, although the chance of extreme values is far less in this case relative to the 
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high-variability instance, such occurrences can and do happen, which would induce the 

shift in the sample mean and standard deviation previously discussed.   

However, as observations are increased, irrespective of the number of iterations, 

the traditional approach (Model A), as well as the MLE approach in Model H improve 

considerably, and ultimately surpass the performance of Models B and G in the (100, 50) 

combination of design point observations and simulation iterations.   Again, recognizing 

the deterioration in relative efficiencies of the median and MAD as the sample size 

increases serves as a partial explanation for this.  Acknowledging once again the rarity of 

“true” normality helps to further explain the superior performance of the MLE estimates 

in Model H over those in Model A. 

6.4  Summary of Findings 

 The findings from the analyses of both conditions are summarized in paragraphs 

(i) and (ii) below: 

(i) Asymmetric conditions:  Based upon the tallied optimization results using the 

hypothesized datasets in Section 6.3.1.1, as well as the results using actual process data in 

Section 6.3.1.2, it is clear that all of the alternative estimators tend to outperform the 

traditional sample mean and standard deviation under asymmetric conditions, both in 

terms of deviation from the target (bias) and variability in the result (MSE).  We 

compared our proposed models (Models B-G) with the traditional approach of Model A 

through the use of Monte Carlo simulations.  The simulation results plainly demonstrate 

that, under asymmetric conditions, estimators incorporating median-based approaches 
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tend to work best.  In particular, the Tau estimators for location and scale will tend to 

produce the best RPD results when such conditions are prevalent.   

(ii)  High-variability conditions :  It is clear from the discussion in Section 6.3.2 

and the results portrayed in Figure 6.6 that the degree of variability impacts estimator 

performance in RPD problems and therefore should bear influence on the specific 

estimators selected when such conditions prevail.  In low variability conditions, the 

results demonstrate that the traditional approach will, in the long run, tend to perform 

best.  However, at lower levels of observations (which, we might add, most often tends to 

be the case due to experimental costs and time constraints), the models that use 

combinations of the median or HLn location estimators with the MAD scale estimator 

(models B and G) can yield preferable results.  As variability increases, it is clear that 

estimator preference shifts exclusively to Models B and G, as these tend to produce better 

RPD results in terms of optimization bias and MSE. 

It is important to note that the results obtained under both sets of conditions 

denote tendencies in performance rather than conclusive evidence supporting the 

selection of one particular combination of estimators over all others.  That is, while a 

particular combination of estimators may perform best on average, examination of all 

simulation iterations would show that this combination performed best in most iterations, 

worst in others, and in the middle of the pack in others still.  Thus, there is some 

variability.  In spite of this, though, it remains clear that, over the long run, the 

alternatives examined here produce better results as noted above. 
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It is also important to note that full second-order models were used in all of the 

experiments.  In reality, the likelihood that such a model would be appropriate in every 

case is low.  In fact, it could very well be that higher-order models would be required to 

achieve a sufficient fit in the response surface design, particularly in cases involving large 

residual errors.  Thus, a more in-depth analysis would be necessary to identify the proper 

subset of terms for modeling the quality characteristic and to then evaluate and compare 

the results of the model estimation using a variety of well-established criteria.  In the end, 

however, it is unlikely that this would drastically affect the results and may, in fact, 

provide even greater support for them. 

6.5  Concluding remarks 

The purpose of this chapter was to investigate alternative approaches to tier-one 

estimation in order to attain better robust parameter design solutions when inherent 

process conditions are either asymmetric or highly variable.  Pursuant to this, RPD 

models have been developed that outperform traditional approaches in terms of 

minimizing bias and variability in the optimal mean response while retaining qualities of 

efficiency and resistance to influential observations.  The proposed models (Models B - 

H) have been cross-analyzed with the traditional approach of Model A through the use of 

Monte Carlo simulations.  The simulation results plainly demonstrate that, under either 

condition, estimators incorporating median-based approaches tend to work best.  The 

ultimate result is an improved methodology for solving RPD problems; one that 

integrates the comprehensive data analysis methods proposed in Chapter 4 and combines 

them with a conditions-based selection of tier-one estimators to drive the development of 
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response surface designs and ultimately optimal RPD solutions.  Future work in this area 

should invoke similar analysis to investigate the impacts of other conditions, such as 

heteroscedasticity, data imbalances, process stability, etc. on tier-one estimator selection.  

Chapter 6 will extend this work to examine how tier-two (regression) estimation methods 

might also be affected under such conditions. 

In the end, the selection of one estimator or the other will require a trade-off 

analysis between bias, variability, efficiency, and perhaps robustness.  But above all, it 

will require a firm understanding of the conditions inherent to the process under study.  

Pyzdek (1995) amplifies this point in the following passage: 

“You'll find that assuming normality hampers your efforts at continuous 
improvement. If the process distribution is skewed, the optimal setting (or 
target) will be somewhere other than the center of the engineering tolerance, 
but you'll never find it if you assume normality. Your quality-improvement 
plan must begin with a clear understanding of the process and its 
distribution.” 
 

Hoaglin et al. (1983) point out that potential targets for location – including the mean, 

median, and perhaps others not yet mentioned – are all likely to differ depending on what 

we are trying to measure.  In the robust parameter design context, the measurement of 

interest corresponds to the quality characteristic of interest.  Accordingly, this measure, 

coupled with a base understanding of the conditions inherent in the data, will dictate what 

our potential targets should/will be, which will, in turn, inform our selection of the 

appropriate estimator.  
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CHAPTER SEVEN 
 
 

EXTENDING THE CONDITIONS-BASED APPROACH TO REGRESSI ON 
ESTIMATION IN ROBUST PARAMETER DESIGN 

 

7.1  Introduction 

Chapter 6 examined the impacts of asymmetric and high-variability conditions on 

tier-one estimator performance, demonstrating that the presence of such conditions does 

indeed matter in terms of the robust design solutions obtained and that certain estimators 

tend to perform better than others when these conditions prevail.  It is important to note 

that that ordinary least squares (OLS) regression was used in the tier-two estimation 

phase for each of the models examined in Chapter 6 in order to derive response surface 

designs for the process location and scale.  That is, while the tier-one estimators were 

varied to investigate performance differences between them, the tier-two estimation 

approach was fixed so as not to confound the comparisons.  To enable this experimental 

approach, it was assumed that residual errors were independent and identically distributed 

N(µ, σ2) random variables.  That is, that the three assumptions regarding residual errors 

that underpin OLS application held.  While this is acceptable, it is also important to 

recognize that the presence of significant asymmetry and high variability in the responses 

can also induce heteroscedasticity in the residual errors, which violates one of these 

assumptions.  When this occurs, it can render OLS estimates sub-optimal and necessitate 

remedial action. 

Our evolved understanding of contemporary industrial manufacturing processes 

has made it increasingly apparent that the assumptions of normality and moderate system 
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variability quite often do not hold in practice.  Realistically, industrial processes often 

exhibit elevated levels of variability, particularly in mass production lines, which can 

confound many of the modeling assumptions behind the robust parameter design models 

available in the literature.  Furthermore, it is also accepted that perfect normality rarely, if 

ever, exists and that some asymmetry is not only realistic but practically inevitable – 

particularly in situations involving smaller-the-better (S-type), larger-the-better (L-type), 

and select instances of nominal-is-best (N-type) quality characteristics; a condition that 

could become even more pronounced under conditions of elevated variability, especially 

when the number of observations or replicates at each design point is small.  As noted 

above, this can induce the added effect of non-constant variance in the residuals. 

Again, what has made OLS regression the method of choice over the 200 years of 

its existence is the simplistic and explicit nature by which it could be derived from the 

data.  Consequently, it has become the flagship approach in the vast majority of applied 

linear statistics texts and robust design literature. In fact, many contemporary quality 

assurance programs incorporate OLS methods to solve a variety of robust design 

problems as they endeavor to maintain a competitive edge in the industrial market.  

Pursuant to this, engineers develop linear or non-linear optimization schemes that most 

appropriately and accurately portray a given process to determine a set of optimal 

operating conditions that will assure minimal deviation from a specified target with 

minimum variability.  However, if the true underlying process conditions are overlooked 

or otherwise assumed away, the estimates derived using the traditional least squares 

approach are likely to be problematic and misleading.  Moreover, once applied to 
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optimization schemes to determine optimal operating conditions, they may very well 

generate suboptimal solutions and lead to dubious recommendations to decision makers.   

As noted in Chapter 2, myriad alternative approaches to regression estimation have 

evolved over the years.  These include generalized linear models (GLM) and weighted 

least squares (WLS), as well as an assortment of resistant and/or robust regression 

techniques such as least trimmed squares (LTS), least median of squares (LMS), least 

absolute deviation (LAD), M-estimation, M-M estimation, and S-estimation, among 

others.  These robust methods in regression evolved to allow engineers to fit equations to 

the majority of the data in the presence of outliers, without discounting the outliers 

altogether.  This becomes particularly important in asymmetric and high-variability 

conditions in which extreme observations in the tail(s) become more likely and therefore 

wield more influence on regression estimates.  A selection of these methods will be 

discussed in greater detail in Section 7.2.2; for a more comprehensive discussion, 

however, see Venables and Ripley (2002) or Rousseeuw and Leroy (1987) 

While many of these methods have seen considerable attention throughout statistics 

and regression literature, they are less well-known among engineers endeavoring to apply 

statistical methods in the interests of quality improvement, particularly those with limited 

statistics backgrounds.  In fact, the list of available estimation methods is so long, that 

many engineers may have questions about with method or approach to use and when.  

The objectives of this chapter, then, are threefold:  

1) Propose a conditions-based approach to the RPD problem, whereby data analysis is 
used to illuminate intrinsic process conditions that will, in turn, inform the selection 
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of appropriate regression estimation methods for modeling process response 
surfaces. 

2) Integration of the skew normal distribution to facilitate a fuller and more accurate 
representation of asymmetric system properties via the inclusion of a shape or 
skewness parameter. 

3) Through experimental investigations and simulation, determine which regression 
approaches tend to perform best in the context of producing the best RPD results 
under the examined conditions.   
 

Pursuant to these objectives, a variety of alternative regression approaches are 

examined via experimental analysis and simulation to determine which methods will tend 

to produce the best robust parameter design (RPD) solutions when such conditions exist.  

Section 7.2, delineates the conditions-based methodology for modeling asymmetry and 

selecting estimation alternatives.  In Section 7.3, numerical demonstrations are presented 

via two case studies and Monte Carlo simulation.  Finally, in Section 7.4, the results 

obtained are summarized and analyzed.  The original work associated with this research 

has been submitted for publication with reference Boylan and Cho (2013b) 

7.2  Proposed Modeling and Optimization Procedures 

The discussion in Section 3.3.2 of Chapter 3 illustrated that, when actual 

conditions deviate from the traditional assumptions behind least squares regression (for 

both responses and residual errors), alternatives to the OLS approach may be necessary 

for estimating the response functions for the process parameters.  Given the host of 

choices, the intrinsic question centers on which estimator(s) to use and when, as it is very 

likely that different sets of optimum operating conditions will result depending on the 

estimator used.  More specifically, when certain conditions pervade process operations 
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and outputs, which estimation approaches should be selected in order to ensure the best 

RPD solutions are achieved? 

While a variety of conditions could affect estimator selection, this chapter focuses on 

inherent asymmetry and elevated variability in process outputs.  The conditions-based 

approach incorporated into the proposed RPD methodology for tier-one estimation in 

Chapter 6 is expanded to include tier-two estimation.  Thus, the same comprehensive data 

analysis is used to illuminate intrinsic process conditions that will, in turn, inform the 

selection of approaches to regression estimation and the development response surface 

functions for the process mean and variability.  The result is a further refined 

methodology that entails a fuller understanding of the conditions inherent to the process 

and the associated data.  As before, this will facilitate a more realistic and accurate 

portrayal of the process being investigated and ultimately allow engineers to achieve 

better and more precise RPD solutions.  Figure 7.1 shows the refined methodology, 

where Phase Ib reflects both refinements made to the methodology proposed in Chapter 6 

as well as to the traditional RPD methodology.  The numerical case studies and 

associated Monte Carlo simulations discussed in Section 7.3 provide clarification as to 

which estimators should be considered for selection in Step (ii) of Phase Ib as process 

conditions evolve. 
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Figure 7.1. Enhanced conditions-based methodology process map. 

 
7.2.1  Experimentation and Analysis 

Consider a situation beginning with the specification of response variables, 

factors or predictors influencing the responses, and region of interest for a designed 

experiment.  Suppose the engineer’s objective is to identify the optimal factor settings 

x*=(X1* ,X2* , ..., Xk* ) that support achieving a mean process performance with minimal 

deviation from a desired target and with minimum variability in the result.  As in Chapter 

6, an experimental framework involving a set of control factors (X1, X2, …, Xk) and a 
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response, Y, is once again established.  The experiment consists of n design points, each 

of which contains m replicates for the observed response.  Let yqj denote the jth response 

at the qth design point, where q = 1, …, n and j = 1, …, m.  Table 7.1 portrays the 

framework for such an experiment.  

Table 7.1.  Experimental response surface methodology framework. 

Design Point X1  X2 .... Xk Replications y  s γ3 

1 

Control 
Factor 

Settings 

y11……………….y1m 1y  s1 γ31 

M  M                        M  M  M  M  

q yq1……………… yqm qy  sq γ3q 

M  M                        M  M  M  M  

n yn1………………ynm ny  sn γ3n 

 
The replicates at each design point are then used to obtain parameter estimates for the 

data.  As explained in Chapter 6, while this typically includes only the sample mean and 

standard deviation (or variance), the presence of asymmetry necessitates that the sample 

skewness also be obtained to account for the non-normality in the responses. The 

formulas used to obtain these are restated here for convenience: 
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3
1 1 1
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−
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−
−

∑ ∑ ∑

∑
                     (7.1) 

Prior to the estimation of response surface functions for the mean and variability 

of the process, a comprehensive data analysis of both the responses and the residuals 

must be performed to ascertain the underlying conditions in the data.  As before, this 

includes an investigation of normality and variability in the responses, as well as the 

verification of the assumptions of normality, homoscedasticity, and independence in the 

residuals.  Whereas Chapter 6 focused solely on the responses while presuming that 
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assumptions associated with residual errors held, in this chapter no such presumptions is 

made and conditions in both the responses and residuals are investigated.  This is done 

using both graphical and objective methods, which may include the following approaches 

briefly discussed in (i) and (ii) below: 

(i) Assessment of normality and variability in the responses:  The approaches used to 

investigate inherent asymmetry and elevated variability in the responses are the same as 

those delineated in Chapter 6.  Again, these combine the in-depth graphical approaches 

discussed in Chapter 4 with more objectively-based methods such as the Shapiro-Wilk 

test for normality.  Refer to Section 6.2.1.1 for the details on the objective approaches 

used to examine each condition. 

(ii)  Residual analysis.  As with the responses, normality in the residuals may also be 

examined using graphical measures such as the normal probability plot, followed by the 

more objective methods provided by the Kolmogorov-Smirnov or Shapiro-Wilk tests.   

To investigate independence, the Durbin-Watson test is usually sufficient to detect a lack 

of randomness in the residuals.  Should remediation be necessary, one can add predictor 

variables or use transformations in the variables to eliminate interdependencies.  Lastly, 

heteroscedasticity, or non-constant variance, is most often investigated graphically using 

a plot of the residuals against the fitted values, as well as objectively using either the 

Brown-Forsythe test, which is more robust to departures from normality in the data, or 

the Breusch-Pagan test.  The Breusch-Pagan test assumes independence and normality 

among the residuals, but further assumes a relationship for the error variance 2qσ  among 

the k regression coefficients and k-1 predictor variables that takes the form  loge s
2
q = γ0 + 
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γ1Xq1 + …+ γk-1Xq,k-1, and implies that the error variance fluctuates up or down with x, 

based on the sign of the associated coefficients.  Since constant error variance 

corresponds to the instance in which each of the coefficients contained in response 

function equals 0, the alternative hypotheses  H0: γ1 = γ2 = … = γk-1 = 0versus

1  :not all = 0iH γ are tested using the statistic: 

2*
2

2BP

SSR SSE

Nm
 Χ = ÷ 
 

 

in which Nm denotes the total number of experimental observations, SSR* is the 

regression sum of squares obtained by regressing the squared residuals, 2
je , against one or 

more of the predictor variables, and SSE is error sum of squares obtained for the full 

regression model.  Comparing this statistic to the chi-square distribution with k-1 degrees 

of freedom, if 2 2
(1 ), 1 BP kαχ χ − −> then we reject H0 and conclude that sufficient evidence 

exists to suggest non-constant variance.  In processes with inherently high variability or 

asymmetry in the responses, the assumption of constant variance in the residuals would 

most likely not hold and would thereby necessitate the use of remedial measures.  These 

will be addressed in the next section. 

7.2.2  Modeling Symmetry and Asymmetry 

Asymmetry in the tier-two case is once again modeled using the skew normal 

distribution presented in Chapter 6.  As discussed in Section 6.2.1.2, the examination of 

the asymmetric case via simulation requires a different approach in order to account for 

the inherent skewness in the process.  Accordingly, precisely the same methodology is 

applied in the modeling of process responses (see Appendix B.2 for actual R code).  
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Simulated replicates are then used to obtain tier-one estimates for the mean, median, 

standard deviation, and MAD at each design point which are, in turn, used to develop 

response surface functions using each of the ten regression models under consideration. 

The MSE-based optimization scheme is then applied to obtain optimum operating 

conditions for comparison and analysis.   

7.2.3  Estimator Selection 

Pursuant to a comprehensive data analysis, a regression estimation approach is 

selected based upon the inherent conditions identified through the analysis.  As has been 

noted, the focus of this paper is to determine which approaches tend to perform best in 

terms of yielding optimal RPD solutions under asymmetric and highly variable 

conditions.  Accordingly, the investigation considers the alternative regression methods 

listed in Table 7.2. 

Table 7.2. Regression estimators examined as potential RPD alternatives. 

 Regression Estimators 

Base Case OLS ( y and s as the tier-one basis for regression) 

Alternatives  
for  

Comparison 

1) GLM (gamma or inverse Gaussian model) 
2) WLS ( y and s) 

3) WLS (median and MAD) 
4) Least absolute deviation (LAD) 
5) Least median squares (LMS) 
6) Least trimmed squares (LTS) 
7) M-estimation (Huber Proposal 2) 
8) M-M estimation  
9) S-estimation 

 
Application of the GLM procedure first requires the specification of a distributional 

model for the linear predictor.  Given the focus on inherent asymmetry, we examine 

GLMs assuming either a gamma or inverse Gaussian distribution, both of which are 
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suitable for modeling varying degrees of asymmetry involving positive continuous data 

in which the variance tends to increase with the mean response.  The probability density 

function for each is given by: 

( )

1 exp
Gamma:  ( : , )   for 0,  where scale,  shape

y
y

f y y
ψ

ωω ψ ω ψ
ω ω ψ

− −  
    = > = =      Γ  

 

( )1/2 2

3 2
Inverse Gaussian:  ( : , ) exp   for 0,  where =mean, =shape

2 2

y
f y y

y y

λ µλ
µ λ µ λ

π µ

−  − − 
 = >      

 

Pursuant to model selection, an appropriate link function g(•) is also selected, which 

transforms the expected value of the response to the linear predictor and takes the form: 

0 1 1 2 2( )µ η β β β β= = + + + +Li i i i k ikg X X X                                      (7.2) 

One benefit of using GLMs is that the selection of the link function can be 

separate from the distributional assumption.  Although a variety of commonly used link 

functions has been established, our focus on the gamma and inverse Gaussian distribution 

limits the selection to the few delineated in Table 7.3. 

Table 7.3.  Applicable link functions for the gamma and inverse Gaussian distributions. 

Link Function ηi = g(µi) Gamma 
Inverse 

Gaussian 
Identity µi       X            X 
Log logeµi       X            X 
Inverse µi

-1
       X*            X 

Inverse-square µi
-2

             X* 

* denotes the default link used by the glm()  function in R. 
 
The selection of the appropriate link function for each distribution depends upon inherent 

conditions, and although each has default (or canonical) links that typically produce 
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preferable mathematical and numerical properties, these functions may not be the best 

choice for a particular set of data.  For example, if the response, Y increases somewhat 

linearly with Xi and the variance appears to increase with the square of the mean, then the 

gamma distribution could be paired with the identity link rather than the default inverse 

link.  Since the response deviance is scaled the same for all models generated using the 

GLM approach, determining the link that will generate the best fit can be achieved by 

selecting the GLM model that yields the lowest residual deviance or Akaike Information 

Criterion (AIC) value.  

The remaining alternatives in Table 7.2, dubbed robust regression approaches, were 

developed specifically to address the influence exercised by outliers on the response 

surface functions.  In this context, the term “robust” describes an estimator’s ability to 

overcome the influences or leverage exerted by outliers on the generated estimate.  

Furthermore, whereas outlying responses are often viewed as anomalies or potentially 

contaminated data, asymmetry and elevated degrees of variability can be inherent and 

intricate parts of manufacturing processes that increase the likelihood of observing such 

responses.  This makes robust estimators particularly interesting because they mitigate 

the leverage of extreme observations without discounting them altogether.   

The inherent process asymmetry and high variability that are the focus of this paper 

also tend to induce heteroscedasticity (Kutner et al. (2005)).  The existence of 

heteroscedasticity suggests that the OLS standard errors are potentially wrong, which 

calls into question any statistical inference based on them, and further suggests that the 

OLS method will not produce the best estimates for the regression coefficients.  The 



 
 

196 

method of weighted least squares (WLS) method, developed by Aitken in 1935, is among 

the first alternatives to remediate such situations.  Here, if the residual of the qth point is 

relatively small then it will be retained in the analysis.  Conversely, if the qth residual is 

large, it will be removed as an outlier.  Mathematically, the modification to the classical 

OLS model is straightforward:  

2

ˆ
1

Minimize
β

ε
=

∑
n

q q
q

w                                                                     (7.3) 

where qε denotes the residual associated with the qth design point given by ˆ
q qy − x β , and 

where yq refers to the sample mean in the case of multiple replications per design point.   

The use of the median and MAD as alternative starting points in the WLS method 

merits some mention.  Certainly, in the case of a normal or other symmetric distribution 

(Laplace, uniform, Cauchy, etc.), the sample mean will correspond to the value that 

possesses the greatest probability of occurring.  However, in asymmetric cases, it will 

not.  Consider the comparison of probability densities of samples drawn from a skew 

normal distribution and a normal distribution with the same mean shown in Figure 7.2.   

 
Figure 7.2. Comparison of normal and skew normal densities with common sample 

mean. 
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In the normal case, the mean corresponds to the peak in the density function, 

indicating that the likelihood of that value (and values near it) exceeds all others in that 

distribution.  Conversely, in the skew normal case, the mean lies to the right of the 

preponderance of probabilities, whereas the median falls very close to the peak of the 

distribution.  Thus, while the mean certainly still defines central tendency in terms of the 

population mean in the skewed case, it does not necessarily correspond to central 

tendency in terms of the values of greatest likelihood.  When dealing with asymmetric 

conditions, two factors bear considerable importance: 1) depending on the degree of 

variability and skew, the mean will shift away from the central tendency of the 

distribution; and 2) the standard deviation will not accurately describe the dispersion in 

the distribution as it will be significantly affected by the “play” in the skewed or long tail 

of the distribution.  If contamination exists, the effects worsen. Accordingly, we elected 

to reexamine both the OLS and WLS methods using these tier-one estimators.   

Based on the conditions examined in this chapter, the weights for the WLS method are 

determined in a manner similar to that used by Goethals and Cho (2011a).  That is, 

observations possessing less variance receive greater weight.  Recognizing that εεεε denotes 

the vector of residuals, εεεε = (ε1, ε2, …, εn) in the general form of the standard regression 

model ˆ= +Y Xβ ε in which Y is the vector of responses, X is the design matrix and β̂  is 

the vector of estimated regression coefficients, in the case of non-constant error 

variances, we may rewrite the n n× covariance matrix as: 
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1

2

( ) 0 0

0 ( ) 0
( )

0 0 ( )
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M M O M

L n
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Var

ε
ε

ε

ε  

Since for each of n components of εεεε, ( ) 0qE ε = and therefore 2( ) ( )q qVar Eε ε= , we may 

use the vector of squared residuals to estimate the error variance.  Then, after regressing 

the squared residuals against the predictors in X, we may use the fitted values of the 

resulting variance vectorφ̂ to establish weights, wq, for each of the n design points.  In 

order to mitigate the effects of high variability exerted by large residuals, we can then 

define the weights as inversely proportional to the error variance by 2ˆ1q qw ϕ= .  As such, 

the higher the error variance, the lower the associated weight for that observation, and 

vice versa.  It can be shown that the WLS estimator becomes ( ) 1ˆ
w

−′ ′=β X WX X WY , 

suggesting equivalence to the OLS estimator.  To ensure minimal model error, our 

procedure uses an iterative approach to reweight the model using subsequent estimation 

of the error variance.  Convergence is achieved and the iteration stops when the 

difference between the standard error associated with each of the estimated coefficients in 

ˆ
wβ is less than 0.05 relative to the standard errors obtained in the previous iteration.   

In response to the risks posed by certain conditions (namely outliers), a variety of so-

called robust regression alternatives to the OLS method evolved to provide greater 

resistance to the leverage exerted by outlying observations.  Robust regression 

approaches are designed to circumvent the limitations associated with traditional 

parametric and non-parametric methods.  More specifically, the underlying methods are 
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designed such that violations of supporting assumptions yield little impact on the 

regression results. 

One of the simplest alternatives for estimating robust regression coefficients is least 

absolute deviations (LAD), which actually predates OLS regression.  Karst (1958) is 

considered among the first of contemporary researchers to revive the LAD approach in 

the wake of OLS methods, suggesting its use to overcome the susceptibilities of OLS 

regarding the influence of outliers.  The LAD method basically works to minimize the 

sum of the absolute values of the residuals or errors between points generated by the 

regression function and corresponding data points: 

ˆ
1

Minimize | |
n

q
qβ

ε
=

∑                                                                     (7.4) 

Schlossmacher (1973) and a number of others extended Karsts work to yield more 

precise and robust regression models using the absolute deviations approach.  Although 

the LAD method has proved more robust than OLS, significant outliers can still bear 

negatively on the model.  Several researchers noted this shortcoming relatively early on, 

which motivated research into even more robust approaches. 

Among the first to spearhead the drive for more robust regression methods, Huber 

(1973) introduced M-estimation for regression, which he basically modeled as an 

extension of his robust parameter for tier-one estimation.  Mathematically, the method 

applied in tier-two estimation focuses on the residuals and takes the following form: 

ˆ
1

Minimize ( ) log
n

q

q

n s
sβ

ε
ρ

=

+∑                                                            (7.5) 
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where ρ = some symmetric function with a unique minimum at 0.  If we presume s is 

known and set ψ ρ ′= , then the MLE ̂β of the regression coefficients solves the non-

linear system of equations  

1

0
n

q
i

q s

ε
ψ

=

 
= 

 
∑x  

where ψ represents Huber’s bounded monotone ψ function.  After some modification, 

this becomes: 

2

1

( )
n

q

q

n p
s

ε
ψ γ

=

 
= − 

 
∑  

where γ  is selected for consistency at normality and the embedded tier-one estimates for 

location and scale are obtained using Huber’s Proposal 2 estimators, which result from 

solving the following equations simultaneously for µ and σ (see Huber (1973)):  

1

2

1

0
n

q

q

n
q

q

y

y

µ
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µ
ψ η
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This method has proven to be a viable and efficient estimator that is robust to outliers in 

the response variable.  However, it was also found to lack resistivity to outliers.   

Rousseeuw (1984) proposed the least trimmed squares (LTS) method to overcome efficiency 

shortcomings with a previous method (least median of squares (LMS), Rousseeuw (1984)).  The 

objective in this approach involves minimizing the sum of squared residuals over a subset, q, of 

the complete set of n points:  
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2

ˆ :
1

Minimize
q

q q n
qβ

ε
=

∑
                                                             

(7.6) 

 
In short, the residuals are squared and then sorted in ascending order.  Of the n residuals 

in the full set, the (n – q) largest are “trimmed” so that only the residuals from the 

remaining q points are included in the regression.  Thus, the (n – q) largest points which 

are not used do not influence the fit.  The result is a fit that retains the resistivity 

properties of the LMS method, but is more efficient. 

The fact that both the LMS and LTS methods involve the minimization of a robust 

measure of the scatter of the residuals gave rise to S-estimation as a generalization of the 

two.  Introduced by Rousseeuw and Yohai (1984) as a means for performing robust 

regression in time series analysis, this method finds a plane or hyperplane in which the 

coefficients are selected to identify a solution to 

1 0

ˆ
( )

n
q q

q

y
n p

c s
χ ϕ

=

 −
= − 

 
 

∑
x β

                                                   (7.7.) 

such that it minimizes the scale, s.  In this context, p corresponds to the k-1 predictors; χ 

is typically denoted by the integral of Tukey’s bisquare function given by 

6 4 23 3 | | 1
( )

1 | | 1

u u u u
u

u
χ

 − + ≤
= 

>
 

and c0=1.548 and ϕ = 0.5 are selected for consistency at the normal distribution.  This 

method is highly resistant to leverage points, robust to outliers in the response, and more 

efficient than the LTS method. 
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Yohai (1987) proposed the M-M-estimator as an improved alternative to LMS and 

LTS that would retain the high breakdown points these methods achieved but would also 

achieve higher efficiency.  Yohai’s approach essentially blended earlier methods in order 

to retain the robustness and resistance of LMS, LTS, and S-estimation, while gaining the 

efficiency of M-estimation. The method proceeds in three stages.  The first involves an 

initial estimation of regression coefficients (in the case of Yohai (1987), using either the 

LMS or LTS method).  In the second, a highly robust and resistant S-estimate is computed 

that minimizes an M-estimate of the scale of the residuals. In the final stage, the 

estimated scale is then held constant while a nearby M-estimate of the regression 

coefficients is determined.   

7.2.4  Integrating the Estimators into the RPD Framework 

Considering the framework delineated in Section 2.1 for an industrial process 

involving a nominal-the-best (N-type) quality characteristic as the response of interest, 

we assume that the levels of xi for i = 1, 2,…,k are both quantitative and continuous, and 

can be controlled by the experimenter.  Pursuant to the identification of underlying 

conditions, tier-one estimates for the location and scale are obtained at the qth design 

point using y and y% for the location, and s and MAD for the scale.  Again, as was 

discussed in Section 6.2.1.2, the estimates for the process mean and standard deviation 

are influenced by the inclusion of the sample skew in their derivation.  Thus, inherent 

process skewness is accounted for in the ultimate response surface estimates used for the 

process mean and standard deviation, which ensures that actual process characteristics are 

more accurately represented. 
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will be discussed in Section 7.3.2, this will require a more indirect approach when 

addressing asymmetric conditions.  Fitted response functions (tier-two estimates) are then 

developed for the process location and scale for each of the regression methods outlined 

in Section 2.2.  In particular, assuming second-order polynomials for the response 

functions in each case, the general form of the estimated response functions for the 

process location and scale with k parameters or k –1 predictor variables appears as:  

Location:  T T
,0

ˆ ˆ ˆˆ( ) µ µ µ µµ β ε= + + +x X b X B X                                   (7.8) 

 Scale:  T T
,0

ˆ ˆ ˆˆ ( ) σ σ σ σσ β ε= + + +x X b X B X                                   (7.9) 
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and where ,0
ˆ

µβ (and ,0
ˆ

σβ ), ˆ ˆ (and )µ σb b and ˆ ˆ (and )µ σB B once again correspond to the 

estimates of the intercept, linear, and second-order coefficients of the response surface 

functions for the location and scale, respectively.   The term εµ and εσ correspond to the 

residual error for the mean and standard deviation, respectively.  In similar fashion, fitted 

response surface functions are developed for each of the estimate vectors containing the 

supporting information for each parameter.  The MSE-based optimization scheme given 

by  

2ˆ ˆMinimize     = ( ( ) ) ( )MSE µ τ σ− +x x                                            (7.10) 

is again used on either a spherical region of interest (central composite design) such that

2ρ′ ≤x x , or a cuboidal region of interest (full factorial design) whereby x is bounded by 
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(-1,1) .  Using this approach as a framework, the various regression estimators are 

evaluated in their ability to determine optimal operating conditions for the system. 

7.3  Numerical Demonstration via Simulation 

In this section, we examine two cases using commonly applied experimental data 

sets as bases for Monte Carlo simulation.  The overarching purpose of the simulation is to 

demonstrate the degree to which underlying process asymmetry and variability (and, 

consequently, heteroscedasticity) affect estimator performance in the context of RPD 

solutions, which should ultimately serve to inform engineers as to which estimators tend 

to perform best under a particular set of conditions.. 

The first study involves normally distributed data with moderately low variability 

in which all of the base assumptions concerning the data hold.  Through experimentation, 

we then investigate the impact of increasing variability on estimator performance.  In the 

second, we expand the investigation to include asymmetry. We examine asymmetric data 

with low variability and heteroscedasticity using four scenarios derived from 

combinations of high/low asymmetry with high/low variability.  Within each case study, 

initial results are obtained from the base data and observations are then drawn to assess 

estimator performance.  Thereafter, 1,000 iterations of each simulation scenario are 

conducted to enable the analysis of performance trends and thereby develop fuller 

assessments regarding estimator performance under the evaluated conditions.   

Simulations were developed in the statistical computing environment R version 

2.14.1 (see reference R Core Team (2012)).  For the purposes of estimator comparison, 

each simulation involves several key settings that are applied to each estimation model: 
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1) Using the actual experimental data obtained for each case, simulated data are 

derived using the skew normal approach introduced in Section 6.2.1.2 and as 

discussed in Section 7.2.4 

2) Full second-order response surface functions are developed for the location (mean 

or median) and scale (standard deviation or MAD) response surface functions 

using Equations 7.8 and 7.9. 

3) Optimization results are obtained for each estimation model using the MSE-based 

optimization scheme (Eqn. 7.10) developed by Cho (1994) / Lin and Tu (1995).   

Pursuant to (3) above, estimation approaches are then evaluated based on the 

optimization results they generate in terms of the MSE and deviation from the established 

process target (i.e., target bias, or simply bias). 

 
7.3.1  Case Study A - Metal Cutting Process 

In this experiment, adapted from Shin, et al. (2011), the metal removal rate 

(mm3/min) of a metal cutting machine is a normally distributed N-type quality 

characteristic of interest, Y.  The control factors known to influence Y include the cutting 

speed (X1), cutting depth (X2), and cutting feed rate (X3) settings for the machine.  The 

desired target value for the machine's removal rate is τ = 57.5 mm3/min.  The 

experimental framework displayed in Table 7.4 is a CCD comprised of eight factorial 

points, six axial points, and six center points, with the calculations for the mean and 

standard deviation at each design point.   

Table 7.4.  Experimental framework for the metal cutting study. 
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 Coded Units      Metal Removal Rate  
(mm3/min)  Cut Speed Cut Feed Cut Depth Observed Responses (simulated) 

Run X1 X2 X3 Y1 Y2 Y3 Y4 Y5 Y  s 3γ  

1 -1 -1 -1 44.6 52.5 57.4 52.4 57.8 53.2 3.82 0.19 
2 1 -1 -1 63.9 60.3 64.7 65.8 67.5 62.9 3.51 -0.77 
3 -1 1 -1 45.6 51.5 45.4 62.0 52.8 53.4 3.67 -0.24 
4 1 1 -1 67.1 64.5 61.6 58.6 55.5 62.6 3.24 -0.32 
5 -1 -1 1 59.4 55.6 51.4 57.7 59.5 57.3 3.10 -0.11 
6 1 -1 1 67.6 64.6 64.3 71.8 67.4 67.9 4.31 -0.21 
7 -1 1 1 65.5 60.8 60.5 57.2 55.6 59.8 4.47 0.46 
8 1 1 1 67.4 66.5 71.8 68.2 72.0 67.8 3.21 -0.85 
9 -1.682 0 0 58.2 56.1 61.3 65.0 47.3 59.1 4.73 -1.13 
10 1.682 0 0 69.5 63.2 59.3 73.0 61.0 65.9 4.46 0.73 
11 0 -1.682 0 63.2 60.4 59.0 61.0 65.8 60 3.55 -0.16 
12 0 1.682 0 59.5 62.6 61.7 57.3 59.9 60.7 3.10 -0.17 
13 0 0 -1.682 51.7 66.3 57.2 61.9 64.4 57.4 4.29 -1.13 
14 0 0 1.682 65.3 66.1 61.4 72.5 64.2 63.2 5.04 1.32 
15 0 0 0 60.3 56.5 64.1 61.1 60.5 59.2 3.87 -0.03 
16 0 0 0 59.2 66.9 56.7 62.7 57.8 60.4 3.74 -1.18 
17 0 0 0 58.5 59.0 61.2 56.4 57.2 59.1 3.95 -0.08 
18 0 0 0 62.4 53.0 59.6 64.0 56.6 60.6 3.71 0.22 
19 0 0 0 64.8 63.3 60.9 54.9 66.3 60.8 4.00 0.64 
20 0 0 0 53.4 60.5 60.9 64.7 59.9 58.9 3.92 -0.51 

 
7.3.1.1  Preliminary Data Analysis 

The initial graphical analysis of the responses suggests that symmetry and 

moderately low variability are inherent to this particular set of data.  Apart from what 

appear to be a few “stray” responses, the observations in the normal probability plot in 

Figure 3(a) generally fall along the reference line, implying normality.  A more objective 

assessment using the Shapiro-Wilk test the statistic yields * 0.943 vs. 0.951W Wα= ≈ .  

Since *  W Wα<  we conclude H0, or that sufficient evidence exists to support normality, 

which reinforces the graphical analysis.  Regarding process variability, Figure 7.3(b) 

shows the deviations between the observations and the mean response to be small, and 

well within the 3σ  threshold previously defined.  
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                                               (a)                                             (b) 

Figure 7.3. Analysis of variability (a) and normality (b) in the metal cutting responses. 

 
After performing a preliminary regression for a full second-order model for the 

mean response using the OLS approach, a graphical analysis of the residuals (Figure 7.4) 

suggests that the assumptions of normality and independence hold, but that 

heteroscedasticity may exist.   

 
                            (a)                                      (b)                                        (c) 

Figure 7.4. Investigation of assumptions on a) normality, b) independence, and c) 
constant variance in the residuals. 

To confirm the variability trends observed in the residual plots for full ten-

parameter second-order model, we apply the Breusch-Pagan hypothesis test in which the 

calculated statistic tests H0: γ1 = γ2 =… =γ10 = 0 versus H1: Not all γ = 0.   This yields the 

test result 
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2 2*
2 278 31.1

16.1 (.95,9) 16.9
2 2 20BP

SSR SSE

Nm
χ χ   

= ÷ = ÷ = < =   
   

 

 
which, since 16.1<16.9, suggests constant variance and thus disputes the deduction 

suggested by the plot in Figure 7.3(c).  However, unless more than thirty-five 

observations are available, it would be difficult to find a data set with non-constant 

variance; it is often the case with smaller sample sizes that the objective test results fail to 

capture the presence of non-constant variance.  Thus, to investigate this more fully, since 

the mean responses in Table 7.3 derive from evaluating multiple observations at each 

design point, we can gain much more qualitatively by considering all of the individual 

observations rather than just the mean.  The Breusch-Pagan test still compares the 

differences in the residuals across the fitted line; it just happens to have more data 

available at each setting of the fitted line to compare.  Pursuant to this, we use the sample 

statistics for each design point in Table 7.3 as a basis for simulating five observations at 

each point for a total of 100 experimental observations in R.  Thereafter, a full second-

order regression is performed once again and the reiterated Breusch-Pagan test yields

2 11.9=χBP , which is clearly less than2(0.95,9) 16.919χ = and suggests that the error 

variance is, in fact, constant.  Note that the patterns in the residual plots for the 100-

observation case in Figure 7.5 closely resemble the patterns in Figure 4 but that the 

greater number of observations makes it much more obvious that the base residual 

assumptions hold. 

 



 
 

209 

 
Figure 7.5. Residual analysis based on all 100 observations in the metal cutting study. 

 
Taken together, the results of the data analysis suggest that the experimental data meet all 

requisite provisions for the application of OLS regression.  This implies that OLS would 

be the best approach given that this method is known to produce the best linear unbiased 

estimates (BLUE) for the process location and scale, or dispersion when these conditions 

hold. 

7.3.1.2  Simulation Results with Original Experimental Data 

As a starting point for this study, a single run of the metal cutting experiment is 

performed to motivate the discussion on conditions-based selection of tier-two 

estimators.  Additionally, to demonstrate the benefits of using the skew normal 

distribution to model system properties, the OLS method using traditional tier-one 

estimators under the assumption of zero skewness is also applied.  The results in Figure 6 

show the  optimal operating conditions x* = ( * * *
1 2 3, ,x x x ) obtained under each regression 

model using the MSE-based optimization scheme, the associated optimal process mean 

and standard deviation, and the resulting target bias and MSE.  For the GLM approach, 

the Gaussian-identity (default) distribution-link combination was used, which essentially 

mirrors the OLS counterpart and is appropriate when traditional assumptions hold. 
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OLS 
(Traditional) 

OLS 
(SN) 

WLS 
Mean/s 

WLS 
Median./MAD LTS S LAD MM 

Huber 
Prop 2 GLM 

x1 -0.380 -1.682 -0.071 -0.515 0.056 0.023 -0.215 0.101 -1.682 -1.682 
x2 -1.682 -1.682 1.682 -1.682 -1.682 -1.682 1.682 -1.682 -1.682 -1.682 
x3 -0.170 1.014 -1.682 1.682 -1.682 -1.682 -1.682 -1.682 1.155 1.014 

ˆ ( *)µ x  57.172 57.615 58.825 57.540 57.466 57.490 58.430 57.459 57.586 57.615 
bias 0.328 0.115 1.325 0.040 0.034 0.010 0.930 0.041 0.086 0.115 
ˆ ( *)σ x  2.649 2.086 2.733 0.449 2.369 2.169 2.563 2.928 2.064 2.086 
MSE 7.127 4.365 9.225 0.203 5.612 4.703 7.431 8.575 4.266 4.365 

Figure 7.6. Optimization results of single run with 5 simulated observations  
(darker shading indicates a better RPD solution in terms of MSE). 

 
From the results in Figure 6, a single run of the experiment suggests two things:  first, 

that accounting for even low degrees of asymmetry can produce better RPD solutions 

than the traditional approach to OLS estimation; and second, that OLS regression (under 

the SN approach) is still suitable, although the use of the median-based WLS method can 

achieve superior results.   However, recognizing that these solutions are, in fact estimates, 

it is therefore quite likely that subsequent implementations of the experiment could yield 

different sets of optimal coordinates.   Moreover, the objective is to examine trends to 

develop a better sense of how the estimators perform on average, which cannot be 

achieved via a single run.  Accordingly, 1,000 iterations of the simulation were executed, 

generating fresh random data at each iterate.  At the conclusion of each, the MSE and 

target bias were recorded for the optimal mean response and then averaged across all 

iterations to observe trends.  Figure 7.7contains the simulation results, along with the 

proportion of iterations in which a particular estimation approach yielded the smallest 

MSE and bias.   
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OLS 

(Traditional) 
OLS 
(SN) 

WLS 
Mean/s 

WLS 
Median/MAD LTS S LAD MM 

Huber 
Prop 2 GLM 

Avg MSE 4.029 3.250 3.349 2.379 2.636 2.593 3.359 3.205 3.292 3.250 

% Best MSE 4.90% 3.50% 5.10% 30.30% 20.70% 20.50% 9.20% 5.50% 1.90% 3.50% 

Avg Bias 0.300 0.266 0.260 0.243 0.205 0.200 0.220 0.220 0.259 0.266 

% Best Bias 7.20% 4.80% 6.70% 19.50% 23.10% 19.90% 9.70% 7.70% 3.90% 4.80% 

Figure 7.7. Simulation results under low-variability conditions. 

 
Noting that all nine of the alternative estimation approaches outperformed the 

traditional OLS approach in Figure 7.7, it is clear that despite approximate 

symmetry/normality in the process data, there is enough inherent skewness to affect the 

optimization results.  In the most basic sense, this is illustrated by comparing the first two 

columns in Figure 7 (OLS-Traditional vs. OLS-SN), which suggests that by accounting 

for even slight levels of non-zero skewness, better RPD results can be obtained.  Beyond 

this, the fact that median-based approaches (WLS(median/MAD), LTS, and S-estimation) 

yielded the best results in terms of both average performance and consistency suggests 

that these methods are preferable when any degree of asymmetry exists.  That the WLS 

procedure produced better results (on average) is most likely the result of down-

weighting those observations with higher variability, thus demonstrating the viability of 

using that method to exert greater control over sources of process variation. 

7.3.1.3  Investigating the Effects of High Variability Conditions 

To examine the effects of variability, a simple modification to the simulation in R 

was incorporated that would induce a greater degree of variability in the process.  

Whereas before the sample standard deviations (s) in Table 7.3 was used to generate 

random variates in the base scenario, in this instance a randomly sampled integer from a 

range of 2 to 5 is obtained at each design point to serve as a factor that would then be 
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multiplied by the original values for s.  Hence, the variability at each design point would 

be increased by a factor of 2 to 5 times. 

The idea here was that simply multiplying the s vector by a single common factor 

would not have any impact on the results other than to scale them by that factor.  That is, 

there would certainly be more variability in the responses, but the proportional change in 

each design point would be the same and would negate any real effects on the results as 

the underlying conditions regarding base assumptions would still hold.  Thus, the 

objective was to inject variability not only horizontally within each design point, but also 

vertically across the vector of sample standard deviations.  This would challenge system 

performance and very likely upend the underlying assumptions of response variability 

and heteroscedasticity.  As the plots in Figure 7.8 show, this is precisely what occurs, as 

several observations exceed the 3σ threshold (Figure 7.8(a)), and the variability trends 

coupled with the Breusch-Pagan results in Figure 7.8 (b) 2 2
(0.95,9)( 52.78  >  16.92)BPχ χ= =

clearly indicate non-constant variance in the residuals.  As noted previously, the presence 

of such conditions inhibits the use of OLS and suggests the need for either remedial 

measures, such as transformations, or alternative estimation approaches.   

                          
                                               (a)                                                 (b) 
Figure 7.8. Analysis of responses (a) and residuals (b) under high-variability conditions 
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Once again, in the interests of establishing performance trends among the estimators, 

we used the aforementioned approaches for increasing variability and simulating data to 

generate five observations from a skew normal distribution at each design point.  In this 

instance, the GLM approach is also modified to account for differences in the data.  

Specifically, further analysis of the residual data for response surface functions for both 

the mean and variation suggested the need to consider either a gamma or inverse 

Gaussian distribution to correct for non-constant variance.  After preliminary modeling 

using each distribution and their respective options for link functions in the GLM 

approach, it was determined that the gamma-identity and inverse Gaussian-log 

combinations would produce the best fit for the mean and standard deviation response 

surface functions, respectively, as these yielded the lowest residual deviance and AIC 

values.  To establish performance trends among the various estimation approaches, 1,000 

iterations of the experiment were performed under the simulated high-variability 

conditions.  Results for the MSE and bias were then averaged across all 1,000 iterations, 

and performance proportions were calculated to produce the results shown in Figure 7.9. 

The results indicate several things.   First, all nine of the alternatives once again  

produced a better result than the traditional OLS method, reinforcing the benefit of using 

the skew normal approach for modeling process asymmetry.  Second, it is clear that the 

increased variation induces a change in estimator performance such that the GLM method 

using the gamma-identity and inverse Gaussian-log combinations outperforms all others 

on average, both in terms of the resulting MSE and target bias.  While the next-best 
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performers (LTS, WLS (median/MAD), and S-estimation methods) performed relatively 

well, they all achieved an average MSE nearly 6 times larger than the GLM method.  

OLS 
(Traditional) 

OLS 
(SN) 

WLS 
Mean/s 

WLS 
Median/MAD LTS S LAD MM 

Huber 
Prop 2 GLM 

Avg MSE 35.604 30.398 28.261 20.194 19.714 20.277 32.284 28.514 31.253 3.643 

% Best MSE 4.90% 3.70% 7.30% 18.30% 17.40% 16.10% 8.60% 5.60% 3.40% 16.00% 

Avg Bias 2.225 2.079 2.087 1.790 1.579 1.694 2.089 2.037 2.112 0.166 

% Best Bias 5.20% 2.80% 6.40% 15.10% 15.90% 14.40% 8.10% 4.90% 3.50% 24.80% 

Figure 7.9. Simulation results under high-variability conditions. 

 
Although differences in the generated data can be a contributing factor, the 

reasons behind these results can also be attributed to the increased likelihood of extreme 

observations in either tail.  And if an extreme observation from one tail is not counter-

balanced by an extreme point from the other, then the resulting sample could very well 

appear skewed, despite being generated from a normal distribution.  Obviously, when the 

data are approximately normal, then the mean and the median will assume nearly the 

same value.  However, as the data become skewed due to the occasion of one or more 

extreme observations, mean-based estimators deteriorate in their ability to provide the 

best estimate of central tendency due to the influenced of outlying data points.  Similarly, 

the standard deviation no longer provides the best measure of the true dispersion in the 

distribution.  The median and the MAD, on the other hand, retain their properties and are 

resistant to extreme observations, thereby making them preferable when such conditions 

exist.  In addition to this, high variability typically will also induce heteroscedasticity, 

which invariably creates situations whereby less than optimal solutions result using OLS 

regression.  As the plots in Figure 7.8 show, this is precisely what is occurring in this 

scenario, and serves to explain why the robust and GLM approaches perform well.   
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7.3.2  Case Study B –Ceramic Coating Process 

The investigation of asymmetric conditions involves the ceramic coating 

experiment described in Chapter 6 (Section 6.3.1.2) which was obtained from Tillman et 

al. (2010).  As before, the univariate case is examined using porosity as the quality 

characteristic of interest.  Recall that porosity is an S-type characteristic with an upper 

acceptable threshold of 3% and an associated objective of minimizing as close to 0% as 

possible.  Note that this could also be treated as an N-type characteristic with lower and 

upper limits of 0% and 3%, respectively, and a desired target, τ=0.  As in Chapter 6, a 

replication-based adaption is used to facilitate tier-one estimation at each design point.  

Table 7.5 shows the same CCD used for this experiment in Chapter 6. 

7.3.2.2  Preliminary Data analysis 

As in the first case study, a graphical analysis of the data is performed to 

investigate the assumptions regarding normality and variability in the responses and 

homoscedasticity in the residuals (along with the assumptions of normality and 

independence).  The plots in Figure 7.10 show the process to be highly variable (10a), 

asymmetric (10b), and that error variance is non-constant (10c).  Application of the 

Shapiro-Wilk test yields * 0.837  vs.  =0.946α=W W which supports the alternative hypothesis 

H1 (that sufficient evidence exists to suggest non-normality), and further reinforces the 

graphical analysis.   Similarly, the Breusch-Pagan test using full second-order regression 

yields 2 225.705 (0.95,9) 16.919BP χΧ = < = , reinforcing the deduction that the error variance is 

non-constant.  As before, the existence of these conditions nullifies several of the 
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assumptions of the OLS approach and demonstrates the need to consider alternative 

estimation techniques for this particular process. 

Table 7.5.  Adapted experimental design for the ceramic coating process. 

 
Control Factor Settings 

(Coded) 
Replications 
(% Porosity) 

Sample Moments Used to 
Estimate (ξ,ω,α) 

Run X1 X2 X3 y1 y2 y3 y  s   3γ  

1 –1 –1 –1 1.43 1.05 1.18 1.22 0.19 0.89 
2 −1 –1 1 1.41 1.58 2.2 1.73 0.42 1.41 
3 –1 1 –1 4.95 4.86 4.23 4.68 0.39 -1.63 
4 −1 1 1 2.72 1.95 1.75 2.14 0.51 1.44 
5 1 –1 −1 1.64 2.43 1.81 1.96 0.42 1.41 
6 1 –1 1 1.52 2.27 1.4 1.73 0.47 1.61 
7 1 1 −1 1.74 1.12 1.19 1.35 0.34 1.65 
8 1 1 1 1.43 0.96 1.12 1.17 0.24 0.90 
9 –1.682 0 0 1.85 2.49 1.63 1.99 0.45 1.27 
10 1.682 0 0 2.38 1.82 1.47 1.89 0.46 0.67 
11 0 –1.682 0 2.01 4.03 3.53 3.19 1.05 -1.30 
12 0 1.682 0 1.11 1.36 1.94 1.47 0.43 1.08 
13 0 0 –1.682 2.09 1.85 1.67 1.87 0.21 0.42 
14 0 0 1.682 3.02 2.03 3.05 2.70 0.58 -1.73 
15 0 0 0 0.85 0.97 0.88 0.90 0.06 1.29 
16 0 0 0 1.82 1.3 0.96 1.36 0.43 0.61 
17 0 0 0 1.64 1.95 1.48 1.69 0.24 0.90 
18 0 0 0 1.88 1.83 2.74 2.15 0.51 1.71 

 

 
                                 (a)                                           (b)                                      (c) 
Figure 7.10.  Graphical investigation of variability (a) and normality (b) in the responses 

and homoscedasticity in the residuals (c). 

7.3.2.3  Simulation Development and Results 

In this particular experiment, our objective was to determine estimator 

performance trends given varying degrees of both asymmetry and variability in the 

simulated process.  Pursuant to this, we examined four scenarios that coupled high/low 
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degrees of asymmetry with high/low degrees of variability.   Similar to the manner in 

which we adjusted variability in the first case study, in this case we used factors to 

increase the levels of both conditions, as depicted in Figure 7.11.  Note that the Low-Low 

scenario served as the base case and was based on the natural process skewness and 

variability depicted in the original experimental data. 

 
Figure 7.11. Simulation scenarios examined for Case Study B (base settings highlighted). 

 
It should be noted that, whereas all of the other approaches remained unchanged 

between scenarios, the application of GLMs evolved with the conditions.  In particular, as 

the conditions changed between scenarios, each of the possible distribution-link 

combinations was re-evaluated to determine which among them would produce the best 

fit in a given scenario.  Using the residual deviances and AIC values as selection criteria 

resulted in the GLM combinations for each simulation scenario shown in Table 7.6. 

Table 7.6. Distribution-link combinations used for GLM method in each scenario. 

Scenario 
Response Surface 

Function Distribution Link Function 

Low-Low 
Mean 

Variation 
Inverse Gaussian 

Gamma 
Inverse square  

Inverse  

Low-High 
Mean 

Variation 
Gamma 
Gamma 

Identity 
Identity 

High-Low 
Mean 

Variation 
Inverse Gaussian 

Gamma 
Inverse square 

Identity 

High-High 
Mean 

Variation 
Gamma 
Gamma 

Inverse 
Identity 

Variability

Low High

A
sy

m
m

e
tr

y Low
Scale (ω) * 1 Scale(ω) * 1

Shape (α) * 1 Shape (α) * 1.5

High
Scale(ω) * factor

(random integer drawn from (3 - 6)
Scale(ω) * factor

(random integer drawn from (3 - 6)

Shape (α)* 1 Shape (α) * 1.5
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As  before, 1,000 iterations of each scenario were performed, recording the MSE 

and target bias associated with each regression approach at each iterate, and then 

averaging across all iterations to facilitate trend analysis.  Since the benefits of the SN 

approach were demonstrated in the first case study, the traditional OLS approach is 

omitted and only the OLS method using the SN approach for tier-one estimation is used.  

Figure 7.12 contains the numerical results of the simulation experiment in terms of the 

MSE and bias of the optimization results, including the proportion of the 1,000 runs each 

method achieved the lowest MSE and bias.  Figure 7.13 contains frequency plots of the 

four top-performing regression methods for MSE and bias in each scenario.  These plots 

essentially reflect the distribution of the results for each measure under each method 

shown.  

Scenario 
Perf. 

Measure 
OLS WLS WLS         Huber   

(SN App.) Mean/s Median/MAD LTS S LAD MM  Prop 2 GLM 

Low –  
Low 

Avg MSE 0.06 0.14 0.12 0.35 0.12 0.39 0.23 0.06 0.07 
% Best 4.80% 1.30% 3.20% 8.50% 31.10% 1.40% 3.20% 3.90% 45.60% 

% Worst 0.60% 3.70% 7.10% 24.20% 8.80% 36.40% 13.80% 0.60% 5.40% 

Low –  
High 

Avg MSE 4.15 4.51 3.42 3.26 3.03 4.77 3.72 4.21 4.38 
% Best 5.00% 6.50% 11.40% 19.90% 31.00% 13.80% 6.90% 5.50% 3.60% 

% Worst 7.30% 14.00% 11.80% 13.90% 16.00% 19.70% 5.00% 7.50% 10.80% 

High –  
Low 

Avg MSE 0.06 0.13 0.10 0.23 0.07 0.37 0.14 0.06 0.03 
% Best 11.00% 2.20% 5.60% 14.30% 39.80% 1.40% 9.30% 9.20% 14.60% 

% Worst 0.70% 5.10% 7.10% 17.50% 9.60% 49.30% 8.60% 0.80% 2.00% 

High –  
High 

Avg MSE 2.362 1.002 0.871 0.956 0.523 2.842 1.838 2.452 0.141 
% Best 0.90% 6.52% 13.15% 13.37% 41.80% 2.58% 3.03% 0.90% 18.31% 

% Worst 19.33% 2.81% 5.73% 8.54% 6.07% 41.80% 11.46% 22.13% 0.34% 
                      

Low –  
Low 

Avg Bias 0.08 0.25 0.20 0.38 0.13 0.47 0.23 0.08 0.05 
% Best 7.40% 1.20% 2.00% 9.00% 35.70% 1.60% 9.80% 7.20% 31.70% 

% Worst 0.90% 5.62% 7.53% 24.38% 7.53% 37.19% 15.51% 0.79% 1.35% 

Low –  
High 

Avg Bias 1.14 1.26 1.09 0.96 0.91 1.12 1.00 1.14 1.27 
% Best 5.00% 6.50% 10.70% 19.90% 31.90% 14.10% 7.40% 5.60% 2.20% 

% Worst 7.30% 13.93% 13.60% 15.06% 16.63% 17.08% 4.04% 7.30% 10.90% 

High –  
Low 

Avg Bias 0.12 0.26 0.20 0.28 0.10 0.49 0.14 0.12 0.08 
% Best 9.20% 1.30% 3.10% 15.50% 41.90% 1.10% 21.90% 9.10% 3.90% 

% Worst 1.24% 6.52% 6.29% 16.40% 8.20% 50.67% 8.76% 1.35% 1.80% 

High –  
High 

Avg Bias 1.061 0.504 0.454 0.454 0.322 1.176 0.785 1.088 0.310 
% Best 1.46% 7.98% 12.25% 20.56% 45.39% 3.26% 4.49% 1.12% 4.16% 

% Worst 19.89% 2.92% 5.28% 8.54% 6.63% 39.55% 11.01% 21.80% 2.70% 

Figure 7.12.  Average performance results for each simulation scenario  
(darker shading indicates superior performance under the stated scenario conditions). 



 

 

                  (a)                              (b)                               (c)                              (d) 
Figure 7.13. Frequency plots

for the (a) Low-Low, (b) Low

 
The results in Figure 7.12 show a clear shift away from traditional 

when various degrees of both asymmetry and variabil

discussed in paragraphs (i) – 

(i) Low-Low Scenario:  

OLS, Huber, and GLM methods all achieve the best average performance in terms of both 

MSE and bias (although the GLM

clear that the GLM method achieves the best results far more often than the other top

performers, thereby making it more preferable under these conditions.  The reason for 

this is that while low/moderate levels of asymmetry/variability allow the 

methods to perform well, there is enough of each inherent to this process (see plots in 

Figure 7.10) to allow the GLM

achieve better results.  Moreover, the frequency plots in Figure 7.13(a) reinforce this.  In 

particular, the results from the 
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(a)                              (b)                               (c)                              (d) 
. Frequency plots of MSE and Bias results for the top-performing approaches 

Low, (b) Low-High, (c) High-Low, and (d) High-High scenarios.

The results in Figure 7.12 show a clear shift away from traditional OLS approaches 

when various degrees of both asymmetry and variability coexist.  Each of the scenarios is 

 (iv) below. 

  Under low degrees of both asymmetry and variability, the 

methods all achieve the best average performance in terms of both 
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assume a more exponential appearance, suggesting a much higher likelihood of very low 

MSE/bias values in the RPD solutions obtained.  

(ii) Low-High Scenario:  When the degrees of variability become significantly 

elevated, median-based regression approaches become preferable.  Specifically, the S-

estimation, LTS, and WLS(median/MAD) methods outperform the others in terms of both 

measures.  In this instance, the S- method becomes especially preferable simply because 

it achieves the best results far more frequently than any of the other approaches.  While 

the frequency plots in Figure 7.13(b) depict a wide range for potential results for each of 

top-performing approaches, they also show that the S- method provides a much greater 

chance of achieving an MSE/bias result that is less than 0.01, and a lower chance of 

achieving MSE/bias results greater than 0.01 (that is, to the left of 0.01, the S-method 

curve is higher than the others, whereas to the right it is lower).  

(iii) High-Low Scenario: Although the GLM method produces the lowest MSE and 

bias on average, the S-estimation method is preferred under these conditions.  The 

reasons are two-fold: first, the average results using this method are only slightly higher 

than those achieved using the GLM method; second, the S-estimation method achieves 

the best results far more frequently and with much greater likelihood (see Figure 7.13(c)).  

Beyond this, the high-low scenario produces interesting results in that the OLS method 

performs quite well despite the presence of significant process skewness.  The reason for 

this can be explained by the fact that the relatively low levels of variability translate to 

reductions in both the length and heaviness of the long tail of the skewed distribution.  

Thus, the influence typically associated with observations from the long tail is now 
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reduced.  This effect is shown in Figure 7.14, whereby the low degree of variability 

counteracts the elevated levels of asymmetry by shortening and thinning the tail while 

causing the distribution to peak around its central values.  The net effect is some 

semblance of symmetry that is close enough to preserve the performance of the OLS 

method, at least when the suggested SN approach to tier-one estimation is applied. 

 
Figure 7.14.  Comparison of probability densities for the High-Low and High-High 

scenarios. 

 
(iv) High-High Scenario: As in the High-Low scenario, the GLM method produces 

the best average results for MSE and bias, followed closely by the S-estimation method.  

The S- method, however, once again produces the best results far more often than all of 

the other approaches.  Nevertheless, while the frequency plots in Figure 7.13(d) show the 

same exponential appearance for the S-estimation approach, particularly for MSE, which 

suggests a much greater likelihood of low results, the curves for the GLM approach 

suggest a much greater degree of predictability.  That is, while this method rarely 

achieves the low levels for either MSE or bias that the S-method can achieve, 98.5% of 

the iterations resulted in an MSE between 0.01 and 0.5 and 99.5% resulted in a bias 

within the same range.  Couple this with the fact that, based on the results in Figure 7.12 

and the plots in Figure 7.13(d), the S- method achieves MSE values as high as 20 

(compared to 1 for the GLM approach), and that the S- method is also ~17 times more 
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likely than the GLM approach to achieve the worst MSE, makes the GLM approach 

preferable under these conditions. 

7.4  Summary of Findings 

The numerical results in each of the case studies illustrate several key insights for 

solving the RPD problem in asymmetric and highly variable conditions, which are 

summarized in (i)-(iii) below: 

(i) Most importantly, the simulation results across all scenarios clearly demonstrate 

that as process variability increases, alternative approaches to the traditional OLS method 

are not only necessary, but preferable.  When coupled with asymmetric conditions, the 

effects become even more pronounced, particularly when the levels of both conditions 

are high.  The key question is why?  As previously discussed, once elevated degrees of 

variability and inherent asymmetry shift the data from assumed normality, the 

performance of traditional approaches to estimation suffers as a result of the influence 

exerted by extreme observations from the long tail of the skewed distribution.  The 

alternative methods examined (namely the GLM, S-, LTS, and WLS (median/MAD)) tend 

to overcome those influences most effectively.  As the results have shown, the GLM 

approach tended to perform very well, if not best, in all of the examined scenarios.  But it 

is important to recognize that this is predicated on the identification of the right 

distribution-link combination, which is data-dependent and so constitutes another 

required step in the application of that particular method.  However, viable alternatives to 

this are the WLS (median/MAD), LTS, and S-estimation methods, which also performed 

markedly better than traditional OLS and WLS approaches in high variability and high 
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asymmetry-high variability situations.  Thus, in view of the aims of this paper, the 

pressing question for engineers is which approach to use and when.  Based on the 

analysis of the presented results, the answer is depicted in Figure 7.15, which shows the 

modification to Phase Ib of the original process map (from Figure 7.1). 

Two additional points should be made.  First, some might suggest that high variability 

should not pose an issue, as it could be overcome by simply increasing the sample size 

required for estimation.  Added replication at each experimental design point could 

ameliorate potential issues and would be preferred.   However, this is often not feasible 

due to time and cost constraints, as well as other limitations on resources required for 

experimentation.  Second, the results obtained in both numerical examples denote 

performance trends rather than definitive conclusions as to the certainty of one 

estimator’s performance versus another’s.  Albeit, what they do demonstrate is that when 

elevated degrees of process variability and asymmetry exist, estimator selection matters 

in terms of achieving the best RPD solution.   This echoes the importance of a detailed 

analysis in the early stages of experimentation to ascertain the degree to which such 

underlying conditions exist in the data, which in turn will influence the selection of the 

most appropriate estimation approach to use for response surface modeling and 

optimization. 
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Figure 7.15. Conditions-based selection guidelines for regression estimation approaches 

in asymmetric and/or high-variability process conditions. 
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process characteristics such as skewness, regardless of how minute, than otherwise would 

have been possible had we assumed normality.   This is very important, as elevated 

variability and asymmetry are, in reality, quite probable in many industrial and 

manufacturing processes.  Hence, use of the skew normal distribution provides the 

capability to model either situation simultaneously and thereby allows for a more 

accurate accounting of innate system properties.  

 (iii) The ease and explicitness associated with the OLS approach has helped to 

solidify its position as the basis for regression estimation for more than two hundred 

years; and it continues to see the preponderance of use throughout the literature and in 

applied statistics texts.  Moreover, what tend to steer engineers away from considering 

realistic process conditions (i.e., asymmetry) and many alternative estimation methods 

are the computational complexities associated with them.  But with today’s high-speed 

computing power and myriad readily-available software platforms such as R, the 

computational complexity of alternative estimation methods should no longer be avoided.  

As our results show, these methods can make a significant difference in the quality of the 

results achieved when certain conditions exist.  But the reality is that these conditions 

actually exist more in practice than otherwise; and when they do, the necessary 

assumptions that underpin OLS regression no longer hold.  If used in spite of this reality, 

the OLS method may likely yield suboptimal solutions. 

7.5  Concluding Remarks 

High variability and asymmetry are conditions that occur quite often across a 

broad range of industrial applications and so must be given special consideration in the 
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experimental process regarding the selection of appropriate approaches to response 

surface estimation. To that end, the focus of this chapter has been to examine various 

robust regression approaches and specific implementations of GLM approaches as 

possible alternatives to OLS regression in the RPD framework such conditions prevail.  

The results and analysis demonstrate that, as process conditions evolve (i.e., variability 

and/or asymmetry increase), the estimator selection process should evolve, as well, to 

achieve the best solutions possible.  In particular, the results have shown that the GLM, S-

, LTS, and median-based WLS methods tend to yield the best RPD solutions.  While such 

methods are fairly well-known in statistical circles, their use by engineers in robust 

design applications is comparatively rare.  As Hasenkamp, et al. (2009) noted:  

“The majority of past [robust design methodology] research has traditionally 
been carried out by statisticians targeting an audience with good insights on 
statistics.  When, instead, targeting engineers with less statistical knowledge as 
the major audience, clearly other demands are put on guidelines and tools.”   

 

One such demand is a clearer understanding of which tools to use and when.  The 

methodology and analysis offered in this chapter, coupled with the analysis and results 

from Chapter 5, should help to correct this disparity by providing engineers with some 

clarification as to which estimation approaches will tend to provide the best RPD solution 

when certain conditions exist. 

The analysis in this chapter is based upon controlled experimentation, the replication 

of observations made on a specified quality characteristic of interest under highly 

variable and asymmetric conditions, and the implementation of the skew normal 

distribution to effectively model both symmetric and asymmetric instances.  Future 
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research may expand the investigation to include additional conditions, as well as 

processes that involve multiple quality characteristics of interest.  Additionally, the 

development of skew normal-based link functions for use with GLM approaches would 

also add benefit.  In the end, proper accounting for the inherent conditions in the data will 

allow engineers to more accurately model the processes they endeavor to optimize, which 

will invariably translate to better RPD solutions and more reliable recommendations to 

decision makers. 
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CHAPTER EIGHT 
 
 

ACHIEVING COST ROBUSTNESS IN PROCESSES WITH MIXED M ULTIPLE 
QUALITY CHARACTERISTICS AND DYNAMIC VARIABILITY 

 
 

8.1  Introductory Remarks 

The deteriorating economic conditions over the past several years increasingly 

threaten the economic viability of many companies.  Recognizing that efficiencies in 

production and product quality tend to drive profits and costs, many companies are 

seeking alternative means for reducing costs without surrendering quality in order to 

ensure their survival.  One of the more common techniques for achieving high quality at 

minimal cost is to apply the principles of robust parameter design to identify the ideal 

setting for the process mean among various quality characteristics or responses while 

simultaneously minimizing the degree of variability associated with each.  In this 

particular case, the basic objective is to determine the process parameter settings that will 

minimize total expected cost for the quality characteristics.   

As noted in Chapters 4 and 5, a variety of assumptions are made on the data to 

facilitate analysis.  In the case of the optimal process mean component of the RPD 

problem, most studies to data have presumed a known (and constant) process mean and 

variance among an array of other parameters.  Additionally, much of the efforts aimed at 

addressing this problem have focused on situations involving either a single response or 

multiple responses of the same type.  However, prior knowledge of process parameters is 

rare in actual industrial settings, particularly because the process distribution may 
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expand, contract, or otherwise shift due to chance or assignable causes.  Furthermore, just 

as most customers do not judge a product based on a single quality characteristic, it is 

equally unlikely that the multiple characteristics they consider are of the same type.  

Consider, for instance, a ballistic armor plate for military ballistic armor vests.  Three 

characteristics for the plate might very well be the weight (an S-type characteristic), the 

ballistic strength (an L-type characteristic), and the thickness (an N-type characteristic).  

Thus, given smaller-the-better (S-type), nominal-the-best (N-type), and larger-the-better 

(L-type) characteristics, many production systems seek optimal conditions in terms of a 

combination of such characteristics.  In particular, for a bivariate mixed-multiple case, 

the problem may involve the joint effects of different characteristic types, such as SN, SL, 

or LN.  Furthermore,   

Acknowledging these circumstances, the question becomes one of how to identify 

the optimal process parameter settings under the more realistic conditions of multiple 

mixed-type characteristics and dynamic process variability.  Adding to this, how do we 

achieve robustness, not only in terms of the quality characteristics themselves, but in the 

context of cost minimization, as well?  The obvious implication is that if process 

variability changes over time, then the optimal process target vector associated with 

minimum total cost will shift with it.  If manufacturers are going to maintain a 

competitive edge, they will need to understand how to adapt their procedures to maintain 

the most profitable process target settings.   

This chapter explores these questions, proposing a methodology that addresses the 

realities of mixed multiple characteristics and process variability in order to provide a 
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more robust solution in terms of minimizing total costs.  In the following paragraphs, a 

proposed methodology is outlined for solving the process target problem under the 

conditions heretofore described.  Thereafter, numerical examples are used to facilitate 

illustration of the approach and the associated benefits.  The original work associated 

with this research is published, with reference Boylan and Goethals (2011). 

8.2  Methodology Development 

This section comprises a proposed methodology for solving the optimal process 

mean problem involving mixed multiple quality characteristics.  Upon selecting a model 

to represent the quality characteristics of interest, an appropriate loss function and cost 

structure are delineated.  Thereafter, an optimization framework is applied to suggest the 

ideal location of the process mean vector. 

8.2.1.  Selecting a Model for Quality Characteristic Representation 

The distribution selected to model the quality characteristics of interest should 

account for the asymmetry typically observed in S- and L-type responses, as well as the 

symmetry of the N-type response.  Suppose that the process characteristics form a w-

dimensional vector Y = (Y1, Y2, ..., Yw)T from a MSN distribution with location vector µµµµ = 

(µ1, µ2, ..., µw)T, covariance matrix ΛΛΛΛ, and skewness vector γγγγ = (γ1, γ2, ..., γw)T.  

Furthermore, let y = (y1, y2, ..., yw)T be the vector of responses observed for the process.  

The form of the multivariate distribution developed by Azzalini and Capitanio (1999) is 

utilized to model the process.  Given that φw is the probability density function for the w-

dimensional normal distribution and Φ(⋅) is the corresponding cumulative distribution 
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function, this distribution can be further defined in terms of the error function (erf), as 

indicated in Equation (8.1) below: 
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In the design of the optimization framework, the process mean E[Yq] for the qth 

characteristic is assumed to lie within a given specification region, i.e. LSLq ≤ E[Yq] ≤ 

USLq, constrained by the lower and upper specification limits, LSL and USL, respectively.  

In order to simplify the formulas for the mean and variance of the MSN distribution, an 

additional parameter vector λλλλ is typically used, as shown in Equation (8.2).  Using the 

moment generating function provided by Azzalini and Capitanio (1999), we may 

calculate the mean and variance of the MSN distribution as follows 

2
[ ]

π
= +E Y µ λ   and T2

Var[ ]
π

= −Y Λ λλ , where 
T1

=
+

Λγ
λ

γ Λγ
                     (8.2) 

8.2.2.  Identifying an Appropriate Quality Loss Function 

A number of researchers have used the multivariate quadratic loss function in 

examining the optimal process mean problem, including Kapur and Cho (1996), 
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Teeravaraprug and Cho (2002), and Chan and Ibrahim (2004).  Using the quality loss 

coefficients for the qth characteristic, kqq, and between the qth and jth characteristics, kqj, 

a penalty is imposed for observations deviating from the w-dimensional target vector ττττ = 

(τ1, τ2, ..., τw)T.  Using the positive definite w × w quality loss coefficient matrix K , we 

may then express the multivariate quadratic loss function L(Y, ττττ) in the form: 

T( , ) ( ) ( )L = − −Y τ Y τ K Y τ , with

11 12 1
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1 2

w

w

w w ww

k k k

k k k

k k k

 
 
 =
 
 
 

K

L

L

M M O M

L
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where the diagonal elements of K  represent the penalties for each respective 

characteristic being off-target, while the off-diagonal elements represent the penalties for 

two characteristics being off-target simultaneously.  Teeravaraprug and Cho (2002) 

discuss the necessary conditions for the quality loss coefficients such that convexity in 

the loss function is maintained.  Since Y ∼ MSN(µµµµ, ΛΛΛΛ, γγγγ) as in Equation (8.2), we can 

derive the expected loss in quality using the mean and variance previously established: 

T[ ( , )] [( ) ( )]E L E= − −Y τ Y τ K Y τ                                                                          (8.4) 
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When specifically considering the bivariate case (w = 2), we can expand Equation (8.3) 

to: 
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where the expected loss becomes: 
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T[ ( , )] [( ) ( )]E L E= − −Y τ Y τ K Y τ                                                                                          (8.5)    
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In this form, the average loss of quality loss takes into account the position of the 

mean for both an asymmetric and symmetric process.  For instance, note that if we 

assume zero skewness for the bivariate process (i.e. γγγγ = 0, and hence λλλλ = 0) the average 

loss in Equation (8.5) reduces to the familiar formula noted in previous research 

examining the multiple-N-type problem: 

                   T[ ( , )] [( ) ( )]E L E= − −Y τ Y τ K Y τ  
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For bivariate mixed characteristics, one or both of the quality characteristics may exhibit 

some level of skewness depending on its type.  Whereas Equation (8.5) denotes the 

average loss when both Y1 and Y2 are asymmetric, such as with the SL mixed bivariate 

characteristic model, the expansion in Equation (8.6) denotes the average loss for cases 

where only one of the characteristics (Y1) is asymmetric, such as with SN and LN models.  
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8.2.3.  Identifying an Appropriate Cost Structure 

Manufacturing costs (MC) typically arise when observed values fail to meet pre-

defined specification limits.  These costs may take the form of additional labor to rework 

a product, service costs for the discard of material, or the cost to purchase additional 

materials.  The degree of cost for processing may depend on a particular characteristic or 

even a specification limit that is violated.  Hence, it is not uncommon to find processes 

where a trade-off of processing costs exists.  Many researchers examining the 

multivariate N-type model, such as Chan and Ibrahim (2004), considered a symmetric 

cost structure, whereby the processing costs depend on the number of non-conforming 

specification limits.  Using this structure, the number of potential nonconformance costs 

C1, C2, ..., Cw, is equal to the number of quality characteristics.  Given that R1, R2, ..., Rw, 

represent the various regions for which a particular non-conforming cost is applied, a 

symmetric cost structure usually applied to the bivariate N-type model is shown in Figure 

8.1. 

 
Figure 8.1. Bivariate N-type model cost structure (symmetric nonconformance). 
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For mixed multiple characteristics, unlike the multivariate N-type model, at least one of 

the characteristics possesses a one-sided limit with respect to the tolerance region and the 

target vector ττττ is positioned based upon the characteristic type.  The symmetry of the cost 

structure depends on the priorities associated with an observation nonconforming to a set 

of characteristics.  For instance, Figure 8.2 shows the S and L-type bivariate model where 

(i) the costs of nonconformance are identical for Y1 and Y2, and (ii) where the cost of 

nonconforming to Y1 may be greater or less than Y2. 

 
                                           (i)                                                      (ii) 

Figure 8.2.  Bivariate S and L-type model cost structures for (i) symmetric 
nonconformance, and (ii) asymmetric nonconformance. 
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target value.  The S- and L-type characteristic target values are frequently established at 0 

and ∞, respectively, making them intrinsically more difficult to achieve.  At the cost of 

adding new technologies or more labor, however, it may be possible to reduce the process 

bias in the characteristic observations substantially.  For this reason, a number of 

researchers have incorporated a production cost function, P(Y, ττττ), to account for this 

constraint.  The form of P(Y, ττττ) can vary widely depending on the manufacturing 

application.  Chase and Parkinson (1991), Shin et al. (2005), as well as Chen and Huang 

(2011), used linear functions to represent the cost of achieving tighter tolerances in 

various production systems.  Many researchers, such as Michael and Siddall (1981), Fang 

and Wu (2000), Shin and Cho (2007), and Peng et al. (2008), have employed a form of 

the exponential cost function to serve this same purpose.  Particularly when solving 

problems using S- and L-type characteristics, any hybrid of the exponential cost functions 

previously examined may be useful.  Equation (8.7) displays the general form of a target-

based exponential production cost for S- and L-type characteristics, respectively: 

1

( , ) exp{ }
w

S q q q
q

P c yY τ θ τ
=

= − −  ∑  and 
1

( , ) exp{ }
w

L q q q
q

P c yY τ θ τ
=

= −  ∑ ,                   (8.7) 

where c and θ  are constant coefficients established based upon the perceived difficulty in 

the characteristic observations achieving a desired target value.  While these functions are 

primarily used in assessing production costs associated with S- and L-type characteristics, 

we can also formulate these equations to account for observations made on N-type 

characteristics.    
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8.2.4.  Applying an Optimization Framework 

When seeking solutions to the optimal process mean problem, we typically 

consider the costs associated with product material waste, processing, and a loss in 

product quality.  The integration of the multivariate quadratic loss function from Section 

8.2.2 enables the manufacturer to penalize a process for any deviation from a desired 

target vector.  Section 8.2.3 accounts for the expected loss corresponding to a given 

nonconformance cost structure E[NC] in order to reduce processing costs corresponding 

to products that must be discarded or reworked.  Similar to previous research examining 

the optimal process mean problem, the generation of solutions requires several 

assumptions.  First, known and fixed nonconformance costs C for a process are assumed, 

recognizing that we would have to reapply the optimization framework if these costs are 

adjusted at some future point in time.  We also presume to know the quality loss 

coefficients k for L(Y, ττττ), reflecting the priority given to maintaining a particular 

characteristic on target.   

Unlike previous research involving multiple characteristics, however, a known 

measure of the variance and covariance is not assumed, as it is more realistic that an 

engineer will have some knowledge of the variability range for a characteristic rather 

than a specific setting at a given time.  Thus, the problem is formulated utilizing this 

range of process variability.  Thereafter, an iterative programming routine is implemented 

using random number generators for each range of variability to identify the resulting 

position of the optimal process mean vector, E[Y*], that minimizes the total cost (TC).  

The end result is the identification of a potential range in the shift of E[Y*] depending on 
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the feasible variability conditions that could arise.  The formulation of the optimization 

framework used to generate an array of acceptable solutions for mixed multiple 

characteristic problems follows:   

Given: 
 
1.  Range of variability for the quality characteristics of interest:     

      2
1 1 1,α σ β≤ ≤ 2

2 2 2,α σ β≤ ≤ ..., 2 ,w w wα σ β≤ ≤ 12 12 12,α σ β≤ ≤ 13 13 13,α σ β≤ ≤ ..., ,ij ij ij
i j

α σ β
<

≤ ≤ ...,

1, 1, 1,w w w w w wα σ β− − −≤ ≤  

2.  Observations made on Y that form a w-dimensional vector, y = (y1, y2, ..., yw)T 
 
3.  Desired target vector, ττττ = (τ1, τ2, ..., τw)T 
 
4.  Skewness vector, γγγγ = (γ1, γ2, ..., γw)T 
 
5.  Quality loss coefficient matrix, ΚΚΚΚ 

 
6.  Tolerance region, T, defined by LSLq ≤ yq ≤ USLq, for q = 1, 2, ..., w 
 
7.  Nonconformance costs C1, C2, ..., Cu for S, N, or L-type characteristics and production cost 
functions P(Y, ττττ) for S or L-type characteristics 
 
For:   Iterate n = 1, 2, ..., ϕ, where σ1, σ2, ..., σw, σ12, σ13, ..., σij, ..., σw-1,w  are randomly generated, 
 
Minimize:  [ ] [ ] [ ( , )] [ ( )]E TC E NC E L E PY τ Y= + +  

                             1 1

1 1
1 2

1

Pr[ ] ( , ) ( )d d d
w w

w w

u USL USL USL

m m w
LSL LSL LSLm

C R L f y y yYY τ y
−

−=

= + ⋅∑ ∫ ∫ ∫L L  

                                 
1 1

1 1
1 2( , ) ( )d d d

w w

w w

USL USL USL

w
LSL LSL LSL

P f y y yYY τ y
−

−

+ ⋅∫ ∫ ∫L L ,  where   

                          
T 1/2

T 1
1/2/2

1 1 ( )
( ) exp ( ) ( ) 1 erf

2 2(2 )w
f

π

−
−

    −   
= − − − ⋅ +     

         
Y

γ Λ y µ
y y µ Λ y µ

Λ
 

,  

                           with  y ∈ ℜw, T( , ) ( ) ( )L = − −Y τ Y τ K Y τ  and 
1

( , ) exp{ }
w

q q q
q

P c yY τ θ τ
=

= ± −  ∑  

Subject to: 2
[ ]E T

π
= + ∈Y µ λ , where 

T1
=

+

Λγ
λ

γ Λγ
 

 
Find:   Optimal process mean vector, E[Y*] n = (E[Y1n*],  E[Y2n*], ..., E[Ywn*])

T 
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Iterating the optimization routine a significant number of times (ϕ) results in an 

optimal process mean region that corresponds to the estimated range of variability.  Using 

the multivariate uniform distribution, we may then generate appropriate values for σq and 

σij at each iterate.  For the univariate case, an interval for the optimal process mean is 

approximated, whereas for the multivariate case, the region for the optimal process mean 

vector is cuboidal.  Depending on the specific values of variability, it is likely that we can 

subsequently divide the interval or region for E[Y*] into low and high variability 

densities.  In turn, a manufacturer or engineer might use this tool to provide greater 

prediction in the setting of E[Y*], given that certain production stages or cycles are 

inherently known to possess lower or higher process variability.  

With the trade-off of nonconformance costs, production costs, and the cost of 

deviating from a desired target value, the objective function is typically unimodal for the 

process mean problem.  The nonlinear optimization algorithm nlminb()  in R, which 

utilizes a quasi-Newton method under bound constraints, can generate solutions to these 

problems in a timely and efficient manner.  Given the convex function f and a vector of 

parameters z over which the minimization of f occurs, the algorithm involves an 

approximation using the second-order Taylor expansion about some point zm: 

f(z) = f(zm) + (z−zm)T∇f(zm) + ½(z−zm)TH(zm)(z−zm), 

where ∇f(zm) is the gradient of f evaluated at the point zm and H represents the Hessian 

matrix of second derivatives.  Since ∇f(z) with respect to z is equal to ∇f(zm) + 

H(zm)(z−zm), setting this equal to 0 and solving for z gives the solution z = zm − H-

1(zm)∇f(zm).  Unless z denotes a final solution reached within a given tolerance, a new 
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iterate zm+1 is found using a pre-defined step size ξ, zm+1 = zm − ξH-1(zm)∇f(zm).  In the 

context of the "nlminb" optimization algorithm, the default minimum step size is ξ = 

2.2e-14 and the default tolerance for convergence is 1e-20.      

8.3  Numerical Example 

In order to illustrate the proposed methodology, a modification of an experiment 

examined by Kovach and Cho (2008) is used, whereby the objective is to determine the 

optimal process mean vector for mixed multiple characteristics.  Their experiment 

considered a chemical filtration process, wherein dosages were prepared within vials and 

measurements were taken with regard to the purity of each sample.  The cost of 

processing each vial sample was found to be directly related to the quantities of three 

different quality characteristics – the filtration time (Y1) measured in seconds, the 

filtration volume (Y2) measured in milliliters (mL), and the filtration purity (Y3) measured 

as a percentage.  Since the system objectives are to minimize filtration time and 

maximize purity while obtaining an ideal filtration volume of 10 mL, Y1, Y2, and Y3 may 

be considered S-, L- and N-type characteristics, respectively.  Table 8.1 displays the 

specification limits, nonconformance costs, and desired target values for Y1, Y2, and Y3. 

 
Table 8.1.  Established conditions for the chemical filtration process. 

Characteristic Specification Limits Nonconformance Costs* Target 
Y1, Time (sec) y1 ≤ 2.5  C1 = 80 0 
Y2, Volume (mL) 9.5 ≤ y2 ≤ 10.5 C2(LSL) = 60, C2(USL) = 100 10 
Y3, Purity (%) y3 ≥ 94 C3 = 100 100 

*A cost of C4 = 125 is administered for observations that fail more than one specification limit. 
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The very nature of minimizing or maximizing the response on a particular 

characteristic implies that we might observe some degree of positive or negative 

skewness in the distribution of observations.  Many researchers, such as Vannman and 

Albing (2007), Feng and Kapur (2009), Abbasi (2009), Liao (2010), have attested to the 

non-normal tendencies of S- and L-type characteristics.  Suppose multiple observations 

have been recorded for each of the characteristics in this example under typical process 

settings.  Based upon these results and some knowledge of the process, the distribution of 

observations for Y1 and Y3 are found to be positively and negatively skewed with γ1 = 5 

and γ3 = −6, respectively, whereas the distribution of observations on Y2 has zero 

skewness, i.e. γ2 = 0.  It is also generally known that the range of variability for Y1, Y2, 

and Y3, is 0.4 ≤ σ1
2 ≤ 1.0, 0.1 ≤ σ2

2 ≤ 0.6, and 1.0 ≤ σ3
2 ≤ 3.0, respectively, and the range 

of covariance is negligible at −0.1 ≤ σij ≤ 0.1.  Finally, the quality loss coefficient settings 

are established for the characteristics such that the same penalty is applied for 

observations deviating from their respective target value.  The production costs for each 

characteristic, however, are defined based upon the tolerance-cost relationships for each 

mixed case.  

In each of the following sections, the feasible range of E[Y*] is identified for each 

pair of bivariate mixed characteristics.  The effect of skewness is also examined through 

a comparison of bivariate normal and bivariate skew normal processes.  For any one of 

the problems discussed in Sections 3.1, 3.2, and 3.3, a sensitivity analysis regarding the 

specific settings for the tolerance, cost, or loss function may be performed to gain 

additional information on the robustness of the optimal process mean vector.  
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8.3.1.  Solving the Bivariate S- and N-Type Problem 

 Using a random number generator, the variability settings within each prescribed 

interval for Y1 and Y2 are established based upon a uniform distribution at each iterate.  

The nonlinear constrained optimization algorithm contained in function nlminb() in 

R is used to solve the optimal process mean vector problem, repeating the program 

routine 100 times to capture the full range of the shift in the E[Y*].  An outline of the 

optimization routine follows:   

Given:  0.4 ≤ σ1
2 ≤ 1.0, 0.1 ≤ σ2

2 ≤ 0.6, −0.1 ≤ σ12 ≤ 0.1, ττττ = 
0

10

 
 
 

, γγγγ = 
5

0

 
 
 

, K  = 
0.25 0.15

0.15 0.25

 
 
 

,   

 with USL1 = 2.5, LSL2 = 9.5, USL2 = 10.5, and Costs C1 = 80, C2(LSL) = 60, C2(USL) = 100, C4 = 125 
 
Minimize:  

2 2 1 1

1 2 2
1 2 1 2( ) 1 2 2( ) 1 2[ ] ( )d d ( )d d ( )d d

USL LSL USL USL

LSL USL
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E TC C f y y C f y y C f y y
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−∞ −∞ −∞
= + +∫ ∫ ∫ ∫ ∫ ∫Y Y Yy y y  
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1 2 1 2
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USL USL USL LSL
C f y y f y y L y y f y yY Y Yy y y

∞ ∞ ∞

−∞

 
+ + +  ∫ ∫ ∫ ∫ ∫ ∫  

                
2 1

2
1 2 1 2

0
( , ) ( )d d ,

USL USL

LSL
P y y f y yY y+∫ ∫  

where: 
T 1/2

T 1
1/2

1 1 ( )
( ) exp ( ) ( ) 1 erf

2 22
f

π

−
−

    −   
= − − − ⋅ +     

         
Y

γ Λ y µ
y y µ Λ y µ
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, with y ∈ ℜw, 

        2 2
1 2 1 2 1 2( , ) 0.25 0.25( 10) 0.15 ( 10)L y y y y y y= + − + − , and 1 2 1 2( , ) 500exp{ 5 0.10 }P y y y y= − −  

 

Subject to: 
2

[ ]E T
π

= + ∈Y µ λ , where 
T1

=
+

Λγ
λ

γ Λγ
 

Find:   Optimal process mean vector, E[Y*] n = (E[Y1n*],  E[Y2n*])
T for ϕ =100 iterations 

 

Upon completion of the program, each of the ϕ  optimal process mean vectors is 

plotted so that the complete range of E[Y*] is visibly apparent.  Figure 8.3 (i) shows the 

results using the bivariate skew normal distribution whereby the tolerance region for Y1 

and Y2, where identical contours for the process at low ( – ) and high variability ( – ) are 
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highlighted.  The contours of the quality loss function L(y1, y2) are shown using a dashed 

line (---), and the target vector is identified with a large point (•).  The same legend is 

used in Figure 8.3 (ii), where the bivariate normal distribution is used, i.e. the distribution 

of observations is assumed to possess zero skewness.  In addition, we observe the 

differences in the mean and median of the objective function values, [ ]E TC and �[ ]E TC .  

 
                                         (i)                                                                      (ii) 

Figure 8.3.  Optimization results − identical contours for Y, where  

(i) Feasible Region for E[Y*] for SN(µµµµ, ΛΛΛΛ, γγγγ), γγγγ = (5, 0)T, from Low (L) to High (H) Variability. 
(ii) Feasible Region for E[Y*] for N(µµµµ, ΛΛΛΛ), i.e. γγγγ = (0, 0)T, from Low (L) to High (H) Variability. 

 
8.3.2.  Solving the Bivariate S- and L-Type Problem 

In this section, the joint effect of the filtration time (Y1) and purity (Y3) are 

considered, where the distributions of observations are positively and negatively skewed, 

respectively.  The formulation of the optimization routine for the bivariate S- and L-type 

process mean vector problem appears as: 

 

Given:  0.4 ≤ σ1
2 ≤ 1.0, 1.0 ≤ σ3

2 ≤ 3.0, −0.1 ≤ σ13 ≤ 0.1, ττττ = 
0

100

 
 
 

, γγγγ = 
5

6

 
 − 

, K  = 
0.25 0.15
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,  

              with USL1 = 2.5, LSL3 = 94, and Costs C1 = 80, C3 = 100, C4 = 125 
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Minimize:  
3 1 3

3 1 1
1 1 3 3 1 3 4 1 3[ ] ( )d d ( )d d ( )d d
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LSL USL USL
E TC C f y y C f y y C f y y
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, with y ∈ ℜw, 

               2 2
1 3 1 3 1 3( , ) 0.25 0.25( 100) 0.15 ( 100)L y y y y y y= + − + − , and           

               1 3 1 3( , ) 1000[exp{ 10 } exp{2( 100)}]P y y y y= − + −  

Subject to: 
2

[ ]E T
π

= + ∈Y µ λ , where 
T1

=
+

Λγ
λ

γ Λγ
 

 
Find:   Optimal process mean vector, E[Y*] n = (E[Y1n*],  E[Y3n*])

T for ϕ = 100 iterations 

 

As in Section 8.3.1, this optimization scheme is iterated to generate solutions to the 

optimal process mean vector problem.  Figure 8.4 (i) shows the graphical results using 

the bivariate skew normal distribution, which we may then compare to the results in 

Figure 8.4 (ii), in which the bivariate normal distribution is used as a model for both 

characteristics. 

 
                                            (i)                                                             (ii) 

Figure 8.4.  Optimization results − identical contours for Y, where 

(i) Feasible Region for E[Y*] for SN(µµµµ, ΛΛΛΛ, γγγγ), γγγγ = (5, −6)T, from Low (L) to High (H) Variability. 
(ii) Feasible Region for E[Y*] for N(µµµµ, ΛΛΛΛ), i.e. γγγγ = (0, 0)T, from Low (L) to High (H) Variability. 
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8.3.3.  Solving the Bivariate L and N-Type Problem 

Finally, the joint effect of the filtration volume (Y2) and purity (Y3) is examined 

whereby the distribution of observations is symmetric and negatively skewed, 

respectively.  The formulated optimization routine for the bivariate L- and N-type 

characteristics is as follows: 

Given:  0.1 ≤ σ2
2 ≤ 0.6, 1.0 ≤ σ3

2 ≤ 3.0, −0.1 ≤ σ23 ≤ 0.1, ττττ = 
10

100

 
 
 

, γγγγ = 
0

6

 
 − 

, K  = 
0.25 0.15

0.15 0.25

 
 
 

,  

             with LSL2 = 9.5, USL2 = 10.5, LSL3 = 94, and Costs C2(LSL) = 60, C2(USL) = 100, C3 = 100, C4 = 125 
 
Minimize:    
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              2 2
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             2 3 3( , ) 1000exp{2( 100)}P y y y= −
 

Subject to: 
2

[ ]E T
π

= + ∈Y µ λ , where 
T1

=
+

Λγ
λ

γ Λγ
 

Find:   Optimal process mean vector, E[Y*] n = (E[Y2n*],  E[Y3n*])
T for ϕ = 100 iterations 

 

The optimization results for the L- and N-type problem are shown graphically in 

Figures 8.5(i) and 8.5(ii), respectively. 
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                                   (i)                                                                      (ii) 

Figure 8.5.  Optimization results − identical contours for Y, where 

(i) Feasible Region for E[Y*] for SN(µµµµ, ΛΛΛΛ, γγγγ), γγγγ = (−6, 0)T, from Low (L) to High (H) Variability 
(ii) Feasible Region for E[Y*] for N(µµµµ, ΛΛΛΛ), i.e. γγγγ = (0, 0)T, from Low (L) to High (H) Variability. 
 

8.3.4.  Summary of Results 

Analysis of the numerical results in Sections 3.1, 3.2, and 3.3 leads to several 

conclusions regarding the proposed approach, which are summarized in (i)-(iii) below: 

(i)  Effect of Variability .  Whether a process is considered in statistical control or 

not, there is likely some range of variability inherent in the distribution of characteristic 

observations.  As a result of the trade-off of non-conformance costs and the cost to 

achieve a customer-defined target value, the ideal setting of the process mean is likely to 

shift as the variability increases or decreases.  For the processes modeled in Figures 8.3 

(i) and 8.4 (i), the corresponding shift in the optimal process mean vector is nearly one-

fourth the width of the tolerance region.  The setting of E[Y*] may also be more robust to 

changes in variability, as is the case with the process modeled in Figure 8.5 (i).   

Rather than providing an exact position of the optimal process mean vector based 

upon values established for the variance or covariance among characteristics, the feasible 

region for E[Y*] offers more predictive capability for the manufacturer.  It is not 
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unrealistic to assume that an engineer may know precisely when process variability tends 

to be low or high.  The influence of various conditions, such as the time of day, 

environmental conditions, the array of operators in the workplace, seasonal demand, or a 

change in product output, may all affect process stability in different ways.  Thus, with 

some knowledge of the feasible region for E[Y*], the engineer is provided with a "road 

map" to the most profitable target setting.  For instance, given the example previously 

outlined, dramatic changes in process variability appear to affect the target position for 

the filtration volume (Y2) more than either the filtration time (Y1) or purity (Y3).  

Adjusting the setting between 9.7 mL and 9.9 mL ensures that the minimum processing 

costs for this problem are achieved.       

(ii)   Effect of Skewness.  To investigate the effect of skewness on solutions to the 

optimal process mean vector problem, a comparison between the bivariate skew normal 

and bivariate normal distribution was provided.  With the only modification being the 

distribution used to model the characteristics, solutions for the SN, SL, and LN-type 

mixed characteristic problems were generated.  Pursuant to this, the mean and median of 

the objective function values were calculated for the 100 iterations and then used as a 

basis to examine the effect of skewness.  For each mixed case, accounting for the 

asymmetry typically observed in S- and L-type characteristics resulted in a 16% to 40% 

reduction in the mean and median total cost.  The difference is most significant in the SL 

case, in which both positive and negative skewness exists due to the nature of the 

characteristics. 
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(iii)  Effect of Altering the Conditions.  An analysis of the sensitivity of the 

optimal process mean vector can provide important information as to the robustness of 

the solutions.  It may also suggest alternative feasible and acceptable options for reducing 

the overall production cost.  The effects of adjusting (1) the nonconformance cost C2(USL), 

and (2) the tolerance setting for Y1, are displayed in Figure 8.6 for the SN-type problem.         

 
                                       (i)                                                             (ii) 

Figure 8.6.  Sensitivity analysis − shift in E[Y*] for altering conditions 

        (i)  Change in Nonconformance with Y2 USL, C2(USL) = 10 to C2(USL) = 1000 
        (ii) Change in Tolerance for Y1, USL1 = 2.5 to USL1 = 1.5. 

 

As observed, the expected total processing cost appears to be more robust to 

modifications in the tolerance for Y1 than changes in the cost of nonconforming to the 

filtration volume's upper specification limit.  With this information, some flexibility may 

be gained by the manufacturer in altering the tolerance limits.    

8.4.  Concluding Remarks 

Within industry and experimental research settings, statistical assumptions in the 

analysis of observations play an important role in achieving optimal solutions.  Situations 

involving multiple mixed-type quality characteristics and dynamic process variability 
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occur regularly across a wide array of industrial and manufacturing applications and 

therefore merit special consideration.  However, under previous or more traditional 

research efforts associated with the optimal process mean problem, multiple 

characteristic problems typically only address like-type characteristics or cases that 

involve strictly asymmetric or symmetric responses, but very rarely both.  More 

importantly, researchers usually assume foreknowledge of the process mean and variance 

prior to seeking solutions to the optimization problem.  Although sound in theoretical 

principal, these methodologies invoke assumptions that often fail to adequately represent 

the realities found in industrial settings.  A more realistic approach to the process mean 

problem is to integrate mixed-type quality characteristics, adequately addressing the 

expected skewness associated with each, and to incorporate a range of variability, which 

is far more readily available to engineers than a known constant variance.   

Much remains open for exploration in this area.  In particular, follow-on research 

might investigate multivariate cases beyond the bivariate examples provided here.  While 

the extensions have been theorized, the more difficult work of deriving and applying 

them is yet to be done.  Recognizing that such conditions exist as heretofore described, 

future work may look at employing alternative techniques to achieve greater accuracy, 

flexibility, and robustness in their solutions.  More specifically, as the results in this 

chapter show, such techniques will allow us to accurately predict the location of the 

optimal process mean vector as it shifts in response to changes in process variability. 

Such knowledge of a feasible region can help to achieve cost robustness by providing a 

quantitative “road map” for maintaining the most profitable process target settings.   
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CHAPTER NINE 
 
 

DEVELOPING AN ALTERNATIVE STRATEGY FOR OVERCOMING 
SOURCES OF VARIABILITY TO ACHIEVE ENHANCED PRECISIO N 

 

9.1  Introduction 

Contemporary efforts in engineering design, manufacturing engineering and 

quality control/assurance, embrace variability reduction as a primary means to improve 

product quality in terms of achieving performance targets while reducing defects.  In fact, 

many firms today seek as a primary engineering goal the continuous and systematic 

reduction of variability across key process and product dimensions.  Take, for example, 

the development and procurement of body armor for use by military personnel.  

According to the U.S. Army’s Board on Army Science and Technology and the National 

Research Council (see Board on Army Science and Technology et al., 2012),  

“Uncertainty and variation in the manufacture, testing, and employment of body 
armor, as well as the natural concern for protecting personnel, tend to result in 
conservative decision-making, which in turn can result in body armor overdesign 
and/or overmanufacture.” 
 

In short, variation in manufacturing process can result in armor plates that are heavier and 

perhaps larger than required to reduce the chances of producing plates that fail to 

conform to established specifications and meet prescribed testing levels. 

Typically associated with unwanted process conditions, variation may be defined 

the difference between a current reality in the context of system performance and a 

desired end-state.  Clearly, nearly all manufacturing and product performance processes 

possess some degree of variation.  Variation occurs in all natural and man-made 
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processes, even those in which it may appear non-existent.  If variation cannot be 

measured, it is most likely because the measurement systems being used do not possess 

sufficient capabilities in terms of precision and accuracy.  Certainly, some processes will 

tend to possess more than others, depending on the type of process, what is being 

measured, and who/what is measuring it.   Notwithstanding, irrespective of the degree of 

variability that exists, managing and reducing it requires that it be traced back to its 

source.  

In solving this problem, a variety of assumptions are made in order to facilitate 

the application of least squares regression, which is the focus of Chapters 5-7.  These 

include normality, independence, and constant variance (or homoscedasticity) in the 

residuals.  By extension, the validity of these assumptions, namely the last regarding 

constant variance, also presume moderate to low degrees of inherent process variability 

or that the process is stable.  As demonstrated in Chapter 7, when these assumptions fail, 

alternative methods to OLS regression become necessary.  In fact, virtually every facet of 

a manufacturing process (materials, work methods, machinery, measurement, human 

interaction, etc.) possesses inherent variability.  In many cases, such variability can be 

comparatively high, which in turn can introduce non-constant variance in the residuals of 

system outputs. When heteroscedasticity exists, the most common approach is the 

application of weighted least squares regression.  While effective and time-tested, the 

results obtained via the WLS method nevertheless can be negatively affected when high 

process variability exists.  Moreover, this method is invoked in the post experimentation-

phase, after the development of fitted response surface estimators.  
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This chapter proposes an alternative method for dealing with inherently high 

process variability in the experimental phase of the RPD framework.  In particular, the 

proposed method employs graphical and objective measures to identify sources of 

variability and then uses the coefficient of variation as a means for distinguishing the 

relative degrees of influence these sources exert among the various design points.  

Thereafter, the method advocates removing sources of variability and then applying 

optimal design theory to rebalance the experimental framework.  Thereafter, commonly 

known RPD optimization schemes may be applied to obtain more precise optimal 

operating conditions with less variability and bias.  The original work associated with the 

research presented in this chapter is published (currently in press) with reference  Boylan 

and Cho (2013c). 

9.2  Concept Motivation – Box and Draper’s (1987) Printing Press Study 

In the traditional RPD research, assumptions are typically made on the process 

parameters and underlying distribution, as well as on the condition of the data obtained 

through process operation and experimentation.  In particular, it is usually assumed that 

moderate variability in system responses, as well as normality, homoscedasticity, and 

independence among the residuals are valid within a set of observational data to support 

the application of ordinary least squares regression in obtaining unbiased, minimum 

variance estimates.  While this may greatly simplify a problem, it is often the case that 

such conditions do not hold in practice, as high variability is not uncommon in many 

industrial settings.  This can complicate the search for optimal solutions using the OLS 

approach and highlights the need for alternative approaches.   
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As a motivation for this concept, reconsider the pilot study presented in Chapter 3 

involving the Box and Draper (1987) printing press experiment.  The experiment 

concerns a printing machine’s index in applying coloring inks to package labels, which is 

presumed to be a normally distributed N-type quality characteristic of interest, Y.  The 

desired target value for the machine's index is τ = 500.  Table 3.2 in Chapter 3 contains 

the experimental framework for this study. 

Using this example, previous researchers developed second-order response 

surface designs for the mean and standard deviation and then applied their particular 

optimization scheme to find optimal operating conditions x* = (X1*, X2*, X3*).  As 

illustrated in Chapter 3, repeating this experiment 500 times within an extrapolated 

experimental region via Monte Carlo simulation reveals a considerable degree of 

imprecision in the optimal solutions.  The plots in Figure 9.1 depict the position of these 

solutions in three dimensional space, as well in relation to each cross-section of factor 

pairs.   

         
                            (a)                        (b)                              (c)                              (d) 

Figure 9.1.  Identification of x*, Printing Press Study, −4 ≤ Xi ≤ 4 (500 iterations). 

 
This highlights vulnerabilities in the traditional approach to the RPD problem when high 

variability permeates system performance.  In particular, such conditions can result in the 

identification of “optimal settings” that may span the entire length or more of the factor 
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space, a problem that can be exacerbated when the number of replicates at each design 

point is low.  This indicates significant imprecision in the estimated functions used to 

generate the factor settings and further suggests that because the data are so variable, the 

results should not be trusted with any degree of certainty; conditions that ultimately can 

lead to more conservative decision-making and the associated problems with overdesign 

and overmanufacture described in Section 9.1.  

We could use additional replications at each design point to mitigate issues with 

high variability but constraints on time and other resources typically preclude it.  Thus, 

alternative approaches should be considered first to address more directly the issues 

caused by excessive variability.  Certainly, time, costs, and a variety of other resource 

constraints may impact the experimental approaches employed, but this should be 

weighed against the need for elevated levels of precision.  In short, as has been noted in 

previous chapters, if our model is imprecise in estimating the appropriate response 

surface, then optimizing that model is going to yield equally imprecise results as they 

relate to the true optimal factor settings.  Accordingly, the results and recommendations 

provided to decision makers would very likely lead to the implementation of suboptimal 

modifications to processes and products.  The purpose of this chapter, then, is to propose 

an alternative technique that focuses on identifying and extracting sources of variability, 

followed by the application of optimal design theory to restructure the experimental 

approach, in order to obtain more precise RPD solutions.  
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9.3  Methodology Development 

9.3.1  Experimentation and Analysis 

Experimentation and analysis begin with the specification of response variables, 

factors or predictors influencing the responses, and region of interest for a designed 

experiment.  Suppose the objective is to identify the optimal factor settings x*=(X1* ,X2* , 

..., Xk* ) that support achieving a mean process performance with minimal deviation from 

a desired target and with minimum variability in the result.  Pursuant to this, consider an 

experimental framework whereby a quality characteristic, Y, is influenced by a set of 

control factors X1, X2, …, Xk.  The experiment consists of n design points, or runs, each of 

which contains m replicates for the observed response.  Let yqj denote the jth response at 

the qth design point, where q = 1, …, n and j = 1, …, m.  Table 9.1 portrays the 

framework for such an experiment. 

Table 9.1.  Experimental RSM framework. 

Design Point X1  X2 .... Xk Replications y  s 

1 

Control 
Factor 

Settings 

y11……………….y1m 1y  s1 

M  M                        M  M  M  

q yq1……………… yqm qy  sq 

M  M                        M  M  M  
n yn1………………ynm ny  sn 

 
The replicates at each design point are then used to obtain parameter estimates for the 

mean and standard deviation using the following formulas: 

( )2

1 1,
1

= =
−

= =
−

∑ ∑
m m

qj qj qj j
q q

q q

y y y
y s

m m
                                  (9.1) 
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Prior to the final estimation of response surface functions for the mean and variability 

of the process, a comprehensive data analysis of both the responses and the residuals 

must be performed to ascertain the underlying conditions in the data.  This includes an 

investigation of normality and variability in the process responses, as well as the 

verification of the assumptions of normality, homoscedasticity, and independence in the 

residuals.  These are investigated using both graphical and objective methods, which may 

include the following approaches briefly discussed in (1) - (3) below: 

 (1)  To assess deviations from normality in the responses, researchers tend to use 

either the Kolmogorov-Smirnov test for large samples (> 2,000), or the Shapiro-Wilk test 

for small or medium-sized samples.  Generally, the sample sizes obtained in RPD 

experimentation typically fall in the latter category.  Thus, for the Shapiro-Wilk test, 

when the p observations made on quality characteristic are sorted in ascending order, the 

alternative hypotheses 2
0 : ( , )H Y N µ σ∈ and 2

1 : ( , )H Y N µ σ∉ are evaluated using the W 

statistic given by: 

2

*
1 ( 1)

1

,    where 
1

p l p l l
l

b
W b a y y

s p

κ

− + − +
=

 
 = = −   −  

∑  

Here, κ is the largest integer that is less than or equal to p/2, and s denotes the sample 

standard deviation.  For a given significance level α, tables are then used to reference the 

coefficients a and the critical values Wα.  Different from most statistical tests, since the 

critical region lies in the small tail of the distribution, if W* > Wα then H0 is concluded 
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(that is, sufficient evidence exists to suggest the observations follow a normal 

distribution).   

 (2) A trademark of high variability data is that their sample standard deviation is 

in general quite large, implying a “largely uninformative” sample mean that fails to 

adequately describe the location of the bulk of the observed values.  Willinger, et al. 

(2004) associated high variability with situations in which a set of observations assumes 

values that vary over orders of magnitude, with most observations taking values that are 

relatively close together, with a few extreme observations attaining values that deviate 

considerably from this first group with non-negligible probabilities, and with 

intermediate-sized observations occurring with appreciable frequencies.  Using this 

concept, a highly variable process is classified as one in which the range of variability in 

the responses is noticeably large and where one or more of the responses lies more than 

three standard deviations (+/-3σ) from the mean response. 

(3)  The analysis of residual errors is predicated on the development of preliminary 

regression models for the mean and standard deviation using the OLS approach.  This 

yields the response surface models for each which take the following forms: 

1

1

ˆ ˆˆ ( ) where ( )

ˆ ˆˆand ( ) where ( )

T T

T T

µ µ

σ σ

µ β β

σ β β

−

−

= =

= =

x X X X X y

x X X X X s
                                     (9.2) 

                and where 

11 1, 1 1 1

21 2, 1 2 2

1 , 1

1

1
, , and  

1

−

−

−

     
     
     = = =
     
     

    

L

L

M M O M M M

L

k

k

n n k n n

x x y s

x x y s

x x y s

X y s  
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Using these models, namely that for the mean, as a basis for analysis, the residuals may 

be examined to verify underlying assumptions of normality, independence, and 

homoscedasticity.  The procedures for each are described in (a) – (c): 

(a)  As with the responses, normality in the residuals may also be examined using 

graphical measures such as the normal probability plot, followed by the more objective 

methods provided by the Kolmogorov-Smirnov or Shapiro-Wilk tests. 

(b)  Independence in the residuals may be examined using the Durbin-Watson 

test, which is typically sufficient to detect a lack of randomness therein.  If dependence is 

detected, then remedial measures may be performed, such as adding predictor variables 

or using transformations in the variables to eliminate interdependencies. 

(c)  The investigation of heteroscedasticity (non-constant variance), typically 

involves the use of graphical measures, such as a plot of the residuals against the fitted 

values, as well as objective hypothesis testing using either the Brown-Forsythe test, 

which is more robust to departures from normality in the data, or the Breusch-Pagan test.  

The Breusch-Pagan (B-P) test assumes independence and normality among the residuals, 

but further assumes a relationship for the error variance 2
qσ  among the k regression 

coefficients and k-1 predictor variables.  This relationship appears as 

2
0 1 1 1 , 1loge q q k q kX Xσ γ γ γ − −= + + +L , and implies that the error variance fluctuates up or 

down with x, based on the sign of the associated coefficients.  Since constant error 

variance corresponds to the instance in which each of the coefficients contained in 

response function equals 0, the alternative hypotheses 0 1 2 1H : 0kγ γ γ −= = = =L versus

1  :not all = 0iH γ are tested using the B-P statistic: 
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2*
2

2BP

SSR SSE

Nm
 Χ = ÷ 
 

                                         (9.3) 

where Nm denotes the total number of experimental observations, SSR* is the regression 

sum of squares obtained by regressing the squared residuals, 2
jε , against one or more of 

the predictor variables, and SSE is error sum of squares obtained for the full regression 

model.  Comparing this statistic to the chi-square distribution with k-1 degrees of 

freedom, if 2 2
(1 ), 1 BP kαχ χ − −> then we reject H0 and conclude that sufficient evidence exists 

to suggest non-constant variance.  In processes with inherently high variability or 

asymmetry in the responses, the assumption of constant variance in the residuals would 

most likely not hold and would thereby necessitate the use of remedial measures. 

9.3.2  Identifying and Overcoming Sources of Variability 

9.3.2.1  The Weighted Least Squares (WLS) Approach 

Traditionally, when heteroscedastic conditions prevail, investigators use one of 

two alternative approaches to obtaining improved estimators for the mean and standard 

deviation response surface functions.  These include either a transformation of the 

response variable Y, which essentially induces constant variance by equalizing the error 

variation across all predictor variables, or through the application of a weighted least 

squares (WLS) approach in the estimation process to mitigate the effects of unequal error 

deviations.  While either method may work well in a broad variety of applications, the 

WLS approach seems to be the most common choice, as it avoids the possibility of an 

inappropriate regression relationship which can result from transformations of Y. 
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Since we rarely have the good fortune of knowing the error variance, we consider 

two approaches for developing estimates of the variance 2
jσ .  First, it can be shown that

2 2
j jEσ ε =   .   If we let 2 2

j jE eε  =  , wherein 2
je  denotes the squared residual for the jth 

design point, then we can say that 2
je is an unbiased estimator of 2jσ .   As Kutner et al. 

(2005) point out, these relationships allow us to develop an estimate of the variance 

function by first fitting the regression model using ordinary unweighted least squares and 

then regressing the squared residuals against the appropriate factors, or predictor 

variables.  Pursuant to estimating the standard deviation function, shown in Equation 

(9.2), we then use this resulting variance function ˆ js to obtain fitted values, for each of 

the N design points, which in turn allow us to compute the estimated weights for each 

point, j, as follows: 

2
1

ˆ( )j
j

w
s

=                                                   (9.4) 

Using the estimated weights, we can then construct the weight matrix 

1

2

0 0

0 0

0 0 N

w

w

w

 
 
 =
 
 
 

N×N
W

L

L

M M O M

L  

We next apply standard regression procedures to the weighted regression models.  

Notably, for a regression model with k parameters, the WLS estimators of the regression 

coefficients 1 2( , ,..., )= T
w w w kwb b bb , whereby ( ) 1−

= T T
w w w w wb X X X Y , may be obtained via 

the weight matrix, W as follows: 
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( )11/2 1/2 1/2 1/2

1/2 1/2 1 1/2 1/2

1

ˆ )

( )

( )

−

−

−

 = =  

=

=

TT
w

T T

T T

wβ b W X W X W X W Y

X W W X X W W Y

X WX X WY

                                    (9.5) 

Obviously, the elimination or reduction of the influences of variability is achieved by 

assigning the greatest weight to those terms with the smallest error variance. The second 

approach involves cases in which, given sufficient replication at each experimental 

design point, we can simply use the sample variances or sample standard deviations of 

the observations at each design point to estimate the error deviations.  These, in turn, 

allow us to compute estimates for the various weights, wj, using the ratio in Equation 

(9.4).  The key in this approach is determining what number of replications at each design 

point is sufficient.  It is worth noting that either approach for estimating the weights can 

be particularly helpful in cases where the error variances differ significantly; that is, in 

highly variable processes.  However, when the differences are relatively modest, the 

value of using these approximation methods in the WLS approach diminishes. 

The iteration in the WLS approach occurs through a comparison between the 

standard errors of the WLS coefficients to the OLS coefficients.  If the regression 

coefficients obtained using this method are significantly different than those obtained 

using ordinary least squares regression, the model may be reweighted using a subsequent 

re-estimation of the variance.  This process continues in an iterative fashion, whereby 

revised weights are recomputed and then used to ensure convergence and the reduction of 

model error.  Pursuant to this approach, fitted response functions are developed for the 

mean, and standard deviation. In particular, using the mean responseyand standard 

deviation s, the general form of the estimated response functions for the process mean 
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and standard deviation with k parameters or k-1 predictor variables changes from the 

formulations in Equation (9.2) with the inclusion of W, as given by: 

1

1

ˆ ˆˆ ( ) where ( )

ˆ ˆˆand ( ) where ( )

T T
WLS

T T
WLS

µ µ

σ σ

µ β β

σ β β

−

−

= =

= =

x X X WX X Wy

x X X WX X Ws
                                     (9.6) 

 
 and where X, y , and s are defined precisely the same as in Equation (9.2).

 

 

9.3.2.2  The Proposed Coefficient of Variation Technique  

Whereas the WLS method addresses variability in the post-experimentation phase 

by modifying the estimated models, an alternative approach to eliminating variability can 

be applied in the experimental phase itself using the coefficient of variation (CV) to scope 

the design space and then applying optimal designs to rebalance the experiment.  

Obviously, this component in our methodology implies that some experimentation has 

been performed and it has been determined 1) the process under study possesses elevated 

levels of inherent variability, 2) that the assumption of homoscedasticity fails to hold and, 

consequently, 3) that the estimated model is a poor fit.  Thus, invoking this particular 

approach further implies that we would revisit the experiment in order to redefine the 

experimental parameters and the associated design space to reduce variability and 

achieve greater precision. 

The CV for a quality characteristic aims to describe the dispersion of the 

characteristic in a way that does not depend on its measurement unit. That is, it describes 

data variability in terms of the relative sizes of the squared residuals and outcome values. 

 The CV for the qth design point is determined using the following ratio: 
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q
q

q

s
CV

y
=                                                              (9.7) 

Using this ratio, a higher CV indicates greater the dispersion in the response.  Conversely,  

a lower CV corresponds to smaller residuals relative to the predicted value, suggesting a  

sufficient relationship exists between the estimated and true responses.   

Unfortunately, no definitive threshold exists for the CV that indicates elevated or 

high variation, as it depends on the process and responses under examination.  For our 

purposes, we use the CV to identify sources of variation that unduly influence or exert 

leverage upon the response.  Thus, the examination focuses on relative degrees of 

influence exerted by any one or set of individual design points on the process.  As such, 

the CV threshold used will likely vary between manufacturing processes.   

Once points are identified as particularly influential due to excessive variability, 

they may be removed from consideration.  As a consequence of extracting such points, 

however, a non-standard design likely results, which raises the need for alternative 

experimental designs.  The need to consider optimal design strategies arises either when 

certain conditions render the use of traditional experimental approaches inappropriate.  

Such conditions include instances where time, resource limitations, or some physical 

restrictions constrain the experimental region.  In this situation, however, the 

identification and elimination of sources of process variability equates to the imposition 

of constraints on the design space in the interest of obtaining enhanced precision in the 

response surface models and, ultimately, the optimization results.  While an assortment of 

optimal designs exist for consideration, the objective is not to discuss the full range of 

alternatives in this chapter.  Nevertheless, in the interests of not confining the 
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methodology to a singular design approach, several of the more commonly used optimal 

designs (e.g., D-, A-, and G-optimal designs) are included in the discussion.   

D-optimal designs are particularly useful when precision is the primary factor in  

model estimation.  The goal of D-optimality is to improve the experimental design 

through the careful selection of candidate points, which is done using the D-criterion.  

The D-criterion is based on the ellipsoidal joint confidence region for the parameters in 

the standard regression model.  This region is defined by the set of coefficient vectorsβ̂ , 

that satisfies 

ˆ ˆ
(1 ; , )α≤ − −

T T

F p N p
pMSE

(β -β) X X(β -β)
                                      (9.8) 

where X denotes the design matrix.  Among others, two properties that make D-optimal 

designs appealing to analysts involve their ability to minimize both the generalized 

variance of the estimated parameters β̂  and the volume of the ellipsoidal confidence 

region.  Using the notation previously described, we can determine the variance of the 

estimates in ̂β  through:  

2ˆ( ) σ= TV -1
β (X X)                                                      (9.9) 

Simple deduction shows that the variance of β̂  depends on the generalized variance

T -1(X X) .  The larger this value, the poorer the estimation of β̂ .  Consequently it becomes 

equally clear that a large value for TX X  will serve to minimize -1(X'X)  and thereby 

minimize ˆ( )V β .  Thus, the objective of the D-criterion is to maximize the determinant of 

the information matrix. 
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Unlike the D-optimal design, A-optimal designs do not consider the covariance 

among regression coefficients, focusing instead on the individual variances of the 

coefficients themselves.  Albeit, the overarching goal remains focused on minimizing the 

variance of estimators.  A-optimal designs achieve this by minimizing the trace of the 

inverse of the information matrix, whereby the trace of an N x N square matrix, call it M , 

is defined to be the sum of the elements on the diagonal of M .  That is, 

11 22
1

N

NN jj
j

trace m m m m
× =

= + + + = ΣN N
(M ) K                                 (9.10) 

Thus, the A-criterion used is shown byMinimize Ttrace -1(X X) , which once again is 

associated with the generalized variance.   The result is the minimization of the average 

variance of the regression coefficient estimates. 

Whereas D- and A-optimal designs employ invariants of the information matrix in 

their optimality criteria, G-optimal designs (along with I- and V-optimal designs) focus 

on the variance of predictions.  Considering the mean response, we can express the 

variance of predictions, ˆ[ ( )]Var µ x as: 

1ˆ[ ( )] [ ( ) ]µ −= T TVar MSE m mx X X X X  

Where the vector 1 , 11 − =  L
T

m m pX XmX represents the location within the design 

space where a prediction is being made.  Typically, the prediction variance is scaled as 

shown in Equation (9.11) to facilitate comparison between various designs. 

1ˆ[ ( )]
( )

µ −= T TNVar
N

MSE m m

x
X X X X                                     (9.11) 
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In contrast to D- and A-optimality criteria that comprise a single value, the G-optimality 

criterion depends on the location Xm at which predictions are being made.  Specifically, 

this criterion seeks to minimize the maximum entry in the main diagonal of the (N x N) 

hat matrix, = T T-1H X(X X) X .  The generalized effect is to minimize the maximum  

variance of the predicted values.  

The objective for any optimal design is to determine the set of design points from 

among a list of candidate points that best satisfy the selected criterion.  Most often, the 

optimality criterion used is a function of the variance of the estimated model parameters.  

Moreover, due to the iterative nature and the complexity involved, these designs typically 

require the use of sophisticated computer algorithms.  A variety of methods exist for 

determining the best set of candidate points.  The proposed approach uses the so-called 

Federov exchange method.   

In a broader sense, a general exchange method involves the simultaneous addition 

and removal of a pair of a design point in the following manner: 

( ) (= −T T T T
i jX X X Xnew new old old i jX X X X ) ( ) + ( )  

where iX and jX  denote the point being considered for removal and the point being 

considered for inclusion respectively.  In contrast, the method developed by Federov 

(1972) incorporates the interaction of the variance functions of the candidate pair into the 

calculation of the new determinant such that   

( ) ( (1 ,= + ∆T T
i jX Xnew new old oldX X X X ) ( )                             (9.12) 
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Essentially, the algorithm iteratively examines the list of candidate points, seeking to 

replace an existing point with another one that yields a higher determinant. Thus, at each 

iterate, the goal is to generate a new vector of included design points that will increase 

the determinant of the information matrix and ultimately generate the best design.  At 

each stage, one of the design points is exchanged with another design point so that the 

ratio of the new determinant (containing the new design point) to the previous 

determinant is maximized. When the ratio falls below some tolerance level, the previous 

design is taken as the optimal design. 

In R, the optFederov()  function from the AlgDesign Package (Wheeler, 

2004) applies Federov’s exchange algorithm at Equation (9.12) to compute “an exact or 

approximate algorithmic design” for each of the aforementioned criteria.  Thereafter, a 

best-subsets regression is performed to determine the best, or most appropriate mix of 

predictors for the refined experimental design.  This also may be performed in R using 

the leaps()  function from the Leaps Package (Lumley, 2009).  In short, this function 

executes an exhaustive search for the best subsets of predictors using an efficient branch-

and-bound algorithm.  Models therein are compared using four well-known criteria, 

including the adjusted coefficient of determination Ra,p
2, Mallow’s Cp, the prediction sum 

of squares (PRESSp), and the mean square error (MSEp).  Table 9.2 summarizes these 

criteria. 

Experimental designs, such as those heretofore described, are viable alternatives 

for a variety of situations in which standard experimental approaches do not apply or 

cannot achieve adequate precision.  Generally, they provide an efficient and cost-
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effective way to select design points for experimentation.  We should note, however, that 

the use of optimal designs should not serve as a direct substitute for standard 

experimental approaches, but rather as an alternative approach when standard methods 

are inappropriate or otherwise insufficient.     

Table 9.2.  Evaluation Criteria for the Model with p Parameters. 

 

Measure (with Formula) Description / Interpretation 

2
,

1
1

p
a p

SSEN
R

N v SSTO

− 
= −  − 

 
High criterion values are sought.  Here, the number of 
parameters is taken into account through the corresponding 
degrees of freedom.  Thus, this measure is not influenced by 
an increase in predictor variables.   

1 1
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p
p
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= − −

 

The criterion is concerned with the total MSE of the n fitted 
values for the subset regression model.  The objective is to 
identify subsets for which Cp is small (low total MSE) but is 
near p (which indicates low bias). 
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Here, ej represents the jth residual and hjj represents the jth 
diagonal element of the hat matrix H.  For models with large 
hjj , the prediction sum of squares will be large, resulting in 
more influential points within a regression model.  Models 
with smaller PRESSp values contain less overall prediction 
error in their estimation.   

p
p

SSE
MSE

N p
=

−
 Measures the average of the square of the error for a model 

with p parameters.  Low values are sought. 

 
 
9.3.3  Determination of Approved Models and Optimization 

Considering the framework delineated in Section 9.3.1 for an industrial process 

involving a nominal-the-best (N-type) quality characteristic as the response of interest, 

we assume that the levels of xi for i = 1, 2,…,k are both quantitative and continuous, and 

can be controlled by the experimenter.  Fitted response functions are developed for the 

process mean and standard deviation using the techniques described in Section 9.3.2.  In 

particular, assuming second-order polynomials for the response functions in each case, 

the general form of the estimated response functions for the process mean and standard 

deviation with k parameters or k –1 predictor variables appears as:  
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0
ˆ ˆ ˆˆ ( ) µ µ µµ β ε= + + +T Tx x b x B x                                         (9.13) 
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ˆ ˆˆˆ( ) T T
σ σ σσ γ ε= + + +x x b x B x                                         (9.14) 
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As noted previously, 0β (and γ0), ˆ ˆ (and )µ σb b and ˆ ˆ (and )µ σB B reflect the estimates of the 

intercept, linear, and second-order coefficients, respectively, and εµ and εσ  denote the 

residual error for the mean and standard deviation.  Cho’s (1994)/Lin and Tu’s (1995) 

MSE-based optimization scheme is used on either a spherical region of interest (in the 

case of a central composite design) such that 2ρ′ ≤x x , whereρ defines the spherical 

experimental region, and∈x  the domain of the control factors, ΩΩΩΩ; or a cuboidal region of 

interest bounded by (-1,1) in the case of factorial design.   

9.4  Numerical Example – Printing Press Study Revisited 

In this section, the printing press study introduced in Section 9.2 is revisited in 

two parts to facilitate comparison between the proposed technique and traditional 

approaches.  In the first part, the three methods (OLS, WLS, and the proposed CV 

technique) are examined in the context of the original experiment and draw inferences 

from the performances of each.  In the second, Monte Carlo simulation is used to more 

fully investigate performance trends and precision; observations are made and 

conclusions drawn regarding the simulation results. 
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9.4.1 Initial Data Analysis 

Pursuant to a thorough analysis of the original data associated with the print press 

experiment, two observations emerge.  First, based on the criteria established in Section 

4.1, the time-sequence plot in Figure 9.2(a) shows that the process qualifies as highly 

variable since one or more observations exceeds the +/- 3σ threshold.  Second, as the 

residual plots for both first and second-order models in Figures 9.3(b) and (c) show, 

regression of the residuals against the fitted line suggests evidence of non-constant 

variance. After regressing the absolute values of the residuals against each of the 

predictor variables for the fitted line separately, the evidence for non-constant variance 

becomes more conclusive for each of the primary factors (see Figure 9.3). 

 
                              (a)                                       (b)                                  (c) 

Figure 9.2. Investigation of assumptions on (a) variability in the responses and (b)-(c) 
constant error variance for first and second order models, respectively.  

 

      
                                (a)                                   (b)                                  (c) 

Figure 9.3. Regression of squared residuals against (a) X1, (b) X2, and (c) X3. 

 

+3s

y
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To confirm the variability trends observed in the residual plots, the Breusch-Pagan 

hypothesis test is applied.  In the first order model, the calculated statistic (1) tests H0: γ1 

= γ2 = γ3 = 0 versus H1: Not all γ = 0, whereas in the second order model (2), the 

hypotheses are extended for p = 10 parameters.   

 

(1)  
2

2 7.95e+09 1012557
25.45

2 27(3)BPχ
 

= ÷ = 
 

             (2)  
2

2 2.28e+09 539518
25.72

2 81BPχ  
= ÷ = 

 
 

Since 25.447 > χ2(.95, 3) = 7.81 and 25.720 > χ2(.95, 9) = 16.92 for the first and second-

order models, respectively, we conclude H1; that is, the error variance is not constant.  

The results of these tests reinforce the inferences drawn from the graphical analysis and 

further suggest the need for remedial measures in the development of fitted functions.  

Such remedial actions are performed using both the usual WLS approach and the 

proposed CV technique, which are described in the ensuing paragraphs. 

9.4.2. Comparison of Methods via a Single Iteration of the Original Experiment 

The initial comparison of the three methods (OLS, WLS, and the proposed CV technique) 

was performed using the original data for the printing press experiment shown in Table 

3.2 on page 79.  Applying the OLS regression method first yields the following second-

order response surface models, which are commensurate with the models obtained by 

previous researchers: 

2 2
1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ( ) 327.63 177.01 109.42 131.47 32.01 22.39

29.06 66.03 75.46 43.58
OLS x x x x x

x x x x x x x

µ = + + + + −

− + + +

x
 

2 2
1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ ( ) 34.884 11.529 15.327 29.191 4.206 1.318

16.776 7.724 5.115 14.083
OLS x x x x x

x x x x x x x

σ = + + + + −

+ + + +

x
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As with previous research using this particular data set, these models were developed 

under the premise that underlying assumptions regarding variability and the residual 

errors held. 

The development of second order fitted response surface functions for the mean 

and standard deviation was performed using an iteratively reweighted least squares 

regression program constructed in R (refer to Appendix E for the associated 

programming code).  At each iterate in the WLS procedure, the standard error for each 

regression coefficient is observed and compared to the standard error obtained in the 

previous trial.  Once the estimated coefficients stabilize, the iterative process ceases and 

the fitted function obtained in the last trial is selected.  For the purposes of simulation, the 

process was set to iterate up to 50 times to ensure convergence; convergence was 

achieved when the difference between standard error for each of the estimated 

coefficients was less than 0.05 when compared to the corresponding errors obtained in 

the previous iterate.  Table 9.3 depicts the results of this process for the mean response 

surface function, which converged after 11 iterations; the corresponding process for the 

standard deviation converged after 23 iterations. 

Table 9.3.  Standard errors for mean regression coefficients in each WLS iterate. 

Iteration s(b0w) s(b1w) s(b2w) s(b3w) s(b4w) s(b5w) s(b6w) s(b7w) s(b8w) s(b9w) 

1 22.646 13.099 17.355 14.210 22.274 20.926 21.880 23.649 22.351 24.224 
2 21.578 13.341 14.767 15.296 20.580 20.743 21.657 20.571 22.450 21.863 
3 23.927 13.777 14.306 15.576 21.939 19.933 23.026 18.404 20.352 19.151 
4 23.382 12.729 14.307 15.506 21.472 19.999 22.257 17.083 18.996 19.152 
5 22.791 11.793 14.215 15.046 21.400 19.086 21.588 17.247 18.684 18.733 
6 22.726 11.502 14.200 14.827 21.413 18.860 21.391 17.350 18.401 18.623 
7 22.773 11.374 14.150 14.669 21.412 18.756 21.301 17.364 18.212 18.486 
8 22.830 11.307 14.117 14.575 21.426 18.714 21.241 17.399 18.080 18.418 
9 22.849 11.260 14.092 14.511 21.429 18.673 21.204 17.412 18.001 18.366 
10 22.862 11.229 14.075 14.472 21.432 18.649 21.179 17.423 17.948 18.335 
11 22.868 11.209 14.063 14.447 21.433 18.631 21.163 17.428 17.914 18.315 
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The OLS and WLS procedures resulted in the following estimated response surface 

functions for the mean and standard deviation for each method, respectively: 

2 2
1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ ( ) 317.09 171.23 132.43 125.67 25.27 11.43

               11.76 37.63 46.69 60.66
WLS x x x x x

x x x x x x x

µ = + + + + −

− + + +

x
 

2 2
1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ ( ) 45.014 21.461 25.435 34.658 5.041 19.516

               22.875 21.45 21.177 27.421
WLS x x x x x

x x x x x x x

σ = + + + − −

+ − + +

x
 

As expected, a comparison of the fitted response surface models developed using the 

WLS procedure to those obtained via OLS regression shows clear improvements in the 

precision of the models for both the mean and standard deviation.  In particular, as shown 

in Table 9.4, a significant reduction in the error for each of the coefficients is observed 

when comparing the mean and standard deviation response models obtained through the 

WLS approach against those calculated using traditional OLS regression.   

 
Table 9.4.  Comparison of response models obtained via the OLS and WLS methods. 

Standard Errors of Regression Coefficients 
s(b0) s(b1) s(b2) s(b3) s(b4) s(b5) s(b6) s(b7) s(b8) s(b9) 

Mean 
OLS 38.75 17.94 17.94 17.94 31.07 31.07 31.07 21.97 21.97 21.97 

WLS 22.87 11.21 14.06 14.45 21.43 18.63 21.16 17.43 17.91 18.32 

Reduction (%) 47.03 43.91 29.63 27.70 38.08 46.17 38.86 28.79 26.80 25.17 

Standard 
Deviation 

OLS 22.31 10.33 10.33 10.33 17.89 17.89 17.89 12.65 12.65 12.65 

WLS 17.87 9.51 9.57 10.08 14.43 13.80 13.77 11.48 12.41 12.83 

Reduction (%) 58.61 52.39 52.12 49.56 58.30 60.12 60.21 53.08 49.30 47.60 

 

The application of the proposed CV technique begins with the identification of 

potential sources of variability or instability in the process.  As the plot in Figure 9.2(a) 

showed, a handful of responses either approach or exceed the 3σ threshold used to 

delineate a high-variability process.  Computing the CV for each design point (see Figure 
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9.4) reveals three likely sources of excessive variability at design points 1, 5, and 19.  The 

box plot in Figure 9.4 provides a more visual portrayal of these points, indicating clearly 

the extent to which they deviate from the rest of the data.  The corresponding violin plot 

illustrates the influence these points exert on the rest of the data and the corresponding 

degree to which they infuse asymmetry into process outputs. 

 

Figure 9.4.  Box plot and table of CV values for the printing press study. 

 
Per the methodology outlined in Section 9.4, these three points are then removed from the 

experiment, which results in a non-standard experimental region.  Optimal design theory 

is then applied using the optFederov()  function in R to rebalance the design while 

retaining 27 design points.  This yields the design in Table 9.5, including the points 

retained from the original experiment, the points to be replicated, and the values for each 

of the optimal design criteria.  An additional output in R is the lower bound on D-

efficiency, which is determined by (1 1/ )eG

eD e −≥ , where Ge denotes the G-efficiency, which 

is an available standard of optimal design quality since the theoretical optimum value of 

the G-criterion is known. 

 

Mean:  0.18

Point 1:  0.52

Point 5:  0.59
Point 19:  0.61
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0.
2

0.
3

0.
4

0.
5

0.
6

14 372 0 0.00
15 501.7 92.5 0.18
16 264 63.5 0.24
17 427 88.61 0.21
18 730.7 21.08 0.03
19 220.7 133.8 0.61
20 239.7 23.46 0.10
21 422 18.52 0.04
22 199 29.45 0.15
23 485.3 44.64 0.09
24 673.7 158.2 0.23
25 176.7 55.51 0.31
26 501 138.9 0.28
27 1010 142.5 0.14

Design 
Point Mean

Standard 
Deviation CV

1 24 12.49 0.52
2 120.3 8.39 0.07
3 213.7 42.8 0.20
4 86 3.46 0.04
5 136.7 80.41 0.59
6 340.7 16.17 0.05
7 112.3 27.57 0.25
8 256.3 4.62 0.02
9 271.7 23.63 0.09
10 81 0 0.00
11 101.7 17.67 0.17
12 357 32.91 0.09
13 171.3 15.01 0.09
14 372 0 0.00

Design 
Point Mean

Standard 
Deviation CV



 

Table 9.5.  Optimal design results generated 

# Times to 
Replicate

1 1 
2 1 
3 1 
4 1 
5 2 
6 1 
7 2 
8 2 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 2 
16 1 
17 1 
18 1 
19 2 
20 1 
21 2 

 
 

Interestingly, as Table 

additional points from the original experiment, namely design points 11, 13, and 18.  

Thus the optimal design consists of 21 experimental points, six of which are replicated 

twice to achieve the 27 runs desired.  Figure 

the experiment after removing the identified sources of variability.  

Figure 9.5.  Optimal experimental design generated in R, where (
extracted based on their CV

design process, and (
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.  Optimal design results generated using the optFederov()  function in R.

# Times to  
Replicate X1 X2 X3 

0 -1 -1 Criterion Value 
1 -1 -1 D- 0.458 
-1 0 -1 A- 3.708 
1 0 -1 G- 0.998 
-1 1 -1 I- 9.709 
0 1 -1 Lower Bound on 

0.998 
1 1 -1 D- efficiency 
-1 -1 0 

  
1 -1 0 
0 0 0 
1 0 0 
-1 1 0 
0 1 0 
0 -1 1 
1 -1 1 
-1 0 1 
0 0 1 
1 0 1 
-1 1 1 
0 1 1 
1 1 1 

Interestingly, as Table 9.5 shows, this procedure results in the extraction of three 

additional points from the original experiment, namely design points 11, 13, and 18.  

Thus the optimal design consists of 21 experimental points, six of which are replicated 

runs desired.  Figure 9.5 depicts the new experimental region for 

the experiment after removing the identified sources of variability.   

 
.  Optimal experimental design generated in R, where (  ) denotes points 

CV, ( ) denotes additional points omitted through the optimal 
) denotes replicated points in the new design space.

function in R. 

5 shows, this procedure results in the extraction of three 

additional points from the original experiment, namely design points 11, 13, and 18.  

Thus the optimal design consists of 21 experimental points, six of which are replicated 

5 depicts the new experimental region for 

) denotes points 
) denotes additional points omitted through the optimal 

) denotes replicated points in the new design space. 
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Thereafter, a best-subsets regression procedure is performed using the leaps()  

function in R, which yields the results shown in Table 9.6.  Based on the four evaluation 

criteria used, the preferred model excludes the pure quadratic effect for2
1x , resulting in 

k=9 parameters for the modified experimental design (Model 15 in Table 9.6).   

 
Table 9.6.  Results of the best-subsets regression procedure performed in R. 

Model 
1x  2x  3x  

2
1x  

2
2x  

2
3x  1 2x x  1 3x x  2 3x x  

2
,p adjR  pC  pPRESS pMSE  

1 X 39.9% 230.14 995279.0 34066.90 
2 X 22.8% 302.26 1279200.6 43773.53 
3 X X 62.4% 131.04 654308.6 21313.93 
4 X X 50.3% 180.03 883956.0 28181.29 
5 X X X 75.4% 76.18 468233.1 13922.96 
6 X X X 68.9% 101.56 554024.7 17635.95 
7 X X X X 84.0% 42.23 322833.1 9058.63 
8 X X X X 77.8% 65.19 451590.9 12569.76 
9 X X X X X 89.7% 21.48 215416.1 5844.10 
10 X X X X X 87.7% 28.57 267707.2 6980.80 
11 X X X X X X 93.1% 10.31 145201.3 3922.04 
12 X X X X X X 90.7% 18.50 194087.4 5298.24 
13 X X X X X X X 93.7% 9.05 143351.0 3550.65 
14 X X X X X X X 93.6% 9.38 138457.8 3608.01 
15 X X X X X X X X 94.3% 8.16 138370.0 3207.90 
16 X X X X X X X X 93.5% 10.87 155710.0 3714.19 
17 X X X X X X X X X 94.1% 10.00 149750.9 3364.48 

 

Applying the OLS regression procedure to the new experimental design yields the 

following response surface functions for the mean and standard deviation, respectively: 

                         
2 2

1 2 3 2 3

1 2 1 3 2 3

ˆ ( ) 371.53 182.17 103.74 104.06 46.22 45.71

50.07 114.26 72.24
CV x x x x x

x x x x x x

µ = + + + − −

+ + +

x
 

                         
2 2

1 2 3 2 3

1 2 1 3 2 3

ˆ ( ) 50.39 20.63 27.67 19.06 5.38 9.60

2.67 13.48 23.49
CV x x x x x

x x x x x x

σ = + + + − −

− + +

x
 

Using the estimated response surface functions obtained via each of the three methods, a 

non-linear optimization scheme using the MSE-based model from Cho (1994)/Lin and Tu 

(1995) is employed in R to identify the optimal operating conditions for which total MSE 
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and bias are minimized.  Table 9.7 contains the consolidated results for each of the three 

methods.  These include comparisons of the standard errors for each of the coefficients in 

Table 9.7(a); overall model performance based on the PRESSp and 2

,p adjR  for each  

inTable 9.7(b); and the optimization results in terms of the total MSE and bias for the 

optimal operating conditions in Table 9.7(c). 

It is immediately clear from the results in Table 9.7 that both the WLS and CV 

methods exhibit significant improvements over the traditional OLS approach.  Between 

the two, the performances are comparable, with each outperforming the other based on 

certain evaluation criteria.  In Table 9.7(a), the standard errors for the WLS and CV mean 

response surface models are equally split, whereas for the standard deviation model, the 

CV technique clearly outperforms the WLS alternative.  If we examine the overall model 

evaluation criteria in Table 9.7(b), the CV technique demonstrates much better predictive 

capability in terms of the PRESSp criterion.  However, the values for the2,p adjR  criterion 

obtained via the WLS and CV methods suggest that the model produced by the WLS 

technique achieves a slightly better fit.   

In terms of the optimization performances shown in Table 9.7(c), the WLS and CV 

approaches yield a virtual tie for both total MSE and bias in the optimization results.   

Thus, the overall results indicate that in some respects, the proposed CV technique is, at 

the very least comparable to the more traditional WLS approach, but in some ways 

potentially superior in terms of the predictive capability it achieves.   
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Table 9.7.  Consolidated results for the OLS, WLS, and proposed CV methods based on a 
single iteration of the original printing press experiment. 

(a) 

Standard Errors of Regression Coefficients 
s(b0) s(b1) s(b2) s(b3) s(b4) s(b5) s(b6) s(b7) s(b8) s(b9) 

Mean 

OLS 38.75 17.94 17.94 17.94 31.07 31.07 31.07 21.97 21.97 21.97 

WLS 22.87 11.21 14.06 14.45 21.43 18.63 21.16 17.43 17.91 18.32 

CV 28.24 13.55 13.73 13.83 ---- 25.18 26.26 15.49 15.44 16.00 

Standard 
Deviation 

OLS 22.31 10.33 10.33 10.33 17.89 17.89 17.89 12.65 12.65 12.65 

WLS 17.87 9.51 9.57 10.08 14.43 13.80 13.77 11.48 12.41 12.83 

CV 13.86 6.65 6.74 6.79 ---- 12.36 12.89 7.60 7.58 7.85 

 
(b) 

Process Mean Process Standard Deviation 
OLS-m WLS-m CV-m OLS-s WLS-s CV-s 

Avg PRESSp 337,730.1 243,597.9 138,370 93,049.95 99,770.42 28,900.63 

Avg 2
,p adjR  0.888 0.990 0.943 0.165 0.736 0.625 

  
(c) 

OLS WLS CV 

Optimization  
Results 

Avg MSE 406.349 1.73E-19 1.03E-16 

Avg Bias 2.386 1.24E-10 8.61E-09 

 

Nevertheless, analyzing the actual optimal operating conditions obtained using 

each method raises questions regarding precision.  Figure 9.6 shows the relative 

proximity of the ( )* * *
1 2 3, ,X X X point obtained for each method, and the disparities between 

them are obvious.  Recalling the considerable dispersion in the simulated results from the 

pilot study shown in Figures 9.1 and 9.2, it is practically impossible to determine from 

these results which method is more reliable and precise.   

Hence, while the comparisons to this point demonstrate the potential for 

comparable or improved results using the CV technique, the real question is one of 

precision.  That is, can we expect a greater degree of precision in the results obtained via 
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the CV technique compared to the other two?  In order to examine this aspect, a Monte 

Carlo simulation approach in R is used. 

 

Figure 9.6.  Comparison of optimal operating conditions obtained via the OLS, WLS, and 
proposed CV methods using a single run of the original experimental data. 

 
9.4.3  Comparison of Methods via Monte Carlo Simulation 

As the results in Figures 9.1 and 9.2 showed from the pilot study, simulation of 

the printing press experiment revealed considerable imprecision in the optimization 

results obtained for the 500 runs.  Given the results in Section 9.4.2, it was presumed that 

the two alternative methods would likewise possess some degree of imprecision in the 

results. The questions were how much imprecision and to what extent did one method 

outperform the others?  To this end, the overarching purpose of the simulation was to 

facilitate an investigation of performance trends between the three methods to determine 

whether better and more precise solutions could be expected via the proposed CV 

technique in the presence of high system variability. 

Two simulations were constructed in R, one for the OLS and WLS approaches and 

one for the proposed CV technique, which required a unique approach to the former 

based on the aspects of optimal design and best-subsets regression used in the procedure.   

In each iterate of the simulation, fresh observations are generated using the values for the 

OLS WLS CV 

OOCs obtained using
each method (single run)

OLS 1.20 -0.32 -0.08

WLS 1.15 -0.12 -0.14
CV 1.41 1.55 -0.62
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mean and standard deviation at each design point in Table 9.2 to generate normal random 

variates consistent with the original experiment.  The same generated data are used in 

each of the three simulations and are then used to obtain estimates for the sample mean 

and standard deviation at each design point.  The derived estimates are used to perform 

the appropriate regression procedure to obtain fitted response surface functions for the 

mean and standard deviation.  The resuling fitted functions are used with the MSE-based 

optimization framework to determine the optimal operating conditions.  The results at 

each iterate are recorded, and output is generated to facilitate analysis. 

Two trials of the simulation were performed in which both the number of 

observations generated per design point and the number of iterations executed were 

varied.  To remain consistent with the original experiment, the first trial involved three 

simulated observations per design point.  The experiment was iterated 1,000 times, 

yielding the averaged results across all 1,000 iterations shown in Table 9.8.    

The results from the first simulation trial demonstrate once again that the CV technique 

performs at least comparable to, but in several ways better than the WLS approach when 

examined in the context of model errors and overall predictive capabilities.  However, the 

optimization results in Table 9.8(c) suggest superiority in the proposed method.  In 

particular, the proposed CV techniques achieves reductions of up to 50% for both the 

MSE and target bias.  Furthermore, comparisons of the plots in Figure 9.7 illustrate clear 

gains in precision using the CV technique.   
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Table 9.8.  Comparison of consolidated results for Trial 1 (1,000 iterations; 3 obs/design 
point) for (a) coefficient errors, (b) model performance, and (c) optimization results. 

(a) 
  Standard Errors of Regression Coefficients 

  s(b0) s(b1) s(b2) s(b3) s(b4) s(b5) s(b6) s(b7) s(b8) s(b9) 

Mean 
OLS 43.17 19.98 19.98 19.98 34.61 34.61 34.61 24.47 24.47 24.47 
WLS 26.27 15.82 16.17 17.41 23.44 24.31 24.32 21.24 22.69 22.01 
CV 33.67 16.15 16.37 16.49 ---- 30.02 31.31 18.47 18.40 19.08 

% Error 
Reduction 

OLS→ WLS 39.15 20.82 19.09 12.88 32.29 29.76 29.75 13.22 7.31 10.08 
OLS→ CV 22.02 19.18 18.09 17.46 ---- 13.27 9.55 24.55 24.80 22.04 

                          

Standard 
Deviation 

OLS 24.63 11.40 11.40 11.40 19.75 19.75 19.75 13.96 13.96 13.96 
WLS 17.19 9.37 9.03 10.04 14.17 14.82 14.10 11.27 12.04 11.62 
CV 18.57 8.91 9.03 9.10 ---- 16.56 17.27 10.19 10.15 10.53 

% Error 
Reduction 

OLS→ WLS 60.19 53.10 54.80 49.78 59.05 57.19 59.26 53.93 50.80 52.54 
OLS→ CV 56.98 55.42 54.82 54.47 ---- 52.16 50.11 58.38 58.52 56.99 

(b) 
Process Mean Process Standard Deviation 

OLS-m WLS-m CV-m OLS-s WLS-s CV-s 
Avg PRESS 407,375.30 323,176.10 194,641.40 116,673.80 106,025.60 56,619.01 

Avg 2
,p adjR  0.86 0.94 0.92 0.11 0.41 0.40 

 (c) 

  
OLS WLS CV 

Optimization  
Results 

Avg MSE 220.63 143.35 74.94 
Avg Bias 0.91 0.63 0.37 

 

Specifically, as ( * * *
1 2 3, ,X X X ) are plotted for each of the 1,000 iterations of the simulation, a 

tighter grouping of the results is observed in the plots corresponding to the CV technique 

(Figure 9.7(c)).  By comparison, the plots associated with the OLS and WLS methods 

(Figures 9.7(a) and (b), respectively) continue to reflect results that span a considerable 

portion of the design space. 
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(a) 

 

(b) 

 

(c) 

 
Figure 9.7.  Identification of x* for Simulation Trial 1, −4 ≤ Xi ≤ 4;  (a) x* for OLS 

method, (b) x* for WLS method, (c) x* for CV technique. 

 
In the second simulation trial, the number of observations per design point are 

increased to 25 in order to examine the effects of added replication on the simulation 

results.  Additionally, the number if iterations is increased to 2,000.  These modifications 

in trial 2 yielded the results in Table 9.9.   

As with the results in Trial 1, the results in Trial 2 demonstrate comparable 

performances between the WLS and CV approaches for both individual coefficient errors, 

overall model errors, and predictive capabilities.  Once again, both alternatives drastically 

outperform the traditional OLS approach, but between the two the CV technique performs 

at the level of or slightly better than the WLS approach, at least in the context of 

predicting process responses.  In terms of the optimization results, however, the gap 
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between the two methods closes considerably, with the CV technique yielding, on 

average, the result with the least variability and bias.  

Table 9.9.  Comparison of consolidated results for Trial 2 (2,000 iterations; 25 
observations per design point) for (a) coefficient errors, (b) model performance, and (c) 

optimization results. 

(a) 
  Standard Errors of Regression Coefficients 

  s(b0) s(b1) s(b2) s(b3) s(b4) s(b5) s(b6) s(b7) s(b8) s(b9) 

Mean 
OLS 39.28 18.18 18.18 18.18 31.5 31.5 31.5 22.27 22.27 22.27 
WLS 24.56 13.49 14.11 15.45 21.7 21.46 22.2 18.3 20.36 19.2 
CV 28.93 13.88 14.06 14.17 ---- 25.79 26.9 15.87 15.81 16.4 

% Error 
Reduction 

OLS→ WLS 43.11 32.49 29.39 22.69 37.31 38.01 35.86 25.22 16.8 21.57 
OLS→ CV 33 30.56 29.63 29.09 ---- 25.48 22.29 35.18 35.39 33.01 

                          

Standard 
Deviation 

OLS 22.57 10.45 10.45 10.45 18.09 18.09 18.09 12.79 12.79 12.79 
WLS 17.36 9.78 9.88 10.5 14.58 14.04 14.18 12.2 12.67 12.88 
CV 14.44 6.93 7.02 7.08 ---- 12.88 13.43 7.92 7.89 8.19 

% Error 
Reduction 

OLS→ WLS 59.78 51.08 50.54 47.47 57.89 59.43 59.04 50.13 48.22 47.38 
OLS→ CV 66.55 65.33 64.87 64.59 ---- 62.8 61.2 67.64 67.74 66.56 

(b) 
Process Mean Process Standard Deviation 

OLS-m WLS-m CV-m OLS-s WLS-s CV-s 
Avg PRESS 345,490.00 268,920.00 144,710.00 95,499.00 102,320.00 31,709.00 

Avg 2
,p adjR  0.89 0.96 0.94 0.16 0.70 0.60 

(c) 
OLS WLS CV 

Optimization  
Results 

Avg MSE 515.76 32.21 31.56 
Avg Bias 1.61 0.17 0.14 

 
 

Whereas the gap between the WLS and CV techniques regarding the optimization 

results appears to close with greater replication at each design point, the opposite is 

observed to occur in terms of the precision in the results.  As the plots in Figures 9.8(a) – 

(c) show, the x* obtained via the CV technique continue to consolidate even more tightly 

in the (+, ‒, +) quadrant of the experimental region.  Thus, while the average 
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optimization results between the two appear nearly equal, the precision achieved by the 

CV technique clearly exceeds the improvements attained through the WLS approach. 

(a) 

 

(b) 

 

(c) 

 

Figure 9.8.  Identification of x* for Simulation Trial 2, −4 ≤ Xi ≤ 4; (a) x* for OLS 
method, (b) x* for WLS method, (c) x* for CV technique. 

 

9.5  Summary of Findings 

The results of the numerical example and associated simulations demonstrate that, 

while both the WLS method and proposed CV technique provide viable alternatives to 

traditional OLS regression approaches when inherently high variability pervades process 

operations, the proposed method can deliver significant improvements in the quality and 

precision of the RPD solutions.  Whereas the WLS approach affords some flexibility in 

iteratively down-weighting sources of variability, it does not eliminate them altogether.  

The proposed CV technique, on the other hand, does.  Consequently, removing sources of 
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variability followed by a restructuring of the experimental design through a combination 

of optimal designs and best-subsets regression can have three significant positive 

impacts, which are summarized in (i) – (iii) below: 

(i) First, it tends to produce a model with a much greater degree of predictive 

capability regarding system outputs or responses (Yi).  In each aspect of the numerical 

example, the proposed technique resulted in a PRESSp that was up 46% less than the WLS 

approach for the mean response model, and up to 70% less for the standard deviation.   

(ii)   Second, the CV technique tends to generate the best RPD solutions in terms 

of minimal MSE and bias in the optimization results. Although the gap between the WLS 

and proposed CV approaches closes with the introduction of additional replication, it 

would still be fair to suggest the CV technique would be preferred due to the added costs 

that would be incurred to achieve such increases in experimental replication.   

(iii)  Finally, after 3,000 iterations of the experiment, it is clear that the CV 

technique achieves greater precision.  That is, judging by the plots shown in Figures 

9.7(c) and 9.8(c) relative to the corresponding plots for the OLS and WLS methods in 

each, there is a considerable enhancement in the degree of precision attained using the 

proposed method.  This translates to a greater degree of certainty that the generated 

results are indeed optimal. 

9.6  Conclusion 

As has been a recurring theme in previous chapters, the presence of high-

variability conditions can invalidate several of the assumptions that underpin the 

application of ordinary least squares regression.  The pilot study presented in Chapter 3 
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and used as a motivating basis in this chapter illustrates that, if such variability is 

assumed away or otherwise unaccounted for, the application of traditional approaches can 

lead to significant imprecision both in the estimates of the fitted response surface models 

and ultimately the optimal operating conditions derived from them.  To overcome this, an 

alternative technique based on the CV has been proposed in which engineers identify and 

then remove influential sources of variability and then apply optimal design techniques to 

restructure and balance the experiment in order to obtain more precise estimators and 

ultimately determine the true optimal operating conditions.   

While the results of the proposed method demonstrate improvements, there 

appears to be room for yet greater improvements in the overall degree of precision 

achieved.  Thus, future extensions to this method might explore the incorporation of 

higher-order modeling, or perhaps alternative experimental designs that would facilitate 

increased replication.  In either case however, additional costs in time and resources are 

inevitable.  As such, trade-offs between these costs and the degree of precision possible 

should be considered.  This would ultimately help analysts to develop recommendations 

that offer decision makers a greater degree of flexibility and control in the decision 

process.  Chapter 10 addresses these concepts in detail. 
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CHAPTER TEN 
 
 

INTEGRATING A TRADE-OFF ANALYSIS BETWEEN COST AND 
PRECISION IN HIGHLY VARIABLE PROCESSES 

 

10.1  Introductory Remarks 

In the age of global markets and competition, efforts to ensure product and 

process adherence to technical specifications have yielded to a growing focus on ensuring 

that their associated characteristics adhere to desired target values with as little variability 

as possible.  As noted in the outset of Chapter 9, variation and uncertainty in 

manufacturing and testing processes can have significant impacts in terms of costs to 

both the manufacturer and the user/vendor.  Thus, precision achieved through variance 

reduction must be the paramount goal.  Notwithstanding, in all problems of this nature, 

there exists a trade-off between precision and the costs required to achieve it.  Typical 

costs are expressed in terms of the manufacturer’s perspective and may include capital, 

equipment, operating costs, testing/experimentation costs, manufacturing throughput, etc.  

However, there are also potential costs for not achieving sufficient precision that affect 

the customer and so, by extenstion, the manufacturer.  In particular, they include product 

overdesign and overmanufacture that stem from conservative decision-making in the 

manufacturing process, which can ultimately lead to customer dissatisfaction with the 

level of quality and loss of vendor confidence. 

Taguchi’s (1986, 1987) robust parameter design (RPD) approach evolved to 

provide a cost-effective approach for improving product and process quality via 

variability reduction.    As has been noted in several chapters, the goal of RPD is to 
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achieve robustness by selecting control factor settings that help to render the system 

impervious to the effects of process variability.  In the context of Taguchi’s philosophical 

approach, the customer’s perspective demands that manufacturers consider both the mean 

(or target specification) and the variability for a particular quality measure in order to 

improve the quality of the delivered product, as well as the quality of the process used to 

manufacture it.  Thus, since the 1980’s, the ideas and associated methods for considering 

both the process mean and variance have received much attention.  Indeed, a great 

portion of this attention has focused on alternative methods for efficiently determining 

optimal process settings or conditions.  In the interests of promoting various optimization 

approaches, the models used are assumed to be good fits and ordinary least squares 

assumptions hold. 

As manufacturers seek improved methods for ensuring quality in resource-

constrained environments, engineers should examine trade-offs to achieve the levels of 

precision that best support their decision making.  In contrast to previous research, this 

chapter proposes a trade-off analysis between enhanced precision in the generated 

solutions and the costs associated with achieving it. Several techniques are considered in 

the early stages of experimental design, using Monte Carlo simulation as a tool, for 

revealing potential options to the decision maker.  To this end, only situations involving 

controllable factors are considered for the purposes of comparison and analysis.  While 

the inclusion of noise factors would more closely mirror reality, the literature lacks 

consensus on the most appropriate method for doing so.  Accordingly, the focus of this 

chapter has been scoped.  Notwithstanding, this research may represent the first study to 
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show the avenue which may lead to more effective robust parameter design models with 

the optimal combination of cost constraints and desired precision of solutions.  The 

original research associated with this chapter is published with reference Boylan et al. 

(2013). 

10.2  Brief Review of Optimization Schemes 

Chapter 2 addressed some of the controversy surrounding Taguchi’s methods, 

which led a number of researchers to conclude that Taguchi’s methodology merely 

facilitated process improvement rather than optimization.   Consequently, many of them 

proposed RPD models that investigated a variety of alternative optimization 

methodologies and were more firmly grounded in well-established approaches to design 

of experiments and response surface methodology (RSM).  A summary of various 

optimization schemes observed in the contemporary RPD literature may be reviewed in 

Figure 2.2 on page 23.  For the purposes of this chapter, shortened summaries of several 

of the more commonly applied schemes are readdressed in the following paragraphs. 

Initial efforts by Vining and Myers (1990) focused on a priority-based scheme 

rooted in the dual-response component of RSM.  Their approach constrained results to 

strict adherence to desired targets in the spirit of Taguchi’s philosophy and assumed the 

following form:  

ˆMinimize     ( )

ˆSubject to:  ( ) , where  is the target value=

x

x

σ
µ τ τ

                        (10.1) 

Subsequent research by Cho (1994) and Lin and Tu (1995) demonstrated that allowing 

for some bias in process targets could facilitate even further reductions in variability.  
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The results were MSE-based schemes that allowed an unspecified degree of bias in 

process targets in the interests of reducing variability:   

2ˆ ˆMinimize     = ( ( ) ) ( )MSE µ τ σ− +x x                                        (10.2) 

This sparked some debate regarding the amount of bias that could or should be allowed, 

which led Copeland and Nelson (1996) to propose a model that constrained allowable 

bias to some fixed level, ∆:   

2 2

ˆMinimize     ( )

ˆSubject to:  ( ( ) ) , where  denotes the amount of allowable bias− ≤ ∆ ∆

x

x

σ

µ τ
     (10.3) 

Most recently, Costa (2010) proposed another method to simultaneously optimize 

the mean and standard deviation of a particular response based on the global criterion 

method developed by Tabucanon (1988): 

ˆ( ) ˆ ( )
Minimize   

u

U L U L

 −  − 
  +   − −  

x x
µ σ

ω ω
µ σ

µ µ σ σ

τ σ τ
                                    (10.4) 

where τi represents the target value and (L , U) denote the (lower, upper) specification 

limits for µ and σ.  The incorporation of weights ωµ and ωσ  establishes relative priorities 

between the mean and standard deviation, allowing experimenters to explore varying 

magnitudes for each, and thus evaluates trade-off analyses between them.  Similarly, the 

inclusion of the ratio 1/ (U - L) also affords practical flexibility to evaluate trade-offs 

between different limit settings.  As noted in Chapter 2, many other researchers have 

developed extensions of these models, contributing to the growing wealth of knowledge 

in the field.   
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10.3  Concept Motivation – Revisiting the Printing Press Pilot Study 

Recall from the motivating factors illustrated in Section 3.5 of Chapter 3 that 

many researchers have developed optimization procedures using data sets from highly 

variable processes.  More importantly in the context of this chapter is that the developers 

of each of the subsequent optimization schemes outlined above claimed to achieve 

superior results compared to those achieved using previous models.  Again, this is not to 

question the validity of the proposed procedures, as their proponents have clearly 

demonstrated improved results through a range of comparative analyses.  However, it is 

noteworthy that the data used are so variable, that with only a handful of replications 

(typically three or four) a simulation employing these models would likely generate 

drastically different results spanning the breadth of the design space every time.  

Moreover, it is almost equally probable in such highly variable situations that any one of 

the schemes would produce the best result in a particular situation. 

 The numerical example provided in Chapter 3 serves to motivate these ideas.  In 

particular, recall the simulation results from Section 3.5, which are recaptured below in 

Figures 10.1 and 10.2 and summarized in Table 10.2. 

      
                   (a)                          (b)                              (c)                              (d) 

Figure 10.1.  Identification of x*, Printing Press Study, −1 ≤ Xi ≤ 1 (500 iterations). 
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Clearly, the imposed constraint of the experimental region is binding.  However, 

expanding this region four-fold in each direction provides an extrapolated view that 

reveals far more in terms of the imprecision among the generated solutions.  As noted, 

the solutions extend across a considerable portion of the feasible region.  Repeating this 

simulation 1,000 times for each of the optimization schemes yields the results in Table 

10.1, demonstrating that the inherent variability of this particular data set greatly 

influences the ability of any one optimization model to achieve superior results with any 

certainty. 

         
                    (a)                          (b)                              (c)                              (d) 

Figure 10.2.  Identification of x*, Printing Press Study, −4 ≤ Xi ≤ 4 (500 iterations). 

 
Table 10.1.  Model Comparison – Printing Press Study. 

 Results (% of 1,000 iterations with Minimum MSE) 

Model Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 
Vining and Myers (1990) 55.2% 58.1% 56.7% 55.8% 57.8% 

Lin and Tu (1995) 39.2% 37.2% 37.3% 38.7% 37.0% 

Copeland and Nelson (1996) 2.5% 0.9% 2.1% 2.2% 2.0% 

Costa (2010) 3.1% 3.8% 3.9% 3.3% 3.2% 

 

Once again, this brief illustration demonstrates the drawbacks in the design of the 

RPD problem for processes that possess high variability.  Since the number of 

replications at each design point is low, repeating the experiment under the same 
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conditions (i.e., same number of replications) can result in the identification of settings 

that may cover the entire length or more of the feasible factor setting space. This 

indicates considerable imprecision in the estimated functions used to generate the optimal 

factor settings.  Equally important, it creates a false perception in the superiority of one 

optimization model over another; the data are so variable that the results should not be 

trusted with any degree of certainty. 

10.4  Development of Proposed Methodology 

Focusing on processes exhibiting high degrees of variability, the methodology 

offered in this chapter expands upon the experimental design and model development 

phases of the RPD framework.  Specifically, the development of preliminary estimators 

and models are considered as outputs from Phase I.  Thereafter, a trade-off analysis is 

incorporated in Phase II, wherein the conditions of the experiment and the resulting 

preliminary models are evaluated to determine whether alternative measures are 

necessary to achieve greater precision.  The end result is a three-phased procedure 

depicted in Figure 10.3.  The specific components of each phase are discussed in the 

ensuing paragraphs, focusing in particular on Phases I and II. 
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Figure 10.3. Proposed methodology for integrating trade-off analyses. 
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observation at the jth design point for the quality characteristic, where  j = 1, 2, ..., N, and 

q = 1, 2, ..., m.  Values for the mean and variance are computed at the jth design point 

using the following formulas: 

1

m

jq
q

j

y

y
m

==
∑

        

2

1

( )

1

m

jq j
q

j

y y

s
m

=

−

=
−

∑
                                        (10.5) 

A format for this experimental design is shown in Table 10.2. 

Table 10.2.  Experimental Format. 

Design Point X1  X2 .... Xk Replications y  s 

1 

Control 
Factor 

Settings 

y11……………….y1m 1y  s1 

M  M                        M  M  M  

q yq1……………… yqm qy  sq 

M  M                        M  M  M  
N yN1………………yNm Ny  sN 

 

Following experimentation and the collection of observations, preliminary estimators are 

developed for µ and σ in the form of second-order regression models which assume the 

same form shown in previous chapters, which is: 

0
ˆ ˆˆ ( ) µ µ µµ β ε= + + +x x'b x'B x                                                     (10.6) 

and  0
ˆ ˆˆ( ) σ σ σσ γ ε= + + +x x'b x'B x                                                      (10.7) 

[ ]

1 11 12 1

2 22 2
1 2 1
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At this point, with preliminary estimates formed, the experimental results and the 

preliminary models are analyzed to 1) determine if the process is significantly variable, 2) 
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verify that the ordinary least squares assumptions of independent normal model errors 

with constant variance hold, and 3) perform lack-of-fit testing on the estimators in 

Equations (10.6) and (10.7).  The answers to these three questions will guide what 

direction we pursue in phase II.  The approach to answering these three questions is 

described in the following paragraphs. 

As has been noted in previous chapters, determining whether a process is highly 

variable is somewhat of a subjective matter delineated in objective terms.  Recognizing 

that the observed variability stems from the agglomeration of a variety of sources 

throughout the process, both controlled and uncontrolled types are considered.  

Controlled variation pertains to a stable process exhibiting a pattern of random 

fluctuation about a constant level.   Here, a stable process is one in which the process 

mean remains constant with consistent and predictable variation.  Conversely, 

uncontrolled variation occurs in more structured patterns that change over time and is 

thereby unpredictable, rendering associated processes unstable.  Using these 

characterizations of variability, we a highly variable process is considered to be either a 

stable one in which the controlled variation deviates ±3σ from the mean response or 

more, or an unstable one in which the assumption of constant variance does not hold.   

The validation of ordinary least squares assumptions follows traditional 

approaches.  Specifically, normal plots of the residuals are used to verify their normality 

and independence, as well as variability plots of the residuals against the fitted regression 

line to verify homoscedasticity.  Finally, to evaluate the appropriateness of the response 
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surface fit an F-test for lack of fit, a well-established method in the literature, is applied.  

In particular, for the mean response, the following hypotheses are tested: 

0 0

1 0

ˆ ˆˆH : ( )

ˆ ˆˆH : ( )

= + +

≠ + +

x x'b x'B x

x x'b x'B x

µ µ

µ µ

µ β

µ β
 

using the well-known F test statistic: 

 

* LF PE LF

PE

SS SS MS
F

c p N c MS
= ÷ =

− −
 

in which SSLF and SSPE denote the lack of fit sums of squares and pure error sums of 

squares, respectively; MSLF and MSPE denote the lack of fit mean square and pure error 

mean square respectively; and where c = the number of distinct design points, and p = the 

number of parameters in the evaluated model.  Using this test statistic, the appropriate 

decision rule is: 

*
0

*
0

if (1 ; , ), fail to reject H  (conclude model fit is appropriate)

if (1 ; , ), reject H (conclude model fit is not appropriate)

F F c p N c

F F c p N c

α

α

≤ − − −

> − − −
 

10.4.2  Phase II – Trade-off Analysis and Model Development 

Typical RPD experiments assume that full second-order models will adequately 

estimate the response surface.  Moreover, experimenters assume that a relatively few 

number of replications at each design point will produce sufficiently precise estimates 

and that the assumptions of normality and moderate variability in the responses and 

independent and identically distributed normal model errors hold.  This is not to suggest 

that experimenters casually refrain from additional replications.  In reality, limited 

resources and/or time may preclude additional experimental runs.  However, in the 

context of that reality, the assumption is made out of necessity and used to underpin the 

adequacy of the obtained estimates.  Given these assumptions, as evidenced by the 
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considerable emphasis placed upon optimization in the literature, researchers tend to 

proceed with their results into the optimization phase.  While this may be done with little 

consequence in a stable process with low variability, many of the assumptions do not 

hold in cases involving more significant variability.  Over the years, researchers and 

practitioners have observed that, in real-world settings, the assumptions of normality and 

moderate system variability quite often do not hold.  On the contrary, industrial and 

manufacturing processes often possess elevated variability, particularly in mass 

production lines, which can confound many of the modeling assumptions behind the 

robust parameter design approaches.  Furthermore, as has been noted in previous 

chapters, normality rarely exists and some asymmetry is not only realistic but practically 

inevitable – particularly in situations involving S-type, L-type, and certain instances of N-

type quality characteristics; a condition that could become even more pronounced under 

conditions of elevated variability, especially when the number of observations or 

replicates at each design point is small.  What is more, such conditions can induce the 

added effect of non-constant variance in the residuals.  Thus, the use of generated models 

that do not account for these conditions may be problematic.   

To overcome these potential pitfalls, we propose a trade-off analysis in which we 

evaluate the benefits of alternative means to achieve more precision and thereby less 

variability against the costs associated with doing so.  We perform this analysis within 

three areas of emphasis which correspond to the answers to the three questions derived at 

the end of phase I.  These areas include replication, precision in modeling, and 
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removing/reducing the influences of variability, which we describe in the subsections 

below.   

10.4.2.1 Emphasis on Replication 

Ideally, an experiment would retain all design points while including a sufficient 

number of replications to ensure a good model fit with minimal variability in the 

residuals.  Usually, however, this is impractical due to time and other resource 

constraints.  As such, when the second-order model developed pursuant to Phase I fulfills 

error assumptions of ordinary least squares yet is a poor statistical fit, we can consider 

reducing the number of design points evaluated in the experiment while increasing the 

number of replicates for each of the remaining points to obtain more precision.  Figure 

10.4 conceptualizes some of the potential alternatives. 

 

Figure 10.4. Potential alternatives for experimental designs. 
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For example, consider the printing press problem previously described.  In this 

case, the experiment consisted of three replications of 27 design points in the full 

factorial design, for a total of 81 experimental runs.  Alternatively, we could reduce the 

number of design points to 15 while doubling the number of replications to 6 by 

removing the edge points.  Although this sacrifices the evaluation of these points and thus 

places greater weight on the corner and face-centered points, we are able to incorporate 

twice the replication at a net cost of 9 additional experimental runs.  With more 

replication, we would expect to obtain greater accuracy in finding the true position of the 

optima as they relate to the factor space.  Thus, the trade-off under consideration is the 

precision gained through increased replication versus the cost of the additional nine runs. 

It is important to note that the selection of design points is not done arbitrarily.  In 

fact, it must be done in a way such that the resulting design retains the properties of 

orthogonality and, in the case of CCDs, rotatability.  Additionally, we would want to 

ensure that we retain sufficient points to adequately detect curvature in the design space.   

In evaluating the trade-off between precision and cost, it would be beneficial to 

have an idea as to how much improvement in precision increased replication will yield 

before we commit to incurring the cost.  Two questions arise from this: what level of 

precision is desired and how many replications are required to attain it?  If we specify a 

target range for precision (or variability about the mean), we can use Monte Carlo 

simulation to aid in determining the number of replications required.  Likewise, we can 

use simulation both to facilitate additional replications (at least in certain situations in 

which we can be reasonably assured of the distributional fit of the data at a particular 
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design point), as well as to better understand the precision of the generated solutions in 

terms of the process variability. 

Within the field of simulation, Monte Carlo methods comprise a class of 

computational algorithms that use repeated sampling to compute simulated results.  

Monte Carlo simulation is considered a sampling method because the inputs are 

randomly generated from probability distributions to simulate the process of sampling 

from an actual population.  Accordingly, it is important to choose a distribution for the 

inputs that most closely matches data already on hand, or best represents what is 

currently known about the process under examination.   

Once we have refitted the second-order model, we would again examine the 

quality of the fit and the validity of the least squares assumptions.  If these prove 

satisfactory, we can approve the model and proceed to optimization.  Otherwise, 

additional trade-offs should be considered in the other areas of emphasis. 

10.4.2.2  Emphasis on Precision in Modeling 

The circumstances leading to this particular avenue in the trade-off analysis could 

be twofold.  Either we have pursued increased precision through added replication and 

are still unsatisfied with the degree achieved through a second-order model, or we are 

satisfied that the number of replicates is sufficient but still require increased precision to 

correct a poor statistical fit.  In response to either case, this area of emphasis examines the 

use of higher-order fitted response surface designs for the mean, standard deviation.   

All of the models and extensions referenced in Section 10.2 are based on second-

order fitting functions for modeling a response variable of interest. While second-order 
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functions are useful in finding optimal solutions in the presence of curvature for most 

processes, there are some emerging fields in the contemporary engineering and science 

environment, such as nano science and molecular biometrics, where significantly 

elevated levels of precision require alternative estimation methods.  Goethals and Cho 

(2011) addressed this need, incorporating higher-order polynomial response surface 

methods combined with a desirability function approach to achieve higher precision in 

multi-response optimization problems.  Rather than creating higher-order polynomial 

models simply by adding terms, their proposed method searches for the best combination 

of terms based upon the results of various screening criteria.  In some cases, the number 

of model parameters that most appropriately estimates the true response may be less than 

or equal to the number of terms in the second-order model.  By incorporating screening 

tests to espy potential issues in using higher-order terms along with a procedure using 

multiple criteria for model selection, they demonstrated increased assurance that 

increased precision with minimal bias will result.   

Using the mean response vector ,y the general form of the estimator for the mean 

with p regression coefficients or p–1 predictors may be written in terms of a design 

matrix X as: 

0 11 1, 1

1 21 2, 1

1 1 , 1

1
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    (10.8) 

Using the standard deviation response vector s, we apply the same procedures to develop 

a higher-order fitted response surface design for the standard deviation.    
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ˆˆ ( ) = σx Xβσ , where -1ˆ ( )=σβ X'X X's                                       (10.9) 

We may use the hat matrix H with each of the fitted response surface designs to facilitate 

the identification of influential observations in the data as a result of their location within 

the factor space.  Recognizing that the procedures are the same for both response 

functions, the mean response is used to demonstrate: 

1ˆˆ ( ) ( ' ) '−= = =µx Xβ X X X X y Hyµ ,                                     (10.10) 

where 1( ' ) '−=H X X X X  is an N x N matrix.  Additionally, denoting the vector of residual 

terms for the response surface function as e, we can express this vector as a linear 

combination of the response vector as follows: 

ˆ( ) ( )= − = − = −e y x y Hy I H yµ ,                                       (10.11) 

where I  is the identity matrix.  Furthermore, since the idempotent properties of the hat 

matrix show that (I−H)(I−H) = I−H, we can express the error sum of squares (SSE) in 

the analysis of variance for a given response surface model as ' '( )  SSE= = −e e y I H y  

with N−p degrees of freedom.  By incorporating a unity matrix J and using the fact that 

ˆ ˆ( ) ' ' ( ) ' ( ) ' ( ) '= = =µ µβ X Xβ Hy y H , it can also be shown that the regression sum of squares 

(SSR) and the total sums of squares (SSTO) may be written as:   

1 1ˆ( ) ' ' ( ) ' ( ) 'SSR
N N

    = − = −    
    

µβ X y y Jy y H J y                                       (10.12) 

          
1 1

( ) '( ) ( ) ' ( ) 'SSTO SSE SSR
N N

      = + = − + − = −      
      

y I H y y H J y y I J y  

each with p−1 and N−1 degrees of freedom, respectively. 
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For the resulting response surface design, we retain only those terms that 

contribute to the regression for further analysis.  In order to determine the proper subset 

of terms and compare the results of the estimation, we can examine an array of evaluation 

criteria.  For our purposes, we use five well-established criteria to evaluate the model 

with p parameters.  These include the coefficient of determination Rp
2, the adjusted 

coefficient of determination Ra,p
2, the prediction sum of squares PRESSp, the mean square 

error MSEp, and the F-test for lack of fit.  Table 10.3 below summarizes these criteria, 

several of which were addressed previously in Chapter 9. 

 
Table 10.3.  Evaluation Criteria for the Model with p Parameters. 

Measure (with Formula) Description / Interpretation 

2 p
p

SSR
R

SSTO
=  

High values are sought.  Although the values can never decrease as 
predictor variables are added to the model, it helps to identify the point 
where adding more variables produces no meaningful effect. 

2
,

1
1

p
a p

SSEN
R

N v SSTO

− 
= −  − 

 
High values are sought.  In contrast to the R2 measure above, this 
measure is not influenced by an increase in the number of predictor 
variables.   

2

1 1

N
j

p
jjj

e
PRESS

h=

 
=  

 − 
∑  

Low values are sought.  Models that have smaller PRESSp values 
contain less overall prediction error in their estimation.   

p
p

SSE
MSE

N p
=

−
 Low values are sought. Measures the average of the square of the 

error for a model with p parameters.   

* MSLF
F

MSPE
=  

Tests whether the multiple regression model is an appropriate 
response surface.  If F* < F(1-α;c-p, N-c) then conclude that the 
model is a good fit.  Otherwise, the model is deemed a poor fit. 

 

Potential issues in using higher-order polynomials, such as multi-collinearity and 

the increased presence of outliers within a given factor space, have tended to steer 

researchers away from investigating the use of higher-order designs.  Thus, once we 

identify a suitable model based upon the results of the evaluation criteria, we must 

perform two screening tests.  The first determines if multi-collinearity exists between the 
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predictor variables as a result of using a higher-order model.  The variance inflation 

factor (VIF) is a frequently used measure for this.  When considering standardized 

estimated regression coefficients, it can be shown that the vth diagonal element of the 

covariance matrix of regression coefficients, for v = 1, 2, ..., p−1, is the variance inflation 

factor given by (VIF)v = 1/(1−Rv
2), where Rv

2 is the coefficient of multiple determination, 

obtained when one predictor variable is regressed against the other p−2 variables in the 

model.   If no linear relation exists between a predictor variable and the other variables in 

the model, then Rv
2 = 0 and (VIF)v = 1; if the predictor variable has a perfect linear 

association with the other variables in the model, then Rv
2 = 1, and (VIF)v is unbounded.  

Generally, it is accepted that if several VIF values are greater than 10 for a given model, 

then multi-collinearity exists between the predictor variables and presents an issue.  

Should this occur, we may remove one or more of the correlated predictor variables, use 

a centering technique, or employ remedial measures such as ridge regression.  

The second screening test determines if influential observations exist within the 

factor space.  In particular, we examine the hat matrix H for the selected model with p 

parameters to identify if certain X observations acting as outliers possess excessive 

leverage for influencing the response surface functions.  Here, larger values for the 

diagonal elements of the hat matrix, hjj, indicate a smaller difference between the fitted 

value and the observed value.  Leverage values greater than 2p/N, however, point to the 

presence of X outliers and merit the use of robust regression procedures.  Once we 

implement remedial measures to lessen undue influence in the factor space, the approved 

model is ready for optimization. 
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10.4.2.3  Emphasis on Removing Influences of Variability 

Increasing replication and employing higher-order response surfaces to achieve 

greater precision likely will induce reduced variability, as well.  However, it may happen 

that reducing influences of variability is a primary concern.  As such, approaches to 

eliminating variability, such as those discussed in Chapter 9, are considered as a unique 

area of emphasis by which to obtain more precise results, particularly in situations in 

which inherent process variability is high and/or error variances are shown to be non-

constant.   

As discussed in Chapter 8, high variability can be assessed based on the mean and 

standard deviation of the responses.  If one or more responses falls 3σ or farther from the 

mean response, the process is classified as highly variable.  Non-constant variance is 

typically assessed in several ways.  From a graphical standpoint, as has been illustrated in 

several chapters previously, plotting the residuals against the fitted line or plotting the 

squared residuals against each of the separate factors will aid in identifying 

inconsistencies in the residual variances.  More objective techniques such as the Breusch-

Pagan test provide a way to evaluate the error variance for constancy using hypothesis 

testing and test statistics.  This test assumes independence and normality among the 

residuals, but further assumes a relationship between the error variance 2jσ and the level 

of X that, using the second-order model at Equation (10.8), takes the form 

           
2 ˆloge j = µXβσ                                                 (10.13) 
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which implies that the error variance fluctuates up or down with X, depending upon the 

sign of the associated coefficients in ˆ
µβ .  Since constant error variance corresponds to 

the instance in which each of the coefficients contained in ̂
µβ equal 0, we establish the 

following hypothesis test for evaluation: 

0 1 2 1

1

H : 0

H :  not all 0
p

v

β β β

β
−= = = =

=

L

 

The test statistic used to evaluate the hypothesis test consists of 

2*
2

2BP

SSR SSE

Nm
 Χ = ÷ 
 

                                   (10.14) 

in which Nm denotes the total number of experimental observations and we obtain the 

regression sum of squares (SSR*) by regressing the squared residuals, 2
je , against X and 

the error sum of squares (SSE) by regressing the mean response on X.  Comparing this 

statistic to the chi-square distribution with ϕ degrees of freedom (where ϕ = the number 

of predictor variables in the model) the decision rule for a significance level of α=0.05 is 

as follows: 

2 2
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In processes with inherently high variability, the assumption of constant variance in the 

residuals would most likely not hold and would thereby necessitate the use of remedial 

measures.   

Chapter 9 provided considerable detail regarding approaches for dealing with 

high-variability conditions, and so those particulars will not be repeated here.  As 
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discussed, investigators traditionally invoke one of two basic approaches to obtaining 

improved estimators in situations involving heteroscedastic error variances: 

transformation of the response variable, Y, to equalize the error variation across all 

predictor variables, or using weighted least squares (WLS) in the estimation process to 

account for unequal error deviations.  While either method may work well in a broad 

variety of applications, the WLS approach is most often selected in order to avoid the 

possibility of an inappropriate regression relationship which can result from 

transformations of Y.     

In addition to the WLS method, the coefficient of variation technique proposed in 

Chapter 9 is considered once again here for the purposes of examining the trade-offs 

between enhanced precision and the costs associated with achieving it.  An interesting 

distinction between the CV technique and the WLS/transformation approaches discussed 

above is that while the latter are invoked after the experiment has been conducted and 

fitted models have been estimated based on a pre-specified experimental framework, the 

CV technique is applied during the experimental phase.  Thus, the engineer is afforded a 

greater degree of flexibility in shaping experimental conditions to indentify and mitigate 

influential sources of variability early on.  Using this technique, the mean and standard 

deviation of the responses at each design point (presuming multiple replicates are 

obtained at each) are used to determine the CV by: 

j
j

j

s
CV

y
= , 
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which in turn is used to identify the most influential sources of variability.  The CV for a 

quality characteristic aims to describe the dispersion of the characteristic in a way that 

does not depend on its measurement unit. That is, it describes data variability in terms of 

the relative sizes of the squared residuals and outcome values; the higher the CV, the 

greater the dispersion in the response.  Conversely, the lower the CV, the smaller the 

residuals relative to the predicted value, suggesting a sufficient relationship exists 

between the estimated and true responses.   

As noted in Chapter 9, no definitive threshold exists for the CV that indicates 

elevated or high variability.  Instead, it will depend on and vary with the process being 

examined.  For the purposes set forth for this research, the CV is used to identify sources 

of variation that unduly influence the response.  The associated design points are 

removed from consideration, effectively scoping the design space, where after optimal 

design is then applied to rebalance the experiment in the most efficient way possible.   

The need to consider optimal design strategies typically arises either when certain 

conditions render the use of traditional experimental approaches inappropriate or non-

standard experimental regions exist.  Such conditions include instances where time, 

resource limitations, or some physical restrictions constrain the experimental region.   

This particular situation, however, involves a trade-off analysis between the number of 

design points evaluated and increased replication to eliminate sources of variability and 

thereby achieve improved precision in modeling.  Hence, we essentially are imposing 

constraints on the design space in the interest of placing greater emphasis on replication.   

While an assortment of optimal designs exists for consideration, the objective is not to 
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discuss or explore the full range of alternatives in this chapter.  Nevertheless, in the 

interests of not confining the methodology to a singular design approach, D-, A-, and G-

optimal designs are included in the discussion later in this chapter.   

In some ways, as shown in Figure (10.3), this component in the methodology, 

implies that we have already performed some experimentation and determined 1) that the 

assumptions of moderate to low variability and homoscedasticity fails to hold and, 

consequently, 2) that the estimated model is a poor fit.  Thus, invoking this particular 

approach further implies that we would revisit the experiment in order to redefine the 

experimental parameters and associated design space to reduce variability and achieve 

greater precision.  Experimental designs, such as those heretofore described, are a viable 

alternative for a variety of situations in which standard experimental approaches do not 

apply or cannot achieve adequate precision.  Generally, they provide an efficient and 

cost-effective way to select design points for experimentation.  We should note, however, 

that the use of optimal designs should not serve as a direct substitute for standard 

experimental approaches, but rather as an alternative approach when standard methods 

are inappropriate or otherwise insufficient.   

The final decision as to which optimal design to use may become subjective based 

on the preferences of the investigator and the computational complexities involved.  

Whatever the approach selected, efficiency ratios can then be used as a tool in the final 

selection of a particular design.   
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10.4.2.4  Final Determination of Approved Models 

It is important to note that the areas of emphasis described may be considered 

singularly or by way of some combination.  That is, an initial emphasis on replication 

does not necessarily preclude the inclusion of higher order response surfaces to further 

enhance precision, or vice versa, as the numerical examples in Section 10.5 will 

demonstrate.  Regardless of the trade-off approach used, the three questions posed in 

Phase I would need to be reevaluated to ensure assumptions hold and that the generated 

models procure a sufficient statistical fit.  If they do, then they are ready for optimization.  

If they do not, then additional remedial measures may be needed.   

10.4.3  Phase III – Optimization 

Using the design of experiments-based methodology described in Phase I and the 

trade-off analysis described Phase II, the approved model may be optimized using the 

scheme of choice discussed in the literature review to determine optimal process settings. 

10.5  Numerical Examples 

Using the methodology outlined in Section 2, the compromise or trade-off of 

various designs in solving RPD problems is investigated in this section.  The first 

example revisits the printing press study discussed previously.  Thereafter, a more recent 

experiment is investigated involving the manufacture of semiconductor wafers.  As 

Figure 10.5 shows below, each of the processes associated with these examples qualified 

as a highly variable process based on the definition provided in Section 10.4.1.  While 

these graphs only address the variability in terms of ±3σ from the mean, the issue of non-

constant variance in each will be addressed later. 
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                                            (a)                                             (b) 
Figure 10.5. Variability observed in the printing press (a) and semiconductor (b) studies. 

 
In each case, a thorough sensitivity analysis is performed to facilitate the selection of an 

alternative design; several techniques are implemented to achieve higher precision 

without significantly altering the general framework of the experiment.  Monte Carlo 

simulation, developed using a combination of MS Excel and Mathematica [49], is used to 

compare and contrast the solution space for each example. In short, the regressions are 

performed for each iteration in excel, using the Excel-based random number generator to 

simulate observations from a normal distribution based upon the mean and standard 

deviation for each design point in Table 10.1.  Thereafter, the generated regression 

functions for the mean and standard deviation are pulled into Mathematica using a built-

in feature that allows an interface with Excel, and the optimization schemes are executed 

in each iteration and the results recorded. 

10.5.1  The Printing Press Study Revisited   

As previously documented, numerous researchers have used the printing press 

study to advance a variety of extensions to RPD optimization models and techniques.  

While the focus of research effort has primarily been given to suggesting different 

algorithms or models for achieving optimality, this investigation seeks alternative 

y
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constructs of the design matrix X in the early phases of experimentation.  In the following 

subsections, we discuss several variations of the experimental design in the context of the 

three areas of emphasis described in Section 10.4. 

10.5.1.1  Emphasis on Replication 

The general full factorial experiment in VM (1990) captures all possible 

combinations of the three factors at three distinct levels.  With three replications at each 

design point, the experiment evaluates a total of 81 observations.  However, as previously 

shown in Figures 10.1 and 10.2, using simulation to repeat the experiment 500 times 

generates optimal solutions that are dispersed throughout all four quadrants of the factor 

space.  It is noteworthy that the objective function values also range from 1.75 ≤ MSE ≤ 

4790.67 with a mean of 985.75.  To reduce the error incurred by performing only three 

replications at each design point, we can make several modifications.  As it is still 

possible to detect curvature in the response using the center, factorial, and face points, 

one modification is to eliminate the edge points and perform the experiment with six 

replications.  Alternatively, we can eliminate the face and edge points and perform nine 

replications at each of the design points.  These modifications in the experimental design 

of the factor space are shown in Figures 10.6 (b) and (c), as they compare to the original 

design (a). 

With added emphasis on replication, we would expect greater accuracy in finding 

the true position of the optima relative to the factor space.  In each of the alternative 

designs, we retain the principle of orthogonality as it relates to the linear and interaction 

terms within the information matrixX'X .  While a trade-off is established between the 
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number of design point evaluations and the number of replications at each design point, 

the number of total observations remains relatively stable (81-90).   

 
  

                         (a)                                           (b)                                         (c) 
Figure 10.6. Original Design (a), versus Alternative Design 1 (b), and Alternative Design 

2 (c) (corner and edge points (•), face points (οοοο), and center point (C)). 

 
Using the same full second-order model (p = 10) established for the original 

design, alternative design 1 examines doubling the number of replications and reducing 

the design point evaluations to the corner, face, and center points.  Using Monte Carlo 

simulation, 500 iterations of the modified experiment are performed, using a random 

number generator to create six random observations that follow the mean and standard 

deviation specified for each design point in Table 10.1.  Thus, each iterate consists of 15 

x 6=90 experimental runs compared to the original 81.  At a cost of nine additional runs 

per iterate, the solution space appears to confine itself primarily to the (+, +, −) quadrant 

within the expanded experimental region (see Figure 10.7).     

Increasing the amount of replication, while maintaining some degrees of freedom 

in the design of the regression models, requires us to seek reduced fitted functions.  

Vining and Myers (1990) and other researchers recognized the inefficiencies in the 

statistical fit of the mean and standard deviation for the printing press study; their  

N = 27, m = 3, p = 10 
(81 observations) 

N = 15, m = 6, p = 10 
(90 observations) 

N = 9, m = 9, p = Reduced 
(81 observations) 
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                      (a)                       (b)                             (c)                            (d) 

Figure 10.7.  Identification of x*, Alternative Design 1, −4 ≤ Xi ≤ 4 (500 iterations). 

 
objective was to demonstrate the effectiveness of a particular optimization framework or 

algorithm in determining the optimal factor settings.   

An analysis of the full second order model for the mean indicates that the pure quadratic 

terms are insignificant with respect to the fit of the surface.  Furthermore, none of the 

terms pertaining to the standard deviation response are considered worthy of retaining; 

the variability of the observations reduces the effectiveness of ordinary least squares 

regression in estimating the measure.   

In order to implement alternative design 2, which seeks even greater emphasis on 

replication, the models for the mean and standard deviation are modified, retaining only 

the linear and interaction terms.  As demonstrated using the four criteria in Table 10.4, 

some additional precision is lost in terms of the predictive capability of each model.  

However, the trade-off is in ensuring a low deviation between the true response and the 

observed response obtained experimentally.  Without duplicating a design point and 

increasing N for the printing press study, a standard lack of fit test is not feasible for this 

example.  The results of the simulation using Alternative Design 2 are shown in Figure 

10.8. 
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Table 10. 4.  Model Comparison (Trade-off between Precision and Replication). 

Response Model N p Rp
2 (%) Ra,p

2 (%) PRESSp MSEp 

Mean 
Previous Research (2nd order) 27 10 92.7 88.8 337789 5794 

Reduced (2nd order) 9 7 91.8 64.6 2869038 29332 
Standard 
Deviation 

Previous Research (2nd order) 27 10 45.4 16.5 93691 1921 
Reduced (2nd order) 9 7 50.4 0.0 382458 4946 

 

 
                    (a)                         (b)                            (c)                             (d) 

Figure 10. 8.  Identification of x*, Alternative Design 2, −4 ≤ Xi ≤ 4 (500 iterations). 

 
10.5.1.2   Emphasis on Precision 

As noted, even when using the full second-order polynomial to model the mean 

and standard deviation, the statistical fit is not desirable.  To improve the fit of the 

estimate, we can apply higher-order polynomial functions.  In order to select an 

appropriate higher-order model, we must first perform several screening tests.  A design 

matrix is constructed with special attention given to preventing the aliasing of terms, so 

that the columns of X remain linearly independent.  Variance inflation factors are 

calculated for each of the predictor variables to ensure no multi-collinearity exists in a 

particular model.  The diagonals of the hat matrix H are also analyzed to prevent values 

that negatively influence the regression function from exerting excessive leverage.  A 

“best subsets” analysis using the resulting terms as candidates then yields a fourth-order 

and third-order model for the mean and standard deviation, respectively: 

    1 2 3 1 2 1 3 2 3
2 2 2 2
2 1 2 1 2 3 1 2

ˆ( ) 333.40 171.40 162.67 155.63 75.21 85.71 49.71
69.07 76.37 82.79 42.04

X X X X X X X X X
X X X X X X X X

µ = + + + + + +
− − + +

x  
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    2 2
1 2 3 1 2 1 2 1 3 1 2 3

ˆ( ) 53.04 38.74 35.47 20.80 21.00 30.28 38.99 29.57X X X X X X X X X X X Xσ = + + + + − − +x  

With all VIF ≤ 5.00, and the diagonals of the hat matrix hjj ≤ 2p/N, we compare the 

higher-order polynomials to the full second-order models used by previous researchers 

(shown in Table 10.5).  The results reflect clear improvement in precision with the higher 

order model. 

Table 10.5.  Comparison of Models for the Mean and Standard Deviation. 

Response Model p Rp
2 (%) Ra,p

2 (%) PRESSp MSEp 

Mean 
Prev. Research (2nd order) 10 92.7 88.8 337789 5794 
Higher-Order (4th order) 11 99.6 98.5 0 871 

Standard  
Deviation 

Prev. Research (2nd order) 10 45.4 16.5 93691 1921 
Higher-Order (3rd order) 8 73.2 46.3 21882 1079 

 
 
With greater emphasis on precision in estimating each response, the models are used in 

conjunction with alternative design 1; the results of the Monte Carlo simulation are 

shown in Figure 10.9. 

 
                 (a)                        (b)                             (c)                              (d) 

Figure 10.9.  Identification of x*, Higher-Order with Alternative Design 1, −4 ≤ Xi ≤ 4 
(500 iterations). 

 
In contrast to the same design used previously in 3.1.1, the higher-order design appears to 

further refine the optimal solution space in the (+, +, −) quadrant. 
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10.5.1.3  Emphasis on Removing Variability Influences 

Recall that RPD researchers examining this particular case study primarily sought 

improvements in the optimization scheme or numerical algorithm used to generate 

solutions.  Since least squares regression is the driving tool in acquiring response surface 

models for further analysis, it is implied that the residuals are uncorrelated and exhibit 

relatively constant variance.  An investigation of these assumptions for the printing press 

study, depicted in the residual plots in Figure 10.10, reveals evidence of non-constant 

variance.   

       
                                                       (a)                                                       (b) 

Figure 10.10.  Investigating residual variances in the (a) first-order (b) second-order 
models. 

 
To confirm the variability trends observed in the residual plots for both the first and 

second order models, we can apply the Breusch-Pagan hypothesis test.  In the first order 

model, the calculated statistic (1) tests H0: γ1 = γ2 = γ3 = 0 versus H1: Not all γ = 0, 

whereas in the second order model (2), the hypotheses are extended for p = 10 

parameters.   
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      (2) 
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Since 25.447 > χ2(.95, 3) = 7.81 and 25.720 > χ2(.95, 9) = 16.92 for the first and second-

order models, respectively, we conclude H1; that is, the error variance is not constant.  

The results of these tests suggest the need for remedial measures in the development of 

fitted functions for this example.   

To remove the influence of non-constant variance, we invoke a weighted least 

squares approach to develop second order models for both the mean and standard 

deviation.  This yields the following: 

            1 2 3 1 2 1 3
2 2 2

2 3 1 2 3

ˆ( ) 314.21 174.32 136.49 127.17 37.49 47.76
67.12 28.46 8.56 13.95

X X X X X X X
X X X X X

µ = + + + + +
+ + − −

x
 

            1 2 3 1 2 1 3 2 3
2 2 2
1 2 3

ˆ( ) 44.79 16.09 24.19 24.78 5.75 7.77 20.73
1.68 5.15 8.84

X X X X X X X X X
X X X

σ = + + + − + +
+ − +

x
 

The result, generated using ANOVA and shown in Table 10.6, is a considerable reduction 

in the error associated with the coefficients of these models. 

 
Table 10.6.  Comparison of OLS and WLS Estimates (Coefficient Error). 

Model s(b0) s(b1) s(b2) s(b3) s(b4) s(b5) s(b6) s(b7) s(b8) s(b9) 
Mean - OLS 38.72 17.92 17.92 17.92 21.95 21.95 21.95 31.04 31.04 31.04 
Mean - WLS 23.82 13.56 14.12 15.44 18.11 20.08 18.85 21.75 19.78 22.87 

Std Dev - OLS 22.31 10.33 10.33 10.33 12.65 12.65 12.65 17.89 17.89 17.89 
Std Dev - WLS 17.62 8.71 8.45 9.42 9.48 11.21 10.63 12.53 15.34 13.94 

  

Once again using alternative design 1 to run the simulation, a random seed is used to 

generate models based upon the weighted least squares approach.  With each iterate, the 

observations are randomized in accordance with the mean and standard deviation values 

in Table 10.1 and then WLS models are constructed.  When the experiment is repeated 
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500 times using the second order models, the result is the solution space shown in Figure 

10.11. 

 
                   (a)                        (b)                            (c)                            (d) 

Figure 10.11.  Identification of x*, Alternative Design 1 (WLS), −4 ≤ Xi ≤ 4  
(500 iterations). 

 
Although the results, in terms of the solution space shown in Figure 10.11, appear 

comparable to those previously discussed in Figure 10.7 from Section 10.5.1.1, they still 

are considerably better than those presented for the original study in Figure 10.2.   

10.5.2  Examining a Semiconductor Manufacturing Study   

 Another example, first introduced by Robinson et al. (2006) and recently revisited 

by Lee et al. (2011) and Anderson and Whitcomb (2008), is a manufacturing study 

involving the fabrication of wafers in a semiconductor etching process.  As wafers 

produced over time vary highly in terms of resistivity (Y), the objective of the experiment 

was to determine the factor settings that support achieving a mean resistivity of 350 with 

little to no variation.  The experiment examined three control factors known to influence 

Y, specifically the gas flow rate (X1), the temperature (X2), and pressure (X3).  In order to 

develop models for the mean and standard deviation of resistivity, a replications-based 

experiment was performed using a central composite design with four center points.  
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Table 10.7 delineates the experimental framework, outlining the calculations for the 

mean and standard deviation at each design point. 

As observed in most RPD studies, suppose the experiment involves three 

replications at each design point.  The goal is to determine the optimal factor settings that 

minimize the estimated MSE described in Equation (10.2).  Using the calculations 

established in Table 10.7, a simulation is used once again to repeat the randomized 

collection of observations at each design point based upon the characteristic mean and 

standard deviation.  As in the previous example, the experimental region, x'x ≤ 3, 

established by previous researchers and used in the simulation proves to be binding.  

Figure 10.12 shows the result when the region is expanded to observe the entire solution 

space for the optimal factor settings. 

Table 10.7.  Experimental Design for the Semiconductor Manufacturing Study. 

 

 
Flow Rate 

Coded Units 
Temperature Pressure Mean 

Standard 
Deviation 

Run X1 X2 X3 y        s 

1 –1 –1 –1 263.986 107.424 
2 –1 –1 –1 390.029 96.107 
3 −1 –1 –1 205.776 66.990 
4 –1 –1 –1 292.526 110.058 
5 −1 −1 –1 290.104 141.334 
6 –1 −1 –1 302.320 147.236 
7 –1 –1 –1 164.656 80.455 
8 –1 –1 –1 160.369 82.632 
9 −1.6818 –0 –0 211.039 57.150 
10 1.6818 –0 –0 272.076 53.421 
11 –0 –1.6818 –0 293.782 68.930 
12 –0 1.6818 –0 147.133 39.404 
13 –0 –0 −1.6818 418.555 221.964 
14 –0 –0 1.6818 273.064 193.890 
15 –0 –0 –0 272.013 62.773 
16 –0 –0 –0 236.457 81.860 
17 –0 –0 –0 250.016 73.985 
18 –0 –0 –0 315.559 99.106 
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                (a)                      (b)                          (c)                           (d) 

Figure 10.12.  Identification of x*, 3 replications with original design, x'x ≤ 25           
(500 iterations). 

 
The variability associated with the design points for the semiconductor 

manufacturing study is extremely high.  Whereas the design points in the printing press 

study had a range in the coefficient of variation of 0 ≤ CV ≤ 0.61 with a mean of CV = 

0.18, the same statistics for this example are 0.20 ≤ CV ≤ 0.71 with a mean of CV = 

0.37.  In both cases, the median and mean CVs are close in approximation; the presence 

of outliers in the upper quantile of design points is impacting the ability to generate 

consistency in solutions with a small number of replications.  In the semiconductor study, 

we note that the most significant outlier with respect to CV occurs when X3 (i.e., the 

etching pressure) is at its highest level (1.6818).  For a visual comparison, Figure 10.13 

presents the CV  box and whisker plots with the median highlighted using a dashed line.   

 
 

Figure 10.13.  Box and whisker plots for CV - printing press and semiconductor studies. 

w/ (0, 0, 1.6818) w/o (0, 0, 1.6818) 

CV 
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 Given the degree of variability in the solutions and the fact that N = 18 for this 

example, we would most likely gain very little by reducing the design for the sake of 

additional replications.  The benefit of rotatability in using the central composite design is 

a desirable property that should be retained if possible.  Simply resorting to the use of 

higher order models in estimating the mean and standard deviation can also be 

problematic.  Although the lack of fit test indicates some precision gained in estimating 

each parameter, it is not substantial (see Table 10.8).  Thus, the emphasis for this 

example may be toward combining various techniques to reduce or remove the negative 

influence of data variability. 

Table 10.8.  Comparison of models for the mean and standard deviation. 

Response Model 
N p 

Rp
2 

(%) 
Ra,p

2 

(%) PRESSp MSEp 
Lack of Fit Test 

Statistic (P-value) 

Mean 
Prev. Research (2nd ord.) 18 10 94.0 87.3 18962.7 655.0 F = 0.27 (0.90) 
Higher-Order (3rd ord.) 18 10 94.3 87.9 21860.0 623.7 F = 0.23 (0.93) 

Standard 
 Deviation 

Prev. Research (2nd ord.) 18 10 93.6 86.3 16426.1 326.4 F = 1.64 (0.36) 
Higher-Order (3rd ord.) 18 12 97.7 93.5 5837.0 154.8 F = 0.33 (0.81) 

 
 

More importantly, like the printing press study examined in Section 3.1, the 

residuals for the semiconductor study parameters also exhibit non-constant variance for 

the full second-order model when the Breusch-Pagan hypothesis test is performed.  In 

fact, using the data in Table 10.7 with three replications, it is not until we consider a 

reduced model (p = 9) that the assumption of constant variance holds.  For the first order 

model (1) and the second order model (2) where the pure quadratic term X3
2 is removed, 

we have: 

(1)
2

2 9.658e+08 494666
5.75

2 54BPχ  = ÷ = 
 

      (2)
2

2 1.084e+09 407619
9.51

2 54BPχ  = ÷ = 
 

, 



 
 

324 

where, with 5.75 < χ2(.95, 3) = 7.81 and 9.51 < χ2(.95, 8) = 15.51, H0 is concluded for 

both models; that is, the error variance is constant.  To remove the influence of additional 

variability inherent within the data, an alternative technique is to consider the 

methodology described in Section 10.4, whereby we perform a screening test for CV to 

identify and remove specific design points for consideration.  We then use optimal 

designs to facilitate minimizing the variability of the coefficients in the regression model. 

If we render the design point (0, 0, 1.6818) infeasible, is an irregularly-shaped 

experimental region results.  Using the remaining seventeen candidate design points and 

the selection of the second order model with p = 9 parameters, we examine various 

experimental designs with N = 18, m = 3, and p = 9 (see Figure 10.14).   

 

 
                                (a)                                     (b)                                    (c) 

Figure 10.14.  (a) Alternative Design 1, (b) Alternative Design 2, and (c) Alternative 
Design 3 Infeasible Point (Shaded), Single Run Design Point (οοοο), Double Run Design 

Point (•). 

 
As shown in Table 10.9, the D, A, and G criteria support selecting the same design for the 

semiconductor manufacturing study.   
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Table 10.9.  Criteria information for Alternative Designs 1, 2, and 3. 

 D-Criterion A-Criterion G-Criterion 

Design Maximize | ( ) |X'X  Minimize 1( )tr −X'X  Maximize Avg hjj/hjj (max) 

1 9.537e+09 1.15868 0.80575 
2 8.608e+09 1.21221 0.75300 
3 6.977e+09 1.23670 0.74791 

 
Using the various optimality criteria, the relative efficiency of designs 2 and 3 are 

computed and evaluated against design 1 in Table 10.10.  While the efficiencies are close 

in approximation, designs 2 and 3 would have to be replicated more than once in order to 

achieve a confidence region for β̂ that is as small as that observed with design 1.   

 
Table 10.10.  Relative Efficiency of Designs 2 and 3 to Design 1. 

 Relative Efficiency (%) to Design 1 
Design D-Criterion A-Criterion G-Criterion 

2 0.989 0.995 0.993 
3 0.966 0.993 0.992 

 

Table 10.11 depicts the optimal design − Design 1, along with the new run order 

and calculations for both the mean and standard deviation.  The observations for the new 

design points are generated using the Monte Carlo simulation technique at the mean and 

standard deviation previously defined.  Simulating the experiment 500 times yields the 

solution space shown in Figure 10.15.  Removing only one design point from the original 

experiment reduces the variability in the generated solutions considerably (comparison 

with Figure 10.14).  However, the solution space is likely not refined enough to provide 

consistent results when the experiment is repeated.  Hence, it may be only at the cost of 

adding replications that a final result is deemed acceptable. 
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Table 10.11.  Optimal design for resistivity in semiconductor study. 

 
Flow Rate 

Coded Units 
Temperature Pressure Mean 

Standard 
Deviation 

Run Order X1 X2 X3 y       s 

9 –1.6818 −0 −0 263.986 107.424 
11 −0 –1.6818 −0 390.029 96.107 
10 1.6818 −0 −0 205.776 66.990 
12 −0 1.6818 −0 292.526 110.058 
1 −1 −1 −1 290.104 141.334 
2 −1 −1 −1 302.320 147.236 
3 –1 −1 −1 164.656 80.455 
4 −1 −1 −1 160.369 82.632 
14 −0 −0 −0 211.039 57.150 
5 −1 −1 −1 272.076 53.421 
8 −1 −1 −1 293.782 68.930 
6 −1 −1 −1 147.133 39.404 
7 −1 −1 −1 418.555 221.964 
13 −0 −0 −1.6818 309.740 157.628 
5 −1 −1 −1 248.210 163.293 
8 −1 −1 −1 168.057 63.470 
6 −1 −1 −1 143.945 57.912 
7 −1 −1 −1 272.013 62.773 

 

 

                          (a)                       (b)                         (c)                          (d)     
Figure 10.15.  Identification of x*, 3 reps with Alternative Design 1, x'x  ≤ 25             

(500 iterations). 

 
10.5.3   Summary of Findings   

For processes exhibiting elevated degrees of variability, several trade-offs may 

exist that will allow experimenters to evaluate the benefits of replication or precision 

against costs.  Despite efforts to increase precision in model formulation or reduce the 

design points for the sake of adding replications, the degree of process variability may 
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still necessitate additional measures.  In Section 10.5.1.3, a weighted least squares 

approach was used to allocate less weight to those observations acting as outliers.  In 

Section 10.5.2, a new technique was applied using the coefficient of variation as a 

screening mechanism to completely remove the influence of outlier design points.  The 

research findings for these examples are discussed in (i)-(iii) below: 

(i)  Suppose the cost and time to perform the printing press experimental study in 

Section 10.5.1 are not an issue, and so we can maximize the number of replications using 

the full set of design points.  Figure 10.16 portrays the solution space for such a case, 

wherein we perform 20 replications at each design point.  A weighted least squares 

approach is used to remove the influence of heteroscedasticity and formulate a higher 

order model for both the mean and standard deviation.  Although this output is not 

practical in terms of the cost to conduct the experiment, it represents the "best case" 

solution space in terms of precision for the given data set.    

 
                    (a)                         (b)                              (c)                             (d)     

Figure 10.16.  Identification of x*, 20 reps with original design (WLS), x'x  ≤ 25         
(500 iterations). 

 
Comparing the results of Section 10.5.1 with Figure 10.16, it is clear that any one of the 

alternative designs or techniques used (results in Figures 10.7- 10.11) is much closer to 

the "best case" scenario than the original attempt in Section 10.3.  It is worth noting that, 
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of the results in Section 10.5.1, only those in Figure 10.8 involve a combination of the 

approaches described in the trade-off analysis (reduced experimental framework with 

additional replication and higher order models).  This is interesting, as these results 

(Figure 10.8) most closely match those in the “best case” scenario above despite a slight 

alteration in the solution space configuration.  For this reason, a combined emphasis on 

replication and precision in modeling may provide the best estimation.   

The same procedure using Monte Carlo simulation can be used to compare the 

generation of solutions for the semiconductor manufacturing study in Section 10.5.2.  

Suppose we perform 20 replications at each design point, use the second order response 

surface design, and then implement the CV technique to remove the effects of non-

constant variance.  Figure 10.17 shows the "best case" for this example. 

 
                        (a)                       (b)                           (c)                           (d)     

Figure 10.17.  Identification of x*, 20 reps with original design (CV), x'x  ≤ 25           
(500 iterations). 

 
Again, at no additional cost to the experimenter, the model framework used to generate 

the solution space in Figure 10.15 is much closer to the "best case" solution space in 

Figure 10.17.   

(ii)   Section 10.3 included a comparison of solutions generated using four 

optimization schemes from the literature.  When the experiment was repeated many 
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times, the optimal solution varied widely among the different models.  If the variability of 

the data at each design point is stable a comparison of RPD optimization models can be 

effective.  But for processes with elevated degrees of variability, several remedial 

measures may be necessary before a valid comparison can be made.  Monte Carlo 

simulation is one technique that can be used to identify a potentially problematic set of 

experimental data.    

(iii)   When the intent is to utilize response surface methods and the assumption of 

constant variance is violated, weighted least squares regression is typically used as a 

remedial procedure.  This establishes a weight matrix that places greater weight on 

smaller residuals in establishing a fitted function.  This effectively discounts observations 

that result in higher residuals, thus minimizing their influence on the formulation of the 

regression model.  An alternative proposed technique that may relieve heteroscedasticity 

without weighting each of the design points is the CV technique outlined in Chapter 8 and 

applied once again in Section 10.5.2.  At no additional cost, a minimal number of 

variability-inducing design points are identified for exclusion and optimal designs are 

then used to select the appropriate experimental framework.  Any one of the primary 

optimal designs - D, A, and G, may be used in the final selection of the model that 

supports minimizing the variability of the regression coefficients.  

10.6  Concluding Remarks  

This chapter has examined RPD in highly variable processes, pointing out that, 

barring any consideration of the trade-offs involved, traditional approaches can lead to 

imprecise estimates that likely will yield imprecise and potentially suboptimal solutions.  
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To overcome this, the integration of a trade-off analysis into RPD approaches is proposed 

that can be implemented either singularly or multilaterally to obtain more precise 

estimators.  These, in turn, will facilitate determining the true optimal operating 

conditions.  Ultimately, the goal of most contemporary development efforts is to achieve 

high levels of precision at the lowest cost possible.  As manufacturers and decision 

makers seek improved methods for ensuring quality in resource-constrained 

environments, engineers must examine and present the trade-offs between precision and 

the associated costs in order to best support decision making.   While the analysis in this 

chapter contributes both to a broader and deeper understanding of the implications of 

various decisions in experimental design and optimization, the approaches discussed 

herein could very well be extended to consider other types of response surface estimators 

such as those discussed in Chapter 6, as well as other response surface design methods, 

such as goal programming, desirability function, or compromise programming. 
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CHAPTER ELEVEN 
 
 

CONCLUSION AND FUTURE STUDY 
 
 

The motivating factors for the research presented in this dissertation stemmed 

from several of the more recent reviews of the RPD literature, including Robinson et al. 

(2004), Murphy et al. (2005), and Hasenkamp et al. (2009).  A thematic shortcoming that 

permeates these reviews is that RPD research has largely focused on the development of 

new statistical tools and techniques, which has created gaps in knowledge and 

understanding and led to stagnation in practical application in industry.  In short, while 

this tool-based focus has spurred much significant advancement regarding the RPD 

framework, it remains unclear to many engineers and practitioners as to how and when 

these various tools should be applied.  Complicating this, nearly all of the available 

methods rely on a variety of assumptions about underlying process characteristics and 

conditions that often deviate from the realities observed in industrial settings.  Most 

notably, many methods fail to consider elevated degrees of variation and/or asymmetry 

present in a particular process, deferring instead to assumptions of moderate system 

variability and symmetry to facilitate the application of traditional statistical methods.  

This “disconnect” can lead to several problems.  First, it further clouds understanding 

among engineers as to which tools to use and when.   Second, if such realities are 

ignored, the derived estimates can be problematic and misleading and, once applied to 

optimization schemes, will likely result suboptimal solutions and dubious 

recommendations to decision makers. 
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 Hence, as noted in Chapter 1, the overarching objective of this research was to 

create quality models and refinements to existing approaches that achieve the best 

possible RPD solutions under realistic process conditions.  The deeper aims of this 

objective, however, were twofold.  The first was to facilitate the attainment of enhanced 

degrees of precision and accuracy than would otherwise be achieved by assuming away 

true process conditions.  The second was to provide engineers and decision makers 

greater awareness, improved guidelines, and flexibility in applying the best and most 

appropriate statistical tools and techniques to determine optimal process settings.   The 

research and results in Chapters 4-10 have served to achieve these aims.  In Chapter 4, a 

comprehensive analysis of the ways in which the normal probability plot can be used to 

support data and process analysis and understanding was presented.  Following an 

investigation of the impacts of variability measure selection under various degrees of 

process variation  in Chapter 5, the examination of inherent process conditions was 

expanded in Chapter 6 to deduce the impacts of both high-variability and asymmetry on 

the selection of tier-one estimators.  The work in Chapter 7 extended the conditions-based 

analysis to tier-two estimation in order to determine which estimation approaches 

performed best under an array of realistic process conditions.  Chapter 8examined the 

effects of dynamic variability in the context of multiple mixed-type quality 

characteristics, proposing a methodology that will allow for accurately predicting the 

location of the optimal process mean vector as it shifts in response to dynamic process 

variability.   In Chapter 9, a new technique was suggested as a means of removing 

sources of process, or system variability in order to achieve greater precision in the 
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optimal process settings.  Chapter 10 extended this even further by proposing the 

integration of a trade-off analysis that examines a variety of ways to achieve 

enhancements in precision, accuracy, and predictability against the associated costs as a 

means of providing engineers, manufacturers, and decision makers greater flexibility in 

the decision-making process. 

Ultimately, this research has focused on providing improved methodologies that 

will assist engineers in applying existing tools and techniques more effectively and in 

ways that more fully and accurately account for the realities observed in practice.  Thus, 

whether attempting to reduce process and/or product variation or searching for more 

effective approaches to minimize processing costs, the research methodologies offered 

through this dissertation may provide considerable benefit for engineers who apply them, 

manufacturers and decision makers who guide manufacturing priorities, and customers 

who have the ultimate stake in the end product. 

While the work presented in this dissertation should serve to bridge several gaps 

that currently exist in the RPD field, there are a number of areas that may (and should) be 

further explored.  Most notably, the preponderance of research heretofore discussed has 

focused on the univariate case - that is, on situations involving only one quality 

characteristic of interest.  Chapter 8 is the only exception.  However, most products are 

judged according to the simultaneous performance of multiple quality characteristics.  

Moreover, it is often the case that the various objectives for each of characteristics is at 

odds with the others, which adds to the complexity.  Such mixed-type multi-response 
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situations require attention, particularly in the context of high-variability and asymmetric 

processes.  

Studies examining the multi-response problem could examine the use of the 

multi-variate skew normal distribution to simultaneously capture/model disparate degrees 

of both variability and asymmetry associated with the various quality characteristics.  In 

short, the inclusion of a skewness vector would facilitate an even more realistic portrayal 

of the process response surface.  Likewise, the inclusion of a covariance matrix would 

enable engineers to more readily capture interactions between competing quality 

characteristics.   

The discussion regarding trade-offs could also be further examined in the context 

of manufacturing priorities using certain optimization approaches, such as goal 

programming.  Such efforts could only help to bridge the gap between academia and 

industry even further and provide engineers and manufacturers with even better 

guidelines, more flexible and realistic approaches to solving RPD problems, and 

ultimately greater confidence in the results and recommendations presented. 
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A:  Supporting Minitab Output for Chapter 5 
 
A.1 First-Order Regression Analysis: m, s, s2, ln(s) versus x1, x2  
  
Response Surface Regression: m versus x1, x2  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for m 
 
Term         Coef  SE Coef       T      P 
Constant  78.3259    1.744  44.912  0.000 
x1         0.1259    1.950   0.065  0.950 
x2         0.9279    1.950   0.476  0.649 
x1*x1     -3.9994    2.957  -1.353  0.218 
x2*x2      2.9206    2.957   0.988  0.356 
x1*x2     -4.0638    3.899  -1.042  0.332 
 
S = 3.89969    PRESS = 425.983 
R-Sq = 39.26%  R-Sq(pred) = 0.00%  R-Sq(adj) = 0.00 % 
 
 
Analysis of Variance for m 
 
Source          DF   Seq SS   Adj SS  Adj MS     F      P 
Regression       5   68.814   68.814  13.763  0.90  0.527 
  Linear         2    3.508    3.508   1.754  0.12  0.893 
  Square         2   48.782   48.782  24.391  1.60  0.267 
  Interaction    1   16.524   16.524  16.524  1.09  0.332 
Residual Error   7  106.453  106.453  15.208 
  Lack-of-Fit    3   46.796   46.796  15.599  1.05  0.464 
  Pure Error     4   59.658   59.658  14.914 
Total           12  175.267 
 
Estimated Regression Coefficients for m using data in uncoded units 
 
Term           Coef 
Constant    78.3259 
x1        0.0890259 
x2         0.656212 
x1*x1      -2.00033 
x2*x2       1.46072 
x1*x2      -2.03250 
 
  
Response Surface Regression: s versus x1, x2  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for s 
 
Term          Coef  SE Coef       T      P 
Constant   0.77399   0.1922   4.027  0.005 
x1        -0.05162   0.2149  -0.240  0.817 
x2        -0.43791   0.2149  -2.038  0.081 
x1*x1      0.70091   0.3259   2.151  0.069 
x2*x2      0.73091   0.3259   2.243  0.060 
x1*x2      0.75977   0.4296   1.768  0.120 
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S = 0.429769   PRESS = 5.06295 
R-Sq = 69.41%  R-Sq(pred) = 0.00%  R-Sq(adj) = 47.5 6% 
 
 
Analysis of Variance for s 
 
Source          DF  Seq SS  Adj SS  Adj MS     F      P 
Regression       5  2.9338  2.9338  0.5868  3.18  0 .082 
  Linear         2  0.7778  0.7778  0.3889  2.11  0 .192 
  Square         2  1.5784  1.5784  0.7892  4.27  0 .061 
  Interaction    1  0.5776  0.5776  0.5776  3.13  0 .120 
Residual Error   7  1.2929  1.2929  0.1847 
  Lack-of-Fit    3  0.5484  0.5484  0.1828  0.98  0 .485 
  Pure Error     4  0.7445  0.7445  0.1861 
Total           12  4.2267 
 
 
Estimated Regression Coefficients for s using data in uncoded units 
 
Term            Coef 
Constant    0.773988 
x1        -0.0365030 
x2         -0.309694 
x1*x1       0.350562 
x2*x2       0.365566 
x1*x2       0.380000 
 
  
Response Surface Regression: s2 versus x1, x2  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for s2 
 
Term         Coef  SE Coef       T      P 
Constant   0.7460   0.4364   1.709  0.131 
x1        -0.2565   0.4878  -0.526  0.615 
x2        -1.4128   0.4878  -2.896  0.023 
x1*x1      1.4550   0.7398   1.967  0.090 
x2*x2      1.9650   0.7398   2.656  0.033 
x1*x2      2.4643   0.9755   2.526  0.039 
 
S = 0.975763   PRESS = 35.4939 
R-Sq = 77.97%  R-Sq(pred) = 0.00%  R-Sq(adj) = 62.2 3% 
 
 
Analysis of Variance for s2 
 
Source          DF  Seq SS  Adj SS  Adj MS     F      P 
Regression       5  23.585  23.585  4.7170  4.95  0 .029 
  Linear         2   8.248   8.248  4.1240  4.33  0 .060 
  Square         2   9.260   9.260  4.6302  4.86  0 .047 
  Interaction    1   6.076   6.076  6.0762  6.38  0 .039 
Residual Error   7   6.665   6.665  0.9521 
  Lack-of-Fit    3   4.520   4.520  1.5067  2.81  0 .172 
  Pure Error     4   2.145   2.145  0.5362 
Total           12  30.250 
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Estimated Regression Coefficients for s2 using data  in uncoded units 
 
Term           Coef 
Constant   0.745970 
x1        -0.181375 
x2        -0.999133 
x1*x1      0.727740 
x2*x2      0.982817 
x1*x2       1.23250 
 
  
Response Surface Regression: lns versus x1, x2  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for lns 
 
Term          Coef  SE Coef       T      P 
Constant  -0.39401   0.2274  -1.733  0.127 
x1        -0.01870   0.2542  -0.074  0.943 
x2        -0.29562   0.2542  -1.163  0.283 
x1*x1      0.78016   0.3855   2.024  0.083 
x2*x2      0.69016   0.3855   1.790  0.117 
x1*x2      0.48485   0.5083   0.954  0.372 
 
 
S = 0.508441   PRESS = 4.57342 
R-Sq = 55.51%  R-Sq(pred) = 0.00%  R-Sq(adj) = 23.7 3% 
 
 
Analysis of Variance for lns 
 
Source          DF  Seq SS  Adj SS  Adj MS     F      P 
Regression       5  2.2578  2.2578  0.4516  1.75  0 .242 
  Linear         2  0.3510  0.3510  0.1755  0.68  0 .538 
  Square         2  1.6715  1.6715  0.8358  3.23  0 .101 
  Interaction    1  0.2352  0.2352  0.2352  0.91  0 .372 
Residual Error   7  1.8096  1.8096  0.2585 
  Lack-of-Fit    3  0.3147  0.3147  0.1049  0.28  0 .838 
  Pure Error     4  1.4949  1.4949  0.3737 
Total           12  4.0674 
 
 
Estimated Regression Coefficients for lns using dat a in uncoded units 
 
Term            Coef 
Constant   -0.394011 
x1        -0.0132270 
x2         -0.209067 
x1*x1       0.390196 
x2*x2       0.345183 
x1*x2       0.242500 
 

A.2 Second-Order Polynomial Analysis 
 
Regression Analysis: m versus x1, x2, x1x2, x11, x22  
 
The regression equation is 
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m = 78.3 + 0.09 x1 + 0.66 x2 - 2.03 x1x2 - 2.00 x11  + 1.46 x22 
 
 
Predictor    Coef  SE Coef      T      P    VIF 
Constant   78.326    1.744  44.91  0.000 
x1          0.089    1.379   0.06  0.950  1.000 
x2          0.656    1.379   0.48  0.649  1.000 
x1x2       -2.032    1.950  -1.04  0.332  1.000 
x11        -2.000    1.479  -1.35  0.218  1.017 
x22         1.461    1.479   0.99  0.356  1.017 
 
 
S = 3.89969   R-Sq = 39.3%   R-Sq(adj) = 0.0% 
 
PRESS = 425.983   R-Sq(pred) = 0.00% 
 
 
Analysis of Variance 
 
Source          DF      SS     MS     F      P 
Regression       5   68.81  13.76  0.90  0.527 
Residual Error   7  106.45  15.21 
Total           12  175.27 
 
 
Source  DF  Seq SS 
x1       1    0.06 
x2       1    3.44 
x1x2     1   16.52 
x11      1   33.95 
x22      1   14.84 
 
  
Best Subsets Regression: m versus x1, x2, x1x2, x11, x22  
 
Response is m 
                                            x 
                                            1 x x 
                       Mallows          x x x 1 2 
Vars  R-Sq  R-Sq(adj)       Cp       S  1 2 2 1 2 
   1  19.4       12.0      0.3  3.5843        X 
   2  28.8       14.6      1.2  3.5327      X X 
   3  37.3       16.3      2.2  3.4954      X X X 
   4  39.2        8.8      4.0  3.6489    X X X X 
   5  39.3        0.0      6.0  3.8997  X X X X X 
 
  
Regression Analysis: s versus x1, x2, x1x2, x11, x22  
 
The regression equation is 
s = 0.774 - 0.037 x1 - 0.310 x2 + 0.380 x1x2 + 0.35 1 x11 + 0.366 x22 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    0.7740   0.1922   4.03  0.005 
x1         -0.0365   0.1520  -0.24  0.817  1.000 
x2         -0.3097   0.1520  -2.04  0.081  1.000 
x1x2        0.3800   0.2149   1.77  0.120  1.000 
x11         0.3506   0.1630   2.15  0.069  1.017 
x22         0.3656   0.1630   2.24  0.060  1.017 
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S = 0.429769   R-Sq = 69.4%   R-Sq(adj) = 47.6% 
 
PRESS = 5.06295   R-Sq(pred) = 0.00% 
 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       5  2.9338  0.5868  3.18  0.082 
Residual Error   7  1.2929  0.1847 
Total           12  4.2267 
 
 
Source  DF  Seq SS 
x1       1  0.0107 
x2       1  0.7672 
x1x2     1  0.5776 
x11      1  0.6491 
x22      1  0.9293 
 
  
Best Subsets Regression: s versus x1, x2, x1x2, x11, x22  
 
Response is s 
                                             x 
                                             1 x x 
                       Mallows           x x x 1 2 
Vars  R-Sq  R-Sq(adj)       Cp        S  1 2 2 1 2 
   1  18.2       10.7      9.7  0.56081    X 
   2  37.3       24.8      7.3  0.51462        X X 
   3  55.5       40.7      5.2  0.45719    X   X X 
   4  69.2       53.7      4.1  0.40367    X X X X 
   5  69.4       47.6      6.0  0.42977  X X X X X 
 
  
Regression Analysis: s2 versus x1, x2, x1x2, x11, x22  
 
The regression equation is 
s2 = 0.746 - 0.181 x1 - 0.999 x2 + 1.23 x1x2 + 0.72 8 x11 + 0.983 x22 
 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    0.7460   0.4364   1.71  0.131 
x1         -0.1814   0.3450  -0.53  0.615  1.000 
x2         -0.9991   0.3450  -2.90  0.023  1.000 
x1x2        1.2325   0.4879   2.53  0.039  1.000 
x11         0.7277   0.3700   1.97  0.090  1.017 
x22         0.9828   0.3700   2.66  0.033  1.017 
 
 
S = 0.975763   R-Sq = 78.0%   R-Sq(adj) = 62.2% 
 
PRESS = 35.4939   R-Sq(pred) = 0.00% 
 
 
Analysis of Variance 
 



 
 

341 

Source          DF       SS      MS     F      P 
Regression       5  23.5848  4.7170  4.95  0.029 
Residual Error   7   6.6648  0.9521 
Total           12  30.2496 
 
 
Source  DF  Seq SS 
x1       1  0.2631 
x2       1  7.9849 
x1x2     1  6.0762 
x11      1  2.5439 
x22      1  6.7166 
 
  
Best Subsets Regression: s2 versus x1, x2, x1x2, x11, x22  
 
Response is s2 
                                             x 
                                             1 x x 
                       Mallows           x x x 1 2 
Vars  R-Sq  R-Sq(adj)       Cp        S  1 2 2 1 2 
   1  26.4       19.7     14.4   1.4227    X 
   2  46.5       35.8     10.0   1.2723    X X 
   3  64.9       53.2      6.1   1.0858    X X   X 
   4  77.1       65.6      4.3  0.93059    X X X X 
   5  78.0       62.2      6.0  0.97576  X X X X X 
 
  
Regression Analysis: lns versus x1, x2, x1x2, x11, x22  
 
The regression equation is 
lns = - 0.394 - 0.013 x1 - 0.209 x2 + 0.243 x1x2 + 0.390 x11 + 0.345 x22 
 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant   -0.3940   0.2274  -1.73  0.127 
x1         -0.0132   0.1798  -0.07  0.943  1.000 
x2         -0.2091   0.1798  -1.16  0.283  1.000 
x1x2        0.2425   0.2542   0.95  0.372  1.000 
x11         0.3902   0.1928   2.02  0.083  1.017 
x22         0.3452   0.1928   1.79  0.117  1.017 
 
 
S = 0.508441   R-Sq = 55.5%   R-Sq(adj) = 23.7% 
 
PRESS = 4.57342   R-Sq(pred) = 0.00% 
 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       5  2.2578  0.4516  1.75  0.242 
Residual Error   7  1.8096  0.2585 
Total           12  4.0674 
 
Source  DF  Seq SS 
x1       1  0.0014 
x2       1  0.3496 
x1x2     1  0.2352 
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x11      1  0.8430 
x22      1  0.8285 

 
A.3 Higher-Order Polynomial Analysis 
 
Regression Analysis: m versus x1, x2, ...  
 
The regression equation is 
m = 78.3 + 1.82 x1 + 2.25 x2 - 2.03 x1x2 - 2.29 x11  + 1.17 x22 - 3.18 x11x2 
    - 3.46 x1x22 + 1.14 x11x22 
 
 
Predictor    Coef  SE Coef      T      P    VIF 
Constant   78.326    1.727  45.35  0.000 
x1          1.821    1.931   0.94  0.399  2.000 
x2          2.245    1.931   1.16  0.310  2.000 
x1x2       -2.032    1.931  -1.05  0.352  1.000 
x11        -2.286    1.616  -1.41  0.230  1.239 
x22         1.175    1.616   0.73  0.507  1.239 
x11x2      -3.178    2.731  -1.16  0.309  2.000 
x1x22      -3.464    2.731  -1.27  0.273  2.000 
x11x22      1.143    2.731   0.42  0.697  1.385 
 
 
S = 3.86191   R-Sq = 66.0%   R-Sq(adj) = 0.0% 
 
PRESS = *   R-Sq(pred) = *% 
 
 
Analysis of Variance 
 
Source          DF      SS     MS     F      P 
Regression       8  115.61  14.45  0.97  0.553 
Residual Error   4   59.66  14.91 
Total           12  175.27 
 
 
Source  DF  Seq SS 
x1       1    0.06 
x2       1    3.44 
x1x2     1   16.52 
x11      1   33.95 
x22      1   14.84 
x11x2    1   20.20 
x1x22    1   23.99 
x11x22   1    2.61 
 
 
Unusual Observations 
 
                                               St 
Obs     x1      m    Fit  SE Fit  Residual  Resid 
  1  -1.00  78.90  78.90    3.86      0.00      * X  
  2   1.00  79.68  79.68    3.86      0.00      * X  
  3  -1.00  81.10  81.10    3.86     -0.00      * X  
  4   1.00  73.75  73.75    3.86     -0.00      * X  
  5  -1.41  71.18  71.18    3.86      0.00      * X  
  6   1.41  76.33  76.33    3.86     -0.00      * X  
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  7   0.00  77.50  77.50    3.86      0.00      * X  
  8   0.00  83.85  83.85    3.86      0.00      * X  
 
X denotes an observation whose X value gives it lar ge leverage. 
 
  
Regression Analysis: s versus x1, x2, ...  
 
The regression equation is 
s = 0.774 + 0.152 x1 - 0.484 x2 + 0.380 x1x2 + 0.32 6 x11 + 0.341 x22 
    + 0.349 x11x2 - 0.377 x1x22 + 0.100 x11x22 
 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    0.7740   0.1929   4.01  0.016 
x1          0.1521   0.2157   0.70  0.520  2.000 
x2         -0.4844   0.2157  -2.25  0.088  2.000 
x1x2        0.3800   0.2157   1.76  0.153  1.000 
x11         0.3256   0.1805   1.80  0.146  1.239 
x22         0.3406   0.1805   1.89  0.132  1.239 
x11x2       0.3494   0.3051   1.15  0.316  2.000 
x1x22      -0.3771   0.3051  -1.24  0.284  2.000 
x11x22      0.0998   0.3051   0.33  0.760  1.385 
 
S = 0.431428   R-Sq = 82.4%   R-Sq(adj) = 47.2% 
 
PRESS = *   R-Sq(pred) = *% 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       8  3.4822  0.4353  2.34  0.215 
Residual Error   4  0.7445  0.1861 
Total           12  4.2267 
 
Source  DF  Seq SS 
x1       1  0.0107 
x2       1  0.7672 
x1x2     1  0.5776 
x11      1  0.6491 
x22      1  0.9293 
x11x2    1  0.2442 
x1x22    1  0.2843 
x11x22   1  0.0199 
 
Unusual Observations 
                                               St 
Obs     x1      s    Fit  SE Fit  Residual  Resid 
  1  -1.00  2.280  2.280   0.431     0.000      * X  
  2   1.00  1.070  1.070   0.431     0.000      * X  
  3  -1.00  1.250  1.250   0.431     0.000      * X  
  4   1.00  1.560  1.560   0.431     0.000      * X  
  5  -1.41  1.210  1.210   0.431     0.000      * X  
  6   1.41  1.640  1.640   0.431    -0.000      * X  
  7   0.00  2.140  2.140   0.431     0.000      * X  
  8   0.00  0.770  0.770   0.431     0.000      * X  
 
X denotes an observation whose X value gives it lar ge leverage. 
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Regression Analysis: s2 versus x1, x2, ...  
 
The regression equation is 
s2 = 0.746 + 0.435 x1 - 1.41 x2 + 1.23 x1x2 + 0.665  x11 + 0.920 x22 
     + 0.823 x11x2 - 1.23 x1x22 + 0.252 x11x22 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    0.7460   0.3275   2.28  0.085 
x1          0.4349   0.3662   1.19  0.301  2.000 
x2         -1.4109   0.3662  -3.85  0.018  2.000 
x1x2        1.2325   0.3661   3.37  0.028  1.000 
x11         0.6647   0.3064   2.17  0.096  1.239 
x22         0.9198   0.3064   3.00  0.040  1.239 
x11x2       0.8234   0.5178   1.59  0.187  2.000 
x1x22      -1.2324   0.5178  -2.38  0.076  2.000 
x11x22      0.2520   0.5179   0.49  0.652  1.385 
 
S = 0.732243   R-Sq = 92.9%   R-Sq(adj) = 78.7% 
 
PRESS = *   R-Sq(pred) = *% 
 
Analysis of Variance 
 
Source          DF       SS      MS     F      P 
Regression       8  28.1048  3.5131  6.55  0.044 
Residual Error   4   2.1447  0.5362 
Total           12  30.2496 
 
Source  DF  Seq SS 
x1       1  0.2631 
x2       1  7.9849 
x1x2     1  6.0762 
x11      1  2.5439 
x22      1  6.7166 
x11x2    1  1.3557 
x1x22    1  3.0373 
x11x22   1  0.1270 
 
Unusual Observations 
                                               St 
Obs     x1     s2    Fit  SE Fit  Residual  Resid 
  1  -1.00  5.200  5.200   0.732    -0.000      * X  
  2   1.00  1.140  1.140   0.732    -0.000      * X  
  3  -1.00  1.560  1.560   0.732    -0.000      * X  
  4   1.00  2.430  2.430   0.732    -0.000      * X  
  5  -1.41  1.460  1.460   0.732    -0.000      * X  
  6   1.41  2.690  2.690   0.732    -0.000      * X  
  7   0.00  4.580  4.580   0.732     0.000      * X  
  8   0.00  0.590  0.590   0.732     0.000      * X  
 
X denotes an observation whose X value gives it lar ge leverage. 
 
Regression Analysis: lns versus x1, x2, ...  
 
The regression equation is 
lns = - 0.394 + 0.106 x1 - 0.361 x2 + 0.243 x1x2 + 0.367 x11 + 0.322 x22 
      + 0.303 x11x2 - 0.239 x1x22 + 0.092 x11x22 
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Predictor     Coef  SE Coef      T      P    VIF 
Constant   -0.3940   0.2734  -1.44  0.223 
x1          0.1061   0.3057   0.35  0.746  2.000 
x2         -0.3607   0.3057  -1.18  0.303  2.000 
x1x2        0.2425   0.3057   0.79  0.472  1.000 
x11         0.3671   0.2558   1.44  0.225  1.239 
x22         0.3221   0.2558   1.26  0.276  1.239 
x11x2       0.3032   0.4323   0.70  0.522  2.000 
x1x22      -0.2386   0.4323  -0.55  0.610  2.000 
x11x22      0.0923   0.4323   0.21  0.841  1.385 
 
 
S = 0.611335   R-Sq = 63.2%   R-Sq(adj) = 0.0% 
 
PRESS = *   R-Sq(pred) = *% 
 
 
Analysis of Variance 
 
Source          DF      SS      MS     F      P 
Regression       8  2.5724  0.3216  0.86  0.605 
Residual Error   4  1.4949  0.3737 
Total           12  4.0674 
 
 
Source  DF  Seq SS 
x1       1  0.0014 
x2       1  0.3496 
x1x2     1  0.2352 
x11      1  0.8430 
x22      1  0.8285 
x11x2    1  0.1838 
x1x22    1  0.1138 
x11x22   1  0.0170 
 
 
Unusual Observations 
 
                                                 St  
Obs     x1     lns     Fit  SE Fit  Residual  Resid  
  1  -1.00   0.820   0.820   0.611    -0.000      *  X 
  2   1.00   0.070   0.070   0.611    -0.000      *  X 
  3  -1.00   0.220   0.220   0.611     0.000      *  X 
  4   1.00   0.440   0.440   0.611     0.000      *  X 
  5  -1.41   0.190   0.190   0.611    -0.000      *  X 
  6   1.41   0.490   0.490   0.611    -0.000      *  X 
  7   0.00   0.760   0.760   0.611     0.000      *  X 
  8   0.00  -0.260  -0.260   0.611     0.000      *  X 
 
X denotes an observation whose X value gives it lar ge leverage. 
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Best Subsets Regression: s versus x1, x2, ...  
 
Response is s 
                                                       x 
                                                   x x 1 
                                             x     1 1 1 
                                             1 x x 1 x x 
                       Mallows           x x x 1 2 x 2 2 
Vars  R-Sq  R-Sq(adj)       Cp        S  1 2 2 1 2 2 2 2 
   1  18.2       10.7      9.6  0.56081    X 
   2  37.3       24.8      7.2  0.51462        X X 
   3  55.5       40.7      5.1  0.45719    X   X X 
   4  69.2       53.7      4.0  0.40367    X X X X 
   5  74.9       57.0      4.7  0.38903    X X X X X 
   6  79.7       59.5      5.6  0.37791    X X X X X X 
   7  81.9       56.6      7.1  0.39101  X X X X X X X 
   8  82.4       47.2      9.0  0.43143  X X X X X X X X 
 
  
Best Subsets Regression: s2 versus x1, x2, ...  
 
Response is s2 
                                                       x 
                                                   x x 1 
                                             x     1 1 1 
                                             1 x x 1 x x 
                       Mallows           x x x 1 2 x 2 2 
Vars  R-Sq  R-Sq(adj)       Cp        S  1 2 2 1 2 2 2 2 
   1  26.4       19.7     32.5   1.4227    X 
   2  46.5       35.8     23.2   1.2723    X X 
   3  64.9       53.2     14.8   1.0858    X X   X 
   4  77.1       65.6      9.9  0.93059    X X X X 
   5  85.5       75.2      7.2  0.79137    X X X X   X 
   6  90.0       80.0      6.6  0.71042    X X X X X X 
   7  92.5       82.0      7.2  0.67405  X X X X X X X 
   8  92.9       78.7      9.0  0.73224  X X X X X X X X 
 
  
Best Subsets Regression: lns versus x1, x2, ...  
 
Response is lns 
                                                       x 
                                                   x x 1 
                                             x     1 1 1 
                                             1 x x 1 x x 
                       Mallows           x x x 1 2 x 2 2 
Vars  R-Sq  R-Sq(adj)       Cp        S  1 2 2 1 2 2 2 2 
   1  20.7       13.5     -0.4  0.54141        X 
   2  41.1       29.3     -0.6  0.48947        X X 
   3  49.7       32.9      0.5  0.47682    X   X X 
   4  55.5       33.2      1.8  0.47579    X X X X 
   5  60.0       31.4      3.4  0.48213    X X X X X 
   6  61.7       23.4      5.2  0.50940    X X X X X X 
   7  62.8       10.8      7.0  0.54990  X X X X X X X 
   8  63.2        0.0      9.0  0.61133  X X X X X X X X 
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B:  Supporting R Code for Chapter 6  
 
B.1   Section 6.3.1:  Simulation comparing normal to skew normal 
 
# Script for Tier-1 Estimation: simulation comparing normal to skewnormal using simulated data  
# Simulation to investigate differences between estimators used 
# Conditions: skewed data with some outliers  
# data points generated (from a skew normal distribution) 
 
require(MASS) 
require(robustbase) 
require(ICSNP) 
require(sn) 
require(moments) 
 

# generate a dataset of observations.  This will be based on a CCD with three  
# factors (x1,x2,x3)in three levels each (-1,1), six axial points (alpha =  
# 1.682), and four center points.  The manufactured data set will contain  
# skewed and contaminated data (outliers) 
 
# Call in the semiconductor dataset and use the 11 observations at each  
# design point to obtain MLEs for the location, scale, and skew. Note in the  
# final line of the "for" loop that I induce additi onal skewness to ensure a  
# skewed data set for the simulation. 
 
options(digits=5) 
 
xmat<-read.table("xmat_ccd.txt", col.names=c("x1"," x2","x3")) 
simdata<-read.table("SemiConductor.txt",header=T) 
data <- as.matrix(simdata[,4:14]) 
data2 <- matrix(NA,ncol=3,nrow=length(data[,1]),dim names=list 
            (c(1:length(data[,1])),c("Mean","Std De v","Skew"))) 
 
for (i in 1:length(data[,1])){ 
   data2[i,] = c(mean(data[i,]),     #sn.mle(y=data [i,],plot.it=F)$cp[1], 
                 sd(data[i,]),       #sn.mle(y=data [i,],plot.it=F)$cp[2], 
                 skewness(data[i,])) #sn.mle(y=data [i,],plot.it=F)$cp[3]) 
} 
 
delta <- function(x1){ 
    (sqrt((pi/2)*(abs(sskew)^(2/3))/(abs(sskew)^(2/ 3)+((4-pi)/2)^(2/3))))} 
 
parms <- matrix(NA,nrow=length(data2[,1]),ncol=4,di mnames=list 
            (c(1:length(data2[,1])),c("d","location ","scale","shape"))) 
 
for (i in 1:length(data2[,1])){ 
      sskew = min(data2[i,3],0.9952717)  # associat e with sample skew column 
      d = delta(sskew)       
      w = sqrt((data2[i,2]^2)/(1-(2*d^2)/pi)) 
      l = data2[i,1]-w*d*sqrt(2/pi) 
      a = d/sqrt(1-d^2) 
      if (a<9406) a=5*a 
      parms[i,1] = d 
      parms[i,2] = l 
      parms[i,3] = w 
      parms[i,4] = a 
} 
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parms 
 
#Simulation parameters 
despts  = 18  # number of design points 
obs     = 100  # number of replicates at each desig n point 
num_est = 11  # number of alternative estimators be ing examined 
reps    = 500  # number of simulation iterations 
num_mods= 7   # number of models (combinations of e stimators) 
 
# Initialize Arrays 
normdata <- matrix(NA, nrow=despts,ncol=obs) 
skewdata <- matrix(NA, nrow=despts, ncol=obs) 
 
RegModN <- matrix(NA,nrow=10,ncol=num_mods,dimnames =list(c("Bo","B1","B2", 
              "B3","B11",“B22","B33","B12","B13","B 23"),c("ModA","ModB", 
              "ModC","ModD","ModE","ModF","ModG")))  
RegModS <- matrix(NA,nrow=10,ncol=num_mods,dimnames =list(c("Bo","B1","B2", 
              "B3","B11","B22","B33","B12","B13","B 23"),c("ModA","ModB", 
              "ModC","ModD","ModE","ModF","ModG")))  
Mod_MSE_N  <- matrix(NA,ncol=length(RegModN[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
Mod_MSE_S  <- matrix(NA,ncol=length(RegModS[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
MSE_TallyN <- matrix(NA,ncol=length(RegModN[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
MSE_TallyS <- matrix(NA,ncol=length(RegModS[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
Bias_TallyN <-matrix(NA,ncol=length(RegModN[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
 
Bias_TallyS <-matrix(NA,ncol=length(RegModS[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("ModA","Mo dB","ModC","ModD", 
               "ModE","ModF","ModG"))) 
 
# Simulation start 
 
for (j in 1:reps){ 
 
# Now use the parameter estimates in "data2" and "parms" MLEs for location, scale, and skew  
# to generate data from both normal and skewnormal distributions.  This results in two separate  
# matrices of responses, one normal and one skewed. 
 
for(i in 1:despts){ 
    normdata[i,] <- rnorm(obs, data2[i,1],data2[i,2 ]) 
    skewdata[i,] <- rsn(obs, parms[i,2], parms[i,3] , parms[i,4]) 
  } 
 
r1 = as.integer(runif(1,1,18)) 
c1 = as.integer(runif(1,1,obs)) 
skewdata[r1,c1] = max(skewdata[r1,])+(1*sd(skewdata [r1,])) 
 
r2 = as.integer(runif(1,1,18)) 
c2 = as.integer(runif(1,1,obs)) 
skewdata[r2,c2] = max(skewdata[r2,])+(1*sd(skewdata [r2,])) 
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r3= as.integer(runif(1,1,18)) 
c3 = as.integer(runif(1,1,obs)) 
skewdata[r3,c3] = max(skewdata[r3,])+(1*sd(skewdata [r3,])) 
 
r4 = as.integer(runif(1,1,18)) 
c4 = as.integer(runif(1,1,obs)) 
skewdata[r4,c4] = max(skewdata[r4,])+(1*sd(skewdata [r4,])) 
 
r5 = as.integer(runif(1,1,18)) 
c5 = as.integer(runif(1,1,obs)) 
skewdata[r5,c5] = max(skewdata[r5,])+(1*sd(skewdata [r5,])) 
 
r6 = as.integer(runif(1,1,18)) 
c6 = as.integer(runif(1,1,obs)) 
skewdata[r6,c6] = max(skewdata[r6,])+(1*sd(skewdata [r6,])) 
 
r7 = as.integer(runif(1,1,18)) 
c7 = as.integer(runif(1,1,100)) 
skewdata[r7,c7] = max(skewdata[r7,])+(1*sd(skewdata [r7,])) 
 
 
estimatorNorm <- matrix(NA,ncol=num_est,nrow=despts ,dimnames=list 
                     (c(1:despts), c("ybar","s","Me dian"," MAD","Huber2M", 
                      "Huber2s","H.L","Sn","Qn","Ta u.m","Tau.s"))) 
 
estimatorSkew <- matrix(NA,ncol=num_est,nrow=despts ,dimnames=list 
                    (c(1:despts),c("ybar","s","Medi an"," MAD","Huber2M", 
                     "Huber2s","H.L","Sn","Qn","Tau .m","Tau.s"))) 
 

# obtain estimates using the various alternative estimators 
for (i in 1:despts){ 
     estimatorNorm[i,1]= mean(normdata[i,]) 
     estimatorNorm[i,2]= sd(normdata[i,]) 
     estimatorNorm[i,3]= median(normdata[i,]) 
     estimatorNorm[i,4]= MAD(normdata[i,]) 
     estimatorNorm[i,5]= hubers(normdata[i,])$mu 
     estimatorNorm[i,6]= hubers(normdata[i,])$s 
     estimatorNorm[i,7]= hl.loc(normdata[i,]) 
     estimatorNorm[i,8]= Sn(normdata[i,]) 
     estimatorNorm[i,9]= Qn(normdata[i,]) 
     estimatorNorm[i,10]= scaleTau2(normdata[i,],mu .too=T)[1] 
     estimatorNorm[i,11]= scaleTau2(normdata[i,],mu .too=T)[2] 
     estimatorSkew[i,1]= mean(skewdata[i,]) 
     estimatorSkew[i,2]= sd(skewdata[i,]) 
     estimatorSkew[i,3]= median(skewdata[i,]) 
     estimatorSkew[i,4]= MAD(skewdata[i,]) 
     estimatorSkew[i,5]= hubers(skewdata[i,])$mu 
     estimatorSkew[i,6]= hubers(skewdata[i,])$s 
     estimatorSkew[i,7]= hl.loc(skewdata[i,]) 
     estimatorSkew[i,8]= Sn(skewdata[i,]) 
     estimatorSkew[i,9]= Qn(skewdata[i,]) 
     estimatorSkew[i,10]= scaleTau2(skewdata[i,],mu .too=T)[1] 
     estimatorSkew[i,11]= scaleTau2(skewdata[i,],mu .too=T)[2] 
} 
 
NORM <- data.frame(cbind(xmat,estimatorNorm)) 
SKEW <- data.frame(cbind(xmat,estimatorSkew)) 
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ybar1 <-NORM$ybar 
s1    <-NORM$s 
med1  <-NORM$Median 
MAD1  <-NORM$ MAD 
H2m1  <-NORM$Huber2M 
H2s1  <-NORM$Huber2s 
HL1   <-NORM$H.L 
sn1   <-NORM$Sn 
qn1   <-NORM$Qn 
taum1 <-NORM$Tau.m 
taus1 <-NORM$Tau.s 
ybar2 <-SKEW$ybar 
s2    <-SKEW$s 
med2  <-SKEW$Median 
MAD2  <-SKEW$ MAD 
H2m2  <-SKEW$Huber2M 
H2s2  <-SKEW$Huber2s 
HL2   <-SKEW$H.L 
sn2   <-SKEW$Sn 
qn2   <-SKEW$Qn 
taum2 <-SKEW$Tau.m 
taus2 <-SKEW$Tau.s 
 
x1   <- NORM$x1 
x2   <- NORM$x2 
x3   <- NORM$x3 
x11  <- NORM$x1*NORM$x1 
x22  <- NORM$x2*NORM$x2 
x33  <- NORM$x3*NORM$x3 
x1x2 <- NORM$x1*NORM$x2 
x1x3 <- NORM$x1*NORM$x3 
x2x3 <- NORM$x2*NORM$x3 
z1   <- SKEW$x1 
z2   <- SKEW$x2 
z3   <- SKEW$x3 
z11  <- SKEW$x1*SKEW$x1 
z22  <- SKEW$x2*SKEW$x2 
z33  <- SKEW$x3*SKEW$x3 
z1z2 <- SKEW$x1*SKEW$x2 
z1z3 <- SKEW$x1*SKEW$x3 
z2z3 <- SKEW$x2*SKEW$x3 
 

# perform regressions using normal data 
regN1  <-lm(ybar1 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN2  <-lm(s1    ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN3  <-lm(med1  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN4  <-lm( MAD1  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=NORM) 
regN5  <-lm(H2m1  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN6  <-lm(H2s1  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN7  <-lm(HL1   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN8  <-lm(sn1   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN9  <-lm(HL1   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN10 <-lm(qn1   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN11 <-lm(HL1   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN12 <-lm( MAD1  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=NORM) 
regN13 <-lm(taum1 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
regN14 <-lm(taus1 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=NORM) 
 

#perform regressions using skew-normal data 
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regS1  <-lm(ybar2 ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS2  <-lm(s2    ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS3  <-lm(med2  ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS4  <-lm( MAD2  ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z2z3,data=SKEW) 
regS5  <-lm(H2m2  ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS6  <-lm(H2s2  ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS7  <-lm(HL2   ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS8  <-lm(sn2   ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS9  <-lm(HL2   ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS10 <-lm(qn2   ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS11 <-lm(HL2   ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS12 <-lm( MAD2  ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z2z3,data=SKEW) 
regS13 <-lm(taum2 ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
regS14 <-lm(taus2 ~z1+z2+z3+z11+z22+z33+z1z2+z1z3+z 2z3,data=SKEW) 
  
mod.errN <- cbind(anova(regN1)["Residuals","Mean Sq "], 
                  anova(regN3)["Residuals","Mean Sq "], 
                  anova(regN5)["Residuals","Mean Sq "], 
                  anova(regN7)["Residuals","Mean Sq "], 
                  anova(regN9)["Residuals","Mean Sq "], 
                  anova(regN11)["Residuals","Mean S q"], 
                 anova(regN13)["Residuals","Mean Sq "]) 
 
mod.errS <- cbind(anova(regS1)["Residuals","Mean Sq "], 
                  anova(regS3)["Residuals","Mean Sq "], 
                  anova(regS5)["Residuals","Mean Sq "], 
                  anova(regS7)["Residuals","Mean Sq "], 
                  anova(regS9)["Residuals","Mean Sq "], 
                  anova(regS11)["Residuals","Mean S q"], 
                  anova(regS13)["Residuals","Mean S q"]) 
 
coeffN <- data.frame(cbind(coef(regN1),coef(regN2), coef(regN3),coef(regN4), 
                coef(regN5),coef(regN6),coef(regN7) ,coef(regN8),coef(regN9), 
                coef(regN10),coef(regN11),coef(regN 12),coef(regN13), 
                coef(regN14))) 
 
coeffS <- data.frame(cbind(coef(regS1),coef(regS2), coef(regS3),coef(regS4), 
                coef(regS5),coef(regS6),coef(regS7) ,coef(regS8),coef(regS9), 
                coef(regS10),coef(regS11),coef(regS 12),coef(regS13), 
                coef(regS14))) 
 
RegModN[,1] <- coef(regN1) 
RegModN[,2] <- coef(regN3) 
RegModN[,3] <- coef(regN5) 
RegModN[,4] <- coef(regN7) 
RegModN[,5] <- coef(regN9) 
RegModN[,6] <- coef(regN11) 
RegModN[,7] <- coef(regN13) 
 
RegModS[,1] <- coef(regS1) 
RegModS[,2] <- coef(regS3) 
RegModS[,3] <- coef(regS5) 
RegModS[,4] <- coef(regS7) 
RegModS[,5] <- coef(regS9) 
RegModS[,6] <- coef(regS11) 
RegModS[,7] <- coef(regS13) 
 
SE_ModN <-cbind(SE(regN1),SE(regN3),SE(regN5),SE(re gN7),SE(regN9),SE(regN11), 
                SE(regN13)) 
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SE_ModS <-cbind(SE(regS1),SE(regS3),SE(regS5),SE(re gS7),SE(regS9),SE(regS11), 
                SE(regS13)) 
 
OOCN <- matrix(NA, nrow=3, ncol=length(RegModN[1,]) , dimnames=list 
              (c("x1","x2","x3"),c(1:length(RegModN [1,])))) 
optmnN <- matrix(NA,nrow=1,ncol=length(RegModN[1,]) , dimnames=list 
              (c("m(x*)"),c(1:length(RegModN[1,]))) ) 
biasN <- matrix(NA,nrow=1,ncol=length(RegModN[1,]),  dimnames =list 
              (c("bias"),c(1:length(RegModN[1,]))))  
optsdN <- matrix(NA,nrow=1,ncol=length(RegModN[1,]) , dimnames=list 
              (c("sd(x*)"),c(1:length(RegModN[1,])) )) 
objN <- matrix(NA,nrow=1,ncol=length(RegModN[1,]), dimnames=list 
              (c("MSE"),c(1:length(RegModN[1,])))) 
OOCS <- matrix(NA, nrow=3, ncol=length(RegModS[1,]) , dimnames=list 
              (c("x1","x2","x3"),c(1:length(RegModS [1,])))) 
optmnS <- matrix(NA,nrow=1,ncol=length(RegModS[1,]) , dimnames=list 
                (c("m(x*)"),c(1:length(RegModS[1,]) ))) 
biasS <- matrix(NA,nrow=1,ncol=length(RegModS[1,]),  dimnames =list 
               (c("bias"),c(1:length(RegModS[1,]))) ) 
optsdS <- matrix(NA,nrow=1,ncol=length(RegModS[1,]) , dimnames=list 
                (c("sd(x*)"),c(1:length(RegModS[1,] )))) 
objS <- matrix(NA,nrow=1,ncol=length(RegModS[1,]), dimnames=list 
              (c("MSE"),c(1:length(RegModS[1,])))) 
 

# Determine Optimum Operating Conditions using MSE-based optimization scheme.  
    
for (k in 1:7) { 
  
   m1 <-function(x) {   
      x1<-x[1] 
      x2<-x[2] 
      x3<-x[3] 
      coeffN[1,(k+k-1)]+coeffN[2,(k+k-1)]*x1+coeffN [3,(k+k-1)]*x2  
      +coeffN[4,(k+k-1)]*x3+coeffN[5,(k+k-1)]*x1^2+ coeffN[6,(k+k-1)]*x2^2   
      +coeffN[7,(k+k-1)]*x3^2+coeffN[8,(k+k-1)]*x1* x2+coeffN[9,(k+k-1)]*x1*x3  
      +coeffN[10,(k+k-1)]*x2*x3} 
 
   s1 <-function(x) {   
      x1<-x[1] 
      x2<-x[2] 
      x3<-x[3] 
      coeffN[1,(2*k)]+coeffN[2,(2*k)]*x1+coeffN[3,( 2*k)]*x2  
      +coeffN[4,(2*k)]*x3+coeffN[5,(2*k)]*x1^2+coef fN[6,(2*k)]*x2^2   
      +coeffN[7,(2*k)]*x3^2+coeffN[8,(2*k)]*x1*x2+c oeffN[9,(2*k)]*x1*x3 
      +coeffN[10,(2*k)]*x2*x3} 
 
   objectiveN<-function(x) { 
      x1<-x[1] 
      x2<-x[2] 
      x3<-x[3] 
      (s1(c(x1,x2,x3)))^2 + (m1(c(x1,x2,x3))-350)^2  } 
 
   settingsN <- nlminb(start=c(0,0,0), objectiveN, gradient = NULL, hessian =  
                       NULL, lower = c(-1.682,-1.68 2,-1.682), upper =  
                       c(1.682,1.682,1.682)) 
 
   OOCN[,k] <- settingsN$par 
   optmnN[,k] <- m1(settingsN$par) 
   biasN[,k] <- abs(m1(settingsN$par)-350) 
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   optsdN[,k]   <- s1(settingsN$par) 
   objN[,k] <- settingsN$objective 
 
   m2 <-function(z) {   
      z1<-z[1] 
      z2<-z[2] 
      z3<-z[3] 
      coeffS[1,(k+k-1)]+coeffS[2,(k+k-1)]*z1+coeffS [3,(k+k-1)]*z2  
      +coeffS[4,(k+k-1)]*z3+coeffS[5,(k+k-1)]*z1^2+ coeffS[6,(k+k-1)]*z2^2+  
      +coeffS[7,(k+k-1)]*z3^2+coeffS[8,(k+k-1)]*z1* z2+coeffS[9,(k+k-1)]*z1*z3  
      +coeffS[10,(k+k-1)]*z2*z3} 
 
   s2 <-function(z) {   
      z1<-z[1] 
      z2<-z[2] 
      z3<-z[3] 
      coeffS[1,(2*k)]+coeffS[2,(2*k)]*z1+coeffS[3,( 2*k)]*z2  
      +coeffS[4,(2*k)]*z3 coeffS[5,(2*k)]*z1^2+coef fS[6,(2*k)]*z2^2+  
      +coeffS[7,(2*k)]*z3^2+ coeffS[8,(2*k)]*z1*z2+ coeffS[9,(2*k)]*z1*z3  
      +coeffS[10,(2*k)]*z2*z3} 
 
   objectiveS<-function(z) { 
      z1<-z[1] 
      z2<-z[2] 
      z3<-z[3] 
      (s2(c(z1,z2,z3)))^2 + (m2(c(z1,z2,z3))-350)^2  } 
   
 settingsS <- nlminb(start=c(0,0,0), objectiveS, gr adient = NULL, hessian =  
                       NULL, lower = c(-1.682,-1.68 2,-1.682), upper =  
                       c(1.682,1.682,1.682)) 
 
   OOCS[,k] <- settingsS$par 
   optmnS[,k] <- m2(settingsS$par) 
   biasS[,k] <- abs(m2(settingsS$par)-350) 
   optsdS[,k]   <- s2(settingsS$par) 
   objS[,k] <- settingsS$objective 
} 
 
NORMresults <- as.matrix(rbind(RegModN,OOCN,optmnN, biasN,optsdN,objN)) 
SKEWresults <- as.matrix(rbind(RegModS,OOCS,optmnS, biasS,optsdS,objS)) 
 
Mod_MSE_N[j,]  <- mod.errN 
Mod_MSE_S[j,]  <- mod.errS 
MSE_TallyN[j,] <- NORMresults["MSE",] 
MSE_TallyS[j,] <- SKEWresults["MSE",] 
Bias_TallyN[j,]<- NORMresults["bias",] 
Bias_TallyS[j,]<- SKEWresults["bias",] 
 
} 
Avg.Mod.MSE.N  <- as.vector(colMeans(Mod_MSE_N)) 
NormModMSERes  <- rbind(Mod_MSE_N,Avg.Mod.MSE.N) 
Avg.Mod.MSE.S  <- as.vector(colMeans(Mod_MSE_S)) 
SkewModMSERes  <- rbind(Mod_MSE_S,Avg.Mod.MSE.S) 
Avg_MSE_N <- as.vector(colMeans(MSE_TallyN)) 
NormMSERes   <- rbind(MSE_TallyN,Avg_MSE_N) 
Avg_Bias_N<- as.vector(colMeans(Bias_TallyN)) 
NormBiasRes  <- rbind(Bias_TallyN,Avg_Bias_N) 
Avg_MSE_S <- as.vector(colMeans(MSE_TallyS)) 
SkewMSERes   <- rbind(MSE_TallyS,Avg_MSE_S) 
Avg_Bias_S<- as.vector(colMeans(Bias_TallyS)) 
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SkewBiasRes   <- rbind(Bias_TallyS,Avg_Bias_S) 
 
Res <- rbind(Avg.Mod.MSE.N,Avg_MSE_N,Avg_Bias_N,Avg .Mod.MSE.S,Avg_MSE_S, 
             Avg_Bias_S) 
Res 
 
Res2 <-rbind(NormModMSERes,"X",NormMSERes,"X",NormB iasRes,"XX",SkewModMSERes, 
             "X",SkewMSERes,"X",SkewBiasRes) 
write.csv(Res2,file="Tallied_res.csv") 
 

 
B.2  Section 6.3.2. Numerical example based on Ceramic Coating Process  
 
Require(mass) 
Require(robustbase) 
Require(icsnp) 
Require(sn) 
Require(moments) 
 
Options(digits=5) 
 
Data1 <-read.table("goethtilman.txt", header=t) 
Data2 <- subset(data1,select= -c(x1,x2,x3,y11,y12,y 13,y1bar,s1,k1,y21,y22,y23)) 
Xmat  <- subset(data1,select=c(x1,x2,x3)) 
 
Delta <- function(x1){ 
    (sqrt((pi/2)*(abs(sskew)^(2/3))/(abs(sskew)^(2/ 3)+((4-pi)/2)^(2/3))))} 
 
 
Parms <- matrix(na,nrow=length(data2[,1]),ncol=4,di mnames=list 
             (c(1:length(data2[,1])),c("d","locatio n","scale","shape"))) 
 
For (i in 1:length(data2[,1])){ 

      sskew = min(data2[i,3],0.9952717)   # associate with sample skew column 
      d = delta(sskew)       
      if (sskew<0) d=-1*d 
      w = sqrt((data2[i,2]^2)/(1-(2*d^2)/pi)) 
      l = data2[i,1]-w*d*sqrt(2/pi) 
      a = d/sqrt(1-d^2) 
      parms[i,1] = d 
      parms[i,2] = l 
      parms[i,3] = w 
      parms[i,4] = a 
} 
       
Parms 
Despts  = 18 
Obs     = 10 
Num_est = 11 
Reps    = 500 
Num_mods= 7 

# initialize arrays 
 
Skewdata <- matrix(na, nrow=despts, ncol=obs) 
Regmods <- matrix(na,nrow=10,ncol=num_mods,dimnames =list(c("bo","b1","b2", 
                "b3","b11","b22","b33","b12","b13", "b23"),c("moda","modb", 
                "modc","modd","mode","modf","modg") )) 
Mod_mse_s  <- matrix(na,ncol=length(regmods[1,]),nr ow=reps, 
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               dimnames=list(c(1:reps),c("moda","mo db","modc","modd", 
               "mode","modf","modg"))) 
Mse_tallys <- matrix(na,ncol=length(regmods[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("moda","mo db","modc","modd", 
               "mode","modf","modg"))) 
Bias_tallys <-matrix(na,ncol=length(regmods[1,]),nr ow=reps, 
               dimnames=list(c(1:reps),c("moda","mo db","modc","modd", 
               "mode","modf","modg"))) 
 
For (j in 1:reps){ 
  for(i in 1:despts){ 
       skewdata[i,] <- rsn(obs, parms[i,2], parms[i ,3], parms[i,4])} 
 
R1 = as.integer(runif(1,1,18)) 
C1 = as.integer(runif(1,1,obs)) 
Skewdata[r1,c1] = max(skewdata[r1,])+(1*sd(skewdata [r1,])) 
 
R2 = as.integer(runif(1,1,18)) 
C2 = as.integer(runif(1,1,obs)) 
Skewdata[r2,c2] = max(skewdata[r2,])+(1*sd(skewdata [r2,])) 
 
R3= as.integer(runif(1,1,18)) 
C3 = as.integer(runif(1,1,obs)) 
Skewdata[r3,c3] = max(skewdata[r3,])+(1*sd(skewdata [r3,])) 
 
R4 = as.integer(runif(1,1,18)) 
C4 = as.integer(runif(1,1,obs)) 
Skewdata[r4,c4] = max(skewdata[r4,])+(1*sd(skewdata [r4,])) 
 
Estimatorskew <- matrix(na,ncol=num_est,nrow=despts ,dimnames=list 
                     (c(1:despts), c("ybar","s","me dian"," mad","huber2m", 
                     "huber2s","h.l","sn","qn","tau .m","tau.s"))) 
 
For (i in 1:despts){ 
     estimatorskew[i,1]= mean(skewdata[i,]) 
     estimatorskew[i,2]= sd(skewdata[i,]) 
     estimatorskew[i,3]= median(skewdata[i,]) 
     estimatorskew[i,4]= mad(skewdata[i,]) 
     estimatorskew[i,5]= hubers(skewdata[i,])$mu 
     estimatorskew[i,6]= hubers(skewdata[i,])$s 
     estimatorskew[i,7]= hl.loc(skewdata[i,]) 
     estimatorskew[i,8]= sn(skewdata[i,]) 
     estimatorskew[i,9]= qn(skewdata[i,]) 
     estimatorskew[i,10]= scaletau2(skewdata[i,],mu .too=t)[1] 
     estimatorskew[i,11]= scaletau2(skewdata[i,],mu .too=t)[2] 
} 
 
Skew <- data.frame(cbind(xmat,estimatorskew)) 
 
Ybar2 <-skew$ybar 
S2    <-skew$s 
Med2  <-skew$median 
Mad2  <-skew$ mad 
H2m2  <-skew$huber2m 
H2s2  <-skew$huber2s 
Hl2   <-skew$h.l 
Sn2   <-skew$sn 
Qn2   <-skew$qn 
Taum2 <-skew$tau.m 
Taus2 <-skew$tau.s 
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X1   <- skew$x1 
X2   <- skew$x2 
X3   <- skew$x3 
X11  <- skew$x1*skew$x1 
X22  <- skew$x2*skew$x2 
X33  <- skew$x3*skew$x3 
X1x2 <- skew$x1*skew$x2 
X1x3 <- skew$x1*skew$x3 
X2x3 <- skew$x2*skew$x3 
 
Reg1  <-lm(ybar2 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg2  <-lm(s2    ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg3  <-lm(med2  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg4  <-lm( mad2  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=skew) 
Reg5  <-lm(h2m2  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg6  <-lm(h2s2  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg7  <-lm(hl2   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg8  <-lm(sn2   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg9  <-lm(hl2   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg10 <-lm(qn2   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg11 <-lm(hl2   ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg12 <-lm( mad2  ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=skew) 
Reg13 <-lm(taum2 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
Reg14 <-lm(taus2 ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=skew) 
 
Mod.errs <- cbind(anova(reg1)["residuals","mean sq" ], 
                  anova(reg3)["residuals","mean sq" ], 
                  anova(reg5)["residuals","mean sq" ], 
                  anova(reg7)["residuals","mean sq" ], 
                  anova(reg9)["residuals","mean sq" ], 
                  anova(reg11)["residuals","mean sq "], 
                  anova(reg13)["residuals","mean sq "]) 
 
Coeff <- data.frame(cbind(coef(reg1),coef(reg2),coe f(reg3),coef(reg4), 
            coef(reg5),coef(reg6),coef(reg7),coef(r eg8),coef(reg9),coef(reg10), 
            coef(reg11),coef(reg12),coef(reg13),coe f(reg14))) 
 
Regmods[,1] <- coef(reg1) 
Regmods[,2] <- coef(reg3) 
Regmods[,3] <- coef(reg5) 
Regmods[,4] <- coef(reg7) 
Regmods[,5] <- coef(reg9) 
Regmods[,6] <- coef(reg11) 
Regmods[,7] <- coef(reg13) 
 
Se_mods <- cbind(se(reg1),se(reg3),se(reg5),se(reg7 ),se(reg9),se(reg11), 
               se(reg13)) 
Oocs <- matrix(na, nrow=3, ncol=length(regmods[1,]) , dimnames=list 
            (c("x1","x2","x3"),c(1:length(regmods[1 ,])))) 
Optmns <- matrix(na,nrow=1,ncol=length(regmods[1,]) , dimnames=list 
            (c("m(x*)"),c(1:length(regmods[1,])))) 
Biass <- matrix(na,nrow=1,ncol=length(regmods[1,]),  dimnames =list 
            (c("bias"),c(1:length(regmods[1,])))) 
Optsds <- matrix(na,nrow=1,ncol=length(regmods[1,]) , dimnames=list 
            (c("sd(x*)"),c(1:length(regmods[1,]))))  
Objs <- matrix(na,nrow=1,ncol=length(regmods[1,]), dimnames=list 
            (c("mse"),c(1:length(regmods[1,])))) 

# determine OOCs using MSE-based optimization model  
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For (k in 1:7) { 
      m2 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(k+k-1)]+coeff[2,(k+k-1)]*x1+coeff [3,(k+k-1)]*x2+ 
         coeff[4,(k+k-1)]*x3+coeff[5,(k+k-1)]*x1^2+ coeff[6,(k+k-1)]*x2^2+  
         coeff[7,(k+k-1)]*x3^2+coeff[8,(k+k-1)]*x1* x2+coeff[9,(k+k-1)]*x1*x3+ 
         coeff[10,(k+k-1)]*x2*x3} 
 
      s2 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(2*k)]+coeff[2,(2*k)]*x1+coeff[3,( 2*k)]*x2+ 
         coeff[4,(2*k)]*x3+coeff[5,(2*k)]*x1^2+coef f[6,(2*k)]*x2^2+  
         coeff[7,(2*k)]*x3^2+coeff[8,(2*k)]*x1*x2+c oeff[9,(2*k)]*x1*x3+ 
         coeff[10,(2*k)]*x2*x3} 
 
      objectives<-function(x) { 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         (s2(c(x1,x2,x3)))^2 + (m2(c(x1,x2,x3)))^2 } 
 
      settingss <- nlminb(start=c(0,0,0), objective s, gradient = null,  
                          hessian = null, lower = c (-1.682,-1.682,-1.682),  
                          upper = c(1.682,1.682,1.6 82)) 
 
      Oocs[,k]   <- settingss$par 
      optmns[,k] <- m2(settingss$par) 
      biass[,k]  <- abs(m2(settingss$par)-0) 
      optsds[,k] <- s2(settingss$par) 
      objs[,k]   <- settingss$objective 
} 
 
Skewresults    <- as.matrix(rbind(regmods,oocs,optm ns,biass,optsds,objs)) 
Mod_mse_s[j,]  <- mod.errs 
Mse_tallys[j,] <- skewresults["mse",] 
Bias_tallys[j,]<- skewresults["bias",] 
 
} 
Avg.mod.mse.s  <- as.vector(colmeans(mod_mse_s)) 
Skewmodmseres  <- rbind(mod_mse_s,avg.mod.mse.s) 
Avg_mse_s      <- as.vector(colmeans(mse_tallys)) 
Skewmseres     <- rbind(mse_tallys,avg_mse_s) 
Avg_bias_s     <- as.vector(colmeans(bias_tallys)) 
Skewbiasres    <- rbind(bias_tallys,avg_bias_s) 
 
Res <- rbind(avg.mod.mse.s,avg_mse_s,avg_bias_s) 
Res 
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C:  Supporting R Programming Code for Chapter 7  
 
C.1  R simulation code for the Metal Cutting Experiment 
 
# SCRIPT FOR TIER-2 ESTIMATION SIMULATION: Normal d ata and effects of variability 
# SIMULATED NORMAL DATA (METAL CUTTING DATA (Shin e t al. 2011) AS BASIS) 
# Simulation to investigate differences between estimators used 
# Conditions: normal data with low and then high variability) 
# data points generated from a normal distribution 
 
# Call up required packages or libraries in R 
  require(MASS) 
  require(robust) 
  require(robustbase) 
  require(quantreg) 
  require(sn) 
  require(qualityTools) 
  require(AlgDesign) 
  require(ICSNP) 
  require(moments) 
 
options(digits=5)   # specify format output values 
despts  = 20   # number of experimental design points 
obs     = 5   # number of observations per design point 
num_est = 10   # number of estimation models examined 
reps    = 1000  # number of simulation iterations 
 
simdata<-read.table("metalcutting_skew.txt",header= T) 
xmat  <- as.matrix(simdata[,1:3]) 
data2 <- subset(simdata, select=c(y2,s2,g2)) 
 
delta <- function(x){ 
    (sqrt((pi/2)*(abs(x)^(2/3))/(abs(x)^(2/3)+((4-p i)/2)^(2/3))))} 
 
 
parms <- matrix(NA,nrow=length(data2[,1]),ncol=4,di mnames=list 
             (c(1:length(data2[,1])),c("d","locatio n","scale","shape"))) 
 
for (i in 1:length(data2[,1])){ 
      sskew = min((abs(data2[i,3])+0.2),0.9952717) #associate with sample skew  
      d = delta(sskew)       
      if (sskew<0) d=-1*d 
      w = sqrt((data2[i,2]^2)/(1-(2*d^2)/pi)) 
      l = data2[i,1]-w*d*sqrt(2/pi) 
      a = d/sqrt(1-d^2) 
      parms[i,1] = d 
      parms[i,2] = l 
      parms[i,3] = w  
      parms[i,4] = a*1      # to increase skew, change 1 to 1.5 
} 
       
 
# Initialize Arrays that will be repopulated in each iteration 
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normdata <- matrix(NA, nrow=despts, ncol=obs) 
RegMod <- matrix(NA,nrow=10,ncol=num_est,dimnames=l ist(c("Bo","B1",           
              "B2","B3","B11","B22","B33","B12","B1 3","B23"), c("OLS", 
              "WLS-Mean","WLS-Median","LTS","S","LA D","MM","Robust  
              Huber",”GLM”))) 
Mod_bias  <- matrix(NA,ncol=num_est,nrow=reps,dimna mes=list(c(1:reps),  
                    c("OLS","WLS-Mean","WLS-Median" ,"LTS","S","LAD",   
                    "MM","Robust Huber",”GLM”))) 
MSE_Tally <- matrix(NA,ncol=num_est,nrow=reps, dimn ames=list(c(1:reps),  
                    c("OLS","WLS-Mean","WLS-Median" ,"LTS","S","LAD",  
                    "MM","Robust Huber",”GLM”))) 
 
# Start the simulation 
 
for (j in 1:reps){ 
 
# Now use FOR loop and parameter estimates in "data2" to generate normal data.   
# SHOWN: High Variability scenario code. 
# For Low Variability scenario: change sample(2:6) to sample(1:1) 
 
for(i in 1:despts){ 
    normdata [i,] <- rsn(obs, parms[i,2], parms[i,3 ], parms[i,4]) 
  } 
 
# Compute estimates for the mean, median, standard deviation, and MAD for each row in 
NORMDATA. 
 
ybar <- matrix(apply(normdata ,1,mean),ncol=1,dimna mes=list(c(1:despts),  
                   c("ybarO"))) 
s    <- matrix(apply(normdata ,1,sd),ncol=1,dimname s=list(c(1:despts),c("sO"))) 
skew <- matrix(apply(normdata,1,skewness),ncol=1,di mnames=list(c(1:despts),  
                   c("skew"))) 
med  <- matrix(apply(normdata ,1,median),ncol=1,dim names=list(c(1:despts),  
                   c("median"))) 
MAD  <- matrix(apply(normdata ,1,mad),ncol=1,dimnam es=list(c(1:despts), 
                   c("MAD"))) 
ybarSN <- matrix(NA,ncol=1,nrow=despts,dimnames=lis t(c(1:despts),c("ybarSN"))) 
sSN    <- matrix(NA,ncol=1,nrow=despts,dimnames=lis t(c(1:despts),c("sSN"))) 
 

# This FOR loops facilitates the incorporation of more or less variability into the simulated data.   
# For high variability scenarios, use sample(2:5, size=1) 
 
for (i in 1:despts){ 
      ybarSN[i,] <- ybar[i,1]+s[i,1]*(skew[i,1]/sqr t(1+skew[i,1]^2))*sqrt(2/pi) 
      sSN[i,]    <- sqrt(s[i,1]^2*(1-2*((skew[i,1]^ 2)/(1+skew[i,1]^2))/pi)) 
      factor = sample(1:1,size=1) 
      s[i,]  = s[i,]*factor 
      sSN[i,]= sSN[i,]*factor 
      MAD[i,]= MAD[i,]*factor 
      } 
newdat <- data.frame(cbind(xmat,ybar,med,s,MAD))  # complete design matrix 
 
ybarO <- newdat$ybarO 
ybar <- newdat$ybarSN 
sO   <- newdat$sO 
s    <- newdat$sSN 
med  <- newdat$median 
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MAD  <- newdat$MAD 
x1   <- newdat$x1 
x2   <- newdat$x2 
x3   <- newdat$x3 
x11  <- newdat$x1*newdat$x1 
x22  <- newdat$x2*newdat$x2 
x33  <- newdat$x3*newdat$x3 
x1x2 <- newdat$x1*newdat$x2 
x1x3 <- newdat$x1*newdat$x3 
x2x3 <- newdat$x2*newdat$x3 
# Build regression models for the mean and standard deviation (or MAD in select  
# cases) using each of the regression methods 
 
regmorig <- lm(ybarO~x1+x2+x3+x11+x22+x33+x1x2+x1x3 +x2x3,data=newdat) 
regsorig <- lm(sO~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat) 
regmo <-lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=newdat) #OLS-mean 
reg1 <- regmo              #WLS-Mean 
  for (i in 1:10){ 
    std.err.m <- SE(reg1) 
    rm   <-(residuals(reg1))^2 
    regm <-lm(rm~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,data=newdat) 
    vmx  <-fitted(regm) 
    wm   <-abs(1/vmx) 
    reg1 <-lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=newdat,weights=wm) 
    critm <- abs(SE(reg1)-std.err.m) 
 
   # establish iteration criteria – if differences in SE’s are < 0.05 it stops 
 
    if (critm[1]<0.05 && critm[2]<0.05 && critm[3]< 0.05 && critm[4]<0.05 &&  
        critm[5]<0.05 && critm[6]<0.05 && critm[7]< 0.05 && critm[8]<0.05 &&  
        critm[9]<0.05 && critm[10]<0.05) break } 
 
regso <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,da ta=newdat) #OLS-std dev 
reg2 <- regso        #WLS-std dev 
  for (i in 1:10){ 
    std.err.s <- SE(reg2) 
    rs   <-(residuals(reg2))^2 
    regs <-lm(rs~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,data=newdat) 
    vsx  <-fitted(regs) 
    ws   <-abs(1/vsx) 
    reg2 <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=newdat,weights=ws) 
    crits <- abs(SE(reg2)-std.err.s) 
    if (crits[1]<0.05 && crits[2]<0.05 && crits[3]< 0.05 && crits[4]<0.05 &&  
        crits[5]<0.05 && crits[6]<0.05 && crits[7]< 0.05 && crits[8]<0.05 &&  
        crits[9]<0.05 && crits[10]<0.05) break } 
 
regmed<-lm(med~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat)  #OLS-Median 
reg3 <- regmed         #WLS-Median 
  for (i in 1:10){ 
    std.err.med <- SE(reg3) 
    rmed   <-(residuals(reg3))^2 
    regmd <-lm(rmed~x1+x2+x3+x11+x22+x33+x1x2+x1x3+ x2x3,data=newdat) 
    vmedx  <-fitted(regmd) 
    wmed   <-abs(1/vmedx) 
    reg3 <-lm(med~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,weights=wmed) 
    critmed <- abs(SE(reg3)-std.err.med) 
    if (critmed[1]<0.05 && critmed[2]<0.05 && critm ed[3]<0.05 && 
critmed[4]<0.05  
        && critmed[5]<0.05 && critmed[6]<0.05 && cr itmed[7]<0.05 &&  
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        critmed[8]<0.05 && critmed[9]<0.05 && critm ed[10]<0.05) break } 
 
regmad<-lm(MAD~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat)   #OLS-MAD 
reg4 <- regmad          #WLS-MAD 
  for (i in 1:10){ 
    std.err.mad <- SE(reg4) 
    rmad   <-(residuals(reg4))^2 
    regma <-lm(rmad~x1+x2+x3+x11+x22+x33+x1x2+x1x3+ x2x3,data=newdat) 
    vmadx  <-fitted(regma) 
    wmad   <-abs(1/vmadx) 
    reg4 <-lm(MAD~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,weights=wmad) 
    critmad <- abs(SE(reg4)-std.err.mad) 
    if (critmad[1]<0.05 && critmad[2]<0.05 && critm ad[3]<0.05 && 
critmad[4]<0.05  
        && critmad[5]<0.05 && critmad[6]<0.05 && cr itmad[7]<0.05 &&  
        critmad[8]<0.05 && critmad[9]<0.05 && critm ad[10]<0.05) break } 
 
reg9 <-lqs(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=newdat,method="lts") 
reg10<-lqs(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,da ta=newdat,method="lts")   
reg11<-lqs(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=newdat,method="S",   
           nsamp="best")     
reg12<-lqs(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,da ta=newdat,method="S",      
            nsamp="best")                                                      
reg13<-rq(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,tau=0.5)       
reg14<-rq(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,dat a=newdat, tau=0.5)         
reg15<-lmrob(ybar ~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=newdat,maxit=75)  
reg16<-lmrob(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,maxit=75)     
reg17<-rlm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=newdat,method="M",  
           scale.est="proposal 2",maxit=50)                                  
reg18<-rlm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,da ta=newdat,method="M",     
           scale.est="proposal 2",maxit=50)                                   
reg19 <-glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,data=newdat,            
            family=Gamma (link="identity"))     
reg20 <-glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,d ata=newdat,               
            family=inverse.gaussian(link="log"))  
 
# Place estimated coefficients for each regression model into data frame 
  
coeff <- 
data.frame(cbind(coef(regmorig),coef(regsorig),coef (regmo),coef(regso),coef(reg
1),coef(reg2),coef(reg3),coef(reg4), 
                    
coef(reg9),coef(reg10),coef(reg11),coef(reg12),coef (reg13),coef(reg14), 
                    
coef(reg15),coef(reg16),coef(reg17),coef(reg18),coe f(reg19),coef(reg20))) 
 
RegMod[,1] <- regmorig$coefficients #OLS-orig 
RegMod[,2] <- regmo$coefficients        #OLS-SN approach 
RegMod[,3] <- reg1$coefficients        #WLS-mean-s 
RegMod[,4] <- reg3$coefficients        #WLS-median-MAD 
RegMod[,5] <- reg9$coefficients        #LTS 
RegMod[,6] <- reg11$coefficients        #S 
RegMod[,7] <- reg13$coefficients        #LAD  
RegMod[,8] <- reg15$coefficients                 #MM 
RegMod[,9] <- reg17$coefficients        #Huber Prop 2 
RegMod[,10]<- reg19$coefficients        #GLM with Gauss(identity) 
 
OOC <- matrix(NA, nrow=3, ncol=num_est, dimnames=li st(c("x1","x2","x3"),   
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              c(1:num_est))) 
OOC2<- matrix(NA, ncol=(3*num_est), nrow=1) 
optmn <- matrix(NA,nrow=1, ncol=num_est,dimnames=li st(c("m(x*)"),  
                c(1:num_est))) 
bias <- matrix(NA,nrow=1,ncol=num_est,dimnames =lis t(c("bias"),c(1:num_est))) 
optsd <- matrix(NA,nrow=1,ncol=num_est,dimnames=lis t(c("s(x*)"), 
                c(1:num_est))) 
obj <- matrix(NA,nrow=1,ncol=num_est, dimnames=list (c("MSE"),c(1:num_est))) 
 
# FOR loop to Determine OOCs for each of the regression models using Cho's/Lin and  
# Tu's MSE-based optimization scheme.  
    
for (k in 1:num_est) { 
      m1 <-function(x) {      # function for mean response surface model 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(k+k-1)] + coeff[2,(k+k-1)]*x1 + c oeff[3,(k+k-1)]*x2 +  
         coeff[4,(k+k-1)]*x3 + coeff[5,(k+k-1)]*x1^ 2 + coeff[6,(k+k-1)]*x2^2      
         + coeff[7,(k+k-1)]*x3^2 + coeff[8,(k+k-1)] *x1*x2 + coeff[9,(k+k- 
         1)]*x1*x3 + coeff[10,(k+k-1)]*x2*x3} 
      s1 <-function(x) {      # function for std deviation response surface model 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(2*k)] + coeff[2,(2*k)]*x1 + coeff [3,(2*k)]*x2 +  
         coeff[4,(2*k)]*x3+coeff[5,(2*k)]*x1^2 + co eff[6,(2*k)]*x2^2 +    
         coeff[7,(2*k)]*x3^2 + coeff[8,(2*k)]*x1*x2 + coeff[9,(2*k)]*x1*x3 +  
         coeff[10,(2*k)]*x2*x3} 
 
      objective<-function(x) { 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         (s1(c(x1,x2,x3)))^2 + (m1(c(x1,x2,x3))-57. 5)^2 } 
      settings <- nlminb(start=c(0,0,0), objective,  gradient = NULL, hessian   
                          = NULL, lower = c(-4,-4,- 4), upper = c(4,4,4)) 
 
   # Collect results 
 
      OOC[,k] <- settings$par 
      OOC2[1,(3*k-2):(3*k)] <- as.matrix(settings$p ar,nrow=3,ncol=1) 
      optmn[,k] <- m1(settings$par) 
      bias[,k] <- abs(m1(settings$par)-57.5) 
      optsd[,k]   <- s1(settings$par) 
      obj[,k] <- settings$objective 
} 
 
# Tally results for each iteration 
 
results <- as.matrix(rbind(RegMod,OOC,optmn,bias,op tsd,obj)) 
OOC_Tally[j,] <- OOC2 
MSE_Tally[j,] <- results["MSE",] 
Mod_bias[j,] <- results["bias",] 
} 
 
# Compute average performance measures across all iterations 
 
Avg_MSE  <- as.vector(colMeans(MSE_Tally)) 
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Avg_Bias <- as.vector(colMeans(Mod_bias)) 
MSE_Res  <- rbind(MSE_Tally,Avg_MSE) 
Bias_Res <- rbind(Mod_bias,Avg_Bias) 
 
Fig_Res <- rbind(Avg_MSE,Avg_Bias) 
Fig_Res 
 
write.csv(MSE_Tally,file="MSE_TallyMC.csv") 
 

 
C.2  Select components of the R Simulation Code for the Ceramic Coating Process 
 
data1 <-read.table("GoethTilman.txt", header=T) # read in base data from 
                                                                                                             # Goethals and Cho (2011) 
data2 <- subset(data1,select= c(y2bar,s2,k2)) 
xmat  <- subset(data1,select=c(x1,x2,x3)) 
 
# Define function to determine estimate for δδδδ using Equation (6.8) from Chapter 6 
 
delta <- function(x){ 
    (sqrt((pi/2)*(abs(x)^(2/3))/(abs(x)^(2/3)+((4-p i)/2)^(2/3))))} 
 
 
parms <- matrix(NA,nrow=length(data2[,1]),ncol=4,di mnames=list 
             (c(1:length(data2[,1])),c("d","locatio n","scale","shape"))) 
 
 
#  Using FOR loop, use base data to determine estimates for δδδδ (using delta function  above) and for Skew  
#  Normal Parameters (ξ,α,ωξ,α,ωξ,α,ωξ,α,ω) 
#  SHOWN: low asymmetry and low variability codings;  
#  to inject high variability conditions, multiply w by sample(3:6, size=1) 
#  to increase skew, multiply a by 1.5 
 
for (i in 1:length(data2[,1])){ 
    sskew = min((abs(data2[i,3])+0.2),0.9952717) # associate with sample skew  
    d = delta(sskew)       
#   if (sskew<0) d=-1*d 
    w = sqrt((data2[i,2]^2)/(1-(2*d^2)/pi)) 
    l = data2[i,1]-w*d*sqrt(2/pi) 
    a = d/sqrt(1-d^2) 
    parms[i,1] = d 
    parms[i,2] = l 
    parms[i,3] = w*sample(4:6,size=1)         
    parms[i,4] = a*2                         # to increase asymmetry by factor of 2                
} 
       
parms 
despts  = 18 
obs     = 5 
num_est = 10 
reps    = 1000 
 
# Initialize Arrays to be populated during each iteration 
 
skewdata <- matrix(NA, nrow=despts, ncol=obs) 
 
RegMod <- matrix(NA,nrow=10,ncol=num_est,dimnames=l ist(c("Bo","B1","B2","B3",  



 
 

364 

           "B11","B22","B33","B12","B13","B23"),c(" OLS","WLS-Mean","WLS-
Median",  
           "LTS","S","LAD","MM","Robust Huber","GLM "))) 
Mod_bias  <- matrix(NA,ncol=num_est,nrow=reps,dimna mes=list(c(1:reps),  
               c("OLS","WLS-Mean","WLS-Median","LTS ","S","LAD","MM",  
               "Robust Huber","GLM"))) 
MSE_Tally <- matrix(NA,ncol=num_est,nrow=reps, dimn ames=list(c(1:reps),  
               c("OLS","WLS-Mean","WLS-Median","LTS ","S",  
               "LAD","MM","Robust Huber","GLM"))) 
 
# Start simulation  
 
for (j in 1:reps){ 
 
# Generate data from a SN(ξ,α,ωξ,α,ωξ,α,ωξ,α,ω) distribution using the parameters estimated above. 
 
  for(i in 1:despts){ 
       skewdata[i,] <- rsn(obs, parms[i,2], parms[i ,3], parms[i,4]) 
  } 
 
ybar <- matrix(apply(skewdata,1,mean),ncol=1,dimnam es=list(c(1:18),c("ybar"))) 
s    <- matrix(apply(skewdata,1,sd),ncol=1,dimnames =list(c(1:18), 
               c("s"))) 
skew <- matrix(apply(skewdata,1,skewness),ncol=1,di mnames=list(c(1:18), 
               c("skew"))) 
med  <- matrix(apply(skewdata,1,median),ncol=1,dimn ames=list(c(1:18), 
               c("median"))) 
MAD  <- matrix(apply(skewdata,1,mad),ncol=1,dimname s=list(c(1:18),c("MAD"))) 
ybarSN <- matrix(NA,ncol=1,nrow=despts,dimnames=lis t(c(1:despts),c("ybar"))) 
sSN    <- matrix(NA,ncol=1,nrow=despts,dimnames=lis t(c(1:despts),c("s"))) 
 
# Compute estimates for SKEW NORMAL mean and standard deviation 
 
for (i in 1:despts){ 
      ybarSN[i,] <- ybar[i,1]+s[i,1]*(skew[i,1]/sqr t(1+skew[i,1]^2))*sqrt(2/pi) 
      sSN[i,]    <- sqrt(s[i,1]^2*(1-2*((skew[i,1]^ 2)/(1+skew[i,1]^2))/pi))} 
 
# Generate random factor to increase degree of variability at each design point 
 
for (i in 1:despts){ 
     factor=sample(3:6,size=1) 
     s[i,]=s[i,]*factor 
     MAD[i,] = MAD[i,]*factor} 
 

# from this point, the simulation code mirrors the code shown in B.1 with the exception that GLMs use 
distribution family-link combinations specified in Table 7.6  
 
C.3  Sample of R programming code used to evaluate all distribution-link  
        combinations for the application of GLMs. 
 
# GLM models for Metal Cutting Data # 
 
require(MASS) 
require(robust) 
require(robustbase) 
require(quantreg) 
require(sn) 
require(qualityTools) 
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require(AlgDesign) 
require(ICSNP) 
require(moments) 
 
options(digits=5) 
despts  = 20 
obs     = 15 
num_est = 9 
 
simdata<-read.table("metalcutting.txt",header=T) 
xmat  <- as.matrix(simdata[,1:3]) 
data1 <- subset(simdata, select=c(y2,s22)) 
data2 <- matrix(NA,ncol=3,nrow=despts,dimnames=list (c(1:despts),  
                c("y2","factor","s22"))) 
 
for (i in 1:despts){ 
     data2[i,1] <- data1[i,1] 
     factor <- sample(2:5,size=1)           # incorporate more or less variability 
     data2[i,2] <- factor                   # into the simulated data.        
     data2[i,3] <- factor*sqrt(data1[i,2])} # High variability: use  
                                                                                                          # sample(2:5, size=1) 
data2 
data3 <- subset(data2,select=c(y2,s22)) 
data3 
 
# Initialize Arrays 
 
normdata <- matrix(NA, nrow=despts, ncol=obs) 
 
for(i in 1:despts){ 
    normdata [i,] <- rnorm(obs, data3[i,1], data3[i ,2])} 
 
ybar <- matrix(apply(normdata,1,mean),ncol=1,dimnam es=list(c(1:despts),  
               c("ybar"))) 
s    <- matrix(apply(normdata ,1,sd),ncol=1,dimname s=list(c(1:despts),c("s"))) 
 
newdat <- data.frame(cbind(xmat,ybar,med,s,MAD)) 
 
ybar <- newdat$ybar 
s    <- newdat$s 
x1   <- newdat$x1 
x2   <- newdat$x2 
x3   <- newdat$x3 
x11  <- newdat$x1*newdat$x1 
x22  <- newdat$x2*newdat$x2 
x33  <- newdat$x3*newdat$x3 
x1x2 <- newdat$x1*newdat$x2 
x1x3 <- newdat$x1*newdat$x3 
x2x3 <- newdat$x2*newdat$x3 
 
reg1  <- lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,newdat) 
reg1b <- lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,d ata=newdat) 
reg2  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,family=Gamma) 
reg2b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,family=Gamma) 
reg3  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,  
              family=Gamma(link="identity")) 
reg3b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,  
              family=Gamma(link="identity")) 
reg4  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,  
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              family=Gamma(link="log")) 
reg4b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,  
              family=Gamma(link="log")) 
reg5  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,  
              family=inverse.gaussian) 
reg5b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,  
              family=inverse.gaussian) 
reg6  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,  
              family=inverse.gaussian(link="log")) 
reg6b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,  
              family=inverse.gaussian(link="log")) 
reg7  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat,  
              family=inverse.gaussian(link="identit y")) 
reg7b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat,    
              family=inverse.gaussian(link="identit y")) 
reg8  <- glm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2 x3,data=newdat, 
              family=inverse.gaussian(link="inverse ")) 
reg8b <- glm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3, data=newdat, 
              family=inverse.gaussian(link="inverse ")) 
 
coeff <- data.frame(cbind(coef(reg1),coef(reg1b),co ef(reg2),coef(reg2b),  
          coef(reg3),coef(reg3b),coef(reg4),coef(re g4b), coef(reg5), 
          coef(reg5b), coef(reg6),coef(reg6b), coef (reg7),coef(reg7b), 
          coef(reg8),coef(reg8b))) 
 
tab1 <- coef(summary(reg1))[,c(1,2)] 
tab2 <- coef(summary(reg2))[,c(1,2)] 
tab3 <- coef(summary(reg3))[,c(1,2)] 
tab4 <- coef(summary(reg4))[,c(1,2)] 
tab5 <- coef(summary(reg5))[,c(1,2)] 
tab6 <- coef(summary(reg6))[,c(1,2)] 
tab7 <- coef(summary(reg7))[,c(1,2)] 
tab8 <- coef(summary(reg8))[,c(1,2)] 
tab <- cbind(tab1,tab2,tab3,tab4,tab5,tab6,tab7,tab 8) 
tab 
 
# Compute Akaike Information Criterion (AIC) for me an and standard deviation models.  
# Minimums determine model that yields best fit to the data 
 
p<- AIC(reg2,reg3,reg4,reg5,reg6,reg7,reg8) 
q<- AIC(reg2b,reg3b,reg4b,reg5b,reg6b,reg7b,reg8b) 
p 
q 

 
min(p$AIC)    
min(q$AIC) 
 
par(mfrow=c(1,1)) 
e1 <- resid(reg1) 
f1 <- fitted(reg1) 
plot(log(abs(e1))~log(predict(reg1)),xlab="log(pred icted)",ylab="log(resid)",ce
x=1.1,pch=16,cex.lab=1.3) 
w <- glm(log(abs(e1))~log(predict(reg1))) 
abline(w) 
abline(v=c(3.8,4.0),col=2,lty=2) 
abline(h=c(1.13,1.38),col=2,lty=2)
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D:  Supporting Programming Code and Supplementary Results for Chapter 8 
 
D.1  Mathematica programming code graphical outputs. 
 
Needs["MultivariateStatistics`"] 
∆={{.7,0},{0,.2}}; 
µ[x1_,x2_]:=({{x1}, {x2}}); 
 
f[x1_,x2_,y1_,y2_]:=PDF[MultinormalDistribution[{x1,x2},{{.7,0},{0,.2}}], 

                                  {y1,y2}]*(1+Erf[({{0, 1}}).MatrixPower[ ∆,-1/2].({y1,y2}-µ[x1,x2])/ ]); 
 

obj[x1_,x2_,y1_,y2_]:=N[8000* +6000* + 

10000* +12500*( +

)+

]; 
 
NMinimize[{obj[x1,x2,y1,y2],x1>0&&x1<2.5&&x2>94&&x2<100},{x1,x2}] 
 

N[ ] 
{{1.03638×10-21}} 
 
∆={{.07277407^2,.002520596},{0.002520596,.1193343^2}}; 
µ=({{.4656215},{9.996127}}); 
Ψ=({{.4027909},{-.3894773}}); 
 
Transpose[Ψ].∆ 
{{0.00115149,-0.00453115}} 
 
m1[x1_,x2_,x3_]:=0.5764+0.0008*x1+0.2118*x2-0.0388*x3+0.3708*x1^2+0.2995*x2^2+0.4739*x3^2- 

0.4900*x1*x2+0.0825*x1*x3+0.1983*x2*x3; 
s1[x1_,x2_,x3_]:=0.23149-0.03264*x1+0.00142*x2+0.01276*x3-0.04617*x1^2-0.05523*x2^2-0.05738*x3^2-
0.00678*x1*x2- 

0.00489*x1*x3+0.04654*x2*x3; 
g1[x1_,x2_,x3_]:=0.5527-0.06067*x1-0.01197*x2+0.16415*x3-0.07908*x1^2-0.04884*x2^2-0.11364*x3^2-
0.12814*x1*x2- 

0.03131*x1*x3-0.08179*x2*x3; 
m2[x1_,x2_,x3_]:=10.0181+0.04059*x1+0.03509*x2+0.07718*x3-0.01385*x1^2+0.00971*x2^2- 

0.00443*x3^2+0.00083*x1*x2-0.02333*x1*x3-0.02667*x2*x3; 
s2[x1_,x2_,x3_]:=0.10960-0.00292*x1-0.00305*x2+0.00289*x3-0.01156*x1^2-0.01173*x2^2- 

0.00726*x3^2+0.02525*x1*x2+0.00464*x1*x3-0.00649*x2*x3; 
g2[x1_,x2_,x3_]:=-0.1819-0.08458*x1+0.14570*x2+0.10559*x3+0.12298*x1^2-0.01346*x2^2+0.02515*x3^2- 

0.11104*x1*x2+0.10554*x1*x3+0.07178*x2*x3; 
m3[x1_,x2_,x3_]:=96.6941+0.3483*x1+0.1088*x2+0.2748*x3-1.0088*x1^2-0.1546*x2^2-0.3284*x3^2-
0.0629*x1*x2- 

0.5179*x1*x3-0.2713*x2*x3; 
s3[x1_,x2_,x3_]:=0.2552-0.02873*x1+0.01041*x2+0.11675*x3-0.0155*x1^2+0.0281*x2^2+0.0085*x3^2-
0.0659*x1*x2- 

0.0103*x1*x3+0.0091*x2*x3; 
g3[x1_,x2_,x3_]:=-0.2186+0.21982*x1-0.05266*x2-0.06542*x3+0.0088*x1^2-0.1929*x2^2+0.0897*x3^2-
0.1821*x1*x2- 

0.0377*x1*x3+0.0135*x2*x3; 
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c12[x1_,x2_,x3_]:=0.009087-0.002237*x1-0.000247*x2+0.000142*x3-0.002076*x1^2-0.003025*x2^2-
0.003848*x3^2- 

0.000582*x1*x2-0.000368*x1*x3+0.000215*x2*x3; 
c13[x1_,x2_,x3_]:=0.00600-0.004558*x1-0.000282*x2+0.001347*x3+0.005347*x1^2-0.002103*x2^2-
0.002696*x3^2- 

0.004535*x1*x2-0.000910*x1*x3+0.002449*x2*x3; 
c23[x1_,x2_,x3_]:=0.01449-0.002783*x1+0.003221*x2+0.007672*x3-0.007610*x1^2- 

0.000075*x2^2+0.001800*x3^2+0.000447*x1*x2-0.001439*x1*x3+0.000797*x2*x3; 
m1[0,0,0] 
m2[0,0,0] 
m3[0,0,0] 
s1[0,0,0]^2 
c12[0,0,0] 
c13[0,0,0] 
s2[0,0,0]^2 
c23[0,0,0] 
s3[0,0,0]^2 
g1[0,0,0] 
g2[0,0,0] 
g3[0,0,0] 
0.5764 
10.0181 
96.6941 
0.0535876 
0.009087 
0.006 
0.0120122 
0.01449 
0.065127 
0.5527 
-0.1819 
-0.2186 
 
Needs["MultivariateStatistics`"] 
∆={{.0535876,.009087,.006},{.009087,.0120122,.01449},{.006,.01449,.065127}}; 
µ=({{.5764},{10.0181},{96.6941}}); 
 
f[y1_,y2_,y3_]:=PDF[MultinormalDistribution[{0.5764,10.0181,96.6941},{{.0535876,.009087,.006}, 
                           {.009087,.0120122,.01449},{.006,.01449,.065127}}], 

                          {y1,y2,y3}]*(1+Erf[({{.5527, -.1819, -.2186}   }).MatrixPower[∆,-1/2].({y1,y2,y3}-µ)/ ]); 
 

N[ ] 
{{0.998895}} 
 
f[λ1_,λ2_,y1_,y2_]:=λ1*Exp[-λ1*y1-λ2*y2]; 
Plot3D[f[5,.5,y1,y2],{y1,0,2.5},{y2,0,2.5},AxesLabel→{y1,y2},PlotRange→{{0,2.5},{0,2.5},{0,5}}] 

2
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(*Plot for Y1 and Y2*) 
g[y1_,y2_]:=.25*y1^2+.25*(y2-10)^2+.15*(y1*(y2-10)); 
f[λ1_,λ2_,y1_,y2_]:=(λ1)*Exp[(-λ1*y1-λ2*(y2))]; 
Show[Plot3D[f[5,.1,y1,y2],{y1,0,2.5},{y2,9.5,10.5},AxesLabel→{y1,y2},PlotRange→{{0,2.5},{9.5,10.5},{0,2.5}}], 

Plot3D[g[y1,y2],{y1,0,2.5},{y2,9.5,10.5},AxesLabel→{y1,y2}]] 

 
(*Plot for Y1 and Y3*) 
g[y1_,y3_]:=.25*y1^2+.25*(y3-100)^2+.15*(y1*(y3-100)); 
f[λ1_,λ3_,y1_,y3_]:=100+(λ1)*(λ3)*Exp[(-λ1*(y1)-λ3*(y3))]; 
Show[Plot3D[f[1,1,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,10}}], 

Plot3D[g[y1,y3],{y1,0,2.5},{y3,94,100}]] 

 
f[λ1_,λ3_,y1_,y3_]:=10-(λ1)*(λ3)*Exp[(-λ1*(y1)-λ3*(y3-100))]; 
Show[Plot3D[f[.5,.5,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3}]] 
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f[λ1_,λ3_,y1_,y3_]:=(λ1)*Exp[(-λ1*y1)] -(λ3)*Exp[(-λ1*y1-λ3*(y3-100))]; 
Show[Plot3D[f[5,.6,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,5}}]] 

 
f[λ1_,λ3_,y1_,y3_]:=(λ1)*Exp[(-λ1*y1)]-(λ3)*Exp[(-λ1*y1-λ3*(y3-100))]; 
Show[Plot3D[f[4.5,.4,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,5}}]] 

 
g[y1_,y3_]:=.25*y1^2+.25*(y3-100)^2+.15*(y1*(y3-100)); 
f[λ1_,λ3_,y1_,y3_]:=(λ1)*Exp[(-λ1*y1)]+10/Exp[(-λ3*(y3-100))]; 
Show[Plot3D[f[10,2,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,10}}], 

Plot3D[g[y1,y3],{y1,0,2.5},{y3,94,100}]] 

 
g[y1_,y3_]:=.25*y1^2+.25*(y3-100)^2+.15*(y1*(y3-100)); 
f[λ1_,λ3_,y1_,y3_]:=(λ1)*Exp[(-λ1*y1)]+10*Exp[(λ3*(y3-100))]; 
Show[Plot3D[f[10,2,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,10}}], 

Plot3D[g[y1,y3],{y1,0,2.5},{y3,94,100}]] 
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g[y2_,y3_]:=.25*(y2-100)^2+.25*(y3-10)^2+.15*(y1*(y3-100)); 
f[λ1_,λ3_,y1_,y3_]:=(λ1)*Exp[(-λ1*y1)]+10*Exp[(λ3*(y3-100))]; 
Show[Plot3D[f[10,2,y1,y3],{y1,0,2.5},{y3,94,100},AxesLabel→{y1,y3},PlotRange→{{0,2.5},{94,100},{0,10}}], 

Plot3D[g[y1,y3],{y1,0,2.5},{y3,94,100}]] 

 
 
 

D.2  R programming code for simulation of each scenario. 
 
D.2.1  Optimization of Y1 and Y2 (S- and N-type QCs) 
 
library(car) 
library(sn) 
library(NORMT3) 
count<-1 

 
# Start simulation (while loop) 
 
while(count<101){ 
  print(count) 
  v1<-runif(1,.4,1) 
  v2<-runif(1,.1,.6) 
  v12<-runif(1,-.1,.1) 
  print(v1) 
  print(v2) 
  print(v12) 
  mu<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     c(x1,x2)} 
  Omega<-matrix(c(v1,v12,v12,v2),ncol=2,nrow=2) 
  alpha<-c(0,0) 
 

# Create functions for each double integral in the objective function 
 one<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x3) { sapply(x3, function(x 3) { integrate(function(x4) 
{ 
        sapply(x4, function(x4) dmsn(c(x3,x4),mu(c( x1,x2)), Omega, alpha))}, 
9.5,    
        10.5)$value })}, 2.5, Inf)$value} 
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  two<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) dmsn(c(x3,x4),mu(c( x1,x2)), Omega, alpha))}, -
Inf,    
        2.5)$value })}, -Inf, 9.5)$value} 
  three<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) dmsn(c(x3,x4),mu(c( x1,x2)), Omega, alpha))}, -
Inf,    
        2.5)$value })}, 10.5, Inf)$value} 
  four<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) dmsn(c(x3,x4),mu(c( x1,x2)), Omega, alpha))}, 
2.5,    
        Inf)$value })}, -Inf, 9.5)$value} 
  five<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) dmsn(c(x3,x4),mu(c( x1,x2)), Omega, alpha))}, 
2.5,  
        Inf)$value })}, 10.5, Inf)$value} 
  six<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) (.25*x3^2+.25*(x4-1 0)^2+.15*x3*(x4-   
        10))*dmsn(c(x3,x4),mu(c(x1,x2)), Omega, alp ha))}, 0, 2.5)$value })}, 
9.5,  
        10.5)$value} 
  seven<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     integrate(function(x4) { sapply(x4, function(x 4) { integrate(function(x3) 
{ 
        sapply(x3, function(x3) (5*exp(-5*x3-
.1*x4))*dmsn(c(x3,x4),mu(c(x1,x2)),    



 
 

373 

        Omega, alpha))}, 0, 2.5)$value })}, 9.5, 10 .5)$value} 
  objective1<-function(x) { 
     x1<-x[1] 
     x2<-x[2] 
     x3<-x[3] 
     x4<-x[4] 
     80*(one(c(x1,x2,x3,x4)))+   
60*(two(c(x1,x2,x3,x4)))+100*(three(c(x1,x2,x3,x4)) )+ 
        125*(four(c(x1,x2,x3,x4))+five(c(x1,x2,x3,x 4)))+six(c(x1,x2,x3,x4))+ 
        100*seven(c(x1,x2,x3,x4))} 
 
  print(r<-nlminb(start=c(2,10,1,10), objective1, g radient = NULL, hessian = 
NULL,    
                  lower = c(0,9.5,-Inf,-Inf), upper  = c(2.5,10.5,Inf,Inf))) 
  lambda<-drop(1/sqrt(1+t(alpha)%*%Omega%*%alpha))* (Omega%*%alpha) 
  print("Lambda =") 
  print(lambda) 
  print("Optimal Process Mean =") 
  print(mu(c(r$par[1],r$par[2]))+lambda*sqrt(2/pi))  
  print("") 
  print("") 
  count<-count+1 
  } 

# End simulation while loop 
 
D.2.2  Optimization of Y1 and Y3 (S- and L-type QCs) 
 
library(car) 
library(sn) 
library(NORMT3) 
count<-1 

 
#Start simulation (while loop) 
while(count<101){ 
print(count) 
v1<-runif(1,.4,1) 
v3<-runif(1,1,3) 
v13<-runif(1,-.1,.1) 
print(v1) 
print(v3) 
print(v13) 
mu<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   c(x1,x2)} 
Omega<-matrix(c(v1,v13,v13,v3),ncol=2,nrow=2) 
alpha<-c(0,0) 
one<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, 2.5, 
Inf)$value })}, 94, Inf)$value} 
two<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
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   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, -
Inf, 2.5)$value })}, -Inf, 94)$value} 
three<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, 2.5, 
Inf)$value })}, -Inf, 94)$value} 
four<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) (.25*x3^2+.25*(x4-100 )^2+.15*x3*(x4-
100))*dmsn(c(x3,x4),mu(c(x1,x2)), Omega, alpha))}, 0, 2.5)$value })}, 94, 
100)$value} 
five<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) (10*exp(-10*x3)+10*ex p(2*(x4-
100)))*dmsn(c(x3,x4),mu(c(x1,x2)), Omega, alpha))},  0, 2.5)$value })}, 94, 
100)$value} 
objective1<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   80*(one(c(x1,x2,x3,x4)))+ 
100*(two(c(x1,x2,x3,x4)))+125*(three(c(x1,x2,x3,x4) ))+(four(c(x1,x2,x3,x4))+100
*five(c(x1,x2,x3,x4)))} 
print(r<-nlminb(start=c(1.5,97,1,100), objective1, gradient = NULL, hessian = 
NULL, lower = c(0,94,-Inf,-Inf), upper = c(2.5,100, Inf,Inf))) 
lambda<-drop(1/sqrt(1+t(alpha)%*%Omega%*%alpha))*(O mega%*%alpha) 
print("Lambda =") 
print(lambda) 
print("Optimal Process Mean =") 
print(mu(c(r$par[1],r$par[2]))+lambda*sqrt(2/pi)) 
print("") 
print("") 
count<-count+1} 

# End simulation while loop 
 
D.2.3   Optimization of Y2 and Y3 (N- and L-type QCs) 
 
library(car) 
library(sn) 
library(NORMT3) 
count<-1 
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#Start simulation (while loop) 
while(count<101){ 
print(count) 
v2<-runif(1,.1,.6) 
v3<-runif(1,1,3) 
v23<-runif(1,-.1,.1) 
print(v2) 
print(v3) 
print(v23) 
mu<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   c(x1,x2)} 
Omega<-matrix(c(v3,v23,v23,v2),ncol=2,nrow=2) 
alpha<-c(0,0) 
one<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, 94, 
Inf)$value })}, -Inf, 9.5)$value} 
two<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, 94, 
Inf)$value })}, 10.5, Inf)$value} 
three<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x3) { sapply(x3, function(x3)  { integrate(function(x4) { 
      sapply(x4, function(x4) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, 9.5, 
10.5)$value })}, -Inf, 94)$value} 
four<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, -
Inf, 94)$value })}, -Inf, 9.5)$value} 
five<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) dmsn(c(x3,x4),mu(c(x1 ,x2)), Omega, alpha))}, -
Inf, 94)$value })}, 10.5, Inf)$value} 
six<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
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   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) (.25*(x3-100)^2+.25*( x4-10)^2+.15*(x3-100)*(x4-
10))*dmsn(c(x3,x4),mu(c(x1,x2)), Omega, alpha))}, 9 4, 100)$value })}, 9.5, 
10.5)$value} 
seven<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   integrate(function(x4) { sapply(x4, function(x4)  { integrate(function(x3) { 
      sapply(x3, function(x3) (10*exp(2*(x3-100)))* dmsn(c(x3,x4),mu(c(x1,x2)), 
Omega, alpha))}, 94, 100)$value })}, 9.5, 10.5)$val ue} 
objective1<-function(x) { 
   x1<-x[1] 
   x2<-x[2] 
   x3<-x[3] 
   x4<-x[4] 
   60*(one(c(x1,x2,x3,x4)))+ 
100*(two(c(x1,x2,x3,x4)))+100*(three(c(x1,x2,x3,x4) ))+125*(four(c(x1,x2,x3,x4))
+five(c(x1,x2,x3,x4)))+six(c(x1,x2,x3,x4))+100*seve n(c(x1,x2,x3,x4))} 
print(r<-nlminb(start=c(97.5,9.75,100,10), objectiv e1, gradient = NULL, hessian 
= NULL, lower = c(94,9.5,-Inf,-Inf), upper = c(100, 10.5,Inf,Inf))) 
lambda<-drop(1/sqrt(1+t(alpha)%*%Omega%*%alpha))*(O mega%*%alpha) 
print("Lambda =") 
print(lambda) 
print("Optimal Process Mean =") 
print(mu(c(r$par[1],r$par[2]))+lambda*sqrt(2/pi)) 
print("") 
print("") 
count<-count+1 
} 

# End simulation 
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D.3  Simulation Output.   
 

Table D.1.  Simulation output from each of the 100 iterations performed in the multi-
variate cost robustness simulation.   

Output includes the optimal process mean vector for each scenario (Y1*,Y2*; Y1*,Y3*; 
and Y2*,Y3*) and the Expected Total Cost (E[TC]) at each iterate.  The mean and 

median E[TC] are displayed at the head of each scenario and correspond to the outputs in 
Figures 8.3, 8.4, and 8.5. 

 
Figure 8.3 (i) Figure 8.3 (ii) Figure 8.4 (i) Figure 8.4 (ii) Figure 8.5 (i) Figure 8.5 (ii)  

 
Y1, Y2 - with Skew Y1, Y2 - Without Skew Y1, Y3 - with Skew Y1, Y3 - Without Skew Y2, Y3 - with Skew Y2, Y3 - Without Skew 

 
  

                
  

 
Mean TC:  30.59 Mean TC:  36.15 Mean TC:  23.04 Mean TC:  38.17 Mean TC:  33.57 Mean TC:  41.60 

 
Median TC:  31.98 Median TC:  37.49 Median TC:  23.19 Median TC:  38.42 Median TC:  35.59 Median TC:  42.80 

Sim   
                

  
Run Y1* Y2* E[TC] Y1* Y2* E[TC] Y1* Y3* E[TC] Y1* Y3* E[TC] Y2* Y3* E[TC] Y2* Y3* E[TC] 

1 1.28 9.69 42.67 0.00 9.62 46.07 1.48 96.10 20.86 1.60 96.08 24.37 96.46 9.84 33.00 96.05 9.68 55.06 
2 1.25 9.69 40.65 1.15 9.66 44.99 1.48 95.93 26.55 1.61 95.85 45.67 96.50 9.74 39.68 95.88 9.87 45.10 
3 1.31 9.94 13.92 1.35 9.93 19.88 1.50 95.95 29.26 1.61 95.77 41.19 96.50 9.71 41.47 96.12 9.93 20.98 
4 1.32 9.95 12.84 1.18 9.94 21.36 1.45 95.97 22.35 1.59 95.83 47.93 96.48 9.80 35.58 96.17 9.81 35.33 
5 1.31 9.83 33.53 0.00 9.79 38.47 1.47 96.09 19.04 1.61 95.80 48.21 96.45 9.86 28.61 96.16 9.69 47.04 
6 1.25 9.70 40.88 1.00 9.65 45.55 1.52 96.00 28.09 1.61 96.02 32.55 96.42 9.70 39.90 95.95 9.81 49.96 
7 1.28 9.81 32.48 1.24 9.80 37.58 1.50 96.08 25.05 1.61 95.94 34.87 96.46 9.86 29.81 95.99 9.89 35.04 
8 1.26 9.70 40.86 0.93 9.65 45.56 1.59 96.24 22.29 1.60 96.06 25.95 96.47 9.76 37.67 95.97 9.78 51.29 
9 1.31 9.77 39.15 0.00 9.71 42.39 1.51 96.18 17.48 1.62 95.75 44.90 96.47 9.74 38.26 96.16 9.63 51.89 
10 1.28 9.81 32.62 1.18 9.79 38.06 1.61 96.26 23.15 1.60 96.06 33.36 96.39 9.84 30.72 96.01 9.87 38.78 
11 1.32 9.80 36.77 0.00 9.76 40.48 1.53 96.17 24.97 1.60 96.08 25.96 96.47 9.78 36.50 96.12 9.65 51.28 
12 1.29 9.86 28.91 1.14 9.85 35.85 1.42 95.78 20.91 1.61 96.02 31.53 96.45 9.70 40.28 96.11 9.82 38.57 
13 1.31 9.86 29.21 0.92 9.84 35.67 1.56 96.23 26.27 1.60 96.10 30.02 96.50 9.74 39.54 96.13 9.75 44.18 
14 1.29 9.77 38.25 0.00 9.71 42.71 1.43 96.00 17.00 1.61 95.97 38.41 96.44 9.89 24.69 96.11 9.70 49.73 
15 1.29 9.87 27.34 1.16 9.85 33.75 1.57 96.23 26.40 1.62 95.85 42.53 96.39 9.83 30.83 96.08 9.84 37.74 
16 1.29 9.76 38.69 0.00 9.70 43.02 1.56 96.14 28.72 1.61 96.05 31.72 96.50 9.75 38.77 96.10 9.70 50.21 
17 1.27 9.72 40.13 0.00 9.65 45.03 1.46 96.08 19.82 1.60 95.88 34.94 96.37 9.93 16.70 96.04 9.75 50.00 
18 1.28 9.77 37.29 0.87 9.74 43.06 1.57 96.24 26.71 1.61 95.96 36.31 96.50 9.73 40.13 96.09 9.74 47.65 
19 1.29 9.74 40.02 0.00 9.68 43.97 1.46 95.93 23.91 1.62 95.82 44.46 96.41 9.79 34.89 96.07 9.70 52.32 
20 1.29 9.83 31.88 1.04 9.81 37.92 1.46 96.04 19.58 1.60 95.94 40.00 96.44 9.86 30.40 96.08 9.80 42.69 
21 1.25 9.69 41.10 1.03 9.64 45.69 1.42 95.96 16.05 1.59 96.02 36.43 96.41 9.91 20.83 95.93 9.82 49.48 
22 1.29 9.86 27.29 1.33 9.85 31.93 1.44 95.95 18.29 1.62 95.85 39.50 96.50 9.73 40.11 96.01 9.94 24.49 
23 1.28 9.76 37.83 0.89 9.72 42.98 1.49 96.02 27.54 1.61 96.02 30.70 96.51 9.70 41.86 96.04 9.76 48.75 
24 1.26 9.73 38.97 1.12 9.70 43.90 1.54 96.13 27.07 1.61 95.78 40.28 96.46 9.81 34.06 95.95 9.84 44.76 
25 1.27 9.77 35.89 1.25 9.75 40.26 1.48 96.04 24.74 1.60 95.93 40.69 96.46 9.78 35.89 95.91 9.91 35.72 
26 1.30 9.91 20.64 1.24 9.91 28.27 1.47 95.94 24.71 1.62 95.91 39.12 96.47 9.82 34.06 96.15 9.85 32.54 
27 1.26 9.71 39.73 1.19 9.69 44.63 1.47 95.91 23.90 1.59 96.09 33.02 96.42 9.82 32.26 95.91 9.87 42.81 
28 1.28 9.77 37.46 0.93 9.73 42.76 1.51 96.00 27.67 1.61 95.93 36.23 96.48 9.78 36.72 96.04 9.77 47.61 
29 1.36 9.92 21.65 0.00 9.91 27.86 1.45 95.89 21.22 1.61 95.82 46.90 96.42 9.94 16.60 96.20 9.67 44.74 
30 1.31 9.86 29.65 0.90 9.84 35.95 1.43 96.08 12.62 1.60 96.07 30.68 96.43 9.70 40.26 96.13 9.74 44.24 
31 1.34 9.92 21.55 0.89 9.90 29.10 1.52 96.16 20.60 1.62 95.76 43.40 96.39 9.87 26.53 96.18 9.72 42.75 
32 1.34 9.95 13.74 1.07 9.94 22.38 1.48 96.13 18.53 1.60 96.05 27.66 96.42 9.72 39.36 96.19 9.76 38.62 
33 1.28 9.76 38.16 0.82 9.72 43.18 1.52 96.13 27.24 1.59 95.79 37.64 96.48 9.78 37.45 96.05 9.74 50.06 
34 1.31 9.93 17.09 1.23 9.92 24.56 1.52 96.09 27.05 1.61 95.99 34.46 96.46 9.70 40.25 96.15 9.85 32.46 
35 1.29 9.85 28.25 1.30 9.83 33.11 1.51 95.95 27.76 1.58 96.06 35.46 96.46 9.86 30.15 96.00 9.93 27.85 
36 1.30 9.93 16.43 1.31 9.92 22.94 1.49 96.02 26.04 1.61 95.99 37.05 96.51 9.69 41.36 96.12 9.90 26.28 
37 1.28 9.84 30.51 1.18 9.83 36.58 1.49 95.91 28.50 1.62 95.77 48.09 96.41 9.91 20.30 96.06 9.85 37.39 
38 1.35 9.94 16.72 0.88 9.93 24.69 1.42 95.84 19.57 1.59 95.96 40.49 96.51 9.70 41.97 96.21 9.72 41.28 
39 1.32 9.87 28.43 0.82 9.85 34.82 1.58 96.25 25.97 1.62 95.77 44.32 96.41 9.84 30.14 96.15 9.72 44.81 
40 1.32 9.79 37.87 0.00 9.74 40.90 1.45 96.13 11.83 1.58 96.00 39.30 96.43 9.90 23.80 96.18 9.61 51.39 
41 1.33 9.88 27.63 0.72 9.86 33.94 1.53 96.11 28.14 1.59 95.82 35.81 96.47 9.80 34.91 96.17 9.70 44.71 
42 1.34 9.93 19.18 0.93 9.92 26.92 1.49 96.09 22.28 1.60 95.83 46.59 96.46 9.86 29.49 96.20 9.73 41.02 
43 1.26 9.69 41.70 0.00 9.60 46.33 1.46 95.93 21.97 1.59 95.87 45.98 96.51 9.70 42.05 96.04 9.73 51.53 
44 1.28 9.82 31.78 1.24 9.81 37.00 1.55 96.21 24.12 1.59 95.88 44.38 96.38 9.94 15.41 96.00 9.89 34.66 
45 1.31 9.95 11.67 1.31 9.94 19.10 1.45 96.10 13.81 1.59 95.93 29.69 96.47 9.77 36.80 96.14 9.89 26.57 
46 1.26 9.73 39.13 1.04 9.70 44.20 1.56 96.22 21.15 1.61 96.00 35.72 96.51 9.69 42.24 95.98 9.81 47.02 
47 1.31 9.94 14.84 1.24 9.94 22.61 1.46 96.08 16.66 1.62 95.77 48.58 96.52 9.67 42.85 96.16 9.85 31.71 
48 1.26 9.75 37.35 1.21 9.73 42.05 1.53 96.19 22.12 1.61 95.81 47.64 96.50 9.71 41.61 95.92 9.89 39.67 
49 1.30 9.84 31.94 0.94 9.82 38.07 1.51 96.05 28.64 1.60 95.98 37.09 96.42 9.83 31.52 96.11 9.76 44.18 
50 1.26 9.70 40.83 1.04 9.67 46.02 1.47 96.02 21.05 1.60 95.88 44.74 96.46 9.85 30.55 95.98 9.80 48.25 
51 1.32 9.85 32.02 0.00 9.81 37.03 1.56 96.20 25.40 1.58 95.99 39.71 96.43 9.91 22.40 96.16 9.69 46.43 
52 1.29 9.74 40.04 0.00 9.69 43.63 1.53 96.09 30.10 1.60 95.90 33.03 96.48 9.70 40.82 96.10 9.67 52.34 
53 1.33 9.93 18.44 1.02 9.92 26.34 1.52 95.95 30.15 1.62 95.74 47.52 96.46 9.74 38.46 96.18 9.76 39.79 
54 1.33 9.88 27.51 0.85 9.85 34.16 1.42 95.82 20.54 1.59 95.82 47.95 96.43 9.91 23.60 96.15 9.72 44.53 
55 1.30 9.76 39.28 0.00 9.71 42.56 1.53 96.09 30.94 1.62 95.82 41.47 96.47 9.82 33.39 96.13 9.64 52.06 
56 1.33 9.84 33.08 0.00 9.81 37.37 1.45 96.11 14.06 1.61 95.92 36.86 96.41 9.92 19.77 96.15 9.66 48.75 
57 1.27 9.69 42.43 0.00 9.62 46.14 1.51 96.15 21.15 1.60 96.05 25.56 96.45 9.81 33.88 96.03 9.70 55.09 
58 1.29 9.84 31.82 0.99 9.82 38.47 1.56 96.19 25.55 1.60 95.81 48.21 96.44 9.77 36.38 96.12 9.76 43.25 
59 1.27 9.80 33.59 1.19 9.79 38.94 1.46 95.84 24.78 1.59 95.88 44.60 96.44 9.87 29.06 96.00 9.87 38.35 
60 1.30 9.92 17.58 1.32 9.92 23.79 1.52 96.16 21.19 1.61 95.88 42.43 96.43 9.72 39.19 96.12 9.91 25.18 
61 1.29 9.71 42.36 0.00 9.64 45.15 1.45 96.10 15.38 1.62 95.81 42.00 96.41 9.91 20.90 96.14 9.61 54.58 
62 1.32 9.93 17.71 1.09 9.92 25.67 1.50 96.06 25.71 1.60 95.85 35.51 96.41 9.78 35.59 96.18 9.78 38.00 
63 1.26 9.76 36.82 1.15 9.75 42.10 1.45 95.89 24.16 1.62 95.78 45.80 96.46 9.75 37.86 95.98 9.85 42.09 
64 1.28 9.79 34.20 1.29 9.78 38.30 1.49 96.04 22.61 1.60 95.90 43.07 96.38 9.82 32.40 95.92 9.93 31.15 
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Table D.1 (continued. 
 

Sim 
Run Y1* Y2* E[TC] Y1* Y2* E[TC] Y1* Y3* E[TC] Y1* Y3* E[TC] Y2* Y3* E[TC] Y2* Y3* E[TC] 
65 1.31 9.93 14.60 1.33 9.93 21.10 1.48 95.90 24.33 1.61 95.96 38.20 96.47 9.83 33.06 96.13 9.91 23.41 
66 1.29 9.82 30.98 1.31 9.80 35.28 1.50 95.96 26.49 1.57 96.10 33.81 96.46 9.84 30.86 95.95 9.95 27.69 
67 1.31 9.91 19.02 1.35 9.91 24.26 1.45 96.01 18.58 1.61 95.75 50.19 96.41 9.94 16.09 96.09 9.94 20.22 
68 1.33 9.85 32.45 0.00 9.81 37.39 1.53 96.17 20.37 1.61 95.96 39.18 96.44 9.76 37.13 96.14 9.68 48.22 
69 1.30 9.88 23.82 1.33 9.87 28.74 1.56 96.21 18.71 1.62 95.76 48.91 96.51 9.69 42.23 96.04 9.94 22.98 
70 1.29 9.88 26.26 1.16 9.85 33.01 1.53 96.13 27.69 1.58 96.09 33.69 96.44 9.86 30.37 96.09 9.84 37.93 
71 1.33 9.93 16.60 1.09 9.93 24.72 1.50 96.17 16.65 1.61 95.91 39.56 96.42 9.76 36.60 96.18 9.78 37.93 
72 1.30 9.91 19.01 1.33 9.92 26.05 1.46 95.97 20.99 1.60 96.01 28.53 96.43 9.91 22.03 96.12 9.91 24.66 
73 1.29 9.88 24.68 1.23 9.88 31.56 1.51 96.04 27.39 1.59 95.80 36.40 96.05 9.70 40.29 96.11 9.86 33.54 
74 1.29 9.84 29.52 1.31 9.84 34.78 1.59 96.24 21.19 1.60 95.88 33.89 96.48 9.79 36.33 96.00 9.92 27.23 
75 1.31 9.75 40.27 0.00 9.70 43.09 1.45 95.91 21.35 1.61 95.86 42.65 96.47 9.76 37.41 96.13 9.62 53.33 
76 1.30 9.89 22.84 1.33 9.89 28.24 1.59 96.25 26.42 1.61 96.05 31.73 96.47 9.83 32.83 96.07 9.93 23.37 
77 1.26 9.70 39.85 1.21 9.69 44.53 1.53 96.10 28.09 1.60 95.90 34.50 96.47 9.76 37.76 95.89 9.88 41.82 
78 1.28 9.69 42.88 0.00 9.62 45.73 1.56 96.21 19.39 1.58 95.98 26.34 96.50 9.76 38.14 96.11 9.63 55.18 
79 1.26 9.76 37.07 1.16 9.73 41.95 1.50 96.12 22.75 1.59 95.81 48.46 96.44 9.90 24.30 95.95 9.86 42.25 
80 1.32 9.85 32.38 0.00 9.81 37.32 1.48 96.12 16.37 1.60 96.09 24.33 96.50 9.75 39.39 96.14 9.69 47.93 
81 1.30 9.78 38.04 0.00 9.73 41.79 1.48 96.03 21.92 1.60 95.88 44.39 96.48 9.76 37.57 96.12 9.67 50.83 
82 1.30 9.88 25.47 1.12 9.86 32.33 1.46 96.11 15.34 1.60 95.98 28.82 96.51 9.72 40.98 96.11 9.82 38.63 
83 1.33 9.90 24.27 0.92 9.87 31.56 1.45 95.91 23.23 1.61 95.98 36.82 96.50 9.74 39.88 96.16 9.73 43.17 
84 1.28 9.84 30.45 1.17 9.83 36.43 1.54 96.20 25.59 1.62 95.75 45.79 96.42 9.68 41.13 96.06 9.85 37.83 
85 1.29 9.71 41.88 0.00 9.66 44.79 1.52 95.96 29.19 1.59 96.06 23.80 96.40 9.75 37.10 96.10 9.64 54.60 
86 1.34 9.90 24.95 0.00 9.87 31.12 1.53 96.11 29.63 1.61 95.84 45.10 96.50 9.73 40.48 96.22 9.68 44.09 
87 1.28 9.83 31.56 1.15 9.82 38.16 1.51 96.02 28.67 1.60 96.02 29.18 96.39 9.86 27.78 96.08 9.83 39.09 
88 1.31 9.88 26.11 1.03 9.87 33.14 1.53 96.03 29.53 1.61 95.98 34.09 96.42 9.94 16.37 96.15 9.78 40.56 
89 1.26 9.76 36.62 1.14 9.73 41.61 1.58 96.23 20.61 1.59 95.94 29.46 96.46 9.85 30.74 95.96 9.86 42.67 
90 1.27 9.74 39.35 0.00 9.67 44.40 1.42 95.97 17.02 1.59 95.94 29.26 96.46 9.85 30.48 96.05 9.74 49.27 
91 1.29 9.79 36.70 0.79 9.75 41.90 1.45 96.07 17.27 1.59 95.85 34.17 96.42 9.91 24.20 96.08 9.73 48.82 
92 1.30 9.90 21.55 1.25 9.90 29.23 1.55 96.21 18.57 1.60 95.82 36.28 96.52 9.68 42.41 96.14 9.86 31.73 
93 1.31 9.92 19.33 1.14 9.92 27.38 1.51 96.12 21.61 1.61 95.82 46.92 96.47 9.81 33.90 96.18 9.80 36.68 
94 1.28 9.71 41.67 0.00 9.64 45.32 1.54 96.12 26.65 1.60 95.95 39.34 96.46 9.84 32.35 96.08 9.68 53.24 
95 1.27 9.80 33.68 1.24 9.78 38.50 1.53 96.02 32.07 1.61 95.91 38.44 96.46 9.86 30.02 95.96 9.90 35.58 
96 1.36 9.93 19.22 0.00 9.92 25.72 1.53 96.19 18.07 1.62 95.87 40.20 96.41 9.89 24.33 96.22 9.69 42.79 
97 1.33 9.91 22.03 0.92 9.90 29.41 1.49 96.01 23.69 1.62 95.85 42.40 96.51 9.72 40.83 96.18 9.73 41.93 
98 1.36 9.91 23.60 0.00 9.89 28.85 1.43 95.93 20.33 1.60 95.74 40.67 96.49 9.68 41.78 96.22 9.66 44.77 
99 1.28 9.80 34.67 1.05 9.76 40.29 1.60 96.26 26.06 1.62 95.80 45.14 96.38 9.83 31.27 96.03 9.81 44.52 
100 1.28 9.79 35.86 0.94 9.75 41.34 1.51 96.09 25.32 1.61 96.03 30.45 96.47 9.77 36.52 96.05 9.77 47.24 
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E:  Supporting Programming Code and Supplementary Results for Chapter 9 
 
E.1.  Simulation components for OLS and WLS methods (R programming code). 
 
### OLS and WLS Methods with FULL 2ND ORDER MODELS ### 
 
# Load required package libraries 
require(AlgDesign) 
require(ICSNP) 
require(rgl) 
 
# Call in source data (original printing press experiment, Box-Draper (1987)) 
Origprintdat <- read.table("printOrig.txt",header=T ) 
Origprintdat 
 
xmat <- subset(Origprintdat,select=c(x1,x2,x3)) 
 
# Establish simulation parameters 
obs = 3      # number of simulated observations per  design point 
reps = 1     # number of iterations of the experime nt to perform 
 
# Function created to compute the Prediction Error Sums of Squares (PRESS) 
PRESS <- function(object){ 
   press.resid = resid(object)/(1-hatvalues(object) ) 
   sum(press.resid^2)} 
 
# Declare matrices to be filled during simulation execution 
printobs <- matrix(NA,nrow=27,ncol=obs) 
estimator <- matrix(NA,nrow=27,ncol=2,dimnames=list (c(1:27),c("m","s"))) 
 
Press <- matrix(NA,nrow=reps,ncol=4,dimnames=list(c (1:reps),c("OLS-m","WLS-
m","OLS-s","WLS-s"))) 
R2adj <- matrix(NA,nrow=reps,ncol=4,dimnames=list(c (1:reps),c("OLS-m","WLS-
m","OLS-s","WLS-s"))) 
MSEp  <- matrix(NA,nrow=reps,ncol=4,dimnames=list(c (1:reps),c("OLS-m","WLS-
m","OLS-s","WLS-s"))) 
 
ModErr_Tally_mean <- matrix(NA,nrow=reps,ncol=20,di mnames=list(c(1:reps), 
                     
c("OLSInt","x1","x2","x3","x11","x22","x33","x1x2", "x1x3","x2x3", 
                     
"WLSInt","x1","x2","x3","x11","x22","x33","x1x2","x 1x3","x2x3"))) 
ModErr_Tally_stdev <- matrix(NA,nrow=reps,ncol=20,d imnames=list(c(1:reps), 
                     
c("OLSInt","x1","x2","x3","x11","x22","x33","x1x2", "x1x3","x2x3", 
                     
"WLSInt","x1","x2","x3","x11","x22","x33","x1x2","x 1x3","x2x3"))) 
Mod_bias  <- matrix(NA,nrow=reps,ncol=2,dimnames=li st(c(1:reps),c("OLS 
Bias","WLS Bias"))) 
MSE_Tally <- matrix(NA,nrow=reps,ncol=2,dimnames=li st(c(1:reps),c("OLS 
MSE","WLS MSE"))) 
OOC_Tally <- matrix(NA,nrow=reps,ncol=6,dimnames=li st(c(1:reps), 
             c("ax1","ax2","ax3","bx1","bx2","bx3") )) 
# Start simulation 
for (j in 1:reps){ 
 
# Generate experimental data using original data as basis for random variate generation 
  for (i in 1:27){ 



 
 

380 

       printobs[i,] <- rnorm(obs,Origprintdat[i,4], Origprintdat[i,5]) 
   } 
   
  for (i in 1:27){ 
       estimator[i,1] <- mean(printobs[i,]) # compu te mean and std deviation 
       estimator[i,2] <- sd(printobs[i,])   # at ea ch design point 
   } 
 
   print <- cbind(xmat,estimator) # for SINGLE ITER ATION of orig. experiment,  
                                  # use print <- Or igprintdat 
   ybar <- print$m 
   s    <- print$s 
   x1   <- print$x1 
   x2   <- print$x2 
   x3   <- print$x3 
   x11  <- print$x1*print$x1 
   x22  <- print$x2*print$x2 
   x33  <- print$x3*print$x3 
   x1x2 <- print$x1*print$x2 
   x1x3 <- print$x1*print$x3 
   x2x3 <- print$x2*print$x3 
 
# perform regression using OLS and WLS methods; full second order models for each    
   regmo <-lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=print) # OLS-mean 
   reg1 <- regmo                                                 # WLS-mean 
     for (i in 1:50){ 
       std.err.m <- SE(reg1) 
       rm   <-(residuals(reg1))^2 
       regm <-lm(rm~x1+x2+x3+x11+x22+x33+x1x2+x1x3+ x2x3,data=print) 
       vmx  <-fitted(regm) 
       wm   <-abs(1/vmx) 
       reg1 <-
lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=pr int,weights=wm) 
       print(SE(reg1))     #prints out standard err ors for each iteration at 
the end of the simulation 
       print(anova(reg1)[10,"Mean Sq"]) 
       critm <- abs(SE(reg1)-std.err.m) 
       if (critm[1]<0.05 && critm[2]<0.05 && critm[ 3]<0.05 && critm[4]<0.05       
           && critm[5]<0.05 && critm[6]<0.05 && cri tm[7]<0.05 &&  
           critm[8]<0.05 && critm[9]<0.05 && critm[ 10]<0.05)  
       break } 
 
   regso <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=print) # OLS-std dev 
 
   reg2 <- regso                                              # WLS-std dev 
     for (i in 1:50){ 
       std.err.s <- SE(reg2) 
       rs   <-(residuals(reg2))^2 
       regs <-lm(rs~x1+x2+x3+x11+x22+x33+x1x2+x1x3+ x2x3,data=print) 
       vsx  <-fitted(regs) 
       ws   <-abs(1/vsx) 
       reg2 <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x 2x3,data=print,weights=ws) 
       print(SE(reg2)) 
       crits <- abs(SE(reg2)-std.err.s) 
       if (crits[1]<0.05 && crits[2]<0.05 && crits[ 3]<0.05 && crits[4]<0.05  
           && crits[5]<0.05 && crits[6]<0.05 && cri ts[7]<0.05 &&  
           crits[8]<0.05 && crits[9]<0.05 && crits[ 10]<0.05)  
    break }   
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   coeff <- data.frame(cbind(coef(regmo),coef(regso ),coef(reg1),coef(reg2))) 
   OrigSE_Mod_mean <- cbind(SE(regmo),SE(reg1)) 
   OrigSE_Mod_stdev<- cbind(SE(regso),SE(reg2)) 
 
   OOC  <- matrix(NA, nrow=3, ncol=2, dimnames=list (c("x1","x2","x3"),  
                 c("OLS","WLS"))) 
   OOC2 <- matrix(NA, nrow=1, ncol=6) 
   optmn<- matrix(NA,nrow=1,ncol=2, dimnames=list(c ("m(x*)"),   
                   c("OLS","WLS"))) 
   bias <- matrix(NA,nrow=1,ncol=2, dimnames =list( c("bias"),c("OLS","WLS"))) 
   optsd<- matrix(NA,nrow=1,ncol=2, dimnames=list(c ("var(x*)"),  
                   c("OLS","WLS"))) 
   obj  <- matrix(NA,nrow=1,ncol=2, dimnames=list(c ("MSE"),c("OLS","WLS"))) 
 
   # Determine OOCs using Cho's/Lin and Tu's MSE-based Model  
    
   for (k in 1:2) { 
  
      m1 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(k+k-1)]+coeff[2,(k+k-1)]*x1+coeff [3,(k+k-1)]*  
               x2+coeff[4,(k+k-1)]*x3+coeff[5,(k+k- 1)]*x1^2+ 
     coeff[6,(k+k-1)]*x2^2+ coeff[7,(k+k-1)]*x3^2+ 
               coeff[8,(k+k-1)]*x1*x2+coeff[9,(k+k- 1)]*x1*x3+ 
     coeff[10,(k+k-1)]*x2*x3} 
       
   s1 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeff[1,(2*k)]+coeff[2,(2*k)]*x1+coeff[3,( 2*k)]*x2+coeff[4,(2*k)]*  
               x3+coeff[5,(2*k)]*x1^2+coeff[6,(2*k) ]*x2^2+ coeff[7,(2*k)]*  
               x3^2+coeff[8,(2*k)]*x1*x2+coeff[9,(2 *k)]*x1*x3+ 
     coeff[10,(2*k)]*x2*x3} 
 
   objective<-function(x) { 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         (s1(c(x1,x2,x3)))^2 + (m1(c(x1,x2,x3))-500 )^2 } 
 
# Optimize using nlminb() function 
  settings <- nlminb(start=c(0,0,0), objective, gra dient = NULL, hessian  
                          = NULL, lower = c(-4,-4,- 4), upper = c(4,4,4)) 
 
      OOC[,k] <- settings$par 
      OOC2[1,(3*k-2):(3*k)] <- as.matrix(settings$p ar,nrow=3,ncol=1) 
      optmn[,k] <- m1(settings$par) 
      bias[,k] <- abs(m1(settings$par)-500) 
      optsd[,k]   <- s1(settings$par) 
      obj[,k] <- settings$objective 
   } 
 
# capture iteration results 
 
   Press[j,] <- c(PRESS(regmo),PRESS(reg1),PRESS(re gso),PRESS(reg2)) 
   R2adj[j,] <- c(summary(regmo)$adj.r.squared, sum mary(reg1)$adj.r.squared,  
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                  summary(regso)$adj.r.squared, sum mary(reg2)$adj.r.squared) 
   MSEp[j,]  <- c(anova(regmo)[10,"Mean Sq"],anova( reg1)[10,"Mean Sq"],  
                  anova(regso)[10,"Mean Sq"],anova( reg2)[10,"Mean Sq"]) 
 
   results <- as.matrix(rbind(OOC,optmn,bias,optsd, obj)) 
   ModErr_Tally_mean[j,] <- OrigSE_Mod_mean 
   ModErr_Tally_stdev[j,] <- OrigSE_Mod_stdev 
   OOC_Tally[j,] <- OOC2 
   MSE_Tally[j,] <- results["MSE",] 
   Mod_bias[j,] <- results["bias",] 
} 
 
# consolidate results and average 
 
AvgModErrMean<- as.vector(colMeans(ModErr_Tally_mea n)) 
AvgModErrSD  <- as.vector(colMeans(ModErr_Tally_std ev)) 
Avg_PRESS    <- as.vector(colMeans(Press)) 
Avg_R2adj    <- as.vector(colMeans(R2adj)) 
Avg_MSEp     <- as.vector(colMeans(MSEp)) 
Avg_MSE      <- as.vector(colMeans(MSE_Tally)) 
Avg_Bias     <- as.vector(colMeans(Mod_bias)) 
Avg_Results2 <- 
matrix(rbind(Avg_PRESS,Avg_R2adj,Avg_MSEp,Avg_MSE,A vg_Bias),nrow=5,ncol=4, 
                       dimnames=list(c("Avg PRESS", "Avg R2adj","Avg MSEp","Avg 
MSE","Avg Bias"), 
                       c("OLS-m","WLS-m","OLS-s","W LS-s"))) 
Avg_Results2 
AvgModErrMean 
AvgModErrSD 
 
# Export results to MS Excel 
 
write.csv(MSE_Tally,file="MSE_TallyPrintOLSWLS.csv" ) 
 
 
E.2. Programming code for best subsets regression in R (proposed CV technique). 
 
require(leaps) 
 
#Origprintdat <- read.table("printOrig.txt",header= T) 
printCV1 <- read.table("printCV.txt",header=T) 
 
printdat <- printCV1 
 
   ybar <- printdat$m 
   s    <- printdat$s 
   x1   <- printdat$x1 
   x2   <- printdat$x2 
   x3   <- printdat$x3 
   x11  <- printdat$x1*printdat$x1 
   x22  <- printdat$x2*printdat$x2 
   x33  <- printdat$x3*printdat$x3 
   x1x2 <- printdat$x1*printdat$x2 
   x1x3 <- printdat$x1*printdat$x3 
   x2x3 <- printdat$x2*printdat$x3 
 
X <- cbind(x1,x2,x3,x11,x22,x33,x1x2,x1x3,x2x3) 
best1m <- leaps(X,ybar,method="adjr2",nbest=2,names =colnames(X)) 
best2m <- leaps(X,ybar,method="Cp",nbest=2, names=c olnames(X)) 
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best1s <- leaps(X,s,method="adjr2",nbest=2,names=co lnames(X)) 
best2s <- leaps(X,s,method="Cp",nbest=2, names=coln ames(X)) 
 
PRESS <- function(object){ 
   press.resid = resid(object)/(1-hatvalues(object) ) 
   sum(press.resid^2)} 
 
regm2 <- lm(ybar~x1+x2+x3+x22+x33+x1x2+x1x3+x2x3,pr intdat) 
regs2 <- lm(s~x1+x2+x3+x22+x33+x1x2+x1x3+x2x3,print dat) 
 
regmo <-lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=printdat) 
 
reg1 <- regmo   # WLS-Mean 
  for (i in 1:10){ 
    std.err.m <- SE(reg1) 
    rm   <-(residuals(reg1))^2 
    regm <-lm(rm~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,data=printdat) 
    vmx  <-fitted(regm) 
    wm   <-abs(1/vmx) 
    reg1 <-
lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,data=pr intdat,weights=wm) 
    critm <- abs(SE(reg1)-std.err.m) 
    if (critm[1]<0.05 && critm[2]<0.05 && critm[3]< 0.05 && critm[4]<0.05 &&  
        critm[5]<0.05 && critm[6]<0.05 && critm[7]< 0.05 && critm[8]<0.05 &&   
        critm[9]<0.05 && critm[10]<0.05)  
    break } 
 
regso <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3,da ta=printdat) 
 
reg2 <- regso   # WLS-s 
  for (i in 1:10){ 
    std.err.s <- SE(reg2) 
    rs   <-(residuals(reg2))^2 
    regs <-lm(rs~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,data=printdat) 
    vsx  <-fitted(regs) 
    ws   <-abs(1/vsx) 
    reg2 <-lm(s~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x3 ,data=printdat,weights=ws) 
    crits <- abs(SE(reg2)-std.err.s) 
    if (crits[1]<0.05 && crits[2]<0.05 && crits[3]< 0.05 && crits[4]<0.05 &&   
        crits[5]<0.05 && crits[6]<0.05 && crits[7]< 0.05 && crits[8]<0.05 &&  
        crits[9]<0.05 && crits[10]<0.05)  
    break }   
 
res1m  <- cbind(best1m$which,best1m$adjr2) 
Cpm    <- cbind(best2m$Cp) 
res1s  <- cbind(best1s$which,best1s$adjr2) 
Cps    <- cbind(best2s$Cp) 
 
reg1  <- lm(ybar~x1,printdat) 
reg2  <- lm(ybar~x3,printdat) 
reg3  <- lm(ybar~x1+x3,printdat) 
reg4  <- lm(ybar~x1+x1x3,printdat) 
reg5  <- lm(ybar~x1+x2+x3,printdat) 
reg6  <- lm(ybar~x1+x3+x1x3,printdat) 
reg7  <- lm(ybar~x1+x2+x3+x1x3,printdat) 
reg8  <- lm(ybar~x1+x2+x3+x1x2,printdat) 
reg9  <- lm(ybar~x1+x2+x3+x1x3+x2x3,printdat) 
reg10 <- lm(ybar~x1+x2+x3+x1x2+x1x3,printdat) 
reg11 <- lm(ybar~x1+x2+x3+x1x2+x1x3+x2x3,printdat) 
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reg12 <- lm(ybar~x1+x2+x3+x33+x1x3+x2x3,printdat) 
reg13 <- lm(ybar~x1+x2+x3+x22+x1x2+x1x3+x2x3,printd at) 
reg14 <- lm(ybar~x1+x2+x3+x33+x1x2+x1x3+x2x3,printd at) 
reg15 <- lm(ybar~x1+x2+x3+x22+x33+x1x2+x1x3+x2x3,pr intdat) 
reg16 <- lm(ybar~x1+x2+x3+x11+x22+x1x2+x1x3+x2x3,pr intdat) 
reg17 <- lm(ybar~x1+x2+x3+x11+x22+x33+x1x2+x1x3+x2x 3,printdat) 
 
press <- rbind(PRESS(reg1),PRESS(reg2),PRESS(reg3), PRESS(reg4),   
               PRESS(reg5),PRESS(reg6),PRESS(reg7), PRESS(reg8), 
               PRESS(reg9),PRESS(reg10),PRESS(reg11 ),PRESS(reg12), 
               PRESS(reg13),PRESS(reg14),PRESS(reg1 5),PRESS(reg16),  
               PRESS(reg17)) 
MSEp  <- rbind(anova(reg1)[2,"Mean Sq"],anova(reg2) [2,"Mean Sq"],  
               anova(reg3)[3,"Mean Sq"],anova(reg4) [3,"Mean Sq"], 
               anova(reg5)[4,"Mean Sq"],anova(reg6) [4,"Mean Sq"], 
               anova(reg7)[5,"Mean Sq"],anova(reg8) [5,"Mean Sq"], 
               anova(reg9)[6,"Mean Sq"],anova(reg10 )[6,"Mean Sq"], 
               anova(reg11)[7,"Mean Sq"],anova(reg1 2)[7,"Mean Sq"], 
               anova(reg13)[8,"Mean Sq"],anova(reg1 4)[8,"Mean Sq"], 
               anova(reg15)[9,"Mean Sq"],anova(reg1 6)[9,"Mean Sq"], 
               anova(reg17)[10,"Mean Sq"]) 
 
BESTm <- matrix(cbind(res1m,Cpm,press,MSEp),nrow=17 ,ncol=13,dimnames=  
                list(c(1:17),c("x1","x2","x3","x11" ,"x22","x33","x1x2",  
                "x1x3","x2x3","R2adj","Cp","PRESS", "MSEp"))) 
BESTs <- matrix(cbind(res1s,Cps),nrow=17,ncol=11,di mnames= list(c(1:17), 
               c("x1","x2","x3","x11","x22","x33"," x1x2","x1x3","x2x3", 
               "R2adj","Cp"))) 
BESTm 
BESTs     
 

E.3.  R simulation code for proposed CV technique. 
 
### CV TECHNIQUE USING OPTIMAL DESIGN 1 (R GENERATE D)  
### Based on best subsets models (x11 omitted from both m and s functions)  
 
require(AlgDesign) 
require(ICSNP) 
require(rgl) 
 
#GENERATION OF OPTIMAL DESIGN IN R 
dat2 <- gen.factorial(3,3) 
dat2 
 
# remove points 1, 5, and 19 due to high CV 
dat3 <- dat2[-c(1,5,19),] 
dat3 
 
# Execute optimal design to determine which points to iterate in order to retain 27 runs  
# Output provides D-, A-, G-, and I- criteria for optimal design 
 
desD <- optFederov(~quad(X1,X2,X3),dat3,nTrials=27, eval=T,approximate=T) 
desD 
 
# Optimal design manipulated in excel to align design points with original  
# data for mean and std deviation; Excel data transferred to notepad as  
# "printCV.txt" 
 
# Call in source data file 
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printdat <- read.table("printCV.txt",header=T) 
printdat 
 
xmat <- subset(printdat,select=c(x1,x2,x3)) 
 
# Establish simulation parameters 
obs = 3 
reps = 1 
 
PRESS <- function(object){ 
   press.resid = resid(object)/(1-hatvalues(object) ) 
   sum(press.resid^2)} 
 
printobs <- matrix(NA,nrow=27,ncol=obs) 
estimator <- matrix(NA,nrow=27,ncol=2,dimnames=list (c(1:27),c("m","s"))) 
 
Press <- matrix(NA,nrow=reps,ncol=2,dimnames=list(c (1:reps), 
                c("CV-m","CV-s"))) 
R2adj <- matrix(NA,nrow=reps,ncol=2,dimnames=list(c (1:reps), 
                c("CV-m","CV-s"))) 
MSEp  <- matrix(NA,nrow=reps,ncol=2,dimnames=list(c (1:reps), 
                c("CV-m","CV-s"))) 
 
CVModErr_Tally_mean <- matrix(NA,nrow=reps,ncol=9,d imnames=list(c(1:reps),                      
                              c("CVInt","x1","x2"," x3","x22","x33","x1x2", 
                              "x1x3","x2x3")))    
CVModErr_Tally_stdev <- matrix(NA,nrow=reps,ncol=9, dimnames=list(c(1:reps), 
                               c("CVInt","x1","x2", "x3","x22","x33","x1x2", 
                               "x1x3","x2x3")))                       
Mod_bias  <- matrix(NA,ncol=1,nrow=reps,dimnames=li st(c(1:reps),c("Bias"))) 
MSE_Tally <- matrix(NA,ncol=1,nrow=reps,dimnames=li st(c(1:reps),c("MSE"))) 
OOC_Tally <- matrix(NA,nrow=reps,ncol=3,dimnames=li st(c(1:reps), 
                    c("x1*","x2*","x3*"))) 
 
# Start Simulation 
 
for (j in 1:reps){ 
 
  for (i in 1:27){ 
       printobs[i,] <- rnorm(obs,printdat[i,4],prin tdat[i,5]) 
   } 
   
  for (i in 1:27){ 
       estimator[i,1] <- mean(printobs[i,]) 
       estimator[i,2] <- sd(printobs[i,]) 
   } 
 
 print <- cbind(xmat,estimator)  # for single run u sing orig. data use    
                                 # print<-printdat 
   ybar <- print$m 
   s    <- print$s 
   x1   <- print$x1 
   x2   <- print$x2 
   x3   <- print$x3 
   x11  <- print$x1*print$x1 
   x22  <- print$x2*print$x2 
   x33  <- print$x3*print$x3 
   x1x2 <- print$x1*print$x2 
   x1x3 <- print$x1*print$x3 
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   x2x3 <- print$x2*print$x3 
   
   reg1 <-lm(ybar~x1+x2+x3+x22+x33+x1x2+x1x3+x2x3,d ata=print) # mean 
   reg2 <-lm(s~x1+x2+x3+x22+x33+x1x2+x1x3+x2x3,data =print)    # std deviation 
   
   coeffm <- data.frame(coef(reg1)) 
   coeffs <- data.frame(coef(reg2)) 
   CVSE_Mod_mean <- cbind(SE(reg1)) 
   CVSE_Mod_stdev<- cbind(SE(reg2)) 
 
   OOC <- matrix(NA, nrow=3, ncol=1, dimnames=list( c("x1","x2","x3"),c(1:1))) 
   OOC2 <- matrix(NA, nrow=1, ncol=3) 
   optmn <- matrix(NA,nrow=1,ncol=1, dimnames=list( c("m(x*)"),c(1:1))) 
   bias <- matrix(NA,nrow=1,ncol=1, dimnames =list( c("bias"),c(1:1))) 
   optsd <- matrix(NA,nrow=1,ncol=1, dimnames=list( c("var(x*)"),c(1:1))) 
   obj <- matrix(NA,nrow=1,ncol=1, dimnames=list(c( "MSE"),c(1:1))) 
 
   # Determine OOCs using Cho's/Lin and Tu's MSE Model  
    
   for (k in 1:1) { 
  
      m1 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeffm[1,k]+coeffm[2,k]*x1+coeffm[3,k]*x2+ coeffm[4,k]*x3+  
         coeffm[5,k]*x2^2+ coeffm[6,k]*x3^2+coeffm[ 7,k]*x1*x2+  
         coeffm[8,k]*x1*x3+ coeffm[9,k]*x2*x3} 
      s1 <-function(x) {   
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         coeffs[1,k]+coeffs[2,k]*x1+coeffs[3,k]*x2+ coeffs[4,k]*x3+  
         coeffs[5,k]*x2^2+coeffs[6,k]*x3^2+coeffs[7 ,k]*x1*x2+  
         coeffs[8,k]*x1*x3+coeffs[9,k]*x2*x3} 
      objective<-function(x) { 
         x1<-x[1] 
         x2<-x[2] 
         x3<-x[3] 
         (s1(c(x1,x2,x3)))^2 + (m1(c(x1,x2,x3))-500 )^2 } 
       
      settings <- nlminb(start=c(0,0,0), objective,  gradient = NULL,  
                hessian = NULL, lower = c(-4,-4,-4) , upper = c(4,4,4)) 
 
      OOC[,k] <- settings$par 
      OOC2[1,] <- settings$par 
      optmn[,k] <- m1(settings$par) 
      bias[,k] <- abs(m1(settings$par)-500) 
      optsd[,k]   <- s1(settings$par) 
      obj[,k] <- settings$objective 
   } 
 
   Press[j,] <- c(PRESS(reg1),PRESS(reg2)) 
   R2adj[j,] <- c(summary(reg1)$adj.r.squared, summ ary(reg2)$adj.r.squared) 
   MSEp[j,]  <- c(anova(reg1)[9,"Mean Sq"],anova(re g2)[9,"Mean Sq"]) 
 
   results <- as.matrix(rbind(OOC,optmn,bias,optsd, obj)) 
   CVModErr_Tally_mean[j,] <- CVSE_Mod_mean 
   CVModErr_Tally_stdev[j,] <- CVSE_Mod_stdev 
   OOC_Tally[j,] <- OOC2 
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   MSE_Tally[j,] <- results["MSE",] 
   Mod_bias[j,] <- results["bias",] 
} 
# End simulation 
# Consolidate and average results 
 
AvgModErrMean <- as.vector(colMeans(CVModErr_Tally_ mean)) 
AvgModErrSD   <- as.vector(colMeans(CVModErr_Tally_ stdev)) 
Avg_PRESS <- as.vector(colMeans(Press)) 
Avg_R2adj <- as.vector(colMeans(R2adj)) 
Avg_MSEp  <- as.vector(colMeans(MSEp)) 
Avg_MSE       <- as.vector(colMeans(MSE_Tally)) 
Avg_Bias      <- as.vector(colMeans(Mod_bias)) 
row_names <- c("Avg PRESS","Avg R2adj","Avg MSEp"," Avg MSE","Avg Bias") 
Avg_Results1 <- 
matrix(rbind(Avg_PRESS,Avg_R2adj,Avg_MSEp,Avg_MSE,A vg_Bias),nrow=5,ncol=2,dimna
mes=list 
               (c("Avg PRESS","Avg R2adj","Avg MSEp ","Avg MSE","Avg 
Bias"),c("CV-m","CV-s"))) 
Avg_Results1 
AvgModErrMean 
AvgModErrSD 
 
Comb_Res <- 
cbind(Avg_Results2[,1],Avg_Results2[,2],Avg_Results 1[,1],Avg_Results2[,3],Avg_R
esults2[,4],Avg_Results1[,2]) 
Comb_Res 
 
write.csv(MSE_Tally,file="MSE_TallyPrintCV.csv") 
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F:  Supporting Mathematica Programming Code for Chapter 10 Simulations 
 
F.1  Mathematica code for pilot study simulation. 
 
(* Establish link with MS ® Excel *) 
Needs["ExcelLink`"] 
Excel["L3"] 
 
28.159 

 
n = 1; 
one = 0; 
two = 0; 
three = 0; 
four = 0; 
 
(* Define response surface functions using simulate d data called from MS ® Excel 
*) 
m[x1_, x2_, x3_] := Excel["W3"] + Excel["W4"]*x1 + Excel["W5"]*x2 + 
Excel["W6"]*x3 +  
     Excel["W7"]*x1*x2 + Excel["W8"]*x1*x3 + Excel[ "W9"]*x2*x3 + 
Excel["W10"]*x1^2 +  
     Excel["W11"]*x2^2 + Excel["W12"]*x3^2; 
s[x1_, x2_, x3_] := Excel["Y3"] + Excel["Y4"]*x1 + Excel["Y5"]*x2 + 
Excel["Y6"]*x3 +  
     Excel["Y7"]*x1*x2 + Excel["Y8"]*x1*x3 + Excel[ "Y9"]*x2*x3 + 
Excel["Y10"]*x1^2 +  
     Excel["Y11"]*x2^2 + Excel["Y12"]*x3^2; 
 
(* Start simulation – 1000 iterations *) 
 
While[n < 1001, Print["Iteration ", n] && 
 
(* Define Vining and Myers (1990) priority-based op timization scheme *) 
  Print[NMinimize[{(s[x1, x2, x3])^2,  
     m[x1, x2, x3] == 500 && x1 >= -4 && x1 <= 4 &&  x2 >= -4 &&  
      x2 <= 4 && x3 >= -4 && x3 <= 4}, {x1, x2, x3} ,  
    WorkingPrecision -> 10]] && 
 
  Print[v = ((m[x1, x2, x3] - 500)^2 + (s[x1, x2, x 3])^2) /.  
     Last[NMinimize[{(s[x1, x2, x3])^2,  
        m[x1, x2, x3] == 500 && x1 >= -4 && x1 <= 4  && x2 >= -4 &&  
         x2 <= 4 && x3 >= -4 && x3 <= 4}, {x1, x2, x3},  
       WorkingPrecision -> 10]]] && 
 
(* Define Lin and Tu (1995) MSE-based optimization scheme *) 
  Print[NMinimize[{(s[x1, x2, x3])^2 + (m[x1, x2, x 3] - 500)^2,  
     x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
      x3 <= 4}, {x1, x2, x3}, WorkingPrecision -> 1 0]] && 
 
  Print[l = ((m[x1, x2, x3] - 500)^2 + (s[x1, x2, x 3])^2) /.  
     Last[NMinimize[{(s[x1, x2, x3])^2 + (m[x1, x2,  x3] - 500)^2,  
        x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
         x3 <= 4}, {x1, x2, x3}, WorkingPrecision - > 10]]] &&  
 
(* Define Copeland and Nelson (1996) constrained bi as scheme *) 
  Print[NMinimize[{(s[x1, x2, x3])^2,  
     m[x1, x2, x3] >= 499 && m[x1, x2, x3] <= 501 & & x1 >= -4 &&  
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      x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  x3 <= 4}, {x1, x2, 
      x3}, WorkingPrecision -> 10]] &&  
 
  Print[e = ((m[x1, x2, x3] - 500)^2 + (s[x1, x2, x 3])^2) /.  
     Last[NMinimize[{(s[x1, x2, x3])^2,  
        m[x1, x2, x3] >= 499 && m[x1, x2, x3] <= 50 1 && x1 >= -4 &&  
         x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4  && x3 <= 4}, {x1,  
         x2, x3}, WorkingPrecision -> 10]]] &&  
(* Define Costa (2010) optimization scheme *) 
  Print[NMinimize[{Abs[m[x1, x2, x3] - 500]/(1010 -  24) +  
      Abs[s[x1, x2, x3]]/(158.2 - 0),  
     x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
      x3 <= 4}, {x1, x2, x3}, WorkingPrecision -> 1 0]] &&  
  
 Print[c = ((m[x1, x2, x3] - 500)^2 + (s[x1, x2, x3 ])^2) /.  
     Last[NMinimize[{Abs[m[x1, x2, x3] - 500]/(1010  - 24) +  
         Abs[s[x1, x2, x3]]/(158.2 - 0),  
        x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
         x3 <= 4}, {x1, x2, x3}, WorkingPrecision - > 10]]] && 
 
  If[c == Min[v, l, e, c], four++,  
   If[e == Min[v, l, e, c], three++,  
    If[l == Min[v, l, e, c], two++, one++]]] &&  
  Print[one, " ", two, " ", three, " " , four ] &&  
  Print[m[x1, x2, x3]] && Print[s[x1, x2, x3]] && E xcelCalculate[] &&  
  ClearSystemCache[]; 
 
 n++] 
 
 

F.2  Mathematica code for Printing Press Study   
 
F.2.1  Simulation coding for all models examined in the Printing Press numerical 

example.  
 
Needs["ExcelLink`"] 
Excel["L3"] 
 
(*Original*) 
m[x1_, x2_, x3_] :=  
   Excel["W3"] + Excel["W4"]*x1 + Excel["W5"]*x2 + Excel["W6"]*x3 +  
   Excel["W7"]*x1*x2 + Excel["W8"]*x1*x3 + Excel["W 9"]*x2*x3 +  
   Excel["W10"]*x1^2 + Excel["W11"]*x2^2 + Excel["W 12"]*x3^2; 
s[x1_, x2_, x3_] :=  
  Excel["Y3"] + Excel["Y4"]*x1 + Excel["Y5"]*x2 + E xcel["Y6"]*x3 +  
   Excel["Y7"]*x1*x2 + Excel["Y8"]*x1*x3 + Excel["Y 9"]*x2*x3 +  
   Excel["Y10"]*x1^2 + Excel["Y11"]*x2^2 + Excel["Y 12"]*x3^2; 
 
(*Original - Higher*) 
(*m[x1_,x2_,x3_]:=Excel["AF3"]+Excel["AF4"]*x1+Exce l["AF5"]*x2+Excel[\ 

"AF6"]*x3+Excel["AF7"]*x1*x2+Excel["AF8"]*x1*x3+Exc el["AF9"]*x2*x3+\ 
Excel["AF10"]*x2^2+Excel["AF11"]*x3^2+Excel["AF12"] *x2*x1^2+Excel[\ 
"AF13"]*x3*x1^2+Excel["AF14"]*x2*x3^2+Excel["AF15"] *x1*x2*x3+Excel[\ 
"AF16"]*(x1^2)*(x2^2); 

 s[x1_,x2_,x3_]:=Excel["AH3"]+Excel["AH4"]*x1+Excel ["AH5"]*x2+Excel[\ 
"AH6"]*x3+Excel["AH7"]*x1*x2+Excel["AH8"]*x1*x3+Exc el["AH9"]*x2*x3+\ 
Excel["AH10"]*x3^2+Excel["AH11"]*x2*x1^2+Excel["AH1 2"]*x3*x1^2+Excel[\ 
"AH13"]*x1*x2^2+Excel["AH14"]*x3*x2^2+Excel["AH15"] *x1*x2*x3;*) 
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(*Proposed*) 
(*m[x1_,x2_,x3_]:=Excel["AB3"]+Excel["AB4"]*x1+Exce l["AB5"]*x2+Excel[\ 

"AB6"]*x3+Excel["AB7"]*x1*x2+Excel["AB8"]*x1*x3+Exc el["AB9"]*x2*x3+\ 
Excel["AB10"]*x1^2+Excel["AB11"]*x2^2+Excel["AB12"] *x3^2; 

 s[x1_,x2_,x3_]:=Excel["AD3"]+Excel["AD4"]*x1+Excel ["AD5"]*x2+Excel[\ 
"AD6"]*x3+Excel["AD7"]*x1*x2+Excel["AD8"]*x1*x3+Exc el["AD9"]*x2*x3+\ 
Excel["AD10"]*x1^2+Excel["AD11"]*x2^2+Excel["AD12"] *x3^2;*) 

 
(*Proposed - Higher Order*)  
(*m[x1_,x2_,x3_]:=Excel["AC3"]+Excel["AC4"]*x1+Exce l["AC5"]*x2+Excel[\ 

"AC6"]*x3+Excel["AC7"]*x1*x2+Excel["AC8"]*x1*x3+Exc el["AC9"]*x2*x3+\ 
Excel["AC10"]*x2^2+Excel["AC11"]*x2*x1^2+Excel["AC1 2"]*x1*x2*x3+Excel[\ 
"AC13"]*(x1^2)*(x2^2); 

 s[x1_,x2_,x3_]:=Excel["AE3"]+Excel["AE4"]*x1+Excel ["AE5"]*x2+Excel[\ 
"AE6"]*x3+Excel["AE7"]*x1*x2+Excel["AE8"]*x2*x1^2+E xcel["AE9"]*x1*x3^\ 
2+Excel["AE10"]*x1*x2*x3;*) 

 
(*Proposed - 2 - 9 reps*) 
(*m[x1_,x2_,x3_]:=Excel["AF3"]+Excel["AF4"]*x1+Exce l["AF5"]*x2+Excel[\ 

"AF6"]*x3+Excel["AF7"]*x1*x2+Excel["AF8"]*x1*x3+Exc el["AF9"]*x2*x3; 
 s[x1_,x2_,x3_]:=Excel["AH3"]+Excel["AH4"]*x1+Excel ["AH5"]*x2+Excel[\ 

"AH6"]*x3+Excel["AH7"]*x1*x2+Excel["AH8"]*x1*x3+Exc el["AH9"]*x2*x3;*)\ 
 
(*WLS*) 
(*m[x1_,x2_,x3_]:=Excel["Y74"]+Excel["Y75"]*x1+Exce l["Y76"]*x2+Excel[\ 

"Y77"]*x3+Excel["Y78"]*x1*x2+Excel["Y79"]*x1*x3+Exc el["Y80"]*x2*x3+\ 
Excel["Y81"]*x1^2+Excel["Y82"]*x2^2+Excel["Y83"]*x3 ^2; 

 s[x1_,x2_,x3_]:=Excel["Y92"]+Excel["Y93"]*x1+Excel ["Y94"]*x2+Excel[\ 
"Y95"]*x3+Excel["Y96"]*x1*x2+Excel["Y97"]*x1*x3+Exc el["Y98"]*x2*x3+\ 
Excel["Y99"]*x1^2+Excel["Y100"]*x2^2+Excel["Y101"]* x3^2;*) 

 
(*Original - 20 reps, HO*) 
(*m[x1_,x2_,x3_]:=Excel["BG3"]+Excel["BG4"]*x1+Exce l["BG5"]*x2+Excel[\ 

"BG6"]*x3+Excel["BG7"]*x1*x2+Excel["BG8"]*x1*x3+Exc el["BG9"]*x2*x3+\ 
Excel["BG10"]*x2^2+Excel["BG11"]*x3^2+Excel["BG12"] *x2*x3^2+Excel[\ 
"BG13"]*x1*x2*x3+Excel["BG14"]*(x1^2)*(x2^2); 

 s[x1_,x2_,x3_]:=Excel["BI3"]+Excel["BI4"]*x1+Excel ["BI5"]*x2+Excel[\ 
"BI6"]*x3+Excel["BI7"]*x2*x3+Excel["BI8"]*x3^2+Exce l["BI9"]*x2*x1^2+\ 
Excel["BI10"]*x1*x2^2+Excel["BI11"]*x1*x2*x3; 

 
j:=NMinimize[{(s[x1,x2,x3])^2+(m[x1,x2,x3]-500)^2,x 1>=-4&&x1<=4&&x2>=-\ 

4&&x2<=4&&x3>=-4&&x3<=4},{{x1,1,4},{x2,-4,1},{x3,1, 4}},Method->{\ 
"RandomSearch","SearchPoints"->1000}];*) 

 
(*Original - BEST CASE*) 
(*m[x1_,x2_,x3_]:=Excel["AK153"]+Excel["AK154"]*x1+ Excel["AK155"]*x2+\ 

Excel["AK156"]*x3+Excel["AK157"]*x1*x2+Excel["AK158 "]*x1*x3+Excel[\ 
"AK159"]*x2*x3+Excel["AK160"]*x2^2+Excel["AK161"]*x 3^2+Excel["AK162"]*\ 
x2*x3^2+Excel["AK163"]*x1*x2*x3+Excel["AK164"]*(x1^ 2)*(x2^2); 

 s[x1_,x2_,x3_]:=Excel["AK183"]+Excel["AK184"]*x1+E xcel["AK185"]*x2+\ 
Excel["AK186"]*x3+Excel["AK187"]*x2*x3+Excel["AK188 "]*x3^2+Excel[\ 
"AK189"]*x2*x1^2+Excel["AK190"]*x1*x2^2+Excel["AK19 1"]*x1*x2*x3;*) 

 
(*j:=NMinimize[{(s[x1,x2,x3])^2+(m[x1,x2,x3]-500)^2 ,x1>=-4&&x1<=4&&x2>\ 

=-4&&x2<=4&&x3>=-4&&x3<=4},{x1,x2,x3},Method->{"Ran domSearch",\ 
"SearchPoints"->1000}];*) 

 
(*j:=NMinimize[{(s[x1,x2,x3])^2+(m[x1,x2,x3]-500)^2 ,x1>=-4&&x1<=4&&x2>\ 

=-4&&x2<=4&&x3>=-4&&x3<=4},{{x1,1,4},{x2,-4,1},{x3, 1,4}},Method->{\ 
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"NelderMead","ShrinkRatio"->0.99999999,"ContractRat io"->0.99999999,  
"ReflectRatio"->20}];*) 

 
(* Vining and Myers (1990) scheme *) 
v := NMinimize[{(s[x1, x2, x3])^2,  
     m[x1, x2, x3] == 500 && x1 >= -4 && x1 <= 4 &&  x2 >= -4 &&  
     x2 <= 4 && x3 >= -4 && x3 <= 4}, {x1, x2, x3},   
     WorkingPrecision -> 10]; 
 
(* Lin and Tu (1995) scheme *) 
l := NMinimize[{(s[x1, x2, x3])^2 + (m[x1, x2, x3] - 500)^2,  
     x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
     x3 <= 4}, {x1, x2, x3}, WorkingPrecision -> 10 ]; 
 
(* Copeland and Nelson (1996) scheme *) 
e := NMinimize[{(s[x1, x2, x3])^2,  
     Abs[(m[x1, x2, x3] - 500)] <= 10 && x1 >= -4 & & x1 <= 4 &&  
     x2 >= -4 && x2 <= 4 && x3 >= -4 && x3 <= 4}, { x1, x2, x3},  
     WorkingPrecision -> 10]; 
 
(* Costa (2010) scheme *) 
c := NMinimize[{Abs[m[x1, x2, x3] - 500]/(1010 - 24 ) +  
     Abs[s[x1, x2, x3]]/(158.2 - 0),  
     x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >= -4 &&  
     x3 <= 4}, {x1, x2, x3}, WorkingPrecision -> 10 ]; 
 
n = 1; 
 
(*While[n<5,ExcelCalculate[]&&Print["Iteration",n]& &Print[v]&&Print[l]&&Print[e
] 

&&Print[c]&&Print[m[x1,x2,x3]]&&Print[s[x1,x2,x3]]& &ClearSystemCache[]; 
n++]*) 

 
While[n < 5,ExcelCalculate[] && Print["Iteration ",  n] && Print[m[x1, x2, x3]] 
&& 

Print[s[x1, x2, x3]] && Print[v] && Print[l] && Pri nt[e] && Print[c] && 
ClearSystemCache[];  
n++] 

 
(*While[n<501,ExcelCalculate[]&&Print[j];n++]*) 
 
m[x1_, x2_, x3_] := Excel["V3"] + Excel["V4"]*x1 + Excel["V5"]*x2 + 
Excel["V6"]*x3 +  

Excel["V7"]*x1*x2 + Excel["V8"]*x1*x3 + Excel["V9"] *x2*x3 +  
    Excel["V10"]*x1^2 + Excel["V11"]*x2^2 + Excel[" V12"]*x3^2; 
s[x1_, x2_, x3_] := Excel["X3"] + Excel["X4"]*x1 + Excel["X5"]*x2 + 
Excel["X6"]*x3 +  
    Excel["X7"]*x1*x2 + Excel["X8"]*x1*x3 + Excel[" X9"]*x2*x3 +  

Excel["X10"]*x1^2 + Excel["X11"]*x2^2 + Excel["X12" ]*x3^2; 
 
j := Minimize[(s[x1, x2, x3])^2 + (m[x1, x2, x3] - 500)^2,  

x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x3 >=  -4 && x3 <= 4, {x1, 
x2,   x3}]; 

 
n = 1;  
While[n < 101, ExcelCalculate[] && Print["Iteration  ", n] && Print[j] &&  
   Print[m[x1, x2, x3]] && Print[s[x1, x2, x3]] &&  
   Print["Mean R2 and R2adj = ", Excel["W18"], " an d ", Excel["W19"],  
    ". SD R2 and R2adj = ", Excel["Y18"], " and ", Excel["Y19"],  
    ".\n"];  
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n++] 
 

F.2.1  Sample simulation output for Printing Press Study (NOTE: output 
corresponds to the first modeling group shown under (* Original *); only first 
5 out of 100 iterations provided). 

 
Iteration 1 
 
{4.84327*10^-25,{x1->1.36491,x2->-0.645829,x3->0.14 103}} 
321.92+175.158 x1+24.058 x1^2+112.491 x2+48.2313 x1 x2-43.7109 x2^2+114.137 x3+ 

84.4349x1x3+47.9605 x2x3-20.0554 x3^2 
20.5352+7.01733 x1-11.0244 x1^2+10.0868 x2+8.55947 x1 x2+5.16785 x2^2+23.8378 
x3- 

1.08974 x1x3+15.3198 x2x3+28.7738 x3^2 
Mean R2 and R2adj = 0.900541 and 0.847886. SD R2 an d R2adj = 0.476855 and 
0.199895. 
 
Iteration 2 
 
{2.34933*10^-26,{x1->-0.461313,x2->2.00615,x3->1.71 429}} 
343.865+187.728 x1+14.605 x1^2+113.556 x2+69.1254 x 1 x2-53.6827 x2^2+ 

120.995 x3+96.0085 x1 x3+55.1961 x2 x3-10.0308 x3^2  
48.7925+20.6917 x1+6.7302 x1^2+9.06667 x2-8.19823 x 1 x2-27.4884 x2^2+18.4101 
x3+ 

20.152 x1 x3+2.93436 x2 x3+6.28158 x3^2 
Mean R2 and R2adj = 0.942765 and 0.912464. SD R2 an d R2adj = 0.241316 and 0.. 
 
Iteration 3 
 
{5.1276*10^-27,{x1->2.37372,x2->-2.2908,x3->2.70274 }} 
333.613+183.618 x1+35.5828 x1^2+118.723 x2+76.9318 x1 x2-17.3313 x2^2+ 

140.996 x3+81.3407 x1 x3+50.8558 x2 x3-37.8868 x3^2  
53.1862+3.72398 x1-3.97903 x1^2+5.75439 x2+4.67083 x1 x2-20.6721 x2^2+23.2486 
x3- 

9.69796 x1 x3-1.29858 x2 x3+13.5253 x3^2 
Mean R2 and R2adj = 0.916449 and 0.872217. SD R2 an d R2adj = 0.199336 and 0.. 
 
Iteration 4 
 
{3.2211*10^-26,{x1->2.06247,x2->-1.1309,x3->-0.1064 15}} 
319.892+174.849 x1+47.0668 x1^2+105.079 x2+88.8005 x1 x2-21.0468 x2^2+ 

136.312 x3+79.2145 x1 x3+35.9897 x2 x3-25.5838 x3^2  
40.8505+31.5963 x1-1.77939 x1^2+29.1066 x2+16.3613 x1 x2-13.4615 x2^2+ 

44.2703 x3+41.1292 x1 x3+26.9841 x2 x3+29.7985 x3^2  
Mean R2 and R2adj = 0.864035 and 0.792053. SD R2 an d R2adj = 0.613965 and 
0.409593. 
 
Iteration 5 
 
{4.27809*10^-23,{x1->0.591542,x2->1.60699,x3->-0.67 6838}} 
302.76+175.221 x1+32.2337 x1^2+109.941 x2+67.4136 x 1 x2+8.43851 x2^2+ 

127.908 x3+68.7526 x1 x3+49.604 x2 x3-26.6021 x3^2 
19.964+7.01227 x1+15.7854 x1^2+0.332636 x2+5.39662 x1 x2-8.33449 x2^2+26.076 
x3- 

0.630013 x1 x3+3.40454 x2 x3+15.9851 x3^2 
Mean R2 and R2adj = 0.904482 and 0.853914. SD R2 an d R2adj = 0.563255 and 
0.332037. 
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F.3  Mathematica code for Semiconductor Study. 
 
F.3.1  Simulation code for all model variants for the Semiconductor study.  
 
Needs["ExcelLink`"] 
Excel["L3"] 
 
308.892 
 
(*Original - 11 Reps, 2nd Order*) 
(*m[x1_,x2_,x3_]:=Excel["AL3"]+Excel["AL4"]*x1+Exce l["AL5"]*x2+Excel[\ 

"AL6"]*x3+Excel["AL7"]*x1*x2+Excel["AL8"]*x1*x3+Exc el["AL9"]*x2*x3+\ 
Excel["AL10"]*x1^2+Excel["AL11"]*x2^2+Excel["AL12"] *x3^2; 

s[x1_,x2_,x3_]:=Excel["AN3"]+Excel["AN4"]*x1+Excel[ "AN5"]*x2+Excel[\ 
"AN6"]*x3+Excel["AN7"]*x1*x2+Excel["AN8"]*x1*x3+Exc el["AN9"]*x2*x3+\ 
Excel["AN10"]*x1^2+Excel["AN11"]*x2^2+Excel["AN12"] *x3^2;*) 

 
(*Original - 3 Reps, 2nd Order*) 
(*m[x1_,x2_,x3_]:=Excel["V3"]+Excel["V4"]*x1+Excel[ "V5"]*x2+Excel[\ 

"V6"]*x3+Excel["V7"]*x1*x2+Excel["V8"]*x1*x3+Excel[ "V9"]*x2*x3+Excel[\ 
"V10"]*x1^2+Excel["V11"]*x2^2+Excel["V12"]*x3^2; 

s[x1_,x2_,x3_]:=Excel["X3"]+Excel["X4"]*x1+Excel["X 5"]*x2+Excel["X6"]*\ 
x3+Excel["X7"]*x1*x2+Excel["X8"]*x1*x3+Excel["X9"]* x2*x3+Excel["X10"]*\ 
x1^2+Excel["X11"]*x2^2+Excel["X12"]*x3^2;*) 

 
(*Original - 5 Reps Higher*) 
(*m[x1_,x2_,x3_]:=Excel["X3"]+Excel["X4"]*x1+Excel[ "X5"]*x2+Excel[\ 

"X6"]*x3+Excel["X7"]*x1*x2+Excel["X8"]*x1*x3+Excel[ "X9"]*x2*x3+Excel[\ 
"X10"]*x1*x2*x3; 

s[x1_,x2_,x3_]:=Excel["Z3"]+Excel["Z4"]*x1+Excel["Z 5"]*x2+Excel["Z6"]*\ 
x3+Excel["Z7"]*x2*x3+Excel["Z8"]*x2^2+Excel["Z9"]*x 1*x2*x3;*) 

 
 
(*Optimal - 3 Reps, Full 2nd Order*) 
(*m[x1_,x2_,x3_]:=Excel["V3"]+Excel["V4"]*x1+Excel[ "V5"]*x2+Excel[\ 

"V6"]*x3+Excel["V7"]*x1*x2+Excel["V8"]*x1*x3+Excel[ "V9"]*x2*x3+Excel[\ 
"V10"]*x1^2+Excel["V11"]*x2^2+Excel["V12"]*x3^2; 

s[x1_,x2_,x3_]:=Excel["X3"]+Excel["X4"]*x1+Excel["X 5"]*x2+Excel["X6"]*\ 
x3+Excel["X7"]*x1*x2+Excel["X8"]*x1*x3+Excel["X9"]* x2*x3+Excel["X10"]*\ 
x1^2+Excel["X11"]*x2^2+Excel["X12"]*x3^2;*) 

 
(*Original - Higher Order, 20 Reps*) 
(*m[x1_,x2_,x3_]:=Excel["BD3"]+Excel["BD4"]*x1+Exce l["BD5"]*x2+Excel[\ 

"BD6"]*x3+Excel["BD7"]*x1*x3+Excel["BD8"]*x2*x3+Exc el["BD9"]*x1^2+\ 
Excel["BD10"]*x2^2+Excel["BD11"]*x3^2+Excel["BD12"] *x3*x1^2; 

s[x1_,x2_,x3_]:=Excel["BF3"]+Excel["BF4"]*x1+Excel[ "BF5"]*x2+Excel[\ 
"BF6"]*x3+Excel["BF7"]*x1*x2+Excel["BF8"]*x1*x3+Exc el["BF9"]*x2*x3+\ 
Excel["BF10"]*x1^2+Excel["BF11"]*x2^2+Excel["BF12"] *x3^2+Excel["BF13"]\ 
*x2*x1^2+Excel["BF14"]*x3*x1^2+Excel["BF15"]*x1*x3^ 2+Excel["BF16"]*x1*\ 
x2*x3+Excel["BF17"]*(x1^2)*(x2^2);*) 

 
(*Original - Higher Order, 5 Reps*) 
(*m[x1_,x2_,x3_]:=Excel["Z3"]+Excel["Z4"]*x1+Excel[ "Z5"]*x2+Excel[\ 

"Z6"]*x3+Excel["Z7"]*x1*x3+Excel["Z8"]*x2*x3+Excel[ "Z9"]*x1^2+Excel[\ 
"Z10"]*x2^2+Excel["Z11"]*x3^2+Excel["Z12"]*x3*x1^2;  

s[x1_,x2_,x3_]:=Excel["AB3"]+Excel["AB4"]*x1+Excel[ "AB5"]*x2+Excel[\ 
"AB6"]*x3+Excel["AB7"]*x1*x2+Excel["AB8"]*x2*x3+Exc el["AB9"]*x1^2+\ 
Excel["AB10"]*x2^2+Excel["AB11"]*x3^2+Excel["AB12"] *x2*x1^2+Excel[\ 
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"AB13"]*x3*x1^2+Excel["AB14"]*x1*x2*x3;*) 
 
(*Optimal Design minus 3 points, 3 reps*) 
(*m[x1_,x2_,x3_]:=Excel["V3"]+Excel["V4"]*x1+Excel[ "V5"]*x2+Excel[\ 

"V6"]*x3+Excel["V7"]*x1*x2+Excel["V8"]*x1*x3+Excel[ "V9"]*x2*x3+Excel[\ 
"V10"]*x1^2+Excel["V11"]*x2^2+Excel["V12"]*x3^2; 

s[x1_,x2_,x3_]:=Excel["X3"]+Excel["X4"]*x1+Excel["X 5"]*x2+Excel["X6"]*\ 
x3+Excel["X7"]*x1*x2+Excel["X8"]*x1*x3+Excel["X9"]* x2*x3+Excel["X10"]*\ 
x1^2+Excel["X11"]*x2^2+Excel["X12"]*x3^2;*) 

 
(*Final-Final Optimal Design, minus 1 point, 3 reps *) 
(*m[x1_,x2_,x3_]:=Excel["U3"]+Excel["U4"]*x1+Excel[ "U5"]*x2+Excel[\ 

"U6"]*x3+Excel["U7"]*x1*x2+Excel["U8"]*x1*x3+Excel[ "U9"]*x2*x3+Excel[\ 
"U10"]*x1^2+Excel["U11"]*x2^2; 

s[x1_,x2_,x3_]:=Excel["W3"]+Excel["W4"]*x1+Excel["W 5"]*x2+Excel["W6"]*\ 
x3+Excel["W7"]*x1*x2+Excel["W8"]*x1*x3+Excel["W9"]* x2*x3+Excel["W10"]*\ 
x1^2+Excel["W11"]*x2^2;*) 

 
(*Best Case*) 
m[x1_, x2_, x3_] := Excel["BW3"] + Excel["BW4"]*x1 + Excel["BW5"]*x2 + 
Excel["BW6"]*x3  

+ Excel["BW7"]*x1*x2 + Excel["BW8"]*x1*x3 + Excel[" BW9"]*x2*x3 +  
    Excel["BW10"]*x1^2 + Excel["BW11"]*x2^2; 
s[x1_, x2_, x3_] := Excel["BY3"] + Excel["BY4"]*x1 + Excel["BY5"]*x2 + 
Excel["BY6"]*x3  

+ Excel["BY7"]*x1*x2 + Excel["BY8"]*x1*x3 + Excel[" BY9"]*x2*x3 + 
 Excel["BY10"]*x1^2 + Excel["BY11"]*x2^2; 
 
j := NMinimize[{(s[x1, x2, x3])^2 + (m[x1, x2, x3] - 350)^2,x1^2 + x2^2 + x3^2 
<= 25},  

{{x1, 0, 3.5}, {x2, -3.3, 0.5}, {x3, -1.5, 0.5}}, M ethod -> 
{"RandomSearch", "SearchPoints" -> 4000}]; 
 

(*j:=NMinimize[{(s[x1,x2,x3])^2+(m[x1,x2,x3]-500)^2 ,x1>=-4&&x1<=4&&x2>=-4&&x2  
<=4&&x3>=-4&&x3<=4},{{x1,1,4},{x2,-4,1},{x3,1,4}},M ethod->{"NelderMead",  
"ShrinkRatio"->0.99999999,"ContractRatio"->0.999999 99,"ReflectRatio"-

>20}];*) 
n = 1; 
While[n < 501, ExcelCalculate[] && Print["Iteration  ", n] && Print[j] &&  
   Print[m[x1, x2, x3]] && Print[s[x1, x2, x3]] && ClearSystemCache[];  
 n++] 

 
F.3.2 Sample simulation output for Semiconductor Study (NOTE: output 

corresponds to the last modeling group shown under (* Best Case *); only 
first 5 out of 500 iterations provided). 

 
Iteration _1 
 
{3.15853×10 -32 ,{x1->1.27762,x2->-1.37755,x3->0.0582241}} 
292.446_+12.3984 x1+0.28171 x1 2-62.5876 x2+11.0145 x1 x2-11.4636 x2 2-41.0637 x3-
51.5439 x1 x3-29.9336 x2 x3 
148.515_-26.1509 x1-29.3011 x1 2-27.489 x2+31.4633 x1 x2-25.3502 x2 2-6.21366 x3-
1.68813 x1 x3+14.6574 x2 x3 
 
Iteration _2 
 
{1.50993×10 -31 ,{x1->0.877149,x2->-0.637961,x3->-1.62737}} 



 
 

395 

296.791_+29.8329 x1-15.9887 x1 2-47.3445 x2+30.4843 x1 x2-45.8036 x2 2-0.0956902 
x3-62.9794 x1 x3-43.5523 x2 x3 
100.648_+2.17183 x1+4.3849 x1 2-31.4991 x2-15.8847 x1 x2-8.7892 x2 2+58.9451 
x3+7.8501 x1 x3-23.3123 x2 x3 
 
Iteration _3 
 
{1.97215×10 -31 ,{x1->1.60189,x2->-0.548164,x3->0.843913}} 
269.932_+29.6196 x1+9.77208 x1 2-53.2132 x2-17.8765 x1 x2-6.78595 x2 2-44.144 x3-
9.21232 x1 x3-31.181 x2 x3 
111.971_+4.63101 x1-24.0916 x1 2-17.1828 x2+17.1317 x1 x2-16.9687 x2 2-16.1623 x3-
19.818 x1 x3+13.8685 x2 x3 
 
Iteration _4 
 
{4.93038×10 -32 ,{x1->-0.631603,x2->-2.18276,x3->2.18132}} 
283.026_+17.9429 x1-14.4193 x1 2-45.8424 x2+6.94334 x1 x2-21.3807 x2 2-36.0937 x3-
28.1558 x1 x3-24.4118 x2 x3 
112.782_-2.01519 x1-18.8686 x1 2+3.83621 x2-9.58974 x1 x2-12.5017 x2 2-19.6082 x3-
16.2286 x1 x3+1.04105 x2 x3 
 
Iteration _5 
 
{0.,{x1->1.71306,x2->-1.89407,x3->-1.29547}} 
284.619_+34.9854 x1-10.6786 x1 2-46.022 x2-0.356845 x1 x2-34.0439 x2 2-52.1134 x3-
40.0234 x1 x3-34.9432 x2 x3 
124.159_+3.43006 x1-6.85392 x1 2-18.7038 x2+11.5846 x1 x2-18.0312 x2 2+3.64483 x3-
1.19138 x1 x3-16.7075 x2 x3 
 
 

F.3.3   Secondary simulation routine and sample output (first 5 out of 100 
iterations). 
 
m[x1_, x2_, x3_] := Excel["V3"] + Excel["V4"]*x1 + Excel["V5"]*x2 + 
Excel["V6"]*x3 +  

Excel["V7"]*x1*x2 + Excel["V8"]*x1*x3 + Excel["V9"] *x2*x3 + 
Excel["V10"]*x1^2 + Excel["V11"]*x2^2 + Excel["V12" ]*x3^2; 

s[x1_, x2_, x3_] := Excel["X3"] + Excel["X4"]*x1 + Excel["X5"]*x2 + 
Excel["X6"]*x3 +  

Excel["X7"]*x1*x2 + Excel["X8"]*x1*x3 + Excel["X9"] *x2*x3 +
 Excel["X10"]*x1^2 + Excel["X11"]*x2^2 + Excel["X12 "]*x3^2; 

 
j := Minimize[(s[x1, x2, x3])^2 + (m[x1, x2, x3] - 500)^2,  
    x1 >= -4 && x1 <= 4 && x2 >= -4 && x2 <= 4 && x 3 >= -4 && x3 <= 
4,{x1,x2,x3}]; 
 
n = 1; While[n < 101, ExcelCalculate[] && Print["It eration ", n] && Print[j] &&  

Print[m[x1, x2, x3]] && Print[s[x1, x2, x3]] && Pri nt["Mean R2 and R2adj 
= ", Excel["W18"], " and ", Excel["W19"], ". SD R2 and R2adj = ", 
Excel["Y18"], " and ", Excel["Y19"], ".\n"] 

; n++] 
 
(* Begin Output – Iterations 1-5 *) 
 
Iteration _1 
 
{4.84327×10 -25 ,{x1->1.36491,x2 �-0.645829,x3->0.14103}} 
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321.92_+175.158 x1+24.058 x1 2+112.491 x2+48.2313 x1 x2-43.7109 x2 2+114.137 
x3+84.4349 x1 x3+47.9605 x2 x3-20.0554 x3 2 
20.5352_+7.01733 x1-11.0244 x1 2+10.0868 x2+8.55947 x1 x2+5.16785 x2 2+23.8378 x3-
1.08974 x1 x3+15.3198 x2 x3+28.7738 x3 2 
Mean R2 and R2adj = 0.900541 and 0.847886. SD R2 an d R2adj = 0.476855 and 
0.199895. 
  
Iteration 2 
 
{2.34933×10 -26 ,{x1->-0.461313,x2->2.00615,x3->1.71429}} 
343.865+187.728 x1+14.605 x1 2+113.556 x2+69.1254 x1 x2-53.6827 x2 2+120.995 
x3+96.0085 x1 x3+55.1961 x2 x3-10.0308 x3 2 
48.7925+20.6917 x1+6.7302 x1 2+9.06667 x2-8.19823 x1 x2-27.4884 x2 2+18.4101 
x3+20.152 x1 x3+2.93436 x2 x3+6.28158 x3 2 
Mean R2 and R2adj = 0.942765 and 0.912464. SD R2 an d R2adj = 0.241316 and 0.. 
  
Iteration 3 
 
{5.1276×10 -27 ,{x1->2.37372,x2->-2.2908,x3->2.70274}} 
333.613+183.618 x1+35.5828 x1 2+118.723 x2+76.9318 x1 x2-17.3313 x2 2+140.996 
x3+81.3407 x1 x3+50.8558 x2 x3-37.8868 x3 2 
53.1862+3.72398 x1-3.97903 x1 2+5.75439 x2+4.67083 x1 x2-20.6721 x2 2+23.2486 x3-
9.69796 x1 x3-1.29858 x2 x3+13.5253 x3 2 
Mean R2 and R2adj = 0.916449 and 0.872217. SD R2 an d R2adj = 0.199336 and 0.. 
  
Iteration 4 
 
{3.2211×10 -26 ,{x1->2.06247,x2->-1.1309,x3->-0.106415}} 
319.892+174.849 x1+47.0668 x1 2+105.079 x2+88.8005 x1 x2-21.0468 x2 2+136.312 
x3+79.2145 x1 x3+35.9897 x2 x3-25.5838 x3 2 
40.8505+31.5963 x1-1.77939 x1 2+29.1066 x2+16.3613 x1 x2-13.4615 x2 2+44.2703 
x3+41.1292 x1 x3+26.9841 x2 x3+29.7985 x3 2 
Mean R2 and R2adj = 0.864035 and 0.792053. SD R2 an d R2adj = 0.613965 and 
0.409593. 
  
Iteration 5 
 
{4.27809×10 -23 ,{x1->0.591542,x2->1.60699,x3->-0.676838}} 
302.76+175.221 x1+32.2337 x1 2+109.941 x2+67.4136 x1 x2+8.43851 x2 2+127.908 
x3+68.7526 x1 x3+49.604 x2 x3-26.6021 x3 2 
19.964+7.01227 x1+15.7854 x1 2+0.332636 x2+5.39662 x1 x2-8.33449 x2 2+26.076 x3-
0.630013 x1 x3+3.40454 x2 x3+15.9851 x3 2 
Mean R2 and R2adj = 0.904482 and 0.853914. SD R2 an d R2adj = 0.563255 and 
0.332037. 
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