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ABSTRACT 
 
 

This dissertation is aimed at developing a novel robust geotechnical design 

methodology and demonstrating this methodology for the design of geotechnical systems. 

The goal of a robust design is to make the response of a system insensitive to, or robust 

against, the variation of uncertain geotechnical parameters (termed noise factors in the 

context of robust design) by carefully adjusting design parameters (those that can be 

controlled by the designer such as geometry of the design). Through an extensive 

investigation, a robust geotechnical design methodology that considers explicitly safety, 

robustness, and cost is developed. Various robustness measures are considered in this 

study, and the developed methodology is implemented with a multi-objective 

optimization scheme, in which safety is considered as a constraint and cost and 

robustness are treated as the objectives. Because the cost and the robustness are 

conflicting objectives, the robust design optimization does not yield a single best solution. 

Rather, a Pareto front is obtained, which is a collection of non-dominated optimal designs. 

The Pareto front reveals a trade-off relationship between cost and robustness, which 

enables the engineer to make an informed design decision according to a target level of 

cost or robustness. The significance and versatility of the new design methodology are 

illustrated with multiple geotechnical applications, including the design of drilled shafts, 

shallow foundations, and braced excavations. 
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CHAPTER ONE 

INTRODUCTION 

 
Motivation and Background 

 
It is well recognized that uncertainty of soil parameters is generally unavoidable 

in the geotechnical design (Whitman 2000). The uncertainty in the soil parameters, as 

well as the uncertainty in the adopted analysis model, can lead to the uncertainty in the 

solution (e.g., predicted response or performance of a system). In a deterministic 

approach, the engineer uses factors of safety that have been “calibrated” by experience to 

cope with the uncertainties in the entire solution process. Of course, the factor of safety 

adopted in a particular design depends not only on the degree of uncertainties but also on 

the consequence of failure; in other words, it depends on the “calculated risk” 

(Casagrande 1965; Whitman 1984). To consider the uncertainties in a more rational way, 

the probability- or reliability-based approaches that consider explicitly the uncertainties 

in the soil parameters and analysis model have been proposed (e.g., Harr 1987; Wu et al. 

1989; Tang and Gilbert 1993; Christian et al. 1994; Lacasse and Nadim 1996; Duncan 

2000; Griffiths et al. 2002; Phoon et al. 2003a&b; Chalermyanont and Benson 2004; 

Fenton et al. 2005; Fenton and Griffiths 2008; Schuster et al. 2008; Juang et al. 2009; 

Najjar and Gilbert 2009; Juang et al. 2011; Wang et al. 2011; Zhang et al. 2011; Lee et al. 

2012).  

In a traditional geotechnical design, multiple candidate designs are first checked 

against code-specified safety (including strength and serviceability) requirements, and the 
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acceptable designs are then optimized for cost (by means of a mathematical optimization 

procedure considering all possible designs or simply by selecting the least-cost design 

from a few possible alternatives) to produce a final design. In this design process, the 

safety requirements are analyzed by either deterministic methods or probabilistic methods. 

The deterministic methods use factor of safety (FS) as a measure of safety, while 

probabilistic methods use reliability index or probability of failure as the measure of 

safety. With the FS-based approach, the uncertainties in the soil parameters and the 

associated analysis model are not considered explicitly in the analysis but their effect is 

considered in the design by adopting a threshold FS value. With the probabilistic (or 

reliability-based) approach, these uncertainties are included explicitly in the analysis, and 

the design is considered acceptable if the reliability index or failure probability 

requirement is satisfied. Finally, cost optimization among the acceptable designs is 

performed to yield the final design. 

Regardless of whether the FS-based approach or the reliability-based approach is 

employed, the traditional design focuses mainly on safety and cost; design “robustness” 

is not explicitly considered. Robust Design, which originated in the field of Industrial 

Engineering (Taguchi 1986; Tsui 1992; Phadke 1989; Chen et al. 1996; Chen and Lewis 

1999) aims to make the product of a design insensitive to (or robust against) “hard-to-

control” input parameters (termed “noise factors”) by adjusting “easy-to-control” input 

parameters (termed “design parameters”). The early applications of robust design are 

closely related to the product design to avoid the effect of the uncertainty from 

environmental and operating conditions. More recent applications are found in various 
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fields such as mechanical design, structural design, and aeronautical design (e.g., Lee and 

Park 2001; Sandgren and Cameron 2002; Kang 2005; Zhang et al. 2005; Doltsinis and 

Kang 2005; Doltsinis and Kang 2006; Lagaros and Fragiadakis 2007; Lagaros and 

Papadrakakis 2007; Marano et al. 2008; Lagaros et al. 2010; Jamali et al. 2010; Lee et al. 

2010; Paiva 2010). The essence of this design approach is to consider robustness 

explicitly in the design process along with safety and economic requirements. The focus 

of this dissertation study is to turn this robust design concept into a Robust Geotechnical 

Design (RGD) methodology.  

The traditional design approach that does not consider robustness against noise 

factors (such as soil parameters variability and/or construction variation) may have two 

drawbacks. First, the lowest-cost design may no longer satisfy the safety requirements if 

the actual variations of the noise factors are underestimated. Here, the design 

requirements may be violated because of the high variation of the system response due to 

the underestimated variation of noise factors. Second, facing high variability of the 

system response, the designer may choose an overly conservative design that guarantees 

safety; as a result, the design may become inefficient and costly. This dilemma between 

the over-design for safety and the under-design for cost-savings is, of course, not a new 

problem in geotechnical engineering. By reducing the variation of the system response to 

ensure the design robustness against noise factors, the RGD approach can ease such 

dilemma in the decision making process. Of course, the variation of the system response 

may also be reduced by reducing the variation in soil parameters. However, in many 

geotechnical projects the ability to reduce soil variability is restricted by the nature of soil 
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deposit (i.e., inherent soil variability) and/or the number of soil test data that is available. 

In this regard, it is important to note that the RGD methodology seeks the reduction in the 

variation of system responses by adjusting only the “easy-to-control” design parameters, 

and not the “hard-to-control” noise factors.  

In this dissertation, the proposed RGD methodology is used to achieve design 

robustness against uncertainties in sample statistics of soil parameters, geotechnical 

spatial variability, as well as uncertainties in the adopted analysis models. The RGD 

methodology is further refined to integrate with finite element method, advanced 

probabilistic method, random field theory and bootstrapping technique in various 

geotechnical applications. In the following chapters, the RGD methodology is 

demonstrated with design of drilled shafts, shallow foundations, and braced excavations. 

The significance and versatility of the RGD methodology is presented. 

 
 

Objectives and Dissertation Organization 

 
The objectives of this research are to (1) explore and develop a Robust 

Geotechnical Design methodology for use in geotechnical engineering to achieve 

robustness against uncertainty in noise factors while satisfying safety and cost 

requirements, (2) integrate the new methodology with finite element method, advanced 

probabilistic method, random field theory and bootstrapping technique, (3) demonstrate 

the applicability of this new methodology in the various geotechnical problems including 

drilled shafts, shallow foundations, and braced excavations. 
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This dissertation consists of five chapters. The introduction is presented in current 

chapter, Chapter I, to set the stage and organize the entire dissertation. The next three 

chapters, Chapter II through Chapter IV, present major contents of the dissertation work. 

In Chapter II, a robust geotechnical design methodology is presented and applied for the 

design of drilled shaft in sand. The variation in the estimated sample statistics of soil 

parameters is estimated based on the typical ranges published in the literature and the 

non-dominated sorting technique is used to identify the Pareto Front. In Chapter III, the 

robust geotechnical design methodology is applied in the design of shallow foundations, 

in which, the robustness against uncertainty in the adopted geotechnical model is also 

incorporated, in addition to uncertainty in the soil parameters. The bootstrapping 

technique is employed to estimate the uncertainty in the sample statistics based on limited 

test data for shallow foundation design.  In Chapter IV, the robust geotechnical design 

methodology is further refined and applied for the design of braced excavations in clays, 

in which, the maximum wall deflection is used as the system response in a braced 

excavation and a finite element code is employed as the deterministic model for system 

response analysis. Finally, in Chapter V, the last chapter, the main conclusions of this 

dissertation are presented. 
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CHAPTER TWO 

ROBUST GEOTECHNICAL DESIGN OF DRILLED SHAFTS IN SAND* 

 
Introduction 

 
In a traditional geotechnical design, regardless of whether the deterministic 

approach or the probabilistic approach is adopted, the design is often based on a trail-and-

error process considering safety and cost. Safety is usually checked first to ensure the 

candidate design satisfying the prescribed “safety” requirements (in terms of factor of 

safety or probability of failure). Then the design with the least cost is selected from the 

pool of all acceptable designs that have been screened based on safety requirements 

(Wang and Kulhawy 2008; Wang et al. 2009; Wang et al. 2011; Zhang et al. 2011). Thus, 

the reliability-based design is quite straightforward if the results of the reliability analysis 

are accurate and precise so that there will be no question whether a given design satisfies 

the safety requirement. The accuracy and precision of a reliability analysis, however, 

depends on how well the random soil parameters are characterized (Phoon et al. 2003a; 

Chalermyanont and Benson 2004). If the knowledge of the statistical distribution of soil 

parameters is “perfect,” the results of reliability analysis will be accurate and precise and 

the reliability-based design can be easily implemented with least cost objective 

constrained with a minimum reliability index requirement. 

______________________ 

* A similar form of this chapter has been published at the time of writing: Juang CH, Wang L, Liu Z, 
Ravichandran N, Huang H, Zhang J. (2013). Robust Geotechnical Design of drilled shafts in sand –
new design perspective. Journal of Geotechnical and Geoenvironmental Engineering, 139(12): 2007-
2019. 
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In a real-world geotechnical project, the distribution of a soil parameter is quite 

uncertain due to lack of data, measurement error, and/or error caused by use of empirical 

correlations. The variation range of geotechnical parameters is usually quite large (Harr 

1987; Phoon and Kuhalwy 1999a&b) and thus the variation can be either overestimated 

or underestimated. Such overestimation or underestimation of the variation of soil 

parameters can lead to over-design or under-design. While reduction of the uncertainty in 

soil parameters is important, which should be pursued whenever it is deemed cost-

effective, here, we focus on a different approach by achieving robustness in the design 

without eliminating the sources of uncertainty. Here, a design is considered robust if the 

variation in the system response is insensitive to (or robust against) the variation of 

uncertain soil parameters (called noise factors). The essence of a robust design is to select 

a design (through the adoption of a set of design parameters) that yields a minimal 

variation in the system response without eliminating the sources of uncertainty or 

reducing the level of uncertainty. 

In this chapter, a robust geotechnical design (RGD) methodology is proposed to 

fulfill the goal of minimizing the effects of the uncertainty of soil parameters. One widely 

accepted definition of robust design (Taguchi 1986; Chen et al. 1996) is manipulating 

design parameters (i.e., the so-called “easy to control” factors) so that the system 

response of the design is insensitive to, or robust against, the variation of noise factors 

(i.e., the so-called “hard to control” factors). In a geotechnical design, the noise factors 

are the uncertain soil parameters and other factors such as those related to construction. 

Thus, in a robust design, regions in the design space that yield low variation in the system 
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response should be sought. The robust design will have an acceptable performance even 

with unexpected variation in soil parameters. 

It should be noted that adjusting the design parameters through the concept of 

robust design is just one option to meet the design requirements. It may be feasible to 

achieve similar goal by improving soil parameter characterization. A balanced approach 

is to adopt a suitable site characterization and testing program, followed by a robust 

design with the estimated parameter uncertainty.  

RGD is not a design methodology to compete with the traditional FS-based 

approach or the reliability-based approach; rather, it is a design strategy to complement 

the traditional design methods. With the RGD approach, the focus is to satisfy three 

design objectives, namely safety, cost, and robustness (against the variation in system 

response caused by noise factors). As with many multi-objective engineering problems, it 

is possible that no single best solution exists that satisfies all three objectives. In such 

situations, a detailed study of the trade-offs among these design objectives can lead to a 

more informed design decision. 

In this chapter, robustness is considered within the framework of a reliability-

based design. The computed failure probability of drilled shaft is modeled as the response 

of the system. The variation in the computed failure probability caused by the uncertainty 

in the estimated variation of soil parameters is evaluated using statistical methods. The 

robustness for reliability-based design is achieved if the variation of the failure 

probability can be minimized by manipulating design parameters of the rock slope. In the 

sections that follow, a brief review of a reliability-based model for axial capacity of 
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drilled shaft (Phoon et al.1995; Wang et al. 2011a) is first provided. Then, the reliability-

based RGD methodology is presented, followed by an illustrative example to demonstrate 

the significance of design robustness and the effectiveness of this methodology for 

selection of the “best” design based on multiple objectives.  

 

Reliability-Based Design of Drilled Shafts 

 
A summary of a reliability-based design of drilled shafts in sand presented by 

Phoon et al. (1995) is provided herein. The schematic diagram of a drilled shaft in loose 

sand subjected to an axial load under drained condition is shown in Figure 2.1. In this 

example, the water table is set at the ground surface. The diameter and depth (length) of 

the shaft are denoted as B and D, respectively. Other design parameters regarding soil and 

structure properties are listed in Table 2.1. In the reliability-based design framework, B 

and D are selected to meet the target reliability index through a trial-and-error process.  

 
Table 2.1: Sample statistics of soil parameters 

 

Soil Parameter Type of Distribution Mean Coefficient of Variation 
(COV) 

Effective friction 
angle, φ′  Lognormal 32° 7% 

Coefficient of earth 
pressure at rest, K0 

Lognormal 1.0 50% 

 
 Note: The correlation coefficient between φ′ and K0 is -0.75. 

 
The requirements of both ultimate limit state (ULS) and serviceability limit state 

(SLS) have to be satisfied in a reliability-based design. For either ULS or SLS 
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requirement, the drilled shaft is considered failed if the compression load exceeds the 

shaft compression capacities. In this study, the axial compression load F is set as the 50-

year return period load F50 for both ULS and SLS design (F50 = 800 kN in this example). 

The ULS compression capacity (denoted as QULS) is determined with the following 

equation (Kulhawy 1991): 

 
 ULS side tipQ Q Q W= + −                                                         (2.1) 

 
where Qside, Qtip, and W are side resistance, tip resistance, and effective shaft weight, 

respectively. Considering that the cohesion term is neglected in the design of drilled 

shafts in sand, the Qside, and Qtip can be computed as (Kulhawy 1991): 

 

( )0 0/ tanside vmn
Q BD K K Kπ σ φ′ ′=                                         (2.2) 

 
( ) ( )20.25 0.5tip w s d r w q qs qd qrQ B B N DNγ γ γ γπ γ γ ζ ζ ζ γ γ ζ ζ ζ = − + −         (2.3) 

 
where (K/K0)n = nominal operative in-situ horizontal stress coefficient ratio; vmσ ′  = mean 

vertical effective stress along the shaft depth; φ′ = soil effective stress friction angle; 

and Nγ , qN  = bearing capacity factors defined as (Vesić 1975): 

 
( ) ( )2tan 45 / 2 exp tanqN φ π φ′ ′= ° +

                                          (2.4) 

( )2 1 tanqN Nγ φ′= +                                       (2.5) 
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And
 sγζ  and qsζ = shape correction factors; dγζ  and qdζ  = depth correction factors; and 

rγζ  and qrζ  = rigidity correction factors for respective bearing capacity factors. Detailed 

methods for computing the bearing capacity factors and correction factors are 

documented in Kulhawy (1991).  

 
 

 

D

B

0

3

o

0

50

  γ 20kN/m

   μ 32

   μ 1.0

(K/K ) 1.0

  F 800kN

  y 25mm

K

n

a

φ′

=
=

=

=
=
=

 
 

Figure 2.1: An example drilled shaft under drained compression 
(adapted after Phoon et al. 1995) 

 

Then, the SLS compression capacity (denoted as QSLS) is determined with the 

following equation (Phoon et al. 1995; Wang et al. 2011a): 
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0.625
b

a
SLS ULS

y
Q a Q

B
 =  
 

                                     (2.6) 

 
where a = 4.0 and b = 0.4 are the curve-fitted parameters for the load-displacement model, 

and ay  = allowable displacement, which is 25mm for this problem.  

The probability of ULS failure ( ULS
fp ) and the probability of SLS failure ( SLS

fp ) 

are defined as ( )50r ULSP Q F<  and ( )50r SLSP Q F< , respectively. The reliability-based 

design can be realized by meeting the target failure probability requirements, namely, 

SLS SLS
f Tp p< and ULS ULS

f Tp p< , where SLS
Tp and ULS

Tp  are the target failure probabilities 

based on the serviceability limit state and the ultimate limit state, respectively.  

 

Methodology for Reliability-Based Robust Geotechnical Design 

 
In a reliability-based RGD, the design robustness is considered explicitly in the 

reliability-based design framework. Although the robustness may be interpreted 

differently (e.g., Taguchi 1986; Chen et al. 1996; Doltsinis and Kang 2005; Park et al. 

2006; Ait Brik et al. 2007; Papadopoulos and Lagaros 2009), here a geotechnical design 

is considered robust if the performance measure (i.e., failure probability ULS
fp  or SLS

fp ) is 

insensitive to the variation of noise factors (i.e., uncertain soil parameters). Note that the 

probability of failure is usually determined using Monte Carlo simulation (MCS) or 

reliability-based methods that require knowledge of the variation of soil parameters. If 

the actual variations of soil parameters are greater than the estimated variations that are 
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used in the reliability-based analysis, the probability of failure may be underestimated. 

Thus, the generally accepted reliability-based designs that do not consider robustness in 

the analysis could violate the safety requirements ( ULS ULS
f Tp p<  and SLS

fp < SLS
Tp ) if the 

variations of soil parameters are underestimated. The chance for this violation may be 

greatly reduced if the variation of the failure probability, which is considered as the 

system response, can be minimized by adjusting design parameters.  

Thus, in a reliability-based RGD, the goal is to achieve design robustness by 

adjusting design parameters (such as B and D in the drilled shaft design) to minimize the 

variation of the probability of failure. In many cases, however, greater robustness can 

only be achieved at a high cost and thus, a trade-off exists, which can best be investigated 

through multi-objective optimization.   

 

Estimation of the coefficients of variation of soil parameters 

As pointed out by Phoon et al. (1995), drained friction angle φ′  and coefficient of 

earth pressure at rest K0 are the two random variables that should be considered for the 

reliability-based design of drilled shaft in loose sand.  

In geotechnical practice, soil parameters are often determined from a limited 

number of test data, thus, the statistical parameters derived from a small sample may be 

subjected to error. In general, the “population” mean can be adequately estimated from 

the “sample” mean even with a small sample (Wu et al. 1989). However, the estimation 

of standard deviation of the population based on a sample is often not as accurate, 

especially with a smaller sample. Of course, the measurement error and the model with 
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which soil parameters are derived (e.g., estimation of φ′  based on SPT or other means) 

could also contribute to the variation of the derived parameters.  

Duncan (2000) suggested that the standard deviation of a random variable might 

be obtained by (1) direct calculation from data, (2) use of published coefficient of 

variation (COV), or (3) estimate based on the “three-sigma rule.” The evaluation of 

parameter uncertainty for a specific problem is the duty of the engineer in charge. In this 

chapter, the published COVs are adopted for illustration of robustness concept in a 

geotechnical design. The COV of φ′  of loose sand, denoted as [ ]COV φ′ , typically ranges 

from 0.05 to 0.10 (Amundaray 1994), and the COV of K0, denoted as 0[ ]COV K , 

typically ranges from 0.20 to 0.90 (Phoon et al. 1995). For a typical reliability-based 

design, it is reasonable to take the mean value of the range of COV of a given parameter 

as its coefficient of variation. Thus, [ ]COV φ′  ≈ 0.07 and 0[ ]COV K  ≈ 0.50 may be 

used in a reliability-based design of drilled shafts in sand if there is no additional data.  

The outcome of a reliability-based design is affected by the accuracy of the 

estimated COVs of soil parameters. Because of the uncertainty of the estimated COVs, 

there will be uncertainty regarding the outcome of the design (e.g., we are not sure 

whether the design really meets the target reliability index requirement if the COVs are 

underestimated). In this chapter, the concept of robustness is incorporated to ensure that 

the design will meet the target reliability index requirement in the face of uncertainty on 

the estimated COVs.  

The uncertainty of the COV of a given soil parameter may be characterized with a 

range. In fact, when COV is expressed as a range, the uncertainty is readily characterized. 
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For example, if we consider [ ]COV φ′  to vary from 0.05 to 0.10 based on Amundaray 

(1994), then the uncertainty about the value of [ ]COV φ′  to be used in the reliability 

design is readily characterized, as the mean and standard deviation of [ ]COV φ′ , denoted 

as [ ]COV φμ ′  and [ ]COV φσ ′ , respectively, can be readily determined based on the three-sigma 

rule. Thus, for the COV of loose sand varying in the range of 0.05 and 0.10, [ ]COV φμ ′ ≈ 

0.07 and [ ]COV φσ ′ ≈ (0.10-0.05)/4 = 0.0125. It should be noted that when applying the so-

called three-sigma rule to geotechnical problems, Duncan (2001) recommended use of a 

divisor of 4. For all practical purposes, the uncertainty of the estimated [ ]COV φ′  is 

mainly reflected in the standard deviation, [ ]COV φσ ′ . 

The above discussion indicates that the uncertainty of the estimated COV of a 

given parameter may be estimated from a range of COV published in the literature. 

According to Duncan (2001), the range can also be defined with the highest and the 

lowest conceivable values based on site condition and engineering judgment. 

Furthermore, when limited test data are available, the bootstrapping method (Amundaray 

1994; Luo et al. 2013) may be used to compute the mean and standard deviation of COV 

in a statistically rigorous manner. Thus, characterization of the uncertainty of the 

estimated [ ]COV φ′  is within the means of a geotechnical engineer.  

Similarly, the mean and standard deviation of 0[ ]COV K , denoted as 
0[ ]COV Kμ  and 

0[ ]COV Kσ , respectively, can be determined based on the typical range (0.20 to 0.90) 
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reported in the literature (Phoon et al. 1995). Following the three-sigma rule, 
0[ ]COV Kμ ≈ 

0.50 and 
0[ ]COV Kσ ≈ (0.9-0.2)/4 = 0.175.  

Finally, φ′ and K0 of loose, normally consolidated sands are negatively correlated. 

According to Mayne and Kulhawy (1982), and personal communications with Mayne 

(2012) and Phoon (2012), the correlation coefficient 
0,Kφρ ′  is estimated to be in the range 

of -0.6 to -0.9. Following the three-sigma rule, the mean and standard deviation of 
0,Kφρ ′ , 

denoted as 
, 0Kφρμ

′
and 

, 0Kφρσ
′

, are estimated to be -0.75 and 0.075, respectively. 

Furthermore, for illustration purpose, both φ′ and K0 are assumed to follow lognormal 

distribution.  

As is shown later, the robustness of a reliability-based design is achieved if the 

system response (in terms of the probability of failure) is insensitive to the variation of 

the estimated COVs of φ′ and K0 and their correlation. 

 

Reliability-based robust geotechnical design approach 

A framework for reliability-based robust geotechnical design is presented below 

using design of drilled shaft in loose sand as an example. In reference to Figure 2.2, the 

RGD approach is summarized in the following steps (presented with rationale): 

Step 1: Select design parameters and noise factors and identify the design space. 

For the design of drilled shaft in sand, the diameter (B) and depth (D) of the drilled shaft 

are considered as the design parameters, and the soil parameters φ′ and K0 are considered  
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Figure 2.2: Flowchart illustrating robust geotechnical design of drilled shaft 
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as the noise factors. The statistics of the noise factors are estimated based on available 

data and guided by experience, as discussed previously. The choice of diameter B is 

usually limited to equipment and local practice (Wang et al. 2011a), and for illustration 

purpose in this chapter, only three discrete values (B = 0.9 m, 1.2 m, and 1.5 m) are 

considered here. The depth D is often computed for a given B that satisfies ULS or SLS 

requirements, and is typically rounded to the nearest 0.2 m (Wang et al. 2011b). Thus, 

design parameters B and D can be conveniently modeled in the discrete domain and the 

design space will consist of finite number of designs (say, M designs). For example, M 

will be equal to 93 if D is selected from the likely range of 2 m to 8 m (for the drilled 

shaft shown in Figure 2.1 subjected to an axial compression load F50 = 800 kN) for each 

of the three discrete B values.  

Step 2: Evaluate the variation of the system response as a measure of robustness 

of a given design. For each possible design in the design space, the probability of failure 

can be computed based on either ultimate limit state (ULS) or serviceability limit state 

(SLS). Here, the probability of failure is treated as a system response (or more precisely, 

an effect of the system response), and the variation of the system response as a result of 

the variation of the sample statistics of the noise factors is adopted as a measure of 

robustness. In this chapter, the modified point estimate method (PEM) by Zhao and Ono 

(2000) is used for evaluating the mean and standard deviation of the failure probability. 

The PEM approach requires evaluation of the failure probability at each of a set of N 

“estimating” points (or sampling points) of the input noise factors, as reflected by the 

inner loop shown in Figure 2.2. In each repetition, statistics of each of the noise factors at 
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each PEM estimating point must be assigned, and then the failure probability is computed 

using the First Order Reliability Method (FORM; see Ang and Tang 1984; Phoon 2004). 

The resulting N failure probabilities are then used to compute the mean and standard 

deviation of the failure probability. 

Step 3: Repeat Step 2 for each of the M designs in the design space. For each 

design, the mean and standard deviation of the failure probability are determined. This 

step is represented by the outer loop shown in Figure 2.2.  

Step 4: Perform a fast elitist non-dominated sorting to establish a Pareto Front. 

For multi-objective optimization, Non-dominated Sorting Genetic Algorithm version II 

(NSGA-II) by Deb et al. (2002) is widely used. The sorting technique of NSGA-II is 

adopted herein.   

Note that in single-objective optimization, one tries to get a design that is superior 

to all other designs. For example, in a reliability-based optimization, one may seek to find 

the least-cost design using reliability as a constraint. Such a scheme tends to result in a 

design with the least cost but barely meet the reliability requirement. However, this 

design may not be the “best” solution for stakeholders who are willing to pay more for 

less risk. When multiple objectives are enforced, it is likely that no single best design 

exits that is superior to all other designs in all objectives. However, a set of designs may 

exist that are superior to all other designs in all objectives; but within the set, none of 

them is superior or inferior to each other in all objectives. These designs constitute a 

Pareto Front. Pareto Front is named after Vilfredo Pareto, an economist who first used 

this concept in economic studies (Amoroso 1938; Mathur 1991). Figure 2.3 shows a 
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conceptual illustration of a Pareto Front in a bi-objective setting (Gencturk and Elnashai 

2011). Each point on the Pareto Front is optimal in the sense that no improvement can be 

achieved in one objective without worsening in at least one other objective. When the 

optimization process yields a Pareto Front, a trade-off situation is implied. For example, 

if the cost and the robustness are two objectives in the trade-off relationship, the designer 

can approach it in two ways. If an acceptable cost range of the design is pre-defined, the 

most robust design within the cost range will be the best design. On the other hand, if 

certain level of robustness is required and specified, the least cost design that meets the 

robustness requirement will be the best design. 

 
 

Objective 1 

O
bj

ec
ti

ve
 2

Solution Space 

Pareto Front 

 
 

Figure 2.3: Conceptual illustration of a Pareto Front in a bi-objective space 
(modified after Gencturk and Elnashai 2011) 
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Finally, it should be noted that the procedure described above (in reference to 

Figure 2.2) is only one possible implementation of the RGD methodology. Other 

implementations may be equally effective. For example, FORM as a means to compute 

the failure probability for a given design with a set of known statistics of each of the 

noise factors may be replaced by MCS. Similarly, PEM as a means to compute the 

variation of the system response (i.e., the failure probability) may also be replaced by 

MCS or other means. Since only finite, and relatively small, number of designs are 

considered in this illustrative example (M = 93), only the sorting part of the NSGA-II 

algorithm is employed for selecting “points” (or designs) for the Pareto Front. However, 

if M becomes much larger, the full algorithm of NSGA-II may be employed for the 

multi-objective optimization. 

 

Reliability-Based Design without Robustness Consideration 

 
To provide a reference for reliability-based RGD, reliability-based design of a 

drilled shaft without considering robustness is first presented. For a drilled shaft shown in 

Figure 2.1 with soil parameters described in Table 2.1 (in particular, [ ]COV φ′  = 0.07, 

0[ ]COV K  = 0.50, and 
0,Kφρ ′ = -0.75), the probability of SLS and ULS failure for various 

designs for a given axial load of F50 = 800 kN is analyzed using FORM. The results are 

shown in Figure 2.4. The results indicate that the SLS requirement controls the design of 

drilled shaft under axial compression load, which is consistent with those reported by 

other investigators (e.g., Wang et al. 2011a).  
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Figure 2.4: Probability of failure obtained using FORM with [ ]COV φ′ = 7%  

0[ ]COV K = 50% 
0,Kφρ ′ = -0.75 : (a) SLS failure; (b) ULS failure 
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In fact, in all analyses performed in this study, the SLS requirement always 

controls the design of drilled shafts in sand for axial compression. Thus, in the 

subsequent analysis only the SLS failure probability is considered. 

 
Table 2.2: Summary of drilled shaft unit construction cost  

(data from R.S. Means Co. 2007) 
 

Drilled shaft diameters, B (m) 
National average unit construction cost (USD) 

for shaft depth D = 0.3m 
0.9 77.5 
1.2 116.0 
1.5 157.0 

 

In a reliability-based design, the reliability requirement is generally used as a 

constraint (i.e., the actual reliability index must be greater than the target value or the 

corresponding failure probability must be less than the target value) to screen for the 

acceptable designs, and then the optimal design is obtained by minimizing the cost 

(Zhang et al. 2011). For a comprehensive design, the total life-cycle cost of the structure 

may be considered (Frangopol and Maute 2003). For simplicity, only the initial cost of a 

drilled shaft is considered in this chapter so that we can focus on the subject of design 

robustness. The initial cost generally refers to the cost for completing a drilled shaft 

construction, including both material and labor cost, which can be estimated from 

published, annually updated literature, such as Means Building Construction Cost Data 

(R.S. Means Co. 2007). The U.S. national average unit costs for constructing drilled 

shafts with respective diameters of 0.9 m, 1.2 m and 1.5 m are summarized in Table 2.2. 

The costs for constructing a unit depth (0.3 m) are USD 77.5, 116 and 157, respectively 

for the three diameters (Wang et al. 2011a). If the “best” design is to be chosen based on 
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least cost subjected to the constraint that the SLS failure probability is less than a target 

value (say, 0.0047), the design with B = 0.9 m and D = 5.6 m will be selected.  

 
Table 2.3: Least-cost designs under various COV and correlation assumptions  

for soil parameters 
 

[ ]COV φ′  0[ ]COV K  
0,Kφρ ′  

B 
(m) 

D 
(m) 

Cost 
(USD) 

SLS failure 
probability 

SLS
fp  

0.05 0.2 -0.6 0.9  5.4  1395 0.00188  
0.05 0.5 -0.6 0.9  5.2  1343 0.00356  
0.05 0.9 -0.6 1.2  3.6  1392 0.00395  
0.07 0.2 -0.6 0.9  6.0  1550 0.00362  
0.07 0.5 -0.6 0.9  6.0  1550 0.00230  
0.07 0.9 -0.6 0.9  6.0  1550 0.00343  
0.1 0.2 -0.6 0.9  7.0  1808 0.00458  
0.1 0.5 -0.6 0.9  7.0  1808 0.00297  
0.1 0.9 -0.6 0.9  7.0  1808 0.00431  

0.05 0.2 -0.75 0.9  5.2  1343 0.00350  
0.05 0.5 -0.75 0.9  5.0  1292 0.00373  
0.05 0.9 -0.75 0.9  5.0  1292 0.00428  
0.07 0.2 -0.75 0.9  6.0  1550 0.00232  
0.07 0.5 -0.75 0.9  5.6  1447 0.00402  
0.07 0.9 -0.75 0.9  5.6  1447 0.00416  
0.1 0.2 -0.75 0.9  7.0  1808 0.00304  
0.1 0.5 -0.75 0.9  6.6  1705 0.00316  
0.1 0.9 -0.75 0.9  6.6  1705 0.00326  

0.05 0.2 -0.9 0.9  5.2  1343 0.00185  
0.05 0.5 -0.9 0.9  4.8  1240 0.00207  
0.05 0.9 -0.9 0.9  4.8  1240 0.00089  
0.07 0.2 -0.9 0.9  5.8  1498 0.00317  
0.07 0.5 -0.9 0.9  5.4  1395 0.00151  
0.07 0.9 -0.9 0.9  5.2  1343 0.00256  
0.1 0.2 -0.9 0.9  6.8  1757 0.00328  
0.1 0.5 -0.9 0.9  6.2  1602 0.00207  
0.1 0.9 -0.9 0.9  6.0  1550 0.00207  
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To demonstrate the effect of the variation in the estimated statistics of soil 

parameters, two series of the analysis are performed. One is to determine the least cost 

designs for various assumed COV and correlation coefficient values (see Table 2.3), and 

the other seeks to determine the failure probability of a given design under various levels 

of COV and correlation coefficient (see Table 2.4). 

Table 2.3 shows that the least cost designs are different for different assumed 

COV and correlation coefficient values. The implication is that the determination of least 

cost design in a reliability-based design is meaningful only if the statistics of soil 

parameters ( [ ]COV φ′ , 0[ ]COV K , and 
0,Kφρ ′ ) are fixed values. Thus, if the COV and 

correlation coefficient values are underestimated or overestimated by a certain margin, 

then there is a chance (significant probability) that an acceptable design (a design that 

satisfies ULS and SLS constraints based on fixed statistics values) will no longer 

satisfactory. This inference is demonstrated with results shown in Table 2.4, where the 

performance of an acceptable design (B = 0.9 m and D = 5.6 m based on an assumption 

of fixed statistics values, [ ]COV φ′ = 0.07, 0[ ]COV K = 0.50, 
0,Kφρ ′ = -0.75, and a target 

failure probability of SLS
Tp = 0.0047) is reanalyzed with various levels of variation in soil 

parameters. As can be seen from Table 2.4, if this design is implemented in a sand site 

with [ ]COV φ′ = 0.10, the SLS failure requirement will no longer be satisfied, as the 

failure probability will be greater than the target probability of failure of SLS
Tp = 0.0047.   
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Table 2.4: SLS failure probability of a given design (B= 0.9m, D= 5.6m) 
under various COV and correlation assumptions 

 

[ ]COV φ′  0[ ]COV K  
0,Kφρ ′  

B 
(m) 

D 
(m) 

Cost 
(USD) 

SLS failure  
probability 

SLS
fp  

0.05 0.2 -0.6 0.9 5.6 1447 5.95E-04 
0.05 0.5 -0.6 0.9 5.6 1447 3.54E-04 
0.05 0.9 -0.6 0.9 5.6 1447 7.12E-04 
0.07 0.2 -0.6 0.9 5.6 1447 1.35E-02 
0.07 0.5 -0.6 0.9 5.6 1447 9.75E-03 
0.07 0.9 -0.6 0.9 5.6 1447 1.25E-02 
0.1 0.2 -0.6 0.9 5.6 1447 6.99E-02 
0.1 0.5 -0.6 0.9 5.6 1447 6.19E-02 
0.1 0.9 -0.6 0.9 5.6 1447 6.76E-02 

0.05 0.2 -0.75 0.9 5.6 1447 2.55E-04 
0.05 0.5 -0.75 0.9 5.6 1447 3.23E-05 
0.05 0.9 -0.75 0.9 5.6 1447 5.98E-05 
0.07 0.2 -0.75 0.9 5.6 1447 1.06E-02 
0.07 0.5 -0.75 0.9 5.6 1447 4.02E-03 
0.07 0.9 -0.75 0.9 5.6 1447 4.16E-03 
0.1 0.2 -0.75 0.9 5.6 1447 6.51E-02 
0.1 0.5 -0.75 0.9 5.6 1447 4.79E-02 
0.1 0.9 -0.75 0.9 5.6 1447 4.60E-02 

0.05 0.2 -0.9 0.9 5.6 1447 5.17E-05 
0.05 0.5 -0.9 0.9 5.6 1447 5.13E-09 
0.05 0.9 -0.9 0.9 5.6 1447 4.67E-09 
0.07 0.2 -0.9 0.9 5.6 1447 7.53E-03 
0.07 0.5 -0.9 0.9 5.6 1447 2.59E-04 
0.07 0.9 -0.9 0.9 5.6 1447 8.12E-05 
0.1 0.2 -0.9 0.9 5.6 1447 5.98E-02 
0.1 0.5 -0.9 0.9 5.6 1447 2.82E-02 
0.1 0.9 -0.9 0.9 5.6 1447 1.46E-02 
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Table 2.5: Comparison of SLS failure probability for three designs under various COV 
and correlation assumptions for soil parameters 

  

SLS failure probability, SLS
fp   

[ ]COV φ′  0[ ]COV K  
0,Kφρ ′  

Design 1  
(B=0.9m, 
D=6.0m) 
1550USD 

Design 2 
(B=0.9m, 
D=6.4m) 
1653USD 

Design 3 
(B=0.9m, 
D=7.0m) 
1808USD 

0.05 0.2 -0.6 4.05E-05 1.62E-06 4.81E-09 

0.05 0.5 -0.6 2.42E-05 1.20E-06 7.81E-09 

0.05 0.9 -0.6 7.17E-05 5.70E-06 8.83E-08 

0.07 0.2 -0.6 3.62E-03 7.57E-04 4.36E-05 

0.07 0.5 -0.6 2.30E-03 4.40E-04 2.62E-05 

0.07 0.9 -0.6 3.43E-03 8.20E-04 7.64E-05 

0.1 0.2 -0.6 3.67E-02 1.74E-02 4.58E-03 

0.1 0.5 -0.6 2.99E-02 1.29E-02 2.97E-03 

0.1 0.9 -0.6 3.41E-02 1.58E-02 4.31E-03 

0.05 0.2 -0.75 8.34E-06 1.10E-07 2.78E-11 

0.05 0.5 -0.75 6.01E-07 6.40E-09 2.93E-12 

0.05 0.9 -0.75 1.94E-06 4.28E-08 7.62E-11 

0.07 0.2 -0.75 2.32E-03 3.52E-04 9.07E-06 

0.07 0.5 -0.75 5.18E-04 4.63E-05 6.74E-07 

0.07 0.9 -0.75 6.36E-04 7.62E-05 2.14E-06 

0.1 0.2 -0.75 3.25E-02 1.42E-02 3.04E-03 

0.1 0.5 -0.75 1.88E-02 6.03E-03 7.46E-04 

0.1 0.9 -0.75 1.79E-02 5.95E-03 8.89E-04 

0.05 0.2 -0.9 2.12E-07 6.17E-11 1.16E-18 

0.05 0.5 -0.9 4.99E-13 1.09E-17 1.11E-25 

0.05 0.9 -0.9 1.61E-12 2.03E-16 6.01E-23 

0.07 0.2 -0.9 1.15E-03 8.65E-05 2.34E-07 

0.07 0.5 -0.9 3.12E-06 1.29E-08 6.36E-13 

0.07 0.9 -0.9 1.18E-06 8.86E-09 2.04E-12 

0.1 0.2 -0.9 2.78E-02 1.08E-02 1.62E-03 

0.1 0.5 -0.9 5.79E-03 6.27E-04 6.76E-06 

0.1 0.9 -0.9 2.07E-03 1.88E-04 2.51E-06 
Std. dev. of probability of SLS 

failure based on PEM 
5.84E-03 2.17E-03 4.27E-04 
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Reliability-Based Design Considering Robustness 

 
To investigate the issue of design robustness, the same drilled shaft problem (see 

Figure 2.1 and Table 2.1) is analyzed with additional knowledge of the variation of 

[ ]COV φ′ , 0[ ]COV K  and 
0,Kφρ ′ . Specially, the reliability-based design is based on the 

following additional data: [ ]COV φμ ′ = 0.07, [ ]COV φσ ′ = 0.125, 0[ ]COV Kμ = 0.50, 
0[ ]COV Kσ = 

0.175, 
, 0Kφρμ

′
= -0.75, and 

, 0Kφρσ
′

 = 0.075. It should be noted that these values are just used 

as an example to illustrate the concept of robustness in the design, although they are 

deemed appropriate based on an assessment of these parameters presented previously.  

 

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

2 3 4 5 6 7 8

Depth of Drilled Shaft, D (m)

M
ea

n 
P

ro
ba

bi
li

ty
 o

f 
SL

S
 F

ai
lu

re

B=0.9m

B=1.2m

B=1.5m

0.0047SLS
Tp =

 

 
Figure 2.5: Mean of the SLS failure probability using the PEM procedure 
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Figure 2.6: Standard deviation of the SLS failure probability using the PEM procedure 
 

Following the procedure described previously (in reference to Figure 2.2), the 

mean and standard deviation of the probability of SLS failure SLS
fp , namely pμ  and pσ , 

can be obtained for various designs (i.e., various pairs of B and D). Figure 2.5 shows the 

mean SLS failure probability ( pμ ) for various designs. As can be seen, many designs 

have a mean failure probability greater than the target failure probability ( SLS
Tp = 0.0047). 

Figure 2.6 shows the standard deviation of the SLS failure probability ( pσ ). Note that in 

this figure, only acceptable designs (those that have a pμ  less than the target failure 

probability) are plotted.  
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It is noted that the robustness of a reliability-based design, in which acceptance of 

the design is based on the requirement that SLS SLS
f Tp p< , may be measured in terms of the 

standard deviation of the SLS failure probability ( pσ ). Thus, a design is said to have a 

greater robustness if pσ  caused by the uncertainty of [ ]COV φ′ , 0[ ]COV K  and 
0,Kφρ ′  is 

smaller. In Figure 2.6, all designs are acceptable based on the traditional reliability-based 

design concept. If the cost is the only design objective after satisfying the SLS failure 

requirement, then the design of B = 0.9 m and D = 6.0 m will be selected, which has the 

least cost of 1550USD. However, this design has the greatest standard deviation of the 

SLS failure probability, indicating that the design has the lowest level of robustness or is 

most sensitive to the uncertainty in the estimated statistics of soil parameters. The 

implication is that such design, albeit most economical from the traditional reliability-

based design viewpoint, is likely to fail the SLS failure requirement if the uncertainty of 

soil parameters statistics is ignored. On the other hand, if a design with a smaller pσ  is 

chosen, it will be more robust, albeit at a higher cost.   

To further illustrate the trade-off between cost and robustness, all acceptable 

designs ( SLS
p Tpμ < = 0.0047) are computed for their costs, and these costs are plotted 

against robustness (in terms of standard deviation of the SLS failure probability, pσ ). 

The results are shown in Figure 2.7. Three designs, as indicated in Figure 2.7, are used as 

an example for further discussion of the trade-off between cost and robustness. Design 1 

(B = 0.9 m, D = 6.0 m) has the least cost among all acceptable designs, while Design 2 (B 

= 0.9 m, D = 6.4 m) and Design 3 (B = 0.9 m, D = 7.0 m) cost more but have a smaller 
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pσ  value (meaning that the designs are more robust). For each of these three designs, the 

probability of SLS failure is reanalyzed for various COV and correlation levels for the 

two soil parameters, φ′ and K0. The results of these additional analyses are shown in 

Table 2.5. It is noted that the uncertainty levels of 27 cases for loose sand shown in Table 

2.5 can be roughly divided into three categories, Low variation ( [ ]COV φ′ = 0.05 and 

0[ ]COV K  = 0.2), Medium variation ( [ ]COV φ′ = 0.07 and 0[ ]COV K  = 0.5), and High 

variation ( [ ]COV φ′ = 0.10 and 0[ ]COV K  = 0.9).  

Based on the results shown in Table 2.5, Design 1 will perform satisfactory (in 

terms of meeting the requirement that SLS SLS
f Tp p< = 0.0047) if the variation of soil 

parameters for this sand is Low or Medium. However, Design 1 does not meet the SLS 

failure probability requirement if it is implemented in a site with high variation in φ′ and 

K0. Thus, for this design, the SLS failure probability is sensitive to the level of 

uncertainty of soil parameters.  

On the contrary, with Design 3, the SLS failure probabilities under all uncertainty 

scenarios meet the requirement. Thus, for this design, the SLS failure probability is 

insensitive to the uncertainty in the COV levels of soil parameters. However, the cost is 

1808USD for Design 3, compared to the cost of 1550USD for Design 1. Finally, Design 

2 is a compromise between Design 1 and Design 3, in which the increase in cost is not as 

prohibitive (only 1653USD) but it still has some chance of violating the SLS failure 

probability requirement.  

 



 32

0

1

2

3

4

5

1.E-16 1.E-14 1.E-12 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02

Std. Dev. of Probability of SLS Failure

Design 1

Design 2

Design 3

3
C

os
t 

fo
r 

D
ri

ll
ed

 S
ha

ft
 (

10
U

S
D

)
×

 
 

Figure 2.7: Relationship between cost and standard deviation of the SLS failure 
probability (all acceptable designs are shown, including three arbitrarily selected designs) 

 

The results presented above suggest that design aids are needed for making more 

informed engineering decisions. In the sections that follow, the concept of Pareto Front is 

presented to explain the trade-off relationship between cost and robustness, followed by a 

procedure for selecting better designs. 

 

Two-Objective Non-dominated Sorting for Pareto Front 

 
Pareto-Front consists of designs that are not dominated by other designs with 

respect to all design objectives. Design A is dominated by Design B if A is inferior or 

equal to B in every objective measure, except one scenario that the performance of A is 
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equal to the performance of B in all objectives (Cheng and Li 1997). If a design is not 

dominated by any other designs, it belongs to the Pareto Front.  

A non-dominant sorting technique of the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II), developed by Deb et al. (2002), is used in this chapter to select 

the non-dominated designs with multiple objectives, which are points on the Pareto Front. 

For the geotechnical design of drilled shaft in sand, this multi-objective optimization may 

be set up as follows:  

  
Find            d = [B, D] 

Subject to:  B ∈ {0.9m, 1.2m, 1.5m}  and  D ∈ {2m, 2.2m, 2.4m, … , 8m} 

0.00069ULS ULS
p Tpμ < =   

0.0047SLS SLS
p Tpμ < =  

Objectives:  Minimizing the standard deviation SLS failure probability ( pσ ) 

Minimizing the cost for drilled shaft.   

 
As reflected in the optimization set-up stated above, the design is to be selected 

from a finite set of B and D pairs. The target probabilities of failure based on SLS and 

ULS requirements can both be specified but generally, the design of drilled shafts in sand 

is controlled by the SLS failure probability requirement. It should be noted that the ULS 

requirement 0.00069ULS ULS
p Tpμ < = is based on a reliability index of 3.2, and the SLS 

requirement 0.0047SLS SLS
p Tpμ < =  is based on a reliability index of 2.6 (Wang et al. 2011a).       
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Although the multi-objective optimization as prescribed above can easily be 

carried out using NSGA-II, the number of possible designs in the design space in this 

drilled shaft example is finite and relatively small (M = 93). Thus, only the non-

dominated sorting technique of NSGA-II is applied herein. Among the 93 designs, 56 are 

found acceptable based on the SLS and ULS failure probability requirements. With the 

non-dominated sorting, 27 of the 56 acceptable designs are selected into the Pareto Front 

(with two objectives, cost and robustness in terms of pσ ), as shown in Figure 2.8. It 

should be noted that the non-dominated sorting is generally more efficient if a larger 

number of acceptable designs is to be sorted for Pareto Front, especially when more 

design parameters are involved and/or the interactions between the design parameters and 

noise factors are much more complex.    

While the traditional reliability-based design approach often selects the best 

design based solely on cost, after satisfying the failure probability requirements, the 

reliability-based robust design considers robustness in addition to cost. In the case of 

drilled shaft design, optimization of both cost and robustness yields a Pareto Front, which 

enables the engineer to make informed decision based on a well-defined trade-off 

relationship between cost and robustness against the possible soil parameters variability. 

If a certain maximum cost is desired (i.e., the cost must be less than some desired 

amount), then the design with greatest robustness will be the best choice. If a certain 

minimum level of robustness is desired, then the design with least cost will be the best 

choice.  
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Figure 2.8: Pareto Front based on two-objective non-dominated sorting 
 

Selection of the best design based on feasibility robustness 

Although the Pareto Front provides a well-defined trade-off relationship between 

cost and robustness, it is desirable to take the process further to ease decision making. 

Here, the concept of “feasibility robustness” (Parkinson et al. 1993) is further adopted. 

The design with feasibility robustness is the design that can remain “feasible” (i.e., 

acceptable in terms of satisfying the safety and serviceability requirements) in a pre-

defined constraint for certain probability even when it undergoes variations. In this 

chapter, the feasibility robustness is the robustness against the SLS failure requirement, 

SLS SLS
f Tp p< = 0.0047. Because of the uncertainty in the estimated sample statistics, 
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[ ]COV φ′ , 0[ ]COV K  and 
0,Kφρ ′ , the SLS failure probability SLS

fp may be treated as a 

random variable. Parkinson et al. (1993) suggest that feasibility robustness can be 

expressed with the following constraint: 

 

0Pr[( 0.0047) 0]SLS
fp P− < ≥                                                                                (2.7) 

               
where Pr[( 0.0047) 0]SLS

fp − <  is the probability that the SLS failure requirement can be 

satisfied (and thus, the system is still feasible), and 0P  is an acceptable level of this 

probability selected by the designer. The probability Pr[( 0.0047) 0]SLS
fp − <  is referred to 

herein as the feasibility probability. 

Determination of the probability Pr[( 0.0047) 0]SLS
fp − <  requires the knowledge of 

distribution type of SLS
fp , which is generally difficult to ascertain. Simulations of a given 

design (for example, B = 0.9 m, D = 6.8 m) show that the resulting histogram of SLSβ  can 

be approximated well with a lognormal distribution, as depicted in Figure 2.9. Thus, an 

equivalent counterpart in terms of Pr[( ) 0]SLS SLS
Tβ β− > , where 2.6SLS

Tβ =  (corresponding 

to  SLS
Tp = 0.0047), may be used to assess the feasibility robustness.  

The mean and standard deviation of SLSβ , denoted as βμ  and βσ , respectively, 

can be determined using FORM within the framework of PEM. When SLSβ  is assumed to 

follow lognormal distribution, the feasibility probability can be computed using 

simplified procedure such as first order second moment (FOSM) method as follows: 
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Pr[( 2.6) 0] ( )ULS

ββ Φ β− > =                       (2.8) 

where Φ  is the cumulative standard normal distribution function, and ββ  is defined as: 
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                                 (2.9)                               
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Figure 2.9: Distribution of reliability index for a given design (B = 0.9 m, D = 6.8 m) 
 

If the acceptable level of the feasibility probability is specified as 0P  = 97.72%, 

then the required ββ  value will be 2. In other words, if the ββ  computed based on βμ  
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and βσ  is equal to 2, then there is a feasibility probability of 97.72% that the SLS failure 

requirement ( SLS SLS
f Tp p< =0.0047 or equivalently 2.6)SLS SLS

Tβ β> =  is satisfied. 
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Figure 2.10: Cost versus feasibility robustness for all designs on Pareto Front 
 

Thus, the ββ  value may be used as an index for feasibility robustness. Figure 2.10 

shows the ββ  values computed for all 27 points on the Pareto Front versus the 

corresponding costs. As expected, the results show that a design with higher feasibility 

robustness costs more. By selecting a desired feasibility robustness level (in terms of ββ ), 

the least-cost design among those on the Pareto Front can readily be determined. Table 



 39

2.6 shows final designs selected from the Pareto Front for various specified feasibility 

robustness levels.  

As a reference, it is observed that the final design obtained for the feasibility 

robustness level of ββ = 2, namely B = 0.9 m and D = 6.8 m, is approximately the same 

as the threshold acceptable design that was obtained by the traditional reliability-based 

design under the higher-end level of soil variability that was examined in Table 2.3. The 

developed Pareto Front, especially with the computed feasibility robustness, makes it 

easier to select the best design to meet the designer’s objectives.  

 
Table 2.6: Selected reliability-based RGD designs at various feasibility robustness 

levels 
 

ββ  
0P  B (m) D (m) Cost (USD) 

1 84.13% 0.9 6.2 1602 
2 97.72% 0.9 6.8 1757 
3 99.87% 0.9 7.6 1963 
4 99.997% 1.2 6.6 2552 

 
 

Further Discussions 

 
The results presented previously clearly illustrated the need for, and the 

significance and solution of, robust design to handle the uncertainty in the noise factors. 

Although the robust geotechnical design (RGD) methodology presented is far from 

perfect, and indeed several outstanding issues are still being examined in an ongoing 

study, this chapter is considered a first step, and an important step, in developing the 
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RGD methodology. A brief description of the issues that are being investigated is 

provided below. 

First, the advantages of Pareto Front for identifying the best designs of drilled 

shaft as presented in this chapter are not fully realized, as the number of possible designs 

in the design space is finite and relatively small in the example presented. In this case, the 

robustness and cost of each possible design can be calculated, as there are only a limited 

number of combinations of B and D. The advantages of using Pareto Front will become 

more obvious when more design parameters are involved, more selections of discrete 

design parameters are implemented (so that the discrete variables are getting closer to 

being continuous random variables), and/or the interactions between the design 

parameters and noise factors are more complex. For example, in an ongoing study of 

robust design of a braced excavation system, the advantages of Pareto Front for 

identifying the best designs through multi-objectives optimization become more obvious. 

Second, robust design concept can be implemented to a deterministic approach or 

a probabilistic approach. Robustness concept may be implemented in different ways to 

adapt to the domain problem and/or the solution approach (deterministic or probabilistic 

approach). In either approach, the presented RGD methodology can be adjusted slightly 

to adapt to the domain problem.  

Third, although the robustness concept has been demonstrated in this chapter, 

further studies to consider robustness against other sources of uncertainty are warranted. 

In particular, design robustness against the following uncertainties may also be 

considered: (1) the distribution type of the input random variables (noise factors), (2) the 
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effect of spatial correlation distance, (3) the loading complexity, and (4) the effect of 

construction noise.  

 

Summary 

 
This chapter presents a reliability-based Robust Geotechnical Design (RGD) 

approach and demonstrates that approach using a drilled shaft design example. Rather 

than seeking to reduce the variation of noise factors, the RGD approach focuses on 

achieving an optimal design that is robust against variations in these noise factors. The 

results of the example show that without considering design robustness, traditional 

reliability-based design methods may produce a least-cost design that was initially shown 

as adequate by meeting the failure probability requirement but later found inadequate 

because of an underestimation of the variation of noise factors. Since an underestimation 

of the variation of noise factors is not uncommon and the safety requirement cannot be 

comprised, it is desirable to have a design aid to assist in making a decision between the 

trade-offs of cost and robustness. By considering robustness as one additional design 

objective, the proposed RGD approach can be efficiently implemented as a multi-

objective optimization problem. The results of the example show that the RGD approach 

can produce a Pareto Front, a set of non-dominated optimal designs that satisfy the safety 

requirement. The results also show that a trade-off relationship between cost and 

feasibility robustness can be established from the Pareto Front for the design of drilled 

shaft, which can then be used as a design aid in selecting the most suitable design. 
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CHAPTER THREE 

ROBUST GEOTECHNICAL DESIGN OF SHALLOW FOUNDATIONS* 

 
Introduction 

 
Uncertainties in geotechnical models and parameters and their effect have long 

been recognized (Lacasse and Nadim 1994; Gilbert and Tang 1995; Phoon and Kulhawy 

1999; Whitman 2000; Juang et al. 2004; Schuster et al. 2008; Zhang et al. 2009; Juang et 

al. 2009; Zhang et al. 2012). To perform a geotechnical design using deterministic 

approach, “conservative” values of the uncertain soil parameters are often adopted along 

with an experience-calibrated factor of safety. While the deterministic approach has been 

successfully used for many decades, it lacks the capability to render a consistent measure 

of safety of the geotechnical system in the face of uncertainties. To obtain a more rational 

design, many investigators (e.g., Wu et al. 1989; Christian et al. 1994; Whitman 2000; 

Phoon et al. 2003a,b; Fenton et al. 2005; Najjar and Gilbert 2009; Wang 2011; Zhang et 

al. 2011) have turned to a probabilistic approach.  

Quantification of the uncertainties in soil parameters and geotechnical models is a 

prerequisite for probability or reliability-based design. If there is abundant amount of 

quality data that can characterize the statistics of the adopted geotechnical model and its 

parameters, the result of reliability analysis will be a certain value (a fixed reliability 

______________________ 

*A similar form of this chapter has been published at the time of writing: Juang CH, Wang L, 
Atamturktur S, Luo Z. (2012). Reliability-based robust and optimal design of shallow foundations in 
cohesionless soil in the face of uncertainty. Journal of GeoEngineering, 7(3): 75-87. 
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index or failure probability). Thus, the design meeting the target reliability (i.e., safety) 

requirements with least cost would be the “best” choice, and the reliability-based design 

would be a straightforward process. However, the statistics of soil parameters and model 

factor (which quantifies the accuracy and precision of the adopted geotechnical model) 

are quite difficult to ascertain due to lack of data and/or incomplete knowledge. If the 

statistics of model factor and input parameters cannot be characterized with certainty, the 

computed failure probability will not be a fixed value. The design decision will not be 

straightforward with a variable failure probability. In such a scenario, a difficult trade-off 

decision may be required. 

One way to reduce the effect of the uncertainties of statistical characterization of 

soil parameters and model factors is considering robustness of the system response (e.g., 

failure probability of the designed geotechnical system) against these uncertainties. A 

design is deemed “robust” if the predicted system response is “insensitive” to the 

uncertainties of the statistical characterization of soil parameters and model factors. By 

considering robustness explicitly in the reliability-based design optimization, as is shown 

later, a more informed design decision may be made.  

Robust design concept, originally proposed by Taguchi (1986) for product quality 

control in manufacturing engineering, has been applied to many design fields including 

mechanical design, aeronautical design and structural design (e.g., Chen et al. 1996; Tsui 

1999; Lagaros and Fragiadakis 2007; Marano et al. 2008; Lee et al. 2010; Paiva 2010). 

From the perspective of a designer aiming to achieve a robust design, the input 

parameters for the design can be divided into two groups: easy-to-control and hard-to-
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control parameters. In the context of robust design, the easy-to-control parameters such as 

dimension of a foundation are called design parameters, while the hard-to-control factors 

such as uncertain soil parameters and model factors are called noise factors. Assuming 

that the uncertainty of these noise factors cannot be eliminated (or further reduced 

because of inherent variability or lack of data), the aim is then to reduce the effects of the 

uncertainty of these noise factors on the response of the system. Thus, Robust Design 

aims to find a design (represented by a set of design parameters) that is robust against the 

uncertainty of these noise factors, thereby reducing the variability of the system response. 

In this chapter, a reliability-based robust geotechnical design (RGD) methodology 

is introduced. Here, the objective of RGD is to ensure the robustness of reliability-based 

design even if the statistics of noise factors are not precisely defined (meaning that 

uncertainty exists in the estimated statistical moments of these noise factors). When 

robustness is included in the design decision along with safety (reliability) and cost, the 

search for the “best” design becomes a multi-objective optimization problem. One 

possible approach is to treat the safety requirement as a constraint (for example, by 

requiring the failure probability of the design to be less than the acceptable target failure 

probability) in an optimization with respect to cost and robustness. Recall that in a 

traditional reliability-based design, the safety requirement is used as a constraint and the 

design is optimized with respect to one objective, cost. Thus, the new RGD approach is 

seen as an extension of the traditional reliability-based design. 

To illustrate the RGD framework, the design of a shallow foundation in 

cohesionless soil is used as an example herein. The normalized load-settlement curve 
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approach (Akbas and Kulhawy 2009a; Akbas and Kulhawy 2011), which ensures 

uniformity in the reliability analysis across both ultimate limit state (ULS) and 

serviceability limit state (SLS), is adopted for the design of shallow foundation. Through 

the examples presented, the effectiveness of the reliability-based RGD approach and the 

significance of considering robustness in the design process are clearly demonstrated. 

 

Deterministic Models for Shallow Foundation 

 
The procedure for calculating the ULS capacity of shallow foundation in 

cohesionless soil under compressive loads proposed by Vesić (1975), with minor 

improvements by Kulhawy et al. (1983) is adopted in this chapter. Based on the extensive 

database of field testing, Akbas and Kulhawy (2009b) demonstrated that the ULS 

capacity estimated by Vesić model as updated by Kulhawy et al. (1983) agreed well with 

the field testing results when the foundation width B ≥  1 m. The ULS capacity ( ULSR ) of 

a shallow foundation with width B, length L, and embedment depth D is calculated as 

follows (Vesić 1975; Akbas and Kulhawy 2009b): 

 
[(1/ 2) ]( )ULS s d r q qs qd qrR B N q N BLγ γ γ γγ ξ ξ ζ ξ ξ ζ′ ′= +                                             (3.1) 

where γ ′  = effective unit weight of soil below foundation; q′ = effective overburden 

stress at foundation level; and Nγ  and Nγ  are bearing capacity factors defined as (Vesić 

1975): 

 
2( 1) tanqN Nγ φ′≈ +                                                                                          (3.2) 
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tan 2tan (45 / 2)qN eπ φ φ′ ′= +                                                                               (3.3) 

And
 sγζ  and qsζ = shape correction factors; dγζ  and qdζ  = depth correction factors; and 

rγζ  and qrζ  = rigidity correction factors. Detailed formulations for these correction 

factors are documented in Kulhawy et al. (1983). 

The ULS failure is checked by comparing the bearing capacity ( ULSR , as 

“resistance”) with the applied loading G+Q, where G is the permanent load and Q is the 

transient load. The condition ULSR G Q< +  denotes the ULS failure of shallow foundation. 

For the SLS capacity ( SLSR ) of shallow foundation, Akbas and Kulhawy (2011) 

derived the following equation based on the normalized load-settlement behavior of 

shallow foundation:  

 
( / )

( / )
ULS t

SLS
t

R s B
R

a s B b
=

+                                                                                           (3.4) 

where ts  is the allowable settlement limit (in this chapter, 25 mm), B is the width of the 

foundation, and the coefficients a and b are parameters of a hyperbolic model that fit the 

normalized load-settlement curve defined below (Akbas and Kulhawy 2009a): 

 
/

( / )ULS

G Q s B

R a s B b

+ =
+                                                                                          (3.5) 

where ( ) / ULSG Q R+  is the normalized loading, and s is the corresponding settlement. 

Based on data from 167 full-scale tests, the mean and coefficient of variation (COV) of a 

and b are 0.70aμ =  and 22%aδ = , and 1.77bμ =  and 54%bδ = , respectively. 
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It is noted that the normalized load-settlement curve approach (Eqs. 4 and 5) 

provides a framework to correlate the ULS capacity with the SLS capacity, and thus, the 

two limit states can be treated uniformly. For a given design (with known B, L and D), if 

the ULS bearing capacity ( ULSR ) is less than the applied load G+Q, the ULS failure is 

said to occur. The SLS failure is said to occur if the bearing capacity at the allowable 

settlement limit ( SLSR ) is less than the applied load G+Q.  

 

Estimation of Cost for Shallow Foundations 

 
The total cost for a shallow foundation is determined using the cost summation of 

five individual tasks in foundation construction (Wang and Kulhawy 2008): 

e e f f c c r r b bZ Q c Q c Q c Q c Q c= + + + +                                                                 (3.6) 

where Qe, Qf, Qc, Qr, Qb = quantities for excavation, formwork, concrete, reinforcement, 

and compacted backfill, respectively; ce, cf, cc, cr, cb = unit prices for excavation, 

formwork, concrete, reinforcement, and compacted backfill, respectively.  

 
Table 3.1: Unit price for shallow foundation (data from Wang and Kulhawy 2008) 

 
Work item Unit National average unit price in U.S. (USD) 

Excavation m3 25.16 
Formwork m3 51.97 

Reinforcement kg 2.16 
Concrete m3 173.96 

Compacted backfill m3 3.97 
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Table 3.1 gives the U.S. average unit price for construction of shallow foundation 

compiled by Wang and Kulhawy (2008). The five quantities Qe, Qf, Qc, Qr, Qb depend on 

the design parameters, foundation width B, length L, and embedment depth D. The reader 

is referred to Wang and Kulhawy (2008) for details. 

 

Design Example of Shallow Foundation 

 
An example of shallow foundation is used to illustrate the proposed reliability-

based robust geotechnical design (RGD) approach. A square foundation (B = L), as 

shown in Figure 3.1, is to be designed to support the vertical compressive loads.  

 
  

B = L= ?

D = ?

G = 2000 kN
Q = 1000 kN

 
 

Figure 3.1: A square shallow foundation design example 
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The vertical compressive loads have a permanent load component of G = 2000 kN 

and a transient load component of Q =1000 kN. G and Q are assumed to follow 

lognormal distribution with a COV of G of 10% and a COV of Q of 18% (Zhang et al. 

2011).  The soil profile at the site is assumed to follow the example presented by Orr and 

Farrel (1999), which consists of a homogeneous dry sand with a deterministic unit weight 

of 318.5 kN/mγ = . Ten effective friction angles φ′  (for dry sand, 0c′ = ) are obtained 

from triaxial tests conducted on samples of this homogeneous sand and the results are 

listed in Table 3.2. The ground water is assumed to be well below any topsoil and 

disturbed ground such that it has negligible effects on the shallow foundation design. The 

maximum allowable settlement is set at 25 mm for this foundation design. 

 
Table 3.2: Triaxial test results of effective friction angle (data from Orr and Farrell 1999) 

 

Test No. o( )φ′  

1 33.0 
2 35.0 
3 33.5 
4 32.5 
5 37.5 
6 34.5 
7 36.0 
8 31.5 
9 37.0 

10 33.5 
 

 

Statistical Characterization of Uncertainty in Noise Factors 

Bootstrapping for characterizing uncertainty in sample statistics 
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In geotechnical engineering practice, soil parameters are usually derived with a 

small sample, thus the derived sample statistics (such as mean and standard deviation) are 

often subjected to error. These derived sample statistics, which are required in reliability 

analysis and design, are often uncertain and should be modeled as random variables. To 

characterize the uncertainty in these sample statistics, non-parametric bootstrap method 

may be used (Luo et al. 2013). Bootstrapping is a re-sampling technique that yields an 

estimate of the mean and standard deviation of the sample statistics.   

In reference to Figure 3.2, the procedure for bootstrapping is summarized below 

(Bourdeau and Amundaray 2005; Luo et al. 2013): 

 (1)  Based on the original sample A (with k elements or data points), a large number 

(N) of re-samples, *,   = 1, jA j N , are formed by “random sampling with 

replacement,” which means that each element (for example, *
,1ja ) of *

jA  can 

assume the value of any of the elements of A.  

(2)  For each re-sample, *
jA , the statistics of interested iX  (e.g., mean and standard 

deviation) are computed. 

(3)  The mean ( iXμ ) and standard deviation ( iXσ ) of statistics iX  can be computed 

once Steps 2 has been repeated N times.  

 
With only 10 data of φ′  listed in Table 3.2, there is uncertainty concerning the 

mean and standard deviation derived from this sample. Thus, bootstrapping method is 

applied to evaluate the uncertainty of the sample mean and standard deviation.  
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Figure 3.2: Illustration of bootstrap procedure for characterizing uncertainty  

in sample statistics 
 

While not shown here, it took less than 10,000 bootstrap samples to obtain 

converged results in this study. With N = 10,000, the histograms of the mean ( Sμ ) and 

standard deviation ( Sσ ) of φ′ is obtained as shown in Figure 3.3. Both Sμ  and Sσ  can be 

approximated well with a normal distribution in this example. Table 3.3 shows the mean 

and standard deviation of both Sμ  and Sσ .  
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Figure 3.3: Probability distribution of sample statistics of φ′ : (a) mean; (b) standard 
deviation 
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Table 3.3: Sample statistics of effective friction angle φ′  by bootstrapping method 

 
Uncertain variables o( )Sμ  o( )Sσ    

Mean  34.40 1.84 
Std. dev.   0.59 0.33 

 

It can be found that the variation of sample mean Sμ  is quite negligible (COV of 

Sμ  ≈ 1.7%), while the variation of sample standard deviation Sσ  is large (COV of Sσ  ≈ 

17.9%). This suggests that the standard deviation of soil parameters estimated from a 

small sample is usually not precise (i.e., having a large variation), while the sample mean 

is generally quite precise, which is consistent with the statistical theory. 

 

Statistical characterization of model uncertainty 

Model uncertainty is often significant in a geotechnical analysis. In fact, Zhang et 

al. (2009) has demonstrated that a geotechnical design that did not include model 

uncertainty in the analysis could be un-conservative even if parametric uncertainty was 

fully characterized. The model uncertainty is usually calibrated using statistical methods 

(Phoon and Kulhawy 2005; Dithinde et al. 2011) if data is available. For example, a 

multiplicative model is often employed to describe the model uncertainty using a model 

bias factor (or model factor): 

 
observed value

                                                                            (3.7)
predicted value

o
Q

P

Q
BF

Q
= =

                              



 54

For the ULS capacity of shallow foundation, the predicted capacity is the 

calculated ULSR , while the observed capacity is the “interpreted failure load” obtained 

from full-scale field load test. In this chapter, the database of field load tests compiled by 

Akbas and Kulhawy (2009b) is used to compute the mean ( BFμ ) and standard deviation 

( BFσ ) of bias factor QBF . Then, the bootstrapping method is used to characterize the 

uncertainty in BFμ  and BFσ . A summary of the statistical characterization of BFμ  and 

BFσ  is provided in Table 3.4.  

 
Table 3.4: Sample statistics of model bias factor QBF  by bootstrapping method 

 
Uncertain variables

BFμ   BFσ   
Mean  1.010 0.203 

Std. dev. 0.033 0.034 
 
 

Table 3.5: Results from bootstrapping method for estimating uncertainty  
in statistics of a and b 

 
Uncertain variables aμ  bμ  aσ  bσ  abρ  

Mean 0.6992 1.7675 0.1549 0.9416 -0.7177 
Std. dev 0.0139 0.0845 0.0125 0.0794 0.0472 

 

For the SLS failure, the model uncertainty parameters are reflected in parameters 

a and b, in addition to the bias factor QBF . In this chapter, the mean ( aμ ) and standard 

deviation ( aσ ) of parameter a, the mean ( bμ ) and standard deviation ( bσ ) of parameter b, 

and the correlation coefficient ( abρ ) between a and b are calculated using the database 

compiled by Akbas and Kulhawy (2009a). To evaluate the possible variation in these 
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statistical parameters, the bootstrapping method is employed, and the results are shown in 

Table 3.5.  

 

Reliability-Based Robust Geotechnical Design 

 
An outline for reliability-based robust geotechnical design (RGD) is presented 

below, using shallow foundation design in cohesionless soil as an example. In reference 

to Figure 3.4, the RGD approach is summarized in the following steps (with 

commentaries): 

Step 1: Characterize the uncertainty in the sample statistics of noise factors 

(including both key soil parameters and model factors) and identify the design domain. 

This step is shown as the first two blocks in the left side of the flowchart shown in Figure 

3.4. For the design of shallow foundation in cohesionless soils, soil parameter φ′ , the 

ULS model factor QBF  and the two curve fitting parameters a and b of the SLS model 

are identified as noise factors. The uncertainty in the statistics (mean and standard 

deviation) of each of the noise factors may be estimated with bootstrapping method.  

In the geotechnical design of a square shallow foundation, the design parameters 

are the foundation width B and the embedment depth D. The design range for footing 

width B typically varies from a minimum of 1 m to a maximum value of 5 m (Akbas 

2007; Akbas and Kulhawy 2011). The minimum foundation embedment depth D is set at 

1 m based on the load level in this example (Coduto 2000), and the maximum depth is set 

at 2 m to minimize the disturbance to adjacent structures (Wang and Kulhawy 2008). For 
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a shallow foundation, the ratio of embedment depth to foundation width (D/B) is 

generally kept below 4. Of course, the engineer may have to consider local design 

concerns such as expansive soils, collapsing soils, frost heave, or construction issues. 

Thus, different constraints may be adopted to identify the domain of design parameters.  

For convenience of construction, the foundation dimensions are typically rounded 

to the nearest 0.1 m (Wang 2011). Thus, within the constraints of three geometric 

requirements, namely, 1 ≤ B ≤ 5; 1 ≤ D ≤ 2; (D/B) < 4, a finite number of designs (each 

represented by a pair of B and D) can be identified. For example, for the shallow 

foundation (Figure 3.1) considered in this chapter, the number of possible designs in the 

design domain is M ≈ 450.  

Step 2: For each design, determine the mean failure probability of the design and 

the standard deviation of the failure probability. This step is shown as the inner loop 

(Figure 3.4) that ends in the bottom block in the left side of the flowchart. In this chapter, 

the failure probability based on either ultimate limit state (ULS) or serviceability limit 

state (SLS) is used as a measure of system response. Recall that a design is considered 

robust if the variation of its system response caused by the uncertainty of noise factors is 

small. The variation of the failure probability is mainly caused by the variation of the 

derived statistics of the noise factors. Thus, in this step the mean and standard deviation 

(as a measure of robustness) of the failure probability are evaluated based on a modified 

point estimate method (PEM; Zhao and Ono 2000).  

When mean ( Sμ ) and standard deviation ( Sσ ) of φ′ , as well as mean ( BFμ ) and 

standard deviation ( BFσ ) of model factor QBF  are fixed values, the traditional reliability 
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analysis using, for example, first order reliability method (FORM; see Ang and Tang 

1984) will yield a fixed value for ULS failure probability. Of course, the resulting ULS 

failure probability will no longer be a fixed value if uncertainties exist in Sμ , Sσ , BFμ  

and BFσ , and they have to be treated as random variables. In such a scenario, the 

variation of the ULS failure probability can be obtained using PEM with 4 input random 

variables, Sμ , Sσ , BFμ  and BFσ . Detailed formulation for PEM with multiple input 

variables can be found in Zhao and Ono (2000). Similarly, the variation of the SLS 

failure probability is caused by uncertainty in the statistical moments of noise factors, and 

thus can be evaluated with 9 input random variables, including Sμ , Sσ , BFμ , BFσ , aμ , 

aσ , bμ , bσ  and abρ . Again, the PEM procedure by Zhao and Ono (2000) can be used to 

evaluate the variation of the SLS failure probability. 

The PEM approach requires an evaluation of the failure probability at each of a 

set of “estimating” points (or sampling points) of the input random variables. Thus, the 

computation of the failure probability needs to be repeated for a total of N = 7×k times, 

where k is the number of input random variables and the multiplier “7” represents the 

seven sampling points that are required in the seven-point PEM formulation by Zhao and 

Ono (2000). In each repetition, statistics of input random variables at each PEM 

estimating point must be assigned, and then the failure probability is evaluated using 

FORM. The resulting N failure probabilities (at the completion of the inner loop shown in 

Figure 3.4) are then used to compute the mean and standard deviation of the failure 

probability.  



 58

 
 

Inner loop:

Yes

Yes 

Outer loop: Repeat M times 
Complete  

repetitions for each
 of M designs? 

Identify all possible designs 
in the design domain 

Assign mean and std. dev. 
of each noise factor for 

each design based on PEM 
sampling requirement 

Compute the failure 
probability for each design 

using FORM  

Determine mean and std. 
dev. of failure probability for 

each design using PEM 

NoRepeat N times

START 

Multi-objective optimization 
using NSGA to establish 
Pareto Front considering 

safety, robustness, and cost 

DESIGN DECISION 

Characterize the 
uncertainties in the 

sample statistics of the 
noise factors 

Complete N 
repetitions as per 

PEM? 

Determine feasibility robustness 
for each design on Pareto Front 

No 

 
 

Figure 3.4: Flowchart illustrating robust geotechnical design of shallow foundation 
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Step 3: Repeat Step 2 for each of the M designs in the design domain. For each 

design, the mean and standard deviation of the failure probability are determined. This 

step is represented by the outer loop shown in Figure 3.4.  

Step 4: Perform a multi-objective optimization using non-dominated sorting 

genetic algorithm to establish a Pareto Front, followed by determination of feasibility 

robustness for choosing best design. This step is represents by the last two blocks (in the 

right side) of the flowchart shown in Figure 3.4. 

In the proposed RGD methodology, multi-objective optimization is required. In 

the illustrative example presented later, cost and design robustness are set as the 

objectives and safety (reliability) is achieved by means of a set of constraints. This is 

quite similar to the traditional reliability-based design except that the design robustness is 

explicitly considered as an additional objective. It is noted that the robustness in terms of 

standard deviation of the failure probability for each design is obtained in Step 3.  

The concept of Pareto Front is briefly introduced here. When multiple objectives 

(in this case, two objectives) are enforced, it is likely that no single best design exists that 

is superior to all other designs in all objectives. However, a set of designs may exist that 

are superior to all other designs in all objectives; but within the set, none of them is 

superior or inferior to others in all objectives. This set of optimal designs constitutes a 

Pareto Front (Ghosh and Dehuri 2004).  

Selection of a set of optimal designs that constitute Pareto Front is a multi-

objective optimization problem. In this chapter, the Non-dominated Sorting Genetic 

Algorithm version II (NSGA-II), developed by Deb et al. (2002), is used to establish the 
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Pareto Front, in which, the optimal designs are searched in the discrete design domain 

(Lin and Hajela 1992). 

 

Traditional Reliability-Based Design of Shallow Foundation 

 
The traditional reliability-based design of square shallow foundation is first 

presented herein to provide a reference. The spread foundation example is shown in 

Figure 3.1 and statistics of uncertain parameters are assumed with a fixed value (that is, 

taking only mean values of these statistics in Tables 3.3, 3.4, and 3.5). The probability of 

SLS and ULS failure for each design for a combination of vertical permanent load 

component of G and variable load of Q is determined using FORM. This analysis is 

repeated for all possible designs in the design space. For illustration purpose, the results 

(i.e., failure probabilities) are plotted only for designs with D = 1.0 m, 1.5 m and 2.0 m, 

as shown in Figure 3.5.  

It can be seen from Figure 3.5 that the probabilities of both ULS failure and SLS 

failure decrease with the increase of B and D. The probability of failure for ULS and SLS 

is quite similar. As the ULS failure probability requirement is more stringent than the 

SLS failure probability requirement, in this case, the former controls the design of 

shallow foundations, which is consistent with previous investigations (Wang and 

Kulhawy 2008; Wang 2011). 
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Figure 3.5: Probabilities of failure of selected designs with fixed mean and standard 
deviation of noise factors: (a) ULS failure; (b) SLS failure 
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In a traditional reliability-based design, the reliability is used as a constraint to 

screen for acceptable designs, and then the best design is attained by selecting the least-

cost design (Zhang et al. 2011). In this chapter, the procedure for cost estimation by 

Wang and Kulhawy (2008), described previously, is adopted. It should be noted that cost 

estimation is not the focus of this chapter, and that the proposed RGD approach is not 

dependent on any particular cost estimation method. In fact, any reasonable cost 

estimation methods can be used.   

In the example discussed herein (Figure 3.1), the reliability requirements defined 

in Eurocode 7 for foundation design, specifically, the target ULS reliability index 

3.8ULS
Tβ =  (corresponding to 57.2 10ULS

Tp −= × ) and the target SLS reliability index 

1.5SLS
Tβ =  (corresponding to 26.7 10SLS

Tp −= × ), are adopted (Wang 2011). If the 

minimum cost is the only criteria for selecting the “best” design after screening with 

reliability requirements, then the design with B = 1.9 m and D = 2.0 m will be selected.  

The traditional reliability-based design is predicated on the accuracy of the 

estimated statistics of soil parameters and model factors. To demonstrate the effect of the 

uncertainty of these estimated statistics on the reliability-based design, a series of 

analyses is performed. For demonstration purposes, the mean of each noise factor (soil 

parameters or model factor) is set at its sample mean and the standard deviation of each 

noise factor is assumed to vary in the range of 95% confidence interval.  

Although not shown here, the uncertainty in the statistics of SLS model factor has 

little effect on the final design, which is consistent with previous finding that the ULS 

failure controls the design. Thus, only the variation in standard deviation of φ′ , denoted 
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as Sσ , and the variation in standard deviation of QBF , denoted as BFσ , are considered. 

For illustration purposes, both Sσ  and BFσ  are assumed three different levels, namely, 

low, medium, and high variation. These three levels of variation are arbitrarily assigned 

to be at the lower bound of the 95% confidence interval, the mean value, and the upper 

bound of the 95% confidence interval.  

Table 3.6 shows the least cost designs that satisfy the target failure probability 

requirement ( 57.2 10ULS ULS
f Tp p −< = × ) at various levels of Sσ  and BFσ . The results show 

that the least cost designs are sensitive to the assumed Sσ  and BFσ . Under the lowest 

level of Sσ  and BFσ  (among all cases in Table 3.6), the least cost design costs 769.4 

USD, while it costs 1404.0 USD under the highest level of variation. Thus, in a 

traditional reliability-based design that uses target failure probability as a constraint, the 

selection of “best” design based solely on least cost is meaningful only if the statistics of 

noise factors (soil parameters and model factors) can be ascertained.   

 
Table 3.6: Least-cost designs under various standard deviation levels in noise factors 

 
o ( )Sσ  

BFσ  B (m) D (m) Cost (USD) 

1.12 0.148 1.6 2.0 769.4 
1.12 0.203 1.8 1.8 910.8 
1.12 0.260 1.9 2.0 1026.0 
1.84 0.148 1.8 2.0 936.5 
1.84 0.203 1.9 2.0 1026.0 
1.84 0.260 2.1 1.9 1200.1 
2.43 0.148 2.0 1.9 1104.0 
2.43 0.203 2.1 2.0 1216.9 
2.43 0.260 2.3 1.9 1404.0 
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Table 3.7: ULS failure probability of a given design (B = 1.9 m, D = 2.0 m) 
under different uncertainty levels in noise factors 

 

o ( )Sσ  
BFσ  B (m) D (m) 

ULS failure 

probability, ULS
fp  

1.12 0.148 1.9 2.0 2.01E-08 
1.12 0.203 1.9 2.0 1.95E-06 
1.12 0.260 1.9 2.0 4.68E-05 
1.84 0.148 1.9 2.0 6.83E-06 
1.84 0.203 1.9 2.0 6.36E-05 
1.84 0.260 1.9 2.0 3.83E-04 
2.43 0.148 1.9 2.0 1.30E-04 
2.43 0.203 1.9 2.0 4.77E-04 
2.43 0.260 1.9 2.0 1.50E-03 

 

If the standard deviation of noise factors is underestimated by a certain margin, 

then it is likely that an acceptable design (a design that meets ULS target failure 

probability) will no longer be satisfactory. For example, the design (B = 1.9 m and D = 

2.0 m) was acceptable (meeting the target failure probability) at the uncertainty level of 

Sσ = 1.84 o  and BFσ = 0.203. This design is re-analyzed with various levels of uncertainty. 

The results are shown in Table 3.7, which indicate that in many instances (where the 

uncertainty levels are higher than the level that was assumed in the previous design), the 

target ULS failure probability ( 57.2 10ULS
Tp −= × ) is no longer satisfied.  

 

Reliability-Based Robust Geotechnical Design 

 
One way to reduce the effect of the uncertainty of the statistical characterization 

of soil parameters and model factors in a reliability-based design is considering 

robustness explicitly in the design. In this section, the reliability-based RGD methodology 
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outlined previously is applied to the same shallow foundation design (see Figure 3.1). For 

this demonstration exercise, the statistics of the noise factors listed in Tables 3.3, 3.4, and 

3.5 are included in the analysis. 

As per the flowchart of the RGD procedure shown in Figure 3.4, the mean and 

standard deviation of the ULS failure probability, denoted as ULS
pμ  and ULS

pσ , respectively, 

can be obtained for all possible designs in the design space using PEM. Since ULS 

controls the design in this case, only the ULS failure probability is of concern here.  
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Figure 3.6: Mean ULS failure probabilities of selected designs considering variation in 
statistics of noise factors 
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As an example, Figure 3.6 shows the mean ULS failure probability ( ULS
pμ ) for 

selected designs with D = 1.0 m, 1.5 m and 2.0 m. Similarly, Figure 3.7 shows the 

standard deviation of the ULS failure probability ( ULS
pσ ) of selected acceptable designs 

with D = 1.0 m, 1.5 m and 2.0 m.  
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Figure 3.7: Standard deviation of ULS failure probabilities of selected acceptable designs 
considering variation in statistics of noise factors 

 

Because many designs that meet the safety requirement of 

57.2 10ULS ULS
f Tp p −< = ×  are associated with different levels of robustness (in terms of 

ULS
pσ ) and cost (which can be calculated using Eq. 3.6), a multi-objective optimization is 

needed.  
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NSGA-II algorithm to obtain Pareto Front 

As noted previously, the NSGA-II algorithm (Deb et al. 2002) is employed to 

search for the Pareto Front in the design space. The NSGA-II algorithm is summarized in 

the following (with reference to Figure 9). First, a random “parent population” P0 from 

the design space is created with a size of n. The term “parent population” is widely used 

in Genetic Algorithm (GA); here, it can be thought of as the first trial set of “optimal” 

designs. A series of genetic algorithm (GA) operations such as mutation and crossover are 

performed on “parent population” P0 to generate the “offspring population” Q0 with the 

same size of N. Then, an iterative process is adopted to refine the parent population (Lin 

and Hajela 1992). In the GA, each step in the iteration is termed as a “generation”. 

In the tth generation, the parent population Pt and the offspring population Qt are 

combined to form an intermediate population t t tR P Q= ∪  with a size of 2n. Non-

dominated sorting is next performed on Rt, which groups the points in Rt into different 

levels of non-dominated fronts. For example, the best class is labeled F1, and the second 

best class is labeled F2, and so on. The best n points are selected into parent population of 

the next generation, Pt+1. Using the scenario illustrated in Figure 3.8 as an example, if the 

number of points in F1 and F2 is less than n, they will all be selected into Pt+1. Then, if the 

number of points in F1 and F2 and F3 exceeds the population size n, the points in F3 are 

sorted using the “crowding distance” sorting technique (Deb et al. 2002), which aims to 

maintain the diversity in the selected points. Thus, the best points in F3 are selected to fill 

all remaining slots in the next population Pt+1. After obtaining Pt+1 in the tth generation, 
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Pt+1 is then treated as the parent population in the next generation and the process is 

repeated until Pt+1 is converged. The final, converged Pt+1 is the Pareto Front.  
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Figure 3.8: An Illustration of NSGA-II algorithm (modified after Deb et al. 2002) 
 

In the shallow foundation design example, this optimization with NSGA-II may 

be achieved by using target failure probability as a constraint and robustness and cost as 

objectives. Symbolically, this optimization can be set up as follows:  
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Find            d = [B, D] 

Subject to:  B ∈ {1.0m, 1.1m, 1.2m, … , 5.0m }  and  D ∈ {1.0m, 1.1m, 1.2m, … , 2.0m} 

57.2 10ULS ULS
p Tpμ −< = ×    

Objectives:  Minimizing the standard deviation of ULS failure probability ( pσ ) 

Minimizing the cost for shallow foundation.  

 
As with any Genetic Algorithm (GA) process, the design parameters (B and D in 

this case) are generated in the discrete space. The population size of 100 with 100 

generations is used in the NSGA-II optimization (Deb et al. 2002). Although not shown 

here, the points on the Pareto Front (a set of optimum designs) are initially very scattered, 

but gradually converge. For this shallow foundation design (Figure 3.1), converged 

results are obtained at 20th generation. At convergence, 62 “unique” designs are selected 

into the Pareto Front, as shown in Figure 3.9. It can easily be observed that there is an 

obvious trade-off relationship between cost and robustness. The obtained Pareto Front 

can be used as a design aid for the decision maker to select the “best” design based on the 

desired target cost or robustness level. 

 

Selection of best design based on feasibility robustness 

The Pareto Front shown in Figure 3.9 uses the standard deviation of the failure 

probability directly as a measure of robustness. While this Pareto Front provides a trade-

off relationship that can aid in making informed design decisions, it may be desirable to 
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use a relative measure of robustness, a more user-friendly index. Thus, the results shown 

in Figure 3.9 are further refined.  
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Figure 3.9: Converged Pareto Front for shallow foundation design obtained by NSGA-II 

based on two-objective (cost and robustness) 
 

“Feasibility robustness,” as defined by Parkinson et al. (1993), is the design that 

can maintain feasible (or safe) status relative to the nominal constraint for a definable 

probability as it undergoes variations. For the design example of shallow foundation, the 

ultimate limit state (ULS) requirement controls the design. In the safety constraint that 

requires the ULS failure probability to be less than the target probability, 

57.2 10ULS ULS
f Tp p −≤ = × , the failure probability ( ULS

fp ) at a given state is a random variable 
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that depends on the uncertainty in statistics of noise factors, and the target probability is a 

fixed value. Symbolically, feasibility robustness can be formulated as follows: 

 
0Pr[( ) 0]ULS ULS

f Tp p P− < ≥                                                                                    (3.8) 

 
where Pr[( ) 0]ULS ULS

f Tp p− <  is the probability that the ULS safety constraint is satisfied, 

and 0P  is an acceptable probability pre-defined by the designer. Thus, an index may be 

created for assessing the feasibility robustness.  

Determination of the probability Pr[( ) 0]ULS ULS
f Tp p− <  requires the knowledge of 

the distribution of ULS
fp , which is generally difficult to ascertain. Based on the previous 

studies by Most and Knabe (2010) and Luo et al. (2012b), the resulting histogram of the 

reliability index such as ULSβ (corresponding to ULS
fp ) caused by variance in sample 

statistics can be approximated with a normal distribution. Thus, an equivalent counterpart 

in the form of Pr[( ) 0]ULS ULS
Tβ β− > , where 3.8ULS

Tβ =  (corresponding to 57.2 10ULS
Tp −= × ), 

may be used to assess the level of feasibility robustness.   

The mean and standard deviation of ULSβ , denoted as βμ  and βσ  respectively, 

can be obtained using FORM integrated with PEM. Then, Eq. (3.8) can be replaced by: 

 

0Pr[( 3.8) 0] ( )ULS Pββ Φ β− > = ≥                                                      (3.9) 

 
where Φ  is the cumulative standard normal distribution function, and ββ  is defined as: 
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3.8β
β

β

μ
β

σ
−

=                                                                           (3.10) 

The term ββ  may also be used as an index of feasibility robustness. The 

relationship between ββ  and the cost for the 62 designs on the Pareto Front is shown in 

Figure 3.10. As expected, the results show that a design with higher feasibility robustness 

(higher ββ ) requires a higher cost. Thus, a trade-off between cost and robustness is 

obvious. It is noted that in the lower cost range, the curve is relatively flat, indicating that 

a small increase in cost can result in a large increase in feasibility robustness, which is 

cost-efficient. In the higher cost range, however, the slope is relatively sharp, indicating 

that it costs a lot more to raise robustness, which is not cost-efficient. 
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Figure 3.10: Cost versus feasibility robustness for all designs on Pareto Front 
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By selecting a target feasibility robustness level (
T

β
β ), the least-cost design 

among those on the Pareto Front can readily be identified. For example, when the target 

feasibility robustness is set at 
T

β
β = 2, which corresponds to an acceptance probability of 

0P = 97.72%, the least-cost design is B = 2.3 m and D = 2.0 m, which costs 1423.7 USD. 

The least cost designs of the shallow foundation corresponding to different target 

feasibility robustness levels are listed in Table 3.8. The feasibility robustness offers an 

easy-to-use quantitative measure for making an informed design decision considering 

cost and robustness after satisfying the safety requirements. 

 
Table 3.8: Selected final designs at various feasibility robustness levels 

 

ββ  0P  B (m) D (m) Cost (USD) 

1 84.13% 2.1 1.9 1200.1 
2 97.72% 2.3 2.0 1423.7 
3 99.87% 2.6 2.0 1763.7 
4 99.997% 3.1 2.0 2409.8 

 
 

Additional Discussion: Effect of Spatial Variability 

 
Recent studies (e.g., Schweiger and Peschl 2005; Griffiths et al. 2009; Luo et al. 

2011; Luo et al. 2012) have shown that the traditional reliability analysis without 

considering spatial variability may yield an overestimation of the failure probability in 

many geotechnical problems. Thus, it would be of interest to examine the effect of spatial 

variability of soil parameters on the reliability-based robust design of shallow 

foundations. To demonstrate the procedure to consider the effect of spatial variability, the 
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ten effective friction angles φ′  (for dry sand, 0c′ = ) listed in Table 3.2 are assumed to 

have been obtained from triaxial tests conducted on samples taken at an equal interval of 

1 m in this homogeneous sand. 

To characterize the soil spatial variability, it is essential to determine a 

fundamental statistical indicator of spatial variability, namely, scale of fluctuation θ , 

which is defined as the distance within which the soil properties show relatively strong 

correlation from point to point (Vanmarcke 1977 & 1983). Determination of scale of 

fluctuation θ  generally requires a large amount of in-situ or experimental data taken over 

a wide range at site of concern, and many approaches have been proposed to determine θ  

(e.g., DeGroot and Baecher 1993; Baecher and Christian 2003; Fenton and Griffiths 

2008). However, in this example, as the sample size of effective friction angles φ′  is 

quite small, it is difficult to determine the scale of fluctuation of φ′ . Nevertheless, 

according to Vanmarcke (1977), the vertical scale of fluctuation of φ′ of a site may be 

approximately estimated as: ( )0.8 dθ =  where d  is the average distance between 

intersections of fluctuating property and its trend function. Based on the limited data in 

Table 3.2, d  is estimated to be about 2 m, and thus θ ≈ 1.6 m, which is within the typical 

range of vertical scale of fluctuation, θ = 0.5 m to 2.0 m, reported by Cherubini (2000). 

In the absence of sufficient data, for demonstration purpose, the vertical scale of 

fluctuation θ  of φ′  is assumed to be a lognormally distributed random variable with a 

mean of 1.6 m and a COV of 0.3 (Luo et al. 2012). On the other hand, the horizontal 

scale of fluctuation is generally much larger than the foundation dimension, typically in 
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the range of 10 m to 30 m; thus, the effect of the horizontal spatial variability may be 

neglected for the design of shallow foundations (Cherubini 2000).  

One way to consider the effect of spatial variability is through a variance 

reduction technique. Vanmarcke (1983) pointed out that the averaged variability of soil 

properties over a large domain can be approximated with an equivalent variance. The 

averaged variance of soil parameter considering the spatial average effect can be obtained 

as: 

 
 2 2 2σ σΓ = Γ ⋅                                                                                                      (3.11) 

where σ = the standard deviation of soil parameter of concern (φ′  in this study); σΓ  = the 

reduced standard deviation of soil parameter considering the spatial average effect; and 

Γ  is the reduction factor defined as (assuming an exponential autocorrelation structure): 

2
2

2 21
1 exp

2

L L

L

θ
θ θ

−    Γ = − +       
                                                                (3.12) 

 
where L is the characteristic length, which is generally problem-dependent. For a shallow 

foundation, the characteristic length may be approximately estimated as the sum of the 

embedment depth and the foundation width, = L D B+  (Cherubini 2000). 

To consider the effect of spatial variability in the reliability-based robust design, 

the scale of fluctuation θ  may be treated as an additional noise factor, and accordingly 

the statistical characterization of the uncertainty of this noise factor is included in the 

RGD approach (Figure 3.4). The procedure to derive the Pareto Front is the same as 

presented previously. It is noted, however, that the standard deviation of φ′  used in 
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reliability analysis is automatically reduced to account for the spatial averaging effect 

through Eq. (3.11).  

Figure 3.11 shows the feasibility robustness index ββ  for all designs on the 

derived Pareto Front that considers the effect of spatial variability. As a reference, the 

data from Figure 3.10 (in which the effect of spatial variability is not considered) are also 

plotted in Figure 3.11.  
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Figure 3.11: Comparison of cost versus feasibility robustness for all designs on Pareto 

Fronts derived with and without considering spatial variability 
 

It can be observed from Figure 3.11 that for the same design (associated with a 

“unique” cost), the feasibility robustness index ( ββ ) considering spatial variability is 
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higher than that without considering spatial variability. At a given cost, the percent 

difference in feasibility robustness caused by the effect of spatial variability is more 

profound in the lower cost range. As the cost increases, the effect of spatial variability 

becomes less significant, especially at the higher cost range.   

 
Table 3.9: Selected final designs at various feasibility robustness levels  

considering spatial variability 
 

ββ  0P  B (m) D (m) Cost (USD) 

1 84.13% 1.9 1.9 1011.9 
2 97.72% 2.0 2.0 1119.4 
3 99.87% 2.3 1.9 1404.0 
4 99.997% 2.7 2.0 1885.0 

 

The least cost designs of this shallow foundation at different feasibility robustness 

levels considering spatial variability effect are listed in Table 3.9. Compared to the results 

shown in Table 3.8, at the same feasibility robustness level the design considering spatial 

variability costs less than that without considering spatial variability. Thus, for the 

example shallow foundation studied, the design that achieves the same target feasibility 

robustness tends to be slightly over-designed (at a slightly higher cost) if spatial 

variability is not considered. At the same cost level (which implies the same design, as 

each point in Figure 3.11 represent a unique design), the computed feasibility robustness 

is slightly lower if spatial variability is not considered. The implication is that the design 

that does not consider spatial variability is biased toward conservative (or safer) side in 

the shallow foundation design presented this chapter. 
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Summary 

 
In this chapter, the concept of robustness is incorporated into the reliability-based 

design of shallow foundations to deal with the uncertainty in the estimated sample 

statistics of noise factors (including both key soil parameters and model factors), which is 

often a major problem in a reliability-based design. The bootstrapping technique is used 

to quantify the uncertainty in the sample statistics of both soil parameters and model 

factors, and the PEM integrated with FORM analysis is used to derive the resulting 

variation in the system response. The significance of design robustness has been 

demonstrated with a reliability-based design of shallow foundations. As demonstrated in 

this study, there often exists no single best design when multiple design objectives are 

imposed. Thus, an optimal set of designs, called Pareto Front, in which no design is 

inferior to others with respect to all objectives, is the best of what an engineer can obtain 

under such a scenario. The Pareto Front specifies a trade-off relationship between cost 

and robustness, after satisfying all safety requirements. This trade-off relationship enables 

the engineer to make a more informed design decision. Finally, it has been demonstrated 

through the example design of shallow foundations that NSGA-II is an effective and 

efficient tool for performing multi-objective optimization for establishing a Pareto Front.  
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CHAPTER FOUR 

ROBUST GEOTECHNICAL DESIGN OF BRACED EXCAVATIONS IN CLAYS* 

 
Introduction 

 
Designing a braced excavation system (i.e., soil-wall-support system) in an urban 

environment in the face of uncertainty is a risky geotechnical operation, in that the 

“failure” of such a system (defined as the collapse of the excavation system or exceeding 

the allowable wall and ground settlement) can have detrimental effects on adjacent 

structures, with accompanying adverse social and economic effects. One recent 

excavation failure occurred in Singapore (Committee of Inquiry 2005) in which a stretch 

of the Nicoll Highway collapsed after the retaining wall that supported the excavation for 

a Mass Rapid Transit (MRT) tunnel failed. In this collapse, four lives were lost, damages 

ran into the millions and the project was delayed for approximately a year. 

The deterministic design approach is commonly employed in the traditional 

design of braced excavations. There are two types of design requirements: the stability of 

the excavation system itself (known as the stability requirement) and the protection of 

adjacent structures against excavation-induced damage (known as the serviceability 

requirement). Two failure modes must be evaluated when ensuring stability: the basal 

heave failure and the push-in failure (Ou 2006). For the serviceability requirement, the 

______________________ 

*A similar form of this chapter has been accepted at the time of writing: Juang CH, Wang L, Hsieh HS, 
Atamturktur S. (2013). Robust Geotechnical Design of braced excavations in clays. Structural Safety, 
doi:10.1016/j.strusafe. 2013.05.003. 
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wall and/or ground deformations caused by the excavation must be evaluated and 

controlled to prevent damage to the adjacent structures. Thus, the owner or regulatory 

agency often establishes the limiting factors of safety for stability requirements and the 

limiting maximum wall and/or ground settlement as a means of preventing damage to 

adjacent infrastructures, respectively (e.g., JSA 1988; PSCG 2000; TGS 2001; Ou 2006). 

The uncertainties in the soil parameters, however often makes it difficult to determine 

with certainty if both stability and serviceability requirements in a braced excavation are 

satisfied. As such, the engineer often faces conflicting goals in either overdesigning a 

structure for greater liability control or under-designing the structure to cut costs. To 

address this dilemma, the authors present a Robust Geotechnical Design (RGD) 

framework for purposes of designing braced excavations in clays.   

Originally proposed by Taguchi (Taguchi 1986) for product quality control in 

manufacturing engineering, the concept of robust design has been used in mechanical and 

aeronautical designs (Chen et al. 1996; Seepersad et al. 2006; Marano et al. 2008; Paiva 

2010). Any successful robust design concept must encompass both easy-to-control 

parameters, such as the dimension of a diaphragm wall and layout of struts for braced 

excavations, and hard-to-control factors such as uncertain soil parameters, which are 

referred to herein as noise factors. In that the uncertainty of these noise factors cannot be 

fully eliminated, the design objective becomes one of reducing the effects of the 

uncertainty of these noise factors on the response of the system. Therefore, the purpose of 

the robust design method is to derive a design that is robust against the effects of the 

uncertainty of these noise factors, thereby reducing the variability of the system response.  
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In this chapter, we describe our implementation of a robust geotechnical design 

(RGD) of braced excavations in a multi-objective optimization framework, within which 

all possible designs were first screened for safety requirements (including, in this chapter, 

stability and serviceability requirements). For the designs that satisfy the safety 

requirements, the cost and robustness were evaluated, and those designs were then 

optimized with the two objectives of minimizing the cost and maximizing the robustness. 

Because the two objectives are often conflicting, as is shown later, the result of the 

optimization is not a single best design, but rather a set of non-dominated designs (Deb et 

al. 2002), the collection of which is known as the Pareto Front (Cheng and Li 1997). The 

Pareto Front yields a trade-off relationship between the cost of the braced excavation and 

the robustness of that excavation design, which may be used to select the most preferred 

design. 

 

Deterministic Model for Excavation-Induced Wall Deflection 

 
The maximum wall deflection caused by a braced excavation is often used as a 

basis for field control to prevent damage to the adjacent infrastructures for two reasons. 

First, it is generally easier to achieve a greater accuracy in predicting the maximum wall 

deflection, as opposed to predicting ground settlement (Hashash and Whittle 1996; Kung 

et al. 2007), during the design. Second, it is easier to measure accurately the wall 

deflection than to measure ground settlement during the construction. Also because the 

maximum wall deflection is known to correlate with the maximum ground settlement 
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(Mana  and Clough 1981; Kung et al. 2007), we selected the maximum wall deflection as 

the system response of concern for the robust design of the braced excavation system.  

In this study, a computer code TORSA (Taiwan Originated Retaining Structure 

Analysis) created by Trinity Foundation Engineering Consultants (TFEC) Co. and based 

upon on the beam-on-elastic foundation theory, was adopted as the deterministic model 

for predicting the maximum wall deflection. This commercially available code has been 

validated and widely used by engineers in the design of braced excavations in Taiwan 

(Sino-Geotechnics 2010). In the beam-on-elastic foundation approach to simulating soil-

structure interaction, the Winkler model is often applied, in which the retaining wall is 

simulated as a continuous beam of unit width, with the soils treated as springs (Ou 2006; 

Sino-Geotechnics 2010). In TORSA, the Winkler model is solved with the finite element 

method (FEM). The selection of TORSA as our deterministic model in this study is 

mainly motivated by its proven accuracy in predicting the maximum wall deflection, its 

execution speed, and the ease with which it is implemented into our robust design 

framework (to be elucidated later).  

For a braced excavation in clay, the system response (i.e., maximum wall 

deflection) was determined to be the most sensitive to the normalized undrained strength 

( /u vs σ ′ ) and the normalized modulus of horizontal subgrade reaction ( /h vk σ ′ ) (Hsiao et 

al. 2008; Ou 2006). These two parameters are usually quite uncertain due to soil 

variability and measurement error. Thus, they are treated as “noise factors” in the context 

of the robust design. 
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Methodology for Robust Design of Braced Excavations 

Robust design concept and parameters setting 

In a typical braced excavation design, the geometric dimensions (length, width, 

and depth) of the excavation are determined by either the structural engineer or the 

architect. For a braced excavation in clay using a diaphragm wall, the length of the wall 

(L), the thickness of the wall (t), the vertical spacing of the struts (S), and the strut 

stiffness (EA) are the design parameters. In the context of robust design, these are known 

as “easy to control” parameters because they are specified by a designer. The soil-related 

input parameters that exhibit a dominant effect on the maximum wall deflection in a 

braced excavation are the normalized undrained shear strength ( /u vs σ ′ ) and the 

normalized modulus of horizontal subgrade reaction ( /h vk σ ′ ), as noted previously. 

Besides, the surcharge behind the diaphragm wall ( sq ) was also considered as a noise 

factor. They are treated as noise factors that exhibit significant variability and are “hard 

to control” (meaning that it is almost impossible for the designer to remove entirely the 

uncertainty in these parameters).  

The purpose of a robust design, particularly in the case of a braced excavation, is 

to desensitize the system response of a “satisfactory” design to noise factors. Let us 

assume a braced excavation design scenario where the system response of concern is the 

maximum wall deflection (δhm). The noise factors are /u vs σ ′ , /h vk σ ′  and sq , and the 

design parameters are L, t, S and EA. A design is considered “satisfactory” if it satisfies 

all the stability requirements (e.g., the computed factor of safety FSj greater than the 

specified minimum FSj) and the serviceability requirement (the computed δhm value less 
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than the specified allowable value). Within our Robust Geotechnical Design, the goal is 

to derive a satisfactory design by selecting a proper set of design parameters (L, t, S, EA) 

so that the system response, in the form of the maximum wall deflection (δhm), is 

sufficiently robust to withstand the variation in noise factors ( /u vs σ ′ , /h vk σ ′ , sq ). 

 

Developing a general robust geotechnical design (RGD) procedure 

The objective of the proposed RGD approach, an example of which is illustrated 

with a flowchart as shown in Figure 4.1 for a braced excavation, was to identify the most 

optimal design (or a set of optimal designs) that was not only “satisfactory” (i.e., meeting 

the safety requirements) but also “robust” and “cost-efficient.” The RGD framework is 

summarized as follows: 

In Step 1, we defined the problem of concern and classify the design parameters 

and the noise factors for all input parameters of the braced excavation system, as 

described in the previous section.  

In Step 2, we then characterized the uncertainty of noise factors and specified the 

design domain. For a braced excavation in clay, the noise factors in the context of robust 

design in this study include /u vs σ ′ , /h vk σ ′  and sq . The uncertainty in these noise factors 

is often quantified using the available data from site investigation and experiences with 

similar projects. 

For the design parameters, the design domain should be defined based upon their 

typical ranges, augmented with the local experiences. These design parameters should be  
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Figure 4.1: Flowchart of the proposed robust geotechnical design of braced excavations 

Outer loop: 

Inner loop: 
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specified in discrete numbers for convenience in construction. Thus, the design domain 

will consist of a finite number (M ) of designs. 

In Step 3, we then derived the mean and variance of the system response for 

robustness evaluation. Recall that a smaller variation (in terms of standard deviation) in 

the system response indicates a greater robustness. Thus, to assess the robustness of a 

design, the mean and standard deviation of the system response should be evaluated. In 

this chapter, the Point Estimate Method (PEM; Harr 1987 and Luo et al. 2013) is used to 

derive the mean and standard deviation of the system response in conjunction with 

TORSA.  

Deriving this mean and variance was most challenging in the context of solving a 

braced excavation problem, as the “performance function” for the excavation-induced 

response is a finite element model without an explicit function. It involved coupling of 

the PEM-based reliability analysis (implemented through a Matlab program) and the 

deterministic FEM code (TORSA), as shown in the inner loop in Figure 4.1. For a given 

set of design parameters, the initial FEM model (the baseline model that is evaluated with 

only the mean values of the noise factors) is used, and the model file is written and saved 

as FEM*.i (input file name), which contains all necessary data for a FEM analysis with 

TORSA. In this chapter, the PEM approach was used to evaluate both mean and standard 

deviation of the system response. The PEM required evaluating the system response at 

each of the N sets of the sampling points of the noise factors (N= 2n, where n is the 

number of input noise factors). In each repetition, the values of noise factors for each set 

of the PEM sampling points were assigned. The corresponding new FEM*.i input file for 
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each of the N set of sampling points was generated by modifying the initial FEM*.i input 

file. The system response for each of the N set of sampling points was obtained by 

automatically running TORSA (the FEM code) in the Matlab environment with the 

corresponding FEM*.i input file. The post-processing was undertaken upon completion 

of the TORSA solution process, and the system response was extracted from the 

corresponding FEM*.o output file generated from the input file. The resulting N system 

responses were then used to evaluate the mean and standard deviation of system response 

based upon the PEM formulation. 

In Step 4, we repeated our analysis in Step 3 for each of M designs in the design 

space. Here, the design parameters in the FEM*.i input file were modified automatically 

in each of the repetitions of Step 3 and the mean and standard deviation of the system 

response for each design in the design space were determined. This step is represented by 

the outer loop shown in Figure 4.1. 

In Step 5, we performed the multi-objective optimization considering the design 

objectives and design constraints to seek for robust design solutions. The objectives of 

this robust design scheme involve two distinct criteria: one involves enhancing the 

robustness, which is accomplished by minimizing the variation in the system response 

(maximum wall deflection), and the other involves enhancing the economic efficiency by 

minimizing the cost. The safety requirements, which include the stability and 

serviceability requirements, are implemented as the design constraints, which can be 

specified either deterministically or probabilistically.  
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Note that a unique optimal solution at which all objectives are optimized is highly 

unlikely for an optimization problem with multiple, and often conflicting, objectives. 

Rather, a Pareto Front composed of non-dominated solutions is usually obtained. A non-

dominated solution is the one in which the improvement of the design in any one 

objective can only be achieved at expense of the others (Deb et al. 2002). As noted in 

previous chapter, Figure 2.3 depicts a possible optimization outcome in a bi-objective 

space where the Pareto Front lies on the boundary of the feasible region. Thus, the 

optimal solutions on the Pareto Front are the “best compromise solutions” that are 

optimal to both objectives (Cheng and Li 1997). In this chapter, the authors used a Non-

dominated Sorting Genetic Algorithm version-II (NSGA-II) to obtain these optimal 

solutions, the procedures of which are detailed in Deb et al. (2002). Using the NSGA-II 

procedure, a Pareto Front (a set of optimal designs) can be established, which defines a 

“sacrifice-gain” trade-off relationship between cost and robustness.  

If the desired cost/robustness level is specified, the Pareto Front is readily 

applicable to select the most preferred design. Should there be no available information 

about the desired level of cost/robustness, a knee point concept (described later) may be 

used to select the single most preferred design based on the “sacrifice-gain” relationship 

displayed by the Pareto Front. 

 

Estimation of the Cost in a Braced Excavation 

 
Cost-efficiency must be considered in the design of any geotechnical system 

(Wang et al. 2008; Zhang et al. 2011). The total cost of braced excavation includes the 
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costs of the diaphragm wall, costs of the bracing system, costs of excavation/disposal of 

the dirt, costs of dewatering of the site, and costs of placement of the requisite 

instrumentation. Because the site dimension and excavation depth is fixed for any such 

project, the costs for the last three terms are equal and the major optimization item for the 

cost of the braced excavation is the cost of the supporting system (including both the 

diaphragm wall and bracing system). Thus, the total cost for the supporting system Z is 

the summation of the cost of the diaphragm wall and the bracing system, which is 

expressed as:  

w bZ Z Z= +                                                                                                         (4.1) 

The cost of the diaphragm wall is proportional to the volume of the wall. As the 

perimeter length of a specific site is a fixed number, the cost of the diaphragm wall is 

determined by the length and thickness of wall, which is expressed as: 

w wZ c D L t= × × ×                                                                                              (4.2) 

where Zw is the cost of the diaphragm wall; cw is the unit cost of diaphragm wall per m3; 

D is the perimeter length of the excavation (m); L is the length of the wall (m); and t is 

the thickness of the wall (m). The unit cost of diaphragm wall cw (including both material 

and labor costs) is approximately NT $10, 000/m3 in local practice (i.e., braced 

excavation in clays in Taipei), which corresponds to approximately 330 USD/m3 

(assuming that the currency exchange rate between the US Dollar and the New Taiwan 

Dollar is 1:30, i.e., NT $1, 000 ≈ USD $33).  

The cost of the bracing system (e.g. struts consisting of H-section steels) is 

proportional to the total weight of the bracings. The total weight of the bracing, in turn, is 
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proportional to the number of vertical levels of the struts and the area of the excavation, 

which is expressed as:  

b bZ c A k n= × × ×                                                                                               (4.3) 

where Zb is the cost of the bracing system; cb is the unit cost of the bracing system per m2 

per level; A is the area of the excavation site (m2); k is the number of struts per level; n is 

the number of vertical levels of struts in that bracing system. The unit cost of the bracing 

system cb (including both material and labor costs) is approximately NT $1, 000/m3 in 

local practice, which corresponds to approximately 33 USD/m3. Thus, in sum, the total 

cost for the supporting system Z is a function of all design parameters. Five strut 

alterations per level were considered in our design example (presented later) for purposes 

of determining the strut stiffness: H300, H350, H400, 2@H350 and 2@H400 (note: 

2@H350 means two H350 struts used per level). The cost difference between H300, 

H350 and H400 was generally negligible since the main cost incurred was that for the 

installation of the struts themselves, the cost of which is related to the number of struts 

per level. This expense, in turn, corresponded to the design parameter of the strut 

stiffness per level.  

The cost in a braced excavation for purposes of robust design optimization 

described previously is based on the extensive experience of TFEC, a specialty design-

built engineering firm, for braced excavations in Taiwan using the diaphragm walls. This 

is used as an example to illustrate the RGD methodology; other suitable cost schemes can 

be used in conjunction with the proposed RGD methodology.  
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Robust Geotechnical Design of Braced Excavation – Case Study 

Brief summary of the example of braced excavation 

To illustrate the proposed RGD method, we used a case study of braced 

excavation design in clays, with the soil profile at the excavation site a homogenous clay 

layer with the ground water table set at 2 m below the ground surface. The clay is 

assigned a deterministic unit weight of 1.9 ton/m3. The excavation site, the dimensions of 

which are pre-defined by architectural and structural requirements, is rectangular in shape 

with a length of 40 m and a width of 25 m. The final excavation depth is 10 m and the 

diaphragm wall with multiple struts was employed as the retaining structure. There are 

three uncertain noise factors in the design. The normalized undrained strength ( /u vs σ ′ ) is 

assumed to have a mean of 0.32 and a COV of 0.2, and the normalized modulus of 

horizontal subgrade reaction ( /h vk σ ′ ), is assumed to have a mean of 48 and a COV of 0.5. 

These two soil parameters are assumed to be positively correlated with a correlation 

coefficient of 0.7. The surcharge behind the wall is assumed to have a mean of 1 ton/m 

and a COV of 0.2. These statistics are estimated based on local experience (Ou 2013, 

personal communication) and published literatures (Phoon et al. 1995; Hsiao et al. 2008; 

Luo et al. 2013).  

As noted previously, the length (L) and the thickness of the wall (t), the vertical 

spacing of the struts (S), and the strut stiffness (EA) are the design parameters. In this 

particular example of braced excavation in a uniform clay layer, the length of the wall L 

typically ranges from 20 m to 30 m with increments of 0.5 m, and the thickness of wall t 

ranges from 0.5 m to 1.3 m with increments of 0.1 m. The strut stiffness EA typically has 
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five strut alternations per level: H300, H350, H400, 2@H350 and 2@H400. As a design 

routine, the preload of the strut is a fixed number depending upon the type of strut. For 

example, as in a previous design case in which H300 was assigned a preload of 50 tons, 

H350 was assigned a preload of 75 tons, and H400 was assigned a preload of 100 tons 

(Sino-Geotechnics 2010). For a typical excavation project undertaken in clay soil, the 

first level of strut is typically set at 1 m below the ground surface, and the last level at 3 

m above the bottom of the excavation, with the location of all struts set at approximately 

1 m above the excavation depth at that stage, except for the last stage (Kung et al. 2007; 

Sino-Geotechnics 2010). Thus, there are four practical choices in the vertical spacing of 

the struts S: 1.5 m, 2 m, 3 m and 6 m, which corresponds to the number of struts 5, 4, 3 

and 2 as shown in the layout of struts in Figure 4.2. Based upon the combination of the 

design parameters (L, t, S, EA), there are totally 3780 possible discrete designs in the 

design space. 

 

Optimization of braced excavation to obtain Pareto Front 

For each of all the designs in the design space, PEM is used in evaluating both the 

mean and standard deviation of the maximum wall deflection given the noise factors, and 

the cost estimation method described previously is used in computing the cost of the 

supporting system of each design. With all these data, a thorough multi-objective 

optimization, using NSGA-II, which considers safety, robustness and cost, is then 

undertaken. 
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Figure 4.2: Four different strut layouts for design of braced excavations: (a) 6 m spacing;  

(b) 3 m spacing; (c) 2 m spacing; (d) 1.5 m spacing  
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In this configuration, the stability and serviceability constraints are enforced to 

ensure the safety of the braced excavation, and then the standard deviation of wall 

deflection is minimized to ensure robustness, and the cost-efficiency is achieved by 

minimizing the costs for the supporting system of the braced excavation. A formulation 

for the robust design of this braced excavation using NSGA-II is illustrated in Figure 4.3.  

The population size of 100 with 100 generations (note: these are the limits chosen 

for optimization) is adopted in the NSGA-II optimization. It is noted that the points on 

the Pareto Front were initially very scattered, but they gradually converged to the final 

Pareto Front. The converged results were obtained at 20th generation (or iterations) for 

this braced excavation design example, which yielded 25 “unique” non-dominated 

optimal designs. The parameters of these designs are listed in Table 4.1, which 

collectively constitute the Pareto Front shown in Figure 4.4.  

The Pareto Front shown in Figure 4.4 offers a trade-off relationship between 

robustness (measured in terms of standard deviation of wall deflection) and cost of the 

excavation system (or more precisely, the supporting system). Reducing the standard 

deviation of the wall deflection (and enhancing the robustness) requires an increase in the 

cost of the supporting system. It should be noted that all designs on Pareto Front are 

satisfactory with respect to the deterministic safety constraints. 
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Figure 4.3: Formulation of the robust geotechnical design of braced excavations with 
NSGA-II  

Given: LE = 40 m (length of excavation) 

BE = 25 m (width of excavation) 

Hf = 10 m (final excavation depth) 

Find the value of Design Parameters:   

t (wall thickness), L (wall length), S (strut spacing), EA (strut stiffness) 

Subject to Constraints:      

t ∈ {0.5 m, 0.6 m, 0.7 m, 0.8 m, …, 1.3 m}  

L ∈ {20 m, 20.5 m, 21 m, 21.5 m, …, 30 m} 

S ∈ {1.5 m, 2 m, 3 m, 6 m} 

EA ∈ {H300, H350, H400, 2@H350, 2@H400} 

Mean factor of safety for the push-in and basal heave ≥ 1.5  

Mean maximum wall deflection ≤ 7 cm (0.7%Hf ) 

Objective: 

Minimizing the standard deviation of the maximum wall deflection (cm) 

Minimizing the cost for the supporting system (USD) 
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Table 4.1: List of the designs on the Pareto Front with a deterministic constraint  

 

No. t (m) L (m) S (m) EA 
Robustness 

(cm) 
Cost (× 106USD) 

1 0.5 20 3 H350 3.11 0.53 
2 0.5 21 3 H350 3.09 0.55 
3 0.5 20 2 H350 2.59 0.56 
4 0.5 21 2 H350 2.58 0.58 
5 0.5 20 1.5 H400 1.29 0.59 
6 0.6 20 2 H400 1.07 0.65 
7 0.6 20 1.5 H400 1.02 0.68 
8 0.8 20.5 3 H400 1.01 0.80 
9 0.8 20 2 H400 0.97 0.82 

10 0.8 20 1.5 H400 0.96 0.85 
11 1 20.5 6 2@H350 0.84 1.01 
12 1 21 6 2@H350 0.83 1.03 
13 1.1 20 3 2@H350 0.80 1.14 
14 1.1 20.5 3 2@H350 0.79 1.17 
15 1.2 20.5 6 2@H350 0.77 1.19 
16 1.2 21 6 2@H350 0.75 1.21 
17 1.2 20.5 3 2@H350 0.72 1.25 
18 1.2 21 3 2@H350 0.71 1.28 
19 1.2 21.5 3 2@H350 0.70 1.30 
20 1.2 21 2 2@H350 0.69 1.35 
21 1.2 21.5 2 2@H350 0.68 1.37 
22 1.2 22 2 2@H350 0.67 1.40 
23 1.2 21.5 1.5 2@H350 0.66 1.44 
24 1.2 22.5 1.5 2@H350 0.65 1.49 
25 1.2 24 1.5 2@H350 0.64 1.57 

 
Note: Robustness is evaluated in terms of the standard deviation of the maximum wall 
deflection; a smaller standard deviation indicates a greater robustness. 
 

By definition, the Pareto-Front includes two groups of designs: (1) of those with 

an identical level of robustness, the most inexpensive design is selected; (2) of those with 

an identical level of cost, the most robust design is selected. The decision maker 

(designer) can then choose a design from this Pareto Front, as any design point is “non-
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dominated” with respect to these two objectives. Once the designer specifies a cost level, 

selecting the design with least standard deviation of the wall deflection within the cost 

level on Pareto Front will provide the most robust design. For example, if the limiting 

budget for a supporting system is 1× 106 USD, the design with parameters t = 0.8 m, L = 

20 m, S = 1.5 m and EA = H400 is the most robust design (No. 10 design in Table 4.1) 

within that cost level. Similarly, the most preferred design may also be selected based on 

a desired level of robustness. Further discussion of the most preferred design is presented 

in the section that follows. 
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Figure 4.4: The Pareto Front optimized for both cost and robustness  
using deterministic constraints 
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Selection of the most preferred design based on concept of knee point 

Although the trade-off relationship in terms of a Pareto Front provides valuable 

information to the designer with which they may make an informed decision by explicitly 

considering cost and robustness, the designer may prefer to locate a single most optimal 

design rather than a set of designs. Consequently, additional steps may be necessary to 

refine this decision-making based upon the Pareto Front for the most preferred solution.  

In many cases, in a Pareto Front generated from a bi-objective optimization, there 

exists a most preferred point, known as the knee point (Deb and Gupta 2011). Any design 

(i.e., any point on the Pareto Front) apart from the knee point requires a large sacrifice in 

one objective to achieve a small gain in the other objective. Thus, the knee point may be 

defined as the point on the Pareto Front that has the maximum reflex angle computed 

from its neighboring points, as shown in Figure 4.5(a). The reflex angle denotes the bend 

of the point on the Pareto Front from its left to right side, which provides a measure of 

the gain-sacrifice in the trade-off relationship. The reflex angle is measured from its two 

neighboring points, however, which is only a local property and may not extend to the 

entire front. To mitigate this locality issue, Deb and Gupta (2011) used the normal 

boundary intersection method as illustrated in Figure 4.5(b) to further define the knee 

point. On the Pareto Front in Figure 4.5(b), two boundary points, A and B, are used to 

construct a straight boundary line. For any point on the boundary line z, a corresponding 

point (Pz) on the Pareto Front along the normal ( n̂ ) course of the boundary line can be 

located. The knee point is the point ( z*P ) on the Pareto Front that has the maximum 

distance from its corresponding point z* on the boundary line (Deb and Gupta 2011). 
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Figure 4.5: Illustration of the reflex angle and the knee point identification  
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Figure 4.6: Example of the knee point identification based upon the obtained Pareto Front 
(for robustness, a smaller standard deviation indicates a greater robustness)  
 

Based upon the definition of the knee point from the concept of the normal 

boundary intersection method (Deb and Gupta 2011), the knee point of the Pareto Front 

in Figure 4.4 is determined by searching for the point farthest from the boundary line. 

The knee point in Figure 4.6 has the following parameters: t = 0.6 m, L = 20 m, S = 1.5 m 

and EA = H400 (No. 7 design in Table 4.1), with a cost of 0.68× 106 USD. As shown in 

Figure 4.6, below this cost level, a slight cost increase can significantly improve the 

robustness (reducing the standard deviation of the wall deflection). Above this cost level 

(e.g., the cost of the design is further increased sharply), however, the effect of enhancing 
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the robustness (reducing the standard deviation of the wall deflection) becomes markedly 

inefficient and ineffective. 

 

Further Discussions 

 
In our analysis described in the previous section, the serviceability requirement of 

any braced excavation was enforced using a deterministic limiting value. Rather than 

using a deterministic constraint, the client may prefer to adopt the reliability constraint in 

terms of the probability of exceedance of a specific limiting value (Goh et al. 2005; Hsiao 

et al. 2008). For braced excavation, the serviceability limit state may be defined as: 

() hm limy δ δ= −                                                                                                    (4.4) 

where hmδ  is the predicted maximum wall deflection (a random variable) and limδ  is the 

specified limiting maximum wall deflection (usually as a fixed value in the codes). 

In practice, however, the target probability of exceedance of the specific limiting 

wall deflection value is not defined explicitly in the design codes and published literatures. 

Thus, in this section, we describe how to establish Pareto Front using various target levels 

of probability of exceedance (PE) as constraints during the optimization process. Through 

the adoption of various exceedance levels, we can incorporate a degree of flexibility in 

the robust design process to allow for consideration of allowable risk (i.e., the 

consequence of the serviceability failure).  

For demonstration purposes, the robust design optimization is performed with 

various reliability constraints, implemented with three levels of probability of exceedance 
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(PE < 10%, 20%, and 40%). The resulting Pareto Fronts under these constraints are 

illustrated in Figure 4.7, with the detailed design parameters for each design this figure 

listed in Table 4.2. It is noted that the Pareto Front for the case of PE < 20% is almost 

identical to that for case of PE < 10% except that one additional point is identified (No. 2 

design in Table 4.2). Similarly, the Pareto Front for the case of PE < 40% happens to 

generate also one additional point (No. 1 design in Table 4.2).  
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Figure 4.7: The optimized Pareto Fronts at various constraint levels of probability of 
exceedance (for robustness, a smaller standard deviation indicates a greater robustness) 
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Table 4.2: List of the designs on the Pareto Front with a reliability constraint (PE < 40%)  
 

No. t (m) L (m) S (m) EA 
Robustness 

(cm) 
Cost (× 106USD) 

1 0.5 20 1.5 H350 2.28 0.59 
2 0.6 20 3 H400 1.32 0.61 
3 0.6 20 2 H400 1.07 0.65 
4 0.6 20 1.5 H400 1.02 0.68 
5 0.8 20.5 3 H400 1.01 0.80 
6 0.8 20 2 H400 0.97 0.82 
7 0.8 20 1.5 H400 0.96 0.85 
8 1 20 6 2@H350 0.92 0.99 
9 1 20.5 6 2@H350 0.84 1.01 

10 1 21 6 2@H350 0.83 1.03 
11 1.1 20 3 2@H350 0.80 1.14 
12 1.1 20.5 3 2@H350 0.79 1.17 
13 1.2 20.5 6 2@H350 0.77 1.19 
14 1.2 21 6 2@H350 0.75 1.21 
15 1.2 20.5 3 2@H350 0.72 1.25 
16 1.2 21 3 2@H350 0.71 1.28 
17 1.2 21.5 3 2@H350 0.70 1.30 
18 1.2 21 2 2@H350 0.69 1.35 
19 1.2 21.5 2 2@H350 0.68 1.37 
20 1.2 22 2 2@H350 0.67 1.40 
21 1.2 21.5 1.5 2@H350 0.66 1.44 
22 1.2 22.5 1.5 2@H350 0.65 1.49 
23 1.2 24 1.5 2@H350 0.64 1.57 

 
Note: For the constraint of PE < 20%, all but design No. 1 are on the Pareto Front; for the 
constraint of PE < 10%, all but designs No. 1 and No. 2 are on the Pareto Front.  

 

Based on the procedure described previously, the knee points obtained for the 

Pareto Fronts with the constraints of PE < 20% and PE < 40% are identical. This knee 

point is a design represented by the following design parameters: t = 0.6 m, L = 20 m, S = 

1.5 m and EA = H400 (No. 4 design in Table 4.2), which costs 0.68× 106 USD. It is 

interesting to note that this knee point is identical to the knee point obtained previously 
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using the deterministic constraint. If the constrain of PE < 10% is adopted, a different 

knee point is obtained, which has the following design parameters: t = 1.0 m, L = 20.5 m, 

S = 6 m and EA = 2@H350 (No. 9 design in Table 4.2) with a cost of 1.01× 106 USD.  

Finally, it should be noted that the above analysis is based on a limiting wall 

deflection specified in a Chinese code (PSCG 2000) for a Level III protection of adjacent 

infrastructures. However, the entire robust geotechnical design (RGD) methodology is 

easily adaptable for other desired limiting wall deflection requirements. 

 

Summary 

 
This chapter described a robust geotechnical design (RGD) methodology for 

addressing the design uncertainties inherent in braced excavations (particularly the 

uncertainties of geotechnical parameters and surcharges). In the robust design system, the 

purpose is to minimize the effects of these uncertainties through the careful adjustment of 

the design parameters. Within the RGD framework, a multi-objective optimization 

procedure is used to select designs that are optimal in terms of both cost and robustness, 

while satisfying all requisite safety requirements. These safety requirements can either be 

enforced deterministically or probabilistically. As a result, a set of optimal, non-

dominated designs, collectively known as Pareto Front, can be obtained. In this regard, 

the established Pareto Front, along with its corresponding knee point is shown as a 

valuable design tool for robust design of braced excavations. 
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 CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 
Conclusions 

 
The following conclusions are drawn from the results of the study on the robust 

geotechnical design of drilled shafts presented in Chapter II:  

(1) The determination of least cost design in a traditional reliability-based design 

is meaningful only if the statistics of soil parameters can be accurately 

estimated. If the COV and correlation coefficient values are underestimated or 

overestimated by a certain margin, then there is a significant chance that an 

acceptable design (a design that satisfies ULS and SLS constraints based on 

fixed statistics values) will no longer be satisfactory. Thus, it is necessary to 

consider the robustness against the variation in the estimated statistics of soil 

parameters. 

(2) Robustness as one of the design objectives has been illustrated. In fact, the 

concept of robustness is incorporated into the reliability-based design to deal 

with the uncertainty in the estimated sample statistics of soil parameters. In 

the context of robust geotechnical design of drilled shafts for axial load in 

sand, B (diameter) and D (depth or length) are considered as the design 

parameters (denoted as d), and the soil parameters φ′ and K0 are considered as 

the noise factors (denoted as z). In the reliability-based design, the safety and 

serviceability requirements are satisfied by meeting the constraint, 
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( ) 0.0047SLS SLS
f Tp p≤ =d,z . It is noted that probability of the SLS failure 

( )SLS
fp d, z  is a random variable, the value of which depends on both design 

parameters d and noise factors z. The essence of robustness design is to 

minimize the variation of ( )SLS
fp d, z  caused by the uncertainty in the estimated 

sample statistics of soil parameters by adjusting the design parameters. 

(3) To consider the robustness of the design against the uncertainty in the 

estimated sample statistics of soil parameters, the standard deviation of the 

SLS failure probability ( )SLS
fp d, z  is adopted as a measure of robustness. The 

uncertainty of the estimated COV of a given noise factor may be estimated 

from a range of COV published in the literature. The variation in the failure 

probability can be computed using the PEM integrated with FORM analysis. 

(4) The robustness is considered along with cost as the design objectives, and as a 

result, a Pareto Front is established through non-dominated sorting. This 

Pareto Front gives a trade-off relationship between cost and robustness. To 

improve the decision making process further, the concept of feasibility 

robustness is adopted. Through an implementation of feasibility robustness, 

the best design can be selected from the Pareto Front based on the designer’s 

objectives. 

 

The following conclusions are drawn from the results of the study on the robust 

geotechnical design of shallow foundations presented in Chapter III:  
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(1) Quantification of uncertainties in soil parameters and geotechnical models is a 

prerequisite for a reliability-based design. Due to inexactness of geotechnical 

models and lack of soil parameters data, uncertainties exist in the derived 

statistics of model factors and soil parameters, which compromises the 

effectiveness of the reliability-based design. The reliability-based robust 

geotechnical design (RGD) methodology can reduce the effect of these 

unavoidable uncertainties (including uncertainties in both soil parameters and 

model factors) by achieving a certain level of design robustness, in addition to 

meeting safety and cost requirements. 

(2) This study demonstrates that the bootstrapping technique is an effective tool 

for characterizing the uncertainty in the sample statistics derived from a small 

sample. Through the analysis, it can be found that the variation of sample 

mean is quite negligible, while the variation of sample standard deviation is 

large. This suggests that the standard deviation of soil parameters estimated 

from a small sample is usually not precise. With the gained information 

through bootstrapping analysis, the variation in the resulting failure 

probability of a given design caused by uncertainties in the sample statistics 

can be evaluated. 

(3) When multiple design requirements (including safety, cost, and robustness) 

are imposed, a single best design often does not exist. In fact, an optimization 

with multiple design objectives usually leads to a Pareto Front, which is a set 

of optimal designs that are superior to all other designs in the design space, 
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but within the set, no design is dominated by any other designs. By applying 

the RGD methodology implemented in a multi-objective genetic algorithm 

framework, a Pareto Front is derived, which describes a trade-off relationship 

between cost and robustness at a given safety (reliability) level. The derived 

Pareto Front and the associated feasibility robustness index enable the 

engineer to make an informed design decision. 

(4) The effect of soil spatial variability can also be considered in the RGD 

methodology by treating the scale of fluctuation as an additional noise factor. 

The results show that at the same feasibility robustness level, the design 

considering spatial variability costs less than that without considering spatial 

variability. The implication is that the design that does not consider spatial 

variability is biased toward conservative (or safer) side in the shallow 

foundation design presented this chapter. 

  

The following conclusions are drawn from the results of the study on the robust 

geotechnical design of braced excavations presented in Chapter IV:  

(1) In the design of braced excavation, the maximum wall deflection is often 

measured and used as a field control, as an excessive wall deflection not only 

causes a serviceability problem but also signals an increasingly higher chance 

of failure of the wall and bracing system. Thus, the maximum wall deflection 

is used as the system response of concern for robust design of braced 

excavations.  In this chapter, RGD methodology is further refined by treating 
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the variation of maximum wall deflection caused by uncertainties in soil 

parameters and surcharges as a robustness measure. 

(2) The RGD methodology is demonstrated as an effective tool through an 

illustrative example using industrial-strength finite element code (TORSA) for 

design of braced excavations. By enforcing design robustness in the face of 

uncertainties, which is not considered in any traditional design methods, the 

variation of the system response (in terms of maximum wall deflection) 

caused by the input parameter uncertainties is controlled by the designer 

through a tradeoff consideration of cost efficiency and robustness, while 

safety is guaranteed. The safety requirements can either be enforced 

deterministically or probabilistically.  

(3) It is interesting to note that robust design allows for reduction in the variation 

of the system response of concern without having to eliminate the sources of 

the uncertainties in the designed system. In the braced excavation design, such 

robustness is achieved by carefully adjusting the design parameters of both the 

diaphragm wall and the bracing system in a given set of design settings (i.e., 

excavation geometry and excavation depth). As in many engineering problems, 

inevitably, higher cost is involved when the design robustness is sought. Thus, 

a tradeoff consideration based upon the Pareto front obtained through multi-

objective optimization is required. Together with use of a knee point concept, 

a single most preferred design may be obtained. The established Pareto Front, 

along with its corresponding knee point, has proven as an effective tool for 
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selection of the most preferred design in the design of braced excavation 

system. 

 

Recommendations 

 
To further expand the work presented in this dissertation, a number of research 

topics may be undertaken, which include the following: 

(1) It should be of interest to further investigate the applicability of the developed 

robust design framework in the design of other geotechnical systems such as 

subway tunnels, embankments, reinforced soil structures, geothermal piles 

and off-shore structure foundations.  

(2) The design robustness in this dissertation study is measured with the standard 

deviation of the system response caused by the uncertainty in the noise factors. 

Other measures such as signal-to-noise ratio (Phadke 1989), vulnerability 

function (Ait Brik et al. 2007) and reliability sensitivity (Zhang et al. 2005) 

should be investigated for their suitability for use in the developed 

geotechnical robust design framework.  

(3) It should be of interest to further investigate the robust design of braced 

excavations using the tied-back and soil-nailed shoring systems. Alternative 

finite element codes for predicting the excavation-induced wall and ground 

responses may be adopted and possible implementation of the robust 

geotechnical design framework in a spreadsheet may be explored. 
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(4) It should be of interest to further extend the developed robust design 

framework into a robust maintenance framework for geotechnical systems. 

Possible integration of life-cycle performance assessment within the robust 

maintenance optimization framework may be explored. 
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