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Abstract

Ultraluminous X-ray sources are believed to be associated with X-ray binaries,

in which an accreting black hole generates X-ray luminosities in excess of 1039 erg/s.

The nature of the companion star and the underlying physics of the accretion process

is not yet established with certainty. In particular, whether or not the accretion is

super/sub Eddington is an open question, as is the mass of the companion star. We

discuss the first two ULXs recently discovered in M31 and investigate the nature of

their underlying sources. We present the X-ray observations for ULX-1 in detail and

discuss its implications for its accretor. We also considered the positions of both

ULX sources in the context of their hypothetical association with either High Mass

X-ray Binaries and Low Mass X-ray Binaries. We construct a simple disk plus bulge

model to test their association with starlight and use IR images from Spitzer to

investigate their possible link to star formation. We find that the position of these

two sources more strongly supports scenarios in which the companion is a high mass

star. Using the data obtained with XMM-Newton, Swift and Chandra, we infer that

the underlying source for ULX-1 is a 13 M� black hole under the assumption that it

is non-spinning. The combined study of X-ray properties and the spatial distribution

presented in this thesis argue in favor of stellar mass black holes accreting at near

Eddington rates from high mass companions.
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Chapter 1

Introduction

Ultraluminous X-ray sources are very bright X-ray non-nuclear sources, with

typical X-ray luminosities, LX = 1039−41 erg/s, which is 100-1000 times the luminosity

of an ordinary X-ray source in a galaxy. These are believed to be associated with

X-ray binaries, in which a black hole accretes matter from its companion. The mass

of the underlying black hole can be estimated, assuming an isotropic emission from

the accretion disk under hydrostatic equilibrium, the maximum luminosity from this

system cannot exceed the Eddington luminosity,

LEdd = 1.3× 1038 M

M�

This implies that the underlying source for these systems, must be > 10 - 1000

M� accreting black hole. There are few problems with this approach, one being the

black holes with masses of the order of 100-1000 M�, also called the ’Intermediate

Mass Black Holes’ (IMBHs), have not been observed yet. Other prominent problem

is that the observed luminosity exceeds the Eddington limit of a 10 M� stellar black

hole, which would require a super-Eddington accretion on to the underlying black hole
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(Begelman, 2002). Moreover, study of ULX systems could fill in the gap between the

Stellar Mass Black Holes, (M < 80 M� (Belczynski et al., 2010)) and the Supermassive

Black holes (106−9 M� (Banerji et al., 2012)). To understand their true nature, various

studies of ULXs are being conducted since law few decades. But due to their rare

occurrence, this is a very challenging task.

1.1 History

The very first observations of ULXs were made with Einstein Satellite in 1980s

(Fabbiano, 1989). These were observed as very bright X-ray sources(ULXs) near

centers of various galaxies. But, due to the low spatial resolution of the Imaging

Proportional Counter instrument (FWHM ∼ 1’) on Einstein, it was difficult to sep-

arate these sources from the nucleus of galaxies. These observations lead to various

speculations about the nature of these X-ray sources e.g. AGNs with a low accretion

rate, a massive stellar mass black hole accreting at high rate, very luminous X-ray

Supernovae etc. For review, see Fabbiano (1989). With the launch of ROSAT satel-

lite in 1990, incorporated with a much higher resolution instrument (High Resolution

Imager, PSF = 10”), and many more observations of ULXs were conducted and the

case turned out to be such that these sources were not associated with AGNs. e.g.

surveys of nearby galaxies by Colbert et al. (1999), Colbert and Ptak (2002) using

ROSAT-HRI.

The observations mainly in X-ray and optical regime allows us to study the

nature of the X-ray binary systems associated with these ultra high luminous objects.

Listed below are some of the implications of studies of ULXs in these two regimes.
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1.2 X-Ray Observations

The detection of a ULX is obviously confirmed in X-ray regime. As explained

earlier, the very first X-ray observations of ULXs were conducted with Einstein, fol-

lowed by ROSAT-HRI. There have been a lot more detections of ULXs after the

introduction of the new era of X-ray astronomy with XMM-Newton, Swift and Chan-

dra telescopes. In general, the data obtained with these telescopes is analyzed for the

estimation of various parameters for the accretion disk and the underlying black hole.

A variety of spectral models have been introduced (discussed in chapter 3.) to analyze

the X-ray spectra (2-10 keV). e.g. Walton et al. (2010), Swartz et al. (2004), Winter

et al. (2006), Sutton et al. (2012). Analysis of obtained data confirm a stellar mass

black hole as the underlying source in most of the cases, but there exist few examples,

which reveal the underlying sources as IMBHs e.g. Colbert and Ptak (2002), Miller

et al. (2004). Recently, Webb et al. (2012) claimed to confirm the first observation of

an IMBH based on multi-epoch observations and analysis.

1.3 Optical Observations

In X-ray binary systems associated with ULXs, the optical counterpart studies

often reveal a massive O/Be type star as the companion. See Nooraee et al. (2012) for

the optical counterpart studies of the first ULX observed in M31. These observations

imply High Mass X-ray Binaries (HMXBs) as the underlying sources for the ULXs.

In these systems, the companion is usually a massive Be/O star, with very strong

winds, which are captured by the primary component i.e. the compact black hole

(vanParadijs,J. and McClintock,J.E., 1995).

A recent discovery of ULX in M83 did not agree with the ULX-HMXB association
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hypothesis, rather the studies revealed a Low Mass X-ray Binary (LMXB) as the

companion for this ULX (Soria et al., 2012). Although during the observations, the

authors recovered a blue optical counterpart associated with this ULX, but prior to

this ULX discovery, no massive/blue stars were found in that region. Rather, this

region in M83 is dominated by red stars. The face-on galaxy, M83 has very well es-

tablished population studies, which made these authors claim the LMXB association

with ULXs rather than HMXB association. They proposed that the X-ray irradiation

during the ULX outburst could be responsible for brightening the binary systems, as

a whole, which would lead to a higher observed flux.

The main properties of HMXBs and LMXBs are highlighted in the table below.

Low Mass X-ray Binaries High Mass X-ray Binaries

1) Late type or degenerate star 1) Massive early type O/Be star
< 1.0 M� as companion > 10 M� as companion
2) Long orbital period 2) Short orbital period
1 - 365 days ∼ a few days
3) Distributed over the galactic disk 3)Distributed along the galactic plane
4) Young populations, < 107 yrs 4) Old population, > 109 yrs
5) Mass accretion via strong winds 5) Mass accretion via Roche Lobe overflow

Moreover, ULXs are followed up in radio regime, as well ( e.g.(Kaaret, 2002),

(Miller et al., 2005), (Kaaret, 2002) ) to correlate with X-ray observations and optical

studies to constrain the nature of associated black holes. A steady state emission from

an IMBH in hard state or a relativistically beamed jet in the direction of observer

are the two main scenarios tested with radio observations.

Based on these observational parameters, a few theoretical models have been

developed to explain the nature of the main compact source associated with ULX

phenomenon, which are discussed in the next chapter.
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Chapter 2

Theoretical Source Models for

ULX Systems

In this chapter, we discuss the various theoretical models suggested to explain

very high luminosities observed in Ultraluminous X-ray sources. Since their discovery

in 1980s by Einstein Observatory (Fabbiano, 1989), the three main models that were

developed are explained as follows:

Based on their observed properties, as discussed in the introduction, it appears

natural to hypothesize that the underlying source population involves accreting black

holes. In that case, the luminosity scale is set by the Eddington luminosity, leading

us to consider two major theoretical approaches: Super-Eddington accretion onto

Stellar Mass black holes and Sub-Eddington accretion onto Intermediate mass black

holes. The former class involves black holes resulting from standard stellar evolution,

while the latter involves a thus far unobserved mass range of black holes (>100 M�).

We also briefly discuss the geometric beaming as another theoretical aspect for the

observed high luminosities.
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2.1 Super-Eddington Accretion onto a Stellar Mass

Black Hole

Begelman (2002) proposed that Super-Eddington accretion onto a stellar mass

black hole can lead to the birth of an ultraluminous X-ray source. He argues that

in a magnetized and radiation pressure dominated atmosphere, a non-linear photon-

bubble instability (Gammie, 1998) causes significant inhomogeneities at much smaller

scale than the radiation pressure scale height. In these circumstances, a magnetohy-

drodynamical wave propagating in a direction perpendicular to the direction of the

energy flow, causes variations in the density of the gas.

Radiation ’leaks’ through the low density regions in these systems into the

interstellar medium. These inhomogeneities exhibit nonlinear wave patterns, which

follow from a gas cycle between low density and high density regions as explained by

Begelman (2001). The author suggested non-linear plane wave solutions, in a steady

state, in which radiation pressure and magnetic tension forces are dynamically cou-

pled. The main point in the context of ULXs is that the total flux observed from

such an atmosphere can exceed the Eddington limit without dynamically disrupting

the atmosphere. In other words, the classical Eddington limit for a stable accreting

compact star can be circumvented in atmospheres with significant inhomogeneities.

The accreted matter in a ULX system is likely donated by a companion star

in a binary system. Thus the acrretion flow is not spherically symmetric, but rather

flows through an accretion disk. black hole . Accretion disks around the Stellar Mass

Black Holes (StMBH) could exhibit similar conditions as the atmospheres discussed

above. This would allow luminosities observed from ULXs to be attributed to disks

that accrete at Super-Eddington rates.Begelman (2002) considered a model of a thin
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Keplerian disk accreting at a rate,Ṁ , with an inhomogeneous radiation dominated

atmosphere and concluded that the maximum possible luminosity from such a disk is

Lmax
LEdd

> 30 ξ
4/5
−1 α−2

(
M

10

)1/5

ε0.1

(xISCO
6

)1/2
,

˙min,max ∼ (xin/xinhom)1/2

where xinhom is such that at a distance greater than xinhom from the center

of the disk, inhomogeneities would be ineffective, ε is accretion efficiency (typically,

10%), ξ reflects the efficiency by which the bubbles boost the luminosity. The addi-

tional parameter, α in this equation describes the viscosity of the disk(this model uses

and α disk with typical value 1%) Typical value of ξ for these systems lies between

0.01 − 0.1 and M is the mass of the black hole in the system.

Based on this equation, the author justified that the accretion disks around

stellar mass black holes can produce luminosities as much as 10 -100 times the Edding-

ton limit, without driving a significant mass loss. However, beyond this luminosity,

the instabilities in the magnetic field would result in a disruption of the disk. The

observed luminosities of ULX sources, when interpreted as accretion onto stellar mass

black holes with M ∼ 10-20 M� are compatible with this class of models. However,

we have no observational diagnostic that would allow us to see its possibility.

2.2 Intermediate Mass Black Holes

The previous scenario solved the problem of high luminosities from the more or

less stable accretion environment on stellar mass black holes.One could also consider

Eddington or even sub-Eddington accretion onto much more massive black holes. The
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observed luminosities, is interpreted as Eddington luminosities that imply black hole

masses of the order of 100 - 1000 M� for ULX sources. There is nothing wrong with

this approach, except that one now faces a question,ofhow these black holes were

created in the first place. Combining a standard initial mass function and stellar

evolution theory, one can expect a maximum mass of 80 M� (Belczynski et al., 2010)

for remnants of stellar evolution is. It is thus not clear, where black holes in this

mass range should have come from. This hypothetical class of black holes, referred

to as IMBHs are in between those masses emerging from stellar evolution and the

much higher masses found in the cores of the galaxies. The latter class covered a

mass spectrum from 106 to 109 and beyond. The ULXs are not coincident with the

galactic centers, so the SMBH class is not a viable model. The existence of these

IMBHs have not been established, ambiguously. Infact, some ULX sources have been

used to argue in support of this class. Therefore, we now consider this model in more

detail:

The high signal to noise X-ray spectral analysis of ULXs in various galaxies

provided a strong indication towards the existence of these black holes with interme-

diate masses e.g. spectra of ULX in NGC1313 Miller et al. (2004) was fitted with a

power law and multicolored disk, with inner temperature of the order of 0.1keV. X-ray

binaries, in general, show the same characteristics but with ahigher temperature ∼

1-2keV. For the fixed accretion rate, the temperature is proportional to M−0.25, which

implies that the binary system contains a rather massive black hole. The existence

of black holes with intermediate mass had been suspected by various groups more

than 3 decades ago, e.g. Marchant and Shapiro (1980), Fabian,A.C. and Ward,M.J.

(1993), Colbert et al. (1999), Zwart et al. (2004), Miller et al. (2004), Fabian et al.

(2004), Dewangan et al. (2004), Roberts et al. (2005), Sutton et al. (2012) and prob-

ably others, though there had been no confirmed observational evidence. What was
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lacking was a detailed observational support for this identification for this scenario.

Recently, Webb et al. (2012) claimed a strong observational support for this assertion

when adding radio data to the X-ray signature of ESO 243-49. This source is actually

identified as hyperluminous X-ray source, HLX-1,with LX > 1041 erg/s). The authors

identified a correlation between radio and X-ray emission which suggests that it is an

IMBH. It is thus conceivable that ULX sources are associated with stellar mass black

holes, exhibiting super-Eddington luminosities, while HLXs are indeed IMBHs radi-

ating at sub-Eddington luminosity. The progenitor systems of ULXs sources would

thus be massive stars, while the progentiors of HLXs remained to be explained.

The absence of observational evidence as well as the theoretical complexities for

the formation of these black holes with intermediate mass pose significant challenges

in this field. Below we discuss various paths suggested for the formations of IMBHs.

2.2.1 Formation from Population III Stellar Evolution

Fryer (1999) suggested that the black hole remnants of population III stars are

expected to be more massive as compared to the stellar mass black holes, as a result

of the limited mass loss due to their low metallicity. The authors argued that if a star

had mass greater than 260 M�, nuclear burning would not be able to generate an ex-

plosion. Consequently, it would collapse directly into a black hole of mass larger than

half of the mass of the star itself. Colbert et al. (1999) suggested the existence of these

black holes based on the spectral modeling of ROSAT HRI data of 21 face-on spiral

and elliptical galaxies. The spectral analysis lead the authors to estimate the black

hole masses for the observed ULXs in M33, NGC1313 and NGC5408 to be greater

than 100 M�. But the absence of observational evidence of these objects brought up
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a question of theory of the formation of these black holes with intermediate masses.

Thus, IMBH formation can be expected following this mechanism.However, the prob-

lem with this approach is the evidence of a star with mass ∼ 260 M�. Madau and

Rees (2001) suggested a possibility of big population of IMBHs in a galaxy (103-104),

based on the above mentioned assumption of population III stars being rather massive.

Based on the above scenario, Miller and Colbert (2004) calculated that the

expected number of ULXs in a galaxy as follows:

NULX = nIMBHNclusterσclustervrelT

nIMBH = number density of IMBH

Ncluster = number of super star clusters

σcluster = cross-section of interaction of an IMBH with a cluster

vrel = relative velocity at infinity of the IMBH

T= Lifetime of the cluster

But the basic constraint on this theory is absence of an observation evidence

of population III stars, which leads to a possibility of high uncertainty in mass range

of these old stars.

2.2.2 Formation in Dense Star Clusters

The study of stellar mergers by Quinlan and Shapiro (1990) due the core col-

lapse process yielded that runaway collisions in very dense clusters (ρ > 106 M�pc−3)

lead to the formation of very massive black holes, the so called IMBHs. Zwart et al.

(2004) demonstrated this by performing numerical simulations of the evolution and
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motion of the stars within the clusters. They discovered that if stars are allowed to

merge with each other during the evolution process via runaway collision, the dynam-

ical friction leads to the formation of massive stars, which sink rapidly to the center

of the cluster and finally collapsed to form intermediate mass black holes, which can

be observed as ultraluminous X-ray sources.

2.2.3 Formation by accretion onto Stellar Mass Black Holes

Another possible path for the formation of these IMBHs is the substantial

growth in mass of a stellar mass black hole by accretion from the interstellar medium.

However, Miller and Colbert (2004) ruled out this possibility because the stellar mass

black hole would not be able to accrete sufficient mass from the interstellar medium

in a Hubble time.

2.2.4 Formation in Globular Clusters

Miller and Hamilton (2002) et al. explained that the core collapse process in

globular clusters is generally halted by binary heating, therefore it is highly improba-

ble to explain the existence/formation of an IMBH in such a system. But this is not

always true, provided a very massive star undergoes core collapse on a timescale much

less than the core collapse for the cluster itself (Zwart et al., 2001). These authors

developed a N-body simulations to demonstrate that a runaway merger in a globular

cluster could undergo core collapse process much faster than the core collapse of the

cluster itself, provided that this collapse occurs at a timescale much faster than their

main-sequence lifetime.
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2.3 Anisotropy

One out of the three models put forward for the sources responsible for the gen-

eration of the high X-ray luminosity observed from the ultraluminous X-ray sources

is anisotropic emission from the accretion disk.

King et al. (2001) considered a model in which it is assumed that the X-ray

emission from X-rays is significantly beamed. The authors suggested that ULXs might

be a short thermal-timescale mass transfer phase for compact intermediate or high-

mass X-ray binaries during their evolution. Assuming a beamed model with beaming

factor, b = Ω/4π, where Ω is the solid angle of emission.if Lsph is the luminosity for

an isotropic emission, then the net luminosity due to beaming effects is

L = b Lsph = 1040bL40

erg/s

and

L40 =
Lsph
1040

This implies the mass of underlying black hole accreting within Eddington

limit is

MBH ≥ 102b L40M�

and hence for b ∼ 0.1 − 0.01, the calculated MBH reduces to the value for a

typical observed X-ray binary system. But the uncertainty for this model is whether

beaming is a common effect observed in X-ray binaries or not.
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2.4 Summary

The rare occurrence of ULXs per galaxy has to date resulted in a total sample

of ∼ 475 (Walton et al., 2010) in nearby galaxies . The bulk of these sources reside

in nearby host galaxies, with cz < 1000 km s−1. It is definitely the case that ULXs

are not associated with the centroid of the galaxy, arguing against the involvement of

the SMBHs known to reside in almost all the galaxies. From studies of host galaxies,

it appears that ULXs trace star formation patterns in star forming galaxies. This

association suggests a link between HXMBs and ULXs. However, not all ULXs are

associated with star forming structures and in a few cases are found in elliptical

galaxies (Walton et al., 2010). These latter findings suggest that some, perhaps most

ULXs trace an old population of stars and would thus be associated with LXMB

population. Later chapters explore these alternatives for the nearby galaxy M31 with

two known ULXs.

13



Chapter 3

Spectral Models of Underlying

Sources

The spectra obtained from a X-ray binary system is analyzed employing dif-

ferent spectral models, developed by various astrophysicists over the years, with dif-

ferent assumptions regarding the geometry of the accretion disk and the nature of

the underlying sources. The most common models utilized for the spectral analysis

of ultraluminous X-ray sources are discussed below.

3.1 Thermal (Soft) and Non-Thermal (Hard) Model

3.1.1 Multicolored Disk model: Thermal Component

Multicolored disk model (MCD) is commonly employed to fit X-ray spectra

for X-ray binaries. Proposed by Shakura,N.I. and Sunyaev,R.A. (1973), Mitsuda,K.

et al. (1984), this model is composed of a geometrically thin accretion disk, which is

assumed to be a blackbody with temperature varying with distance from the center

of the black hole. The flux obtained from this model is:

14



f(E) =
cosθ

R2

∫ rout

rin

2πrBE(T )dr

and for a thin disk

T ∝ r−3/4

BE(T) is Planck function at energy E, θ is the angle of the disk axis with

respect to the line of sight, and R is the distance to the source.

Under the same assumptions of a geometrically and optically thick accretion

disk, Makishima et al. (2000) applied the following relationship between mass of the

black hole and the innermost temperature of the accretion disk around it, to ULX

spectra:

kTin ≈ 1.2

(
ξ

0.41

)1/2 ( κ

1.7

)
α−1/2

(
Ṁ

ṀE

)1/4(
M

10M�

)−1/4

keV

ξ ≈ 0.41 and it takes into account that the maximum temperature occurs at

a radius larger than the stable innermost radius of the disk. α = c2 Rin

6GM
accounts

for the rotating (Kerr) or non-rotating (Schwarzchild) black hole. For a stationary

black hole, its value is unity whereas for rotating systems it is less than unity and for

maximum spin its value is 1/6.

But these implications of X-ray spectral analysis from this model fitting are

not always physically right. There are approximately 10 ULX’s spectra, which when

fitted with this model, derives the temperature of the inner disk greater than 1 keV,
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ruling out the possibility of an IMBH accreting at sub-Eddington limit. The possible

explanation for this ”high temperature” problem by Makishima et al. (2000) are

variation of ξ and σ values from ”normal”, or if the underlying black hole is a Kerr

black hole i.e. rin < 3 GM/c2, then the observed higher temperature can be justified

at even smaller values of radius of inner most stable orbit.

3.1.2 Powerlaw: Non-Thermal Component

Power law spectrum as a result of highly relativistic electrons accelerating in

presence of magnetic field lines i.e. synchrotron radiation. The flux received from

this component can be calculated by the simple mathematical power law, with photon

index, α and normalization constant, K :

F (E) = KE−α

and

F (E) = KE−α1forE < Ebreak

= KEα2−α1
break E

−α2

is the broken powerlaw.

Most of the spectra of ULXs are fitted with combination of powerlaw and MCD

models to deduce various parameters of the system such as temperature, mass of the

black hole, accretion rate, inclination of the disk etc. Over the last few years, var-

ious other physically motivated models have been developed to analyze ULX spectra,

discussed as follows:
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3.2 Slim Disk Model

Abramowicz et al. (1988) discussed the slim disk model for accretion theory,

in which

all the gravitational energy released is not only converted into thermal radi-

ation but a significant part of it is carried away through the radial advection. In

this scenario, the accretion disk is geometrically thick such that the observed lumi-

nosity can exceed the Eddington limit, without disruption of the disk, itself. Hence,

the temperature gradient changes as T ∝ rp , where p is the disk free parameter,

DISKPBB in XSPEC. Although, in a standard disk model, p = 3/4, whereas in ‘slim’

disk model, the value of p is not fixed

Mathematically, Ebisawa,Ken et al. (2003) derived the luminosity from the

flux observed from a disk of radius r and half-thickness, h.

F (r) ∼ c GM

κr2
h

r

which implies Ldisk = 2
∫ rout
rin

2πrF (r)dr

or

Ldisk ≈ LEdd

(
h

r

)
ln

(
rout
rin

)
In general, rout/rin ≈ 10. and h/r ∼ 1 for ‘slim’ disk model.

Gladstone et al. (2011) utilized this model for the analysis of some ULX spec-

tra, but derived unrealistic values of temperature i.e. 6-13 keV. Therefore, these

authors suggested an improvement in the slim disk model to investigate the physical

importance of ULX spectra.
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3.3 Comptonization Model

The existence of a turnover at high energies above 3 keV has been noticed

through the study of high-quality ULX spectra by Stobbart et al. (2006). Gladstone

et al. (2009) suggested that the comptonization due to the presence of an optically

thick corona could artificially lower the temperatures obtained from the inner regions

of the disk.

In general, Titarchuk (1994) COMPTT and Coppi,P.S. (2000) EQPAIR are two dif-

ferent compotonization models applied to black hole binaries. Gladstone et al. (2011)

applied these models (instead of simple powerlaw) each, with a disk component for

ULX spectral studies. The application of this model yielded an accretion disk with

a cool, optically thick corona (τ ≥ 6), which is very different from the normal black

hole states. For a standard black hole in a very high state, τ ≤ 3, which implies

that ULXs correspond to an extremely high state for a standard black hole. The

authors also suggested that the resultant cool disks can be attributed to the presence

of IMBHs as well. Although, it was pointed out that the assumptionthat the inner

regions of the disk are not affected by the presence of optically thick corona seems

unphysical.

The flaws from the above model are taken into account and corrected by

introduction of an energetically coupled disk and corona model referred as

DKBBFTH (Done and Kubota, 2006), which assumes the increased accretion rate

with more energy and matter fed to corona.
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3.4 Reflection Model

Ross and Fabian (2005) proposed a model for accretion disks in compact bi-

nary systems based on X-ray irradiation. According to this model, the soft X-ray

component (often thought as an outcome of the accretion disk) is a consequence

of blurred reflection above the disk due to the backscattering and fluorescence of

X-rays. Therefore, the inner regions of an accretion disk cannot be observed, and

thereby derivation of inner temperature of the disk, mass of the black hole and other

parameters cannot be calculated by a simple multicolored disk model.

The authors introduced this model called REFLEXION in XSPEC. Caballero-

Garćıa and Fabian (2010) analyzed spectra of ULXs in NGC1313, M82, NGC5408,

HOLM IX employing this model in conjunction with powerlaw and concluded that

the underlying sources in ULXs might be fast spinning black holes and the reflection

due to X-ray irradiation just above the accretion flow could be responsible for soft

excess observed in the spectra.

Though a variety of models developed over the years have been used to perform

the spectral analysis of ULXs, but most of these complicated models have flaws of

different nature as discussed above, therefore they provide no better insight to the

understanding of the true nature of these sources. Hence, the combination of a simple

power law with a multicolored disk component is still a favorable model for spectral

analysis of ULXs.
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Chapter 4

Observations and Analysis of

ULX-1 in M31

4.1 ULXs in M31

About∼ 475 ULXs in nearby galaxies have been discovered in last few decades,

starting with the very first observations recorded during Einstein Era in 1980s (Fab-

biano, 1989). In our nearest neighborhood i.e. in Andromeda galaxy, two ULXs have

been discovered recently. On December 17 2009, the first ULX (CXOM31 J004253.1

+411422) was discovered by Chandra through our nova monitoring program1 for

resolving super-soft source states of optical novae in the central area of M31 with

XMM-Newton and Chandra HRC−I (Henze,M. et al., 2009). On January 26, 2012,

another ULX named XMMU J004243.6+412519 (ULX-2 from now on) was reported

by Henze,M. et al. (2012) within the same monitoring program. In this chapter the

X-ray spectral analysis of the first ULX, CXOM31 J004253.1 +411422 (ULX-1 from

0This chapter is based on the article published as Kaur et al. (2012)
1http://www.mpe.mpg.de/ m31novae/xray/ao10/index.php
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now on) is discussed in detail.

4.2 Observations and Analysis

The position of ULX-1 in M31 was determined to be R.A. (J2000) = 00:42:53.15

and Dec (J2000) = +41:14:22.9, using the catalog of X-ray sources in M31 assembled

by Kaaret (2002). The source position with respect to the center of M31 is shown in

Figure 1, obtained with XMM-Newton. An optical counterpart with m(F435W)=23.8

mag was identified in HST observations by Garcia,M. et al. (2010). The data was

first obtained with Chandra HRC-I and then followed up with XMM-Newton and

Swift-XRT till February 26, 2012. See the details in Table 1.

Figure 4.1 XMM-Newton EPIC image of the central part of M31 produced by com-
bining pn, MOS1 and MOS2 data from all 5 observations. Red, green and blue show
the (0.2 − 1.0) keV, (1.0 − 2.0) keV) and (2.0 − 12.0) keV energy bands, respectively.

The data obtained from Chandra was analyzed using CIAO (Chandra Interat-
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ice Analysis of Observations;)2 and level 2 event files were analyzed to obtained count

rates. For XMM-Newton data, an adapted version of XMMSAS3 tool emldetect was

used to estimate background-corrected and exposure-corrected fluxes and count rates.

Swift-XRT data were analyzed with HEASOFT XIMAGE package (version 4.5.1) with the

sosta (source statistics) command and count rates were determined. The XRT PSF

was taken into account using command psf, and exposure maps were created with

XRTexpomap command. The count rates obtained from all the data were converted to

unabsorbed fluxes using XSPEC. Counts obtained from Swift-XRT and Chandra were

converted to unabsorbed flux using energy conversion factors (ecfs). ecfs were com-

puted using fakeit in XSPEC version 12.7.14 assuming the best fitting spectral model

for the XMM-Newton observations at different epochs and using publicly available

response files. For the Swift and Chandra observations obtained before and after

the XMM-Newton observations, the first and last XMM-Newton sample was used to

obtain ecf, respectively. The ecf values obtained are ecfHRC−I−1 = 6.3 × 1010 cts cm2

/erg and ecfHRC−I−2 = 7.7 × 1010 cts cm2 /erg. For Swift XRT, the ecfSwift = 1.57 ×

1010 cts cm2 /erg. Details can be found in Table 1.

The spectroscopic data were obtained with XMM-Newton using the Euro-

pean Photon Imaging Camera (EPIC), EPIC-pn , MOS1 and MOS2 CCD detectors are

mounted on the three X-ray telescopes on XMM-Newton-Newton-Newton, as men-

tioned in Table 1. The XMMSAS version 10.0.0 was used to process the event files to

generate images, response functions, spectra and light curves. The parameter setting

for all three cameras, pn, MOS1 and MOS2 were as follows:

2http://cxc.harvard.edu/ciao/
3http://xmm.esa.int/sas/
4http://heasarc.gsfc.nasa.gov/xanadu/xspec/
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Table 4.1 Observations Log

Telescope Obs ID Date Exptime Rate a Lunabs
b

(UT) (ks) (ct s−1) (1039 erg s−1)

Chandra HRC-I 10885 2009−12−08.94 18.27 < 1.5e-03 0.002 c

Chandra HRC-I 10886 2009−12−17.90 18.34 3.300 ± 0.040 3.77 ± 0.04
Swift−XRT 00031518013 2009−12−22.04 3.6 0.660 ± 0.200 3.04 ± 0.20
Swift−XRT 00035336016 2009−12−23.05 4.2 0.720 ± 0.100 3.31 ± 0.10
Swift−XRT 00035336017 2009−12−24.04 4.8 0.620 ± 0.100 2.86 ± 0.10
Swift−XRT 00035336018 2009−12−25.05 5.2 0.600 ± 0.100 2.76 ± 0.10
Swift−XRT 00035336019 2009−12−26.26 5.0 0.560 ± 0.100 2.58 ± 0.10
Swift−XRT 00035336020 2009−12−27.07 5.0 0.580 ± 0.100 2.67 ± 0.10
XMM−Newton 0600660201 2009−12−28.53 16.86 6.447 ± 0.022 d 2.16 ± 0.07f

1.810 ± 0.010 e

1.851 ± 0.010 f

XMM−Newton 0600660301 2010−01−07.32 15.43 1.784 ± 0.012 1.49 ± 0.05 g

1.105 ± 0.008
1.143 ± 0.008

XMM−Newton 0600660401 2010−01−15.53 15.33 3.832 ± 0.017 1.16 ± 0.04g

1.372 ± 0.009
1.402 ± 0.009

XMM−Newton 0600660501 2010−01−25.11 17.83 3.042 ± 0.015 0.71 ± 0.03g

0.846 ± 0.007
0.873 ± 0.007

XMM−Newton 0600660601 2010−02−02.11 15.43 1.072 ± 0.009 0.65 ± 0.03g

0.694 ± 0.006
0.687 ± 0.006

Chandra HRC-I 10808 2010−02−15.86 17.12 0.547 ± 0.080 0.51 ± 0.08
Chandra HRC-I 11809 2010−02−26.27 18.42 0.490 ± 0.180 0.46 ± 0.18

aCount rate as observed from the source without rejecting pile-up pixels.
bTotal unabsorbed luminosity from the source within (0.2−10 keV) energy band.
c3σ upper limit
dEPIC-pn
eMOS1
fMOS2
gDerived from the simultaneous fitting of EPIC−pn, MOS1 and MOS2 in XSPEC.

FLAG = 0; for bad pixels rejections

PATTERN ≤ 4, for pn &

PATTERN ≤ 12, for MOS1 and MOS2 ; for noise level reduction

Barycenter correction was performed using the barycen task in XMMSAS. The
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light curves obtained were corrected for bad pixels, GTIs and vignetting using epiclccorr.

An example of binned count rate in 100s intervals obtained from XMM-Newton

EPIC-pn is shown in Fig. 2. The power density spectra was generated with the

task called powspec in FTOOLS using the Fast Fourier Transform algorithm (FFT).

The normalization for this process was chosen such that the white noise level ex-

pected from the data errors corresponds to a power of 2. The XMMSAS tool epatplot

was used to check for pile-up for during spectrum extraction. The inner PSF part

of the appropriate regions were excluded to avoid pile-up in the spectra. Response

files were generated by using SAS tools rmfgen and arfgen. The spectral binning

was constructed to attain 20 counts per bin to assure uniform statistics across the

energy range. Bad pixels were ignored and energy channels from 0.2-10.0 keV were

considered for spectral fitting using XSPEC version 12.6.0.

Figure 4.2 Light curve from XMM−Newton EPIC−pn for observation 0600220201
with time binning of 100 s in 0.2− 10 keV energy band.
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4.3 Results

Broken powerlaw, powerlaw, multicolored blackbody or their combination

thereof are the models, which are often employed for fitting a ULX spectra. We

utilized these two models to fit our spectra obtained from XMM-Newton over differ-

ent epochs. Broken powerlaw (BKNPOWER in XSPEC), when fit to data, resulted to χ2

/degrees of freedom = 2953.96/1174, which was not a good fit. We achieved a better

fitting using an alternative model that combined the powerlaw with multicolored disk

(PO+DISKBB in XSPEC) to fit our spectra. The χ2 values for the are listed in Table

2. The powerlaw component corresponds to a non-thermal and multicolored disk to

a thermal component of a spectrum. The thermal component is associated with the

accretion disk around a black hole as developed by Shakura,N.I. and Sunyaev,R.A.

(1973), Mitsuda,K. et al. (1984) and Makishima et al. (2000). The extinction correc-

tion was applied to the spectrum due to the Milky way and the host galaxy for the

object i.e. M31. For this process, extinction model Tuebingen-Boulder ISM absorp-

tion model (TBABS) (Wilms et al., 2000) was used in XSPEC. The hydrogen column

density for Milky Way was fixed to 5.32 × 1020 cm−2 Dickey and Lockman (1990),

whereas for M31, this parameter was included in the model as a free parameter. But

the column density values derived did not account for the metallicity variation along

our line of sight through the host galaxy, rather it assumed the same template as of

Milky Way in terms of a standard cross-section per hydrogen atom. An example of

this fitting procedure is illustrated in Fig. 3 for all the three cameras of XMM-Newton

X-ray telescope. The decomposition of the X-ray spectrum into different model com-

ponents is shows in Fig. 4.

From the derived parameters by spectral fitting, the resultant fluxes were
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Figure 4.3 Combined powerlaw and multicolored blackbody fit to the joint set of data
from EPIC−pn (black), MOS1 (green), MOS2 (red) with χ2/ d.o.f. = 1318.87/1165
for the observation 0600660201 with XMM−Newton. The model parameters obtained
from this spectral fit are presented in Table 2.

Table 4.2 The spectral parameters from the model fitting from XMM-Newton
OBSID NH,M 31

5 kT 6 Γ 7 χ2/d.o.f. Rin

√
cos(i) 8 LPO

9 LBB
10 LTotal

11

(1020 cm−2) (keV) (km) (1039 erg s−1) (1039 erg s−1) (1039 erg s−1)

0600660201 5.1 ± 1.1 1.070 ± 0.010 2.59 ± 0.16 1318.87/1165 52.90 ± 0.01 0.33 ± 0.07 0.94 ± 0.07 2.16 ± 0.07
0600660301 7.1 ± 1.2 0.993 ± 0.016 2.58 ± 0.13 963.62/991 58.89 ± 0.02 0.32 ± 0.05 0.71 ± 0.05 1.49 ± 0.05
0600660401 9.1 ± 1.2 0.913 ± 0.013 2.81 ± 0.14 1046.74/953 57.32 ± 0.02 0.33 ± 0.04 0.36 ± 0.04 1.16 ± 0.04
0600660501 5.3 ± 1.0 0.815 ± 0.014 2.51 ± 0.12 962.61/938 61.57 ± 0.02 0.23 ± 0.03 0.27 ± 0.03 0.71 ± 0.03
0600660601 6.5 ± 1.6 0.769 ± 0.013 2.70 ± 0.13 830.66/821 64.18 ± 0.03 0.16 ± 0.03 0.25 ± 0.03 0.65 ± 0.03

calculated, which were then converted to luminosity units with an assumption of

M31 distance from the Sun equal 780 kpc (Holland, 1998), and isotropic emission.

The resulting luminosity of the ULX were about 1039 erg/s, which places this X-ray

binary into the category of Ultraluminous sources. Table 2. summarizes the derived

values of different parameters obtained from model fitting and calculated luminosities.

The luminosity due to thermal and non-thermal component each as a function of time
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Figure 4.4 The theoretical model underlying the data fit (solid line) in Fig. 3 is
shown in decomposition between the thermal (dash-dotted line)and the non−thermal
(dotted line) component.

is shown in Fig. 5. The luminosity of this component during its peak (3.7 × 1039)

was higher than the total X-ray luminosity of M31 sampled by ROSAT (Supper et al.,

1997) in the (0.1-2.4)keV band. Furthermore, this source is almost 103 times as bright

as the other X-ray sources in M31. (Williams et al., 2006).

The first XMM-Newton observation corresponds to the brightest epoch of this

ULX. X-ray spectrum fits analysis reveals that the most of the observed flux origi-

nated from the black body compoent during this observation, therefore, we estimate

the mass of the black hole and the inclination utilizing the parameters from this

data with the formalism given in the Makishima et al. (2000) under the assumption

of a geometrically flat and optically thick accretion disk, these authors derived the

equations mentioned in section 1.1 of chapter 3. We assumed the unabsorbed Lbb
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Figure 4.5 Temporal variation of the total unabsorbed luminosity (Lunabs) as per obser-
vations of XMM−Newton. The decomposition into the powerlaw (Lpo) and blackbody
component (Lbb) reveals a distinct evolutionary behavior of these two components.
The time zero corresponds to Chandra HRC-I observation ID 10886 (see Table 1).

component (from Table 2. first XMM-Newton observation) = 1.6 × 1039 erg/s as

the bolometric luminosity, because the major part of the total luminosity during this

observation was a result of thermal component. From the two equations, we deter-

mined the mass and inclination angle, although significant uncertainties associated

with the model parameters and fixed values of α, ξ, κ to 1, 0.41 and 1.7, respectively,

are present. With all these assumptions and calculations, we find a mass of 13 M� for

the underlying black hole in this binary system, with a statistical uncertainty of 4%.

The inner radius calculated from this mass is Rin= 124 km. This implies, from the

spectral fitting parameter, Rin

√
cos(i), the inclination to be approximately 80◦. This

calculation is based on the assumption that the underlying source is a non-spinning

black hole, which means that α = 1, which could be an underestimation of the mass
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of this black hole, if it is a rotating one. For a maximally spinning black hole, α =

1/6. Therefore, the mass would be six times the mass of a non-spinning black hole

and the underlying source would fall in the category of Intermediate mass black holes.

The α value relies on the assumption that the inner edge of the accretion disk can be

identified with the location of the innermost stable circular orbit (ISCO). However,

determining the inner edge of a black hole accretion disk is a very complex matter

e.g. Abramowicz et al. (2010)

We obtained the power spectra to search for the existence of periodicity for

each of the spectra as mentioned in data analysis section, over a binning of 100s.

The observed count rates show fluctuations within the range expected from counting

statistics as shown in Fig 2. But the power spectra did not reveal any significant

feature, i.e. there was no sign of quasi-periodic oscillations.

4.4 Discussion and Conclusions

The mass of the underlying black hole for this ULX implies a stellar mass black

hole with all the assumptions (discussed above) taken into account. The calculated

luminosity, too is consistent with the ULXs observed in nearby galaxies. The temper-

ature and the photon index of M31 source falls in the center of observed distribution

of ULXs by Winter et al. (2006), lending additional support to the nature of a ULX.

We analyzed the various properties of this ULX with a selected sample from

the XMM-Newton archival study of ULXs by Winter et al. (2006) in 32 nearby galax-

ies with distance < 8Mpc and unabsorbed luminosities > 1038 erg/s in the 0.3 -10

keV range of energy. Utilizing the properties of galactic black hole binaries, these
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authors classified the ULXs into two categories, i.e. “low” state and “high” state,

based on their spectral characteristics. Low state sources were characterized by a

powerlaw spectrum alone, whereas the high state sources required an additional mul-

ticolored disk component. Since the ULX in M31 is characterized by combination of

a powerlaw and multicolored disk model, we place it in the category of “high” state

ULXs. Therefore, we selected a reduced sample pertaining to “high” state ULXs,

from Winter et al. (2006) sample of 32 galaxies. Moreover, we selected the brightest

epoch out of multiple XMM-Newton observations, and those were not always avail-

able in Winter et al. (2006). Our final selection was limited to 19 sources with ULXs

in “high” state and with brightest epoch observation, listed in Winter et al. (2006).

Figure 6. displays the resulting set of “high” state ULXs in the Luminosity -

Temperature plane. As Winter et al. (2006) pointed out, the temperature distribution

is possibly bimodal. The ULX in M31 belongs to the high-Temperature group, which

is commonly believed to represent the stellar mass black holes. The low-Temperature

group is characterized by a larger range of X-ray luminosities and has been tenta-

tively attributed to the hypothetical class of IMBHs. The physical sample between

low-T and high-T group is clearly visible, though the sample size is quite small. In

this case, a different formation scenario can be attributed to these subsets of ULXs.

The authors suggested that the one possibility is associated with the unique feature

of pair-instability supernovae (PISNe) in the early universe (Population III origin,

Heger et al. (2003).

The other comparison of ULXs in “high” state from this sample had been

attributed to Temperature-Photon Index plane, as shown in Fig. 7. The low-T group

displays a large range in photon index, resembling the large range in luminosity, how-

ever the uncertainties in the Photon Index parameter are quite large. In this figure,
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Figure 4.6 Temperature vs Luminosity for 19 selected ULXs from Winter et al. (2006)
along with the candidate ULX (red) in M31. The M31 source is a member of the
“high temperature” subgroup.

evolution of M31 ULX is shown, which shows a significant drop in temperature, but

still retained in the high temperature regime. Referring back to Fig. 5, we noticed

that over the period of observations with XMM-Newton, the source undergoes signif-

icant cooling leading to a drop in overall unabsorbed luminosity. But the individual

thermal and non-thermal components did not exhibit the similar decline. The non-

thermal component declined much rapidly as compared to the thermal component.

The overall evolution of this source is thus a combination of a strongly varying ther-

mal component and slightly varying non-thermal component.

We obtained the light curve for this ULX by combining all the data from

Chandra, Swift and XMM-Newton. We deduce that the ULX X-ray luminosity follows

an exponential decline (See Fig. 8) corresponding to a time constant ∼ 32 days. A
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Figure 4.7 Photon Index vs Luminosity for 19 selected ULXs from Winter et al. (2006)
along with the candidate ULX (red) in M31. The M31 source is a member of the
“low photon index” subgroup.

continuation of this trend is evident from data taken 150 days after the outburst

when the source was detected at ∼ 1938 erg/s (Barnard et al., 2005) . This observed

exponential decline of the luminosity is consistent with galactic X-ray novae (Chen

et al., 1997), which show FRED (Fast Rise Exponential Decay) like light curves. In

our case, the FR part is missed. However, the light curves of this source class often

exhibit more complex behavior than a simple exponential decay.

4.5 Summary

In summary, the Chandra discovery of ULX-1 in M31 established this source

as the first ultraluminous source in M31. Follow up observations with Swift, XMM-

Newton and Chandra revealed an exponential decline, reminiscent of the time evolu-
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Figure 4.8 Variation of the total unabsorbed luminosity (Lunabs) of ULX in M 31
as observed by Swift−XRT, Chandra HRC-I and XMM−Newton resembling an
exponential decay with a time scale of 32 days. The time zero corresponds to
Chandra HRC − I observation ID 10886 (see table 1).

tion of Galactic X-ray novae. Spectral analysis of the XMM-Newton data suggest that

this source was in a “high” state at the time of observation, and that the underlying

source is likely a stellar mass black hole accreting near the Eddington limit.

4.6 Note on ULX-2

XMMU J004243.6+412519 (ULX-2) spectral analysis by Esposito et al. (2012)

revealed a stellar mass black hole ∼ 12 M� as the underlying source. Based on the

simple DISKBB model in XSPEC, the authors derived a maximum luminosity ∼ 1.1 ×

1039 erg/s. Additionally, a main sequence star with mass 8-10 M� or a giant with

mass < 8 M� was suggested as the companion to the stellar mass black hole in the

underlying binary system implying a high mass X-ray binary.
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Chapter 5

Spatial Distribution of the

Underlying Sources

It is discovered in chapter 4 that both the ULXs discovered in M31 contain

Stellar Mass Black Holes (StMBH) as the primary compact component in the un-

derlying binary system. Therefore, the scenario in these two cases seems to be more

consistent with “StMBH accreting at Super-Eddington rate” model. Moreover, most

of the optical counterpart studies reveal HXMBs (High Mass X-ray Binaries) as the

underlying source, the recent observations by Soria et al. (2012) has raised an in-

teresting possibility that the donor might be LMXBs (Low Mass X-ray Binaries),

instead. We test the correlation of ULXs found in M31 with LMXBs and HMXBs,

and therefore construct two 3-dimensional models based on spatial distribution of

LMXBs and HMXBs in the galaxy.
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5.1 LMXB Based Spatial Distribution Model

The galactic distribution of LXMBs is known to closely trace the stellar dis-

tribution, as one would expect similar to the old stars, would represent the older

populations. To evaluate the spatial distribution of ULX sources, we therefore, use

starlight as a proxy. A classic galactic decomposition would include a extended halo,

a thin and a thick disk and a bulge/bar. To simplify this model, we focus on a double

exponential disk model for M31. The disks of spiral galaxies are often modeled with

a double exponential profile (Freeman, 1970). We construct a 3-dimensional Monte

Carlo mass model of the disk of M31 to place the recently discovered ULXs in the

context of their underlying populations. This model assumes a single source popula-

tion following a double exponential distribution as follows:

exp−r/Rhexp−z/H

The scale length, Rh and scale height, H are fixed to 5.3 kpc and 100 pc, respectively

as derived from Courteau et al. (2011). In this model, we assume a distance of

M31 from the Sun = 785 kpc (Holland, 1998) and adopted the known values for

inclination = 77deg and an arbitrary position angle. Our studies require surface

brightness profiles, which do not change with the position angle, hence the position

angle was kept arbitrary. The resulting 3-dimensional model is then projected on

the sky which yields the spatial source distribution in the disk of M31 (Figure 1.)

and then compared with the surface brightness profile of M31 (disk component only)

obtained by Courteau et al. (2011). See Figure 2. We evaluate the surface brightness

profile from our projected image of M31, as shown in Fig. 2, using task ellipse in

IRAF. The detailed procedure is described in Appendix (chapter 7).

In general, a surface brightness profile traces stellar light in a galaxy, which is
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Figure 5.1 Right Ascension (degrees) and Declination (degrees) (on x-axis and y-axis,
respectively) plot of projected M31 image on the sky.

followed by the X-ray source population distribution (Bogdán and Gilfanov, 2010).

Bogdán and Gilfanov (2010) studied the brightness distribution of unresolved X-ray

emission in M31 in the 0.5-7 keV energy range and established a strong correlation

between the X-ray luminosity (Lx) and the K-band luminosity (LK) as shown in Fig.

3. An approximately fixed ratio, Lx/LK confirmed that the X-ray flux followed the

near-infrared profile for M31, i.e. the stellar light profile.

Moreover, Swartz et al. (2011) explains that the ULX population distribution

follows the stellar light. These authors conducted a statistical survey, based on 107

ULX candidates in a sample of 127 nearby galaxies in order to understand the un-

derlying populations for ULX phenomenon. In this study, they concluded that the

the surface distribution of ULXs in a galaxy follows a generalized exponential, similar

to the De Vaucouleurs profile, exp(f/h)1/n, n ∼ 3.6. This result is illustrated in Fig

4. The implication of this study revealed that the nature of the ULX population

distribution is analogous to the stellar light distribution in a galaxy.
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Figure 5.2 Surface brightness profile of the disk of M31 obtained from our spatial
model of M31 with LMXBs and the M31 disk from Courteau et al. (2011). The
surface brightness considered the bolometric magnitude of the Sun as the reference,
whereas the Courteau et al. (2011)’s profile follows from 3.6 µm profile. The error bars
in the figure represent the uncertainty in the average intensity along that isophote as
generated by the ellipse task in IRAF.

Based on the disk model of M31, we calculate the radial probability distribu-

tion of ULXs found in M31. The simple disk model yields a small probability of 10%

for finding a ULX within 2.3 kpc(spatial position of ULX-1). Therefore, an additional

component i.e. bulge for this model is required. We modify our disk model of M31 to

disk-bulge model of M31 based on the bulge to disk light ratio = 20% from Courteau

et al. (2011). Addition of the necessary bulge component yields a better probability

equal 21.2 % for a ULX to be found within 2.3 kpc from the center of M31. The

radial probability distribution plots for ULXs derived from the disk only as well as

the disk plus bulge model are shown below in Fig. 5 and Fig. 6. The two probability
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Figure 5.3 Surface brightness distribution for M31 in X-ray (blue, red) and infrared
(grey, green) band. The shaded areas represent the uncertainty in the calculations
for background subtraction for the XMM-Newton data.

values are derived based on the spatial location of ULX-1 and ULX-2.

The distribution functions yielded moderate probability for a ULX position

based on two observations based on LMXB profile. Hence, this model does not

overrule the possibility of LMXBs being the source population for ULXs, which was

suggested by Soria et al. (2012). But, the HMXBs approach can not be overturned

without testing the hypothesis for the latter. We discuss the correlation of ULXs with

HMXBs in the next section.

5.2 HMXB Approach

As discussed in chapter 1, the optical observations of ULX counterparts often

suggest the presence of massive stars, in these systems, which leads us to consider the

class of high mass X-ray binaries as the underlying source population. The high mass
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Figure 5.4 Surface distribution of ULX candidates. The abscissa is the radial position,
expressed as a fraction of D25 radius. The ordinate is the number of ULX candidates
per unit area fdf in the range f to f + df.

of the donor star (O and Be type) then implies that the overall age of the system is

such that these sources should spatially trace recent star formations The global star

formation patterns in galaxies can be traced in a variety of ways. See Kennicutt and

Evans (2012) for the recent review. What is required for this study is a wide field of

view image of M31, from which the location of star forming regions can be derived.

Fig. 7 shows six commonly used tracers (Fritz et al., 2012) for which this data is

available. The star forming regions are obviously seen in all these different observed

bands. But, we select the tracer that provides the highest angular resolution and is

free of confusion with diffused emission in inner part of M31. Therefore, we will focus

on the Spitzer image 250 µm.

When this image is de-projected, i.e. M31 is rotated to yield a face on view,
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Figure 5.5 Radial probability distribution for the disk model. The abscissa is the
distance away from the center of M31 and the ordinate represents the fraction of
source population. The total number of sources is 48000.

these observations reveal a mixed ring like and spiral structure (Gordon et al., 2006).

The dominant star forming structure is composed of two main rings at 10kpc and 15

kpc. An additional ring like structure appears inside of the 10 kpc ring. In addition

to these rings, segments of spiral structure appear to be present.

To evaluate how ULX-1 and ULX-2 relate to the star forming signatures of

M31, we show the actual Spitzer image in Fig. 8, which reveals that these source

as well coincides with high surface brightness position at 250 µm. The innermost

regions of M31 show a very complex star forming pattern, where neither rings nor

spirals might be the appropriate geometric structures and even appearance of bar like

40



Figure 5.6 Radial probability distribution for the bulge in addition to the disk model.

features makes the task more complicated. Nonetheless, the coincidence with high

surface brightness at 250 µm strongly argues for a connection with ULX-1 position

and star forming activity. ULX-2 clearly coincides with one of the inner ring structure

of M31.

The main issue addressed in this section is the spatial star formation tracer

and its correlation with the ULX position. The exact identification of whether ULXs

are in a specific arm/ring is not relevant for this work. The main concern is the

correlation between star forming regions and position of ULXs. In contrast to the

model, which is a Monte Carlo simulation on LXMB system, as discussed above,

yields a small probability for a spatial coincidence with the inner arm of M31. The
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Figure 5.7 Surface brightness profiles of M31 shown in different wavelengths as shown
in Fritz et al. (2012).

association of ULX sources with star formation galaxies is being studied in a recent

study by Servillat et al. name, et al. 2012, a poster presented at ” An INTEGRAL

view of the high-energy sky (the first 10 years) - 9th INTEGRAL Workshop and

celebration of the 10th anniversary of the launch”, to be published by PoS, which

analyzed Herschel data for ULX host galaxies.

Further implications of these studies are discussed in the next chapter.
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Figure 5.8 The blue dots overlapped on the zoomed Spitzer image of M31 derived
from Fritz et al. (2012) represent the position of ULX-1 (lower) and ULX-2 upper.
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Chapter 6

Conclusion and Discussion

Observations of Ultraluminous X-ray sources in nearby galaxies have implied

X-ray binaries as their underlying source populations. The primary in the binary

system is either a stellar mass black hole or possibly an intermediate mass black hole,

and the companion (secondary) is either a high mass (O/Be type) star or a low mass A

type star, which would correspond to a HMXB or LXMB system, respectively. Most

observations of the optical counterparts revealed a “blue” star implying a younger

massive star, but a recent observation of a ULX in M83 by Soria et al. (2012) arrived

at a different result. The authors found a bright blue optical counterpart during the

ULX phenomenon, but inspection of the previous images of M83 (a face on galaxy),

revealed that the region of the ULX was found mainly populated with low mass stars.

The absence of a “blue” star prior to the outburst lead the authors to propose a new

theory of X-ray irradiation of a low mass companion during the ULX outburst, result-

ing in the increased brightness and the temperature and this is often observed as a

blue counterpart during this process. Therefore, they suggested a LMXB association

with ULXs rather than HXMBs. This model constitutes a major paradigm shift in

this field, but it is thus far only based on a single source. In contrast, ongoing study
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of host galaxies of ULXs by Servillat et al. name, et al. 2012, a poster presented at

” An INTEGRAL view of the high-energy sky (the first 10 years) - 9th INTEGRAL

Workshop and celebration of the 10th anniversary of the launch”, to be published by

PoS suggests a link between star formation and the ULX positions. These authors

selected 20 host galaxies at a distance < 40 Mpc, from catalogs established by Swartz

et al. (2011), Sutton et al. (2012), Gladstone et al. (2009) and compared the observed

position of each ULX with the Herschel-PACS image. The association of ULXs with

star forming regions in their host galaxies e.g. IC342, M81, M101 and Holmberg II

was very apparent. Moreover, in most of these spiral galaxies, ULXs were found in

the outer spiral arm structures.

We constrain the nature of ULX-1 and ULX-2 discovered in M31 in 2009 and

2012, respectively based on observational and theoretical studies. We found that the

ULX-1 and ULX-2 in M31 host a stellar mass black hole with MBH ∼ 13 M� (see

chapter 4) and ∼ 10 M� (Esposito et al., 2012). This evidence aligns well with the

near-Eddington accretion theory for stellar mass black holes and argues against the

involvement of an intermediate mass black hole.

The association of ULXs with LXMBs has been studied via population modeling ex-

plained in chapter 5. Based on our simple model of M31 (a double exponential disk

plus a similar bulge model), we conclude that the ULX positions are consistent with

the distribution of light, which correlates with the distribution of LMXBs (Bogdán

and Gilfanov, 2010). The association of ULXs with HMXBs is examined with simple

inspection of IR images from Spitzer (Fritz et al., 2012). The ULX-2 is found to

coincide with one of the inner star forming structures located within the 10 kpc star

forming. The ULX-1 is very close to the nucleus of M31, which makes it difficult to

analyze its correlation or anti-correlation with star formation regions. Superimposing
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the position of this ULX on the 250µm Spitzer image from Fritz et al. (2012) yields

a clear association with star forming activity (traced by 250µm emission). The fact

that the both ULXs in M31 correlate with star forming regions suggests a likely as-

sociation of ULXs with HMXBs.

Moreover, as mentioned above, the ULXs in most of the nearby spiral galaxies are

found in their outer spiral arm structures, while the ULXs in M31 are located rela-

tively near the nucleus and appear to correlate with the inner spiral structure. To

explain this deviation between inner and outer positions, we point out that the ULXs

found in M31 were discovered by a nova monitoring program in the inner regions of

M31 (See Fig. 1.) using XMM-Newton and Chandra. This selection bias may be

Figure 6.1 XMM-Newton EPIC -pn, MOS1, MOS2 combined image from Henze et al.
(2010) illustrating the field of view of M31 for the nova monitoring program.

overcome with future wide field of view X-ray surveys that would be able to monitor
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the galaxies as large as M31 (> 2 deg), possibly resulting in further discoveries of

ULXs in M31. Our own galaxy has so far no ULX source, while M31 only recently

acquired two members of this class. With very few exceptions (antennae) such small

numbers appear to be the norm to investigate whether or not the ULX frequency

per galaxy may be used as a tracer for the star formation rate, deserves the further

investigation.
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Appendix A

XMM-Newton Data Analysis with

SAS

An example of XMM-Newton spectral reduction and analysis is demonstrated

in this chapter usingSAS1. We obtained spectra of CXOM31 J004253.1+414222 utiliz-

ing all three European Photon Imaging Cameras (EPIC) pn, MOS1 and MOS2. The data

obtained from HEASARC 2 are processed through a pipeline epchain for pn, emchain

for MOS1/MOS2 utilizing the software SAS. The resultant event file is used to create

image, spectra and light curve shown in Fig 1, 2 and 3, respectively.

The spectrum is obtained with the task evselect by extracting the source

region (circular, in general) with X and Y sky center coordinates and radius in pixels,

from the image obtained from the event file. A PATTERN value less than 4 and 12 are

used to reduce the noise level for pn and MOS1/MOS2, respectively. Also, FLAG is set

to zero value in order to avoid the bad pixels.

1http://xmm.esac.esa.int/sas/
2http : //heasarc.gsfc.nasa.gov/docs/xmm/xmmhp archive.html
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Figure A.1 An example EPIC-pn image from XMM-Newton for ID 0600220201

Pile up correction

To estimate the amount of pile up, epatplot is used. Fig 7.4 displays an

example spectra with pile-up problem. The pile up is clearly shown as a deviation of

obtained spectra from the model spectra. In order to correct the spectra from pile

up, an annulus region is used for the source extraction using DS9, instead of a circular

region. The inner circle region is considered the piled up data and is discarded for

the process of spectrum extraction. This test is performed with the task, epatplot

e.g. in Fig 4, which is pile up corrected spectrum from Fig 5. An annular background

spectrum is also obtained around the source extraction region.
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Figure A.2 An example spectra for EPIC-pn for ID 0600220201 obtained with XMM-
Newton

The light curve is obtained with a time binning of 100s using the task evselect

and FLAG value set to zero to reject bad pixels.

An Ancillary Response file ARF and Redistributed Matrix File RMF are obtained

with arfgen and rmfgen, respectively. These files and the background spectrum

are grouped with the source spectrum, which then is binned to obtain atleast the

minimum number of counts per bin using GRPPHA. The grouped source spectrum is

then read into XSPEC for spectral fitting. The bad pixels are ignored and the only

energy levels between 0.2 keV - 10keV are accepted for analysis.
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Figure A.3 XMM-Newton light curve for ID 0600220201 with time binning of 100s in
0.2-10keV
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Figure A.4 The model fit to the observed PSF for our source. The upper panel
displays the spectra of Singles, doubles, triples and quadruples events in red, blue,
green and light blue, respectively. The lower panel displays the fraction of all these
events at varied energy levels. Clearly the count level for doubles from our source
exceed the model curve.
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Figure A.5 The pile up corrected observed source fit to the model. The pile up
correction yielded the overlap of our data with the model curve.
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Appendix B

IRAF- surface brightness

To evaluate the surface brightness profile from the projected view of 3-dimensional

M31 disk model, we used IRAF version 2.14.1. First of all, the projected image of

M31 was converted into an eqivalent CCD image with dimension 512 × 512. The

task ellipse from IRAF was employed to generate the elliptical isophotes of constant

“Intensity, (I)(counts /pixel)” along the semi-major axis of M31. The center of M31

obtained from the 3D model, was fixed during this task, while the eccentricity and

position angle were free parameters. This task utilizes the method described in Je-

drzejewski,RobertI. (1987) to estimate the these isophotes. The counts per pixels are

then converted to “surface brightness, µ” (mag/arcsec2) considering the Sun as a ref-

erence with apparent bolometric magnitude, m� (mref below) =-26.74. The following

formulae were employed for this conversion:

m−mref = −2.5 log10

(
f

fref

)

µ = m+ 2.5 log10(Ω)
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The model assumes 1011 stars with mass, M = 1 M� in Andromeda galaxy.

fref , is the bolometric flux of the Sun = 1.376 ×106 erg s−1cm2. Flux along an

isophote of given intensity, I is f =
(
Lisophote

4πD2
M31

)
. Lisophote= number of stars along the

isophote × the bolometric luminosity of the Sun. Ω is the solid angle corresponding

to a single pixel, in arcsec2.
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