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ABSTRACT 

Atlantic killifish, Fundulus heteroclitus, have adapted to, or at least developed a 

level of resistance to creosote-based polycyclic aromatic hydrocarbons (PAHs) found at 

the Atlantic Wood (AW) superfund site in the southern branch of the Elizabeth River, 

VA USA.  Historically, 90+% of the mummichogs at this site have hepatic lesions of 

varying severity, and 30+% of these fish have tumors of various origin.  Many 

xenobiotics, including select PAHs found at the Atlantic Wood site, are ligands for the 

aryl hydrocarbon receptor (AhR), which is a promiscuous ligand-dependent transcription 

factor involved in developmental regulation, environmental sensing, and induction of a 

suite of phase I, II, and III drug metabolizing enzymes.  Subsequent to the discovery of 

the AW killifish population, investigators demonstrated that these fish were recalcitrant 

to AhR activation and CYP1A induction following exposure to model PAHs.  Moreover, 

killifish embryos collected from the AW site are still resistant to the cardiac and 

craniofacial deformities typically associated with exposure to PAHs and sediments 

collected from the AW site.  In this study, the issue of CYP1A inducibility in AW fish 

collected in situ was re-examined nearly 2 decades after first discovery, and shown that 

the gene expression of this sentinel biomarker of AhR activation was significantly higher 

in intestines in comparison to a reference population. The livers of AW mummichogs 

were examined by IHC to discover that CYP1A and AhR2 protein patterns reflect tissue 

damage from lesions, and/or intrinsic cellular physiology of tumors, rather than 

recalcitrant induction of CYP1A.  Gene expression profiles also indicated that liver 
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COX-2 is elevated in livers of these fish.  A monoclonal antibody was then generated 

against COX-2 (mAb CX53-1) and used to observe the possible role of COX-2 and 

inflammation in Atlantic Wood fish liver lesions.  COX-2 protein expression was very 

high in macrophage aggregates and surrounding tumors, suggesting chronic 

inflammation. Further characterization of the gut innate immune system focusing on 

eosinophilic cell infiltration and lysozyme levels demonstrated higher activity.  Overall, 

these findings suggest that AW fish are not necessarily recalcitrant to CYP1A induction, 

and thus seem to have active functional AhR2 protein(s) in non-damaged tissues.  These 

fish are also under chronic inflammatory stress. 
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CHAPTER ONE 

REVIEW OF LITERATURE 

Introduction to Fundulus heteroclitus 

As human populations grow and urban sprawl and pollution continues, 

surrounding natural environments are being exposed to xenobiotics of anthropogenic 

origin such as PCBs (polycyclic biphenyls), PAHs (polycyclic or polynuclear aromatic 

hydrocarbons), metals and other pollutants.  PAHs can result from incomplete 

combustion of organic material that can be found naturally in the environment such as 

volcanoes and forest fires or from anthropogenic sources such as burning of fossil fuels 

and other industrial sources. Oftentimes, the majority of them are of anthropogenic origin 

which is creating major concerns for neighboring biotic populations such as harbor 

estuaries (Menzie, et al. 1992). 

One sentinel species occupying these harbor estuaries as well as saltwater 

marshes and tidal creeks along the east coast of North America is a teleost fish known as 

Fundulus heteroclitus, more commonly referred to as the mummichog or Atlantic 

killifish (Kneib 1986, Teo and Able 2003). Mummichogs are quite ubiquitous and can be 

found from Newfoundland, Canada to as far south as northern Florida (Bigelow and 

Schroeder 1953, Hardy 1978). These euryhaline fish are also very hardy and can occupy 
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bodies of water that have ranges in salinity from freshwater, 0 parts per thousand (ppt), to 

salinities of upwards to 120.3ppt (Abraham 1985, Griffth 1974). These fish have a high 

home range fidelity throughout their entire life cycle and can be used as a sentinel species 

to monitor the health of an ecosystem (Lotrich 1975). Due to their limited migration 

(Duvernell, et al. 2008) along with the mummichog’s high reproduction rate and gene 

plasticity, these fish have adapted to their surroundings and are abundant in both pristine 

as well as polluted environments (Kelly, et al. 2012, Nacci, et al. 2010, Nacci, et al. 

1999).  

Fundulus heteroclitus as research animals 

Mummichogs can spawn readily in the wild or in captivity by lunar cues during 

high tide during each new and full moon from spring till fall. Since these fish are sexually 

dimorphic, males can easily be distinguished by their horizontal stripes and colorful spots 

compared to females, which lack them in comparison (Hardy 1978).  Female 

mummichogs are oviparous egg layers capable of laying several hundred eggs. These 

eggs are transparent and well documented throughout embryonic development (Bigelow 

and Schroeder 1953, Overstreet, et al. 2000), which are key features for developmental 

studies. While the zebrafish is a very popular model for development, it is not native to 

polluted environments and does not have the key ecological position of the killifish.  In 

addition, zebrafish are a freshwater species and do not drink water. Killifish are marine 

fish, and thus drink water and serve as a potential model for intestinal contaminants from 

the water column. The killifish model has been used extensively in biomedical research 

and toxicological research and a large literature base is thus available (Armknecht, et al. 
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1998b, Frederick, et al. 2007, Munns, et al. 1997, Nacci, et al. 2010, Nacci, et al. 1999, 

van den Hurk, et al. 1998, Vogelbein, et al. 1990, Vogelbein, et al. 1999, Wassenberg, et 

al. 2002, Wassenberg and Di Giulio 2004, Weis 2002). Furthermore, the genome of 

Fundulus heteroclitus is currently being sequenced, where 100x sequence coverage is 

complete, contig assembly is also complete, and the scaffold assembly is currently in 

progress (Andrew Whitehead, personal communication). 

Fundulus heteroclitus inhabiting superfund sites 

There have been several documented subpopulations of mummichogs that have 

adapted or developed a resistance to environments with PAHs Atlantic Wood on the 

Elizabeth River, VA (Frederick, et al. 2007), PCBs in New Bedford Harbor (NBH), MA 

(Arzuaga, et al. 2004, Bello, et al. 2001), polychlorinated dibenzodioxins (PCDDs) such 

as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Newark Bay, New Jersey (Prince and 

Cooper 1995), halogenated aromatic hydrocarbons (HAHs) and PAHs (Arzuaga and 

Elskus 2002) as well as a multitude other pollutants. A common factor that has been 

discovered in these subpopulations is a recalcitrant CYP1A induction phenotype 

(Arzuaga and Elskus 2002, Arzuaga, et al. 2004, Bello, et al. 2001, Frederick, et al. 

2007). 

Atlantic wood is a superfund site located in the southern branch of the Elizabeth 

river in Portsmouth, Virginia. Having reported concentrations of PAHs that reached 

upwards of 2200mg/kg of dry weight of sediment (Bieri, et al. 1986), Atlantic wood is 

one of the most heavily polluted superfund sites in the world (Walker, et al. 2004).  From 
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1926 to 1992 it was a wood treatment facility, producing creosote, a toxic distillate of 

coal tar that contains up to 85% PAHs that include immunotoxic and carcinogenic PAHs, 

such as benzo[a]pyrene (BaP), chrysene, and dibenzo[a,h]anthracene (Jung, et al. 2011). 

Despite these conditions, there is a population of mummichogs that appear to be thriving. 

However, upon closer examination in 1990 by Volgelbein et al., it has been discovered 

that 93% of the mummichogs in this site have hepatic lesions and 33% of these fish had 

hepatocellular carcinomas. In 1995, Van Veld and Westbrook published a paper that has 

shown that adult killifish from this site are resistant to PAH mediated induction of Cyp1a. 

Other observations in this population were the increased expression of P-glycoproteins, 

manganese superoxide dismutase (MnSOD) and glutathione concentrations (Armknecht, 

et al. 1998a, Cooper 1999, COOPER 1999, Meyer, et al. 2003). 

One theory that developed from observing recalcitrant CYP1A phenotypes in a 

heavily polluted site is that it offers a level of protection against generating potential 

metabolites that could be more toxic and detrimental than the existing parent compounds.  

Mummichog embryos from Atlantic Wood do not express toxic and  teratogenic effects 

such as pericardial edema and heart deformations. However, a study in 2004 

demonstrated that CYP1A inhibition in a reference embryo population (Kings Creek, 

VA) exposed to sediment extracts from Atlantic wood was not sufficient to suppress all 

toxicities (Wassenberg and Di Giulio 2004), suggesting that the mechanism behind this 

population phenotype is far more complex and is not limited to phase I enzymes 

(Wassenberg and Di Giulio 2004, Wills, et al. 2009). 
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 Introduction to the aryl hydrocarbon receptor (AhR) 

Many xenobiotics, including some found in polluted environments, such as PAHs, 

can act as ligands for the aryl hydrocarbon receptor, AhR, which is a promiscuous ligand-

dependent transcription factor that is highly conserved in vertebrates and invertebrates 

(Hahn, et al. 2006a). It belongs to a multigene family of transcription factors involved in 

developmental regulation and environmental sensing. AhR belongs to a family of 

proteins that have a signature PAS domain; the domain is named after the letter of the 

first three founding proteins in the family, Per (period), ARNT(aryl hydrocarbon receptor 

nuclear transporter), and Sim (single-minded), respectively. The PAS domain is 

responsible for allowing AhR to form either a homotypic interaction between another 

PAS protein or a heterotypic interaction that involves the interaction with a chaperone 

protein or ligand. AhR also contains a second domain that consists of basic helix-loop-

helix (bHLH) motifs that immediately follow the N-terminal of the PAS domain. Within 

the helix-loop-helix domain, there is homotypic interaction between a pair of bHLH 

motifs that forms a basic dimerization region which allows proteins to bind to the 

regulatory elements within the DNA (reviewed by (Gu, et al. 2000, Kewley, et al. 2004)). 

In its inactivated or latent state, AhR is located in the cytoplasm where it is 

stabilized by chaperone proteins that involve two 90 kDa molecular chaperone heat shock 

proteins (Hsp90), one p23 protein and one hepatitis B virus X-associated protein (also 

known as XAP2/AIP/Ara9) (reviewed by (Denison, et al. 2011, Gu, et al. 2000, Kewley, 

et al. 2004). 
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Once AhR binds to its ligand, a conformational change occurs for AhR that 

allows a NLS, nuclear localization signal, to be exposed which allows it to translocate 

into the nucleus and dissociate from its chaperone proteins. Once AhR is located in the 

nucleus, it heterodimerizes with a ubiquitous class II bHLH/PAS protein, known as the 

aryl hydrocarbon receptor nuclear translocator, ARNT. The ligand-heterodimer complex 

then binds to a specific sequence of nuclear DNA motifs termed xenobiotic response 

elements (XREs) or dioxin-like response elements (DREs), which are located upstream of 

ligand-responsive genes (Kewley, et al. 2004).  The consensus sequence for these 

elements is 5’- (T/G)NGCGTG-3’ (Whitlock Jr 1999, ZeRuth and Pollenz 2007). 

The binding of these XREs promotes the transcription of a multitude of genes, 

many of which are involved in phase I and II xenobiotic metabolism such as cytochrome 

P450 enzymes like CYP1A, CYP1B, CYP1C, as well as phase II enzymes like 

glutathione-S-transferase (GST), glucuronosyl transferase which are involved in 

detoxification of xenobiotics. Other genes include phase III transporters such as 

multidrug resistance protein (MDR or P-glycoprotein), as well as many others that may 

be involved in cell growth, metabolism and cellular differentiation (DeGroot, et al. 2011, 

Hahn, et al. 2006a). AhR activation can also cause transcription for the aryl hydrocarbon 

receptor repressor, AhRR, which acts as a negative regulatory loop that down regulates 

the induction of AhR by sequestering ARNT and blocking XRE sequences (Denison and 

Nagy 2003, Denison, et al. 2011, Kewley, et al. 2004, Mimura, et al. 1999, Mimura and 

Fujii-Kuriyama 2003, Vondracek, et al. 2011, Xu, et al. 2005). 
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While the purpose of xenobiotic metabolism is to make the toxicant more soluble 

in water to promote its excretion, it can also lead to the production of metabolites that can 

be more toxic than the parent compound (Nebert, et al. 2004). For instance, the 

monooxygenase enzyme Cyp1a, which is considered to be the hallmark  of AhR 

activation (Aluru, et al. 2011), has the potential to aid in the detoxification of xenobiotics 

or generating more toxic metabolites which can damage the cell and lead to further 

toxicity. Exposure to certain ligands of the AhR such as PAHs, PCBs, and dioxins can 

cause detrimental effects such as cardiac edema, cardiac deformities (looping, malformed 

heart valve), immunosuppression (Bizzarri, et al. 2011, Clark, et al. 2010, Frederick, et al. 

2007), wasting syndrome, neurotoxicity, and carcinogenesis (Fan, et al. 2010, Poland and 

Knutson 1982, Williamson, et al. 2005). 

Ligands of AhR 

 AhR has a large and promiscuous range of ligands that can bind to its ligand 

binding pocket. How these ligands interact with this domain will dictate differences in 

AhR-dependent gene expression. There are two main categories of AhR ligands, classical 

AhR ligands and non-classical AhR ligands. Classical AhR ligands are characterized as 

hydrophobic compounds that are planar and aromatic properties. A classic example of 

such ligand is TCDD (2, 3, 7, 8 tetrachlorodibenzo-p-dioxin, or dioxin) which has a  high 

affinity towards AhR (Brown, et al. 2002, DeGroot, et al. 2011, Denison, et al. 2011). 
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More recently, potential endogenous AhR ligands have been discovered such as 

indole-containing compounds, sterols, tryptophan photoproducts, flavonoids, carotenoids, 

to name a few. These ligands are referred to as non-classical AhR ligands due to 

structural and physicochemical characteristics that differ from classic dioxin related 

compounds. These compounds have a relatively low affinity towards AhR and are 

metabolically labile. Many are moderate inducers of AhR and are thought to play normal 

physiological roles for AhR (DeGroot, et al. 2011, Denison and Nagy 2003, Denison, et 

al. 2011, Mitchell and Elferink 2009) such as regulating hematopoiesis (Lindsey and 

Papoutsakis 2013), liver and vascular development, as well as immune function (Stevens, 

et al. 2009). 

The most common and highest affinity ligands of the AhR are exogenous 

compounds, which are either produced anthropogenically or non-biologically in the 

environment by means such as the combustion of fossil fuels or petroleum products 

(Shur-Hueih Cherng, et al. 1996).   Some of the  classical AhR ligands include 

halogenated aromatic hydrocarbons, HAHs, such as dioxin, polyaromatic hydrocarbons, 

PAHs, such as benzo(a)pyrene and 3-methylcholanthrene,  and polychlorinated biphenyls 

such as PCB-126 ((DeGroot, et al. 2011) reviewed by (Hahn 1998)). 

 Different types of ligands will have different binding affinities for AhR. Classical 

AhR ligands typically have a high affinity for AhR compared to non-classical AhR 

ligands.  Halogenated aromatic hydrocarbons have relativity high binding affinities in the 

range of picomolar to nanomolar and generally produce toxic effects, such as 



9 

immunotoxicity, hepatotoxicity, cardiotoxicity, reproductive toxicity, dermal toxicity, 

teratogenesis, endocrine disruption, lethality, wasting syndrome, carcinogenesis, diabetes, 

and porphyria ((DeGroot, et al. 2011) reviewed by (Denison, et al. 2011)). On the other 

hand, PAHs have affinities for AhR that range from nanomolar to micromolar and while 

they are able to have biological effects such as altered gene expression, they do not 

typically express the same magnitude in toxicity as higher affinity, dioxin-like 

compounds.  It is thought that these differences in toxicity are related in part to the 

metabolic stability of the compound. Ligands that are metabolically stable and are not 

readily broken down, such as HAHs, persistently activate or repress the expression of key 

responsive genes of the AhR pathway which can in turn produce highly toxic effects. 

Comparatively, ligands that are metabolically labile and are exposed to the AhR pathway 

transiently can have a shorter response time in induction that often leads to less toxic 

effects (Denison, et al. 2011). 

AhR1 and AhR2 in fish 

While there is only one mammalian AhR, which mediates toxic cellular responses 

to environmental contaminants, studies on teleostean fishes have found two aryl 

hydrocarbon receptors: AhR1 and AhR2 (Abnet, et al. 1999, Hahn, et al. 1997, Merson, 

et al. 2006, Roy and Wirgin 1997), with up to six AhR paralogs discovered the Atlantic 

salmon (Salmo salar) (Merson, et al. 2006). In Fundulus heteroclitus, there have been 

two highly divergent AhRs identified, fhAhR1 and fhAhR2 (Hahn, et al. 2006b, 

Karchner, et al. 1999a, Merson, et al. 2006). It has been speculated that gene duplication 
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events in vertebrate evolution lead to multiple AhR genes.  Both AhR1 and AhR2 in 

Fundulus share similar mechanistic properties of mammalian AhR in that they share co-

factors (e.g., ARNT, AhR Repressor) in the AhR induction and regulation pathways 

(Hahn 2002a). 

 It has been shown in mice that having even slight differences in amino acids in 

mouse AhR strains can impact their affinity to different ligands and affect toxicity (Hahn 

2002b). The most significant AhR polymorphisms in terms of its functionality have been 

observed at the 375 position that is in the ligand binding domain (reviewed by(Okey, et 

al. 2005). Studies using C57BL/6 mice, which have polymorphism that encodes for 

alanine at the AhR codon 375, showed that they had a 15-fold higher affinity for β-

naphthoflavone (BNF) (Maier, et al. 1998) and a 10-fold higher affinity for TCDD 

(Okey, et al. 1989) compared to  DBA/2 AHR mice which have a polymorphism that 

encodes for valine at the 375 position of AhR (Okey, et al. 2005). 

Not only can the level of expression of AhR vary in different organs, tissues, and 

cell types but it can also vary depending upon the developmental stages of animals 

(review by (Hahn 1998)). In mammals, such as rats, AhR is predominately found and 

expressed in the lungs, liver, thymus, kidney, placenta and to a lesser extent can be 

present in the spleen, heart, brain, muscle, pancreas, and gonads (Kewley, et al. 2004). 

This pattern of ubiquitous expression is thought to be expressed in all mammals 

(reviewed by (Denison and Nagy 2003, Hahn 1998, Kewley, et al. 2004). In fish, the 

level of expression and organ location varies between AhR1 and AhR2.  AhR2 is 
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predominant and is the most widely and highly expressed aryl hydrocarbon receptor in 

teleost fish including Fundulus. In gene knock-down study, using morpholino-modified 

oligonucleotides (MO) that have been used in AhR2 MO zebrafish, it was determined 

that AhR2 helps mediate several toxic effects of TCDD (Prasch, et al. 2003). 

AhR2 is expressed in most tissues in Fundulus, whereas, AhR1 is most often 

expressed in the heart, brain, and gonads  (Karchner, et al. 1999b, Merson, et al. 2006). 

Analyzing the varying degrees of AhR expression can be vital in determining the effects 

of different ligands and possibly predicting which organs may be more sensitive or less 

sensitive to certain ligands (reviewed by (Hahn 1998)). Studies performed on killifish 

from a PCB and dioxin contaminated superfund site known as New Bedford Harbor, 

Massachusetts, have shown that while there are no differences promoter methylation of 

AhR1 and AhR2 between mummichog populations, there were differences in methylation 

between the receptors in the livers suggests that tissue specific expression of AhR1 and 

AhR2 may be controlled by methylation of AhR promoter regions. AhR1 had 

hypermethylation in its promoter region which correlated with low AhR1 transcripts in 

the livers of both populations. AhR2, on the other hand, was hypomethylated in its 

promoter region and correlated with a high AhR2 mRNA. (Aluru, et al. 2011). 

Cross-talk in the AhR pathway 

It is thought that by having a recalcitrant cyp1a phenotype in a heavily polluted 

site, it offers a level of protection against generating potential metabolites that could be 

more toxic and detrimental than the existing parent compounds.  Mummichog embryos 
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from Atlantic Wood do not express teratogenic effects such as pericardial edema and 

heart deformations, and it is thought that being recalcitrant to cyp1a induction offers this 

protection from potential teratogenic effects. However, a 2004 study performed by Di 

Giulio and Wassenberg demonstrated that cyp1a inhibition in a reference embryo 

population (Kings Creek, VA) exposed to sediment extracts from Atlantic wood was not 

sufficient to suppress all toxicities, suggesting that the mechanism behind this population 

phenotype is far more complex and is not limited to phase I enzymes and may also be due 

to the complex cross-talk that the AhR pathways has with other pathways (Wassenberg 

and Giulio 2004, Wills, et al. 2009).   

AhR can crosstalk with a transcription factor known as nuclear factor erythroid 2-

related factor (Nrf2) that is  a member of the Cap’n’ collar family of transcription factors 

involved in antioxidant and phase II enzyme gene regulation  in response to oxidative 

stress (Denison and Nagy 2003). Firstly, if AhR is activated, it can bind to a XRE of one 

of its many target genes that includes Nrf2. Secondly, under non-stress conditions Nrf2 is 

found in the cytoplasm bound by a repressor protein called kelch-like ECH-associated 

protein 1 (Keap1) where it can be targeted for degradation (Harbeitner, et al. 2013). In the 

presence of reactive oxygen species or other stressors such as electrophiles (some of 

these stressors can be due to AhR agonists that are poorly metabolizing by P450 

enzymes), Nrf2 dissociates from its repressor protein and translocates into the nucleus 

where it can bind with a protein called Maf.  The Nrf2-Maf complex can then bind to 

antioxidant response elements (AREs) that are located in the promoter region of target 

genes such as phase II enzymes (such as glutathione S-transferase (GST) and 
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NADPH:quinone oxidoreductase (NQO1)) as well as AhR (Harbeitner, et al. 2013, 

Muller, et al. 2010). Another thing worth noting is that some of the target genes of AhR 

are also target genes of Nrf2 as they have XREs and AREs at their promoter regions 

(some examples of genes are glutathione-S-transferase alpha, superoxide dismutase 1 

(Sod1), NAD(P)H dehydrogenase, quinone 1 (Nqo1) to name a few) (Nguyen, et al. 

2003). 

Other AhR crosstalk can involve other pathways such hormone receptor 

pathways. Among those best understood is the estrogen receptor (ER) pathway. One way 

the two pathways can crosstalk is during AhR activation, where the CYP1A1/1B1 

enzymes can use estrogen as their substrate and catabolize it, which in turn down 

regulates estrogen levels and estrogen response. Another way AhR can interfere with the 

ER pathway is the ARNT:AHR complex can bind to its XRE, xenobiotic response 

elements, and block the ability of that gene to be activated by ER. Another method of 

interference is by ARNT, which can bind to ER and enhance its transcriptional activity 

(or decrease it if AhR is activated and directly competes for ARNT) (Denison, et al. 

2011). 

Besides ER and the numerous ways that AhR can crosstalk with that pathway, 

another well-known interaction of AhR can be seen with the hypoxia inducible factor 

(HIF-1α) pathway. HIF-1α is a transcription factor that regulates a cassette of genes that 

are involved in adaption to low oxygen availability. HIF-1α uses ARNT (also known as 
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HIF-1β) as its dimerization partner and during hypoxic conditions, and competes directly 

with AhR this way, affecting its expression, including CYP1A (Denison, et al. 2011). 

Inflammation and carcinogenesis in Atlantic Wood killifish 

A previous study by Frederick and Rice in 2007 has shown that mummichogs 

from Atlantic wood seem to have a dampened humoral immune system while the innate 

immune system is primed. These fish seem to express chronic inflammation through 

elevated levels of lysozyme and cox-2. 

One common pathway that is associated with inflammation is the NF-κB 

pathway. This transcription factor plays a major role in development, apoptosis, 

proliferation, immunity, and inflammation.  In the mammalian system, NF-κB consists of 

five members (NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel) that exist as 

either homo- or heterodimers that are bound in the cytoplasm by inhibitory factor (IKβ). 

When stimulated by a pro-inflammatory signals such as cytokine tumor necrosis factor α 

(TNFα), IL-1β, binding of lipopolysaccharide (LPS) to toll-like receptors (TLR4), 

carcinogens (cigarette smoke, for example), and tumor promoters, IKβ is phosphorylated 

and ultimately degraded, allowing NF-κB to translocate into the nucleus and promote the 

transcription of a multitude of genes such as inflammatory enzymes cyclooxygenase 2 

(cox-2), type II nitric oxide synthase (iNOS), TNFα, vascular endothelial growth factor 

(VEGF).  NF-κB has been shown to be constitutively active in most tumors and is 
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thought to be the link between cancer and inflammation (Aggarwal, et al. 2006a, Hayden 

and Ghosh 2004, Tian 2009). 

In the last few decades, studies are showing that there is a relationship between 

disease and the immune system. Inflammation is a localized response either to tissue 

damage, irritation, or invading pathogen that is characterized by redness, swelling, pain, 

fever, or loss of function.  Acute inflammation is a defense response to protect the host 

and involves wound healing and/or clearance of the invading pathogen. If this process 

goes awry, which may happen if the macrophages become chronically stimulated or 

cannot find and clear the pathogen, chronic inflammation may occur which has been 

shown to contribute to the pathophysiology and development of many diseases such as 

heart disease, irritable bowel diseases, diabetes, many cancers, arthritis, among many 

others (Aggarwal, et al. 2006b, Mantovani, et al. 2008). The Atlantic wood population 

has significantly elevated levels of COX-2 (cyclooxygenase 2) which is indicative of an 

inflammatory state (Frederick, et al. 2007). Over 50% of Atlantic Wood mummichogs 

have hepatic lesions, but to date these tissues have not been examined for indices of 

inflammation. 

There are two isoforms of the cyclooxygenase enzyme, Cox-1 and Cox-2. Cox-2 

is the inducible form of prostaglandin G/H synthase, while Cox-1 is constitutively active. 

Cox-2 can be induced by cytokines, mitogens, tumor necrosis factor (TNF-α), 

lipopolysaccharide (LPS), interleukin (IL)-1β and tumor promoters. Cox-2 has a dual 

activity that involves a cyclooxygenase activity that converts arachidonic acid to 
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prostaglandin (PG)G2 and a peroxidase activity that will convert(PG)G2 to PGH2, which 

is a prostanoid precursor. Cox-2 is expressed in macrophages and has shown some ability 

to metabolize some PAHs like to diol-epoxide intermediates through bystander 

xenobiotic metabolism where there is a xenobiotic nearby with the right configuration for 

Cox-2 cyclooxygenase activity to insert an oxygen (Amano, et al. 2003, Frederick, et al. 

2007, Parkinson 2001). Cox-2 has also been shown to increase the expression of p-

glycoprotein (COOPER 1999) which has been shown in AW mummichogs which have 

recently been found to express high levels of Cox-2 (Frederick, et al. 2007). 

COX-2 has been shown to be over expressed in many types of cancers such as 

pancreatic (Yoshida, et al. 2005), colorectal (Gupta and DuBois 2001), liver (Bae, et al. 

2001), lung (Khuri, et al. 2001, Sandler and Dubinett 2004), breast (Zhao, et al. 2008) 

and ovarian.  Its expression is highly associated with the prognosis of the cancer; high 

expression usually corresponds to poor prognosis (Aggarwal, et al. 2006a, Khuri, et al. 

2001, Nasi and Castiglione 2002). COX-2 inhibitors, such as non-steroidal anti-

inflammatory drugs (NSAIDS) have been shown to inhibit the progression of many 

cancers, possibly suggesting that COX-2 may have a role in tumor formation and 

progression (Mantovani, et al. 2008).  COX-2 has a promoter region that can be 

recognized by the AhR (Degner, et al. 2009) and inhibitors of AhR activation such have 

also been shown to inhibit Cox-2 expression. 

The relationship between NF-kB and AhR pathways is complicated. There have 

been findings that there is cross talk between them. Both share and potentially compete 
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for the same coactivators, SRC-1 (steroid receptor coactivator) and p300/CPB. NF-κB 

(RelA) and AhR interaction has demonstrated findings that were contradictory, some 

studies showing inhibition and others activation. It has been demonstrated that 

inflammatory cytokines, LPS, and TNFα can suppress the expression of CYP1A1 which 

is mediated through the interaction of AhR and NF-κB, suggesting an inhibitory 

interaction between these pathways (Ke, et al. 2001, Tian, et al. 1999, Tian, et al. 2002, 

Tian 2009). In other studies, there have been suggestions of cooperative role between the 

two pathways through a novel finding in which AhR/RelA-containing NFκB element 

binding complex was identified (Kim, et al. 2000). 

Do fish have an inflammatory response? 

Polarized T-helper cells, such as Th1 involved in inflammation and Th2 involved 

in immunosuppression, have been described in mammals but they have not been 

characterized in fish. Immune cells such as B cells, that have only been found to secrete 

IgM, T cells, neutrophils, macrophages, and eosinophilic granular cells (EGCs, thought to 

be the mast cell equivalents) have been described in fish. EGCs morphologically 

resemble mast cells with the basophilic components (which show metachromasia, 

characteristic of mast cells) easily being washed out leaving behind the acidophilic red 

granules, hence the name. EGCs in teleosts produce chemical effector agents that are 

involved in the inflammatory reaction.  Studies in salmonids have shown the EGCs 

recruit toward the site where persistent inflammatory reactions are occurring (Reite and 

Evensen 2006). In higher teleosts, melano-macrophage centers containing aggregates of 
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lymphocytes and macrophages, thought to be analogous to germinal centers of lymph 

nodes, have also been discovered.  These aggregates are found primarily in haemopoietic 

tissues such as the head kidney and spleen. They have also been found in the liver and 

can develop elsewhere in the body in lesions due to chronic inflammation. The size and 

amount of these aggregates can vary within a species of fish due to age, stress, 

pathogenic and inflammatory conditions and thus have been suggested a biomarker for 

environmental stress (Agius and Roberts 2003). 

Overview and Specific Aims of My Dissertation Research 

Atlantic killifish, Fundulus heteroclitus, have adapted to, or at least are resistant to 

creosote-based polycyclic aromatic hydrocarbons (PAHs) found at the Atlantic Wood 

(AW) superfund site in the southern branch of the Elizabeth River, VA USA.  As far back 

as the early 1990s, it was documented that 93% of the mummichogs at this site hade 

hepatic lesions of varying severity, and 33% of these fish had hepatocellular carcinomas.  

Many xenobiotics, including select PAHs found at the Atlantic Wood site, are ligands for 

the aryl hydrocarbon receptor (AhR), which is a promiscuous ligand-dependent 

transcription factor involved in developmental regulation, environmental sensing, and 

induction of a suite of phase I, II, and III drug metabolizing enzymes.  Subsequent to the 

discovery of the AW killifish population, investigators demonstrated that these fish were 

refractory to CYP1A induction following exposure to model PAHs.  Moreover, killifish 

embryos collected from the AW site are still resistant to the cardiac and craniofacial 
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deformities typically associated with exposure to PAHs and sediments collected from the 

AW site. 

The purpose of this dissertation is to first develop and characterize new 

monoclonal antibodies against Ahr-1, AhR-R, and COX-2 to then use in a larger field 

study.  In the field study, I will re-examine the issue of CYP1A expression in AW fish 

exposed and collected in situ, to characterize AhR expression profiles in these fish, and to 

explore the possible role of COX-2 and inflammation in Atlantic Wood fish liver lesions. 

An additional purpose of this research is to further expand an in-hand tool box of 

antibodies for examining protein expression in AW fish compared to reference fish. The 

major hypothesis to be tested is that adult killifish from the AW site are not refractory to 

CYP1A induction by PAHs in situ, and that the intestines are the major anatomical 

location for CYP1A expression.  A secondary hypothesis to be tested is that liver lesions 

make most of the liver unfit for normal AHR and CYP1A expression and function.  
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Specific Aims: 

A. Characterize gene expression profiles of killifish livers, intestines, and 

lymphoid organs from Atlantic Wood (AW) Superfund Site, VA and King’s 

Creek (KC), VA reference site. Livers, intestines, and lymphoid organs from Atlantic 

Wood Superfund Site and a King’s Creek reference site will be assessed for gene 

expression of phase I, II and III xenobiotic drug metabolizing enzymes, the 

transcription factors Ahr-2 and Ahr-1 along with their repressor (AhR-R), as well as 

COX-2. 

B. Develop, characterize, and optimize technical applications for Fundulus 

heteroclitus AHR-1, AhR-R, and COX-2- specific monoclonal antibodies. 

Monoclonal antibodies against Fundulus recombinant AHR-1 and AhR-R, and a 

designed COX-2 peptide will be developed and characterized as part of a larger 

panel of in-hand antibodies for quantifying and localizing protein expression, and 

validating qPCR results. 

C. Examine the histology and immunohistochemistry of killifish livers and 

intestines, from Atlantic Wood Superfund Site, VA and the Kings Creek, VA 

reference site. Livers and intestines from Atlantic Wood Superfund Site and King’s 

Creek reference site will be assessed for protein expression of the transcription factor 

AHR-2, CYP1A as well as COX-2. Inherent in this objective is to examine the 

prevalence and types of hepatic lesions found in killifish at the AW site. 

D. Determine if conditions at the AW site are associated with markers of 

inflammation in intestines.    Intestines will be examined for the presence of major 

basic protein (MBP) as in indicator of EGC degranulation, a marker of pro-

inflammatory status. 
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CHAPTER TWO 

DEVELOPMENT OF MONOCLONAL ANTIBODIES AGAINST 

FUNDULUS HETEROCLITUS AHR-1, AHR-R, and COX-2. 

INTRODUCTION 

Many environmental contaminants, such as planar polycyclic aromatic 

hydrocarbons (PAHs) and halogenated aromatic hydrocarbon (HAHs), exert their 

toxicities by first binding to and activating the aryl hydrocarbon receptor (AhR).  The 

AhR is a ligand activated transcription factor belonging to a large family of bHLH-PAS 

transcription factors involved in numerous physiological activities such as circadian 

rhythms, cell cycle regulation, growth and development, and oxidative stress, to name a 

few (Denison et al., 2002; Knockaert et al., 2004; Nguyen and Bradfield, 2008; Shimba 

and Watabe, 2009; Zhao et al., 2013) .  One of the most characterized functions of the 

AhR is in xenobiotic sensing and detoxication of ligands through the activation of phase 

I, II, and II xenobiotic metabolizing genes (Nebert et al., 2000; Denison et al., 2002; Hu 

et al., 2007). 

Gene duplication events in early lower vertebrates, followed by deletions during 

vertebrate evolution yield a wide variety of AhRs among vertebrate taxa, with two Ahr 

lineages in vertebrates; AhR1 and AhR2 (Hahn et al., 1997; Karchner et al., 1999).  

  More primitive teleostean fishes, like Atlantic salmon (Salmo salar), have two AhR1 

isoforms (α, β) and four AhR2 isoforms (α, β, γ, δ), each expressed at different levels and 
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tissues (Hansson and Hahn, 2008).  In more modern perciform teleosteans, like F. 

heteroclitus, two isoforms of Ahr1 (α, β) and two isoforms of AhR2 (α, β) have been 

found (Hahn et al., 2004a), though nothing other sequence information about the beta 

forms of each are currently known.  The same is true in zebrafish, Danio rerio, a very 

common model for biomedical research (Andreasen et al., 2002a).   A third class of AhR, 

known as the repressor (AhR-R) has two isoforms (α,β) in zebrafish, but only the alpha 

form has been described in killifish.  AhR-R is expressed during AhR activation, and has 

a negative regulatory effect on expression of the other two AhR (Karchner, 2001; Hahn et 

al., 2009; Jenny et al., 2009).   AhR-R seems to have a key role in early embryonic 

development, and probably related to the dynamics of cell proliferation and 

differentiation (Jenny et al., 2009).  As with CYP1A expression, AhR-R expression is 

considered a marker of AhR activation (Mimura et al., 1999; Nguyen and Bradfield, 

2008; Nguyen et al., 2013).   Throughout the evolution of vertebrates, leading to 

mammals, AhR2 has been deleted in mammals, with AhR1 being more homologous to 

the single AhR found in mammals.   In fish, AhR2 is the dominant form associated with 

contaminant ligand binding and activation leading to toxicity of planar HAHs and PAHs 

(Hahn et al., 1997; Karchner et al., 1999; Karchner et al., 2005; Clark et al., 2010). 

Specific roles of multiple AhR forms have not been elucidated, but several studies 

suggest that AhR1 in killifish and zebra fish may have functions in early development 

(Powell et al., 2000; Karchner et al., 2002; Jonsson et al., 2007), while AhR2 in both fish 

seem to have a stronger role in the toxicity of select PAHs and HAHs (Carney et al., 

2006; Clark et al., 2010; Chang et al., 2013).   The affinity for very toxic compounds 
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such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for ahr1 is lower than for AhR2 

(Andreasen et al., 2002a).  Moreover, genetic suppression using morpholinos against 

AhR2, but not AhR1 greatly reduce the developmental toxicities of planar PAHs, PCBs, 

and TCDD (Clark et al., 2010; Van Tiem and Di Giulio, 2011).  Additional studies using 

zebrafish show that expression of AhR1 peaks during early embryonic development, 

while AhR2 is high throughout development and after hatching and larval development 

(Andreasen et al., 2002b; Franks et al., 2005). 

Exactly why there is differential expression of AhR1 vs AhR2 is not known at this 

point, but these above observations came from studies examining gene expression, and 

we know nothing about the differential expression of protein (and functions) for these 

two gene products in developing fish embryos and on into adult stages.  One study in 

particular, generated polyclonal antibodies against AhR1α, AhR2α, and AhR-R in 

killifish using recombinant proteins expressed in E. coli cells (Merson et al., 2006), but 

whether or not these antibodies recognize their respective protein in fixed tissues is not 

known.   To that end, the study described herein used those same recombinant proteins to 

generate very specific (epitope-specific) monoclonal antibodies selected for non-cross-

reactivity, and then determined tissue-specific expression of AhR1, AhR2, and AhR-R 

using immunohistochemistry as well as whole tissue lysates.  This will be important for 

determining tissue-specific and xenobiotic-specific effects on expression, and mostly 

because these antibodies will allow researcher to follow translocation of the particular 

AhR to the nucleus during ligand binding and activation, and to determine cellular 
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location of the Ahr in fixed tissues.   Antibodies for this endpoint are available for 

mammals (Knockaert et al., 2004), but not yet for fish. 

One of the hallmark toxicological effects of AhR ligands is immunotoxicity and 

immunomodulation, and depending on the specific ligand, AhR activation may lead to 

either pro-inflammatory or anti-inflammatory outcomes (Vogel et al., 2007a; Quintana et 

al., 2008; Veldhoen et al., 2008; Quintana et al., 2010; Nguyen et al., 2013), as well as 

cancer (Hawk et al., 2002).   Cyclo-oxygenase-2 (COX-2), or prostaglandin-H-

endoperoxiase-2, is known to be expressed in cells and tissues following exposure to a 

strong AhR ligand like TCDD (Jönsson et al., 2012), and blocking COX-2 activity may 

alleviate developmental toxicity, at least in the cardiovascular system of zebrafish (Dong 

et al., 2010; Teraoka et al., 2014).  Moreover, COX-2 expression correlates with several 

types of cancers (Wölfle et al., 2000; Hawk et al., 2002; Ladetto et al., 2005; Martín-

Sanz, 2010), and being able to visualize COX-2 expression in fish tumors would be an 

asset to those investigating chemical carcinogenesis.   At the moment there is a lack of 

concordance between phenotypic effects of TCDD on COX-2 gene expression, reduction 

of developmental toxicity by COX-2 inhibition, and actual protein detection to visualize 

levels of COX-2 protein.   In most fishes, there are multiple isoforms of COX-2 due to 

gene duplication events described for the AhR(s), but killifish have only one COX-2 gene 

(Havird et al., 2008).   Previous work in our lab developed an antibody (mAb CX5-3) for 

detection of killfish COX-2 (Frederick et al., 2007), but that particular clone was not 

effective at detecting protein in fixed tissues.   As described herein, a killifish-specific 

monoclonal antibody was developed to localize COX-2 in various tissues by 
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immunohistochemistry, and to at least appreciate the circumstances surrounding 

expression of this pro-inflammatory protein, and especially in relation to AhR/CYP1A 

expression patterns.  
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MATERIALS AND METHODS 

I. Generation and characterization of a mAb against AhR-1 in F. heteroclitus: 

A C-terminus portion of Fundulus heteroclitus AhR-1 cDNA was cloned into a 

pQE80/82 6-HIS expression plasmid (Qiagen) and used to transfect the BL21-CodonPlus 

(RP) strain of E. coli for protein expression (Merson et al., 2006) and provided as a gift 

from Dr. Mark E. Hahn’s lab, WHOI.  The expression plasmid was isolated using a 

GeneJet Plasmid Miniprep Kit (Thermofisher), and used to transform DE3 E. coli 

(Stratagene) harboring cold-adapted chaperone proteins for the option of improved 

expression at low temperatures over extended periods of time (Arctic Express system, 

Agilent).  The transformed cells were incubated overnight at 37⁰ C on LB agar plates 

containing 100 ug/ml ampicillin and 50 ug/ml chloramphenicol antibiotic concentrations.  

After the appropriate bacterial colony was selected following the Arctic Express DE3 

protocol (Agilent Technologies), it was incubated in a shaker (250 rpm) overnight at 37⁰ 

C in 5 ml of LB broth containing 100ug/ml ampicillin and 50ug/ml chloramphenicol 

antibiotic concentrations.   All 5 ml were then transferred to a sterile bottle containing 

500 ml LB broth with no antibiotics. The culture was incubated at 30⁰ C at 250rpm for 3 

hrs followed by induction with 2 mM of IPTG and a final incubation at 37⁰ C at 250 rpm 

for 3 additional hours.  The culture was then centrifuged at 4,000g for 20 minutes at 4⁰C. 

Following the directions provided by a Ni-NTA Fast Start Kit (Qiagen), the pellet 

was then frozen at -20⁰ C and suspended in 20 ml of lysis buffer for denaturing 

conditions under constant shaking overnight at 4⁰C.  Next, the mixture was centrifuged at 
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14,000g for 30 minutes and the supernatant was collected.  Ni-agarose columns and 

buffers were provided in the kit.  Per instructions from the kit, the recombinant AhR1 

protein was isolated over Ni-agarose columns.  The purity of recombinant protein 

throughout washing and elution steps was determined visually by SDS-PAGE on 4-20% 

Criterion™ gels (Biorad) stained with Coomassie blue stain, followed by de-staining to 

visualize separated proteins.  The presence of HIS-tag on recombinant proteins was 

verified by repeating the above SDS-PAGE using washing and elution fractions and 

transferring proteins to Immulon PVDF membranes (Fisher) and probing with Ni-HRP as 

part of commercially available kit (SuperSignal, Pierce).  HRP activity was visualized 

using 4-chloro-1-napthol as a substrate. 

Immunization and generation of mAb against AhR1 

Only the most visually pure elution was used to immunize 6 – 8 week old balb/c 

mice at the Godley-Snell facilities at Clemson University, and under ALAC approved 

conditions.  Following one primary and three boosting immunizations, spleen cells were 

isolated and fused with SPO/14 myeloma cells and subsequent hybridoma supernatants  

screened for reactivity by ELISA against rAhR1 using techniques previously described 

(Rice et al., 1998).  Supernatants from positive primary hybridomas were further 

evaluated by SDS-PAGE/immunoblotting steps as follows.  Adult mummichogs were 

collected using baited minnow traps from the Belle Baruch Marine Lab, University of 

SC, euthanized in Tricaine (MS-222) and livers quickly removed, homogenized and 

centrifuged to obtain tissue S9 fraction protein.  Thirty ug of liver protein, 10 µg each of 
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COS (African green monkey kidney fibroblast cells) expressing either full length AhR1 

or AhR-2 (both were gifts from Dr. Mark E. Hahn, WHOI), and rAhR-1 were subjected 

to SDS-PAGE/immunoblotting on 10% gels probed with supernatants from clones that 

were positive in ELISA screenings.  This would show whether the antibody was specific 

against AhR-1 and not both AhR-1 and AhR-2 which share a 40% overall amino acid 

sequence (Merson et al., 2006). 

Following a 5 min wash with 0.1 M phosphate buffered saline containing with 0.05% 

Tween-20 (PBS-Tw) the blot was covered with blocking buffer (10% FBS in PBS-Tw) 

and gently rocked for 2 hr at room temperature (RT).  Following three 5 min washes with 

PBS-Tw, the blot was probed for 1 hr with supernatants from clones under consideration.  

Blots were washed x 3 with PBS-Tw and further incubated with alkaline phosphatase-

conjugated goat-anti-mouse IgG (1:2000) for 1 hr at RT.  After four washings with PBS-

TW, alkaline phosphatase activity was visualized using the chromagen NBT/BCIP 

(Fisher Scientific) in alkaline phosphatase buffer. 

II. mAb specific to F. heteroclitus AhR2

A mAb against F. heteroclitus rAhR2 was generated in a previous study (Josephine V. 

Wojdylo, M.S. Thesis, Clemson University, 2009). 
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III.  Generation and characterization of a mAb against AhR-R in F. heteroclitus:

Generation and purification of AhR-R recombinant protein 

A C-terminus portion of Fundulus heteroclitus AhR-R cDNA that was cloned into 

a pQE80/82 6-HIS expression plasmid (Qiagen) and used to transfect the BL21-

CodonPlus (RP) strain of E. coli was a generous gift from Dr. Mark E. Hahn, WHOI 

(Merson et al., 2006).   The expression plasmid was purified and used to transform DE3 

cells as described above, as were further steps for recombinant AhR-R protein 

expression.  Purity of rAhR-R proteins throughout washing and elution steps was 

determined visually by SDS-PAGE on 4-20% Criterion™ gels (Biorad) stained with 

Coomassie blue stain, followed by de-staining to visualize separated proteins.  The 

presence of HIS-tag on recombinant proteins was verified by repeating the above SDS-

PAGE using washing and elution fractions and transferring proteins to Immulon 

membranes (Fisher) and probing with Ni-HRP as part of commercially available kit 

(SuperSignal, Pierce).  HRP activity was visualized using 4-chloro-1-napthol as a 

substrate. 

Immunization and generation mAb AhR-R from hybridomas in balb/c mice 

Only the most visually pure elutions of rAhR-R were used to immunize mice as 

described above.   Subsequent ELISA and immunoblotting steps were the same as 

described above.  
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IV.  Screening for specificity of mAbs against AhR1, AhR2, and AhR-R.

One hundred ul of transformed bacterial cultures containing rAhR-1, rAhR-R, or 

rAhR-2 expression plasmids were collected after 3 hr of induction with IPTG (as 

described above) were subjected to SDS-PAGE/immunoblotting on 10% gels probed 

with  supernatants from hybridoma clones isolated during previously screening steps.  

From screening assays, it was determined that mAb 5B6 (anti-AhR2), mAb 7B8 (anti-

AhR1), and mAb 9R1 (anti-AhR-R) were best suited for their respective protein, and 

were used to determine if they cross-reacted with each other’s intended protein.   The 

above bacterial cultures were first boiled with sample buffer and then loaded onto the 

same gel, but in separate lanes, to have membranes for probing with each of the mAbs. 

The gels ran for 45min at 200V and were then transferred to a methanol treated 0.45µM 

Immunlon (PVDF) membrane (Fisher Scientific) at 4⁰C overnight at 35 V. 

Following a 5 min wash with PBS-Tw, the blot was covered with blocking buffer 

(10% FBS in PBS-Tw) and gently rocked for 2 hr at room temperature (RT).  Following 

a 5 min wash with PBS-Tw, each of the three blots was incubated 1 hr with either mAb 

5B6, mAb 7B8, or mAb 9R1.  Blots were washed x 3 with PBS-Tw and further incubated 

with alkaline phosphatase-conjugated goat-anti-mouse IgG (1:2000) for 1 hr at RT.  After 

four washings with PBS-TW, alkaline phosphatase activity was visualized using the 

chromagen NBT/BCIP (Fisher Scientific) in alkaline phosphatase buffer. 
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V. Generation and characterization of a mAb against COX-2 in F. heteroclitus: 

A 10 residue synthetic peptide was designed from the complete cDNA sequence 

of rainbow trout (accession #CAB46017), and targeted the c-terminus end.  This 

particular sequence is highly conserved in teleostean fishes, with only one amino acid 

difference between F. heteroclitus (accession #CAB46017) (Choe, 2006), and two 

different residues in croaker, M. undulates (accession #BAF52620).   The peptide was 

synthesized and conjugated to KLH by Genosys-Sigma, and used as a hapten-carrier 

system to immunize mice as described previously (Rice et al., 1998; Frederick et al., 

2007). Spleen cells were isolated and fused with FOX myeloma cells (ATCC, VA) and 

subsequent hybridomas screened for reactivity by ELISA against BSA-conjugated 

peptide.   Supernatants from positive primary hybridomas were further evaluated by 

SDS-PAGE/immunoblotting steps as described (Frederick et al., 2007).  Positive clones 

were then screened by immunohistochemistry in various tissues to determine which is 

more suitable for antigen retrieval steps under low and high pH, and microwave vs. 

steaming conditions as described below.  

VI.  Optimizing mAb against AhR-1, AhR-R and COX-2 for

Immunohistochemistry 

Using mummichog liver cross sections, the monoclonal antibodies against AhR1, 

AhR2, AhR-R, and Cox-2 were optimized for use in immunohistochemistry. The slides 

were deparaffinized with xylene followed by decreasing ethanol concentration washes 

with the final hydration step in deionized water. Antigen retrieval was determined by 
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testing out the following conditions of either: having no antigen retrieval, microwaving in 

sodium citrate buffer (10mM sodium citrate, .05% tween 20, pH 6.0), microwaving in 

tris-EDTA buffer (10mM tris base, 1mM EDTA solution, .05% tween 20, pH 9.0), 

steaming in sodium citrate buffer (10mM sodium citrate, .05% tween 20, pH 6.0), and 

steaming in tris-EDTA buffer (10mM tris base, 1mM EDTA solution. This was followed 

by a thirty minute quenching step in .3% H2O2. The Mouse IgG Vectastain® Elite ABC 

Kit (Vector Laboratories) was using for blocking the slides using 10% horse serum. This 

was followed by blocking using an avidin/biotin blocking kit (Vector Laboratories). The 

primary antibodies against either AhR-1, AhR2, AhR-R, or COX-2 were applied as 

supernatants and incubated overnight at 4°C.  Using the Vectastain® kit, the secondary 

biotinylated antibody against mouse IgG was incubated for thirty minutes at room 

temperature, followed by applying the Vectastain ABC Reagent, staining with ImmPACT 

™ NovaRED™ (Vector Laboratories) and finally counterstaining with Hematoxylin QS 

(Vector Laboratories). 
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RESULTS AND DISCUSSION 

The overall purpose for generating novel antibodies for Ahr1, 2, and Repressor is 

to further expand an in-hand tool box of antibodies for examining protein expression in 

multiple populations of killifish, and under various environmental conditions.  Having 

these antibodies will also provide researchers the ability to validate gene expression data, 

either from microarrays or from qPCR studies, as well as IHC.   Using expression 

plasmids provided by collaborators at WHOI, recombinant his-tagged AhR-1 and AhR-R 

were expressed in DE3 cells and purified using standard Ni-agarose procedures, and were 

found to be the predictable size as originally expressed (Merson et al., 2006) (Figure 1).   

Killifish AhR-2 was previously expressed as a recombinant protein also provided as an 

expression plasmid by collaborators at WHOI (Merson et al., 2006), and after expression 

in DE3 cells and purification steps, it too is of the expected size (Figure 1). 

Attempts to purify rAhr1 were successful in that subsequent elution steps were 

reasonably pure and were indeed his-tagged proteins (Figure 2). Using rAhR-1, 

immunizations were carried out and after screening by ELISA and immunoblotting, mAb 

7B8 was then selected and further characterized as an IgG2a K1 immunoglobulin, then 

tested for non-cross reactivity with COS-expressed full length AhR2, and shown to be 

specific for AhR1 only (Figure 3).  Multiple tissues and at several stages of development 

from killifish were examined by IHC, and for the most part AhR1 is not expressed.  

However, in developing cartilage and early ossification of the lower jaw, AhR1 is 
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expressed (Figure 4).   This expression of AhR1 in early connective tissues could 

possibly indicate that AhR1 plays a role in early ossification.  A study that looked at 

development tissue expression of AhR1 mRNA in a population of mummichogs from a 

superfund site in New Bedford Harbor, MA concluded that adult reference site fish 

expressed AhR-1 in the brain, heart, and gonads, while fish from the superfund site 

included expression in gill, gut, kidney, liver, and spleen organs (Powell et al., 2000), but 

the study examined mRNA expression, not the protein. 

Purification of rAhR-R over Ni-agarose columns resulted in relatively pure 

elution steps, and these proteins were shown to be his-tagged (Figure 5).  Using rAhR-R 

for immunizations and subsequent screenings of hybridomas, mAb 9R1 (IgG1 K1 

isotype)  emerged as the single antibody recognizing rAhR-R, but not rAhR1 and rAhR2 

(Figure 6), and thus a very specific mAb for each of the three proteins is now available.  

At the time of this dissertation publication, mAb 9R1 does not recognize protein using 

IHC approaches, and this antibody may require additional, untested novel antigen 

retrieval methods - not all antibodies are suited for IHC.   To my knowledge, the ability 

to correlate expression of AhR-R protein with gene expression in fish collected directly 

from the field has not been demonstrated.   While AhR-R expression is a result of AhR 

activation in a manner similar to other gene products (e.g., CYP1A, CYP1B, phase II & 

III metabolism genes) (Nguyen et al., 2013), it is unknown if fish AhR-R expression 

follows the same temporal or magnitude of other AhR-related products.  At this point, the 

developing toolbox of antibodies for killifish has mAb 5B6 against AhR2 and mAb 9R1 

against AhR-R, and together with mAb C10-7 against CYP1A (Rice et al., 1998) 
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researchers are able to explore the expression of two key indicators of AhR activation.   

Based on my findings here with mAb 7B8 against AhR-1, this antibody is unlikely to be 

of benefit for future studies other than perhaps using this antibody as a negative control 

(irrelevant antibody) in immunoassays. 

The next monoclonal antibody created was against COX-2.   Using mAb 53-1, 

COX-2 is detected in mummichog macrophages throughout tissues, and especially within 

melanomacrophage aggregates surrounding a parasite in the liver (Figure 7).  

Macrophage aggregations (MA), sometimes referred to as melano-macrophage centers, 

or pigmented macrophage aggregations, contain activated macrophages and are part of 

the inflammatory response of fish (Blazer et al., 1987; Camp et al., 2000; Harper and 

Wolf, 2009).   MA increase in both size and number in fish as they age, and due to 

exposure to environmental contaminants (Hinck et al., 2007), therefore having an 

antibody that readily stains these macrophages allows us to localize and quantify sites of 

inflammation.   The significance of this antibody to my dissertation research is that I may 

be able to correlate the localization of activated macrophages with different types of 

lesions in fish from the Atlantic Wood superfund site on the southern branch of the 

Elizabeth River near Portsmouth, VA.   Over 90% of the killifish from this site have 

hepatic lesions, and with over 30% harboring malignant cancers of varying types 

(Vogelbein et al., 1999; Vogelbein and Unger, 2006; Vogelbein et al., 2008), and to date 

– no studies examining COX-2 protein expression within liver lesions of AW fish have

been published. 
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Figure 1.  rAhR1, rAhR2, and rAhR-R lysates. Lysates from DE3 cells transfected 

with expression plasmids and subjected to SDS-PAGE and subsequent Coomasie Blue 

staining .   Recombinant proteins among bacterial debris are visualized at the expected 

molecular weight. 
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Figure 2. Visualization of  purified recombinant AhR-1 protein through the use of 

Coomassie blue staining and Ni-HRP probing techniques. The gel to the left was 

loaded with wash 3 and elutions 1-3 and determined visually by SDS-PAGE on 4-20% 

Criterion™ gels (Biorad) stained with Coomassie blue stain, followed by de-staining to 

visualize separated proteins.  The presence of HIS-tag on recombinant proteins was 

verified by repeating the above SDS-PAGE using washing and elution fractions and 

transferring proteins to Immulon membranes followed by probing with Ni-HRP, nickel 

horse radish peroxidase. 



47 

Figure 3.  Immunoblot probed against AhR-1 using mAb 7B8.   Thirty µg of rAhR-1 

protein, 10 µg each of COS-expressed AhR1 and AhR-2, and rAhR-1 were subjected to 

SDS-PAGE/immunoblotting on 10% gels probed with mAb 7B8. 
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Figure 4. Immunohistochemisty using mAb 7B8 to localize the expression of AhR-1 

in F. heteroclitus fry. NovaRed was used as the primary stain and Hematoxylin QS was  

used as a counterstain. Fry shown is two weeks post hatching. 
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Figure 5. Purification and elutions of rAhR-R from Ni-agarose columns showing that E1 

and E2 were relatively pure, and that these proteins were his-tagged. 
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Figure 6.  Test for cross-reactivity of mAbs against rAhr1, rAhr2, and rAhr-R. 

Purified recombinant proteins were subjected to SDS-PAGE and immunoblotted with all 

three antibodies.  As shown, each each antibody is specific and does not cross-react with 

other two proteins. 
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Figure 7.  IHC of F. heteroclitus  liver probed against COX-2 using mAb CX53-1. 

Image labeled A shows IHC of an AW liver probed for COX-2, using Nova Red as the 

primary stain and Hematoxylin QS as the counterstain.  Image B is a close up, 

emphasizing a group of macrophage aggregations surrounding a parasite.  Note the 

postiive staining of individual and clumps of fewer cells outside of the macrophage 

aggregate.   
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CHAPTER THREE 

AhR-RELATED ACTIVITIES IN A CREOSOTE-ADAPTED POPULATION OF 
ADULT ATLANTIC KILLIFISH, FUNDULUS HETEROCLITUS, TWO 

DECADES POST-EPA SUPERFUND STATUS

INTRODUCTION 

Between 1926 and 1992, Atlantic Wood Industries operated a wood-treating 

facility on the Southern Branch of the Elizabeth River.  In 1990, the Atlantic Wood (AW) 

site was added to the National Priorities List (NPL) of most hazardous waste sites due to 

the high volumes of creosote and pentachlorophenol (PCP) that were discharged, the 

storage of treated wood, and the disposal of wastes.  At one time, the Navy leased part of 

the site for waste disposal, including abrasive sand-blasting materials.  From such intense 

commercial use and released pollution over the years, the site contains polynuclear 

aromatic hydrocarbons (PAHs), PCP, dioxins, and several metals, including  arsenic, 

chromium, copper lead, and zinc.  In 1995, the US EPA issued a Record of Decision 

describing how the Agency would address the contamination of soil and sediments at the 

AW site, including studies to determine the environmental impact of local contaminants.   

This above information is gathered from the US EPA Mid-Atlantic Superfund page 

(http://www.epa.gov/reg3hwmd/npl/VAD990710410.htm). 

http://www.epa.gov/reg3hwmd/npl/VAD990710410.htm
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Several key studies were initiated in the early 1990s to determine environmental 

impacts of local contaminated sediments at the AW site, along with studies to examine 

the impact on the Elizabeth River at sites both proximal and distal to the areas of highest 

contamination.  One of the earliest series of studies demonstrated higher glutathione-s-

transferase (GST) activity in intestines and livers, and altered natural cytotoxic cell 

activity associated with basic immune functions (Faisal et al., 1991; Van Veld et al., 

1991), as well as intense incidence of hepatic lesions in Atlantic killifish, Fundulus 

heteroclitus, at the AW site (Vogelbein et al., 1990; Van Veld et al., 1991).  A high 

incidence of hepatic lesions (90%) and neoplasia (30%) were evident  (Vogelbein et al., 

1990; Fournie and Vogelbein, 1994; Vogelbein et al., 1999), that ranged from altered 

hepatocyte foci, and bile duct and cholangiocellular cell proliferations, to exocrine 

pancreatic neoplasms and hepatoblastomas, but no lesions were found in less 

contaminated sites. 

Concomitant with studies showing several pathologies in adult killifish, a key 

study emerged suggesting that inducibility of the AhR-related induction of hepatic 

CYP1A was compromised in adult AW killifish (Van Veld and Westbrook, 1995).  

Killifish from AW and KC received an i.p. injection of benzo-a-pyrene, and hepatic 

CYP1A protein and enzymatic activity (EROD assay) were measured 24 and 48 hr later; 

activity in AW fish was depressed compared to KC fish.  This was one of the earliest 

studies in AW killifish to suggest a “recalcitrant” CYP1A phenotype.  However, it was 

also demonstrated for the first time in AW fish that livers with lesions expressed CYP1A, 

but in a mottled fashion, and never uniform from one lesion type to the other (Van Veld 



59 

et al., 1992).  In another study, embryos of AW killifish were tolerant of high 

concentration of sediments found at the site, while embryos from a reference site were 

highly susceptible (Ownby et al., 2002).  This phenomenon was heritable up through F2 

generations. 

Other studies were demonstrating possible mechanisms of toxicity, 

carcinogenesis, and what appeared to be tolerance, or at least adaptation, to contaminants 

at the site.  For example, both lymphoid and hepatic DNA-adduct formation was high in 

adult fish at the site (Rose et al., 2000; Rose et al., 2001).  In our own lab, we showed 

that antibody production was compromised in adult AW killifish in comparison to a 

reference site, and that indicators of innate and pro-inflammatory immune functions were 

elevated even up until 2002 and 2003 (Frederick et al., 2007).  Other studies were 

demonstrating that the toxicity of PAHs and typical cardiovascular deformities in 

embryos resulting from exposure to prototypical AhR ligands in AW killifish occurred at 

only high doses of compounds or high concentrations of sediment extracts (Meyer et al., 

2002; Wassenberg et al., 2002; Wassenberg and Di Giulio, 2004; Wassenberg and Giulio, 

2004; Wills et al., 2009; Wills et al., 2010; Clark et al., 2013b)  Because several PAHs, 

and especially those found at the AW site, are metabolized to teratogenic, carcinogenic, 

and immunotoxic intermediates through AhR-related CYP1A/CYP1B pathways, the 

general consensus at the time was that altered CYP1A induction (lowered CYP1A 

activity), was the key to understanding tolerance in AW killifish. 
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Tolerance to local heavily contaminated environments by Atlantic killifish is not 

confined to the AW site in VA, but has been documented in several populations, 

including New Bedford Harbor, MA, a site contaminated with PCBs (Nacci et al., 1999; 

Powell et al., 2000; Bello et al., 2001; Bard et al., 2002). Killifish from a dioxin-

contaminated site in NJ also demonstrate a resistance to toxicity of local contaminants 

(Prince and Cooper, 1995a; Prince and Cooper, 1995b; Arzuaga and Elskus, 2002).  

Previous studies demonstrated that pre-exposure to mercury led to larval tolerance in 

killifish (Weis and Weis, 1982a), as was the case with metal mixtures in the environment 

(Weis and Weis, 1982a) resulting from several industries, including Landfills, a plating 

company, solvent companies, and mercury refining plants 

(http://www.epa.gov/superfund/programs/recycle/live/region2_ny.html).   It was these 

early studies by the Weis’s that laid the foundation for later New Bedford Harbor work 

(Weis and Weis, 1982b).  At least one other early study demonstrated tolerance to the 

insecticide Kepone in killifish (Rice and Mills, 1987). 

With the initial cloning and future expression studies of the AhR in fish, it 

became clear that early vertebrates exhibited multiple forms of this ligand-activated 

transcription factor (HAHs) (Hahn et al., 1997).   As presented in Chapter 2 of this 

dissertation, gene duplications in early vertebrates yield AhR-1, AhR-2, and AhR-

repressor in modern fishes, and there are subforms (e.g., α, β, γ, δ etc) of each (Karchner 

et al., 1999; Andreasen et al., 2002a; Hahn et al., 2004b; Hansson and Hahn, 2008; Hahn 

et al., 2009; Jenny et al., 2009).  At least in the zebrafish and Atlantic killifish models, 

AhR2α (hereafter, referred to as AhR2) is involved in typical teratogenic responses of 

http://www.epa.gov/superfund/programs/recycle/live/region2_ny.html
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embryos to contaminants, such as planar PCBs, dioxins, and PAHs, as can be 

demonstrated with anti-AhR2 morpholinos (Jonsson et al., 2007; Clark et al., 2010; 

Jönsson et al., 2012). Population-wide studies examining a wide-array of genes that differ 

among adapted vs. sensitive killifish show that AhR2 and AhR2-related pathways were 

the most expressed and differed between sites (Nacci et al., 2002; Roark et al., 2005; 

Whitehead et al., 2012; Proestou et al., 2014; Reitzel et al., 2014).   Of particular note, 

non-synonymous single nuclear polymorphisms (nsSNP) in AhR2 within the ligand 

binding domain are present in both tomcod adapted to PCBs in the Hudson River, and in 

killifish adapted to PCBs are New Bedford Harbor (Wirgin et al., 2011; Reitzel et al., 

2014), suggesting evolutionary pressure and selection for reduced AhR2-related activities 

(e.g., CYP1A expression, developmental toxicity).  Mechanistically, these nsSNP-

associated polymorphisms in AhR2 ligand binding domain bind typical AhR ligands 

(e.g., BAP, PCB-126, TCDD) with much less affinity, or lack thereof.   There are also 

nsSNPs in AhR1 genes of killifish at the New Bedford Harbor site, but not in the ligand 

binding domain (Reitzel et al., 2014). 

Whether or not similar nsSNPs occur in the ligand binding domain of AhR2 in 

AW-adapted killifish is currently unknown.   The previously described recalcitrance of 

CYP1A induction and developmental toxicity following exposure to typical AhR2 

ligands in AW embryos (Clark et al., 2013b) suggest altered AhR2 structure and 

function, but very few studies of AhR2-related functions have been examined in adult 

AW fish.  Most of the studies with adult AW killifish have been limited to either 

lymphoid organs and plasma (Frederick et al., 2007), or livers as the primary source of 
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tissue as an indicator organ of toxicity (Vogelbein et al., 1990; Vogelbein et al., 1999; 

Vogelbein and Unger, 2006).   Yet, other organs, and especially intestines, are in direct 

contact with water overlying the contaminated AW sediments since these fish consume 

both epi-fauna and interstitial prey items, and they “drink” water.   To date, the intestines 

of AW fish have been examined for GST activity only, but not for CYP1A and other 

AhR2-mediated functions. 

In addition to the paucity of information on non-liver tissues of AW-adapted 

killifish, there have been significant changes to the Elizabeth River in general.  In the 

years since the initial discovery of the AW population of killifish there have been three 

major hurricanes and thousands of tidal cycles through the Elizabeth River system, and 

sediments and fish populations may have been flushed from out of this superfund site.   

These possible physical and geological changes at the AW site, along with killifish’s high 

reproduction rate and gene plasticity may have altered its resistance phenotype.  This 

scenario is unlikely since very recent studies strongly suggest continued 

resistance/tolerance, at least with embryos collected at the AW site (Clark and Di Giulio, 

2011; Clark et al., 2013b). 

The primary focus of this dissertation is to re-examine the issue of CYP1A 

expression in AW fish collected in situ 20+ years since the first description of the site and 

indigenous killifish, to characterize AhR expression profiles in these fish, and to explore 

the possible role of COX-2 and inflammation in Atlantic Wood fish liver lesions and 

different tumor types.  Based on earlier studies in our lab (Frederick et al., 2007), AW 
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killifish exhibited a “proinflammatory” state, including elevated COX-2 protein 

expression.  COX-2 is an inducible enzyme, and activated primarily through the NF-β 

(Rel-A) pathway, as are iNOS, activation of inflammasomes, and other inducible systems 

(Lawrence, 2009).  The downstream products of COX-2 induction, namely 

prostaglandins, thromboxanes, and leukotrienes, collectively are involved both acute and 

chronic inflammation, and therefore expression of this enzyme serves as a hallmark 

biomarker of overall inflammatory events.  In addition to the role of COX-2 in 

inflammation, we know that COX-2 is also linked to AhR activation (Vogel et al., 2007a; 

Degner et al., 2008), and that both may have a role in carcinogenesis.  Therefore, by 

localizing and quantifying expression of both in AW killifish we may be able to at least 

infer a possible connection in feral fish exposed to AW sediments in situ.  Also, already 

in our antibody toolbox for the killifish model are mAb 2C11 and mAb M24-2, specific 

for the eosinophilic granular cell (EGC) granule protein major basic protein (MBP) and 

lysozyme, respectively.  Our former work with AW fish demonstrated that circulating 

and leukocyte lysozyme levels and activity were higher in AW killifish than in KC 

reference fish (Frederick et al., 2007), but MBP levels in the intestines as an indicator of 

local inflammatory conditions have not been examined.   The intestine is the major site of 

eosinophilic cells, so it is logical to focus on these tissues as an indicator of 

inflammation-like conditions.  Moreover, MBP induces  intestinal epithelial cell 

apoptosis, followed by over-turn of the intestine lining (Powell et al., 2010), also referred 

to as “sloughing”.   Using the molecular and antibody tool box now in hand, the major 

hypothesis to be tested is that adult killifish from the AW site are not refractory to 
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CYP1A induction by PAHs in situ, and that the intestines are the major anatomical 

location for CYP1A expression.  Secondary to the primary hypothesis is a revisit earlier 

studies from two decades ago showing that CYP1A is expressed differentially in severe 

liver lesions of AW fish (Van Veld et al., 1992), and to compare CYP1A expression to 

expression of AhR2 and AhR-Repressor.  This study will also provide an opportunity to 

examine more closely the relationship between exposure to the harsh sediments at the 

AW site and state of intestinal inflammation-like conditions, and if COX-2 expression is 

elevated in livers harboring lesions and cancers. 
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MATERIALS AND METHODS 

Examining the expression of genes representative of basic AhR-associated 

toxicology of NPL PAHs 

In order to generate the qPCR primers for Fundulus heteroclitus (NCBI taxon id: 

8078), the gene accession numbers of interest were obtained from the EMBL-EBI 

database and used to generate qRT-PCR primers from Integrated DNA Technologies 

(https://www.idtdna.com) as part of an ongoing attempt to develop a molecular and 

antibody toolbox for the Atlantic killifish model. 

AhR1 (alpha form) 

AhR2 (alpha form) 

AhR-R (repressor) 

CYP1A 

CYP1B 

UGT (UDPGT2) 

GST-alpha 

MT (metallothionein) 

COX-2 

RAG-1  

P-glycoprotein (MDR-1) 

18S 

https://www.idtdna.com/
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Primer set optimization and validation 

Lab raised mummichogs collected from the Belle Baruch Marine Lab, near 

Georgetown SC, using baited minnow traps, were euthanized with MS-222.  Head 

kidneys, intestines, and livers were collected and added to RNAzol®.  Following the 

manufacturer’s directions, individual samples of each organ were separately 

homogenized.  The DNA, proteins and polysaccharides were precipitated and discarded.  

RNA was subsequently precipitated, washed and solubilized. The RNA purity was 

measured and used to make cDNA using the RT² Easy Strand Kit (Qiagen) according the 

to manufacturer’s directions.  

Platinum® PCR SuperMix (Invitrogen) was used to create PCR products from the 

mummichog cDNA that was previously generated, along with the mummichog primers. 

In a PCR thermal cycler, 40 cycles of PCR amplification were performed as followed: 

denature at 94°C for 15s, anneal (temperature will be dependent on the primer used) for 

15s, and extension at72°C for 1min per kb. 

PCR products were loaded along with a DNA ladder onto a 2.5% agarose gel with 

ethidium bromide and electrophoresis was performed at 80 volts. Next, the gel was 

viewed under an ultraviolet light and using a Biorad gel-documentation chamber to 

determine if there any dimers formed, which would have indicated that the annealing 

temperature was too low, or if there was no band formation, that possibly would have 

indicated that the annealing temperature was too high, or that the primer set was 

inadequate. 
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Once the PCR products from their corresponding primers were generated in the 

expected bp size and a single band shown, the next step was to perform a melt curve 

analysis using the Bio-Rad iCycler iQ5 PCR Thermal Cycler.  Primer sets and conditions 

are provided in Table 1. 

qRT-PCR of mummichog livers, intestines, lymphoid organs from AW vs KC 

Adult killifish from Atlantic Wood and Kings Creek were collected using baited 

minnow traps and euthanized with MS-222.  Livers, intestines, and lymphoid organs 

were quickly removed and placed in RNAZol.  For gene expression analysis, three pools 

of three organs for males, and another three pools of three organs for females were 

processed for RNA following the manufacturer’s instructions.  After collecting RNA 

from each tube, genomic DNA contamination was removed using elimination mixture 
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supplied by the manufacturer, and first strand cDNA synthesis was carried out using the 

RT
2 

Easy First Strand Kit (SABioscience Corporation) as described by the manufacturer.

Gene expression was analyzed by quantitative real-time PCR with a BioRad iC5 

detection system, RT² SYBR green/ fluorescein master mix, and primer sets designed 

using Integrated DNA Technology (IDT) software, and validated prior to use (Table 1). 

The quantity of these mRNAs was expressed as fold-changes in gene expression 

compared to 18S expression.  Fold-increase or decrease in gene expression was subjected 

to appropriate parametric statistics if the data were normally distributed and met the 

criteria for parametric approaches (Pfaffl method).  For data analysis, the Pfaffl method 

was used to determine fold increase or decrease in expression.  Expression data were 

compared between treatment groups using ANOVA, followed by a Bonferroni’s post- 

test using GraphPad5 statistical package.  Also, when data revealed a difference between 

males and female at each site, these data were graphically represented as a separate data 

set. 

Liver and intestine CYP1A and AhR-R protein expression 

To follow up on intestine CYP1A and liver AhR-R gene expression data, killifish were 

collected again at the AW site and King’s Creek, near White Marsh, VA, on the Mobjack 

Bay, using baited minnow traps.  Although any protein expression profiles from the two 

populations at this sampling would not be from the same fish as used for gene expression 

profiles, the larger sample size and use of individual animals should be representative of 

fish previously sampled.   Livers and intestines from 8 males and 8 females from each 
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site were quickly removed and flash frozen in liquid nitrogen, then frozen at -80
0
 C at the

Virginia Institute of Marine Science until shipping overnight on dry ice to Clemson 

University, and again stored at -80
0
C until further use.  Livers and intestines were placed

in cold homogenization buffer containing 2X concentration of HALT protease inhibitor 

cocktail (Pierce), and sonicated on ice.  Homogenates were centrifuged for 10 min at 

1000 x g to settle cellular organelles and tissue debris.  Supernatants overlying debris 

were then centrifuged at 12,000 x g for 20 min to obtain S9 fractions.  Protein 

concentrations of S9 preparations were determined and diluted to 2 mg/ml in lysis buffer 

and mixed with 5X sample buffer prior to boiling for 5 min.    Thirty µg of sample were 

subjected to SDS-PAGE on 4-20% gels.  The gels ran for 45 min at 200 V and were then 

transferred to 0.45µM Immunlon (PVDF) membrane (Fisher Scientific) at 4⁰C overnight 

at 35 V. 

Following a 5 min wash with 0.1 M phosphate buffered saline containing with 

0.05% Tween-20 (PBS-Tw) the blot was covered with blocking buffer (10% FBS in 

PBS-Tw) and gently rocked for 2 hr at room temperature (RT).  Following a 5 min wash 

with PBS-Tw, the blot of intestine proteins was incubated with mAb C10-7 against fish 

CYP1A (Rice et al., 1998), and liver proteins were probed with our newly developed 

mAb R91 against AhR-Repressor (Chapter 2).  Blots were washed x 3 with PBS-Tw and 

further incubated with alkaline phosphatase-conjugated goat-anti-mouse Ig (h+l) (1:2000) 

for 1 hr at RT.  After four washings with PBS-Tw, alkaline phosphatase activity was 

visualized using the chromagen NBT/BCIP (Fisher Scientific) in AP buffer. 
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Collecting organs from AW and KC killifish for histopathology and IHC 

Based on studies to examine CYP1A protein expression in livers and intestines 

and qPCR results, livers and intestines from AW and KC adult killifish were collected 

and fixed in Z-fix buffered formalin for 72 hr, then placed in 70% histological grade 

ETOH until ready for processing.  The organs were later paraffin-embedded and 

processed for cutting and mounting by the Clemson University Histology facility.  The 

livers from each population were examined and diagnosed by Dr. Wolfgang Volgelbein, 

Virginia Institute of Marine Science, College of William and Mary. 

Select livers, based on diagnosis and variety of tumor types, were probed with 

mAb against AhR-2 (5B6), CYP1A (C10-7), and/or COX-2 (CX53-1) following antigen 

retrieval steps as follows.  Slides were heated in Tris-EDTA buffer, pH 9 by microwave 

on 100% power for 5 minutes followed by having the solution cool for 5 min, followed 

by a final 5 minutes 100% power cook, and a final 20 min rest in the container.  Tissues 

on slides were encircled with a Liquid Blocker Super mini pen to separate tissue slices on 

each slide, then the appropriate antibody as diluted hybridoma supernatants was added 

and incubated overnight at 4
0 

C.  Each slide with tissue slices contained one slice

receiving secondary antibody only.    The next day each slide was then washed 

endogenous peroxidase was quenched with hydrogen peroxide.  Tissues were further 

processed using a goat-anti-mouse IgG Vectastain ABC-Ultra kit.   Antibody labeling 

was detected with Nova Red staining, and hematoxylin counter stain. 
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Staining for COX-2 expression and EGCs in mummichog livers and intestines, 

respectively. 

To visualize COX-2 and contents of EGC granules (presumably major basic 

protein), peroxidase-based IHC staining was performed on livers for COX-2 expression 

and on intestines for major basic protein expression. The slides were deparaffinized with 

xylene followed by decreasing ethanol concentration washes with the final hydration step 

in deionized water. Antigen retrieval tris-EDTA buffer (10mM tris base, 1mM EDTA 

solution, .05% tween 20, pH 9.0) was used following by 5 minute cooking in the 

microwave on 100% power, followed by 5 minute cooling, followed by another 5 minute 

cooking in the microwave for 5 minute, and lastly following by a 20 minute period of 

cooling. The Mouse IgG Vectastain® Elite ABC Kit (Vector Laboratories) was using for 

blocking the slides using 10% horse serum. The primary antibody, mAb CX53-1 

(Chapter 2) or mAb 2C11 (Marsh, 2007) was applied neat and incubated overnight at 

4°C. Following five two minute washes in PBS-tw20, the slides were then further 

processed using Vectastain ABC Ultra kit for peroxidase-based IHC following the 

manufacturer’s instructions. 

Immunoblot expression of MBP in Intestines: 

  To demonstrate that mAb 2C11 recognizes its predicted protein target of 12 kDa 

in intestines, thirty µg of intestine lysate from 8 mummichogs from AW and 8 

mummichogs for KC were subjected to SDS-PAGE/immunoblotting on 4-20% gels.  

Samples were first boiled with sample buffer and then loaded onto the gel. The gels ran 
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for 45 min at 200 V and were then transferred to a methanol-treated 0.45µM Immulon 

(PVDF) membrane (Fisher Scientific) at 4⁰C overnight at 35V. 

Following a 5 min wash with 0.1 M phosphate buffered saline containing 

with 0.05% Tween-20 (PBS-Tw) the blot was covered with blocking buffer (10% FBS in 

PBS-Tw) and gently rocked for 2 hr at room temperature (RT).  Following a 5 min wash 

with PBS-Tw, the blot was incubated with mAb 2C11.  Blots were washed x 3 with PBS-

Tw and further incubated with alkaline phosphatase-conjugated goat-anti-mouse Ig (h+l) 

(1:2000) for 1 hr at RT.  After four washings with PBS-Tw, alkaline phosphatase activity 

was visualized using the chromagen NBT/BCIP (Fisher Scientific) in AP buffer. 

ELISA for quantifying lysozyme and major basic protein in Atlantic Wood vs. 

King’s Creek Intestines 

Killifish intestines were placed in cold homogenization buffer containing 2X 

concentration of HALT protease inhibitor cocktail (Pierce), and lysed using a Bead-

Beader shaker with 1 mM glass beads following the manufacturer’s instructions.   Lysate 

protein concentrations were determined and diluted to 2 mg/ml in lysis buffer.  Twenty 

ug of protein were added to poly-L-lysine coated ELISA plates in duplicate and 

incubated overnight at 4
0 

C.  Contents of each well were removed by flicking the plate,

and the plates were washed x 3 with PBS-Tw.  One hundred ul of blocking buffer (10% 

FBS in PBS) were added to all wells and allowed to incubate at RT for 2 hr, at which 

time the contents were removed by flicking.  ELISA plates were washed x 3 and then 

received 100 ul of undiluted hybridoma supernatants: 2C11 for EGCs (Marsh, 2007), 
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M24-2 for lysozyme (Marsh and Rice, 2010), then incubated at RT for 2 hr.   Plates were 

emptied by flicking and washed x 3 with PBS-Tw, then received 100 ul of goat anti-

mouse IgG-AP (1:2000; Southern Biotechnology) and were incubated at RT for another 1 

hr period.   As the final step, plates were washed x 4 with PBS-tw, then incubated with 

100 ul per well of a 1 mg/ml para-nitrophenyl phosphate in alkaline phosphatase buffer 

(AP), incubated for 30 minutes, and the optical density at 405 nM recorded.  The O.D. 

values for duplicate wells for each sample were averaged. 
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RESULTS 

Gene expression of CYP1A and CYP1B, two gene products under the control of AhR-

related activity, were different between populations of killifish, but only for intestine 

CYP1A and lymphoid CYP1B (Figure 1A, 1B).  CYP1A gene expression was highest in 

intestines, with lymphoid and liver expression being comparable.   An analysis of AhR2 

gene expression showed no differences between populations, or between organs (Figure 

1C).   Considering that AhR-R is often considered a marker of AhR activation, 

expression was evaluated as well.  Liver and lymphoid AhR-R expression levels were 

higher in AW fish (Figure 1D).  Gene expression of the two phase II enzymes, GST-

alpha and UGT, differed in lymphoid tissues and intestines between the two populations, 

with AW fish expressing less (Figure 2).  Of the three tissues examine, lymphoid GST 

was expressed at a higher level than for livers and intestines, even in KC fish.  There 

were no differences in expression of UGT between the two populations, though liver 

expression was higher in both populations than in lymphoid and intestine tissues.  

When gene expression data were further analyzed for gender differences, and 

statistical interactions, there were differences between male and female expression of 

GST in AW fish; males express much higher GST (Figure 3A), and the same is true for 

liver AhR-R (Figure 3B).   Analysis for statistical interactions show that GST expression 

is different between AW and KC males; GST expression is higher in KC males (Figure 

3A).  However, there are also statistical interactions between AW and KC males; AhRR 

expression is higher in AW males (Figure 3B).  Based on previous work in our lab 
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indicating that COX-2 protein expression is higher in AW vs. KC killifish (Frederick et 

al., 2007), the expression of COX-2 gene expression was examined in intestine, liver, and 

lymphoid tissues.   Liver COX-2 is nearly three times higher in AW than KC killifish 

(Figure 4).  Of particular note, liver COX-2 expression in AW fish was also nearly three 

times higher than other tissues, regardless of population. 

Upon examination of whole liver S9 fractions, CYP1A protein expression was 

clearly detected in some, but not all fish examined (Figure 5).  Even though King’s Creek 

killifish are considered a reference population for AW, CYP1A is expressed in some 

individuals as well.   Intestine CYP1A expression is fairly uniform in all AW fish, with 

some individuals exhibiting very high expression (Figure 6).  No intestine CYP1A 

protein was observed in KC fish.  These observations seem to contradict the assumption 

that AW fish are resistant to PAHs, and therefore do not express CYP1A as a means of 

preventing the toxicity of PAHs that may work through AhR2-related mechanisms.   

Moreover, and as an extension of CYP1A expression, AhR-R protein in AW livers was 

expressed in more AW individuals than in the KC samples, and more intensely in females 

than in males within the AW samples (Figure 7). 

Considering that liver CYP1A protein is expressed in at least some adult AW 

killifish livers, and at both the gene and protein level in all intestines examined, 

localization of CYP1A was determined by IHC.  And because CYP1A activity follows 

AhR2 activation, this protein was also examined by IHC.  Just as was found nearly 20 

years ago in AW fish, virtually all AW fish from this study have severe liver lesions, 
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ranging from altered foci to fully malignant tumors (see lesion summary, Table 2).    As 

can be seen in representative examples provided, CYP1A expression is not readily found 

in KC fish, but in found at different degrees in liver lesions (Figures 8, 9, and 10), each 

representing a different histopathological diagnosis.  Early tumorogenesis in eosinophilic 

foci seem to express high CYP1A, while more basophilic (higher protein expression) 

express AhR2.  Neither CYP1A, nor AhR2 is expressed in other cells of the same liver 

(Figure 8).  However, in another individual harboring a hemangiosarcomoa, CYP1A and 

AhR2 are co-localized in the same tumor cells (Figure 9).  For another individual, and in 

one of the more progressed tumors examined, a pancreatic ascinar carcinoma is void of 

CYP1A expression other than cells lining one of the major blood vessels (Figure 10). 

AhR2 expression in that same tumor was modeled.   No tissue tumors or gross lesions 

were found by histological and IHC examination in intestine tissues of either population.  

However, intestine CYP1A protein expression was observed in all AW fish examined, as 

presented in Figure 11.  None of the intestines from KC fish were positive for CYP1A 

staining, as presented in Figure 12.  Of special note, AhR2 protein expression in both 

populations was highly expressed (Figure 11, 12).  In overview, the IHC data support 

gene expression data, and especially with CYP1A induction. 

Observations that intestinal CYP1A (gene and protein) is clearly induced and 

expressed in AW fish (but not KC fish), that liver COX-2 gene expression is higher in 

AW fish than in KC fish, and our previous studies pointing to elevated innate immune 

functions in AW vs. KC fish, further studies were initiated.   Intestines of fish contain 

high numbers of ECGs, the teleost equivalent of mammalian mast cells(Reite and 
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Evensen, 2006), and these eosinophil-like cells contain, among other biologically active 

proteins, preloaded granules harboring major basic protein (MBP).  High expression of 

MBP in fish intestines indicates higher inflammation, and thus may serve as a biomarker 

of local inflammation.  In the study described herein, the 12 kDa major basic protein was 

expressed at higher levels in intestine lysates of AW fish, as indicated by both 

immunoblotting and ELISA techniques (Figure 13, Figure 14).  Previous work in our lab 

generated a fish-specific anti-lysozyme antibody that readily recognized the protein in 

IHC, ELISA, and immunoblotting techniques (Marsh and Rice, 2010).  There were no 

differences in lysozyme protein expression in intestines of AW vs. KC killifish (Figure 

15).  As noted from gene expression analysis, liver COX-2 gene expression is much 

higher in AW vs. KC fish, and mAb CX53-1 staining localized to cells (activated 

macrophages) in AW livers (Figure 16), and these COX-2-positive cells are absent in 

lesions/tumors. 
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DISCUSSION 

In this study I found that adult killifish adapted to sediments at the Atlantic Wood 

superfund site have AhR2-related activities in intestines, liver, and lymphoid tissues.   

Intestinal CYP1A and AhR2 protein expression is very high in AW fish, while expression 

of this protein in liver varies greatly, from none observed to modeled expression 

throughout the organ as a result of lesions and tumors.   These finding are in contrast to 

the widely held assumption that killifish have adapted to environments like AW by 

somehow shutting down the AhR-related pathway to reduced CYP1A expression, and 

therefore impede metabolism of parent PAHs to carcinogenic, teratogenic, and 

immunotoxic metabolites.  These findings also support earlier findings by others that 

differential CYP1A expression occurs in AW liver lesions vs. livers without lesions (Van 

Veld et al., 1992).  Information presented in this dissertation does, however, present a 

conundrum in terms of reconciling with the many publications using AW embryos – 

AhR-related pathways are blunted in developing AW embryos. 

To my knowledge, this study was the first to examine the expression of a battery 

of genes related to the known toxicity of PAHs on the NPL, and simultaneously the first 

to describe ranges of expression in intestines, livers, and lymphoid tissues of AW killifish 

at the same time.  The most significant observations were that intestine CYP1A and liver 

COX-2 gene expression are very high in AW killifish compared to KC fish.   In contrast, 

intestine and lymphoid GST gene expression was much lower than in KC fish.   At the 

time of primer design and application in qPCR assays for this study, GST-alpha was the 

only killifish sequence available, and therefore the results are interpreted only within the 
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context of this subclass of GST; the full suite GST subclasses in killifish have not yet 

been described and characterized.   However, multiple classes of GSTs have been 

identified in other species of teleostean fish, including alpha-, mu-, pi-, and rho-type 

proteins, each generally being co-expressed, and at high levels (Trute et al., 2007).  The 

difference between classes seems to be related to different oxidized substrates and which 

types of chemicals induce oxidative stress.  In terms of GST activity in AW killifish, 

previous work demonstrated higher total activity in livers and intestines (Van Veld et al., 

1991), and a unique GST protein was isolated from AW killifish not present in KC fish 

(Armknecht et al., 1998).  Unfortunately, the particular class was not identified or further 

investigated.   It is possible that GSTs other than the alpha class are elevated in AW 

killifish, while alpha is suppressed, or selected against.  Now that the genome of killifish 

has been sequenced, and annotation continues, it will be possible to later revisit this issue 

of GST forms in AW fish.  As with the only available GST sequence available at the time 

of this study, only UDP-UGT2A (UGT-2A) was available.  Thought not statistically 

significant, there was a trend towards higher UGT expression in lymphoid tissues of KC, 

indicating the possible presence of phenolic intermediates as substrates in these tissues.   

It is difficult to explain the mechanisms behind reduced phase II enzymes in AW killifish 

intestines and lymphoid tissues, and elevated intestine CYP1A,  when each of these 

enzymes are under the direct control of the AhR as part of the battery of genes expressed.  

Much of what we know about AhR activity is based on either in vitro studies, or on 

whole animal studies beginning with unexposed animals and following activation of the 

AhR over time.  In a field study like the one described herein, exposures are ongoing, and 
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fish are exposed to multiple abiotic and biotic factors and stressors, and some factors may 

activate, while others inhibit gene expression.   One clue to understanding the data lies in 

gender differences in GST activity, with male AW fishing expressing more than females.  

These fish were caught and tissues collected on the full moon, which coincides with lunar 

spawning cycles in killifish, when estrogen is highest in females.   The cross talk between 

estrogen receptors and AhR has been studied extensively, with the understanding that 

activation of one can inhibit the other by co-opting co-activators (Safe and Wormke, 

2003; Matthews and Gustafsson, 2006)  But ultimately, it is the expressed protein and 

function that yield the phenotype observed at the time of sampling, and therefore either 

function or protein expression should be evaluated in future studies.   Gene expression for 

AhR-R was also different by site and gender, with AW fish expressing more, and females 

expressing more than males – this was supported by protein expression data as well.   

Why the gender difference is unclear, it may be related to the amount of estrogen in 

circulation at the time of sampling in that the degradation of AhR-R is inhibited or 

slowed during estrogen receptor activation. 

Upon examination of CYP1A protein expression in livers, it was clear that several 

fish from both sites had fairly high levels of expression.  This is probably due to different 

reasons; expression in KC fish is more than likely the result of random exposure to motor 

boat oil, or creosote leaking from a small bridge near the collection site.   In AW fish, 

induction of liver CYP1A is due to both AhR2-related signaling and intrinsic aspects of 

lesions and tumors (as discussed below).  It appears that the incidence of tumor lesions 

and tumors has not subsided over the twenty years since first described.   From multiple 
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samples, both male and female, AW fish livers are still impacted with multiple lesions, 

and often at least one cancer type.   One could speculate that reduced liver CYP1A 

activity in these fish (Van Veld and Westbrook, 1995) is due mostly to severe liver 

damage, and this may be the case in many of the fish sampled.  However, several of the 

tumor types are of non-liver parenchymal origin (e.g., sarcoma, adenoma etc), and do not 

normally express CYP1A to begin with, so not observing CYP1A by IHC in AW fish 

livers may not be unexpected.  Nearly twenty years ago this same profile was observed 

(Van Veld et al., 1992), though they did not examine AhR expression at the time.   It was 

speculated that progression of tumor types follows a predictable course of over-

expression of CYP1A in early lesions, and reduction or absence in later progressed 

lesions, as has been well documented in rat liver tumor models (Roomi et al., 1985). 

From another perspective, recent studies show that some human breast cancers 

constitutively express high levels of CYP1A1 (Rodriguez and Potter, 2013), and that 

knocking down CYP1A1 in breast cancer cells lines results in reduced cell cycling, 

growth rates, and intracellular signaling related to proliferation.  Though not examined in 

the Rodriquez and Potter study, constitutive expression of CYP1A would suggest a 

likewise constitutive expression and activity of AhR, which is known to be the case in 

several tumor types and in inflammation (Moennikes et al., 2004; Tauchi et al., 2005).  

As noted in this study (Figure 8), early eosinophilic lesions express CYP1A, but little 

AhR2, while the more progressed, basophilic lesions express little or no CYP1A, but 

higher levers of AhR2.   Other cancers, and especially carcinomas (epithelial origin) 

express both AhR and CYP1A via a modeled appearance, while other tumor types are 
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barren of expression, except for blood vessel endothelial cells.   However, at the whole 

organ level, total CYP1A gene and protein may be minimal, which can explain low levels 

of liver CYP1A protein expression in many individuals. 

One of the more interesting findings from this study is there is a confirming 

correlation between CYP1A/COX-2 gene expression and protein expression. Elevated 

COX-2 expression in AW livers is a novel finding, in that a correlation between this 

protein and liver lesions and tumors in fish has not been published.   COX-2 expression is 

known to be directly linked to AhR activity (Vogel et al., 2007b; Degner et al., 2009; 

Dong et al., 2010), and is a prognostic indicator in colon and liver cancer (Eberhart et al., 

1994; Kondo et al., 1999), and may have a role in prostate cancer (Song et al., 2002).   

The significance of high COX-2 expression in AW fish livers is probably related to a 

state of chronic inflammation-like conditions.   Chronic inflammation in mammals is 

linked to hepatotoxicity (Luster et al., 2001), and tumor associated macrophages actually 

promote tumor progression (DeNardo and Coussens, 2007; DeNardo et al., 2008; Sica 

and Mantovani, 2012). 

The mechanisms behind the ability of macrophages to promote tumor growth and 

progression is related to the state of polarization from M1- to M2-type cells, with M2 

cells secreting wound-healing growth factors which then promote the growth of tumor 

cells (Mantovani, 2006; Mantovani et al., 2008; Biswas and Mantovani, 2010; Mills and 

Ley, 2014).  High COX-2 expression in AW livers may also play a role in PAH 

metabolism, leading to further toxic metabolite formation, as COX-2 can metabolize 
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some PAHs to diol-epoxide intermediates (Eling et al., 1990; Parkinson, 2001).  

Moreover, CYP1A1 may metabolize prostaglandin endoperoxide to the mutagen 

malondialdehyde (Plastaras et al., 2000), which would further damage local tissues. 

No significant COX-2 expression was found in intestines of fish from either 

population, but higher levels of EGC granule content (presumably major basic protein) in 

AW vs. KC fish suggest local inflammation.   Human eosinophils are implicated in 

intestinal inflammation, and major basic protein induces intestinal epithelial apoptosis 

and increased cell turnover (sloughing) (Powell et al., 2010).  Thus, sloughing of 

intestinal epithelial cells is a protective mechanism that can eliminate pathogens, but also 

prevent intestinal epithelial cancers from forming.   More than likely, this is why there is 

a uniform expression of CYP1A in AW intestinal epithelial cells; this barrier is not 

exposed to toxicants long enough to be severely damaged (as with livers), and therefore 

new cells are being exposed and induced on a rapid basis.   To further substantiate this 

hypothesis, a good antibody marker for cell proliferation is needed that will work in fish.  

For example, anti-PCNA and anti-Ki67 antibodies work well in mammals, but not in fish. 

This study leaves a large question: what happens to AW killifish between the time 

they go through development, via a reduced AhR2/CYP1A activity strategy in the face of 

high levels of toxic PAHs, hatching, and growth to adults?   Do they lose some sort of 

suppressive mechanism (epigenetic) during transition and growth?  If so, then it would be 

hard to explain how adult AW killifish can spawn F1 and F2 generations that maintain 

their resistance phenotype even when maintained in unpolluted water away from the 
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estuary (Meyer and Di Giulio, 2003; Clark et al., 2013a; Clark et al., 2013b).   One clue 

may be related to the role(s) of different AhR forms (AhR1, AhR2) during development 

and into adult hood, as adult zebrafish are far less sensitive to TCDD than are 

development embryos and young larvae (Lanham et al., 2012).  This in turn may be 

explained by the expression and activity of both AhR1 and AhR2 in developing embryos, 

while AhR1 is not expressed or functional in adults (Hahn et al., 1997; Andreasen et al., 

2002a; Franks et al., 2005).  In comparing the sensitivity of various fish to TCDD, 

salmon are more sensitive that more recently evolved fish, and this may be related to the 

multiple forms of AhR2 (Hansson and Hahn, 2008), with each having the ability to bind 

and respond to ligand.   However, at least in red sunbream, both AhR1 and AhR2 can 

bind ligands, though the affinity for ligand is much higher in for AhR2 (Bak et al., 2013).  

It is important to point out that most of these comparisons are done with recombinant 

proteins expressed in COS-1 cells, not whole-live embryos or adults. 
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CONCLUSIONS AND SUMMARY

From this study, I can conclude that Atlantic killifish inhabiting the waters and sediments 

of the Atlantic Wood superfund site have active AhR2-related signaling capabilities.  

This is demonstrated in a uniform CYP1A expression in intestines of AW fish, as well as 

in some of the livers, though in most cases, this may be related to intrinsic biology of 

tumor type and state of progression.   Also found in this study, is a state of inflammation 

in AW killifish livers, as demonstrated by high expression of COX-2, and this may be the 

most novel finding.    Altered expression of CYP1A in AW livers was first shown nearly 

20 years ago, but this is the first to demonstrate COX-2 expression in livers.  Unlike what 

is seen in many mammalian tissues, where macrophages are associated with tumors, 

COX-2 expressing macrophages surround, but not invade lesions and tumors in these 

fish.  An addition finding is that AhR-Repressor protein is expressed more in AW fish 

than in reference KC fish, and more so in females than males. 

Unfortunately, mAb 9R1 does not seem to recognize it’s epitope in fixed tissues, so at 

this point I don’t know if elevated liver AhR-R in AW fish is primarily in normal tissue, 

or more heavily expressed in lesions and tumors.  However, despite the shortcomings of 

this particular antibody, from this study an additional three antibodies were added to the 

growing toolbox of reagents for working with the Atlantic killifish.   This toolbox will 

also aid those working with Gulf killifish, a sister species of the Atlantic killifish, in that 

all reagents developed for one work well for the other, and the same is true for molecular 

probes etc. 
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Future studies with PAHs on the southern branch of the Elizabeth River will need to 

focus on other sites because Atlantic Wood superfund site is now officially sealed off by 

a cofferdam, and back-filled with sediments surrounding the site, then covered with a 

concrete “lid”.    As recently described (Clark et al., 2013b), another creosote-

contaminated site, referred to as “Republic”  also has high levels of sediment PAHs, and 

killifish from this site also exhibit a resistance phenotype, at least with developing 

embryos.   This site may allow researchers to continue with my line of research, though 

preliminary studies are required to confirm liver pathologies, induced intestine CYP1A, 

and other aspects described at the AW site.  Two very key questions must be answered 

going forward: 1.  What are the GST classes expressed in creosote-adapted killifish, and 

what are their regulatory restraints, and 2. Are there unique AhR2 nsSNPs in these fish, 

thus allowing them to not respond to typical PAH ligands?   These two questions can be 

answered with information now available from the killifish genome project, and using 

approaches recently published from Dr. Mark Hahn’s lab. 
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Figure 1. qRT-PCR of relative fold expression of target CYP1A, CYP1B, AhR2, and 

AhRR expression in the intestines of AW and KC F. heteroclitus populations. Fold 

expression values were calcualted to relative 18S levels using the Pfaffl method which 

uses the cycle number, Ct, and amplification efficiences. Error bars show ± SEM, 

standard error of the mean, of the 4 samples. * Indicates statistically significant 

difference in male and female AW intestines when compared against male and female 

KC intestines (p≤0.05). 



88 

Figure 2. qRT-PCR of relative fold expression of target phase II detoxyfing enzyme 

genes,  GST and UGT gene expression in the livers of AW and KC F. heteroclitus 

populations. Fold expression values were calcualted to relative 18S using the Pfaffl 

method which uses the cycle number, Ct, and amplification efficiences.  Error bars show 

± SEM, standard error of the mean, of the 4 samples. * Indicates statistically significant 

difference in male and female AW livers when compared against male and female KC 

livers (p≤0.05). 
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Figure 3. qRT-PCR of relative fold expression of target GST and AhRR by gender 

in the intestines of AW and KC F. heteroclitus populations. Fold expression values 

were calcualted to relative 18S levels using the Pfaffl method which uses the cycle 

number, Ct, and amplification efficiences. Error bars show ± SEM, standard error of the 

mean, of the 4 samples. * Indicates statistically significant difference in male and female 

AW intestines when compared against male and female KC intestines (p≤0.05).  
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Figure 4. qRT-PCR of relative fold expression of target COX-2 expression in the 

intestines of AW and KC F. heteroclitus populations. Fold expression values were 

calcualted to relative 18S, 18S ribosomal RNA housekeeping gene, using the Pfaffl 

method which uses the cycle number, Ct, and amplification efficiences. Error bars show 

± SEM, standard error of the mean, of the 4 samples. * Indicates statistically significant 

difference in male and female AW intestines when compared against male and female 

KC intestines (p≤0.05). 
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Figure 5.  Expression of CYP1A in homogenates from 16 mummichog livers 

collected from Atlantic Wood (AW) and King’s Creek (KC) sites in VA. Liver 

proteins were probed with mAb C10-7 for CYP1A detection.  30ul of protein were 

subjected to SDS-PAGE and immunoblotting.  

Figure .  6Expression of CYP1A in homogenates from 16 mummichog intestines 

collected from Atlantic Wood (AW) and King’s Creek (KC) sites in VA. Intestine 

proteins were probed with mAb C10-7 for CYP1A detection from 8 adult males (shown 

at the left of the molecular weight marker) and 8 females (shown in the further right).  30 

µg of protein were subjected to SDS-PAGE and immunoblotting.  
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Figure 7.  Expression of AhR-R in homogenates from 16 mummichog livers 

collected from Atlantic Wood and King’s Creek sites in VA.   Liver proteins were 

probed with mAb R91 for AhR-R detection from 8 adult males (left to right) and 8 adult 

females (fartherst 8 samples).  30 µg of protein were subjected to SDS-PAGE and 

immunoblotting. 
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Table 2.   Summary of histopathological findings in livers from Atlantic Wood 

superfund site vs King’s Creek.   Tissues were formalin-fixed and paraffin-embedded, 

then processed for H&E staining, following by examination by a histopathologist. 

Figure 8. Immunohistochemistry of liver tissue from mummichogs collected at the 

Atlantic Wood site in VA. 5uM tissue sections were prepared for IHC and probed with 

backgroumd stain only (A), mAb C10-7 (B), or mAb 5B6 (C). Images were captured 

using 10x lens. Postive staining is noted by a dark-red intensity.  
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Figure 9.  Immunohistochemistry of liver tissue from mummichogs collected at the 

Atlantic Wood site in VA. 5uM tissue sections were prepared for IHC and probed with 

backgroumd stain only (A), mAb C10-7 (B), or mAb 5B6 (C). Images were captured 

using 10x lens. Postive staining is noted by a dark-red intensity.  

Figure 10. Immunohistochemistry of liver tissue from mummichogs collected at the 

Atlantic Wood site in VA. 5uM tissue sections were prepared for IHC and probed with 

backgroumd stain only (A), mAb C10-7 (B), or mAb 5B6 (C). Images were captured 

using 10x lens. Postive staining is noted by a dark-red intensity.  
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Figure 11. Immunohistochemistry of intestine tissue from mummichogs collected at 

the Atlantic Wood site in VA. 5uM tissue sections were prepared fro IHC and probed 

with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C). Images were captured 

using 4X lens. Positive staining is noted by the dark-red/brown intensity. Note that 

epithelial cells stain for both AhR2 and CYP1A proteins. 
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Figure 12. Immunohistochemistry of intestine tissue from mummichogs collected at 

the King’s Creek site in VA. 5uM tissue sections were prepared fro IHC and probed 

with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C). Images were captured 

using 4X lens. Positive staining is noted by the dark-red/brown intensity. Note that 

epithelial cells stain for both AhR2 and CYP1A proteins. 
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Figure 13. Expression of major basic protein in intestinal lysates from AW and KC 

mummichog populations. Intestinal lysates from 8 mummichogs from AW and 8 from 

KC were probed with mAb 2c11 for major basic protein of ECG cell detection. 30ul of 

protein per sample were subjected to SDS-PAGE and immunoblotting to show increasing 

band intensity with increasing protein concentration.  Antibody picks up the protein at 

12kDa. 

Figure 14.  ELISA for major basic protein content in intestine lysates from 

mummichogs collected at the Atlantic Wood (AW) Superfund site and its historical 

reference site, King’s Creek (KC) in VA. Capture antibody was mAb2c11. Data are 

O.D. units. Bars represent the average values of n=16 individuals and bars represent the 

standard error of the means. * P≤.05. 
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Figure 15. ELISA for lysozyme content in intestine lysates from mummichogs 

collected at the Atlantic Wood (AW) Superfund site and its historical reference site, 

King’s Creek (KC) in VA. Capture antibody was mAb M24-2. Data are O.D. units. Bars 

represent the average values of n=16 individuals and bars represent the standard error of 

the means. 
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Figure 16. Immunohistochemistry of liver tissue with a pancreatic tumor obtained 

from an AW mummichogs. 5uM tissue sections were prepared fro IHC and probed with 

mAb CX53-1 against Cox-2. Images were captured using 10X objective. Positive 

staining is noted by the dark-red/brown intensity.  Note high numbers of COX-2 staining 

cells outside of the tumor. 
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