
Clemson University
TigerPrints

All Theses Theses

12-2012

Design and Implementation of a Genre Hybrid
Video Game that Integrates the Curriculum of an
Introductory Programming Course
Cory Buckley
Clemson University, corybuckley@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Art and Design Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Buckley, Cory, "Design and Implementation of a Genre Hybrid Video Game that Integrates the Curriculum of an Introductory
Programming Course" (2012). All Theses. 1515.
https://tigerprints.clemson.edu/all_theses/1515

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1049?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1515?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DESIGN AND IMPLEMENTATION OF A GENRE HYBRID
VIDEO GAME THAT INTEGRATES THE CURRICULUM OF

AN INTRODUCTORY PROGRAMMING COURSE

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Masters
Digital Production Arts

by
Cory M. Buckley
December 2012

Accepted by:
Dr. Donald H. House, Committee Chair

Dr. Brian A. Malloy
Dr. Jan Holmevik

Abstract

Video games have a history of being exploited for education. However, all too fre-

quently, the resulting educational video game is either transparent in its hijacking of

video game media, or the educational content is not intelligently placed within the

context of the game. In this paper we analyze existing educational video games and

observe popular commercial video game mechanics to form a more player oriented

development mindset. Our approach involves mingling game mechanics that are

not commonly used together to create a genre hybrid educational video game with

a seamlessly integrated introductory programming curriculum. We use a machine

architecture visualization tool to allow the player to write and execute simple pro-

grams. This leads to a deeper understanding of foundational concepts by exposing

the effects of the code on the underlying hardware. The result of our research is

a playable, cross-platform educational game that aims to teach foundational pro-

gramming skills. Methods discussed in this paper can be used by educational game

developers to create more engaging educational experiences.

ii

Table of Contents

Page

Title Page . i

Abstract . ii

List of Figures . iv

List of Tables . vi

1 Introduction and Motivation . 1

2 Background . 3
2.1 A Taxonomy of Video Games . 3
2.2 What is a Serious Game? . 7
2.3 What is a Sandbox Game? . 8
2.4 What is a Game Engine? . 9

3 Related Work . 11
3.1 The State of Educational Games . 11
3.2 Video Games that Teach Computing Concepts 13

4 Methodology . 18
4.1 Narrative and Visual Style . 19
4.2 The Architecture Simulator . 21
4.3 The Game Environment . 22
4.4 Programming Curriculum . 23
4.5 The Battle System . 25

5 Study . 30
5.1 Programming Survey . 30
5.2 Game Experience Questionnaire . 31

6 Conclusion . 38

Appendices . 40
A Programming Survey and Questionnaire 41

Bibliography . 45

iii

List of Figures

Figure Page

2.1 Turn-based battle system in Final Fantasy Mystic Quest 4
2.2 Real-time battle system in The Legend of Zelda: Skyward Sword 4
2.3 Boss battle action in Rayman Advance 5
2.4 Platforming action in Sonic the Hedgehog 4 5
2.5 Text based adventure game Phoenix Wright: Ace Attourney 6
2.6 Point and click adventure game Grim Fandango 6
2.7 Action game mechanics from the role-playing game Mega Man

Battle Network . 7
2.8 Action game mechanics from a turn-based battle in Paper Mario:

Sticker Star . 7
2.9 An educational game about pioneers on the Oregon Trail 8
2.10 A calorie burning hula hoop mini-game in Wii Fit 8
2.11 4-player cooperation in the sandbox world of Little Big Planet 9
2.12 Exploring the sandbox environment of Minecraft 9

3.1 3rd-Person Shooting Action in Math Blaster 12
3.2 Shooting Lymphoma Cells in Re-Mission 12
3.3 Geography and History Quiz questions in Mario is Missing 13
3.4 Uninteresting Platforming Action in Mario is Missing 13
3.5 Battle Commands Being Executed by Gambits in Final Fantasy XII . . 14
3.6 Using Gambits to Execute Battle Commands in Final Fantasy XII . . . 14
3.7 Programming puzzle in Light-Bot 2.0 15
3.8 Programming Using a Sensory Based Language in Kodu 16
3.9 A Programmable Object in the Game Environment of Kodu 16
3.10 Choosing Between Unityscript and Javascript Tutorials in Code Hero . 17
3.11 Shooting Code From the Code Ray in Code Hero 17

4.1 The central processing unit who watches over the computer world . . . 20
4.2 The digital knight controlled by the player 20
4.3 The CPU addressing the player in the introductory scene 20
4.4 Breakdown of the visual elements in the Architecture Simulator 22
4.5 Talking to a Process Bot on the central HUB 23
4.6 Viruses that the player must defeat during battle 25
4.7 Battling a Virus on the Battle Disk . 26
4.8 A variety of Commands in the Command Queue 27
4.9 Using the Swap Macro to swap two Commands in the Command Queue 28

iv

List of Figures (Continued)

Page

5.1 Programming survey results diagrams 34
5.2 Questionnaire keyword analysis results diagrams 36

v

List of Tables

Table Page

4.1 Programming Puzzles and Rewards . 24
4.2 Available Commands . 29
4.3 Available Macros . 29

5.1 Cognitive Skills Used in the Programming Survey 33
5.2 Pre-Gameplay Programming Survey Results 33
5.3 Post-Gameplay Programming Survey Results 33
5.4 Game Experience Questionnaire Results 35

vi

Chapter 1

Introduction and Motivation

The Digital Production Arts program at Clemson University is a challenging

program because it requires students to be dual natured. Both traditional art skills

and technical skills are required for students to be successful. It is not uncom-

mon for prospective students to have strong traditional art backgrounds and weak

programming backgrounds. These students may find it rather difficult to adopt

a programming mentality even with foundational programming courses that are

specifically designed to cater to traditional artists. This has led educators in the

program to wonder if there are more engaging ways to teach foundational computer

programming to these students. This educational challenge has led to the research

in this paper.

Computer technology and its use in society has undergone a wealth of change in

the past ten years, while surveys show that traditional methods of instruction have

remained relatively constant in educational institutions [36; 38]. Research by Kaila

et al. [23] on the effectiveness of program visualization on programming literacy

appears to be promising and provides a strong argument for continued research in

program visualization. Traditional artists, with their visually oriented skill set, may

be more receptive to teaching methods that utilize visualization tools. However, re-

search shows that visualization is often not enough to provide students with a firm

understanding of the underlying concepts [21; 36].

In the past decade video game sales have seen an exponential growth along with

a consistent expansion in player demographics [43]. This increase in video game con-

sumption provides motivation for the study of integrated educational video game

solutions. Traditional art students who apply to programs such as Clemson Uni-

versity’s Digital Production Arts program are actively seeking jobs in the film and

1

video game industries. Therefore, the video game may serve as a more engaging

medium for communicating foundational programming concepts to these students.

In this paper, we describe an approach to the design and implementation of a

hybrid educational video game that uses game mechanics from many traditional

video game genres. Thus, we refer to our approach as a genre hybrid video game.

While most educational video games exhibit gameplay built around the goals of the

educator, we propose a model of gameplay that uses the genre hybrid approach to

build a game around the the interests of the player, resulting in a more engaging

educational experience. To accomplish this goal, we analyze game mechanics that

successful commercial video games use to attract their large consumer base. We

then describe how certain game mechanics can be paired with educational content

to create a video game with a more seamlessly integrated educational curriculum.

We use this approach to develop a video game that aims to teach computer pro-

gramming, resulting in a pilot version of a playable, cross-platform game.

First we review a few popular video game genres and the game mechanics that

help classify them. We define sandbox games and serious games as well as explore

their use as tools of education and entertainment. We also briefly explain the impor-

tance of game engines to the game industry and to the development of educational

games. Next, we briefly cover Unity, the game engine used to build the educational

game discussed in this paper. We review the current state of educational games, as

well as games that teach computer programming concepts. We describe the design

and implementation of a hybrid educational video game that aims to teach fun-

damental programming concepts using an organized curriculum. We also discuss

the design and implementation of a visualization tool that operates on layered ab-

straction to create a sandbox environment for teaching introductory programming

concepts. To conclude, we share our pilot study findings and draw conclusions about

the methods proposed in this paper.

2

Chapter 2

Background

2.1 A Taxonomy of Video Games

This paper argues that the educational video game designer should seriously con-

sider utilizing game mechanics that best match the subject matter of the educational

content. Many commercial games make frequent use of these game mechanics. In

fact, many of these game mechanics help to define a video game taxonomy. Much

like literature and film, video games have a history of being identified by established

genres that continue to evolve as new works are produced. A list of video game

genres based on interactivity has already been established [45]. In this chapter we

will identify a few of these genres and discuss their defining qualities and mechanics.

Role-Playing Games

Role-playing games, or RPGs, rely on the importance of an intricate narrative.

The player is drawn into the game by taking on the role of one or more characters.

A common game mechanic in this genre is the ability to increase a character’s skills

or attributes to more effectively confront the antagonist. This genre places much

emphasis on the projection of the player onto the game character. A popular device

to achieve this is the ability to customize the name, look, sound, and persona of

the player’s character. In doing so the game character becomes an extension of the

player’s identity and allows the player to become more invested [17].

The narrative in this game genre is typically punctuated by battle sequences

where the player must defeat enemies. There are two popular battle styles in this

genre. Turn-based battle refers to a game mechanic that pits the player’s character,

or party, against the opposing forces in a turn-by-turn battle sequence. During

3

the player’s turn all action ceases until commands have been issued and the battle

can continue. Real-time battle refers to a system without turns, where actions are

carried out as they are issued. Examples of this genre include the popular Final

Fantasy series [12] (see Figure 2.1), The Legend of Zelda [34] series (see Figure 2.2),

and the Pokemon series [10].

Figure 2.1: Turn-based battle sys-
tem in Final Fantasy Mystic Quest

Figure 2.2: Real-time battle system in The
Legend of Zelda: Skyward Sword

Action Games

Action games rely on the player’s reflexes and controlled precision. Action games

are often divided into incremental chapters called levels. Each level has a unique

set of obstacles, collectable items, and weaponry. Levels may also end with a more

challenging obstacle or enemy referred to as a boss. Typically the player is given a

certain amount of health or lives that when depleted end the game. This happens

to be the broadest genre encompassing many other subgenres including platform

games, first-person shooters, fighting games, and racing games. For this reason, the

action game is the predominant genre featured in home game consoles and in video

arcades. Common iconic examples of this genre include the Super Mario Brothers

series [32], the Sonic the Hedgehog series [37] (see Figure 2.4), and the Rayman

series [44] (see Figure 2.3).

4

Figure 2.3: Boss battle action in
Rayman Advance

Figure 2.4: Platforming action in Sonic the
Hedgehog 4

Adventure Games

Some of the earliest video games invented hail from the Adventure games genre.

Games in this genre are often text based and involve interaction that is not reflex

based. Typically the player is presented with puzzles that are to be solved by

interacting with the environment or with other game characters. The player is

almost never given a time limit or presented with action based challenges, making

this a genre that appeals to many non-gamers. True adventure games have suffered

a fluctuation in popularity and as a result many of these games tend to be low

budget. While this may be true in western economies, eastern cultures seem to

fervently embrace the genre as visual novels, a subgenre of the adventure game, are

extremely successful in the eastern market [39]. Popular adventure games include

the Ace Attorney series [7] (see Figure 2.5), the Myst series [46], and Grim Fandango

[28] (see Figure 2.6).

5

Figure 2.5: Text based adventure game
Phoenix Wright: Ace Attourney

Figure 2.6: Point and click adventure
game Grim Fandango

Hybrid Games

Many contemporary commercial video games make use of game mechanics from

two or more traditional video game genres. These games are considered to be genre

hybrid games. For example, the most recent games in the Castlevania franchise

[25] are action platformers that incorporate a role-playing mechanic where game

characters have skills and attributes that can be incrementally increased. Even

though this game is a genre hybrid it is marketed as an action platformer due to

the fact that the gameplay focuses primarily on the platforming game mechanic

over the secondary role-playing game mechanics. Many video game companies with

established franchises continue to extend them by releasing video games faithful to

the traditional genre. However, for the sake of reaching new audiences it has become

crucial to also expand successful franchises by investing in the production of hybrid

video games [2]. Some hybrid video games become so successful that they eventually

become independent franchises themselves. For example, the Mega Man franchise

[6] is well known for it’s platform action and unique game mechanics. Each boss

enemy in Mega Man has a particular weapon that can be obtained by beating that

enemy. Each enemy is weak to a particular weapon creating a game that exhibits

mechanics similar to the rock-paper-scissors hand game. In the traditional Mega

6

Man series the game is played by jumping from platform to platform and shooting

enemies to reach the end of the level, take on the boss, and collect the boss’ weapon.

Mega Man Battle Network, a recent addition to the Mega Man franchise, borrows

the characters and game mechanics of the series and places them in the context of

a role-playing video game. The player must control Mega Man and collect battle

chips from enemies to incrementally increase the abilities of Mega Man. Certain

enemies are weak to certain battle chips retaining the rock-paper-scissors mechanic.

The game features a battle system that is a hybrid of the turn-based and real-time

battle systems of the traditional role-playing video game genre. The original Mega

Man Battle Network video game was so successful that several follow up titles have

been released creating an entirely new franchise. Popular hybrid games include the

previously mentioned Mega Man Battle Network franchise (see Figure 2.7) and the

Paper Mario franchise [33] (see Figure 2.8).

Figure 2.7: Action game mechanics
from the role-playing game Mega Man
Battle Network

Figure 2.8: Action game mechanics from a
turn-based battle in Paper Mario: Sticker
Star

2.2 What is a Serious Game?

Video games that serve a purpose other than entertainment are considered seri-

ous games. These games do not form their own genre in the video game taxonomy.

Types of serious games include educational, training, advertising, political, exercise,

business, persuasive, military simulation, marketing, and medical games. While

7

they are meant to serve another purpose, serious games can also be entertaining.

The term was originally coined before the invention of the video game.

Reduced to its formal essence, a game is an activity among two or more

independent decision-makers seeking to achieve their objectives in some

limiting context. A more conventional definition would say that a game

is a context with rules among adversaries trying to win objectives. We

are concerned with serious games in the sense that these games have

an explicit and carefully thought-out educational purpose and are not

intended to be played primarily for amusement [1].

Many companies and schools use educational games, a subcategory of serious games,

to train and teach [24]. The United States military invests in many training programs

that utilize serious games, as video game development is cheaper and easier to access

than special equipment and facilities [20]. Popular commercial serious games include

Oregon Trail [9] (see Figure 2.9) and Wii Fit [31] (see Figure 2.10).

Figure 2.9: An educational game
about pioneers on the Oregon Trail

Figure 2.10: A calorie burning hula hoop
mini-game in Wii Fit

2.3 What is a Sandbox Game?

A sandbox game is a game that allows the player to play with certain elements

in the environment or interface with complete creative freedom. Like serious games,

sandbox games do not form their own genre in the video game taxonomy. While

8

playing a sandbox game, the player is allowed to be engaged without having to worry

about whether they are playing the“right way.” Typically, the player is given infinite

health or lives and, like the role-playing genre, the player’s character is usually highly

customizable for more creative freedom. Popular commercial sandbox games include

the LittleBigPlanet series [40] (see Figure 2.11) and Minecraft [29] (see Figure 2.12).

Figure 2.11: 4-player cooperation in the
sandbox world of Little Big Planet

Figure 2.12: Exploring the sandbox en-
vironment of Minecraft

2.4 What is a Game Engine?

A game engine is a multifaceted tool used for the rapid production and deploy-

ment of video games. Game engines supply a framework for developers to create

video games that run on personal computers and commercial game consoles. The

features of game engines are varied but typically include integrated solutions for

rendering, physics and collision detection, animation, networking, audio, artificial

intelligence, memory management, scripting, and particle based visual effects [42].

It is often cheaper for a production studio to build or purchase a game engine for

development, as multiple games can be built using the same engine. It is also pos-

sible, with some game engines, to develop games for multiple platforms, making it

easier to reach a wider spectrum of video game consumers.

9

The Unity Game Engine

Unity [41] is a game engine that is not only used for games but for visualization

as well. Unity is known for its cross-platform support featuring deployment to

Windows, Mac, Xbox 360, Playstation 3, Wii, iPad, iPhone, and Android platforms.

Developers using Unity can also deploy web-based games that run using Unity’s

web player plugin or Flash. What sets Unity apart from other game engines is

that it includes a fully featured integrated development environment, equipped with

property inspectors and live game preview. Programming languages supported by

Unity include JavaScript, C#, and a Python derivative named Boo. Some of the

features supported by the render engine include bump mapping, reflection mapping,

shadow mapping, parallax mapping, and a shader language that supports fall back

on alternative shaders, should the platform not be capable of utilizing a shader. The

built-in physics engine is Nvidia’s PhysX engine [35]. This engine supports rigid and

soft body dynamics, character controllers, rag dolls, and simple cloth simulation.

The professional version of Unity supports many advanced features, such as screen

space ambient occlusion, lightmapping, global illumination, and pathfinding.

10

Chapter 3

Related Work

3.1 The State of Educational Games

While educational games do not often top the charts in popularity, many have

experienced exceptional success in the video game market. Of these games, there

seem to be two prevalent formulas for the creation of educational video games. One

method takes a video game that is purely entertainment and injects educational

content into the game. The other formula, most often used by educational game

designers, takes educational content and shapes it into something that looks like a

game.

Math Blaster [3] (see Figure 3.1) is a game that drills players with basic math

problems to improve their math skills. Klopfer et al. [14] assert that while this

educational game development formula may create relatively entertaining games it

also has the potential to call the educational value of the game into question.

If your spaceship requires you to answer a math problem before you can

use your blasters, chances are you’ll hate the game and the math [14].

Math Blaster does, however, incorporate a genre of gameplay similar to the nature

of its educational content. The developers have paired fast paced mathematic drills

with action based game mechanics. Re-Mission [18] (see Figure 3.2) makes use of

the same action based shooting mechanics but differs in its educational content. The

goals of the video game include increasing awareness about different types of cancer,

educating the player on the proper nutrition to help fight cancer, and encouraging

compliance with oral chemotherapy regimens. This educational content is more

lecture based in nature and can be effectively communicated through the narrative

11

without impeding on the action elements of the game.

Figure 3.1: 3rd-Person Shooting Action in
Math Blaster

Figure 3.2: Shooting Lymphoma Cells
in Re-Mission

One example of a game that is created by shaping educational content into a

game is the Super Nintendo and MS-DOS game Mario is Missing [22]. This video

game tries to present geography and history using the popular characters from the

Super Mario Brothers series. The player controls Luigi as he journeys around the

world answering questions (see Figure 3.3) about the geographic locations in which

he is searching for his lost brother. At first, the game appears to be very similar to

the popular Super Mario World. However, the game fails as an action platformer.

While the side-scrolling and enemy bashing mechanics are somewhat present in the

game they only serve as ornamentation to the educational content (see Figure 3.4).

This shows how putting educational content into a game environment may have the

potential to teach but does not often produce engaging games.

12

Figure 3.3: Geography and History Quiz
questions in Mario is Missing

Figure 3.4: Uninteresting Platforming
Action in Mario is Missing

A low budget seems to be a common factor in almost all educational games.

However, video games do not need expensive graphics to be enticing. The Wii

continues to outsell its competitors, the Playstation 3 and Xbox 360, [8] even though

the graphics capabilities of the Wii are vastly inferior to those of its competitors [30].

3.2 Video Games that Teach Computing Concepts

Final Fantasy XII

Final Fantasy XII [11] is a role-playing game developed by the popular Japanese

video game company Square Enix [13]. The twelfth game in the Final Fantasy series

has introduced several particularly interesting game mechanics such as the gambit

system. The gambit system allows players to program the behavior of the characters.

In traditional Final Fantasy titles, the player uses a menu driven turn-based battle

system to fight enemies. In Final Fantasy XII, the battle system is a hybrid of the

real-time and turn-based battle systems. The player controls the game characters

by issuing commands. The game character returns to an idle state after executing

a command. During this idle state, the game character executes commands based

on a set of predetermined rules called gambits (see Figure 3.5). For example, a

13

player may decide to designate healing responsibilities to a certain character. The

player would then assign a gambit that has the desired prerequisites, to execute a

command when an ally’s health is less than 70%, to the designated healing character.

The player would then assign a command that acts as a parameter for the gambit

such as cure (see Figure 3.6). When an enemy attacks a game character and lowers

their health below 70%, the designated healing character will automatically execute

the cure command. This rudimentary programming mechanic allows the player to

experiment with conditional expressions.

Figure 3.5: Battle Commands Being
Executed by Gambits in Final Fantasy
XII

Figure 3.6: Using Gambits to Execute
Battle Commands in Final Fantasy XII

Light-Bot

Light-Bot [16] and Light-Bot 2.0 [15] are programming puzzle games that task

the player with writing small programs that control the movement of a robot. In

Light-Bot, the player is presented with a tool box of simple commands for the robot

to obey. There is a main function that the player can drag commands into. The robot

steps through the commands in order, just as a program steps through instructions.

The goal is to get the robot to specially marked cells on the playing field and to use

the light command (see Figure 3.7). Sometimes the player must light up several cells

on the playing field, which can be difficult with a small amount of allotted space

for commands. In these cases, the player is also allowed to use two subroutines.

14

These games introduce many rudimentary programming concepts such as modular

implementation and recursion. Light-Bot 2.0 adds new game mechanics, such as

commands that are only executed if the robot is a certain color. This mechanic

makes conditionals possible.

Figure 3.7: Programming puzzle in Light-Bot 2.0

Kodu

Kodu [26] is a sandbox game that allows the player to create their own game

using a visual programming language. It was created to be accessible to people of all

ages by substituting textual code for code that is built using the game controller and

a rule-based language that focuses on sensory conditions (see Figure 3.8). Many high

level programming conventions are absent including branching, number and string

manipulation, subroutines, polymorphism, compiling, etcetera. The environment of

the game is a nearly complete virtual environment, allowing players to manipulate

the scenery using a visual editor (see Figure 3.9). The characters of the game are

programmed by the player using sensory conditions such as the sequence “See - Fruit

- Move - Towards.” In this sequence the character moves towards the fruit when

15

the fruit comes into its line of vision. Additionally, modifiers can be used to more

precisely control the behavior of the programmable characters. Due to the sandbox

nature of this tabula rasa environment, many different game genres can be modeled

such as role-playing, action, adventure, puzzle, and platformers.

Figure 3.8: Programming Using a Sen-
sory Based Language in Kodu

Figure 3.9: A Programmable Object in
the Game Environment of Kodu

Code Hero

Code Hero [27] is a first person shooter game that aims to teach Javascript and

Unityscript 3.10. The game is currently undergoing beta testing before its release.

In Code Hero, the player is armed with a code ray that is capable of copying code,

editing copied code, and shooting it at targets 3.11. The game presents programming

topics in lessons organized into a curriculum. In order to progress in the game you

must complete programming lessons that are explained using examples within the

context of the game world. Often failure leads to a better understanding of concepts

and ultimately leads to success. In Code Hero, players are expected to fail a lesson

several times before they eventually master the concepts being exemplified in the

lesson. The game does not, however, attempt to teach basic programming concepts

through the paradigm of a simple machine. Instead, Code Hero focuses on high-level

programming languages.

16

Figure 3.10: Choosing Between Uni-
tyscript and Javascript Tutorials in
Code Hero

Figure 3.11: Shooting Code From the
Code Ray in Code Hero

17

Chapter 4

Methodology

Exploiting the genre hybrid video game model in the construction of educational

video games has many advantages. These games are naturally more engaging in their

ability to present old game mechanics in a new and interesting way. Additionally,

genre hybrids can use the game mechanics of one genre as a tool to weave the ed-

ucational content into the game mechanics of another genre. Just as many genre

hybrid games focus on a particular genre identified by the primary game mechanics,

the game developer should choose a set of primary game mechanics that fit within

the context of the educational content. For example, an educational game whose

objectives include rapid problem drilling may find that it is easier to incorporate

the educational content into the video game by making the primary game mechan-

ics action oriented. The developer should then consider ways in which secondary

game mechanics can be used to shape the concepts of the educational content into

entertainment oriented gameplay.

In the design of our educational video game, we chose to have our primary game

mechanics draw from the role-playing genre. We found this to be an appropriate

match for a curriculum driven video game due to the quest-like nature of a pre-

designed set of increasingly difficult problems. Programs are constructed using a

visualization tool that serves as a sandbox environment for the player to learn and

experiment. We use adventure oriented game mechanics to communicate program-

ming concepts through text based interaction with non-playable characters and the

environment. Finally, we implement a hybrid battle system that uses both turn-

based and real-time battle mechanics. This implementation allows the player to use

programs written in the sandbox environment to help defeat the enemies.

18

4.1 Narrative and Visual Style

It is difficult to produce a large amount of photorealistic assets with a small team

of developers. While there are industry professionals who believe narrative cannot

be effectively communicated without photorealism [5], many video game consumers

use the success of text-based adventure video games to rebut this claim [19]. For

these reasons we chose to avoid photorealism in our artistic style. Instead, we drew

inspiration from the main franchises of Nintendo, a company whose franchise sales

[8] provide further proof that photorealism is not a requirement for engaging narra-

tives in video games. Our characters and environments employ simple shading and

whimsical designs that revolve around a digitally themed world.

The context of the educational content can help direct the educational game de-

veloper’s artistic decisions. In our game, the player is asked to help create programs

so it seemed natural to place the player inside the imaginary world of a computer.

The opening scene introduces the CPU, who watches over the world inside of the

player’s computer (see Figure 4.1). The CPU informs the player of the dangerous

viruses who have started to appear inside the world of the computer (see Figure

4.3). The player assumes the role of a digital knight (see Figure 4.2) who is charged

with finding out why the viruses have been appearing and helping the inhabitants

of the computer, the process bots, carry out their programming tasks along the way.

19

Figure 4.1: The central processing unit
who watches over the computer world

Figure 4.2: The digital knight
controlled by the player

Figure 4.3: The CPU addressing the player in the introductory scene

20

4.2 The Architecture Simulator

The computer architecture simulator, shown in Figure 4.4, is an abstracted ver-

sion of a simple computer architecture that serves as a visualization tool. There are

four registers (D in Figure 4.4) whose values are initially unknown to the player.

These values can be manipulated by using a set of five instructions: input, output,

assignment, if, else, and while. As the player selects instructions from the instruc-

tion window (B in Figure 4.4) a program is assembled in the code window (C in

Figure 4.4). The player can choose to either execute the program in its entirety or

iterate through the instructions line by line using the run and step buttons (H in

Figure 4.4). When the input instruction is executed, a keyboard appears allowing

the player to provide an input value. The assignment instruction allows the player

to assign values or expressions to a register. The if and while instructions allow the

player to utilize branching using boolean expressions. The else instruction can only

be used directly after an if code block. While the instructions are being executed,

the data flow is illustrated by sparks that travel along wires that connect the code

window to the registers. When output instructions are executed, the data flow is

illustrated by sparks that travel along a wire connecting the registers to an output

window (E in Figure 4.4). The speed of the computer and data flow visualization

can be changed using a sliding bar (G in Figure 4.4) below the output window. A

collection of buttons allowing the player to clear the code window, clear the output

window, and reset registers are located underneath the output window. If the archi-

tecture simulator encounters an error the execution will halt and an error message

will be displayed in the notification bar (A in Figure 4.4) above the instruction win-

dow. When the player is satisfied with a program, the exit button can be used to

return to the game environment. When the player first encounters the architecture

simulator, or terminal as it is referred to in the game, a process bot explains the

interface by introducing the player to the various components of the visualization

21

tool.

Figure 4.4: Breakdown of the visual elements in the Architecture Simulator

4.3 The Game Environment

The world inside the computer is divided into sectors that are comprised of a

series of platforms. Each sector is connected to the central hub (see Figure 4.5).

The terrain of each sector changes to give each sector a “world”-like identity. This

is a common mechanic of the action platformer genre that acts as a visual cue to

signal that the player has reached the next level. We use this mechanic to signal

that the player has reached a new unit in the educational curriculum. Like many

role-playing games, the player navigates the game environment from a third person

perspective. The player cannot fall off the platform and is unable to jump. The

architecture simulator, otherwise known as the terminal, can be found hovering

over a predetermined location in each sector. Process bots can be found hovering

over different areas of the platform. Some process bots are used to communicate

programming information while others are used as an outlet for comic relief. A

22

special process bot trades flops, the computer world currency, for items and upgrades

to help the player in their quest against the viruses.

Figure 4.5: Talking to a Process Bot on the central HUB

4.4 Programming Curriculum

Each sector is constructed such that the player’s interactions with the process

bots are loosely directed. This way, the developer can communicate information

sequentially, allowing a lesson oriented curriculum to be easily incorporated. The

curriculum is organized into a series of programming puzzles, as shown in Table

4.1, that progressively explore a basic set of programming skills. For example, the

player learns about the input instruction from a process bot in the central hub before

entering the first sector. The process bot closest to the entrance of the first sector

explains the assignment instruction and also hints at the fact that swapping two

numbers requires three memory registers. The player now has enough information

to solve the Swap 2 programming puzzle.

23

Table 4.1: Programming Puzzles and Rewards

Programming Puzzle Reward for Completion

Input & Output Unlock entrance to Jungle Sector

Reverse (2) RAM Upgrade

Swap 2 Swap Macro

Output Biggest (2) RAM Upgrade

Output Biggest (3) Jump Macro

Select Biggest (2) RAM Upgrade

Select Biggest (3) Max-2 Macro

Sum (2) RAM Upgrade

Sum (3) Sum Macro

Sum (fixed n) RAM Upgrade

Sum (variable n) Blaze Command

Sum (to sentinel) Unlock entrance to Deep Jungle Sector

Sort (2) FLOPs Reward

Sort (3) Sort Macro

Select Biggest (fixed n) FLOPs Reward

Select Biggest (variable) Max-3 Macro

Select Biggest (sentinel) Unlock entrance to Jungle Sector Boss

24

4.5 The Battle System

Viruses are encountered randomly while walking around on the platform of the

game environment. When a virus is encountered, gameplay is shifted from the

exploratory game environment to an arena environment where the player must defeat

viruses (see Figure 4.6).

Figure 4.6: Viruses that the player must defeat during battle

The Battle Disk

The battle disk is a circular grid, representing the hard disk of a computer, on

which the player battles viruses. Each character occupies a space on the grid with

no two characters ever occupying the same space (see Figure 4.7). Viruses move

around the grid and try to get close to the player. When a virus is on a space

adjacent to the player, the virus is able to attack and lower the player’s vitality.

Likewise, a player can deplete the vitality of adjacent viruses by pressing the space

key to attack with a debugging sword. The debugging sword is not a very effective

weapon by itself, so the player must use battle commands to defeat viruses.

25

Figure 4.7: Battling a Virus on the Battle Disk

Command Mode

Command mode can be activated by pressing the return key when the player’s

latency meter is full. While command mode is active, the battle is paused, allowing

the player to execute a more powerful command. During command mode, the player

is presented with a queue of commands (see Figure 4.8). Table 4.2 lists all of the

available commands in the game. Each command has an associated strength level

denoted by a number in megabytes. The player can choose to either execute the

command at the beginning of the command queue or manipulate the order of the

commands in the queue using special functions called macros. The player is only

allowed to manipulate a command if the appropriate RAM slot has been unlocked.

If a macro is used to manipulate the command queue the player is unable to execute

a command until the latency meter is full once again.

26

Figure 4.8: A variety of Commands in the Command Queue

Macros

The player unlocks macros by completing programming puzzles for the process

bots. This concept ties the educational content to the battle system, giving the

player motivation to complete as many programming puzzles as possible. Once a

macro is unlocked, it can be used to manipulate the command queue during com-

mand mode (see Figure 4.9). When a macro is used, the latency meter takes more

time to fill up during the next battle segment. Each macro has an associated com-

plexity, as shown in Table 4.3, denoted by a number of star emblems. Simple macros

have one star emblem, while the most complex macros have three star emblems. As

more star emblems are used to manipulate the command queue, the speed of the

latency meter will drop during the next battle segment. The player’s goal is to use

the least amount of macros to achieve the best outcome.

27

Figure 4.9: Using the Swap Macro to swap two Commands in the Command Queue

28

Table 4.2: Available Commands

Command Description Strength
Levels

Formula

Slash Forcefully slash an enemy on
the panel(s) in front of the
player

2mb, 4mb,
8mb, 16mb,
32mb, Giga

Basic Command

Heal Increases the player’s vitality 2mb, 4mb,
8mb, 16mb,
32mb, Giga

Basic Command

Blaze Creates a fire on the panel(s)
in front of the player

2mb, 4mb,
8mb, 16mb,
32mb, Giga

Basic Command

Ignite Creates a fire that travels
around the battle disk

2mb, 4mb,
8mb, 16mb,
32mb

Blaze + Slash

Siphon Creates a vortex that drains
enemy vitality on the panel(s)
in front of the player

2mb, 4mb,
8mb, 16mb,
32mb

Heal + Slash

Vigor Increases the speed of the
player’s latency meter

2mb, 4mb,
8mb, 16mb,
32mb

Blaze + Heal

Table 4.3: Available Macros

Command Complexity Description

Swap 1 Star Swaps two adjacent macros in the command
queue

Jump 2 Stars Swaps any command in the queue with the com-
mand at the front of the queue

Max-2 2 Stars Maximizes the strength of a command to match
the strength of an adjacent command

Sum 2 Stars Combines two commands to make one powerful
command

Sort 3 Stars Sorts the command queue by strength

Max-3 3 Stars Maximizes the strength of two commands to
match the strength of an adjacent command

29

Chapter 5

Study

We conducted a pilot study to provide a preliminary evaluation of our design

approach. We asked 31 high school juniors from the Clemson University Emerging

Scholars program to volunteer one hour of their time to help evaluate our educa-

tional game. The test population, consisting of both male and female participants,

was broken into two groups for Emerging Scholar classroom sessions. To assess im-

provement in programming skills, we composed a programming survey, as shown in

Appendix A, that was administered before and after participants played the game.

To gain some insight into the gameplay experience of the participant, a game experi-

ence questionnaire, as shown in Appendix A, was administered after the participants

were instructed to play the game. This allowed us to determine what elements of the

game need improvement as well as to identify the elements of the game that players

enjoyed. While our ideal test population would be a group of individuals who are

interested in learning programming, our actual test population consisted partici-

pants who were not necessarily interested in learning programming. One important

issue that arose during testing was cross-platform performance. Due to the way

the game handled player movement at lower frame rates on some platforms, some

participants in the first test group experienced sluggish player movement. These

issues were addressed by making minor tweaks to the code before testing the second

group of participants.

5.1 Programming Survey

The programming survey included a basic explanation of instructions as well as

an example of how they are used syntactically. The questions were formed around

educational learning objectives outlined in Bloom’s Taxonomy [4], allowing us to

30

create an instrument that is able to evaluate learning based on a variety of cognitive

skills. We are concerned with knowledge, comprehension, and critical thinking in

foundational computer programming concepts. These ideas fall under the Cognitive

Domain of the taxonomy, which features six levels of cognitive skill. We were only

able to utilize five of the six levels in the taxonomy (see Table 5.1). Four of the five

questions in the survey directly reflect programming puzzles outlined in the curricu-

lum of the game.

After analyzing the data from the programming surveys, we noticed that most

participants were unable to answer the free response and fill in the blank questions.

This makes sense as these questions involve the use of cognitive skills from the more

difficult levels of Bloom’s Taxonomy: Synthesis and Analysis. Four participants were

able to correctly answer the first question after playing the game for an hour. Before

playing the game, only one participant was able to recognize that the else branch

was executed in question 4. After playing the game for an hour, two participants

were able to recognize that the else branch was executed in question 4. The dis-

tribution of answers to multiple choice questions collected from participants before

playing the game, as shown in Table 5.2, show no indication of prior programming

knowledge. When compared with the distribution of answers to multiple choice

questions collected from participants after playing the game, as shown in Table 5.3,

there seems to be an overall improvement. Results from question 2 had the most

improvement with 3 students answering correctly before playing the game and 9

students answering correctly after playing the game. Results from questions 3 and

5 showed minor improvement.

5.2 Game Experience Questionnaire

The game experience questionnaire posed questions regarding perception of pro-

gramming skill, overall reactions to gameplay, difficulties experienced, and suggested

31

improvements. All questions were free response, requiring the participants to write

their answers in a few short sentences. The data was evaluated using a qualita-

tive analysis technique, known as keyword analysis, where common keywords and

phrases are identified and organized into common themes. Assertions could then

be made based on the number of participants whose responses contained keywords

associated with a common theme. Results from the game experience questionnaire

are shown in Table 5.4.

After analyzing the data from the game experience questionnaire, we found that

the majority of respondents felt they had no programming experience prior to play-

ing the game. Nearly half of the respondents said the game improved their pro-

gramming knowledge. When asked about their programming skills after playing the

game, one respondent answered saying “they improved and I got a better feeling for

the game.” Overall, the responses indicated mixed emotions about the game. Some

respondents indicated a purely positive reaction, while others indicated a purely

negative reaction to the game. One respondent answered saying the game was “easy

and fun once I figured out what was needed.” The majority of respondents refer-

enced programming related elements as obstacles. For example, one respondent said

one of the biggest obstacles was “trying to figure out the terminal.” The majority

of respondents recommended improving the instruction by adding hints and exam-

ples. One respondent said the game should have “examples in the tutorials.” Several

respondents recommended adding features to the game that were in the design doc-

umentation but never made it to the pilot version. For example, one participant

mentioned adding the ability to customize the look of your character. Another par-

ticipant recommended adding shops where the player is able to purchase upgrades.

When asked about improvements that could be made to the game, a third of the

participants said they would like to see less bugs, such as the previously mentioned

sluggish player movement.

32

Table 5.1: Cognitive Skills Used in the Programming Survey

Question Response
Type

Cognitive Skills

1. Please write a program that takes two
inputs (to registers A and B) and outputs
the values in the opposite order that they
were input.

Free
Response

Synthesis

2. What instructions would you use to
write a program that reads two numbers
and outputs the largest number?

Multiple
Choice

Comprehension

3. Please circle the program that takes 2
numbers as input and swaps them.

Multiple
Choice

Knowledge

4. Consider the following program. What
will the value be in each register after the
program is run? What will the output be?

Fill in the
Blank

Analysis &
Application

5. Please circle the program that keeps
track of the largest input number. The
program should assume that the input
numbers are arbitrary and it should termi-
nate when a negative input value is read.

Multiple
Choice

Knowledge

Table 5.2: Pre-Gameplay Programming Survey Results

Question Correct Answer A B C D

2 C 6 11 3 10

3 B 15 4 12 0

5 C 2 12 4 12

Table 5.3: Post-Gameplay Programming Survey Results

Question Correct Answer A B C D

2 C 1 11 9 7

3 B 18 5 3 2

5 C 2 8 7 10

33

0 5 10 15 20 25 30 35

After

Before

Number Of Participants

0 5 10 15 20 25 30 35

After

Before - Correct

- Incorrect

- No Response

Number Of Participants

0 5 10 15 20 25 30 35

After

Before

Number Of Participants

Programming Survey Question 2 Results

Programming Survey Question 3 Results

Programming Survey Question 5 Results

Figure 5.1: Programming survey results diagrams

34

Table 5.4: Game Experience Questionnaire Results

Question Theme Respondents who identified with theme

1 No Prior
Experience

21 out of 26 respondents had little to no
prior programming experience

2 Improvement 12 out of 26 respondents said the game
improved their programming knowledge

2 No
Improvement

7 out of 26 respondents said the game did
not improve their programming knowl-
edge

2 Some
Improvement

2 out of 26 respondents said the game
helped their skills but they are still con-
fused

3 Positive
Reaction

7 out of 29 respondents had a positive re-
action to playing the game

3 Negative
Reaction

12 out of 29 respondents had a negative
reaction to playing the game

3 Mixed
Emotions

9 out of 29 respondents had mixed emo-
tions (i.e. Difficult, but fun)

4 Game Related
Obstacles

9 out of 27 respondents classified game re-
lated elements as obstacles

4 Programming
Obstacles

15 out of 27 respondents classified pro-
gramming related elements as obstacles

5 Instructional
Improvements

16 out of 28 respondents said the game
could benefit from more or improved in-
struction

5 Feature
Improvements

5 out of 28 respondents said they would
like to see additional game features

5 Less Glitches 9 out of 28 respondents recommended ad-
dressing glitches

35

Please describe your level of programming skills prior to playing the game

Please describe your level of programming skills after playing the game

Please describe your overall reaction to the game (easy, difficult, fun to play, etc...)

0 5 10 15 20 25 30 35

Did Not Respond

Mixed Emotions

Negative Reaction

Positive Reaction

Number of Participants

0 5 10 15 20 25 30 35

Did Not Respond

Some Improvement

No Improvement

Improvement

- Respondents who identified with theme

- Respondents who did not identify with theme

- Participants who did not respond

Number of Participants

0 5 10 15 20 25 30 35

Did Not Respond

No Prior Experience

Number of Participants

Figure 5.2: Questionnaire keyword analysis results diagrams

36

0 5 10 15 20 25 30 35

Did Not Respond

Less Glitches

Feature Improvements

Instructional Improvements

Number of Participants

Please describe any obstacles you had to overcome during the game

How could the game be improved?

0 5 10 15 20 25 30 35

Did Not Respond

Programming Related Obstacles

Game Related Obstacles

- Respondents who identified with theme

- Respondents who did not identify with theme

- Participants who did not respond

Number of Participants

Figure 5.2: Questionnaire keyword analysis results diagrams

37

Chapter 6

Conclusion

We have described an approach to educational video game design that pairs

mechanics from several game genres with various elements of a predesigned curricu-

lum. We have shown that intelligently pairing educational content and interfaces

with similarly natured game mechanics results in a more cohesive and engaging

educational experience. Our pilot study results showed that students who played

our educational video game for one hour were able to improve their computer pro-

gramming skills. While the results of our pilot study provide motivation for further

research, there are many aspects of our approach that can be improved upon.

We were reminded that while students enjoy the entertaining aspects of educa-

tional games, their experiences are shaped by both the entertaining and the educa-

tional elements. If the educational elements lack a thorough level of explanation,

even in sandbox environments, the entertainment value suffers. A few mechanics

that could have been implemented to provide a deeper understanding of the visual-

ization tool are help buttons and sample programs. A help button would have been

a useful way to remind the player of the goal of the current programming puzzle. If

the player could see several example programs being executed in the visualization

tool, with a thorough explanation of both the execution cycle and the data flow, it

would make the sandbox environment seem less daunting. Research in the area of

program validation could offer interesting ways to provide the player with feedback.

By evaluating the player’s program, the developers could offer new and interesting

scoring mechanics as well as offer programming hints from within the visualization

tool interface.

From a developers standpoint, there are a few problems that we would address

if we were to attempt a second implementation. We started our development by

38

establishing a video game design document. As we started to develop a more com-

plete review of available game design literature we realized that our design document

would need to be be changed. With each new game mechanic revision it became

difficult to maintain the documentation. If we were to attempt a second imple-

mentation we would spend time reviewing literature on video game documentation

methodology and establish a more feasible documentation protocol.

The pilot version of our educational video game only includes the first unit in our

eight unit fundamental programming curriculum. If we were to attempt to imple-

ment additional units we could run into design conflicts. Our current methodology

operates on the idea of fitting the educational content within the context of the

game mechanics. When the educational content adds an additional layer of com-

plexity, the gameplay mechanics must also change. For example, if we were trying

to communicate the concept of tree data structures we would have to implement a

gameplay mechanic that would communicate this concept better than the battle sys-

tem’s command queue. Successful implementation of additional units would require

further research into gameplay mechanics that effectively fit within the context of

each additional unit’s educational content.

Another idea that could stand further investigation is the value of the visualiza-

tion tool as a standalone supplement to introductory programming curricula. The

sandbox nature of the visualization tool allows it to be used outside the context of

the video game. This could provide students with a familiar classroom environment

and provide educators with a useful standalone instructional aid.

39

Appendices

41

Appendix A

Programming Survey and Questionnaire

Part I – Programming Survey

This survey is designed to test the effectiveness of the video game’s instructional methods.
We do not expect you to answer every question correctly. Therefore, please do not be
discouraged if you are unable to answer a question.

For questions 1 through 5 assume that you have four registers (A, B, C, and D) and each
register has an initial value but it is unknown to you. Please write the simple programs using
the following instructions.

Instruction Explanation Example
Input Takes 1 register as a parameter Input A
Output Takes 1 register as a parameter Output A
Assignment Assigning a value to a particular register A = B
If Set of instructions executed under a condition If(A = B) { … }

Else Set of instructions executed in the event of an if
statement’s condition being evaluated as false Else { … }

While Set of instructions executed until a condition is
considered true

While (A>0) { …
}

1. Please write a program that takes two inputs (to registers A and B) and outputs the

values in the opposite order that they were input.

2. What instructions would you use to write a program that reads two numbers and
outputs the largest number?

a. Assignment, Output
b. Input, Output
c. Input, Output, If
d. Input, Output, While

42

3. Please circle the program that takes 2 numbers as input and swaps them.

a.

Input A
Input B
A = B
B = A

b.
Input A
Input B
C = A
A = B
B = C

c.
Input A
Input B
B = A
A = B

d.
Input A
Input B
C = B
A = C
B = A

4. Consider the following program. What will the value be in each register after the

program is run? What will the output be?

A = 5
B = A + A
If (A>B){
 C = B + (2*A)
 D = 6
}
Else {
 C = A + 6
 D = (2*B) + A
}
While(D>0){
 Output D
 D = D - B
}

Register A

Register B

Register C

Register D

Output

5. Please circle the program that keeps track of the largest input number. The program
should assume that the input numbers are arbitrary and it should terminate when a
negative input value is read.

a.

Input A
If(A>0){

B = A
}
Output B

b.
Input A
B = A
If(A<0){

Output B
}
Else{

Input A
}
Output B

c.
Input A
While(A>0){

Input A
}
Output A

d.
Input A
B = A
While(A>0){

If(A>B){
B = A

}
Input A

}
Output B

43

Part 2 – Game Experience Questionnaire

For questions 1 through 5 please answer to the best of your ability in a few short sentences.

1. Please describe your level of programming skills prior to playing the game.

2. Please describe your level of programming skills after playing the game.

3. Please describe your overall reaction to the game. (easy, difficult, fun to play, etc…)

4. Please describe any obstacles you had to overcome during the game.

5. How could the game be improved?

	

44

Bibliography

[1] Clark C. Abt. Serious Games. University Press Of America, March 2002.

[2] Ernest Adams. Fundamentals of Game Design. New Riders, 2 edition, 2010.

[3] Knowledge Adventure. Math Blaster Official Website, August 2012.
http://www.mathblaster.com/.

[4] Benjamin Samuel Bloom. Taxonomy of Educational Objectives, Volume 1.
Longmans, Green, 1 edition, 1954.

[5] James Brightman. Games Must Achieve Photorealism in
Order to Open Up New Genres Says 2K, August 2012.
http://www.gamesindustry.biz/articles/2012-08-01-games-must-achieve-
photorealism-in-order-to-open-up-new-genres-says-2k.

[6] Capcom. Megaman Official Website, August 2012.
http://megaman.capcom.com/.

[7] Capcom. Phoenix Wright Official Website, August 2012.
http://www.capcom.com/phoenixwright/.

[8] Video Game Charts. Video Game Charts, Game Sales, Top Sellers, and Game
Data, August 2012. http://www.vgchartz.com/.

[9] The Learning Company. Oregon Trail Official Game Site, August 2012.
http://www.oregontrail.com/.

[10] The Pokemon Company. The Official Pokemon Website, August 2012.
http://www.pokemon.com/.

[11] Square Enix. Final Fantasy XII Official Website, August 2012.
http://www.finalfantasyxii.com/.

[12] Square Enix. Final Fantsy 25th Anniversary, August 2012.
http://discography.ff25th-anniversary.com/.

[13] Square Enix. Square Enix Glocal Website, August 2012. http://www.square-
enix.com/.

[14] Eric Klopfer et al. Moving Learning Games Forward, 2009.
http://education.mit.edu/papers/MovingLearningGamesForward Ed
Arcade.pdf.

[15] Armor Games. Light-bot 2.0 online game, August 2012.
http://armorgames.com/play/6061/light-bot-20/.

[16] Armor Games. Light-bot online game, August 2012.
http://armorgames.com/play/2205.

45

http://www.mathblaster.com/
http://www.gamesindustry.biz/articles/2012-08-01-games-must-achieve-photorealism-in-order-to-open-up-new-genres-says-2k
http://www.gamesindustry.biz/articles/2012-08-01-games-must-achieve-photorealism-in-order-to-open-up-new-genres-says-2k
http://megaman.capcom.com/
http://www.capcom.com/phoenixwright/
http://www.vgchartz.com/
http://www.oregontrail.com/
http://www.pokemon.com/
http://www.finalfantasyxii.com/
http://discography.ff25th-anniversary.com/
http://www.square-enix.com/
http://www.square-enix.com/
http://education.mit.edu/papers/MovingLearningGamesForward_EdArcade.pdf
http://education.mit.edu/papers/MovingLearningGamesForward_EdArcade.pdf
http://armorgames.com/play/6061/light-bot-20/
http://armorgames.com/play/2205

[17] James Paul Gee. Good Videa Games and Good Learning, 2005.
http://www.jamespaulgee.com/sites/default/files/pub/GoodVideoGames
Learning.pdf.

[18] HopeLab. Re-mission Official Website, August 2012. http://www.re-
mission.net/.

[19] David Houghton. Why the notion that games need photoreal graphics to tell
better stories is backward nonsense, whatever 2k’s boss says, August 2012.
http://www.gamesradar.com/why-the-notion-that-games-need-photoreal-
graphics-to-tell-better-emotional-stories-is-backward-nonsense-whatever-2K-
boss-says/.

[20] Jeremy Hsu. For the U.S. Mmilitary, Video Games Get Serious, August 2010.
http://www.livescience.com/10022-military-video-games.html.

[21] Christopher Hundhausen, Sarah Douglas, John Stasko, and Andjohn T.
Staskoz. A meta-study of algorithm visualization effectiveness, 2002.

[22] IGN. The Other Ma rio Games, Vol. 2: Ma rio is Missing. And many gamers left
him that way., August 2008. http://retro.ign.com/articles/897/897225p1.html.

[23] Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, and Tapio Salakoski. Ef-
fects of course-long use of a program visualization tool. In Proceedings of the
Twelfth Australasian Conference on Computing Education - Volume 103, ACE
’10, pages 97–106, Darlinghurst, Australia, Australia, 2010. Australian Com-
puter Society, Inc.

[24] Brad King. Educators Turn to Games for Help, August 2003.
http://www.wired.com/gaming/gamingreviews/news/2003/08/59855.

[25] Konami. Castlevania Official Website, August 2012. http://www.konami-
castlevania.com/.

[26] Microsoft Research FUSE Labs. Kodu Game Lab, August 2012.
http://fuse.microsoft.com/page/kodu.

[27] Primer Labs. Code Hero Official Website, August 2012.
http://primerlabs.com/code-hero.

[28] Lucasarts. Grim Fandango Official Website, August 2012.
http://lucasarts.grim-fandango.com/.

[29] Mojang. Minecraft Official Website, August 2012. http://www.minecraft.net/.

[30] PVC Museum. Video Game Console Specs, August 2012.
http://www.pvcmuseum.com/games/console-specs/.

[31] Nintendo. Fitness Game for Nintend Wii, Wii Fit Plus, August 2012.
http://www.wiifit.com/.

46

http://www.jamespaulgee.com/sites/default/files/pub/GoodVideoGamesLearning.pdf
http://www.jamespaulgee.com/sites/default/files/pub/GoodVideoGamesLearning.pdf
http://www.re-mission.net/
http://www.re-mission.net/
http://www.gamesradar.com/why-the-notion-that-games-need-photoreal-graphics-to-tell-better-emotional-stories-is-backward-nonsense-whatever-2K-boss-says/
http://www.gamesradar.com/why-the-notion-that-games-need-photoreal-graphics-to-tell-better-emotional-stories-is-backward-nonsense-whatever-2K-boss-says/
http://www.gamesradar.com/why-the-notion-that-games-need-photoreal-graphics-to-tell-better-emotional-stories-is-backward-nonsense-whatever-2K-boss-says/
http://www.livescience.com/10022-military-video-games.html
http://retro.ign.com/articles/897/897225p1.html
http://www.wired.com/gaming/gamingreviews/news/2003/08/59855
http://www.konami-castlevania.com/
http://www.konami-castlevania.com/
http://fuse.microsoft.com/page/kodu
http://primerlabs.com/code-hero
http://lucasarts.grim-fandango.com/
http://www.minecraft.net/
http://www.pvcmuseum.com/games/console-specs/
http://www.wiifit.com/

[32] Nintendo. Nintendo’s Official Home for Mario, August 2012.
http://mario.nintendo.com/.

[33] Nintendo. Paper Mario Game Info, August 2012.
http://www.nintendo.com/games/detail/oWnd6EMCVBbdy9b-
5rIkJfC64EEGPQTb.

[34] Nintendo. Zelda Universe, The Official Site of the Legend of Zelda Series,
August 2012. http://zelda.nintendo.com/.

[35] Nvidia. Physx Product Overview, August 2012.
http://www.geforce.com/hardware/technology/physx.

[36] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth
Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey of liter-
ature on the teaching of introductory programming. SIGCSE Bull., 39(4):204–
223, December 2007.

[37] SEGA. Sonic the Hedgehog, August 2012. http://www.sonicthehedgehog.com/.

[38] Judy Sheard, S. Simon, Margaret Hamilton, and Jan Lönnberg. Analysis of
research into the teaching and learning of programming. In Proceedings of the
fifth international workshop on Computing education research workshop, ICER
’09, pages 93–104, New York, NY, USA, 2009. ACM.

[39] Siliconera. Visual Novals: A Cultural Difference Between The East And
West, February 2011. http://www.siliconera.com/2011/02/17/visual-novels-a-
cultural-difference-between-the-east-and-west/.

[40] Sony. Littlebigplanet Official Website, August 2012.
http://www.littlebigplanet.com/.

[41] Unity Technologies. Unity Game Engine Official Website, August 2012.
http://www.unity3d.com/.

[42] Alan Thorn. Game Engine Design and Iimplementation. Jones & Bartlett
Learning, LLC, 1 edition, 2011.

[43] Investment U. The Videa Game Industry: An $18 Billion Entertainment Jug-
gernaut, August 2008. http://seekingalpha.com/article/89124-the-video-game-
industry-an-18-billion-entertainment-juggernaut.

[44] Ubisoft. Rayman Origins Official Website, August 2012.
http://raymanorigins.us.ubi.com/.

[45] Mark J. P. Wolf. The Medium of the Video Game. University of Texas Press,
1 edition, February 2002.

[46] Cyan Worlds. Myst online: Uru live, August 2012. http://mystonline.com/.

47

http://mario.nintendo.com/
http://www.nintendo.com/games/detail/oWnd6EMCVBbdy9b-5rIkJfC64EEGPQTb
http://www.nintendo.com/games/detail/oWnd6EMCVBbdy9b-5rIkJfC64EEGPQTb
http://zelda.nintendo.com/
http://www.geforce.com/hardware/technology/physx
http://www.sonicthehedgehog.com/
http://www.siliconera.com/2011/02/17/visual-novels-a-cultural-difference-between-the-east-and-west/
http://www.siliconera.com/2011/02/17/visual-novels-a-cultural-difference-between-the-east-and-west/
http://www.littlebigplanet.com/
http://www.unity3d.com/
http://seekingalpha.com/article/89124-the-video-game-industry-an-18-billion-entertainment-juggernaut
http://seekingalpha.com/article/89124-the-video-game-industry-an-18-billion-entertainment-juggernaut
http://raymanorigins.us.ubi.com/
http://mystonline.com/

	Clemson University
	TigerPrints
	12-2012

	Design and Implementation of a Genre Hybrid Video Game that Integrates the Curriculum of an Introductory Programming Course
	Cory Buckley
	Recommended Citation

	Title Page
	Abstract
	List of Figures
	List of Tables
	Introduction and Motivation
	Background
	A Taxonomy of Video Games
	What is a Serious Game?
	What is a Sandbox Game?
	What is a Game Engine?

	Related Work
	The State of Educational Games
	Video Games that Teach Computing Concepts

	Methodology
	Narrative and Visual Style
	The Architecture Simulator
	The Game Environment
	Programming Curriculum
	The Battle System

	Study
	Programming Survey
	Game Experience Questionnaire

	Conclusion
	Appendices
	Programming Survey and Questionnaire

	Bibliography

