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ABSTRACT 
 
 

Dual-gene Bt cotton has reduced the need for insecticide treatments for bollworm, 

Helicoverpa zea (Boddie), compared with original single-gene Bt technology. Bollgard 

II® (Monsanto, St. Louis, MO) and WideStrike® (Dow AgroSciences, Indianapolis, IN), 

both produce the Cry1Ac protein and a second protein, Cry2Ab or Cry1F, respectively. 

These dual-gene Bt cottons provide enhanced control of lepidopteran pests, but remain 

less than 100% effective against bollworm, particularly when population pressure is high. 

Current recommended treatment thresholds for bollworm on cotton in South Carolina are 

as follows: treat with insecticides when three or more large larvae are found per 100 

plants or when 5% boll damage is detected. Studies were conducted in an area prone to 

high bollworm pressure near Blackville, South Carolina, in 2010 and 2011 to develop 

appropriate thresholds in Bollgard II and WideStrike cotton. Plots containing non-Bt, 

WideStrike, and Bollgard II cotton varieties were examined weekly and treated according 

to treatment threshold protocols for one of the following: bollworm eggs, larvae in white 

blooms, or boll damage. Although yields increased with insecticide applications in non-

Bt cotton, statistical differences in yield among thresholds were not evident within the Bt 

technologies. The conclusion drawn from this limited study was that insecticide 

applications exclusively targeting bollworm were not necessary in dual-gene Bt cotton. 

Higher levels of bollworm infestation and damage occurred in WideStrike cotton, 

however, WideStrike lint yields in this study did not differ among varying thresholds and 

so did not support the conclusion that protection strategies be amended for each 

technology.  
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INTRODUCTION 

Historically, the bollworm, Helicoverpa zea (Boddie), and tobacco budworm, 

Heliothis virescens (F.), have been major pests of cotton in the southeastern United 

States. The bollworm/budworm complex was the most damaging and costly of all the 

cotton insect pests for 13 years between 1979 and 1996 (Diffie et al. 2004). In 2002, the 

complex was responsible for reducing cotton yields across the US by 613 thousand bales 

(2.31%) (Williams 2003).   

Until the introduction of genetically engineered cotton, the primary means of 

controlling lepidopteran pests was chemical insecticides. However, resistance to 

organophosphates and pyrethroids during the 1990s reduced the effectiveness of chemical 

control (Gore and Adamczyk 2004). In 1996, Monsanto Corporation (St Louis, MO) was 

the first to commercialize genetically engineered cotton. Bollgard® cotton expressed 

Cry1Ac proteins from a gene found in the soil bacterium Bacillus thuringiensis kurstaki 

Berliner (Bt). The Bt gene was introduced into cotton to enable engineered plants to 

produce their own insecticidal Cry1Ac endotoxin, thus reducing the need for insecticide 

applications (Perlak et al. 2001, Gore and Adamczyk 2004). 

Bollgard cotton was found to be highly effective on H. virescens and moderately-

to-highly effective against H. zea. In most situations, annual applications of insecticide 

remained necessary to prevent yield loss from bollworm because the species is less 

susceptible than tobacco budworm and often avoids mortality through larval behavior 

such as feeding on blooms which contain lower levels of the toxin (Gore et al. 2003). 
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Because Cry1Ac is variably expressed in the cotton plant, some plant parts (such 

as the blooms) have lower concentrations of the toxin (Gore and Adamczyk 2004). In 

addition to differences in titer of toxin by plant structure, crop maturity also affects the 

level of Cry1Ac expression (Gore et al. 2003). Greenplate et al. (1998) found that 

expression of the Cry1Ac toxin was non-uniform throughout the plant, was often lower in 

cotton blooms, and decreased in squares and bolls as the growing season progressed 

(Greenplate 1999). In diet choice studies, bollworm larvae were able to discriminate 

between diet containing Cry1Ac and untreated diet and showed preference for the 

untreated diet (Greenplate et al. 1998). Behavior modification, differential survival on 

blooms, and overall general reduced susceptibility to Bt proteins were cited as reasons 

why bollworm were able to survive on Bt cotton (Gore and Adamczyk 2004). 

Action thresholds based on the number of eggs, number and size of larvae, and on 

observed boll damage were refined because Bollgard was not 100% effective in 

controlling bollworms (Sullivan et al. 1998). In 2003, Monsanto Company released a 

dual-Bt gene cotton technology called Bollgard II®, which produces the original Bt 

protein (Cry1Ac) and a second protein (Cry2Ab). Two years later, Dow AgroSciences 

(Indianapolis, IN) released WideStrike® cotton, which also produces the original Bt 

protein (Cry1Ac) combined with a different Bt protein (Cry1F). These dual-gene Bt 

cotton varieties provide better control of bollworm than the original, single-gene 

technology, in Bollgard varieties (Gore et al. 2008). Although dual-Bt gene technologies 

further enhance control of caterpillars and reduce the need for insecticides, Bollgard II 
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and WideStrike cotton varieties do not offer 100% control of bollworm (Greene and 

Robinson 2010) and continued refinement of treatment thresholds is warranted. 

In laboratory studies conducted by Stewart et al. (2001), the greater toxicity of 

dual-gene Bt cotton on lepidopterans compared with single-gene Bt cotton was 

demonstrated. Survival and growth rate were reduced in multiple species, including 

bollworm, fall armyworm, Spodoptera frugiperda (Smith), and beet armyworm, 

Spodoptera exigua (Hübner). Stewart et al. (2001) concluded that dual-toxin technologies 

would be more effective and have a wider range of activity than first-generation Bt 

cotton. 

 Differential toxin expression in the plant between Cry2Ab (Bollgard II) and 

Cry1F (WideStrike) are issues that exceed the argument whether two endotoxins are 

more effective controlling lepidopterans than one endotoxin. Results from field cage 

experiments conducted in Mississippi to determine bollworm impact on Bollgard II and 

WideStrike cotton suggested that bollworm would rarely cause yield loss in either 

technology (Gore et al. 2008). In a study in North Carolina, Bollgard II showed greater 

efficacy than WideStrike or Bollgard when bollworm pressure was high (Bacheler et al. 

2006). Under light or moderate pressure, however, the dual-gene Bt technologies did not 

differ in bollworm control (Bacheler et al. 2006). 

Greene and Robinson (2010) reported differences between Bollgard II and 

WideStrike in lint yield potential, sustained boll damage, and compensatory ability from 

trials conducted in South Carolina. Both technologies benefited from supplemental 

control of bollworm when exposed to high numbers of bollworm (Greene and Robinson 
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2010). Because bollworms have the ability to cause economic damage, and neither 

technology demonstrates 100% control of the species, action thresholds may need to be 

developed specifically for each dual-gene Bt technology. 

Studies comparing efficacy between Bollgard, Bollgard II, and WideStrike cotton 

varieties under naturally occurring high pressure have been conducted (Bacheler et al. 

2006, Greene and Robinson 2010), as have trials to investigate injury levels from 

artificially infested dual-gene Bt cotton (Gore et al. 2008). However, current threshold 

recommendations for dual-Bt gene cotton in South Carolina remain similar to thresholds 

used for bollworm on single-gene Bt technologies, less the egg threshold 

recommendation (Greene and Robinson 2010).  

The objective of this study was to refine action thresholds for each dual-gene Bt 

technology in order to better enable growers to manage bollworms. These studies address 

the development of thresholds for bollworm in Bollgard II and WideStrike cotton in areas 

prone to historically high natural infestation by the species. Thresholds based on egg 

density, larvae in blooms, and percent boll damage were investigated during the 2010 and 

2011 growing seasons. 
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LITERATURE REVIEW 
 

Cotton, Gossypium hirsutum L., is a perennial plant of tropical origin that is 

grown as an annual crop in the United States. Cotton has an indeterminate fruiting pattern 

and produces more fruit each season than can be matured (Guinn 1982). From a study in 

Louisiana, only 24-36% of flowers produced during a growing season matured to 

harvestable bolls (Kennedy et al. 1991), and other studies have shown higher and lower 

rates of boll production from blooms. First position bolls on sympodial branches are the 

most valuable fruits in terms of yield (Gore et al. 2000) and, under ideal conditions, the 

first position sympodial locations may produce as much as 35% more harvestable bolls 

than sites at or beyond the second position (Jenkins et al. 1990, Jones and Snipes 1999). 

Cotton’s indeterminate growth habit allows it to withstand the loss of fruiting 

structures without significant reduction in yield. Fruit abscission is a natural occurrence 

that brings the fruit load into balance with the available nutrient, carbohydrate, and water 

supply (Guinn 1982). Fruit can be abscised due to abiotic causes such as nutrient 

deficiency, water stress, temperature, and mechanical injury, as well as from biotic causes 

such as insects and pathogens (Guinn 1982). Cotton can compensate for abscised bolls; 

however, if the pressure is at a high enough level, economic damage will occur. 

A wide spectrum of insect pests can cause economic damage and yield loss in 

cotton, such as thrips, plant bugs, stink bugs, fleahoppers, and caterpillars (Gore et al. 

2000, Adamczyk and Burris 2004). After eradication of the boll weevil, Anthonomus 

grandis grandis Boheman, from the Southeast and before the release of transgenic cotton 

varieties containing genes from the bacterium Bacillus thuringiensis (Bt), some of the 
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primary pests of the crop in the United States were pink bollworm, Pectinophora 

gossypiella (Saunders), bollworm, Helicoverpa zea (Boddie), and tobacco budworm, 

Heliothis virescens (F.) (Gore et al. 2000). In the 2002 cotton insect losses presented at 

the Beltwide Cotton Conferences, Williams (2003) reported that the bollworm/budworm 

complex reduced US cotton yields by 613, 102 bales (2.31%).   

On cotton, female bollworm and tobacco budworm moths deposit their eggs on 

young leaves and points of growth (Guinn 1982). In general, bollworm eggs are 

deposited on the top third of the cotton plant and most are concentrated near plant 

terminals (Gore et al. 2002). After the eggs hatch, larvae move down the plant and feed 

on young tissue, squares, and bolls and progress to feed on more mature bolls as they 

grow. Caterpillar feeding damage stimulates the plant to produce ethylene which can 

trigger shedding of damaged squares or bolls (Guinn 1982).  

In 1996, Monsanto Corporation (St. Louis, MO) was the first to commercialize 

genetically engineered Bt cotton. Bacillus thuringiensis (Bt) is a gram-positive soil 

bacterium that naturally produces a protein crystal structure during sporulation. Insects 

that ingest this crystalline structure solubilize it with proteases of the midgut where the 

environment is at the right alkaline pH level: Solubilized proteins release δ-endotoxins 

which then interact with the midgut epithelium. Membrane integrity is compromised in 

sensitive individuals and those insects may die from starvation, paralysis, or septicemia 

(Gill et al. 1992). Several Bt genes have been identified, which code for the production of 

toxic proteins. The primary structure is dependent on the coding gene and the specific 

endotoxin released is toxic to different insect groups. The Cry1 or Cry2 proteins are toxic 
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to lepidopterans (Gill et al. 1992). Bollgard® cultivars expressed the Cry1Ac endotoxin 

which reduced the need for insecticide applications for lepidopteran pests such as the 

tobacco budworm and bollworm. These Bt proteins were found to be safe for human use 

and target-specific to the insect order Lepidoptera (Perlak et al. 2001, Gore and 

Adamczyk 2004). 

Transgenic Bt cotton has demonstrated very good control of H. virescens and P. 

gossypiella (Williams 2000). While Bt cotton is toxic to both the tobacco budworm and 

the bollworm, it is more active against tobacco budworm. Soon after the introduction of 

Bt cotton, it was determined that bollworms often required supplemental treatment 

(Layton et al. 1997). The Cry1Ac Bt toxin suppressed bollworm populations, but 

economic injury still occurred under pressure from large populations (Pitts et al.1999, 

Gore et al. 2003, Greene and Robinson 2010). 

Smith (1997) noted that bollworm numbers peaked twice during the 1996 

growing season in Alabama. During mid-to-late July, the peak was attributed to the 

movement of moths from maturing corn into cotton. In early September, high survival of 

bollworm on cotton was attributed to elevated numbers early in the season and later to 

location where eggs were laid on the plants (Smith 1997). This pattern continues to be 

present in the Southeast. Pheromone trap numbers for bollworm from 2007 to 2009 in 

Barnwell County, South Carolina, supported the July/August peak in numbers reported 

previously (Greene and Robinson 2010). 

Egg location on the plant affects rates of larval survival because the Bt toxin is not 

uniformly expressed throughout the plant (Adamczyk et al. 2001). Bollworm has a broad 
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host range and early-season larvae primarily develop on weed hosts (Head et al. 2010). 

The complex of bollworm and tobacco budworm has been reported to feed collectively 

on over 130 plant hosts (Diffie et al. 2004). Corn and sorghum are major hosts for the 

complex from mid-June to mid-July, and movement (called flights) to hosts such as 

cotton, soybeans, and peanuts occurs later in the season (Head et al. 2010). In the 

Southeast, the critical flight of bollworm moths generally occurs in mid-July (Sullivan et 

al. 1993, Smith 1997). Using certain broad-spectrum insecticides just before a large 

bollworm flight can actually increase crop damage because predaceous arthropod 

populations are decimated (Turnipseed and Sullivan 1999). Natural enemies of bollworm 

such as lacewings, lady beetles, geocorids, and other predaceous bugs can reduce 

bollworm populations and their associated crop injury (Lopez et al. 1976, Hutchinson and 

Pitre 1983).  

Pheromone traps are used to monitor moth activity, but trap numbers are often 

poorly associated with larval densities in the field (Diffie et al. 2004) because moths are 

extremely mobile and the specific crops within a localized area have little impact on 

populations of H. zea (Jackson et al. 2003). However, corn may impact the total 

population on a larger scale. Diffie et al. (2004) found a significant correlation between 

corn acreage and populations of bollworm (Diffie et al. 2004). The wide host range and 

mobility of H. zea make it difficult to characterize what factors in the agroecosystem are 

contributing to population numbers (Jackson et al. 2003). 

The expression of Cry1Ac in Bollgard cotton varied with the structure and 

maturity of that structure (Gore et al. 2003). Adamczyk et al. (2001) used an ELISA test 
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to corroborate with earlier studies (Fitt 1998, Holt 1998, Sachs et al. 1998, Greenplate 

1999) showing that levels of toxin decreased in many plant parts as the season 

progressed. The more than 25 different Bt varieties expressed dissimilar levels of Cry1Ac 

δ-endotoxin (Adamczyk et al. 2001). Caterpillars that survived Bt toxins (called 

“escapes”) from Bollgard cotton were observed in Alabama (Smith 1997) and were 

originally thought to be from extremely high bollworm numbers. However, escapes were 

also observed under moderate pressure, and further investigation showed that eggs laid 

on dried blooms (bloom tags) led to the increased rate of survival (Smith 1997). The 

bloom tags did not express a lethal amount of Bt toxin, allowing caterpillars to feed and 

increase in size. Although there were no observed preferences for bloom tags in Bt cotton 

versus conventional varieties (Smith 1997), bollworm larvae were able to discriminate 

between diet containing Cry1Ac and untreated diet and consequently showed preference 

for the untreated diet (Greenplate et al. 1998). In field trials conducted by Adamczyk et 

al. (2001) in Mississippi, it was reported that bollworms were predominantly found 

feeding on flowers, squares, and bolls as opposed to meristematic tissue where Bt protein 

levels are highest.  

Bollworm may preferentially oviposit near flowers in Bt cotton. Gore et al. (2002) 

found more bollworm feeding on white blooms in Bollgard cotton versus conventional, 

non-Bt cotton in Louisiana. Tobacco budworms disperse differently on Bt cotton versus 

conventional varieties, with more caterpillars moving away from the plant terminals and 

at a faster rate on Bt cotton compared with movement on non-Bt varieties (Parker and 

Luttrell 1999). Gore et al. (2002) found that bollworm larvae began to migrate away from 
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Bollgard terminals within the first hour of eclosion. Larvae of bollworm and tobacco 

budworm might detect the Bt proteins and exhibit an avoidance response. Studies by 

Greenplate (1999) found decreased levels of Cry1Ac δ-endotoxins in squares and bolls, 

as well as increased feeding by tobacco budworm as the growing season progressed, 

supporting the hypothesis that differences in Bt expression are based on structure and 

maturity. Bollworm larvae that feed lower on the plant and on older reproductive 

components are more likely to survive than those that feed on fresh tissue such as white 

blooms. The feeding habits and subsequent reduced susceptibility of bollworm to Cry1Ac 

endotoxins make H. zea more likely to survive and damage Bollgard cotton (Gore et al. 

2003). 

During the first three years of commercial-use of transgenic Bt cotton, additional 

bollworm control, in the form of foliar insecticide applications, was required in order to 

prevent economic injury (Smith 1997; Layton et al. 1997, 1998; Leonard et al 1997, 

1998; Roof and Durant 1997; Gore et al. 2000). In a survey conducted across Mississippi 

in 1997, it was reported that transgenic cotton was effective in controlling tobacco 

budworm, but high populations of bollworm still had the capacity to cause excessive 

damage in some cases (Layton et al. 1998). 

Roof and Durant (1997) found that at least one insecticide application was 

required for Bt cotton compared with 4.8 applications in conventional cotton fields in 

South Carolina. Despite reduced insecticide use, yield increases of 11 and 23% were 

observed in Bt cotton treated with additional insecticide applications in Louisiana 

(Leonard et al. 1998). Although Bt toxins specifically target lepidopteran pests, 
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supplemental foliar insecticides are also necessary to control bollworm escapes and other 

insect pests (Leonard et al. 1997, 1998). The targets of insecticide applications in 

transgenic Bt cotton in South Carolina were initially defined as stink bugs and bollworm 

(Roof and Durant 1997). Across the Cotton Belt, secondary insects such as stink bugs, 

plant bugs, and armyworms became more prominent pests in late season Bollgard cotton 

(Pitts et al. 1999). 

Mi et al. (1998) reported that monitoring eggs on plants to anticipate feeding 

damage from caterpillars was no longer useful in transgenic cotton because the Bt 

technology should kill newly hatched larvae. However, Sullivan et al. (1998) 

recommended an egg threshold of 75 eggs per 100 plants because small larvae feeding 

underneath bloom tags could survive and were difficult to detect. At two locations in 

South Carolina (one using disruptive insecticides to decimate natural enemies and the 

other left undisturbed), insecticide applications using the egg threshold as opposed to the 

escaped worm threshold (8 large larvae per 100 plants) increased lint yields by 65 and 93 

kg/ha (58 and 83 lb/acre), respectively (Sullivan et al. 1998). Transgenic technology and 

the use of more selective insecticides have made insect pest management decisions more 

complex. Static thresholds based on the experience of the pest manager or 

recommendations from the local Cooperative Extension Service do not reflect changes in 

production costs, crop prices, or physiological susceptibility of cotton varieties (Mi et al. 

1998). 

Because one or two annual insecticide applications may be necessary to prevent 

economic loss from bollworm, action thresholds were established in most states (Gore et 
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al. 2008). Action threshold recommendations for bollworm in single-gene Bt technology 

in South Carolina were: 75 eggs, 30 small (<6.35 mm [0.25 in]) larvae, or 3 large (>6.35 

mm [0.25 in]) larvae per 100 plants, or 5% boll damage (Greene 2010). However, single-

Bt gene technology (Bollgard) was no longer commercially available after the 2010 

growing season (Greene and Robinson 2010). 

Guidelines were developed to prevent or postpone the development of resistance 

among target insects to Bt cotton. The strategy was to combine the planting of cultivars 

with high doses of the toxin with refuge plantings that contained no toxin (Gould 1998). 

Mandating refuge planting of non-Bt cotton was intended to produce susceptible 

individuals to mate with resistant adults and thereby prevent the production of resistant 

offspring (Caprio 1994). The high fitness costs related to Cry1Ac resistance could, 

however, delay or inhibit field populations of bollworm from developing resistance to 

Bollgard cotton (Anilkumar et al. 2008). Dual-toxin cultivars are more toxic and have a 

wider range of activity on lepidopteran pests (Stewart et al. 2001) and may further delay 

or inhibit the development of resistance. 

In 2003, Monsanto released a dual-toxin Bt cotton called Bollgard II® that 

expresses the original Cry1Ac protein as well as Cry2Ab.  In 2005, Dow AgroSciences 

(Indianapolis, IN) released a dual-toxin technology called WideStrike® that expresses 

Cry1Ac and Cry1F (Gore et al. 2008). Dual-gene technologies provide enhanced control 

of lepidopteran pests, but do not offer 100% control of bollworm, and additional 

insecticide might still be needed (Greene and Robinson 2010). 
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Laboratory studies conducted by Stewart et al. (2001) clearly demonstrated the 

greater toxicity of dual-gene Bt cotton on lepidopterans over expression of only a single 

insecticidal protein. In bioassays, larvae fed plant tissues containing both Cry1Ac and 

Cry2Ab experienced higher mortality than larvae fed on cultivars containing Cry1Ac 

(Stewart et al. 2001). In another study, the additional gene in Bollgard II that codes for 

the Cry2Ab protein was also found to increase the mortality of bollworm larvae (Gore et 

al. 2001). The combination of genes and toxins affected the survival and growth rate of 

multiple species, including H. zea, Spodoptera frugiperda (Smith), and Spodoptera 

exigua (Hübner). Dual-toxin technologies are more effective and have a wider range of 

activity than first generation Bt cotton (Stewart et al. 2001). Second generation Bt cotton 

is generally considered 100% effective against tobacco budworm. It has also enhanced 

protection against bollworm compared with single Bt gene varieties, yet Bollgard II and 

WideStrike still produce yield gains when there are additional insecticide applications 

(Greene and Robinson 2010). 

Bollgard II and WideStrike cotton vary in efficacy because of the different Cry 

proteins expressed between technologies. Data from field-cage experiments conducted in 

Mississippi suggested that bollworm would rarely cause yield loss in either technology 

(Gore et al. 2008). Bacheler et al. (2006) indicated that Bollgard II had greater efficacy 

than WideStrike or Bollgard cotton when grown under high bollworm pressure in North 

Carolina. Dual-Bt gene technologies did not differ in controlling light or moderate 

infestations of bollworm (Bacheler et al. 2006). 
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Whereas larvae tend to migrate away from terminals in Bollgard and Bollgard II 

cotton varieties, bollworm are more often found feeding on terminals in WideStrike 

varieties (Jackson et al. 2010). Bollworm and tobacco budworm have been observed 

migrating down the plant and away from terminals in Bt cotton varieties containing the 

Cry1Ac gene (Parker and Luttrell 1999, Gore et al. 2002). However, Jackson et al. (2010) 

concluded that the combination of Cry1Ac and Cry1F proteins in WideStrike did not 

have any measurable effect on larval movement away from plant terminals as compared 

with larval movement on a non-Bt cotton variety. 

Efficacy trials conducted by Greene and Robinson (2010) from 2006 to 2009 in 

South Carolina found differences in boll damage caused by bollworm between Bollgard 

II and WideStrike, and both technologies benefited from supplemental control when 

exposed to extreme bollworm pressure. Although greater losses in lint yield were 

sustained in some WideStrike varieties than those incurred in Bollgard II varieties, it was 

speculated that the extended optimal growing conditions allowed the full-season 

WideStrike variety to compensate for the relatively early and elevated damage caused by 

bollworm feeding (Greene and Robinson 2010). According to Pitts et al. (1999), the area 

of South Carolina where this research took place is in the management region, “Savannah 

River Valley: Eastern Georgia-South Carolina below the lakes” and that “there is no 

region in the Southeast that has the intensity or predictability of bollworm pressure than 

this region”. Because neither technology demonstrates 100% bollworm control, and these 

pests have the ability to cause economic damage, action thresholds need to be modified 

specifically for each technology. 
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MATERIALS AND METHODS 

 
Species Determination 

 Populations of bollworm and tobacco budworm were monitored three times per 

week by counting moths caught in pheromone-baited Hartstack-type traps (Hartstack et 

al. 1979) placed in undisturbed locations (e.g. near power poles, etc) around row-crop 

production fields at the Edisto Research and Education Center near Blackville, South 

Carolina. Pheromone lures (Luretape lures, Hercon Environmental, Philadelphia, PA) for 

bollworm and tobacco budworm were replaced in each trap (10 traps for each species) 

every week from May to early October in 2010 and 2011. Trapping data were used to 

estimate proportions of the two species that were ovipositing and feeding near the 

location of the trials conducted in this study. 

Caterpillars were collected from non-Bt, WideStrike, and Bollgard II cotton 

varieties on 2, 6, and 16 August 2011, and late instars were identified using a dissecting 

scope based on a distinguishing character of the mandibles. Tobacco budworms have a 

tooth-like projection on the inner surface of the mandibles, whereas bollworms do not 

have this projection (Boyer et al. 1977, Jia et al. 2007). Because early instars are difficult 

to manipulate and mandibular characters are indistinguishable under the dissecting scope, 

early instars were kept and held on artificial diet until large enough to examine as late 

instars. The combination of data from pheromone traps and the dissections served to 

determine abundance of each species. 

  Voucher specimens of one Helicoverpa zea and one Heliothis virescens larvae 

were collected 9 August 2011from cotton at the Edisto REC near Blackville, South 
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Carolina. Specimens were preserved in 80% ethyl alcohol and deposited in the Clemson 

University Arthropod Collection. 

 

Overview of Trials 

Three separate replicated trials were conducted in 2010 and 2011 at the Edisto 

Research and Education Center near Blackville, South Carolina. Each trial consisted of 

non-Bt (DP174RF), WideStrike (PHY565WRF), and Bollgard II (DP0949B2RF) cotton 

varieties planted on 14 May 2010 and 18 May 2011. Plots were eight rows by 12.2 m (40 

ft) and treatments were replicated four times using a randomized complete block design. 

Standard cotton production practices were followed as outlined in the Clemson 

University Cooperative Extension Service Cotton Production Guide (Jones et al. 2011). 

Acephate (Orthene 97), a foliar organophosphate, was applied at 1.09 kg (AI)/ha (1 

lb/acre) during the first week of bloom to eliminate predaceous arthropods and maximize 

bollworm pressure. Insecticides ineffective on lepidopterans, but efficacious on 

hemipterans were applied twice across the entire test area each season to minimize yield 

impact. In 2010, thiamethoxam (Centric 40 WG) was applied at 0.07 kg (AI)/ha (2.5 

oz/acre) on 22 July and dicrotophos (Bidrin 8 EC) was applied at 0.56 kg (AI)/ha (8 

oz/acre) on 9 August. In 2011, methyl parathion (Methyl 4 EC) was applied at 0.84 kg 

(AI)/ha (1.5 pt/acre) on 18 July to both control hemipteran populations and also disrupt 

beneficial arthropods. Dicrotophos (Bidrin 8 EC) was applied at 0.56 kg (AI)/ha (8 

oz/acre) on 4 August. Plots meeting or exceeding targeted action thresholds for bollworm 
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(Table 1) were sprayed weekly alternating between beta-cyfluthrin at 0.023 kg (AI)/ha 

(2.6 oz/acre) and lambda-cyhalothrin at 0.045 kg (AI)/ha (5.12 oz/acre). 

Table 1. Target action thresholds for bollworm eggs, larvae in blooms, and boll 
damage in cotton near Blackville, South Carolina, in 2010 and 2011. 

Threshold 
type 

Treatments 

Egg density 
(Test 1) 

Untreated 
control 

Sprayed 
weekly 

25 
eggs per 

100 plants 

75 
eggs per 100 

plants 

125 (100)* 
eggs per 

100 plants 
Larvae in 

white 
blooms 
(Test 2) 

Untreated 
control 

Sprayed 
weekly 

4 or 5 
larvae per 

100 blooms 

15 
larvae per 

100 blooms 

25 
larvae per 

100 
blooms 

Boll damage 
(Test 3) 

Untreated 
control 

Sprayed 
weekly 

4 or 5% 
boll damage 

10% 
boll damage 

 

20% 
boll 

damage 
*Parentheses indicate modified threshold for 2011 

Test 1- Egg Density Threshold 

Following first bloom, plots were monitored weekly for bollworm eggs. Because 

bollworm eggs are deposited on the top third of the cotton plant and most concentrated 

near the plant terminals (Gore et al. 2002), egg density was determined by visually 

examining the top 20% of 25 plants per plot. Plants sampled were located in the middle 

four rows and away from the plot edge. Eggs were counted on leaves, terminals, pre-

floral buds (squares), bracts, and stems.    

Test 2- Larvae Density Threshold 

At bloom initiation, plots were monitored weekly for caterpillars by visually 

examining 25 blooms (in situ) per plot and classifying larvae present as small, <6.35mm 

(0.25 in), or large, >6.35mm (0.25 in). Blooms were chosen from the middle four rows 

and away from plot edges. When fewer than 25 white blooms were observed per plot, the 
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numbers of caterpillars in available blooms were extrapolated. If no blooms were present 

in a plot, larvae density was assumed to have reached the highest threshold. Larvae were 

initially categorized as small or large, but numbers of small and large caterpillars were 

totaled per plot for analysis. 

Test 3- Boll Damage Threshold 

After the first cohort of bolls reached “dime” size in all varieties, approx. 12.7 

mm (0.5 in) in diameter at widest point, plots were examined weekly by visually 

examining 25 bolls (in situ) per plot for bollworm feeding injury. Bolls were chosen from 

the middle four rows and away from plot edges. Bolls were considered “damaged” when 

at least one site on the boll wall was compromised or penetrated by lepidopteran feeding 

injury.  When there were fewer than 25 bolls per plot, missing bolls from fruiting 

positions were considered damaged and those treatments were considered above 

treatment threshold.  

Plant Measurements 

In 2010 and 2011, stand counts were taken to monitor stand uniformity and verify 

that plot yield would not be impacted by non-uniform stands. During 2010, numbers of 

plants in one meter of row were counted in four locations in each plot (4 m total). In 

2011, total number of plants in rows four and five were counted (each row being 12.2 m).  

Nodes above white flower (NAWF) counts were taken three times each season to 

assess plant maturity and determine physiological “cutout”, indicating a maturing crop 

and last cohort of harvestable bolls (Bernhardt et al. 1986). In the Southeast, 
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physiological cutout is generally thought to have occurred when plants average five or 

fewer nodes above the highest first position white flower (Bernhardt et al. 1986).  

Before the 2011 harvest, plant mapping was done in response to data from 2010 

that suggested significant yield compensation in response to bollworm injury occurred. 

Five plants per plot were measured, examined, and mapped to look for compensatory 

growth behavior. All bolls were counted and considered harvestable, worm-damaged, 

unharvestable, or abscised. Node and branch position were also noted. Following plant 

mapping, cotton was mechanically harvested and plot yields were calculated assuming 

40% lint turnout.  

Statistical Analysis 

Data for each test were subjected to a two-way repeated measures analysis of 

variance with date and treatment threshold as fixed effects and replication as a random 

effect (PROC MIXED, SAS Institute Inc. 2011). Data failing the Shapiro-Wilkes test for 

normal distribution were transformed prior to ANOVA. Egg data were transformed using 

log(x+1), larvae data were transformed using √(x+1), and boll damage data transformed 

using arcsin√(proportion of damage). Tukey mean separation tests were also performed 

using SAS 9.3 (SAS Institute Inc. 2011). Node above white flower data were subjected to 

a one-way repeated measures analysis of variance with date as a fixed effect (SAS 

Institute Inc. 2011). 
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RESULTS AND DISCUSSION 

Overview 

Species Determination 

Eggs were estimated to be primarily those of bollworm and not tobacco budworm 

based on pheromone moth trap data (Figure 1) and caterpillar collection and 

identification data. Moth populations peaked in late August for both species in 2010 and 

2011. However, bollworm and tobacco budworm peak numbers were lower in 2011 than 

in 2010. Factors such as overwintering conditions for pupae, and other seasonal variation 

may largely have accounted for this difference. The months of December preceding the 

2010 and 2011 cotton seasons were markedly different in temperature and precipitation. 

In December 2009, the average minimum temperature was 2.5 °C (36.4 °F), with an 

extreme low of -3.5 °C (25.7 °F). The following December had a sustained period of cold 

temperatures, with average lows of -2.8 °C (27.0 °F) and an extreme low of -9.9 °C (14.2 

°F).  December 2009 was both warmer and wetter with recorded rainfall of 24.6 cm (9.7 

in) compared to December 2010 and 6.22 cm (2.45 in) of recorded rainfall (National 

Climatic Data Center). Soil conditions impact bollworm survival because bollworm 

pupae overwinter in the soil. The harsher winter conditions in December 2010 may have 

been a significant factor in reducing the overwintering population of bollworm thus 

reducing the numbers found on cotton during the 2011 growing season.      



 

Figure 1. Numbers of bollworm (BW) and tobacco budworm (TBW) adults caught in 
pheromone traps baited weekly near Bl
(B). 
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Figure 1. Numbers of bollworm (BW) and tobacco budworm (TBW) adults caught in 
pheromone traps baited weekly near Blackville, South Carolina, in 2010 (A) and 2011 

 

Figure 1. Numbers of bollworm (BW) and tobacco budworm (TBW) adults caught in 
2010 (A) and 2011 
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Of the caterpillars collected (31) in 2011 from Bt cotton varieties, all were 

bollworm. Only 2 of the 70 caterpillars found in non-Bt cotton were tobacco budworm. It 

was expected that tobacco budworm larvae would not be found on dual-gene Bt cotton 

because Bt endotoxins exhibit complete field control of tobacco budworm (Stewart et al. 

2001). Tobacco budworm represented only about 3% of the two-species when 

considering only data from non-Bt cotton. The pheromone trap data also showed a larger 

number of bollworm adults compared with tobacco budworm adults (Figure 1). All eggs, 

larvae, and plant injury counted were therefore presumed predominantly from bollworm. 

Stand Counts 

The recommended plant stand for cotton in South Carolina is 6.6-9.8 plants per 

row meter (2-3 plants per row foot) (Jones et al. 2011). Stand averages per technology in 

2010 were as follows:  non-Bt, 9.28 ± 0.10; WideStrike, 9.01 ± 0.11; and Bollgard II, 

8.85 ± 0.12 plants per row meter. In 2011 non-Bt, 6.05 ± 0.10; WideStrike, 6.08 ± 0.11; 

and Bollgard II, 6.40 ±0.14 plants per row meter. Stands in 2011 were thinner than in 

2010; however, differences within cotton technologies were not significant (P > 0.05). 

Lint yield differences within each technology were therefore likely attributable to 

bollworm feeding damage and variable levels of insecticide protection rather than to 

variations in stand density.  

Crop Maturity (NAWF Counts) 

Although comparable maturing varieties were chosen for these trials, 

measurements were taken to detect potential maturity differences due to multiple factors 
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including insect injury. Unprotected cotton may experience delayed maturity as resources 

are diverted to vegetative growth because of insect damage. In 2010, some plots had 

caterpillar feeding damage so severe that first position white flowers were scarce. Many 

NAWF data in plots of non-Bt cotton could not be determined due to the high level of 

damage and absence of blooms. Because of high damage and missing data in non-Bt 

cotton in 2010, average NAWF calculations are unreliable measures of plant maturity.  

Node above white flower trends should decrease over the season as cotton plants mature 

(Gore et al. 2000). In 2011, cotton maturation was observed over the three dates in all 

varieties (Table 2). 
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Table 2. Node above white flower counts (±SEM) and statistical comparisons for 2010 and 2011 
by technology, averaged across threshold and test in cotton near Blackville, South Carolina, 2010 
and 2011. 

Year Date 

Cotton technology 

Non-Bta WideStrikea Bollgard IIa 

2010 26 July  4.25 ± 0.31 A 4.33 ± 0.15 A 3.97 ± 0.12 A 

 5 August  4.76 ± 0.57 A 4.22 ± 0.15 A 3.65 ± 0.12 A 

 12 August  4.54 ± 0.28 A 3.90 ± 0.15 A 3.09 ± 0.12 B 

F  0.49b 2.38c 16.96d 

P>F  0.6141 0.0956 <0.0001 

2011 15 July 7.01 ± 0.11 A 6.91 ± 0.12 A 6.88 ± 0.11 A 

 29 July 4.60 ± 0.11 B 4.65 ± 0.12 B 4.38 ± 0.11 B 

 15 Aug 2.52 ± 0.11 C 2.49 ± 0.12 C 2.14 ± 0.11 C 

F  486.72e 423.39f 683.43g 

P>F 
 

 <0.0001 <0.0001 <0.0001 

 

a NAWF counts in the same column and year with a different letter are significantly different 
b df= 2, 46 
c df= 2, 155 
d df= 2, 136 
e df= 2, 175 
f df= 2, 174 
g df= 2, 176 



 
 

Table 3.  Statistical comparisons of bollworm egg and larval densities and boll damage in cotton near Blackville, South Carolina, 2010 and 
2011. 

Year Management factor combination Egg density Larvae density  Boll damage  

 df F P > F df F P > F df F P > F 

2010 NBT Threshold 
NBT Date 
NBT Threshold*Date 
 

4, 39.2 

8, 77.4 

32, 77.4 

0.97 
11.86 
0.95 

0.4356 
<0.0001 
0.5449 

4, 44.6 
6, 67.1 
24, 67.1 

3.92 
79.32 
2.54 

0.0082 
<0.0001 
0.0015 

4, 16.8 
5, 46.6 
20, 46.6 

2.75 
35.79 
1.95 

0.0630 
<0.0001 
0.0310 

 WS Threshold 
WS Date 
WS Threshold*Date 
 

4, 48.5 
8, 71.1 
32, 71.1 

1.05 
32.16 
0.96 

0.3910 
<0.0001 
0.5396 

4, 42.5 
6, 68 
24, 68 

10.08 
20.06 
3.91 

<0.0001 
<0.0001 
<0.0001 

4, 36.3 
5, 62.4 
20,62.4 

4.42 
4.26 
0.79 

0.0052 
0.0021 
0.7199 

 BGII Threshold 
BGII Date 
BGII Threshold*Date 
 

4, 34.6 
8, 71 
32, 71 

1.45 
18.01 
0.95 

0.2377 
<0.0001 
0.5509 

4, 39.1 
6, 66.1 
24, 66.1 

0.97 
4.50 
0.91 

0.4374 
0.0007 
0.5851 

4, 32.2 
5, 50.6 
20, 50.6 

3.19 
1.19 
1.53 
 

0.0260 
0.3254 
0.1125 

2011 NBT Threshold 
NBT Date 
NBT Threshold*Date 
 

4, 29.2 
5, 51.5 
20, 51.5 
 

3.02 
16.29 
1.07 
 

0.0337 
<0.0001 
0.4066 
 

4, 23.2 
4, 45.2 
16, 45.2 
 

2.04 
5.52 
2.12 

0.1216 
0.0011 
0.0245 
 

4, 17.3 
4, 45 
16, 45 

4.91 
6.01 
1.21 

0.0079 
0.0006 
0.2994 

 WS Threshold 
WS Date 
WS Threshold*Date 
 

4, 15.9 
5, 57.9 
20, 57.9 
 

0.29 
33.56 
0.53 
 

0.8821 
<0.0001 
0.9421 
 

4, 22.2 
4, 48.7 
16, 48.7 

0.48 
7.98 
0.19 
 

0.7524 
<0.0001 
0.9997 

4, 20.8 
4, 49.5 
16, 49.5 

0.69 
5.49 
1.24 
 

0.6075 
0.0010 
0.2699 

 BGII Threshold 
BGII Date 
BGII Threshold*Date 
 

4, 27.6 
5, 60.1 
20, 60.1 

1.30 
19.39 
1.05 

0.2929 
<0.0001 
0.4196 

4, 20.4 
4, 42 
16, 42 
 

1.00 
10.17 
1.08 

0.4317 
<0.0001 
0.4051 

4, 32 
4, 46.4 
16, 46.4 

4.71 
1.48 
0.78 
 

0.0042 
0.2223 
0.6960 
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Table 4. Statistical comparisons of cotton lint yield near Blackville, South Carolina, 2010 and 2011. 

Year Management factor  Egg density test Larvae density test Boll damage test  

 df F P > F df F P > F df F P > F 

2010 NBT Threshold 
WS Threshold 
BGII Threshold 
 

4, 15 
4, 14 
4, 14 

26.58 
0.85 
2.73 

<0.0001 
0.5189 
0.0715 

4, 14 
4, 14 
4, 14 

37.55 
4.73 
1.47 

<0.0001 
0.0126 
0.2640 

4, 15 
4, 14 
4, 14 

33.57 
0.94 
3.18 

<0.0001 
0.4695 
0.0471 

2011 NBT Threshold 
WS Threshold 
BGII Threshold 
 

4, 14 
4, 14 
4, 14 
 

10.6 
0.89 
1.43 

0.0004 
0.4958 
0.2757 

4, 14 
4, 14 
4, 14 
 

2.57 
0.93 
2.37 
 

0.0837 
0.4746 
0.1028 
 

4, 15 
4, 15 
4, 14 
 

9.01 
0.84 
0.89 

0.0006 
0.5226 
0.4979 
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Egg Density Threshold 

In 2010, the highest threshold of 125 eggs per 100 plants was never reached in 

any of the varieties (Figure 2A). The threshold of 75 eggs per 100 plants was met or 

exceeded three times in WideStrike and twice in Bollgard II. The non-Bt control never 

reached 75 eggs per 100 plants, most likely because it suffered high caterpillar feeding 

damage. Bollworm egg density is not a good predictor of future damage in dual-Bt gene 

cotton because a large number of the larvae do not survive. However, most larvae from 

eggs on conventional cotton do survive and feed on the cotton plant until pupation. 

Lower egg numbers on non-Bt cotton were likely the result of diminished floral cues 

(Callahan 1958), increased plant volatiles, reduced leaf area and fruiting structures, or a 

combination of all which likely discouraged females from ovipositing after initial 

infestation and damage.   

Egg numbers peaked in all three cotton varieties on 21 July (Figure 2A). There 

was a second, smaller peak between 11 and 18 August. Peaks were similar to those of 

adult moth numbers in 2010 (Figure 1A). In Alabama, Smith (1997) attributed peak in 

bollworm numbers during mid-to-late July to moth movement from maturing corn into 

cotton. The pattern observed during the current study (Figures 1) and in Alabama (Smith 

1997) has been consistent over the past several years in the Barnwell County area of 

South Carolina (Greene and Robinson 2010).  

In 2010, egg densities were not significantly affected by threshold nor was there 

an interaction between threshold and date for each cotton technology. The lack of a 

significant treatment effect was probably because the insecticide had little ovicidal effect 
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and did not deter female moths from ovipositing. For these reasons, application decisions 

were based on egg density numbers averaged across each variety instead of averaged 

within threshold. Insecticides were not considered to have had a significant effect on the 

number of eggs on the plants one week after application.  
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Figure 2. Mean bollworm eggs per 100 plants (±SEM) from egg thresholds by cotton 
technology near Blackville, South Carolina, in 2010 (A) and 2011 (B).   
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 In 2011, overall egg numbers were lower than in the previous year (Figure 

2B). Hot and dry conditions also caused plants to mature faster and shortened the 

sampling period. Despite lowering the highest egg density threshold from 125 to 100 

eggs per 100 plants, the lowered threshold was not reached. Furthermore, the 75 eggs per 

100 plants threshold was not met in any variety during 2011. At this same location in 

2001, Jenkins et al. (2002) also failed to reach their bollworm thresholds of 75 eggs per 

100 plants or four larvae per 100 plants. They concluded that bollworm was not a 

problem on Bollgard II cotton. A similar conclusion could be drawn from the 

observations of the current study for both Bollgard II and WideStrike. However, 

bollworm pressure was considered “moderate” during a 1997 experiment in Blackville, 

where the 75 eggs per 100 plants threshold was met (Sullivan et al. 1998). The 

“moderate” pressure in 1997 led to lint yield increases in first generation Bollgard cotton 

when treated at the 75 egg per 100 plant threshold. Bollworm pressure varies greatly 

from one location to the next and even in the same location from year to year. Egg 

density peaked on 25 July and 8 August in 2011. The timing of the peaks was similar to 

those of 2010; however, in 2010, the larger peak in egg density occurred in July, with a 

smaller peak in August.  

 There were no differences in lint yield (kg/ha) between egg threshold 

treatments within WideStrike and Bollgard technologies in 2010 or 2011. These results 

suggested that supplemental insecticide for bollworm based on egg density thresholds 

was unnecessary in WideStrike and Bollgard II. The non-Bt control did experience 

significant yield gains in both years (Figures 3) when treated weekly and following the 
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aggressive egg threshold (25 eggs per 100 plants) when compared with the untreated 

control and higher egg thresholds (75 and 125/100 eggs per 100 plants) which were not 

sprayed for bollworms all season (Figures 3).   
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Figure 3. Cotton lint yields from (±SEM) comparing bollworm egg threshold treatments 
in non-Bt cotton near Blackville, South Carolina, in 2010 (A) and 2011 (B). Bars with the 
same letter are not significantly different. Numbers indicate number of insecticide 
applications received. UTC, untreated control; SWKLY, sprayed weekly. 

0

b

8

a
7

a

0

b 0

b

0

200

400

600

800

1000

1200

1400

1600

1800

2000

UTC SWKLY 25/100 75/100 125/100

0

b

6

a 4

a

0

b

0

b

0

200

400

600

800

1000

1200

1400

1600

1800

UTC SWKLY 25/100 75/100 100/100

Li
nt

 (
kg

/h
a)

 
(A) 

(B) 

Treatment threshold (eggs/100 plants) 



33 
 

Larvae Density Threshold 

In 2010 and 2011, larval density was significantly affected by date in all three 

cotton technologies (Figure 4). Bollworm density peaks lagged slightly behind peaks in 

egg density (Figure 2) and fell between the first and second peaks found from the 

pheromone trap data (Figure 1).  

Larval densities were significantly affected by the interaction of threshold and 

date in non-Bt cotton both years, as well as in WideStrike cotton in 2010 (Figure 5). 

Weekly applications of insecticide in WideStrike cotton were effective in maintaining 

low larval densities whereas greater variability was observed in other larval thresholds 

(Figure 5). The interaction suggests that the timing of insecticide application may be 

important. The end of July had high larval pressure and cotton may benefit from control 

at this time in particular. Insecticide applications had a negative impact on larval density 

(Figure 6). Differences in larval densities correlated with WideStrike lint yield in 2010; 

lower larval density in the plots sprayed weekly correlated with higher lint yields in these 

plots than in the untreated plots (Figure 7).  Insecticide applications based on treatment 

thresholds did not impact yield in dual Bt-gene cotton in 2010. In 2011, there was no 

significant difference in yield in any of the three technologies (Table 4). Gore et al. 

(2008) had similar results from a field cage experiment conducted in Mississippi. White 

blooms of Bollgard II and WideStrike were infested with bollworm larvae at 0, 50, and 

100%. Bollworm infestation had little impact on yield of Bollgard II or WideStrike 

except when 100% of white flowers were infested for at least one week (Gore et al. 
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2008). Economic yield loss was projected to occur only with extremely high pressure 

persisting for more than one week.   
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Figure 4. Mean bollworm larvae per 100 blooms (±SEM) by cotton technology and 
sampling date near Blackville, South Carolina, in 2010 (A) and 2011 (B). Bars of the 
same cotton technology with the same letter are not significantly different. NBT, non-Bt; 
WS, WideStrike; BGII, Bollgard II. 
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Figure 5. Mean bollworm larvae per 100 blooms (±SEM) in WideStrike cotton by larval 
treatment threshold and date near Blackville, South Carolina, in 2010. UTC, untreated 
control; SWKLY, sprayed weekly. 
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Figure 6. Mean bollworm larvae per 100 blooms (±SEM) by threshold treatment and 
technology in WideStrike (WS), Bollgard II (BGII), and non-Bt (NBT) cotton near 
Blackville, South Carolina, in 2010. Bars of the same cotton technology with the same 
letter are not significantly different. Numbers above bars indicate number of insecticide 
applications received. UTC, untreated control; SWKLY, sprayed weekly. 
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Figure 7. Comparison of 2010 yield (±SEM) by technology in WideStrike (WS), 
Bollgard II (BGII)  and non-Bt (NBT) cotton near Blackville, South Carolina. Bars of the 
same cotton technology with the same letter are not significantly different. Numbers 
above the bars indicate number of insecticide applications treatment received. UTC, 
untreated control; SWKLY, sprayed weekly. 
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Boll Damage Threshold 

Boll damage in non-Bt and WideStrike cotton varied significantly by date (Figure 

8).  Boll damage was elevated following the peak in egg density (Figure 2) during the 

same period that larvae sample numbers were high (Figure 4). This followed the pattern 

observed with adult moth capture (Figure 1). 

Although boll damage in both Bt cotton technologies decreased significantly 

when being aggressively treated for bollworm in 2010 (Figure 9) and Bollgard II alone in 

2011 (Figure 10), significant yield impacts based on insecticide treatment were observed 

only in non-Bt cotton (Figure 11). In a study conducted in North Carolina, fewer larvae 

and reduced boll damage were observed on Bollgard cotton compared with non-Bt cotton 

and likewise on Bollgard II compared with Bollgard cotton (Jackson et al. 2003). 

Bollgard II experienced 997 damaged bolls per acre with insecticide applications and 

9,436 damaged bolls per acre when left untreated (Jackson et al 2003). However, 

subsequent yield data were not presented in the study. In the current study, boll damage 

in 2010 varied significantly between thresholds in WideStrike cotton (Figure 9), but the 

injury did not lead to any significant loss in cotton lint yield.  
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Figure 8. Percent boll damage (±SEM) caused by bollworm to non-Bt (NBT), WideStrike 
(WS), and Bollgard II (BGII) cotton during July and August 2010 (A) and 2011 (B) near 
Blackville, South Carolina. Bars of the same technology with the same letter are not 
significantly different.  
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Figure 9. Percent boll damage (±SEM) caused by bollworm averaged across sampling 
date by boll damage threshold for WideStrike (WS) and Bollgard II (BGII) cotton near 
Blackville, South Carolina, in 2010. Bars of the same technology with the same letter are 
not significantly different. Numbers indicate number of insecticide applications received. 
UTC, untreated control; SWKLY, sprayed weekly. 
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Figure 10. Percent boll damage (±SEM) caused by bollworm averaged across sampling 
date by boll damage threshold for non-Bt (NBT), Bollgard II (BGII), and WideStrike 
(WS) cotton near Blackville, South Carolina, in 2011. Bars of the same technology with 
the same letter are not significantly different. Numbers indicate number of insecticide 
applications received. UTC, untreated control; SWKLY, sprayed weekly. 
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Figure 11. Cotton lint yield (±SEM) averaged by treatment for 2010 and 2011 in non-Bt 
cotton near Blackville, South Carolina. Bars of the same year with the same letter are not 
significantly different. Numbers indicate number of insecticide applications received. 
UTC, untreated control; SWKLY, sprayed weekly. 
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yield differences. As in the current study, Bacheler et al. (2006) observed higher percent 

boll damage in WideStrike varieties than Bollgard II (15 and 6% boll damage, 

respectively, in 2003), yet each technology did not appear to benefit from insecticide 

treatments based on lint yield (Bacheler et al. 2006). 
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Plant Mapping 
Test 1- Egg Density Threshold  

Table 5. Statistical comparisons for plant-mapping variables for bollworm egg density threshold trials on cotton near 
Blackville, South Carolina, 2011. 

Variable 

Type of Cotton 

Non-Bt WideStrike Bollgard II 

Ave. Plant Height  F= 2.45a; P= 0.0912 F= 0.22b; P= 0.9241 F= 0.73b; P= 0.5860 

Ave. Nodes/Plant F= 1.94a; P= 0.1563 F= 1.03b; P= 0.4270 F= 0.06b; P= 0.9929 

Height/Node Ratio 
 

F= 1.84a; P= 0.1744 
 

F= 0.57a; P= 0.6890 
 

F= 1.34a; P= 0.2994 
 

Ave. Total Bolls/Plant F= 2.30b; P= 0.1099 
 

F= 0.96b; P= 0.4585 
 

F= 0.60b; P= 0.6719 
 

Total Vegetative Bolls/Plant F= 1.20a; P= 0.3523 F= 0.47a; P= 0.7583 
 

F= 2.55a; P= 0.0824 
 

Ave. 1st Fruiting Node F= 0.69a; P= 0.6091 F= 2.53b; P= 0.0870 
 

F= 0.39b; P= 0.8092 
 

Ave. 1st Position Bolls F= 1.32b; P= 0.3098 
 

F= 2.67a; P= 0.0730 
 

F= 0.47b; P= 0.7576 
 

% Retention at 1st Position F= 1.34a; P= 0.3009 F= 1.57b; P= 0.2374 
 

F= 1.97a; P= 0.1514 
 

Ave. 2nd Position Bolls F= 1.08a; P= 0.4000 
 

F= 1.24b; P= 0.3381 
 

F= 0.18b; P= 0.9468 
 

% Retention at 2nd Position F= 1.41a; P= 0.2796 F= 1.17a; P= 0.3649 
 

F= 0.52a; P= 0.7210 
 

Ave. Worm Damaged Bolls F= 0.41a; P= 0.7983 
 

F= 1.49b; P= 0.2583 
 

F= 1.11a; P= 0.3894 
 

Ave. % Damaged Bolls F= 0.26a; P= 0.9013 
 

F= 2.52b; P= 0.0884 
 

F= 1.13a; P= 0.3803 

a df = 4, 15  
b df = 4, 14 
 



 
 

Test 2- Larvae Density Threshold 

Table 6. Statistical comparisons for plant-mapping variables for bollworm larvae in blooms threshold trials on cotton near 
Blackville, South Carolina, 2011. 
 

Variable 
Type of Cotton 

Non-Bt WideStrike Bollgard II 

Ave. Plant Height F= 1.44b; P= 0.2738 
 

F= 0.40b; P= 0.8080 
 

F= 1.03a; P= 0.4239 

Ave. Nodes/Plant F= 3.28b; P= 0.0428 
 

F= 0.57a; P= 0.6865 
 

F= 0.81a; P= 0.5385 
 

Height/Node Ratio F= 0.44b; P= 0.7772 
 

F= 0.51b; P= 0.7299 
 

F= 1.78a; P= 0.1858 
 

Ave. Total Bolls/Plant F= 0.84b; P= 0.5226 
 

F= 0.25a; P= 0.9069 
 

F= 0.37a; P= 0.8244 
 

Total Vegetative Bolls/Plant F= 2.12b; P= 0.1318 
 

F= 0.13a; P= 0.9699 
 

F= 0.71a; P= 0.5948 

Ave. 1st Fruiting Node 
 

F= 1.76b; P= 0.1922 F= 0.97b; P= 0.4547 F= 2.60b; P= 0.0814 

Ave. 1st Position Bolls F= 2.35a; P= 0.1010 
 

F= 1.44a; P= 0.2682 
 

F= 0.07b; P= 0.9908 
 

% Retention at 1st Position F= 3.57a; P= 0.0310 
 

F= 2.60a; P= 0.0787 
 

F= 0.66b; P= 0.6315 
 

Ave. 2nd Position Bolls F= 1.83a; P= 0.1759 F= 0.72b; P= 0.5949 
 

F= 0.26a; P= 0.9016 
 

% Retention at 2nd Position F= 14.40a; P< 0.0001 
 

F= 0.65c; P= 0.6351 
 

F= 0.27a; P= 0.8904 

Ave. Worm Damaged Bolls F= 1.68b; P= 0.2095 
 

F= 1.60a; P= 0.2247 
 

F= 1.35b; P= 0.2992 
 

Ave. % Damaged Bolls F= 1.41b; P= 0.2814 F= 0.66a; P= 0.6292 
 

F= 0.96b; P= 0.4601 

 

a df = 4, 15 
b df = 4, 14 
c df = 4, 13 
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Figure 12. Percent retention at the first position (±SEM) in non-Bt cotton from bollworm 
larvae in blooms test near Blackville, South Carolina, in 2011. UTC, untreated control; 
SWKLY, sprayed weekly. Numbers indicate number of insecticide applications the 
treatment received. Bars with the same letter are not significantly different. 
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Figure 13. Percent retention at the second position (±SEM) in non-Bt cotton from 
bollworm larvae in blooms test near Blackville, South Carolina, in 2011. UTC, untreated 
control; SWKLY, sprayed weekly. Numbers indicate number of insecticide applications 
the treatment received. Bars with the same letter are not significantly different. 

 

Numbers of nodes per plant in non-Bt cotton were significantly different among 

treatments using LSD mean separations, but not using the more conservative Tukey mean 

separation test (data not shown; Table 6). Cotton plants suffering fruit damage or loss 

divert resources to vegetative growth, grow taller, and produce more nodes (Guinn 1982). 

This would help explain the trend of increasing number of nodes with decreasing 

insecticide protection from bollworm, but the trend was not strong enough to be 

significant when using conservative measures of statistical difference. Non-Bt cotton also 

had higher percent boll retention of 1st and 2nd position bolls in protected plots than in the 

untreated control plots (Figures 12 and 13). 
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Test 3- Boll Damage Threshold 

Table 7. Statistical comparisons for plant-mapping variables for bollworm boll damage threshold trials on cotton near 
Blackville, South Carolina, 2011. 

Variable       
Type of Cotton 

Non-Bt WideStrike Bollgard II 

Ave. Plant Height F= 0.74b; P= 0.5806 

 

F= 0.28b; P= 0.8857 F= 0.52a; P= 0.7193 

Ave. Nodes/Plant F= 1.73a; P= 0.1963 
 

F= 0.45b; P= 0.7705 F= 0.34b; P= 0.8460 
 

Height/Node Ratio F= 1.05a; P= 0.4152 
 

F= 0.16a; P= 0.9529 F= 0.33b; P= 0.8529 

Ave. Total Bolls/Plant F= 0.90a; P= 0.4869 
 

F= 0.36b; P= 0.8337 F= 0.34a; P= 0.8497 
 

Total Vegetative Bolls/Plant F= 0.44a; P= 0.7768 
 

F= 1.19a; P= 0.3564 F= 0.29a; P= 0.8816 
 

Ave. 1st Fruiting Node F= 1.98b; P= 0.1529 
 

F= 0.43a; P= 0.7825 F= 1.24b; P= 0.3402 

Ave. 1st Position Bolls F= 3.27a; P= 0.0409 
 

F= 0.73b; P= 0.5847 
 

F= 0.21a; P= 0.9269 

% Retention at 1st Position F=4.66a; P= 0.0120 
 

F= 0.91a; P= 0.4808 
 

F= 0.60a; P= 0.6672 
 

Ave. 2nd Position Bolls F= 6.17b; P= 0.0044 
 

F= 0.59b; P= 0.6731 
 

F= 1.01b; P= 0.4355 

% Retention at 2nd Position F= 4.10c; P= 0.0252 
 

F= 0.87a; P= 0.5029 F= 1.01a; P= 0.4328 
 

Ave. Worm Damaged Bolls F= 0.71b; P= 0.6014 
 

F= 0.60a; P= 0.6671 
 

F= 0.37a; P= 0.8277 

Ave. % Damaged Bolls F= 0.83b; P= 0.5287 
 

F= 0.90a; P= 0.4904 F= 0.55a; P= 0.7015 

a df = 4, 15 
b df = 4, 14 
c df = 4, 12.1 
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Figure 14. Mean number of first position bolls (±SEM) in non-Bt cotton from bollworm 
boll damage test near Blackville, South Carolina, in 2011. UTC, untreated control; 
SWKLY, sprayed weekly. Numbers indicate number of insecticide applications the 
treatment received. Bars with the same letter are not significantly different. 
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Figure 15. Percent retention at the first position (±SEM) in non-Bt cotton from bollworm 
boll damage test near Blackville, South Carolina, in 2011. UTC, untreated control; 
SWKLY, sprayed weekly. Numbers indicate number of insecticide applications the 
treatment received. Bars with the same letter are not significantly different. 
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Figure 16. Mean number of second position bolls (±SEM) in non-Bt cotton from 
bollworm boll damage test near Blackville, South Carolina, in 2011. UTC, untreated 
control; SWKLY, sprayed weekly. Numbers indicate number of insecticide applications 
the treatment received. Bars with the same letter are not significantly different. 
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Figure 17. Percent retention at the second position (±SEM) in non-Bt cotton from 
bollworm boll damage test near Blackville, South Carolina, in 2011. UTC, untreated 
control; SWKLY, sprayed weekly. Numbers indicate number of insecticide applications 
the treatment received. Bars with the same letter are not significantly different. 

 

Data from the boll damage threshold test were similar to data observed in the test 

with larval density in blooms. Weekly protected plots had greater numbers of 1st and 2nd 

position bolls than unprotected plots (Figures 14 and 16) which correlated with higher 

percent retention at these two positions (Figures 15 and 17). Weekly insecticide 

applications reduced the number of bollworms and other pests and allowed the valuable 

1st and 2nd position bolls to survive undamaged to maturity. 
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CONCLUSIONS 

 Despite high bollworm pressure in 2010, there were no significant differences in 

lint yield among thresholds in the dual Bt-gene technologies, except between WideStrike 

untreated and sprayed weekly plots in the larval density threshold test. During 2011, no 

significant yield differences among thresholds in the dual Bt-gene technologies occurred. 

Extended growing seasons conducive for plant compensation were experienced each 

year, though 2011 had lower bollworm pressure than 2010. Plant mapping data, taken 

only in 2011, did not indicate compensatory growth for that season, but it is uncertain if 

compensation occurred in 2010 when bollworm pressure was extremely high. During 

2011, plots of non-Bt cotton protected weekly had higher incidence of 1st and 2nd position 

boll retention; yet, this was only seen in the non-Bt control, with no differences between 

insecticide thresholds on dual Bt-gene cotton. Even if compensation likely occurred in 

2010, conditions favorable for yield compensation do not occur perennially. Such end-of-

season conditions should not be expected when making insect control decisions. 

 No differences in lint yield were found among thresholds within the Bt 

technologies, indicating that insecticide applications exclusively targeting bollworm were 

unnecessary in dual Bt-gene cotton. However, results from this study only span two 

growing seasons at one location and are not sufficient to warrant modification to South 

Carolina’s current action threshold recommendations for dual-gene Bt cotton: three or 

more large larvae per 100 plants or 5% boll damage. Growers adhering to these 

recommendations for bollworm might apply one or two insecticide applications for 



55 
 

bollworm in dual-gene Bt technologies, as opposed to near weekly dedicated applications 

required for bollworm control on non-Bt cotton in this study.  

The impact of secondary pests will also influence control strategies for bollworm. 

This study was set up to reduce the influence of non-bollworm pests. Further work is 

necessary to explore the interactions and impacts of secondary pests with bollworm in 

dual-gene Bt cotton. Stink bugs are regularly controlled with insecticides during periods 

of bollworm infestation, so concomitant control of any bollworms surviving on Bt cotton 

can be expected under most scenarios, thus negating dedicated applications for bollworm. 

Measurable differences in bollworm density and damage levels were observed 

between technologies. WideStrike cotton regularly supported more bollworms and 

suffered consistently higher boll damage than Bollgard II cotton, which initially 

suggested that it would be necessary to take a more proactive approach in protecting 

WideStrike cotton than Bollgard II.  However, in this study, lint yields from WideStrike 

plots did not differ among varying thresholds for bollworm and so did not support the 

conclusion that protection strategies be amended for each technology. Further research 

comparing technologies would need to be conducted in order to make such a 

recommendation.  
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