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Abstract 

As the dimensions of commonly used semiconductor devices have shrunk into nanometer 

regime, it is recognized that the influence of quantum effects on their electrostatic and transport 

properties cannot be ignored. In the past few decades, various computational models and 

approaches have been developed to analyze these properties in nanostructures and devices. 

Among these computational models, the Schrödinger-Poisson model has been widely adopted 

for quantum mechanical electrostatic and transport analysis of nanostructures and devices such 

as quantum wires, metal–oxide–semiconductor field effect transistors (MOSFETs) and 

nanoelectromechanical systems (NEMS). The numerical results allow for evaluations of the 

electrical properties such as charge concentration and potential profile in these structures. The 

emergence of MOSFETs with multiple gates, such as Trigates, FinFETs and Pi-gates, offers a 

superior electrostatic control of devices by the gates, which can be therefore used to reduce the 

short channel effects within those devices. Full 2-D electrostatic and transport analysis enables a 

better understanding of the scalability of devices, geometric effects on the potential and charge 

distribution, and transport characteristics of the transistors. The Schrödinger-Poisson model is 

attractive due to its simplicity and straightforward implementation by using standard numerical 

methods. However, as it is required to solve a generalized eigenvalue problem generated from 

the discretization of the Schrödinger equation, the computational cost of the analysis increases 

quickly when the system’s degrees of freedom (DOFs) increase. For this reason, techniques that 

enable an efficient solution of discretized Schrödinger equation in multidimensional domains 

are desirable. 

In this work, we seek to accelerate the numerical solution of the Schrödinger equation 

by using a component mode synthesis (CMS) approach. In the CMS approach, a nanostructure 
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is divided into a set of substructures or components and the eigenvalues (energy levels) and 

eigenvectors (wave functions) are computed first for all the substructures. The computed wave 

functions are then combined with constraint or attachment modes to construct a transformation 

matrix. By using the transformation matrix, a reduced-order system of the Schrödinger equation 

is obtained for the entire nanostructure. The global energy levels and wave functions can be 

obtained with the reduced-order system. Through an iteration procedure between the 

Schrödinger and Poisson equations, a self-consistent solution for charge concentration and 

potential profile can be obtained. In this work, the CMS approach is applied to compute the 

electrostatic and transport properties of a set of semiconductor devices including a quantum 

wire and several multiple-gate MOSFETs. It is demonstrated that the CMS approach greatly 

reduces the computational cost while giving accurate results. 
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Chapter 1 Introduction 

 

1.1 Nanoscale Structures, Devices and Materials 

Over the past 30 years, the die size of Intel transistors has decreased from 3 micrometers (Intel 

8086) down to currently 32 (Sandy Bridge) and 22 nanometers (Ivy Bridge) [1]. This reduction 

in size has allowed the number of transistors to increase from 29,000 in 1978 to over a billion 

currently. This drastic increase in the number of transistors is correlated with a drastic increase in 

computing power. Currently, complimentary metal-on-oxide semiconductor (CMOS) technology 

is preferred due to the low power consumption property in which the CMOS only consumes 

power when the inputs are being switched [2]. In general, a transistor can be thought of as a 

switch. A CMOS can be made from 2 complimentary metal-oxide-semiconductor field effect 

transistors (MOSFETs), as shown in Figure 1-1. For n-MOS transistors, an input signal (“Vin” in 

Figure 1-1) of a “1” (high voltage) indicates the “on” state whereas for the p-MOS, an input 

signal of a “0” (low voltage) indicates the “on” state. When the n-MOS is on, the p-MOS is off, 

limiting the current from Vdd (power supply) to “Vout”. Likewise, when the p-MOS is on, the n-

MOS is off, limiting the current from “Vout” to the ground. As such, very little power is 

consumed since current flow is blocked during the majority of the operation. The only time 

power is consumed is when both n-MOS and p-MOS are on when the input switches from high 

to low or vice versa.  
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Figure 1-1: CMOS made from an n-type and a p-type MOSFET 

 Another class of emerging nanoscale devices is nanoelectromechanical systems (NEMS).  

NEMS are electromechanical systems with submicron critical dimensions. NEMS have the 

potential to offer superior solutions to many areas including communications, information 

technology, medical, mechanical, and aerospace technologies as they can attain fundamental 

frequencies in the microwave range, mechanical quality factors in the tens of thousands, force 

sensitivities at the attonewton level, active masses in the femtogram range, mass sensitivity at the 

level of individual molecules, heat capacities far below a yoctocalorie, etc [3]. Although NEMS 

can be designed using a variety of materials including silicon, silicon carbide, single and 

multiwall carbon nanotubes, and other materials, silicon is one of the most actively investigated 

materials for many nanotechnology applications because of its technological importance. High 

performance NEMS such as nanoswitches [4] and nanoresonators [5] have been fabricated and 

demonstrated recently as shown in Figure 1-2. Such NEM devices provide tremendous 

opportunities and enable potential applications in mass memory storage, high-frequency 

electrical switches, and mass or force sensors. 
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Figure 1-2: Nanoelectromechanical Systems (NEMS). Left: a nanoswitch [4]. Right: an ultra-

high frequency nanoresonator [5]. 

 

 Parallel to the development of nanodevices, in the past decade, synthesis and processing 

techniques have been developed to create nanostructured materials with highly controlled 

material composition, structures and related physical properties [6-8]. Examples of the 

engineered nanostructures include nanotubes, quantum dots, superlattices, thin films and 

nanocomposites. Nanocomposites are composite materials which incorporate nanosized particles 

[9] or contain fibers with at least one dimension in the nano-scale [10]. In general, a 

nanocomposite can be regarded as a solid combining a bulk matrix and nano-scale phases. The 

phases can be nanoparticles, nanowires, nanoplatelets and etc. The addition of nanosized phases 

into the bulk matrix can lead to significantly different material properties compared to their 

macrocomposite counterparts, which include mechanical strength [11,12], toughness, optical 

properties, electrical conductivity and thermal conductivity [13]. Because of these extraordinary 

properties, nanocomposites promise new applications in many fields such as ultra-high strength 

and ultra-light automotive parts [14], nonlinear optics, biomedical applications [15,16], sensors 
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and actuators [17,18], and thermoelectric devices [19,20]. Figure 1-3 shows two examples of 

nanostructured materials in sensing and thermoelectric energy conversion applications. 

     

Figure 1-3: Nanostructured materials. Left: nanostructured microsensor [18]. Nanocomposite 

thermoelectric material [20]. 

 

 Many of the applications of nanodevices and nanostructured materials described above 

are enabled, controlled or facilitated by electrical signals. Design and characterization of such 

devices and materials can be accelerated by using efficient computational tools that incorporate 

accurate physical models. Modeling and simulation is essential to experimenting with new state-

of-the-art devices to determine feasibility for production. In essence, new techniques in modeling 

and simulation are required to pace with the development of the advent of new technologies. 

While various design and simulation tools are available for larger electronic devices and 

materials (critical dimension > 100 nm), they cannot be used for devices with nanoscale features. 

This is due to the “nano effects” such as defect, surface and quantum effects in nanostructures 

and nanomaterials. Among these “nano effects”, quantum effects are especially important for the 

development of nanoelectronic devices and materials. The quantum effects arise from the need to 

treat carriers as waves whereas the classical Boltzmann transport equations (BTE) treated 

carriers as particles: tunneling, interference and a varying electric field become important issues 
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to consider when modeling such small devices [21]. Quantum effects become significant or even 

dominant when the critical size of the device is less than 20 nm, leading to a very different 

behavior of electrons in these devices. For example, the electron charge distribution is 

significantly altered in NEMS switches when the thickness of the NEM switch is comparable to 

the quantum depletion length [3]. In nanocomposite thermoelectric materials, quantum 

confinement of the electrons in nanoparticles has a significant influence on the electrical 

conductivity, and consequently the energy conversion efficiency, of the materials [22].  

Therefore, quantum effects must be taken into account in the electronic modeling of nanoscale 

structures, materials and devices.   

1.2 Quantum Mechanical Electrostatic and Transport Models  

Various computational models and approaches have been developed to include the quantum 

effects in the analysis of nanostructures. Early models include the charge control and Gummel-

Poon models for bipolar junction transistors (BJTs) [23]. These models serve to predict circuit 

equivalent models of the transistors. In effect, these models approximate the current at the 

collector, base and emitter based on a common gain. The equations of the currents were obtained 

from the transport model for BJTs. The advantage of these models is that they are easy to 

implement and quick calculations can be done to evaluate certain voltage and current parameters. 

However, these models work well when the transistor size is relatively large. The models fail to 

incorporate quantum effects that result from the size reduction mentioned above. In addition, 

these models only focus on currents and voltage ratios at known junctions. 
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1.2.1 Schrödinger-Poisson Model for Electrostatic Analysis 

The use of the Schrödinger-Poisson iteration method has been demonstrated to model the 

quantum mechanical electrostatic behavior of semiconductor devices such as nanoscale 

MOSFET [24,25], quantum dots [26] and NEMS [3]. The Schrödinger equation, an eigenvalue 

problem, is solved to obtain the eigenenergies and wave functions of the system. For most 

applications, the lowest eigenenergies and corresponding wave functions are kept for the 

subsequent charge density calculations since they have the greatest impact on the charge 

distribution. The eigenenergies and wave functions obtained from the Schrödinger equation are 

used in the Fermi-Dirac calculation to find charge densities. The charge densities are then used in 

the Poisson equation to compute the electrical potential in the computational domain. The 

potential is then used in the Schrödinger equation to get an updated set of eigenenergies and 

wave functions. This process continues until a converged self-consistent solution is found for the 

potential or charge density.  The effective mass Schrödinger equation is in the form of: 

     
  

   
 

    

   
 

  

   
 

    

   
 

  

   
 

    

   
  (     )        (1-1) 

where H is the Hamiltonian operator,     is the wave function, En is the eigenenergy,   is the 

reduced Planck constant,   
 ,   

  and   
  are the effective masses in x-, y- and z-directions, 

respectively, U is the potential energy, Vh is the step potential energy at material hetero-

junctions, e is the electron charge, and   is the potential in the domain obtained from the Poisson 

equation, which is given by 

  (   )        ( )   ( )     
    

   (1-2) 
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where    is the dielectric permittivity, q is the magnitude of the electron charge, n and p are the 

electron and hole density, respectively, and   
  and   

  are the ionized donor and acceptor 

concentration, respectively. As both the Schrödinger and Poisson equations are second order 

partial differential equations (PDEs), standard numerical methods such as the finite difference 

method (FDM) and finite element method (FEM) can be employed straightforwardly to obtain 

the eigenenergies, wave functions, charge densities and potential. In both FDM and FEM, the 

computational domain is first discretized into a set of grid points or elements. The governing 

equations are then discretized over the grid points and elements. One clear advantage to the FDM 

or FEM is the use of a common discretization for both Schrödinger and Poisson equations, 

resulting in an efficient computation process. Numerical results obtained can be used to evaluate 

the complete charge density and potential profile of the device, which is another advantage over 

the Gummel-Poon and charge control models which only find voltages at certain specified 

locations. 

1.3.2 Schrödinger Poisson Model for Electron Transport Analysis 

The electrostatic Schrödinger-Poisson iteration method assumes the electrostatic equilibrium in 

the device and ignores the contributions from the current carrying leads of the structure. In other 

words, the aforementioned method is a closed boundary method computing the standing waves 

in the device, ignoring the solutions that extend to the input and output current carrying leads. To 

model both the current carrying states that are comprised of solutions in a device region and the 

current carrying lead region, a quantum transmitting boundary formulation was proposed 

[27,28]. In essence the quantum transmitting boundary method (QTBM) can be thought of as an 

extension of the Schrödinger-Poisson method with traveling plane wave open boundary 
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conditions applied at the leads. In the QTBM, the standing wave solution is decomposed into 

“sine” and “cosine” modes. The Schrödinger equation must be solved twice, once for the 

standing waves and once for the traveling waves. The charge density is calculated by using the 

traveling wave functions and the standing wave eigenenergies. The Poisson equation remains the 

same, with slight modifications when charge neutrality conditions are considered. 

1.3.3 Nonequilibrium Green’s Function Method for Electron Transport Analysis  

Another popular formulation for numerical electron transport analysis is the nonequilibrium 

Green’s function approach (NEGF) [29,30]. Like QTBM, NEGF approach is capable of 

modeling ballistic transport of electrons in nanostructures. In NEGF, as opposed to the 

Schrödinger-Poisson approach, Green’s function, which is a response of the system to a given 

perturbation, must be calculated. In addition, instead of coping with the open boundary 

conditions, a self-energy matrix is introduced in the NEGF. By composing the Hamiltonian for 

the entire system, the electron density and current density can be obtained. The expression of the 

nonequilibrium Green’s function is given by [30]: 

 ( )        ̃(   )           (1-3) 

where G is the Green’s function matrix,  ̃ is the reduced Hamiltonian, E is the energy, I is the 

identity matrix,           are the source and drain contact self-energy matrix, respectively. 

Once the Green’s function is computed for the device, the potential and charge distribution can 

be calculated from the Green’s function. More details of the method can be found in Ref. [29, 

30]. Advantages of NEGF include the ability to model open boundary conditions and eliminating 

the need of solving an eigensystem. The NEGF method has been demonstrated to accurately 
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simulate the behavior of double-gate MOSFETs [29]. However a major disadvantage to NEGF is 

the fact that it is computationally intensive, even though it does not solve an eigenvalue problem. 

In the NEGF method, many intermediate parameters have to be calculated and many linear 

systems have to be solved before the charge density and potential in the device can be obtained. 

For devices with large degrees of freedom (DOFs), solving for Green's function can be a tedious 

and computationally intensive process. 

1.3.4 Atomistic Models 

When the size of nanodevices reduces further, effective mass approximation of the Hamiltonian 

may not be valid anymore. Atomistic models are necessary in this case for accurate description 

of the electron behavior. A popular atomistic model that incorporates the electronic structure of 

atoms is called the tight binding model [31,32]. The Hamiltonian governing the atomic motions 

for    atoms can be written as [31]: 

  ∑
  

 

  
 

 ∑⟨  |   |  ⟩

 

           (1-4) 

where the first term is the kinetic energy of the ions, the second term is the electronic potential 

energy by summing the eigenvalues of n eigenstates from Hamiltonian    ,      is the repulsive 

potential between ions and    is an energy shift per atom. The tight binding matrix elements are 

typically constructed from a linear combination of the overlapping atomic orbitals on 

neighboring atoms [32]. The disadvantage of the tight binding model lies that the model 

parameters need to be fitted empirically to experimental results. Therefore, the reliability of the 

model is limited to physical situations which are similar to the experimental conditions under 

which the parameters were fitted. In addition, the model is typically constructed for interactions 
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between nearest neighbors only. Care must be taken when the range of interaction between the 

atoms becomes large. 

 A type of lower level atomistic modeling methods is the so-called Ab initio methods, 

typically based on Kohn-Sham density functional theory [33]. Starting with the Schrödinger 

equation for N non-interacting particles with an effective potential     ( ): 

(
  

  
       ( ))  ( )      ( ) (1-5) 

where    is the energy eigenvalue associated with eigenfunction    ( ). The density can be 

found as: 

 ( )  ∑|  ( )|
 

 

   

 (1-6) 

Since the effective potential is not known in most cases, for a given external potential  ( ), the 

following equation can be used to solve for effective potential: 

    ( )   ( )    ( )     ( ) (1-7) 

where  ( ) is the electrostatic potential and    ( ) is the exchange-correlation potential given 

by, respectively,  

 ( )    ∫   
 (  )

|    |
 (1-8) 

and  
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   ( )  
    

  ( )
 (1-9) 

In general,     is obtained through a local density approximation and thus     ( )  can be 

obtained from a given external potential  ( ). Ab initio models are generally considered as the 

most accurate approaches that are available for device simulations. However, a major 

disadvantage for this method is the computational cost for a large number of atoms. As such, the 

method is limited to small systems of several hundred atoms. Recently, however, new methods 

have been proposed to handle large systems, with the number of operations that scale linear with 

the size of the system [34]. 

1.4 Motivation of CMS based Approaches 

The goal of this research is to develop numerical methods that can accurately and efficiently 

model the electronic behavior of nanoscale semiconductor devices such as quantum wells and 

MOSFETs. Among the quantum mechanical models briefly described above, the Schrödinger-

Poisson model has its unique advantages. As a continuum model, it can describe the quantum 

mechanical behavior of electrons in nanostructures with dimensions ranging from several 

nanometers to several hundred nanometers. Standard numerical methods such as the finite 

element method can be used to implement the model straightforwardly, enabling the simulation 

of multi-dimensional devices with complex geometric features. These characteristics make the 

Schrödinger-Poisson model suitable for the computational analysis of quantum wells and 

MOSFETs. However, numerical solution of the Schrödinger-Poisson model can be expensive 

when the degrees of freedom (DOF) of the system are large. The main computational cost occurs 

in solving the discretized Schrödinger equation which is an eigenvalue problem with its 
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dimension equal to the DOF of the system. Depending on the numerical method employed, the 

computation cost of solving the eigenvalue problem is in the order of n
2
logn ~ n

3
, where n is the 

DOF of the system. Therefore, reducing the computational cost of solving the Schrödinger 

equation can largely accelerate the simulation process of nanodevices. 

 In this research, we propose a component mode synthesis (CMS) approach to reduce the 

computational cost of the numerical solution of the Schrödinger equation. CMS was originally 

developed as a modal order reduction method in solving large mechanical systems [35-37]. In 

the mechanical analysis using CMS, the large mechanical system is discretized into components 

and the component modes are calculated individually. A small set of component modes were 

retrained to construct a set of Ritz basis vectors. In this work, the CMS approach is extended in 

the Schrödinger-Poisson quantum mechanical electrostatic and transport analysis where a set of 

basis vectors are constructed to approximate the wave functions in each component. The global 

energy levels and wave functions are then recovered by the synthesis of these component wave 

functions. Different from mechanical analysis where only a few vibrational modes are sufficient 

to model the dynamic response, in some cases, it is necessary to calculate many energy levels 

and wave functions in order to compute the charge concentrations accurately. In addition to 

reducing the dimensions of the system, the procedure is fairly simple to implement. In addition, 

the accuracy can be tuned by adjusting the number of modes retained. If all modes are kept, the 

CMS solution is exactly the same as the solution obtained by solving the full eigensystem. This 

characteristic can be used to verify the correctness of the CMS implementation. The reduction of 

computational cost is crucial as the solution of the Schrödinger equation is present in both the 

electrostatic and electron transport analyses. In this thesis, the CMS approach is applied to 
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compute the electrostatic and transport properties of a set of semiconductor devices including a 

quantum wire and several multiple-gate MOSFETs.  

 The rest of the thesis is organized as follows. Chapter 2 describes the CMS approach for 

solving the Schrödinger equation; the self-consistent numerical solution of Schrödinger-Poisson 

equations for electrostatic analysis is presented in Chapter. 3; the CMS based Quantum 

Transmitting Boundary Method (QTBM) for electron transport analysis is presented in Chapter 

4; and Chapter 5 presents the conclusions. 
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Chapter 2 Component Mode Synthesis (CMS) Approach for Solving 

the Schrödinger Equation 

 

2.1 Effective Mass Schrödinger Equation and Its Finite Element Formulation 

As discussed in Chapter 1, the 3-D Schrödinger equation is given by 

     
  

   
 

    

   
 

  

   
 

    

   
 

  

   
 

    

   
  (     )        (2-1) 

where H is the Hamiltonian, U is the potential energy,   
        

  are the effective electron or 

hole mass in the x- and y-direction, respectively,    and    are the eigenpairs to be solved 

where n denotes the n-th of eigenstates.    is the energy difference at the heterojunction due to 

the band offset caused by two different materials. For many practical devices, the Schrödinger 

equation can be simplified to its 2-D version, i.e., the solution of the Schrödinger equation does 

not vary in the z-direction. This approximation can be justified due to the geometry of a quantum 

well, a 2-D device. For the MOSFET, this approximation is also valid since the cross-section of 

the MOSFET does not change in the z-direction. The 2-D Schrödinger equation can be written as 

     
  

   
 

    

   
 

  

   
 

    

   
  (     )        (2-2) 

 We employ the finite element method (FEM) to solve the 2-D Schrödinger equation. The 

process of FEA involves the transformation of the governing equation into an integral (weak) 

form. The domain is subsequently discretized into elements. On each element, the weak form 

equation is approximated by using the finite element shape functions to form local matrices and 
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vectors. The integrals in the integral equation are then evaluated through Gaussian quadrature 

[38]. Afterwards, the local matrices and vectors are then assembled into a global system of 

equations to be solved using a linear solver. The weak form of the Schrödinger equation, derived 

by Galerkin’s method of weighted residuals, is given as:  

 ∫     
  

 
 (      )   ̂

 

 

 ∫
  

 
 (    )     (   )   

 

∫  (   )(    )(  )    
 

 

(2-3) 

where  ̂ is the unit normal vector to the surface (or domain boundary)  . In electrostatic analysis, 

the wave functions are zero on the boundary of the device.  Therefore, the first boundary term 

∫    
 

 equals to zero since       on the closed boundary. The diagonal inverse effective 

mass matrix     is defined for each element as 

    [
    

  
     

 ] (2-4) 

In our implementation, 4-node linear quadrilateral elements are used to discretize the device 

domain. Within each element, the unknown wave function and its variation are approximated as  

             [

   

   

   

   

]                               [

    

    

    

    

] (2-5) 

Their derivatives are then given by 



16 
 

     

[
 
 
 
   

  

   

  

   

  

   

  
   

  

   

  

   

  

   

  ]
 
 
 

[

   

   

   

   

]            

[
 
 
 
   

  

   

  

   

  

   

  
   

  

   

  

   

  

   

  ]
 
 
 

[

    

    

    

    

] (2-6) 

where                 are the shape functions.  An arbitrary quadrilateral element is mapped 

onto a square master element as shown in Figure 2-1. The shape functions are defined on the 

master element as: 
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(   )(   ) (2-7) 
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(   )(   ) (2-8) 

 

Figure 2-1: An example of isoparametric mapping of 4-node linear quadrilateral elements. 

The derivatives of the shape functions defined on the master element are mapped to arbitrary 

quadrilateral element as 

[
   

  
  
   

  
 ]  [

   

  
  
   

  
 ]                           (2-9) 
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where J is the Jacobian matrix given by  
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  ]
 
 
 
 

 (2-10) 

Substituting the approximations given in Eqs. (2-5, 2-6) into the weak form, Eq. (2-3), it can be 

shown that the weak form can be written as the following matrix form for each element: 
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] (2-11) 

where matrix    represents the second term in Eq. (2-3),    and    make up the third term in 

Eq. (2-3). The expressions of the element matrices       and    are 
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where the term det( ), which can be thought of as an area scaling factor between an element and 

the master element, is the determinant of the Jacobian matrix given in Eq. (2-10). After all the 

element matrices are obtained, the global matrices are then constructed through the standard 

finite element assembly process. The global system is then obtained as  

(   )         (2-15) 

Eq. (2-15) is a generalized eigenvalue problem which can be solved by using standard solvers. 

2.2 CMS Method 

The general CMS process is composed of four basic steps: discretization of the domain into a 

discrete number of components, the composition of component basis vectors, the coupling of the 

components to form a DOF-reduced global system, the solution of the reduced global system 

assembled to produce the global wave functions. Figure 2-2 shows an example to illustrate the 

procedure. The meshed device domain is first decomposed into a set of components. Each 

component contains a number of elements. The portions of the component boundary are 

categorized into domain boundary or component interface. The eigenvalue problem obtained 

from the Schrödinger equation is solved in each component. As component DOF is typically 

much less than the global DOF, the computational cost is small to solve the component 

eigenvalue problems. Once the component wave functions (or component modes) are calculated, 

the wave functions in the components are then “synthesized” to produce the global wave 

functions. The obtained global wave functions and energy levels are used in the calculation of 

charge density in electrostatic or electron transport analysis, as shown in Figure 2-2. 
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Figure 2-2: Schematic of the component mode synthesis approach for solving the Schrödinger 

equation. 

 

For each component obtained from the domain decomposition as shown in Figure 2-2, the 

eigenvalue problem can be denoted as [39] 

(       )                                   (2-16) 
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where superscript j denotes the component number and m is the total number of components.    

can be assembled from    and    as described in Section 2.1 while    can be assembled from 

   given in Eq. (2-14). In an electrostatic analysis, the wave function ψ is zero on the domain 

boundary. As such, the degrees of freedom (DOF) associated with the wave functions on the 

global boundary can be neglected and discarded. These wave function DOFs are deleted in the 

implementation. The wave function DOFs in each component, excluding the deleted global 

boundary DOFs, are separated into attachment and interior parts. By definition, the attachment 

part contains the wave function DOFs on interface edges which are shared by different 

components. The interior part contains the wave function DOFs associated with the interior 

nodes of the component. Note that, in the implementation of this categorization of the DOFs, the 

global boundary type takes precedence over the attachment type. For example, if a node is both 

on the global boundary and an interface edge, it is treated as a global boundary node. The 

attachment and interior DOFs are denoted by subscripts “a” and “i”, respectively. With respect to 

the attachment and interior DOFs, Eq. (2-16) can be partitioned as 
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] (2-17) 

The attachment DOFs are then fixed such that   
    and thus the following equation is 

obtained from Eq. (2-17): 

(   
       

 
)  

 
   (2-18) 

From Eq. (2-18), the eigenpairs (     
 
) can be computed for a component j. In CMS, a small set 

of eigenpairs are retained corresponding to the lowest energies from Eq. (2-18) and assembled 
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into a component modal matrix  ̂ 
 
. Our implementation uses both the maximum number of 

eigenpairs possible and the option of a set value. The option of having the maximum number of 

retained eigenpairs is included for implementation verification. In device simulations, however, 

it is not necessary to include all eigenpairs but rather a small set with respect to the total number 

of interior DOFs to achieve sufficient accuracy. The component modal matrix is given by 

 ̂ 
 
  [   

 
   

 
    

 ] (2-19) 

where k is the number of retained eigenvectors/wave functions. Note that the number k is much 

less than the number of total interior nodes present in a given component. Subsequently, a 

constraint modal matrix is obtained by applying      in the component and enforcing a unit 

wave function along the attachment DOFs in Eq. (2-17), i.e. 
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] [
  

 

  
]  [

 

  
 ] (2-20) 

where each column of the identity matrix    is used to enforce wave function with unit 

magnitude at the corresponding attachment DOF while the wave functions of  the other 

attachment node DOF is fixed to zero.   
 
 is the resulting boundary reaction at the attachment 

DOFs. As such, the expression for the constraint modal matrix   
 
 associated with the interior 

DOFs can be obtained by 

  
 
  (   

 
)     

 
 (2-21) 

Once the matrices  ̂ 
 
   

 
 are obtained, the component wave functions can then be calculated by  
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(2-22) 

where n is the total component DOFs, and r is the sum of the retained components and 

attachments DOFs.           are the identity and zero matrices associated with the 

corresponding attachment node, respectively. The vector [
  

 

  
 
]  is the generalized coordinate 

vector. Eq. (2-22) can be written in short form as 

         (2-23) 

 where    is referred to as the transformation matrix of component j. Eq. (2-23) shows that the 

wave functions of component j can be approximated as a linear combination of the column 

vectors of    with the elements of vector    as the coefficients. In other words, the column 

vectors of    serve as the basis vectors of component j. Furthermore, since k<< interior DOFs, 

r<<n. This reduction of modes enables CMS to greatly reduce the computational cost of 

calculating both component and global wave functions. On the other hand, this reduction of 

modes introduces an approximation error as well. The solution is only an approximation since 

only k eigenpairs are retained. The solution is exact only when the number of retained eigenpairs 

is equal to the total number of interior DOFs. Substituting Eq. (2-23) into Eq. (2-18), we obtain 

(       )       (2-24) 

Multiplying by the transpose of    to both side of Eq. (2-24) gives 

(  )
 
(       )       (2-25) 
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Eq. (2-25) can be written in short form as  

( ̅     ̅ )     (2-26) 

where 

 ̅  (  )
 
                              ̅  (  )

 
      (2-27) 

are the reduced matrices for component j. Subsequently, the matrices are assembled into a global 

modal system via the standard finite element assembly process to find the solution of  ̂: 

( ̂    ̂) ̂    (2-28) 

where  ̂ and  ̂ represent the global matrices assembled from of  ̅  and  ̅ , respectively. The 

global wave functions can be recovered by 

   ̂ ̂ (2-29) 

where  ̂ represents the global assembled transformation matrix of the assembled T
j
 matrices. 

 The fixed-interface CMS approach has several advantages. First of all, the approach has a 

relatively simple procedure for computing the basis vectors used in the transformation matrix. 

Additionally, the approach has a straightforward implementation of coupling of components to 

form the global modal system. Finally, the approach produces high accuracy in the computation 

of the low eigenvalues and the corresponding eigenvectors. 
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2.3 Numerical Results  

The first numerical example shown in this section is the solution of the Schrödinger equation for 

a double-gate MOSFET.  The dimensions and physical properties of the MOSFET are shown in 

Figure 2-3. As will be discussed in Chapter 4, the Schrödinger equation is to be solved over the 

device domain for “cosine” and “sine” modes. The “cosine” and “sine” modes differ in their 

boundary conditions. For the “sine” mode, the current carrying lead nodes are assigned a 

Dirichlet boundary condition while the same nodes on the leads are assigned a natural boundary 

condition for the “cosine” mode. In this section, the CMS solutions of the Schrödinger equation 

are compared to the direct solutions of the full eigensystem. The device domain is discretized 

into 40 by 10 elements. In the CMS solution, the mesh is further decomposed into 4 by 5 

components with 10 by 2 elements in each component. The first 5 eigenpairs are retained in each 

component. Table 2-1 shows the comparison of the eigenenergies obtained from the direct and 

CMS approaches. Figure 2-4 shows the comparison of the “cosine” mode wave functions 

obtained by using the direct and CMS approaches. It should be noted that wave functions shown 

are calculated in the first iteration of device simulation, with initial condition of 0V on the 

domain. 

 

Figure 2-3: Computational domain of a double gate MOSFET. 
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Table 2-1: Comparison of eigenenergies obtained from the CMS and direct approaches 

Direct Esin (eV) CMS Esin (eV) Direct Ecos (eV) CMS Ecos (eV) 

0.157682733371887 0.157927834442041 0.157330723099336 0.157544761897325 

0.160599364355327 0.161060945206333 0.159276642767386 0.159597734177530 

0.165480343803728 0.166291738177092 0.162751702463985 0.163244187447445 

0.172355688262674 0.173481584085488 0.167949927883989 0.168706046009338 

0.181267665576055 0.183140937278616 0.175013186427522 0.176407598345969 

 

 

      

(a)                                                                        (b) 
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(c)                                                                       (d) 

    

(e)                                                                       (f) 

    

(g)                                                                       (h) 
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(i)                                                                      (j) 

Figure 2-4: “Cosine” mode wave function solutions for the MOSET. Left column: direct 

solutions of the full eigensystem. Right column: CMS solutions. Top to bottom: 1
st
 to 5

th
 wave 

functions. 40 by 10 mesh domain. 

 

From Table 2-1 and Figure 2-4, it is clear that the CMS approach gives quite accurate 

eigenvalues even when only 5 eigenpairs are retained in each component. The “cosine” mode 

global wave functions are accurately recovered by the CMS approach. Similar results are 

obtained for the “sine” mode wave functions. For the sake of brevity, the “sine” mode wave 

functions are not shown here. One peculiarity that can be seen from Figure 2-4 lies in the fact 

that the wave functions from the direct and CMS results sometimes have opposite signs. This 

peculiarity is trivial, as the square of the wave functions form the probability factor necessary in 

calculating charge density and thus the sign of the wave functions do not contribute to any 

change in charge density calculations. It is shown from the results that the “sine” and “cosine” 

modes mirror the behavior of “sine” and “cosine” waves in the x-y plane. There is an offset in 

the waves due to the contributions of the electron effective masses in the x- and y-directions so 

the peaks and zeroes do not correspond exactly at the boundaries for the “cosine” and “sine” 
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modes, respectively. In addition, the wave functions are naturally suppressed in the oxide 

regions. This is expected since the change in barrier energy (3.34 eV) suppresses the likelihood 

of locating any electrons in the oxide regions. 

 In the CMS implementation of “sine” and “cosine” modes, there are major differences to 

consider as well. For the “sine” mode, the lead nodes can be treated as boundary nodes, thus 

excluded from CMS analysis. For the “cosine” mode, the lead boundary nodes must be treated as 

interior or attachment nodes depending on the configuration. If a lead boundary node lies on a 

component edge, then it is an attachment node. Otherwise, it should be treated as an interior 

node. Once this preprocessing differentiation of “sine” and “cosine” modes is taken into account, 

the same solver can be used to obtain solutions for both modes. In fact, the same solver was used 

to obtain solutions for meshes of varying sizes as well, demonstrating the flexibility of such an 

implementation. Lastly, in the preprocessing portion of the implementation, it is necessary to 

define nodes as interior, attachment and/or global boundary type. There are corner cases where a 

node can be both an attachment node and a global boundary node. In such cases, the node should 

be classified as a global boundary node to maintain consistency and produce results consistent 

with the direct approach. 

 The second example is a quantum well with a GaAs nanowire embedded in the AlGaAs 

material. The dimensions and physical properties of the quantum well structure are shown in 

Figure 2-5. The domain is discretized into 40 by 40 elements. In the CMS calculations, the 

domain is decomposed into 4 by 4 components with each component having 10 by 10 elements. 

Homogeneous Dirichlet boundary condition of the wave function is applied on the outer 

boundary of the quantum well. The step potential energy is 0.276 eV between AlGaAs and 
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GaAs. Figure 2-6 shows the comparison of the first 5 wave functions obtained by using the direct 

and CMS approaches. 

     

Figure 2-5: computational domain of a quantum wire 

 

 

 

    

(a)                                                                      (b) 
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(c)                                                                       (d) 

     

(e)                                                                     (f) 

     

(g)                                                                 (h) 
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(i)                                                                  (j) 

Figure 2-6: Wave function solutions for the quantum wire. Left column: direct solutions of the 

full eigensystem. Right column: CMS solutions. Top to bottom: 1
st
 to 5

th
 wave functions. 40 by 

40 mesh domain. 

 

 Similar to the results shown in the double-gate MOSFET case, the global wave functions 

are accurately reproduced by using the CMS approach. As demonstrated in the two examples, 

CMS is a powerful tool that can be successfully used to retain accuracy while reducing the 

computation cost of solving the Schrödinger equation. In the following chapters, the CMS 

solutions of the Schrödinger equation are employed in the full Schrödinger-Poisson simulation of 

a set of nanostructures and nanodevices. Computational cost and accuracy will be compared 

between the CMS based and the direct Schrödinger-Poisson solvers for these device simulations. 
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Chapter 3 Quantum Mechanical Electrostatic Analysis of 

Nanostructures and Nanodevices 

 

3.1 Schrödinger-Poisson Approach and Finite Element Formulation 

 In the Schrödinger-Poisson method of electrostatic analysis, an iterative procedure is 

carried out between the Schrödinger and Poisson Equations. The eigenenergies and wave 

functions obtained from the Schrödinger equation for a given potential profile in the device 

domain are used in the calculation of the charge density in the domain. The calculated charge 

density is then used in the Poisson equation to obtain the new potential profile. The updated 

potential profile is then again applied in the Schrödinger equation to compute the new eigenpairs. 

This iterative procedure continues until a self-consistent solution between the Schrödinger and 

Poisson equations is obtained. The CMS based solution approach for the Schrödinger equation 

has been described in Chapter 2. For the sake of completeness, the global matrix from of the 

Schrödinger equation is repeated here, i.e., 

          (3-1) 

Once the eigenpairs (     )  are computed by using the CMS techniques as described 

previously, the electron and hole densities can be calculated by 
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where     and     are the band degeneracy for electrons and holes, respectively,     and     

are the respective electron and hole effective masses in the z-direction, kB is the Boltzmann 

constant, T is the temperature,    is the Fermi energy, and       is the Fermi-dirac integral of 

order -1/2, given by [26] 

  ( )  
 

 (   )
∫

    

      

 

 

                           (3-4) 

The computed electron and hole densities are then used in the Poisson equation, which is given 

by 

  (   )        ( )   ( )     
    

   (3-5) 

 where   is the unknown potential,    is the dielectric permittivity, q is the magnitude of the 

electron charge, n and p are the electron and hole density, respectively, and   
  and   

  are the 

ionized donor and acceptor concentration, respectively. Note that, in general, when solving for a 

particular problem, either hole or electron concentrations can be neglected when the donor and 

acceptor concentrations are well above the intrinsic level. In this work, as the devices under 

consideration all have n-type doping (  
   ), the hole density term is neglected. The weak 

form of the Poisson equation can be obtained by using the Galerkin’s weighted residual method 

as  

 ∫       
   

  ̂ 

    ∫  (    )  (   )    
 

∫  (   )   
   ( )   

 

   (3-6) 

Most devices are insulated electronically except for the regions where potentials are applied. For 

insulated boundary parts, homogeneous Neumann boundary conditions can be applied, i.e., 
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  ̂
  . Therefore, the first term in Eq. (3-6) can be neglected. The linear weak form given in 

Eq. (3-6) can be discretized by using the finite element approximation and Gaussian quadrature. 

The potential can be computed by solving the discretized system. The Schrödinger-Poisson 

iterations can continue in this fashion. Unfortunately, it has been demonstrated that the 

convergence of this simple iteration is very poor [26]. In this work, we adopt a predictor-

corrector approach for better convergence of the solution. The predictor-corrector approach uses 

the potential from the previous outer iteration to predict and correct the next potential within the 

step of solving the Poisson equation. In this approach, the electron density has a modified form 

as [26] 
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   (    )

   

 

   

) (3-7) 

where    is potential obtained from the previous Schrödinger-Poisson outer iteration and   is 

the unknown potential to be solved in the current iteration. Similar modification can be made to 

the hole density as well. Note that the electron density now depends on the unknown potential to 

be solved in the current iteration. Substituting Eq. (3-7) into the weak form, Eq. (3-6) becomes a 

nonlinear integral equation. The Newton Raphson method [38] for solving nonlinear equations is 

employed to find the solution of the potential. By using the finite element approximations as 

described in Eqs. (2-5~2-9) and the Newton Ralphson method, the discretized element weak 

form can be written as 

          (3-8) 
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where     is the element Jacobian matrix,    is referred to as the element residual vector and 

    is the potential increment to be calculated for the element. The element Jacobian matrix can 

be obtained as 

           (3-9) 

where  
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and  

     ∫ ∫
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   ( )      (3-11) 

The shape functions, their derivatives and associated Jacobian matrix are defined in Eqs. (2-8~2-

10).             , are the nodal potentials in an element. Note that the derivatives of the 

modified electron density with respect to the nodal potentials need to be computed in Eq. (3-11). 

It is easy to show that the derivatives can be obtained as 
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(3-12) 

Note that the Fermi-Dirac integral of order -3/2 in Eq. (3-12) is obtained from the following 

identity: 

 

  
  ( )      ( ) (3-13) 

For implementation purposes, the Fermi-Dirac integrals are sampled for a known range of the 

input parameter that encompassed the possible values for electron density in the preprocessing 

step. A table is created to store the pre-calculated function values for the sampling points. For a 

given input parameter, the value of the Fermi-Dirac functions is calculated by interpolating 

between the pre-calculated values stored in the table. This step is done to eliminate the need to 

calculate the Fermi-Dirac integral on every gauss point for every shape function in every 

element, saving computational costs. The residual vector in Eq. (3-8) is obtained as 
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  ∫ ∫[
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( (  )   
 )    ( )      (3-13) 

where the superscript “h” denotes the potential obtained from the previous inner iteration (i.e. the 

Newton-Raphson iteration) of the Poisson equation. Assembling the element matrices and 

vectors shown in Eq. (3-8) gives the global system 
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       (3-13) 

Within each Newton-Raphson iteration, the potential increment is found by solving Eq. (3-13). 

The potential is updated by 

            (3-13) 

The process is repeated until a convergence criterion is satisfied. After the Newton-Raphson 

iterations converge for the potential, the Schrödinger equation is then updated with the new 

potential and a new outer iteration begins. 

3.2 Numerical Results 

In this section, we show the results obtained from the quantum mechanical electrostatic analysis 

of a quantum well and an all-around MOSFET. The dimensions and physical properties of the 

quantum well are show in Figure 3-1. The doping density is set to be 10
18

 cm
-3

 in the n-type 

AlGaAs region. The effective masses of GaAs and AlGaAs are set to be 0.0665m0 and 

0.0858m0, respectively. The heterojunction potential between GaAs and AlGaAs is set as 0.276 

eV. The relative dielectric constants are 13.18 and 12.31 for GaAs and AlGaAs, respectively. 

Dirichlet (potential) boundary conditions of 0.3V and -0.3V are applied to the outer boundary. In 

the direct solution of the Schrödinger equation, the lowest 10 eigenpairs are computed and found 

to be sufficient for an accurate solution. For the CMS approach, the domain is further discretized 

into 4 by 4 components, with 9 component eigenpairs retained in each component (note that this 

number is far less than the total interior DOFs in each component). The domain mesh is varied 

between 40 by 40 elements to 200 by 200 elements for the direct and CMS approaches. 
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Figure 3-1: Computational domain of a quantum wire. 

 

 

 

     

(a)                                                                     (b) 
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(c)                                                                       (d) 

Figure 3-2: Electron density solutions obtained from the direct method for (a) -0.3V and (b) 0.3V 

applied to the outer boundary, and density solutions from the CMS approach for (c) -0.3V and 

(d) 0.3V applied to outer boundary. 60 by 60 mesh domain. 

 

 

 

     

(a)                                                                      (b) 
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(c)                                                                    (d) 

Figure 3-3: Potential energy solutions (  ) obtained from the direct method for (a) -0.3V and (b) 

0.3V applied to the outer boundary, and potential energy solutions from the CMS approach for 

(c) -0.3V and (d) 0.3V applied to outer boundary. 60 by 60 mesh domain. 

 

 

Figure 3-4: A comparison of the CPU time for meshes of different sizes.  
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Figure 3-5: Relative error of the eigenvalues obtained from the CMS approach compared with the 

results obtained from the direct method on a 80 by 80 mesh with Dirichlet boundary conditions. 

 

It is shown in the results that a positive boundary voltage attracts electrons to the boundary. 

However, electrons moving toward the boundary will be trapped by the potential barrier between 

GaAs and AlGaAs. When the electrons are repelled by the boundary due to a negative boundary 

voltage, there is an absence of this “trapping” phenomenon since the electrons can freely move 

from higher potential energy to lower potential energy but not vice versa. In comparison of the 

results from the direct and CMS approaches, subtle differences are observed between the two 

results shown in Figure (3-2). These subtle differences are expected since the number of retained 
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component eigenvectors is intentionally set to be very small. These differences become smaller 

when the number of retained modes is increased. The difference is completely eliminated if the 

number of retained component modes is set to maximum. Figure 3-5 shows the error between the 

eigenvalue results obtained from the two methods. Figure 3-4 shows the computational cost of 

the two methods. A significant reduction in computational cost for the CMS approach is 

observed, especially when the mesh size is large.  Figure 3-4 shows that there is no noticeable 

savings in computation time for the mesh of 40 by 40 elements. However, when the mesh is 

refined to 200 by 200 elements, the CMS approach is about 15 times faster than the direct 

approach. The expected savings is expected to go up even further as the mesh size increases 

beyond 200 by 200 elements. 

 The CMS approach is tested again on the same quantum well structure, but with a 

homogeneous Neumann boundary condition for the potential.  All the other parameters of the 

quantum well remain the same. The potential energy and electron density results are shown in 

Figures 3-6 and 3-7. The results from both methods match quite well. The error comparison of 

the eigenvalues is shown in Figure 3-8. The behavior of the error is similar to that shown in 

Figure 3-5 for the Dirichlet boundary case. The CPU performance results are the same for both 

the Nermann and Dirichlet boundary conditions, since the change in the boundary condition of 

the Poisson equation does not affect the solution time of the Schrödinger equation. Therefore, the 

CPU time comparison is not repeated here for the sake of brevity. 
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(a)                                                                         (b) 

Figure 3-6: Density solutions for the Neumann boundary case: (a) direct approach and (b) CMS 

approach. 60 by 60 mesh domain. 

 

 

     

(a)                                                                        (b) 

Figure 3-7: Potential energy solutions for the Neumann boundary case (a) direct approach (b) 

CMS approach. 60 by 60 mesh domain. 
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Figure 3-8: Relative error of the eigenvalues obtained from the CMS approach compared with the 

results obtained from the direct method on a 80 by 80 mesh with Neumann boundary conditions. 

  

 The second device simulated in this section is an all-around MOSFET as shown in Figure 

3-9. The core of the MOSFET is n-type doped Si with a doping density of 10
18

 cm
-3. 

 The 

dielectric layer surrounding the Si core is SiO2 with a thickness of 10 Å. In order to obtain a 

more accurate result of the electron density in the MOSFET, effective mass anisotropicity of Si 

is accounted for in the simulation by treating the three orthogonal ladders of Si separately. That 

is, the Schrödinger equation must be solved for each ladder. The electron effective masses are 

taken to be 0.19   and 0.91   for Si in the transverse and longitudinal directions for each 

ladder, respectively. The electron effective mass for SiO2 is assumed to isotropic and is set as 

0.5  . The heterojunction step potential between Si and SiO2 is taken to be 3.34 eV. The relative 
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dielectric constants are set to be 11.9 and 3.9 for Si and SiO2, respectively. As in the quantum 

well case, it is found that the lowest 10 eigenpairs are sufficient for an accurate solution. A 

Dirichlet potential boundary condition of 0.5V was applied to the boundary (gate). For the CMS 

approach, the domain is further discretized into 4 by 4 components, with 9 component eigenpairs 

retained in each component. The domain mesh is varied between 40 by 40 elements to 200 by 

200 elements for the direct and CMS approaches. Figures 3-10 and 3-11 show the electron 

density and potential energy profile in the all-around MOSFET for the gate voltage of 0.5V. The 

results obtained from the direct and CMS approaches are almost identical. The positive gate 

voltage attracts the electrons in the doped Si towards the SiO2 dielectric layer. The corner effect 

of the MOSFET is significant. The CPU time comparison is shown in Figure 3-12. It is evident 

that the computational cost comparison for the all-around MOSFET is very similar to that for the 

quantum well simulation. When the mesh size is small (small DOFs) the computational cost 

reduction of the CMS approach is not significant due to the extra matrix calculations associated 

with the method. The advantage of the CMS approach becomes obvious when the mesh size 

increases. For this reason, the CMS approach is suitable for simulation of large systems. The 

relative error of the eigenenergies of the 3 ladders is shown in Figure 3-13. It is shown in the 

figure that the first and third ladders have the same error. This is due to the fact that the x-y plane 

is a symmetric plane of the ladders. The error of the second ladder, although different from that 

of the other two ladders, is in the same order. All results for relative error show a general trend 

that as the order of eigenvalues increases, the relative error between the direct and CMS results 

will increase. This is on par with expectations that in general, higher order eigenvalues tend to 

display more error. However, this error can always be reduced when more component modes are 

retained in each component. 
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Figure 3-9: Computational domain of an all-around MOSFET. 

 

 

     

(a)                                                                       (b) 

 Figure 3-10: Electron density solutions for the all-around MOSFET: (a) direct approach (b) 

CMS approach. 60 by 60 mesh domain. 
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(a)                                                                       (b) 

Figure 3-11: Potential energy solutions for the all-around MOSFET: (a) direct approach (b) CMS 

approach. 60 by 60 mesh domain. 

 

 

Figure 3-12: Comparison of the CPU times for a single ladder for meshes of different sizes.  
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Figure 3-13: Relative error of eigenvalues of the 3 ladders for an 80 by 80 mesh. Legend 

indicates the relative effective masses in (x,y,z) directions for silicon. 
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Chapter 4 Quantum Mechanical Electrical Transport Analysis of 

Nanodevices 

 

Electrostatic analysis is useful to predict the electron distribution responding to varying boundary 

voltages. However, when there is a current flowing through the device, electrostatic analysis 

cannot be used to show the current density or the flow of electrons. In such cases, electron 

transport analysis is necessary. Different from electrostatics, electron transport analysis deals 

with physical models describing the electrical response of a device when a current passes 

through. Although the carrier distribution is still governed by the Schrödinger equation and 

Poisson equations, the wave functions and potential energy at the leads where carriers are 

injected or drained have to be properly determined. In such cases, states which carry current are 

more important for the understanding of electron transport through the small device regions. 

Broadly defined, there are two types of continuum computational approaches for self-

consistently solving electron transport problems in nanodevices. The first type is based on the 

coupled Schrödinger and Poisson equations with open boundary conditions. In this type of 

approaches, the current-carrying states are considered as a linear combination of the bound states 

in the device region and the states that extend to infinity along the input and output leads. A 

representative method in this category is the Quantum Transmitting Boundary Method (QTBM) 

[27,28]. The second type is nonequilibrium Green's function based approaches [29,30]. In the 

non-equilibrium Green's function (NEGF) method, instead of coping with the open boundary 

conditions, a self-energy matrix is introduced. By composing the Hamiltonian for the entire 

system, the electron density and current density can be obtained through a numerical procedure. 

In comparison to the NEGF, the QTBM has the advantage of obtaining the full quantum states in 
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the device. The detailed information of the band valley contributions can be calculated and 

visualized. However, the method requires solving discretized Schrödinger equation over the 

device region, which can be time consuming for a large system. In this chapter, we combine the 

CMS approach with the QTBM to accelerate the numerical solution of the electronic transport 

problem in nanodevices.  We first describe the mathematical formulation of the CMS based 

QTBM. A numerical example of MOSFET simulation is then presented to demonstrate the 

performance of the method.  

4.1 Quantum Transmitting Boundary Method (QTBM) 

QBTM is a method that modifies the implementation of the Schrödinger Poisson equation in 

order to consider current carrying states. The energy is temporarily discretized by imposing two 

different boundary conditions at the leads to obtain eigenpairs for the “sine” and “cosine” modes. 

The standing wave functions obtained from these modes are then decomposed into traveling 

wave constituents, each of which is used to represent electron injection from an individual lead. 

In the numerical implementation, as with the Schrödinger-Poisson iteration method, the same 

mesh can be used for the solution of both Schrödinger and Poisson equations. 

 In the QTBM, the potential and charge distribution are calculated by seeking a self-

consistent solution to the Schrödinger equation with open boundary conditions and the Poisson 

equation. A 2-D domain illustrating the problem is shown in Figure 4-1. The system consists of a 

“device region” (shaded region), Ω0, and a set of leads, Ω1, Ω2, Ω3,…, Ωn, where n denotes the 

number of leads. The leads are assumed to have constant width, denoted as di. The interface 

between lead i and Ω0 is defined as Γi. The portion of device region boundary which is not 

connected to a lead is defined as Γ0. Note that, as will be discussed in details later, the open 
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boundary conditions for the current-carrying states are defined on Γi, i=1,2,…,n.  In order to 

define the open boundary conditions, a local coordinate system, (ξi, ηi), is defined at each lead-

device domain interface, as shown in Figure 4-1. 

 

 

Figure 4-1: 2-D simulation domain for electron transport analysis. 

 

 The traveling wave Schrödinger equation to be solved is given by 

 
  

   
 

    

   
 

  

   
 

    

   
          (4-1) 

where Φp is the traveling wave function corresponding to a given energy Ep. The potential energy 

and effective masses are the same as those defined in Chapter 2. The 2-D Poisson equation is 
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also the same as defined in the electrostatic analysis discussed in Chapter 3. For the sake of 

completeness, it is repeated for a 2-D domain as follows: 

 (
   

   
  

   

   
)        ( )   ( )     

    
   (4-2) 

Note that the traveling wave function Φp in the Schrödinger equation is obtained for a given 

energy Ep. A proper sampling scheme of the energy Ep is to use the standing wave solutions with 

homogeneous Dirichlet or Neumann boundary conditions at the lead-device interfaces [28]. The 

physical consideration of this scheme is based on the energy resonance condition between the 

device region and the leads. To obtain the standing wave energies, one needs to solve the bound-

state Schrödinger equation in Ω0 given by 

 
  

   
 

    

   
 

  

   
 

    

   
                                       (4-3) 

with the boundary conditions 

   |    
                                    

    (     )

   
|
    

                                (4-4) 

The first (Dirichlet) and second (Neumann) boundary conditions are referred to as a “sine” or 

“cosine” boundary conditions. To obtain the standing wave energies, one needs to solve the 

bound-state Schrödinger equation, Eq. (4-3), in Ω0 with both “sine” and “cosine” boundary 

conditions for the three ladders of Silicon. That is, the standing wave Schrödinger equation (Eq. 

(4-3)) is to be solved 6 times over the 2-D domain of the device. The standing wave solutions 

obtained can be further denoted as (  
(   )

   
(   )

) where t=s or c and l denotes the ladder associated 
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with the different conduction band alignments which determine the effective masses   
  and   

  

to be used in the Schrödinger equation. Note that this part of the calculation consumes most of 

the computational time of the entire simulation. To accelerate the simulation, in this work, we 

decompose Ω0 into connecting components and employ the CMS method to construct the 

standing wave functions and obtain the energies. By using the CMS approach, the computational 

cost can be largely reduced. As the standing wave Schrödinger equation is solved here, the CMS 

formulation remains the same as depicted in Chapter 2. The only difference for the current 

electron transport problem lies in the “cosine” like boundary condition. However, the 

implementation of the CMS method is straightforward: instead of deleting the rows and columns 

of the coefficient matrix shown in Eq. (2-16), the DOFs corresponding to the “cosine” boundary 

nodes are simply retained in the eigen solution of the components. The assembled global wave 

functions are non-zero at the lead-device interfaces when the “cosine” boundary condition is 

applied.  

 Once the standing wave energies, Ep, are calculated by using the CMS approach, the 

traveling waves at the open boundary (lead-device interface) for the traveling wave Schrödinger 

equation (Eq. (4-1)) can be written as [28] 
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(4-5) 

Eq. (4-5) represents the injection condition at the leads. The traveling wave function is expressed 

as a superposition of a set of plane waves. The exponential functions are the injection and 
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reflection plane waves (     
    and     

   , respectively). Note that   √  , which is used to 

avoid confusion with   which denotes the lead number. Depending on their energy, the plane 

waves are either injected into the device domain from the leads or reflected back from the 

device. The amplitudes of the injection and reflection plane waves are determined by the 

coefficients   
  and   

 , respectively. The shape of the traveling wave function in the transverse 

(  ) direction of lead i,   
 , is determined self-consistently by solving 1-D Schrödinger-Poisson 

equations on Γi, i.e., 
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The boundary conditions of the 1-D Schrödinger equation is given by 

  
 ( )    

 (  )    (4-8) 

and the normalization condition being 

∫   
 (

  

 

  )   
 (  )         (4-9) 

where l and m are eigenstates of the system and δ is the Dirac delta function defined by: 

     {
           
           

 (4-10) 
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By solving the 1-D Schrödinger equation, the eigenpairs {  
 (  )   

  } can be obtained. The 

eigenpairs can then be used to calculate the charge density along Γi. The charge density along the 

1-D domain is given by 

 (  )  ∑∑
  

( )
   √   

 ( )
  

 ( )
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)] |  
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 (4-11) 

where   
  is the quasi-Fermi level at lead i. The charge density obtained is then substituted into 

the right hand side of the 1-D Poisson equation. The boundary condition of the 1-D Poisson 

equation is given by 

  

   
|
    

 
  

   
|
     

   (4-12) 

The Neumann boundary condition given in Eq. (4-12) does not ensure a unique solution of the 

Poisson equation. A unique solution of the potential can be obtained by enforcing the charge 

neutrality condition in the 1-D domain, i.e., 

∫  (  )   

  

 

   (4-13) 

In the numerical implementation, the charge neutrality condition is enforced by adjusting the 

Fermi level using the bi-section method [38]. The charge density distribution which satisfies the 

charge neutrality condition is then used to calculate the right hand side of the Poisson equation. 

A Dirichlet condition V=0 is applied at the midpoint of the interface Γi when the Poisson 

equation is solved. The new potential solution obtained from the Poisson equation is applied in 

the Schrödinger equation to compute the new eigenenergies and wave functions. The iteration 



56 
 

continues until self-consistent solutions of the potential, eigenpairs, Fermi level and charge 

density are obtained. In typical simulation of electronic devices, Fermi levels are prescribed at 

the leads. Therefore, in our simulations, the Fermi levels obtained from the 1-D Schrödinger-

Poisson equations are shifted to the prescribed values. Accordingly, the eigenenergy and 

potential solutions in the leads are also shifted by the same amount. Subsequently, the wave 

vector   
  in Eq. (4-5) can be calculated as follows: 
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where    and   
  are the 2-D and 1-D standing wave energies in the device domain and on the 

lead-device interface. In Eq. (4-5),    is the number of traveling waves in lead  , or put 

differently, the maximum m such that   
     . It can be shown that the injection magnitude 

can be written as 
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for the “cosine” mode and  
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for the “sine” mode. The reflection magnitude can be obtained by using the orthogonal condition 

of the 1-D wave functions 

∫   
 (  )
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i.e., 
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The partial derivative of     (     ) with respect to ηi, evaluated at ηi=0 is 
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Substituting the expression of   
  and   

  into Eq. (4-19), one obtains 
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Eq. (4-20) is the Neumann boundary condition for the open leads of the device. Combining the 

open boundary condition with the traveling wave Schrödinger equation given in Eq. (4-3), for a 

given energy Ep, the traveling wave function can be obtained. By following the standard finite 

element discretization scheme, a linear system of equations can be obtained from Eq. (4-3) as 

(    ∑  

 

    )                             (4-21) 
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And 

     ∫   
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where N1 and N2 are the 1-D finite element shape functions defined on the line elements on Γi. 

Note that the open boundary condition shown in Eq. (4-20) is applied at the leads with the waves 

injected from one lead at a time. When the wave is injected from lead i, both Pi and Ci are 

nonzero. For all other leads    ,   
    with   

  to be determined from Eq. (4-18). Therefore, 

Pj=0 for      and Cj is still computed from Eq. (4-23). 
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Once      is obtained by solving the linear system given by Eq. (4-21), the decomposition of 

traveling wave functions must be summed to ensure that the summation of these decomposed 

wave functions match the result obtained from the standing wave analysis. In other words, a 

check must be done in the following fashion: 

∑       

 

   

 (4-25) 

However, in most cases, this check fails. In the event of a failure to obtain the desired result 

mentioned in the above equation, the traveling wave functions are scaled to satisfy Eq. (4-25). 

The scaling scheme is established to seek constants    to be multiplied to      in order to satisfy 

the following condition [28]: 
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Eq. (4-26) results in a nxn linear system whose coefficient matrix is often singular. To obtain the 

solution of    , pseudo-inverse of the coefficient matrix is computed by using the singular value 

decomposition method. The pseudo-inverse of the coefficient matrix is then multiplied to the 

right-hand side vector to obtain the unknown   . After   ’s are obtained,      is then replaced 

with       . Once      (updated to in actuality to be       ) is found, in order to compute the 

charge density, it must be renormalized as 
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The factor ½ is due to the fact that the “sine” and “cosine” modes are summed in the calculation 

of the charge density. Each mode accounts for half of the occupancy probability. 

 After the traveling wave functions are calculated, the charge density within the device 

domain can be computed as 
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where   
 (     ) is the amplitude normalization factor given by 
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Where       is the complete Fermi-Dirac integral of order -1/2,   
  is the Fermi-level at the 

leads, and   
  is the drift wave vector determined by the current continuity condition. The current 

continuity condition at the lead-device interfaces is simply 

    
       

  (4-31) 
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Eq. (4-31) can be expanded as 
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where a positive   
  implies additional electron injection into the device domain,      

  is the 

conductivity effective mass of the lead i with 
 

      
   ∑ (  

( )
    

 ( )
)  ∑   

( )
  , and   (  ) is 

the donor concentration which is taken to approximate the electron density along the lead. In our 

simulations, we observed that   
  is quite small except for high gate voltages. Therefore, it is 

reasonable to neglect   
  for moderate gate voltages. 

 After the charge density is calculated from Eq. (4-28), the right hand-side of the Poisson 

equation (Eq. (4-2)) can be evaluated. The Poisson equation is then solved over the 2-D device 

domain. The potential energy in the 2-D standing wave and traveling wave Schrödinger 

equations are updated by using the potential solution of the Poisson equation. The iteration 

described above represents the global iteration between the Schrödinger and Poisson equations. 

Due to the strong nonlinear dependence of the potential, wave functions and the charge density, 

it often fails to reach convergence of the global iteration through simple relaxation.  Numerical 

techniques such as Newton-Raphson method and under-relaxation method, or re-formulation of 

the Poisson equation have been employed to ensure or accelerate the convergence as discussed in 

Chapter 3. In this chapter, for the sake of simplicity of the implementation, we employ the under-

relaxation method. The potential in the device domain is updated by 
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      (   )     (4-33) 

Where      is the potential obtained from the previous iteration,    is the potential obtained 

from the Poisson equation in the current iteration,     
  is the updated potential which will be 

applied in the Schrödinger equations in the next iteration and β is the under-relaxation factor. We 

note that β ≤ 0.2 is a good choice for the MOSFET simulations shown in the next section. 

 4.1 Numerical Results 

In this section, a double-gate MOSFET is simulated by using the CMS based QTBM described 

in the previous section. As shown in Figure 4-2 (a), the double-gate MOSFET is composed of a 

Si center channel sandwiched by two SiO2 layers. Two gate leads are attached to the top and 

bottom of the SiO2 layers. The total length of the device is 200 Å. The thickness of the SiO2 

layers is 10 Å. The thickness of the center channel is 30 Å. The center part of the channel is 

intrinsic Si. The left and right regions are the source and drain, respectively. Both the source and 

drain are heavily doped with a doping density of 10
20

/cm
3
. Left and right leads are attached to the 

source and drain, respectively. Figure 4-2 (b) shows the simulation domain in which the 

Schrödinger equations are solved. Material properties and boundary conditions are shown in the 

figure. Note that both the standing wave and traveling wave Schrödinger equations are solved 

over the same domain Ω0. Homogeneous Dirichlet boundary condition is applied on the 

boundary portion occupied by the SiO2 layer. The boundary conditions on the leads connected to 

the source and drain are shown in the figure for the two set of simulation conditions (standing 

wave and traveling wave). Figure 4-2 (c) shows the simulation domain, material properties and 

boundary conditions for the Poisson equation. 
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Figure 4-2: Double-gate MOSFET and its simulation domains. 
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 Figures 4-3 ~ 4-8 show the QTBM and CMS based QTBM solutions of the potential 

energy profiles and electron density distributions in the double-gate MOSFET for the gate 

voltage of 0V, 0.2V and 0.4V. The results obtained from the direct and CMS approaches are 

almost identical. Effect of gate voltage on the potential energy and electron density in the 

MOSFET channel is clearly depicted by the results. The CPU time comparison for simulation 

cases when 10 and 40 (global) eigenenergies are employed for the electron density calculation is 

shown in Figures 4-9 and 4-10. Once again, when the mesh size is small the computational cost 

reduction of the CMS approach is not significant while the CMS approach is 4 times faster for a 

mesh with more than 25,000 elements. It is evident that the CMS based QTBM solver is 

advantageous for solving large electron transport problems.  

 

 

Figure 4-3: Numerical solutions obtained from QTBM for Vg=0V. Left: potential energy. Right: 

electron density. 40 by 10 mesh domain. 
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Figure 4-4: Numerical solutions obtained from CMS based QTBM for Vg=0V. Left: potential 

energy. Right: electron density. 40 by 10 mesh domain. 

 

 

 

Figure 4-5: Numerical solutions obtained from QTBM for Vg=0.2V. Left: potential energy. 

Right: electron density. 40 by 10 mesh domain. 
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Figure 4-6: Numerical solutions obtained from CMS based QTBM for Vg=0.2V. Left: potential 

energy. Right: electron density. 40 by 10 mesh domain. 

 

 

 

 

Figure 4-7: Numerical solutions obtained from QTBM for Vg=0.4V. Left: potential energy. 

Right: electron density. 40 by 10 mesh domain. 
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Figure 4-8: Numerical solutions obtained from CMS based QTBM for Vg=0.4V. Left: potential 

energy. Right: electron density. 40 by 10 mesh domain. 

 

 

Figure 4-9: Comparison of the CPU times for meshes of different sizes: 10 retained eigenvalues. 
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Figure 4-10: Comparison of the CPU times for meshes of different sizes: 40 retained eigenvalues.  
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Chapter 5 Conclusions and Future Work 

 

In this work, a component mode synthesis (CMS) approach is presented for 2-D quantum 

mechanical electrostatic and electron transport analysis of nanoscale structures and devices with 

arbitrary geometries. In the CMS approach, a nanostructure is divided into a set of substructures 

or components and the eigenvalues (energy levels) and eigenvectors (wave functions) are 

computed first for all the substructures. The computed wave functions are then combined with 

constraint or attachment modes to construct a transformation matrix. By using the transformation 

matrix, a reduced-order system of the Schrödinger equation is obtained for the entire 

nanostructure. The global energy levels and wave functions can be obtained with the reduced-

order system. Through an iteration procedure between the Schrödinger and Poisson equations, a 

self-consistent solution for charge concentration and potential profile can be obtained. In this 

work, the CMS approach is established and formulated within the general Schrödinger-Poisson 

framework for both electrostatic and electron transport scenarios. The CMS approaches are 

employed to compute the charge concentrations and potential profiles of several nanoscale 

structures and devices, including an electrostatic quantum wire, an electrostatic all-around 

MOSFET and a current-transport double-gate MOSFET. The results obtained from the CMS 

approaches are compared with those obtained from the direct approaches. It is shown that the 

CMS approach can yield accurate results with much less computational cost compared to the 

direct finite element analysis. The reduction of computational cost becomes more significant as 

the total degrees of freedom of the system increase. 
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We have noticed that there is an optimal combination of the number of components and 

the number of retained component eigenpairs. Future work could be done to investigate this 

optimal combination to balance accuracy and efficiency. In addition, only the fixed interface 

CMS method was implemented. Free interface CMS method is worth investigating to see the 

advantages and disadvantages of such a method. 
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