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ABSTRACT 

Honeycomb cellular metamaterial structures offer many distinct advantages over 

homogenous materials because their effective material properties depend on both their 

constituent material properties and their geometric cell configuration.  From this, a wide 

range of targeted effective material properties can be achieved thus supporting forward 

design by tailoring the honeycomb cellular materials and properties for specific 

applications.  One area that has not been fully explored is the set of acoustic properties of 

honeycomb materials and how these can offer increased design flexibility when targeting 

acoustic performance.  Understanding these relations, the designer can effectively tune 

designs to perform better in specific acoustic applications.  One such example is the 

insulation of target sound frequencies to prevent sound transmission through a panel. 

This work explores how certain geometric and effective structural properties of 

in-plane honeycomb cores in sandwich panels affect the sound transmission loss 

properties of the panel.  The two acoustic responses of interest in this work are the 

general level of sound transmission loss of the panel and the location of the frequencies 

related to the natural frequencies that exhibit high levels of sound transmission, or low 

sound transmission loss.  Two different studies comparing constant mass sandwich panels 

and constant core shear modulus sandwich panels are conducted to determine the effects 

of varying properties.  The results of these studies are used to formalize a design method, 

which is then used on a test case design application. 
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CHAPTER 1:  MOTIVATION AND BACKGROUND 

The selection of material is an important aspect in design and the type of material 

is typically chosen based on its mechanical properties [1].  These material properties 

directly affect the performance and form of the final design for a variety of applications.  

If homogenous materials are used, then the designer is limited to a fixed set of material 

properties.  Honeycomb meso-structures, part of a broader class of cellular metamaterials, 

are advantageous in that their effective material properties depend on both the fixed 

constituent material properties and the geometry of the structure [2,3,4].  In varying the 

geometry of the structure, a wide range of material properties are possible without 

changing the constituent material, thus offering the designer more flexibility.  As such, 

they make it possible to satisfy multiple requirements simultaneously that may have been 

previously conflicting.  Because of this, honeycomb metamaterials have been used in 

many different applications and design methods have been developed that revolve around 

them.  One area in honeycomb metamaterial design that has not been fully explored is 

how they can be designed to have desired acoustic responses in addition to satisfying 

other mechanical constraints.  Potential applications could include the tuning of vehicle 

and building noise to isolate problematic sound frequencies. 

The objectives of this thesis are to (1) develop a general finite element model 

using commercially available software to study the acoustic properties of honeycomb 

sandwich panels, (2) show in detail how varying the mechanical and geometric properties 

of the honeycomb core affects the acoustic responses, (3) identify key responses that can 
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be changed and the main factors that control them, and (4) explain how this can be used 

in forward design for acoustic applications. 

1.1 Cellular Materials in Design 

Cellular materials have become increasingly popular in research and design due to 

their ability to have macro material properties that are substantially different from their 

micro, or host material properties [2,3,4,5,6,7,8].  This field of engineered materials is 

referred to as metamaterials.  One specific group of cellular meta-materials, hexagonal 

honeycomb meso-structures, are frequently used in applications where a high out-of-

plane stiffness to weight ratio is desirable [5,9].  In these applications, they are commonly 

used as a lightweight core material of a sandwich construction in which the core separates 

two stiff face sheets.  In addition to their generally good lightweight stiffness properties, 

they have also been shown to be advantageous in other areas such as impact absorption 

[4,10], low energy loss elastomeric materials [11,2,12,3], and thermal management [13]. 

In addition to offering these desirable properties, cellular honeycomb meta-

materials offer a major advantage in that they can be tailored to have specific material 

properties depending on the application.  If conventional homogenous materials are used, 

then the designer is limited to a specific set of fixed material properties.  However, since 

cellular materials depend on both the fixed constituent material properties (micro-) and 

the geometry of the structure (meso-), a broad range of effective properties (meta-) can be 

attained by modifying the geometry of the cells.  These prefixes are further explained in 

Figure 1.1.  This allows for materials to be designed for certain applications where 
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previously conflicting mechanical properties are desired  and, due to their varying set of 

geometric parameters, they can also provide a good platform for optimization [10,14]. 

 

Figure 1.1:  Properties that make up cellular materials   

This design flexibility, meaning the capability to vary and target specific material 

properties, makes honeycomb cellular material a prime candidate for many different 

applications.  Work has been done within the Clemson Engineering Design Applications 

and Research (CEDAR) lab to use honeycomb cellular materials for innovative design 

approaches to some of these applications.  One such application was the use of metal 

honeycombs as low energy loss compliant structures for the shear band of the Michelin 

Tweel [11,2,12].  Due to the low energy loss properties of the constituent metal material 

and the ability to modify shear and strain parameters, target values could be achieved that 

mimic the same shear flexure properties of rubber without the negative side effect of high 
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energy loss.  The control of these target properties through changes in local geometric 

parameters was validated through analytical work, finite element simulations, and 

physical experimentation [15].  This work was formalized into an automated design tool 

that used newly defined geometric parameters to generate designs that targeted these 

shear compliant properties [3]. 

Another area studied was the use of honeycombs as impact energy absorption 

material to better understand and generalize their dynamic behavior for use in forward 

design [4].  Applications of this concept include lightweight alternatives for absorbing 

impact and improving crashworthiness in automotive, aerospace, and military 

applications.  This work was also automated into a tool that could quickly analyze the 

energy absorption of different model geometries and find an optimum design [10]. 

In addition to these previous applications, there may also be acoustic applications, 

where this same type of design flexibility and tailoring of properties would be desirable.  

One such application, which served as the motivation for this work, is in the design of 

military vehicles to attain targeted acoustic signatures.  This target acoustic signature is 

the level of sound transmission across a range of frequencies through a partition, also 

known as the sound transmission loss curve which will be described in later sections of 

this thesis report.  In general, it may be possible to control which driving frequencies are 

blocked resulting in reduced magnitudes of sound transmission (high sound transmission 

loss) and which ones, related to the natural frequencies, induce more vibrations and have 

high magnitudes of sound transmission (low sound transmission loss). 
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This signature of high and low levels of sound transmission loss is determined by 

the mechanical properties of the partition’s material, which are usually fixed.  However, 

with honeycomb cellular materials, it is possible to vary these mechanical properties 

through the control of meso-properties and achieve differing target acoustic signatures.  

An example of this is shown in Figure 1.2, where the sound transmission loss curve of a 

solid aluminum panels is compared to two different aluminum honeycomb panels.  This 

can be done without compromising mechanical constraints, thus giving the designer more 

flexibility.  Changing the acoustic signature would give the designer control over which 

frequencies of sound have reduced transmission and which frequencies cause high 

transmission levels.  This concept could then aid in building noise isolation and 

potentially the acoustic disguising of military defense vehicles. 
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Figure 1.2:  Changeability of acoustic response through variation of core geometry 

The static mechanical properties of honeycomb cores are generally understood 

and can be defined by Gibson and Ashby’s cellular materials theory (CMT) [5].  This 

work will try to relate these mechanical properties to the acoustic response of the panel.  

Understanding which responses can be changed and which properties change the 

response will allow the designer to tailor the panels to achieve specific acoustic 
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responses.  This work will show this through a systematic design method in the later 

sections of this report. 

1.2 Sound Transmission Characteristics of Partitions 

Before discussing the details of this research, it is important to make a clear 

distinction between two different concepts.  Often times in acoustic work, the terms 

sound insulation and sound absorption are used interchangeably.  However, there is a 

difference between the two.  Sound absorption is the conversion of sound energy into 

heat energy [16].  The most common metric for absorption is the absorption coefficient 

(α), which describes the ratio of absorbed to incident sound energy.  It is on a scale of 0 

to 1 with 0 signifying a reflection of all incident sound and 1 being absorption of all 

incident sound.  Adding materials with high absorption coefficients can help to dampen 

the vibrations in a partition.  It is a useful concept for reducing the level of sound within a 

space but not for reducing the sound between adjacent spaces. 

Alternatively, sound insulation refers to the “blocking” of sound by a partition 

between a sound source and the listener [16].  It is described by the transmission 

coefficient (τ), which is the ratio of transmitted to incident sound energy.  It is also on a 

scale of 0 to 1, where 0 signifies no sound transmission and 1 signifies complete sound 

transmission of all sound energy.  It is important to note that, unlike sound absorption, a 

coefficient of 0 is not practical since all partitions will transmit some sound [16].  The 

descriptor for sound insulation is a decibel level calculated from the transmission 

coefficient, which will be described in later sections.  Sound insulation is useful for 

reducing the sound between adjacent spaces.  While sound absorption can sometimes 
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affect the sound insulation of partition, there are other more significant factors involved 

and they are two different concepts.  This work mostly focuses on sound insulation and 

not sound absorption. 

The most common performance metric for sound insulation of a material is the 

sound pressure transmission loss (STL), also known as sound reduction index [9,16,17].  

The details for the calculation will be described in later sections, but in general it 

describes the difference between the transmitted and incident sound pressure.  The sound 

transmission loss of a panel is frequency dependent and can be influenced by the material 

and geometry of the panel [9,16].  The main controlling factor for the sound transmission 

loss depends on the specific frequency range being analyzed and the general curve for the 

sound transmission loss can be divided into four distinct regions based on this concept.  

These four regions are shown in Figure 1.3 below. 
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Figure 1.3:  Frequency dependent sound transmission regions of a panel 

At low frequencies, the sound transmission loss is controlled by the panel’s 

stiffness [9,17].  Other factors such as damping and mass have little effect here.  For 

constant frequency, the STL in this region increases with a higher first resonance 

frequency.  This range ends with the appearance of the first resonance frequency [18]. 

At slightly higher frequencies, the STL is controlled by the natural resonance of 

the panel.  The resonant frequencies are the frequencies at which the panel vibrates at 

higher levels.  The resonant frequencies depend on the material, size, shape, and 

mounting parameters of the panel.  At these driving frequencies, due to the high level of 

vibration of the panel, high amounts of sound energy are transferred to the transmitted 

side and there are noticeable dips in the STL [9,16]. 
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After the resonance range, the sound pressure transmission loss of the panel is 

governed by its mass in what is known as the mass controlled region.  For many typical 

sound insulation applications, this is a particularly important range [9].  In this range the 

STL can be accurately predicted by the mass law: 

 
2

cos
10log 1

2

m
STL

c

 



  
   

   

 [1.1] 

where m is the mass per unit area, ω is the angular frequency, θ is the angle of incidence, 

ρ is the density of the acoustic medium, and c is the speed of sound in the acoustic 

medium. 

For normally incident waves, the incidence angle is 0°.  By substituting this into 

the equation and changing the angular frequency to cyclic frequency (ω/2π = f), and 

assuming mω/(2ρc) >> 1, the mass law can be simplified into the normal incidence mass 

law: 

 
20log( ) 42STL fm dB   [1.2] 

where f is the cyclic frequency in Hertz and m is the mass per unit area.  While Eq. 1.2 is 

an empiric law, it can accurately describe the sound transmission in the mass region and 

it can give a rough estimate for the sound transmission in the resonance region 

[16,17,19]. 
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At even higher frequencies, bending waves can result in what is known as the 

coincidence effect.  The coincidence effect first occurs at the critical frequency (fc) of the 

panel, which is given by: 

 
2

1.8
c

c
f

h E




 

  [1.3] 

where c is the speed of sound in the material, ρ is the density of material, and E is the 

elastic modulus of the material.  The coincidence effect occurs when the bending waves 

in the partition match the wavelength of the incident sound waves.  This causes the 

bending displacement to be in phase with the surface of the panel [16].  The resulting 

effect is an efficient transfer of acoustic energy from the incident sound waves to the 

transmitted side of the panel and a noticeable drop in STL, known as the coincidence dip, 

starting at the critical frequency [9].  This region is referred to as the coincidence region. 

1.3  Advantages of Using Honeycomb Cellular Materials in Partitions 

The major components that affect the sound transmission capabilities of a panel 

are its stiffness, weight, damping, and resonant properties.  Honeycomb cellular 

materials, if used as the core material in a three layer sandwich construction, offer many 

different possibilities because these properties can be manipulated.  Due to the variable 

range of effective properties possible with honeycomb cellular materials, these governing 

properties can be changed while keeping other crucial properties constant. 

The three regions where the use of honeycomb cellular materials can be 

advantageous are in the stiffness, resonance, and coincidence controlled regions [9].  The 

stiffness controlled region offers opportunities due to the fact that honeycomb cellular 
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materials have a stiffness that can be adjusted [9].  Therefore, varying levels of stiffness 

panels could be produced and changed without affecting the weight of the panel.  

Because of this variability, the range of this region could be increased or decreased to 

generate a larger or smaller stiffness controlled region.  The resonance region also offers 

opportunities due to the fact that the natural resonances are largely dictated by the shape 

and mechanical properties of the panel.  Since there are many configurations for the 

honeycomb core, differing locations of resonant frequencies, quantity of frequencies, and 

size of the resonance controlled region can be manipulated.  In addition, cellular 

materials often have better damping properties [9].  They can also be used to shift the 

coincidence region, but that will not be discussed in this work. 

The mass controlled region is the one area where honeycomb cellular materials 

would not be advantageous.  The only way to improve this region is by increasing the 

mass of the panel.  Honeycomb cellular materials in general have a low mass and 

therefore would not be as desirable here [9].  Therefore, this work focuses on the design 

of varying transmission loss panels using honeycomb cores at low to mid frequencies 

(below 1000 Hz).  Given size or weight constraints, many different acoustic responses 

can be generated and these responses can be tuned using a few important key geometric 

parameters. 

1.4 Previous Work in Sound Transmission of Honeycomb Panels 

There has been much work done in the field of studying the acoustic properties of 

sandwich panels.  Many researchers have studied sandwich panels analytically, with 

some of the earlier works using energy expressions to study the behavior of sandwich 
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structures.  Kurtze and Watters [20] were some of the first to look into the sound 

transmission loss of sandwich panels, suggesting that they may have distinct advantages 

over single layer panels.  Their analytical model consisted of elastic skins that 

sandwiched an incompressible core, transmitting shear waves.  However, the 

incompressible core model, which employed panel impedances, only accounts for 

flexural motions in the panel.  Ford, et al. [21] improved upon their model by 

incorporating a compressible core that allowed for both flexural and dilatational motions.  

They used this model to study different sandwich panel properties focusing on 

polyurethane foam core panels.  They used the kinetic and strain energies in bending at 

each natural frequency to describe the effects of sound transmission through the panel.  

Their work was also validated with experimental studies. 

 The energy expressions by Ford, et al. were later refined and modified by 

Smolenski and Krokosky [22] and presented in greater detail by including relative 

displacements.  They gave particular attention to the influence of core properties on the 

dilatational natural frequencies.  They also completed experimental random incidence 

sound transmission tests to compare and validate their theoretical results.  Since then, 

other researchers have continued to make modifications and improvements to the model 

[23,24,25]. 

The study of multi-layer sandwich panels eventually led into the study of the 

effects of alternative anisotropic core materials.  Moore and Lyon studied the effects of 

using orthotropic cores on the panel’s performance [26] using both analytical expressions 

and experimental validation.  Other researchers would eventually expand upon this work 
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of using orthotropic cores [27].  In addition, the effects of the previously discussed 

factors, stiffness, mass, damping, and also thickness, have been studied for other types of 

anisotropic core panels [28,29]. 

One of the most common orthotropic core materials used in these studies is the 

honeycomb core.  The general effects of honeycomb cores have been studied recently 

[8,30,31,14] as well as other similar truss-like periodic panels [32,33].  In one study by 

Ruzzene, a spectral finite element model is employed to study the response of 

honeycomb truss core panels over a broad range of frequencies [8].  The spectral finite 

element method uses a reduced number of elements and is a powerful tool for describing 

the dynamic response over a broad range of frequencies [34].  In most cases for the 

spectral element method, researchers must develop their own code and commercial 

software is not readily available. 

The finite element method is also capable of predicting the dynamic vibratory 

behavior of panels accurately, but performance of the method does drop off as frequency 

increases due to element sizing and other factors compared to the spectral element 

method [34].  Over a large range of frequencies, the special techniques such as the 

spectral formulation are needed.  However, if the frequency range being studied is low, 

then the finite element method can be used to predict the vibratory behavior with a high 

level of accuracy.  In addition, commercial software is readily available for the finite 

element method and can be easy for the designer to use, but only if the software is well 

understood.  That is why the finite element model is used in this work.  Effort was made 

to include a detailed description for the setup of the model so that the model could be 
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easily recreated, which would otherwise be tedious for those not familiar with the 

software [33]. 

In most of the previous works of studying the effects of honeycomb cores, only 

certain core configurations have been tested and the responses have not been correlated 

directly to the geometric properties.  While this is helpful in understanding the behavior 

of the panels, it is not as helpful to the designer as knowing the effects of changing 

controllable parameters.  It has not fully been explored how the geometric configurations 

of honeycomb cores can generate differing acoustic responses and offer greater design 

flexibility.  These geometric factors need to be further explored so that they can be used 

to effectively design structures to achieve targeted acoustic properties in addition to 

satisfying other mechanical properties.  This work aims to study these factors using a 

method that can be easily used and recreated to design honeycomb sandwich panels for 

varying acoustic performance properties. 

1.5 Thesis Overview 

This thesis report is organized in a format and order summarized by the flow chart 

seen below in Figure 1.4. 
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Figure 1.4:  Overview of thesis flowchart 

Chapter 1 covers the motivation for this work, discussing how honeycomb 

cellular materials are used in design and how this can be applied to acoustic applications.  
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It summarizes the previous applications of honeycomb cellular material design and 

discusses briefly a motivating application for this work.  A gap is identified in the need to 

understand the acoustic behavior of honeycomb panels and what acoustic properties can 

be controlled.  This ability to control the acoustic properties would allow for use in 

forward design. 

Chapter 2 discusses the mechanical effective properties of honeycombs as defined 

by Gibson and Ashby.  The effective properties used include effective Young’s modulus 

(in the x and y directions), shear modulus, and density.  It also discusses how the size of 

honeycomb meso-structures can be controlled through core geometry parameters.  The 

controlled structure size allows for structures to be designed that adhere to limiting size 

constraints. 

Chapter 3 discusses in detail the modeling parameters necessary to set up the 

finite element model in ABAQUS 6.10.  This model was developed through an iterative 

trial and error process due to the fact that no other model with commercial software was 

found to use from literature.  The model is validated by comparing its results with those 

from a spectral element model that was found in literature.  It is used to gather the results 

for the later chapters in this thesis. 

Chapters 4 and 5 discuss the results and outcomes of two different studies that 

employ the finite element model to examine the effects of various properties on the 

acoustic response of honeycomb panels.  In Chapter 4, eighteen different models with 

constant mass are studied with internal cell angles ranging from -45° to 45° in 5° 
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increments.  In Chapter 5, eighteen models with constant core shear modulus are studied 

with the same internal cell angle range as the constant mass study. 

Chapter 6 describes a systematic and formalized method for designing 

honeycomb sandwich panels for acoustic applications.  The process is described step by 

step and employs the finite element model and the outcomes of the previous property 

effects studies.  The systematic method is applied to a hypothetical test design problem to 

show how it can generate multiple designs solutions that satisfy given requirements.  

Guidelines for selection of the final design solution are also discussed. 

Chapter 7 summarizes the work in its entirety and highlights the main conclusions 

from this research.  In addition, future work in this field is described to attain an even 

better understanding of the acoustic behavior.  Other areas related to this work that can be 

explored are also discussed. 
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CHAPTER 2:  EFFECTIVE MATERIAL PROPERTIES AND GEOMETRY OF 

HONEYCOMB METAMATERIALS 

The sandwich panels studied in this work are of a three layer construction, with 

two face sheets and a honeycomb core in between them.  The static mechanical properties 

of the honeycomb core are generally understood and can be defined by Gibson and 

Ashby’s cellular materials theory (CMT) [5], which is described in this section.  It is 

important to note that this study uses honeycomb cores that are in-plane with the loading, 

which is a deviation from most works that study out-of-plane honeycomb cores.  The 

difference between the two is illustrated in Figure 2.1.  The material for both the face 

sheets and the core is aluminum.  All panels have a core height of 8.66 cm and face sheet 

thicknesses of 2.5 mm.  The thickness of the core cell walls varies based on the model. 

 

Figure 2.1:  In-plane honeycomb cores vs. out-of-plane cores 
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2.1 Geometric Modeling Parameters 

The unit cell is highlighted for two honeycomb panels in Figure 2.2.  In the design 

of honeycomb materials, the conventional unit cell geometric parameters used, shown in 

Figure 2.3, are cell angle (θ), vertical member height (h), angled member length (l), and 

cell wall thickness (t).  These parameters can be used to find the effective properties of 

the overall honeycomb structure.  The unit cells in the figure shown are of a standard 

hexagonal model (θ = 30°, h = l) and a frequently used auxetic model with similar 

mechanical properties (θ = -30°, h = 2l).  In this work, the cell angle will be varied from -

45° to +45° in 5° increments, and the h, l, and t values will be adjusted to maintain a 

specific unit cell size and effective property. 

 

Figure 2.2:  Sandwich panels with standard and auxetic cores and unit cell 

parameters 
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Figure 2.3:  Local goemetric unit cell sizing parameters 

2.2 Controlling Overall Panel Structure Size 

The sizing of honeycomb structures presents a unique challenge when designing 

the material.  If there are constraints on the overall size of the structure, which is the case 

with this work and many other design problems, then a change in one of the conventional 

geometric parameters must be accompanied by a modification of the other parameters in 

order to adhere to the design size constraints. 

To address this issue, previous studies [3] have developed new parameters to 

adjust the size of the cell relative to the overall structure size, but those will not be used 

in this study.  Instead, another method is developed which ensures the maintenance of a 

constant unit cell size.  If the number of vertical and horizontal unit cells is kept constant, 

then the result is a constant overall structure size between different models.  The length 
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along the x-direction of the unit cell is determined by the parameters θ and l.  Using basic 

geometric principles, the x-direction length can be calculated.  In this study, a specific x-

direction length is specified to fit either 40 or 80 cells horizontally along a panel length of 

2 m.  The parameter θ is varied and an l is calculated to accompany this change.  The 

length of the unit cell along the y-direction is determined by the parameters θ, h, and l.  

Again, this length can also be calculated using geometric principles.  For this study, a 

specific y-direction length is specified to fit either 1 or 2 cells vertically along a panel 

height of 8.66 cm.  Having already determined θ and l, an h is calculated to accompany 

this.  The unit cell sizing equations used are given by Equations 2.1 and 2.2. 

 
2 cosxL l 

 
  [2.1] 

 
2( sin )yL h l  

 
[2.2] 

As can be seen by Figure 2.4, the results of using these equations are different 

panels of cellular configurations that all have the same overall structure size.   
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Figure 2.4:  Overall structure sizing of various models 

2.3 Effective Properties 

The unique advantage that honeycomb cellular materials offer is that the 

conventional geometric parameters discussed can be changed in order to achieve varying 

overall macro parameters that the host material does not have.  For low deformation, 

before a critical stress is reached, the main mechanism of deformation in honeycombs is 

the bending of the cell walls and the honeycomb behaves linear elastically.  Gibson and 

Ashby’s cellular material theory (CMT) [5] quantifies these effective elastic properties 

for honeycomb structures in the form of equations, derived from Bernoulli-Euler beam 

theory, that use the aforementioned geometric cellular parameters as input variables.  The 

effective elastic properties studied here include in-plane elastic modulus in the x and y 

directions and in-plane shear modulus: 
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where E is the elastic modulus of the constituent material, and h, l, t, and θ are the 

geometric unit cell parameters.  Also, studied is the effective density of the honeycomb 

structure: 
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where ρ is the density of the constituent material.  This equation is derived from simple 

geometric relations. 

In this study, either the effective density or effective shear modulus of all the 

models is kept constant.  Constant effective density ensures that all models have the same 

volume of material and consequently the same overall mass.  Constant mass is selected as 

this as this is generally the property that governs the overall magnitude of the sound 

transmission response, with some deviations, such as in the stiffness region.  Constant 
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shear modulus is kept constant in another study because it ensures that some degree of 

structure stiffness is kept constant between the models.  While this is not the only 

property that governs the panel stiffness, other works in literature have identified the 

shear parameters as a significant one [35]. 
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CHAPTER 3:  SETUP OF ACOUSTIC FINITE ELEMENT MODEL USING 

COMMERCIAL SOFTWARE 

To provide consistent results between different panels studied, it is necessary to 

develop a standard finite element analysis (FEA) model.  Due to the fact that there is little 

literature found that makes use of commercial finite element analysis software, a model is 

created with ABAQUS v6.10 from scratch that resembles many of the features seen in 

published studies, which use custom analysis codes.  The model developed is cross 

checked with results from those studies to ensure that it provides consistent results.  The 

same model can be replicated and used in future studies so that future results can be 

accurately compared. 

The FEA model developed, shown in Figure 3.1, consists of a honeycomb 

sandwich panel and a fluid domain, which is effectively attached to the top of the panel.  

The panel is loaded on the bottom side to mimic an incoming sound pressure wave of 

controlled frequency.  The vibration in the panel caused by the sound wave is then 

allowed to propagate through the panel into the acoustic fluid domain, where results can 

be required both numerically and visually.  Details on the specific modeling and response 

collection parameters are also discussed in this chapter. 
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Figure 3.1:  Physical setup of acoustic model 

3.1 Justification for a Two Dimensional Model 

Due to the fact that the loading is in the same plane as the geometry of the core 

and face sheets, the problem can be set up as a two dimensional (2D) model.  Using a 2D 

analysis helps to significantly reduce the analysis time and also makes the sketch for the 

parts easier to generate.  If the loading is out of the plane of the core geometry, as is the 

case with out-of-plane honeycomb core sandwich panels, a three dimensional model 

would have been necessary.  In the case of the 2D analysis, an assumption is made that 

the out of plane thickness is large enough that the corresponding out of plane boundary 

effects can be ignored.  
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3.2 Analysis Components and Material Properties 

There are only two parts used in the analyses of this work.  These include the 

honeycomb sandwich panel being studied and the air fluid on the transmitted (top) side of 

the honeycomb structure.  For the natural frequency analysis, only the honeycomb 

sandwich panel is needed.  

The honeycomb sandwich panel is modeled as a single part.  Modeling the core 

and face sheets separately is also an option but is not done in this study for simplicity and 

to avoid the need to include extra tie constraints at the connection points.  Moreover, the 

currently envisioned manufacturing process to create these panels is through layered 

manufacturing or machining from monolithic workpieces.  The component is modeled as 

a 2D planar deformable part with a wire profile.  The core section of all models consists 

of either 20 cells in the x-direction and 1 cell in the y-direction or 40 cells in the x-

direction and 2 cells in the y-direction.  The angle of the core unit cells varies from -45° 

to +45°.  The thickness of the face skins and each cellular wall is controlled using 

rectangular profiles that are assigned as beam sections.  The “a” dimension of the profile 

corresponds to the thickness in the xy-plane and is varied to achieve the desired effective 

properties.  The “b” dimension of the profile corresponds to the out-of-plane length and is 

set to unity for the sake of simplicity.  All sections of the honeycomb panel are assigned 

the material properties of aluminum, which are summarized in Table 3.1. 
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Table 3.1:  Material Properties of aluminum used in finite element model 

Density – ρ 

(kg/m
3
) 

Young’s Modulus – E 

(GPa) 

Poisson’s Ratio - ν 

2700 71.9 0.3 

The second part, the air fluid, is modeled as a semi-circular domain to mimic the 

effects of air on the surface of the honeycomb structure.  This part is necessary to 

determine the transmission of the sound from the structure to the air and to simulate any 

damping effects that the air may have on the structure.  The air is modeled also as a 2D 

planar deformable part, but with a shell profile.  A solid, homogenous section is applied 

to the part with an out-of-plane thickness set to unity like the honeycomb.  The part is 

given the material and acoustic properties of air, which are summarized below in Table 

3.2. The impact of different fluid region properties is out of scope for this research and is 

reserved for future investigation. 

Table 3.2:  Material/acoustic properties of air used finite element model 

 Density – ρ 

(kg/m
3
) 

Speed of Sound in Air – c 

(m/s) 

Bulk Modulus – κ 

(Pa) 

1.2 343 141179 

3.3 Element Justification and Mesh Setup 

For the honeycomb sandwich panels, B-22 beam elements are used for both the 

face skins and the core section.  B-22 elements consist of three nodes and are planar 

beam elements of quadratic geometric order.  These quadratic order elements are chosen 

in order to reduce computational effort while still keeping a high level of accuracy 

compared to linear beam elements.  These beam elements are commonly used in static, 

quasi-static, and some dynamic honeycomb analyses [11,3,6,36].  In dynamic analyses 
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where there is large deformation, beam elements have problems handling contact and can 

often result in the piercing of one element by another.  Some researchers have used shell 

elements, which are better at handling contact, to account for this [4].  However, since the 

deformation in this work is small, beam elements are sufficient.  The elements are sized 

to have at least four elements per the smallest edge in the core, as recommended by 

previous works [37,4,7].  Therefore, the mesh size changes for each model according to 

the geometric properties of the core.   

The air domain is modeled using AC2D3 elements, which are 3-node 2-D 

acoustic triangles commonly used to model acoustic mediums [38,39].  The mesh seed 

size of these elements in close proximity of the honeycomb structure is 0.012 m.  By 

using a mesh bias from the center of the semicircular domain to the edge, the element 

size gradually increases to 0.08 m at the edge of the fluid domain (Figure 3.2).  The 

reason for the changing mesh size is that only the air directly in contact with the 

honeycomb panel is of concern for the data post-processing accuracy and therefore must 

be fine.  The rest of the air fluid domain only serves for visualization purposes and is not 

of as much importance.  The ABAQUS user manual recommends that there should be at 

least 6-8 elements per wavelength of the highest analyzed frequency for acoustic 

radiation analyses [38,40].  The mesh size selected in this work well exceeds this 

recommendation to avoid any error associated with having too coarse of a mesh.  It is 

important to note that, due to the shape of the domain, use of triangular elements, and 

random nature of the mesh generation, the mesh is not perfectly symmetric and therefore 
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the visual results for the pressure distributions will not be completely symmetric.  This is 

seen in the acoustic pressure field results presented later in this work. 

 

Figure 3.2:  Mesh of the air domain showing bias towards edge in contact with the 

sandwich panel 

3.4 Boundary Conditions and Loads 

For the boundary conditions, the ends of the structure are pinned to simulate being 

connected to a rigid insulator.  The displacement of all the nodes along the two edges, 

including both the face sheets and the core are constrained to zero in both the x and y 

directions (Figure 3.3).  The rotation along the out-plane-axis is not constrained.  Pinned 

boundary conditions are consistent with other work found in literature [8].  These 

boundary conditions are used for both the natural frequency and steady state analyses.  

No boundary conditions are specified for the air domain, allowing it to move freely. 
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Figure 3.3:  Pin boundary conditions along the ends of the honeycomb structure 

For the steady-state analyses only, a uniformly distributed pressure load of unit 

amplitude, which varies sinusoidally with the frequency of the step, is applied to the 

bottom face sheet (Figure 3.4) of the structure to simulate the effects of an incoming 

sound wave.  The underside of the bottom face sheet is specified as a surface to make the 

loading face selection easier.  In this work, direct incidence (α = 0°) is specified for 

simplicity.  For the natural frequency analysis, this load is not necessary and thus no load 

is applied to the structure.   

 

Figure 3.4:  Sinusoidally varying unit pressure load 

3.5 Constraints 

To ensure that the honeycomb panel and the air do not lose contact, a surface 

based tie constraint is used.  This constraint couples the structural field with the acoustic 

field and ensures that the two deform together as one component at the interface.  For the 

surface based tie constraint, a master surface and a slave surface must be defined.  The 
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master surface is typically the stiffer of the two components [38,37].  Therefore, the top 

skin of the honeycomb sandwich panel is defined as the master surface and the bottom 

surface of the air fluid is defined as the slave surface.  After the user defines the surfaces 

to be “tied,” ABAQUS automatically generates the fluid-solid coupling necessary for the 

analysis [40]. 

 

Figure 3.5:  Tie Constraint 

It is also important to make sure that the sound waves do not reflect off of the top 

surface of the fluid region back into the area of data collection.  The fluid must be 

modeled to simulate an infinite amount of surrounding air.  Even though many real world 

applications will have some constraining boundary, such as building rooms, modeling an 

infinite amount of air provides a good starting point for comparison and is commonly 

done in acoustic analyses [39,40].  To achieve this, an absorbing interaction via surface 
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impedance is defined along the top surface of the fluid region.  The absorption definition 

for this model is specified as non-reflecting.  The geometry is specified as circular with a 

radius of 2, based on the semi-circular geometry of the air fluid.   

The effect of modeling an infinite amount of air can also be achieved using 

ABAQUS’s acoustic infinite elements [40,38].  This feature offers the same ability to 

model a non-reflecting surface while also being capable of interpolating in the infinite 

direction, allowing for the visualization of the acoustic far field in steady-state dynamic 

analyses.  It is helpful for reducing large domains, while still recording far-field results.  

However, since the acoustic pressures in the distant outer fluid are not of importance for 

this analysis, the absorbing interaction is chosen due to its simplicity.   

All of these modeling and analysis parameters are summarized in the diagram 

shown below in Figure 3.6 
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Figure 3.6:  Model setup diagram with loading conditions 

3.6 Natural Frequency Extraction Procedure 

In order to understand the vibratory properties of the honeycomb sandwich panels 

and to focus the transmission loss study, a natural frequency extraction is first run on 

each of the panel models.  The undamped modal frequencies and mode shapes of the 

sandwich panels are gathered using the natural frequency extraction analysis procedure in 

ABAQUS/CAE 6.10.  These modal frequencies, when damping is small, correlate to the 
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resonating frequencies of the structure and can describe where there will be higher levels 

of vibration [17]. 

During the analysis, only the honeycomb sandwich structure is analyzed and the 

air is not included.  Since the damping effects of the air are small, it is excluded in order 

to save analysis time.  The analysis procedure in ABAQUS consists of two steps: 

1. Initial Step – Default initial conditions are defined automatically by 

ABAQUS; these are not modified 

2. Linear Perturbation, Frequency Step – Modal frequencies are extracted using 

Lanczos eigensolver 

The frequency step is carried out over a specified range of 1-1000 Hz, which is 

the frequency range of interest for this study and represents a low to mid-frequency 

range.  This performs the analysis in the stiffness region and well into the resonance 

region.   

3.7 Steady State Dynamics, Direct Procedure 

Since the loading is a constant sinusoidal sound wave, this analysis can be 

simulated using a steady state dynamics procedure.  A steady-state procedure allows for 

the levels of sound transmission of the honeycomb sandwich panels to be measured.  The 

dynamic steady state, direct procedure in ABAQUS is used for this.  The analysis 

consists of two steps: 

1. Initial Step - Default initial conditions are defined automatically by 

ABAQUS; these are not modified 
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2. Steady State Dynamics, Direct – Frequency sweep over specified range with 

frequency specific load is performed, extracting pressure data at each step 

The procedure is carried out over the range of 1-1000 Hz, the same as the natural 

frequency extraction analysis.  The natural frequencies from the previous analysis are 

input into this range as analysis points.  Each interval between natural frequencies 

contains six or seven points with a bias parameter of two towards the natural frequencies.  

This is done so that there would be a refined response around the natural frequencies, 

which are the points of interests.   

3.8 Response Collection/Post-processing 

One of the most common metrics for describing the acoustic performance of a 

panel is the sound transmission loss (STL) of the panel over a range of frequencies.  A 

measure of sound pressure transmission loss is the difference between the incident and 

transmitted acoustic pressure through the panel: 
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and 

 

1 2, ,..., np p pp
 

 

is a vector of the pressure values at the nodes along the face sheets of the honeycomb. 

During the steady state analysis, a history output is specified for the acoustic 

pressure (POR) of all the air nodes in direct contact with the top panel of the sandwich 

panel, or the transmitted side.  The acoustic pressure results are in the form of complex 

numbers and therefore the magnitude of these complex numbers is recorded.  Since the 

loading is specified as a unit pressure wave, the incident pressure on all the nodes on the 

bottom, or incident, side of the panel is one.  The norm of each of these acoustic pressure 

output vectors is calculated and squared.  Together, these results are used to calculate the 

sound transmission loss of each of the panels using Equation 3.1. 

3.9 Analysis Time 

Each of the analyses is run on a Dell Precision T7400 computer with dual quad 

core 2.00 GHz Intel Xeon processors, allotting six of the cores for use.  The natural 

frequency analysis for all the models takes only a small amount of time to complete, with 

all analyses taking under a minute to complete.  The steady state analyses takes longer, 

ranging anywhere from approximately two to eleven minutes to complete.  In general, the 

negative angle models take longer for both the natural frequency analysis and the steady 

state analysis to complete due to the higher number of vibration modes.  For the steady 

state analysis, this means that there are more points of analysis to evaluate.  The mesh 

size also plays a factor in the analysis time, though not as significant as the number of 
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vibration modes.  This is why the 2 x 80 models take longer to complete due to the finer 

meshes.  As a general reference for the time variation, the analysis times for the -30° and 

+30° models are shown in Table 3.3, which includes both the 1 x 40 and 2 x 80 unit cell 

configurations of the models. 

Table 3.3:  Analysis times for the +30° and -30° models 

 Natural Frequency  

Analysis Time 

Steady State  

Analysis Time 

+30° (1 x 40) 0m 22s 2m 02s 

+30° (2 x 80) 0m 25s 3m 41s 

-30° (1 x 40) 0m 31s 5m 15s 

-30° (2 x 80) 0m 45s 10m 48s 

3.10 Model Validation 

To verify that the model presented shows consistent trends, the results are 

compared to previous results found in literature [8], which uses a spectral element 

formulation.  The sound transmission loss results in the 1-1000 Hz frequency range for a 

square truss core sandwich panel are shown in Figure 3.7.  These results are normalized 

to account for scaling differences.  The square truss core model is used only for 

comparison purposes but is not studied further in this work.  It can be seen that the finite 

element model used does follow the same trends as found in previous literature, 

especially for the first group of resonant frequencies.  At about 900 Hz, the results for the 

square truss core do begin to deviate some.  However, the agreement between the results 

is more than sufficient for this work. 
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Figure 3.7: Comparison of the normalized sound transmission loss between spectral 

element results [8] and finite element model proposed in this paper 
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CHAPTER 4:  SOUND TRANSMISSION LOSS FOR CONSTANT MASS AND 

STRUCTURE SIZE PANELS WITH VARYING CORE GEOMETRY 

The first scenario studied is of panels with constant mass and overall structure 

size.  Structure size is kept constant due to the fact that most design problems have fixed 

size constraints.  The overall mass is of particular interest due to its believed effect on the 

general magnitude of the sound transmission loss.  As previously discussed, the mass 

almost solely dictates the level of sound transmission in the mass region and influences 

the general magnitude in the resonance controlled region.  This idea is tested and 

confirmed. 

While mass and structure size are kept constant, the core geometry is varied by 

changing the local geometric parameters.  Varying the geometry changes the effective 

stiffness and resonant properties of the panel.  While it is understood that these do have 

effects on the acoustic responses, it is not known to what degree each of the properties 

affects the response in this specific application.  By studying varying model 

configurations of constant size and mass, one can begin to highlight the key global 

effective properties and even potentially the local parameters that are significant in 

changing the shape of the sound transmission loss response, without necessarily changing 

the magnitude of the response. 

4.1 Honeycomb Models 

The honeycomb models tested consist of cores that contain either one cell in the 

vertical direction and 40 cells in the horizontal direction (1 x 40) or two cells in the 

vertical direction and 80 cells in the horizontal direction (2 x 80).  The varying dimension 
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size is to test for boundary effects, which are discussed later in this chapter.  The models 

range from -45° to +45°, changing in 5° increments.  Between each of the models, the l 

and h are varied in order to keep the overall size of the unit cells the same within the 1 x 

40 or 2 x 80 arrangement using the guidelines specified in Chapter 2.  The thickness of 

the cell walls is also varied to ensure that an effective density of 270.0 kg/m
3
 is kept 

constant.  Since the structures all have the same overall dimensions, constant effective 

density ensures constant mass between the models.  The geometric properties of all the 

models tested are summarized in Table 4.1 and Table 4.2 below.  For all of the models, a 

face sheet thickness of 2.5 mm is used.  Figures 4.1, 4.2, and 4.3 are shown to illustrate 

how each of the geometric parameters changes in relation to changes in internal cell angle 

under the constant unit cell size constraints.  This is shown for both the 1 x 40 and 2 x 80 

models.  It can be observed that, under constant mass constraints, the thickness increases 

as cell angle increases up to the positive 30° model and then begins to decrease.  The h 

and l parameter charts illustrate the geometric relations for the constant unit cell size 

approach used.  The inverse relationship between vertical height member and cell angle 

can also be observed.  For all of the parameters, the 2 x 80 models exhibit the same trend 

as the 1 x 40, but at exactly half the magnitude. 
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Table 4.1:  Geometric and effective properties of 1 x 40 constant mass honeycomb 

cores 

Cell 

Angle 

Unit 

Cells 

l 

(mm) 

h 

(mm) 

t 

(mm) 

G12* 

(MPa) 

ρ* 

(kg/m
3
) 

E11* 

(MPa) 

E22* 

(MPa) 

-45° 
 

1 x 40 35.36 68.30 1.56 0.579 270 7.01 21.0 

-40° 
 

1 x 40 32.64 64.28 1.67 0.862 270 13.3 28.1 

-35° 
 

1 x 40 30.52 60.81 1.78 1.23 270 24.6 36.2 

-30° 
 

1 x 40 28.87 57.73 1.88 1.68 270 44.9 44.9 

-25° 
 

1 x 40 27.58 54.97 1.97 2.25 270 83.1 54.2 

-20° 
 

1 x 40 26.60 52.40 2.05 2.94 270 160 63.7 

-15° 
 

1 x 40 25.88 50.00 2.13 3.76 270 340 73.2 

-10° 
 

1 x 40 25.39 47.71 2.20 4.75 270 883 82.4 

-5° 
 

1 x 40 25.10 45.49 2.26 5.93 270 3960 90.8 

5° 
 

1 x 40 25.10 41.11 2.37 9.04 270 4550 105 

10° 
 

1 x 40 25.39 38.89 2.41 11.1 270 1170 109 

15° 
 

1 x 40 25.88 36.60 2.45 13.6 270 519 112 

20° 
 

1 x 40 26.60 34.20 2.48 16.8 270 283 112 

25° 
 

1 x 40 27.58 31.64 2.49 21.0 270 170 111 

30° 
 

1 x 40 28.87 28.87 2.50 26.6 270 107 107 

35° 
 

1 x 40 30.52 25.80 2.49 34.9 270 67.9 99.9 

40° 
 

1 x 40 32.64 22.32 2.47 48.2 270 43.1 91.0 

45° 
 

1 x 40 35.36 18.30 2.43 73.4 270 26.7 80.1 
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Table 4.2:  Geometric and effective properties of 2 x 80 constant mass honeycomb 

cores 

Cell 

Angle 

Unit 

Cells 

l 

(mm) 

h 

(mm) 

t 

(mm) 

G12* 

(MPa) 

ρ* 

(kg/m
3
) 

E11* 

(MPa) 

E22* 

(MPa) 

-45° 
 

2 x 80 17.68 34.15 0.78 0.579 270 7.01 21.0 

-30° 
 

2 x 80 14.43 28.87 0.94 1.68 270 44.9 44.9 

-15° 
 

2 x 80 12.94 25.00 1.06 3.76 270 340 73.2 

15° 
 

2 x 80 12.94 18.30 1.22 13.6 270 519 112 

30° 
 

2 x 80 14.43 14.43 1.25 26.6 270 107 107 

45° 
 

2 x 80 17.68 9.151 1.22 73.4 270 26.7 80.1 

 

Figure 4.1:  Cell wall thickness at varying cell angles for constant mass 
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Figure 4.2:  Vertical member height at varying cell angles for constant mass 

 

Figure 4.3:  Angled member length at varying cell angles for constant mass 
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4.2 Natural Frequencies 

The natural frequency extraction is performed on all of the models shown.  The 

results are broken up into the results from the 1 x 40 models and the 2 x 80 models.  All 

the results are recorded for use in the steady state analysis, but only the first ten are 

reported here for analysis.  The reason for this is that the later modes in a natural 

frequency extraction tend to be less accurate and it is determined that the modes past the 

tenth would not be as meaningful. 

4.2.1 Natural Frequencies for 1 x 40 Models 

The first ten modes and their corresponding frequencies are shown below in Table 

4.3 (positive angles) and Table 4.4 (negative angles).  It should be noted that the +45° 

model only has nine modes within the specified range. 

Table 4.3:  Natural frequencies of positive angle constant mass honeycomb core 

sandwich panels 

Mode # 

5° 

 

10° 

 

15° 

 

20° 

 

25° 

 

30° 

 

35° 

 

40° 

 

45° 

 
1 43.0 46.1 49.3 53.5 57.9 62.8 68.5 75.3 83.8 

2 88.2 94.4 100.7 109.4 118.7 129.7 143.2 160.3 183.6 

3 138.3 148.3 158.4 172.3 187.6 205.9 228.6 258.1 299.5 

4 189.5 203.3 217.0 236.0 257.2 283.0 315.5 358.6 420.5 

5 241.4 259.3 276.8 301.0 327.8 360.8 403.0 459.9 542.9 

6 293.6 316.0 337.4 366.7 399.0 439.0 490.5 560.8 664.8 

7 346.2 373.2 398.8 433.3 471.0 517.8 578.4 661.6 762.8 

8 399.2 430.8 460.8 500.6 543.8 597.2 666.5 761.2 786.0 

9 452.7 488.9 523.4 568.6 617.4 677.3 755.2 762.2 906.2 

10 506.7 547.6 586.6 637.4 691.7 758.2 760.3 862.9 ------ 
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Table 4.4:  Natural frequencies of negative angle (auxetic) constant mass core 

sandwich panels 

Mode # 

-45° 

 

-40° 

 

-35° 

 

-30° 

 

-25° 

 

-20° 

 

-15° 

 

-10° 

 

-5° 

 
1 11.7 14.2 16.8 19.6 22.6 25.7 29.0 33.4 36.3 

2 23.6 28.7 34.0 39.7 45.7 52.0 59.0 68.1 74.2 

3 36.3 43.9 52.2 61.0 70.5 80.6 91.7 106.4 116.2 

4 49.8 60.0 71.2 83.3 96.3 110.3 125.6 145.8 159.0 

5 64.3 77.1 91.3 106.7 123.3 141.2 160.8 186.2 202.5 

6 79.9 95.4 112.5 131.2 151.5 173.2 196.7 227.2 246.4 

7 96.8 114.8 134.9 156.9 180.7 206.2 233.5 268.7 290.7 

8 114.9 135.5 158.4 183.7 210.9 240.1 270.9 310.8 335.4 

9 134.4 157.4 183.2 211.6 242.2 274.8 309.1 353.5 380.7 

10 155.2 180.6 209.2 240.6 274.4 310.4 348.0 396.7 426.6 

The lowest first modal frequency for the regular honeycomb core sandwich panels 

occurs at 43.0 Hz, which is for the +5° mode.  After that, the first natural frequency 

increases as the cell angle increases (becomes more positive) for each of the positive 

angle models.  The lowest first modal frequency for the auxetic core sandwich panels 

occurs at 11.7 Hz, which is for the -45° model.  The first natural frequencies again occur 

later for each auxetic core after that as the cell angle increases (becomes less negative).  

In general, it can be observed that the lower angle models, meaning less positive for the 

regular honeycombs and more negative for the auxetics, have lower overall natural 

frequencies at each of the mode numbers.  That is, as the cell angle increases, the first 

natural frequency increases.  In addition, those models that have lower first natural 

frequencies have subsequent natural frequencies that are lower and the spacing between 

modes is smaller.  This is not necessarily stating that the cell angle is responsible for 
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dictating the behavior of the natural frequency since the geometric parameters are 

interrelated.  It is simply stating the trend between the two with these particular models. 

4.2.2 Mode Shapes 

The mode shapes for the first ten natural frequencies of the positive 30° model are 

also provided for visualization purposes in Figure 4.4.  Other examples of model 

vibration modes can be viewed in the Appendix, but all the models exhibit similar mode 

shapes due to the similar overall structure of the panel.  The first ten modes observed for 

each model are all flexural vibrations, meaning that the two face sheets bend in the same 

direction.  Dilatational vibrations (Figure 4.5), which occur when the face sheets bend in 

opposite directions, are not seen until higher frequencies. 
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Figure 4.4:  Vibration modes for a 30° standard honeycomb core 
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Figure 4.5:  Example of flexural vs. dilatational modes of vibration 

4.2.3 Trends/Observations 

The natural frequency (vibrational mode) of a structure depends on its general 

mass and stiffness properties.  Also, since all of the modes are directly related to the first 

mode, the location and trend of the natural frequencies can be understood by studying the 

occurrence of the first natural frequency of each of the models.  In addition to describing 

the behavior of the subsequent vibrational modes, the first natural frequency also 

describes the extent of the stiffness region in the sound transmission curve, which applies 

to frequencies before the first natural frequency.  Even though the overall stiffness of a 

complex structure depends on several interrelated parameters, an attempt is made to 

determine if any single property in particular stands out as being more significant.  

Scatter plots are created in to visualize the potential effects that each of the effective 

global stiffness properties, which includes effective shear modulus (G12*) and effective 

Young’s modulus in the x (E11*) and y (E22*) directions, have on the first natural 

frequency value.  The plots are shown in Figure 4.6 through 4.8. 
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Figure 4.6:  First natural frequency compared with effective shear modulus 
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Figure 4.7:  First natural frequency compared with effective Young’s modulus (x-

direction) 

 

Figure 4.8:  First natural frequency compared with Young’s modulus (y-direction) 
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In viewing the results, the shear modulus and Young’s modulus in the x-direction 

appear to show logarithmic relationships with the first natural frequency.  For the 

Young’s modulus in the x and y directions, the positive angle models behave differently 

than the negative angled ones.  In fact, for the E11*, the negative and positive angled 

models mirror each other in their behavior.  A sensitivity analysis is performed to study 

the influence that the global effective stiffness properties have on the first natural 

frequency and determine if any can be eliminated from future evaluations.  However, all 

properties seem to have a significant influence and none can be omitted from 

consideration.  This is a result of all the properties being highly interrelated in their effect 

on the overall stiffness of the structure.  However, the shear modulus does show the most 

promise for potentially predicting the behavior based off of a single parameter.  An 

attempt is also made to determine the effects that the geometric parameters, or local 

stiffness properties, have on the response.  However, again due to the interrelated nature 

of the parameters on the global stiffness properties, no generalizations on one single 

property can be made and this area should be explored further. 
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Figure 4.9:  Sensitivity analysis of effective stiffness properties 

The natural frequencies also should give an indication of where there will be dips 

in the sound transmission loss.  This concept is tested and will be discussed in later 

sections.  Based on the results seen in the natural frequency, it is predicted that the 

models with greater internal cell angles (and greater shear moduli) should have sound 

transmission loss dips that are spaced farther apart from each other. 

4.2.4 Natural Frequencies for 2 x 80 Models 

It is important to point out that, while the equations for effective material 

properties are generally accurate, there are situations where they are not exact.  When the 

number of cell rows is small, as is the case in these simulations, the results can be 

changed by the boundary effects of the core structure.  The resulting effect is that two 

different models can have identical calculated effective stiffness properties, but still 
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exhibit differing responses.  To view this effect, the natural frequency is also run on two 

row sandwich plates for some of the angle models.  These models have the exact same 

effective properties as their single row counterparts, but the unit cell size is scaled down 

so that more rows can be included.  The natural frequency results for the 15° increment 

double row models are shown in Table 4.5. 

Table 4.5:  Natural frequencies for selected double row core sandwich plates 

Mode # 

-45° 

 

-30° 

 

-15° 

 

15° 

 

30° 

 

45° 

 
1 10.3 17.4 25.8 45.5 59.3 81.9 

2 20.9 35.0 51.9 91.8 121.2 177.7 

3 32.0 53.4 79.9 143.0 191.2 288.6 

4 43.9 72.38 108.6 194.6 261.4 403.9 

5 56.6 92.1 138.3 247.0 331.9 520.6 

6 70.4 112.7 169.1 300.1 402.1 636.7 

7 85.4 134.3 200.8 354.3 472.5 752.2 

8 101.6 157.0 233.6 409.4 543.1 767.7 

9 119.3 180.8 267.4 465.4 614.0 866.8 

10 138.3 205.8 302.0 522.4 685.2 980.7 

It can be observed that the natural frequencies differ from the frequencies of the 

single row models with identical effective stiffness properties.  This further highlights the 

fact that, while CMT provides a good reference point for comparing models, it does not 

completely account for the effect that the connection points of the faces sheets may have 

on the core properties and some further interpretation is necessary.  The trends of the 2 x 

80 models are consistent with the 1 x 40 models though.  The models with the greater 

internal cell angles have first natural frequencies that are higher.  In addition the models 

with the higher natural frequencies also have a greater spacing between modes. 
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4.3 Sound Transmission Loss Results 

All of the steady state simulations are run and the STL for each of the panels is 

calculated.  As predicted, the dips in the transmission curve correspond with the natural 

frequencies.  Specifically, they align with the odd mode numbers from the natural 

frequencies as shown in Figure 4.10.  At these frequencies, the structure vibrates at 

higher rates and thus more acoustic energy is transmitted.   

 

Figure 4.10:  Positive 30° panel with vibration mode numbers shown 
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the positive angle models, the behavior of the sound transmission loss follows similarly 

with the trends of the natural frequencies.  The first dip occurs at higher frequencies for 

the models with greater internal cell angle (more positive), thus shifting up the resonance 

controlled region and causing greater spacing between dips as predicted. 

 

Figure 4.11:  Sound transmission loss of panels with positive angle cores 
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correspond to the anti-symmetric vibration modes, which start occurring at earlier 

frequencies for models with smaller internal cell angles.  This is especially obvious for 

the -45° model starting at 500 Hz.   

 

Figure 4.12:  Sound transmission loss of panels with negative angle cores 
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4.3.1 Comparison/Discussion 

As previously discussed, the models with increased cellular angles (and higher 

shear modulus) have both higher first natural frequencies and larger spacing between 

dips.  To further highlight this and give a general idea of the range of dip spacing, plots 

quantifying the spacing are shown in Figure 4.13.  For each of the same mass models, the 

spacing between the first and second sound transmission loss dips is measured.  The 

spacing ranges from 24.7 Hz in the -45° model to 215.7 Hz in the +45° model.  If the 

designer wants to isolate a particular frequency and have a large tolerance around that 

frequency, then the models with larger spacing would be more desirable.  This large 

spacing range even with models of the same mass begins to show the flexibility that these 

honeycomb panels offer.  The spacing between the other dips would be approximately the 

same as the first spacing. 
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Figure 4.13:  Varying spacing between dips in the sound transmission loss curve 

For the 2 x 80 model steady-state simulations, not all of the results are presented 

here in this report (see Appendix for all results), but some comparisons are made between 

their 1 x 40 counterparts.  Figure 4.14 shows the results from the +30° single row model 

and the +30° double row model.  These two panels are identical in all of the effective 

stiffness properties studied in this work.  However, while having similar sound 

transmission loss curves, they do deviate from each other after the first dip.  The general 

shape of the dips is the same, but the spacing is different being 143.1 Hz for the 1 x 40 

model and 131.9 Hz for the 2 x 80 model.  A similar observation can be made by looking 

at the results comparison for the 1 x 40 and 2 x 80 models in the -30° configuration. 
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Figure 4.14:  Comparison for 1 x 40 and 2 x 80 models in the  +30° configuration 
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Figure 4.15:  Comparison for the 1 x 40 and 2 x 80 models in the -30° configuration 
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designer.  In order to take into consideration both the number of dips and the width of the 

dips, the area under the curve is calculated as a metric to compare all of the panels.  

Those results are shown in Table 4.6 and split up as stiffness region, resonance region, 

and total values. 

Table 4.6:  Values for area under the sound transmission loss curve for the constant 

mass panels 

Model 

Area Under Curve (dB∙Hz) 

Stiffness 

Region 

Resonance 

Region Total 

-45° 346.7 44081.8 44428.5 

-40° 441.6 44841.6 45283.0 

-35° 543.4 44526.5 45070.0 

-30° 646.3 43574.1 44220.4 

-25° 768.9 44092.9 44862.0 

-20° 892.7 43606.3 44499.0 

-15° 1019.1 42331.5 43350.5 

-10° 1196.6 42738.5 43935.0 

-5° 1337.1 41602.1 42939.0 

5° 1626.5 40401.8 42028.0 

10° 1762.3 39342.1 41104.0 

15° 1891.2 39044.3 40935.5 

20° 2090.1 36859.2 38949.0 

25° 2286.3 35355.8 37642.0 

30° 2649.4 37642.9 40292.3 

35° 2774.8 35874.7 38650.0 

40° 3095.6 37227.9 40324.0 

45° 3434.3 36218.3 39652.6 

It can be seen in the results that, while the positive angle models perform better in 

the stiffness region and have fewer sound transmission loss dips in the resonance region, 

their total values for area under the curve are consistently less than the negative angle 
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models.  This tradeoff should be further explored in future works.  However, currently, it 

is up to the designer to determine which property is more desirable. 

4.3.2 Acoustic Field Pressure Distributions 

In addition to studying the amount of transmitted acoustic energy, the transmitted 

pressure distribution in the acoustic field is also studied graphically.  The direction and 

pattern of the transmitted pressure is of particular interest.  Since the pressure levels vary 

several magnitudes between models, a logarithmic scaled value is needed to compare the 

pressure distributions similar to the sound transmission calculation in previous sections.  

The value used here is the sound pressure level (SPL), which is calculated by Eq. [4.1].  

The SPL describes an effective sound pressure relative to a reference value and the units 

are in decibels (dB).  The sound pressure level is typically the value used to describe the 

magnitude level of a sound. 

 
1020log

ref

p
SPL

p

 
   

 

 [4.1] 

In the equation, pref is the standard reference pressure, which is 20 μPa for air 

[41].  This value is generally considered to be the minimum threshold magnitude for 

human hearing.  The value p refers to the acoustic pressure in Pascals.  For reference 

purposes, the incident sound load is 1 Pa amplitude, which corresponds to an SPL value 

of 94 dB.   

The acoustic field steady state SPL distributions for select models are calculated.  

The pressure values at all of the nodes in the air domain for select frequencies are 
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exported and Matlab 7.10 (R2010a) is used to calculate and plot the sound pressure level.  

The SPL distributions for the positive 30° model and the negative 30° models at 

frequencies of approximately 200 Hz, 500 Hz, and 900 Hz are shown below in Figure 

4.16 and Figure 4.17 respectively.  The frequencies in the figure are selected because 

they corresponded to dips in the sound transmission loss curve to illustrate the higher 

levels of sound transmission. 
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Figure 4.16:  Pressure distribution of positive 30° panel at varying frequencies 
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~200 Hz 

 
~500 Hz 

 
~900 Hz 

 

Figure 4.17:  Pressure distribution of negative 30° panel at varying frequencies 
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One trend observed between both of the models is that the SPL attenuates as 

frequency increases.  For both models, at the low frequency range (~100 Hz), high sound 

pressure levels of greater than 70 dB can be seen up to the extent of the air domain.  At 

the higher frequency range (~900 Hz) for both models, the SPL remains below 50 dB at 

the far end of the air domain.  At this frequency, the high SPL regions are only present in 

close proximity to the transmitted face of the honeycomb panel, with the positive 30° 

panel having a larger high SPL region.  Another observation made is that the negative 

30° model attenuates the sound pressure level more than the positive 30° model.  This 

can be seen at all three frequencies shown in the figure.  For the negative 30° model, the 

distribution patterns are similar to the positive 30° model, but at lower magnitude levels.  

Both models at higher frequencies show a tendency to direct larger magnitudes of 

acoustic pressure to the sides than straight back to the end of the air domain.  

 Sound pressure level distributions are also shown for some non-dip frequencies 

as well in Figure 4.18 to give general view of what the magnitudes look like.  These 

frequencies exhibit similar frequencies to the higher magnitude frequencies in that the 

sound pressure level attenuates at higher frequencies and the negative 30° model 

attenuates more than the positive 30° model. 



 69 

Positive 30°                                 Negative 30° 

 

~300 Hz 

 

 

~600 Hz 

 

~920 Hz 

Figure 4.18:  Transmitted sound pressure level distributions non-dip regions of STL 

curve (constant mass panels) 
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CHAPTER 5:  SOUND TRANSMISSION LOSS FOR CONSTANT SHEAR 

MODULUS AND STRUCTURE SIZE PANELS WITH VARYING CORE 

GEOMETRY 

The second scenario studied includes panels of constant shear modulus and size.  

This is not to say that shear modulus is the only significant property because all of the 

stiffness properties play a role in the response.  However, only one effective property can 

be kept constant at a time.  Further, shear modulus is held constant because, as in the 

previous simulations, it appears that shear modulus has a large effect on the trend of the 

natural frequencies and spacing of the sound transmission loss dips.  In addition, it has 

been identified by previous researchers that the shear of the panel has one of the largest 

effects on the sound transmission loss [35].  The geometries of the core, including the 

thickness, in this study are allowed to vary resulting in varying masses and elastic 

moduli. 

5.1 Model Geometries 

As was the case with the constant mass panels, the overall structure dimensions 

are kept constant.  Also, the models again vary in 5° increments and have the same l and 

h specifications in order to maintain the structure dimensions.  The thickness is adjusted 

to keep a constant shear modulus of 2.00 MPa.  For this study, only the 1 x 40 models are 

analyzed.  The parameters and effective properties of each model are summarized in 

Table 5.1.  Figures 5.1, 5.2, and 5.3 are shown to illustrate how each of the geometric 

parameters changes in relation to changes in internal cell angle under the constant unit 

cell size constraints.  The thickness figure illustrates that the thickness decreases with 
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increasing cell in order to maintain the constant shear modulus of the structure.  This 

means that negative angle models allow for thicker cell walls if constant shear modulus is 

required.  The h and l parameters are identical to the constant mass study as these 

parameters depend only on the unit cell size requirements, which are not changed in this 

study.  
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Table 5.1:  Geometric and effective properties of 1 x 40 constant shear modulus 

honeycomb cores 

Cell 

Angle 

Unit 

Cells 

l 

(mm) 

h 

(mm) 

t 

(mm) 

G12* 

(MPa) 

ρ* 

(kg/m
3
) 

E11* 

(MPa) 

E22* 

(MPa) 

-45° 
 

1 x 40 35.36 68.30 2.35 2.00 408.1 24.2 72.6 

-40° 
 

1 x 40 32.64 64.28 2.21 2.00 357.5 30.9 65.3 

-35° 
 

1 x 40 30.52 60.81 2.09 2.00 317.8 40.1 59.0 

-30° 
 

1 x 40 28.87 57.73 1.99 2.00 285.9 53.3 53.3 

-25° 
 

1 x 40 27.58 54.97 1.89 2.00 259.6 73.9 48.2 

-20° 
 

1 x 40 26.60 52.40 1.80 2.00 237.6 109 43.4 

-15° 
 

1 x 40 25.88 50.00 1.72 2.00 218.7 181 38.9 

-10° 
 

1 x 40 25.39 47.71 1.65 2.00 202.3 372 34.7 

-5° 
 

1 x 40 25.10 45.49 1.57 2.00 187.9 1330 30.6 

5° 
 

1 x 40 25.10 41.11 1.43 2.00 163.3 1010 23.1 

10° 
 

1 x 40 25.39 38.89 1.36 2.00 152.5 211 19.7 

15° 
 

1 x 40 25.88 36.60 1.29 2.00 142.4 76.2 16.4 

20° 
 

1 x 40 26.60 34.20 1.22 2.00 132.8 33.6 13.4 

25° 
 

1 x 40 27.58 31.64 1.14 2.00 123.4 16.2 10.6 

30° 
 

1 x 40 28.87 28.87 1.05 2.00 113.9 8.00 8.00 

35° 
 

1 x 40 30.52 25.80 0.96 2.00 104.1 3.90 5.73 

40° 
 

1 x 40 32.64 22.32 0.86 2.00 93.46 1.79 3.78 

45° 
 

1 x 40 35.36 18.30 0.73 2.00 81.24 0.73 2.18 
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Figure 5.1:  Cell wall thickness at varying cell angles for constant shear modulus 

 

Figure 5.2:  Vertical member height at varying cell angles for constant shear 

modulus 
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Figure 5.3:  Angled member length at varying cell angles for constant shear 

modulus 

5.2 Natural Frequencies 

The natural frequencies are extracted for all models and recorded.  All value 

frequencies are recorded, but again only the first ten are used here for analysis for the 

same reasons specified in the constant mass section.  The results of the positive angle 
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Table 5.2:  Natural frequencies of positive angle constant shear modulus core 

sandwich panels 

Mode # 

5° 

 

10° 

 

15° 

 

20° 

 

25° 

 

30° 

 

35° 

 

40° 

 

45° 

 
1 27.2 26.6 26.4 26.4 26.6 26.9 27.2 27.6 28.2 

2 55.4 54.2 53.5 53.3 53.5 54.0 54.6 55.4 56.4 

3 85.6 83.9 82.5 81.9 81.9 82.4 83.2 84.3 85.8 

4 116.7 114.6 112.6 111.3 111.0 111.3 112.1 113.4 115.3 

5 148.4 146.4 143.9 142.0 141.1 141.0 141.8 143.2 145.3 

6 180.7 179.0 176.3 173.8 172.3 171.8 172.3 173.7 175.9 

7 213.5 212.4 209.7 206.8 204.7 203.7 203.8 205.0 207.3 

8 247.1 246.6 244.1 240.9 238.3 236.7 236.4 237.3 239.5 

9 281.6 281.7 279.5 276.3 273.2 271.0 270.2 270.8 272.7 

10 317.0 317.7 315.9 312.7 309.4 306.7 305.3 305.3 306.9 

Table 5.3:  Natural frequencies of negative angle (auxetic) constant shear modulus 

core sandwich panels 

Mode # 

-45° 

 

-40° 

 

-35° 

 

-30° 

 

-25° 

 

-20° 

 

-15° 

 

-10° 

 

-5° 

 
1 18.2 19.2 20.1 20.9 21.7 22.4 23.4 24.4 26.0 

2 36.6 38.6 40.4 42.1 43.9 45.6 47.6 50.0 53.0 

3 56.1 59.2 62.1 64.8 67.6 70.5 73.9 77.8 82.3 

4 76.1 80.4 84.4 88.4 92.4 96.6 101.5 106.8 112.4 

5 96.8 102.5 107.8 113.1 118.5 124.0 130.2 136.7 143.2 

6 118.5 125.5 132.3 138.9 145.6 152.5 159.9 167.4 174.4 

7 141.1 149.6 157.8 165.8 173.9 182.0 190.5 198.8 206.3 

8 164.7 174.8 184.4 193.9 203.2 212.5 221.9 230.9 238.8 

9 189.4 201.1 212.2 223.0 233.5 243.9 254.1 263.8 272.2 

10 215.1 228.4 241.0 253.1 264.9 276.3 287.3 297.6 306.5 

Between all of the models, the range of the first natural frequency values is small 

compared to the constant mass panels.  The lowest natural frequency is observed for the -

45° model at 18.2 Hz and the highest natural frequency is observed for the +45° model at 

28.2 Hz, a range of only 10 Hz.  There is an even smaller range for just the positive angle 

modes varying only 1.6 Hz between the model with the lowest first natural frequency 
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(15°) and the model with the highest first natural frequency (45°).  This holds for the 

subsequent natural frequencies as well in that there is little variation between the models.  

Even at the tenth mode, the models only differ by 12.4 Hz at most.  The negative angle 

models vary more, but are still similar at the first natural frequency varying at most by 

7.8 Hz.  They begin to separate more as the mode number increases. 

The mode shapes are similar to the first ten constant mass panel mode shapes and 

do not need to be shown again.  Refer to the natural frequency extraction in Chapter 4 if 

necessary. 

5.3 Sound Transmission Loss Results 

Steady state analyses are then performed for the constant shear modulus panels 

using the natural frequencies as input points.  The same previously stated parameters are 

used including six to seven points between each natural frequency and a bias parameter 

of two towards the natural frequency points.  As was the case with the constant mass 

panels, the odd number nodes align with the dips in the sound transmission loss curve. 

This excludes the dilatational modes at the later frequencies, which begin occurring at 

earliest around 700-800 Hz for most of the models.  For clarity, only the results for the 

panels in 15° increments are shown in Figure 5.4 for the positive angle models and 

Figure 5.5 for the negative angle models.  The results for all of the other panels can be 

found in the Appendix. 
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Figure 5.4:  Sound transmission loss for positive angle constant shear modulus 

panels 

It can be observed with the positive angle panels that, like the natural frequencies, 

the first dip aligns identically between the models resulting in a stiffness region that is 

also identical.  The dips in the STL curve continue to be similar for approximately the 

first five resonant frequencies.  After that, they begin to deviate from each other.  There 

are also noticeable differences in the magnitude of the curve that are not present in the 

constant mass study.  For the positive angle models, the lower angle models have higher 

STL magnitudes due to the fact that the lower angle models have more mass.  This 

coincides with what was previously predicted by the mass law in that increased mass 
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should result in higher magnitudes of sound transmission loss.  The difference is subtle 

for the positive angle models, but is more apparent in the negative angle models.   

 

Figure 5.5:  Sound transmission loss for negative angle constant shear modulus 

panels 

The negative angle panels exhibit the same behavior with the first sound 

transmission loss dip and stiffness controlled region.  Each of the panels aligns closely in 

this aspect.  However, after the first sound transmission loss dip, the subsequent dips in 

the curve do not align as closely as the positive angle models.  The difference in 

magnitude between the curves of the models is also more apparent with these models.  
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higher overall masses.  The larger difference in magnitude is due to the fact that there are 
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greater mass differences between the panels than the positive angle models.  Similar to 

the constant mass panels, the dilatational vibration dips appear at earlier frequencies with 

the negative angle model, specifically with the lower angle models.  The first dilatational 

mode is visible in the -45° model at approximately the 700 Hz model. 

5.4 Comparison/Discussion 

Since there are noticeable changes in the magnitude of the sound transmission 

loss in response to the changing mass, this relationship is further illustrated and 

quantified.  For each of the models, a logarithmic trend line is fit through the top points 

along the transmission loss curve, excluding the dips in the curve.  This logarithmic curve 

illustrates the magnitude of the curve and represents the approximate maximum potential 

sound transmission loss at each frequency.  The curve fit process is shown in Figure 5.6. 
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Figure 5.6:  Example of logarithmic curve fit for the magnitude of -30° panel results 

This curve fit is performed on all of the models and the results for the 15° 

increments of both the positive and negative models are shown below in Figure 5.7.  The 

masses of each panel are also shown in the plot for reference.  It can further be seen that 

sound transmission loss magnitude increases with increasing mass.  In the plot, the 

magnitude increases with each model starting with the positive 45° model (14.0 kg) up to 

the negative 45° model (70.7 kg). 
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Figure 5.7:  Logarithmic approximate STL magnitudes for -45°, -30°, -15°, 15°, 30°, 

and 30° panels 

The effects of increasing mass on the STL are compared to the mass law.  Since 

the STL presented in this report is on a different scale than the mass law equation, the 

increases in STL are compared relatively between panels to determine if they trend the 

same.  As stated in Chapter 1, the mass law states that the STL of a panel is: 

 1 120log( ) 42STL fm dB 
 

  [5.1] 
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 2
2 1

1

20log
m

STL STL
m

 
   

   

[5.2] 

Thus, the relative sound transmission loss difference between two panels of 

differing mass should be: 

 2

1

20logdifference

m
STL

m

 
  

 
 [5.3] 

This difference value is calculated for all of the panels using the STL values at 

1000 Hz.  It should be noted that the difference at any frequency should be the same and 

any variation may be due to the degree of inaccuracy in the curve fitting.  The sound 

transmission loss of the positive 45° panel is used as the point of reference since it is the 

lowest mass panel.  The mass law predicted differences and observed differences are 

shown below in Table 5.4. 

Table 5.4:  Mass law predictions for STL difference and observed values 

Panel Mass (kg) Mass Law 

Difference (dB) 

Observed 

Difference (dB) 

% Error 

+45°  41.070 - - - 

+30° 46.731 1.122 1.050 6.42 

+15° 51.669 1.994 1.905 4.46 

-15° 64.880 3.972 4.318 8.71 

-30° 76.515 5.404 5.764 6.66 

-45° 97.684 7.526 8.028 6.67 

The observed values are similar to and exhibit the same trend as the mass law 

predicted values for the relative difference in STL.  At most, the values differed by 

8.71%.  This agreement with the mass law has been shown previously for panels in the 
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mass controlled region but was only just predicted to also be accurate as a general 

magnitude gauge for the resonance region.  These results show this agreement and also 

show that, for honeycomb panels using this model, the relative change in magnitude of 

the STL curve can be accurately predicted by Eq. 5.3 as long as the STL for a reference 

panel has been determined.  For future simulations and forward design with this model, 

the same reference panel (+45°) will be used. 

The area under the curve of the sound transmission results is also calculated as 

was done for the constant mass panels.  This is to capture the effects that both the number 

of dips and width of the dips have on the total sound transmission capability of the panel.  

This represents the performance across all frequencies studied.  It should be noted 

however though that these panels are varying in mass, unlike in the previous study, so 

direct comparison may not be as directly applicable.  The results are summarized in Table 

5.5 and split into results for the stiffness region, resonance region, and total values. 
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Table 5.5:  Values for area under the sound transmission loss curve for the constant 

shear modulus panels 

Model 

Area Under Curve (dB∙Hz) 

Stiffness 

Region 

Resonance 

Region Total 

-45° 633.0 45962.4 46595.4 

-40° 657.4 45029.5 45686.9 

-35° 679.7 44314.4 44994.1 

-30° 700.6 43672.6 44373.2 

-25° 721.2 42981.4 43702.6 

-20° 741.1 42445.3 43186.4 

-15° 767.8 41987.1 42754.9 

-10° 800.6 41292.0 42092.6 

-5° 849.1 40353.2 41202.3 

5° 882.5 39604.0 40486.6 

10° 851.7 39700.7 40552.5 

15° 836.6 39480.7 40287.7 

20° 831.0 39129.0 39960.0 

25° 830.4 38836.9 39667.3 

30° 832.5 38642.5 39442.1 

35° 836.5 38230.1 39066.6 

40° 842.0 37867.1 38709.0 

45° 849.1 37414.3 38216.6 

As was shown by the sound transmission loss curves (and natural frequencies), 

the area under the curve values in the stiffness region are all comparable to each other, 

especially for the positive angle models.  Also, the values in the resonance region and 

total values are highest for the -45° and gradually decrease from model to model down to 

the +45°.  This is most likely due to the increased mass of the negative models and higher 

overall magnitude.  Based on visual observations of the shape of curves and their dips, it 

is believed that the effects of the dip width are not as prevalent for the constant shear 

modulus panels. 
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5.5 Transmitted Acoustic Pressure Distributions 

The transmitted pressure distribution in the acoustic field is also studied 

graphically as was done in the constant mass study.  Observations are made about the 

direction and pattern of the transmitted pressure.  The logarithmic value of sound 

pressure level (SPL) is used to compare different panels at varying frequencies.  The 

pressure values at all of the nodes in the air domain for select frequencies are exported 

and Matlab 7.10 (R2010a) is used to calculate and plot the sound pressure level.  The 

SPL distributions for the positive 30° model and the negative 30° models at frequencies 

of approximately 200 Hz, 500 Hz, and 900 Hz are shown below in Figure 5.8 and Figure 

5.9 respectively.  Again the specific frequencies chosen correspond to dips in the sound 

transmission loss curve, which are points of high sound transmission. 
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~200 Hz 

 
~500 Hz 

 
~900 Hz 

 

Figure 5.8:  Transmitted sound pressure level distributions for positive 30° constant 

shear modulus panel 
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~200 Hz 

 
~500 Hz 

 
~900 Hz 

 

Figure 5.9:  Transmitted sound pressure level distributions for negative 30° constant 

shear modulus panels 
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As was observed in the previous study, the sound pressure levels attenuate more 

as the frequency increases for both models.  At 200 Hz, the SPL was 70 dB throughout 

most of the air domain the models.  At 900 Hz, the SPL level drops to 40-55 dB at the 

outer boundary of the air domain.  Unlike the constant mass panels, there is not as 

noticeable a difference in attenuation between the positive and negative 30° panels.  The 

magnitude of sound pressure level is comparable between the two at each frequency, with 

the positive 30° model having slightly higher levels most likely due to the lower mass of 

the panel. 

The SPL distributions at non-dip frequencies are also shown in Figure 5.10 for 

reference to illustrate what the distribution looks like at lower transmission levels.  

Again, the lower magnitude transmission frequencies exhibit similar behavior to the 

higher magnitude ones. 
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Positive 30°                                  Negative 30° 

  
~300 Hz 

 
  

~600 Hz 

  
~920 Hz 

Figure 5.10:  Transmitted sound pressure level distributions for non-dip regions in 

the sound transmission loss curve (constant shear modulus panels) 
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CHAPTER 6:  HONEYCOMB PANEL DESIGN METHOD TO TARGET ACOUSTIC 

PROPERTIES 

In order to aid the design process for future applications, a design method using 

the model and preliminary results discussed is formalized and detailed in this chapter.  A 

hypothetical test example of an application to a design problem is also presented to show 

how the method can be used to isolate problematic frequencies for a solid aluminum 

sheet in terms of vibro-acoustic properties.   

The design method is summarized by the flow chart in Figure 6.1.  It is grounded 

in the requirement that the two main acoustic responses that can be controlled from this 

work are the magnitude of the sound transmission loss curve at varying frequencies and 

the location of the dips in the sound transmission loss curve, which correspond to high 

levels of sound transmission.  The general algorithm consists of converting design 

requirements to metamaterial parametric requirements, generating honeycomb model 

configurations from those requirements, and then testing those configurations to satisfy 

the additional acoustic requirements.  The end result is a set of designs that satisfy all 

requirements for the application. 
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Figure 6.1:  Flowchart of design method for the design of acoustic honeycomb 

panels 

In this example, a design is sought to replace a 13 mm aluminum panel.  This 

panel is used as a partition for applications in which the primary driving frequencies are 

around 370 Hz and 610 Hz.  This causes high levels of sound transmission due to the fact 

that these coincide with the modal frequencies in the panel, causing relatively little sound 

transmission loss by the panel.  The new panel design must also be made of aluminum 

and must have a comparable general magnitude of STL as the original panel while also 

performing better around these specific frequencies within ±25 Hz.  A lightweight 
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solution is also desired (< 75.5 kg) even as the panel structurally must still retain an 

elastic modulus of 40 MPa in the y-direction.  These requirements are summarized 

below:  

Frequencies of interest:  369 Hz & 609 Hz 

Tolerance =  ±25 Hz 

Approximate STL Magnitude:  ≥ 47.3 dB (at 500 Hz)  *General trend 

m ≤ 75.5 kg 

E22* ≥  40 MPa 

6.1 Generate Unit Cell Geometries 

It is important to first translate the given requirements into localized metamaterial 

requirements.  This can first be done with the geometric parameters of the unit cell 

(excluding thickness), which can all be determined based on the size requirements of the 

structure.  The number of cells in the x and y directions must first be determined.  For the 

sake of consistency, this example uses the 1 x 40 configuration that was used in previous 

chapters, but any configurations may be used.  The Lx and Ly unit cell dimensions can 

then be calculated from the length (Lstructure) and height (Hstructure) as follows: 

 
structure

h

L
Lx

N
  [6.1] 

 
structure

y

v

H
L

N
    [6.2] 

For this example, the Lx dimension is 0.05 m and the Ly dimension is 0.0866 m.  

With these known values, the unit cell parameters h and l can be calculated for each of 
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internal cell angle (θ) increments using Equations 2.1 and 2.2.  This example uses 15° 

incremented models, but this method is not limited to those increment sizes.  Smaller 

increments of 5° would provide more design choices and if this tool were automated, then 

this method would not be constrained to preset increments.  For illustrative purposes, 

though, 15° increments are adequate.  The calculated configurations and their parameters 

are shown in Table 6.1. 

Table 6.1:  Sizing parameters to fit structure size requirements 

Cell 

Angle 

Unit 

Cells 

l 

(mm) 

h 

(mm) 

-45° 
 

1 x 40 35.36 68.30 

-30° 
 

1 x 40 28.87 57.73 

-15° 
 

1 x 40 25.88 50.00 

15° 
 

1 x 40 25.88 36.60 

30° 
 

1 x 40 28.87 28.87 

45° 
 

1 x 40 35.36 18.30 

6.2 Calculate Mass Range 

The next step in the design algorithm is to determine the upper and lower bounds 

of the panel mass.  The upper bound mass limit can be directly extracted from the given 

requirements.  Typically, since it is desirable to keep the panel lightweight, which is a 

desirable property of many honeycomb structures, a constraint on the weight is given for 

the design problem.  This example requires that the mass be no greater than 75.5 kg, or an 

effective core density of 280 kg/m
3
 without the face sheets.  The lower bound mass limit 
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is extracted from the minimum sound transmission loss specified in the requirements.  

This mass can be calculated by deriving from Equation [5.2]: 

 2 1

1
( )

20
2 110

STL STL

m m


    [6.3] 

Using the same reference mass (41.070 kg), the reference STL at the specified 

frequency, and the minimum STL stated by the requirements at that frequency, the 

minimum mass of the structure can be calculated: 

 

1
(47.3 42.647)

20
2 (41.070)*10m



  

2 70.174m   

 

This mass, after subtracting out the mass of the face sheets, is 43.174 kg, 

corresponding to an approximate effective core density of 250 kg/m
3
. 

6.3 Determine Feasible Models 

The last local metamaterial requirement to be determined is the cell wall 

thickness.  For each of the model configurations, the upper and lower bounds for mass 

can be translated to wall thickness values using the equation for effective density 

(Equation 2.6) and provide a starting point for the thickness bounds.  These thickness 

bounds, shown in Table 6.2, can be further refined using the structural requirements 

stated.   

  
 

2 cos sin*

2

hl
l

t
h

l

 







 

  [6.4] 
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Table 6.2:  Cell wall thickness ranges for each configuration 

Cell 

Angle 

Cell Wall Thickness 

Range (mm) 

-45° 
 

1.44 < t < 1.80 

-30° 
 

1.74 < t < 1.94 

-15° 
 

1.97 < t < 2.21 

15° 
 

2.27 < t < 2.54 

30° 
 

2.32 < t < 2.59 

45° 
 

2.25 < t < 2.52 

The structural requirement could be any of the effective stiffness properties such 

as E11*, E22*, or G12*.  It could also include properties such as the Poisson’s ratios (ν12* 

and v21*).  In this example, the structural constraint is on the elastic modulus in the y-

direction (E22*).  Again, using the CMT equations for effective modulus, the lower 

thickness bound can be further refined, eliminating more potential designs.  The results of 

this refinement are shown in Table 6.3.  For the -15°, +15°, +30°, and +45° models, this 

does not affect the thickness range as all of these in the mass range satisfy the E22* 

constraint.  However, there are no configurations of cell wall thickness for the -45° model 

that satisfied the constraint and the lower bound for the -30° model must be adjusted. 
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Table 6.3:  Refined thickness ranges based on elastic modulus requirement 

Cell 

Angle 

Cell Wall Thickness 

Range (mm) 

-45° 
 

No feasible designs 

-30° 
 

1.85 < t < 1.94 

-15° 
 

1.97 < t < 2.21 

15° 
 

2.27 < t < 2.54 

30° 
 

2.32 < t < 2.59 

45° 
 

2.25 < t < 2.52 

After this refinement, the full set of feasible designs that satisfy the initial 

metamaterials requirements has been determined.  Each of designs consists of a set of 

honeycomb unit cell parameters in 15° increments along with a thickness range that 

allows the models to satisfy the mass and structural constraints.  Thickness increments of 

0.05 mm are used in this example, but like the internal cellular angle increments, this 

method need not be limited to these increments if this algorithm were automated.  Thirty 

designs in total are analyzed here.  The next step after this is to perform a natural 

frequency extraction using ABAQUS 6.10. 

6.4 Natural Frequency Extraction 

Using the finite element model laid out in Chapter 3, a natural frequency analysis 

is performed on all thirty of the designs.  The range for the natural frequency extraction 

only needs to be large enough to ensure that all of the frequencies of interest plus their 
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tolerances are captured.  The frequency range in this example is 1-750 Hz.  The results 

from all of the models analyzed are shown in the Appendix.  However, only the models 

that satisfy the requirements are discussed in the following sections. 

6.5 Determine Models that Satisfy Tolerances 

The particular frequencies of concern are the odd numbered modes.  It needs to be 

determined which models have odd numbered modes that are spaced at least the specified 

tolerance (± 25 Hz) distance away from the frequencies of interest, 309 Hz and 609 Hz.  

All models that have odd numbered modes inside this frequency plus tolerance range are 

eliminated from consideration.  This is done using the natural frequency results for all 

thirty designs, eliminating all but twelve.  This approach is illustrated in Figure 6.2 and 

the properties of the final twelve designs are shown in Table 6.4. 
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Figure 6.2:  Odd numbered modes for designs that satisfy the frequency tolerances 
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Table 6.4:  Final twelve design solutions and their geometric and effective properties 

ID 

Cell  

Angle 

l 

(mm) 

h 

(mm) 

t 

(mm) 

G12* 

(MPa) 

ρ* 

(kg/m
3
) 

E11* 

(MPa) 

E22* 

(MPa) 

9 -15° 25.88 50.00 2.206 4.20 280.00 379.1 81.7 

14 15° 25.88 36.60 2.450 13.6 269.99 519.1 111.8 

15 15° 25.88 36.60 2.500 14.5 275.50 551.5 118.8 

16 15° 25.88 36.60 2.541 15.2 280.00 579.0 124.7 

18 30° 28.87 28.87 2.350 22.1 253.80 88.5 88.5 

24 45° 35.36 18.30 2.252 58.3 250.00 21.2 63.6 

25 45° 35.36 18.30 2.300 62.1 255.31 22.6 67.7 

26 45° 35.36 18.30 2.350 66.2 260.86 24.1 72.2 

27 45° 35.36 18.30 2.400 70.5 266.41 25.6 76.9 

28 45° 35.36 18.30 2.450 75.0 271.96 27.3 81.8 

29 45° 35.36 18.30 2.500 79.7 277.51 29.0 87.0 

30 45° 35.36 18.30 2.522 81.9 280.00 29.8 89.3 

None of the -30° models satisfy the frequency and tolerance requirements and 

thus are eliminated from consideration and design #9 (θ = -15°, t = 2.206 mm) is the only 

negative cell angle model to satisfy the requirements.  All of the +45° models satisfy the 

requirements.  These models have the largest spacing between odd modes and the highest 

shear moduli, consistent with the previous studies.   

6.6 Steady State Analysis 

The next step, after the models that satisfy all the requirements have been 

determined, is to perform the steady state analysis.  This validates the magnitude and 

frequency results and shows what the shape of the sound transmission loss curve looks 

like to aid in the selection of a model.  The same steady state procedure outlined in 

Chapter 3 is used.  The steady state results for some of the final design solutions 
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previously discussed are shown below in Figure 6.3.  The other designs are located in the 

Appendix. 

 

Figure 6.3:  STL comparison for design 9 vs. aluminum plate 
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Figure 6.4:  STL comparison for design 16 vs. aluminum plate 

 

Figure 6.5:  STL comparison for design 18 vs. aluminum plate 
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Figure 6.6:  STL Comparison for design 25 vs. aluminum plate 

It should be noted that some of these designs do not exactly meet the magnitude 
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just to estimate a general trend of what the magnitude should be. 
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At this point in the design algorithm, several designs have already been 

determined to satisfy all of the provided requirements.  All of these are valid design 

solutions, but now the designer determines which model is the preferred solution 

depending on the application and additional desirable properties.  Some of the properties 

that should potentially be considered, in no particular order, are: 

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

ST
L 

(d
B

) 

Frequency (Hz) 

13 mm Aluminum Plate

Design 25



 103 

 Mass – Of the valid design solutions, higher mass means even higher levels of 

sound transmission loss which would be desirable if the application called for 

the highest STL possible.  On the contrary, the application may call for lighter 

panels and so the lower mass pass panels would be more desirable at the 

expense of higher transmission loss. 

 Manufacturability – While the solution may satisfy the specified requirements, 

it may not be feasible to actually produce the design.  Most metal honeycombs 

are made by pressing sheet metal into a half-hexagonal profile and then gluing 

the corrugated sheets together as shown Figure 6.7 [5].  The available sheet 

thicknesses, which correspond to cellular wall thickness, can further limit the 

feasible design solutions 

  

 

Figure 6.7:  Manufacturing process for metal honeycombs using glued together 

corrugated sheets [42] 
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 Shape of STL Curve – As seen in the Chapter 4, the shape of the curves and 

specifically the dips changes from model to model.  One curve may have a 

larger spacing between dips but may not have as consistently high of a sound 

transmission loss level between those dips as a model with smaller dip 

spacing.  The area under the curve metric can be used to evaluate this.  An 

example is shown Figure 6.8, where design 9 has a smaller spacing, but 

performs better between that spacing than design 16. 

 

Figure 6.8:  Differing STL curve shapes between designs 

 Additional Structural Properties – In this example, the elastic modulus in the 

y-direction was the prime structural constraint.  However, the other effective 

structural properties (E11*, G12*, ν12*, or v21*) could be used to justify the 

selection of one of the panels over the others. 

These are just a few possible characteristics that could be used in the final design 

selection process.  Other factors could be considered such as thermal, fatigue, or even 
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dynamic properties of the panel.  The design method presented in this report only 

provides the possible designs that satisfy the requirements provided to it.  It is up to the 

discretion of the designer to make the selection of the appropriate solution as seen fit. 

This method should be used as a tool to effectively generate multiple solutions to 

meet requirements for acoustic applications.  It takes a set of design requirements, 

translates them in to parametric metamaterials requirements, and analyzes potential 

configurations to test for satisfaction of the original requirements.  If this algorithm were 

automated, then it could generate solutions quickly and efficiently with minimal input 

from the designer. 
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CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 

In this work, the acoustic properties of in-plane honeycomb sandwich panels were 

studied.  A finite element model on ABAQUS 6.10 was developed and is documented in 

detail in Chapter 3.  This same model was used for the analysis of honeycomb panels to 

determine significant properties in regards to sound transmission.  Varying honeycomb 

cellular geometries were tested for the core layer in the sandwich panel to study the 

geometric effects on the acoustic response so that they can be better used in forward 

design.  From this work, several major conclusions can be drawn to aid the designer and 

will be the focus of future work. 

The results from the constant panel mass study are discussed in Chapter 4.  

Eighteen aluminum sandwich panels, with varying honeycomb core configurations of 

internal cell angles ranging from -45° to +45°, were studied.  The natural frequencies 

were extracted from these panels, analyzed for trends, and then correlated to the steady 

state analyses that followed.  From the natural frequency results, the shear modulus of the 

core had the most prevalent trend with the effect on where the first natural frequency 

occurs and how far the natural frequencies are spaced apart.  The steady state analyses 

then presented the results in the form of sound transmission loss.  It was observed that 

increasing the internal cell angle, and thus increasing the effective shear modulus of the 

core, caused the dips in the sound transmission loss curve (odd numbered natural 

frequencies) to occur later in the frequency range and be spaced further apart as predicted 

by the natural frequency extraction.  The sound pressure levels were also studied and it 

was seen that larger frequency incident sounds displayed more attenuation.  Also, in 
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general, the negative 30° model displayed more attenuation of SPL magnitude than the 

positive 30° at varying comparable driving frequencies. 

The results from the constant shear modulus panel study are discussed in Chapter 

5.  The same procedure as the constant mass study was used, only this time holding the 

shear modulus of the core constant between honeycomb configurations that varied in cell 

angle between -45° and +45°.  Based on the previous study, it was predicted that the 

different panels would have similar natural frequencies and consequently similar dips in 

the sound transmission loss curve due to their constant shear modulus.  In general, this 

was true in that there was less variation from model to model than in the constant mass 

case, especially for the negative angle cores.  However, there was still some variation, 

with more evident variation in the positive angle cores.  This illustrates that while the 

shear properties of the panel play a large role, there are other interrelated stiffness 

properties that affect the response.  Also observed was that the general magnitude, which 

was a logarithmic trend, varied between models due to the changing mass of the panels.  

This variation was quantified and was consistent with mass law.  The SPL distribution 

was also studied and the same trends were seen as in the constant mass case.  Higher 

frequencies attenuate more and the negative 30° model attenuated sound pressure more 

than the positive 30° model, although not as noticeable as in the constant mass study. 

A systematic design method that employs the model from Chapter 3 and the 

results from Chapter 4 and 5 is presented in Chapter 6.  The method is capable of taking a 

set of size, acoustic, and structural requirements and generating multiple solutions that 

satisfy these requirements.  The method was demonstrated on a hypothetical test design 
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example and was successfully able to generate twelve different models that isolated the 

frequencies of interest, 369 Hz and 609 Hz, at the desired STL level while still satisfying 

constraints for mass and elastic modulus.  The method shows the flexibility of 

honeycomb metamaterials in that they can be adjusted to create many different acoustic 

responses. 

7.1 Other Geometric Parameters 

While this work studies the effects of several geometric parameters such as 

vertical member height, angle member length, and internal cell angle, there are additional 

parameters that can be further studied.  Cellular parameters such as number of cells in the 

x and y directions, as opposed to simply scaling like was done in this work, and unit cell 

orientations should be tested.  With the unit cell, only one orientation is presented out of 

several different ways to orient the honeycomb unit cell studied in other works (Figure 

7.1).  These should be tested to determine if they exhibit significantly different properties 

than the unit cell in this work. 

 

Figure 7.1:  Varying types of honeycomb unit cell orientations 
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7.2 Experimental Validation 

The finite model presented in this thesis was validated by showing consistent 

results with previously published work.  However, as with any analysis model, the results 

need to be verified experimentally to show that the computer model accurately predicts 

what will be seen in real use case scenarios.  Experimental testing can help to show that 

the results are consistent and can also determine to what degree the finite element model 

results should be scaled.  Since a specific definition of sound transmission loss was given 

for this model due to the discrete nature of output results, it is necessary to translate the 

results of this work into the real world definition of sound transmission loss through some 

type of scaling factor.  Students within CEDAR (Clemson Engineering Design 

Applications & Research) are currently working to develop experimental testing 

equipment to test the acoustic performance of different honeycomb models. 

The setup of the acoustic testing apparatus is similar to layout of other works by 

Ford et al. [21] and Smolenski & Krokosky [22], only scaled down due to test sample 

size limitations.  The layout is shown in Figure 7.2 and the major components include a 

speaker box and an enclosed anechoic space with a rigid wall separating the two spaces.  

The honeycomb sandwich panel is secured in the middle of the rigid wall and 

microphones are placed on both the incident and transmitted sides of the panel.  The 

speakers are driven by a control source that is capable of producing and sustaining an 

acoustic signal at a specific frequency. 
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Figure 7.2:  Layout of acoustic testing equipment 

A graphic of the actual built setup is also shown for reference below in Figure 7.3.  

The apparatus is still in development at the moment and subject to modifications.  The 

overall construction of the enclosure is made out of 1/2” medium density fiberboard and 

the entire interior space is lined with 3” acoustic foam.  The source sound is generated by 

a wide frequency range 3” TB speaker and 25W amplifier.  The transmitted sound is 

recorded by a Dayton EMM-6 microphone.  The driving frequency signal is controlled by 

a Matlab based code, which also process the signal from the microphone.   
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Figure 7.3:  Experimental test apparatus developed for testing honeycomb samples 

 Some issues will have to be addressed with this specific setup.  First, the setup is 

a scaled down version of the model presented in this report.  Care must be taken to ensure 

that the experimental setup is accurately scaled in order to compare results.  Second, the 

sample is printed on an Objet 3D printer due to limitations on manufacturing custom 

honeycomb panels.  The printer produces plastic models (Figure 7.4) and plastic is not a 

linear material.  It will exhibit damping characteristics not present in the finite element 

model.  The FEM must be properly adjusted to account for these nonlinear material 

properties.  Finally, the boundary conditions may have to be adjusted in the FEM to 

match those in the experimental setup.  Currently, the model uses pinned boundary 
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conditions for the honeycomb panel but the experimental setup more closely resembles 

simply supported conditions. 

 

Figure 7.4:  Plastic honeycomb sandwich panel sample used for testing 

7.3 Automated Design Tool 

In this thesis work, a design method is presented along with a general process for 

how it can be used in forward design.  Automation of this process was out of the scope of 

this work and therefore was not done.  However, this process could be potentially 

automated to be an even more powerful tool, which has been done in previous works 

[3,4].  Due to the changing mesh size and the need to specify loading surfaces and output 

sets, it was difficult in this work to automate the analysis.  However, the honeycomb 

geometric parameters, part model sketches, and general analysis setup could be 

automated.  After that, only a small amount of manual input would be required to specify 

the remaining analysis parameters.  This automation would help to save time in future 

works with the model. 

7.4 Alternative Core Topologies 

The core topologies studied in this work include standard honeycomb and auxetic 

configurations.  These structures were chosen due to familiarity from previous work and 
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due to predefined effective mechanical properties as laid out by Gibson and Ashby [5].  

However, this same analysis model and procedure could be applied to alternative core 

topologies such as chiral honeycombs [6], hybrid and accordion honeycombs [43], and 

bristle structures [3,44].  Examples of a tetrachiral and accordion core are shown in  

Figure 7.5. 

 

Figure 7.5:  Examples of a chiral honeycomb panel (left) and a zero Poisson’s ratio 

honeycomb panel (right) 

One of the major differences with using different topologies is that certain 

effective properties may need to be determined ahead of time either computationally or 

experimentally.  There may not be a pre-existing set of equations that describe these 

properties such as the CMT equations for honeycomb effective density, shear modulus, 

and elastic modulus.  These core configurations could be an area of exploration for future 

works. 
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7.5 Induced Frequencies 

Another area for future work is to study the induced frequencies that are 

generated by honeycomb panels.  This is property that would be useful for the designing 

panels that change or transform the incident sound.  Specifically, the panel could emit a 

sound different from the driving sound frequency by inducing another frequency that 

masks the original sound.  This work begins to explore some properties related to these 

potential induced frequencies with the natural frequency extraction.  By definition, these 

natural frequencies are the frequencies at which the structure will tend to vibrate at when 

set into motion.  The natural frequencies that would be more prevalent in an emitted 

sound would be the ones corresponding to the STL dips.  Analysis of the induced 

frequency could be performed using a dynamic model as opposed to the steady-state 

procedure described in this thesis report.  The output sound results could be processed 

using a fast Fourier transform as shown below in Figure 7.6. 

 

Figure 7.6:  Sample dynamic induced frequency results with fft 
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Appendix A.  ABAQUS Details for Finite Element Model 

This section describes all of the necessary modeling parameters needed to recreate 

the finite element model described in Chapter 3 and used in the subsequent chapters.  

Each of models are generated and analyzed in ABAQUS 6.10.  All simulations are run on 

a Dell Precision T7400 computer with dual quad core 2.00 GHz Intel Xeon processors, 

allotting 6 of the cores for use.  Table A- 1 describes the parameters for the natural 

frequency extraction and Table A- 2 describes the setup for the steady state analysis. 

Table A- 1:  Analysis/Modeling details for natural frequency extraction 

Simulation Type Frequency 

Part Type 
Honeycomb   

2D, deformable (wire) 

Section Details 

Beam 

Section Integration During Analysis 

Material:  Aluminum, Section Poisson’s ratio:  0.33 

Temperature Variation Linear by Gradients 

All other default settings 

Profiles 

Boundary Profile:  a = 1, b = 0.0025 

 

Core Profile:  a = 1, b = 0.0025 ( for +30°, changes between models) 

Material 

Properties 

Aluminum, ρ = 2700 kg/m
3
, E = 71 GPa, ν = 0.33, Elastic 

Element Type 
B22:  Standard, Quadratic Geometric Order, All other default 

settings 

Sets created 
Honeycomb Ends (geometry): the nodes along the sides of the 

honeycomb panel 

Boundary 

Conditions  

Displacement/Rotation: Applied to Honeycomb Ends, U1=U2= 0 

 

Step Details 
Frequency Extraction: Lanczos, 1-1000 Hz,  

All other default settings 

Field Output 

Request 

F-Output-1:  All default outputs for frequency step 
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Table A- 2:  Analysis/Modeling details for steady state analysis 

Simulation Type Steady-state dynamics, Direct 

Part Type 

Honeycomb   
2D, deformable (wire) 

 

Air Fluid  

2D, deformable (shell) 

Section Details 

Honeycomb   

Beam 

Section Integration During Analysis 

Material:  Aluminum, Section Poisson’s ratio:  0.33 

Temperature Variation Linear by Gradients 

All other default settings 

 

Air Fluid   

Solid, Homogenous 

Material: Air, Plane Stress/Strain Thickness = 1 

Profiles 

Boundary Profile:  a = 1, b = 0.0025 

 

Core Profile:  a = 1, b = 0.0025 ( for +30°, changes between 

models) 

Material Properties 

Honeycomb   
Aluminum, ρ = 2700 kg/m

3
, E = 71 GPa, ν = 0.33, Elastic 

 

Air Fluid 

Air, ρ = 1.2 kg/m
3
, κ = 1.01E5, Acoustic Medium 

Element Type 

Honeycomb 

B22:  Standard, Quadratic Geometric Order, All other default 

settings 

 

Air Fluid   
AC2D3:  Standard, Acoustic, Linear Geometric Order, All 

other default settings 

Partitions 
Air Fluid 

Vertically through the middle of the air domain 

Sets created 

Honeycomb Ends (geometry): the nodes along the sides of the 

honeycomb panel 

Air Bottom Interface (nodes):  The nodes along the bottom of 

the air fluid in contact with the honeycomb structure 
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Surfaces 

Honeycomb  

Bottom:  Bottom side of bottom honeycomb panel face sheet 

Top:  Top side of top honeycomb panel face sheet 

 

Air Fluid 

Bottom:  Bottom side of air domain 

Boundary Conditions  

Pinned:  Displacement/Rotation - Applied to Honeycomb Ends, 

U1=U2= 0 

 

Loads 

Pressure Load:  Applied to surface Honeycomb Bottom 

Distribution:  Uniform 

Magnitude:  1 + 0i 

Amplitude:  Instantaneous 

Constraints 
Tie: Master Surface = Honeycomb Top 

Slave Surface = Air Fluid Bottom 

Step Details 

Steady State: Compute complex response, Linear 

Input modal frequencies into data, 6 Points, Bias =2 

All other default settings 

History Output 

Request  

H-Output-1: POR, on set Air Bottom Interface, Interval: 200 

 

Field Output Request F-Output-1: POR, on Whole Model, Interval: 20 

Interactions 

Absorbing Boundary: 

Type:  Acoustic Impedance 

Step:  Steady State 

Surface:  Back of air domain 

Nonreflecting Definition 

Circular (r = 2) Nonreflecting Type 
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Appendix B.  Extended Results from Simulations 

In the report, only the results of the 15° incremented models were discussed.  This 

section shows the results from all other models that were tested in Chapters 4, 5, and 6. 

B.1.  Vibration Modes 

This section presents the vibrations modes for the negative 30° panel, which is not 

discussed in the main body this report, which only includes the positive 30° model 

figures.  The overall macro behavior between the two panels is this same, which is why 

the negative 30° panel is excluded in the main body.  However, the results are shown here 

for visualization purposes so that the deformation behavior of the core can be observed 

for an auxetics model.  The first ten modes are shown in Figure B- 1. 
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Figure B- 1:  First ten vibration modes of Negative 30° Model 

B.2.  Constant Mass Results 

The results for the negative angle constant mass panels not discussed in the 

reported are shown below in this section of the appendix.  The negative 40° and 45° 
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models are shown in Figure B- 2, the negative 25° and 20° models are shown in Figure 

B- 2, and the negative 10° and 5° models are shown in Figure B- 4. 

 

Figure B- 2:  STL results for the -40° and -35° constant mass panels 
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Figure B- 3:  STL results for the -25° and -20° constant mass panels 

 

Figure B- 4:  STL results for the -10° and -5° constant mass panels 
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The results for the positive angle constant mass panels not discussed in the 

reported are shown below in this section of the appendix.  The positive 5° and 10° models 

are shown in Figure B- 5, the positive 20° and 25° models are shown in Figure B- 6, and 

the positive 35° and 40° models are shown in Figure B- 7. 

 

Figure B- 5:  STL results for the +5° and +10° constant mass panels 
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Figure B- 6:  STL results for the +20° and +25° constant mass panels 

 

Figure B- 7:  STL results for the +35° and +40° constant mass panels 
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B.3.  Constant Shear Modulus Results 

The results for the negative angle constant shear modulus panels not discussed in 

the reported are shown below in this section of the appendix.  The negative 40° and 45° 

models are shown in Figure B- 8, the negative 25° and 20° models are shown in Figure 

B- 9, and the negative 10° and 5° models are shown in Figure B- 10. 

 

Figure B- 8:  STL results for the -40° and -35° constant shear modulus panels 
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Figure B- 9:  STL results for the -25° and -20° constant shear modulus panels 

 

Figure B- 10:  STL results for the -10° and -5° constant shear modulus panels 
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The results for the positive angle constant shear modulus panels not discussed in 

the reported are shown below in this section of the appendix.  The positive 5° and 10° 

models are shown in Figure B- 11, the positive 20° and 25° models are shown in Figure 

B- 12, and the positive 35° and 40° models are shown in Figure B- 13. 

 

Figure B- 11:  STL results for the +5° and +10° constant shear modulus panels 
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Figure B- 12:  STL results for the +20° and +25° constant shear modulus panels 

 

Figure B- 13:  STL results for the +35° and +40° constant shear modulus panels 
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B.4.  Design Example Results 

The odd mode results for all designs in the design chapter are presented here in 

Figure B- 14.  In the figure, the designs which do not meet the given requirements can be 

observed.  These designs show an odd mode within the specified frequency tolerance 

range.  In the main body of the report, only the designs that satisfy the requirements are 

shown. 
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Figure B- 14:  Odd modes for all designs 
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Appendix C.  Analysis and Processing Codes 

This chapter of the Appendix presents the various input files and script codes that 

were used throughout the analysis procedure in ABAQUS as well as the post-processing 

that was done in Matlab. 

C.1.  ABAQUS Input Files 

 This section shows the ABAQUS input file that was used for the natural 

frequency extraction procedure.  The specific file being shown is for the positive 30° 

model, but the same structure was used for all models.  Specific node and element selects 

have been omitted for length purposes. 

*Heading 

** Job name: pos30_Modal Model name: Model-1 

** Generated by: Abaqus/CAE 6.10-EF1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name="Positive 30 - 1 Row" 

*Node 

[all nodes for honeycomb specified here, omitted for space] 

*Element, type=B22 

[all elements for honeycomb specified here, omitted for space] 

*Nset, nset=_PickedSet11, internal, generate 

 [picked nodes specified, omitted for space] 

*Elset, elset=_PickedSet11, internal, generate 

[picked elements specified, omitted for space] 

*Nset, nset=Ends 

[“Ends” set nodes specified here, omitted for space] 

*Elset, elset=Ends 

[“Ends” set elements specified here, omitted for space] 

*Nset, nset=Core 

[“Core” set nodes specified here, omitted for space] 

*Elset, elset=Core 

[“Core” set elements specified here, omitted for space] 

*Nset, nset=Boundary 

[“Boundary” set nodes specified here, omitted for space] 

*Elset, elset=Boundary 

[“Boundary” set nodes specified here, omitted for space] 

** Section: Boundary Section  Profile: Boundary Profile 
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*Beam Section, elset=Boundary, material=Aluminum, poisson = 0.33, 

temperature=GRADIENTS, section=RECT 

1., 0.0025 

0.,0.,-1. 

** Section: Core Section  Profile: Core Profile 

*Beam Section, elset=Core, material=Aluminum, poisson = 0.33, 

temperature=GRADIENTS, section=RECT 

1., 0.0025 

0.,0.,-1. 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name="Positive 30 - 1 Row-1", part="Positive 30 - 1 Row" 

*End Instance 

**   

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=Aluminum 

*Density 

2700., 

*Elastic 

 7.1e+10, 0.3 

**  

** PHYSICAL CONSTANTS 

**  

*Acoustic Wave Formulation 

** ---------------------------------------------------------------- 

**  

** STEP: Frequency Extraction 

**  

*Step, name="Frequency Extraction", perturbation 

*Frequency, eigensolver=Lanczos, acoustic coupling=on, 

normalization=displacement 

, 1., 750., , ,  

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Displacement/Rotation 

*Boundary 

"Positive 30 - 1 Row-1".Ends, 1, 1 

"Positive 30 - 1 Row-1".Ends, 2, 2 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  
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*Output, field, variable=PRESELECT 

*End Step 

 

This section shows the ABAQUS input file that was used for the steady state 

analysis procedure.  The specific file being shown is for the positive 30° model, but the 

same structure was used for all models.  Specific node and element selects have been 

omitted for length purposes. 

*Heading 

** Job name: p30 Model name: Model-1 

** Generated by: Abaqus/CAE 6.10-EF1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Air 

*Node 

[all nodes for air specified here, omitted for space] 

*Element, type=AC2D3 

[all elements for air specified here, omitted for space] 

*Nset, nset=_PickedSet10, internal, generate 

 [picked nodes specified, omitted for space] 

*Elset, elset=_PickedSet10, internal, generate 

[picked elements specified, omitted for space] 

*Nset, nset="Air Bottom Interface" 

[“Air Bottom Interface” set nodes specified here, omitted for 

space] 

*Elset, elset="Air Bottom Interface" 

[“Air Bottom Interface” set elements specified here, omitted for 

space] 

*Elset, elset=_Bottom_S2, internal 

 [internal element set related to surface, omitted for space] 

*Elset, elset=_Bottom_S1, internal 

 [internal element set related to surface, omitted for space] 

*Elset, elset=_Bottom_S3, internal 

 [internal element set related to surface, omitted for space] 

*Surface, type=ELEMENT, name=Bottom 

_Bottom_S2, S2 

_Bottom_S1, S1 

_Bottom_S3, S3 

** Section: Air 

*Solid Section, elset=_PickedSet10, material=Air 

1., 

*End Part 

** 

*Part, name="Positive 30 - 1 Row" 

*Node 

[all nodes for honeycomb specified here, omitted for space] 
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*Element, type=B22 

[all elements for honeycomb specified here, omitted for space] 

*Nset, nset=_PickedSet11, internal, generate 

 [picked nodes specified, omitted for space] 

*Elset, elset=_PickedSet11, internal, generate 

[picked elements specified, omitted for space] 

*Nset, nset=Ends 

[“Ends” set nodes specified here, omitted for space] 

*Elset, elset=Ends 

[“Ends” set elements specified here, omitted for space] 

*Nset, nset=Core 

[“Core” set nodes specified here, omitted for space] 

*Elset, elset=Core 

[“Core” set elements specified here, omitted for space] 

*Nset, nset=Boundary 

[“Boundary” set nodes specified here, omitted for space] 

*Elset, elset=Boundary 

[“Boundary” set nodes specified here, omitted for space] 

*Elset, elset=_Top_SPOS, internal 

 [internal element set related to surface, omitted for space] 

*Surface, type=ELEMENT, name=Top 

_Top_SPOS, SPOS 

*Elset, elset=_Bottom_SNEG, internal, generate 

 

*Surface, type=ELEMENT, name=Bottom 

_Bottom_SNEG, SNEG 

** Section: Boundary Section  Profile: Boundary Profile 

*Beam Section, elset=Boundary, material=Aluminum, poisson = 0.33, 

temperature=GRADIENTS, section=RECT 

1., 0.0025 

0.,0.,-1. 

** Section: Core Section  Profile: Core Profile 

*Beam Section, elset=Core, material=Aluminum, poisson = 0.33, 

temperature=GRADIENTS, section=RECT 

1., 0.0025 

0.,0.,-1. 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Air-1, part=Air 

          0.,     0.086603,           0. 

*End Instance 

**   

*Instance, name="Positive 30 - 1 Row-1", part="Positive 30 - 1 Row" 

*End Instance 

**   

*Elset, elset=__PickedSurf84_S1, internal, instance=Air-1 

 [internal element set related to surface, omitted for space] 

*Elset, elset=__PickedSurf84_S3, internal, instance=Air-1 

 [internal element set related to surface, omitted for space] 
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*Elset, elset=__PickedSurf84_S2, internal, instance=Air-1 

 [internal element set related to surface, omitted for space] 

*Surface, type=ELEMENT, name=_PickedSurf84, internal 

__PickedSurf84_S1, S1 

__PickedSurf84_S3, S3 

__PickedSurf84_S2, S2 

** Constraint: Tie Air to Honeycomb 

*Tie, name="Tie Air to Honeycomb", adjust=yes 

Air-1.Bottom, "Positive 30 - 1 Row-1".Top 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=Air 

*Acoustic Medium 

141179., 

*Density 

 1.2, 

*Material, name=Aluminum 

*Density 

2700., 

*Elastic 

 7.1e+10, 0.3 

**  

** PHYSICAL CONSTANTS 

**  

*Acoustic Wave Formulation 

** ---------------------------------------------------------------- 

**  

** STEP: Steady State 

**  

*Step, name="Steady State", perturbation 

*Steady State Dynamics, direct, frequency scale=LINEAR, friction 

damping=NO 

1., 62.7895, 6, 2. 

62.7895, 129.747, 6, 2. 

129.747, 205.871, 6, 2. 

205.871, 282.965, 6, 2. 

282.965, 360.806, 6, 2. 

360.806, 438.976, 6, 2. 

438.976, 517.776, 6, 2. 

517.776, 597.185, 6, 2. 

597.185, 677.321, 6, 2. 

677.321, 758.155, 6, 2. 

758.155, 760.195, 6, 2. 

760.195, 839.719, 6, 2. 

839.719, 921.979, 6, 2. 

921.979, 1000., 6, 2. 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Pin Type: Displacement/Rotation 

*Boundary, real 

"Positive 30 - 1 Row-1".Ends, 1, 1 
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"Positive 30 - 1 Row-1".Ends, 2, 2 

*Boundary, imaginary 

"Positive 30 - 1 Row-1".Ends, 1, 1 

"Positive 30 - 1 Row-1".Ends, 2, 2 

**  

** LOADS 

**  

** Name: Pressure Load   Type: Pressure 

*Dsload, real 

"Positive 30 - 1 Row-1".Bottom, P, 1. 

**  

** INTERACTIONS 

**  

** Interaction: Absorbing Boundary 

*Simpedance, nonreflecting=CIRCULAR 

_PickedSurf84, 2. 

**  

** OUTPUT REQUESTS 

**  

**  

** FIELD OUTPUT: F-Output-2 

**  

*Output, field 

*Node Output 

A, CF, POR, RF, U, V 

*Element Output, directions=YES 

LE, S 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history 

*Node Output, nset=Air-1."Air Bottom Interface" 

POR,  

*End Step 

C.2.  Matlab SPL Distribution Generation Code 

This section presents the Matlab code that was used to generate the sound 

pressure level distributions that were seen in Chapters 4 and 5.  The code pulls from data 

text files of the pressure results that were manually generated in a report from ABAQUS. 

load Pressure_G_neg30_920Hz.dat 

load Nodes.dat 

  

X = Nodes(:,2); 

Y = Nodes(:,3); 

P = Pressure_G_neg30_920Hz(:,2); 

  

SPL = 20 *log10(P/20E-6); 
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tri = delaunay (X,Y); 

[r,c] = size(tri); 

  

figure('units','inches','position',[5 5 6 2.5]) 

trisurf ( tri, X, Y,SPL, 'FaceColor', 'interp', ... 

           'EdgeColor', 'interp' ) 

        

view([0 90]) 

axis off 

caxis([40,70]) 

h = colorbar; 

ylabel(h, 'SPL (dB)'); 

whitebg('w') 
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