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ABSTRACT 

 

This study investigates the conditions under which it might be possible to 

implement a displacement ventilation system in a residential building. An experimental 

study of the impact on a mechanical air conditioning system of the vertical location of 

the inlet and outlet vents was performed. The four ventilation configurations of low 

inlet high outlet, low inlet low outlet, high inlet high outlet, and high inlet low outlet 

were compared. These four configurations were compared under 13 different heat load 

scenarios in a full scale instrumented model room. It was found that, for higher heat 

loads, the low inlet high outlet configuration was able to maintain approximately the 

same temperature in the occupied region as for a lower heat load, while developing a 

strong two layer stratification within the room such that the outlet temperature was 

significantly higher than the ambient temperature in the lower occupied region of the 

room. This was achieved because this ventilation configuration was able to stratify the 

temperature within the room and force the heat into the upper unoccupied region. 

From this zone the outlet was able to more efficiently remove the unwanted heat. The 

increased outlet temperature means that the inlet temperature can be closer to the 

temperature required for thermal comfort meaning that less pre-cooling of air is 

required. The results show that, even with only a 2.5 meter ceiling height, comparable 

to most residential applications, the displacement ventilation configuration was able to 
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reduce the need for mechanical conditioning. This would have a noticeable impact on 

the energy requirements of a residential building.   
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CHPTER 1. LITERATURE REVIEW 

1. General Overview 

A significant percentage of the energy use in the United States is consumed 

through the use of buildings. In 2011, the percentage of the total energy used for 

commercial and residential buildings was 18% and 22% respectively (U.S. Energy 

Information Administration, 2011). These significant components of the overall energy 

use have driven substantial research for the reduction of demand within the built world. 

Heating, ventilation, and air conditioning, HVAC, have taken a substantial component of 

this research due to it being one of the most significant consumers of energy within 

buildings. HVAC consumes 20% of all energy within a commercial building and 40% of 

the energy in a residential building (Levine et al., 2007). 

Much of the research on HVAC design has focused on comparing various 

ventilation strategies. These include natural, mixed, displacement, impinging jet 

ventilation, and others. Natural ventilation involves the design of the building requiring 

no mechanical systems. When correctly designed these systems utilize wind and/or 

thermal energy to provide a comfortable occupancy air quality (Linden, 1999). When 

used in the appropriate environment, these systems can provide sufficient air quality 

with little to no energy required. To increase the versatility of natural ventilation, some 

researchers like Gladstone have looked into driving the natural flow with inputs like 

heated floors or cooled ceilings (Gladstone & Woods, 2001). These additions have 
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shown an ability to reduce energy use while maintaining sufficient indoor air quality, 

IAQ. 

A significant amount of research has focused on comparing two of the major 

mechanical ventilation strategies, mixed and displacement. Mixed ventilation, MV, 

involves the air being forced into the conditioned space with a sufficient velocity to 

thoroughly mix the air within the space. This produces a constant ambient temperature 

throughout the space. This also results in the contaminant being evenly dispersed 

throughout the space. In contrast, displacement ventilation, DV, requires the input to 

the room to be let in with a relatively slow velocity filling the room from a low elevation. 

The conditioned air fills from the bottom and slowly flows upward. The resulting 

stratification of the air temperature drives the pollutants to the top layer of the air, 

which is then extracted through the outlet near the top of the room. 

Other ventilation strategies have been studied for various applications. 

Varodompun summarized the various systems (Varodompun & Navvab, 2007). Some of 

these systems can be seen in Figure 1-1 and Figure 1-2. Some systems incorporate 

distributed supply such as underfloor air distribution systems. Others strategically locate 

ventilation inlets directed at the occupant to only condition the general vicinity of the 

occupant, cutting down energy use. Others still vary the way in which the given system 

is executed. For example, there are numerous ways to produce a mixed ventilated 

space. Impinging jet ventilation combines the benefits of mixed ventilation with some of 

the benefits of displacement ventilation.  
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Figure 1-1: Examples of ventilation types. 

 

 

Figure 1-2: Example of mixed ventilation compared with displacement ventilation. 
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Each of these types of ventilation has been studied from different perspectives. 

Chen thoroughly describes the benefits and drawbacks to a few different research 

strategies (Q. Chen, 2009). Analytical and empirical models combine the conservation of 

mass and energy to predict the behavior of the fluid. Experiments attempt to simulate 

the actual situation either in a full-scale or small-scale replica. The resultant situation is 

then observed and data is collected. Also, computer simulations can be used; these 

combine various equations to simulate the situation in Computational Fluid Dynamics 

(CFD) models. Full-scale experimentation can produce the best results, but it is 

expensive and time consuming. So frequently, the experimentation is used to validate a 

CFD model, which can be run at a much lower cost and time expense. Also, small-scale 

experiments can be run at a reduced cost, but the accuracy of results can again be 

questionable. Empirical and analytical models are also useful tools but they require 

assumptions which have innate error. 

Another issue that researchers have encountered is the substantial variability in 

the simulations. The potential for different furniture locations and different occupancy 

demands can substantially affect the success of a system. Also the location and type of 

contaminants will affect which system has the best resultant indoor air quality, IAQ.  

Causone (2010) investigates some of these variations by combining floor heating and 

cooling with DV. He finds some of the limitations that must be considered in the design 

of these systems, such as the increased vertical air temperature difference which can 

lead to occupancy discomfort. Another consideration that is typically ignored by other 
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studies is the effects from the radiation off walls and heat sources investigated by Chow 

(Chow & Holdo, 2010). In order for any researcher to reduce the problem down to a 

manageable size, considerations like the heat transfer by radiation are often ignored. 

With each study another step is taken toward a clear understanding of these systems. 

2. Displacement vs. Mixed Ventilation 

Displacement and mixed ventilation receive a substantial amount of interest 

when it comes to HVAC research. Mixed ventilation is the standard practice in most 

HVAC designs, and displacement ventilation is one of the most used alternatives to 

mixed ventilation, especially in Scandinavian countries (Lee & Lam, 2007; Serra & 

Semiao, 2009). This has led to extensive comparison between the two systems. It has 

been generally concluded that DV is much more efficient in cooling a room and MV is 

more efficient in the heating phase (Varodompun & Navvab, 2007). 

Mixed ventilation, MV, allows for the inlet and outlet to be located at the most 

accessible location from the heating and cooling systems. This reduces the expense of 

ductwork and the length that the ventilated air must be forced through. A mixed system 

also evenly distributes a contaminant within the space. This significantly reduces the 

contaminant level near the source. This requires a difference in the inlet temperature 

and velocity from the ambient conditions to fully mix the air in the room and produce a 

uniform temperature within the room. Figure 1-1 (a) depicts what mixed ventilation 

looks like, see mixed jet ventilation.  
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Displacement ventilation, DV, utilizes the effects of buoyancy to move the warm 

waste air up through the space to ceiling level outlets. This allows the inlet air to be 

nearer the ambient temperature and for the flow to be at a relatively low velocity. The 

inlet and outlet locations can be seen in Figure 1-1. Stratification is created in the air. A 

lower level develops with a cooler temperature and a lower contaminant level. The top 

layer has a higher temperature and contaminant level. The stratification of the air can 

be seen in Figure 1-2. The temperature difference causes any pollutant to be driven into 

the top layer. The outlet then extracts the hotter more polluted air.  

Varodompun compared MV with DV using a full-scale model to validate a 

Computational Fluid Dynamics, CFD, simulation, which was then used to compare the 

two systems. It was found that DV can perform significantly better than MV under 

certain metrics, like ventilation effectiveness (VEF). However, metrics that take 

stratification discomfort into consideration can make DV less appealing. This study 

suggests the use of impinging jet ventilation( IJV). This study finds that IJV allows for the 

benefits of the DV without some of the drawbacks. This system can be seen in Figure 

1-1. The difference in velocity and direction from DV allows the IJV to be much more 

effective in the heating phase than DV (Varodompun & Navvab, 2007). 

Lin also looks at the variation in IAQ and thermal comfort between floor-supply 

DV and standard MV. CFD simulations were used to analyze an example classroom, 

office, retail space, and industrial workshop. The simulations were run to represent the 

external ambient environment of Hong Kong. To evaluate the effectiveness of each 
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system the percent persons dissatisfied (PPD), the percentage of dissatisfied people due 

to draft (PD), and the temperature distribution were all found and compared. It was 

found in all cases that the DV did have an acceptable temperature difference between 

toe and head level. Also the PD was found to be 10% and the PPD was calculated at less 

than 20%. It was also found that the MV had adverse effects on the comfort of the 

occupants, due to the high velocity of the inlet. All of which seems to support the use of 

DV to reduce energy consumption and improve IAQ (Zhang Lin, Chow, Fong, Qiuwang 

Wang, & Ying Li, 2005). 

Lau took the comparison to the environmental conditions in the United States, 

using the environmental conditions of five major US cities. Here the focus was on the 

energy savings and determining where DV would reduce energy use and where it may 

not. This study identified DV’s reduced ability to dehumidify the air in the heating phase, 

furthering the support for not heating with DV. This study also concluded here that in a 

humid environment, like South Carolina, DV is not as much an energy saver with the 

additional energy load of dehumidifying the air. The reduced energy demand of the 

chiller is offset but the increased demand from the fan and boiler. This contradicts other 

studies that found up to a 34% energy savings for DV over MV (Lau & Chen, 2006). 

Causone looks at the addition of floor heating and cooling to DV systems to 

improve their effectiveness. A full-scale room was constructed to run the experiments. 

The heated floor was found to maintain high values of ventilation effectiveness. It was 

also found that the only contaminant that evaded the ventilation were contaminants 
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located on cold vertical surfaces. This needs to be considered early in the design to 

avoid problem contaminants. The floor cooling was found to produce a temperature 

difference between the foot and head outside the comfort standard. This is a result of 

the cooled floor reducing the effects of convection between the warm ceiling and the 

floor (Causone, Baldin, Olesen, & Corgnati, 2010). 

Lin looked at the energy use of DV compared to MV. An office, classroom, and 

retail space were all analyzed to find the resultant savings. The systems were analyzed 

to find the total energy consumption in each situation for a typical year conditioning the 

space in Hong Kong. TRNSYS was used to calculate the energy consumption. This study 

found that DV had a 19% savings over MV and that a third alternative, stratum 

ventilation had an additional 25% savings over DV. The stratum system supplies the air 

at the breathing level and extracts high on the wall. The stratum ventilation can be seen 

in Figure 1-2 (c) (Z. Lin et al., 2011). 

Serra compared DV and MV through a CFD model. The environmental conditions 

were modeled to match a Mediterranean climate with both heating and cooling 

considered. The simulations used a small office with a desk and one occupant to 

determine the efficiency of each system. The simulations found that the DV provided 

improved ventilation efficiency with a reduction in energy use. Independently the 

simulations found that the DV performed much more efficiently in the cooling phase 

than the MV. However, in the heating phase, the DV resulted in a flow short-circuit. This 
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is when the room is not thoroughly ventilated and there is a direct stream from the inlet 

to the outlet, resulting in unconditioned regions (Serra & Semiao, 2009). 

Lee investigated the effects of a single plume rise in a displacement ventilated 

space. The environment of Hong Kong was considered in a CFD model. The simulations 

concluded that the major factors were the ceiling height, the design temperature, and 

reference room temperature. A lower ceiling height and/or lower design room 

temperature a higher velocity is needed at the inlet, reducing the benefit of the system 

(Lee & Lam, 2007). 

Each of these cases shows potential for variation in results considering where 

you set your scope and what factors you consider. Also, how you incorporate those 

factors can greatly vary the result. Consider the variation in results between Lin and Lau. 

Lau found DV to have no substantial energy savings when the humidity of the air was 

considered (Lau, 2006). However, Lin found a savings of around 20% between the two 

systems (Lin, 2011). Determining the exact cause of this variation is difficult with one 

considering the climate of Hong Kong and the other is looking at US conditions. It is also 

not clear if Lin considered the humidity treatment that Lau included. This makes it 

difficult to conclude which system has the most efficient treatment of the air. Each case 

is different and the designer must determine the best system for the building in 

question. 
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3. Commercial vs. Residential Applications 

DV has been adopted into some commercial applications, particularly in the 

Scandinavian region of Europe. This is reflected in the research. Many studies have been 

done on retail, office, and other commercial applications. These studies look at the costs 

and benefits of DV over MV. However, the literature seems to lack research into 

residential applications for DV.  

Lin looked at the application of DV on an office, classroom, retail shop, and 

industrial workshop in two different papers discussed above (Z. Lin et al., 2011; Zhang 

Lin et al., 2005). These two studies ignored the potential residential application, which 

represents a larger component of the national energy use, at least in the US.  Also 

discussed above, Lau investigated the application of DV to industrial workshops (Lau & 

Chen, 2006). A study by Nahor also investigated the commercial applications for DV 

using CFD (Nahor, Hoang, Verboven, Baelmans, & Nicolai, 2005). 

There are a few articles that focus on the residential application of DV. The first 

is the paper by Varodompun discussed above (Varodompun & Navvab, 2007). The other 

two are a pair from Gao. Both use the same full-scale experimental set up to validate 

CFD models. They use the environmental conditions standard for Hong Kong and the 

simulations are run on a bedroom layout. The first studies the benefit of floor-based air-

conditioning systems (FAC) over the more standard ceiling-based system (CAC). An 

energy savings of about 7% is found with this simple change (Gao, Lee, & Hua, 2009). 

The second study looked at the variations within the FAC. An angle of deflection 45° was 
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found to be more efficient than perpendicular to the wall. Also, a mount height of 1.1m 

was found to be preferable to .6m. Though these systems are not the above discussed 

DV and MV systems they do display a similar variation in location of inlet and outlet. 

Also they show general agreement that there is a benefit to cooling from a lower 

elevation than what is currently considered standard practice. 

The extent of research devoted specifically to the residential application of DV is 

inadequate. The research that is in place points to DV being able to reduce the energy 

demand of the HVAC system. It has also led to a commercial application of DV. Further 

DV research with a residential focus could find a practical application of DV for the 

residence. 

4. Locational Application 

Another major consideration that permeates the research is the variation 

between different geographical locations. DV may be the best system available for one 

region of the world, but could be the worst option in another. There has been extensive 

investigation into the effectiveness of DV in the Hong Kong region. The general 

consensus found that DV worked well in the climate conditions of Hong Kong (Gao & 

Lee, 2009; Gao et al., 2009; Z. Lin, Chow, Tsang, Fong, & Chan, 2005; Z. Lin et al., 2011; 

Zhang Lin et al., 2005). Another study, by Serra, looked at applications in the 

Mediterranean (Serra & Semiao, 2009). But the research applied directly to the United 

States is relatively limited. The above discussed studies by Lau and another by 
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Varodompun look specifically at applications in the United States (Lau & Chen, 2006; 

Varodompun & Navvab, 2007). However, the understanding of DV systems in the United 

States is also limited by the infrequency that these systems are used in the US. 

Therefore, further study looking at the performance of DV in the US is needed. 

5. Thermal Comfort and Indoor Air Quality 

Besides energy consumption, indoor air quality (IAQ) is the other major 

parameter that is frequently investigated in the literature. Each researcher uses a 

different metric to determine the success of the ventilation strategy and each metric 

considers different components of a comfortable indoor environment. Some of the 

main considerations to the thermal comfort that can be measured are the temperature 

(Zhang Lin et al., 2005), the relative humidity (Varodompun & Navvab, 2007), the 

concentration of pollutants (Z. Lin et al., 2005) and the air velocity at different locations 

in the room. Also, the mean age of the air can be calculated using equations similar to 

those used by Lin (Lin,Z. 2005). From these and other measured values, metrics can be 

calculated. Each metric attempts to create a value that can be universally compared 

between indoor environments. Each study uses different metrics that they have created 

or adopted from other studies. Lin uses the predicted percentage dissatisfaction, PPD, 

which calculates the expected percentage of occupants that would be dissatisfied with 

the indoor condition. Gan also used the PPD in their study (G. H. Gan, 1995). Lin 

additionally used the percentage dissatisfied due to draft, PD (Z. Lin et al., 2005; Zhang 
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Lin et al., 2005). Varodompun used the ventilation effectiveness (Varodompun & 

Navvab, 2007). Gao used the Draft Risk, which was also used by Causone (Causone et al., 

2010; Gao & Lee, 2009; Gao et al., 2009). Gao uses the air diffusion performance index, 

ADPI, as an additional metric to compare systems with each other. The ADPI is a 

standard that evaluates the effectiveness of the diffusion of air. This value is based on 

the air speed and temperature. Ng uses the ADPI to find the ideal supply temperature 

(Ng, Kadirgama, & Ng, 2008). Another metric is the intake fraction, IF, this was used in 

the study by Russo. The IF evaluates the concentration of pollutants in the air. 

The use of different metrics means the results are not easily comparable 

between studies. However, when almost every metric comes to the same conclusion 

regardless of what is considered, the validity of the conclusion is generally supported. 

Every study found some level of benefit to cooling with DV, however the extent of the 

benefit was not always agreed upon. 

6. Small-Scale, Full-Scale, or CFD 

Each study also investigates their specific problem with different simulation 

methods. One method is called small-scale experimentation. This method uses a small 

scale replica of the subject space to reduce cost and waste. Many times a saline solution 

is substituted for air to better view the movement and conditions within the 

experiment. This was used by Hunt to predict the time needed to flush a pollutant from 

an enclosure (Hunt & Kaye, 2006). This was also the method used by Gladstone to 
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simulate a displacement ventilated space with a heated floor (Gladstone & Woods, 

2001). Chenvidyaharn also used a small-scale simulation to study the height of the 

interface between warm upper air and cool lower air under different conditions. It was 

found that increasing the supply flow rate or the strength of the heated floor will raise 

the interface and affect the temperature of both zones (Chenvidyakarn & Woods, 2008). 

This was also the method of choice for Linden, Walker, and Sandbach in their respective 

studies (Linden, 1999; Sandbach & Lane-Serff, 2011a; Walker, Tan, & Glicksman, 2011). 

The alternative to small-scale is a full-scale experiment. These take many 

different forms. Some use fully constructed buildings and others may build a sample 

space to run the experimentation. The full scale method allows for the observer to see 

exactly what is occurring in that case. There is no need to calculate and decipher what 

the data means for the real application; it is the real application. This method was used 

frequently in the literature (Kobayashi & Chen, 2003; Lau & Chen, 2007; Novoselac, 

Burley, & Srebric, 2006; Rees, McGuirk, & Haves, 2001; Sandbach & Lane-Serff, 2011b). 

It does however have the drawback that it is harder to control the external ambient 

conditions.  

The newest of these methods is Computational Fluid Dynamics (CFD). This uses 

computer software to run an experiment in significantly less time with significantly less 

cost. These studies require some calibration and the results do not always exactly 

replicate the experimental results. This is due to numerous different methods to 

calculate results within the software. Most of these types of studies seem to use some 
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experimental results to confirm the accuracy of the CFD values that are being produced. 

Once the CFD model has been verified, then additional simulations can be run with a 

higher confidence in the results. This has become the most common method of study 

within this field over the past decade (Angioletti, Di Tommaso, Nino, & Ruocco, 2003; 

Bolster & Linden, 2007; Causone, Olesen, & Corgnati, 2010; Cehlin & Moshfegh, 2010; 

Cho, Awbi, & Karimipanah, 2008; Chow & Holdo, 2010; Deevy, Sinai, Everitt, Voigt, & 

Gobeau, 2008; Gladstone & Woods, 2001; He, Yang, & Srebric, 2005; Holford & Woods, 

2007; Karimipanah & Awbi, 2002; Kaye, Ji, & Cook, 2009; Rohdin & Moshfegh, 2011; 

Russo & Khalifa, 2010; Varodompun & Navvab, 2007; Wu, Wu, Feng, & Zhang, 2007; 

Xing, Hatton, & Awbi, 2001; Xu, Yang, Yang, & Srebric, 2009; Zhang, Lee, & Chen, 2009; 

Zhong, Kang, & Wang, 2008). 

7. Computational Fluid Dynamics Settings  

There are numerous settings within any CFD program that can significantly 

change the accuracy of the results. The calculations can be run with different 

algorithms, but one of the frequently used is the SIMPLE algorithm (G. H. Gan, 1995; G. 

H. Gan, 1995; G. Gan, 1998; Gao & Lee, 2009; Gao et al., 2009; Park & Holland, 2001). 

Another setting that is frequently discussed is the turbulence model. The standard 

practice used to be the standard k-e (SKE) and it is still used in many studies. However, 

frequent studies have focused on finding another method that could improve the 

accuracy of the simulations. Rohdin did a study to compare the three variations of k-e, 
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SKE, RNG, and RKE. It was found that RNG, renormalized group k-e, was the most in 

agreement with the measured results (Rohdin & Moshfegh, 2011). These findings are 

also supported by numerous other studies (G. Y. Chen & Xu, 1998; Q. Chen, 2009; G. 

Gan, 1998). These findings have led to frequent use of this model instead of the SKE 

(Gao & Lee, 2009; Ji & Cook, 2007; Ji et al., 2007; Ji, Cook, & Hanby, 2007; Z. Lin et al., 

2011; Wang & Zhao, 2006). 

8. Open questions 

The literature is unclear on the question of whether DV or MV is energy efficient 

for residential buildings. The answer to this question is complex as it must account for 

geographical location, surrounding terrain, building construction type, air quality 

standards, and the measures used to quantify performance (PPD, PD, ADPI, etc.). 

However, there is a broad consensus that DV has some energy saving benefit compared 

to MV. Therefore, it would be useful to understand the circumstances under which a DV 

flow can be established. That is, for what ventilation configuration, heat load, vent 

velocity, and heat load geometry (localized or distributed) will a thermal stratification 

develop within a residential room. The goal of this thesis is to answer this question.  

In Chapter 2 the experimental simulations are discussed, in addition to the 

hypothesis statement. Chapter 3 discusses the experimental setup and sample results. 

In Chapter 4 the results are presented and discussed. Finally Chapter 5 presents the 

conclusions and plans for future work.   
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CHPTER 2. INTRODUCTION 

1. Introduction 

Displacement ventilation (DV) is an energy saving strategy for heating, 

ventilation and air conditioning, HVAC, systems. DV is typically used in large commercial 

spaces with high ceilings. The major savings are achieved by reducing the space that is 

conditioned down to just the occupied space. The intent of this study is to identify if this 

strategy could be utilized in a residential application with much lower ceilings. 

When DV is properly implemented in the cooling phase, a defined separation in 

temperature occurs between a lower conditioned zone and a higher warm zone. This 

separation can be caused by a point source heat load or the natural buoyancy in the air. 

Ideally, the system could be designed where the buoyancy alone would drive and 

maintain that separation with any configuration of heat loads. However, with a lower 

ceiling it is likely that point loads would help maintain that stratification.  

2. Potential Variables 

One of the major complications with determining if DV is effective in a 

residential application is the numerous configurations and variables that play a role in 

how well the separation in conditioned zones is held constant. 

The location of both the inlet and outlet with respect to each other and the 

geometry of the loads within the space both significantly affect the stratification 

stability. In theory, the inlet should be low and the outlet high. This would allow for the 
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system to input the cold conditioned air at floor level and extract the heated 

contaminated air at ceiling level. However, the system may perform just as well or 

better with both inlet and outlet at the ceiling level. This system could drop the cold 

conditioned air into the space and then extract the warm contaminated air near the 

ceiling. Also, the proximity of inlet and outlet may have a significant affect. 

In a practical application, there will be numerous configurations of heat loads. 

One day the system may be conditioning one person with minimal other heat loads. The 

next day the system may be conditioning 50 people with an abundance of additional 

heat loads. Also the location of these loads within the space could have a substantial 

effect on how well the stratification is maintained. Therefore, regardless of the heat 

load configuration the system must be capable of maintaining some consistency, at least 

within the occupied space. 

The inlet conditions would also play a major role in the stability of the 

stratification. The velocity and temperature of the air entering the room will play a role 

in the amount of mixing that occurs. This variable determines if these systems can be 

designed with standard heating and cooling units or if these systems would require a 

unit specific to these applications. 

Another consideration is the environmental factors that are specific to an area. 

The humidity in one area of the country or the prevailing seasonal temperatures will 

determine the viability of such an approach.  
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Even the geometry of the space itself could alter the efficiency of DV as an 

energy saving strategy. Factors like the height of the ceiling or the volume of the room 

could change the system’s ability to stratify the air at the appropriate height and 

maintain a conditioned occupied zone. 

3. Research Objectives 

The major focus of this study was to determine if the location of the inlet and 

outlet, alone could have an effect on the efficiency of the system. This is done by 

rearranging the inlet and outlet while maintaining all other conditions in the model 

room. The four configurations can be seen in Figure 2-1. Figure 2-2 shows the panels 

that were used to switch the location of both the inlet and outlet. 
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Figure 2-1: The four configurations of the inlet and outlet locations. 
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Figure 2-2: The constructed cube. The panels on the inlet wall, right side, that can be switched to 
change the location of the inlet. 

In additon to the configurations, the amount and distribution of heat loads was 

studied. A point load with and without a distributed load was run at different input 

wattages. This showed the system’s ability to withstand various loads and determined 

the configurations that resulted in a strong stratification. This also allowed for point load 

effects to be compared to distributed loads. By better understanding what type of loads 

assist, hinder or have no effect on the stratification, the appropriate applications of DV 

can be identified. 
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4. Hypothesis and Experiments  

A model room was constructed and installed with various sensors as shown in 

Figures 2-3 & 2-4. A humidity sensor and velocity sensor were installed at the inlet to 

monitor these conditions. A thermocouple was placed on either side of the floor to 

regulate the thermostats for the under floor heating. Power monitors were installed to 

monitor the power consumption of the air conditioner, hot plate, and the floor heating 

systems independently. A thermocouple was installed in each outlet location. 

Thermocouples were installed evenly through the height of the experimental room in 

one corner, shown in Figure 2-4. Additionally, a thermocouple was installed at 55” from 

the floor in the two corners adjacent to the vertical array of thermocouples. 
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Figure 2-3: Cross-section of the cube from above. 

(a) 

(b) 

(c) 



40 

 

 

Figure 2-4: Cross-section of the experimental room from the side. 

The variables considered were the four inlet/outlet configurations, the hot plate 

on high and low, the floor heating on high, low, and off, and the air conditioning fan on 

high and low. The combination of these variables results in 48 experiments and 12 

different comparisons of the four main configurations. A few of these sets were also run 

multiple times to assure the ability of the experiments to be replicated. 

It was theorized that the low inlet and high outlet with a lower inlet velocity 

would result in the strongest stratification when in the cooling phase. This is based on 

the fact that heat rises which means that a low inlet would place the cold air at the 

occupant’s feet where it would slowly rise as it is heated and contaminated. Then once 
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the air reached the outlet, it would be extracted, reducing the concentration of both 

heat and pollutants within the space. The benefits of the low inlet, high outlet 

configuration would be predominantly the improved IAQ and additionally a reduced 

energy demand from the mechanical system. These benefits should ideally outweigh 

any cost of the systems implementation.  
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CHPTER 3. EXPERIMENTAL SETUP 

1. Introduction 

A series of full scale experiments were run to establish the conditions under 

which a vertical stratification would be maintained in a small air conditioned room. The 

apparatus consisted of an eight-foot wooden experimental room connected to an air 

conditioning unit and installed with both localized and distributed heat sources. The 

model room was instrumented with temperature, velocity and humidity probes to 

measure the internal and external climatic conditions. The Power monitors were 

connected to the heat sources and air conditioning unit to measure the heating and 

cooling loads. These provided a resolution of 0.1 watts, a measurement range of 0-1800 

watts, an accuracy of ±1.5%, and took measurements every one minute. The room was 

constructed with a wood frame structure, particle board lining the interior and R-19 

foam insulation between the studs. The data collection was taken on three computers 

with two thermocouple readers, two humidity sensors, a velocity probe, and three 

power monitors. The thermocouple readers provided a resolution of 0.0001˚C, a 

measurement range from -210˚C to 1200˚C, an accuracy of ±0.29˚C, and took 

measurements every 10 seconds. The humidity sensor provided a resolution of 0.1˚C 

and 0.05%RH, a measurement range from -20˚C to 70˚C and 0% to 99% RH, an accuracy 

of ±0.5˚C and ±2%RH, and took measurements every 30 seconds. The velocity probe 

provided a resolution of 0.1m/s, a measurement range from 0.2m/s to 20m/s, an 
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accuracy of ±3%, and took measurements every 10 seconds. The cooling load was 

supplied by a portable air conditioning unit that was retrofitted to have the supply 

ducted into the cube. The distributed load was simulated with a floor heating system 

and the point load was simulated with a hot plate. 

2. Experimental Room Materials 

The frame of the experimental room was constructed out of typical yellow pine 

2x4s. The studs were spaced 16 in on center. One side of the frame was lined with 7/16” 

OSB particle board and between each stud, foam board insulation was placed. The specs 

for the insulation can be seen in the Appendix. The voids between the insulation and the 

studs were filled with spray foam. A typical wall is shown in Figure 3-1.  
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Figure 3-1: The Base wall insulated on the floor and one framed wall braced, standing up 

Six walls were constructed in this fashion. One wall was installed with a door 

which was also insulated as shown in Figure 3-2 and Figure 3-3. Two other walls were 

built with the center stud missing for easy installation of the inlet and outlet of the air-

conditioning system. The resulting void was braced with cross members to stabilize the 

cube. Below the bottom brace and above the top brace an identical rectangle was left 

between studs. This allowed for the insulation pieces at both inlet and outlet positions 

to be interchangeable. The inlet and outlet can then be moved from a bottom position 

on the wall to a top position and vice versa. This can be seen in Figure 3-4. The six walls 
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were then attached to each other, as seen in Figure 3-4, to create the experimental 

room. The walls were framed using typical screws and the OSB was attached using 

typical nails. The walls were attached to each other using the same typical screws. This 

was done for ease of deconstruction.  

 

Figure 3-2: The insulation on the door of the experimental room 
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Figure 3-3: The insulation on the door to the experimental room 
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Figure 3-4: The finished experimental room, with the two interchangeable inlet panels shown 
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Figure 3-5: The final experimental room 
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Figure 3-6: The unfinished experimental room with the insulation missing between the two studs where 
the two inlet location were installed 
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Heating and Cooling Mechanism 

Tests were run by imposing a heat load, simulating the occupants and other 

sources of heat in a residence. This was accomplished with a hot plate for the point 

loads and a distributed floor heating system for the distributed loads. 

Distributed Floor Heating 

The floor was heated using a SunTouch system, visit www.warmyourfloor.com 

for more information. The mesh and wiring was installed between two layers of cement 

board to prevent any fire hazard and to more evenly distribute the heat. This can be 

seen in Figure 3-7. The system was designed to be installed in the mortar below 

bathroom tile. However, for this application maintaining the ability to change the layout 

was important. So the heating element was installed in a way such that it could be 

moved and reconfigured. This was done for the sake of future studies. 

http://www.warmyourfloor.com/
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Figure 3-7: The under floor distributed heating system partially covered in cement board 

The under floor heating system is controlled by a thermostat that typically has a 

thermocouple installed into the floor system that it monitors. However, in this 

application, a constant power output was desired in order to establish a steady state 

internal temperature field. The power output of the system was controlled by the 

thermostat. Therefore the thermocouple was placed on top of the cement board and 

when it read the temperature to be at the set point the element turned off. The 

thermocouple placement can be seen in Figure 3-8. Then the element turned back on 

when the temperature dropped back below the set point. This resulted in the floor 

system approximately operating as a constant heat flux source, see Figure 3-9. A 
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standard non-programmable thermostat was used because the power output was 

monitored by other means. The thermostat had labeled set point temperatures at min, 

60, 70, 80, 90, and max. This allowed for some variation to the input level. The heating 

element achieved this set point temperature by turning on and off.  

 

Figure 3-8: The thermocouples that are attached to the thermostats for the under floor distributed 
heating system 
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Figure 3-9: The power inlet to the distributed floor heating system over ten hours 

Hotplate 

Localized heating, such as from a person or electrical appliance, was simulated 

by a portable GE double burner hotplate, with a maximum output of 1500 watts. Just as 

the thermostat regulated the floor heating system, an internal temperature sensor 

regulated the hotplate. The hotplate runs to a much higher cut off point than the under-

floor heating system so the energy input is much closer to constant at about 600 watts 

with the smaller burner set to max. An occupant can produce a load between 115 and 

580 W depending on size and activity level, according to the 2009 ASHRAE Handbook - 

Fundamentals. Therefore, when the hotplate is set to low, the resultant ≈300 W is 

similar to the heat load of one occupant with reasonable activity or two occupants at a 

more sedentary state. 
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Portable AC Unit 

The cooling load was provided by a portable air conditioning unit that was 

retrofitted to allow the cooled air to be ducted into the cube. A few different cooling 

units were considered, but the PAC N100EL portable air conditioner, a DeLonghi 

product, was the easiest to attach ductwork to. The unit has three different fan speeds 

and temperature set points from 61˚F to 89˚F. The output of the portable air 

conditioning unit was attached to a duct reducer that surrounded the rectangular 

output and contracted down to a six inch round duct. The void between the reducer and 

the air conditioning unit was sealed with two sided sealant tape and the duct and 

reducer were screwed together. Then a piece of insulated flex duct was run from the 

reducer to the six inch vent inlet hole in the side of the experimental room. At the void 

in the wall a six inch round duct connecter was fitted into the insulation. This gave the 

flex duct a rigid connection point on the cube. The flex pipe was connected to the duct 

connector and secured with duct tape. 

3. Instrumentation 

The experimental room was instrumented with thermocouples, humidity 

sensors, a velocity probe and two particle counters. The instrumentation was connected 

to three computers for data recording. The first computer, a Dell Dimension E521, was 

attached to the first thermocouple reader, which was reading thermocouples CH 1-0 

through CH 1-7. The second computer, a Gateway laptop, was attached to the second 
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thermocouple reader, which was reading thermocouples CH 2-0 through CH 2-7. The 

velocity probe was either attached to a Dell XPS L502X or the readings were manually 

recorded. The remaining instruments recorded their own data, which was then 

downloaded after each simulation. 

Thermocouples 

Fifteen thermocouples were attached to two thermocouple readers on the 

exterior of the experimental room and run through holes in the side of the experimental 

room; the hole was then filled with spray foam insulation. Visit 

http://www.omega.com/ppt/pptsc.asp?ref=5TC for more information on the 

thermocouples and http://www.omega.com/ppt/pptsc.asp?ref=OM-USB-TC for more 

information on the thermocouple readers. Each thermocouple was calibrated using the 

program’s calibration and a manual calibration to verify the electronic calibration. The 

thermocouples were attached with a small zip tie to a fishing line run one foot from 

each wall inside the experimental room; see Figure 3-10 and Figure 3-11. Ten 

thermocouples were evenly spaced over the height of the experimental room at (a) in 

Figure 2-3, approximately every 28 cm with approximately 7.6 cm clearence below the 

bottom and above the top thermocouple. One thermocouple was also located 1.4 m 

above the floor at (b) and (c) in Figure 2-3. One was placed at each of the potential 

outlets, located at 16.5 cm and 231 cm above the floor. The remaining thermocouple 

was run in the experimental room at 1.7 m. According to ASHRAE Standard 55-2010 1.7 

http://www.omega.com/ppt/pptsc.asp?ref=5TC
http://www.omega.com/ppt/pptsc.asp?ref=OM-USB-TC
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m is the height used to represent the top of the occupied zone. The difference in 

temperature between this height and 28 cm from the floor is one criteria used by 

ASHRAE Standard 55 to assure occupant comfort. Each thermocouple is attached to one 

of two thermocouple readers that are attached to one of the three computers. The 

computer continuously records the temperature values every 10 seconds throughout 

each experiment. 

 

 

Figure 3-10: The thermocouple closest to the floor of the experimental room 
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Figure 3-11: A thermocouple inside the experimental room attached to the fishing line with a small zip 
tie 

Power Monitors 

The energy input from the under-floor heater and the hotplate was monitored 

with 3 Watts Up? Pro power monitors, see www.wattsupmeters.com for more 

information. The efficiency of the heating systems was assumed to be 100% as any 

losses would also manifest themselves as heat. A third power monitor was attached to 

the portable air conditioner (AC). This allowed for the monitoring of the power used 

when the AC was on and when the AC was only pumping exterior air into the cube. 

These power monitors record the data throughout each test, after which the data is 

http://www.wattsupmeters.com/
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downloaded to one of the computers and the power monitor is reset ready for the next 

test.  

Inlet vent velocity 

The velocity at the AC inlet vent was measured continuously during select tests 

using an Extech Heavy Duty Hot Wire Thermo-anemometer, see 

http://www.extech.com/instruments/product.asp?catid=1&prodid=39 for more details. 

The velocity was measured at one point multiple times over 4 or 5 hours to assure that 

the velocity did not vary with time. Figure 3-12 shows the consistency of the inlet 

velocity. It was noticed that the velocity varied greatly with the location on the inlet. 

Therefore velocity readings were taken at nine different locations on the inlet. These 

readings were then weighted by the area they represented to find a reasonable value 

for the inlet velocity. This was done for the inlet at the low location with low fan speed 

and high fan speed, as well as for the inlet at the high location with both fan speeds. 

Therefore, one value was found for the inlet velocity for the four different inlet 

conditions. These four values can be seen in Table 3-1. 

Table 3-1: The average velocity for each inlet scenario 

  
Fan Speed 

  
Low  High 

Inlet 
Location 

Low 
2.79 
m/s 

3.02 
m/s 

High 
2.47 
m/s 

2.84 
m/s 

http://www.extech.com/instruments/product.asp?catid=1&prodid=39
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Figure 3-12: The velocity at the inlet over two hours 

Relative Humidity 

The humidity on the inside and the outside of the experimental room were 

monitored with humidity sensors, see http://www.omega.com/ppt/pptsc.asp?ref=OM-

70_Series&Nav=dase01 for more info. One was hung on the outside of the experimental 

room and the other was placed inside the inlet. This provided the outside conditions 

and the inlet temperature and humidity for each run. The location of each sensor can be 

seen in Figure 2-3. These sensors record the data throughout each test and then the 

data was downloaded and the sensor reset after each run.  

4. Calibration 

Each set of instruments were calibrated to assure their accuracy. The power 

monitors, humidity sensors, and velocity probe all either came with software to 

calibrate the system or were calibrated by the manufacturer. 
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Thermocouple Calibration 

The thermocouples were calibrated a few different ways. The computer 

program, Instacal, was used to calibrate the system electronically. This program is the 

manufacture recommended calibration format and was available free from their 

website. The thermocouples were also manually calibrated with ice water. The ice water 

calibration was done to assure that each thermocouple read zero degrees Celsius when 

in a well-mixed ice bath. After the calibration, the thermocouples were assured to read 

within 0.2 degree Celsius of each other. This in conjunction with the computer 

calibration assured the accuracy of the temperature readings from the thermocouples. 

System Calibration 

Although the room was insulated with R-19 insulation, there was still heat 

transfer through the walls that had to be accounted for. The insulation greatly reduced 

this heat transfer but the wood studs offer channels for the heat to enter or escape the 

cube.  

This heat loss was initially estimated by using the R-values of the materials. The 

heat loss, HL, was calculated with HL=AU(ΔT), where A is the area in m², U is the heat 

transfer rate of the material (W/(K*m²)), and ΔT is the difference in temperature from 

the inside of the experimental room to the outside. Table 3-2 shows these areas and R-

values. The R-values are reported in imperial units in the US. The values in Table 3-2 are 
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the converted values. Since most of the simulations were run with relatively low internal 

to external temperature differences, the heat loss should be negligible. 

Table 3-2: The R-values and areas of the different regions of the experimental room 

 

Insulated 
Area (m²) 

Uninsulated 
Area (m²) 

Door  and 
Frame (m²) 

Outside 
Air Film  
R-Value 

Inside 
Air Film       
R-Value 

Floor 4.77 0.44 0.00 0.19 0.19 

Wall 1 5.02 0.64 0.00 0.26 0.26 

Wall 2 5.02 0.81 0.00 0.26 0.26 

Wall 3 3.43 0.57 1.65 0.26 0.26 

Wall 4 5.02 0.81 0.00 0.26 0.26 

Roof 4.77 0.44 0.00 0.19 0.29 

R-Value 3.63 1.14 3.68 
  

 

Sealed System 

To verify the calculated value, the room was sealed up and the heat was turned 

on. Once the system reached a steady state, that is the internal temperature remained 

steady over time, the amount of heat put into the room must be balanced by the heat 

leaving the room through the walls. The room was heated to 5.68 ˚C higher than the 

temperature in the lab. This was the average difference over an hour and forty five 

minutes. The resulting heat input was averaged over the same time and was found to be 

183W. The calculation would account for 110W. Therefore, the remaining 73W can be 

attributed to the materials performing at a lower R-value than their rating and to some 
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leakage through the walls. To account for these losses an AU* value of 61 was used as 

the adjusted factor to calculate HL. 

5. Repetitions  

Three scenarios were repeated to test the consistency of results. The power 

inputs and outside humidity to these scenarios are listed in   
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Table 3-3 and the temperature readings are shown in Table 3-4. All of the 

repetitions were run with the low inlet, high outlet configuration at steady state. It was 

found that after 10 hours running, most experiments reached a steady state. Steady 

state was considered the time when the room was no longer heating up or cooling 

down. This was controlled by the thermostats for both heating elements. The 

thermostats were able to turn the heating element on and off once the desired set 

points were reached. The low AC fan speed, low hot-plate, and high distributed floor 

configuration was run an additional five times. This resulted in six sets of the same 

configuration. Also, the low AC fan speed, low hot-plate, and no distributed floor 

configuration and the low AC speed high hot-plate, and no distributed floor 

configuration were run an additional two times. This provided two sets of three runs 

with the same scenario.  
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Table 3-3: The power inputs and outside humidity readings for the repeated experiments 

Ventilation 
Configuration 

AC 
Speed  

H
P

 Settin
g 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low Low High 624.26 275.79 1280.37 55.44 

Low High Low Low High 620.51 273.69 1289.77 38.75 

Low High Low Low High 618.56 277.06 1289.71 43.55 

Low High Low Low High 622.49 270.66 1169.74 49.67 

Low High Low Low High 610.85 308.66 1114.65 43.06 

Low High Low Low High 612.20 285.67 1152.74 65.48 

Average 618.14 281.92 1216.16 49.33 

Standard Deviation 5.49 14.03 79.29 9.83 

Low High Low Low Off 0.00 316.60 1230.38 54.66 

Low High Low Low Off 0.00 324.86 1239.69 43.62 

Low High Low Low Off 0.00 348.64 1217.97 43.21 

Average   330.03 1229.34 47.16 

Standard Deviation   16.64 10.90 6.50 

Low High Low High Off 0.00 568.18 1269.77 38.01 

Low High Low High Off 0.00 565.04 1347.61 44.11 

Low High Low High Off 0.00 568.34 1248.93 56.97 

Average   567.18 1288.77 46.37 

Standard Deviation   1.86 52.01 9.68 
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Figure 3-13 shows the six repetitions of the low inlet, high outlet, low AC fan 

speed, low hot-plate, and high distributed floor heat configuration. The overall 

temperature of the profiles seems to vary significantly. However, when the inlet 

temperature is considered, the variation is perfectly in line. The inlet temperatures are 

listed in the key with each line type. As the inlet temperature increases, so too does the 

internal temperature. The only exception is the run with an inlet temperature of 15.9 C. 

This run was able to achieve a harsh stratification, while none of the others were. 

 

Figure 3-13: The six temperature profiles for the repetitions of the low inlet, high outlet, low AC fan 
speed, low hot-plate, and high distributed floor heat configuration are shown above. The temperature 
difference is each temperature reading less the inlet temperature. 
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Figure 3-14 shows the three repetitions of the low inlet, high outlet, low AC fan 

speed, low hot-plate, and no distributed floor heat configuration. All three of these runs 

line up with the same curve. The 13.8 C inlet temperature led to a lower overall 

temperature. However, the other two runs had about the same inlet temperature and 

resulted in almost identical curves. 

 

Figure 3-14: The three temperature profiles for the repetitions of the low inlet, high outlet, low AC fan 
speed, low hot-plate, and no distributed floor heat configuration are shown above. The temperature 
difference is each temperature reading less the inlet temperature. 

Figure 3-15 shows the three repetitions of the low inlet, high outlet, low AC fan 

speed, low hot-plate, and no distributed floor heat configuration. Just as with the other 
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temperature does. The two runs with nearly the same inlet temperature have nearly the 

same curve. 

 

Figure 3-15: The three temperature profiles for the repetitions of the low inlet, high outlet, low AC fan 
speed, high hot-plate, and no distributed floor heat configuration are shown above. The temperature 
difference is each temperature reading less the inlet temperature. 

The repetitions show that there is some variation that is influenced by the 

external environment. The inlet temperature varies with the outside temperature and 

humidity. Therefore, the curves are almost exclusively shifted with the inlet 

temperature. The presence or lack of a harsh stratification seems to also vary with the 

conditions. However, with and without the harsh stratification the low inlet, high outlet 

configuration was able to handle a greater heat load in almost all cases. 
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6. Sample Data Results 

Each experiment ran for at least 10 hours. All of the data outputs were combined 

into one Excel file for analysis. Figure 3-16 shows the raw Excel output from the 

humidity sensor. The time, temperature, relative humidity, and dew point every 30 

seconds are listed. The Excel output from the thermocouple reader is shown in Figure 

3-17. The time and the temperature at each of eight channels are listed every 10 

seconds. Figure 3-18 shows the Excel output from the power monitors. The time from 

the beginning of the experiment is listed with the wattage and the voltage every minute. 

Figure 3-19 shows the Excel output from the velocity probe. The time, date, and two 

channel values are listed every 10 seconds. Channel 1 is the velocity in meters per 

second and Channel 2 is the temperature in ˚C. 
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Figure 3-16: Data output from the humidity sensor 

 

Figure 3-17: Data output from the thermocouple reader 
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Figure 3-18: Data output from the power monitor 

 

Figure 3-19: The Excel output file from the velocity probe, Channel 1 is the velocity in m/s and Channel 2 
is the temperature in ˚C 
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All of the thermocouples’ readings were plotted on one graph seen in Figure 

3-20. Then an hour was identified as the closest to steady state. This hour was then used 

to find an average value for each thermocouple temperature. The graph of the 

thermocouple data over that hour can be seen in Figure 3-21. Then the average 

temperatures were put into the table in Figure 3-22. Additionally the average wattage 

taken from each power monitor, the average humidity and temperature outside the 

experimental room, and the graph of the temperature profile were all put into the Excel 

sheet in Figure 3-22. 

 

Figure 3-20: Temperature data for the full run of an experiment 
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Figure 3-21: One hour of temperature data 

 

Figure 3-22: The table used to summarize the results of each experimental run 

 

 

 



74 

 

The temperature profiles in Figure 3-22 along with the power input to the 

heated floor and hot plate were used to compare the different scenarios. The power 

input of the heating systems was considered the heat load in the space. The resultant 

temperature profile reflected the ventilation configuration’s ability to handle that heat 

load. Some scenarios were able to take a larger heat load and provide a cooler occupied 

zone.  
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CHPTER 4. RESULTS 

1. Introduction 

The four ventilation configurations were compared with each other for each 

heat load configuration. Three configurations were run multiple times to assure the 

repeatability and consistency of the results. One was run six times and two others were 

run three times each. 

The CFD analysis was limited to one heat load scenario that compared the four 

ventilation configurations using computer software. This data was then compared to 

experimental results, allowing for the accuracy of the CFD analysis to be assessed. 

2. Experiments Run 

The experiments that were run in the test room were selected to provide an 

array of heat loads to the room. This allowed the results to show multiple scenarios and 

not just an idealized case. 

The list of heat loads is shown in Table 4-1, each heat load is run with the four 

ventilation configurations. This resulted in 52 sets of data. Also, Table 4-2 shows the 

three experimental setups that were run multiple times. This was done to assure the 

repeatability of the experiments and to show the influence of the external variables. 

This added 9 additional sets of data for these repetitions.  
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Table 4-1: The list of the experimental scenarios to be observed in the experimental room 

  
AC 
Speed  

Hot 
Plate 
Setting 

Floor 
Setting 

1 Low High Off 

2 Low Low Off 

3 Low Low Low 

4 Low Low High 

5 Low High Low 

6 Low High High 

7 Low Off High 

8 High High Off 

9 High Low Off 

10 High Low Low 

11 High Low High 

12 High High Low 

13 High High High 

 

Table 4-2: The list of experimental setups that were run multiple times. 

Ventilation 
Configuration 

AC 
Speed  

HP 
Setting 

Floor 
Setting 

Number 
of 
Iterations 

Inlet Outlet 

Low High Low Low High 6 

Low High Low Low Off 3 

Low High Low High Off 3 
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3. Results 
Each heat load scenario had four ventilation configurations. The power inputs 

and the external humidity for each observation are listed in Table 4-3 through Table 

4-15. Each table has the data for the four observations with the same heat load 

configuration.  The data shows that although the systems are all on the same setting, 

the actual power inputted into each set varies. It was observed that the configurations 

with the low inlet flushed the heat source more quickly, which led to these scenarios 

having a greater input of heat. This is a result of the sensors in the distributed floor 

heater and the hot-plate not reaching their cut-off temperature as quickly. Also these 

scenarios have a higher velocity at the inlet which adds to the speed of the heat being 

flushed.  

Table 4-3: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, high hot-
plate input, and nothing from the floor. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low High Off 0.00 568.34 1248.93 56.97 

Low Low Low High Off 0.00 563.15 1091.53 49.06 

High Low Low High Off 0.00 453.97 831.73 60.89 

High High Low High Off 0.00 472.91 1101.89 52.29 

 

  



78 

 

Table 4-4: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, low hot-
plate input, and nothing from the floor. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low Low Off 0.00 348.64 1217.97 43.21 

Low Low Low Low Off 0.00 350.53 1046.43 57.06 

High Low Low Low Off 0.00 199.05 1088.95 51.48 

High High Low Low Off 0.00 240.86 1060.32 58.82 

 

Table 4-5: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, low hot-
plate input, and low floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low Low Low 600.12 286.78 1026.84 58.37 

Low Low Low Low Low 440.96 291.38 1127.59 51.23 

High Low Low Low Low 356.47 209.63 1068.31 59.29 

High High Low Low Low 299.80 213.31 1139.53 52.99 
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Table 4-6: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, low hot-
plate input, and high floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low Low High 612.20 285.67 1152.74 65.48 

Low Low Low Low High 614.43 252.66 1193.57 63.70 

High Low Low Low High 621.61 191.19 1121.40 64.28 

High High Low Low High 612.33 190.42 1129.75 56.51 

 

Table 4-7: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, high hot-
plate input, and low floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low High Low 290.71 564.70 1085.96 61.17 

Low Low Low High Low 244.52 566.29 1104.84 56.99 

High Low Low High Low 106.37 459.69 1131.45 54.92 

High High Low High Low 167.66 483.83 1074.21 62.80 
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Table 4-8: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, high hot-
plate input, and high floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low High High 613.84 554.06 1095.71 48.60 

Low Low Low High High 562.02 547.25 1227.93 44.92 

High Low Low High High 519.12 436.07 1116.29 55.18 

High High Low High High 492.73 456.41 1196.85 54.46 

 

Table 4-9: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, high hot-
plate input, and nothing from the floor. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High High High Off 0.00 563.54 1292.96 62.05 

Low Low High High Off 0.00 578.03 1245.93 61.34 

High Low High High Off 0.00 422.36 1318.63 55.01 

High High High High Off 0.00 429.76 1296.30 53.91 
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Table 4-10: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, low hot-
plate input, and nothing form the floor. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High High Low Off 0.00 351.46 1267.50 49.81 

Low Low High Low Off 0.00 191.19 1188.97 57.63 

High Low High Low Off 0.00 182.63 1260.95 51.12 

High High High Low Off 0.00 187.78 1209.12 57.64 
 

Table 4-11: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, low hot-
plate input, and low floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High High Low Low 371.54 348.68 1219.18 62.50 

Low Low High Low Low 247.62 335.18 1283.77 55.94 

High Low High Low Low 519.08 215.18 1084.60 50.73 

High High High Low Low 335.29 190.17 1225.53 65.53 

 

Table 4-12: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, low hot-
plate input, and high floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High High Low High 115.85 565.13 1319.23 64.87 

Low Low High Low High 210.73 568.32 1235.88 55.32 

High Low High Low High 86.31 420.57 1323.54 52.12 

High High High Low High 178.51 413.56 1245.58 59.16 
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Table 4-13: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, high hot-
plate input, and low floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High High High Low 625.46 335.28 1247.17 59.08 

Low Low High High Low 617.41 327.57 1265.98 64.65 

High Low High High Low 592.29 203.90 1316.38 58.99 

High High High High Low 614.71 208.10 1258.39 67.75 
 

Table 4-14: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for high AC speed, high hot-
plate input, and high floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low Low High High High 528.01 536.27 1041.90 62.36 

Low High High High High 500.23 553.78 1274.26 62.47 

High High High High High 553.22 460.60 1172.26 55.71 

High Low High High High 621.10 477.01 1120.67 47.79 

 

Table 4-15: The observed power inputs to the floor heating, hot-plate, and portable AC unit, as well as 
the observed humidity in the warehouse, outside of the experimental room for low AC speed, no hot-
plate input, and high floor input. 

Ventilation 
Configuration AC 

Speed  
HP 
Setting 

Floor 
Setting 

Floor 
Power 
Input 
(W) 

Hot-
Plate 
Power 
Input 
(W) 

AC 
Power 
Input 
(W) 

Humidity 
Outside 
(%) 

Inlet Outlet 

Low High Low Off High 625.78 0.00 1358.37 41.19 

Low Low Low Off High 630.30 0.00 1229.93 48.75 

High Low Low Off High 630.10 0.00 1426.24 42.02 

High High Low Off High 634.11 0.00 1222.52 49.12 
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Table 4-16 shows all of the temperature observations for each scenario. The 

height of each observation is listed across the top of the table. These temperature 

profiles show the gradient through the height of the room and whether or not a harsh 

stratification occurred in the room. When this did occur, it allowed the warm air to 

separate from the cooler air and rise above the occupied zone. 
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4. Energy Balance 

An energy balance was calculated for each experimental run. This was done to 

assure that all the energy going in and coming out of the experimental room was 

accounted for. The three flows of energy considered were the power input to the floor, 

the flow of air through the experimental room, and the losses through the floor and 

walls. 

The power input was monitored for the hotplate and the distributed floor heat 

with a power monitor. It was assumed that both were 100% efficient and all the power 

going in was transferred to heat. 

The heat loss from the air flow through the test chamber was calculated using 

       (              )         (1) 

where   is the volume flux of air through the chamber,   is the density of air (taken to 

be 1.225 kg/m3),    is the specific heat of air (1.0035 kJ/kg.K) and TOutlet and TInlet are the 

temperatures observed at the outlet and inlet, respectively. The value used for the 

specific heat capacity assumes that the air is dry and at sea level. The combined effects 

of these accounting for humidity and altitude would alter     by less than 1% and were 

therefore ignored. The flow rate was measured at the inlet to the room by measuring 

the velocity at a range of points along a pair of vertical and horizontal lines passing 

through the center of the vent inlet. The flow rate was then calculated by numerical 

integration of the velocity profile, 
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  ∑              (2) 

where   is the average velocity measured at a particular radial location and    is the 

area of a circular strip centered on the radial distance at which the velocities were 

measured. 

The difference between the heat lost due to air flow and the input energy should 

be the amount of energy lost through the walls and floor. This is a result of the 

conduction through the wall and the convection around the exterior surface of the 

room. Also the radiation from the experimental room to the walls of the lab could 

contribute to these losses. Since the lab was a conditioned space there should be only 

very small variations in surface temperatures throughout the space and, therefore, 

losses from radiation were considered negligible, and ignored.  

The losses through the walls of the experimental room were calculated two different 

ways. The first correction for losses, L, was calculated using 

                 (3) 

This equation uses a calibration factor that was found by heating the experimental room 

up to steady state and observing the heat required to maintain that steady state. The 

calibration factor is simply the average W/K needed to maintain that steady state at 

different ΔT. This AU value was found to be 37.5 W/K. The issue with this method is the 

assumption that the relationship between the ΔT and the energy transfer is linear. In 

actuality it is more of a logarithmic relationship. When the calibration factor was 
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calculated the ΔT was between 8 and 15K. The experimental run ΔT varied from 0 to 

12K, typically on the lower end. 

To attempt to correct for this, the losses were also calculated using 

                                 (4) 

where the indices C, W, and F refer to Ceiling, Walls, and Floor, respectively. The R-

values of each wall and the surface area were used to calculate the AU. The R-value is a 

characteristic of each material used in the wall. These values are available from the 

manufacturer. The total R-value for each section of the wall is found by adding all of the 

R-values of the materials in the wall and the additional R-value for the air that hugs each 

side of the wall. The inverse of this total R-value is the U, and each U times its area gives 

the AU for that wall. The ceiling AU was found to be 0.442 W/K, the wall AU was found 

to be 2.023 W/K, and the floor AU was found to be 0.456 W/K. The factors were broken 

up in this fashion because of the difference in temperature in the experimental room. In 

some cases the ceiling had a higher ΔT than the floor, affecting its heat loss. The units of 

the AU were converted to W/K since R-values are given in Imperial units in the US. The U 

was found to be 0.442 W/K. This reduced the average error from 28.1% to 19.8%. 

Each scenario and its resultant energy balance using Equation 3 can be seen in 

Table 4-17 and Table 4-18. The same balance using Equation 4 can be seen in Table 4-19 

and Table 4-20. These balances show a substantial amount of energy leaving the 

experimental room that is not accounted for entering the room. This is assumed to be a 

result of the losses varying drastically with the varying outdoor conditions. The 
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temperature difference may remain the same but the temperature outside the 

warehouse will change the rate the energy radiates to the outside. Additionally, the 

thermal mass of the experimental room will accumulate or dissipate heat if a true 

steady state is not reached. In many of the experimental runs the temperature is 

slowing dropping a couple degrees over a few hours. This drop in temperature would be 

paralleled with the thermal mass of the room releasing energy to the space. That heat 

would be leaving but not be accounted for entering the experiment.  



90 

 

Table 4-17: The calculated energy balance using Equation 3 for all scenarios with low AC fan speed 

Ventilation 
Configuration AC 

Hot 
Plate 

Floor 
P in 

(watts) 

Energy 
Flow 
Out 

(watts) 

Losses 
(watts) 

Balance 
(watts) 

Percent 
Error 

Inlet Outlet 

Low High Low High Off 568.34 720.85 103.08 -255.60 45.0% 

Low Low Low High Off 563.15 716.22 -23.60 -129.46 23.0% 

High Low Low High Off 453.97 672.97 -55.10 -163.91 36.1% 

High High Low High Off 472.91 569.06 -3.61 -92.53 19.6% 

Low High Low Low Off 348.64 467.34 -100.58 -18.12 5.2% 

Low Low Low Low Off 350.53 509.16 -119.99 -38.65 11.0% 

High Low Low Low Off 199.05 316.40 -222.10 104.75 52.6% 

High High Low Low Off 240.86 368.02 -133.98 6.82 2.8% 

Low High Low Low Low 886.90 892.52 135.13 -140.75 15.9% 

Low Low Low Low Low 732.34 734.84 103.58 -106.08 14.5% 

High Low Low Low Low 566.10 608.64 58.64 -101.18 17.9% 

High High Low Low Low 513.11 573.68 7.15 -67.72 13.2% 

Low High Low Low High 897.86 893.65 240.34 -236.12 26.3% 

Low Low Low Low High 867.09 961.35 260.84 -355.10 41.0% 

High Low Low Low High 812.80 747.52 236.41 -171.13 21.1% 

High High Low Low High 802.74 712.37 166.03 -75.65 9.4% 

Low High Low High Low 855.41 923.55 182.17 -250.31 29.3% 

Low Low Low High Low 810.81 871.90 177.75 -238.84 29.5% 

High Low Low High Low 566.05 772.36 76.24 -282.54 49.9% 

High High Low High Low 651.49 689.04 137.30 -174.85 26.8% 

Low High Low High High 1167.89 1236.57 305.19 -373.87 32.0% 

Low Low Low High High 1109.27 1107.70 351.01 -349.44 31.5% 

High Low Low High High 955.20 911.42 305.62 -261.85 27.4% 

High High Low High High 949.14 815.22 233.04 -99.12 10.4% 

Low High Low Off High 625.78 708.74 32.70 -115.66 18.5% 

Low Low Low Off High 630.30 564.10 171.15 -104.95 16.6% 

High Low Low Off High 630.10 534.08 116.32 -20.31 3.2% 

High High Low Off High 634.11 569.79 151.11 -86.79 13.7% 
 

 

  



91 

 

Table 4-18: The calculated energy balance using Equation 3 for all scenarios with high AC fan speed 

Ventilation 
Configuration AC 

Hot 
Plate 

Floor 
P in 

(watts) 

Energy 
Flow 
Out 

(watts) 

Losses 
(watts) 

Balance 
(watts) 

Percent 
Error 

Inlet Outlet 

Low High High High Off 563.54 736.40 102.33 -275.19 48.8% 

Low Low High High Off 578.03 762.57 138.40 -322.94 55.9% 

High Low High High Off 422.36 449.46 -23.06 -4.04 1.0% 

High High High High Off 429.76 399.76 -92.51 122.51 28.5% 

Low High High Low Off 351.46 479.09 -31.73 -95.90 27.3% 

Low Low High Low Off 191.19 523.10 -34.89 -297.01 155.3% 

High Low High Low Off 182.63 313.75 -145.29 14.16 7.8% 

High High High Low Off 187.78 277.32 -121.28 31.74 16.9% 

Low High High Low Low 720.22 897.02 157.47 -334.27 46.4% 

Low Low High Low Low 582.80 732.28 127.98 -277.46 47.6% 

High Low High Low Low 734.26 781.28 129.33 -176.35 24.0% 

High High High Low Low 525.46 532.01 35.99 -42.53 8.1% 

Low High High Low High 680.98 791.03 209.73 -319.78 47.0% 

Low Low High Low High 779.05 841.41 135.19 -197.55 25.4% 

High Low High Low High 506.88 520.58 5.35 -19.05 3.8% 

High High High Low High 592.07 591.06 79.35 -78.34 13.2% 

Low High High High Low 960.74 1007.39 204.15 -250.81 26.1% 

Low Low High High Low 944.98 987.06 274.95 -317.03 33.5% 

High Low High High Low 796.19 768.88 230.70 -203.38 25.5% 

High High High High Low 822.81 864.48 288.21 -329.88 40.1% 

Low Low High High High 1064.28 1069.65 434.69 -440.07 41.3% 

Low High High High High 1054.01 1125.45 393.19 -464.63 44.1% 

High High High High High 1013.81 1151.00 222.77 -359.95 35.5% 

High Low High High High 1098.11 990.30 265.97 -158.16 14.4% 
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Table 4-19: The calculated energy balance using Equation 4 for all scenarios with low AC fan speed 

Ventilation 
Configuration AC 

Hot 
Plate 

Floor 
P in 

(watts) 

Energy 
Flow 
Out 

(watts) 

Losses 
(watts) 

Energy 
Balance 
(watts) 

Percent 
Error 

Inlet Outlet 

Low High Low High Off 568.34 720.85 7.92 -160.44 28.2% 

Low Low Low High Off 563.15 716.22 -1.55 -151.52 26.9% 

High Low Low High Off 453.97 672.97 -4.30 -214.71 47.3% 

High High Low High Off 472.91 569.06 -0.28 -95.87 20.3% 

Low High Low Low Off 348.64 467.34 -7.89 -110.81 31.8% 

Low Low Low Low Off 350.53 509.16 -9.02 -149.62 42.7% 

High Low Low Low Off 199.05 316.40 -17.24 -100.11 50.3% 

High High Low Low Off 240.86 368.02 -10.41 -116.74 48.5% 

Low High Low Low Low 886.90 892.52 10.46 -16.08 1.8% 

Low Low Low Low Low 732.34 734.84 8.06 -10.56 1.4% 

High Low Low Low Low 566.10 608.64 4.66 -47.20 8.3% 

High High Low Low Low 513.11 573.68 0.66 -61.22 11.9% 

Low High Low Low High 897.86 893.65 18.84 -14.62 1.6% 

Low Low Low Low High 867.09 961.35 20.23 -114.49 13.2% 

High Low Low Low High 812.80 747.52 18.59 46.69 5.7% 

High High Low Low High 802.74 712.37 13.15 77.23 9.6% 

Low High Low High Low 855.41 923.55 14.12 -82.26 9.6% 

Low Low Low High Low 810.81 871.90 13.84 -74.94 9.2% 

High Low Low High Low 566.05 772.36 5.92 -212.22 37.5% 

High High Low High Low 651.49 689.04 10.72 -48.27 7.4% 

Low High Low High High 1167.89 1236.57 24.00 -92.68 7.9% 

Low Low Low High High 1109.27 1107.70 27.42 -25.84 2.3% 

High Low Low High High 955.20 911.42 23.92 19.86 2.1% 

High High Low High High 949.14 815.22 18.26 115.66 12.2% 

Low High Low Off High 625.78 708.74 2.82 -85.78 13.7% 

Low Low Low Off High 630.30 564.10 13.61 52.60 8.3% 

High Low Low Off High 630.10 534.08 9.34 86.68 13.8% 

High High Low Off High 634.11 569.79 12.08 52.25 8.2% 
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Table 4-20: The calculated energy balance using Equation 4 for all scenarios with high AC fan speed 

Ventilation 
Configuration AC 

Hot 
Plate 

Floor 
P in 

(watts) 

Energy 
Flow Out 
(watts) 

Losses 
(watts) 

Energy 
Balance 
(watts) 

Percent 
Error 

Inlet Outlet 

Low High High High Off 563.54 736.40 7.53 -180.39 32.0% 

Low Low High High Off 578.03 762.57 10.87 -195.41 33.8% 

High Low High High Off 422.36 449.46 -1.87 -25.22 6.0% 

High High High High Off 429.76 399.76 -7.44 37.44 8.7% 

Low High High Low Off 351.46 479.09 -2.55 -125.08 35.6% 

Low Low High Low Off 191.19 523.10 -2.85 -329.06 172.1% 

High Low High Low Off 182.63 313.75 -11.35 -119.77 65.6% 

High High High Low Off 187.78 277.32 -9.46 -80.08 42.6% 

Low High High Low Low 720.22 897.02 11.99 -188.78 26.2% 

Low Low High Low Low 582.80 732.28 9.67 -159.14 27.3% 

High Low High Low Low 734.26 781.28 10.23 -57.26 7.8% 

High High High Low Low 525.46 532.01 2.55 -9.10 1.7% 

Low High High Low High 680.98 791.03 15.96 -126.01 18.5% 

Low Low High Low High 779.05 841.41 9.99 -72.35 9.3% 

High Low High Low High 506.88 520.58 0.30 -14.00 2.8% 

High High High Low High 592.07 591.06 5.89 -4.88 0.8% 

Low High High High Low 960.74 1007.39 15.68 -62.33 6.5% 

Low Low High High Low 944.98 987.06 21.60 -63.68 6.7% 

High Low High High Low 796.19 768.88 18.18 9.13 1.1% 

High High High High Low 822.81 864.48 22.65 -64.31 7.8% 

Low Low High High High 1064.28 1069.65 34.16 -39.53 3.7% 

Low High High High High 1054.01 1125.45 30.70 -102.15 9.7% 

High High High High High 1013.81 1151.00 17.47 -154.66 15.3% 

High Low High High High 1098.11 990.30 20.79 87.02 7.9% 

Low High Low Off High 625.78 708.74 2.82 -85.78 13.7% 

Low Low Low Off High 630.30 564.10 13.61 52.60 8.3% 

High Low Low Off High 630.10 534.08 9.34 86.68 13.8% 

High High Low Off High 634.11 569.79 12.08 52.25 8.2% 
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5. Profiles 
The temperature profiles for each set of four ventilation configurations were 

plotted for comparison. Each plot shows the four profiles on top of each other and 

displays the temperature gradient that is achieved. While observing the profiles, it 

should be pointed out that the power input is consistently higher when the inlet is low. 

This is because the heat inputs were both temperature controlled rather than power 

level controlled. Therefore, the higher the inlet velocity and the closer the inlet is to the 

heating elements, the greater the ability of the air flow to flush heat off the floor and 

the more energy is required to maintain the desired temperature. The increase in 

energy put into the system resulted in a higher overall temperature in some cases. 

Figure 4-1 shows the temperature profiles for the four ventilation configurations 

with the AC fan on low, the hot-plate on low, and the distributed floor turned off, and 

Table 4-21 shows the calculated energy balance for each of these configurations. In this 

case, there is about 100 W of additional heat going into the two configurations with the 

low inlet. The low inlet, high outlet configuration did result in a higher overall 

temperature, but the low inlet, low outlet configuration was able to maintain about the 

same average temperature even with the higher input heat. 
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Figure 4-1: The temperature profile for the four ventilation configurations with low AC speed, low hot-
plate input, and no distributed floor heat. Here the low inlet, low outlet configuration seems to 
outperform the others. 

Table 4-21: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
low, and the distributed floor turned off  

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 31.8% 

Low Low 42.7% 

High Low 50.3% 

High High 48.5% 
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Figure 4-2 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, hot-plate on high, and the distributed floor off, and Table 4-22 

shows the calculated energy balance for each of these cases. This configuration like the 

one in Figure 4-1 had an additional 100W of power input when the inlet was low. Here 

you see that both low inlet configurations were able to maintain a temperature 

comparable to the high inlet, high outlet configuration. However, the high inlet, low 

outlet was able to bring the overall temperature down a couple of degrees. Also, the 

low inlet, low outlet configuration was able to achieve a sharp stratification at about 

1.6m above the ground. This shows that the desired energy saving stratification can be 

achieved in a single story environment. 
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Figure 4-2: The temperature profile for the four ventilation configurations with low AC speed, high hot-
plate input, and no distributed floor heat. Here the only configuration that was able to achieve a step in 
the temperature profile was the low inlet, low outlet. 

Table 4-22: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
high, and the distributed floor turned off 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 28.2% 

Low Low 26.9% 

High Low 47.3% 

High High 20.3% 
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Figure 4-3 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, hot-plate on low, and the distributed floor on low, and Table 

4-23 shows the calculated energy balance for each of these configurations. In these 

scenarios, the low inlet configurations took about 80 additional watts off of the hot 

plate and about 200 additional watts. However, the lower region of the room is about 

the same temperature as the high inlet configurations. Also, the power input to the low 

inlet, high outlet configuration is about 150 watts greater than the low inlet, low outlet. 

Regardless of the greater load, the low inlet, high outlet configuration has a lower 

temperature profile. 

Also, the two low inlet configurations show the sharp temperature stratification. 

When properly executed this provides the desired reduction in conditioned space. 
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Figure 4-3: The temperature profile for the four ventilation configurations with low AC speed, low hot-
plate input, and low distributed floor heat. Here the low inlet, high outlet configuration is able to take a 
much larger heat load but is able to provide approximately the same temperature in the occupied zone. 

Table 4-23: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
low, and the distributed floor on low 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 1.8% 

Low Low 1.4% 

High Low 8.3% 

High High 11.9% 
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Figure 4-4 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, hot-plate on high, and the distributed floor on low, and Table 

4-23 shows the calculated energy balance for each of these configurations. The heat 

load of the Low inlet configurations is between 200 and 300 W greater than the high 

inlet configurations.  However, the lower occupied region is again approximately the 

same temperature as the high inlet configurations, and the heat is restricted to the 

upper region. The low inlet, high outlet configuration was able to flush the upper heat 

and maintain an overall lower temperature than the low inlet, low outlet even with an 

additional 50 watt load. 
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Figure 4-4: The temperature profile for the four ventilation configurations with low AC speed, high hot-
plate input, and low distributed floor heat. Here the low inlet, high outlet configuration is able to 
handle a larger heat load than the other configurations but provides a cooler occupied region. 

 

Table 4-24: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
high, and the distributed floor on low 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 9.6% 

Low Low 9.2% 

High Low 37.5% 

High High 7.4% 
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Figure 4-5 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, hot-plate on low, and the distributed floor on high, and Table 

4-25 shows the calculated energy balance for each of these configurations. In these 

scenarios there is only about a 50 watt increase in the low inlet, low outlet configuration 

over the high inlet scenarios, and a 100watt increase with the low inlet, high outlet. 

Again it is observed that the occupied temperature is the same or lower with the low 

inlet. The low inlet, high outlet was able to cool the occupied space more than all other 

configurations and keep the higher region only 2˚C higher. This led to an overall similar 

temperature with a higher heat load and a cooler occupied region. 
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Figure 4-5: The temperature profile for the four ventilation configurations with low AC speed, low hot-
plate input, and high distributed floor heat. Here the low inlet, high outlet configuration was able to 
absorb a slightly larger heat load while providing an occupied temperature cooler than the other 
configurations. 

Table 4-25: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
low, and the distributed floor on high 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 1.6% 

Low Low 13.2% 

High Low 5.7% 

High High 9.6% 
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Figure 4-6 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, hot-plate on high, and the distributed floor on high, and Table 

4-26 shows the calculated energy balance for each of these configurations. The low 

inlet, high outlet had an additional load of about 200 watts; while the low inlet, low 

outlet configuration had about 150 watts of additional load. The low inlet, low outlet 

configuration was able to respond to the higher load by forcing the heat into the upper 

region and maintain only a 2˚C increase in the lower region. However, the low inlet, high 

outlet configuration was able to cool the space about 3˚C lower than the high inlet 

configurations. It also did this without creating a harsh stratification.  
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Figure 4-6: The temperature profile for the four ventilation configurations with low AC speed, high hot-
plate input, and high distributed floor heat. Here the low inlet, low outlet configuration is able to flush 
more heat from the floor heating elements and provides a cooler temperature throughout its profile. 

 

Table 4-26: The percent error calculated for each configuration with the AC fan on low, the hot plate on 
high, and the distributed floor on high 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 7.9% 

Low Low 2.3% 

High Low 2.1% 

High High 12.2% 
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Figure 4-7 shows the temperature profiles of the four ventilation configurations 

with the AC fan on low, the hot-plate off, and the distributed floor on high, and Table 

4-27 shows the calculated energy balance for each of these cases. These configurations 

resulted in approximately the same heat load. Both low inlet configurations resulted in 

similar occupied temperatures to the high inlet, high outlet. However, the high inlet, low 

outlet configuration was about 4˚C higher than the other three scenarios. 

 

Figure 4-7: The temperature profile for the four ventilation configurations with low AC speed, no hot-
plate input, and high distributed floor heat. Here the heat loads were nearly the same for all cases, and 
the low inlet configurations and the high inlet, high outlet configuration were all able to provide about 
the same occupied conditions. 
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Table 4-27: The percent error calculated for each configuration with the AC fan on low, the hot plate 
turned off, and the distributed floor on high 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 13.7% 

Low Low 8.3% 

High Low 13.8% 

High High 8.2% 

 

Figure 4-8 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on low, and the distributed floor off, and Table 4-28 

shows the calculated energy balance for each of these configurations. The low inlet, 

high outlet configuration had an additional load of approximately 150 watts over the 

other three configurations. No harsh stratification was achieved and the low inlet, high 

outlet configuration resulted in a higher overall temperature in response to the 

additional load. Also, the high inlet, high outlet configuration was able to maintain a 

lower temperature when compared to the other scenarios with the same load. 
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Figure 4-8: The temperature profile for the four ventilation configurations with high AC speed, low hot-
plate input, and no distributed floor heat. Here the low inlet, high outlet configuration took almost 
double the heat load from the heating elements, but only had about a two degree increase in the 
temperature of the occupied region. Also the high inlet, high outlet was able to outperform the low, 
low and high low configurations. 

 

Table 4-28: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
low, and the distributed floor turned off 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 35.6% 

Low Low 172.1% 

High Low 65.6% 

High High 42.6% 
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Figure 4-9 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on high, and the distributed floor off, and Table 4-29 

shows the calculated energy balance for each of these configurations. Both low inlet 

configurations had approximately 150 additional watts in heat load when compared to 

the high inlet configurations. No harsh stratification was achieved, resulting in a higher 

temperature in the low inlet configurations. Again the high inlet, high outlet 

configuration was able to cool the room more than the high inlet, low outlet 

configuration with the same heat load. 

 

Figure 4-9: The temperature profile for the four ventilation configurations with high AC speed, high hot-
plate input, and no distributed floor heat. Here the additional heat load for the low inlet configurations 
resulted in a higher temperature across the profile. 
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Table 4-29: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
high, and the distributed floor turned off 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 32.0% 

Low Low 33.8% 

High Low 6.0% 

High High 8.7% 

 

Figure 4-10 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on low, and the distributed floor on low, and Table 

4-30 shows the calculated energy balance for each of these configurations. Here the 

heat loads were more complicated. The point source load was greater on the low inlet 

configurations, but the distributed load was greater on the high inlet, low outlet 

configuration. The two displaced configurations had approximately the same overall 

load, as did the two same level configurations. In both comparisons, the high inlet 

configurations were able to cool the room further. 



111 

 

 

Figure 4-10: The temperature profile for the four ventilation configurations with high AC speed, low 
hot-plate input, and low distributed floor heat. Here the high inlet configurations were able to 
outperform the low inlet configurations. 

 

Table 4-30: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
low, and the distributed floor on low 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 26.2% 

Low Low 27.3% 

High Low 7.8% 

High High 1.7% 
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Figure 4-11 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on high, and the distributed floor on low, and Table 

4-31 shows the calculated energy balance for each of these configurations. This scenario 

resulted in approximately 120 additional watts in the low inlet configurations. Both 

were able to at least slightly cool the space more than the high inlet configurations. The 

low inlet, high outlet configuration was able to do this without a harsh stratification. 

It should also be noted that the high inlet configurations resulted in a much 

warmer temperature at the elevations closest to the heat source. The low inlet 

configurations were able to more quickly respond to the floor heat loads. 
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Figure 4-11: The temperature profile for the four ventilation configurations with high AC speed, high 
hot-plate input, and low distributed floor heat. Here the low inlet configurations took larger heat loads 
and provided a cooler occupied region. 

 

Table 4-31: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
high, and the distributed floor on low 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 6.5% 

Low Low 6.7% 

High Low 1.1% 

High High 7.8% 
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Figure 4-12 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on low, and the distributed floor on high, and Table 

4-32 shows the calculated energy balance for each of these configurations. The 

distributed load is approximately the same in all cases, but the point load is about 150 

watts higher with the low inlet configurations. This caused the overall temperature to 

rise in the low inlet configurations and the harsh stratification to be lower than 

previously seen. 

 

Figure 4-12: The temperature profile for the four ventilation configurations with high AC speed, low 
hot-plate input, and high distributed floor heat. Here the low inlet configurations took larger heat loads 
which resulted in a higher temperature in the occupied region. 
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Table 4-32: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
low, and the distributed floor on high 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low High 18.5% 

Low Low 9.3% 

High Low 2.8% 

High High 0.8% 

 

Figure 4-13 shows the temperature profiles of the four ventilation configurations 

with the AC fan on high, hot-plate on high, and the distributed floor on high, and Table 

4-33 shows the calculated energy balance for each of these configurations. These 

scenarios had approximately the same heat loads and resulted in the low inlet 

configurations having a higher overall temperature with a harsh stratification at about 

1.4m above the floor. 
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Figure 4-13: The temperature profile for the four ventilation configurations with high AC speed, high 
hot-plate input, and high distributed floor heat. Here all configurations had about the same heat load 
and the high inlet configurations outperformed the low inlet configurations. 

 

Table 4-33: The percent error calculated for each configuration with the AC fan on high, the hot plate on 
high, and the distributed floor on high 

Ventilation 
Configuration 

Percent 
Error 

Inlet Outlet 

Low Low 3.7% 

Low High 9.7% 

High High 15.3% 

High Low 7.9% 
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The results showed that with a lower inlet velocity the low inlet configurations 

were able to handle a higher heat load with either a cooler or a comparable occupied 

temperature. However, when the velocity was increase, the consistency of this was 

reduced. Also, the low inlet, high outlet configuration was able to consistently cool the 

space more than the low inlet, low outlet configuration when the velocity was set to 

low. 

It was also noticed that the high inlet, high outlet was able to dump the cool air 

into the space and extract the warmer air. It was able to outperform the high inlet, low 

outlet configuration in most cases.  

In all cases the vertical variation was as high as 2˚C. This shows that any variation 

of less than 2˚C in the horizontal direction cannot be attributed to the temperature 

gradient, but could be a result of the standard variation within the room. Therefore, 

only the stratifications exceeding 2˚C are clear examples of the energy saving 

stratification within the room. 

6. Summation of Results 
The experimental results showed that the low inlet, high outlet configuration 

was able to maintain a stratification within the space more effectively than the other 

ventilation configurations. It consistently resulted in a greater floor to ceiling 

temperature difference compared to the other configurations. This is summarized in 

Figure 4-14 that shows a plot of the floor to ceiling temperature difference for each of 

the four ventilation configurations and for each heat load. Also, a line is drawn at where 
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ΔT=2˚C. This line separates the cases where the stratification is less than the expected 

variation, below the line, and the cases where a significant stratification has occurred, 

above the line. Table 4-34 lists the different heat load configurations in order of the ΔT 

for the low inlet, high outlet configuration. Figure 4-14 shows, in general, that for low 

heat loads (generally the earlier cases) there is no significant vertical temperature 

variation for any ventilation configuration. This is most likely a result of the inflow cool 

air containing enough kinetic energy to keep the room well mixed. However, for higher 

heat loads the low – high configuration, there is a consistent vertical stratification, as 

the stabilizing effect of the heating is able to resist the mixing due to the ventilation 

flow. The low-low configuration also produces significant vertical variation in 

temperature. However, this is due to the cooling flow short circuiting and leaving the 

upper portion of the room warm but unventilated.  
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Table 4-34: The list of the heat load scenarios, organized from the lowest internal ΔT to the largest for 
the low inlet, high outlet configuration 

Series 
Number 

AC 
Speed  

HP 
Setting 

Floor 
Setting 

Total Load 
(W) 

1 High Low Off 228.26 

2 Low Low Off 284.77 

3 High Low Low 640.68 

4 High High Low 881.18 

5 High High Off 498.42 

6 High Low High 639.74 

7 Low Off High 630.07 

8 Low High Off 514.59 

9 Low Low High 845.12 

10 Low Low Low 674.61 

11 Low High High 1045.37 

12 High High High 1057.55 

13 Low High Low 720.94 
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Figure 4-14: The four ventilation configuration’s internal ΔT for each series number, listed in Table 4-34, 
and the total heat load for each series. The low inlet configurations were able to achieve a ΔT greater 
than 2˚C. This shows that the stratification is achieved by something other than the standard variation 
in temperature in the room. 

 

The relationship between temperature difference and heat load for the low-high 

configuration is more clearly seen in Figure 4-15 that shows just the low inlet, high 

outlet ΔT (left axis) plotted alongside the total heat load (right axis) for each heat load 

scenario. This shows that, in general, as the heat load increases so does the ΔT for the 

low-low configuration.  The only significant exceptions to this are cases 4 and 8. In case 

4 there is a high heat load but also high ventilation flow breaking down the stratification 

resulting in a relatively low temperature difference for the given moderate to high heat 
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load. In case 8 the temperature difference is relatively high for a lower heat load. In this 

case there is a lower ventilation flow rate and the entire heat load is in the concentrated 

(point source) hot plate (it is well established that point heat sources lead to stronger 

stratifications than distributed heat sources, see Linden 1999). 

 

Figure 4-15: The total heat load for each heat load configuration graphed with the low inlet, high outlet 
ΔT. Each heat load configuration is listed in Table 4-34 with its series number. With few exceptions the 
increase in the ΔT parallels the increase in heat load. The exceptions can be attributed to the effect of 
the inlet velocity. 

  

-100

100

300

500

700

900

1100

1300

1500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14

H
e

at
 L

o
ad

 (
W

) 

Δ
T 

w
it

h
in

 t
h

e
 T

e
st

 R
o

o
m

 (
˚C

) 

Series Number 

Low Inlet, High Outlet Total Load (W)



122 

 

CHPTER 5. DISCUSSION AND CONCLUSIONS 

1. Conclusions 

The results of the experimental runs show that the low inlet, high outlet 

configuration was better able to maintain a thermal stratification compared to the other 

ventilation configurations when in cooling. A cooler occupied zone was not shown in 

every scenario, but in general the low-high configuration resulted in a two-layer 

stratification within the room. This means that the temperature of the lower occupied 

region will be closer to the inlet temperature than the outlet temperature meaning that 

the inlet temperature can be higher than for the case of mixed ventilation, thereby 

saving energy. The thermal stratification also indicates that the low-high configuration 

likely has the ability to flush contaminants vertically through the room and hence 

improve the IAQ. Since IAQ is increasingly becoming an important issue in design, this 

alone could justify this ventilation configuration being implemented on a larger scale. 

The amount of pollutants and VOCs that are currently in the residential environment 

could have a reduced impact on the occupant if the pollutants are prevented from 

accumulating in the lower occupied region of the room. This improved IAQ would also 

provide a strong case for DV in a hospital application. One of the potential drawbacks to 

DV is that it is less effective in the heating than the cooling phase. For a hospital, the 

system is in the cooling phase almost all of the time. Therefore, future studies into the 

improved IAQ could be extremely applicable to hospital ventilation. 
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Also, when the hot plate and heated floor were closer in magnitude to each 

other, the low inlet, high outlet configuration was able to achieve a cooler temperature 

in the occupied zone. In an actual application the heat load will remain the same 

regardless of the ventilation configuration. However, the more efficient configuration 

could aid the system in achieving a cooler occupied zone more quickly. This would lead 

to the system not needing to work as hard to condition the space, and therefore, it 

would save energy and improve efficiency. 

Although it is clear that the low inlet, high outlet configuration has the potential 

to reduce the load on the mechanical system, there are some complications with 

implementing this strategy. The scenario studied was a simplified case. In a realistic 

application, the space would have various geometries put together. The space would be 

broken into multiple inlet/outlet zones and these zones would interact with each other. 

If the residence was multiple stories, it is unknown how the floors would interact and 

mix. It is also unknown how the heating phase would affect the efficiency. The same 

buoyant flow of air would not occur in heating. One of the reasons DV works well with 

large commercial spaces is that the high concentration of occupants and significant 

internal heat gains keeps the system in cooling mode most of the time. These and other 

practical application issues need to be investigated before this system is recommended 

for residential use. 
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2. Cost/Benefit 

The major cost to displacing the inlet and outlet in a residential application is 

running the ductwork vertically in the walls. This can be done with a soffit down the 

wall, or restricting the ductwork to the void in the wall. Both of these scenarios come 

with an additional cost, somewhere in the magnitude of a few hundred dollars. The 

soffit takes away square footage in your space and additional framing, finishing, and 

ductwork costs. To run the ductwork in the walls, the ductwork sizing is altered and the 

ductwork will typically require more material to carry the same amount of air. This 

means that the costs of the soffit are eliminated but the higher cost of the ductwork 

balances this savings. Therefore, either scenario will have an impact on the bottom line. 

Further, the additional ducting, regardless of how it is implemented, will increase the 

head loss in the duct system; this will increase the load on the fan driving the flow. The 

additional power demand will be minimal, since the fan only consumes a small amount 

of energy when compared to the entire HVAC system. There is also a large upfront cost 

due to the diffusers that are typically used with DV. These diffusers allow the air to 

enter the room at a low velocity without reducing the overall flow rate within the 

system. One of these diffusers can cost anywhere from $300 to $500 dollars. The larger 

benefit would be if the system could be reduced in size. If the system could be dropped 

by one ton, there would be an upfront savings of buying a smaller unit. This savings 

would be somewhere in the magnitude of a few hundred dollars. The bigger impact of 

this reduction in size would be the annual savings in energy consumption. Depending on 
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the size of the system, this reduction could result in a savings of a couple hundred 

dollars every year. 

The deciding factor depends on the occupant. To some, the improved IAQ and 

reduction in air born pollutants would outweigh the costs. However, to others they may 

not see a financial pay back from the improved IAQ and therefore may not see the 

benefit in the low inlet, high outlet configuration. Therefore, the real cost/benefit must 

rely on the concrete financial savings. 

This comparison will require case studies that can quantify the system size 

reduction or the energy savings of the same size system. Ideally, the system should run 

constantly to increase its efficiency. Therefore, it would be preferable that the system 

could be reduced in tonnage. This would result in upfront savings of a couple and long 

term energy savings. 

To society as a whole, there is always a benefit to reducing the energy demand. 

As prices for energy increase, a decrease in demand could begin to offset these 

increasing costs. One way to reduce this overall demand is to improve the design of our 

residential sector. Buildings are the largest consumer of energy and residential buildings 

consume about a third of that energy. However, this is an area that tends to be ignored 

in the research and to not get the attention in design that is devoted to the other areas 

of construction. 
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3. Future Work 

These experimental runs show that the ventilation configuration and conditions 

at the inlet can impact occupant comfort within a space. However, they have also shown 

numerous variables that need to be evaluated in more detail. There are a few of these 

areas that should be investigated prior to any other study. Determining the proper inlet 

velocity for DV could increase the quality of the results acquired. Also, finding a cutoff 

ceiling height above which DV is effective and below which it is not, would greatly 

improve the likelihood of DV being implemented in residential settings. Being able to 

quantify the amount of energy that could be saved by using DV would significantly 

increase the support for these systems. Lastly, having a concrete analysis of the IAQ 

improvements throughout a space could alone justify the installation of these systems. 

In order for the desired strong stratification to occur, the turbulence in the air 

needs to be reduced. One way to reduce this turbulence is to reduce the turbulence at 

the inlet. This can be achieved by reducing the velocity at the inlet. However, this 

reduces the amount of air entering the room and therefore reduces the system’s ability 

to quickly condition the space. Alternatively, a large diffuser can be attached at the 

inlet. This can disperse the air at a lower velocity, but still allow the same amount of air 

to enter the space. Various diffuser geometries and resultant velocities should be 

investigated further. 

This study limited the ceiling height of the space to about 2.8 meters. The 

current applications of displacement ventilation are in large auditoriums where the 
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unoccupied zone is substantial. If future studies could investigate at what ceiling height 

the benefits of DV no longer outweigh the costs, designers could have a criterion for 

when DV is most effective.  

One of the major benefits of DV is the system’s ability to flush pollutants and 

improve the IAQ. Future work could study these benefits in more detail and determine if 

the benefits of this pollutant flushing justify the implementation of DV systems in 

residential application. 

The potential energy savings from using DV is in the ability to reduce the size of 

the system installed, due to a more efficient circulation of air. Determining the actual 

amount by which a system could be reduced would allow for an actual up front cost 

savings to be calculated. More importantly, this would allow for an annual cost savings 

to be determined. This could quickly justify the use of DV in a residential application. 

Some of the other areas of this study that need to be investigated further 

include the short circuits between the inlet and outlet, the variability of the inlet 

conditions, other heights for the inlet and outlet, stabilizing the stratification within the 

room, and running the same experiments for the heating condition. 

When both the inlet and outlet were located at the same vertical position they 

were directly across from each other. In some cases, this may have led to a short circuit 

in the system. This occurs when the inlet air travels directly to the outlet, without 

properly conditioning the space. The amount of mixing that occurred in these 

experiments would have prevented this. However, when the mixing is reduced by 
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slower inlet speeds, the short circuit could become a larger problem. Future work 

should consider displacing the inlet and outlet horizontally to reduce the likelihood of 

these short circuits occurring. 

The inlet temperature varied with the external conditions and affected the 

consistency of the results. In future studies, something should be done to eliminate this 

variation. One way to do this would be insulating the ductwork from the AC unit to the 

inlet. This in conjunction with a more controlled environment to run the experiments 

could significantly improve the consistency of the experimental runs and the results. 

Also, the velocity at the inlet varied between the low and the high inlet 

configurations. This was a result of the longer distance and more ductwork the air had 

to travel along to get to the high inlet when compared to the low inlet. This could be 

resolved by balancing the static pressure for the lower inlet by stretching out the 

ductwork. If done properly, the inlet velocity for both high and low inlets could be 

equivalent. 

These studies only investigated the difference between low and high inlet and 

outlet locations. In future studies, the various locations throughout the height of the 

wall should be investigated, particularly an outlet just above the occupied zone. This 

could help the system to only condition the occupied zone. It could also help control the 

location of the temperature step in the stratification when it is achieved. 

In the experiments run the stratification within the room separated within the 

occupied zone. In order for DV to be an acceptable ventilation strategy within 
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residential housing, the separation in temperature zones needs to occur above the 

occupied region. The effects of ceiling height, heat loads, and inlet velocity on the 

location and stability of this separation needs to be investigated further. The proper 

combination of these three variables and possibly others, needs to be understood in 

order to achieve a stable separation in the air temperature to save money on energy 

while still providing a comfortable occupied region. 

Also, this study focused on the cooling side of air conditioning. In some climates 

HVAC load is dominated by the heating side. In these applications, a different ventilation 

configuration may be more beneficial. Future work should look into what ventilation 

configuration is most advantageous when the system is in heating mode. 
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APPENDIX A - INSULATION TECHNICAL INFORMATION SHEET 

The detailed information on the insulation used for the experimental setup. 
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