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ABSTRACT 

 

 

High density oligonucleotide array (microarray) from the Affymetrix GeneChip® 

system has been widely used for the measurements of gene expressions. Currently, public 

data repositories, such as Gene Expression Omnibus (GEO) of the National Center for 

Biotechnology Information (NCBI), have accumulated very large amount of microarray 

data. For example, there are 84389 human and 9654 Arabidopsis microarray experiments 

in GEO database. Efficiently integrative analysis large amount of microarray data will 

provide more knowledge about the biological systems. Traditional microarray analysis 

tools all implemented sequential algorithms and can only be run on single processor. 

They are not able to handle very large microarray data sets with thousands of 

experiments. It is necessary to develop new microarray analysis tools using parallel 

framework. In this thesis, I implemented microarray quality assessment, background 

correction, normalization and summarization algorithms using the Map/Reduce 

framework. The Map/Reduce framework, first introduced by Google in 2004, offers a 

promising paradigm to develop scalable parallel applications for large-scale data. 

Evaluation of our new implementation on large microarray data of rice and Arabidopsis 

showed that they have good speedups. For example, running rice microarray data using 

our implementations of MAS5.0 algorithms on 20 computer nodes totally 320 processors 

has a 28 times speedup over using previous C++ implementation on single processor. Our 

new microarray tools will make it possible to utilize the valuable experiments in the 

public repositories.  
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Chapter 1  

INTRODUCTION 

Recent years, biologists have produced massive amount of microarray data using 

the Affymetrix GeneChip® platform. For example, the size of microarray datasets for 

human genomes from thousands of experiments has reached the terabyte scale. How to 

deal with these large data sets and find useful biological information inside them remains 

a challenge for the bioinformatics research. Current Affymetrix microarray analysis tools 

are all designed for the single machine and cannot process the large data sets with 

sufficient performance. 

Hadoop is an implement of Map/Reduce programming model, which is proposed 

by Google supported by many large companies and communities. Hadoop provides a 

high performance parallel file system HDFS that is powerful in capability, commonality 

and scalability. Hadoop is an ideal framework for processing very large datasets as well 

as parallel programming due to its reliability, fault-tolerant, and well support from 

communities.  

In this thesis, we implemented a set of Map/Reduce based microarray analysis 

tools using Hadoop framework for analyzing large Affymetrix GeneChip microarray 

datasets. We implemented two widely used algorithms: Affymetrix MicroArray Suite 

(MAS 5.0) and Robust Multi-array Analysis (RMA) algorithms 

The remainder of this thesis is organized as follows. Chapter 2 provides 

background and terminology information of microarray technique and parallel model. 
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Chapter 3 deeply analyzes the RMA, MAS 5.0 preprocess algorithm and designs 

Map/Reduce implementations to parallelize these algorithm. Chapter 4 compares the 

methods and discusses the results of the comparison. Chapter 5 offers tuning, 

optimization and deployment for the Map/Reduce microarray tools. Finally Chapter 7 

offers conclusions and future works. 
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Chapter 2  

BACKGROUND 

2.1 Microarray Technology 

Microarray is a popular technique to measure genome-wide gene expressions 

(Alizadeh, et al., 2000). Microarray is a glass surface with numerous fragments of 

samples, called probes. A labeled sample contains the unknown quantities of molecules, 

called target. Under the right chemical conditions, single stranded fragments of target 

will complement pair with the probes, this reaction is called hybridization. In this way 

thousands of messenger RNA fragments in a target sample can be measured by the 

microarrays. 

Microarray technique obtains the RNA sample with following steps: (1) Isolating 

the RNA sample. (2) Labeling the RNA sample by a reverse transcription procedure with 

fluorescent markers. (3) Purifying the labeled RNA sample. (4) Hybridizing the RNA 

sample. (5) Scanning the fluorescently labeled sample at each spot and emitting as a 

characteristic wavelength. (6) Capturing the wavelength in a photomultiplier tube.  

2.1.1 Affymetrix GeneChip® Technology 

There are two major microarray technologies: the cDNA arrays developed at 

Stanford University (DeRisi et al., 1996), (Brown et al., 1999) and the high-density 

oligonucleotide array system, also known as Affymetrix GeneChip®, produced by 
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Affymetrix (Lockhart et al., 1996). In this thesis, we focused on data generated by 

Affymetrix GeneChip®. 

In Affymetrix GeneChip, the expression of each gene is typically measured by a 

set of 11±20 pairs of probes. There are two types of probes: perfect match (PM) probe 

and mismatch (MM) probe. Probes group into pair with each PM probe pairing with a 

MM probe. The PM probe is a 25 base oligonucleotide being designed to hybridize with 

messenger RNA from the intended gene. The MM probe is used to measure non-specific 

binding by changing the middle (13th) base to the complementary of the corresponding 

position in the PM set. MM probes are intended to help measure the background and 

stray signals. 

The analyses of microarray data need two types of files: the .cdf file and the .cel 

file. The .cdf (Chip Description File) file includes the layout information of expression, 

genotyping, customSeq, copy number and/or tag probe sets in Affymetrix GeneChip 

microarray. All probe set in the .cdf files have unique names.  

The .cel files store the intensity information of individual probes on the probe 

array. Each of the .cel file includes an intensity value (perfect match intensity and 

mismatch intensity), standard deviation of the intensity, the number of pixels used to 

calculate the intensity value, a flag to indicate an outlier computed by the algorithm and a 

user defined flag marking the feature should be excluded from future analysis. 

2.2 Affymetrix microarray quality control 

The quality of microarray data from public repositories usually varies greatly from 

different experiments. To maintain data integrity, we need to filter out low quality data. 
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Quality assessment is the stage to identify and remove low quality microarray data to 

keep data homogeneity. In this thesis, we used six quality assessment metrics from three 

famous methods:  Affymetrix Micro Array Suite (MAS 5.0), Robust Multi-array Analysis 

(RMA) and R affy package. Among them, three quality metrics: scaling factor (sfs), 

average background (avBg) and percentage of present calls (pps) are from MAS 5.0; two 

metrics: Normalized Unscaled Standard Errors (NUSE), and Relative Log Expression 

(RLE) are from RMA; and one quality metric, the RNA degradation (RNAdeg) is from R 

affy package.  Figure 2-1 illustrates the workflow for microarray quality assessment.  

intensities data

Calculate MAS 5.0 algoritm
------------------------------------

Verify scale factor,
average background,

present percent

Remove low quality arrays

RNA degradation

RMA background correction
--------------------------------------

Normalization
--------------------------------------

PLM summarization

Verify NUSE, RLE

Figure 2-1. Quality control workflow 
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2.2.1 Average Background 

In MAS 5.0 algorithm, the background intensity is based on the mis-match probes 

values for each array. Since average, minimum and maximum background intensity of 

arrays should be comparable, an array with a significantly higher (or lower) background 

value indicates low quality. There are many reasons that an array has significantly 

different average backgrounds, for example, abnormal hybridization or too many cDNA 

in samples. MAS 5.0 algorithm computes average background as the 2nd percentile of 

the feature intensities in a given region of the array. Typically Affymetrix recommends 

average background values in a good quality array should between 20 and 100. 

2.2.2 Scale Factors 

In most of normalization methods, there is an assumption that the expressions of 

most genes are unchanged for high-throughput expression arrays. Namely, it says that the 

trimmed mean intensity for each array should be constant. If arrays are comparable, the 

average signal intensities should be similar and not be affected by the proportion of up- 

and down-regulated genes. Affymetrix MAS 5.0 algorithm scales the intensity for every 

array so that each array has the same mean. Scale factor represents the amount of scaling 

applied to the array. Low quality arrays have significant higher or lower scale factors. 

This may due to different issues occurred during RNA extraction, labeling, scanning or 

array manufacture.  
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2.2.3 Percent Present 

MAS 5.0 algorithm generates present, marginal, absent calls for each probe pair 

of a probeset on an array based on the difference between PM and MM values. When the 

PM values of a probeset are not significantly above the values of MM probes, the 

probeset will be flagged to marginal or absent. The percent present call is defined as the 

percentage of probesets called present on an array. Differences in array processing 

pipelines, variations in the amount of starting material would lead to low present calls. 

So, we considered array with low percent present calls as poor quality array. 

2.2.4 Normalized Unscaled Standard Error (NUSE) 

 

The NUSE and RLE metrics from RMA are based on probe-level model (PLM) 

summarization. The PLM summarization uses an M-estimator robust regression 

expression model to measures the expressions.  

For a given gene j  and a given array i , the NUSE is defined as ratio between its 

expression standard error and the median standard error of all genes: 

( )
( )

[ )( ]

ij

ij

i ij

SE

median S
NUSE

E





                                             (2-1) 

We can use NUSE to assess array quality, since NUSE addresses the variability 

between genes. The NUSE values should be standardized at the probeset level across the 

arrays. If an array have SE higher than the median SE, this array will be considered to be 
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low quality. Generally, the median NUSE of an array larger than 1.05 or the array have a 

large IQR indicates low quality.  

2.2.5 Relative Log Expression (RLE) 

The Relative Log Expression (RLE) is defined as the difference between the 

expressions of a probese and the median expressions for the same probeset across all 

arrays. The assumption behind RLE is that the median expressions for most probe sets 

are not changed across the arrays. For gene i  on array j ,  

) ( )( ij ij j ijR medianLE                        (2-2) 

RLE value not near zero means that the number of up-regulated genes does not 

approximately equal the number of down-regulated genes. And a large RLE IQR reveals 

that most genes are differentially expressed. The RLE of a high quality array should be 

around 0 on a log scale. 

2.2.6 RNA Degradation 

The RNA can be degraded from its 5’ end. Thus, the intensities of probes at the 3'  

end of a probeset are higher than those at the 5'  end.  The RNA Degradation algorithm in 

R affy package uses a t-distribution linear model to identify the degradation of the RNA. 

High slope of RNA degradation line of an array indicates degradation, in other words, the 

poor quality. 
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2.2.7 Cut-off of Quality Control Metrics 

We chose the cut-off for each quality control metric according to Lukk, Margus, et 

al. (2010) and Bolstad, et al. (2003). The final cut-off chosen for filtering the low quality 

array were: -2<sfs<2, 20<avBg<100, pps>35, NUSE<1.025, -0.15<RLE<0.15, 

RNAdeg<4.5.  

2.3 Microarray Preprocessing Methods 

2.3.1 Introduction 

Microarray preprocessing methods include three main steps (Figure 2-2): 

background correction, normalization and summarization. Several preprocessing 

approaches have been proposed. Two widely used methods are Affymetrix Micro Array 

Suite (MAS 5.0) and Robust Multi-array Analysis (RMA). 

Raw intensity 
data

Summarization
Expression level 

data
Background 
correction

Normalization

 

Figure 2-2. Preprocess work flow 

 

Background correction 

The raw intensity obtained from array usually includes the background intensities. 

Since even there is no RNA in the sample, the laser scanner can still detect low level of 
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fluorescence on the array. The background correction step tries to remove the background 

noise from the raw intensity. 

Normalization 

Normalization detects and corrects systematic differences between arrays by 

removing the global effects, so that data from different arrays can be directly compared. 

Studies showed that the normalizing procedure has a marked impact on the final 

expression measures (Bolstad et al., 2002). After normalization, biological differences 

can be more easily detected.  

Summarization 

Summarization is the step to obtain expression measure, which represents the 

amount of the corresponding mRNA in original sample for each gene by summarizing 

probe intensities from each probeset on each array.  

2.3.2 MAS 5.0 Preprocess. 

Affymetrix Micro Array Suite 5.0 (MAS 5.0) is a set of models developed by 

Affymetrix company for image processing, signal quantification, background correction, 

preprocessing, scaling, and normalization of Affymetrix arrays.  

MAS 5.0 Background Correction 

MAS 5.0 background correction compute the background for each probeset by 

taking a robust average of the log ratios of PM to MM for each probe pair. MAS 5.0 

background correction method provides a Tukey’s biweight estimate to adjust PM 

intensities for each gene (Hubbell et al., 2002).  
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Scale Normalization 

Consider a matrix  X with I  rows and J  columns. Let
ijx  denote the entry in row i  

and column j , let  

 1 2  ,  ,  ...,  .j j j Ijm median x x x                   2-3 

 1 2, ,..., .| |j j j j j Ij jMAD median x m x m x m      2-4 

Here, MADj represents median absolute deviation. 

MAS 5.0 Scale normalization is to calculate the constant value of a column by 

multiplying all the entries in the jth  column by / jC MAD , where 
1/

1
( )

J J

jj
C MAD


   

2.3.3 Robust Multi-array Analysis 

Robust Multi-array Analysis (RMA) is written by Bolstad and is motivated by a 

log scale linear additive model (Rafael. A. et al., 2003). RMA preprocess method 

contains three steps: background correction, quantile normalization, and median polish 

summarization. 

RMA Background Correction 

RMA background correction method estimates a common mean background from 

perfect match on each array using a convolution model and then subtracts this 

background from perfect match to generate the corrected perfect match. 

Quantile Normalization 

In quantile normalization step, the perfect match intensities will be averaged, and 

the individual perfect match intensity will be replaced by the average.  
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Quantile normalization algorithm has five steps: 

1. Build a matrix to store all the perfect match intensities of all the arrays that each 

column records the intensities belong to an array, each row represents the 

intensities across all arrays identify by the same probe.  

2. Store the rank value of the intensities in each column from ascending order and 

set aside to use in step 6. 

3. Sort each column in ascending order. 

4. Calculate the mean value for each row.  

5. Sort the mean values in ascending order and record the rank. 

6. Replace the intensities with the mean value which have the same rank. 

Summarization 

Each gene is represented on the Affymetrix microarray by one or more probe sets. 

Median polish summarization step combines the probe-level intensities into one value 

representing the expression level of a gene using the robust median polish approach. 

RMA median polish summarization include following steps: 

1. For each probeset, build a matrix to store perfect match intensities for of all 

arrays that each column records the intensities belong to an array, each row 

represents the intensities across all arrays identify by the same probe.  

2. Compute the median value for each row, and record the value as the row grand 

effect.  Then, the intensities are subtracted with the row grand effect of this row. 
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3. Compute the median value for each column, and record the value as the column 

grand effect. Then, the intensities subtract with the column grand effect of this 

column. 

4. Repeat steps 1 ~ 4 until no changes occur with the row or column medians and 

we got a residual matrix.  

5. Original matrix subtracts with the residual matrix and then calculates the column 

mean for each column. The mean values are the expression of the probesets for 

the array. 

2.4 Map/Reduce 

Nowadays, researchers are facing increasing ultra large scale data sets. Recent 

developments in open source software based on MapReduce programming model, for 

example the Apache Hadoop project and associated software, provide a foundation for 

scaling analyses of  terabyte even petabyte scale on large clusters of commodity hardware 

in a reliable, fault tolerant manner (J. Dean et al., 2004). This software also provides a 

simple programming environment that makes it easy for programmers to design a parallel 

program that can efficiently perform a data-intensive computation.  
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Split 0

Split 0

Split 0

Split 0

Map

Map

Map

shuffle

shuffle
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record
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mapper partitioner shuffle reducer
output
writer

 

Figure 2-3. The illustration of MapReduce framework 

The main idea of Map/Reduce programming model is splitting a large problem 

into sub-parts, computing partial solutions on sub-parts independently, and then 

assembling the partial solutions into the final solution (Figure 2-1). Standard MapReduce 

programming model includes seven major parts (Donald et al., 2012): 

Record reader 

The record reader parses an input data into records, which are data with default 

chunk size (typically 64 MB). Then, the record reader passes the data to the mapper in the 

form of ,  key value  pairs. The key contains the positional information and the value is 

the corresponding chunk of record data. 

Mapper 

The mapper runs the code provided by user on each ,  key value   pair to 

generate new intermediate ,  key value   pairs. We should carefully decide the key and 
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value which will affect the MapReduce job accomplishment. The key is what the data 

will be grouped on and the value is the information being analyzed in the reducer. 

   ,  ',  'Map key value List key value    

Combiner 

The combiner can assemble data of mappers on the same local node. It uses a 

user-provided method to aggregate values of the same intermediate key. Combiner can 

significantly reduce the amount of data that will be moved over the network when there 

are many intermediate pairs generated by  mappers on computer node. 

   ',  List( ') '',  ''key valuesCombine List key value 
 

Partitioner 

The partitioner parses the intermediate ,  key value  pairs from the mapper (or 

combiner if available) into shards, and pass one shard to each reducer. The partitioner 

randomly distributes the keys equally over the reducers and sends the keys with the same 

value produced by mappers to the same reducer. The partitioner stores the data to the 

local file system, which will be retrieved by respective reducer later. The default behavior 

of the partitioner can be changed by the programmer.  

Shuffle and sort 

The shuffle and sort step is the first step of reduce task. The shuffles pull all the 

output files written by the partitioners to the local machine where the reducer is running. 

Then, the individual data pieces are sorted by key and form one larger data list. The 

sorted data will be easily iterated in the reduce task. This shuffle and sort handled by the 

framework automatically and cannot be changed by user. Developers can only control the 



16 

 

way to sort and group key using a custom Comparator object through the configuration 

parameter provided by framework. 

Reducer 

The reducer applies the user-provided function to the grouped data once per key. 

The input of the function is the key and an iterator (i.e. Iterable calss) over the values of 

that key. Various functions can be implemented in reducer, such as aggregating, filtering, 

and combining. After the reducer executes the function, it generates zero or more

,  key value  pairs and sends to output writer.  

Reduce (key', List(values')) -> List(key'', value'')
 

Output writer 

The output writer receives the ,  key value  pairs from the reducer and formats it 

by separating the key and value with a tab and separating records with a newline. Then, 

the output writer writes it out to HDFS. The developers can define their own richer output 

format.   

The parallelism of the MapReduce framework comes from the fact that each map 

or reduce operation can be executed on a separate processor independently of the others. 

Thus, the user simply defines the function    as mapper function and function    as 

reducer function, and the system automatically routes data to available processors. 

2.5 Hadoop 

Apache Hadoop is widely used open source software that implements the 

MapReduce parallel programming framework. Hadoop provides a simple programming 
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interface that makes it easy for developers to efficiently design parallel programs for data 

intensive computations. Hadoop can be installed on large clusters (with thousands of 

nodes) and process vast amounts of data (as much as terabyte or even petabyte datasets) 

in parallel. No hardware modification is needed other than possible changes to meet 

minimum recommended RAM, disk space, etc. The initial version of Hadoop was created 

in 2004 by Doug Cutting inspired by Google’s three famous MapReduce papers. Hadoop 

became a top-level Apache Software Foundation project in January 2008. There have 

been many academic and commercial contributors, such as Yahoo (Yahoo 2011.), 

Facebook (J. S. Sarma. 2011), Intel, Microsoft and etc., and a broad and rapidly growing 

user community. 

The current Apache Hadoop platform is composed of three key functional 

components: the Hadoop Distributed File System (HDFS), Hadoop MapReduce and 

Hadoop Scheduler. The HDFS is a distributed file system and provides fault-tolerant 

access to large data. The Scheduler provides run-time tasks, such as scheduling, load 

balancing, failure recovery, inter-machine communication, and distributed partitioning of 

data. The Hadoop MapReduce supports the execution of Map/Reduce applications. It also 

consists of a number of utility projects such as Apache Hive, HBase and Zookeeper. 

Each Hadoop MapReduce system includes of a single master node with one 

JobTracker and many slave nodes with several TaskTrackers (Figure 2-4), one 

TaskTracker per slave node. The master node schedules the job on the slave nodes, 

monitor them and re-execute the failed tasks. The slave nodes execute the jobs assigned 

by the master node.  
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Figure 2-4. JobTracker and TaskTracker interaction in Hadoop 

The HDFS allows parallel accessing the data across the nodes of the cluster using 

the MapReduce paradigm. For portability across a variety of platforms, HDFS is written 

in Java and only requires commodity hardware. In Hadoop, the compute nodes and the 

storage nodes are the same (Figure 2-4), namely, the MapReduce framework and the 

HDFS are running on the same set of nodes. Thus, the computation jobs can be 

effectively executed on the nodes where data is already presented. 

There are three types of daemons in a standard HDFS cluster (Figure 2-3). The 

namenode stores file system metadata, stores file to block map, and provides a global 

picture of the file system. The secondary namenode performs internal namenode 

transaction log check pointing. Many datanodes store block data (file contents). 
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Figure 2-5. Architecture overview of HDFS 

Advantages of Hadoop framework: 

Suitable to process a very large dataset. The Map/Reduce framework is designed 

to address data-intensive tasks with the emergence of Big Data.  

Multiple programming language API. People can use codes written in other 

languages, such as Python, C, bsh, perl through Hadoop Streaming, which is a utility of 

Hadoop that allows users to create and run jobs with any executables as the mapper 

and/or the reducer. People can also use Hadoop pipes, a software development tool to 

implement MapReduce applications that connects programs written in C and C++ with a 

variety of high-level programming languages. 

Data locality. As the data is collocated with the computing nodes in Hadoop, it 

can schedule Map tasks close to the data on the same node or the same rack.  
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Fault-tolerant, shared-nothing architecture. (M. Stonebraker, 1986) Tasks are 

independent in Map/Reduce framework except the output of mappers feeding into 

reducers under Hadoop control. Hadoop can detect node failures automatically and restart 

the task on other healthy nodes.  

Reliability. In Hadoop, data is stored in HDFS and replicated across multiple 

nodes. 

2.6 Parallel Computing Challenges 

 MapReduce 

The MapReduce framework does not provide a general solution to big data. It 

provides clear boundaries for what you can and cannot do, making the number of options 

you have to consider fewer than those you may be used to. We have to fit our problems 

into the MapReduce framework, which might be challenging.  

Hadoop 

There is a challenge to load the data into and out of the HFDS files system as the 

HDFS cannot be directly mounted onto the existing operating system. We can only use 

I/O operating packages providing by Hadoop to manipulate the HDFS, all the Java 

original I/O functions become invalid. 

Tuning Hadoop to achieve good performance is also a challenge. There are a large 

set of configuration parameters in Hadoop and many of them have an impact on 

performance. We need to familiar with the internal working of the Hadoop framework to 

optimally tuning these configuration parameters.   

Palmetto cluster 
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The co-existing of Hadoop framework with HPC resource management systems is 

a challenge. Both systems have their own job submissions and management. Hadoop uses 

a shared-nothing style architecture, whereas most HPC resources including Palmetto 

cluster employ a shared-disk setup. Palmetto’s Orange FS “newscratch” has compatibility 

issues with Java. We cannot directly operate data from newscratch parallel distribution by 

using Java I/O API. Also, the “local_scratch” mount on each node does not have enough 

space to store all the data. Furthermore, Palmetto cluster only allow commonly users 

submitting jobs running no more than 72 hours.  
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Chapter 3  

DESIGN OF MAP/REDUCE BASED ANALYSIS TOOLS  

3.1 Overview 

Our development has four stages (Figure 3-1). In first stage, we implemented a 

sequential version of quality control and preprocessing algorithms using Java. We tested 

and optimized the sequential program to make sure that they are correct and efficiency. In 

the second stage, we analyzed the sequential program and found the potential steps that 

can be parallelized with Map/Reduce model. In the third stage, we implemented the 

Map/Reduce based parallel program, and deployed, tested it. In the fourth stage, we 

optimized the program. In this chapter, we discussed how to parallelize the microarray 

quality control and preprocessing methods with Map/Reduce framework. 

Sequential tools
test、modify、

optimize
Map/Reduce based 

tools

deploy、test、
optimize

Performance is 
good?

Y

N

 

Figure 3-1. Software design work flow 
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Our Map/Reduce program contains three components: The first component reads all 

the intensities data from .cel file into HDFS and reads the .cdf file, extract the probe 

position information to HDFS. The second component does the MAS 5.0 and RMA 

preprocess calculations, including background correction, normalization and 

summarization. The third component performs quality control calculations of six 

parameters. 

3.2 Read Array Information into HDFS 

To perform quality control and preprocess, we first need to extract perfect match 

intensities and mis-match intensities for all arrays from each .cel file into HDFS. We used 

Affymetrix fusion Software Developers Kit (SDK), which is a Java package to parse 

Affymetrix GeneChip® microarray files to extract position information of each probe 

from .cdf file and extract perfect match and mis-match intensities from each .cel file. We 

used the probe position information to associate the intensities with corresponding probes.  

The two main problems we faced in this stage are, (1) .cel files is stored in the 

“newscatch” orange file system (orange FS) and we can only use Java to read, copy and 

move data from this file system. However, directly reading data from or writing data to 

the orange FS lead to some unknown errors. Then, we first copied the data to the 

“local_scratch” local file system, and read and processed it. After we finished, we deleted 

the data from the local file system. (2) Fusion SDK cannot parse data stored in HDFS, we 

had to put data in the local file system and call fusion SDK API to extract the information 

and store them to the HDFS for later usage.  



24 

 

 For the getting intensities step (Table 3-1), we used the mapper to read a file with 

the name of .cel files and send to reducer. The reducer first read the .cel file from orange 

FS to local file system. Then, it parsed the .cel file and stored intensities into HDFS. For 

getting probe positions (Table 3-2), we used a map-only to read the position information 

from .cdf file and stored in HDFS. Table 3-1, 2 lists the pseudo-code of Map/Reduce 

implementation for these two steps. 

Table 3-1. Pseudo-code of map and reduce functions for getting intensities  

Mapper: 

 map (Long offset, String celName) 

  emit(offset, celName); 

 

Reducer: 

 reduce (Long offset, List<String> celNames)  

  for celName in celNames 

   CDF cdf = new CDF ( get_cdf_data ( cdf_filename )) 

   ChipSet chipset = new ChipSet ( cdf ) 

   File local = new File ( “/local_scratch/”+ celName ) 

   Copy_file ( new File (celPath + celName), local ) 

   Chip chip = new Chip ( cdf, get_cel_data( local )) 

   chipset.add_chip ( chip ) 

  delete_file_or_directory( local ) 

  for chip in chipset 

   String [] intensities = get_intensities_from_chip ( chip ) 

   emit ( celName, intensities ) 

 

Table 3-2. Pseudo-code of map functions for getting probe positions  

Mapper: 

map (Long offset, String celName) 

  CDF cdf = new CDF ( get_cdf_data ( cdf_filename )) 

  File local = new File ( “./”+ celName ) 

  Copy_file ( new File (celPath + celName), local ) 

  Chip chip = new Chip ( cdf, get_cel_data( local )) 

  delete_file_or_directory( local ) 

  String [] positions = get_position_from_chip ( chip, cdf ) 

  for probeset in chip 

   emit ( probesetName, position) 
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3.3 Map/Reduce Implementation for MAS 5.0 Methods 

Since the MAS 5.0 performs the quality control and preprocessing algorithms 

independently for each array, it is easy to parallelize the MAS 5.0 algorithms. We first re-

implemented the MAS 5.0 algorithms in Java. We then created a map-only job to call the 

MAS 5.0 algorithm functions individually to process the intensities data for each array. 

The mapper wrote the name of the array to HDFS if it is low quality, or wrote the 

background corrected and normalized intensity values of the array to HDFS, otherwise. 

Table 3-3 lists the pseudo code of Map/Reduce implementation for MAS 5.0 methods.  

Table 3-3. Pseudo-code of map function for MAS 5.0 

Mapper: 

map ( String arrayName, String [] intensities ) 

 do_mas5_algorithm ( intensities ) 

 scaleFactor = get_scale_factor () 

 if output low quality array 

      if scaleFactor < -2 || scaleFactor > 2 

  emit ( arrayName, “sfs” ) 

      if averageBackground < 20 || scaleFactor > 100 

  emit ( arrayName, “avbg” ) 

   if percentPresent < 35 

  emit ( arrayName, “pps” ) 

 if output background corrected and normalized intensities 

  emit (arrayName, intensities) 

 

3.4 Map/Reduce Implementation for RMA Methods 

3.4.1 Implementation of RMA Quality Control Methods  

PLM summarization Map/Reduce implementation 

We designed a Map/Reduce based job for PLM summarization. The mappers in 

this job read the intensities and position information from the files stored in HDFS. Then 
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the mappers use the position information to determine which intensities belong to a given 

probeset. Mappers emitted probeset name and the intensities belong to this probeset as 

key-value pairs. Reducers received the key-value pairs and built a matrix to store all the 

intensities for each probe set. Each row of the matrix contains the intensities from the 

same array; each column contains the intensities identified by the same probe. After that, 

for each probeset, reducer called the PLM summarization function (our own Java 

implementation) to calculate the expression value and standard errors. Finally, the 

reducer wrote the expressions and standard errors to the HDFS. Table 3-4 lists the pseudo 

code of Map/Reduce implementation of PLM summarization. 

Table 3-4. Pseudo-code of map and reduce functions for PLM summarization 

Mapper: 

 map (String arrayName, String [] PMintensities) 

  String [] positions = get_position_from_file ( positionFile ) 

  Probesets = get_probeset_info_from_positions ( positions ) 

  for probeset in probesets 

   String intensities  

 find_intensities_belong_to_the_probeset (PMintensities, probeset ) 

   emit ( probesetName, intensities ) 

    

Reducer: 

 reduce ( String probesetName, List<String> intensities ) 

  for intensitiesInTheSamechip in intensities 

   z.addRow (intensitiesInTheSamechip ) 

  PLM_summarization ( z, expressions, standardErrors ) 
 emit ( probesetName, expressions ) 

 emit ( probesetName, standardErrors ) 

. 

NUSE and RLE Map/Reduce Implementation 

We used one Map/Reduce job to calculate NUSE and RLE. This job contains two 

sub-jobs, one for computing NUSE metric, the other for calculating RLE metric. The 

reason we implemented these two algorithms together is that the work flow of these two 
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algorithms are similar. We can reduce the codes for these two algorithms. Beside, 

running these two algorithms together can reduce the total running time.  

In NUSE sub-job, the mapper read the standard errors (SEs) of probesets from 

HDFS and calculated the median SE. The mapper then computed NUSE values and 

emitted array name with NUSE value as output key-value pair. Reducers collected all 

NUSE values of an array, found the median of NUSE and calculated the IQR. Finally 

reducer wrote the array name to the HDFS if the array is a low quality array. Table 3-5 

lists the pseudo code of Map/Reduce implementation of calculating NUSE. 

Table 3-5. Pseudo-code of map and reduce functions for calculating NUSE 

Mapper: 

 map ( String probesetName, String []standardErrors ) 

  double median = calculate_median (standardErrors) 

  if median = 0 

   median = 1 

  if median != -1 

   for standardError in standardErrors 

    standardError = standardError / median 

  else  

   for standardError in standardErrors 

    standardError = NaN 

  for standardError in standardErrors 

   emit (arrayName, standardError) 

Reducer: 

 reduce ( String arrayName, List<String> standardErrors) 

  String [] buffer = new String [standardErrors.length] 

  for ith standardError in standardErrors 

   if standardError = NaN 

    buffer[i] = Double.positive_infinitive 

   else 

    buffer[i] = standardError 

  median = get_median ( buffer ) 

  double [] IQR = do_quartiles ( buffer without positive infinitive value) 

  if median > 1.025 

  emit (arrayName, “NUSE” ) 
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The RLE sub-job is almost the same as NUSE sub-job. First, each mapper read all 

the expression values from HDFS.  Next, the mapper calculated the median expression 

and computed the RLE for each probeset. Third, mapper emitted array name and RLE as 

output key-value pair. Forth, each reducer collected all the REL values belong to an 

array, found out the median value among REL and calculated the IQR. At last, reducer 

wrote the array name to the HDFS if it’s a low quality array. Table 3-6 lists the pseudo 

code of Map/Reduce implementation of calculating RLE. 

Table 3-6. Pseudo-code of map and reduce functions for calculating RLE 

Mapper: 

 map ( String probesetName, String [] expressions ) 

  double median = calculate_median ( expressions ) 

  for expression in expressions 

   expression = expression - median 

   emit (arrayName, expression ) 

 

Reducer: 

 reduce ( String arrayName, List<String> expressions ) 

  String [] buffer = new String [expressions.length] 

  for ith expression in expressions 

   buffer[i] = expression 

  median = get_median ( buffer ) 

  double [] IQR = do_quartiles ( buffer without positive infinitive value) 

  if median > 0.15 || median < -0.15 

  emit (arrayName, “RLE” ) 

3.4.2 Implementation of RMA Preprocessing Methods  

RMA background Correction Map/Reduce Implementation 

The RMA adjusts background for each array individually. So, we used a mapper 

only job to perform background correction. The mapper read the array perfect match 

intensities from HDFS and corrected the background noise, then wrote the background 
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corrected intensities to the HDFS for later usage. Table 3-7 lists the pseudo code of 

Map/Reduce implementation for RMA background correction. 

Table 3-7. Pseudo-code of mapper for RMA background correction 

Mapper: 

map (String arrayName, String []PMintensities) 

  String [] backgroundCorrectedIntensities 

 = background_correction ( PMintensities ) 

  emit (celName, backgroundCorrectedIntensities) 

 

RMA quantile normalization Map/Reduce Implementation 

We divide the quantile normalization job into three sub jobs: “calculate mean”, 

“merge mean files”, and “do quantile normalize”. The workflow to perform quantile 

normalization using those three sub tasks are shown in Figure 4-2. We implemented the 

Map/Reduce based algorithm for each sub task separately.  

Intensities

Merge mean files

Sort intensities
Compute means

Compute rank
Normalize intensities

Normalized 
intensities

 

Figure 3-2: Map/Reduce normalization work flow 

In “calculate mean” step, each mapper read the perfect match intensities from 

HDFS and sort these intensities. Then, the mapper emitted the rank i  and the ith  largest 

intensity as key-value pair to the reducer. Each reducer received the rank i as key, the ith

largest intensities from all arrays as value. Reducer calculated the mean values of the ith
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largest intensities and wrote it to HDFS. Table 3-8 lists the pseudo code of Map/Reduce 

implementation for calculating mean. 

Table 3-8. Pseudo-code of map and reduce functions for mean calculation 

Mapper: 

map (String arrayName, String [] PMintensities) 

  sort ( PMintensities ) 

  for index in range 0 … size of PMintensities 

   intensity = PMintensities[index] 

   emit (index, intensity) 

 

Reducer: 

 reduce ( int index, List<String> intensities ) 

  mean = calculate_mean ( intensities ) 
 emit ( index, mean ) 

 

Since each reducer generated on mean file in “calculate mean” step, there are 

multi-files store the results in HDFS. We need an extra map/reduce job to merge all the 

files into one file. The mappers read each file from HDFS and emitted the key-value pairs 

to the reducer. Here, we specified one reducer to receive all the key-value pairs and write 

these key-value pairs to a file in HDFS. Table 3-9 lists the pseudo code for merging mean 

files. 

Table 3-9. Pseudo-code of map and reduce functions for merging mean files 

Mapper: 

map (int index, String mean) 

  emit (index, mean) 

 

Reducer: 

 reduce ( int index, String mean ) 

  emit (index, mean) 

  

The final step is to compute the rank for each mean value and replace the 

intensities having the same rank with the mean value. We created a map-only job for this 
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step. The mapper read the mean values from the file in HDFS, and created a structure 

called Item, who contains two fields, data and rank. The data stores the intensity and 

rank contains the original rank of this intensity. For each intensity value, the mapper 

created Item and stored it to an Item list. Then, the mapper sorted the mean values and 

computed the rank for each mean values. Based on the rank, the mapper replaced the 

intensity with the corresponding mean value. Finally, the mapper wrote the normalized 

intensities to the HDFS. Table 3-10 lists the pseudo code for computing rank and 

normalizing intensities.  

Table 3-10. Pseudo-code of map function for computing rank and normalizing intensities 

Mapper: 

map (String arrayName, String [] intensities) 

 String [] means = read_means_from_file ( mean_file ) 

 for intensity in intensities 

  Item item = new Item () 

  item.data = intensity 

  item.rank = index in intensities array 

  itemList.add ( item ) 

 sort ( itemList ) 

 int [] ranks = rank_order ( means ) 

 for ith item in itemList 

  if ranks[i]- [ ]ranks i  >0.4 

   item.data = [ [i] 1] [ [i]0 ].5 mean ranks mean ranks          

  else 

   item.data = [ [i]0.5 1]mean ranks     

 // create new normalizedIntensities array according to itemList 

  emit ( arrayName, normalizedIntensities ) 

 

Median polish summarization Map/Reduce implementation 

 The median polish summarization used the median polish method to perform the 

summarization of gene expressions. The map/reduce job for median polish 

summarization is similar to the job for PLM summarization. The mapper read the 
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intensities and position information from the files stored in HDFS. Then the mappers use 

the position information to find the intensities for each probeset. Mappers emitted 

probeset name and its intensities as key-value pairs. Reducers received the key-value 

pairs and built a matrix to store all the intensities for each probe set. Then, the reducer 

called the median polish summarization function (our own Java implementation) to 

calculate the expression value for each probeset. Finally, the reducer wrote the 

expressions to the HDFS. Table 3-11 lists the pseudo code for median polish 

summarization. 

Table 3-11. Pseudo-code of map and reduce functions for Median polish summarization 

Mapper: 

 map (String arrayName, String [] PMintensities) 

  String [] positions = get_position_from_file ( positionFile ) 

  Probesets = get_probeset_info_from_positions ( positions ) 

  for probeset in probesets 

   String intensities  

= find_intensities_belong_to_the_probeset (PMintensities, probeset ) 

   emit ( probesetName, intensities ) 

    

Reducer: 

 reduce ( String probesetName, List<String> intensities ) 

  for intensitiesInTheSamechip in intensities 

   z.addRow (intensitiesInTheSamechip ) 

  median_polish_summarization ( z, expressions) 
 emit ( probesetName, expressions ) 

 

3.5 Map/Reduce Implementation for RNA Degradation Method 

The RNA degradation was also calculated for each array individually. We 

designed a map-only job to calculate the RNA degradation. In this job, each mapper call 

RNA degradation function (our own Java implementation) to compute the RNA 
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degradation metric for an array and output the array name if the array is low quality. 

Table 3-12 lists the pseudo code of Map/Reduce implementation for RNA degradation.  

Table 3-12. Pseudo-code of map function for RNA degradation 

Mapper: 

map ( String arrayName, String [] PMintensities ) 

  String [] positions = get_position_from_file ( positionFile ) 

  Probesets = get_probeset_info_from_positions ( positions ) 

  for probeset in probesets 

   String intensities  

= find_intensities_belong_to_the_probeset (PMintensities, probeset ) 

String [] loggedIntensities = log_2 ( intensities ) 

loggedIntensitiesList.addRow (loggedIntensities ) 

 

double [] means  

= get_mean_according_to_intensities_list ( loggedIntensitiesList ) 

double [] standardDeviations  

= get standard_deviation_according_to_intensities_list ( loggedIntensitiesList ) 

 firstMean = get_first_element ( means ) 

 for ith mean in means 

  mean = mean – firstMean / (standardDeviations[ i ] / N ) 

 double slope = linear_regression ( means ) 

  

 if slope > 4.5 

  emit ( arrayName, “RNA degradation” ) 
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Chapter 4  

EXPERIMENTAL RESULTS 

4.1 Introduction 

We applied our tools to the microarray data of Arabidopsis and rice, the two 

model plants with complete genome sequences.  

All CEL files download from the Gene Expression Omnibus (GEO) website 

http://www.ncbi.nlm.nih.gov/geo/. GEO is a public repository that stores microarray and 

other forms of high-throughput functional genomic data. The data in GEO is free to 

public. 

4.2 Sequential Tools for micro array data analysis 

We compared our Map/Reduce based microarray analysis tools to sequential 

tools, MAS 5.0 tools (apt-mas5) from Affymetrix power tools, RMA preprocess tool and 

RMA quality control tool from RMAexpress. These tools are widely used by 

bioinformatics communities.  

Affymetrix Power Tools 

The Affymetrix Power Tools (APT) is a set of cross-operating system 

command line programs developed by Affymetrix using C/C++ language for processing 

and analyzing data from any Affymetrix GeneChip® array. The APT is obtained from the 

main APT website, http://www.affymetrix.com/support/developer/powertools/index.affx. 

RMAexpress 
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RMAExpress is a program written in C/C++ language for Windows (and 

Linux) to calculate gene expression values for Affymetrix Genechip® data using the 

Robust Multichip Average (RMA) expression summary. RMAExpress is available 

through http://rmaexpress.bmbolstad.com/. 

4.3 Hadoop Deployment and Execution 

Palmetto cluster uses TORQUE as its standard batch processing systems. In this 

thesis, we used a Portable Batch System (PBS) wrapper script based on MyHadoop 

(Krishnan et al., 2011) script to provide Hadoop instances on traditional supercomputing 

resources. The Hadoop system requests resources via TORQUE and Hadoop 

environment is configured based on the set of resources TORQUE provided (Figure 4-1).  

Get number of nodes and target config direcotry 
(HADOOP_CONF_DIR) from the user

Get list of resources assigned from PBS

Pick the 1st node as master, all  other nodes as slaves. Update 
the master node in the mapred-site.xml and core-site.xml 

Use the self defined HADOOP_DATA_DIR=/local_scratch/Hadoop_data
Update the core-site.xml

Update all tuned parameters in the hadoop-env.sh and *-site.xml f iles
Copy these configuration files to the HADOOP_CONF_DIR

Create HADOOP_DATA_DIR and log directory on local nodes

 

Figure 4-1. Hadoop deployment work flow 
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4.3.1 Deploying and configuring Hadoop: 

To deploy Hadoop on the palmetto cluster, we first created a PBS command qsub 

with configure parameters to request number of nodes we want (select= ), size of memory 

per node (mem=), number of cores per node (ncpu=), the kind of network we want to use 

(interconnect=) and how many time we what to run the Map/Reduce job (walltime=). 

Then, we generated a PBS script to record the number of resources (nodes) we required 

and configured the site specific parameters using the PBS wrapper configuration scripts 

together with the tuned Hadoop configuration files to generate new Hadoop configuration 

directory (HADOOP_CONF_DIR) 

 

$MY_HADOOP_HOME/bin/pbs-configure.sh -n $nodes -c $HADOOP_CONF_DIR 

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR namenode -format 

$HADOOP_HOME/bin/start-all.sh 

 

These scripts created and formatted HDFS and started the Hadoop daemons 

automatically. After configuration, we uploaded input data into the directory (i.e., input 

folder) of HDFS using Hadoop command, 

 

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR fs -put input input 

 

The Hadoop files that we need to configure include: 

Masters: This file set a node with machine name or ip address as master node.  
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Slaves: This file specifies the nodes with machine name or ip address as the slave 

nodes on the cluster.  

hadoop-env.sh: This script contains some environment variable settings used by 

Hadoop , such as the location of the logs, the maximum heap size, and JVM parameters 

for garbage collection and heap management.  

mapred-site.xml: This is the MapReduce site configuration file that includes 

important parameters, such as the number of parallel copies reducer use to download 

mappers output results, the host and port for the JobTracker, the JAVA_OPTS for the 

child JVMs of the mappers and reducers  and the maximum number of map and reduce 

tasks . 

core-site.xml: This is the core site configuration file that consists of the location of 

the HDFS (HADOOP_DATA_DIR) on every node, and the URI for the HDFS server 

.size of the read/write buffers and in-memory file system to merge map outputs, the 

memory limit used for sorting data. . 

hdfs-site.xml: This is the HDFS site configuration file that includes parameters for 

configuring the distributed file system, for example, the number of replications, the 

number of DataNode handlers and the HDFS block size. 

4.3.2 Running jobs on Hadoop 

By far, all setup steps had been done, and then we can start running our program in 

configured Hadoop environment (Figure 4-2).  

 

$HADOOP_HOME/bin/hadoop jar mapReduceApplication.jar 
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Once the Hadoop jobs were finished, the results can be downloads back from 

HDFS.  

 

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR fs -get output output 

 

Downloading output files back to shared file system is important because the 

output files are stored in HDFS distributed across the compute nodes and PBS in 

Palmetto Cluster will clear the local file system on the required nodes after the PBS job is 

finished. Thus, all results must be saved before the resources are re-allocated. Finally, we 

shut down all Hadoop daemons and exited PBS. 

 

$HADOOP_HOME/bin/stop-all.sh 

$MY_HADOOP_HOME/bin/pbs-cleanup.sh -n $nodes 
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Configure Hadoop for the acquired resources using our configuration scripts

Format HDFS and start Hadoop daemons using Hadoop commands, using the tuned 
configuration files generated the HADOOP_CONF_DIR

Request resources using regular resource manager PBS

Upload input data into HDFS from shared file system

Run Hadoop jobs

Get output data from HDFS to shared file system

Shut down Hadoop daemons and remove HADOOP_DATA_DIR

 

Figure 4-2. Hadoop MapReduce jobs execution workflow on Palmetto cluster 

4.4 Analyzing the Rice Dataset 

4.4.1 Rice microarray dataset: 

We downloaded 1778 rice microarray data using the Affymetrix Rice Genome 

Array chip (GPL 2025) from GEO (Edgar et al., 2002)  for our analysis. The detail of this 

dataset is listed in Table 4-1. 

Table 4-1. Description of rice dataset 

Number of .cel files 1778 

.cel file size 13MB~32MB 

Total .cel files size 26G 

.cdf file size 108.8MB 

Number of probe sets 57381 



40 

 

4.4.2 Sequential microarray tools evaluation using Rice microarray 

data 

We run the rice microarray data using the RMAExpress tools on desktop 

computer in our laboratory, the detail of the desktop computer shown in table 4-2. We 

tested apt-mas5 on Palmetto Cluster, since apt-mas5 require large memory. We applied 1 

node with 30GB memory to run the apt-mas5 program. The detail of the node is shown 

on table 4-3. The testing results revealed that sequential tools need more time and more 

memory to process the massive microarray dataset: the apt-mas5 program requires big 

memory (30GB) to process the results and the RMAexpress requires longer time (12 

hours) as shown in Table 4-4. 

Table 4-2. Sequential tools running environment on lab desktop 

• 1 node with 1 cpu and 1 core (4 core per chip, totally 2 chips) Intel i7 2600 @ 

3.4GHz HP DL980G7 

• 12GB DDR3 1333 MHz RAM 

• 1TB SATA drives @ 113.24 MB/sec 

• Fedora release 18 (Spherical Cow) with 3.6.9-200.fc18..x86_64 kernel 

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java 

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode) 
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Table 4-3. Sequential tools running environment on Palmetto Cluster 

• 1 node with 1 cpu and 1 core (8 core per chip, totally 8 chips) Intel Xeon 7542 @ 

2.8GHz HP DL980G7 

• 100GB of 1 TB DDR2 1600 MHz RAM  

• “local_scratch” 99GB 10000 rpm SATA drives  

• 10Gb Myrinet network interface 

• Scientific Linux release 6.1 (Carbon) with 2.6.32-220.4.1.el6.x86_64 kernel  

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java 

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)  

 

Table 4-4. Sequential tools running time 

APT (apt-mas5) RMA preprocess tool RMA quality control 

tool 

3hours 45mins 61sec  49mins 17sec  12hours 19mins 9sec  

 

4.4.3 Map/Reduce based microarray analysis evaluation 

               We tested our Map/reduce based microarray analysis tools on Palmetto Cluster. 

The details of the nodes we request are shown in Table 4-6. We request 5 nodes, 10 

nodes and 20 nodes respectively to test our tools. Our results showed that: (1) for some 

jobs, like “get intensities” (Table 4-7) and “do median polish summarization” (Table 

4-11), when we doubled the number of core to process the data, the running time just got 

slightly reduced. This is because these tasks write large amount of data to the HDFS or 

transfer data across the network (mapper send temporary output results to the reducers on 

other nodes), and lots of the time is wasted in waiting for the I/O operations. (2) for some 
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jobs, such as, “do RNA degradation” (Table 4-15), “compute NUSE & RLE” (Table 

4-16), “do background correction” (Table 4-7), even though we doubled the number of 

total cores, the running time is only decreased a little bit. The reason is that these jobs are 

running too fast, and most of the time is used to start up job, schedule job, clean up job, 

these steps taking fixed time. (3) for remain jobs, “compute mean” (Table 4-8), “do 

quantile normalize” (Table 4-10), “do PLM summarization” (Table 4-13), “do MAS 5.0” 

(Table 4-14), when we increased to the number of nodes from 5 to 10, 10 to 20, even 20 

to 40, the running time is reduced to nearly half.  

Based on the quality cutoff threshold, we identified that 278 of 1778 rice 

microarray data are low quality (having at least one of six measures without satisfying 

threshold). Table 4-20 lists the number of low quality rice array detected by each measure. 

 

Table 4-5. Map/Reduce based microarray tools testing environment 

• 8 cores per chip, 2 chip Intel E5-2665 @2.4GHz HP SL250s 

• 8GB of 64 GB DDR3 1600 MHz RAM  

• “local_scratch” 950 GB 10000 rpm SATA drives  

• 10/40Gb InfiniBand network interface 

• Scientific Linux release 6.4 (Carbon) with 2.6.32-358.2.1.el6.x86_64 kernel  

• Oracle Java(TM) SE Runtime Environment (build 1.7.0_21-b11) with Java 

HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)  
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Table 4-6. Comparison of time to “get intensities” 

Number of nodes Running time Number of cores used by 

job 

5 4mins, 8sec (248sec) Preduce=40 

10 3mins 11sec (191sec) Preduce=80 

20 2mins 40sec (160sec) Preduce=160 

 

Table 4-7. Comparison of time to “do background correction” 

Number of nodes Running time Number of cores used by 

job 

5 1mins, 26sec (86sec) Pmap=30 

10 1mins 9sec (69sec) Pmap=60 

20 1mins 3sec (63sec) Pmap=120 

 

Table 4-8. Comparison of time to” compute mean” 

Number of nodes Running time Number of cores used by 

job 

5 6mins, 5sec (365sec) Pmap=30, Preduce=40 

10 2mins, 58sec(178sec) Pmap=60, Preduce=80 

20 1mins, 33sec (93sec) Pmap=120, Preduce=160 

 

Table 4-9. Comparison of time to “compute mean” (no combiner) 

 

Number of nodes Running time Number of cores used by 

job 

5 9mins, 53sec (593sec) Pmap=30, Preduce=40 

10 5mins, 36sec (336sec) Pmap=60, Preduce=80 

20 2mins, 54sec (174sec) Pmap=120, Preduce=160 

 

Table 4-10. Comparison of time to “do quantile normalize” 

Number of nodes Running time Number of cores used by 

job 

5 5mins 5sec (305sec) Pmap=30 

10 3mins, 8sec (188sec) Pmap=60 

20 3mins, 27sec (207sec) Pmap=120 
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Table 4-11. Comparison of time to “do median polish summarization” 

Number of nodes Running time Number of cores used by 

job 

5 4mins, 12sec (252sec) Pmap=30, Preduce=40 

10 3mins, 1sec (181sec) Pmap=60, Preduce=80 

20 2mins, 30sec (150sec) Pmap=120, Preduce=160 

 

Table 4-12. Comparison of time to chain “do quantile normalize” and “do median polish 

Summarization” together 

Number of nodes Running time Number of cores used by 

job 

5 6mins, 47sec (407sec) Pmap=30, Preduce=40 

10 4mins 51sec (291sec) Pmap=60, Preduce=80 

20 4mins 58sec(298sec) Pmap=120, Preduce=160 

 

Table 4-13. Comparison of time to “do PLM summarization” 

Number of nodes Running time Number of cores used by 

job 

5 45mins, 5sec (2705sec) Pmap=30, Preduce=40 

10 22mins, 43sec (1363sec) Pmap=60, Preduce=80 

20 14mins, 53sec (893sec) Pmap=120, Preduce=160 

 

Table 4-14. Comparison of time to “do MAS 5.0” 

Number of nodes Running time Number of cores used by 

job 

5 27mins 40sec (1660sec) Pmap=30 

10 14mins, 5sec (845sec) Pmap=60 

20 7mins, 38sec (458sec) Pmap=120 

 

Table 4-15. Comparison of time to “do RNA degradation” 

Number of nodes Running time Number of cores used by 

job 

5 46 sec Pmap=30 

10 41 sec Pmap=60 

20 59 sec Pmap=120 
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Table 4-16. Comparison of time to “compute NUSE and RLE” 

Number of nodes Running time Number of cores used by 

jobs 

5 1mins, 41sec (101sec) Pmap=30, Preduce=40 

10 1mins, 2sec (62sec) Pmap=60, Preduce=80 

20 1mins, 15sec Pmap=120, Preduce=160 

 

Table 4-17. Comparison of time to “do quality control methods” 

Number of nodes Running time Number of cores used by 

job 

5 59mins, 50sec (3590sec) Pmap=30, Preduce=40 

10 31mins, 32sec (2006sec) Pmap=60, Preduce=80 

20 23mins, 41sec (1421sec) Pmap=120, Preduce=160 

 

Table 4-18. Comparison of time to “do preprocessing” 

Number of nodes Running time Number of cores used by 

jobs 

5 16mins, 16sec (976sec) Pmap=30, Preduce=40 

10 9mins 33sec (573sec) Pmap=60, Preduce=80 

20 8mins 22sec(502sec) Pmap=120, Preduce=160 

 

Table 4-19. Number of low quality chips being detected by metrics 

RNA 

degradation 

Average 

background 

Scale 

factor 

Present 

percentage 

NUSE RLE Total  

49 9 105 21 222 69 278 

 

4.5 Analyzing the Arabidopsis Dataset 

4.5.1 Arabidopsis microarray dataset: 

We downloaded 9031 Arabidopsis microarray data using the Affymetrix 

Arabidopsis ATH1 Genome Array (GPL 198) from GEO for our analysis. The detail of 

this dataset is listed in Table 5-21. 
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Table 4-20. Description of Arabidopsis dataset 

Number of .cel files 9031 

.cel file size 4.9MB~12MB 

Total .cel files size 59G 

.cdf file size 39MB 

Number of probesets 22810 

 

4.5.2 Sequential microarray tools evaluation using Arabidopsis 

data 

We run the Arabidopsis microarray data using sequential tools on Palmetto 

Cluster in Clemson University. The running environment required is the same as we test 

the rice dataset. Apt-mas5 program occur unhandled exception while processing the 

Arabidopsis dataset. The running time of RMAExpress quality control tool excess 72 

hours limitation. Thus, we were not able to obtain results for Arabidopsis microarray data 

using sequential tools. 

4.5.3 Map/Reduce based microarray analysis evaluation 

We tested our Map/reduce based microarray analysis tools using Arabidopsis 

data on Palmetto Cluster. The details of the nodes we requested are the same as those for 

running rice microarray data. We requested 10 nodes, 20 nodes, 40 nodes respectively to 

test our tools. The system configurations for each node are the same as we testing the rice 

dataset. Since the data size of the Arabidopsis dataset is much larger than that of rice, our 

experimental results are a little bit different. Our results showed that: (1) The running 

times of jobs like “get intensities” (Table 4-21) and “do median polish summarization” 
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(Table 4-25) were decreased slowing when we double the running cores. (2) The running 

times of jobs such as “do RNA degradation” (Table 4-28), “do PLM summarization” 

(Table 4-26), were reduced to half when the number of nodes are increased from 10 to 20. 

However, the running time were not reduced much when the nodes were increased from 

20 to 40. (3) The running time of jobs, such as “compute NUSE & RLE” (Table 4-29), 

“do background correction” (Table 4-22), “compute mean” (Table 4-23), “do quantile 

normalize” (Table 4-24), “do MAS 5.0” (Table 4-27), were reduced to nearly half when 

we increased to nodes from 10 to 20, and from 20 to 40.   

Based on the quality cutoff threshold, there are 3286 low quality Arabidopsis 

microarray data (having at least one of six measures without satisfying threshold) of 9031 

data. Table 4-33 lists the number of low quality rice array detected by each measure. 

Table 4-21. Comparison of time to “get intensities” 

Number of nodes Running time Number of cores used by 

job 

10 9mins, 32sec(572sec) Preduce=120 

20 6mins 18sec (378sec) Preduce=240 

40 4mins 50sec (290sec) Preduce=560 

 

Table 4-22. Comparison of time to “do background correction” 

Number of nodes Running time Number of cores used by 

job 

10 4mins 25sec (265sec) Pmap=20 

20 2mins 7sec (190sec) Pmap=40 

40 1mins 9sec (69sec) Pmap=80 

 

Table 4-23. Comparison of time to “compute mean” 

Number of nodes Running time Number of cores used by 

job 

10 6mins 20sec (380sec) Pmap=20, Preduce=120 

20 2mins 58sec (178sec) Pmap=40, Preduce=240 

40 1mins 34sec (94sec) Pmap=80, Preduce=560 
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Table 4-24. Comparison of time to “do quantile normalize” 

Number of nodes Running time Number of cores used by 

job 

10 6mins 44sec (404sec) Pmap=20 

20 3mins 3sec (183sec) Pmap=40 

40 1mins 37sec (97sec) Pmap=80 

 

 

Table 4-25. Comparison of time to “do median polish summarization” 

Number of nodes Running time Number of cores used by 

job 

10 9mins 41sec (581sec) Pmap=20, Preduce=120 

20 8mins 22sec (502sec) Pmap=40, Preduce=240 

40 7mins 3sec (423sec) Pmap=80, Preduce=560 

 

Table 4-26. Comparison of time to “do PLM summarization” 

Number of nodes Running time Number of cores used by 

job 

10 220mins 21sec (13221sec) Pmap=20, Preduce=120 

20 120mins (7200sec) Pmap=40, Preduce=240 

40 82mins 40sec (4960sec) Pmap=80, Preduce=560 

 

Table 4-27. Comparison of time to “do MAS 5.0” 

Number of nodes Running time Number of cores used by 

job 

10 41mins 59sec (2519sec) Pmap=20 

20 19mins 36sec (1176sec) Pmap=40 

40 10mins 44sec (644sec) Pmap=80 

 

Table 4-28. Comparison of time to “do RNA degradation” 

Number of nodes Running time Number of cores used by 

job 

10 1mins 36sec (96sec) Pmap=20 

20 46 sec Pmap=40 

40 30 sec Pmap=80 
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Table 4-29. Comparison of time to “compute NUSE and RLE” 

Number of nodes Running time Number of cores used by 

job 

10 3mins 40sec (220sec) Pmap=20, Preduce=120 

20 2mins 0sec (120sec) Pmap=40, Preduce=240 

40 1mins 5sec (65sec) Pmap=80, Preduce=560 

 

Table 4-30. Comparison of time to “do quality control methods” 

Number of nodes Running time Number of cores used by 

job 

10 224mins 1sec (1344sec) Pmap=20, Preduce=120 

20 121mins 9sec (7269sec) Pmap=40, Preduce=240 

40 83mins 49sec (5029sec) Pmap=80, Preduce=560 

 

Table 4-31. Comparison of time to “do preprocessing” 

Number of nodes Running time Number of cores used by 

job 

10 24mins, 50sec (1490sec) Pmap=20, Preduce=120 

20 15mins 29sec (929sec) Pmap=40, Preduce=240 

40 9mins 15sec (573sec) Pmap=80, Preduce=560 

 

Table 4-32. Number of low quality chips being detected by metrics 

RNA 

degradation 

Average 

background 

Scale 

factor 

Present 

percentage 

NUSE RLE Total  

1555 1009 778 34 1535 453 3286 
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Chapter 5  

TUNNING AND OPTIMIZING 

5.1 Code Level Optimizing 

Use a combiner 

Combiner can decrease the number of data sent to the reducers (White, Tom, 2012). 

For instance, in one of our Map/Reduce microarray analysis tool, the “compute mean” 

job, the mapper will send millions of (index, intensity) pairs to the reducer. If we use a 

combiner to assemble the intensities generated by mappers on one node, we can just send 

one key-value pair (index, (sum (local_intensities), N)), where N is the number of 

intensities. N usually is much larger than 1. The Figure 5-1 shows that using a combiner 

dramatically improved the performance of the job of getting mean. 

 

Figure 5-1. Effects of applying combiner on “compute mean” 
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Create map-only jobs 

Map-only job means that there is no reducer . Map-only job are efficient, since no 

data is needed to be transmitted from the mapper to the reducer. Most of the map tasks 

write output to HDFS directly. In our Map/Reduce based microarray analysis tools we 

implemented “get positions”, “get background correction”, “do MAS 5.0 algorithm”, “do 

RNA degradation” as map-only jobs. 

 

Concurrently submit independent jobs 

In Hadoop 1.x, reducer cannot reuse the mapper slots, so does mapper. 

Furthermore, to avoid mapper-reducer confliction, we usually require equal number of 

mappers and reducers. If we have two or more independent jobs, we can submit the jobs 

at the same time and could utilize the cluster resources better. For example, the “do PLM 

summarization” job will spend lots of time in the reduce phase. If we concurrently submit 

PLM summarization job with map-only jobs like “do MAS 5.0” job and “do RNA 

degradation” job, after map phase of “do PLM summarization” job is finished, we can 

reuse the mapper slots to run “do MAS 5.0” job and “do RNA degradation” job. In this 

way we can reuse the cores and decrease the overall running time. 

Hadoop provide a submit function to submit job for independent jobs: 

1 Job job = new Job (new configuration());  
 2  job.submit();  

 

The Figure 5-2 shows the performance improvement of concurrently submission of “do 

PLM summarization” job, “do MAS 5.0” job and “do RNA degradation” job. 
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Figure 5-2: Effect of Concurrently submission “do PLM summarization”, “do MAS 5.0” 

and “do RNA degradation” jobs simultaneously 

 

Use ChainMapper and ChainReducer 

ChainMapper and ChainReducer are special Hadoop mapper and reducer classes 

that can be used to chain multiple mappers as one mapper and one reducer with multiple 

mappers as one reducer (Miner et al., 2012). The output results of each chained map 

phase are directly sent to the next map phase through the pipeline. In this way, the map-

only job would not have to write the results into HDFS and read by the following job 

later. In our Map/Reduce microarray analysis tools, we use ChainMapper to bind map-

only “do compute rank & normalize” job with “do median polish summarization” job. 

Figure 5-3 shows the using chainMapper can reduce the running time.   
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Figure 5-3: Effect of using chianMapper to combine “do normalize” and “do median 

polish summarization” jobs together 

Use the most appropriate and compact writable type 

Converting numeric data to and from strings is inefficient and can actually use out 

a significant portion of CPU time . The binary Writable types will cost less space 

comparing to Text data. Since disk I/O and network transferring will become a bottleneck 

in large jobs, using VIntWritable or VlongWritable can save transmission time.  In our 

experiments, we learned that using Writable types effectively reduces the network traffic 

(data not shown). 

Reuse Writables 

One of the coding mistakes is allocating new Writable object for every output 

from mappers or reducers. For example, 

 1  for (String word : words) {  

 2          context.write(new Text(word), new Intwritable(1)  

 3  }  

 

557

369 357
407

291 298

0

100

200

300

400

500

600

70 140 280

ti
m

e 
(s

ec
)

number of cores

effect of chainMapper

without chainMapper with chainMapper



54 

 

This will lead to the creation of thousands of very short-lived objects. Hence, 

reusing existing Writables will significantly reduce the usage of the memory and avoid 

garbage collection. We can rewrite the above code as following: 

 1  Text wordText = new Text ();  

 2  IntWritable outvalue = new IntWritable(1);  

 3  for (String word : words) {  

 4      wordText.set(word);  

 5      context.write(wordText, one);  

 6  }  

In this way, we can avoid creating temporary objects, and can greatly save the 

running time (data not shown). 

5.2 Hadoop Level Tuning 

Since Hadoop and HDFS are complex distributed systems that run arbitrary user 

code. To take the advantage of the cluster, we need to tune the Hadoop system to achieve 

optimal performance.  

5.2.1 Hadoop Configuration Tuning 

Compression 

Hadoop supports compression at 3 different levels – input data, intermediate map 

output and reduce output data – as well as multiple codecs, like bzip2, lzma, gzip, lzo, 

snappy, which can be used for compression and decompression (Chen et al., 2010) . 

Some codecs strike a better compression factor but take longer to compress and to 

decompress. Some codecs have a fine balance between the compression factor and the 

overhead of compression and decompression activities.  
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Compressing reducer output can reduce the usage of HDFS. We can use the 

method FileOutputFormat to set the properties. 

 1  FileOutputFormat.setCompressOutput(job, true);  
 2  FileOutputFormat.setOutputCompressorClass(job, Codec,class);  
 

where Codec.class can be LzoCodec.class, GzipCodec.class or SnappyCodec.class 

 Compressing map outputs can reduce the disk and network I/O while increases 

CPU cycles for compression and decompression temporary output data. If the map 

outputs are very large, enabling map output compression will surely reduce total job 

running time. The useful parameters related to intermediate map output compression are 

mapred.map.output.compression.codec (specify the compression codec), 

mapred.compress.map.output (whether to compress the map output, false by default), 

which can be found in mapred-site.xml 

The Java code for setting map output compression is  

 1 Configuration conf = new Configuration();  
 2 conf.setBoolean("mapred.compress.map.output", true);  
 3  conf.set("mapred.map.output.compression.codec", 

"org.apache.hadoop.io.compress.SnappyCodec
");  

 

HDFS block size 

Each map task works on a split of input data. Configuration parameters 

mapred.min.split.size and mapred.max.split.size in mapred-site.xml and dfs.block.size in 

hdfs-site.xml decide the size of the input split. The total number of map tasks created by 

the Hadoop framework is determined by both the input split size and the total input data 

size. For example, we have 1GB input files, the input split size is 64MB, total number of 
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map tasks will be 1GB/64MB = 16.  We can change input split size to control the number 

of map tasks. The easy way to change the input split size is changing the HDFS block 

size value using dfs.block.size parameter. The java code is as follow, 

 1  Configuration conf = new Configuration();  
 2  conf.setInt("mapred.min.split.size", 512 * 1024 * 1024);  
 

 

 

As more map tasks means more staring up and tearing down of map JVMs, it 

prefer to run small number of longer running map tasks.   

Map side spills 

The intermediate output of map tasks is stored in a buffer, which is a chunk of 

reserved memory in map JVM heap space. The default size of this buffer is 100 MB 

which is governed by io.sort.mb configuration parameter in mapred-site.xml. If the map 

tasks have large map output, increasing the io.sort.mb can decrease execution time. 

However, our tests indicated that unreasonable large buffer can lead to more failure map 

tasks. 

Shuffle/sort phase tuning 

Shuffle/sort phase copy and sort the mapper outputs based on the key. The 

maximum number of parallel map-output copier threads governed by 

mapred.reduce.parallel.copies in mapred-site.xml is set to 5 by default. If there are 

hundreds of mappers finishing at a same time period and each shuffle can only create 5 

threads to download the map output, copy operation of shuffle can be inefficient. If the 

job have large amount of mappers, increasing mapred.reduce.parallel.copies can 
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decrease the reduce phase waiting time. However, unreasonable large parallel copies 

would lead to JVM error. 
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Chapter 6  

CONCLUSION AND FUTURE WORKS 

In this thesis, we developed a set of Map/Reduce based Affymetrix GeneChip 

microarray data analysis tools. This set of tools is based on two widely used algorithms, 

Affymetrix Micro Array Suite (MAS 5.0) and Robust Multi-array Analysis (RMA). After 

studying the Affymetrix microarray quality control and preprocess algorithms, we first 

re-implement the algorithms in Java language, then we developed parallel versions of 

these algorithms using Map/Reduce framework. 

We successfully deployed our tools on Hadoop and Palmetto Cluster high 

performance computing infrastructures. To achieve higher performance and scalability, 

we tuning the tools in three levels: the code level, the Hadoop level and the Java Virtual 

Machine (JVM) level. We tested our tools and compared with the existing tools using 

rice and Arabidopsis microarray dataset. The experimental results showed that our tools 

can efficiently utilize Palmetto Cluster resources to achieve high speed-up and can 

process massive dataset that existing microarray analysis tools cannot deal with.  

In conclusion, our Map/Reduce based Affymetrix microarray analysis tools will 

provide biologists a new way to process and analyze increasing volume of Affymetrix 

microarray dataset with higher efficiency and lower costs. 

In the future, we will add more Affymetrix microarray analysis algorithms to 

our Map/Reduce based microarray analysis tool kit. 
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