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Abstract

This dissertation consists of three projects in the area of group testing. The method of group testing,

through the use of pooling, has proven to be an efficient method of reducing the time and cost associated

with screening for a binary characteristic of interest, such as infection status. The salient feature of group

testing that provides for these gains in efficiency is that testing is performed on pooled specimens, rather than

testing specimens one-by-one. In Chapter 1, we present a general introduction of group testing. Typically, the

statistical literature surrounding group testing has investigated the implementation of pooled testing for the

purposes of either case identification or estimation. In this dissertation, we mainly focuses on the estimation

problem which involves the development of regression models that relate individual level covariates to testing

responses observed from pooled specimens.

Primarily, the existing research in the area of estimation in group testing has focused on parametric

regression models, where the shape of the link function is assumed as known and only a finite number of

regression parameters has to be estimated. Recently, for the purpose of obviating the specification of the

link function and increasing the flexibility of modeling, nonparametric group testing regression models have

been studied. In Chapter 2, we propose a new nonparametric estimation procedure using a local likelihood

approach. For easy illustration, in this part we consider the situation where each individual is assigned to

exactly one pool and only this pooled specimen is tested. Further, we assume the assay used for screening is

perfect. Both of these two assumptions will be relaxed in the rest chapters of this dissertation. We show that

our proposed estimator enjoys an asymptotic normal distribution with the optimal nonparametric estimation

rate. Finite sample performance of the method is exhibited via some simulated examples and a real data

analysis.

To pursue a more suitable technique of modeling group testing data, in Chapter 3, we develop a

general semiparametric framework which allows for the inclusion of only not one continuous covariate, but

also multiple explanatory variables, all variants of decoding information, and imperfect testing. The asymp-
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totic properties of our estimators are presented and guidance on finite sample implementation is provided.

We illustrate the performance of our methods through simulation and by applying them to chlamydia and

gonorrhea data collected by the Nebraska Public Health Laboratory as a part of the Infertility Prevention

Project.

In Chapter 4, we focus on the evaluation of misclassification effect of testing pools which are con-

structed according to any types of group testing algorithms. The existing assumption regarding them are

somehow restrictive. If they are invalid, the estimation procedure can lead to severely biased estimator. In

this work, we relax previously made assumptions regarding testing error rates by acknowledging the under-

lying mechanistic structure of the diagnostic test being employed. For easy illustration of this methodology,

we mainly concentrate in parametric regression methods and propose a general estimation framework that

allows for the analysis of data arising from all group testing strategies. The finite sample performance of

our proposed methodology are investigated through simulation and by applying our techniques to hepatitis

B data from a study involving Irish prisoners. Through these studies, we show that our methods can result

in more efficient parameter estimates, when compared to competing procedures that make use of individual

level data, at a fraction of the cost of data collection.

Before proceeding to the main body of this dissertation, I would like to clarify that the notations

defined in this work are self-contained in each separated chapter.
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Chapter 1

Introduction

The origin of group testing is typically attributed to Dorfman (1943), which proposed the use of

pooling as a means to reduce the time and cost associated with screening military inductees for syphilis

during World War II. In general, group testing begins by collecting specimens (e.g., blood, urine, plasma,

etc.) from individuals which are then physically combined to form a pooled specimen. The pooled specimen

is then tested for the infection of interest and the observed response provides pertinent information pertaining

to both estimation and classification; i.e., it provides evidence of whether or not the pool contains a positive

member(s). Since its advent, group testing has been implemented for the purposes of screening for infectious

diseases (Cardoso et al., 1998; Busch et al., 2005; Picher et al., 2005; Jirsa, 2008; Lewis et al., 2012; Van et

al., 2012), discovering lead compounds in drug discovery (Remlinger et al., 2006), identifying rare mutations

in genetics (Gastwirth, 2000), and detecting viral agents in the case of bioterrorism (Schmidt et al., 2005).

These techniques have been used to screen millions of blood donations, both in the United States (US) and

abroad, for the human immunodeficiency virus, hepatitis B virus, and hepatitis C virus (Hourfar et al., 2008;

Stramer et al., 2013). Further, group testing is also routinely used to screen for a cadre of other infectious

diseases; e.g., Lindan et al. (2005) notes that 12 percent of the medical screening labs in the US use pool

testing for chlamydia screening.

In many infectious disease screening applications, it is of primary interest to diagnose each individ-

ual as either being positive or negative for the infection of interest. To facilitate this goal, the classification

protocol presented in Dorfman (1943) suggested testing the initial master pooled specimens first. If a master

pool tested negative then each contributing individual should be diagnosed as negative. On the other hand, if

a master pool tested positive then it should be “decoded” by retesting each contributing specimen separately.
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(1)

(1), (2), (3), (4), (5), (6), (7), (8)

(2) (3) (4) (5) (6) (7) (8)

(a)

+

- - -- + - --

(1), (2), (3), (4), (5), (6), (7), (8)

-

(b)

Figure 1.1: Possible outcomes of testing eight individuals via Dorfman decoding procedure. In (a), the master
pool tests negative, and hence all of them are diagnosed as negative. In (b), the master pool tests positive.
Then each individual is retested separately. In this case, only the fifth individual is diagnosed as positive.

This testing protocol is commonly referred to as Dorfman decoding (also see Figure 1.1). Due to its simplic-

ity, Dorfman decoding has been widely implemented in practice. Since this seminal work, many variants of

Dorfman’s decoding algorithm have been proposed in an effort to reduce testing cost and/or increase classifi-

cation accuracy. For example, Litvak et al. (1994) studied the halving algorithm (see Figure 1.2), which also

starts with testing the initial master pool. If it tests negative, like Dorfman decoding, all the individuals are

diagnosed as negative. However, whenever a pooled specimen tests positive, instead of retesting individuals

separately, it proceeds to randomly assign their specimens into two smaller pools of equal size and then test

these two new pooled specimens until every individual is diagnosed as either positive or negative. For other

(1), (2), (3), (4), (5), (6), (7), (8)

(5) (6)

+

-

+ -

(1), (2), (3), (4)

+

(5), (6), (7), (8)

(5), (6) (7), (8)

+ -

Figure 1.2: A possible outcome of testing eight individuals via halving. It starts with testing the master pool.
During the process, each pool that tests positive is then divided into two equally-sized pools which are tested
one-by-one until all the individuals are diagnosed as either positive or negative. In this case, only the fifth
individual is diagnosed as positive.

testing algorithms, such as array testing (Phatarfod & Sudbury, 1994), see Kim et al. (2007) for a thorough re-

view. In addition, group testing strategies have also been developed for the purposes of preserving anonymity

in estimation studies (Hammick & Gastwirth, 1994) and for quality control purposes (Gastwirth & Johnson,
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1994; Johnson & Pearson, 1999). In virtually all of the aforementioned situations, the associated group test-

ing algorithm may require that a number of the individuals’ specimens be assigned to multiple pools and/or

be tested individually.

The other goal of group testing is for estimation. The use of group testing techniques, as a cost

effective data collection mechanism, for conducting inference was first proposed by Thompson (1962), and

has since received a great deal of attention in the statistical literature. Many of the earlier works in this area use

group testing data to estimate population level characteristics, such as the proportion of infected individuals;

for a review see Bilder & Tebbs (2005) and the references therein. More recently, authors have developed

binary regression models which relate pool response data to individual-level covariate information through a

specified link function; see Vansteelandt et al. (2000), Bilder & Tebbs (2009), Chen et al. (2009), and Huang

& Tebbs (2009). To obviate the specification of the link function, Delaigle & Meister (2011) proposed the first

nonparametric binary regression technique for group testing data that allow for the incorporation of a single

continuous explanatory variable. They introduced a local moment estimator and showed that its asymptotic

squared error enjoys the optimal rate. However, this method ignores the heterogeneity in the variance of the

group testing responses. Delaigle & Hall (2012) extended this method to the case of homogeneous grouping;

i.e., instead of randomly assigning individuals to each group, specimens of individuals who have similar

covariate information are pooled together. By doing this, we can gain more information about the underlying

population and hence produce an estimator with a smaller asymptotic squared error. However, this pooling

strategy is not quite commonly in practice. In Chapter 2, we focus on the random grouping mechanism and

propose a new nonparametric estimator of the regression function based on a locally weighted likelihood

approach. Pointwise asymptotic normality of our estimator is established. Further, simulation results show

that our methodology is as good if not better than the existing procedure in terms of comparing the mean

squared error in prediction of the estimates.

All of the aforementioned regression methods proceed under the assumption that each of the indi-

viduals are assigned to exactly one pool, and make use of the testing responses observed from assaying these

pools to perform inference. Therefore, these regression techniques can not be used to analyze data arising

from classification studies. Merging the goals of estimation and classification, Xie (2001) and Zhang et al.

(2013) allow for the incorporation of additional retesting information gained from decoding positive pools.

Further, Zhang et al. (2013) illustrated that regression parameter estimates obtained from incorporating de-

coding information are more efficient than those based on individual level testing data, when the assay being

used is imperfect. That is to say, these authors were able to show that more precise inference can be realized

3



through the analysis of group testing data than can be obtained through the use of individual level testing data,

and at a fraction of the data collection cost. These two works are proceeded through the use of traditional

parametric models, such as a logistic model. A natural question would be how to develop a nonparamet-

ric model to incorporate classification for estimation. Considering all the nonparametric methods mentioned

above, one drawback is that they mainly considered the case where only one continuous covariate is available.

To cover multiple covariates, a straightforward extension is through the use of multivariate kernel functions.

However, this approach suffers from the so-called “curse-of-dimensionality”; i.e., convergence rate of the

estimator decreases exponentially with rise in the number of covariates. In Chapter 3, we propose a general

framework for modeling all variants of group testing data while allowing for the incorporation of multivariate

covariates and accounting for the misclassification effects. The new model can be viewed as a generalization

of the traditional single index model. The single index model was proposed by Ichimura (1993). It bridges

the gap between parametric and nonparametric modeling; i.e., it keeps the interpretability of the parametric

model and the flexibility of a nonparametric method while avoiding the “curse-of-dimensionality”. Due to

these, single index models are classified as semiparametric and have gained a lot of popularity during the

past two decades; see Härdle et al. (1993), Klein & Spady (1993), Xia et al. (2002), Xia (2006), Zhu & Xue

(2006), Wang et al. (2010), Cui et al. (2011) and the references therein. Unlike these literature, we do not

have a response available for each individual, instead, we only have the availability of the high-structured

testing responses obtained form assaying pools of individuals.

The last chapter of this dissertation mainly concerns with the evaluation of assay measurement

error. In the statistical literature, there are two measurements of the testing error rates of an assay; i.e.,

sensitivity and specificity. Sensitivity (specificity) is defined as the probability that a specimen tests positive

(negative) given that it is truly positive (negative). In all the aforemetioned studies, these two rates are

commonly assumed as known constants both of which do not depend on the pool size. However, in many

applications, a diagnose result of a specimen is based on a measurement of its concentration level of a certain

biological marker. If the measured concentration is above (below) a pre-determinated threshold, the specimen

is diagnosed as positive (negative). In group testing, many individuals’ specimens are physically mixed

together. One very possible situation is that a positive specimen can be easily diluted by many other negative

ones. This dilution effect can highly affect the diagnostic accuracy. McMahan et al. (2013) developed a

method to evaluate pool specific testing error rates for the regression analysis of testing responses of initial

master pools. In this chapter, we generalized this idea to allow for testing responses obtained from all variants

of group testing algorithms.

4



Chapter 2

A New Nonparametric Group Testing

Regression Estimation

2.1 Introduction

Group (pooled) testing arises frequently in scientific studies. Pooling specimens for the purpose of

estimating the prevalence of disease has proven to be an efficient method of reducing time and cost associated

with sampling. For example, rather than testing blood specimens collected from individuals separately, group

testing specifies that the specimens are first pooled and the resulting pooled specimen is then tested for the

existence of the characteristic. This type of testing has also been used in pollution detection (Nagi & Raggi,

1972; Wahed et al., 2006) and contamination and toxicity studies (Lennon, 2007).

In group testing studies, experimenters often collect data on auxiliary variables that are easy and

cost effective to measure. In most of these studies, the probability curve p(x) = pr(T = 1|X = x) is

of interestwhere T is the binary response and X is a covariate. Delaigle & Meister (2011) proposed a

nonparametric estimator of p(x) when the grouping mechanism is homogeneous, i.e. groups are constructed

using similar values of the covariate. In practice, constructing pools in this fashion may not be feasible. In

this article we consider the case where individuals are grouped randomly with observed binary responses are

of the form T ∗j , j = 1, ..., J where T ∗j = max1≤i≤nj
Tij , where Tij is the status of the ith individual in the

jth pool. Tijs are not observed although all the accompanying covariates Xij , i = 1, ..., nj , j = 1, ..., J are

measured. Parametric analysis of binary data of this type has been addressed by Vansteelandt et al. (2000),
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Bilder & Tebbs (2009), Chen et al. (2009), and Huang & Tebbs (2009) among others. A thorough literature

review followed by a nonparamtric estimation method for p(x) based on a method of moment argument is

presented by Delaigle & Meister (2011). They obtained an expression for the pointwise asymptotic mean

square error of their estimator and provided a detailed bandwidth selection method.

In this Chapter we address the estimation of p(x) using a likelihood approach. We examine a

localization procedure that provides an asymptotically normal estimator of p(x) which maintains high finite

sample accuracy. Our numerical results show that, for the examined examples, the proposed procedure has the

same type of finite sample properties compared with Delaigle & Meister (2011) when group sizes are equal

and the regression function p is smooth. However, when the group sizes are not equal, our method appears

to have better finite sample properties compared with theirs. The same trend seems to be true when p(x) is

more fluctuant. It is noteworthy that the function p(x) may not be smooth in all situations. For example,

when examining the probability of an adverse reaction based on a drug dosage, the reaction probability can

sharply increase or even jump at certain dosage thresholds. In addition, unequal grouping is not uncommon

when one uses individuals in clusters of units in a system. For example, one may consider each class as a

group when there are multiple schools of different sizes and levels in a school system from which the data

are collected.

The remainder of this Chapter is organized as follows. In Section 2.2 we describe our procedure

and state the main asymptotic results. Section 2.3 is devoted to a simulation study and a real data analysis

followed by a short discussion. All the proofs are listed in the Appendix A.

2.2 A Semi-Local Likelihood Method

We describe the proposed estimator followed by its properties in this section. We assume (Tij , Xij), i =

1, ..., nj ; j = 1, ..., J are i.i.d. random vectors. In what follows we assume that all of the covariates, Xijs,

and the pool testing responses T ∗j s, as defined in the previous section, are available. For any fixed x, and a

user defined finite bandwidth h, we define Ix = [x − h, x + h] and Zij = XijIx(Xij), where Ix(Xij) = 1

if Xij ∈ Ix, and Ix(Xij) = 0 otherwise. Then the mixed pdf of the Zs is given by

fZ(z) =


∫
Icx
f(u)du if z = 0

f(z) if z ∈ Ix \ 0
,
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where Icx is the complement of the set Icx, Ix \ 0 is the set Ix excluding 0 and f(·) is the density function of

an X . Then Tij | Zij = z is a Bernoulli random variable with pr(Tij = 0|Zij = z) = r(z) where

r(z) =

 r1 if z = 0

q(z) if z ∈ Ix \ 0
,

with r1 =
∫
Icx
q(u)f(u)du/

∫
Icx
f(u)du and q(z) = 1− p(z). It is easy to see that 0 < r1 ≤ supx q(x), and

r1 → q∗ where q∗ = E[q(X)], as h→ 0. Note that r(z) can also be written as

r(z) = r
1−Ix(z)
1 × q(z)Ix(z).

Now, we can write the log-likelihood of T ∗j , j = 1, ..., J , conditional on Zijs as

1

N

J∑
j=1

{
(1− T ∗j )

nj∑
i=1

log r(Zij) + T ∗j log
[
1− exp

( nj∑
i=1

log r(Zij)
)]}

.

For small h and a fixed x, a Taylor expansion gives the following approximation

log r(Zij) ≈ Ix(Xij)g(x) + Ix(Xij)g
′(x)(Xij − x) + (1− Ix(Xij)) log r1

= Ix(Xij)θ1 + Ix(Xij)(Xij − x)θ2 + (1− Ix(Xij))θ3, (2.1)

where g(·) = log q(·), θ1 = g(x), θ2 = g′(x), θ3 = log r1. Define θ = (θ1, θ2, θ3)>, Xj = (X1j , . . . , Xnjj)
>

and X̃j =
∑nj

i=1 (Ix(Xij), Ix(Xij)(Xij − x), 1− Ix(Xij))
>. Equation (2.1) provides a local linear approx-

imation of log r(·) using theXij in Ix, in the event that noXij in Ix, then no local linear approximation would

be performed. Then, we can write the local log-likelihood as

l(θ) =
1

N

J∑
j=1

{
(1− T ∗j )θ>X̃j + T ∗j log

[
1− exp

(
θ>X̃j

)]}
ωh(Xj , x), (2.2)

where ωh(Xj , x) =
∏nj

i=1Kh(Xij − x)δx(Xij), δx(Xij) = Ix(Xij)/
∑nj

i=1 Ix(Xij), which is defined to be

0 if the denominator is 0, and Kh(·) = h−1K(·/h) for a symmetric and continuous density function K(·).

Note that if p(·) has sufficient smoothness, we can use a local polynomial approximation for g(x)

in (2.1) and estimate the derivatives of g up to a desired order. However, since in practice the order of the

smoothness of p(·) is usually unknown and the local linear estimator behaves better than the local constant
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estimator (Fan & Gijbels, 1996), we present the local linear approximation case here.

The Hessian matrix of l(θ) is given by

l′′(θ) = − 1

N

J∑
j=1

T ∗j exp(X̃>j θ)

(1− exp(X̃>j θ))
2
X̃jX̃

>
j ωh(Xj , x).

Since l′′(θ) is negative definite with probability 1 when N →∞, the local log-likelihood (2.2) has a unique

maximizer with respect to θ with probability 1. Let θ̂ be the maximizer of l. Then the first component of θ̂,

ĝ(x), is our proposed estimator of g(x). Subsequently, our estimator of p(x) is given by 1− exp(ĝ(x)).

Remark 2.2.1. The log-likelihood of T ∗j s conditional on Xijs instead of Zijs is

1

N

J∑
j=1

{
(1− T ∗j )

nj∑
i=1

log q(Xij) + T ∗j log
[
1− exp

( nj∑
i=1

log q(Xij)
)]}

.

One could suggest to estimate log q(x) by applying a local Poisson function, i.e., q(Xij) ≈ exp(θ1+θ2(Xij−

x)) and then maximizing the following local log-likelihood with respect to (θ1, θ2)

l̃(θ1, θ2) =
1

N

J∑
j=1

{
(1− T ∗j )

nj∑
i=1

(θ1 + θ2(Xij − x))

+T ∗j log
[
1− exp

( nj∑
i=1

(θ1 + θ2(Xij − x))
)]} nj∏

i=1

Kh(Xij − x).

When group sizes are larger than one, the product of kernel functions acts like a multivariate kernel which

results in a degraded estimation rate (Fan & Gijbels, 1996). Moreover, if we takeK(·) to be a kernel function

of compact support, such as the Epanechnikov kernel, once one Kh(Xij − x) is zero, the whole product part

is zero which impacts the contribution of other Xijs with nonzero values of Kh(Xij − x). Our truncated

version rectifies this problem by counting every Xij in the neighborhood Ix. Thus, the use of Zijs is more

informative. One might argue to use ωh(XXXj , x) = K(‖XXXj − x‖/h) in place of
∏nj

i=1Kh(Xij − x) above.

However, this still acts like a multivariate kernel limiting its use.

2.3 Asymptotic Properties

To present the large sample properties of our estimator, we assume several mild regularity condi-

tions:
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Condition 2.1. supj nj <∞.

Condition 2.2. log q(x) has bounded second order derivative in a neighborhood of x, and f is positive and

continuous in that neighborhood.

Condition 2.3. Nh→∞ and Nh5 is bounded.

This first condition is also used in Delaigle & Meister (2011). The next two are commonly used

conditions on smoothness. Further, we introduce some notations. Under Condition 2.1, suppose there are

only K different group sizes, denoted by n(1), . . . , n(K). Let Jk be the number of groups of size n(k) and

limN→∞ n(k)Jk/N = γk. Then
∑K
k=1 γk = 1. For easy notation, we suppose the data are ordered as

follows: the first J1 groups are of size n1, the next J2 groups are of size n2, and so on until the last JK

groups are of size nK . Now, let a =
∑K
k=1 γkVk1, b =

∑K
k=1 γk(n(k)−1)Vk1, c =

∑K
k=1 γk(n(k)−1)2Vk1,

d =
∑K
k=1 γkVk0, and e =

∑K
k=1 γkVk2, where

Vk0 = n(k) exp(Ek0)/(1− exp(Ek0)),

Vk1 = f(x) exp(Ek1)/(1− exp(Ek1)),

Vk2 = [exp(Ek1)θ∗2f(x)/(1− exp(Ek1))2 + exp(Ek1)f ′(x)/(1− exp(Ek1))],

with Ekm = mθ∗1 + (n(k) −m) log q∗. Further denote

V0 =


aµ0 0 bµ0

0 aµ2 0

bµ0 0 cµ0 + d

 , V1 =


aν0 0 bν0

0 aν2 0

bν0 0 cν0

 and Biasθ = V −1
0 bθ,

where bθ = 2−1g(2)(x) · (aµ2h
2, eµ4h

3, bµ2h
2)>, µi =

∫ 1

−1
uiK(u)du and νi =

∫ 1

−1
uiK2(u)du.

The first theorem below provides the consistency of the estimator. The second theorem provide the

large sample distribution of θ̂.

Theorem 2.3.1. Under Conditions 2.1–2.3, we have

H(θ̂ − θ∗)→p 0,

where H = diag{1, h, 1}, θ∗ = (θ∗1 , θ
∗
2 , θ
∗
3)> is the value of θ calculated by the true probability curve p(x),

and→p means converges in probability.
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Proof. See Appendix A.1

Theorem 2.3.2. Under the same conditions of Theorem 2.3.1,

√
Nh(H(θ̂ − θ∗)− Biasθ)→d N(0, V −1

0 V1V
−1
0 ),

where→d means converges in distribution.

Proof. See Appendix A.2

For any vector γ, let [γ]1 be its first element, and for any matrix Γ, let [Γ]11 be its (1, 1)th element.

Then, we have
√
Nh(θ̂1 − θ∗1 − [Biasθ]1)→d N(0, [V −1

0 V1V
−1
0 ]11).

Our estimate of p(x) is p̂(x) = 1− exp(θ̂1). Then p̂(x)− p(x) = −[exp(θ̂1)− exp(θ∗1)]. Simply following

the delta method, we have the asymptotic properties of p̂(x).

Corollary 2.3.1. Under conditions of Theorem 2.3.2, we have

√
Nh(p̂(x)− p(x)−B(x))→d N(0, V (x)),

where B(x) = −(1− p(x))[Biasθ]1 and V (x) = [1− p(x)]2[V −1
0 V1V

−1
0 ]11 with

[Biasθ]1 =
g(2)(x)µ2

2µ0
h2,

[V −1
0 V1V

−1
0 ]11 =

ν0

µ0

[ cµ0 + d

acµ2
0 + adµ0 − b2µ2

0

− b2dµ2
0

(acµ2
0 + adµ0 − b2µ2

0)2

]
.

Proof. The proof of this corollary simply follows applying the delta method to the results of Theorem 2.3.2,

and hence is omitted.

2.4 Empirical Studies

In this section we provide a simulation study followed by the analysis of a real data set to illustrate

our proposed method.
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2.4.1 Bandwidth Selection

It is well known that bandwidth selection is crucial in nonparametric estimation. To save computa-

tional cost, we follow Delaigle & Meister (2011) to investigate a plug-in method. Based on Theorem 2.3.2,

we can writeBθ(x) = [Biasθ]1 and Vθ(x) = [V −1
0 V1V

−1
0 ]11 to emphasize the dependence of these quantities

on x , which are the bias and the asymptotic variance of estimating θ1 by θ̂1. A reasonable way to pick the

bandwidth h is by minimizing a weighted “asymptotic mean integrated squared error” given by

AMISE(h) =

∫ [
B2
θ (u) +

Vθ(u)

Nh

]
ω(u)du,

with respect to h for a suitable weight function w. Here, we take w(u) = f(u). This gives

AMISE =
µ2

2

4µ2
0

Bθh
4 +

V ∗θ
Nh

,

where Bθ =
∫
g(2)(x)f(x)dx, V ∗θ =

∫
Vθ(x)f(x)dx. Then, the optimal bandwidth is given by

h∗ = (V ∗θ µ
2
0/Bθµ

2
2)−1/5N−1/5.

However, h∗ can not be directly calculated since Bθ and V ∗θ are unknown. We can use

ĥ = (V̂θµ
2
0/B̂θµ

2
2)−1/5N−1/5,

by replacing V ∗θ and Bθ with the estimates V̂ ∗θ and B̂θ given below.

We denote Gi as the number of groups of size ≥ i, where i = 1, . . . ,maxj nj . For each fixed i, we

pick Xi,j , j = 1, . . . , Gi from each group and denote the order statistics by Xi,(1) < Xi,(2) < · · · < Xi,(Gi).

For a given estimator V̂θ(Xi,(j)) of Vθ(Xi,(j)), let V̂i =
∑Gi−1
j=1 V̂θ(Xi,(j))f̂(Xi,(j))(Xi,(j+1) − Xi,(j)),

where f̂(x) is a kernel density estimate of f(x). Then we can estimate V ∗θ by

V̂ ∗θ =

maxj nj∑
i=1

wiV̂i,

where wi =
√
Gi/

∑maxj nj

l=1

√
Gl. Now, it suffices to find a V̂θ(Xi,(j)). We start by deriving a consistent
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estimate q̂∗ of q∗ by maximizing the full likelihood of T ∗j s given by

J∏
j=1

{T ∗j (1− qnj
∗ ) + (1− T ∗j )q

nj
∗ }.

Note that γk (defined in the Appendix) can be estimated by the proportion of the groups of size nk among

all the groups. In estimating the ratio q(Xi,(j))/(1 − qn
(k)−1
∗ q(Xi,(j))) which appears in Vk1 (defined

in the Appendix), we use J−1
k

∑
j:nj=n(k)(1 − T ∗j ) to estimate the denominator since it is required to

be less than 1. Using the arguments of Delaigle & Meister (2011), the numerator can be estimated by

Nµ̂∗q̂
−nj
∗ (1− T ∗j )/

∑J
j=1 nj q̂

nj−1
∗ where µ̂∗ = N−1

∑J
j=1 nj(1− T ∗j ). Furthermore, Bθ can be estimated

nonparametrically by

B̂θ =

maxj nj∑
i=1

G−1
i wi

Gi∑
j=1

{ĝ(2)
i (Xij)}2,

where the construction of ĝ(2)
i (x) is similar to Delaigle & Meister (2011) which is omitted here.

It is well known that nonparametric estimators are in general not stable near boundaries. We replace

B̂θ and V̂θ by weighted versions (Gasser et al., 1991) as B̂θ =
∑maxj nj

i=1 G−1
i wi

∑Gi

j=1{ĝ
(2)
i (Xij)}2ωB(Xij)

and V̂θ =
∑Gi−1
j=1 V̂θ(Xi,(j))f̂(Xi,(j))(Xi,(j+1)−Xi,(j))ωV (Xi,(j)), where ωB(x) and ωV (x) are two weight

functions. Our suggestion is to take ωB(x) = 1(q0.1,q0.9)(x) and ωV (x) = 1(q0.3,q0.7)(x), where 1(a,b)(x) is

the indicator function (it equals to 1 if a ≤ x ≤ b; otherwise 0), and qα is the α quantile of all the Xijs.

2.4.2 Numerical Simulation

Our numerical studies were conducted to check the finite sample performance of the proposed semi-

local likelihood estimator of p(x). We considered the following models each with X ∼ U [−1, 1] and X ∼

N(0, 0.52).

Model 2.1. p(x) = {sin(3πx/2) + 1.2}/[20 + 360x2{sign(x) + 1}];

Model 2.2. p(x) = sin2(π(x− 1)/2) cos2(1.5π(x− 1))/6;

Model 2.3. p(x) = cos2(πx)/8;

Model 2.4. p(x) = cos2(πx)/16 + x2/20.

The first model is similar to the model used in Delaigle & Meister (2011). The others are designed to

have relatively high fluctuant structure. For each model above, we considered both N = 5000 and 10, 000.
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The group sizes for equal group size case were nj = 5 or 10. For the unequal group sizes case njs were

randomly and uniformly chosen from {1, . . . , 5} or {1, . . . , 10}. We simulated 200 random samples of

{(Xij , T
∗
j ), i = 1, . . . , nj , j = 1, . . . , J} for each setting of N , nj , p and the distribution of X , where

N =
∑J
j=1 nj , T

∗
j = max1≤i≤nj Tij and Tijs are generated according to a Bernoulli distribution with

success probability p(Xij). The bandwidth, h, was selected using the procedure outlined in Section 2.4.1.

Based on this h, the estimator p̂(x), written LL (local likelihood estimator), of p(x) was calculated. We also

applied the method from Delaigle & Meister (2011). These authors provided four ways for selecting the

bandwidth, ROT, ROTω0
, PIω1

and PIω0
. The kernel K(·) was taken to be the standard normal density in all

cases and resulting estimates were truncated to be in [0, 1] since p(x) is a probability curve. We compared

our estimate with each of their four estimates based on the integrated squared error ISE =
∫ b
a
{p̂(x) −

p(x)}2dx ≈ M−1(b − a)
∑M
i=1{p̂(ti) − p(ti)}2 for 200 replications, where [a, b] is the interval of interest,

and {ti, i = 1, . . . ,M} is an even partition of [a, b]. Furthermore, to get a feel for the pointwise behavior of

each estimator, we calculated the following pointwise mean square error ratio (PMSER),

PMSER(ti) =

∑200
k=1{p̂k(ti)− p(ti)}2∑200
k=1{p̃k(ti)− p(ti)}2

, i = 1, ...,M,

where p̂k is our estimator of p for the kth sample and the p̃k denotes the estimators proposed by Delaigle &

Meister (2011).

In Tables 2.1–2.3 below we provide a subset of our findings. The average and the standard de-

viation of the 200 ISEs corresponding to each estimator and the proportion of PMSER(ti) values < 1

among all the tis for M = 300 for N = 10000 are also given. The results for N = 5000 followed an

almost identical pattern and are therefore not presented here. Additionally, global integrated squared errors

GISE =
∫ b
a
{p̄(x) − p(x)}2dx were compared, where p̄(x) =

∑200
k=1 p̂k(x)/200 which is referred to as the

average curve for each method.

From Tables 2.1 and 2.2 we can see that all means and standard deviations of 200 replications using

our method are smaller than the corresponding values for the methods in Delaigle & Meister (2011) for the

case of unequal groups. Moreover, the proportion of PMSER value below 1 is great than 50% in all such

cases. For the case of equal groups, a summary is presented in Table 2.3. The average ISE values and

the pointwise mean square error values indicate that the two methods are very similar in the case of equal

group sizes. In comparing the GISEs, our method seems to outperform the moment type estimator in all

examined cases, a few results listed in Table 2.4. Plots of the averaged estimates of p(x), p̄(x), for all models
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Table 2.1: Simulation results for Models 2.1-2.4 when group sizes are unequal and X follows uniform,
N = 104. The presented results are: 104×MISE (104×stdev, proportion of PMSER < 1).

nj Model LL ROT ROTω0 PIω1 PIω0

1-5 2.1 1.56 (.76) 3.63 (1.22, .76) 4.21 (1.20, .77) 2.35 (.94, .66) 1.95 (.89, .67)
2.2 7.92 (2.21) 23.7 (1.43, .80) 24.4 (1.34, .80) 14.9 (2.15, .90) 11.8 (2.32, .92)
2.3 3.61 (1.82) 28.6 (4.79, .90) 30.7 (4.25, .91) 6.72 (2.60, .71) 4.56 (2.15, .72)
2.4 2.53 (1.16) 7.13 (1.29, .80) 7.65 (1.34, .81) 3.04 (1.23, .63) 2.62 (1.21, .63)

1-10 2.1 2.60 (1.40) 4.61 (1.66, .62) 5.12 (1.60, .65) 2.97 (1.38, .58) 2.80 (1.40, .65)
2.2 8.93 (3.01) 26.0 (2.30, .76) 26.6 (2.26, .76) 15.8 (3.28, .87) 12.3 (3.32, .88)
2.3 6.13 (2.86) 30.5 (5.52, .87) 32.8 (4.61, .87) 9.65 (3.59, .71) 7.64 (3.37. .71)
2.4 4.37 (2.19) 8.89 (2.24, .74) 9.47 (2.26, .76) 4.70 (2.26, .56) 4.52 (2.34, .61)

Table 2.2: Simulation results for Models 2.1–2.4 when group sizes are unequal and X follows normal, N =
104. The presented results are: 104×MISE (104×stdev, proportion of PMSER < 1).

nj Model LL ROT ROTω0
PIω1

PIω0

1-5 2.1 3.57 (1.37) 8.80 (1.87, .87) 9.40 (1.68, .87) 4.58 (1.53, .85) 3.88 (1.49, .66)
2.2 19.7 (5.41) 33.1 (5.29, .82) 33.9 (5.40, .82) 23.0 (5.08, .77) 20.9 (5.40, .70)
2.3 15.1 (4.64) 40.7 (2.44, .95) 41.3 (1.90, .94) 22.0 (4.52, .88) 17.7 (4.64, .62)
2.4 8.26 (4.52) 14.6 (3.90, .74) 15.0 (3.75, .74) 8.79 (4.33, .56) 8.44 (4.52, .55)

1-10 2.1 3.47 (1.84) 9.17 (2.68, .82) 9.75 (2.56, .82) 4.26 (2.18, .81) 3.86 (2.19, .80)
2.2 19.0 (4.19) 30.9 (3.65, .84) 31.6 (3.79, .82) 21.3 (3.27, .74) 19.3 (3.35, .63)
2.3 11.2 (3.90) 41.5 (3.06, .90) 41.9 (2.77, .90) 17.7 (4.30, .87) 14.6 (4.18, .87)
2.4 4.99 (2.54) 12.53 (3.01, .83) 13.0 (2.9, .83) 6.28 (2.76, .79) 5.69 (2.55, .76)

Table 2.3: Simulation results for Models 2.1 and 2.3 when group sizes are equal, N = 104. U and N denote
uniform and normal, respectively. The presented results are: 104×MISE (104×stdev, proportion of PMSER
< 1).

nj Model f(x) LL ROT ROTω0
PIω1

PIω0

5 2.1 U 2.22 (1.08) 3.87 (1.23, .50) 4.43 (1.22, .53) 2.67 (1.0, .43) 2.28 (1.0, .44)
N 4.59 (1.51) 8.92 (2.08, .78) 9.54 (1.94, .79) 5.22 (1.55, .58) 4.46 (1.47, .23)

2.3 U 5.56 (2.57) 29.8 (5.06, .87) 31.9 (4.38, .88) 8.76 (3.36, .59) 5.91 (2.79, .50)
N 19.8 (5.27) 41.2 (2.74, .91) 41.7 (2.47, .91) 26.3 (4.42, .81) 21.9 (4.58, .49)

10 2.1 U 3.89 (2.04) 5.28 (1.90, .40) 5.72 (1.80, .42) 3.71 (1.81, .34) 3.48 (1.91, .34)
N 5.94 (3.13) 10.2 (3.33, .72) 10.7 (3.27, .74) 6.01 (3.08, .47) 5.56 (3.13, .31)

2.3 U 11.7 (5.73) 32.8 (5.6, .77) 34.8 (4.99, .79) 13.9 (5.42, .50) 11.3 (5.38, .43)
N 16.9 (6.84) 42.8 (5.0, .85) 43.3 (4.74, .86) 24.5 (5.94, .80) 20.9 (6.21, .76)
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Table 2.4: 104× GISE for Models 2.1–2.4 when all nj = 10, X is normal and N = 104.

Model LL ROT ROTω0 PIω1 PIω0

2.1 2.58 8.56 9.15 2.87 3.55
2.2 19.9 30.0 30.8 20.0 21.9
2.3 9.03 39.4 40.1 15.2 19.4
2.4 2.21 11.0 11.6 3.31 4.31
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Figure 2.1: Average Curves: LL (− − −), best between ROT and ROTω0
(− · − · −), best between PIω1

and PIω0 (· · · ). Left to right: Model 2.1, X ∼ U [−1, 1], nj = 10, N = 10000; Model 2.4, X ∼ U [−1, 1],
nj ∼ U{1, . . . , 10}, N = 5000.
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reveal (see Figure 2.1 for Models 2.1 and 2.4) that our estimator appears to be significantly less biased over

almost the entire support of X . When compared to the estimator proposed in Delaigle & Meister (2011), it is

worthwhile to point out that the bias in their estimators becomes more prominent when p(x) is less smooth or

more fluctuant. This suggests that our method generally outperforms those proposed in Delaigle & Meister

(2011) both globally and locally.

2.4.3 Real Data Analysis

We also applied our method to two real data sets from 1999-2000 in NHANES study which were

previously analyzed by Delaigle & Meister (2011) and are available at (www.cdc.gov/nchs/nhanes/n

hanes1999-2000/nhanes99 00.htm). The first data set contained two variables: the age variable

X and the test result THBc which is a binary response taking values 0 and 1 indicating that the antibody

to hepatitis B virus core antigen is absent or present in the patient’s serum or plasma, respectively. The

sample size was 7121, and X ranged from 6 to 85 years after removing the individuals with missing X or

THBc. The second data set contained the age variable X , and a response variable TCL = 0 or 1 indicating

the absence or presence of genital chlamydia trachomatis infection in the urine of the patient, respectively.

After removing the missing values, X ranged from 12 to 40 years, and the sample size was 2042. Our

goal is to estimate the following two conditional probability curves: pHBc(x) = pr(THBc=1|X = x) and

pCL(x) = pr(TCL=1|X = x).

To evaluate the performance of our method, in each case, we first applied the local linear estimation

based on all the (X,Y ). The resulting estimator is denoted by p̃ and is treated as our reference curve.

Then we artificially pooled the data randomly assigning individuals to groups of size nj ∼ U{1, 2}, nj ∼

U{1, . . . , 5}, or nj ∼ U{1, . . . , 10}. In each of these aforementioned cases, we calculated our estimator

p̂ using the individual level covariates and the simulated pool responses. This process was then repeated

200 times for both infections on pooling strategy. The average curve along with a two standard deviation

pointwise confidence bands based on the 200 replications are presented in Figure 2.2. Here the lower band

was truncated at 0. From these graphs it appears that there is a large degree of agreement between our

estimator and the reference estimator.

Delaigle & Meister (2011) evaluated their estimator using the estimates corresponding to quantiles

of the ISD values, and the estimate corresponding to the median ISD value showed boundary bias. Since we

have established the asymptotic normality of our estimator, we prefer to use the average of the estimates with

pointwise confidence bands in assessing the estimation accuracy. The average of the 200 estimates shows
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Figure 2.2: NHANES study: Average curves (− − −) and confidence bands (− ·− ·−) for THBC (Top) and
TCL (Bottom). Left to right: nj ∼ U{1, 2}, nj ∼ U{1, . . . , 5}, nj ∼ U{1, . . . , 10}.

minimal boundary bias and the ideal curve is well within the point-wise confidence bounds.

2.5 Discussion

We have provided an effective way of estimating the regression function pr(Y = 1|X = x) based

on group data. Our estimator seems to perform well in all possible sampling situations for a variety of model

functions. The proposed bandwidth selection procedure seems to provide very satisfactory estimation results.

An interesting extension of these ideas would be to test the equality of the regression curves for different

populations.
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Chapter 3

Semiparametric Group Testing

Regression Models

3.1 Introduction

Group testing, also known as pooled testing, was first proposed by Dorfman (1943) as a means to

reduce the cost associated with screening World War II inductees for syphilis. In order to reduce testing

expenditure, Dorfman suggested that pooled specimens, formed from combining blood samples collected

from individuals, be tested for the presence of syphilis. If the initial pool, also referred to as a master

pool, tested negative then all contributing men could be declared negative at the expense of only one test.

Alternatively, positive master pools would be resolved by retesting each of the contributing specimens one-

by-one. Since this seminal work, many variants of Dorfman’s decoding strategy have been proposed in an

effort to further reduce screening cost or increase classification accuracy; for a review see Kim et al. (2007).

In addition to being used for case identification, pooling techniques have also been implemented

for the purposes of estimation, predominantly in the context of estimating population level characteristics;

see Bilder & Tebbs (2005) for a review. More recently, authors have developed binary regression models

which relate pool response data to individual-level covariate information through a specified link function;

see Vansteelandt et al. (2000), Bilder & Tebbs (2009), Chen et al. (2009), and Huang & Tebbs (2009). To

obviate the specification of the link function, Delaigle & Meister (2011), Delaigle & Hall (2012), and Wang

et al. (2013) proposed nonparametric binary regression techniques for group testing data that allow for the
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incorporation of a single continuous explanatory variable. Delaigle & Meister (2011) discussed extensions

of their approach which allow for multiple covariates via a multivariate kernel function. However, due to the

curse of dimensionality this approach may not be suitable for evaluating multiple explanatory variables. The

aforementioned regression methods were designed to model data arising from master pool testing only; i.e.,

these methods cannot incorporate information gained from decoding positive pools. To our knowledge, the

only binary regression models that allow for the incorporation of decoding information were proposed by Xie

(2001) and Zhang et al. (2013), and were developed under parametric assumptions.

Since its advent, group testing has been successfully implemented for the purposes of screening for

a variety of infectious diseases (Lewis et al., 2012; Van et al., 2012), and has found applications in areas such

as genetics (Gastwirth, 2000), drug discovery (Remlinger et al., 2006), medical entomology (Venette et al.,

2002), veterinarian science (Munoz-Zanzi et al., 2000), and plant pathology (Venette et al., 2002). The group

testing strategy implemented varies according to the goals of the study and often does not conclude with mas-

ter pool testing. Consequently, in this chapter we propose a general regression methodology for modeling

test responses obtained from all group testing algorithms that allows for the incorporation of multiple covari-

ates and accounts for imperfect testing. Unlike the aforementioned parametric methods, our semiparametric

model enjoys the modeling flexibility of nonparametric procedures, but is not subject to the curse of dimen-

sionality when multiple predictors are available. We develop hypothesis testing methods for evaluating the

significance of potential predictors based on the asymptotic properties of our proposed estimators. Through

simulation, we illustrate that our methodology can more reliably evaluate potential predictors when compared

to analogous parametric methods.

Our methodology falls broadly into the class of single index models, which have attracted much

attention in the statistical literature over the past few decades; see Ichimura (1993), Härdle et al. (1993),

Klein & Spady (1993), Xia et al. (2002), Xia (2006), Zhu & Xue (2006), Cui et al. (2011) and the references

therein. Though similar, there exists a fundamental difference between our method and those previously

proposed in the literature. Specifically, all existing single index models require that a response be available

for each individual, while in contrast our method requires only the availability of the responses obtained from

testing pools of individuals. Therefore, the complex data structure resulting from group testing algorithms

cannot be handled by any of the existing single index techniques.
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3.2 Models and Methodology

3.2.1 Modeling Assumptions and General Estimation Procedure

In what follows, we propose a general modeling framework for data arising from any group testing

algorithm. Our proposed methodology can be greatly simplified under two of the most common group testing

algorithms, master pool testing and Dorfman decoding, as is illustrated in the subsequent sections. Consider

implementing a group testing algorithm to screen N individuals for a binary characteristic of interest, such as

infection status. In general, this process begins by randomly assigning each of the individuals to exactly one

of J initial groups of size cj . Let Gj = {1, . . . , cj} be a collection of indices identifying the cj individuals

assigned to the jth group. Within the jth group, screening is performed according to the protocol outlined

by the specified group testing algorithm, resulting in Kj testing responses Yjl, for l = 1, . . . ,Kj . We let

Yjl = 1 indicate that the lth pool tested positive, and Yjl = 0 otherwise. We identify the individuals in

the jth group whose specimens were pooled and tested by the lth assay by the set Pjl ⊆ Gj , and we define

Zjl = (Yjl,Pjl). For notational convenience, we collect all of the observed testing data associated with the

jth group into the set Zj = {Zj1, . . . , ZjKj
}, and we assume throughout that Zj ⊥ Zj′ for all j 6= j′, where

⊥ denotes statistical independence.

Let Tij denote the true status of the ith individual in the jth group, where Tij = 1 indicates

that the individual is positive, and Tij = 0 otherwise. For modeling purposes, we assume that Xij =

(Xij1, . . . , Xijp)
T, a p-dimensional vector of covariates, is available for each individual and that the ran-

dom vectors (Tij , Xij) are independent and identically distributed. In order to relate the individuals’ true

statuses to their predictor variables, we proceed under the single index generalization; i.e., we assume that

pr(Tij = 1 | Xij = x) = p(xTβ), where p(·) is an unknown smooth probability curve and β = (β1, . . . , βp)
T

is a p-dimensional vector of regression parameters. To ensure identifiability, as with all single index models,

we assume that the support of the covariate vectors, X, is a bounded convex set with at least one interior

point and the parameter space of β is B = {β = (β1, . . . , βp)
T : ‖β‖ = 1, β1 > 0}, where ‖β‖ denotes the

Euclidean norm of β (Lin & Kulasekera, 2007). If one observed Tij , for i = 1, . . . , cj and j = 1, . . . , J ,

then standard single index estimation procedures could be employed to estimate p(·) and β, but when the

assay being used is imperfect and the testing responses are based on pooled assessments the individuals’ true

statuses are latent and these techniques are inapplicable.

To account for imperfect testing, we let Se and Sp denote the sensitivity and specificity, respectively,

of the assay being employed; i.e., Se is the probability that a specimen will test positive given it is truly
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positive and Sp is the probability that a specimen will test negative given it is truly negative. We assume that

Se and Sp are known, constant, and independent of the pool size. Further, we assume that given the true

status of the pools being tested Yjl ⊥ Yjl′ , for l 6= l′. These assumptions are common in the group testing

literature; see, Xie (2001), Kim et al. (2007), and Zhang et al. (2013).

Using the testing error rates and these assumptions we now relate the observed testing outcomes

to the true underlying statuses of the specimens being tested. To accomplish this, we let Z(c) denote the

set of all possible outcomes resulting from screening a group of size c according to a specific group testing

algorithm. Likewise, we define the set of all possible true statuses for the individuals assigned to a group

of size c to be T (c). The conditional probability of observing any Z = {(Y1,P1), . . . , (YK ,PK)} ∈ Z(c)

given any T = (T1, . . . , Tc) ∈ T (c) can be calculated as

M(Z, T, c) = pr(P)

K∏
l=1

{
SYlỸl
e (1− Se)(1−Yl)Ỹl(1− Sp)Yl(1−Ỹl)S

(1−Yl)(1−Ỹl)
p

}
,

where Ỹl = maxi∈Pl
Ti and P = {P1, . . . ,PK}. The probability pr(P) accounts for the randomness, if any,

in the pooling protocol of the group testing algorithm. In Appendix B.1 we provide a derivation ofM(Z, T, c)

and illustrate how pr(P) should be evaluated.

In what follows we relate the observed testing outcomes arising from a group testing algorithm to

the individual-level covariate information. Through an application of the law of total probability it is easy to

show that the conditional probability of observing Zj given β, p(·), and Xj can be expressed as

R{Zj ;Xj , β, p(·)} =
∑

T∈T (cj)

M(Zj , T, cj)

cj∏
i=1

p(XT

ijβ)Ti{1− p(XT

ijβ)}1−Ti , (3.1)

where Xj = (X1j , . . . , Xcjj)
T. To derive (3.1) we proceed under the assumption that the observed testing

outcomes are independent of the measured covariates, given the individuals’ true statuses. Thus, the full

conditional log-likelihood of {(Z1,X1), . . . , (ZJ ,XJ)} can be expressed as

l{β, p(·)} =

J∑
j=1

logR{Zj ;Xj , β, p(·)}.

If p(·) were known, an estimate of β could be obtained as the maximizer of l{β, p(·)}. Thus, the primary chal-

lenge of fitting our model is to account for the dependence between the infinite-dimensional parameter p(·)

and the finite-dimensional parameter β. To explicitly acknowledge this dependence, we write p(·) as pβ(·),
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and again point out that an estimate of β could be obtained as the maximizer of l{β, pβ(·)}, if pβ(·) were

known. In order to estimate the regression parameters, we propose to replace the unknown function pβ(·) by

a consistent estimator, p̂β(·), so that our estimator of β can be obtained as β̂ = argmaxβ∈B l{β, p̂β(·)}.

As previously stated, traditional single index techniques are not applicable in this context, because

the individuals’ statuses are latent. To circumvent this, we propose to make use of the individuals’ diagnosed

statuses. To this end, let Dij denote the diagnosed status of the ith individual in the jth group, such that

Dij = 1 indicates a positive diagnosis, and Dij = 0 otherwise. Typically, an individual’s diagnosed status is

determined based on the observed testing outcomes and the specified testing protocol; i.e., Dij = Λ(i, Zj),

where Λ is a decision function unique to the group testing algorithm being implemented. Define Fij(t, µ) =

pr(Dij = 1 | Tij = t), which can be calculated as

Fij(t, µ) =
∑

Z∈Zi(cj)

∑
T∈T (cj)

I(Ti = t)M(Z, T, cj)
∏
k 6=i

{
µ1−Tk(1− µ)Tk

}
,

where µ = pr(Tij = 0) and Zi(c) = {z ∈ Z(c) : Λ(i; z) = 1}; i.e., Zi(c) is the set of all possible testing

outcomes which would result in the ith individual in a group of size c being diagnosed positive. The quantities

Fij(1, µ) and 1− Fij(0, µ) are commonly referred to as the pooling sensitivity and specificity, respectively,

and under specific group testing algorithms these measures of testing accuracy have nice analytic forms; see

Kim et al. (2007).

In order to develop an estimator of pβ(·), we consider the conditional probability that an individual

will be diagnosed positive, given the linear predictor XT
ijβ, which can be expressed as

E(Dij | XT

ijβ = u) = aij(µ) + bij(µ)pβ(u), (3.2)

where aij(µ) = Fij(0, µ) and bij(µ) = Fij(1, µ)−Fij(0, µ). The unknowns in (3.2) are µ and pβ(·). Since

µ is the unconditional probability that an individual is truly negative, one could obtain an estimator, µ̂, of this

parameter by maximizing the full log-likelihood

lp(µ) =

J∑
j=1

log

 ∑
T∈T (cj)

[
M(Zj , T, cj)

cj∏
i=1

{
µ1−Ti(1− µ)Ti

}] , (3.3)

with respect to µ; i.e., µ̂ = argmaxµ lp(µ). Then, based on equation (3.2), we can obtain a local linear kernel
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estimator of pβ(·) at a given point u by minimizing

J∑
j=1

cj∑
i=1

[
Dij − aij(µ̂)− bij(µ̂)

{
pβ(u) + p′β(u)(XT

ijβ − u)
}]2

Kh(XT

ijβ − u), (3.4)

with respect to {pβ(u), p′β(u)}T, where p′β(·) denotes the first derivative of pβ(·), h is a user defined band-

width, K(·) is a symmetric kernel density function, and Kh(·) = h−1K(·/h). We define {p̂β(u), p̂′β(u)}T,

the minimizer of (3.4), to be our estimator of {pβ(u), p′β(u)}T. More explicitly, we could write p̂β(u) and

p̂′β(u) as

p̂β(u) =
T̂N0(u, β)ŜN2(u, β)− T̂N1(u, β)ŜN1(u, β)

ŜN0(u, β)ŜN2(u, β)− Ŝ2
N1(u, β)

, (3.5)

p̂′β(u) =
T̂N1(u, β)ŜN0(u, β)− T̂N0(u, β)ŜN1(u, β)

ŜN0(u, β)ŜN2(u, β)− Ŝ2
N1(u, β)

, (3.6)

where

T̂Nl(u, β) =N−1
J∑
j=1

cj∑
i=1

{Dij − aij(µ̂)}bij(µ̂)Kh(XT

ijβ, u; l),

ŜNl(u, β) =N−1
J∑
j=1

cj∑
i=1

b2ij(µ̂)Kh(XT

ijβ, u; l),

Kh(XT

ijβ, u; l) =Kh(XT

ijβ − u)

(
XT
ijβ − u
h

)l
.

This closed form of p̂β(u) can help us greatly improve the computational efficiency of our method. Conse-

quently, our final estimators can be expressed as

β̂ = argmaxβ∈B l {β, p̂β(·)} , p̂(u) = p̂β̂(u). (3.7)

Note that (3.4) is not the standard form of the local sum of squares, because the diagnosed statuses are

correlated and µ̂ is a random term that depends on the observed testing data. Despite these differences,

in Section 3.3 we show that our approach efficiently estimates β and p(·). In the following two sections,

we outline the formulas necessary to implement our regression methodology under master pool testing and

Dorfman decoding. A more detailed illustration is provided in Appendix B.2.
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3.2.2 Estimation under Master Pool Testing

The testing protocol under master pool testing specifies that specimens collected from individuals

belonging to a common group be combined to form a single master pool which is subsequently assayed;

i.e., the testing data available for modeling is Zj = {(Yj1,Pj1)}, where Pj1 = Gj . If Yj1 = 0, then all

individuals in this group are diagnosed as negative, whereas Yj1 = 1 indicates that at least one individual is

at risk. Thus, we define Dij = Λ(i, Zj) = Yj1. Under master pool testing, the log-likelihood (3.3) reduces

to

lp(µ) =

J∑
j=1

(1− Yj1) log pj0 + Yj1 log(1− pj0),

where pj0 = 1 − Se − δcj and δc = (1 − Se − Sp)µc. Similarly, a series of simple arguments provide that

aij(µ) = Se+δcj−1 and bij(µ) = Se−aij(µ). Finally, for the jth group the observed testing data Zj belongs

to the set {(0,Pj1), (1,Pj1)}, and the conditional probability outlined in (3.1) associated with either of these

outcomes is R{(0,Pj1);Xj , β, p(·)} = 1 − Se − δ0
∏cj
i=1{1 − p(XT

ijβ)} or R{(1,Pj1);Xj , β, p(·)} =

1−R{(0,Pj1);Xj , β, p(·)}. The estimators defined in (3.7) are then obtained as described in Section 3.2.1.

3.2.3 Estimation under Dorfman Decoding

Dorfman decoding proceeds in a similar fashion to master pool testing, with the key difference that

positive pools are resolved by retesting all contributing individuals one-by-one. Consequently, Zj can take

two forms, the first being Zj = {(Yj1,Pj1)}, where Yj1 = 0 and Pj1 = Gj , denoting that the master pool

tested negative. The second occurs when the master pool test is positive; i.e., Yj1 = 1 and Pj1 = Gj , in which

case Zj = {(Yj1,Pj1), . . . , (YjKj ,PjKj )} whereKj = cj+1 and Pjl = {l−1}, for l = 2, . . . ,Kj . The ith

individual’s diagnosed status is determined to be Dij = Λ(i, Zj) = 1 if and only if Yj1 = 1 and Yj,i+1 = 1,

Dij = Λ(i, Zj) = 0 otherwise; i.e., a positive diagnosis requires both the master pool and individual level

test to be positive. Under Dorfman testing, the log-likelihood (3.3) reduces to

lp(µ) =

J∑
j=1

{
I(Yj1 = 0) log pj0 +

cj∑
k=0

I

(
Yj1 = 1,

cj+1∑
l=2

Yjl = k

)
log pj1k

}
.

where pj1k = δcj (1 − Sp)
kS

cj−k
p + Se(Se + δ1)k(1 − Se − δ1)cj−k, pj0 = 1 − Se − δcj , and δc =

(1−Se−Sp)µc. Similarly, simple arguments yield aij(µ) = (1−Sp)2µcj−1 +Se(1−Sp)(1−µcj−1) and
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bij(µ) = S2
e − aij(µ).

The approach described in Section 3.2.2 can be used to calculate the probability that the jth master

pool will test negative; i.e., in this case we have that R{(0,Pj1);Xj , β, p(·)} = 1 − Se − δ0
∏cj
i=1{1 −

p(XT
ijβ)}. To express the probability of the other testing outcomes, we define Ij1 = {i ∈ Gj : Dij = 1} and

Ij0 = {i ∈ Gj : Dij = 0}; i.e., the sets Ij1 and Ij0 identify the k = |Ij1| and cj − k = |Ij0| individuals

in the jth group that were diagnosed as positive and negative, respectively. Thus, for other testing outcomes

R{Zj ;Xj , β, p(·)} is

k∑
k1=0

cj−k∑
k0=0

Sk1+I(k1+k0>0)
e (1− Se)k0Scj−k−k0p (1− Sp)k−k1+I(k1+k0=0)

1∏
l=0

pr(Sjl = kl), (3.8)

where Sjl =
∑
i∈Ijl Tij . The probabilities in (3.8) are conditional on the unknown parameters and predictor

variables, so Sj1 and Sj0 are the sum of independent and non-identically distributed Bernoulli random vari-

ables; i.e., Sj1 and Sj0 each follow a Poisson binomial distribution. The estimators defined in (3.7) are then

obtained as described in Section 3.2.1.

3.3 Asymptotic Properties

We assume that J → ∞ as N → ∞ while group sizes remain finite. This is reasonable since in

practice the group sizes are naturally bounded by implementation considerations. Further, this assumption

is common in the group testing literature; see Delaigle & Meister (2011). We denote the range of cj by

{c(1), . . . , c(M)}. More explicitly, for all pooled observations there exists an m such that cj = c(m). Further,

for each m we let Jm denote the number of groups having size c(m), and assume that Jmc(m)/N → γm as

N →∞; i.e., γm represents the proportion of individuals assigned to groups of size c(m).

Theorem 3.3.1 provides the asymptotic properties of our proposed estimators β̂ and p̂(·). These

properties holds under the following regularity conditions.

Condition 3.1. The functions dβ(u) = E(X | XTβ = u) and pβ(u) have bounded and continuous second

order derivatives.

Condition 3.2. The density function of XTβ is bounded away from zero and satisfies a Lipschitz condition

of order 1 on {u = xTβ : x ∈ X}.
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Condition 3.3. The bandwidth h = CN−1/5 for some constantC > 0, andK(·) is a bounded and symmetric

density function with bounded first derivative.

Condition 3.4. The function M(·, ·, ·) is bounded away from 0.

Condition 3.5. The equation βTΩβ = 0 has the unique root β = β0 in B.

Conditions 3.1–3.3 are common in the single index literature. The Lipschitz condition in Condition

3.2 allows for discrete predictor variables. Condition 3.4 is easily satisfied when the assay is imperfect, as

long as 0.5 < Se, Sp < 1. This also assures that the denominator in Ω is bounded away from 0. Condition

3.5 guarantees that the matrix J T
0 ΩJ0 is positive definite.

Further, in order to succinctly present these results we let β0 = (β01, β
(1)T
0 )T and p0(·) denote the

true unknown parameters, where β(1)
0 = (β02, . . . , β0p)

T. We define

Ωc = c−1
∑

z∈Z(c)

E

[
R−1

{
z;X (c), β0, p0(·)

} c∑
i=1

{Pi(z, 1, c)− Pi(z, 0, c)}2p′20 (XT

i β0)Γ(Xi)

]
,

where X (c) = (X1, . . . , Xc)
T, Γ(X) = {X − E(X | XTβ0}{X − E(XT | XTβ0)}T, and Pi(z, t, c) =

pr{Z = z | Ti = t,X (c), β0, p0(·)}. Finally, we define Ω =
∑M
m=1 γmΩc(m) which plays an integral role in

the asymptotic variance covariance matrix of β̂. Under a specific testing protocol, e.g., master pool testing or

Dorfman decoding, the above expression for Ω can be more explicit. To illustrate this fact, in Appendix B.3

we provide distinct versions of Ω for the methodology described in Sections 3.2.2 and 3.2.3. Using the above

expressions we now give our main result.

Theorem 3.3.1. Under Conditions 3.1–3.5, we have that

N1/2(β̂ − β0)→ N(0,Σ)

in distribution, where Σ = J0(J T
0 ΩJ0)−1J T

0 , J0 is the functional value of ∂B(β(1))/∂β(1) evaluated at

β(1) = β
(1)
0 , and B(β(1)) = ([1− ‖β(1)‖2]1/2, β(1)T)T. Further,

sup
x∈X

∣∣∣p̂(xTβ̂)− p0(xTβ0)
∣∣∣2 = Op {(logN)/(Nh)} .

Proof. The proof is in Appendix B.6.

The consistency rate for estimating p0(·) is the same rate demonstrated for kernel smoothing es-
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timators in a univariate nonparametric regression context; see Mach & Silverman (1982). The estimator µ̂

is a maximum likelihood estimator, its asymptotic normality follows from standard arguments and hence is

omitted.

Theorem 3.3.1 suggests that large sample inference is possible once a good estimator Σ̂ of Σ is

obtained. To this end, Appendix B.4 gives an extension of a plug-in estimator of Σ that was originally

proposed by Wang et al. (2010). Using β̂ and Σ̂ one can conduct Wald type inference (Wald , 1943); i.e., at

the significance level α, a confidence interval for β0r can be constructed as

β̂0r ± Φ−1(1− α/2)σ̂rN
−1/2 (r = 1, . . . , p),

where Φ(·) is the cumulative distribution function of a standard normal distribution and σ̂2
r is the rth diagonal

element of Σ̂. Further, for r < p one may also perform hypothesis tests of the form,

H0 : β0q1 = · · · = β0qr = 0 versus H1 : not all β0q1 , . . . , β0qr equal 0,

using the test statistic RN = N(Dβ̂)T(DΣ̂DT)−1Dβ̂, where D is a r × p matrix such that Dβ0 =

(β0q1 , . . . , β0qr )T . Given the results in Theorem 3.3.1, we have that under the null hypothesis RN con-

verges in distribution to a chi-square random variable having r degrees of freedom. Consequently, at the

significance level α one would reject the null hypothesis if RN > χ2
r(1−α), where χ2

r(a) is the ath quantile

of a chi-square distribution having r degrees of freedom.

3.4 Numerical Analysis

A simulation study was conducted to assess the finite sample performance of our methodology. This

study considered the following three underlying true regression models:

Model 3.1. p0(u) = 1/{1 + exp(4− 2u)};

Model 3.2. p0(u) = exp(−5u2 − 1.5);

Model 3.3. p0(u) = [sin{π(u− 0.3)}+ 1.3]/[10 + 20(u− 0.3)2{sign(u− 0.3) + 1}],

where u = XTβ0. Model 3.1 provides a situation under which a logistic link is appropriate, and Models

3.2 and 3.3 emulate the gonorrhea and chlamydia data studied in Section 3.5. For each of the above models
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we considered a vector of predictors of the form X = (X1, X2, X3)T, where X1 follows a standard normal

distribution, while X2 and X3 each follow a Bernoulli distribution with success probabilities 0.4 and 0.3, re-

spectively. The regression parameters were specified to be β0 = (β01, β02, β03)T = {1/3, (8/9−δ2)1/2, δ}T,

where δ = {0, 0.1, 0.2, 0.3, 0.4}.

We set N = 10000 and considered a common group size cj = c for all j = 1, . . . , J , where

J = N/c and c ∈ {1, 2, 5, 10}. The setting c = 1 corresponds to individual level testing. In order to

generate group testing data, we first generated individual level data; i.e., for each of the N individuals we

generated the pair (Tij , Xij). Specifically, the predictor vector Xij was simulated according to the distribu-

tions described above and Tij was subsequently determined according to a Bernoulli(pij) distribution, where

pij = p0(XT
ijβ0). To create group testing data, we then simulated the screening of the N individuals accord-

ing to both master pool testing and Dorfman decoding, chosen due to their popularity. To allow for testing

errors, we generated testing responses using Se = 0.93 and Sp = 0.99. Under both master pool testing and

Dorfman decoding, this data generating process was repeated 500 times for each model and configuration of

(c, δ).

For each of the group testing data sets we estimated the regression parameter β0 and the link function

p0(·) using the methodology outlined in Section 3.2. To implement our approach we specified K(·) to

be the Gaussian kernel, and selected the bandwidth in a similar fashion to the method proposed in Härdle

et al. (1993). Specifically, the bandwidth h̃ was chosen such that (β̃, h̃) is the maximizer of CV(β, h) =∑J
j=1 logR{Zj ;Xj , β, p̂(−j)

β (·)}, where p̂(−j)
β (u) denotes the leave-one-out estimator of pβ(u) obtained

from minimizing (3.4) when the information pertaining to the jth pool is omitted. For comparative purposes,

we also implemented the parametric methods proposed in Vansteelandt et al. (2000) and Zhang et al. (2013)

for master pool testing and Dorfman decoding, respectively, under the assumption the link function is logistic.

Table 3.1 provides summary statistics of the 500 estimates of β0 obtained by our methodology,

across all considered models and settings of c, under Dorfman decoding, when δ =0.1. Our approach exhibits

little, if any, evidence of bias and the average standard errors are in agreement with the sample standard

deviation of the parameter estimates. The empirical coverage probabilities for 95% confidence intervals are

predominantly at their nominal level. Further, the parameter estimates obtained from analyzing group testing

data can be as, if not more, efficient than the estimates based on individual level data; i.e., in most cases the

estimators have smaller variances when c > 1. This suggests that more precise inference can be obtained

from analyzing group testing decoding data, when compared to individual level testing information, and at a

fraction of the cost of data collection, similar findings were reported in Zhang et al. (2013).
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Table 3.1: Summary of simulation results for data arising from Dorfman decoding. BIAS and SD, empirical
bias (×103) and standard deviation (×100) of the 500 estimates; SE, average standard error (×100); COV,
empirical coverage probability (×100) for nominal 95% confidence interval; EMSE, average mean squared
error of prediction (×104); RE, ratio of EMSE of the parametric model to the EMSE of our semiparametric
model.

Parameter Measure c = 1 c = 2 c = 5 c = 10

Model 3.1 β01 BIAS(SD) 8.7(3.5) 9.0(3.1) 6.5(3.3) 7.1(3.1)
COV(SE) 93.6(3.5) 94.4(3.2) 95.3(3.2) 95.8(3.3)

β02 BIAS(SD) −5.1(1.4) −4.7(1.3) −4.4(1.3) −4.4(1.3)
COV(SE) 96.0(1.4) 96.2(1.3) 96.2(1.3) 96.8(1.4)

β03 BIAS(SD) −1.9(5.2) −4.2(4.9) −1.6(5.4) −4.1(5.6)
COV(SE) 94.4(5.3) 94.6(5.0) 93.2(5.1) 92.6(5.3)

p0(xβ0) EMSE(RE) 1.31(0.37) 1.25(0.35) 1.28(0.38) 1.27(0.39)
Percentage reduction in testing 37.3 % 52.5 % 43.6 %

Model 3.2 β01 BIAS(SD) 1.5(1.4) 0.7(1.4) 0.5(1.4) 1.9(1.4)
COV(SE) 93.0(1.4) 95.3(1.4) 93.8(1.4) 95.1(1.4)

β02 BIAS(SD) −1.2(0.6) −1.0(0.6) −0.6(0.6) −1.1(0.6)
COV(SE) 93.4(0.6) 94.5(0.6) 93.6(0.6) 96.2(0.6)

β03 BIAS(SD) −0.7(3.4) 1.2(3.2) −2.8(3.2) −2.6(3.1)
COV(SE) 93.0(3.0) 92.3(2.9) 92.6(2.9) 92.9(3.0)

p0(xβ0) EMSE(RE) 1.25(25.33) 1.09(29.83) 1.18(27.43) 1.18(27.24)
Percentage reduction in testing 31.9 % 41.9 % 29.7 %

Model 3.3 β01 BIAS(SD) 7.6(2.5) 8.9(2.4) 8.5(2.4) 7.5(2.4)
COV(SE) 92.4(2.5) 92.8(2.4) 92.3(2.5) 93.0(2.5)

β02 BIAS(SD) −3.7(1.0) −4.4(1.0) −4.3(1.0) −4.0(1.0)
COV(SE) 93.8(1.0) 92.8(1.0) 94.3(1.0) 93.0(1.0)

β03 BIAS(SD) −1.7(3.7) −0.2(3.9) 1.5(3.6) 1.3(4.0)
COV(SE) 92.4(3.6) 92.4(3.5) 94.0(3.6) 92.7(3.6)

p0(xβ0) EMSE(RE) 1.61(13.80) 1.46(15.18) 1.46(15.19) 1.57(14.19)
Percentage reduction in testing 34.8 % 47.4 % 36.7 %

Table 3.1 also provides the average mean squared error of prediction, where we define MSE{β̂, p̂(·)} =

N−1
∑J
j=1

∑cj
i=1{p̂(XT

ij β̂) − p0(XT
ijβ0)}2 to be the mean squared error of prediction for a given data set.

This measure suggests that our methodology can more accurately estimate the link function, using decoding

data, than the analogous method that makes use of individual level testing information. Table 3.1 provides

the ratio of the average mean squared error of prediction for the parametric and our semiparametric model.

We see that when the true underlying model is logistic the average mean squared error of prediction of our

approach is roughly three times larger than that of the parametric model which assumes a logistic link. In

contrast, when the true model is not logistic the average mean squared error of prediction associated with the

parametric model can be up to thirty times greater than that of our methodology.
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Figure 3.1: Estimated power curves under Dorfman decoding: the solid and dashed curves correspond to our
approach and the parametric techniques, respectively.

We conducted a power analysis of the hypothesis test for β03, using the estimates resulting from

our regression procedures and the methodology outlined in Section 3.3 to perform the test of H0 : β03 =

0 versus H1 : β03 6= 0, at the α = 0.05 significance level. The same analysis was also performed for each

data set using the aforementioned parametric models, again assuming a logistic link. The hypothesis testing

results were used to construct power curves for our semiparametric approach and the competing parametric

model, across all considered configurations. The power curves corresponding to data arising from Dorfman

decoding when c = 5 are presented in Figure 3.1. Under both the semiparametric and parametric models the

hypothesis testing procedure suggested in Section 3.3 maintains its correct size across all considered settings.

The estimated power curves under Model 3.1 are very similar, with the parametric model having slightly more

power. This suggests that our methodology performs almost as well as the parametric model which assumes

the correct link function. If the link function is misspecified under the parametric model these methods lose

the power to detect significant predictor variables, a feature not shared by our approach.

The results presented in Table 3.1 and Figure 3.1 are based on analyzing data arising from Dorfman

decoding, and the parameter estimates summarized in Table 3.1 correspond to the case in which δ = 0.1.

The analogous table and figure for master pool testing are provided in the Appendix B.5. Under both group

testing algorithms, summaries of the parameter estimates pertaining to other considered values of δ were

practically identical and power curves constructed for the other values of c resulted in the same conclusions.
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Consequently, these additional results were omitted for brevity.

3.5 Application to Chlamydia and Gonorrhea Data

In this section we illustrate our methodology using chlamydia and gonorrhea data collected by the

Nebraska Public Health Laboratory. This laboratory tests patients individually for the presence of these

bacterial infections, whereas other such laboratories have adopted group testing strategies; e.g., the Iowa

Hygienic Laboratory uses a Dorfman type algorithm (Jirsa, 2008) to screen for these sexually transmitted

diseases. The data we consider consist of individual level testing responses obtained from assaying urine

specimens collected from N = 7310 female patients. In addition to these testing responses we also have

access to several predictor variables: namely, X1, standardized age; X2, a binary variable indicating the

presence of symptoms, with 1 indicating symptoms were present; and X3, a binary variable indicating the

purpose of screening, with 1 indicating family planning. Using these data, we are able to artificially construct

group testing data, treating the testing responses available in the data set as the individuals’ true infection

statuses. We then assigned each of the individuals to a group of size c based on their specimen arrival date,

where c ∈ {1, 2, 5, 10}. Dorfman decoding was implemented to screen the groups for both diseases, where

testing responses for chlamydia and gonorrhea were simulated using the sensitivities 0.947 and 0.913 and

specificities 0.989 and 0.993, respectively. These specifications were chosen to emulate the protocol and

assay currently used by the Iowa Hygienic Laboratory. This process was repeated 500 times for each value

of c and our model was fit to each resulting data set.

Table 3.2: Summary of results for data arising from Dorfman decoding: MEAN, mean (×100) of the 500
estimates; SE, average standard error (×100).

Parameter Measure c = 1 c = 2 c = 5 c = 10

Chlamydia β01 MEAN(SE) 81.7(6.3) 82.9(6.4) 82.7(6.1) 82.6(6.2)
β02 MEAN(SE) −41.3(9.2) −40.4(9.5) −41.4(9.1) −39.9(9.3)
β03 MEAN(SE) 38.8(14.7) 37.7(15.3) 36.8(14.8) 37.9(14.7)

Percentage reduction in testing 34.0 % 45.7 % 35.4 %

Gonorrhea β01 MEAN(SE) 47.6(5.1) 47.7(2.4) 48.1(2.5) 47.1(2.8)
β02 MEAN(SE) −70.0(7.8) −69.8(3.6) −70.0(3.8) −71.2(4.3)
β03 MEAN(SE) 50.4(11.3) 53.1(5.7) 52.5(5.8) 51.3(6.3)

Percentage reduction in testing 45.9 % 71.0 % 74.0 %

Table 3.2 provides a summary of the parameter estimates obtained from analyzing the Dorfman
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decoding data. The regression parameter estimates obtained by our methodology are similar across all values

of c, and in many situations exhibit less variability than the estimates based on the artificial individual level

data; i.e., when c = 1. Figure 3.2 provides 0.025, 0.5, and 0.975 pointwise quantile curves of the 500

estimated regression functions obtained from analyzing the Dorfman decoding data when c = 1, 2, 5, and 10.

The estimated regression curves based on the group testing data exhibit less variability when compared to

those based on individual screening data. These results indicate that through group testing the screening cost

for chlamydia and gonorrhea can be reduced by up to 45.7% and 74.0%, respectively, while providing more

precise inference.
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Figure 3.2: Pointwise quantile curves as a function of the linear predictor u. Left column: chlamydia data,
right column: gonorrhea data. The four rows from top to bottom correspond to c = 1, 2, 5, and 10, respec-
tively. The dashed, solid, and dotted lines correspond to the 0.025, 0.5, 0.975 quantiles, respectively.
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Chapter 4

Parametric Group Testing Regression

Models with Pool Dilution Effects

4.1 Introduction

To account for assay measurement error, most existing literature including the group testing regres-

sion techniques in previous chapters proceed under simplifying assumptions; i.e., they assume that the testing

error rates, sensitivity and specificity, are known, constant, and are functionally independent of the pool size.

These assumptions naturally come under scrutiny, when one considers the underlying mechanistic structure

of an assay. In general, a diagnostic test measures the concentration of a biological marker (biomarker)

within a specimen, and its binary response indicates whether or not this measurement exceeds a predeter-

mined threshold. Consequently, the composition of a pooled specimen, in terms of the number of positive

and negative individuals, plays a key role in determining the testing error rates. For example, a specimen that

might test positive when tested individually, may be “diluted” past the assay’s threshold of detection when

pooled with multiple negative specimens. Acknowledging this structure, McMahan et al. (2013) proposed a

method of identifying pool specific testing error rates based on the distributions of the latent biomarker con-

centration levels of the individuals. Further, these authors demonstrated that proceeding under the traditional

assumptions, when they are invalid, may lead to severely biased estimation. It is important to note that the

methodology outlined in McMahan et al. (2013) was developed solely for the regression analysis of testing

responses obtained from pools; i.e., it does not allow for the incorporation of decoding/retesting information.
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With increasing health care costs, many agencies, such as those previously mentioned, have adopted

group testing for the dual purposes of estimation and classification. These organizations are therefore privy to

group testing data that includes decoding information, and thus, could greatly benefit from the methodological

development of binary regression techniques that can incorporate the same. Consequently in this chapter, we

propose a general binary regression model that allows for the incorporation of information that may arise from

all variants of group testing schemes, to include decoding algorithms. To appropriately account for assay

measurement error we extend the methodology presented in McMahan et al. (2013). Through numerical

studies we identify settings in which our methods result in more efficient estimates, when compared to those

based on individual level testing data. We also illustrate that competing group testing regression methods that

proceed under the traditional assumptions may result in severely biased inference.

The remainder of this chapter is organized as follows. In Section 4.2 we propose a general binary

regression framework which can handle any type of data that arise from group testing schemes. To account

for assay measurement error we then derive explicit expressions that relate the observed testing outcomes

to the underlying biomarker concentration levels that are being measured. In Section 4.3 we investigate the

finite sample performance of our proposed methodology and compare our approach to existing modeling

techniques. To further illustrate the performance of our proposed procedure, we also apply our regression

methodology to hepatitis B data in Section 4.4. We conclude with a summary discussion in Section 4.5.

4.2 General Notation and Methodology

We consider the situation in which group testing is to be implemented for the purposes of screening

N individuals for a binary characteristic of interest, such as infection status. In general, this process begins

by collecting specimens (e.g., blood, urine, etc.) from individuals and assigning each of these specimens to

exactly one of J groups of size nj , for j = 1, ..., J . Within each group, these specimens are then screened

according to a group testing strategy; e.g, Dorfman decoding, halving (Litvak et al., 1994), or array testing

(Phatarfod & Sudbury, 1994). Depending on the goal of the study, this process may necessitate that a given

individual be involved in several testing outcomes. For example, in the classification problem the testing

of pooled and/or individual specimens continues until each subject can be diagnosed as either positive or

negative.

To formalize our notation in this context, we begin by defining Gj = {1, ..., nj} to be the collection

of indices corresponding to the specimens assigned to the jth group, such that for each of the Kj observed
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testing responses associated with this group we may identify the individuals involved by Pjl ⊆ Gj , for

l = 1, ...,Kj , where we use l as a testing index. More explicitly, Pjl corresponds to the individuals in the jth

group whose specimens were pooled and assayed by the lth test. We assume that under the selected group

testing scheme, that each individual in the jth group should be tested at least once (i.e., ∪Kj

l=1Pjl = Gj) and

that pooling specimens across groups does not occur. On the other hand, we allow for the situation in which

a specimen may belong to multiple pools within a given group (i.e., we do not require Pjl ∩ Pjl′ = ∅ for

all l and l′) and we do not restrict attention to schemes that begin with master pool testing (i.e., we do not

mandate that Gj ∈ {Pj1, ...,PjKj
}). Let ZPjl

denote the binary response observed from assaying the pool

formed from amalgamating the Pjl individual specimens, such that ZPjl
= 1 indicates that the pool tested

positive, ZPjl
= 0 otherwise. We collect all of the observed testing outcomes associated with the jth group

into the binary vector ZZZj = (ZPj1
, . . . , ZPjKj

)T. Consequently, ZZZj is a correlated binary vector that cannot

be divided into two independent sub-vectors (otherwise, one could treat this group as two separate groups).

Additionally, we assume that ZZZj and ZZZj′ are independent, for all j 6= j′, which we believe to be reasonable

because we do not allow for pooling specimens across groups. For the purpose of clarity, Table 4.1 provides

three simple examples to illustrate the use and flexibility of our set notation.

Let Tij = 1 denote that the ith individual in the jth group is truly positive, Tij = 0 otherwise,

for i = 1, ..., nj and j = 1, ..., J . We assume throughout that the statuses Tij are independent random

variables. For notational convenience, we collect all of the statuses associated with the jth group into the

binary vector TTT j = (T1j , . . . , Tnjj)
T. It is important to note that when the assay being used is imperfect

Tij is unobservable, even under individual testing. For modeling purposes, we assume that the infection

probability for the ith individual in the jth group is related to the linear predictor xxxT
ijβ through a monotone

and differentiable link function η(·), where xxxij = (1, xij1, . . . , xijp)
T is a (p + 1)-dimensional vector of

covariates and β = (β0, β1, . . . , βp)
T is the corresponding vector of regression parameters; i.e., pr(Tij =

1|xxxij) = η−1(xxxT
ijβ). We also assume that conditional on the true statuses of the individuals, the observed

testing responses are independent of all measured covariates.

We again emphasize that in the presence of diagnostic testing error, observing ZZZj is not equivalent

to observing TTT j , even if the goal of the testing algorithm is to classify each individual as either positive or

negative. Further, it is well known that ignoring these discrepancies when performing inference may lead

to severely biased estimation; e.g., see McMahan et al. (2013). Hence, it is necessary for experimenters to

incorporate the effect of imperfect testing into the modeling process. To accomplish this task, we first let Tj

denote the collection of all possible outcomes of TTT j . Then for any tttj ∈ Tj and for any possible realization
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Table 4.1: Illustration of Notation

Example 1: Dorfman testing Example 2: Three-stage halving Example 3: Array testing

1,  2,  3,  4 

1 2 3 4 
ZPj2

= 0 ZPj3
= 1 ZPj4

= 0 ZPj5
= 0

ZPj1
= 1

ZPj2
= 0

ZPj1
= 1

1,  2,  3,  4 

1 2 

ZPj2
= 1 ZPj3

= 0

ZPj4
= 0 ZPj5

= 1

ZPj1
= 1

3, 4 1, 2 

ZPj2
= 1

ZPj4
= 0

ZPj1
= 1

1 

 

2 

3 

 

4 

ZPj1
= 1 ZPj2

= 0

ZPj3
= 0

ZPj4
= 1

ZPj5
= 1

2 

Stage 1: Specimens collected from subjects
Gj = {1, 2, 3, 4} are assigned to a master
pool, which tests positive. The testing
response is denoted by ZPj1

= 1, where
Pj1 = {1, 2, 3, 4}.

Stage 2: Dorfman retesting reverts to
individual testing, resulting in the four
additional testing responses;
ZPj2

= 0, where Pj2 = {1},
ZPj3

= 1, where Pj3 = {2},
ZPj4

= 0, where Pj4 = {3},
ZPj5

= 0, where Pj5 = {4}.

Stage 1: Exactly the same as Stage 1 under
Dorfman testing.

Stage 2: Halving then divides the pos-
itive master pool into two equally sized
sub-pools, which are then tested, resulting in
the two additional testing responses;
ZPj2

= 1, where Pj2 = {1, 2},
ZPj3

= 0, where Pj3 = {3, 4}.

Stage 3: Of the sub-pools, one tests
negative (requiring no further testing) and
one tests positive. The positive sub-pool
is decoded by retesting each specimen
belonging to it individually, resulting in the
two additional testing responses; ZPj4

= 0,
where Pj4 = {1},
ZPj5

= 1, where Pj5 = {2}.

Stage 1: Specimens collected from subjects
Gj = {1, 2, 3, 4} are assigned to a 2 × 2
array, row (column) pools are formed from
combining specimens that share a common
row (column). Row and column pools are
tested, resulting in four testing responses;
ZPj1

= 1, where Pj1 = {1, 2},
ZPj2

= 0, where Pj2 = {3, 4},
ZPj3

= 0, where Pj3 = {1, 3},
ZPj4

= 1, where Pj4 = {2, 4}.

Stage 2: Specimens belonging to the
intersection of positive rows and columns
are retested individually, resulting in one
additional testing response;
ZPj5

= 1, where Pj5 = {2}.

Underlying Structure: Relating Testing Outcomes to Latent Biomarker Levels

Let specimens 1, 2, 3, and 4 (above) have biomarker levels C̃1j = 1, C̃2j = 7, C̃3j = 1, and C̃4j = 1, respectively.
Assume that the test being employed measures biomarker levels without error and that the threshold is t(c) = 2, for all c.

eC1j eC2j eC3j eC4j

eC1j eC2j eC3j eC4j

ZPj3
= 1 ZPj4

= 0 ZPj5
= 0ZPj2

= 0

ZPj1
= 1

eC1j eC4j

eC2jeC1j eC3j eC4j

eC1j eC2j

eC2j eC3j

ZPj3
= 0

ZPj5
= 1

ZPj2
= 1

ZPj4
= 0

ZPj1
= 1

 

 

 

 

 

 eC4j

eC1j

eC2j

eC3j

eC2j

ZPj1
= 1 ZPj2

= 0

ZPj3
= 0

ZPj4
= 1

ZPj5
= 1

Testing responses:
ZPj1

= I{4−1
∑

i∈Pj1
C̃ij > t(4)} = 1

ZPj2
= I{C̃1j > t0} = 0

ZPj3
= I{C̃2j > t0} = 1

ZPj4
= I{C̃3j > t0} = 0

ZPj5
= I{C̃4j > t0} = 0

Testing responses:
ZPj1

= I{4−1
∑

i∈Pj1
C̃ij > t(4)} = 1

ZPj2
= I{2−1

∑
i∈Pj2

C̃ij > t(2)} = 1

ZPj3
= I{2−1

∑
i∈Pj3

C̃ij > t(2)} = 0

ZPj4
= I{C̃1j > t0} = 0

ZPj5
= I{C̃2j > t0} = 1

Testing responses:
ZPj1

= I{2−1
∑

i∈Pj1
C̃ij > t(2)} = 1

ZPj2
= I{2−1

∑
i∈Pj2

C̃ij > t(2)} = 0

ZPj3
= I{2−1

∑
i∈Pj3

C̃ij > t(2)} = 0

ZPj4
= I{2−1

∑
i∈Pj4

C̃ij > t(2)} = 1

ZPj5
= I{C̃2j > t0} = 1
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zzzj of ZZZj , we define Mj(zzzj , tttj) = pr(ZZZj = zzzj | TTT j = tttj). By an application of the Law of Total Probability,

one can relate the observed testing outcomes, given the observed pooling structure, to the individual level

covariates as follows

pr(ZZZj = zzzj |xxx1j , ..., xxxnjj) =
∑
tttj∈Tj

pr(ZZZj = zzzj | TTT j = tttj , xxx1j , ..., xxxnjj)pr(TTT j = tttj |xxx1j , ..., xxxnjj)

=
∑
tttj∈Tj

pr(ZZZj = zzzj | TTT j = tttj)

nj∏
i=1

pr(TTT ij = tttij |xxxij)

=
∑
tttj∈Tj

{
Mj(zzzj , tttj)

nj∏
i=1

{tijη−1(x>ijβ) + (1− tij)[1− η−1(x>ijβ)]}

}
.

To emphasize the dependence of the above probability on the unknown regression coefficients, β, we write

pr(ZZZj = zzzj |xxx1j , ..., xxxnjj) = R(zzzj , xxx1j , ..., xxxnjj ,β).

Using the observed data {(zzzj , xxx1j , ..., xxxnjj), j = 1, ..., J}, we can express the observed data log-likelihood

as

l(β) =

J∑
j=1

logR(zzzj , xxx1j , ..., xxxnjj ,β). (4.1)

If each Mj(zzzj , tttj) were known, then one could easily estimate β by directly maximizing (4.1) with respect

to β. In the next section we provide details on how to evaluate Mj(zzzj , tttj) based on the underlying charac-

teristics of the assay being employed.

4.2.1 Evaluation of Misclassification

To account for imperfect testing and pool dilution effects, we generalize the methodology described

in Wein & Zenios (1996), Zenios & Wein (1998), and McMahan et al. (2013). Following the work of these

authors, we proceed under the standard convention that a diagnostic test classifies a specimen as positive

(negative) if its measured biomarker concentration is above (below) a predetermined threshold. For generality,

we allow the assay threshold, which we denote by t(c), for a pool to vary with the number of specimens, say

c, of which it is comprised. Typically, the specification of t(c) has proceeded in one of two fashions. In

particular, Tu et al. (1994) specified that t(c) = t0 for any pool size c, where t0 is the assay threshold under

individual testing. This approach has also been implemented in the infectious disease screening literature;

e.g., see Currie et al. (2004). Alternatively, to account for the effect of pooling Vansteelandt et al. (2005)
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specified that t(c) = t0/c. In either case, we first derive a closed-form expression for Mj(zzzj , tttj) in terms of

the relevant biomarker distributions under an arbitrary thresholding strategy. We then investigate the effect of

both of the aforementioned thresholding strategies on inference in Sections 4.3 and 4.4.

To this end, we define C̃ij to be the true biomarker concentration level for the ith individual in the

jth group, and we assume that conditional on the individual’s true status that C̃ij |Tij ∼ fC̃|Tij
= TijfC̃+ +

(1 − Tij)fC̃− , where fC̃+ and fC̃− are the probability density functions for the biomarker concentration

levels of the infected and uninfected individuals, respectively. We initially assume that these biomarker

distributions are known, this assumption is later relaxed in Section 4.4. For notational convenience, we define

C̃j = (C̃1j , . . . , C̃njj)
T, for each j, to be the collection of the true biomarker levels for the nj individuals

assigned to the jth group. To account for the underlying structure of the assay being employed we are left to

relate C̃j to the testing outcomes ZZZj .

When pooled assessments are being made, we assume that the true biomarker concentration of the

pool is the arithmetic average of the biomarker concentrations of the individual specimens contributing to the

pool; i.e., letting C̃Pjl
denote the biomarker concentration for the pool consisting of the Pjl individuals we

assume that C̃Pjl
= c−1

jl

∑
i∈Pjl

C̃ij , where cjl denotes the cardinality of the set Pjl. We view this assumption

to be reasonable, as long as the individual specimens being pooled are of equal volume. Additionally, this

assumption is common among the biomarker pooling literature (Liu & Schisterman, 2003; Liu et al., 2004;

Mumford et al., 2006; Bondell et al., 2007; Vexler et al., 2008) and has previously been assumed in the

group testing estimation literature (Wein & Zenios, 1996; Zenios & Wein, 1998; McMahan et al., 2013).

To simplify this relationship, we define the design vector associated with the test of the pool consisting

of the Pjl individuals to be DDDPjl
= c−1

jl 1Pjl
, where 1Pjl

is a nj-dimensional binary vector whose Pjlth

components are 1, and all others are 0. Using this notation we can express the pool biomarker concentration

levels as C̃Pjl
= DDDT

Pjl
C̃j . It is important to point out, that in the presence of measurement error each C̃Pjl

is

unobservable.

We now derive our expression for Mj(zzzj , tttj) in terms of the aforementioned biomarker distribu-

tions. To account for assay measurement error, we let CPjl
denote the error laden measurement of C̃Pjl

, and

we assume that conditional on the true biomarker concentration levels that CPjl

ind∼ fC|C̃Pjl
, for l = 1, ...,Kj

and j = 1, ..., J . Thus, the observed testing responses, under our classification rule, are given by ZPjl
=

I{CPjl
> t(cjl)}. For purposes of clarity, we provide a simple illustration of how testing responses are

derived in this context in Table 4.1. Noting this relationship, we are able to write the probabilities associated
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with the observed testing outcomes in terms of the measured biomarker concentrations; e.g.,

pr(ZPjl
= zPjl

) = pr{CPjl
∈ A(zPjl

, cjl)},

where A(z, c) = z · {u : u > t(c)}+ (1− z) · {u : u ≤ t(c)} and z ∈ {0, 1}; i.e., A(0, c) = {u : u ≤ t(c)}

and A(1, c) = {u : u > t(c)}. Using this relationship we can express Mj(zzzj , tttj) as follows

Mj(zzzj , tttj) = pr(ZPj1
= zPj1

, ,̇ZPjKj
= zPjKj

| TTT j = tttj)

= pr{CPj1 ∈ A(zPj1 , cj1), ..., CPjKj
∈ A(zPjKj

, cjKj ) | TTT j = tttj}

= pr{Cj ∈ A(zzzj , cj) | TTT j = tttj},

where Cj = (CPj1
, ..., CPjKj

)T,A(zzzj , cj) = A(zPj1
, cj1)×A(zPj2

, cj2)× · · · ×A(zPjKj
, cjKj

), and cj =

(cj1, ..., cjKj
)T. Based on the probability density functions fC̃|Tij

and fC|C̃Pjl
, we have that the conditional

probability density function of Cj given TTT j = tttj is

fCj |TTT j=tttj (uuu) =

∫ Kj∏
l=1

fC|C̃Pjl
=DDDT

Pjl
yyy(ul)

nj∏
i=1

fC̃|Tij=tij
(yij)dyyy, (4.2)

where uuu = (u1, . . . , uKj )T and yyy = (y1j , . . . , ynjj)
T. Finally,

Mj(zzzj , tttj) =

∫
A(zzzj ,cj)

fCj |TTT j=tttj (uuu)duuu. (4.3)

When no retesting is performed, the above expression is equivalent to the results presented in McMahan et

al. (2013) for evaluating the assay sensitivity and specificity associated with master pool testing.

One should note, that the integral in (4.2) is multidimensional if nj > 1, and so is the integral in

(4.3) if the individuals in the jth group are involved in more than one test (i.e., ZZZj is non-scalar). In general

these integrals may be difficult to evaluate analytically, but this challenge is easily overcome using Monte

Carlo techniques, as will be illustrated in Section 4.4. It is possible to obtain a closed form expression of

fCj |TTT j=tttj , if we assume that C̃ij |Tij = 1 ∼ N(µ+, σ
2
+), C̃ij |Tij = 0 ∼ N(µ−, σ

2
−), and C|C̃ ∼ N(C̃, τ2).

Although a special case, these distributional assumptions are common among the pooled biomarker literature

(e.g., see Faraggi et al., 2003; Liu & Schisterman, 2003; Liu et al., 2004; Mumford et al., 2006). Under the

assumption of normality, we have that C̃j |TTT j = tttj ∼ N(µ(tttj),Σ(tttj)), where µ(tttj) = (1− tttj)µ− + tttjµ+

and Σ(tttj) = σ2
−diag{1 − tttj} + σ2

+diag{tttj}. Here, for a k-dimensional vector a, we let diag{a} denote a
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k × k diagonal matrix whose diagonal elements are a. We define the matrix DDDj = (DDDPj1 , . . . , DDDPjKj
), so

that the vector of true concentration levels of the pools associated with ZZZj can be expressed asDDDT

j C̃j . Noting

that DDDT

j C̃j |TTT j = tttj ∼ N(DDDT

jµ(tttj), DDD
T

jΣ(tttj)DDDj), it is easy to show that

Cj |TTT j = tttj ∼ N
(
DDDT

jµ(tttj), DDD
T

jΣ(tttj)DDDj + τ2IKj

)
,

where IKj is aKj×Kj identity matrix. Thus, under this special case, it is easy to calculateMj(zzzj , tttj) using

standard statistical software.

4.2.2 Maximum Likelihood Approach

Using the observed data {(zzzj , xxx1j , ..., xxxnjj), j = 1, ..., J}, one can estimate β by maximizing (4.1)

directly after using (4.3) to evaluateMj(zzzj , tttj), for all tttj ∈ Tj . We denote the resulting maximum likelihood

estimator (MLE) as β̂. The standard theoretical properties for MLEs hold for β̂ under the assumption that

the group sizes remain finite so that J → ∞ as N → ∞. This assumption is common among the group

testing literature, and we view it to be reasonable because in practice pool sizes are typically bounded by

implementation considerations. The variance-covariance matrix of β̂ can be estimated by the negative inverse

Hessian of (4.1) evaluated at β̂, and can be used to conduct Wald type inference (Wald , 1943).

One may note, that the evaluation of Mj(zzzj , tttj) over all tttj ∈ Tj could pose a significant compu-

tational burden, especially if nj is large. To obviate this difficulty, we point out that Mj(zzzj , tttj) is free of β

and can therefore be calculated before numerical optimization routines are implemented. To further alleviate

this computational burden we have developed efficient algorithms for computing these terms under two of

the most popular group testing schemes: Dorfman decoding and three-stage halving; these algorithms are

provided in Appendix C.1. In conjunction with the aforementioned algorithms, we have had little difficulty

implementing a quasi-Newton optimization routine in R for the purposes of identifying the MLE. Depending

on the complexity of the group testing strategy, it may not be feasible to directly maximize the observed data

log-likelihood using numerical techniques. In these situations, our methodology can still be implemented

through the use of an expectation maximization (EM) algorithm, which we also provide in Appendix C.2.
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4.3 Numerical Analysis

In this section, we illustrate the performance of our proposed methodology through simulation,

and compare our results to those obtained from more traditional group testing regression techniques. These

traditional methods generally proceed under the assumption that the testing error rates, sensitivity (Se) and

specificity (Sp), are known, constant, and do not depend on the pool size. More explicitly, the testing error

rates are the same for all pool sizes, to include individual level testing. The sensitivity (specificity) of an

assay is typically defined to be the probability that the assay will classify a specimen as positive (negative)

given it is truly positive (negative). To incorporate retesting information, authors have made the further

assumption that the testing outcomes for pools (individuals) are independent given their true statuses. Under

these assumptions, the conditional probability of observing zzzj , given the individuals’ true latent statuses tttj ,

can be expressed as

Mj(zzzj , tttj) =

Kj∏
l=1

{
S
zPjl

z̃Pjl
e (1− Se)(1−zPjl)z̃Pjl (1− Sp)zPjl(1−z̃Pjl)S

(1−zPjl)(1−z̃Pjl)
p

}
, (4.4)

where z̃Pjl
= I{

∑
i∈Pjl

tij > 0} is the true status of the pool being tested. Substituting the above expres-

sion into (4.1) and maximizing directly results in obtaining an estimate of β, under these more traditional

assumptions.

4.3.1 Data Generation and Model Fitting

In this study, we consider the following models:

Model 4.1. logit{pr(Tij = 1 | xij1)} = β0 + β1xij1; β = (β0, β1)T = (−3, 2)T,

Model 4.2. logit{pr(Tij = 1 | xij1)} = β0 + β1xij1 + β2x
2
ij1; β = (β0, β1, β2)T = (−3, 1, 0.5)T,

Model 4.3. logit{pr(Tij = 1 | xij1, xij2)} = β0 + β1xij1 + β2xij2; β = (β0, β1, β2)T = (−3, 2, 1)T,

where xij1 ∼ N(0, 0.752) and xij2 ∼ Bernoulli(0.1). These model choices emulate situations in which group

testing could be employed and provide for mean prevalences ranging from 8–10 percent. These models were

also studied in McMahan et al. (2013). Normal distributions were chosen for the individual biomarker con-

centrations; specifically, C̃|T = 1 ∼ N(2, σ2
+) and C̃|T = 0 ∼ N(0.1, 0.32), where σ+ ∈ {0.8, 0.9, 1}. To

account for assay measurement error, we specified the conditional distribution of the measured concentration

levels to be C|C̃ ∼ N(C̃, 0.022). The assay threshold was chosen to be t0 = 0.7, so that the specificity
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under individual testing would be Sp = 0.977, while the sensitivities would be Se = 0.948, 0.926, 0.903

corresponding to σ+ = 0.8, 0.9, 1, respectively.

In this study, we specified N = 3600 and considered a common initial group size of n; i.e.,

nj = n, for all j = 1, . . . , J , where n ∈ {2, 4, 6} and J = N/n. We then randomly generated the

individual level covariates xxxij , for i = 1, . . . , n and j = 1, . . . , J , which were then used to calculate

the individuals’ infection probabilities, pij , according to the aforementioned models. It is worth while to

point out, that randomly simulating covariate values in this fashion, and subsequently the infection prob-

abilities, is equivalent to practitioners randomly assigning subjects to groups. Each individual’s true sta-

tus, Tij , was then determined according to a Bernoulli distribution having success probability pij . The

corresponding biomarker concentration level, C̃ij , was then independently generated according to either

C̃ij |Tij = 1 ∼ N(2, σ2
+) or C̃ij |Tij = 0 ∼ N(0.1, 0.032), depending on the value of Tij . This process

was repeated 500 times for each model and configuration of (σ+, n) resulting in 27, 000 independent data

sets of the form {(C̃1j , ..., C̃nj , xxx1j , ..., xxxnj), j = 1, ..., J}.

In what follows, we describe how group testing data was generated based on the individual level

biomarker data. As one might expect, the data structure is highly dependent on the particular group testing

strategy being employed. For the purposes of our simulation, presented herein, we have opted to investi-

gate three of the most common strategies: master pool testing (MT), Dorfman testing (DT), and three-stage

halving (TH). In order to levy pool diagnoses, we considered two methods of specifying the assay threshold

for pooled specimens; i.e., we considered letting t(c) = t0 and t(c) = t0/c as was suggested in Currie et

al. (2004) and (Vansteelandt et al., 2005), respectively. Under MT, all individuals within a given group are

pooled together and the pool is tested, with no further testing being implemented. Thus, the testing response

vector, under MT, for the jth group is given by ZZZMT
j = ZPj1

, where Pj1 = Gj = {1, ..., n}, and is deter-

mined by ZPj1
= I{CPj1

> t(n)}, where CPj1
∼ N(C̃Pj1

, 0.022) and C̃Pj1
= n−1

∑n
i=1 C̃ij . Master pool

testing, unlike DT and TH, is not a decoding algorithm; i.e., it does not levy a diagnosis for each individual.

The first decoding algorithm that we consider is DT, which specifies that a group whose master pool

test is negative requires no further screening, but in those cases where the master pool test is positive the

group is resolved by retesting each subject individually. Therefore, under DT the testing response vector for

the jth group is identical to that under MT, if the master pool test is negative. Alternatively, if the master

pool test is positive the testing response vector is given by ZZZDTj = (ZPj1
, ZPj2

, ..., ZPjKj
)T, where ZPj1

is determined as discussed above, Kj = n + 1, and Pjl = {l − 1}, for l = 2, ...,Kj . The response ZPjl
,

for l = 2, ...,Kj , corresponds to individually testing the (l − 1)th subject and is determined according to
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ZPjl
= I{CPjl

> t0}, where CPjl
∼ N(C̃ij , 0.022) and i = l − 1.

The second decoding algorithm we consider is TH, which is very similar to DT with the exception

of an additional decoding stage before reverting to individual testing. Under TH when a positive master

pool response is observed the positive group is randomly divided into two equally sized subgroups and these

subgroups are tested using the threshold t(n/2). If a subgroup tests negative then testing is complete, al-

ternatively if a subgroup tests positive then all contributing subjects are retested individually. For brevity,

we have chosen not to explicitly describe the construction of the response vector for TH, but it follows a

similar methodology as that described above. Using these group testing strategies, we are able to create

the following group testing data {(zzzMT
j , xxx1j , ..., xxxnj), j = 1, ..., J}, {(zzzDTj , xxx1j , ..., xxxnj), j = 1, ..., J}, and

{(zzzTHj , xxx1j , ..., xxxnj), j = 1, ..., J} corresponding to MT, DT, and TH, respectively, for each of the biomarker

data sets, {(C̃1j , ..., C̃nj , xxx1j , ..., xxxnj), j = 1, ..., J}.

The regression methodology discussed in Section 4.2 was applied to each of the group testing data

sets. To implement these techniques, we calculated Mj(zzzj , tttj) using the closed form expression presented

in Section 4.2.1, that is available under the assumption of normality. In Appendix C.3, we illustrate how one

could approximate these quantities using Monte Carlo techniques, when the assumption of normality is not

valid. We then maximized (4.1) directly using a Quasi-Newton optimization routine available in R. For the

purposes of comparison, we also fit the regression models that proceed under the more traditional assumptions

using the reformulation presented in (4.4) and the appropriate individual Se and Sp levels. Additionally, for

each of the biomarker data sets we also generated subject level testing responses (i.e., n = 1) and fit the

individual data model.

4.3.2 Simulation Results

Table C.3 provides summary statistics of the 500 estimates of β obtained from Model 4.2 for all

considered group testing algorithms under the two thresholding strategies, when n ∈ {2, 4, 6} and σ+ = 1.

From these results, we see that the maximum likelihood estimates of β obtained from our regression method-

ology show little, if any, evidence of bias, across all considered configurations. The same cannot always be

said for the estimates obtained from the traditional group testing regression models. More specifically, the

parameter estimates obtained by the two different regression methodologies almost agree at n = 2, but as n

increases the estimates obtained by the traditional methods tend to become more biased, and in some cases

severely so (e.g., when n = 6). It is worth while to point out that the bias in the parameter estimates obtained

by the traditional regression techniques are less pronounced when the assay threshold is allowed to vary with
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the size of the pool being tested (i.e., t(c) = t0/c). These findings, likely explain why the estimated coverage

probabilities for the traditional modeling approach tend to be incongruously small given the specified confi-

dence level, while those associated with our techniques remain at their nominal level, regardless of the group

size. One will also notice, that the standard deviation of the estimated regression coefficients, from our pro-

posed method, are predominantly in agreement with the corresponding average standard errors, suggesting

that the variance-covariance matrix of β̂ is being estimated correctly. One will also note that as n increases,

so does the variability in β, this is an expected phenomenon because the number of testing responses, used

to estimate β, decrease as n increases. However, this effect is attenuated for the data collected by the decod-

ing algorithms (DT and TH), which is explained by the addition of the retesting information associated with

decoding positive pools. Figure 4.1 provides plots of the average estimated regression functions for Model

4.2 under both thresholding strategies, when n ∈ {2, 4, 6}, σ+ = 1, and for all considered group testing

algorithms. This figure reinforces the main findings discussed above; i.e., the regression curves estimated by

our methods are on target and tend to capture the true underlying model. Alternatively, the regression curves

estimated under the traditional assumptions exhibit a great deal of bias, especially for larger group sizes.

In Figure 4.2 we provide evidence that our proposed methodology for analyzing group testing data

may result in estimates of β that are less variable, when compared to the parameter estimates resulting from

the individual data model (i.e., n = 1). Further, these estimates can be obtained at a fraction of the data

collection cost incurred by testing individuals one-by-one. Specifically, in this figure we provide plots of the

percentage reduction in testing cost obtained through the use of DT and TH for screening when compared to

testing individuals separately, across all considered configurations when σ+ = 1. We also provide the relative

efficiency, which we define to be the ratio between the MSE of the estimates obtained from analyzing group

testing data and the MSE of the estimates resulting from the individual data model. These results suggest

that if the group size n is sensibly chosen, then the estimates obtained from data collected by a group testing

decoding algorithm can be more efficient (less variable) than those obtained from individual level data, and

at roughly 65% and 80% of the cost of testing under the threshold strategies t(c) = t0 and t(c) = t0/c,

respectively.

In Appendix C.4, we provide a complete summary of our simulation results across all considered

group testing strategies and values of n, when σ+ = 1. The results under other considered settings of σ+

were practically identical and are therefore omitted. In addition to the numerical study discussed above, we

have also performed simulations that allow for different biomarker distributional assumptions (e.g., gamma,

Weibull, and log-normal), the evaluation of Mj(zzzj , tttj) through Monte Carlo techniques, and the use of dif-
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Table 4.2: Simulation results for Model 4.2 having regression parameters β = (−3, 1, 0.5)T. Presented
results include the sample mean (Mean) and standard deviation (SD) of the 500 estimates of β, when n ∈
{2, 4, 6} and σ+ = 1. The average standard error (SE) and estimated 95% Wald coverage probabilities (Cov)
are also provided. Assuming a 99% confidence level for the coverage probabilities, the margin of error is
0.03. Estimates outside this margin of error are shown in bold. Note, MT, DT, and TH denote individual
testing, master pool testing, Dorfman testing, and three-stage halving, respectively.

When t(c) = t0: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.01(0.95) −3.01(0.94) −− (−−) −3.52(0.05) −3.15(0.72) −− (−−)
SD(SE) 0.12(0.12) 0.11(0.11) −− (−−) 0.17(0.16) 0.10(0.10) −− (−−)

4 Mean(Cov) −3.03(0.96) −3.02(0.94) −3.01(0.96) −4.49(0.00) −3.83(0.00) −3.75(0.00)
SD(SE) 0.20(0.19) 0.14(0.14) 0.14(0.14) 0.43(0.43) 0.16(0.15) 0.14(0.13)

6 Mean(Cov) −3.11(0.96) −3.03(0.95) −3.02(0.95) −7.56(0.14) −4.93(0.00) −4.54(0.00)
SD(SE) 0.34(0.33) 0.19(0.19) 0.19(0.19) 3.90(3.10) 0.45(0.36) 0.24(0.21)

β̂1

2 Mean(Cov) 1.03(0.94) 1.02(0.95) −− (−−) 1.38(0.87) 0.99(0.91) −− (−−)
SD(SE) 0.19(0.17) 0.12(0.12) −− (−−) 0.40(0.35) 0.12(0.11) −− (−−)

4 Mean(Cov) 1.09(0.94) 1.03(0.94) 1.03(0.96) 1.97(0.88) 1.10(0.91) 0.99(0.92)
SD(SE) 0.41(0.39) 0.18(0.17) 0.15(0.16) 0.93(0.89) 0.26(0.22) 0.18(0.17)

6 Mean(Cov) 1.25(0.95) 1.05(0.97) 1.05(0.96) 5.24(0.94) 1.85(0.79) 1.17(0.94)
SD(SE) 0.81(0.75) 0.26(0.24) 0.23(0.23) 5.68(4.51) 0.88(0.67) 0.40(0.33)

β̂2

2 Mean(Cov) 0.48(0.95) 0.49(0.95) −− (−−) 0.32(0.86) 0.45(0.94) −− (−−)
SD(SE) 0.14(0.13) 0.10(0.10) −− (−−) 0.24(0.20) 0.09(0.09) −− (−−)

4 Mean(Cov) 0.44(0.96) 0.48(0.97) 0.49(0.95) −0.08(0.72) 0.29(0.72) 0.32(0.69)
SD(SE) 0.27(0.28) 0.14(0.14) 0.14(0.14) 0.42(0.40) 0.16(0.14) 0.14(0.12)

6 Mean(Cov) 0.37(0.93) 0.47(0.95) 0.48(0.93) −1.21(0.88) −0.04(0.60) 0.19(0.66)
SD(SE) 0.52(0.47) 0.21(0.20) 0.21(0.20) 2.05(1.64) 0.40(0.31) 0.23(0.19)

When t(c) = t0/c: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.04(0.96) −3.01(0.95) −− (−−) −2.22(0.00) −2.46(0.00) −− (−−)
SD(SE) 0.17(0.17) 0.11(0.11) −− (−−) 0.08(0.08) 0.08(0.08) −− (−−)

4 Mean(Cov) −3.12(0.97) −3.01(0.95) −3.00(0.96) −1.89(0.00) −2.32(0.00) −2.11(0.00)
SD(SE) 0.29(0.29) 0.11(0.11) 0.11(0.11) 0.09(0.10) 0.07(0.08) 0.07(0.08)

6 Mean(Cov) −3.16(0.97) −3.01(0.96) −3.01(0.94) −1.81(0.00) −2.37(0.00) −2.10(0.00)
SD(SE) 0.39(0.42) 0.11(0.11) 0.11(0.11) 0.12(0.13) 0.07(0.08) 0.07(0.08)

β̂1

2 Mean(Cov) 1.09(0.96) 1.01(0.97) −− (−−) 0.67(0.11) 0.82(0.42) −− (−−)
SD(SE) 0.30(0.30) 0.12(0.13) −− (−−) 0.10(0.10) 0.08(0.09) −− (−−)

4 Mean(Cov) 1.21(0.94) 1.02(0.97) 1.01(0.95) 0.59(0.17) 0.84(0.53) 0.76(0.20)
SD(SE) 0.65(0.59) 0.13(0.13) 0.13(0.12) 0.13(0.14) 0.08(0.09) 0.08(0.08)

6 Mean(Cov) 1.29(0.93) 1.01(0.96) 1.02(0.96) 0.62(0.47) 0.86(0.67) 0.80(0.38)
SD(SE) 0.90(0.85) 0.13(0.13) 0.13(0.13) 0.21(0.21) 0.09(0.09) 0.09(0.09)

β̂2

2 Mean(Cov) 0.46(0.95) 0.49(0.96) −− (−−) 0.43(0.90) 0.46(0.94) −− (−−)
SD(SE) 0.18(0.19) 0.10(0.10) −− (−−) 0.08(0.09) 0.07(0.08) −− (−−)

4 Mean(Cov) 0.42(0.92) 0.49(0.95) 0.49(0.95) 0.41(0.93) 0.47(0.96) 0.44(0.92)
SD(SE) 0.35(0.32) 0.10(0.10) 0.10(0.10) 0.11(0.12) 0.07(0.08) 0.07(0.08)

6 Mean(Cov) 0.39(0.94) 0.49(0.96) 0.49(0.96) 0.43(0.98) 0.49(0.97) 0.46(0.93)
SD(SE) 0.47(0.44) 0.10(0.10) 0.10(0.10) 0.16(0.18) 0.08(0.08) 0.08(0.08)
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Figure 4.1: Plots of the estimated regression functions averaged over 500 data sets for Model 4.2 when
σ+ = 1 and n ∈ {2, 4, 6}. We use DT(T), TH(T), and MT(T) to denote the results obtained under the
traditional modeling assumptions for the group testing algorithms DT, TH, and MT, respectively. The panels
on the left and right of the figure correspond to thresholding strategies t(c) = t0 and t(c) = t0/c, respectively.
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Figure 4.2: Simulation results concerning the efficiency of the parameter estimates obtained from modeling
group testing data, resulting from different algorithms. Presented are results for Model 4.1 (left), Model 4.2
(middle), and Model 4.3 (right) across all considered group sizes (n), when σ+ = 1. We define the testing
efficiency to be the ratio between the average number of tests performed by a group testing algorithm and
the number of tests required to conduct individual level testing; i.e., N . The relative efficiency is defined to
be the ratio between MSE(β̂) obtained from modeling group testing data and the MSE(β̂) from modeling
individual level testing data, where MSE(β̂) = tr{E[(β̂ − β)(β̂ − β)T]}.
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ferent group testing algorithms. We have also investigated the characteristics of our regression methodology

under the situation in which the biomarker distributions are unknown and have to be estimated. The findings

from these alternate studies are congruous with the results presented herein, and we have therefore opted not

to include them.

4.4 Irish HBV Data

To further illustrate our methodology, we apply our techniques to the hepatitis B data previously

analyzed by McMahan et al. (2013). This data set was originally compiled in an effort to assess the prevalence

of antibodies to the hepatitis B virus (HBV) in Irish prisoners, for further details see (Allwright et al., 200).

In the original study, oral fluid specimens were collected from each individual and were subsequently tested

through the use of the Murex ICE enzyme immunoassay, the observed optical density (OD) readings from this

process were then recorded. All positive results were then confirmed using an in-house radioimmunoassay.

The data set also provides a diagnosed status for each of the individuals, which we will treat as their true

infection status in this study. At the time of specimen collection, covariate information (e.g., age, gender, drug

use, etc.) from participating subjects was collected via voluntary questionnaire. After the individuals with

missing predictor variables and/or testing information were removed, we are left with a sample of size N =

1098. Specifically, there were complete records for 60 HBV-positive and 1038 HBV-negative individuals.

The main purpose of this study is to compare the performance of our group testing regression methods to

those that proceed under the more traditional assumptions.

One will note that the above information was collected on the individual level; i.e., for all N indi-

viduals we have access to their OD reading and covariate information. Using this information we are able

to artificially construct group testing data. Proceeding in this fashion allows us to assess the performance of

our methodology across a wide variety of settings (e.g., various group sizes, grouping schemes, and thresh-

olding strategies), which would not be possible otherwise. Additionally, this approach, which allows for

comparisons between estimates obtained from group testing and individual level data, has become common

practice in the group testing regression literature (e.g., see Delaigle & Hall, 2012). To create group testing

data we first note that the OD readings, which were available to us, are simply a measurement of the un-

derlying antibody concentration levels. Thus, as in McMahan et al. (2013), we assume that the observed

OD readings are linearly related to the true antibody concentration levels and were measured without error.

Subsequently, we may determine the OD reading for a pool formed from combining the Pjl individuals by
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C̃Pjl
= c−1

jl

∑
i∈Pjl

C̃ij . Notice, we use the C̃ notation defined in Section 4.2.1 to represent the OD readings.

Testing outcomes for pools were then determined by ZPjl
= I{C̃Pjl

> t(cjl)}, where we considered the

thresholding strategies t(c) = t0 and t(c) = t0/c. However, the assay threshold for individual level testing

(t0) was not provided to us. Thus, to choose a reasonable value of t0, we first partition all 1098 OD read-

ings into two sets OD+ = {C̃i : Ti = 1} and OD− = {C̃i : Ti = 0}. We then select t0 to minimize the

discrepancies between the individuals’ true statuses and their diagnosed statuses based on the OD readings;

i.e.,

t0 = arg max
t

 ∑
C̃i∈OD+

I(C̃i > t) +
∑
C̃i∈OD−

I(C̃i < t)

 .

In this study we did not have access to the underlying distribution of the OD readings for the positive

and negative individuals, which we denote by fC̃+ and fC̃− , respectively. Consequently, we estimated these

distributions through the use of training data. Specifically, density estimation proceeded under the assumption

that the OD readings followed a parametric model and we considered three such models: gamma, Weibull,

and log-normal. Two training data sets were created by randomly sampling 10 observations from OD+ and

44 observations from OD−. Using the training data, we obtained the estimates f̂C̃+ and f̂C̃− of fC̃+ and fC̃− ,

respectively, through the use of maximum likelihood techniques. In order to fit the traditional regression

models we calculated the sensitivity and specificity of individual level testing to be Se =
∫∞
t0
f̂C̃+(x)dx and

Sp =
∫ t0
∞ f̂C̃−(x)dx, respectively. To implement our regression methodology, we calculated Mj(zzzj , tttj) as

follows

Mj(zj , tttj) =

∫ Kj∏
l=1

I{DDDT

Pjl
y ∈ A(zPjl

, cjl)}
nj∏
i=1

f̂C̃(yij | Tij = tij)dy,

where f̂C̃(· | T ) = T f̂C̃+(·) + (1− T )f̂C̃−(·). It is worth while to point out that the aforementioned integral

is difficult to compute analytically, consequently we used the Monte Carlo techniques described in Appendix

C.3 to approximate it.

To make our comparisons, we consider the following simple second-order logistic model

logit{pr(Tij = 1 | xij)} = β0 + β1xij + β2x
2
ij ,

where xij denotes the age of the ith individual in the jth group. After the removal of the training data, there

were N = 1044 observations remaining. We again specify a common group size n, where n ∈ {1, 2, 4, 6},

and we assigned each of the N individuals to one of the J = N/n groups. In this study we considered

both homogeneous and random grouping schemes; i.e., individuals of a common age were grouped together
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(homogeneous grouping) or individuals were randomly assigned to groups (random grouping). The former

grouping strategy has been shown to result in more efficient parameter estimation when compared to the

latter (e.g., see Bilder & Tebbs, 2009; Delaigle & Hall, 2012), however homogeneous grouping is not always

feasible in practical applications. The group testing strategies chosen for this study were MT and DT, and

group testing data was subsequently generated in a similar fashion to the methods described in Section 4.3.1.

For each of the group testing data sets, we estimated the regression parameters under our methodology. In

order to compare our approach to existing techniques we also estimated the regression parameters for each

data set using the group testing regression models which proceed under the traditional modeling assumptions.

Further, to provide a standard by which comparisons can be made we also fit the individual data model (i.e.,

n = 1). This process was repeated 1000 times for each pool size, with a new training data set being selected

each time.

In order to assess misclassification error rates of the different thresholding strategies we compared

the individuals’ true statuses to the diagnosed statuses obtained from the two group testing decoding algo-

rithms. A summary of these results across all of the considered testing configurations is provided in Appendix

C.5. From these comparisons, we found that the thresholding strategy t(c) = t0 resulted in an extremely

high false negative rate; i.e., under this strategy many of the truly positive individuals were classified as

negative. Consequently, we have chosen to focus our attention on the data arising from the thresholding

strategy t(c) = t0/c, which resulted in misclassification rates similar to that of individual level testing. Table

C.4 provides a summary of the 1000 estimates of β across all considered configurations under our selected

thresholding strategy. Figure 4.3 provides plots of the estimated regression functions averaged over the 1000

replications across all considered configurations under the same thresholding strategy and random grouping.

From these results, one will first note that the estimates obtained by our regression methodology appear to

be more reliable when compared to the estimates resulting from the more traditional regression techniques,

across all considered configurations. These results reinforce the main findings discussed in Section 4.3.2.

Specifically, Figure 4.3 illustrates that the traditional regression methodology tends to drastically overesti-

mate the age-specific probabilities of HBV infection for larger group sizes (e.g., n = 6), while the estimates

from our method remain in agreement with the results from the individual level data. These trends can also

be observed in the summary of the estimates of β provided in Table C.4. The discrepancies between the

estimates obtained by our method and those resulting from the individual data model, are likely explained by

the error introduced by having to estimate fC̃+ and fC̃− .
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Table 4.3: Irish HBV data: Presented results include the sample mean (standard deviation) of the 1000 maximum
likelihood estimates of β = (β0, β1, β2)T, across all considered configurations under the thresholding strategy t(c) =
t0/c. Note, IT, DT, and TH denote individual testing, Dorfman testing, and three-stage halving, respectively.

Lognormal: Under IT, the summary of the estimates β̂0, β̂1, and β̂2 are -2.92(0.06), 1.09(0.11), and -0.31(0.06), respectively.

Random Grouping Homogeneous Grouping

Our Approach Traditional Approach Our Approach Traditional Approach

n DT TH DT TH DT TH DT TH

β̂0

2 −2.90(0.06) −− (−−) −2.88(0.06) −− (−−) −2.90(0.05) −− (−−) −2.88(0.06) −− (−−)
4 −2.87(0.08) −2.86(0.07) −2.75(0.07) −2.75(0.07) −2.84(0.09) −2.84(0.09) −2.70(0.07) −2.69(0.07)
6 −2.92(0.07) −2.87(0.07) −2.53(0.09) −2.50(0.09) −2.89(0.08) −2.87(0.07) −2.30(0.07) −2.26(0.09)

β̂1

2 1.13(0.11) −− (−−) 1.13(0.11) −− (−−) 1.14(0.10) −− (−−) 1.14(0.10) −− (−−)
4 1.10(0.11) 1.11(0.11) 1.09(0.11) 1.10(0.11) 1.10(0.10) 1.12(0.10) 1.07(0.09) 1.09(0.10)
6 1.10(0.11) 1.09(0.11) 1.09(0.12) 1.08(0.12) 1.10(0.11) 1.12(0.11) 0.80(0.07) 0.83(0.08)

β̂2

2 −0.32(0.06) −− (−−) −0.32(0.06) −− (−−) −0.32(0.06) −− (−−) −0.32(0.06) −− (−−)
4 −0.31(0.06) −0.31(0.06) −0.31(0.06) −0.31(0.06) −0.32(0.05) −0.33(0.06) −0.32(0.05) −0.33(0.06)
6 −0.31(0.06) −0.31(0.06) −0.32(0.06) −0.32(0.06) −0.31(0.06) −0.33(0.06) −0.28(0.05) −0.30(0.05)

Gamma: Under IT, the summary of the estimates β̂0, β̂1, and β̂2 are -2.90(0.06), 1.09(0.10), and -0.31(0.06), respectively.

Random Grouping Homogeneous Grouping

Our Approach Traditional Approach Our Approach Traditional Approach

n DT TH DT TH DT TH DT TH

β̂0

2 −2.88(0.06) −− (−−) −2.86(0.06) −− (−−) −2.87(0.06) −− (−−) −2.86(0.06) −− (−−)
4 −2.82(0.09) −2.81(0.08) −2.73(0.07) −2.72(0.07) −2.78(0.10) −2.78(0.09) −2.68(0.07) −2.66(0.07)
6 −2.88(0.08) −2.83(0.07) −2.50(0.08) −2.46(0.09) −2.85(0.11) −2.82(0.09) −2.27(0.07) −2.22(0.08)

β̂1

2 1.13(0.11) −− (−−) 1.13(0.11) −− (−−) 1.14(0.10) −− (−−) 1.15(0.11) −− (−−)
4 1.09(0.11) 1.11(0.11) 1.09(0.11) 1.11(0.11) 1.09(0.10) 1.10(0.10) 1.08(0.10) 1.09(0.10)
6 1.10(0.10) 1.10(0.11) 1.09(0.12) 1.09(0.12) 1.10(0.11) 1.12(0.10) 0.80(0.07) 0.83(0.07)

β̂2

2 −0.32(0.06) −− (−−) −0.32(0.06) −− (−−) −0.33(0.06) −− (−−) −0.33(0.06) −− (−−)
4 −0.31(0.06) −0.32(0.06) −0.31(0.06) −0.32(0.06) −0.32(0.06) −0.32(0.05) −0.33(0.06) −0.33(0.05)
6 −0.31(0.06) −0.31(0.06) −0.32(0.06) −0.32(0.06) −0.32(0.06) −0.33(0.06) −0.29(0.05) −0.30(0.05)

Weibull: Under IT, the summary of the estimates β̂0, β̂1, and β̂2 are -2.88(0.06), 1.09(0.10), and -0.30(0.05), respectively.

Random Grouping Homogeneous Grouping

Our Approach Traditional Approach Our Approach Traditional Approach

n DT TH DT TH DT TH DT TH

β̂0

2 −2.86(0.06) −− (−−) −2.84(0.07) −− (−−) −2.86(0.06) −− (−−) −2.84(0.07) −− (−−)
4 −2.81(0.09) −2.81(0.09) −2.71(0.08) −2.70(0.08) −2.78(0.11) −2.78(0.10) −2.66(0.07) −2.65(0.08)
6 −2.86(0.10) −2.82(0.10) −2.48(0.09) −2.45(0.09) −2.81(0.15) −2.80(0.12) −2.25(0.08) −2.20(0.09)

β̂1

2 1.12(0.10) −− (−−) 1.13(0.11) −− (−−) 1.13(0.10) −− (−−) 1.14(0.10) −− (−−)
4 1.09(0.11) 1.11(0.11) 1.09(0.11) 1.10(0.11) 1.08(0.10) 1.11(0.10) 1.07(0.10) 1.10(0.10)
6 1.09(0.11) 1.10(0.11) 1.09(0.12) 1.09(0.12) 1.08(0.11) 1.12(0.11) 0.80(0.07) 0.84(0.08)

β̂2

2 −0.32(0.05) −− (−−) −0.32(0.06) −− (−−) −0.32(0.06) −− (−−) −0.32(0.06) −− (−−)
4 −0.31(0.06) −0.32(0.06) −0.31(0.06) −0.32(0.06) −0.32(0.06) −0.33(0.06) −0.33(0.06) −0.33(0.06)
6 −0.31(0.06) −0.31(0.06) −0.32(0.06) −0.32(0.06) −0.32(0.06) −0.33(0.06) −0.29(0.05) −0.30(0.05)
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Lognormal distribution Gamma distribution Weibull distribution
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Figure 4.3: Irish HBV data. Plots of the estimated regression functions averaged over the 1000 data sets across
all considered configurations under the thresholding strategy t(c) = t0/c and random grouping. From left to
right, the figures present the regression estimates corresponding to the assumption that the OD readings follow
a log-normal, gamma, and Weibull distribution. We use DT(T) and TH(T) to denote the results obtained under
the traditional modeling assumptions for the group testing algorithms DT and TH, respectively.
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4.5 Discussion

In this chapter, we have generalized the group testing regression methodology proposed in McMahan

et al. (2013), to allow for the incorporation of testing information obtained from all group testing strategies.

We have also illustrated that regression methods which operate under the more traditional assumptions can

result in extremely biased inference, when the assumptions are in fact invalid. Through numerical studies, we

have been able to show that our proposed techniques can result in more efficient parameter estimates, when

compared to those based on individual level data, at a fraction of the cost of data collection.
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Appendix A Technical proofs related to Chapter 2

A.1 Proof of Theorem 2.3.1

Let α = H(θ − θ∗), α̂ = H(θ̂ − θ∗) and Ũj = H−1X̃j . Put

l(α) =
1

N

J∑
j=1

{
(1− T ∗j )(X̃>j θ

∗ + Ũ>j α) + T ∗j log
[
1− exp(X̃>j θ

∗ + Ũ>j α)
]}
ωh(Xj , x)

=

K∑
k=1

Jk
N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

lj(α; k),

where J0 = 0 and lj(α; k) is the kernel weighted likelihood corresponding to a pooled data of size n(k).

Since l(α) is strictly concave, it is sufficient to show that, for any given η > 0, there exists a small constant

ε, such that

lim inf
N

P
{

sup
‖α‖=ε

l(α) < l(0)
}

= 1− η.

By Taylor’s expansion around the origin, for any α with ‖α‖ = ε,

l(α)− l(0) = l′(0)>α+
1

2
α>l′′(0)α+R(α′), (A.1)

with α′ lying between α and 0, and where

R(α′) =
1

6

∑
j,k,l

α′jα
′
kα
′
l

∂3l(α′)

∂αj∂αk∂αl
.

First, since for fixed k, lj(α; k), j = Jk−1 + 1, . . . , Jk−1 + Jk are i.i.d., we have

l′(0) =

K∑
k=1

Jk
N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

l′j(0; k)→p

K∑
k=1

γk
n(k)

E[l′j(0; k)], (A.2)

where

l′j(0; k) =

(
1−

T ∗j

1− exp(X̃>j θ
∗)

)
Ũjωh(Xj , x).

We know E[l′j(0; k)] = EZj
{E[l′j(0; k)|Zj ]} with Zj = (Z1j , . . . , Zn(k)j)

>. It is easy to see that

E[l′j(0; k)|Zj = 0] = 0.
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When some of the Zij’s are not zero, local linear approximation provides that

E
[
T ∗j |Zj

]
= 1− exp(X̃>j θ

∗)− exp(X̃>j θ
∗)
g(2)(x)

2

n(k)∑
i=1

Ix(Xij)(Xij − x)2{1 + o(1)}.

Applying Taylor’s expansion, E[l′j(0; k)] can be written as

EZj

[g(2)(x)

2
·
{ exp(A)

1− exp(A)
+

exp(A)θ∗2
(1− exp(A))2

·B{1 + o(1)}
}

Ũjh
−

∑n(k)

i=1 Ix(Xij)C
]
,

where A =
∑n(k)

i=1 {Ix(Xij)θ
∗
1 + (1 − Ix(Xij))θ

∗
3}, B =

∑n(k)

i=1 Ix(Xij)(Xij − x) and C =
∑n(k)

i=1 (Xij −

x)2{1 + o(1)}. Let Mm be the event that only m of the Ix(Xij)s are zero (since Xs are i.i.d, without loss of

generality, we assume Ix(X1j) = · · · = Ix(Xmj) = 0). Then conditioning on Mms,

E[l′j(0; k)] =
g(2)(x)

2

n(k)∑
m=1

(
n(k)

m

)
Pn

(k)−m
x I

(m)
k ,

where Px is the probability of an X falling out of Ix, i.e., Px =
∫
Icx
f(u)du, and

I
(m)
k =

∫ x+h

x−h
· · ·
∫ x+h

x−h

{ exp(Am)

1− exp(Am)
+

exp(Am)θ∗2
(1− exp(Am))2

·Bm{1 + o(1)}
}

×Cm


m

Bmh
−1

n(k) −m

 1

h

m∏
i=1

f(Xij)K
(Xij − x

h

)1/m

dX1j · · · dXmj ,

with Am = mθ∗1 + (n(k) − m)θ∗3 , Bm =
∑m
i=1(Xij − x), and Cm =

∑m
i=1(Xij − x)2{1 + o(1)}. By

Conditions 2.2 and 2.3, h→ 0. Then θ∗3 → log q∗ and Px → 1. We can write

I
(1)
k =

(
µ2Vk1h

2, µ4Vk2h
3, (n(k) − 1)µ2Vk1h

2
)>

.

Simple integration provides that, for m > 1, I(m)
k = o(I

(1)
k ). Hence

E[l′j(0; k)] =
n(k)g(2)(x)I

(1)
k

2
{1 + o(1)}. (A.3)
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By the assumption n(k)Jk/N → γk and (A.2), we can conclude that

l′(0) = bθ + op(1) = op(1). (A.4)

Thus, with probability tending to 1,

|l′(0)>α| ≤ ε3. (A.5)

For l′′(0), similarly

l′′(0) =

K∑
k=1

Jk
N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

l′′j (0; k)→p

K∑
k=1

γk
n(k)

E[l′′j (0; k)], (A.6)

where

l′′j (0; k) =
T ∗j exp(X̃>j θ

∗)

(1− exp(X̃>j θ
∗))2

ŨjŨ
>
j ωh(Xj , x).

When Zj = 0, ŨjŨ
>
j = diag{0, 0, n(k)2} and ωh(Xj , x) = 1. Thus, as h→ 0,

E[l′′j (0; k)|Zj = 0]→ diag
{

0, 0,
n(k)2 exp(Ek0)

(1− exp(Ek0)

}
.

When some of Zij’s are not zero, using the same argument as above, we have

E[l′′j (0; k)] = n(k)


Vk1µ0 0 (n(k) − 1)Vk1µ0

0 Vk1µ2 0

(n(k) − 1)Vk1µ0 0 (n(k) − 1)2Vk1µ0 + Vk0

 {1 + o(1)}.

By (A.6),

l′′(0) = −V0 + op(1). (A.7)

Let λmin(V0) be the smallest eigenvalue of V0. Since V0 is positive definite, λmin(V0) is a positive number.

Thus, with probability tending to 1,

α>l′′(0)α ≤ −λmin(V0)ε2. (A.8)

Similarly, we can find that

|R(α)| = ε3Op(1). (A.9)
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Substituting (A.5), (A.8) and (A.9) into (A.1), its sign is completely decided by the term of ε2

when ε is small enough. This completes the proof of Theorem 1.

A.2 Proof of Theorem 2.3.2

Continuing to use the notation introduced in the proof of Theorem 1, by Taylor’s expansion, we

have 0 = l′(α̂) = l′(0) + l′′(0)α̂+Op(‖α̂‖2). Hence, by (A.7),

α̂ = −{−V0 + op(1)}−1l′(0). (A.10)

It suffices to establish the asymptotic normality of l′(0). By (A.4), E[l′(0)] = bθ + o(1). For Var[l′(0)], we

have

Var[l′(0)] = N−1
K∑
k=1

(Jk/N)Var[l′j(0; k)].

Since Var[l′j(0; k)] = E[l′j(0; k)l′j(0; k)>]−E[l′j(0; k)]E[l′j(0; k)]>, and (A.3) shows the rate of E[l′j(0; k)],

we only need to find E[l′j(0; k)l′j(0; k)>] where

l′j(0; k)l′j(0; k)> =

(
1−

T ∗j

1− exp(X̃>j θ
∗)

)2

ŨjŨ
>
j ω

2
h(Xj , x).

Using similar argument as in the proof of Theorem 1, we have

Var[l′j(0; k)] = n(k)Vk1

h


ν0 0 (n(k) − 1)ν0

0 ν2 0

(n(k) − 1)ν0 0 (n(k) − 1)2ν0

 {1 + o(1)}.

Combining with the assumption that Jk/N → γk/n
(k), we have

Var[l′(0)] = N−1h−1V1 + o(N−1h−1). (A.11)

By Cauchy-Schwarz inequality, V1 is a singular matrix only whenK = 1. To make the notation consistent we

treat a constant as a degraded normal random variable with mean being itself and variance being 0. Applying

the Cramér-Wold device, we need to show that for any constant vector b 6= 0,

√
Nh{b>l′(0)− b>El′(0)} →D N{0, b>V1b}. (A.12)
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When K = 1 and b is linear to (−(n1 − 1), 0, 1)>, Var[
√
Nhb>l′(0)] → b>V1b = 0. Otherwise b>V1b is

a positive number. By the equation in (A.2) and for any fixed k, b>l′j(0; k)s are identical and independently

distributed, the normality of (A.12) of b>l′(0) follows from the central limit theory combining with (A.3)

and (A.11). Consequently, by (A.10), it completes the proof.
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Appendix B Technical arguments and additional simulation results

related to Chapter 3

B.1 A general formula of M(·, ·, ·)

We first provide the detailed derivation of M(Z, T,C) and the illustration of how to evaluate pr(P)

which are mentioned in Section 3.2.1. Generally speaking, a group testing algorithm consists of several

stages of screening. At each stage, it randomly selects a set of pools based on the information obtained at

the previous stage, then it tests these pools. This process continues until the stopping rule is met. Thus,

to evaluate M(·, ·, ·), one need consider two random processes. The first one comes from the measurement

accuracy of the assay, the other one is due to the random selection of pools for next stage of screening given

all the information obtained by the current stage. We denote the testing outcome as Z = {Zl = (Yl,Pl), l =

1, . . . ,K} where we assume that Zl occurs no later than Zl+1. For any z = {zl = (yl, ρl), l = 1, . . . ,K} ∈

Z(c) and t = (t1, . . . , tc)
T ∈ T (c), we have

M(z, t, c) =pr(Z = z | T = t)

=pr{(Yl,Pl) = (yl, ρl), l = 1, . . . ,K | T = t}

=

K∏
l=1

{pr(Pl = ρl | Z1 = z1, . . . , Zl−1 = zl−1, T = t)

×pr(Yl = yl | Pl = ρl, T = t, Z1 = z1, . . . , Zl−1 = zl−1)}

=pr(P)

K∏
l=1

pr(Yl = yl | Pl = ρl, T = t, Z1 = z1, . . . , Zl−1 = zl−1)

where pr(P) =
∏K
l=1 pr(Pl = ρl | Z1 = z1, . . . , Zl−1 = zl−1, T = t) and P = {P1, . . . ,Pl}.

Given all the individuals’ true statues T = t, the true underlying status of any pool Pl formed by

these individual’s specimens, i.e., Ỹl = maxi∈Pl
Ti, is given by Ỹl = yl = maxi∈ρl ti. Then, we have

pr(Yl = yl | Pl = ρl, T = t, Z1 = z1, . . . , Zl−1 = zl−1)

=pr(Yl = yl | Pl = ρl, Ỹl = ỹl)

=Sylỹle (1− Se)(1−yl)ỹl(1− Sp)yl(1−ỹl)S(1−yl)(1−ỹl)
p .
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Now, we obtain the formula presented in our manuscript, i.e.,

M(z, t, c) = pr(P)

K∏
l=1

{
Sylỹle (1− Se)(1−yl)ỹl(1− Sp)yl(1−ỹl)S(1−yl)(1−ỹl)

p

}
.

We would like to point out that pr(P) purely evaluates how likely these pools were selected at each stage

given all the test results from previous stages. Thus, the evaluation of pr(P) neither depends on the individual

true states T nor on the unknown parameters {β, p(·)}. If the group testing algorithm is deterministic, i.e.,

there is no random selection of pools involved in the screening process, pr(P) = 1. This type of testing

algorithm includes but not limited to master pool testing, Dorfman decoding and array testing. For example,

in Dorfman decoding, it always starts with testing the master pool at the first stage. If it tests negative, the

screening process stops. Otherwise, the next stage of screening proceeds to retest every individual one-by-

one. Thus, pr(P) is always 1. If the group testing algorithm involves random selection of pools, pr(P) is

just a product of probabilities which evaluates how likely to arrange individuals into subpools. For instance,

in halving algorithm, if a pool {1, . . . , 4} tests positive, it randomly divides this pool into two halves and

then testing each half. Thus, the probability of selecting {1, 3} and {2, 4} as the two halves given the pool

{1, . . . , 4} tests positive is just 1/3.

B.2 Detailed illustration of Sections 3.2.2 and 3.2.3

we would like first to present a detailed calculation of pj0, aij(µ), bij(µ), andR{(0,Gj);Xj , β, p(·)}

under master pool testing. Since Tijs are identical and independent Bernoulli random variables with proba-

bility of success being 1− µ, we have

pj0 =pr(Yj1 = 0 | max
i
Tij = 1)pr(max

i
Tij = 1)

+ pr{Yj1 = 0 | max
i
Tij = 0)pr(max

i
Tij = 0)

=1− Se − δcj . (B.1)
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Similarly, to calculate aij(µ) and bij(µ), we have

Fij(µ) =pr(Dij = 1 | Tij = 0)

=pr(Yj1 = 1 | Tij = 0,max
k 6=i

Tij = 0)pr(max
k 6=i

Tij = 0)

+ pr(Yj1 = 1 | Tij = 0,max
k 6=i

Tij = 1)pr(max
k 6=i

Tij = 1)

=Se + δcj−1,

and Fij(1, µ) = pr(Yj1 = 1 | Tij = 1) = Se. Consequently we obtain aij(µ) = Se + δcj−1 and

bij(µ) = Fij(1, µ) − Fij(0, µ) = −δcj−1. The calculation of R{(0,Pj1);Xj , β, p(·)} follows the spirit

of the calculation of pj0. The only difference is that it accounts for the covariate effect, i.e.,

R{(0,Pj1);Xj , β, p(·)} =1− Se − (1− Se − Sp)
cj∏
i=1

{1− p(XT

ijβ)}. (B.2)

Then we present details of how we obtained the simplified expression of lp(µ), aij(µ), bij(µ), and

l{β, p(·)} under Dorfman decoding. For easy illustration, we start with R{z;Xj , β, p(·)} for z ∈ Z(cj).

When z = (0,Gj), we haveR{(0,Gj);Xj , β, p(·)} exactly as (B.2). For other z ∈ Z(cj), one could express

z as z = {(yj1 = 1,Gj), (yjl, {l − 1}), l = 2, . . . , cj + 1}; i.e., the master pool tests positive, and then

individuals are retested one-by-one. In this case, the individual diagnosis for the ith individual is yj,i+1.

Thus, we have Ij1 = {i ∈ Gj : yj,i+1 = 1}, Ij0 = {i ∈ Gj : yj,i+1 = 0}. Following the notation introduced

in the manuscript, let Sj1 =
∑
i∈Ij1 Tij and Sj0 =

∑
i∈Ij0 Tij . Then

R{z;Xj , β, p(·)} = pr{Zj = z | Xj , β, p(·)}

=pr(Zj = z | Sj1 = 0,Sj0 = 0)pr{Sj1 = 0,Sj0 = 0 | Xj , β, p(·)}

+

k∑
k1=0

cj−k∑
k0=0

k1+k0 6=0

pr(Zj = z | Sj1 = k1,Sj0 = k0)pr{Sj1 = k1,Sj0 = k0 | Xj , β, p(·)}.

Under the assumption of testing errors, one can easily see that

pr(Zj = z | Sj1 = 0,Sj0 = 0) = (1− Sp)(1− Sp)kScj−kp .

When k1 + k0 6= 0, there exists at least one individual which is truly positive. Hence, the true underlying
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status of pool Gj is positive; i.e., Ỹj1 = 1. Then,

pr(Zj = z | Sj1 = k1,Sj0 = k0) =pr(Yjl = 1 | Sj1 = k1,Sj0 = k0)

× pr(Yjl = yjl, l = 2, . . . , cj + 1 | Sj1 = k1,Sj0 = k0)

=Se × Sk1e (1− Sp)k−k1(1− Sp)k0Scj−k0p .

It is important to note that given individual covariates and the unknown parameters, Tij , i = 1, . . . , cj ,

are independent Bernoulli random variables with probability of success being {p(XT
ijβ)}. Moreover, we

have Ij1 ∩ Ij0 = ∅; i.e., one individual cannot be diagnosed as both negative and positive. We have that,

given the unknown parameters, Sj1 | Xj and Sj0 | Xj are independent Poisson binomial random variables.

Consequently, pr{Sj1 = k1,Sj0 = k0 | Xj , β, p(·)} =
∏1
l=0 pr{Sjl = kl | Xj , β, p(·)} for any k1 and k2.

Thus,R{z;Xj , β, p(·)} could be simplified as

k∑
k1=0

cj−k∑
k0=0

[
Sk1+I(k1+k0>0)
e (1− Se)k0Scj−k−k0p (1− Sp)k−k1+I(k1+k0=0)

1∏
l=0

pr{Sjl = kl | Xj , β, p(·)}
]
, (B.3)

It is worthwhile to point out that, the calculation of a Poisson binomial probability can be easily done through

the method introduced in Wang (1993).

Now, we illustrate the calculation of lp(µ). Note that pj0 = pr[Zj = {(0,Gj)}] is the same as

in (B.1), it suffices to calculate pj1k. Since, herein we view Tijs as identical and independent Bernoulli

random variables with probability of success being 1 − µ, pj1k is actually the probability of Zj = z for

z = {(1,Gj), (yjl, {l − 1}), l = 2, . . . , cj + 1} ∈ Z(cj) if
∑cj+1
l=2 yjl = k. The calculation of pj1k simply

follows (B.3), but one should replace pr{Sjl = kl | Xj ;β, p(·)} by pr(Sjl = kl); i.e., covariate effects should

not be considered. Thus, pr(Sjl = kl) is a simple binomial probability statement. It leads us to

pj1k =δcj (1− Sp)kScj−kp + Se{Se + δ1}k{1− Se − δ1}cj−k.

Further, for aij(µ) and bij(µ), we have

Fij(0, µ) =pr(Yj1 = 1, Yj,i+1 = 1 | Tij = 0) = (1− Sp)2µcj−1 + Se(1− Sp)(1− µcj−1)
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and

Fij(1, µ) = pr(Yj1 = 1, Yj,i+1 = 1 | Tij = 1) = S2
e .

Consequently, aij(µ) = (1− Sp)2µcj−1 + Se(1− Sp)(1− µcj−1) and bij(µ) = S2
e − aij(µ).

B.3 Expressions of Ω under master pool testing and Dorfman decoding

As presented in our manuscript, we have

Ωc = c−1
∑

z∈Z(c)

E

[
R−1

{
z;X (c), β0, p0(·)

} c∑
i=1

{Pi(z, 1, c)− Pi(z, 0, c)}2p′20 (XT

i β0)Γ(Xi)

]
,

where X (c) = (X1, . . . , Xc)
T, Γ(X) = {X − E(X | XTβ0}{X − E(XT | XTβ0)}T, and Pi(z, t, c) =

pr{Z = z | Ti = t,X (c), β0, p0(·)}. Further Ω =
∑M
m=1 γmΩc(m) . Note that, the only thing that remains

unclear in calculating Ωc is how to evaluate Pi(z, t, c). A general formula could be derived through the use

of the Law of Total Probability; i.e.,

Pi(z, t, c) =pr(Z = z | Ti = t,X (c), β0, p0(·))

=
∑
t∈T (c)

pr(Z = z | T = t, Ti = t)pr{T = t | X (c), β0, p0(·)}

=
∑

T∈T (cj);Ti=t

M(z, T, cj)

cj∏
i=1

[
p0(XT

ijβ0)Ti{1− p0(XT

ijβ0)}1−Ti
]
. (B.4)

This formula is similar to the general expression ofR{z;X (c);β0, p0(·)} presented in § 2.1, i.e.,

R{z;X (c), β, p(·)} =
∑

T∈T (cj)

M(z, T, c)

cj∏
i=1

[
p0(XT

ijβ0)Ti{1− p0(XT

ijβ0)}1−Ti
]
. (B.5)

However, these two expressions involve summation over the sample space T (c) which can be extremely large

if c is large. As in § 2.2 and § 2.3 of our manuscript, these expressions can be greatly simplified under master

pool testing and Dorfman decoding, respectively.

Under master pool testing, Z takes two forms (1,G) or (0,G) where G = {1, . . . , c}. As in the
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manuscript, (B.5) could be simplified as

R{(0,G);X (c), β0, p0(·)} =1− Se − (1− Se − Sp)
c∏
i=1

{1− p0(XT

i β0)},

R{(1,G);X (c), β0, p0(·)} =Se + (1− Se − Sp)
c∏
i=1

{1− p0(XT

i β0)}.

Further, we have (B.4) as

Pi{(0,G), 1, c} =1− Se,

Pi{(0,G), 0, c} =Sp
∏
r 6=i

{1− p0(XT

r β0)}+ (1− Se)

1−
∏
r 6=i

{1− p0(XT

r β0)}


=(1− Se)− (1− Se − Sp)

∏
r 6=i

{1− p0(XT

r β0)},

Pi{(1,G), 1, c} =Se,

Pi{(1,G), 0, c} =(1− Sp)
∏
r 6=i

{1− p0(XT

r β0)}+ Se

1−
∏
r 6=i

{1− p0(XT

r β0)}


=Se + (1− Se − Sp)

∏
r 6=i

{1− p0(XT

r β0)}.

Under Dorfman decoding, for any z ∈ Z(c), z could either take the form of z = (0,G) or z =

{(1,G), (yl, {l − 1}), l = 2, . . . , c+ 1}. When z = (0,G), the calculation of R{(0,G);X (c), β0, p0(·)} and

Pi{(0,G), t, c)} for t = 0, 1, are the same as the above ones under master pool testing. For z = {(y1 =

1,G), (yl, {l − 1}), l = 2, . . . , c + 1}, we have the I1 = {i ∈ G : yi+1 = 1} and I0 = {i ∈ G : yi+1 = 0}.

Denote k = |I1|, c− k = |I0|, S1 =
∑
i∈I1 Ti and S0 =

∑
i∈I0 Ti. Then, similarly as in (3.8),

R{z;X (c), β0, p0(·)} =

k∑
k1=0

c−k∑
k0=0

[
Sk1+I(k1+k0>0)
e (1− Se)k0Scj−kp (1− Sp)k−k1+I(k1+k0=0)

×
1∏
l=0

pr{Sl = kl | X (c), β0, p0(·)}
]
.

For Pi(z, t, c) for t = 0, 1, We first consider the case where z = {(1,G), (0, {i}), i = 1, . . . , c}, i.e., the
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master pool tests positive and all individuals retest negative. Then

Pi(z, 1, c) =(1− Se)2
∏
r 6=i

{Sp + (1− Se − Sp)p0(XT

r β0)},

Pi(z, 0, c) =(1− Se)Scp
∏
r 6=i

{1− p0(XT

r β0)}

+ Se

c−1∑
k0=1

(1− Se)k0Sc−k0p pr

∑
r 6=i

Tr = k0 | X (c), β0, p0(·)

 .

Similarly, when z = {(1,G), (1, {i}), i = 1, . . . , c}, i.e., the master pool tests positive and all individuals

retest positive. Then

Pi(z, 1, c) =S2
e

∏
r 6=i

{1− Sp − (1− Se − Sp)p0(XT

r β0)},

Pi(z, 0, c) =(1− Sp)c+1
∏
r 6=i

{1− p0(XT

rjβ0)}

+ Se

c−1∑
k1=1

Sk1e (1− Sp)c−k1pr

∑
r 6=i

Tr = k1 | X (c), β0, p0(·)

 .

For the remaining z ∈ Z(c), we consider two situations, i.e., i ∈ Ij1 or i ∈ I0. When i ∈ I1,

Pi(z, 1, c) =S2
e

∏
r∈I1\{i}

{1− Sp − (1− Se − Sp)p0(XT

r β0)}

×
∏
r∈Ij0

{Sp + (1− Se − Sp)p0(XT

r β0)},

Pi(z, 0, c) =(1− Sp)k+1Sc−kp

∏
r 6=i

{1− p0(XT

r β0)}

+ Se

k−1∑
k1=0

c−k∑
k0=0

[
Sk1e (1− Sp)k−k1(1− Se)k0Sc−k0p I(k1 + k0 > 0)

× pr
{ ∑
r∈I1\{i}

Tr = k1 | X (c), β0, p0(·)
}

pr
{ ∑
r∈I0

Tr = k0 | X (c), β0, p0(·)
}]
.
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And when i ∈ I0,

Pi(z, 1, c) =Se(1− Se)
∏
r∈I1

{1− Sp − (1− Se − Sp)p0(XT

r β0)}

×
∏

r∈I0\{i}

{Sp + (1− Se − Sp)p0(XT

r β0)},

Pi(z, 0, c) =(1− Sp)k+1Sc−kp

∏
r 6=i

{1− p0(XT

r β0)}

+ Se

k∑
k1=0

c−1−k∑
k0=0

[
Sk1e (1− Sp)k−k1(1− Se)k0Sc−k0p I(k1 + k0 > 0)

× pr
{ ∑
r∈I1

Tr = k1 | X (c), β0, p0(·)
}

pr
{ ∑
r∈I0\{i}

Tr = k0 | X (c), β0, p0(·)
}]
.

B.4 A plug-in estimator of Σ

For any z ∈ Z(cj), we define

Ω{z;Xj , β0, p0(·), p′0(·), dβ0
(·)} = R−2{z;Xj , β0, p0(·)}

cj∑
i=1

[
∆2
i {z;Xj , β0, p0(·)}p′20 (XT

ijβ0)

{X − dβ0
(XTβ0)}{X − dβ0

(XTβ0)}T
]
,

where ∆i{Zj ;Xj , β0, p0(·)} = pr{Zj = z | Tij = 1,Xj , β0, p0(·)} − pr{Zj = z | Tij = 0,Xj , β0, p0(·)}.

Through an application of the law of large numbers, it is easy to see that

N−1
J∑
j=1

Ω{Zj ;Xj , β0, p0(·), p′0(·), dβ0(·)} = Ω + op(1). (B.6)

Thus, we define our estimator of Ω as

Ω̂ = N−1
J∑
j=1

Ω{Zj ;Xj , β̂, p̂β̂(·), p̂′
β̂
(·), d̂β̂(·)}, (B.7)

where β̂ is our estimator of β0; p̂β(u) and p̂′β(u) are estimators of pβ(u) and p′β(u), respectively, as defined

in the manuscript; and d̂β(u) is an estimator of dβ(u) and will be defined later.
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Our estimator of dβ(xTβ) is defined as

d̂β(u) =
D̂N0(u, β)ŜN2(u, β)− D̂N1(u, β)ŜN1(u, β)

ŜN2(u, β)ŜN0(u, β)− Ŝ2
N1(u, β)

, (B.8)

where

D̂Nl(u, β) =N−1
J∑
j=1

cj∑
i=1

b2ij(µ̂)XijKh(XT

ijβ, u; l).

According to the proof of Lemma B.4, we have

sup
x∈X
|p̂β̂(xTβ̂)− p0(xTβ0)| =op(1),

sup
x∈X
|p̂′
β̂
(xTβ̂)− p′0(xTβ0)| =op(1),

and sup
x∈X
‖d̂β̂(xTβ̂)− dβ0

(xTβ0)‖ =op(1).

Consequently, we have

Ω̂ = N−1
J∑
j=1

Ω{Zj ;Xj , β0, p0(·), p′0(·), dβ0
(·)}+ op(1).

Combining with (B.6) and (B.7), it proves that Ω̂ is a consistent estimator of Ω.

We then estimateJ0 by Ĵ0 where Ĵ0 is the functional value of ∂B(β(1))∂β(1) at β(1) = (β̂2, . . . , β̂p)
T.

By the consistency of β̂, it is easy to see that Ĵ0 converges in probability to J0 asN →∞. Finally, we obtain

our consistent plug-in estimator of Σ as

Σ̂ = Ĵ0(Ĵ T

0 Ω̂Ĵ0)−1Ĵ T

0 .

B.5 Simulation results under master pool testing

Table B.1 summarized the behavior of our 500 estimators of β0 under master pool testing for Model

3.1–3.3 when δ = 0.1. From these results, we see that the estimates of β0 are generally on target and exhibit

little evidence of bias. As c becomes larger, testing expenditure reduces significantly. However, as a trade-off,

the estimation efficiency of β̂ decreases and the variability of estimating the link increases. This phenomenon

is expected since the number of pool responses on which the estimates are based, J = N/c, decreases as c
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Table B.1: Summary of simulation results for data arising from Dorfman decoding: BIAS and SD, empirical
bias (×103) and standard deviation (×100) of the 500 estimates; SE, average standard error (×100); COV,
empirical coverage probability (×100) for nominal 95% confidence interval; EMSE, average mean squared
error of prediction (×104); RE, ratio of EMSE of the parametric model to the EMSE of our semiparametric
model.

Parameter Measure c = 1 c = 2 c = 5 c = 10

Model 3.1 β01 BIAS(SD) 8.7(3.5) 14.4(4.1) 34.2(6.2) 59.7(9.8)
COV(SE) 93.6(3.5) 93.7(4.3) 92.2(6.6) 89.5(10.0)

β02 BIAS(SD) −5.1(1.4) −8.3(1.7) −21.5(2.9) −46.2(5.8)
COV(SE) 96.0(1.4) 95.5(1.8) 95.8(3.1) 93.6(5.5)

β03 BIAS(SD) −1.9(5.2) −4.1(6.7) −0.7(10.6) 6.1(16.4)
COV(SE) 94.4(5.3) 92.9(6.4) 90.0(9.5) 88.9(14.7)

p0(xβ0) EMSE(RE) 1.31(0.37) 1.77(0.34) 4.14(0.31) 9.74(0.29)
Percentage reduction in testing 50.0 % 80.0 % 90.0 %

Model 3.2 β01 BIAS(SD) 1.5(1.4) 3.5(1.9) 9.1(3.6) 24.7(7.1)
COV(SE) 93.0(1.4) 95.3(2.0) 94.9(3.7) 92.9(6.8)

β02 BIAS(SD) −1.2(0.6) −2.3(0.8) −8.0(1.6) −21.4(3.8)
COV(SE) 93.4(0.6) 96.2(0.8) 96.4(1.7) 95.2(3.3)

β03 BIAS(SD) −0.7(3.4) −2.4(4.4) 6.4(7.7) −11.5(13.5)
COV(SE) 93.0(3.0) 90.2(3.9) 92.5(7.1) 88.8(12.2)

p0(xβ0) EMSE(RE) 1.25(25.33) 2.37(13.09) 6.40(5.39) 16.53(2.32)
Percentage reduction in testing 50.0 % 80.0 % 90.0 %

Model 3.3 β01 BIAS(SD) 7.6(2.5) 12.0(3.1) 27.4(5.4) 54.9(10.1)
COV(SE) 92.4(2.5) 93.6(3.4) 93.1(5.8) 91.7(9.6)

β02 BIAS(SD) −3.7(1.0) −6.5(1.3) −17.5(2.9) −45.3(7.4)
COV(SE) 93.8(1.0) 94.4(1.4) 95.9(2.7) 94.7(5.7)

β03 BIAS(SD) −1.7(3.7) 0.1(5.4) −2.9(10.2) −1.7(16.8)
COV(SE) 92.4(3.6) 92.9(5.1) 91.2(8.8) 88.4(14.3)

p0(xβ0) EMSE(RE) 1.61(13.80) 2.73(8.26) 6.06(3.89) 14.39(1.88)
Percentage reduction in testing 50.0 % 80.0 % 90.0 %
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increases. It is not surprising that the standard deviation of the estimates tends to increase with the pool size.

This also affects our estimator of the covariance matrix Σ. Consequently, when c increases, the estimated

95% coverage decreases.
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Figure B.1: Estimated power curves under master pool testing: the solid and dashed curves correspond to our
approach and the parametric techniques, respectively.

Figure B.1 presents the estimated power curves corresponding to data arising from master pool

testing when c = 5. From these results, one will first notice that under Model 3.1 the estimated power curves

for our semiparametric approach and the competing parametric modeling are very similar, with the parametric

model having slightly more power. This trend is similar as the one under Dorfman decoding. It suggests that

our methodology performs almost as well as the “oracle” approach (i.e., the parametric model which assume

the correct link function). On the other hand, if the link function is misspecified under the parametric model

(e.g. see Models 3.2 and 3.3), these methods lose the power to detect significant predictor variables, a feature

not shared by our approach; a same trend observed under Dorfman decoding. However, unlike Dorfman

decoding, master pool testing cannot gain decoding information from positive pools. It greatly affects the

accuracy in the size study. Thus, if one prefers a more accurate estimator, collecting data through Dorfman

decoding may be a better choice than solely testing master pools.
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B.6 Proof of Theorem 3.3.1

B.6.1 A Brief description of the proofs

In the following, we denote aN = OP (bN ) if aN/bN is bounded in probability, aN = oP (bN )

if aN/bN converges to zero in probability. Since the function B(β(1)) = β is a one-to-one mapping from

B(1) = {β(1) ∈ Rp−1 : ‖β(1)‖ < 1} to B, β̂ can be viewed as β̂ = B(β̂(1)) where β̂(1) is the maximizer

of l{B(β(1)), p̂B(β(1))(·)} in B(1). Denote Ĝ(β(1)) as the partial derivative of l{B(β(1)), p̂B(β(1))(·)} with

respect to β(1). It could be written as

Ĝ(β(1)) = J T

β

J∑
j=1

R−1{Zj ;Xj , β, p̂β(·)}
cj∑
i=1

∆i {Zj ;Xj , β, p̂β(·)} p̂(1)
β (XT

ijβ).

where Jβ = ∂B(β(1))/∂β(1), ∆i {zj ;Xj , β, p̂β(·)} = pr{Zj = zj | Tij = t,Xj , β, p̂β(·)} − pr{Zj = zj |

Tij = 0,Xj , β, p̂β(·)} and p̂(1)
β (XTβ) = ∂p̂β(XTβ)/∂β. An asymptotically equivalent version of Ĝ could

be written as

G(β(1)) = J T

β

J∑
j=1

R−1{Zj ;Xj , β, pβ(·)}
cj∑
i=1

[
∆i {Zj ;Xj , β, pβ(·)}

p′β(XT

ijβ)
{
Xij − dβ(XT

ijβ)
} ]
.

We derive that

sup
X∈X ,β(1)∈B(1)

N

|p̂β(XTβ)− p0(XTβ0)| = Op({logN/(Nh)}1/2) (B.9)

and

sup
β(1)∈B(1)

N

‖Ĝ(β(1))−G(β
(1)
0 ) +NJ T

0 ΩJ0(β − β0)‖ = op(N
1/2), (B.10)

where B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0. Equation (B.10) implies

that ∥∥∥β̂(1) − β(1)
0

∥∥∥ = Op(N
−1/2), (B.11)

Consequently,

Ĝ(β̂(1)) = G(β
(1)
0 )− J T

0 ΩJ0(β̂(1) − β(1)
0 ) + op(N

1/2).
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Since Ĝ(β̂(1)) = 0, we have

N1/2(β̂(1) − β(1)
0 ) = (J T

0 ΩJ0)−1{N1/2G(β
(1)
0 )}+ op(1).

Then, the asymptotic normality of β̂ follows Central Limit Theorem and Slutsky’s Theorem applied to the

righthand side of the above equation. Combining (B.9) with (B.11) gives

sup
X∈X

∣∣∣p̂(XTβ̂)− p0(XTβ0)
∣∣∣ = Op({logN/(Nh)}1/2),

which completes the proof of Theorem 3.3.1.

In the next section we prove equations (B.9), (B.10), and (B.11). Lemmas B.1-B.3 below are used

to obtain the bounds for the centralized rth moments of q̂β and q̂(1)
β given in Propositions B.1-B.2. These two

propositions are then used to obtain Lemma B.4 which proves (B.9). Then combining (B.9) with Lemma B.5

below, we prove (B.10) in Proposition B.3. Finally, we show (B.11) in Lemma B.6.

B.6.2 Detailed proofs

Before proceeding to the detailed proofs, we would like to introduce some notation. We write

aN = O(bN ) if aN/bN is bounded; aN = o(bN ) if aN/bN converges to zero; aN ' bN if aN/bN = O(1);

aN
a.s.→ a if aN converges almost surely to a; and aN = Or(bN ), if E(|aN |r) = O(brN ). ET (X) denotes

the conditional expectation of X given T . By Cauchy-Schwartz inequality, we have Or(aN )Or(bN ) =

Or/2(aNbN ). We further denote the summation over all the groups with size c(K) by
∑
|j|=c(K) . Then∑J

j=1

∑cj
i=1 can be written as

∑M
m=1

∑c(K)

i=1

∑
|j|=c(K) . A term of the form

∑
|j|=c(K) Aj means Ajs are

from groups of size c(K). For example, in
∑
|j|=c(K) Dij , Dij is the diagnosis result of the ith individual in

a group of size c(K).

We first introduce a useful equation which would help us find the bounds for the centralized rth

moments of p̂β(xTβ) and p̂(1)
β (xTβ). Let X1, . . . , Xn be independent random variables, and r ≥ 2. Then

E

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
r)
'

n∑
i=1

E (|Xi|r) +

∣∣∣∣∣
n∑
i=1

E(Xi)

∣∣∣∣∣
r

+

{
n∑
i=1

E(X2
i )

}r/2
. (B.12)

For the proof of (B.12) we refer to Petrov (1995).
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Lemma B.1. Under Condition 3.4, we have µ̂ a.s.→ µ0 as N →∞, and for r ≥ 2,

E

{
sup
ij
|ηij(µ̂)− ηij(µ0)|r

}
= O(N−r/2)

if supij supu∈[0,1] |η′ij(u)| is bounded.

Proof. Condition 3.4 guarantees that pr(Zj = z), for any z ∈ Z(cj), are bounded away from 0 when

µ ∈ [0, 1]. By the uniform law of large number, l(µ) converges almost surely to E[l(µ)] uniformly in

µ ∈ [0, 1]. Consequently, µ̂ = arg maxµ l(µ)
a.s.→ µ0 = arg maxµE[l(µ)]. To show the rate of rth moment

convergence, we notice that

µ̂− µ0 = {−N−1l′′(µ̄)}−1N−1l′(µ0)

where µ̄ is between µ̂ and µ0. By µ̂ a.s.→ µ0, we have that −N−1l′′(µ̄) converges almost surely to a pos-

itive number I(µ0), i.e., when N is large, {−N−1l′′(µ̄)}−1 is bounded almost surely. On the other hand,

we have N−1/2l′(µ0) converges in distribution to N(0, I(µ0)−1). By the continuous mapping theorem,

|N−1/2l′(µ0)|r converges in distribution to |N(0, I(µ0)−1)|r. Hence,

E |µ̂− µ0|r = O(N−r/2).

Then the moment convergence rate on ηij follows through a Taylor expansion.

Note that, Lemma B.1 holds for aij(·), bij(·), aij(·)bij(·), and b2ij(·).

Lemma B.2. For any r ≥ 2, if ηij(·) and ωij satisfy that E{supij |ηij(µ̂) − ηij(µ0)|2r} = O(N−r) and

N−1
∑J
j=1

∑cj
i=1 |ωij | = O2r(wN ), then

1

N

J∑
j=1

cj∑
i=1

[{ηij(µ̂)− ηij(µ0)}ωij ] = Or(N−1/2wN ).
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Proof. Using the Cauchy-Schwartz inequality, we have

E

∣∣∣∣∣∣ 1

N

J∑
j=1

cj∑
i=1

[{ηij(µ̂)− ηij(µ0)}ωij ]

∣∣∣∣∣∣
r

≤

E{sup
ij
|ηij(µ̂)− ηij(µ0)|2r

}
× E


N−1

J∑
j=1

cj∑
i=1

|ωij |

2r



1/2

=O(N−r/2).

Lemma B.3. Under Conditions 3.1–3.4, for any β ∈ B, we have

inf
x∈X

∣∣∣ŜN0(xTβ, β)ŜN2(xTβ, β)− Ŝ2
N1(xTβ, β)

∣∣∣ ≥ C > 0 almost surely ,

for some constant C, and further

sup
x∈X,β∈B

|p̂β(xTβ)− pβ(xTβ)| a.s.→ 0.

Proof. Explicit expressions of p̂β(u) and p̂′β(u) are provided in (3.5) and (3.6), respectively. Replacing µ̂

with µ0, we denote

TNl(u, β) =N−1
J∑
j=1

cj∑
i=1

{Dij − aij(µ0)}bij(µ0)Kh(XT

ijβ, u; l),

SNl(u, β) =N−1
J∑
j=1

cj∑
i=1

b2ij(µ0)Kh(XT

ijβ, u; l).

Since Dijs are correlated but independent across j, we could rewrite TNl(xTβ, β) as

TNl(x
Tβ, β) =

M∑
m=1

c(K)Jm
N

· 1

c(K)

c(K)∑
i=1

TNlmi(x
Tβ, β),

SNl(x
Tβ, β) =

M∑
m=1

c(K)Jm
N

· 1

c(K)

c(K)∑
i=1

SNlmi(x
Tβ, β),

where TNlmi =
∑
|j|=c(K) TNlmij , TNlmij(xTβ, β) = J−1

m {Dij−aij(µ0)}bij(µ0)Kh(XT
ijβ, x

Tβ; l), SNlmi =
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∑
|j|=c(K) SNlmij , and SNlmij(xTβ, β) = J−1

m b2ij(µ0)Kh(XT
ijβ, x

Tβ; l). Using (B.12),

EXTβ

[
TNlmi(XTβ,β) − EXTβ{TNlmi(XTβ,β)}

]r ' ∑
|j|=c(K)

E (|TNlmij |r) +

 ∑
|j|=c(K)

E(T 2
Nlmij)


r/2

.

Noting that Jm ' N , we have

EXTβ (|TNlmij |r) =
1

Jrmh
r

∫
[{Dij − aij(µ0)}bij(µ0)]rKr

(
u−XTβ

h

)(
u−XTβ

h

)lr
fXTβ(u)du

=O(N−rh1−r).

Consequently, EXTβ

[
TNlmi(XTβ,β) − EXTβ{TNlmi(XTβ,β)}

]r
= O(N1−rh1−r) + O(N−r/2h−r/2) =

O(h2r). Therefore,

TNlmi(X
Tβ, β) =EXTβ {TNlmij(XTβ, β)}+Or(h2), (B.13)

SNlmi(X
Tβ, β) =EXTβ {SNlmij(XTβ, β)}+Or(h2). (B.14)

For any X being independent with Xijs or being one of the Xijs, based on (B.12) and by the boundedness

of X and B,

E


N−1

J∑
j=1

cj∑
i=1

∣∣DijKh(XT

ijβ,X
Tβ; l)

∣∣
2r


' EXTβ


N−1

J∑
j=1

cj∑
i=1

∣∣Kh(XT

ijβ,X
Tβ; l)

∣∣
2r


'
J∑
j=1

cj∑
i=1

EXTβ

{∣∣N−1Kh(XT

ijβ,X
Tβ; l)

∣∣r}+
∣∣EXTβ

{
|Kh(XT

ijβ,X
Tβ; l)|

}∣∣r

+

 J∑
j=1

cj∑
i=1

E
{∣∣N−1Kh(XT

ijβ,X
Tβ; l)

∣∣2}r/2

=O(N1−rh1−r) +O(1) +O(N−r/2h−r/2) = O(1).
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Thus, by Lemma B.2, we have

T̂Nl(X
Tβ, β) =TNl(X

Tβ, β) +Or(N−1/2),

ŜNl(X
Tβ, β) =SNl(X

Tβ, β) +Or(N−1/2).

Combining these with (B.13) and (B.14) provides that

T̂Nl(X
Tβ, β) =EXTβ{TNl(XTβ, β)}+Or(h2),

ŜNl(X
Tβ, β) =EXTβ{SNl(XTβ, β)}+Or(h2).

Then, similar to the proof of expression (A.10) in Zhu & Xue (2006), we have

sup
x∈X,β∈B

∣∣∣∣∣∣T̂Nl(xTβ, β)−


M∑
m=1

γm
c(K)

c(K)∑
i=1

b2ij(µ0)

 pβ(xTβ)fβ(xTβ)πl

∣∣∣∣∣∣ a.s.→ 0,

sup
x∈X,β∈B

∣∣∣∣∣∣ŜNl(xTβ, β)−


M∑
m=1

γm
c(K)

c(K)∑
i=1

b2ij(µ0)

 fβ(xTβ)πl

∣∣∣∣∣∣ a.s.→ 0,

where fXTβ is the density of XTβ and πl =
∫
K(t)tldt. Finally, the proof follows Condition 3.2.

Proposition B.1. Under Conditions 3.1–3.4, we have, for any β ∈ B and r ≥ 2,

p̂β(XT

ijβ) = pβ(XT

ijβ) +Or(h2)

and

p̂′β(XT

ijβ) = p′β(XT

ijβ) +Or(h),

over all (i, j)s.

Proof. We only show the result for p̂′β as the first result can be proven similarly, but easier. Let X be one of

Xijs. After a little algebra, we obtain

h{p̂′β(XTβ)− p′β(XTβ)} =
ĤN1(XTβ, β)ŜN0(XTβ, β)− ĤN0(XTβ, β)ŜN1(XTβ, β)

ŜN0(XTβ, β)ŜN2(XTβ, β)− Ŝ2
N1(XTβ, β)

,
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where

ĤNl(u, β) =N−1
J∑
j=1

cj∑
i=1

[
{Dij − aij(µ̂)}bij(µ̂)− b2ij(µ̂)pβ(u)

−b2ij(µ̂)p′β(u)(XT

ijβ − u)
]
Kh(XT

ijβ, u; l).

Using the results presented in Lemma B.3, it suffices to show that ĤNl(X
Tβ, β) = Os(hl) where s = 2r.

Similarly as the proof in Lemma B.3, it can be shown that

ĤNl(X
Tβ, β) = HNl(X

Tβ, β) +Or(N−1/2),

where HNl(u, β) is the version of ĤNl(u, β) by replacing µ̂ with µ0. Thus, it leaves us to show that

HNl(X
Tβ, β) = Os(hl). To this end, we rewrite it as

HNl(X
Tβ, β) =

M∑
m=1

c(K)Jm
N

· 1

c(K)

c(K)∑
i=1

HNlmi(X
Tβ, β),

whereHNlmi(X
Tβ, β) =

∑
|j|=c(K) HNlmij withHNlmij = J−1

m {Dij−aij(µ0)}bij(µ0)−b2ij(µ0)pβ(XTβ)−

b2ij(µ0)p′β(XTβ)(XT
ijβ −XTβ)}Kh(XT

ijβ,X
Tβ; l). By (B.12), for s = 2r ≥ 2, we have

EXTβ

{
|HNlmi(X

Tβ, β)|s
}
'

∣∣∣∣∣∣
∑
|j|=c(K)

EXTβ {HNlmij(X
Tβ, β)}

∣∣∣∣∣∣
s

(B.15)

+

Jm∑
j=1

EXTβ

{
|HNlmij(X

Tβ, β)|s
}

+

 Jm∑
j=1

EXTβ

{
H2
Nlmij(X

Tβ, β)
}r/2 . (B.16)

Simple Taylor expansion provides that
∑
|j|=c(K) EXTβ {HNlmij(X

Tβ, β)} = O(h2) which implies that

the term (B.15) is also of order O(h2s). Further, note that

EXTβ (|HNlmij |s) =
h

Jsmh
s

∫
[{Dij − aij(µ0)}bij(µ0)− b2ij(µ0)pβ(u)− b2ij(µ0)p′β(u)(u−XTβ)]s

× h−1Ks

(
u−XTβ

h

)(
u−XTβ

h

)ls
fXTβ(u)du

=O(N−sh1−s).

Therefore, the term (B.16) is of order O(h2s). Consequently, EXTβ {|HNlmi(X
Tβ, β)|s} = O(h2s). More-
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over, by the boundedness of X and B, we can conclude that

HNlmi(X
Tβ, β) = Os(h2).

which completes the proof.

Proposition B.2. Let B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0. Under

Conditions 3.1–3.4, for any β(1) ∈ B(1)
N and r ≥ 2, we have

∥∥∥p̂(1)
β (XT

ijβ)− p′β(XT

ijβ)
(
Xij − dβ(XT

ijβ)
)∥∥∥ = Or(h)

over all (i, j)s.

Remark B.1. This proposition indicates that ∂pβ(XTβ)/∂β 6= Xp′β(XTβ), which is reasonable, since we

cannot ignore the dependence of pβ on β. It is worthwhile to point out that Proposition B.1 holds for any

β ∈ B, however, Proposition B.2 requires β to be in a root-N neighborhood of β0.

Proof. Let X be one of the Xijs. After some algebra, p̂(1)
β (XTβ) can be written as

p̂
(1)
β (XTβ) =

R̂N0(XTβ, β)ŜN2(XTβ, β)− R̂N1(XTβ, β)ŜN1(XTβ, β)

ŜN2(XTβ, β)ŜN0(XTβ, β)− Ŝ2
N1(XTβ, β)

+p̂′β(XTβ)(X − d̂β(XTβ)),

where

R̂Nl(X
Tβ, β) =N−1

J∑
j=1

cj∑
i=1

bij(µ̂) {Dij − aij(µ̂)− bij(µ̂)p̂β(XTβ)

−bij(µ̂)p̂′β(XTβ)(XT

ijβ −XTβ)
}
∂{Kh(XT

ijβ,X
Tβ; l)}/∂β,

and d̂β(xTβ) is defined in (B.8). Note that d̂β(XTβ) acts like a local linear estimator of dβ(XTβ). Similar

to Lemma B.3, we have ‖d̂β(XT
ijβ) − dβ(XT

ijβ)‖ = Or(h2) for all (i, j)s, and supX∈X,β∈B ‖d̂β(XTβ) −

dβ(XTβ)‖ a.s.→ 0. Consequently,

∥∥∥q̂′β(XT

ijβ)
[
Xij − d̂β(XT

ijβ)
]
− q′β(XT

ijβ)
[
Xij − dβ(XT

ijβ)
]∥∥∥ = Or(h).

Hence, it suffices to show that R̂Nl(XTβ, β) = Os(h) component-wisely for s = 2r.
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Simple algebra provides that R̂Nl(XTβ, β) can be decomposed as following.

R̂Nl(X
Tβ, β) =B̂1l(X

Tβ, β) + B̂2l(X
Tβ, β) + h−1 {pβ(XTβ)− p̂β(XTβ)} B̂3l(X

Tβ, β)

+
{
p′β(XTβ)− p̂′β(XTβ)

}
B̂4l(X

Tβ, β),

where

B̂1l(X
Tβ, β) = N−1

J∑
j=1

cj∑
i=1

bij(µ̂)
{
Dij − aij(µ̂)− bij(µ̂)pβ(XT

ijβ)
}
∂Kh(XT

ijβ,X
Tβ; l)/∂β,

B̂2l(X
Tβ, β) = N−1

J∑
j=1

cj∑
i=1

b2ij(µ̂)
{
pβ(XT

ijβ)− pβ(XTβ)− p′β(XTβ)(XT

ijβ −XTβ)
}

∂Kh(XT

ijβ,X
Tβ; l)/∂β,

B̂3l(X
Tβ, β) = N−1

J∑
j=1

cj∑
i=1

b2ij(µ̂)h∂Kh(XT

ijβ,X
Tβ; l)/∂β,

B̂4l(X
Tβ, β) = N−1

J∑
j=1

cj∑
i=1

b2ij(µ̂)(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β.

Define Bml(X
Tβ, β) as the version of B̂ml(XTβ, β) with replacing µ̂ by µ0 for m = 1, . . . , 4. We

first show that B̂4l(X
Tβ, β) = B4l(X

Tβ) = Os(N−1/2). By Lemma B.2, we only need show that

N−1
∑J
j=1

∑cj
i=1 |(XT

ijβ −XTβ)∂Kh(XT
ijβ,X

Tβ; l)/∂β| = O2s(1). Using (B.12),

E


N−1

J∑
j=1

cj∑
i=1

∣∣(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β

∣∣
2s


'
J∑
j=1

cj∑
i=1

EXTβ

{∣∣N−1(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β

∣∣2s}
+
∣∣EXTβ

{∣∣(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β

∣∣}∣∣2s
+

 J∑
j=1

cj∑
i=1

EXTβ

[{
N−1(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β

}2
]s

.
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Letting ψ(x) = K ′(x)xl + lK(x)xl−1,

EXTβ

{∣∣N−1(XT

ijβ −XTβ)∂Kh(XT

ijβ,X
Tβ; l)/∂β

∣∣2s}
'
∫
N−2sh1−2s|uψ(u)|2sfXTβ(XTβ + hu)du = O(N−2sh1−2s).

Thus, E[{N−1
∑J
j=1

∑cj
i=1 |(XT

ijβ − XTβ)∂Kh(XT
ijβ,X

Tβ; l)/∂β|}2s] = O(N1−2sh1−2s) + O(1) +

O(N−sh−s) = O(1) and B̂4l(X
Tβ, β) = B4l(X

Tβ) = Os(N−1/2). Similarly, one can show

B̂ml(X
Tβ, β) = Bml(X

Tβ, β) = Os(N−1/2) for m = 2, 3.

Thus, we obtain that B̂2l(X
Tβ, β) = Os(h), B̂3l(X

Tβ, β) = Os(1), and B̂4l(X
Tβ, β) = Os(1). For

B̂1l(X
Tβ, β), using Lemma B.2, we have

B̂1l(X
Tβ, β) = B1l(X

Tβ, β) +Os(N−1/2h−1).

Rewrite B1l(X
Tβ, β) as

B1l(X
Tβ, β) =

M∑
m=1

c(K)Jm
N

· 1

c(K)

c(K)∑
i=1

B1lmi(X
Tβ, β),

where B1lmi(X
Tβ, β) =

∑
|j|=c(K) B1lmij and B1lmij = J−1

m bij(µ0){Dij − aij(µ0)− bij(µ0)

pβ(XT
ijβ)}∂Kh(XT

ijβ,X
Tβ; l)/∂β. Now, we use (B.12) to calculate the rate of E{B1lmij}. We first check

EXTβ{Bs1lmij(XTβ, β)}. Since when β 6= β0, neither EXij [{Dij − aij(µ0) − bij(µ0)pβ(XT
ijβ)}Xij ] nor

EXT
ijβ

[{Dij − aij(µ0)− bij(µ0)pβ(XT
ijβ)}Xij ] equals 0. We need the decomposition

Dij − aij(µ0)− bij(µ0)pβ(XT

ijβ) = Dij − aij(µ0)− bij(µ0)p0(XT

ijβ0)

+bij(µ0)
{
p0(XT

ijβ0)− pβ(XT

ijβ)
}
.

We then have EXT
ijβ

[{Dij −aij(µ0)− bij(µ0)p0(XT
ijβ0)}Xij ] = 0 and bij(µ0){p0(XT

ijβ0)− pβ(XT
ijβ)} =

O(N−1/2) by the smoothness of qβ(XTβ) and the condition ‖β − β0‖ = O(N−1/2). Thus EXT
ijβ

[{Dij −
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aij(µ0)− bij(µ0)pβ(XT
ijβ)}Xij ] = O(N−1/2h−1). Simple calculation provides that

∑
|j|=c(K)

EXTβ{|B1lmij(X
Tβ, β)|s} = O(N1−sh1−2s)

and

[
∑
|j|=c(K)

EXTβ{B2
1lmij(X

Tβ, β)}]2s = O(N−s/2h−3s/2).

Thus,

EXTβ{Bs1lmij(XTβ, β)} = O(N1−sh1−2s) +O(N−s/2h−s) +O(N−s/2h−3s/2) = O(hs).

Consequently, B̂1l(X
Tβ, β) = Os(h) +Os(N−1/2h−1) = Os(h). Finally,

R̂Nl(X
Tβ, β) = Os(h) +Os(h) + h−1Os(h2)Os(1) +Os(h)Os(1) = Or(h),

which completes the proof.

Lemma B.4. Under Conditions 3.1–3.4, we have

sup
X∈X,β(1)∈B(1)

N

|p̂β(XTβ)− p0(XTβ0)| = Op({logN/(Nh)}1/2),

sup
X∈X,β(1)∈B(1)

N

∥∥∥p̂(1)
β (XTβ)− p′0(XTβ0){X − dβ0

(XTβ0)}
∥∥∥ = Op({logN/(Nh3)}1/2),

where B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0.

Proof. Using Propositions B.1 and B.2, this proof directly follows Lemma A.1 in Wang et al. (2010).

Proposition B.3. Under Conditions 3.1–3.4, we have

sup
β1∈B(1)

N

∥∥∥Ĝ(β(1))−G(β
(1)
0 ) +NJ T

0 ΩJ0(β − β0)
∥∥∥ = op(N

1/2),

where B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0.

Proof. We firstly denote Aj(β) = R−1{Zj ;Xj , β, pβ(·)}, Âj(β) = R−1{Zj ;Xj , β̂, p̂β(·)}, Bj(β) =∑cj
i=1 ∆i{Zj ;Xj , β, pβ(·)}p′β(XT

ijβ){Xij−dβ(XT
ijβ)}, and B̂j(β) =

∑cj
i=1 ∆i{Zj ;Xj , β̂, p̂β(·)}p̂(1)

β (XT
ijβ).
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Then Ĝ(β(1)) = J T

β

∑J
j=1 Âj(β)B̂j(β) andG(β) = J T

β

∑J
j=1Aj(β)Bj(β). Further we have the following

decomposition,

Ĝ(β(1))−G(β
(1)
0 ) =(J T

β − J T

0 )

M∑
m=1

∑
|j|=c(K)

Aj(β0)Bj(β0)

+

J∑
j=1

{
Âj(β)− Âj(β0)

}
Bj(β0)

+ J T

β

J∑
j=1

{
Âj(β0)−Aj(β0)

}
Bj(β0)

+ J T

β

J∑
j=1

{
Âj(β)−Aj(β0)

}
×
{
B̂j(β)−Bj(β0)

}

+ J T

β

J∑
j=1

Aj(β0)
{
B̂j(β)−Bj(β0)

}
=I1(β(1)) + I2(β(1)) + I3(β(1)) + I4(β(1)) + I5(β(1)). (B.17)

Since Jβ − J0 = O(N−1/2) for all β(1) ∈ B(1)
N , and

∑
|j|=c(K) Aj(β0)Bj(β0) is a sum of identical and

independent random variables with mean 0 and bounded covariance matrix,

sup
β(1)∈B(1)

N

∥∥∥I1(β(1))
∥∥∥ = op(N

1/2). (B.18)

Considering I2(β(1)), for a suitable β̄(1) ∈ B(1)
N , a Taylor expansion gives

I2(β(1)) = J T

β


J∑
j=1

Ĉj(β̄)Bj(β0)B̂j(β̄)T

Jβ̄(β − β0),

where Ĉj(β) = −R−2{Zj ;Xj , β, p̂β(·)}. Letting Cj(β) = −R−2{Zj ;Xj , β, pβ(·)}, by β̄(1) ∈ B(1)
N and

Lemma B.4, we have that supj sup
β(1)∈B(1)

N

|Ĉj(β) − Cj(β0)| = op(1) and supj sup
β(1)∈B(1)

N

‖B̂j(β) −
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Bj(β0)‖ = op(1). Then

1

N

J∑
j=1

Ĉj(β̄)Bj(β0)B̂j(β̄)T =

M∑
m=1

Jm
N
× 1

Jm

∑
|j|=c(K)

Cj(β0)Bj(β0)Bj(β0)T + op(1)

=

M∑
m=1

γm
c(K)

E{Cj(β0)Bj(β0)Bj(β0)T}+ op(1)

=− Ω + op(1).

Noticing that Jβ = J0 +O(N−1/2), Jβ̄ = J0 +O(N−1/2), and β − β0 = O(N−1/2), we obtain

sup
β(1)∈B(1)

N

∥∥∥I2(β(1)) +NJ T

0 ΩJ0(β − β0)
∥∥∥ = op(N

1/2). (B.19)

Further, by Lemma B.5 and the fact Jβ = O(1) for all β(1) ∈ B(1)
N , we have

sup
β(1)∈B(1)

N

∥∥∥I3(β(1))
∥∥∥ = op(N

1/2). (B.20)

The bound for I4(β(1)) follows Lemma B.4 as

sup
β(1)∈B(1)

N

∥∥∥I4(β(1))
∥∥∥ ≤ J sup

j
sup

β(1)∈B(1)
N

∣∣∣Âj(β)−Aj(β0)
∣∣∣

×p× sup
j

sup
β(1)∈B(1)

N

∥∥∥Ĵβ {Bj(β)−Bj(β0)}
∥∥∥

= J ×Op[{logN/(Nh)}1/2]×Op[{logN/(Nh3)}1/2]

= op(N
1/2). (B.21)

Again, by Lemma B.4,

sup
β(1)∈B(1)

N

∥∥∥I5(β(1))
∥∥∥ ≤ N1/2

N−1
J∑
j=1

sup
zj∈Zj

A2
j (β0)


−1/2

×

JpN−1 sup
j

sup
β(1)∈B(1)

N

∥∥∥B̂j(β)−Bj(β0)
∥∥∥


= op(N
1/2). (B.22)

Combining (B.17)-(B.22) completes the proof of Porposition 3.
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Lemma B.5. Under Conditions 3.1–3.4, we have

∥∥∥∥∥∥
J∑
j=1

{
Âj(β0)−Aj(β0)

}
Bj(β0)

∥∥∥∥∥∥ = op(N
1/2).

Proof. For ease of presentation, we assume here that the group sizes are equal. The general case follows

along the same lines but notation becomes tedious. Define νj to be the first component of Bj(β0); i.e.,

νj =
∑cj
i=1 ∆i{Zj ;Xj , β0, p0(·)}p′0(XT

ijβ0){Xij1 − d01(XT
ijβ0)}, where dβ0(u) = (d01(u), . . . , dop(u))T.

Then, we have νj being bounded, identical, and independent random variable with mean 0. Further, we denote

ς̂j = R−1{Zj ;Xj , β0, p̂β0
(·)} and ςj = R−1{Zj ;Xj , β0, p0(·)}. To show

∑J
j=1(ςj − ςj)νj = op(N

1/2).

By Chebyshev’s inequality, it suffices to show that E|
∑J
j=1 νj(ςj − ςj)|2 = o(N). To this end, we define

ς̂(−k,−l),j = R−1{Zj ;Xj , β0, p̂−k,−l(·)}, where p̂−k,−l(u) is the kernel estimator of p0(u) based on the data

{Zj , XT
ijβ0, i = 1, . . . , cj , j = 1, . . . J, j 6= k, j 6= l}s. When N is large, the difference between p̂−k,−l(·)

and p̂β0(·) should be very small. In fact, we have

E
∣∣p̂−k,−l(XT

ijβ0)− p̂β0
(XT

ijβ0)
∣∣r = O(N−rh1−r)

for all k, l, (i, j), and r ≥ 2. Subsequently, we have the following decomposition,

E

∣∣∣∣∣∣
j∑
j=1

νj(ς̂j − ςj)

∣∣∣∣∣∣
2

=

j∑
j=1

E[ν2
j (ς̂j − ςj)2]

+
∑
k 6=l

E[νkνl(ς̂k − ς̂(−k,−l),k)(ς̂l − ςl)]

+
∑
k 6=l

E[νkνl(ς̂(−k,−l),k − ςk)(ς̂l − ς̂(−k,−l),l)]

+
∑
k 6=l

E[νkνl(ς̂(−k,−l),k − ςk)(ς̂(−k,−l),l − ςl)]

= IN1 + IN2 + IN3 + IN4.

GivenXT
ijβ0s, vk, vl, ς̂(−k,−l),k−ςk, and ς̂(−k,−l),l−ςl in term IN4 are independent, and we haveE(νk|XT

ijβ0s) =

0 andE(νl|XT
ijβ0s) = 0. Hence IN4 = 0. By Condition 3.4, bothR{Zj ;Xj , β0, p̂β0

(·)} andR{Zj ;Xj , β0, p0(·)}

are bounded away form 0. Further Lemma B.3 implies that |R{Zj ;Xj , β0, p̂β0(·)}−R{Zj ;Xj , β0, p0(·)}| a.s.→

0, and Proposition B.1 implies that R{Zj ;Xj , β0, p̂β0
(·)} = R{Zj ;Xj , β0, p0(·)} +Or(h2) for any r ≥ 2.

Thus, we haveE(ς̂j− ςj)4 = O(h8). Similarly, we have ς̂(−k,−l),k = ςk+Or(N−1h1/r−1). Then, it follows
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that IN1 ≤
∑J
j=1{E(ν4

j )}1/2{E(ς̂j − ςj)4}1/2 = J ·O(h4) = o(N). By Cauchy-Schwartz inequality,

IN2 ≤
∑
k 6=l

[(E(ν4
kν

4
l )E[{ς̂k − ς̂(−k,−l),k}4])1/2E{(ς̂l − ςl)2}]1/2

= J2 ×O
(
h1/4

Nh

)
×O(h2) = O(Nh5/4) = o(N).

Similarly, one can show that IN3 = o(N) which completes the proof.

Lemma B.6. Under Condition 3.5, J T
0 ΩJ0 is a positve definite matrix. Further if Conditions 3.1–3.4 are

satisfied, we have ∥∥∥β̂(1) − β(1)
0

∥∥∥ = Op(N
−1/2).

Proof. By the definition of Ω, it can be seen that J T
0 ΩJ0 is a positive semidefinite matrix. It suffices to show

that 0 is not one of its eigenvalues. By Condition 3.5, (J0u)TΩ(J0u) = 0 if and only if J0u = rβ0 for some

constant r > 0 where

J0 =



− β2√
1−‖β(1)

0 ‖2
· · · − βp√

1−‖β(1)
0 ‖2

1

. . .

1


.

Solving J0u = rβ0 results in u = 0 and thus r = 0. It is a contradiction to r > 0. This indicates that J T
0 ΩJ0

is a positive definite matrix.

To show ‖β̂(1) − β
(1)
0 ‖ = Op(N

−1/2), by (6.3.4) on page 163 of Ortega & Rheinboldt (1973),

which is also used by Weisberg & Welsh (1994) and Wang et al. (2010), it suffices to show that for any small

probability τ , we can always find a constant C > 0, such that

lim inf
N

P

(
sup
u∈UN

uTĜ(β(1)) < 0

)
= 1− τ, (B.23)

where UN = {u ∈ Rp−1 : (β
(1)
0 + u) ∈ B(1), N1/2‖u‖ = C}. Let λmin be the smallest eigenvalue of

J T
0 ΩJ0. Then

uTG(β
(1)
0 )−NuTJ T

0 ΩJ0u ≤ ‖N1/2u‖ × ‖N−1/2G(β
(1)
0 )‖ − λmin‖N1/2u‖2

= C × ‖N−1/2G(β
(1)
0 )‖ − λmin × C2. (B.24)
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Noting that (B.24) is a quadratic function in C with λmin > 0 and ‖N−1/2G(β
(1)
0 )‖ = Op(1), for any

τ > 0, if C is chosen large enough, we have (B.24) being negative with probability at least 1− τ . Further by

Propostion 3, we have

sup
u∈Un

∣∣∣uTĜ(β(1))−
{
uTG(β

(1)
0 )−NuTJ T

0 ΩJ0u
}∣∣∣ = op(1).

This proves (B.23) and hence completes the proof.
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Appendix C Technical arguments and additional simulation results

related to Chapter 4

C.1 Efficient algorithms

In what follows, we provide the derivation of the efficient algorithms, discussed in Section 4.2.2

of our manuscript, for computing the probability of the observed testing outcomes under two of the most

common group testing decoding algorithms; specifically Dorfman testing and three-stage halving.

C.1.1 Dorfman testing

Dorfman testing (DT) begins by combining all of the specimens in the jth group into one master

pool, which is then tested; i.e., Pj1 = Gj = {1, ..., nj}. If the master pool tests negative then the screening

process ends. Alternatively, if the master pool tests positive then all contributing specimens are retested

individually. Using the notation developed in Section 4.2 of our manuscript, we let ZPj1 denote the testing

response observed from assaying the master pool. Subsequently, the testing response vector for the jth

group, ZZZj , takes on the form ZZZj = ZPj1
= 0 if the master pool tests negative, and ZZZj = (ZPj1

=

1, ZPj2 , . . . , ZPjKj
)T otherwise, where ZPjl

, for l = 2, ...,Kj , and Kj = nj + 1. Note, in this context ZPjl

denotes the testing response observed from retesting the Pjl = {l − 1} specimen individually.

To perform maximum likelihood estimation we need only derive the probability of observing the

testing response vector ZZZj under its different configurations. We first focus on the event that the master

pool tests negative, in which case the probability of observing ZZZj = 0, given the individual level covariate

information, can be expressed as

pr(ZZZj = 0 | xxxj) =
∑
tttj∈Tj

pr(ZPj1 = 0 | TTT j = tttj , xxxj)pr(TTT j = tttj | xxxj)

=
∑
tttj∈Tj

pr(ZPj1
= 0 | TTT j = tttj)

nj∏
i=1

pr(Tij = tij | xxxij)

=
∑
tttj∈Tj

Mj(0, tj)

nj∏
i=1

pr(Tij = tij | xxxij)

=

nj∑
k=0

Mj(0,1nj :k)pr

(
nj∑
i=1

Tij = k | xxxj

)
.

where xxxj = (xxx1j , ..., xxxnjj)
T and 1nj :k is a nj-dimensional binary vector with the first k components being
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1 and all others being 0. The last equality holds because the biomarker distributions are assumed to be

independent of the individuals’ covariate information, in which case Mj(zj , tj) = Mj(zj , t
′
j) for all tj

and t′j such that
∑nj

i=1 tij =
∑nj

i=1 t
′
ij . The calculation of Mj(0,1nj :k) can easily be accomplished using

the expressions provided in our manuscript. The random variable
∑nj

i=1 Tij follows a Poisson binomial

distribution; i.e., it is the sum of nj independent Bernoulli random variables that are not necessarily identically

distributed. Therefore, one can easily calculate the pr(
∑nj

i=1 Tij = k | xxxj) using the methods outlined in

Wang (1993).

We now turn our attention to calculating

pr{ZZZj = (1, wwwT)T} = pr(ZPj1
= 1, ZPj2

= w1, . . . , ZPjKj
= wnj

),

where www = (w1, ..., wnj
)T is the vector of testing response observed from retesting each of the specimens

separately. Define the sets I+(www) and I−(www) to be the collection of indices identifying the individuals in Gj

that tested positive and negative, respectively, according to www. For example, under DT if www = (1, 1, 0, 0, 1)T

then I+(www) = {1, 2, 5} and I−(www) = {3, 4}. Using this set notation, the probability of observing ZZZj =

(1, wwwT)T, given the individual level covariate information, can be expressed as

pr {ZZZj = (1, wwwT)T | xxxj} =

|I+(www)|∑
k1=0

|I−(www)|∑
k2=0

[
pr
{
ZZZj = (1, wwwT)T | T+

j = k1, T
−
j = k2

}
× pr

(
T+
j = k1 | xxxj

)
pr
(
T−j = k2 | xxxj

)]
,

where T+
j =

∑
i∈I+(www) Tij and T−j =

∑
i∈I−(www) Tij with the convention that T+

j = 0 or T−j = 0 if

|I+(www)| = 0 or |I−(www)| = 0, respectively. Again notice that T+
j and T−j each follow a Poisson binomial

distribution, and the probabilities involving these variables can easily be calculated as described above. The

remaining probability statement above can be calculated as follows

pr
{
ZZZj = (1, wwwT)T | T+

j = k1, T
−
j = k2

}
= Mj

(
δ1:1,nj :k, δk:k1,(nj−k):k2

)
,

where δn1:k1,n2:k2,...,na:ka = (1T

n1:k1
,1T

n2:k2
, ...1T

na:ka
)T and k = |I+(www)|. These expressions greatly reduce

the computational burden associated with evaluating the observed data log-likelihood, when the group testing

data arises from Dorfman testing.
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C.1.2 Three-stage halving

Three-stage halving (TH) proceeds in a similar fashion to DT with the exception that an additional

decoding stage is implemented before reverting to individual testing. Specifically, TH begins by combining

all of the specimens in the jth group into one master pool, which is then tested; i.e., Pj1 = Gj = {1, ..., nj}.

If the master pool tests negative then the screening process ends. On the other hand, if the master pool tests

positive then all contributing specimens are randomly divided into two equally sized subgroups and these

subgroups are tested. If a subgroup tests negative then testing is complete, alternatively if a subgroup tests

positive then all contributing specimens are retested individually.

To allow for equally sized subgroups, we consider nj = 2rj . We denote the master pool testing

response as ZPj1 . The probability of observing ZZZj = ZPj1 = 0 under TH is exactly the same as DT,

which was described in Section C.1.1, so we focus on the cases that involve ZPj1
= 1. If the master pool

tests positive (i.e., ZPj1
= 1) then the group is divided into two equally sized subgroups. Without loss of

generality, we let Pj2 = {1, . . . , rj} and Pj3 = {rj+1, . . . , 2rj} indicate the individuals assigned to the two

subgroups and ZPj2
and ZPj3

denote the respective testing responses. The first case we consider involves

both subgroups testing negative; i.e., ZZZj = (ZPj1
, ZPj2

, ZPj3
)T = (1, 0, 0)T. The probability of observing

this event, given the individual level covariate information, can be calculated as follows

pr{ZZZj = (1, 0, 0)T|xxxj} =

rj∑
k1=1

rj∑
k2=0

Mj

(
13:1, δrj :k1,rj :k2

)
, pr
(
T

(1)
j = k1 | xxxj

)
pr
(
T

(2)
j = k2 | xxxj

)

where T (1)
j =

∑rj
i=1 Tij and T (2)

j =
∑2rj
i=rj+1 Tij .

The next testing outcome that we consider involves exactly one of the subgroups testing positive.

Under the TH protocol, if a subgroup tests positive then all contributing specimens are then retested individ-

ually. For purposes of illustration, we assume that the the pool formed from combining the Pj2 specimens

tests positive, while the pool formed from the Pj3 specimens tests negative. So the observed testing outcome

can be expressed as ZZZj = (1, 1, 0, wwwT
1 )T, where wwwT

1 denotes the vector of testing responses observed from

assaying each specimens in Pj2 individually. The probability of observing this event, given the individual

level covariate information, can be calculated as follows

pr{ZZZj = (1, 1, 0, wwwT
1 )

T|xxxj} =

|I+(www1)|∑
k11=0

|I−(www1)|∑
k12=0

rj∑
k2=0

{
Mj

(
δ3:2,rj :k1 , δk1:k11,(rj−k1):k12,rj :k2

)
× pr

(
T

(2)
j = k2 | xxxj

)
pr
(
T

(1)+
j = k11 | xxxj

)
pr
(
T

(1)−
j = k12 | xxxj

)}
,
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where T (1)+
j =

∑
i∈I+(www1) Tij , T

(1)−
j =

∑
i∈I−(www1) Tij , and k1 = |I+(www1)|.

The final possible testing outcome occurs when both subgroups test positive, in which case the

observed testing response can be expressed as ZZZj = (1, 1, 1, wwwT
1 , www

T
2 )T, where wwwT

2 denotes the vector of

testing outcomes observed from assaying each specimens in Pj3 individually. The probability of observing

this event, given the individual level covariate information, can be calculated as follows

pr{ZZZj = (1, 1, 1, wwwT

1 , www
T

2 )T|xxxj} =

|I+(www1)|∑
k11=0

|I−(www1)|∑
k12=0

|I+(www2)|∑
k21=0

|I−(www2)|∑
k22=0

{
Mj

(
δ3:3,rj :k1,rj :k2 , δk1:k11,(rj−k1):k12,k2:k21,(rj−k2):k22

)
× pr

(
T

(1)+
j = k11 | xxxj

)
pr
(
T

(1)−
j = k12 | xxxj

)
× pr

(
T

(2)+
j = k21 | xxxj

)
pr
(
T

(2)−
j = k22 | xxxj

)}
,

where T (2)+
j =

∑
i∈I+(www2) Tij , T

(2)−
j =

∑
i∈I−(www2) Tij , and k2 = |I+(www2)|. These expressions greatly

reduce the computational burden associated with evaluating the observed data log-likelihood, when the group

testing data arises from three-stage halving.

C.2 Expectation maximization algorithm

In what follows we provide the expectation maximization (EM) algorithm referenced in Section

4.2.2 of our manuscript. The development of the EM algorithm begins by treating the true statuses of the

individuals as latent observations. The complete data log-likelihood can then be expressed as

lc(β) =

J∑
j=1

nj∑
i=1

{
Tij log[η−1(xxxT

ijβ)] + (1− Tij) log[1− η−1(xxxT

ijβ)]
}

+

J∑
j=1

log {Mj(zzzj , TTT j)} .

The E-step of an EM algorithm involves taking the expectation of lc(β) with respect to all latent variables

(i.e., Tij for i = 1, ..., nj and j = 1, ..., J) conditional on the observed data and the current parameter β(d).

This yields the Q function

Q(β,β(d)) =

J∑
j=1

nj∑
i=1

{
ω

(d)
ij log[η−1(xxxT

ijβ)] + (1− ω(d)
ij ) log[1− η−1(xxxT

ijβ)]
}
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up to an additive term that does not involve β, where ω(d)
ij = E(Tij | zzzj , xxx1j , ..., xxxnjj ;β

(d)). The M-step

then determines β(d+1) to be the value that maximizes Q(β,β(d)); i.e.,

β(d+1) = argmax
β

Q(β,β(d)).

The general form of the EM algorithm can be stated succinctly as follows:

Step 1: Initialize β(0) and set d = 0.

Step 2: (E-step) Using β(d) and the observed data calculate

ω
(d)
ij = E(Tij | zzzj , xxx1j , ..., xxxnjj ;β

(d)), for i = 1, . . . , nj and j = 1, . . . , J.

Step 3: (M-step) Set d = d+ 1 and obtain β(d) as,

β(d) = argmax
β

J∑
j=1

nj∑
i=1

{
ω

(d−1)
ij log[η−1(xxxT

ijβ)] + (1− ω(d−1)
ij ) log[1− η−1(xxxT

ijβ)]
}
.

Step 4: Repeat steps 2 and 3 until convergence.

The EM algorithm above is completed with the expression for ω(d)
ij which is given by

E(Tij | zzzj , xxx1j , ..., xxxnjj ;β
(d)) =

pr(ZZZj = zzzj | Tij = 1, xxx1j , ..., xxxnjj ;β
(d)) · pr(Tij = 1 | xxxij ;β(d))

pr(ZZZj = zzzj | xxx1j , ..., xxxnjj ;β
(d))

.

The first probability statement in the numerator above can be calculated as follows

P (ZZZj = zzzj | Tij = 1, xxx1j , ..., xxxnjj ;β
(d))

=
∑

tttj∈Tj ,tij=1

Mj(zzzj , tttj)

nj∏
r=1,r 6=i

[
trjη

−1(xxxT

rjβ
(d)) + (1− trj)(1− η−1(xxxT

rjβ
(d)))

] ,

with the two remaining probabilities being given by P (Tij = 1 | xxxij ;β(d)) = η−1(xxxT
ijβ

(d)) and P (ZZZj =

zzzj | xxx1j , ..., xxxnjj ;β
(d)) = R(zzzj , xxx1j , ..., xxxnjj ,β

(d)).

C.3 Monte Carlo approximation of Mj(·, ·)

In what follows we provide details pertaining to the Monte Carlo techniques used to approximate

the joint misclassification probabilities Mj(zzzj , tttj) referenced in Section 4.2.1 of our manuscript. Recall, we
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have that

Mj(zj , tj) =

∫
A(zzzj ,cccj)

∫ Kj∏
l=1

fC|C̃Pjl
=DDDT

Pjl
y
(ul)

nj∏
i=1

fC̃|Tij=tij
(yij)dydu,

which is often a multi-dimensional integral and is therefore difficult to calculate analytically. Hence, we

propose the following Monte Carlo approach to approximate this integral.

Step 0: Set d = 0.

Step 1: Based on tttj randomly generate C̃ij , for i = 1, ..., nj , according to fC̃|Tij=tij
.

Step 2: Calculate C̃Pjl
= DDDT

Pjl
C̃j , for l = 1, ...,Kj .

Step 3: Randomly generate CPjl
, for l = 1, ...,Kj , according to fC|C̃Pjl

.

Step 4: If Cj ∈ AAA(zzzj , cccj) set d = d+ 1, where Cj = (CPj1 , . . . , CPjKj
)T.

Repeat Steps 1–4M times, whereM is chosen to be sufficiently large. Then,Mj(zzzj , tttj) can be approximated

by the ratio d/M . Notice, the above algorithm can be altered to handle the case that the biomarker levels are

measured without error by setting CPjl
= C̃Pjl

in Step 3.
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C.4 Additional simulation results

Table C.1: Simulation results for Model 4.1 having regression parameters β = (−3, 2)T. Presented results
include the sample mean (Mean) and standard deviation (SD) of the 500 estimates of β, when n ∈ {2, 4, 6}
and σ+ = 1. The average standard error (SE) and estimated 95% Wald coverage probabilities (Cov) are
also provided. Assuming a 99% confidence level for the coverage probabilities, the margin of error is 0.03.
Estimates outside this margin of error are shown in bold. Note, MT, DT, and TH denote individual testing,
master pool testing, Dorfman testing, and three-stage halving, respectively.

When t(c) = t0: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.01(0.96) −3.01(0.95) −− (−−) −3.52(0.06) −3.14(0.76) −− (−−)
SD(SE) 0.13(0.13) 0.12(0.11) −− (−−) 0.16(0.16) 0.11(0.11) −− (−−)

4 Mean(Cov) −3.02(0.97) −3.01(0.95) −3.01(0.95) −4.21(0.00) −3.81(0.00) −3.74(0.00)
SD(SE) 0.22(0.22) 0.16(0.15) 0.15(0.15) 0.22(0.24) 0.16(0.15) 0.15(0.14)

6 Mean(Cov) −3.05(0.94) −3.02(0.95) −3.02(0.95) −5.33(0.00) −4.64(0.00) −4.47(0.00)
SD(SE) 0.37(0.32) 0.20(0.20) 0.20(0.20) 0.37(0.41) 0.24(0.24) 0.22(0.20)

β̂1

2 Mean(Cov) 2.01(0.96) 2.00(0.95) −− (−−) 2.14(0.91) 1.90(0.87) −− (−−)
SD(SE) 0.15(0.16) 0.13(0.13) −− (−−) 0.16(0.17) 0.12(0.12) −− (−−)

4 Mean(Cov) 2.02(0.97) 2.01(0.96) 2.00(0.95) 1.88(0.96) 1.82(0.75) 1.74(0.53)
SD(SE) 0.28(0.29) 0.18(0.19) 0.18(0.18) 0.21(0.24) 0.14(0.15) 0.14(0.14)

6 Mean(Cov) 2.05(0.93) 2.02(0.95) 2.02(0.96) 2.02(0.98) 1.92(0.94) 1.74(0.72)
SD(SE) 0.50(0.44) 0.26(0.25) 0.25(0.25) 0.33(0.36) 0.19(0.21) 0.17(0.19)

When t(c) = t0/c: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.01(0.94) −3.01(0.96) −− (−−) −2.06(0.00) −2.35(0.00) −− (−−)
SD(SE) 0.18(0.18) 0.12(0.12) −− (−−) 0.09(0.08) 0.08(0.08) −− (−−)

4 Mean(Cov) −3.04(0.95) −3.01(0.95) −3.00(0.96) −1.70(0.00) −2.23(0.00) −1.99(0.00)
SD(SE) 0.28(0.26) 0.12(0.13) 0.12(0.12) 0.09(0.09) 0.08(0.08) 0.07(0.07)

6 Mean(Cov) −3.06(0.95) −3.01(0.96) −3.01(0.96) −1.63(0.00) −2.31(0.00) −2.00(0.00)
SD(SE) 0.35(0.34) 0.12(0.13) 0.12(0.13) 0.12(0.11) 0.08(0.09) 0.07(0.07)

β̂1

2 Mean(Cov) 2.01(0.95) 2.01(0.96) −− (−−) 1.32(0.00) 1.59(0.04) −− (−−)
SD(SE) 0.21(0.20) 0.14(0.14) −− (−−) 0.13(0.12) 0.11(0.10) −− (−−)

4 Mean(Cov) 2.04(0.95) 2.01(0.95) 2.00(0.95) 1.19(0.01) 1.63(0.11) 1.45(0.00)
SD(SE) 0.31(0.30) 0.14(0.14) 0.13(0.14) 0.17(0.16) 0.12(0.11) 0.10(0.10)

6 Mean(Cov) 2.06(0.96) 2.01(0.95) 2.01(0.96) 1.26(0.15) 1.70(0.28) 1.53(0.01)
SD(SE) 0.42(0.41) 0.14(0.14) 0.13(0.14) 0.25(0.24) 0.12(0.11) 0.10(0.10)
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Table C.2: Simulation results for Model 4.2 having regression parameters β = (−3, 1, 0.5)T. Presented
results include the sample mean (Mean) and standard deviation (SD) of the 500 estimates of β, when n ∈
{2, 4, 6} and σ+ = 1. The average standard error (SE) and estimated 95% Wald coverage probabilities (Cov)
are also provided. Assuming a 99% confidence level for the coverage probabilities, the margin of error is
0.03. Estimates outside this margin of error are shown in bold. Note, MT, DT, and TH denote individual
testing, master pool testing, Dorfman testing, and three-stage halving, respectively.

When t(c) = t0: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.01(0.95) −3.01(0.94) −− (−−) −3.52(0.05) −3.15(0.72) −− (−−)
SD(SE) 0.12(0.12) 0.11(0.11) −− (−−) 0.17(0.16) 0.10(0.10) −− (−−)

4 Mean(Cov) −3.03(0.96) −3.02(0.94) −3.01(0.96) −4.49(0.00) −3.83(0.00) −3.75(0.00)
SD(SE) 0.20(0.19) 0.14(0.14) 0.14(0.14) 0.43(0.43) 0.16(0.15) 0.14(0.13)

6 Mean(Cov) −3.11(0.96) −3.03(0.95) −3.02(0.95) −7.56(0.14) −4.93(0.00) −4.54(0.00)
SD(SE) 0.34(0.33) 0.19(0.19) 0.19(0.19) 3.90(3.10) 0.45(0.36) 0.24(0.21)

β̂1

2 Mean(Cov) 1.03(0.94) 1.02(0.95) −− (−−) 1.38(0.87) 0.99(0.91) −− (−−)
SD(SE) 0.19(0.17) 0.12(0.12) −− (−−) 0.40(0.35) 0.12(0.11) −− (−−)

4 Mean(Cov) 1.09(0.94) 1.03(0.94) 1.03(0.96) 1.97(0.88) 1.10(0.91) 0.99(0.92)
SD(SE) 0.41(0.39) 0.18(0.17) 0.15(0.16) 0.93(0.89) 0.26(0.22) 0.18(0.17)

6 Mean(Cov) 1.25(0.95) 1.05(0.97) 1.05(0.96) 5.24(0.94) 1.85(0.79) 1.17(0.94)
SD(SE) 0.81(0.75) 0.26(0.24) 0.23(0.23) 5.68(4.51) 0.88(0.67) 0.40(0.33)

β̂2

2 Mean(Cov) 0.48(0.95) 0.49(0.95) −− (−−) 0.32(0.86) 0.45(0.94) −− (−−)
SD(SE) 0.14(0.13) 0.10(0.10) −− (−−) 0.24(0.20) 0.09(0.09) −− (−−)

4 Mean(Cov) 0.44(0.96) 0.48(0.97) 0.49(0.95) −0.08(0.72) 0.29(0.72) 0.32(0.69)
SD(SE) 0.27(0.28) 0.14(0.14) 0.14(0.14) 0.42(0.40) 0.16(0.14) 0.14(0.12)

6 Mean(Cov) 0.37(0.93) 0.47(0.95) 0.48(0.93) −1.21(0.88) −0.04(0.60) 0.19(0.66)
SD(SE) 0.52(0.47) 0.21(0.20) 0.21(0.20) 2.05(1.64) 0.40(0.31) 0.23(0.19)

When t(c) = t0/c: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.04(0.96) −3.01(0.95) −− (−−) −2.22(0.00) −2.46(0.00) −− (−−)
SD(SE) 0.17(0.17) 0.11(0.11) −− (−−) 0.08(0.08) 0.08(0.08) −− (−−)

4 Mean(Cov) −3.12(0.97) −3.01(0.95) −3.00(0.96) −1.89(0.00) −2.32(0.00) −2.11(0.00)
SD(SE) 0.29(0.29) 0.11(0.11) 0.11(0.11) 0.09(0.10) 0.07(0.08) 0.07(0.08)

6 Mean(Cov) −3.16(0.97) −3.01(0.96) −3.01(0.94) −1.81(0.00) −2.37(0.00) −2.10(0.00)
SD(SE) 0.39(0.42) 0.11(0.11) 0.11(0.11) 0.12(0.13) 0.07(0.08) 0.07(0.08)

β̂1

2 Mean(Cov) 1.09(0.96) 1.01(0.97) −− (−−) 0.67(0.11) 0.82(0.42) −− (−−)
SD(SE) 0.30(0.30) 0.12(0.13) −− (−−) 0.10(0.10) 0.08(0.09) −− (−−)

4 Mean(Cov) 1.21(0.94) 1.02(0.97) 1.01(0.95) 0.59(0.17) 0.84(0.53) 0.76(0.20)
SD(SE) 0.65(0.59) 0.13(0.13) 0.13(0.12) 0.13(0.14) 0.08(0.09) 0.08(0.08)

6 Mean(Cov) 1.29(0.93) 1.01(0.96) 1.02(0.96) 0.62(0.47) 0.86(0.67) 0.80(0.38)
SD(SE) 0.90(0.85) 0.13(0.13) 0.13(0.13) 0.21(0.21) 0.09(0.09) 0.09(0.09)

β̂2

2 Mean(Cov) 0.46(0.95) 0.49(0.96) −− (−−) 0.43(0.90) 0.46(0.94) −− (−−)
SD(SE) 0.18(0.19) 0.10(0.10) −− (−−) 0.08(0.09) 0.07(0.08) −− (−−)

4 Mean(Cov) 0.42(0.92) 0.49(0.95) 0.49(0.95) 0.41(0.93) 0.47(0.96) 0.44(0.92)
SD(SE) 0.35(0.32) 0.10(0.10) 0.10(0.10) 0.11(0.12) 0.07(0.08) 0.07(0.08)

6 Mean(Cov) 0.39(0.94) 0.49(0.96) 0.49(0.96) 0.43(0.98) 0.49(0.97) 0.46(0.93)
SD(SE) 0.47(0.44) 0.10(0.10) 0.10(0.10) 0.16(0.18) 0.08(0.08) 0.08(0.08)
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Table C.3: Simulation results for Model 4.3 having regression parameters β = (−3, 2, 1)T. Presented results
include the sample mean (Mean) and standard deviation (SD) of the 500 estimates of β, when n ∈ {2, 4, 6}
and σ+ = 1. The average standard error (SE) and estimated 95% Wald coverage probabilities (Cov) are
also provided. Assuming a 99% confidence level for the coverage probabilities, the margin of error is 0.03.
Estimates outside this margin of error are shown in bold. Note, MT, DT, and TH denote individual testing,
master pool testing, Dorfman testing, and three-stage halving, respectively.

When t(c) = t0: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.01(0.95) −3.01(0.95) −− (−−) −3.49(0.08) −3.13(0.81) −− (−−)
SD(SE) 0.13(0.13) 0.11(0.12) −− (−−) 0.15(0.16) 0.11(0.11) −− (−−)

4 Mean(Cov) −3.02(0.96) −3.00(0.96) −3.01(0.96) −4.16(0.00) −3.76(0.00) −3.69(0.00)
SD(SE) 0.21(0.22) 0.14(0.15) 0.15(0.15) 0.20(0.23) 0.14(0.15) 0.14(0.14)

6 Mean(Cov) −3.07(0.95) −3.01(0.94) −3.02(0.94) −5.23(0.00) −4.54(0.00) −4.37(0.00)
SD(SE) 0.34(0.33) 0.19(0.19) 0.21(0.20) 0.36(0.39) 0.24(0.23) 0.20(0.20)

β̂1

2 Mean(Cov) 2.01(0.95) 2.01(0.96) −− (−−) 2.12(0.92) 1.90(0.84) −− (−−)
SD(SE) 0.15(0.16) 0.13(0.13) −− (−−) 0.16(0.17) 0.12(0.12) −− (−−)

4 Mean(Cov) 2.01(0.95) 2.00(0.96) 2.01(0.95) 1.84(0.91) 1.79(0.69) 1.72(0.44)
SD(SE) 0.28(0.29) 0.18(0.18) 0.18(0.18) 0.21(0.23) 0.14(0.15) 0.13(0.14)

6 Mean(Cov) 2.06(0.95) 2.00(0.95) 2.02(0.94) 1.95(0.96) 1.87(0.89) 1.71(0.59)
SD(SE) 0.45(0.43) 0.24(0.23) 0.26(0.24) 0.32(0.34) 0.19(0.20) 0.17(0.18)

β̂2

2 Mean(Cov) 1.00(0.97) 1.00(0.96) −− (−−) 1.04(0.95) 0.94(0.95) −− (−−)
SD(SE) 0.24(0.25) 0.20(0.21) −− (−−) 0.25(0.26) 0.19(0.19) −− (−−)

4 Mean(Cov) 0.98(0.96) 0.99(0.96) 0.98(0.94) 0.85(0.97) 0.86(0.93) 0.83(0.90)
SD(SE) 0.48(0.46) 0.28(0.29) 0.30(0.29) 0.70(13.11) 0.25(0.25) 0.26(0.24)

6 Mean(Cov) 0.94(0.96) 0.98(0.96) 0.98(0.94) 0.61(0.97) 0.86(0.95) 0.79(0.92)
SD(SE) 0.70(0.71) 0.37(0.37) 0.40(0.38) 1.79(534.74) 0.35(0.34) 0.34(0.32)

When t(c) = t0/c: Acknowledging the Dilution Effect Traditional Approach

n Measure MT DT TH MT DT TH

β̂0

2 Mean(Cov) −3.02(0.97) −3.01(0.95) −− (−−) −2.08(0.00) −2.37(0.00) −− (−−)
SD(SE) 0.17(0.18) 0.12(0.13) −− (−−) 0.08(0.08) 0.08(0.08) −− (−−)

4 Mean(Cov) −3.06(0.97) −3.01(0.96) −3.00(0.94) −1.74(0.00) −2.26(0.00) −2.02(0.00)
SD(SE) 0.27(0.27) 0.12(0.13) 0.12(0.12) 0.10(0.10) 0.08(0.09) 0.07(0.07)

6 Mean(Cov) −3.08(0.95) −3.01(0.96) −3.01(0.95) −1.67(0.00) −2.36(0.00) −2.04(0.00)
SD(SE) 0.35(0.35) 0.13(0.13) 0.12(0.13) 0.14(0.13) 0.09(0.09) 0.07(0.08)

β̂1

2 Mean(Cov) 2.03(0.95) 2.02(0.96) −− (−−) 1.36(0.00) 1.62(0.05) −− (−−)
SD(SE) 0.19(0.19) 0.13(0.13) −− (−−) 0.12(0.12) 0.11(0.10) −− (−−)

4 Mean(Cov) 2.06(0.95) 2.01(0.95) 2.01(0.94) 1.24(0.01) 1.66(0.15) 1.49(0.00)
SD(SE) 0.30(0.30) 0.13(0.14) 0.14(0.13) 0.17(0.17) 0.11(0.11) 0.10(0.10)

6 Mean(Cov) 2.07(0.96) 2.02(0.96) 2.01(0.94) 1.33(0.28) 1.74(0.41) 1.57(0.02)
SD(SE) 0.41(0.40) 0.14(0.14) 0.14(0.14) 0.27(0.26) 0.12(0.11) 0.10(0.10)

β̂2

2 Mean(Cov) 1.00(0.96) 0.99(0.95) −− (−−) 0.69(0.69) 0.81(0.82) −− (−−)
SD(SE) 0.28(0.28) 0.20(0.20) −− (−−) 0.21(0.21) 0.18(0.18) −− (−−)

4 Mean(Cov) 1.05(0.96) 0.99(0.95) 1.00(0.95) 0.67(0.84) 0.84(0.87) 0.77(0.77)
SD(SE) 0.44(0.43) 0.21(0.20) 0.20(0.20) 0.30(0.31) 0.18(0.19) 0.17(0.18)

6 Mean(Cov) 1.02(0.96) 0.99(0.95) 1.01(0.95) 0.69(0.95) 0.87(0.91) 0.82(0.86)
SD(SE) 0.61(0.62) 0.21(0.20) 0.20(0.20) 0.46(0.47) 0.19(0.19) 0.18(0.19)

96



−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 2

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 4

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 6Truth
DT
TH
MT
DT(T)
TH(T)
MT(T)

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 2

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 4

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 6

Figure C.1: Plots of the estimated regression functions averaged over 500 data sets for Model 4.1 when
σ+ = 1 and n ∈ {2, 4, 6}. We use DT(T), TH(T), and MT(T) to denote the results obtained under the
traditional modeling assumptions for the group testing algorithms DT, TH, and MT, respectively. The panels
on the left and right of the figure correspond to thresholding strategies t(c) = t0 and t(c) = t0/c, respectively.

97



−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 2

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 4

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 6Truth
DT
TH
MT
DT(T)
TH(T)
MT(T)

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 2

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 4

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
(T

=
1|

X
=

x)

n = 6

Figure C.2: Plots of the estimated regression functions averaged over 500 data sets for Model 4.2 when
σ+ = 1 and n ∈ {2, 4, 6}. We use DT(T), TH(T), and MT(T) to denote the results obtained under the
traditional modeling assumptions for the group testing algorithms DT, TH, and MT, respectively. The panels
on the left and right of the figure correspond to thresholding strategies t(c) = t0 and t(c) = t0/c, respectively.
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Figure C.3: Plots of the estimated regression functions averaged over 500 data sets for Model 4.3 when
σ+ = 1, x2 = 0, and n ∈ {2, 4, 6}. We use DT(T), TH(T), and MT(T) to denote the results obtained under
the traditional modeling assumptions for the group testing algorithms DT, TH, and MT, respectively. The
panels on the left and right of the figure correspond to thresholding strategies t(c) = t0 and t(c) = t0/c,
respectively.
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Figure C.4: Plots of the estimated regression functions averaged over 500 data sets for Model 4.3 when
σ+ = 1, x2 = 1, and n ∈ {2, 4, 6}. We use DT(T), TH(T), and MT(T) to denote the results obtained under
the traditional modeling assumptions for the group testing algorithms DT, TH, and MT, respectively. The
panels on the left and right of the figure correspond to thresholding strategies t(c) = t0 and t(c) = t0/c,
respectively.
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C.5 Irish HBV Data

This appendix provides a summary of the misclassification error rates pertaining to the data analysis

conducted in Section 4.4 of our manuscript. Specifically, we report the false positive rate, which is defined

to be the ratio of the number of individuals diagnosed positive who are truly negative to the number of

individuals who are truly negative, and the false negative rate, which is defined to be the ratio of the number

of individuals diagnosed negative who are truly positive to the number of individuals who are truly positive.

Table C.4: Irish HBV data: Presented results include the mean of the false positive rates (false negative rates)
of the 1000 replications under the two different thresholding strategies when n = 2, 4, 6. Note, DT and TH
denote Dorfman testing and three-stage halving, respectively.

Random Grouping Homogeneous Grouping

n DT TH DT TH

When t(c) = t0

2 0.000(0.156) − − (− −) 0.000(0.145) − − (− −)
4 0.000(0.397) 0.000(0.408) 0.000(0.398) 0.000(0.400)
6 0.000(0.498) 0.000(0.525) 0.000(0.509) 0.000(0.523)

When t(c) = t0/c
2 0.001(0.017) − − (− −) 0.001(0.016) − − (− −)
4 0.001(0.017) 0.001(0.017) 0.001(0.016) 0.001(0.017)
6 0.001(0.017) 0.001(0.017) 0.001(0.016) 0.001(0.017)
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