
Clemson University
TigerPrints

All Theses Theses

8-2013

DEVELOPMENT OF MAP/REDUCE BASED
MICROARRAY ANALYSIS TOOLS
Guangyu Yang
Clemson University, guangyy@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Yang, Guangyu, "DEVELOPMENT OF MAP/REDUCE BASED MICROARRAY ANALYSIS TOOLS" (2013). All Theses. 1758.
https://tigerprints.clemson.edu/all_theses/1758

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1758?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DEVELOPMENT OF MAP/REDUCE BASED MICROARRAY ANALYSIS TOOLS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

School of Computing

by

Guangyu yang

August 2013

Accepted by:

Dr. Feng Luo, Committee Chair

Dr. Pradip K Srimani

Dr. Mark Smotherman

ii

ABSTRACT

High density oligonucleotide array (microarray) from the Affymetrix GeneChip®

system has been widely used for the measurements of gene expressions. Currently, public

data repositories, such as Gene Expression Omnibus (GEO) of the National Center for

Biotechnology Information (NCBI), have accumulated very large amount of microarray

data. For example, there are 84389 human and 9654 Arabidopsis microarray experiments

in GEO database. Efficiently integrative analysis large amount of microarray data will

provide more knowledge about the biological systems. Traditional microarray analysis

tools all implemented sequential algorithms and can only be run on single processor.

They are not able to handle very large microarray data sets with thousands of

experiments. It is necessary to develop new microarray analysis tools using parallel

framework. In this thesis, I implemented microarray quality assessment, background

correction, normalization and summarization algorithms using the Map/Reduce

framework. The Map/Reduce framework, first introduced by Google in 2004, offers a

promising paradigm to develop scalable parallel applications for large-scale data.

Evaluation of our new implementation on large microarray data of rice and Arabidopsis

showed that they have good speedups. For example, running rice microarray data using

our implementations of MAS5.0 algorithms on 20 computer nodes totally 320 processors

has a 28 times speedup over using previous C++ implementation on single processor. Our

new microarray tools will make it possible to utilize the valuable experiments in the

public repositories.

iii

ACKNOWLEDGMENTS

Foremost, I’d like to express my sincere gratitude to my advisor, Dr. Feng Luo,

for his support me through the many trials and tribulations of finishing this degree, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. Dr. Luo has played a large and unique

part in helping me reach this point in my journey.

 I would also like to gratefully thank Dr. Pradip K Srimani and Dr. Mark

Smotherman for being on my committee, reviewing my thesis and their comments and

suggestions.

 I would like to thank my girlfriend – Yujing Xie for accompanying me during

the harsh times, giving me warmth. Without her, this thesis might never have been

finished. Thanks for being aside with me where I looked like I was sticked to the

computer and seemed like I was completely ignoring you, which I wasn’t.

 Finally, I would like to thank my parents Chao Yang and Xiuqiong Chen for

supporting my education throughout my life. I would not have achieved this without their

constant love and support.

iv

TABLE OF CONTENTS

Page

TITLE PAGE ... i

ABSTRACT ... ii

ACKNOWLEDGEMENT ... iii

LIST OF TABLES ... vii

LIST OF FIGURES ... x

ACRONYM TABLE .. xi

CHAPTER

1 INTRODUCTION .. 1

2 BACKGROUND ... 3

2.1 Microarray Technology .. 3

2.1.1 Affymetrix GeneChip® Technology 3

2.2 Affymetrix microarray quality control.. 4

2.2.1 Average Background ... 6

2.2.2 Scale Factors .. 6

2.2.3 Percent Present ... 7

2.2.4 Normalized Unscaled Standard Error (NUSE) 7

2.2.5 Relative Log Expression (RLE) 8

2.2.6 RNA Degradation .. 8

2.2.7 Cut-off of Quality Control Metrics 9

2.3 Microarray Preprocessing Methods .. 9

2.3.1 Introduction .. 9

2.3.2 MAS 5.0 Preprocess... 10

2.3.3 Robust Multi-array Analysis .. 11

2.4 Map/Reduce .. 13

2.5 Hadoop .. 16

v

Table of Contents (Continued)

Page

2.6 Parallel Computing Challenges... 20

3 DESIGN OF MAP/REDUCE BASED ANALYSIS TOOLS 22

3.1 Overview ... 22

3.2 Read Array Information into HDFS ... 23

3.3 Map/Reduce Implementation for MAS 5.0 Methods 25

3.4 Map/Reduce Implementation for RMA Methods 25

3.4.1 Implementation of RMA Quality Control Methods....... 25

3.4.2 Implementation of RMA Preprocessing Methods 28

3.5 Map/Reduce Implementation for RNA Degradation Method 32

4 EXPERIMENTAL RESULTS... 34

4.1 Introduction ... 34

4.2 Sequential Tools for micro array data analysis 34

4.3 Hadoop Deployment and Execution ... 35

4.3.1 Deploying and configuring Hadoop............................... 36

4.3.2 Running jobs on Hadoop ... 37

4.4 Analyz1ing the Rice Dataset ... 39

4.4.1 Rice microarray dataset.. 39

4.4.2 Sequential microarray tools evaluation using Rice

microarray data ... 40

4.4.3 Map/Reduce based microarray analysis evaluation 41

4.5 Analyzing the Arabidopsis Dataset ... 45

4.5.1 Arabidopsis microarray dataset...................................... 45

4.5.2 Sequential microarray tools evaluation using Arabidopsis

data .. 46

4.5.3 Map/Reduce based microarray analysis evaluation 46

5 TUNNING AND OPTIMIZING ... 50

5.1 Code Level Optimizing ... 50

vi

Table of Contents (Continued)

Page

5.2 Hadoop Level Tuning ... 54

5.2.1 Hadoop Configuration Tuning 54

6 CONCLUSION AND FUTURE WORKS .. 58

REFERENCES .. 59

vii

LIST OF TABLES

Figure Page

3-1 Pseudo-code of map and reduce functions for getting intensities 24

3-2 Pseudo-code of map functions for getting probe positions 24

3-3 Pseudo-code of map function for MAS 5.0 ... 25

3-4 Pseudo-code of map and reduce functions for PLM summarization 26

3-5 Pseudo-code of map and reduce functions for calculating NUSE 27

3-6 Pseudo-code of map and reduce functions for calculating RLE 28

3-7 Pseudo-code of mapper for RMA background correction 29

3-8 Pseudo-code of map and reduce functions for mean calculation 30

3-9 Pseudo-code of map and reduce functions for merging mean files 30

3-10 Pseudo-code of map function for computing rank and normalizing intensities31

3-11 Pseudo-code of map and reduce functions for Median polish summarization32

3-12 Pseudo-code of map function for RNA degradation 33

4-1 Description of the rice dataset ... 39

4-2 Sequential tools running environment on lab desktop 40

4-3 Sequential tools running environment on Palmetto Cluster 41

4-4 Sequential tools running time .. 41

4-5 Map/Reduce based microarray tools testing environment 42

4-6 Comparison of time to get intensities .. 43

4-7 Comparison of time to “do background correction” 43

viii

List of Tables (Continued)

Table Page

4-8 Comparison of time to “compute mean” ... 43

4-9 Comparison of time to “compute mean” (no combiner) 43

4-10 Comparison of time to “do quantile normalize” ... 43

4-11 Comparison of time to “do median polish summarization” 44

4-12 Comparison of time to chain “do quantile normalize” and “do median polish

Summarization” together ... 44

4-13 Comparison of time to “do PLM summarization” .. 44

4-14 Comparison of time to “do MAS 5.0” ... 44

4-15 Comparison of time to “do RNA degradation” ... 44

4-16 Comparison of time to “compute NUSE and RLE” 45

4-17 Comparison of time to “do quality control methods” 45

4-18 Comparison of time to “do preprocessing” ... 45

4-19 Number of low quality chips being detected by Metrics............................... 45

4-20 Description of arabidopsis dataset ... 46

4-21 Comparison of time to “get intensities” .. 47

4-22 Comparison of time to “do background correction” 47

4-23 Comparison of time to “compute mean” ... 47

4-24 Comparison of time to “do quantile normalize” ... 48

4-25 Comparison of time to do “median polish summarization” 48

4-26 Comparison of time to “do PLM summarization” .. 48

ix

List of Tables (Continued)

Table Page

4-27 Comparison of time to “do MAS 5.0” ... 48

4-28 Comparison of time to “do RNA degradation” ... 48

4-29 Comparison of time to “compute NUSE and RLE” 49

4-30 Comparison of time to “do quality control methods” 49

4-31 Comparison of time to “do preprocessing” ... 49

4-32 Number of low quality chips being detected by metrics 49

x

LIST OF FIGURES

Figure Page

2-1 Quality control workflow .. 5

2-2 Preprocess work flow .. 9

2-3 The illustration of MapReduce framework ... 14

2-4 JobTracker and TaskTracker interaction in Hadoop 18

2-5 Architecture overview of HDFS.. 19

3-1 Software design work flow.. 22

3-2 Map/Reduce normalization work flow .. 29

4-1 Hadoop deployment work flow ... 35

4-2 Hadoop MapReduce jobs execution workflow on Palmetto cluster 39

5-1 Effects of applying combiner on “get mean” job .. 51

5-2 Effect of Concurrently submission “do PLM summarization”, “do MAS 5.0”

and “do RNA degradation” simultaneously .. 53

5-3 Effect of using chianMapper to combine “do normalize” and “do median polish

summarization” together ... 54

xi

ACRONYM TABLE

QA Quality Control

MAS 5.0 Affymetrix MicroArray Suite 5.0

RMA Robust Multi-array Analysis

NUSE Normalized Unscaled Standard Error

RLE Relative Log Expression

SE Standard Error

PM Perfect Match

MM Miss-Match

Orange FS Orange File System

HPC High Performance Computing

PBS Portable Batch System

Sfs Scale Factor

Avbg Average Background

Pps Present Percent

RNAdeg RNA Degradation

GC Garbage Collection

1

Chapter 1

INTRODUCTION

Recent years, biologists have produced massive amount of microarray data using

the Affymetrix GeneChip® platform. For example, the size of microarray datasets for

human genomes from thousands of experiments has reached the terabyte scale. How to

deal with these large data sets and find useful biological information inside them remains

a challenge for the bioinformatics research. Current Affymetrix microarray analysis tools

are all designed for the single machine and cannot process the large data sets with

sufficient performance.

Hadoop is an implement of Map/Reduce programming model, which is proposed

by Google supported by many large companies and communities. Hadoop provides a

high performance parallel file system HDFS that is powerful in capability, commonality

and scalability. Hadoop is an ideal framework for processing very large datasets as well

as parallel programming due to its reliability, fault-tolerant, and well support from

communities.

In this thesis, we implemented a set of Map/Reduce based microarray analysis

tools using Hadoop framework for analyzing large Affymetrix GeneChip microarray

datasets. We implemented two widely used algorithms: Affymetrix MicroArray Suite

(MAS 5.0) and Robust Multi-array Analysis (RMA) algorithms

The remainder of this thesis is organized as follows. Chapter 2 provides

background and terminology information of microarray technique and parallel model.

2

Chapter 3 deeply analyzes the RMA, MAS 5.0 preprocess algorithm and designs

Map/Reduce implementations to parallelize these algorithm. Chapter 4 compares the

methods and discusses the results of the comparison. Chapter 5 offers tuning,

optimization and deployment for the Map/Reduce microarray tools. Finally Chapter 7

offers conclusions and future works.

3

Chapter 2

BACKGROUND

2.1 Microarray Technology

Microarray is a popular technique to measure genome-wide gene expressions

(Alizadeh, et al., 2000). Microarray is a glass surface with numerous fragments of

samples, called probes. A labeled sample contains the unknown quantities of molecules,

called target. Under the right chemical conditions, single stranded fragments of target

will complement pair with the probes, this reaction is called hybridization. In this way

thousands of messenger RNA fragments in a target sample can be measured by the

microarrays.

Microarray technique obtains the RNA sample with following steps: (1) Isolating

the RNA sample. (2) Labeling the RNA sample by a reverse transcription procedure with

fluorescent markers. (3) Purifying the labeled RNA sample. (4) Hybridizing the RNA

sample. (5) Scanning the fluorescently labeled sample at each spot and emitting as a

characteristic wavelength. (6) Capturing the wavelength in a photomultiplier tube.

2.1.1 Affymetrix GeneChip® Technology

There are two major microarray technologies: the cDNA arrays developed at

Stanford University (DeRisi et al., 1996), (Brown et al., 1999) and the high-density

oligonucleotide array system, also known as Affymetrix GeneChip®, produced by

4

Affymetrix (Lockhart et al., 1996). In this thesis, we focused on data generated by

Affymetrix GeneChip®.

In Affymetrix GeneChip, the expression of each gene is typically measured by a

set of 11±20 pairs of probes. There are two types of probes: perfect match (PM) probe

and mismatch (MM) probe. Probes group into pair with each PM probe pairing with a

MM probe. The PM probe is a 25 base oligonucleotide being designed to hybridize with

messenger RNA from the intended gene. The MM probe is used to measure non-specific

binding by changing the middle (13th) base to the complementary of the corresponding

position in the PM set. MM probes are intended to help measure the background and

stray signals.

The analyses of microarray data need two types of files: the .cdf file and the .cel

file. The .cdf (Chip Description File) file includes the layout information of expression,

genotyping, customSeq, copy number and/or tag probe sets in Affymetrix GeneChip

microarray. All probe set in the .cdf files have unique names.

The .cel files store the intensity information of individual probes on the probe

array. Each of the .cel file includes an intensity value (perfect match intensity and

mismatch intensity), standard deviation of the intensity, the number of pixels used to

calculate the intensity value, a flag to indicate an outlier computed by the algorithm and a

user defined flag marking the feature should be excluded from future analysis.

2.2 Affymetrix microarray quality control

The quality of microarray data from public repositories usually varies greatly from

different experiments. To maintain data integrity, we need to filter out low quality data.

5

Quality assessment is the stage to identify and remove low quality microarray data to

keep data homogeneity. In this thesis, we used six quality assessment metrics from three

famous methods: Affymetrix Micro Array Suite (MAS 5.0), Robust Multi-array Analysis

(RMA) and R affy package. Among them, three quality metrics: scaling factor (sfs),

average background (avBg) and percentage of present calls (pps) are from MAS 5.0; two

metrics: Normalized Unscaled Standard Errors (NUSE), and Relative Log Expression

(RLE) are from RMA; and one quality metric, the RNA degradation (RNAdeg) is from R

affy package. Figure 2-1 illustrates the workflow for microarray quality assessment.

intensities data

Calculate MAS 5.0 algoritm

Verify scale factor,
average background,

present percent

Remove low quality arrays

RNA degradation

RMA background correction

Normalization

PLM summarization

Verify NUSE, RLE

Figure 2-1. Quality control workflow

6

2.2.1 Average Background

In MAS 5.0 algorithm, the background intensity is based on the mis-match probes

values for each array. Since average, minimum and maximum background intensity of

arrays should be comparable, an array with a significantly higher (or lower) background

value indicates low quality. There are many reasons that an array has significantly

different average backgrounds, for example, abnormal hybridization or too many cDNA

in samples. MAS 5.0 algorithm computes average background as the 2nd percentile of

the feature intensities in a given region of the array. Typically Affymetrix recommends

average background values in a good quality array should between 20 and 100.

2.2.2 Scale Factors

In most of normalization methods, there is an assumption that the expressions of

most genes are unchanged for high-throughput expression arrays. Namely, it says that the

trimmed mean intensity for each array should be constant. If arrays are comparable, the

average signal intensities should be similar and not be affected by the proportion of up-

and down-regulated genes. Affymetrix MAS 5.0 algorithm scales the intensity for every

array so that each array has the same mean. Scale factor represents the amount of scaling

applied to the array. Low quality arrays have significant higher or lower scale factors.

This may due to different issues occurred during RNA extraction, labeling, scanning or

array manufacture.

7

2.2.3 Percent Present

MAS 5.0 algorithm generates present, marginal, absent calls for each probe pair

of a probeset on an array based on the difference between PM and MM values. When the

PM values of a probeset are not significantly above the values of MM probes, the

probeset will be flagged to marginal or absent. The percent present call is defined as the

percentage of probesets called present on an array. Differences in array processing

pipelines, variations in the amount of starting material would lead to low present calls.

So, we considered array with low percent present calls as poor quality array.

2.2.4 Normalized Unscaled Standard Error (NUSE)

The NUSE and RLE metrics from RMA are based on probe-level model (PLM)

summarization. The PLM summarization uses an M-estimator robust regression

expression model to measures the expressions.

For a given gene j and a given array i , the NUSE is defined as ratio between its

expression standard error and the median standard error of all genes:

()
()

[)(]

ij

ij

i ij

SE

median S
NUSE

E





 (2-1)

We can use NUSE to assess array quality, since NUSE addresses the variability

between genes. The NUSE values should be standardized at the probeset level across the

arrays. If an array have SE higher than the median SE, this array will be considered to be

8

low quality. Generally, the median NUSE of an array larger than 1.05 or the array have a

large IQR indicates low quality.

2.2.5 Relative Log Expression (RLE)

The Relative Log Expression (RLE) is defined as the difference between the

expressions of a probese and the median expressions for the same probeset across all

arrays. The assumption behind RLE is that the median expressions for most probe sets

are not changed across the arrays. For gene i on array j ,

) ()(ij ij j ijR medianLE     (2-2)

RLE value not near zero means that the number of up-regulated genes does not

approximately equal the number of down-regulated genes. And a large RLE IQR reveals

that most genes are differentially expressed. The RLE of a high quality array should be

around 0 on a log scale.

2.2.6 RNA Degradation

The RNA can be degraded from its 5’ end. Thus, the intensities of probes at the 3'

end of a probeset are higher than those at the 5' end. The RNA Degradation algorithm in

R affy package uses a t-distribution linear model to identify the degradation of the RNA.

High slope of RNA degradation line of an array indicates degradation, in other words, the

poor quality.

9

2.2.7 Cut-off of Quality Control Metrics

We chose the cut-off for each quality control metric according to Lukk, Margus, et

al. (2010) and Bolstad, et al. (2003). The final cut-off chosen for filtering the low quality

array were: -2<sfs<2, 20<avBg<100, pps>35, NUSE<1.025, -0.15<RLE<0.15,

RNAdeg<4.5.

2.3 Microarray Preprocessing Methods

2.3.1 Introduction

Microarray preprocessing methods include three main steps (Figure 2-2):

background correction, normalization and summarization. Several preprocessing

approaches have been proposed. Two widely used methods are Affymetrix Micro Array

Suite (MAS 5.0) and Robust Multi-array Analysis (RMA).

Raw intensity
data

Summarization
Expression level

data
Background
correction

Normalization

Figure 2-2. Preprocess work flow

Background correction

The raw intensity obtained from array usually includes the background intensities.

Since even there is no RNA in the sample, the laser scanner can still detect low level of

10

fluorescence on the array. The background correction step tries to remove the background

noise from the raw intensity.

Normalization

Normalization detects and corrects systematic differences between arrays by

removing the global effects, so that data from different arrays can be directly compared.

Studies showed that the normalizing procedure has a marked impact on the final

expression measures (Bolstad et al., 2002). After normalization, biological differences

can be more easily detected.

Summarization

Summarization is the step to obtain expression measure, which represents the

amount of the corresponding mRNA in original sample for each gene by summarizing

probe intensities from each probeset on each array.

2.3.2 MAS 5.0 Preprocess.

Affymetrix Micro Array Suite 5.0 (MAS 5.0) is a set of models developed by

Affymetrix company for image processing, signal quantification, background correction,

preprocessing, scaling, and normalization of Affymetrix arrays.

MAS 5.0 Background Correction

MAS 5.0 background correction compute the background for each probeset by

taking a robust average of the log ratios of PM to MM for each probe pair. MAS 5.0

background correction method provides a Tukey’s biweight estimate to adjust PM

intensities for each gene (Hubbell et al., 2002).

11

Scale Normalization

Consider a matrix X with I rows and J columns. Let
ijx denote the entry in row i

and column j , let

 1 2 , , ..., .j j j Ijm median x x x 2-3

 1 2, ,..., .| |j j j j j Ij jMAD median x m x m x m    2-4

Here, MADj represents median absolute deviation.

MAS 5.0 Scale normalization is to calculate the constant value of a column by

multiplying all the entries in the jth column by / jC MAD , where
1/

1
()

J J

jj
C MAD


 

2.3.3 Robust Multi-array Analysis

Robust Multi-array Analysis (RMA) is written by Bolstad and is motivated by a

log scale linear additive model (Rafael. A. et al., 2003). RMA preprocess method

contains three steps: background correction, quantile normalization, and median polish

summarization.

RMA Background Correction

RMA background correction method estimates a common mean background from

perfect match on each array using a convolution model and then subtracts this

background from perfect match to generate the corrected perfect match.

Quantile Normalization

In quantile normalization step, the perfect match intensities will be averaged, and

the individual perfect match intensity will be replaced by the average.

12

Quantile normalization algorithm has five steps:

1. Build a matrix to store all the perfect match intensities of all the arrays that each

column records the intensities belong to an array, each row represents the

intensities across all arrays identify by the same probe.

2. Store the rank value of the intensities in each column from ascending order and

set aside to use in step 6.

3. Sort each column in ascending order.

4. Calculate the mean value for each row.

5. Sort the mean values in ascending order and record the rank.

6. Replace the intensities with the mean value which have the same rank.

Summarization

Each gene is represented on the Affymetrix microarray by one or more probe sets.

Median polish summarization step combines the probe-level intensities into one value

representing the expression level of a gene using the robust median polish approach.

RMA median polish summarization include following steps:

1. For each probeset, build a matrix to store perfect match intensities for of all

arrays that each column records the intensities belong to an array, each row

represents the intensities across all arrays identify by the same probe.

2. Compute the median value for each row, and record the value as the row grand

effect. Then, the intensities are subtracted with the row grand effect of this row.

13

3. Compute the median value for each column, and record the value as the column

grand effect. Then, the intensities subtract with the column grand effect of this

column.

4. Repeat steps 1 ~ 4 until no changes occur with the row or column medians and

we got a residual matrix.

5. Original matrix subtracts with the residual matrix and then calculates the column

mean for each column. The mean values are the expression of the probesets for

the array.

2.4 Map/Reduce

Nowadays, researchers are facing increasing ultra large scale data sets. Recent

developments in open source software based on MapReduce programming model, for

example the Apache Hadoop project and associated software, provide a foundation for

scaling analyses of terabyte even petabyte scale on large clusters of commodity hardware

in a reliable, fault tolerant manner (J. Dean et al., 2004). This software also provides a

simple programming environment that makes it easy for programmers to design a parallel

program that can efficiently perform a data-intensive computation.

14

Split 0

Split 0

Split 0

Split 0

Split 0

Map

Map

Map

shuffle

shuffle

reduce

record
reader

mapper partitioner shuffle reducer
output
writer

Figure 2-3. The illustration of MapReduce framework

The main idea of Map/Reduce programming model is splitting a large problem

into sub-parts, computing partial solutions on sub-parts independently, and then

assembling the partial solutions into the final solution (Figure 2-1). Standard MapReduce

programming model includes seven major parts (Donald et al., 2012):

Record reader

The record reader parses an input data into records, which are data with default

chunk size (typically 64 MB). Then, the record reader passes the data to the mapper in the

form of , key value  pairs. The key contains the positional information and the value is

the corresponding chunk of record data.

Mapper

The mapper runs the code provided by user on each , key value  pair to

generate new intermediate , key value  pairs. We should carefully decide the key and

15

value which will affect the MapReduce job accomplishment. The key is what the data

will be grouped on and the value is the information being analyzed in the reducer.

   , ', 'Map key value List key value 

Combiner

The combiner can assemble data of mappers on the same local node. It uses a

user-provided method to aggregate values of the same intermediate key. Combiner can

significantly reduce the amount of data that will be moved over the network when there

are many intermediate pairs generated by mappers on computer node.

   ', List(') '', ''key valuesCombine List key value 

Partitioner

The partitioner parses the intermediate , key value  pairs from the mapper (or

combiner if available) into shards, and pass one shard to each reducer. The partitioner

randomly distributes the keys equally over the reducers and sends the keys with the same

value produced by mappers to the same reducer. The partitioner stores the data to the

local file system, which will be retrieved by respective reducer later. The default behavior

of the partitioner can be changed by the programmer.

Shuffle and sort

The shuffle and sort step is the first step of reduce task. The shuffles pull all the

output files written by the partitioners to the local machine where the reducer is running.

Then, the individual data pieces are sorted by key and form one larger data list. The

sorted data will be easily iterated in the reduce task. This shuffle and sort handled by the

framework automatically and cannot be changed by user. Developers can only control the

16

way to sort and group key using a custom Comparator object through the configuration

parameter provided by framework.

Reducer

The reducer applies the user-provided function to the grouped data once per key.

The input of the function is the key and an iterator (i.e. Iterable calss) over the values of

that key. Various functions can be implemented in reducer, such as aggregating, filtering,

and combining. After the reducer executes the function, it generates zero or more

, key value  pairs and sends to output writer.

Reduce (key', List(values')) -> List(key'', value'')

Output writer

The output writer receives the , key value  pairs from the reducer and formats it

by separating the key and value with a tab and separating records with a newline. Then,

the output writer writes it out to HDFS. The developers can define their own richer output

format.

The parallelism of the MapReduce framework comes from the fact that each map

or reduce operation can be executed on a separate processor independently of the others.

Thus, the user simply defines the function  as mapper function and function  as

reducer function, and the system automatically routes data to available processors.

2.5 Hadoop

Apache Hadoop is widely used open source software that implements the

MapReduce parallel programming framework. Hadoop provides a simple programming

17

interface that makes it easy for developers to efficiently design parallel programs for data

intensive computations. Hadoop can be installed on large clusters (with thousands of

nodes) and process vast amounts of data (as much as terabyte or even petabyte datasets)

in parallel. No hardware modification is needed other than possible changes to meet

minimum recommended RAM, disk space, etc. The initial version of Hadoop was created

in 2004 by Doug Cutting inspired by Google’s three famous MapReduce papers. Hadoop

became a top-level Apache Software Foundation project in January 2008. There have

been many academic and commercial contributors, such as Yahoo (Yahoo 2011.),

Facebook (J. S. Sarma. 2011), Intel, Microsoft and etc., and a broad and rapidly growing

user community.

The current Apache Hadoop platform is composed of three key functional

components: the Hadoop Distributed File System (HDFS), Hadoop MapReduce and

Hadoop Scheduler. The HDFS is a distributed file system and provides fault-tolerant

access to large data. The Scheduler provides run-time tasks, such as scheduling, load

balancing, failure recovery, inter-machine communication, and distributed partitioning of

data. The Hadoop MapReduce supports the execution of Map/Reduce applications. It also

consists of a number of utility projects such as Apache Hive, HBase and Zookeeper.

Each Hadoop MapReduce system includes of a single master node with one

JobTracker and many slave nodes with several TaskTrackers (Figure 2-4), one

TaskTracker per slave node. The master node schedules the job on the slave nodes,

monitor them and re-execute the failed tasks. The slave nodes execute the jobs assigned

by the master node.

18

Client JobTracker

TaskTracker

Mappers

Reducers

TaskTracker

Mappers

Reducers

TaskTracker

Mappers

Reducers

TaskTracker

Mappers

Reducers

Figure 2-4. JobTracker and TaskTracker interaction in Hadoop

The HDFS allows parallel accessing the data across the nodes of the cluster using

the MapReduce paradigm. For portability across a variety of platforms, HDFS is written

in Java and only requires commodity hardware. In Hadoop, the compute nodes and the

storage nodes are the same (Figure 2-4), namely, the MapReduce framework and the

HDFS are running on the same set of nodes. Thus, the computation jobs can be

effectively executed on the nodes where data is already presented.

There are three types of daemons in a standard HDFS cluster (Figure 2-3). The

namenode stores file system metadata, stores file to block map, and provides a global

picture of the file system. The secondary namenode performs internal namenode

transaction log check pointing. Many datanodes store block data (file contents).

19

Client

DataNode DataNode DataNode DataNode

TCP/IP networking

Metadata

NameNode
Secondary
nameNode

Figure 2-5. Architecture overview of HDFS

Advantages of Hadoop framework:

Suitable to process a very large dataset. The Map/Reduce framework is designed

to address data-intensive tasks with the emergence of Big Data.

Multiple programming language API. People can use codes written in other

languages, such as Python, C, bsh, perl through Hadoop Streaming, which is a utility of

Hadoop that allows users to create and run jobs with any executables as the mapper

and/or the reducer. People can also use Hadoop pipes, a software development tool to

implement MapReduce applications that connects programs written in C and C++ with a

variety of high-level programming languages.

Data locality. As the data is collocated with the computing nodes in Hadoop, it

can schedule Map tasks close to the data on the same node or the same rack.

20

Fault-tolerant, shared-nothing architecture. (M. Stonebraker, 1986) Tasks are

independent in Map/Reduce framework except the output of mappers feeding into

reducers under Hadoop control. Hadoop can detect node failures automatically and restart

the task on other healthy nodes.

Reliability. In Hadoop, data is stored in HDFS and replicated across multiple

nodes.

2.6 Parallel Computing Challenges

 MapReduce

The MapReduce framework does not provide a general solution to big data. It

provides clear boundaries for what you can and cannot do, making the number of options

you have to consider fewer than those you may be used to. We have to fit our problems

into the MapReduce framework, which might be challenging.

Hadoop

There is a challenge to load the data into and out of the HFDS files system as the

HDFS cannot be directly mounted onto the existing operating system. We can only use

I/O operating packages providing by Hadoop to manipulate the HDFS, all the Java

original I/O functions become invalid.

Tuning Hadoop to achieve good performance is also a challenge. There are a large

set of configuration parameters in Hadoop and many of them have an impact on

performance. We need to familiar with the internal working of the Hadoop framework to

optimally tuning these configuration parameters.

Palmetto cluster

21

The co-existing of Hadoop framework with HPC resource management systems is

a challenge. Both systems have their own job submissions and management. Hadoop uses

a shared-nothing style architecture, whereas most HPC resources including Palmetto

cluster employ a shared-disk setup. Palmetto’s Orange FS “newscratch” has compatibility

issues with Java. We cannot directly operate data from newscratch parallel distribution by

using Java I/O API. Also, the “local_scratch” mount on each node does not have enough

space to store all the data. Furthermore, Palmetto cluster only allow commonly users

submitting jobs running no more than 72 hours.

22

Chapter 3

DESIGN OF MAP/REDUCE BASED ANALYSIS TOOLS

3.1 Overview

Our development has four stages (Figure 3-1). In first stage, we implemented a

sequential version of quality control and preprocessing algorithms using Java. We tested

and optimized the sequential program to make sure that they are correct and efficiency. In

the second stage, we analyzed the sequential program and found the potential steps that

can be parallelized with Map/Reduce model. In the third stage, we implemented the

Map/Reduce based parallel program, and deployed, tested it. In the fourth stage, we

optimized the program. In this chapter, we discussed how to parallelize the microarray

quality control and preprocessing methods with Map/Reduce framework.

Sequential tools
test、modify、

optimize
Map/Reduce based

tools

deploy、test、
optimize

Performance is
good?

Y

N

Figure 3-1. Software design work flow

23

Our Map/Reduce program contains three components: The first component reads all

the intensities data from .cel file into HDFS and reads the .cdf file, extract the probe

position information to HDFS. The second component does the MAS 5.0 and RMA

preprocess calculations, including background correction, normalization and

summarization. The third component performs quality control calculations of six

parameters.

3.2 Read Array Information into HDFS

To perform quality control and preprocess, we first need to extract perfect match

intensities and mis-match intensities for all arrays from each .cel file into HDFS. We used

Affymetrix fusion Software Developers Kit (SDK), which is a Java package to parse

Affymetrix GeneChip® microarray files to extract position information of each probe

from .cdf file and extract perfect match and mis-match intensities from each .cel file. We

used the probe position information to associate the intensities with corresponding probes.

The two main problems we faced in this stage are, (1) .cel files is stored in the

“newscatch” orange file system (orange FS) and we can only use Java to read, copy and

move data from this file system. However, directly reading data from or writing data to

the orange FS lead to some unknown errors. Then, we first copied the data to the

“local_scratch” local file system, and read and processed it. After we finished, we deleted

the data from the local file system. (2) Fusion SDK cannot parse data stored in HDFS, we

had to put data in the local file system and call fusion SDK API to extract the information

and store them to the HDFS for later usage.

24

 For the getting intensities step (Table 3-1), we used the mapper to read a file with

the name of .cel files and send to reducer. The reducer first read the .cel file from orange

FS to local file system. Then, it parsed the .cel file and stored intensities into HDFS. For

getting probe positions (Table 3-2), we used a map-only to read the position information

from .cdf file and stored in HDFS. Table 3-1, 2 lists the pseudo-code of Map/Reduce

implementation for these two steps.

Table 3-1. Pseudo-code of map and reduce functions for getting intensities

Mapper:

 map (Long offset, String celName)

 emit(offset, celName);

Reducer:

 reduce (Long offset, List<String> celNames)

 for celName in celNames

 CDF cdf = new CDF (get_cdf_data (cdf_filename))

 ChipSet chipset = new ChipSet (cdf)

 File local = new File (“/local_scratch/”+ celName)

 Copy_file (new File (celPath + celName), local)

 Chip chip = new Chip (cdf, get_cel_data(local))

 chipset.add_chip (chip)

 delete_file_or_directory(local)

 for chip in chipset

 String [] intensities = get_intensities_from_chip (chip)

 emit (celName, intensities)

Table 3-2. Pseudo-code of map functions for getting probe positions

Mapper:

map (Long offset, String celName)

 CDF cdf = new CDF (get_cdf_data (cdf_filename))

 File local = new File (“./”+ celName)

 Copy_file (new File (celPath + celName), local)

 Chip chip = new Chip (cdf, get_cel_data(local))

 delete_file_or_directory(local)

 String [] positions = get_position_from_chip (chip, cdf)

 for probeset in chip

 emit (probesetName, position)

25

3.3 Map/Reduce Implementation for MAS 5.0 Methods

Since the MAS 5.0 performs the quality control and preprocessing algorithms

independently for each array, it is easy to parallelize the MAS 5.0 algorithms. We first re-

implemented the MAS 5.0 algorithms in Java. We then created a map-only job to call the

MAS 5.0 algorithm functions individually to process the intensities data for each array.

The mapper wrote the name of the array to HDFS if it is low quality, or wrote the

background corrected and normalized intensity values of the array to HDFS, otherwise.

Table 3-3 lists the pseudo code of Map/Reduce implementation for MAS 5.0 methods.

Table 3-3. Pseudo-code of map function for MAS 5.0

Mapper:

map (String arrayName, String [] intensities)

 do_mas5_algorithm (intensities)

 scaleFactor = get_scale_factor ()

 if output low quality array

 if scaleFactor < -2 || scaleFactor > 2

 emit (arrayName, “sfs”)

 if averageBackground < 20 || scaleFactor > 100

 emit (arrayName, “avbg”)

 if percentPresent < 35

 emit (arrayName, “pps”)

 if output background corrected and normalized intensities

 emit (arrayName, intensities)

3.4 Map/Reduce Implementation for RMA Methods

3.4.1 Implementation of RMA Quality Control Methods

PLM summarization Map/Reduce implementation

We designed a Map/Reduce based job for PLM summarization. The mappers in

this job read the intensities and position information from the files stored in HDFS. Then

26

the mappers use the position information to determine which intensities belong to a given

probeset. Mappers emitted probeset name and the intensities belong to this probeset as

key-value pairs. Reducers received the key-value pairs and built a matrix to store all the

intensities for each probe set. Each row of the matrix contains the intensities from the

same array; each column contains the intensities identified by the same probe. After that,

for each probeset, reducer called the PLM summarization function (our own Java

implementation) to calculate the expression value and standard errors. Finally, the

reducer wrote the expressions and standard errors to the HDFS. Table 3-4 lists the pseudo

code of Map/Reduce implementation of PLM summarization.

Table 3-4. Pseudo-code of map and reduce functions for PLM summarization

Mapper:

 map (String arrayName, String [] PMintensities)

 String [] positions = get_position_from_file (positionFile)

 Probesets = get_probeset_info_from_positions (positions)

 for probeset in probesets

 String intensities

 find_intensities_belong_to_the_probeset (PMintensities, probeset)

 emit (probesetName, intensities)

Reducer:

 reduce (String probesetName, List<String> intensities)

 for intensitiesInTheSamechip in intensities

 z.addRow (intensitiesInTheSamechip)

 PLM_summarization (z, expressions, standardErrors)
 emit (probesetName, expressions)

 emit (probesetName, standardErrors)

.

NUSE and RLE Map/Reduce Implementation

We used one Map/Reduce job to calculate NUSE and RLE. This job contains two

sub-jobs, one for computing NUSE metric, the other for calculating RLE metric. The

reason we implemented these two algorithms together is that the work flow of these two

27

algorithms are similar. We can reduce the codes for these two algorithms. Beside,

running these two algorithms together can reduce the total running time.

In NUSE sub-job, the mapper read the standard errors (SEs) of probesets from

HDFS and calculated the median SE. The mapper then computed NUSE values and

emitted array name with NUSE value as output key-value pair. Reducers collected all

NUSE values of an array, found the median of NUSE and calculated the IQR. Finally

reducer wrote the array name to the HDFS if the array is a low quality array. Table 3-5

lists the pseudo code of Map/Reduce implementation of calculating NUSE.

Table 3-5. Pseudo-code of map and reduce functions for calculating NUSE

Mapper:

 map (String probesetName, String []standardErrors)

 double median = calculate_median (standardErrors)

 if median = 0

 median = 1

 if median != -1

 for standardError in standardErrors

 standardError = standardError / median

 else

 for standardError in standardErrors

 standardError = NaN

 for standardError in standardErrors

 emit (arrayName, standardError)

Reducer:

 reduce (String arrayName, List<String> standardErrors)

 String [] buffer = new String [standardErrors.length]

 for ith standardError in standardErrors

 if standardError = NaN

 buffer[i] = Double.positive_infinitive

 else

 buffer[i] = standardError

 median = get_median (buffer)

 double [] IQR = do_quartiles (buffer without positive infinitive value)

 if median > 1.025

 emit (arrayName, “NUSE”)

28

The RLE sub-job is almost the same as NUSE sub-job. First, each mapper read all

the expression values from HDFS. Next, the mapper calculated the median expression

and computed the RLE for each probeset. Third, mapper emitted array name and RLE as

output key-value pair. Forth, each reducer collected all the REL values belong to an

array, found out the median value among REL and calculated the IQR. At last, reducer

wrote the array name to the HDFS if it’s a low quality array. Table 3-6 lists the pseudo

code of Map/Reduce implementation of calculating RLE.

Table 3-6. Pseudo-code of map and reduce functions for calculating RLE

Mapper:

 map (String probesetName, String [] expressions)

 double median = calculate_median (expressions)

 for expression in expressions

 expression = expression - median

 emit (arrayName, expression)

Reducer:

 reduce (String arrayName, List<String> expressions)

 String [] buffer = new String [expressions.length]

 for ith expression in expressions

 buffer[i] = expression

 median = get_median (buffer)

 double [] IQR = do_quartiles (buffer without positive infinitive value)

 if median > 0.15 || median < -0.15

 emit (arrayName, “RLE”)

3.4.2 Implementation of RMA Preprocessing Methods

RMA background Correction Map/Reduce Implementation

The RMA adjusts background for each array individually. So, we used a mapper

only job to perform background correction. The mapper read the array perfect match

intensities from HDFS and corrected the background noise, then wrote the background

29

corrected intensities to the HDFS for later usage. Table 3-7 lists the pseudo code of

Map/Reduce implementation for RMA background correction.

Table 3-7. Pseudo-code of mapper for RMA background correction

Mapper:

map (String arrayName, String []PMintensities)

 String [] backgroundCorrectedIntensities

 = background_correction (PMintensities)

 emit (celName, backgroundCorrectedIntensities)

RMA quantile normalization Map/Reduce Implementation

We divide the quantile normalization job into three sub jobs: “calculate mean”,

“merge mean files”, and “do quantile normalize”. The workflow to perform quantile

normalization using those three sub tasks are shown in Figure 4-2. We implemented the

Map/Reduce based algorithm for each sub task separately.

Intensities

Merge mean files

Sort intensities
Compute means

Compute rank
Normalize intensities

Normalized
intensities

Figure 3-2: Map/Reduce normalization work flow

In “calculate mean” step, each mapper read the perfect match intensities from

HDFS and sort these intensities. Then, the mapper emitted the rank i and the ith largest

intensity as key-value pair to the reducer. Each reducer received the rank i as key, the ith

largest intensities from all arrays as value. Reducer calculated the mean values of the ith

30

largest intensities and wrote it to HDFS. Table 3-8 lists the pseudo code of Map/Reduce

implementation for calculating mean.

Table 3-8. Pseudo-code of map and reduce functions for mean calculation

Mapper:

map (String arrayName, String [] PMintensities)

 sort (PMintensities)

 for index in range 0 … size of PMintensities

 intensity = PMintensities[index]

 emit (index, intensity)

Reducer:

 reduce (int index, List<String> intensities)

 mean = calculate_mean (intensities)
 emit (index, mean)

Since each reducer generated on mean file in “calculate mean” step, there are

multi-files store the results in HDFS. We need an extra map/reduce job to merge all the

files into one file. The mappers read each file from HDFS and emitted the key-value pairs

to the reducer. Here, we specified one reducer to receive all the key-value pairs and write

these key-value pairs to a file in HDFS. Table 3-9 lists the pseudo code for merging mean

files.

Table 3-9. Pseudo-code of map and reduce functions for merging mean files

Mapper:

map (int index, String mean)

 emit (index, mean)

Reducer:

 reduce (int index, String mean)

 emit (index, mean)

The final step is to compute the rank for each mean value and replace the

intensities having the same rank with the mean value. We created a map-only job for this

31

step. The mapper read the mean values from the file in HDFS, and created a structure

called Item, who contains two fields, data and rank. The data stores the intensity and

rank contains the original rank of this intensity. For each intensity value, the mapper

created Item and stored it to an Item list. Then, the mapper sorted the mean values and

computed the rank for each mean values. Based on the rank, the mapper replaced the

intensity with the corresponding mean value. Finally, the mapper wrote the normalized

intensities to the HDFS. Table 3-10 lists the pseudo code for computing rank and

normalizing intensities.

Table 3-10. Pseudo-code of map function for computing rank and normalizing intensities

Mapper:

map (String arrayName, String [] intensities)

 String [] means = read_means_from_file (mean_file)

 for intensity in intensities

 Item item = new Item ()

 item.data = intensity

 item.rank = index in intensities array

 itemList.add (item)

 sort (itemList)

 int [] ranks = rank_order (means)

 for ith item in itemList

 if ranks[i]- []ranks i  >0.4

 item.data = [[i] 1] [[i]0].5 mean ranks mean ranks        

 else

 item.data = [[i]0.5 1]mean ranks   

 // create new normalizedIntensities array according to itemList

 emit (arrayName, normalizedIntensities)

Median polish summarization Map/Reduce implementation

 The median polish summarization used the median polish method to perform the

summarization of gene expressions. The map/reduce job for median polish

summarization is similar to the job for PLM summarization. The mapper read the

32

intensities and position information from the files stored in HDFS. Then the mappers use

the position information to find the intensities for each probeset. Mappers emitted

probeset name and its intensities as key-value pairs. Reducers received the key-value

pairs and built a matrix to store all the intensities for each probe set. Then, the reducer

called the median polish summarization function (our own Java implementation) to

calculate the expression value for each probeset. Finally, the reducer wrote the

expressions to the HDFS. Table 3-11 lists the pseudo code for median polish

summarization.

Table 3-11. Pseudo-code of map and reduce functions for Median polish summarization

Mapper:

 map (String arrayName, String [] PMintensities)

 String [] positions = get_position_from_file (positionFile)

 Probesets = get_probeset_info_from_positions (positions)

 for probeset in probesets

 String intensities

= find_intensities_belong_to_the_probeset (PMintensities, probeset)

 emit (probesetName, intensities)

Reducer:

 reduce (String probesetName, List<String> intensities)

 for intensitiesInTheSamechip in intensities

 z.addRow (intensitiesInTheSamechip)

 median_polish_summarization (z, expressions)
 emit (probesetName, expressions)

3.5 Map/Reduce Implementation for RNA Degradation Method

The RNA degradation was also calculated for each array individually. We

designed a map-only job to calculate the RNA degradation. In this job, each mapper call

RNA degradation function (our own Java implementation) to compute the RNA

33

degradation metric for an array and output the array name if the array is low quality.

Table 3-12 lists the pseudo code of Map/Reduce implementation for RNA degradation.

Table 3-12. Pseudo-code of map function for RNA degradation

Mapper:

map (String arrayName, String [] PMintensities)

 String [] positions = get_position_from_file (positionFile)

 Probesets = get_probeset_info_from_positions (positions)

 for probeset in probesets

 String intensities

= find_intensities_belong_to_the_probeset (PMintensities, probeset)

String [] loggedIntensities = log_2 (intensities)

loggedIntensitiesList.addRow (loggedIntensities)

double [] means

= get_mean_according_to_intensities_list (loggedIntensitiesList)

double [] standardDeviations

= get standard_deviation_according_to_intensities_list (loggedIntensitiesList)

 firstMean = get_first_element (means)

 for ith mean in means

 mean = mean – firstMean / (standardDeviations[i] / N)

 double slope = linear_regression (means)

 if slope > 4.5

 emit (arrayName, “RNA degradation”)

34

Chapter 4

EXPERIMENTAL RESULTS

4.1 Introduction

We applied our tools to the microarray data of Arabidopsis and rice, the two

model plants with complete genome sequences.

All CEL files download from the Gene Expression Omnibus (GEO) website

http://www.ncbi.nlm.nih.gov/geo/. GEO is a public repository that stores microarray and

other forms of high-throughput functional genomic data. The data in GEO is free to

public.

4.2 Sequential Tools for micro array data analysis

We compared our Map/Reduce based microarray analysis tools to sequential

tools, MAS 5.0 tools (apt-mas5) from Affymetrix power tools, RMA preprocess tool and

RMA quality control tool from RMAexpress. These tools are widely used by

bioinformatics communities.

Affymetrix Power Tools

The Affymetrix Power Tools (APT) is a set of cross-operating system

command line programs developed by Affymetrix using C/C++ language for processing

and analyzing data from any Affymetrix GeneChip® array. The APT is obtained from the

main APT website, http://www.affymetrix.com/support/developer/powertools/index.affx.

RMAexpress

35

RMAExpress is a program written in C/C++ language for Windows (and

Linux) to calculate gene expression values for Affymetrix Genechip® data using the

Robust Multichip Average (RMA) expression summary. RMAExpress is available

through http://rmaexpress.bmbolstad.com/.

4.3 Hadoop Deployment and Execution

Palmetto cluster uses TORQUE as its standard batch processing systems. In this

thesis, we used a Portable Batch System (PBS) wrapper script based on MyHadoop

(Krishnan et al., 2011) script to provide Hadoop instances on traditional supercomputing

resources. The Hadoop system requests resources via TORQUE and Hadoop

environment is configured based on the set of resources TORQUE provided (Figure 4-1).

Get number of nodes and target config direcotry
(HADOOP_CONF_DIR) from the user

Get list of resources assigned from PBS

Pick the 1st node as master, all other nodes as slaves. Update
the master node in the mapred-site.xml and core-site.xml

Use the self defined HADOOP_DATA_DIR=/local_scratch/Hadoop_data
Update the core-site.xml

Update all tuned parameters in the hadoop-env.sh and *-site.xml f iles
Copy these configuration files to the HADOOP_CONF_DIR

Create HADOOP_DATA_DIR and log directory on local nodes

Figure 4-1. Hadoop deployment work flow

36

4.3.1 Deploying and configuring Hadoop:

To deploy Hadoop on the palmetto cluster, we first created a PBS command qsub

with configure parameters to request number of nodes we want (select=), size of memory

per node (mem=), number of cores per node (ncpu=), the kind of network we want to use

(interconnect=) and how many time we what to run the Map/Reduce job (walltime=).

Then, we generated a PBS script to record the number of resources (nodes) we required

and configured the site specific parameters using the PBS wrapper configuration scripts

together with the tuned Hadoop configuration files to generate new Hadoop configuration

directory (HADOOP_CONF_DIR)

$MY_HADOOP_HOME/bin/pbs-configure.sh -n $nodes -c $HADOOP_CONF_DIR

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR namenode -format

$HADOOP_HOME/bin/start-all.sh

These scripts created and formatted HDFS and started the Hadoop daemons

automatically. After configuration, we uploaded input data into the directory (i.e., input

folder) of HDFS using Hadoop command,

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR fs -put input input

The Hadoop files that we need to configure include:

Masters: This file set a node with machine name or ip address as master node.

37

Slaves: This file specifies the nodes with machine name or ip address as the slave

nodes on the cluster.

hadoop-env.sh: This script contains some environment variable settings used by

Hadoop , such as the location of the logs, the maximum heap size, and JVM parameters

for garbage collection and heap management.

mapred-site.xml: This is the MapReduce site configuration file that includes

important parameters, such as the number of parallel copies reducer use to download

mappers output results, the host and port for the JobTracker, the JAVA_OPTS for the

child JVMs of the mappers and reducers and the maximum number of map and reduce

tasks .

core-site.xml: This is the core site configuration file that consists of the location of

the HDFS (HADOOP_DATA_DIR) on every node, and the URI for the HDFS server

.size of the read/write buffers and in-memory file system to merge map outputs, the

memory limit used for sorting data. .

hdfs-site.xml: This is the HDFS site configuration file that includes parameters for

configuring the distributed file system, for example, the number of replications, the

number of DataNode handlers and the HDFS block size.

4.3.2 Running jobs on Hadoop

By far, all setup steps had been done, and then we can start running our program in

configured Hadoop environment (Figure 4-2).

$HADOOP_HOME/bin/hadoop jar mapReduceApplication.jar

38

Once the Hadoop jobs were finished, the results can be downloads back from

HDFS.

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR fs -get output output

Downloading output files back to shared file system is important because the

output files are stored in HDFS distributed across the compute nodes and PBS in

Palmetto Cluster will clear the local file system on the required nodes after the PBS job is

finished. Thus, all results must be saved before the resources are re-allocated. Finally, we

shut down all Hadoop daemons and exited PBS.

$HADOOP_HOME/bin/stop-all.sh

$MY_HADOOP_HOME/bin/pbs-cleanup.sh -n $nodes

39

Configure Hadoop for the acquired resources using our configuration scripts

Format HDFS and start Hadoop daemons using Hadoop commands, using the tuned
configuration files generated the HADOOP_CONF_DIR

Request resources using regular resource manager PBS

Upload input data into HDFS from shared file system

Run Hadoop jobs

Get output data from HDFS to shared file system

Shut down Hadoop daemons and remove HADOOP_DATA_DIR

Figure 4-2. Hadoop MapReduce jobs execution workflow on Palmetto cluster

4.4 Analyzing the Rice Dataset

4.4.1 Rice microarray dataset:

We downloaded 1778 rice microarray data using the Affymetrix Rice Genome

Array chip (GPL 2025) from GEO (Edgar et al., 2002) for our analysis. The detail of this

dataset is listed in Table 4-1.

Table 4-1. Description of rice dataset

Number of .cel files 1778

.cel file size 13MB~32MB

Total .cel files size 26G

.cdf file size 108.8MB

Number of probe sets 57381

40

4.4.2 Sequential microarray tools evaluation using Rice microarray

data

We run the rice microarray data using the RMAExpress tools on desktop

computer in our laboratory, the detail of the desktop computer shown in table 4-2. We

tested apt-mas5 on Palmetto Cluster, since apt-mas5 require large memory. We applied 1

node with 30GB memory to run the apt-mas5 program. The detail of the node is shown

on table 4-3. The testing results revealed that sequential tools need more time and more

memory to process the massive microarray dataset: the apt-mas5 program requires big

memory (30GB) to process the results and the RMAexpress requires longer time (12

hours) as shown in Table 4-4.

Table 4-2. Sequential tools running environment on lab desktop

• 1 node with 1 cpu and 1 core (4 core per chip, totally 2 chips) Intel i7 2600 @

3.4GHz HP DL980G7

• 12GB DDR3 1333 MHz RAM

• 1TB SATA drives @ 113.24 MB/sec

• Fedora release 18 (Spherical Cow) with 3.6.9-200.fc18..x86_64 kernel

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

41

Table 4-3. Sequential tools running environment on Palmetto Cluster

• 1 node with 1 cpu and 1 core (8 core per chip, totally 8 chips) Intel Xeon 7542 @

2.8GHz HP DL980G7

• 100GB of 1 TB DDR2 1600 MHz RAM

• “local_scratch” 99GB 10000 rpm SATA drives

• 10Gb Myrinet network interface

• Scientific Linux release 6.1 (Carbon) with 2.6.32-220.4.1.el6.x86_64 kernel

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

Table 4-4. Sequential tools running time

APT (apt-mas5) RMA preprocess tool RMA quality control

tool

3hours 45mins 61sec 49mins 17sec 12hours 19mins 9sec

4.4.3 Map/Reduce based microarray analysis evaluation

 We tested our Map/reduce based microarray analysis tools on Palmetto Cluster.

The details of the nodes we request are shown in Table 4-6. We request 5 nodes, 10

nodes and 20 nodes respectively to test our tools. Our results showed that: (1) for some

jobs, like “get intensities” (Table 4-7) and “do median polish summarization” (Table

4-11), when we doubled the number of core to process the data, the running time just got

slightly reduced. This is because these tasks write large amount of data to the HDFS or

transfer data across the network (mapper send temporary output results to the reducers on

other nodes), and lots of the time is wasted in waiting for the I/O operations. (2) for some

42

jobs, such as, “do RNA degradation” (Table 4-15), “compute NUSE & RLE” (Table

4-16), “do background correction” (Table 4-7), even though we doubled the number of

total cores, the running time is only decreased a little bit. The reason is that these jobs are

running too fast, and most of the time is used to start up job, schedule job, clean up job,

these steps taking fixed time. (3) for remain jobs, “compute mean” (Table 4-8), “do

quantile normalize” (Table 4-10), “do PLM summarization” (Table 4-13), “do MAS 5.0”

(Table 4-14), when we increased to the number of nodes from 5 to 10, 10 to 20, even 20

to 40, the running time is reduced to nearly half.

Based on the quality cutoff threshold, we identified that 278 of 1778 rice

microarray data are low quality (having at least one of six measures without satisfying

threshold). Table 4-20 lists the number of low quality rice array detected by each measure.

Table 4-5. Map/Reduce based microarray tools testing environment

• 8 cores per chip, 2 chip Intel E5-2665 @2.4GHz HP SL250s

• 8GB of 64 GB DDR3 1600 MHz RAM

• “local_scratch” 950 GB 10000 rpm SATA drives

• 10/40Gb InfiniBand network interface

• Scientific Linux release 6.4 (Carbon) with 2.6.32-358.2.1.el6.x86_64 kernel

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

43

Table 4-6. Comparison of time to “get intensities”

Number of nodes Running time Number of cores used by

job

5 4mins, 8sec (248sec) Preduce=40

10 3mins 11sec (191sec) Preduce=80

20 2mins 40sec (160sec) Preduce=160

Table 4-7. Comparison of time to “do background correction”

Number of nodes Running time Number of cores used by

job

5 1mins, 26sec (86sec) Pmap=30

10 1mins 9sec (69sec) Pmap=60

20 1mins 3sec (63sec) Pmap=120

Table 4-8. Comparison of time to” compute mean”

Number of nodes Running time Number of cores used by

job

5 6mins, 5sec (365sec) Pmap=30, Preduce=40

10 2mins, 58sec(178sec) Pmap=60, Preduce=80

20 1mins, 33sec (93sec) Pmap=120, Preduce=160

Table 4-9. Comparison of time to “compute mean” (no combiner)

Number of nodes Running time Number of cores used by

job

5 9mins, 53sec (593sec) Pmap=30, Preduce=40

10 5mins, 36sec (336sec) Pmap=60, Preduce=80

20 2mins, 54sec (174sec) Pmap=120, Preduce=160

Table 4-10. Comparison of time to “do quantile normalize”

Number of nodes Running time Number of cores used by

job

5 5mins 5sec (305sec) Pmap=30

10 3mins, 8sec (188sec) Pmap=60

20 3mins, 27sec (207sec) Pmap=120

44

Table 4-11. Comparison of time to “do median polish summarization”

Number of nodes Running time Number of cores used by

job

5 4mins, 12sec (252sec) Pmap=30, Preduce=40

10 3mins, 1sec (181sec) Pmap=60, Preduce=80

20 2mins, 30sec (150sec) Pmap=120, Preduce=160

Table 4-12. Comparison of time to chain “do quantile normalize” and “do median polish

Summarization” together

Number of nodes Running time Number of cores used by

job

5 6mins, 47sec (407sec) Pmap=30, Preduce=40

10 4mins 51sec (291sec) Pmap=60, Preduce=80

20 4mins 58sec(298sec) Pmap=120, Preduce=160

Table 4-13. Comparison of time to “do PLM summarization”

Number of nodes Running time Number of cores used by

job

5 45mins, 5sec (2705sec) Pmap=30, Preduce=40

10 22mins, 43sec (1363sec) Pmap=60, Preduce=80

20 14mins, 53sec (893sec) Pmap=120, Preduce=160

Table 4-14. Comparison of time to “do MAS 5.0”

Number of nodes Running time Number of cores used by

job

5 27mins 40sec (1660sec) Pmap=30

10 14mins, 5sec (845sec) Pmap=60

20 7mins, 38sec (458sec) Pmap=120

Table 4-15. Comparison of time to “do RNA degradation”

Number of nodes Running time Number of cores used by

job

5 46 sec Pmap=30

10 41 sec Pmap=60

20 59 sec Pmap=120

45

Table 4-16. Comparison of time to “compute NUSE and RLE”

Number of nodes Running time Number of cores used by

jobs

5 1mins, 41sec (101sec) Pmap=30, Preduce=40

10 1mins, 2sec (62sec) Pmap=60, Preduce=80

20 1mins, 15sec Pmap=120, Preduce=160

Table 4-17. Comparison of time to “do quality control methods”

Number of nodes Running time Number of cores used by

job

5 59mins, 50sec (3590sec) Pmap=30, Preduce=40

10 31mins, 32sec (2006sec) Pmap=60, Preduce=80

20 23mins, 41sec (1421sec) Pmap=120, Preduce=160

Table 4-18. Comparison of time to “do preprocessing”

Number of nodes Running time Number of cores used by

jobs

5 16mins, 16sec (976sec) Pmap=30, Preduce=40

10 9mins 33sec (573sec) Pmap=60, Preduce=80

20 8mins 22sec(502sec) Pmap=120, Preduce=160

Table 4-19. Number of low quality chips being detected by metrics

RNA

degradation

Average

background

Scale

factor

Present

percentage

NUSE RLE Total

49 9 105 21 222 69 278

4.5 Analyzing the Arabidopsis Dataset

4.5.1 Arabidopsis microarray dataset:

We downloaded 9031 Arabidopsis microarray data using the Affymetrix

Arabidopsis ATH1 Genome Array (GPL 198) from GEO for our analysis. The detail of

this dataset is listed in Table 5-21.

46

Table 4-20. Description of Arabidopsis dataset

Number of .cel files 9031

.cel file size 4.9MB~12MB

Total .cel files size 59G

.cdf file size 39MB

Number of probesets 22810

4.5.2 Sequential microarray tools evaluation using Arabidopsis

data

We run the Arabidopsis microarray data using sequential tools on Palmetto

Cluster in Clemson University. The running environment required is the same as we test

the rice dataset. Apt-mas5 program occur unhandled exception while processing the

Arabidopsis dataset. The running time of RMAExpress quality control tool excess 72

hours limitation. Thus, we were not able to obtain results for Arabidopsis microarray data

using sequential tools.

4.5.3 Map/Reduce based microarray analysis evaluation

We tested our Map/reduce based microarray analysis tools using Arabidopsis

data on Palmetto Cluster. The details of the nodes we requested are the same as those for

running rice microarray data. We requested 10 nodes, 20 nodes, 40 nodes respectively to

test our tools. The system configurations for each node are the same as we testing the rice

dataset. Since the data size of the Arabidopsis dataset is much larger than that of rice, our

experimental results are a little bit different. Our results showed that: (1) The running

times of jobs like “get intensities” (Table 4-21) and “do median polish summarization”

47

(Table 4-25) were decreased slowing when we double the running cores. (2) The running

times of jobs such as “do RNA degradation” (Table 4-28), “do PLM summarization”

(Table 4-26), were reduced to half when the number of nodes are increased from 10 to 20.

However, the running time were not reduced much when the nodes were increased from

20 to 40. (3) The running time of jobs, such as “compute NUSE & RLE” (Table 4-29),

“do background correction” (Table 4-22), “compute mean” (Table 4-23), “do quantile

normalize” (Table 4-24), “do MAS 5.0” (Table 4-27), were reduced to nearly half when

we increased to nodes from 10 to 20, and from 20 to 40.

Based on the quality cutoff threshold, there are 3286 low quality Arabidopsis

microarray data (having at least one of six measures without satisfying threshold) of 9031

data. Table 4-33 lists the number of low quality rice array detected by each measure.

Table 4-21. Comparison of time to “get intensities”

Number of nodes Running time Number of cores used by

job

10 9mins, 32sec(572sec) Preduce=120

20 6mins 18sec (378sec) Preduce=240

40 4mins 50sec (290sec) Preduce=560

Table 4-22. Comparison of time to “do background correction”

Number of nodes Running time Number of cores used by

job

10 4mins 25sec (265sec) Pmap=20

20 2mins 7sec (190sec) Pmap=40

40 1mins 9sec (69sec) Pmap=80

Table 4-23. Comparison of time to “compute mean”

Number of nodes Running time Number of cores used by

job

10 6mins 20sec (380sec) Pmap=20, Preduce=120

20 2mins 58sec (178sec) Pmap=40, Preduce=240

40 1mins 34sec (94sec) Pmap=80, Preduce=560

48

Table 4-24. Comparison of time to “do quantile normalize”

Number of nodes Running time Number of cores used by

job

10 6mins 44sec (404sec) Pmap=20

20 3mins 3sec (183sec) Pmap=40

40 1mins 37sec (97sec) Pmap=80

Table 4-25. Comparison of time to “do median polish summarization”

Number of nodes Running time Number of cores used by

job

10 9mins 41sec (581sec) Pmap=20, Preduce=120

20 8mins 22sec (502sec) Pmap=40, Preduce=240

40 7mins 3sec (423sec) Pmap=80, Preduce=560

Table 4-26. Comparison of time to “do PLM summarization”

Number of nodes Running time Number of cores used by

job

10 220mins 21sec (13221sec) Pmap=20, Preduce=120

20 120mins (7200sec) Pmap=40, Preduce=240

40 82mins 40sec (4960sec) Pmap=80, Preduce=560

Table 4-27. Comparison of time to “do MAS 5.0”

Number of nodes Running time Number of cores used by

job

10 41mins 59sec (2519sec) Pmap=20

20 19mins 36sec (1176sec) Pmap=40

40 10mins 44sec (644sec) Pmap=80

Table 4-28. Comparison of time to “do RNA degradation”

Number of nodes Running time Number of cores used by

job

10 1mins 36sec (96sec) Pmap=20

20 46 sec Pmap=40

40 30 sec Pmap=80

49

Table 4-29. Comparison of time to “compute NUSE and RLE”

Number of nodes Running time Number of cores used by

job

10 3mins 40sec (220sec) Pmap=20, Preduce=120

20 2mins 0sec (120sec) Pmap=40, Preduce=240

40 1mins 5sec (65sec) Pmap=80, Preduce=560

Table 4-30. Comparison of time to “do quality control methods”

Number of nodes Running time Number of cores used by

job

10 224mins 1sec (1344sec) Pmap=20, Preduce=120

20 121mins 9sec (7269sec) Pmap=40, Preduce=240

40 83mins 49sec (5029sec) Pmap=80, Preduce=560

Table 4-31. Comparison of time to “do preprocessing”

Number of nodes Running time Number of cores used by

job

10 24mins, 50sec (1490sec) Pmap=20, Preduce=120

20 15mins 29sec (929sec) Pmap=40, Preduce=240

40 9mins 15sec (573sec) Pmap=80, Preduce=560

Table 4-32. Number of low quality chips being detected by metrics

RNA

degradation

Average

background

Scale

factor

Present

percentage

NUSE RLE Total

1555 1009 778 34 1535 453 3286

50

Chapter 5

TUNNING AND OPTIMIZING

5.1 Code Level Optimizing

Use a combiner

Combiner can decrease the number of data sent to the reducers (White, Tom, 2012).

For instance, in one of our Map/Reduce microarray analysis tool, the “compute mean”

job, the mapper will send millions of (index, intensity) pairs to the reducer. If we use a

combiner to assemble the intensities generated by mappers on one node, we can just send

one key-value pair (index, (sum (local_intensities), N)), where N is the number of

intensities. N usually is much larger than 1. The Figure 5-1 shows that using a combiner

dramatically improved the performance of the job of getting mean.

Figure 5-1. Effects of applying combiner on “compute mean”

593

336

174

365

178

93

0

100

200

300

400

500

600

700

70 140 280

ti
m

e
(s

ec
)

number of cores

Effect of combiner

without combiner with combiner

51

Create map-only jobs

Map-only job means that there is no reducer . Map-only job are efficient, since no

data is needed to be transmitted from the mapper to the reducer. Most of the map tasks

write output to HDFS directly. In our Map/Reduce based microarray analysis tools we

implemented “get positions”, “get background correction”, “do MAS 5.0 algorithm”, “do

RNA degradation” as map-only jobs.

Concurrently submit independent jobs

In Hadoop 1.x, reducer cannot reuse the mapper slots, so does mapper.

Furthermore, to avoid mapper-reducer confliction, we usually require equal number of

mappers and reducers. If we have two or more independent jobs, we can submit the jobs

at the same time and could utilize the cluster resources better. For example, the “do PLM

summarization” job will spend lots of time in the reduce phase. If we concurrently submit

PLM summarization job with map-only jobs like “do MAS 5.0” job and “do RNA

degradation” job, after map phase of “do PLM summarization” job is finished, we can

reuse the mapper slots to run “do MAS 5.0” job and “do RNA degradation” job. In this

way we can reuse the cores and decrease the overall running time.

Hadoop provide a submit function to submit job for independent jobs:

1 Job job = new Job (new configuration());
 2 job.submit();

The Figure 5-2 shows the performance improvement of concurrently submission of “do

PLM summarization” job, “do MAS 5.0” job and “do RNA degradation” job.

52

Figure 5-2: Effect of Concurrently submission “do PLM summarization”, “do MAS 5.0”

and “do RNA degradation” jobs simultaneously

Use ChainMapper and ChainReducer

ChainMapper and ChainReducer are special Hadoop mapper and reducer classes

that can be used to chain multiple mappers as one mapper and one reducer with multiple

mappers as one reducer (Miner et al., 2012). The output results of each chained map

phase are directly sent to the next map phase through the pipeline. In this way, the map-

only job would not have to write the results into HDFS and read by the following job

later. In our Map/Reduce microarray analysis tools, we use ChainMapper to bind map-

only “do compute rank & normalize” job with “do median polish summarization” job.

Figure 5-3 shows the using chainMapper can reduce the running time.

4411

2249

1410

2705

1363
893

0

1000

2000

3000

4000

5000

70 140 280

ti
m

e
(s

ec
)

number of cores

Effect of concurrently submit independent jobs

without concurrently submit with concurrently submin

53

Figure 5-3: Effect of using chianMapper to combine “do normalize” and “do median

polish summarization” jobs together

Use the most appropriate and compact writable type

Converting numeric data to and from strings is inefficient and can actually use out

a significant portion of CPU time . The binary Writable types will cost less space

comparing to Text data. Since disk I/O and network transferring will become a bottleneck

in large jobs, using VIntWritable or VlongWritable can save transmission time. In our

experiments, we learned that using Writable types effectively reduces the network traffic

(data not shown).

Reuse Writables

One of the coding mistakes is allocating new Writable object for every output

from mappers or reducers. For example,

 1 for (String word : words) {

 2 context.write(new Text(word), new Intwritable(1)

 3 }

557

369 357
407

291 298

0

100

200

300

400

500

600

70 140 280

ti
m

e
(s

ec
)

number of cores

effect of chainMapper

without chainMapper with chainMapper

54

This will lead to the creation of thousands of very short-lived objects. Hence,

reusing existing Writables will significantly reduce the usage of the memory and avoid

garbage collection. We can rewrite the above code as following:

 1 Text wordText = new Text ();

 2 IntWritable outvalue = new IntWritable(1);

 3 for (String word : words) {

 4 wordText.set(word);

 5 context.write(wordText, one);

 6 }

In this way, we can avoid creating temporary objects, and can greatly save the

running time (data not shown).

5.2 Hadoop Level Tuning

Since Hadoop and HDFS are complex distributed systems that run arbitrary user

code. To take the advantage of the cluster, we need to tune the Hadoop system to achieve

optimal performance.

5.2.1 Hadoop Configuration Tuning

Compression

Hadoop supports compression at 3 different levels – input data, intermediate map

output and reduce output data – as well as multiple codecs, like bzip2, lzma, gzip, lzo,

snappy, which can be used for compression and decompression (Chen et al., 2010) .

Some codecs strike a better compression factor but take longer to compress and to

decompress. Some codecs have a fine balance between the compression factor and the

overhead of compression and decompression activities.

55

Compressing reducer output can reduce the usage of HDFS. We can use the

method FileOutputFormat to set the properties.

 1 FileOutputFormat.setCompressOutput(job, true);
 2 FileOutputFormat.setOutputCompressorClass(job, Codec,class);

where Codec.class can be LzoCodec.class, GzipCodec.class or SnappyCodec.class

 Compressing map outputs can reduce the disk and network I/O while increases

CPU cycles for compression and decompression temporary output data. If the map

outputs are very large, enabling map output compression will surely reduce total job

running time. The useful parameters related to intermediate map output compression are

mapred.map.output.compression.codec (specify the compression codec),

mapred.compress.map.output (whether to compress the map output, false by default),

which can be found in mapred-site.xml

The Java code for setting map output compression is

 1 Configuration conf = new Configuration();
 2 conf.setBoolean("mapred.compress.map.output", true);
 3 conf.set("mapred.map.output.compression.codec",

"org.apache.hadoop.io.compress.SnappyCodec
");

HDFS block size

Each map task works on a split of input data. Configuration parameters

mapred.min.split.size and mapred.max.split.size in mapred-site.xml and dfs.block.size in

hdfs-site.xml decide the size of the input split. The total number of map tasks created by

the Hadoop framework is determined by both the input split size and the total input data

size. For example, we have 1GB input files, the input split size is 64MB, total number of

56

map tasks will be 1GB/64MB = 16. We can change input split size to control the number

of map tasks. The easy way to change the input split size is changing the HDFS block

size value using dfs.block.size parameter. The java code is as follow,

 1 Configuration conf = new Configuration();
 2 conf.setInt("mapred.min.split.size", 512 * 1024 * 1024);

As more map tasks means more staring up and tearing down of map JVMs, it

prefer to run small number of longer running map tasks.

Map side spills

The intermediate output of map tasks is stored in a buffer, which is a chunk of

reserved memory in map JVM heap space. The default size of this buffer is 100 MB

which is governed by io.sort.mb configuration parameter in mapred-site.xml. If the map

tasks have large map output, increasing the io.sort.mb can decrease execution time.

However, our tests indicated that unreasonable large buffer can lead to more failure map

tasks.

Shuffle/sort phase tuning

Shuffle/sort phase copy and sort the mapper outputs based on the key. The

maximum number of parallel map-output copier threads governed by

mapred.reduce.parallel.copies in mapred-site.xml is set to 5 by default. If there are

hundreds of mappers finishing at a same time period and each shuffle can only create 5

threads to download the map output, copy operation of shuffle can be inefficient. If the

job have large amount of mappers, increasing mapred.reduce.parallel.copies can

57

decrease the reduce phase waiting time. However, unreasonable large parallel copies

would lead to JVM error.

58

Chapter 6

CONCLUSION AND FUTURE WORKS

In this thesis, we developed a set of Map/Reduce based Affymetrix GeneChip

microarray data analysis tools. This set of tools is based on two widely used algorithms,

Affymetrix Micro Array Suite (MAS 5.0) and Robust Multi-array Analysis (RMA). After

studying the Affymetrix microarray quality control and preprocess algorithms, we first

re-implement the algorithms in Java language, then we developed parallel versions of

these algorithms using Map/Reduce framework.

We successfully deployed our tools on Hadoop and Palmetto Cluster high

performance computing infrastructures. To achieve higher performance and scalability,

we tuning the tools in three levels: the code level, the Hadoop level and the Java Virtual

Machine (JVM) level. We tested our tools and compared with the existing tools using

rice and Arabidopsis microarray dataset. The experimental results showed that our tools

can efficiently utilize Palmetto Cluster resources to achieve high speed-up and can

process massive dataset that existing microarray analysis tools cannot deal with.

In conclusion, our Map/Reduce based Affymetrix microarray analysis tools will

provide biologists a new way to process and analyze increasing volume of Affymetrix

microarray dataset with higher efficiency and lower costs.

In the future, we will add more Affymetrix microarray analysis algorithms to

our Map/Reduce based microarray analysis tool kit.

59

REFERENCES

Lockhart, David J., et al. "Expression monitoring by hybridization to high-density

oligonucleotide arrays." Nature biotechnology 14.13 (1996): 1675-1680.

Lipshutz, Robert J., et al. "High density synthetic oligonucleotide arrays." Nature

genetics 21 (1999): 20-24.

Affymetrix (2002) Affymetrix Microarray Suite User Guide, Version 5 edn. Affymetrix

Santa Clara, CA

Affymetrix. GeneChip Expression Analysis: Data Analysis Fundamentals. Santa Clara,

CA. 2002

Schena, Mark, et al. "Quantitative monitoring of gene expression patterns with a

complementary DNA microarray." Science 270.5235 (1995): 467-470.

Alizadeh, Ash A., et al. "Distinct types of diffuse large B-cell lymphoma identified by

gene expression profiling." Nature 403.6769 (2000): 503-511.

Rocke, David M., and Blythe Durbin. "A model for measurement error for gene

expression arrays." Journal of Computational Biology 8.6 (2001): 557-569.

Hubbell, Earl, Wei-Min Liu, and Rui Mei. "Robust estimators for expression analysis."

Bioinformatics 18.12 (2002): 1585-1592.

Huber, Wolfgang, et al. "Variance stabilization applied to microarray data calibration and

to the quantification of differential expression." Bioinformatics 18.suppl 1 (2002):

S96-S104.

Gautier, Laurent, et al. "affy—analysis of Affymetrix GeneChip data at the probe level."

Bioinformatics 20.3 (2004): 307-315.

Gentleman, Robert C., et al. "Bioconductor: open software development for

computational biology and bioinformatics." Genome biology 5.10 (2004): R80.

Bolstad, B. M., et al. "Quality assessment of Affymetrix GeneChip data." Bioinformatics

and computational biology solutions using R and bioconductor. Springer New

York, 2005. 33-47.

Lukk, Margus, et al. "A global map of human gene expression." Nature biotechnology

28.4 (2010): 322-324.

60

Irizarry, Rafael A., et al. "Exploration, normalization, and summaries of high density

oligonucleotide array probe level data." Biostatistics 4.2 (2003): 249-264.

Bolstad, Benjamin M., et al. "A comparison of normalization methods for high density

oligonucleotide array data based on variance and bias." Bioinformatics 19.2

(2003): 185-193.

Irizarry, Rafael A., et al. "Summaries of Affymetrix GeneChip probe level data." Nucleic

acids research 31.4 (2003): e15-e15.

Edgar, Ron, Michael Domrachev, and Alex E. Lash. "Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository." Nucleic acids research

30.1 (2002): 207-210.

 Apache Software Foundation. Hadoop MapReduce.

http://hadoop.apache.org/mapreduce. 2011.

A. S. Foundation., "Hadoop Distributed File System," http://hadoop.apache.org/hdfs/,

2011.

The Google File System. http://labs.google.com/papers/gfs-sosp2003.pdf

Borthakur, Dhruba. "The hadoop distributed file system: Architecture and design."

(2007).

Chen, Yanpei, Archana Ganapathi, and Randy H. Katz. "To compress or not to compress-

compute vs. IO tradeoffs for mapreduce energy efficiency." Proceedings of the

first ACM SIGCOMM workshop on Green networking. ACM, 2010.

Miner, Donald, and Adam Shook. MapReduce Design Patterns: Building Effective

Algorithms and Analytics for Hadoop and Other Systems. O'Reilly Media, Inc.,

2012.

Gunarathne, Thilina, et al. "Cloud computing paradigms for pleasingly parallel

biomedical applications." Concurrency and Computation: Practice and Experience

23.17 (2011): 2338-2354.

Olston, Christopher, et al. "Nova: continuous pig/hadoop workflows." Proceedings of the

2011 ACM SIGMOD International Conference on Management of data. ACM,

2011.

Langmead, Ben, et al. "Searching for SNPs with cloud computing." Genome Biol 10.11

(2009): R134.

Pfister, Gregory F. "An introduction to the InfiniBand architecture." High Performance

Mass Storage and Parallel I/O 42 (2001): 617-632.

61

CCIT group. http://www.clemson.edu/ccit/rsch_computing/

Palmetto Cluster. http://citi.clemson.edu/palmetto/

J. S. Sarma. Hadoop - Facebook Engg. Note. 2011.

http://www.facebook.com/note.php?note id=16121578919.

Yahoo Inc. "Hadoop at Yahoo!”, http://developer.yahoo.com/hadoop. 2011.

Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/. 2011.

TORQUE Resource Manager, http://www.clusterresources.com/products/torque-

resource-manager.php. 2011.

Stonebraker, Michael. "The case for shared nothing." IEEE Database Eng. Bull. 9.1

(1986): 4-9.

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large

clusters." Communications of the ACM 51.1 (2008): 107-113.

Ross, Robert B., and Rajeev Thakur. "PVFS: A parallel file system for Linux clusters." in

Proceedings of the 4th Annual Linux Showcase and Conference. 2000.

Krishnan, Sriram, Mahidhar Tatineni, and Chaitanya Baru. "myHadoop-Hadoop-on-

Demand on Traditional HPC Resources." San Diego Supercomputer Center

Technical Report TR-2011-2, University of California, San Diego (2011).

T. White, Hadoop: The Definitive Guide, 3st ed., O’Reilly Media, 2012.

Donald, Miner and Adam Shook. MapReduce Design Patterns, 2012

Gentleman, Robert C., et al. "Bioconductor: open software development for

computational biology and bioinformatics." Genome biology 5.10 (2004): R80.

Oberhumer, M. F. X. J. "LZO real-time data compression library." User manual for LZO

version 0.28, URL: http://www. infosys. tuwien. ac. at/Staff/lux/marco/lzo. html

(February 1997) (2005).

	Clemson University
	TigerPrints
	8-2013

	DEVELOPMENT OF MAP/REDUCE BASED MICROARRAY ANALYSIS TOOLS
	Guangyu Yang
	Recommended Citation

	tmp.1387585722.pdf.eI3Yt

