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ABSTRACT 

The purpose of this study was to create an adaptive agent based simulation 

modeling the processes of creative collaboration. This model aided in the development of 

a new evolutionary based framework through which education scholars, academics, and 

professionals in all disciplines and industries can work to optimize their ability to find 

creative solutions to complex problems. The basic premise follows that the process of 

idea exchange, parallels the role sexual reproduction in biological evolution and is 

essential to society’s collective ability to solve complex problems. The study outlined a 

set of assumptions used to develop a new theory of collective intelligence. These 

assumptions were then translated into design requirements that were designated as 

parameters for a computational simulation that utilizes two types of machine learning 

algorithms. This model was developed, and 200 simulations were run for each of 48 

different combinations of four independent variables for a total of 9,600 simulations. 

Statistical analysis of the data revealed a number of patterns enhancing the simulation 

agents’ collective problem solving abilities. Most notably, agents’ collective problem 

solving abilities were optimized when idea exchange between agents was balanced with 

individual agent time contemplating new creative strategies. Additionally, the agents’ 

collective problem solving abilities were optimized when simulation constraints did not 

force the agents to converge upon one potential solution.  
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CHAPTER 1 

INTRODUCTION 

The purpose of this study is to model the flow dynamics of ideas as individuals 

collaborate in attempt to solve complex problems, using a variety of ideas taken from the 

field of evolutionary biology (Dawkins, 1978; Ridley, 2010). This research will help 

educators and education policy makers by giving them a framework with which to 

understand how ideas develop in society and will illustrate the conditions that optimize 

the potential of the creative process. In their discussion of adaptive systems such as the 

model employed in this study, Miller and Page (2007) stated, “while there is no 

imperative for adaptive systems to result in optimal structures, there are likely to be 

conditions under which simple adaptive systems produce optimal conditions” (p. 241). 

The study was designed to help uncover those ideal conditions. 

The intent of this research is to create an adaptive simulation modeling the 

processes of creative collaboration and, in turn, to manipulate the inputs in order to find 

the natural conditions that optimize this creative evolution. The model can then help to 

develop a new framework through which education scholars, academics, and 

professionals in all disciplines and industries can work to optimize their ability to find 

creative solutions to complex problems. Miller and Page (2007) explained the value of 

this approach stating, 

Even as purely abstract objects, computational models are useful. They provide an 

“artificial” reality in which researchers can experience new worlds in new ways. 
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Such experiences excite the mind and lead to the development of novel and 

interesting ideas that result in new scientific advances (p. 76). 

1.1 Primary Research Question 

What conditions optimize the rate at which networks of individuals collectively solve 

problems? 

1.2 Research Sub-Questions 

1. How should collaborative idea exchange be balanced with individual time 

contemplating new ideas, in order for both individuals and groups to optimally 

generate creative solutions to complex problems? 

2. Should agents copy problem solutions from agents with the current best solutions 

or copy solutions from random agents in order to optimize the system’s ability to 

collectively solve problems? 

3. What percentage of an old idea should an agent change when individually 

working on problem solutions in order to optimize a system’s ability to 

collectively solve problems? 

4. What percentage of another agent's idea should an agent copy when collaborating 

in order to optimize the system’s ability to collectively solve problems? 

1.3 Definition of Terms 

  Due to the interdisciplinary nature of the study a list of terms has been provided in 

order to reduce confusion created by the use of technical and philosophical jargon. 

Definitions do not reflect the only definitions of the terms listed below. Rather, 

definitions reflect the terms as they are used in this study. 
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1. Agent: A single autonomous component used in an agent based model (Page & 

Miller, 2007). 

2. Agent Based Model: A class of computational models that simulates the 

interactions of multiple independently acting autonomous parts (Page & Miller, 

2007). 

3. Artificial Intelligence: A set of computer algorithms and programming 

techniques which is intended to create machines capable of solving problems.  

4. Artificial Neural Networks: A type of artificial intelligence algorithm that is 

based upon the structure of the human brain, which iteratively builds connections 

between nodes representing ideas and other phenomena (Haykin, 1994). 

5. Asexual Reproduction: The biological process for procreation in which an 

individual creates a perfect copy of itself. 

6. Bonferroni Correction: A statistical tool used to reduce the rate of type I error 

when a data set with multiple independent variables is analyzed using multiple 

null hypotheses (Statsoft Inc., 2013). 

7. Black Box: A process with clear inputs and outputs that utilizes intermediate 

mechanisms which cannot be viewed (Page & Miller, 2007). 

8. Chaos: The phenomenon where components of a system interact to create 

disorder. These systems are highly sensitive to initial conditions or described with 

traditional linear models (Holland, 1974). 

9. Collective Intelligence: The combined cognitive and creative ability of a system 

of individuals working together to solve problems (Levy, 1997). 
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10. Complexity: The phenomenon where components of a system interact to create 

new patterns. These systems are extremely sensitive to initial conditions and 

cannot be predicted or described with traditional linear models (Holland, 1975). 

11. Constructivism: The epistemological view that individuals construct knowledge 

out of the social context through which they see the world (Marion, 2012). 

12. Design Guideline: A loose recommendation to be considered when designing a 

system. 

13. Design Requirement: A mandatory standard that must be met when designing a 

system. 

14. Emergence: The creation of a phenomenon that is produced by the physical 

structure of our complex and often chaotic Universe, yet cannot be explained 

through simple reduction to the properties of its components (Goldstein, 1999). 

15. Epistemology: The study of how humans acquire knowledge. 

16. Eukaryotes: Organisms that evolved from prokaryotes that have a membrane 

bound nucleus and are sometimes multi-cellular. 

17. Evolutionary Psychology: A sociological perspective that tends to view modern 

human thought patterns and behaviors as those which gave human ancestors the 

best chance of survival and, in turn, were molded by the process of natural 

selection (see sociobiology). 

18. Externality: The effects of an economic transaction on parties not involved in the 

transaction (see spillover). 
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19. Feedback Loop: A system that has outputs that are also inputs, thus changing one 

input can change the output (which is also an input), which in turn changes the 

output again and creates a cycle. 

20. Fitness Landscape: A multidimensional surface representing a set of theoretical 

possibilities for a real world system, having one dimension for each input and one 

dimension for the output (the fitness), thus problem solving can be viewed as 

navigating different combinations of input dimensions in order to find the 

combination which yields the highest possible output fitness variable (Miller & 

Page, 2007). 

21. Genetic Algorithm: An iterative process that attempts to solve a problem by 

using trial and error to gradually change a set of multiple combinations of 

randomly assigned inputs to generate the optimal problem solution. Unlike a hill 

climb algorithm that only iterates on a single solution, this algorithm iterates on 

multiple solutions allowing for the recombination of inputs between different 

solutions (Holland, 1975; Mitchell, 1997). 

22. Global optimum: The point on a fitness landscape with the best possible output 

value (Miller & Page, 2007). 

23. GNU Octave: A high-end programming platform that is an open source version 

of MATLAB (Eaton, 2013). 

24. Heterogeneous Agents: Agents that operate differently in a simulation (Page & 

Miller, 2007). 



6 
 

25. Hill Climb Algorithm: An iterative process which attempts to solve a problem 

by using trial and error to gradually change a randomly assigned set of inputs to 

generate the optimal problem solution. 

26. Homogeneous Agents: Agents that operate identically in a simulation (Page & 

Miller, 2007). 

27. Homophily: The sociological assertion that humans gravitate towards like 

individuals. 

28. Induction: The process of acquiring knowledge through iterative processing of 

sensory data (Popper, 1979). 

29. Laminar: The flow of a fluid that is moving in smooth parallel layers. 

30. Linear Systems: A system with behavior that can be predicted by the additive 

effects of individual components. 

31. Local Optimum: A point on a fitness landscape with an output value that is not 

the best on the entire landscape but is better than output values found at 

neighboring points. 

32. Machine Learning: A set of evolutionary artificial intelligence algorithms that 

uses trial and error to find ideal solutions to specifically defined problems 

(Mitchell, 1997). 

33. Meme: An idea which replicates and proliferates itself between minds (Dawkins, 

1976). 

34. Memeplex: A systems of ideas, memes, which act mutualistically to maximize 

the ability of the system and thus the constituent memes to replicate (Speel, 1995). 
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35. Mutualism: A relationship between two organisms that is advantageous to the 

evolutionary well being of both. 

36. Naturalism: The methodological view that science provides researchers with 

tools necessary to investigate social systems if incorporated into the modern 

complexity science paradigm. 

37. Non-Linear Systems: A system with behavior that cannot be predicted by the 

additive effects of individual components. These are generally viewed as more 

complex than their linear counterparts. 

38. Ockham’s Razor: The mathematical and philosophical assertion that all else 

being equal, the simplest solution tends to be correct. 

39. Ontology: The nature of existence. 

40. Optimization: A process to find the set of inputs into a system that create the 

most ideal output. 

41. Path dependent world: A complex system in which the past choices of agents 

influence their future ability to reach goals (Page & Miller, 2007). 

42. Positivism: An epistemology that posits that humans obtain knowledge through 

logical manipulation of sensory data (Popper, 1979). 

43. Post-positivism: An epistemology that posits that humans obtain knowledge 

through logical manipulation of sensory data while also acknowledging that 

human biases may influence the process (Popper, 1979). 

44. Pragmatism: The view that the function of thought is to help accomplish goals 

rather than to reflect reality (Diggins, 1994). 
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45. Prokaryotes: Simple single celled organisms that lack a membrane bound 

nucleus and are the ancestors of eukaryotic organisms. 

46. Pseudo-Random Number Generator: A computer algorithm designed to 

produce numbers that are indistinguishable from those produced by a truly 

random series (Gentle, 2004). (Any mentions of random number generation in 

this study are actually referring to pseudo-random number generation.) 

47. Reductionism: The idea that all complex systems are mere sums of their 

components (Anderson, 1972). 

48. Replicator: Any entity that naturally creates copies of itself and is therefore 

subject to undergo evolution (Dawkins, 1976). 

49. Scientific Method: A traditional method for designing experiments and 

investigating questions based upon inductive logic. 

50. Sexual Reproduction: The biological process for procreation in which two 

individuals combine portions of their own genetic material in order to create a 

new unique organism. 

51. Sociobiology: A sociological perspective that tends to view modern human 

thought patterns and behaviors as those which gave human ancestors the best 

chance of survival and, in turn, were molded by the process of natural selection 

(see evolutionary psychology). 

52. Spillover: The effects of an economic transaction on parties not involved in the 

transaction (see externalities). 

53. Symbiosis: Interactions between two biological species. 
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54. Turbulent: The flow of a fluid that is moving chaotically and not in smooth 

parallel layers. 

1.4 Overview 

 The creative, collaborative networks under investigation include graduate 

education research teams, academic departments, think tanks, and engineering firms. As 

previously stated, the purpose of the study is to investigate the flow dynamics of ideas in 

collaborative systems on the cutting edge of specific research questions. Holland (2004) 

explained that the concept of flow is not limited to the movement of physical fluids, but,  

we speak of the flow of goods into a city or the flow of capital between countries. 

In more sophisticated contexts, we think of flows over a network of nodes and 

connectors. The nodes may be factories, and the connectors transport routes for 

the flow of goods between factories (p. 23). 

In the context of education and idea exchange, we speak of the flow of information and 

creative problem solutions between different people (nodes) along all lines of 

communication between them (connectors). The reason these ideas are more applicable to 

graduate education than undergraduate and P-12 education is that the goal of this study is 

to investigate the creative processes of individuals who are considered to be experts in 

their given fields. When examining lower levels of education, the majority of ideas 

trickle down from the higher levels that are actually making these discoveries (Rogers, 

2003). Naturally, it can be assumed that most high school geometry classes are not 

creating genuinely new mathematical conjectures. Rather, they are simply learning the 

ideas of Euclid. However, in the realm of high level academic research where researchers 
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search for solutions to explicit problems, the quality of the solution becomes much more 

important in determining what ideas gain traction in the community of specialized experts. 

By utilizing the ideas of Darwin as well as modern evolutionary biologists, the hope is to 

model the flow dynamics of the systems that seek to come up with these genuinely novel 

ideas. By providing this explanatory model, it is possible to provide insight into the 

conditions that optimize this desired creativity. 

This research is intended to help illuminate the phenomenon of collective 

intelligence. Levy (1997) defined collective intelligence as the cognitive capacity of a 

group of individuals whom are collaborating and competing, when examined as a whole. 

Schut (2010) explained that in spite of the diversity of approaches that have been used to 

address how collective intelligence emerges, a succinct explanation of the guiding 

mechanisms has yet to be provided. In this context, emergence is defined as the creation 

of a phenomenon that is produced by the physical structure of our complex and often 

chaotic Universe, yet cannot be explained through simple reduction to the properties of 

its components (Goldstein, 1999). 

1.5 Theoretical Framework: A Naturalist View of Complexity 

  This computational model is constructed upon a naturalist ontology. The 

naturalist position suggests that science provides researchers with tools necessary to 

investigate social systems if incorporated into the modern complexity science paradigm. 

Science may not give us the tool set to predict human behaviors. However, the 

complexity perspective illuminates how independent system components following these 

mechanical principles interact to form complex entities (Miller & Page, 2007). Unlike 
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complexity based research methods, many traditional research tools assume that systems 

can be modeled as linear functions of their various attributes (Holland, 1974). Avoiding 

assumptions of linearity significantly increases the ability of the complexity perspective 

to describe, model, and predict the behavior of social systems (Marion, 2012). Kauffman 

(1993) expressed his view of complex systems and their importance stating, 

The overall answer may be that complex systems constructed such that they are 

poised on the boundary between order and chaos are the ones best able to adapt 

and mutate by natural selection. Such poised systems appear to be able to 

coordinate complex, flexible behavior and best able to respond to changes in their 

environment. I suggest that selection does achieve and maintain such poised 

systems. Further, beyond the selective molding of individual adaptive systems, 

there are provocative, promising indications that linked co-evolving complex 

systems are led by selection, as though by an invisible hand, to form ecosystems 

whose members mutually attain the edge of chaos. Here all may sustain the 

highest expected fitness, even while avalanches of co-evolutionary changes 

propagate through the ecosystem, ringing out old species and ringing in new ones 

(p. 29). 

  All social entities, especially those working collaboratively to solve problems fit 

into Kaufman’s description of complex systems. Kaufman (1995) stated that while people 

may never be able to fully predict the outcomes of complex systems people can discover 

laws governing their behavior. These complex social systems can be better understood by 

drawing an analogy to meteorologists attempting to predict the weather. These scientists 
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have a quite sophisticated understanding of particle mechanics, but any layman watching 

the weather channel can see that they still struggle at predicting hurricanes, despite these 

weather systems being ultimately reducible to the axioms of particle mechanics. This 

weather example is consistent with Anderson’s (1972) assertion that reductionism, the 

stance that all complex entities are sums of their components, does not necessitate that 

understanding the constituent components will provide the ability to understand the 

complex behaviors which emerge from them. This helps illuminate why many academic 

fields predict complex phenomena by using models that ignore the base principles out of 

which these complexities emerge. 

In fluid mechanics courses students learn complicated equations filled with 

arbitrary coefficients that enable them to predict whether fluids flow in smooth laminar 

lines or in chaotic turbulence. In truth, these numbers are arbitrary and have nothing to do 

with the fundamental axioms of physics. The students use a model grounded in 

assumptions of complexity rather than particle mechanics. Even if scientists do uncover a 

theory of everything, the predicted theory that is supposed to unify the world of 

theoretical physics, they still will not be able to perfectly predict the weather. They will 

not be able to predict these complex and chaotic meteorological systems because these 

systems are extremely dependent upon initial conditions. The task of predicting weather 

utilizing particle mechanics would require a practically omniscient knowledge of the 

initial conditions in addition to practically infinite computational capabilities. Complexity 

science provides the tools necessary to bridge the gap between the fundamental 
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mechanics of individual system components and the intricate patterns and behaviors that 

emerge from them. 

As researchers, educators, engineers, and business managers seek to optimize the 

creative processes of the social systems in which they work or supervise, they tend to 

look to traditional statistical approaches. However these models can be problematic. 

Creative outputs of these social systems generally do not depend on any individual 

components of the social systems or the problems they are trying to solve. Instead, the 

creative outputs are produced as a result of complex functions of the interactions between 

the multitudes of constituent components in the systems at hand. Many statistical models 

describe systems as being linear in nature, thus yielding these tools limited in their ability 

to analyze such complexities. As a result of the complex nature of these social systems, 

many creativity experts are turning to new approaches to model these interactive social 

systems.  

 In summary, this research project focuses on the development of a new 

computational model in hopes to develop our understanding of the ways in which ideas 

evolve. Due to the fact that this field of study is complex by definition, no single 

computational model will ever be capable of providing a complete explanation of the 

phenomena at hand. This research is based on a small set of assumptions about the nature 

of the Universe, human consciousness, and human collaboration. Boyatzis (2006) showed 

that individuals working to change organizations are more effective when they have an 

understanding of the complexity perspective on organizations, in turn, illustrating the 

value of this study’s approach to modeling social systems. 



14 
 

1.6 Organization of Study 

 This study is composed of five chapters. Chapter 1 provides a brief overview of 

the study, its purpose, the research questions, research design, limitations, and theoretical 

grounding. Chapter 2 explores relevant literature in the field of education as well as 

explores literature on positivism, pragmatism, and various other epistemologies in order 

to layout the philosophic groundwork for the study. From here, it examines literature 

drawing parallels between evolutionary biology and the creative evolution of ideas in 

society, largely emphasizing meme theory (Dawkins, 1968; Blackmore, 1999). Finally, 

Chapter 2 analyzes literature examining the phenomenon of collective intelligence.  

 Chapter 3 explains the specific method that this study employed. First, it explains 

the general principles of computer simulations, agent based models, and machine 

algorithms. Next, it outlines a set of assumptions the model makes about the nature of 

collaborative systems and translates them into design requirements, standards which the 

model must meet in order to be considered valid. This step helps to draw connections 

between the theoretical positions laid out in Chapter 2 and the research design laid out in 

Chapter 3. Chapter 3 then proceeds to explain the specific mathematical, computational, 

and algorithmic mechanics of the research design in order to illustrate how the model 

meets the design requirements described above. Finally, Chapter 3 explains the statistical 

tools used to analyze the data. 

 Chapter 4 describes the data that the simulation produced and proceeds to 

describe the results of the statistical analysis of this data. Chapter 5 outlines a variety of 

conclusions drawn from the simulations and the following statistical analyses and frames 
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them within an appropriate discussion of the study’s limitations. Here, it proceeds to 

explain a variety of future research methods, both empirical and simulation based, which 

could be used to further explore, expand upon, and validate the findings and conclusions 

of this study. 

1.7 Limitations of Study 

 Simulation based research has a variety of limitations. Computer models help 

explain the real world by making assumptions about the subjects at hand and use a 

variety of algorithmic and mathematical tools to explore these ideas. The problem with 

this approach is that these findings are not empirical. For example, a simulation designed 

to explain the influence of secondary school leadership structures on student achievement 

may provide profound insight into the relationships between these variables, but it cannot 

be considered hard data. Data can only provide conclusive evidence on these 

relationships if derived from statistically significant patterns in properly controlled 

empirical research.  

The function of simulations is to provide theoretical insights into the behaviors of 

systems with better efficiency than many traditional research approaches. These 

simulation results can then be analyzed in the context of the existing body of literature 

and new theoretical suggestions can be made. These theoretical positions can then be 

tested through empirical methods. Some agent based simulations have limited precision, 

but Miller and Page (2007) argued, that the benefit of the extreme flexibility of these 

computational tools is well worth this cost. 
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 Despite the limitations of simulation based modeling, this approach to research 

has a variety of advantages justifying its use. In a complex Universe it is mathematically, 

practically, and economically unreasonable to think we can focus all of our mental efforts 

into running empirical tests. Hypothetically speaking, it is possible that humans could 

invest infinite resources continuously for an infinite period of time into empirical 

research and still not complete all of the needed empirical work necessary to completely 

understand our Universe. This conclusion can be drawn from Gödel’s incompleteness 

theorem (1962) illustrating that a set of infinity numbers does not necessarily contain all 

numbers. Instead, there may be infinitely more numbers outside of the set than within. 

Likewise, it follows that a hypothetical research plan containing an infinite number of 

studies will not necessarily contain all of the needed studies, and in fact there may be 

infinitely more needed studies outside of the research plan as inside of it. For this reason, 

attempting to empirically solve problems through brute force is inadvisable. By 

implementing simulation studies to search for the proper phenomena to empirically 

explore, researchers can significantly increase their efficiency in terms of resource and 

time allocation. Computational simulations that only approximate the conditions of real 

world systems are often the most inexpensive and, therefore, the most ideal research tools 

in many circumstances (Miller & Page, 2007). 
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CHAPTER 2 

LITERATURE REVIEW 

While computational modeling of creativity is becoming rather prevalent in 

academia, it is almost unheard of in the field of education. Traditionally, creativity 

researchers have assumed that the creativity of a system is primarily influenced by the 

creativity of the individuals by which the system is composed. Christiansen and Varnes 

(2008) illuminated some of the holes in this view by examining innovation through a 

network process and showing that ideas do not arise linearly as traditionally conceived. 

These findings employed Newman’s (2003) complexity perspective on social networks 

and showed that a system’s ability to innovate cannot be modeled as a simple direct 

function of the aptitude of the agents that compose it.  

Cheng and Van de Ven’s (1996) analysis of biomedical innovations supports 

these findings as well. Here, they argued that analysis of these innovations reflects a 

chaotic system in which ideas emerge from nonlinear dynamical systems that were 

neither fully organized nor completely random and stochastic. These findings help to 

question the default stance on creativity. The traditional line of thought necessitates that 

the ability of think tanks, academic departments, and engineering firms to generate new 

ideas is largely determined by their hiring practices--by their ability to bring in creative 

people. Uhl-Bien, Marion, and McKelvey (2007) argued that, “Complexity science 

suggests a different paradigm for leadership--one that frames leadership as a complex 

interactive dynamic from which adaptive outcomes (e.g., learning, innovation, and 

adaptability) emerge” (p. 299). 
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Homophily provides a clear example of how abstract concepts pertaining to social 

systems may influence the functionality of organizations of people. McPherson, Smith-

Lovin, and Cook (2001) described homophily as the tendency of individuals to associate 

and develop connections with similar others. This suggests that individuals naturally 

gravitate towards those with whom they share common perspectives. McPherson, Smith-

Lovin, and Cook then proceeded to explain this phenomenon in greater detail stating,  

Homophily limits people’s social worlds in a way that has powerful implications 

for the information they receive, the attitudes they form, and the interactions they 

experience. Homophily in race and ethnicity creates the strongest divides in our 

personal environments, with age, religion, education, occupation, and gender 

following in roughly that order. Geographic propinquity, families, organizations, 

and isomorphic positions in social systems all create contexts in which 

homophilous relations form. Ties between non-similar individuals also dissolve at 

a higher rate, which sets the stage for the formation of niches (localized positions) 

within social space (McPherson, Smith-Lovin, & Cook, 2001).  

This in turn limits the diversity of inputs individuals receive in their day-to-day social 

interactions, thus can limit their capacity for innovation. Marion (2012) stated that 

homophily tends to prevent the heterogeneous interactions that, “encourage exchanges by 

introducing interesting topics to discuss, (p. 464)” and that these heterogeneous 

interactions, “create conflicting constraints thus pressuring agents to adapt to one 

another’s preferences. We found, consistent with hypothesized expectations, that 

diffusion is optimized when combined vision and interdependency levels are moderated.” 
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(p. 464). Conversely, Rogers (2003) argued that increasing the heterogeneity of groups 

can make it difficult for ideas to diffuse within them. 

 Lattuca (2002) emphasized the importance of institutional structures that provide 

the necessary conditions to destroy barriers preventing interdisciplinary research as well 

as to generally incentivize the interdisciplinary idea exchange that this model describes. 

A variety of research has shown the need for interdisciplinary and transdisciplinary 

collaboration between academic fields in an attempt to break down the barriers that 

prevent the free flow of ideas. These academic fields often become completely isolated 

fields with virtually no communication with other academic communities despite 

similarity of research interests between these disciplines (Austin, 1990; Boyer, 1990, 

1997; Clark, 1983; Damrosch, 1995; Dill, 1991; Kerr, 1982; Tierney & Rhoads, 1994). 

Interdisciplinary collaborations attempt to allow different academic disciplines to work 

together while maintaining their disciplinary paradigms, whereas, transdisciplinary 

collaborations attempt to take this process a step further by formulating new sets of 

paradigms that are logically consistent with all of the collaborating fields. The question 

remains, what is the value of these cross-disciplinary approaches to idea generation? 

2.1 A Pragmatic Approach 

A variety of different philosophic positions generated over the centuries describe 

the ways in which people acquire knowledge. These theories of knowledge acquisition 

are called epistemologies. Currently, there is a debate in the field of leadership theory 

regarding creativity between camps holding entity and collectivist perspectives. Marion 

(2012) argued for the collectivist approach to creativity studies; this assumes new ideas 
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or knowledge, emerge from the complex interactions of social structures rather than out 

of the independent cognitive processes of individual agents. Marion’s (2012) assertion 

rejects the notion that individuals are the sole generators of new ideas and new 

knowledge, but this does not yield it mutually exclusive with other epistemologies such 

as positivism and post-positivism.  

The convoluted relationships and shared ground that exists between these 

epistemologies is perhaps best illustrated by Popper’s stance. Popper (1979) accepted the 

fundamental role of inductive reasoning, a position typically associated with positivism, 

but denied that humans are capable of employing this iterative form of logic 

independently from the influence of their social contexts, biases, and subjectivities 

(sometimes Popper is referred to as a post-positivist). More confusion appears in the 

discussion as it becomes extremely difficult to identify specific causal relationships 

between the actions of individual system components and the complex outcomes that 

emerge from them (Miller & Page, 2007).  

In order to avoid confusion and the complications that come with selecting an 

epistemological label that is already loaded with years of connotations and subtle 

differences in interpretations, this study will assume a pragmatic position. Pragmatism is 

the view that the primary goal of thought is to solve real world problems (Diggins, 1994). 

In accepting this pragmatic position, the remainder of this chapter serves to explain the 

theory necessary to successfully ground an effective model of collective intelligence.  

The goal of this study is to develop a tool that can be used to help people optimize 

the effectiveness with which collaborative groups solve problems, a goal that the 
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pragmatic epistemology of the study necessitates is more important than any underlying 

theory of knowledge acquisition. After all, the function of pragmatism is to solve real 

world problems rather than to focus on trivial academic details. This pragmatic assertion 

may seem counterintuitive, as the remainder of this chapter is significantly theory laden. 

However, only the theoretical positions that are inherent to establishing the model’s 

validity are explicated. This model is conducive with various aspects of post-positivism, 

collectivism, and constructivism, all of which can help to solve the real world problem at 

hand (the study’s pragmatic aim) so there is no need to iron out these subtle differences. 

2.2 The “Self” as a Cognitive Agent 

Many modern leadership theorists are beginning to shift their focus from models 

which view creativity as a phenomenon produced by individuals to a new paradigm 

which attributes creativity to collections of interacting people (Marion, 2012). Ethiraj and 

Levintha (2011) showed that models which assume overly specific modularity (such as 

assuming individuals are the loci of innovation) can limit their ability to describe 

innovation in complex systems. Hargadon and Bechky (2006) illustrated that it is 

possible to identify occurences in innovative systems where a single individual cannot be 

identified as the sole creator of an idea. They did this without denying the value of 

individual contributions to the collaborative process.  

By understanding the “self” as a mere label for a particular cognitive agent 

(Blackmore, 1999), as consistent with the naturalist framework of this study, new 

possibilities open up in the realm of innovation research which lie beyond the traditional 

entity based approach to leadership theory. The entity-based approach assumes an overly 
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simplistic model identifying the “self” as the creative locus of new ideas. Here, the “self” 

may be a useful tool in describing the world, but does not exist in an ontological sense. 

The “self” or the individual does not exist outside of the constructs of the physical 

systems from which it emerged; it is a culmination of nature and nurture (Blackmore, 

1999). The notion of “self” helps this collection of brain feedback systems navigate the 

world, but the “self” label that is used to describe the way the world works is just that, a 

description. Descriptions are useful in their ability to model reality, but have no purpose 

in deriving further truths of reality. This is true just as classifications of types of 

educational institutions may help people describe education, but are not a basis for 

determining the fundamental nature of education. 

“Selves” are masses of neurons that run a variety of brain programs. They process 

inputs and produce outputs. The “self ” is not capable of exerting a metaphysically 

independent will that creatively steers its future course of existence (Dennett, 2004). 

However, it is perfectly reasonable to assume that this “self”, this organized system of 

organic compounds, does have complex feedback systems which act as the final step in 

the infinite causal chain (Dennett, 2004). Suppose people are analyzing a situation in 

which “I” choose to do some action X. “I” is simply a label representing one particular 

brain. Likewise, “choose” is simply a description of the output of a system of complex 

brain feedback loops. Therefore, when someone says, “I choose” to pursue the action X, 

what they really mean is that this particular organic computer ran a program that set this 

particular action X in motion. 
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 Understanding the “self” as a human construction representing a specific organic 

computer has profound implications on the way people think about creative enterprises. 

Destroying the ontological conception of the “self” enables people to realize what the 

collectivist based approach to creativity research is already showing them. When 

debating the primary founder of calculus people mention Leibniz and Newton, but fail to 

mention the thousands of mathematical scholars before them whose ideas they inherited. 

Once people understand that the idea of the “self” is no more ontologically independent 

of physical reality than a group of people, or any social structure, they see that choosing 

the individual as their unit of analysis in creativity research may be practical in some 

circumstances but is always arbitrary and generally inadvisable. 

This philosophic conception that the “self” is nothing more than a label and 

sociological construction resonates deeply with Latucca’s (2002) view on the positions of 

sociocultural theorists. She stated that, “by shifting the unit of analysis from the 

individual toward the sociocultural setting in which learning is embedded, sociocultural 

theorists train their focus on the structures and interrelations within communities of 

practice” (p. 712). All creative structures are emergent properties of the complex physical 

Universe. It is just as logical for people to study the creative processes of small study 

groups or larger worldwide societal creative collaborations as it is for them to study the 

creative processes of individuals.  

Lattuca (2002) emphasized the need to extend our conception of social and 

culture phenomena beyond that which focuses on the individual, stating  
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traditional psychological theories of learning and studies based on these theories 

manifest this assumption about the separate spheres of thinking and being. In 

contrast, sociological and anthropological theories focus intently on contexts and 

cultures: they are more apt to assume that analytic strategies should begin with an 

account of social phenomena and then, on the basis of these, develop analyses of 

individual mental functioning (p.712). 

Lattuca’s suggestion to shift the sociological unit of analysis from the individual to the 

group is consistent with Vygotsky’s (1981) criticisms of traditional cognitive theory. 

Here, Vygotsky criticized perspectives that analyze cognitive functions of individuals 

independently of their social circumstances. Here, rather than rejecting the cognitive 

conception of the “self”, it can be understood as a label describing a particular complex 

system of neurons which is a small piece of the even more complex, larger collective 

entity labeled society. These “selves” are the individuals represented by agents in the 

agent based model that Chapter 3 describes. 

2.3 Memes 

Organisms evolve by the process of natural selection (Darwin, 1859). Those that 

effectively reproduce and thus propagate their genes continue to exist in time replacing 

their less apt competitors. Today, academics often use this line of thought to frame 

questions. They look at a particular widespread, sociocultural or behavioral pattern, and 

ask the question: How is this pattern evolutionarily advantageous to the genes of the 

individuals demonstrating it, and more importantly how was it advantageous to their 

ancestors? In other words, how does this behavior help individuals survive until they can 
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mate and, in turn, propagate their DNA? This question is certainly reasonable. A human 

instinctively exhibiting behaviors which increase its odds at DNA proliferation, is no 

different than a female grizzly instinctively protecting its young in order to better the 

odds that its genetic sequences will continue to exist.  

This field of thought, called evolutionary psychology, has emerged as a popular 

method for explaining human behaviors. It posits that a large portion of human 

interactions and social constructs can be explained as behaviors which were produced in 

the early stages of human development, a period which occupies the majority of human 

history when people survived as hunter-gatherers. A number of academics have gone on 

to explain a wide variety of modern behaviors using this analytic approach (Baker, 1996; 

Buss 1994; Fisher, 1930; Ridley, 1993; Symons, 1979; Trivers, 1972; Wright, 1994).  

While evolutionary psychology has done much to explain modern society there is 

actually a second evolutionary mechanism at work that must be considered. Just like 

physical traits and genes, behaviors and ideas which naturally replicate themselves are 

more likely to found in future populations than ones that tend to be forgotten. Berger 

(2013) illustrated this idea, showing how certain marketing techniques can be used to 

enhance the virility of an idea, the extent to which it will spread through the masses. In 

spite of the recent uptake in this new method of social analysis, this line of thinking has 

existed for over a hundred years.  

Individuals adopt the beliefs of other agents on the basis of a few parameters. 

Agents typically adopt beliefs of their elders and peers through social interaction. 

Christians are more likely to have Christian children, and Muslims are more likely to 
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have Muslim children. This process which Cavalli-Sforza and Feldman (1981) described 

as the vertical-transmission of ideas may seem obvious, but has significant ramifications 

on how people think about the way individuals develop ideas. Cavalli-Sforza and 

Feldman (1981) contrasted this type of idea propagation with the propagation of ideas 

between peers. Simply put, individuals adopt the ideas that they adopt. Ideas propagate 

themselves through the world just any other replicator, like the genetic allele for color 

blindness through human genes (Dawkins, 1976). 

 One of the first academic seeds of the field of cultural evolution was planted when 

Baldwin described learning patterns through the process of imitation as being hereditary 

in nature (1896, 1909). Tarde (1903) posited that imitation plays a key role in allowing 

ideas to diffuse through out groups of people, and many others followed to draw out the 

analogy between this diffusion and biological evolution. Campbell (1960, 1965) argued 

that cultures evolve independently of the genes of their host humans. The most important 

contribution to the idea of thought evolution appeared when Dawkins (1976) founded the 

field of memetics, specifically explaining the basic unit and functional mechanism 

powering this process. Dawkins (1976) stated,  

What, after all, is so special about genes? The answer is that they are replicators. 

…The gene, the DNA molecule, happens to be a replicating entity that prevails on 

our planet. There may be others. If there are, provided certain other conditions are 

met, they will almost inevitably tend to become the basis of an evolutionary 

process” (p. 192). 
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Next, Dawkins explained how ideas are the new replicator on earth, and coined this new 

replicator the meme. He later proceeded to state:  

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of 

making pots or building arches. Just as genes propagate themselves by leaping 

from body to body via sperm or eggs, so memes propagate themselves in the 

meme pool by leaping from brain to brain via a process, which in the broad sense 

can be called imitation. If a scientist reads about, or hears a good idea, he passes it 

on to his colleagues and students. He mentions it in his articles and his lectures. If 

the idea catches on it can be said to propagate itself. As my colleague N. K. 

Humphrey neatly summed an earlier draft of this chapter: …‘memes should be 

regarded as living structures, not just metaphorically but technically. When you 

plant a fertile meme in my mind, you literally parasitize my brain, turning it into a 

vehicle for the meme’s propagation in just the way that a virus may parasitize the 

genetic mechanism of a host cell.’” (p. 192). 

A long standing debate still exists about the nature of the meme, the unit of 

thought which cannot be reduced any further (Dawkins, 1976; Delius, 1989; Dennett, 

1991, 1995; Durham, 1991; Grant, 1990; Hull, 1982; Lynch, 1991; Williams, 1966). It is 

unlikely that this debate will be resolved until brain scanning technologies develop the 

resolution necessary to explain exactly how ideas are coded into the mind, but ultimately 

the propositions of this study are dependent upon recognizing that the meme exists. They 

do not depend on knowing the specific neurological mechanisms by which memes are 

stored in the brain.  
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2.4 The Selfish Meme 

Solutions to real world problems are not composed of single components or single 

memes. The internal combustion engine functions on the basis of a complex system of 

multiple interacting memes. The nature of the interaction between memes requires 

examination under the evolutionary paradigm of this study. For a moment return your 

attention to genetic evolution. In 1976, in the same book which Dawkins introduced the 

idea of memes, Dawkins proposed the idea of the selfish gene, stating that genes have 

zero inherent incentive to propagate the existence of the entire genome of their host 

organism. This can be misleading. No gene has true incentive or intention, as individual 

genes are not sentient entities. Here, incentive refers to the driving evolutionary force, the 

mere fact that entities that replicate and preserve themselves are more likely to be found 

existing in the future. Here, the notion of the selfish gene suggests that the only 

evolutionary interest of a single gene is to promote its own continued existence. A single 

genetic nucleotide, the most basic unit of DNA, is only interested in preserving the 

existence of itself. It has no inherent interest in preserving the welfare of the host 

organism that carries it around. 

While the previous paragraph explained that genes have no inherent interest in 

promoting their host organism it would be false to say they have no indirect motive to do 

so. In fact they usually have a very strong reason to do so. Their future success is 

indirectly dependent upon it. For sake of illustration, consider a single bear is mutated to 

have a single gene that causes its hair to be white. This single gene has no inherent 

interest in whether any other genes in the organism survive genetic selection. Suppose the 
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bear wanders up into an area with huge quantities of snow where it then takes a role in 

producing a population of new white bears this gene has accomplished its evolutionary 

goal. This is true regardless of whether every other gene in the initial white bear has been 

eliminated from the population. Now, suppose these new white bears have adapted to 

feed on seals and the ability to digest seal meat is dependent upon another gene. Although 

not inherently so, the evolutionary propagation of the white fur gene is indirectly linked 

to the ability of its host to digest seals and is thus dependent upon the evolutionary 

success of the seal digestion gene.  

Returning to the basic unit of idea exchange, memes follow the same evolutionary 

self-interest motives as genes. Memes have no inherent interest in the evolutionary 

welfare of other memes, but the mutualistic relationships they develop do push them to 

become highly interdependent. Complex systems of mutuallistically interconnected 

memes are called memeplexes (Speel, 1995). Using meme theory we begin to see the 

history of mankind unfold in front of us. We realize that the ideas, which enabled Henry 

Ford’s mass production of the automobile, are the logically descended from the log 

wheels ancient people used to set up Stonehenge, just as much as we are descended from 

simple prokaryotes. 

2.5 How Ideas Evolve 

In a letter to Robert Hooke, Isaac Newton once stated, “What Descartes did was a 

good step. You have added much several ways, and especially in taking the colours of 

thin plates into philosophical consideration. If I have seen a little further it is by standing 

on the shoulders of Giants (I. Newton, personal communication, February 5, 1676).” 
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When thinking about this note in the context of Dawkin’s (1976) meme theory, people 

are likely to picture themselves as agents carrying memes on the current tip of idea chains, 

chains dating back to the earliest people. As ideas were passed from person to person the 

creative evolution took place, as some individuals were able to make minor changes to 

the ideas before passing them on to their successors. The problem with this explanation is 

that it cannot satisfactorily account for the exponential acceleration in the current 

development of ideas and technologies. 

Journalist and zoologist Matt Ridley (2010) offered a solution to this problem in 

his book, The Rational Optimist: How Prosperity Evolves. In this book, Ridley argued 

that modern thinkers have significant reason to be optimistic about humanity’s future. He 

attributed the rationale behind this optimism to the sexual reproduction of ideas in 

modern society that, in turn has lead to the exponential growth of our understanding of 

the world around us. In evolutionary biology asexually reproducing species evolve much 

more slowly than their sexually reproducing counterparts. It only took Homo erectus a 

few million year to evolve into Homo sapiens, an insignificant amount of time when 

compared to the billions of year that it took asexually reproducing prokaryotic organisms 

to evolve into more complex eukaryotic organisms. 

Ridley (2010) argued that sex provides organisms with an enhanced ability to 

produce new combinations of genes, in turn, speeding up the rate of genetic evolution. 

This advantage of sex can be translated into cultural terms to explain how humanity’s 

progress is accelerating exponentially. Ridley is not the first to suggest that sex plays a 

vital role in evolution. Charles Darwin’s grandfather Erasmus Darwin (1794) stated that, 
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“if vegetables could only have been produced by buds and bulbs, and not by sexual 

generation, that there would not at this time have existed one thousandth part of their 

present number of species (p. 519).” Ridley’s accomplishment was to extend these ideas 

to the social sciences. His argument is that anthropological evolution parallels the 

patterns of its biological predecessor.  

The Acheulean hand axe, a rock used by a particular tribe of ancient people, 

which had one sharpened end illustrates this phenomenon. This same hand tool was used 

for half a million years with no improvements. The reason for this phenomenon is that 

people used this tool before they started exchanging goods and ideas with other cultures 

(Ridley, 2010). At the point in time, when cultures began to trade and exchange ideas, 

societies and cultures began to evolve. This cultural transition occurred to people before 

the invention of farming and is the real transition that enabled people to move beyond 

hunter-gatherer survival techniques and into modern civilization (Ridley, 2010). 

Fortunately, this pattern did not stop here, as seen by the telescoping nature of societal 

progress.  

Toth and Schick (1993) ran detailed analyses of a variety of ancient stone, hand 

tools. After studying the tools they obtained the raw materials needed to make them and 

spent months experimentally chipping the rocks until they finally discovered a method to 

make such objects. These results further support Ridley’s (2010) arguments on the 

difficulty of developing new ideas without the aid of communication and idea exchange. 

Toth and Schick took months to develop their stone tools even though they engaged in 

the process with full knowledge of the end product they intended to create, a sizable 
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advantage that the first humans attempting to make such objects did not have. It can be 

reasonably assumed that this would make it even more difficult for ancient people to 

create these objects, an assumption which further supports Ridley’s (2010) conjecture 

that idea exchange is paramount to the human ability to solve problems. 

 Not only has the sexual reproduction of memes by methods of imitation and 

communication helped humans rapidly increase their ability to solve problems, but it has 

done it to such an extent that many geneticists and memeticists have argued that it 

provided such a drastic survival advantage that it pushed humans to both evolve bigger 

brains and the ability to communicate (Blackmore, 1999). While sign language has been 

successfully taught to a few apes, these primates do not exhibit the grammatical abilities 

and comprehension of symbolic logic that even the youngest human children show. Here, 

humans show unparalleled abilities to communicate and use symbolic logic (Deacon, 

1997; Donald, 1991, 1993; Dunbar, 1996; Pinker, 1994; Pinker & Bloom, 1990). These 

animals are unable to rearrange words in new grammatical structures to express new 

ideas. They can only be conditioned to imitate basic hang signals.  

In addition to the evolution of language, humans have evolved to have a much 

larger frontal cortex than other animals, the portion of the brain which enables people to 

simulate outcomes of potential decisions (DeSalle & Tattersall, 2012; Gilbert, 2007). 

This gives humans the ability to decide what memes to take from their peers by 

simulating the outcomes of different choices they could make. The introduction of these 

two abilities to humans increases the influence of the sexual reproduction of memes on 
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human progress even further. This sexual reproduction of ideas provides a basis for 

helping to develop a new theory of collective intelligence. 

2.6 Collective Intelligence 

 Collective intelligence is a phenomenon that Levy (1997) defined as the cognitive 

capacity of a group of individuals as they collaborate and compete. It is associated with 

the collective group’s ability to perform a diverse array of tasks (Woolley, Chabris, 

Pentland, Hashmi, & Malone, 2010) and illustrates many of the attributes of swarm 

intelligence, the phenomenon where groups of insects organize themselves into complex 

behavioral patterns which exceed the cognitive limitations of any of the constituent 

individuals (Bonabeau & Meyer, 2001; Surweicki, 2005). Likewise, humans naturally 

organize themselves into systems that push their collective intelligence beyond even the 

smartest individual in the group.  

Read (1958) wrote an essay entitled “I, Pencil: My Family Tree as Told to 

Leonard E. Read,” from the perspective of a pencil as it explains the complexity of all of 

the steps that go into making it. In illustrating the incredible complexity of creating 

something seemingly as simple as a wooden pencil, Read showed that the creative and 

cognitive capacity of society at large must be greater than the creative and cognitive 

capacity of any human on Earth. This must be true since no human could possibly master 

all the skills and knowledge that Read listed. The this study is to illustrate the memetic 

mechanisms through which collective intelligence emerges and, in turn, to provide 

insights into how people might act to optimize their collective ability to solve problems.  
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 Significant empirical evidence exists illustrating the connection between social 

interaction (which fosters idea exchange) and collective intelligence. Audretsch and 

Feldman (1996) showed that industrial innovation is more likely to occur in areas with 

relatively large knowledge externalities, meaning the activities of agents in those areas 

are likely to enhance the knowledge of others with close technical or geographic 

proximities. Jaffe (1986) showed that the creative productivity and the research and 

development returns of firms correlated positively with their involvement in research-

intensive technology groups, groups in which they could exchange ideas. Orlando and 

Verba (2004) illustrated that industrial innovation is more common in urban areas, areas 

that foster significant idea exchange. Perry-Smith and Shalley’s (2003) research showed 

that social interactions influence individual’s and organization’s abilities to innovate, thus 

also supports the notion that meme exchange influences collective intelligence. This 

position is also supported by Tsai’s (2001) analysis of 24 petrochemical companies and 

36 food manufacturing companies showing that organizational units are more effective at 

stimulating innovation when they are centrally located in the company and, in turn, foster 

increased idea exchange.  

In order to maximize their research potential educational institutions and other 

organizations must recognize that groups of people are more intelligent than any 

individual. Not only is this important, but it grows increasingly so with time. The birth of 

the internet led to a rapid growth of collective intelligence, a growth explained by 

Metcalfe’s Law, a law that states that the value of a network is proportional to the square 

of the number of processors and users in it (Gilder, 2000). Kurzweil (2006) took this idea 
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even further suggesting that human culture is approaching the knee of the exponential 

curve of its growth, the point at which it becomes apparent that our rate of intellectual 

and technological developments are for all practical purposes, approaching infinity. 

2.7 Summary 

The new paradigm of complexity science offers a plethora of theoretical and 

methodological tools that researchers can use to analyze the intricate mechanics of social 

systems. These tools and theories offer new possibilities for researchers to solve 

problems by circumventing the limitations of traditional linear analysis techniques. This 

paradigm illuminates the processes by which complex social systems emerge out of 

networks of interacting individuals. The evolution of ideas, memes (Dawkins, 1976), is 

one of these emergent phenomena. 

Ideas move from person to person as people communicate and interact with each 

other. The ideas that enable modern society to operate are complex systems of multiple 

co-dependent memes, memeplexes. Together these memes form solutions to real world 

problems and, in turn, incentivize people to adopt them. By forming memeplexes that 

solve problems making people's lives better, the selfish memes ensure their mutual 

evolutionary survival. 

In academic systems and other collaborative settings, good ideas and new 

problem solutions spread as researchers adopt ideas from their colleagues. Sometimes a 

researcher will adopt an idea, make a small alteration to it, and pass it on to a 

collaborator. The memeplex was adopted, some of the component memes were altered, 

and the memeplex was passed on to someone else. The memeplex evolved through the 
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processes of asexual reproduction and mutation. These direct lineages of meme 

replication and mutation trace back to the earliest humans. However, there is also another 

evolutionary mechanism at work. On occasion an individual will take parts from two 

problem solutions, memeplexes, and recombine them to form a new and unique 

memeplex. This recombination of memes parallels the recombination of genes in sexual 

reproduction and accelerates the rate of creative evolution. 

The sexual reproduction of memes provides a new explanation for collective 

intelligence, the phenomenon where groups of people are more intelligent than any of 

their constituent individuals. By modeling the asexual and sexual reproduction of 

memeplexes in collaborative networks, this study intends to examine the conditions under 

which problem solutions evolve. By examining this evolutionary process the model 

should provide insight into the conditions that optimize the capacity of various 

organizations and institutions to solve complex, real world problems. 
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CHAPTER 3 

RESEARCH DESIGN 

In order to help explain the phenomenon of creative evolution, this computational 

model was programmed in GNU Octave (Eaton, 2013). GNU Octave is a high-end 

programming platform that is an open source version of MATLAB. The platform has 

built in functions that enable programmers to easily implement complex mathematical 

calculations and algorithms into their code and enables users to easily manipulate and 

produce graphical data outputs (Mathworks, 2013). This model runs an agent based 

simulation of memetic evolution. Bonabeau (2002) stated, “in an agent based model a 

system is modeled as a collection of autonomous decision-making entities called agents. 

Each agent individually assesses its situation and makes decisions on the basis of a set of 

rules” (p. 7280). The concept of agents that interact to produce complex behaviors 

existed well before the modern computer and can be traced back as far as Adam Smith’s 

(1776) description of individuals as selfish entities, the agents from which he deduced his 

economic conclusions. In this model the agents are computer representations of the 

cognitive “selves” described in Chapter 2. As consistent with the philosophic view of 

objective reality outlined in the first two chapters the model was designed to represent a 

specific predefined problem that the agents at hand are working to solve. Miller and Page 

(2007) stated,  

One of the most powerful tools arising from complex systems research is a set of 

computational techniques that allow a much wider range of models to be explored. 

With these tools, any number of heterogeneous agents can interact in a dynamic 
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environment within the limits of time and space. Having the ability to investigate 

new theoretical worlds obviously does not imply any kind of scientific necessity 

or validity—these must be earned by carefully considering the ability of the new 

models to help us understand and predict the questions that we hold most dear (p. 

5). 

The remainder of this chapter is dedicated to establishing the validity towards which, 

Page and Miller (2007) explain we must carefully strive. This validity is established by 

summarizing the computational techniques used. The most important step in establishing 

the validity of the code was the establishment of an array of design requirements that the 

model had to meet. Here, the study contained an outlined list of philosophical, 

sociological, and practical assumptions made as a result of the literature review and 

arguments constructed in Chapter 2. These assumptions were then translated into the 

design requirements that served as constraints to guide the model’s development.  

3.1 Predictive and Explanatory Models 

Modern computational models come in two varieties: predictive and explanatory, 

however, the difference between the two is actually quite subtle. Predictive models use 

observations of past phenomena to develop algorithms and equations that will predict the 

behaviors of similar phenomena in the future. On the other hand, explanatory models do 

not seek to predict any particular future phenomena. Rather, they attempt to explain the 

logical dynamics of a larger set of related phenomena. For example, if we discuss the 

relationship between parental incomes and student SAT scores, it might be possible to 

develop a computational or mathematical model to predict future student SAT scores 
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based on parental incomes and a variety of other input variables (with a degree of 

variance). Here, it is important to note that this example models correlations in the 

relationship between SAT scores and a variety of other variables without providing any 

insight into the causal relationships between the variables. By sacrificing the predictive 

abilities of models for more generalizable explanatory abilities we can gain better insights 

into various causal relationships. An explanatory model would not provide us with the 

ability to predict SAT scores, however its causal insights would likely have more power 

to help us think about other exams, such as the ACT.  

After developing an explanatory model the researcher should extend their 

analytical lens beyond the model and examine it within a framework of related theory. By 

doing this the researcher can develop an explanatory model with less specificity but more 

generalizability than its predictive counterpart (Page & Miller, 2007). Once this step is 

finished the researcher would then have a logical justification for deciding upon which 

future empirical work to complete. Due to the abstract theoretical nature of this study’s 

simulations in addition to its broad range of assumptions it is unreasonable to assume this 

model can predict the outcome of complex creative systems, therefore it is only intended 

to be explanatory. This approach is consistent with Page and Miller’s (2007) 

recommendation to focus on the general theory rather than the specific model mechanics. 

3.2 Machine Learning: Navigating Fitness Landscapes 

Machine learning is a relatively modern computational technique that is used to 

find patterns in data (Mohri, Rostamizadeh, Talwalkar, & Ebrary, 2012). Common 

examples include email spam filters (Mohri et el., 2012), which use databases of old 
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spam emails to search for patterns which will help filter spam from your inbox with the 

highest level of efficiency possible (Nelson, Barreno, Jack, Anthony, Joseph, Rubinstein, 

Saini, Sutton, Tygar, & Xia, 2008). The following study employs two types of machine 

learning algorithms, hill climb algorithms and genetic algorithms. 

Hill climb algorithms represent a subset of machine learning techniques in which 

a computer program works to evolve a single solution to a provided problem (Mitchell, 

1997). This evolution generally takes place with respect to some mathematical function 

that has been designed to test the quality of the solution as a function of the solution 

parameters (Holland, 1974; Mitchell, 1997). These output functions can be 

mathematically derived from mathematical or physical principles. An example of this 

might occur when trying to optimize the torsional load a particular beam can handle 

given certain geometric constraints.  

In other examples these algorithms may be used to optimize the value of a more 

complex function that applied weighted values to various different attributes of a problem 

solution. The program enters either a random starting value for each input variable or a 

predetermined starting value for each input variable. The model in this study assigns 

random starting values, as it assumes no prior knowledge of the problem at hand. These 

values are assessed for quality as determined by the program’s quality assessment 

function. Once this process is completed, a pseudo-random number generator is used to 

make pseudo-random changes to a variety of the solution’s input values. Now this new 

mutated design is run through the same quality assessment function and a new quality 

value is calculated. Here, the algorithm utilizes an if-then statement that presents two 
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possible courses of action. If the new mutated design is assessed as being higher quality 

than the previous iteration the mutated design will go through a second round of pseudo-

randomly generated mutations and the process will continue. On the other hand, if the 

new mutated design is assessed as being lower quality than the previous iteration, then 

the design reverts to the previous iteration’s settings and goes through a new set of 

pseudo-randomly generated mutations. The process continues. This process can either be 

set to run through a set number of iterations or until the output quality value meets some 

predefined criterion. 

Machine learning techniques can be eloquently illustrated through a series of 

geometric examples. Suppose that the number of input variables for a given machine 

learning system is represented by the variable n. Now, let us picture a graphical 

representation of this system of n+1 dimensions where the first n dimensions represent 

the input variables and the final dimension represents the output variable. A simple three-

dimensional example of this can be visualized with traditional Euclidean thinking. 

Consider an example with two input variables. Here we can imagine a contour plain with 

a very similar appearance to that of a map with proper dips and bumps to show elevation. 

The x and y axes, which run parallel to the lines of latitude and longitude, respectively, 

correspond with the values of the two input variables. Now one can consider a particular 

combination of x and y coordinates and imagine the corresponding spot on the surface. 

Naturally, this point will also have an elevation, or z-coordinate which represents the 

output variable. While it is not always true that a larger output value, a larger z-

coordinate, is higher quality than smaller z values, for the sake of clarity we will assume 
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that in this case it is true that larger values are better (in this study’s model it is the 

opposite). Here, we can think of the hill climb algorithm as doing exactly what the name 

suggests. The algorithm mutates the solution’s x and y values, keeping them when they 

improve (or increase) the elevation, reverting when they do not, and iterating upon this 

process until the solution climbs to the highest peak, the point illustrating the optimal 

design quality value. 

Now, imagine an example where the quality (output) value shows a shape created 

by a concave down parabola rotated about the z-axis. Here, the parabolic hill-shaped 

surface has one peak, representing a single optimum, thus, a hill climb algorithm will 

easily be able to navigate to the optimal solution, the peak. Genetic algorithms, a more 

complex form of machine learning algorithm, are unsuited for this situation and better 

utilized on fitness landscapes with multiple peaks. Ultimately, utilizing a genetic 

algorithm in this case would require the computer to run unneeded operations and slow 

down the program’s optimization process. Hill climb algorithms are apt to solve 

problems with a limited number of peaks or optima (Holland, 1974; Mitchell, 1997). 

For purposes of comparison, let us consider an example with 26 input variables. 

While the human brain cannot picture a 27 dimensional surface, this non-Euclidean 

surface is still representative of the idea at hand. The number of possible directions a hill 

climber could move in his search for a peak can be calculated using Equation 1. D is the 

number of directional possibilities, and n is the number of input variables. 

         D= 2n      (1) 
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 Using this equation we see that the two input example yields four directional 

combinations in which the hill climber can try moving. Contrarily, the 26 input example 

yields 67,108,864 possible directional combinations. These surfaces are examples of 

fitness landscapes, multidimensional surfaces with a dimension for each input and one for 

the output. Agents wander the surfaces in order to find the set of inputs that provide the 

optimal output. When using machine learning algorithms to search surfaces, agents’ 

abilities to successfully find the ideal output are path dependent, meaning, their future 

success is dependent upon their previous decisions (Page, 2006). An agent’s choice to 

move in the wrong direction along a fitness landscape during a past iteration may prevent 

it from ever finding the global optimum, the point on the fitness landscape with the 

absolute best output value. Rather, the agent may end up stuck at a local optimum, a point 

with a high output value relative to local areas but not on the global (entire) fitness 

landscape.  

Just like hill climb algorithms, genetic algorithms (Holland, 1975; Mitchell, 1997) 

are designed to optimize problem parameters with respect to some designated problem 

quality function. The primary difference between hill climb algorithms and genetic 

algorithms is that genetic algorithms iterate upon a pool of potential design solutions, 

rather than a single design solution lineage, as is the case with hill climb algorithms. In 

genetic algorithms the multiple design solutions run through the iterative mutation quality 

assessment cycle that is used in hill climb algorithms; however, genetic algorithms 

implement a second mechanism to the evolutionary process. After each problem solution 

in the idea pool is pseudo-randomly mutated the design inputs go through a crossover 
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process (Holland, 1974; Mitchell, 1997). In this crossover process, a few pseudo-

randomly selected inputs in each problem solution are switched with inputs from another 

pseudo-randomly selected problem solution.  

Another difference between hill climb algorithms and genetic algorithms lies in 

the selection mechanism that determines whether a particular design solution will survive 

until the next iteration. Instead of simply testing the fitness of a single solution and 

comparing it to the previous iteration’s fitness, genetic algorithms cull a certain portion of 

the population’s solutions with the weakest fitness values, allowing only the strong to 

survive. Some of the surviving solutions are cloned in order to keep the design population 

at a constant size. While hill climb algorithms follow the evolutionary patterns of 

asexually reproducing genes and memes, genetic algorithms follow the evolutionary 

patterns of sexually reproducing genes and memes. Mitchell (1997) showed that 

alternating the use of hill climb and genetic algorithms can be used to optimize the 

effectiveness of machine learning optimization processes. 

 Other artificial intelligence mechanisms have been used to simulate and model 

social and cognitive systems. One of these systems, neural networks, was actually 

designed to replicate many of the feedback systems in the brain; however, machine 

learning techniques were used in this study for two primary reasons. First, machine 

learning is not a black box process, but artificial neural networks are (Haykin, 1994). 

Black box processes only allow users to see the process inputs and outputs and prevent 

users from observing intermediate stages in their behavior. Miller and Page (2007) 
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recommended against the use of black boxes. Second, machine learning algorithms were 

chosen because they parallel the iterative nature of the research process. 

3.3 Design Requirements 

 Design requirements illustrate a variety of conditions that the computational 

model must meet in order to validate that it, in fact, models the phenomena that it is 

designed to model. These design requirements are broken into two parts. First, an 

assumption is provided which illustrates a specific statement about the nature of creative 

systems. In parentheses at the end of each of these assumptions is the number of the 

section that reflects and discusses the justification listed. Immediately following each of 

these assumptions the actual design requirement is listed, showing exactly what the 

computational model must do in order to validate that it meets its respective assumption. 

3.3.1 Complex Reality 

Assumption: Real world problems are complex in nature. Solutions are dependent 

upon the complex interactions between different problem components. (Section 1.6) 

Design Requirement: The designed problem must be non-linear. 

3.3.2 Continuous Solution Quality 

Assumption: Solutions to real world problems are not simply right or wrong; they are 

better or worse. (Section 1.6) 

Design Requirement: Problem solutions must not provide binary results. 

3.3.3 Agent Preferences 

Assumption: Individuals all seek the same ends when working in specialized areas. 

This means that all individuals interpret results in the same manner and that problems 
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have definable goals, such as obtaining equal SAT scores between different 

socioeconomic, racial, and ethnic groups or reducing the number of automobile 

fatalities in a given car model to zero. (Section 1.4) 

Design Requirement: All agents receive the same feedback values when they input 

the same values into the simulated problem. 

3.3.4 Objective Problem Goals 

Assumption: Humans seek the best possible solution to the problem on which they are 

working. For example, we assume that cancer researchers unanimously want to destroy 

cancer. (Sections 1.5) 

Design Requirement: Agents will never revert to a past problem solution once they 

have generated a new solution which yields a superior feedback.  

3.3.5 Asexual Creativity 

Assumption: Humans are able to creatively seek new solutions to problems, without 

communicating with other agents. They do this by randomly making changes to past 

solutions, through mechanisms that parallel evolution in an asexually reproducing 

species (Sections 2.1 & 2.3). 

Design Requirement: Agents must be able to randomly change portions of problem 

solutions in order to model asexual modes of creativity. 

3.3.6 Sexual Creativity 

Assumption: Humans are also able to creatively seek solutions to problems by 

communicating and sharing ideas with other humans, through mechanisms that parallel 

evolution in a sexually reproducing species. (Sections 2.1 & 2.4) 
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Design Requirement: Agents must be able to copy portions of problem solutions from 

other agents in order to model sexual modes of creativity. 

3.3.7 Unique Problems 

Assumption: Humans are capable of using their creative capacities to pursue solutions 

to a wide variety of complex problems. (Section 1.4)  

Design Requirement: All mathematical problem coefficients must be able to be 

randomly re-generated. 

3.3.8 Boldness of Asexual Creativity 

Assumption: Humans can alter different percentages of old problem solutions when 

attempting to asexually create new and improved problem solutions. (Section 2.3) 

Design Requirement: The model must be able to adjust the percentage of an old idea 

that an agent changes when changing it in attempt to find a better problem solution. 

(Research sub-question 3) 

3.3.9 Boldness of Sexual Creativity 

Assumption: Humans can copy different percentages of other people’s ideas when 

attempting to sexually create new and improved problem solutions. (Section 2.4) 

Design Requirement: The model must be able to adjust the percentage of an idea one 

agent copies from another in attempt to find a better problem solution. (Research sub-

question 4) 

3.3.10 Creative Time Allocation 

Assumption: Humans may spend different amounts of time pursuing creative 

solutions to problems individually as opposed to collaboratively (Section 2.4) 
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Design Requirement: The model must be able to adjust the frequency with which 

agents utilize asexual modes of creativity as opposed to sexual methods of creativity. 

(Research sub-question 1) 

3.3.11 Leaders 

Assumption: Humans can choose which agents to copy solutions from based upon 

different criteria. (Section 2.4) 

Design Requirement: The model should allow agents to either copy solution 

components from the agent who currently holds the best problem solution output or 

from an agent selected at random. (Research sub-question 2) 

3.4 Design Guidelines 

 The following design guidelines are different from design requirements in that 

they represent desirable characteristics of the model, rather than functions that the model 

must have in order for it to maintain validity. These guidelines include hardware 

guidelines based upon the desire to create a technically feasible and efficient 

computational model. These guidelines are also used to assure that the model’s function 

is clearly communicated so that future researchers can easily edit it as necessary. In 

addition, these requirements are used to assure the simulation consistently outputs data in 

a clear and concise form.  

3.4.1 Researcher Usability 

This program should be designed to run on as small of a processor and as little RAM 

as possible in order to maximize the availability of this resource to researchers with 



49 
 

varying computational limits; however, the ability of the model to accurately reflect 

the phenomena at hand should take precedence over this guideline. 

3.4.2 Code Clarity 

The code must be properly commented and include instructions describing how users 

may modify the code in order to experiment with the model (McConnell, 1993). 

3.4.3 Output Clarity 

This program should produce the clearest outputs possible (McConnell, 1993). 

3.4.4 Code Simplicity 

All else being equal, simpler models are preferable (Miller & Page, 2007). 

3.5 Breaking Down the Code 

 This section illustrates various features of the computational model in order to 

show how the program meets all of the design requirements. The following table 

illustrates which of the subsections provides the justifications for each of the design 

requirements. 
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Table 1 

Design Requirement Validation Table 

Design Requirement Design Requirement Name Validation Section 

3.3.1 Complex Reality 3.5.1 

3.3.2 Continuous Solution Quality 3.5.1 

3.3.3 Agent Preferences 3.5.1 

3.3.4 Objective Problem Goals 3.5.1 

3.3.5 Asexual Creativity 3.5.2 

3.3.6 Sexual Creativity 3.5.2 

3.3.7 Unique Problems 3.5.3 

3.3.8 Boldness of Asexual Creativity 3.5.4 

3.3.9 Boldness of Sexual Creativity 3.5.4 

3.3.10 Creative Preferences 3.5.4 

3.3.11 Leaders 3.5.4 

Note: This table shows where the validations for each of the design requirements can 

be found. 

 

3.5.1 Modeling Complex Problems (Design Requirements 3.3.1-3.3.4) 

The externally defined problem in the code consists of an idea represented by 25 

digits between zero and nine. This idea could be viewed as a representation of an ancient 

human hand axe design, a modern automobile headlight design, or even a larger 

conception of some societal ideal as defined to a specific measurable metric. Each of the 

25 digits can be viewed as one of 25 subcomponent portions of the larger design, one of 
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the 25 memes in the memeplex. These 25 digit ideas are randomly determined by the 

code and represent the ideal values for all aspects of the problem solution.  

Two input variables are pseudo-randomly generated at the beginning of the 

simulation. Each agent starts with a 25-by-1 matrix, a row of 25 randomly generated 

integers between zero and nine identified by the variable A. These are the initial 

conditions of the 25 solution conceptions to 25 problem subcomponents. Likewise, a 

single 25-by-1 matrix of randomly generated integers between one and nine is created 

representing the ideal solution to the simulated problem and is identified by the variable 

B.  

Solution quality is not determined linearly, meaning it is not determined by the 

influences of the 25 solution subcomponents independently. Solution quality, instead, is 

determined by the interactions between those subcomponents. For example the quality of 

a soda’s taste (to the average consumer) is not simply dependent upon the sodium, 

sucrose, and flavor contents independently, but dependent upon the interactions between 

those components. An increase in the concentration of one flavor might only be a good 

thing if the concentrations of other flavors are decreased. The interactions between these 

solution subcomponents are calculated in a new 25-by-25 matrix, G, by finding the 

products of every possible pair of problem solution subcomponents as shown in Equation 

2. 

     G= A'A      (2) 

Likewise, a 25-by-25 matrix, I, is calculated giving the products of every possible pair of 

ideal solution subcomponent interactions as shown in Equation 3. 
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    I = B'B       (3) 

Redundancies are addressed in the square matrices, G and I. These redundancies 

are illustrated by Equation 5 and Equation 6 where the index variable x indicates the 

column and index variable y indicates the row. 

    Gxy =Gyx      (4) 

     Ixy = Iyx       (5) 

In order to eliminate these redundancies, upper triangularizations are taken for both 

matrices G and I, creating two new matrices, GU and IU. This process replaces all values 

below the diagonal where 

        x = y      (6) 

with zeros, removing all redundant values. Here, the values along the diagonal where the 

row number is equal to the column number are not set to zero. This diagonal represents 

the product of each possible problem solution or ideal solution subcomponent with itself, 

its square. This diagonal is left in place illustrating that while problem solution quality is 

not exclusively dependent upon the solution subcomponents independently, their 

independent values might have some impact on the overall solution quality. 

 Interaction values, the products of every possible pair of solution subcomponents 

for both the agent’s solution and the ideal solution, are represented in the matrices GU and 

IU respectively. The solution proximity, or the similarity between the agent’s solution and 

the ideal solution for all subcomponent interaction values, is calculated in the new matrix, 

P, as illustrated in Equation 7. 
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            P = IU −GU             (7) 

Not all aspects of a problem solution have equal influence on the ability of a 

solution to solve the problem at hand. A 25-by-25 matrix, W, was generated at the onset 

of the simulation and randomly filled with weighting coefficients, randomly assigned 

integers between zero and nine. Equation 8 calculates the weighted interaction values, PW, 

by taking the Hadamard product of matrices W and P, creating a 25-by-25 matrix.  

                PW =W P                           (8) 

Solution quality is not linearly dependent upon the weighted, ideological 

proximity of different subcomponent interactions. In the field of statistics, error rates are 

often found using the sum of squared differences, not the sum of differences (Draper & 

Smith, 1998). A specific subcomponent interaction being twice as far from the ideal 

solution value would likely reduce the quality of the solution at hand by more than a 

factor of two. Imagine a person designing a spear. Here, it makes sense that a spear, 

which is slightly dull, might be somewhat effective despite it not being perfectly ideal, 

but as the dullness of the spear approaches some limit (the edge moves away from the 

ideal sharpness level) the functionality of the solution diminishes increasingly. This 

model feature is implemented by squaring all of the weighted solution subcomponent 

interactions inside matrix, PW, to develop a new matrix F as seen in Equation 9 which is 

found by taking the Hadamard product of matrix PW with itself.          

       	  F = PW PW                 (9) 
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At this point F contains values that are directly proportional to the effect each 

design subcomponent interaction has on the overall solution quality. The aggregate of all 

of these component effects determines the overall solution quality. Here, the overall 

solution quality is determined by calculating the summation of all of the design quality 

components, as illustrated in Equation 10. 
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 The value Q produced by Equation 10 represents the final feedback that an agent 

receives upon testing a problem solution against the theoretical ideal solution. This value 

decreases as the various subcomponents of the agent’s solution approach their 

corresponding ideal solution values. The agent interprets this change as positive and uses 

the value of Q as the fitness test criterion in every iteration of this simulation, constantly 

working to improve its problem solution in order to further decrease the returned 

feedback value, Q.  

3.5.2 Modeling Creativity with Machine Learning (Design Requirements 3.3.5-3.3.6) 

 In order to simulate creative evolution an agent simply repeats this inductive, trial 

and error sequence for the desired number of iterations. After each iteration, the basic 

fuel of evolution, mutation is added. Random changes are made to some of the randomly 

selected 25 idea conception components. Having made these random changes, the agent 

then tries its new idea solution. If this new idea produces a lower (more ideal) solution 

feedback value, then the agent keeps its altered 25 digits. During the next iteration it 
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mutates again and repeats the process. If the agent does not yield an enhanced solution 

value, then it will revert to the previous solution and repeat the process during the next 

iteration. 

 At this point the section has explained how the inductive model simulates asexual 

modes of creativity but has not explained the sexual mechanisms. Here, a second process 

was implemented into the model in order to parallel the sexual analog of the asexual 

mode of creativity. In order to do this the code was designed so that it operates with 25 

agents attempting to solve the problem rather than one. In order to fix the problem of 

isolation between agents a function was added into the program that gave agents an 

alternative creative method to the traditional asexual process described above. The agents 

were programed to copy some of a randomly selected agents’, randomly selected 25 idea 

components. Once again after taking on their new forms, these agents would try out their 

new problem solutions, keep the new ideas if they improved their solution feedback 

values, and revert if not. 

3.5.3 Modeling Unique Problems (Design Requirement 3.3.7) 

Pseudo-random number generators are found throughout the body of this code. A 

pseudo-random number generator is a type of algorithm that enables computers to 

simulate the generation of random numbers within a defined range (Gentle, 2004). These 

generators have two functions in this model. First, they are used to generate the random 

mutations of components of random agents’ 25 digit ideas. Secondly, they are used to 

generate the coefficients used to represent particular aspects of particular problem 

solutions, the 25 ideal value digits, as well as each of the agents’ initial 25 guess digits. 
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This occurs at the onset of the simulation and is essential to assure the findings of this 

research represent creative evolution as a whole rather than creative evolution with 

respect to one randomly generated problem. 

3.5.4 Optimizing the Creative Cycle (Design Requirements 3.3.8-3.3.11) 

 Miller and Page (2007) recommended implementing “tunable dials” (p. 248) into 

computational models that can be easily manipulated to alter the parameters of the 

simulations. For this reason the simulation was designed to enable easy constraint 

alteration to allow the simulation independent variables to be easily changed and to make 

the model easily adaptable in case of future research. Four independent variables were 

changed throughout the simulations for this study, paralleling the four research sub-

questions. First, the agents were either set to copy the memes of the best agent with the 

best solution in the group or meme of an agent selected at random. This variable is 

referred to as the leader (L.), with a best and random setting.  

Next, the extent to which the agents manipulated their memeplexes, their 25 

solution digits, when attempting to solve problems in isolation had two possible settings. 

For the low setting, a randomly generated number between one and seven of the agents’ 

25 meme digits were mutated. For the high setting, a randomly generated number 

between one and eighteen of the agents’ 25 meme digits were mutated. This variable is 

referred to as the asexual level (A.L.). Likewise, the number of memes agents copied 

from other agents’ memeplexes had two possible settings. For the low setting agents 

copied a randomly generated number between one and seven random memes from 

another agent’s memeplex. For the high setting agents copied a randomly generated 
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number between one and eighteen random memes from another agent’s memeplex. This 

variable is referred to as the sexual level (S.L.). The numbers seven and eighteen are 

arbitrary values for the low and high settings of these input variables, yet this is 

justifiable as this study is a first trial and smaller increments can be selected in the future 

so as to examine this data in greater resolution. 

 The only continuous independent variable manipulated throughout the simulation 

trial was the probability of an agent employing sexual modes of creativity as opposed to 

the asexual counterpart. These values were set between 0 percent and 100 percent at 20 

percent intervals. This variable is referred to as the sexual percent (S.P.). For the sake of 

clarity and organization the four independent variables, an explanation of each, and their 

abbreviations are listed in Table 4. In total, this yields 48 different combinations of input 

variables. For each of these 48 combinations of input variables, two hundred simulations 

were run, and each simulation was run for one hundred creative iterations. If any agent 

discovered the perfect problem solution within these one hundred iterations then the 

simulation was deemed a success. Otherwise, it was deemed a failure. 

 
Table 2 
 
Independent Variables 
Variable Explanation Abbreviation 

Sexual Percent How often do agents exchange ideas? S.P. 
Sexual Level How much of another agent’s idea does an agent copy? S.L. 

Asexual Level How much of its idea does an agent mutate? A.L. 
Leader Whose ideas do agents copy? L. 

Note: This table lists the independent variables manipulated in this study. 
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3.6 Data Analysis 

  The outcomes of the 9,600 simulations in the study were analyzed using a method 

know as Chi-squared Automatic Interaction Detector (CHAID), a tree based statistical 

method proposed by Kass (1980). CHAID builds decision trees with multiple branches 

based on an algorithm that splits the branches according to statistically significant 

differences in success rates. Here, the tree can contain a number of splits equal to the 

number of independent variables. The order in which these splits branch out from the 

base of the tree occurs in the order that the independent variables correlate with the 

largest differences in the dependent variable, from greatest to least. This method is 

commonly used when splitting data sets into many multi-way frequency tables where the 

success ratio of a categorical dependent variable is affected by multiple independent 

variables. CHAID utilizes the Bonferroni correction method in order to reduce the 

occurrence of type I errors as a result of multiplicity. Multiplicity causes type I errors 

because the large number of independent variables leads to a large numbers of null 

hypotheses (Statsoft Inc., 2013). 
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CHAPTER 4 

FINDINGS 

 A total of 9,600 simulations were run in this study. The simulations accounted for 

all 48 combinations of the four independent variables. As discussed in Chapter 3, each 

trial simulated 25 agents working together to solve a complex problem for 100 creative 

iterations. These problems defined the ideal solution value as 0, thus lower values were 

deemed better. 

4.1 A Sample Simulation 

Figure 1 illustrates a graphical representation of a sample simulation. In this 

particular example the leader was set to best, the asexual level was set to high, the sexual 

level was set to low, and the simulation agents used sexual modes of creativity 0 percent 

of the time. The graph illustrates the best solution value yielded by any of the 25 agents 

for the 100 creative iterations the simulation ran. Due to the large changes in the returned 

quality function (multiple orders of magnitude) during the simulation, the solution quality 

is illustrated on a logarithmically scaled y-axis. In this particular simulation the solution 

quality was still above 1,000 when it terminated after creative iteration 100, showing that 

in this particular trial no agent reached the optimal value of 0.  

Another phenomenon of note is illustrated in the graph by the repeating pattern of 

horizontal lines dissected by spots where the values quickly decrease and settle at new 

horizontals. These horizontal portions of the graph illustrate portions of the simulation 

where the agents creatively stagnated. In these flat line segments, 0 improvements were 

made to the best solution value (the value saw no decreases) so the line remained 
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horizontal. These sections of creative stagnation are the tentative optima of the simulation 

or the best problem solutions the collaborative system had found up to that point but not 

the truly ideal solutions. The sharp decreases illustrate points where one of the 

simulation’s 25 agents finally managed to yield a lower (better) problem solution. While 

Figure 1 illustrates that during significant portions of the 100 iteration creative simulation 

the agents did not improve their best solution, this does not mean that no agents yielded 

improvements to their respective solutions.	  

Figure 1. Sample simulation graph of best agent solution feedback value through 100 creative 

iterations. 
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Figure 2. Sample simulation graph of average solution value through 100 iterations. 

The lack of horizontal sections in Figure 2, which illustrates the average of all 25 agent 

solution values, shows how the agents can yield improvements in their own solutions 

even when the best solution value is not improving. 

4.2 Results 

 A summary of the 9,600 simulation outcomes can be seen in Table 3. The table 

shows the number of successes and failures out of the 200 trials run for each of the 48 

different combinations of input variables, successes being defined as simulations in 

which one of the 25 collaborating agents reached the ideal problem solution within 100 

creative iterations. 
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Table 3 
  

    
  

Simulation Results 
Leader Asexual Level Sexual Level Sexual Percent Successes Failures 

Random  Low  Low  0% 51 149 
Random  Low  Low  20% 155 45 
Random  Low  Low  40% 199 1 
Random  Low  Low  60% 195 5 
Random  Low  Low  80% 188 12 
Random  Low  Low  100% 136 64 
Random  High Low  0% 24 176 
Random  High Low  20% 122 78 
Random  High Low  40% 188 12 
Random  High Low  60% 186 14 
Random  High Low  80% 178 22 
Random  High Low  100% 120 80 
Random  Low  High 0% 49 151 
Random  Low  High 20% 181 19 
Random  Low  High 40% 200 0 
Random  Low  High 60% 193 7 
Random  Low  High 80% 179 21 
Random  Low  High 100% 102 98 
Random  High High 0% 16 184 
Random  High High 20% 172 28 
Random  High High 40% 190 10 
Random  High High 60% 181 19 
Random  High High 80% 166 34 
Random  High High 100% 94 106 

Best Low  Low  0% 56 144 
Best Low  Low  20% 178 22 
Best Low  Low  40% 194 6 
Best Low  Low  60% 188 12 
Best Low  Low  80% 162 38 
Best Low  Low  100% 45 155 
Best High Low  0% 24 176 
Best High Low  20% 170 30 
Best High Low  40% 177 23 
Best High Low  60% 160 40 
Best High Low  80% 128 72 
Best High Low  100% 53 147 
Best Low  High 0% 59 141 
Best Low  High 20% 190 10 
Best Low  High 40% 194 6 
Best Low  High 60% 180 20 
Best Low  High 80% 136 64 
Best Low  High 100% 8 192 
Best High High 0% 23 177 
Best High High 20% 170 30 
Best High High 40% 164 36 
Best High High 60% 135 65 
Best High High 80% 95 105 
Best High High 100% 8 192 

            
Note: The table shows the number of successes and failures for 100 trials for    
each of the 48 combinations of inputs. 
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Table 4         
CHAID Analysis         
All Simulations Branch Level 1 Branch Level 2 Branch Level 3 Branch Level 4 

66.3%; 
Next Split 
 Criterion: 

 S.P. 
(P=0.000) 

S. P.=0%; 
81.1%; 

N. S. Criterion: A.L. 
(P=0.000) 

A.L.=Low; 
26.9%; 

    
  

    
  

A.L.=High; 
10.9%; 

    
  

    
  

S.P.=20%; 
83.6%; 

N. S. Criterion: S. L.  
(P=0.000) 

S.L.=Low; 
78.1%; 

N. S. Criterion: L. 
 (P=0.000) 

L=Random; 59.2%; 
N. S. Criterion: A.L. (P=0.000) 

A.L.=Low; 77.5% 
A.L.=High; 61.0% 

L.=Best; 
87.0% 

  
  

S.L.=High 
89.1%; 

N. S. Criterion: A.L. 
(P=0.001) 

A.L.=Low; 
92.8% 

  
  

A.L.=High; 
85.5% 

  
  

S.P.=40%; 
94.1%; 

N. S. Criterion: A. L 
(P=0.000) 

A.L.=Low 
98.4%; 

N. S. Criterion: L.  
(P=0.002) 

L.=Random; 
99.8% 

  
  

L.=Best; 
97.0% 

  
  

89.9%; 
N. S. Criterion: L.  

(P=0.000) 

L.=Random; 
94.5% 

  
  

L.=Best; 
85.2% 

  
  

S.P.=60%;  
88.6%; 

N. S. Criterion: A.L. 
(P=0.000) 

A L. = Low 
94.5%; 

N. S. Criterion: L. 
 (P=0.002) 

L.=Random; 
97.0% 

  
  

L.=Best; 
92.0% 

  
  

A.L.= High 
82.8%; 

N. S. Criterion: L. 
(P=0.000) 

L.=Random; 
91.8% 

  
  

L.=Best; 73.8%; 
N. S. Criterion: S.L (P=0.004) 

S.L.=Low; 80.0% 
S.L.=High; 67.5% 

S.P.=80%; 
77.0%; 

N. S. Criterion: L.  
(P=0.000) 

L.=Random; 
88.9%; 

N. S. Criterion: A.L. 
 (P=0.010) 

A.L.=Low; 
91.8% 

  
  

A.L.=High; 
86.0% 

  
  

L.=Best; 
65.1%; 

N. S. Criterion: A.L. 
(P=0.000) 

A.L.=Low; 74.5%; 
N. S. Criterion: S.L. (P=0.003) 

S.L.=Low; 81.0% 
S.L.=High; 68.0% 

A.L.=High; 55.8%; 
N. S. Criterion: S.L. (P=0.001) 

S.L.=Low; 64.0% 
S.L.=High; 47.5% 

S.P.=100%; 
35.4%; 

N. S. Criterion: L. 
(P=0.000) 

L.=Random; 
56.5%; 

N. S. Criterion: S.L. 
(P=0.000) 

S.L.=Low; 
64.0% 

  
  

S.L.=High; 
49.0% 

  
  

L.=Best; 
14.2%; 

N. S. Criterion: S.L. 
(P=0.000) 

S.L.=Low; 
24.5% 

  
  

S.L.=High; 
4.0% 

  
  

Note: This table shows the decision tree produced by CHAID. Various abbreviations are used for independent 
variables including Sexual Percent (S.P.), Asexual Level (A.L.), Sexual Level (S.L.), and Leader (L.). The bold 
boxes correspond to the decisions yielding optimal success rates.     
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The simulation results were then analyzed using CHAID in SPSS (IBM Corp., 

2013) generating the decision tree illustrated in Table 4. This table shows which 

independent variables caused significant changes in the simulation success ratios. All 

branches in the tree were found to be statistically significant with the lowest significance 

split having an alpha value (p = 0.010), five times lower than the traditional test statistic 

(α = 0.050). The one continuous variable, the percentage of the time in which the 

simulation agents engaged in sexual idea exchange as opposed to asexual idea generation, 

played the most significant role in influencing the problem solving success ratio. Here, 

the data were split into six percentage ranges. Simulation success ratios for values 

between 40 percent and 60 percent were the highest. Independent values further away 

from this middle range, 40 percent to 60 percent, on both the high and low ends yielded 

worse simulation success ratios. These values are illustrated in Table 5 and graphically 

represented in Figure 3. 

 
Table 5 

  
  

  
Success Occurrences for Different Idea Exchange Frequencies 

Idea Exchange Freq. Successes Failures Success Percent 
0% 302 1298 18.9% 
20% 1338 262 83.6% 
40% 1506 94 94.1% 
60% 1418 182 88.6% 
80% 1232 368 77.0% 
100% 568 1034 35.4% 

        
Note: The table shows the number of successes, failures, and success  
percentages for each idea exchange frequency 
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Figure 3. Success percentages for agents working to collaboratively solve problems at 

different idea exchange frequencies. 

 As previously discussed, 48 different combinations of the independent variables 

were run through 200 hundred simulations each. In Table 3 you can see three boxes that 

are outlined in bold. These correspond to the specific set of independent variables that 

yielded the highest problem solving success ratio. Ideal conditions for problem solving 

were found where the sexual percent was set to 40 percent, the agents copied ideas from 

random agents, and the asexual level was set to low. The analysis did not produce a split 

with respect to the sexual level on this branch. This branch, the bold set of three boxes, 

represents the global optimum conditions for the simulated collaborative problem solving 

trials in this study. Examining the data, one can see various branches that yield high 
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success rates following different branching paths. These paths terminate at local optima, 

conditions that are good for idea exchange, but not the best. 

 As seen in Table 3 the criteria for which the biggest differences in success ratios 

appear between the first branches to second branches of the CHAID table were different 

for different parent first branches. The 0 percent, 40 percent, and 60 percent branches 

split on the basis of their asexual levels. The 20 percent sexual branch split on the basis of 

its sexual level. The 80 percent and 100 percent sexual branches split on the basis of the 

leader. For these second level splits, low asexual levels yielded better success percentages 

than high asexual levels, the high sexual level yielded a better success percentage than 

the low sexual level, and the random leaders yielded better success percentages than the 

best leaders. 

 As seen in Table 3 the criteria for the spits from the second to third branches of 

the CHAID table were also different for different parent second branches. Ten splits were 

made between these levels. Five were made on the basis of the leader variable, four of 

which yielded better success percentages with random leaders than with the best leaders. 

Three splits were made on the basis of the asexual level, all of which yielded better 

success percentages for the low asexual level than their high counterparts. Likewise, two 

splits were made on the basis of the sexual level, both of which yielded better success 

percentages for the low sexual level than their high counterparts. 

 Only four splits were made from the third level of branches to the fourth and final 

level of branches. Three of these splits were made on the basis of the sexual level, all of 

which yielded better success percentages for the low sexual level than the high 
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counterpart. Lastly, one split was made on the basis of asexual level, yielding a better 

success percentage for the low asexual level than the high counterpart. 

Further examination of the data draws attention to a few patterns of note. After 

the first set of six splits occurring on the basis of sexual percent, twenty splits occurred in 

the next three branching levels. All seven of the asexual level splits yielded better success 

rates when set to the low setting. Only one of the seven leader splits yielded a better 

success rate for the best leader setting, and only one of the of the six sexual level splits 

yielded a better success rate when set to the high setting. These two outliers appear where 

the sexual percent was 20. No significant sexual level or leader splits emerged where the 

sexual percent was 0. The theoretical implications of these findings are discussed in 

Chapter 5. 

4.3 Summary 

A total of 9,600 simulations were run in this study. The simulations accounted for 

all 48 combinations of the four independent variables. As discussed in Chapter 3, each 

trial simulated 25 agents working together to solve a complex problem for 100 creative 

iterations. Simulation success rates were optimized when agents exchanged ideas 40 

percent of the time and individually worked on developing new problem solutions 60 

percent of the time. In almost all cases the collective ability of the agents to solve 

problems was optimized when agents were designated to copy ideas from random 

collaborators as opposed to the collaborator tentatively holding the most successful 

solution. Likewise, in almost all cases the collective ability of agents to solve problems 

was optimized when agents copied small percentages of problem solutions from their 
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collaborators. Finally, the collective intelligence of the collaborating agents was 

optimized when agents only changed small portions of their solutions when working 

individually to solve problems. 
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CHAPTER 5  

DISCUSSION 

 In order to appropriately accommodate the inherent limitations of simulation 

based, non-empirical research, conclusions must be derived with a proper consideration 

of the research method’s limitations and the study’s theoretical framework. The purpose 

of this chapter is to examine the implications of this study’s findings within the body of 

relevant theory and, in turn, to examine how these conjectures might be reinforced and 

expanded through future simulations and confirmed through empirical findings. 

5.1 Frequency of Idea Exchange 

 The simulations run in this study produced data illustrating that agents most 

efficiently solved their designated complex problems when they utilized sexual idea 

exchange in balance with the solitary asexual approach to solving problems. These 

moderate frequencies yielded the best success ratios when they utilized sexual idea 

exchanges 40 percent of the time, followed closely by yields produced when sexual idea 

exchange was utilized 60 percent of the time. Applied to organizations, sexual exchanges 

represent idea exchange between collaborating individuals, while asexual represent 

individual level creativity. What causal phenomena could play a role in generating this 

pattern? The next few paragraphs explore some possible reasons for these results through 

a discussion of some hypothetical examples and an examination of some of the principles 

laid out in the literature review. 

 As discussed in Chapter 3, in certain circumstances genetic algorithms are 

superior at finding global optima than their hill climb counterparts (Mitchell, 1997). This 



70 
 

logic would suggest that social structures that foster idea exchange or the sexual 

reproduction of ideas may be superior at producing globally optimal solutions to 

problems than counterpart social systems in which individuals tend to work in isolation. 

The simulations’ success rates increased as the rate of idea exchange increased from 0 

percent to 40 percent. 

 While increasing the rate of agent idea exchange in the simulation lead to 

improved problem solving efficiency between 0 and 40 percent, these efficiency values 

began to decrease as the rate of idea exchange surpassed 40 percent. As agents began to 

exchange ideas at rates greater than 40 percent, the collaborative network of 25 agents 

began to see reduced returns as a result of the system agents becoming overly 

interdependent. This increased rate of idea copying leads to a decrease in the variance of 

solutions since the agents are now more likely to zoom in on local optima that other 

agents may have already discovered. This may distract them from finding new, superior 

solutions. In a single creative iteration of the simulation the agents either mutated their 

old solutions or copied solutions from other agents. As agents spent less time working on 

their old ideas in isolation they spent less time manipulating their tentative locally 

optimal solutions, quickly abandoning them for ideas they borrowed from neighboring 

agents. With respect to asexual and sexual modes of creativity, the simulation’s 

optimization of the system’s problem solving ability parallels Marion’s (2012) assertion 

that creativity is enhanced in systems where individuals are moderately interdependent. 

 Consider a hypothetical example of a four member design team working 

collaboratively to solve a complex engineering problem. Why might it be important for 
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the group to properly balance their energy, time, and resource expenditures between 

collaboratively (sexually) working to solve the problem and individually (asexually) 

working to solve problem, as this study suggests? Now, suppose this design team of four 

members is having meeting to discuss the approaches that they have each individually 

developed with respect to the problem. Since these ideas were developed individually, 

one can be probabilistically certain that the novelty of individual ideas and the variety of 

total ideas within the idea space will be high. Here, these members all present their 

potential design solutions to each other.  

Supposing that the team is examining a problem with four subcomponents and 

each member presents two options for each subcomponent; each member thus presents 16 

possible design solutions. It is reasonable to assume that prior to the meeting a properly 

motivated team member could have considered the ramifications of all 16 solutions, but 

once all of these new ideas are presented the number of combined solutions does not 

increase additively to 64, rather it increases exponentially to 4,096. Obviously, no normal 

human being can contemplate that number of ideas in a single meeting so the discussion 

will likely yield itself useless after the initial ideas are passed around. Just like the 

simulated agents, the individuals in the group are only able to analyze one solution at a 

time. They simply see a lot of ideas, none of which they have methodically analyzed. For 

this reason it may be wise for the group members to part ways once they have 

communicated their ideas. They can then lock onto a few ideas that they are intuitively 

drawn to and move through proper mathematical manipulations and analytical procedures 

in order to analyze the combinations’ potential. This can be done until the individuals’ 
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returns on continued individual contemplation begin to diminish, at which point they will 

need to reconvene and exchange ideas again and once again implement the newly 

exchanged ideas into their individual contemplations. 

 One of the primary problems this design group will face is created by the 

interaction of the design problem’s four components. It is not necessarily true that each of 

the four design component solutions making up the ideal problem solution will still be 

best if the other three are changed. The problem here is that it may not be apparent that 

the best component solutions are the best until all four of them are combined together. As 

the group works to solve the problem, their design choices are path dependent (Page & 

Miller, 2007). As they stated, “evolutionary systems often get stuck at local optima (p. 

81).” In the team members’ individual time searching for problem solutions (asexual 

creativity) they are able to refine their ideas and search for local optima. Without doing 

this they may never realize when they have a potential solution. The value of their time 

spent collaborating exists in giving the group members the chance to compare the local 

optima they have isolated in hopes of finding the global optimum. This also gives them 

the chance to consider mixing and matching the design component solutions they have 

generated. Some of these components will likely be incompatible yielding low quality 

solutions, but others may provide them with new improved local optima and possibly 

even the global optimum. 

5.2 Asexual Creativity Level 

 The CHAID tree produced through the statistical analysis of the study’s 9,600 

simulations split the data on the basis of asexual level seven different times. All seven of 
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these branchings yielded superior results for the low asexual level as compared to the 

corresponding high asexual level. This asexual level variable represented two settings for 

the percentage of an agent’s 25 idea digits that are mutated in a creative cycle. The high 

setting was likely less effective as it caused the solutions to be changed significantly 

enough that they were unlikely to maintain the integrity of the previous solutions. In 

other words, when only making small amounts of mutations the agents were able to 

iteratively improve on their locally optimal solutions, an ability which outweighed the 

ability to find new optima by making a larger number of mutations.  

5.3 Leaders and Sexual Creativity Level 

The CHAID tree produced through the statistical analysis of the study’s 9,600 

simulations split the data on the basis of sexual level six different times and the leader 

seven times. All but one of the sexual level splits yielded a better return at the variable’s 

low setting. Similarly, all but one of the leader splits yielded a better return when agents 

were assigned to copy random agents. Both of these patterns relate to the agents’ 

likelihood of congregating around a local optimum. Copying solutions from the best 

agent does this by focusing the effort of the agents on the current best solution as opposed 

to focusing their effort on searching for new optima. The high sexual level also led to this 

phenomenon of over convergence causing agents to abandon large portions of their 

solutions in favor of large portions of neighboring solutions, in turn forcing them to 

abandon other local optima before fully exploring their potential for leading to globally 

optimal solutions. Once again, these ideas fall in line with Marion’s (2012) view that 

individuals in a collaborative network should be moderately interdependent. 
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Another pattern appears when examining the sexual level and leader outliers. A 

lone split occurred in the CHAID tree where agents yielded superior responses when 

copying the best solution, and another lone split occurred in the tree where agents yielded 

superior responses when set to the high sexual level. Both of these outlying patterns 

occurred where the agents utilized idea exchange a mere 20 percent of the time. No 

sexual level or leader spits occurred at the 0 percent idea exchange level, as these two 

variables have no bearing on systems which do not make use of sexual modes of 

creativity. So, these two outlying splits occurred at the lowest sexual percentage setting 

where any leader of sexual level splits occurred at all. Due to the low level of idea 

exchange here, agents would be significantly less likely to converge on suboptimal 

solutions, thereby the best leader and high sexual level settings must not have pushed the 

simulation beyond the point of over convergence, excessive interdependency. 

5.4 Extrapolating to Different Degrees of Complexity 

 One of the largest limitations of this study is rooted in the assumption that the 

complexity of the simulated problem is representative of the complexity of real world 

problems. The non-linear nature of the problem used in the simulation yields it complex, 

but does not necessitate its complexity perfectly reflects that of real world problems. A 

couple of hypothetical examples can help deal with this issue. As described in Chapter 3, 

the problem-solution quality was produced as the complex interaction between an agent’s 

25 guess digits and their proximity to 25 ideal guess digits. Here, the solution quality 

yielded is dependent upon the interaction of all of the digits; therefore, no portion of the 

problem can be solved independently of any other.  
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Real world problems often have multiple complex portions that can be solved 

independently, yet the resulting functionality of the whole problem solution is dependent 

upon all of the solution portions. For example, imagine a hypothetical tribe of hunter-

gatherers working to create a new hunting system, which entails the design of a new 

weapon and a new strategy with which the tribesmen can track animals. Here, the 

tribesmen have two independent complex problems to solve. Suppose that solving one 

makes solving the other no easier, or negligibly so. The problem emerges when the 

tribesmen’s survival is contingent upon their ability to solve both problems. If they solve 

just one they will die, therefore solving one of the two problems holds no advantage over 

solving neither of the two problems. How might this dilemma influence the importance of 

maintaining idea exchange behaviors that increase their ability to collectively solve 

complex problems? 

 In the above hypothetical situation the survival of the tribe is dependent upon its 

ability to solve two independent problems, an issue which compounds the complexity of 

the dilemma. Assuming that the tribe has enough resources to work on both problems 

simultaneously and that the group has a probability, P, of solving each problem within 

the allowable time frame, then the probability of solving both problems, P2, is 

represented in Equation 11. 

              P2 = P
2

                     (11) 

  Seeing as the probability of solving one problem, P, will always be less than one, 

Equation 11 illustrates that the probability of solving both problems, P2, will always be 

less than P. It follows that the importance of the group’s ability to solve complex 
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problems (in this example the group’s survival is contingent upon it) increases when the 

second problem is added. Naturally, real world situations often necessitate that 

individuals solve significantly more than two problems, thus the importance of being able 

to efficiently solve problems is compounded even further. For example, consider the 

number of independent complex problems involved in running an academic department 

or designing an internal combustion engine. Even a single failure among these multitudes 

of problems can cause the entire systems to collapse. Equation 12 illustrates the 

probability, PN, of a group of individuals solving N problems simultaneously, assuming 

that the group has a probability, P, of solving each problem within the allowable time 

frame. 

       PN = P
N

                        (12) 

As N increases in Equation 12 the probability of successfully solving all problems, PN, 

drops. This phenomenon is illustrated in Figures 4 and 5 showing how the probability of 

successfully solving all problems decreases as the number of problems increases. The 

graph shows an overlay of the trends for multiple hypothetical P values. 
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Figure 4. Probability of a group’s success at collaboratively solving multiple independent 

problems given a probability, P, of solving one. 

 
Figure 5. Probability of a group’s success at collaboratively solving multiple independent 

problems given a probability, P, of solving one. The logarithmic version more 

appropriately shows divergence of low-end probabilities. 
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5.5 Future Research 

  This section focuses on two forms of future research that could be used to expand 

upon and solidify the findings of this study, future simulations and future empirical work. 

The discussion of future simulations examines how the simulation used in this study 

might be modified and expanded in order to further explore the theoretical conclusions 

brought forward by the work. The discussion of future empirical research focuses on the 

necessary steps needed to fully illustrate that the theoretical conclusions drawn from the 

simulations accurately reflect the behavior of actual collaborative problem solving 

systems. 

5.5.1 Simulations 

 The model used in this study was made scalable in accordance with Miller and 

Page’s (2007) recommendations. Scalable agent based models allow for the number of 

agents in them to be adjusted. The research in this study only examined the collaborative 

abilities of systems of 25 agents, so a logical next progression would be to adjust the 

number of agents in the simulation and observe the following effects on the agents’ 

abilities to solve problems. In addition to exploring the effects of new independent 

variables further simulations could be run in order to increase the resolution of the four 

independent variables already under examination. Two of these variables, the asexual and 

sexual creativity levels were only examined at two basic levels, high and low. By 

incrementing these settings at smaller intervals and running an increased number of 

simulations the phenomena examined in this work could be analyzed in greater detail.  
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This work explored the influence of agents’ idea copying strategies when 

attempting to sexually solve problems, however the study only explored two agent 

copying strategies, one where agents copied solutions from the agent tentatively carrying 

the best solution and another where agents copied solutions from an agent selected at 

random. This provided a solid baseline for analysis, showing the negative effects of an 

agent follow the leader strategy on optimizing collective intelligence. That said, there are 

other strategies that could be explored. Agents could use some form of probabilistic filter 

to determine with which agents they would exchange ideas or they could do so on the 

basis of some new parameter added into the simulation, such as a location based 

proximity factor or a proclivity to interact with agents whom they had previously 

established relationships. All simulations in this study were run for 100 iterations. 

Varying this number could generate even more results. 

  Future research could also examine different dependent variables than that of this 

study. This study analyzed the influence of various parameters on the success or failure 

of whether at least one of the 25 agents in the simulation reached the optimal problem 

solution within 100 iterations. It would also be possible to analyze the ability of all agents 

to reach an ideal solution within a given number of iterations. Other studies could 

examine the percentage of iterations in which the simulation agents improved upon their 

previous solutions or the largest number of iterations agents went without making 

improvements on their problem solutions (the number of iterations they spent stuck at 

local optima). 
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  Another important way in which simulations could be used to further explore the 

nature of human collaboration is to adjust the nature of the complex problem that the 

agents are attempting to solve. Design requirement 3.3.1 stated that, “Real world 

problems are complex in nature. Solutions are dependent upon the complex interactions 

between different problem components,” thus, “the designed problem must be non-linear.” 

While this study did simulate a problem that met this design requirement it did not 

simulate the only possible complex non-linear problem that would fulfill this criterion. 

Chapter 3 discussed the concept of multidimensional fitness landscapes and explained the 

effectiveness of machine learning algorithms (those which parallel asexual and sexual 

memetic reproduction) in finding local and global peaks. Other complex problems 

represented by different fitness landscapes could potentially yield different responses to 

the independent variables manipulated in this study, thus designing new complex 

problems is a logical next step for this research. 

  The simulation used in this study used homogeneous agents which all operate 

identically (Page & Miller, 2007). Future research could explore the possibility of using 

heterogeneous agents that behave differently from each other. This opens up two primary 

research possibilities. The agents in this simulation could be modified to interpret 

problem solution quality values with a degree of variance so as to simulate agents 

collaboratively working to solve subjectively open problems (unlike the objectively 

defined problems in this study). Another possibility for modifying the agents to be 

heterogeneous would be to vary the behavioral patterns of the agents in the simulations. 

This research included simulations with 48 different combinations of four independent 
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variables controlling agent behavior, however this variance in behavior occurred between 

these 48 different types of simulations rather than within them. Creating heterogeneity 

within a single type of simulation, such that different agents worked and collaborated 

differently when generating problem solutions, offers a multitude of new simulation 

possibilities. 

5.5.2 Empirical Research 

  The main function of supplementing this research with empirical studies in the 

future would be to illustrate that the behavior of the systems modeled accurately reflect 

behavior of actual systems of individuals collaboratively working to solve real world 

problems. As discussed in length earlier in this chapter, the primary limitation of this 

study is a limitation inherent to non-empirical, simulations of complex social systems. 

For this reason, all conclusions drawn from simulations must eventually be examined 

under the lens of appropriate empirical testing. Two primary strategies could be used to 

do this empirical work. First, experimental tests could set up in order to access how 

various variables influence experimental groups’ abilities to collaboratively solve 

problems. Second, analysis could be performed on collaborative systems that already 

exist and are already working to solve complex problems. These groups could include 

graduate level and undergraduate level research groups and design teams, small groups of 

collaborating professors, entire academic departments, larger institutions, think tanks, as 

well as research and development departments in various industries. 

  One potential way to test the influence of idea exchange on the ability of groups 

to collaboratively solve problems would be to run a large number of experiments in 
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which teams of equal size would work together to solve problems and puzzles. These 

problems would either need to have predefined solution criteria with which groups could 

objectively assess solutions or a group of experts (in the field relevant to the problem) 

would need to be available to evaluate the solutions. Individual members of the groups 

would need to undergo a variety of aptitude assessments prior to the experimental trials in 

order to evenly distribute individual ability levels between the groups (to the greatest 

extent possible). By doing so, the researchers could assess the influence variables beyond 

group member aptitude have on the groups’ abilities to solve problems.  

Once the groups were established they could be given a set amount of time to 

generate a solution to the complex problem they were given. All groups could be given 

the same amount of time to solve problems, but they could be given different amounts of 

time to work together as opposed to working on the problems by themselves. By giving 

different time constraints to different groups and running a large enough number of trials 

on a large enough number of groups this approach would provide a tool to test some of 

the findings of this simulation based study. 

  In addition to running designed experiments to test the validity of the findings of 

this work researchers could also examine these findings by analyzing the behavior of 

collaborative organizations that already exist. A variety of innovation schemes such as 

Google’s Eighty Twenty system are deigned to foster collaborative creativity. This 

Google system gives engineers and coders 20 percent of their time to exchange, foster, 

and develop their own ideas rather than spending time on job duties that trickle from the 

top down (Mediratta, 2007). The Google strategy provides an example of a system that 
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could be used as a case study for examining the influence of collaboration on idea 

generation. 

 Seniors in Clemson University’s Mechanical Engineering department have to 

complete capstone projects in which they work on a design project for an engineering 

company. They work on these projects in groups of four or five. Capstone projects are an 

educational practice that is also used in other engineering departments at Clemson 

University as well as at different universities across the country. These projects provide a 

large sample of collaborative groups to research. The groups could be used to help 

empirically identify the collaborative factors that influence the ability of systems to 

collectively solve problems.  

Another advantage of using these groups to run studies is that universities already 

have individuals within their faculties with the expertise necessary to assess solution 

quality. With proper Institutional Review Board (IRB) approval, researchers could also 

obtain access to student grades in order to work to control for student aptitude. 

Researchers could improve their ability to control for differences between group 

members by providing study participants with various aptitude tests and personality 

inventories. 

 The number of methods through which researchers could study the factors that 

influence collaborative groups’ abilities to innovate is practically limitless. Data could be 

collected from group meeting minutes, forms designed to track when group members 

collaborated, and email correspondence. Surveys could be used to develop virtual 

networks representing real world design groups. Group progress reports could be used to 
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determine when design groups came up with new ideas. A number of design tools such as 

traditional statistical techniques, Dynamic Network Analysis, a computational method for 

analyzing social systems as networks of interconnected entities (Carley, 2003), or 

artificial neural networks (Haykin, 1994) could be used to analyze this data.  

5.6 Summary 

 One of the primary functions of higher educational institutions is to solve 

problems. Academic researchers work to improve the functionality of prosthetic limbs, 

reduce the educational achievement gap, enhance the effectiveness of secondary school 

science and arts curricula, cure cancer, and increase the speed of computer processors. 

While these research problems lie in different academic fields, they all share two 

attributes. All of these problems are designed to improve our standard of living and are 

complex in nature. As researchers dedicate themselves to solving problems that impact 

the well being of people around the world, they are ethically bound to do so with the 

greatest efficiency possible. This ethical obligation to mankind mandates we consider all 

mechanisms that help us solve complex problems. In accordance with this study, the 

evolutionary principles that govern collective intelligence, especially those pertaining to 

the sexual reproduction of ideas, have significant influence on our ability to solve 

problems and, in turn, fulfill our ethical duties. 

This study outlined a number of factors that contribute to a collaborative system’s 

ability to collectively solve complex problems. This goal was accomplished through an 

extensive literature review and the development of a new computational simulation used 

to explore the ramifications of these ideas. The study found evidence to suggest that 
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collective intelligence is optimized when individuals develop a balance between time 

spent individually working on problems and time spent exchanging ideas with others. 

Researchers and scholars must work to find an optimal balance between working alone 

and collaborating with their colleagues. 

In addition to illustrating the need to balance idea exchange with solitary idea 

generation, the simulation provided evidence that individuals should avoid blindly 

following current, cutting edge solutions to problems. While these solutions certainly 

have significant societal value, premature adoption by all creative thinkers may cause 

collective systems to reduce their chances of finding new solutions that are even better 

than the current optima. Here, researchers should be provided with the freedom to 

explore new ideas that lay in opposition to traditional perspectives before pushing them 

to use proven methods and theories. When properly balanced, the cost of having 

researchers waste time on a few dead ends will be outweighed by the value of the new 

ideas this approach is likely to produce. Universities, academic departments, thank tanks, 

and educational policy makers can increase the problem solving efficiency of various 

institutions by promoting conditions which provide researchers in all fields with 

extensive networks in which they can exchange ideas and by promoting conditions that 

moderate the interdependency of individuals.  
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Appendix A 

	   	  
SPSS Results 

Node Fail 
N F.% Success 

N S.% N % Predicted 
Category 

Parent 
Node 

Primary 
Ind. 

Variable 

Sig.
a 

Chi-
Square df Split 

Values 

0 3238 33.70% 6362 66.30
% 9600 100.00

% 1 n/a n/a n/a n/a n/a n/a 

1 1298 81.10% 302 18.90
% 1600 16.70% 0 0 S.P. 0 3502.242 5 <= .0 

2 262 16.40% 1338 83.60
% 1600 16.70% 1 0 S.P. 0 3502.242 5 (.0, 

20.0] 

3 94 5.90% 1506 94.10
% 1600 16.70% 1 0 S.P. 0 3502.242 5 (20.0, 

40.0] 

4 182 11.40% 1418 88.60
% 1600 16.70% 1 0 S.P. 0 3502.242 5 (40.0, 

60.0] 

5 368 23.00% 1232 77.00
% 1600 16.70% 1 0 S.P. 0 3502.242 5 (60.0, 

80.0] 

6 1034 64.60% 566 35.40
% 1600 16.70% 0 0 S.P. 0 3502.242 5 > 80.0 

7 585 73.10% 215 26.90
% 800 8.30% 0 1 A.L. 0 66.874 1 1 

8 713 89.10% 87 10.90
% 800 8.30% 0 1 A.L. 0 66.874 1 2 

9 175 21.90% 625 78.10
% 800 8.30% 1 2 S.L. 0 35.345 1 1 

10 87 10.90% 713 89.10
% 800 8.30% 1 2 S.L. 0 35.345 1 2 

11 13 1.60% 787 98.40
% 800 8.30% 1 3 A.L. 0 52.262 1 1 

12 81 10.10% 719 89.90
% 800 8.30% 1 3 A.L. 0 52.262 1 2 

13 44 5.50% 756 94.50
% 800 8.30% 1 4 A.L. 0 54.781 1 1 

14 138 17.30% 662 82.80
% 800 8.30% 1 4 A.L. 0 54.781 1 2 

15 89 11.10% 711 88.90
% 800 8.30% 1 5 L. 0 127.4 1 1 

16 279 34.90% 521 65.10
% 800 8.30% 1 5 L. 0 127.4 1 2 

17 348 43.50% 452 56.50
% 800 8.30% 1 6 L. 0 312.332 1 1 

18 686 85.80% 114 14.30
% 800 8.30% 0 6 L. 0 312.332 1 2 

19 123 30.80% 277 69.30
% 400 4.20% 1 9 L. 0 36.871 1 1 

20 52 13.00% 348 87.00
% 400 4.20% 1 9 L. 0 36.871 1 2 

21 29 7.30% 371 92.80
% 400 4.20% 1 10 A.L. 0.0

01 10.846 1 1 

22 58 14.50% 342 85.50
% 400 4.20% 1 10 A.L. 0.0

01 10.846 1 2 

23 1 0.30% 399 99.80
% 400 4.20% 1 11 L. 0.0

02 9.461 1 1 

24 12 3.00% 388 97.00 400 4.20% 1 11 L. 0.0 9.461 1 2 
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% 02 

25 22 5.50% 378 94.50
% 400 4.20% 1 12 L. 0 18.805 1 1 

26 59 14.80% 341 85.30
% 400 4.20% 1 12 L. 0 18.805 1 2 

27 12 3.00% 388 97.00
% 400 4.20% 1 13 L. 0.0

02 9.62 1 1 

28 32 8.00% 368 92.00
% 400 4.20% 1 13 L. 0.0

02 9.62 1 2 

29 33 8.30% 367 91.80
% 400 4.20% 1 14 L. 0 45.396 1 1 

30 105 26.30% 295 73.80
% 400 4.20% 1 14 L. 0 45.396 1 2 

31 33 8.30% 367 91.80
% 400 4.20% 1 15 A.L. 0.0

1 6.688 1 1 

32 56 14.00% 344 86.00
% 400 4.20% 1 15 A.L. 0.0

1 6.688 1 2 

33 102 25.50% 298 74.50
% 400 4.20% 1 16 A.L. 0 30.958 1 1 

34 177 44.30% 223 55.80
% 400 4.20% 1 16 A.L. 0 30.958 1 2 

35 144 36.00% 256 64.00
% 400 4.20% 1 17 S.L. 0 18.309 1 1 

36 204 51.00% 196 49.00
% 400 4.20% 0 17 S.L. 0 18.309 1 2 

37 302 75.50% 98 24.50
% 400 4.20% 0 18 S.L. 0 68.784 1 1 

38 384 96.00% 16 4.00% 400 4.20% 0 18 S.L. 0 68.784 1 2 

39 45 22.50% 155 77.50
% 200 2.10% 1 19 A.L. 0 12.785 1 1 

40 78 39.00% 122 61.00
% 200 2.10% 1 19 A.L. 0 12.785 1 2 

41 40 20.00% 160 80.00
% 200 2.10% 1 30 S.L. 0.0

04 8.071 1 1 

42 65 32.50% 135 67.50
% 200 2.10% 1 30 S.L. 0.0

04 8.071 1 2 

43 38 19.00% 162 81.00
% 200 2.10% 1 33 S.L. 0.0

03 8.896 1 1 

44 64 32.00% 136 68.00
% 200 2.10% 1 33 S.L. 0.0

03 8.896 1 2 

45 72 36.00% 128 64.00
% 200 2.10% 1 34 S.L. 0.0

01 11.036 1 1 

46 105 52.50% 95 47.50
% 200 2.10% 0 34 S.L. 0.0

01 11.036 1 2 

Growing Method: CHAID 
Dependent Variable: Success 
a Bonferroni adjusted 
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Appendix B 

%GNU Octave Code 
%Noah Welsh 
%A Computational Model of Memetic Evolution 
 
% This creates a matrix storing the simulation results. Set first number in parentheses to 
the total number of simulations (Number of simulations * Number of iterations in each). 
 
Best_100b= zeros(196000,7); 
 
%Imbedded loops walk the code through each combination of independent variables. 
 
for lead=1:2 
 for ga=1:2  
  for hc=1:2  
   for ratio =1:6 
 
%To run N trials for each combination of independent variables adjust the line below to 
for trials =1:N 
 
    for trials =1:200 
     if ratio ==1 

 algorithmratio=0; 
elseif ratio ==2 
 algorithmratio=5; 
elseif ratio ==3 
 algorithmratio=9; 
elseif ratio ==4 
 algorithmratio=13; 
elseif ratio ==5 
 algorithmratio=17; 
else 
 algorithmratio=21; 
end 
Coeff =zeros (25,25,'uint32'); 

      
%Randomly generates weighting coefficients.      
 
     for i=1:25 
      for j=1:25 
       Coeff(i,j)=randi(10)-1; 
      end  
     end 
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     for i=1:25 
      output(i)=99999999; 
     end 
 
% Next, we randomly assign a 25 (adjust this appropriately) digit code representing 
external reality. As we guess at the nature of reality, the closer our estimates get to the 
true nature of reality, the better our results get. It is important to remember these results 
are not binary. When designing a spear, car, or higher education financial model, there 
are practically infinite possibilities. These design ideas are not right or wrong. They lie 
along a spectrum from better to worse. My model assumes that low return values are 
better than high return values. Here, humans use induction. They guess at how something 
will work, use creativity (random mutation of old ideas), and try again. If their result 
improve they will keep their new ideas and mutate them. If the mutations make the 
returned outputs worse, then the agents revert to old designs and repeat. % 
 
% Initial guesses are randomly assigned. This essentially illustrates the idea that the first 
humans had to start from scratch when developing ideas on any real world problems. 
Cave people had no preconceptions about how to approach phenomena of practically 
infinite complexity infinite complexity. 
 
     for i=1:25 
      Truth(i)= randi(10)-1;  
      for j=1:25 
       Guess(i,j)= randi(10)-1;  
       Guess2(i,j)=Guess(i,j); 
      end 
 
%Uncoment the line  below to see the actual problem solution values. 
 
%printf("%f ", Truth(i));  
 
     end 
 
% HYPOTHESIS: This individual creativity represents the creativity of animals, and the 
creativity of humans prior to the development of language (the ability to exchange ideas 
between agents). 
 
% NOTE: Language is not a binary phenomenon. Language has evolved so that idea 
exchange mechanisms have been developing for millions of years. Here, we see the 
biological and anthropological departure from instinct (genetically rooted ideas) to 
learned behaviors (ideas which are nurtured). */ 
 
% Initial output must be set to high value so that my model does not have early humans 
assume they have perfectly figured the nature of reality 
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     BestOutput=99999999; 
     Avg=1; 
 
%To adjust the simulation trials to run for X iterations change the linee below to for 
f=1:X 
     for f=1:100 

 total=total+1; 
 
 for i=1:25 
  Noutput(i)=0;  
 end 
 for e=1:25 
  for i=1:25 
   j=i+1; 
   while j<26  

 
Noutput(e)=Noutput(e)+power(Coeff(i,j)*(Guess(e,i)*Guess(e,j)-Truth(i)*Truth(j)),2); 
         j=j+1;  
        end  
       end  
      end 
       
%This compares new solution values to the values of previous iterations. 
 
      for i=1:25 
       if Noutput(i)<output(i)  
        for j=1:25 
        
 Guess2(i,j)=Guess(i,j); 
        end    
       output(i)=Noutput(i);  
       else  
        for j=1:25 
        
 Guess(i,j)=Guess2(i,j); 
        end 
        Noutput(i)=output(i);  
       end 
       if output(i)<BestOutput 
        Best=i; 
        BestOutput=output(i);  
       end  
      end 
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      BestOut(f)=BestOutput; 
      Total=0; 
      for z=1:25  
      Total=Total+Noutput(z);  
      end 
 
%Calculates the average solution value. 
 
      Avg(f)=Total/25; 
 
%The lines below store the simulation results in a matrix. 
 
      Best_100b(total,1) = f; 
      Best_100b(total,2) = lead; 
      Best_100b(total,3) = hc; 
      Best_100b(total,4) =ga; 
      Best_100b(total,5) = ratio; 
      Best_100b(total,6) = BestOutput; 
      Best_100b(total,7) = Avg(f); 
      printf("%i, %i,%i, %i\n",BestOutput, Avg(f), 
f, total); 
 
      for z=1:25 
   
%The code below adjust the asexual and sexual level settings 
 
       if hc==1 
        hcsize=randi(7); 
       else 
        hcsize=randi(18); 
       end  
       if ga ==1 
        gasize=randi(7); 
       else 
        gasize=randi(18); 
       end  
 
%The line below reads, “if randi(20)<algorithmratio” The probability of an agent 
utilizing sexual modes of creativity in a given iteration, P = (algorithmratio – 1)/20 
 
       if randi(20)<algorithmratio 
        for num1 =1:gasize 
         if lead==1 
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 copy=randi(25); 
         
 choice=randi(25); 
          Guess(z,copy) 
=Guess2(choice,copy); 
         else 
copy=randi(25); 
          Guess(z,copy) 
=Guess2(Best,copy); 
         end 
        end 
       else  
        for num2 =1:hcsize 
         Guess(z,randi(25)) 
=randi(10)-1; 
        end  
       end  
      end  
     end 
    end  
   end 
  end  
 end 
end 
 
%Uncomment the lines below to output a graph of the best solution as a function of the 
iteration number. Change “BestOut” to “Avg” to obtain a graph of average solution as a 
function of the number of iterations. Generally speaking, this is only useful when a single 
simulation trial is being run. 
 
% semilogy(BestOut) 
% xlabel('Creative Iterations') 
% ylabel('Problem Solution Proximity to Ideal Value') 
% title('Creative Cycles Required for Collaborating Agents to Reach Ideal Solutions') 
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