Clemson University TigerPrints

All Theses

Theses

5-2013

ESTIMATE THE EFFECT OF POLICE ON CRIME USING ELECTORAL DATA AND UPDATED DATA

Yaqi Wang Clemson University, yaqiw@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the <u>Economics Commons</u>

Recommended Citation Wang, Yaqi, "ESTIMATE THE EFFECT OF POLICE ON CRIME USING ELECTORAL DATA AND UPDATED DATA" (2013). *All Theses.* 1677. https://tigerprints.clemson.edu/all_theses/1677

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

ESTIMATE THE EFFECT OF POLICE ON CRIME USING ELECTORAL DATA AND UPDATED DATA

A Thesis Presented to the Graduate School of Clemson University

In Partial Fulfillment of the Requirements for the Degree Master of Arts Economics

> by Yaqi Wang May 2013

Accepted by: Dr. Robert D. Tollison, Committee Chair Dr. Curtis J. Simon Dr. Scott L. Baier

ABSTRACT

It is surprisingly difficult to isolate causal effects of police on crime empirically due to the simultaneous determination of crime and police presence. Instruments are used to address the simultaneity concerns in the previous crime literature. The 2SLS results provide evidence indicating that additional police reduce crime. However, we might suspect whether the same instruments can generate consistent results with previous studies by using datasets of more recent years instead of thirty years ago and considering the change of policies, crime situation, and other factors. This paper use electoral cycles as instrumental variable and updated data of the 1985-2010 period trying to explore the correlation between police and crime using electoral cycles as instruments in different situation. Results show that there are positive elasticities of violent crimes with respect to police as well as negative elasticities for property crimes. Overall, we cannot conclude with strong evidence that increased police reduce crime using electoral cycles as instruments.

ACKNOWLEDGMENTS

It is with immense gratitude that I acknowledge the support and help of my committee chair, Dr. Robert D. Tollison. Without his guidance and persistent help this thesis would not have been possible.

I would like to thank my committee members, Dr. Curtis J. Simon and Dr. Scott L. Baier, who gave me valuable comments for revise my thesis.

In addition, a thank you to Dr. Thomas A. Mroz, who gave me substantial guidance on econometric and STATA parts.

TABLE OF CONTENTS

	Pa	ge
TITLE PA	AGEi	
ABSTRA	.CTii	
ACKNOW	WLEDGMENTSiii	
LIST OF	TABLESv	
LIST OF	FIGURESvi	
CHAPTE	R	
I.	INTRODUCTION	
II.	LITERATURE REVIEW	
III.	DATA	
IV.	MODEL AND SPECIFICATIONS	
V.	RESULTS	
VI.	CONCLUSION	
APPEND	ICES	
A: B: C:	Data Sample (Partial)30F Statistics on the Excluded Instruments312SLS Estimates of Crimes (Partial)35	
REFERE	NCES	

LIST OF TABLES

Table		Page
1	Summary Statistics	9
2	Sworn Officers Change in Election Cycles	.13
3	Predict the Change of Police Force Using Election Cycles	.14
4	OLS Estimates of Violent Crime with Respect to Sworn Officers	.18
5	2SLS Estimates of Violent Crime with Respect to Sworn Officers	.20
6	OLS Estimates of Violent Crime with Respect to Sworn Officers	.22
7	2SLS Estimates of Violent Crime with Respect to Sworn Officers	.23
8	Crime-Specific Estimates of the Effect of Changes in Sworn Officers	.25

LIST OF FIGURES

Figure		Page
1	Trends in Crimes and Police	10

CHAPTER ONE INTRODUCTION

The inherent nature of crime leads to substantial economic loss and threat to society and individuals. Crime reduction and prevention is always a top priority of the legislative, executive and judicial branches. While in the crime literature, an important challenge is to identify the causal effect of police presence on crime. Based on Gary Becker's (1968) theory, which looks at criminals as rational individuals seeking to maximize their own well-being through illegal ways, immense amounts of research are done by economists in an attempt to explain how deterrence works within the criminal justice system. One of the predictions of Becker's theory is that crime rates will decrease when police presence increases. However, the greatest challenge is to find empirical evidence supporting this prediction. In the studies of the crime literature, Samuel Cameron (1988) reports that among the 22 papers attempting to identify a causal effect of police on crime, only 18 found either no effect or a positive effect of police presence on crime.

The challenge in estimating the effect of police on crime is the endogeneity existed in the simultaneous determination of crime and police presence (Franklin Fisher and Daniel Nagin, 1978). Government in a city with high crime rates is likely to respond to crime problems by enlarging police force. Therefore, a positive correlation between police and crime can emerge. To break this endogeneity, several approaches are used in order to isolate causal effects of police on crime.

To address this problem, Levitt (1997) creates a strategy using electoral cycles as instrumental variables which affect the size of the police force, but is uncorrelated with crime. He employs the timing of gubernatorial and mayoral elections as instruments for police presence in panel data of 59 large U.S. cities from 1970-1992. By applying twostate least-squares (2SLS) techniques, Levitt uncovers a negative and significant effect of police on violent crimes and relatively weak impact on property crimes, while the point estimates generally are not statistically significant for individual crime categories. As times change, the crime situation in recent years is not similar to that of 1970s and '80s period. In the legislation aspect, legalized abortion may cause the drop in crime (Donohue and Levitt 2001). Also, the U.S. prison population grew by over half a million during the 1990s and continued to grow slowly. This increase in the size of the prison population could be another factor explaining the drop in crime. The overall crime trend is different from that of Levitt's finding. So the conclusion generated by using the obsolete database of 1970-1992 in Levitt's paper may not be convincing applied to today's crime situation. In this paper, I will adopt an updated data set from 1985-2010 from the same 59 large U.S. cities are used in Levitt's paper to test whether his method is applicable for the circumstance after the 1990s and explore the applicability of the instrument and estimate the correlation between police presence and crime rates.

CHAPTER TWO

Marvell and Moody (1996) employ the Granger causality test and analyze UCR crime rates and yearly police data at the state and city levels over two decades. They find Granger-causation in both directions and the impact of police on most crime types is substantial and robust at the city level. Tella and Schargrodsky (2004) find a large local deterrent effect of observable police on crime using data on the location of car thefts prior and post a terrorist attack on the main Jewish center in the city of Buenos Aires, Argentina. All Jewish and Muslim institutions received police protection in July 1994. Therefore, a geographical distribution of police forces, which can be presumed exogenous in a crime regression, was generated by this terrorist attack. This event constitutes a natural experiment, which broke the simultaneous determination of crime rates and police presence. Blocks that receive police protection suffer 0.081 fewer car thefts per month compared to blocks that do not. Police protection induces a decrease in auto theft of approximately 75 percent. However, blocks one or two blocks away from where protection is provided do not experience fewer auto thefts compared to the rest of the neighborhoods. Their results suggest a posted police guard generates a negative local effect on auto theft while generating little or no effect outside a narrow area. Nevertheless, the limitation of this approach restricts precise estimation of the extent of crime displacement to other areas.

Levitt (1997) developed an approach using instrumental variables to break the simultaneity between police and crime. He finds that police presence increases in

mayoral and gubernatorial election years but not in off-election years. In order to identify the effect of police on crime, he documents a previously unrecognized electoral cycle in police force staffing and uses the timing of mayoral and gubernatorial elections as an instrument for police presence. Data of a panel of 59 large U.S. cities over the period 1970-1992 are collected. It demonstrates that there is a positive cross-city correlation between police and crime, the same as which is presented in previous studies. After applying first differences which identify the parameters using only within-city variation over time, a negative coefficient on police emerges. Adopting the two-stage least-square (2SLS) method, Levitt finds a more negative and significant effect of police on crime. Point estimate for violent crime with respect to police is about -0.1, and for property crime it is approximately -0.3. By using instrumental variables, the individual point estimates for each of the seven crime categories are negative in almost all cases, even though they are extremely imprecise. It is surprising that the result demonstrates murder exhibiting the largest and only significant coefficient. In the meantime, relatively large negative influences of police on crime are observed for robbery, aggravated assault, and motor vehicle theft. The reliability of electoral cycles serving as the instrumental variables might be questioned.

Klick and Tabarrok (2005) claim another research design to estimate the causal effect of police on crime using terror alert levels. The Office of Homeland Security began to use the Homeland Security Advisory System (HSAS) in order to notify the public and other government agencies of the risk of terrorist attacks on March 11, 2002. They use police presence increases on the streets of Washington, D.C. during high-alert periods

which could be used to break the endogeneity to estimate the effect of police presence on crime. Their method is most closely related to the one adopted by Tella and Schargrodsky (2004). Both of them take advantage of presumed exogenous shocks to police force and the impact of these shocks across time and space. The difference between the two is that the attack in July 1994 Tella and Schargrodsky (2004) observed is one precipitating event, while what Klick and Tabarrok (2005) used is a repeated event with the terror alert level rose and fell four times in their sampling period. Instead of annual data, daily data focusing on a single city are collected in order to be less subject to endogeneity problems and reduce omitted-variable bias in the cross-sectional component. The results demonstrate that an increase in police presence of 50 percent leads to a statistically and economically significant decline of 15 percent in the level of crime. The decrease in the street crimes of auto theft and theft from automobiles contributes to the largest decline in crime with an elasticity of police on crime of -0.86. This result is proved to not be an artifact of changing tourism patterns resulting from the changes in the terror alert level. Even though his research provides a plausible estimate of the causal effect of police on crime, further research is needed to determine whether this effect can be generated to other cities or is particular to the Washington, D.C., area.

In previous studies, researchers have used financial variables as instruments for the police number or expenditure on police. Cornwell and Trumbull (1994) used per capita tax revenue in North Carolina as an instrumental variable for police numbers arguing that countries with greater preference for law enforcement would vote for higher taxes to fund a larger police force. In order to eliminate the problem of simultaneity

between police presence and crime, Lin (2009) explores the pattern of the financial relations existing between state and local government, demonstrating that variations in state tax rates can be a valid instrumental variable for a local police force. He argues that state government revenues generated by state sales tax rates can be channeled by state transfers to local governments, therefore increasing the number of local police. Lin (2009) presents that fund transfers from the state governments to the local governments account for around 33.5% of the total local government revenues, while property tax accounts for 29.3%. At the state level, sales tax account for 28% of total state revenues. Other tax categories such as individual income tax and corporate income tax account for a much smaller proportion of overall state revenues relatively. Hence transfers from state to local government will generate a sufficient variation with the sales tax rate being the most identifiable source. According to the typical local government budget pattern, two thirds of the general funds are discretionary and three quarters of the discretionary funds available to city council are assigned to police and fire services (Coleman, 1997). Therefore, change in local government revenue from the state will have a high impact on police budgets and number of police presence. The results under the 2SLS method demonstrate the existence of a negative and significant police presence effect on crime, with the elasticity being about -1.1 for violent crime, and -0.9 for property crime.

According to Levitt's (1997) research, conclusion were made by analyzing relatively old data over the period 1970-1992 and using mayor and gubernatorial election timing as instruments for police. Due to the crime situation change and the imprecision of the point estimates, I will use the same instrument and method and update the data set of

a more recent period to test whether the electoral cycle can also be an instrument to generate consistent results and to identify the causal effect of police on crime in an up-todate condition.

CHAPTER THREE

DATA

The data used in this paper are comprised of observations on a panel of 59 U.S. large cities covering the period from 1985-2010. Cities selected are limited to two criteria: the city population exceeds 250,000 at some point in the 1985-2010 period, and the mayor is directly elected. Annually data of seven crime categories on city level including murder, rape, assault and robbery (referred to as 'violent crimes') and burglary, larceny and motor vehicle theft (referred to as 'property crimes') are obtained from the Uniform Crime Report (UCR) issued by the Federal Bureau of Investigation (FBI). As the summary statistics in Table 1 shows, for every 100,000 residents, violent crime rates for the cities in the sample are more than twice as high for the nation as a whole, while for property crime rates it is almost twice. Numbers of sworn officers who carry a gun and have the power of arrest are also obtained from the UCR, with approximately 261 per 100,000 people. Data on police (sworn officers), and population are also obtained from UCR issued by the FBI.

Since the timing of elections may influence the crime by many channels other than the police presence, a number of demographic, government spending, and economic variables are collected to avoid some of these concerns. All of these data are available in the Statistical Abstract of the United States. To control for economic fluctuations, annual unemployment rates in the state level are collected. It would be more precise to estimate the effect by collecting all variable at the city level annually. However, some variables such as percentage of population between 18 and 24 ages, percentage of a city's

Table 1

Summary Statistics

Variable	Mean	S.D. across cities	S.D. within- city	Min	Max
Population	778623	1084540	69136	199110	8400907
Violent	1286	690	337	220	4353
Murder	17	13	5	1	95
Rape	64	31	19	10	199
Robbery	524	342	163	73	2304
Assault	693	386	199	66	2368
Property	7068	2434	1691	1574	16739
Burglary	1647	751	544	219	4994
Larceny	4244	1518	957	0	10003
Motor vehicle theft	1176	668	417	126	5369
Sworn officer	259	106	22	112	781
State unemployment rate	6.0	1.8	1.6	2.3	13.4
Percent ages (18-24)	11.6	1.8	0.5	7.7	19.4
Percent black	25.4	19.4	1.9	0.7	82.7
Percent female-headed					
households	16.3	4.7	0.8	7.3	31.6
Public welfare spending					
per capita (1985 dollars)	486.8	199.4	151.2	136.8	1245.7
Education spending per					
capita (1985 dollars)	714.7	170.4	122.0	411.2	1377.5

Note: all variables are per 100,000 residents except population. Data used is a set of 59 U.S. large cities with directly elected mayors over 1985-2010. Data of crime, sworn officer, and population are from UCR issued by the FBI. All other data is obtained from the Statistical Abstract of the United States. Percentage of black, ages 18-24, and female-headed households are interpolated from data for decennial census years.

population that is black, and percentage of the population living in female-headed households are linearly interpolated for noncensus years due to the limitation of decennial census. Data on government spending for public welfare and education are combined state and local outlays per capita (in 1985 dollars) in a given state and year on the particular category instead of city level. This is because less than 10% of total state and local expenditures on those categories originate at the city level even though annual city government outlays on these programs are available. While according to the cities that receive the fund, state outlays are not broken down (Levitt, 1997).

Figure 1: Trends in Crimes and Police

Figure 1 generally shows the trend of police, violent crime, and property crime (in per capita terms) over the period of 1985-2010 for the cities in the sample. Values of 1985 of each category are indexed as 100. All three categories start to rise from 1985. While on the overall trend, violent crime and property crime began to decline and tracked each other closely from the beginning of 1990s. Until 2010, violent crime decreased by 30% and property decreased almost by half. The police number grows slowly through the years overall.

I also include year dummies and nine region dummies corresponding to the census definitions in the model. In addition, four city size indicators which are consistent with populations below 250,000, between 250,000 and 500,000, between 500,000 and 1,000,000, and over 1,000,000 are generated as controls.

CHAPTER FOUR

MODEL AND SPECIFICATIONS

According to Levitt (1997), Americans ranked crime at or near the top of their list of urgent issues in opinion surveys. A city's economic performance is outside the control of the mayor's responsibility while police staffing is a desired area for political manipulation since most police departments are operated by a unit of the local government. Every politician was expected to have a crime-fighting agenda. Incumbents will try to increase police force in advance of elections considering the significance of crime as a critical political issue and stating their governance of crime. Unlike the city government, state government does not directly organize local police departments. While state governments provide substantial local aid and more limited amount of intergovernmental grants to city government and local law enforcement typically, there is still incentive for incumbent governors to increase police force in election years. Table 2 shows the mean percentage change in the police number per capita with respect to the election and nonelection years. Empirically, sworn officers' number rises by approximately 1.08 percent in mayoral election years and 1.97 percent in gubernatorial election years, while staying relatively flat (even decrease) in nonelection years. This is only a very simple comparison of the average percentage change in the sworn officers' number per capita across election and nonelection years.

Table 2

Sworn	Officers	Change	in	Election	Cycle

Δ ln sworn officers
per capita
0.0108
(1.49)
0.0197^{***}
(3.35)
-0.00712
(-1.59)
1508

t statistics in parentheses* <math>p < 0.05, ** p < 0.01, *** p < 0.001

The formal model is generated taking account of other factors that may affect the growth of police force.

$$\Delta \ln P_{it} = \beta_1 M_{it} + \beta_2 G_{it} + \eta X_{it} + \lambda_i + \gamma_t + \varepsilon_{it}$$
⁽¹⁾

Pit is the number of sworn officer per capita for city i in year t; M is the indicator variable which is one in mayor election years and zero otherwise; G is the indicator variable which is one in gubernatorial election years and zero otherwise; X is a matrix of covariates including the percent of age 18-24, percent of black, percent of female-headed households, state unemployment rate, public welfare spending per capita, and education spending per capita; city size indicator, year and region dummies. All variables except the indicator variables are log differenced.

	(1)	(2)	(3)
	$\Delta \ln \text{ sworn}$	$\Delta \ln \text{ sworn}$	$\Delta \ln$ sworn
	officer	officer	officer
Mayoral election year	0.0101**	0.0115**	0.0126**
	(0.00382)	(0.00389)	(0.00399)
Gubernatorial election year	0.0155**	0.0170**	0.0168^{**}
	(0.00596)	(0.00625)	(0.00632)
Δ State unemployment rate		-0.176	-0.188
		(0.331)	(0.337)
$\mathbf{A}\mathbf{D}$		0.100	1.055
Δ Percent ages (18-24)		-0.188	-1.855
		(1.929)	(2.432)
APercent black		0.425	1 150
		(0.756)	(1.160)
		(0.750)	(1.109)
APercent female-headed		0.436	0.237
households		01100	0.207
		(1.814)	(2.918)
Δ In Public welfare spending per		0.0265	0.0262
capita			
		(0.0149)	(0.0151)
Alm advantion granding per conita		0.0152	0.0152
All education spending per capita		(0.0132)	-0.0133
Veen in diestens?	Vaa	(0.0272) Vaa	(0.02)7)
City size indicators?	res	r es Vac	Yes
City fixed offects?	No	No	I CS Voc
	INU	INU	Tes
Region indicators?	Yes	Yes	No
Ν	1451	1371	1371
R^2	0.067	0.078	0.096

Table 3 Predict the Change of Police Force Using the Election Cycle

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001Note: Dependent variable in all columns is $\Delta \ln$ sworn officers per capita. Year dummies included in all regressions. Three city-size indicators are included in column (2). City -fixed effects are included in column (3).

Table 3 exhibits the estimates for variations in the equation (1). Column (1) contains only year and region dummies, and then city-size indicators are added to column (2). To explore the trend of police presence in city level, region dummies are replaced with city fixed effects in column (3). The results demonstrate that sworn officers per capita grow more than one percent in mayoral election years, and even higher (1.55%, 1.7%, 1.68% in three columns, respectively) in gubernatorial election years. All of the coefficients of election years are jointly significant and consistent with Levitt's results which indicate a greater than 1 percent increase in sworn officer per capita in mayoral election years and greater than 2 percent increase in gubernatorial election years. On the contrary, the other variables in the regression are statistically insignificant.

When applying the electoral cycles as instruments, the impact of police presence on crime is estimated using two-stage least squares (2SLS) as the following:

$$\Delta \ln C_{ijt} = \beta_{1j} \Delta \ln P_{ijt} + \beta_{2j} \Delta \ln P_{ijt-1} + \eta_j X_{it} + \lambda_i + \gamma_{tj} + \varepsilon_{ijt} \quad , \tag{2}$$

where C_{ijt} is the crime rate per capita in city i for crime category j in year t; P is the number of sworn officers as the endogenous variable; X is the same matrix of covariates, which is described above. Since crime may be reduced by police through deterrence which potentially prevent initial crime commission by increasing the probability of being caught, or through incapacitation which arrest repeat offenders to prevent committing future crimes, an arrest today may have an impact on the crime in the future. With such consideration, the deterrence impact will not be immediate. Also, the incapacitation effect will be revealed after the offenders are sent to prison if lags in police exist. Therefore, lags in the police force will be included in the regression. The elasticities for all crime with respect to sworn officers are the sum of the coefficients for the contemporaneous and once-lagged values. The reason to include controls for public welfare spending per capita and education spending per capita is to avoid the situation that those variables may be correlated to crime by changing the opportunities sets of potential criminals, and affected by electoral cycles (Levitt 1997). Otherwise, the electoral cycle might be an invalid instrument. Unemployment rates in the state level are also included to control for the economic fluctuations.

In addition, as election timing variables are fairly weak instruments for isolating the causal effect of police on crime, we could develop variation in the size of electoral effects on police so that more efficient estimation can be generated by expanding the sets of instruments to interactions between election years and city size or region indicators.

CHAPTER FIVE

RESULTS

Table 4 presents the OLS estimates of the violent crime with respect to sworn officers. Instead of simply summing up the total number of crimes across categories, four violent crime categories (murder, rape, robbery, and assault) are stacked together and estimated jointly. This will provide more effective means of involving the information included in the time series of individual crime categories since some crimes are much more frequent than others but much less sever. Column (1) shows the OLS estimates of equation (2) in log-levels. After summing up the contemporaneous and once-lagged values, a positive coefficient of 0.312 with 0.119 standard errors is obtained meaning that rising police presence will induce higher crime rates. Column (2) presents the OLS estimates of equation (2) in log-levels with all data first differenced. By doing so, all of the parameters are identified using only within-city variation over time. The result shows that the coefficient on sworn officers becomes smaller but still positive which is around 0.218. Compared to column (1) results, which estimate using cross-city variation, it indicates that the unobserved heterogeneity across cities impose an upward bias on the coefficient. The other coefficients are generally statistically insignificant and carry an unexpected sign after the data differencing.

	(1)	(2)
	ln violent	$\Delta \ln violent$
ln sworn officer	0.381**	0.252^{**}
	(0.119)	(0.0770)
Lag ln sworn officer	-0.0688	-0.0345
	(0.119)	(0.0504)
Sum of In sworn officer	0 312	0.218
Sum of m sworn officer	(0.037)	(0.070)
	(0.037)	(0.070)
State unemployment rate	3.543***	0.622
	(0.719)	(0.579)
	((0.0.17)
Percent ages 18-24	-0.0470	4.663
C	(0.417)	(3.793)

Percent black	1.690***	0.966
	(0.101)	(1.218)
Percent female handed household	0.846**	0.00156
refeelit felliale-neaded household	-0.640	-0.00130
	(0.512)	(2.908)
In public welfare spending per capita	0.0473	-0.00407
	(0.0302)	(0.0190)
	· · · · ·	
In education spending per capita	-0.192***	0.0397
	(0.0456)	(0.0454)
N	5411	5107
R^2	0.931	0.081
Data differenced?	No	Yes

Table 4

OLS Estimates of Violent Crime with Respect to Sworn Officer

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Note: dependent variable in column (1) is ln one of the four crime categories (murder, rape, robbery, and assault) in log-levels, rather than log-differences. In column (2), dependent variable and right-hand-variables are all differenced. Estimates are obtained estimating all violent crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions.

By applying the 2SLS method to the equation (2), column (1) in table 5 shows that the pooled estimates of the effect of police on violent crime is around 2.531, implying that violent crime per capita raises by 25.31 percent, which is associated with 10 percent increase in police per capita. The 2SLS estimates for police is statistically significant at the 0.01 level substantially larger in magnitude than their OLS counterparts. The coefficients of other variables are insignificant, except state unemployment rate and public welfare spending per capita being statistically significant at the 0.05 level. It implies that 1 percent increase in the unemployment rate leads to 1.52 percent increase in violent crime per capita. Based on the regression that uses election cycles as instruments, public welfare spending per capita shows a negative coefficient and significance at the 0.05 level. Column (2) expands the set of instruments by interacting two election variables with four city size indicators and column (3) uses two election variables interacted with nine census-region indicators as instruments. This exploits variation in the size of the electoral impacts on police since electoral cycles only account for a small proportion of the overall variation in police presence. After the interactions between election and city size indicators are replaced as instruments in column (2), the coefficient of police still remain positive but shrinks to approximately 0.886 and becomes insignificant. Column (3) employs the interaction between election timing and nine region dummies as instruments, leading to a slightly higher coefficient of approximately 0.909. However, those results and coefficients of all other variables in column (2) and (3) become insignificant.

	(1)	(2)	(3)
	Δlnviolent	Δlnviolent	Δlnviolent
ln sworn officer	1.135**	0.517	0.436
	(0.437)	(0.346)	(0.260)
Lag ln sworn officer	1.396**	0.369	0.473
	(0.481)	(0.322)	(0.274)
Sum of ln sworn officer	2.532	0.886	0.909
	(0.784)	(0.526)	(0.449)
State unemployment rate	1.520^{*}	0.884	0.866
	(0.702)	(0.629)	(0.599)
Percent ages 18-24	4.326	4.575	4.485
	(3.779)	(3.724)	(3.718)
	a . 		
Percent black	0.674	0.884	0.865
	(1.361)	(1.233)	(1.235)
	0.006	0.0750	0.105
Percent female-headed household	0.306	0.0758	0.185
	(3.461)	(3.062)	(3.073)
In public welfore aparding per conite	0.0672^{*}	0.0222	0.0221
in public wenale spending per capita	-0.0072	-0.0223	-0.0231
	(0.0510)	(0.0240)	(0.0251)
In aducation spanding per capita	0.0016	0.0546	0.0558
in education spending per capita	(0.0510)	(0.0340)	(0.0358)
N	5107	5107	5107
R^2	5107	0.063	0.056
Instruments	Elections	Election*	Election*region
	Licetions	city-size	interactions
		interactions	

Table 5

2SLS Estimates of Violent Crime with Respect to Sworn Officer

Note: Dependent variable is $\Delta \ln$ crime rate per capita for one of the four crime categories (murder, rape, robbery, and assault). Right-hand-variables are all first differenced. Estimates are obtained estimating all violent crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions. Column (1) instruments using mayoral and gubernatorial election-year indicators. Column (2) instruments using interactions between the city-size indicators and election years. Column (3) instruments using interactions between the region dummies and election years. Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001

Other than the estimates of elasticity of violent crimes with respect to police, Table 6 and 7 provide the OLS and 2SLS estimates of equation (2) for property crime, respectively. The results present a different pattern of coefficients from the case for violent crime. OLS estimates in column (1) of Table 6 find a positive coefficient on police (an elasticity of 0.155) when using cross-city variation and slightly larger (an elasticity of 0.181) after data is differenced in column (2). Unexpectedly, by employing election timing as instruments, 2SLS yields a negative insignificant estimate for property crime (an elasticity of -0.420) in Table 7. As the number of instruments increase, coefficients in column (2) and (3) shrink to -0.079 and -0.017, respectively.

The coefficient change from OLS estimates to 2SLS estimates for violent and property crimes are both substantial (go from 0.218 to 2.531 for violent crime and from 0.181 to -0.420) suggesting that instrumenting does have a large impact on the parameter estimates for the crime. The elasticities of both violent and property crimes with respect to the state unemployment rate indicate a positive effect of the unemployment rate on the crimes. A one percentage point increase in the state unemployment rate induces to roughly one percent increase in violent crime and over 0.3 percent increase in property crime, even though these estimates are never statistically significant. Similarly, the percentage of population between age 18 and 24 has positive signs when estimated in log-levels and log differenced. A one percentage point increase of population of ages 18 to 24 induce approximately 4.4 percent increase in violent crimes and approximately 3.6 percent increase in property crimes. But all coefficients of these variables are never statistically significant.

Table 6

	(1)	(1)
	Inproperty	dlnproperty
In sworn officer	0.258*	0.224**
	(0.112)	(0.0723)
Lag ln sworn officer	-0.103	-0.0429
	(0.112)	(0.0374)
Sum of ln sworn officer	0.155	0.182
	(0.035)	(0.054)
State unemployment rate	2.482***	0.616
1 2	(0.704)	(0.452)
Percent ages 18-24	2.133***	3.673
U	(0.427)	(2.640)
Percent black	0.896***	0.650
	(0.0935)	(0.900)
Percent female-headed household	-0.594	0.484
	(0.324)	(2.303)
In public welfare spending per capita	-0.199***	-0.00581
	(0.0328)	(0.0160)
In education spending per capita	-0.0905*	0.0165
	(0.0413)	(0.0327)
N	4073	3845
R^2	0.756	0.121

OLS Estimates of Property Crime with Respect to Sworn Officer

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Note: dependent variable in column (1) is ln one of the three crime categories (burglary, larceny, motor vehicle theft) in log-levels, rather than log-differences. In column (2), dependent variable and right-hand-variables are all differenced. Estimates are obtained estimating all property crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions.

	(1)	(2)	(3)
	Δlnproperty	Δlnproperty	Δlnproperty
ln sworn officer	-0.164	0.117	0.0493
	(0.334)	(0.328)	(0.195)
Lag ln sworn officer	-0.256	-0.196	-0.0324
	(0.351)	(0.261)	(0.208)
Sum of ln sworn officer	-0.420	-0.079	0.0169
	(0.601)	(0.479)	(0.332)
State unemployment rate	0.329	0.511	0.516
	(0.522)	(0.508)	(0.467)
Percent ages 18-24	3.612	3.703	3.591
	(2.684)	(2.655)	(2.641)
Percent black	0.690	0.679	0.649
	(0.910)	(0.898)	(0.897)
Percent female-headed household	0.572	0.450	0.589
	(2.375)	(2.335)	(2.338)
In public welfare spending per capita	0.0102	0.00134	-0.00162
	(0.0228)	(0.0205)	(0.0182)
		0.0100	0 0 1 0 7
In education spending per capita	0.00412	0.0108	0.0135
	(0.0354)	(0.0344)	(0.0328)
N P ²	3845	3845	3845
K	0.088	0.115	0.114
Instruments:	Elections	Election*	Election*re
		city-size	gion
		interactions	interactions

Table 7

2SLS Estimates of Property Crime with Respect to Sworn Officer

Note: Dependent variable is Δ In crime rate per capita for one of the three crime categories (burglary, larceny, motor vehicle theft). Right-hand-variables are all first differenced. Estimates are obtained estimating all property crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions. Column (1) instruments using mayoral and gubernatorial election-year indicators. Column (2) instruments using interactions between the city-size indicators and election years. Column (3) instruments using interactions between the region dummies and election years. S.D. in parentheses. * p < 0.05, *** p < 0.01, **** p < 0.001

Table 8 presents the estimates of seven specific crime categories eliminating all cross-crime restrictions. The seven columns correspond to the seven crime categories and each row presents a different specification. Only the sum of the contemporaneous coefficients and once-lagged values of sworn officers in each case are displayed. OLS in log levels yields positive coefficients on sworn officers in six of seven categories except rape. After first differences, only the murder presents negative coefficients leaving all others positive. Instrumenting for sworn officers leads to more positive to all violent crimes and more negative to all property crimes in spite of the extreme imprecision of the individual point estimates. Except for murder and larceny, expanding the set of instruments generally induces the coefficients to shrink. Unlike Levitt's (1997) results, in which murder yields the greatest apparent negative effect of police, larger positive impacts of police are observed for rape, robbery, and aggravated assault.

Table 8

Crime-S	Specific	Estimates	of the	Effect of	Changes	in S	Sworn	Officers
	1				0			

					2SLS(elec
					-tion
				2SLS(electi-	*region
				on*city-size	interaction
			2SLS(electi-	interactions	s as
		OLS	onas	as	instrument
	OLS (levels)	(differences)	instruments)	instruments)	s)
murder	0.466	-0.104	1.405	-0.943	0.612
	(0.070)	(0.232)	(1.958)	(1.530)	(1.227)
Rape	-0.308	0.414	2.918	1.407	0.507
	(0.066)	(0.190)	(1.592)	(0.945)	(0.830)
Robberv	0.758	0.140	2.972	1.204	1.097
j	(0.066)	(0.180)	(1.246)	(0.753)	(0.623)
Assault	0.262	0.418	2.755	1.826	1.360
11554410	(0.063)	(0.196)	(1.340)	(0.903)	(0.795)
Burglary	0.037	0.219	-0.015	0 709	-0.334
Durgiary	(0.046)	(0.147)	(0.873)	(0.665)	(0.511)
Larconv	0 175	0.270	0.002	0.024	0 660
Lattelly	(0.044)	(0.163)	(0.829)	(0.728)	(0.469)
Motor					
vehicle theft	0.253	0.043	-1.149	-0.984	-0.298
	(0.063)	(0.171)	(1.258)	(0.986)	(0.676)

Note: Dependent variable is Δ In crime per capita for the named crime category, except in first row where log-levels, instead of log-differences, are used. Right-hand-variables also are differenced except in first row. The cross-crime restrictions on police elasticities are removed. Each row of the table presents crime-specific coefficients on the police from a separate regression. All coefficients are the sum of contemporaneous and once-lagged coefficients. Estimates are obtained estimating all property crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions. All separate regressions are done corresponding to each column of Table 4-7, respectively. S.D. in parenthes.

The results in the Appendix B shows that F test on the excluded instruments are all above 10 for violent crime estimates, while are less than 10 for property crime estimates. Based on this, we cannot conclude that electoral cycles are strong instruments for all crime categories. In order to explain the difference between my results and Levitt's (1997), the 2SLS estimates of crimes with respect to sworn officers are replicated using the overlapping research years between Levitt's (1997) data and mine. Results in the Appendix C displays the 2SLS estimates of the violent crime and property crime with respect to sworn officers for the research years overlapping with Levitt's (researched year 1985-1992 in sample), respectively. The coefficient on sworn officer is -0.550 for violent crime and -0.728 for property crime. After expanding the instrument sets, the coefficient become positive. The bias source might be the imprecision of 2SLS estimate, insufficient observation years or some other factors. However, for both pooled crime categories with election years as instruments, police do have a negative effect on crime. This indication is consistent with Levitt's (1997) research results and shows that the changing sign of the coefficient estimated using the whole period of 1985-2010 might be resulted from new dataset.

CHAPTER SIX

CONCLUSION

Based on Levitt's innovation of using electoral cycles as instruments for police, this paper use an updated dataset which covers the 1985-2010 period. The estimates in this paper preclude a strong conclusion that electoral cycles can be used in a later period to demonstrate the reducing crime effect of increasing police force. The elasticities of crime with respect to sworn officer are mostly positive instead of negative results generated by using the period of 1970-1992 in Levitt's paper. Since election cycles explain only a small fraction of the overall variation in police, the instrumental variables' estimates are imprecise.

Comparing the two different data periods, we can conclude that the basic trend for violent and property crime in the 1985-2010 period (Figure 1) is completely different from the previously twenty years. Between 1970 and 1992, violent crime has seen the greatest increase, more than doubling in these 59 cities. Until the mid 1980's, violent crime and property crime tracked each other fairly closely. Since that time, violent crime has steadily increased while property crime has flattened, but still increasing overall. While in the period I researched, trends in crime are quite different from 20 years earlier. Property crime displays a downward trend over the 26 years and violent crime tracked a similar path, even though it has a rising period before 1991. Another reason that might contribute to the unexpected positive relationship between police and crime will be the policy changes in the 1990s. According to Levitt (2001), legalized abortion may cause

the drop of crime, so the crime situation might be different from the period Levitt (1997) researched.

Overall, this paper used electoral cycles as instruments while failing to provide evidence that additional police do reduce crime in different research periods and the instrumental variables' estimates are imprecise. However, we cannot say electoral cycles are not valid instrument for police officer to identify the relationship between police and crime. The unexpected positive correlation may be resulted from imperfection of model or data which are not all from city levels, as well as many other factors. Levitt's (1997) research uncovers the heretofore unnoticeable link between police presence and electoral cycles and provides a pioneering method to solve the endogeneity problem in simultaneous determination between police and crime. Still, more future studies of isolating the causal effect of police on crime will be necessary. APPENDICES

Appendix A

Data Sample (Partial)

0	_	0	0	0	1	0	0	0	-	0	0	0		0	0	0		0	0	0	-	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	M-elect			
_	0	0	0	_	0	0	0	_	0	0	0	_	0	0	0	_	0	1	0	0	0	_	0	0	0	1	0	0	0	0	0	_	0	0	0	_	0	0	0	_	0	elect	Ģ		
2002	2001	2000	1999	1998	1997	1996	1995	1994	1993	1992	1991	1990	1989	1988	1987	1986	1985	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1996	1995	1994	1993	1992	1991	1990	1989	1988	1987	1986	1985	year			
Albuquer	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	Akron Ci	ame	agencyn																										
195 N	192 N	189 N	203 N	207 N	205 N	209 N	201 N	190 N	199 N	196 N	204 N	206 N	198 N	193 N	191 N	188 N	180 N	224 0	222 0	228 0	217 0	214 0	220 O	224 0	226 0	230 O	212 0	222 0	223 0	217 0	230 O	200 O	209 O	192 0	191 0	191 0	201 O	192 0	199 0	207 0	194 O	s st	officer	sworn	
Z	Z	M	M	Z	M	M	M	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	H	Ξ	H	H	H	Ξ	H	H	H	Η	H	H	H	H	Η	H	H	H	H	H	H	H	Η	H	ate p			_
457488	451098	448607	420169	422417	431027	426736	419714	416917	407286	401529	393148	384736	384801	378176	371756	364196	357051	199110	206497	206845	208701	211052	212272	212646	214622	218377	217464	217074	216620	223303	222864	225262	225040	226490	224907	223019	222588	227158	227552	226877	226704	opulation			
1068.7	1165.8	1144.9	1250.7	1316.9	1317.1	1468.6	1128.1	1608.7	1644.1	1536.1	1422.1	1331	1220.4	1130.4	1034.3	1178.5	1149.7	841.2	927.9	928.7	759	637.3	602.5	591.6	607.1	552.3	499.9	281	359.2	1050.1	1017.7	960.7	946.1	1167.8	1256.5	1158.6	1011.3	885.7	943.1	1077.7	826.2	crime	violent		
Ξ.1	7.5	7.4	11.4	8.8	11.4	16.4	12.6	10.8	12.3	10.5	13	8.8	10.7	13	12.9	13.5	11.8	11.6	9.7	7.7	10.5	12.8	12.7	6.6	7.5	8.7	6	1.4	2.8	6.3	8.1	10.2	8.4	10.6	17.8	8.1	6	13.2	9.2	=	7.5	7	murde		
6	48.	53.	52.	51.	62.	87.	70.	69.	63.	73.	66.	57.	46.	50.	56.	67.	66.	82.	91.	84.	86.	77.	91.	88.	100.	76.	57.	42.	51.	86.	93.	86.	90.	90.	99.	86.	80.	6	56.	71.	69.	rape			
4 283.	5 356.	3 344.	4 396.	8 400.	6 401.	9 468.	5 386.	1 34	6 381.	2 363.	4 332.	7 267.	3 268.	2 245.	8 265.	8 342.	7 349.	4 302.	5 352.	6 390.	7 350.	2 338.	4 294.	4 284.	6 290.	9 299.	9 274.	4 171.	7 184.	9 363.	8 392.	6 360.	7 373.	1 426.	2 442.	5 346.	4 334.	6 291.	7 309.	8 29	7 225.	robbery			
1 710	9 752	8 739	7 790	8 855	1 841	2 896	7 658	4 1184	1 1187	6 1088	4 1010	996	2 895	4 821	5 699	7 754	2 72	3 44	1 474	1 446	7 31	3 20	4 20	5 212	7 208	9 166	5 161	4 65	7 12	2 593	6 523	5 503	3 473	5 640	4 697	6 717	7 587	4 515	4 567	969 8	4 523	assault			-
.4 6748.	.8 7599.	.4 7648.	.2 8515.	.6 9489.	.9 9801.	.1 9838.	.3 8772.	.9 8105.	.1 7937.	.8 7931.	.3 8862.	.8 8733.	.3 8744.	.8 9174.	.1 8920.	.5 8573.	2 8136.	15 549	.6 5077.	.2 5236.	1 5131.	9 5012	94 5743.	.1 6057.	.3 5756.	.7 5544.	.4 5689.	.9 2523.	20 4675.	.8 6118.	.2 6117.	.4 6142.	.7 6258.	.6 6442.	.2 680	.4 6686.	.2 6503.	.1 6555.	.8 703	.9 6678.	.6 5849.	crime	property		-
.4	.7 1.	.3 1:	.4	.4	:2	.9 2	.2 19	:5 1:	.7 2	:2	.3 2	.3 2	.3 2:	.8 2	.6 2	4	.9 2:	98 2	.6 1	.8	ω	іл 1:	<u>-</u>	in	.6 1.	 -	.2 1:	.6	.9 10	<u>-</u>	.2 1:	.2	.9 1.	.7 1.	99	.4	.5	.8	34 1	.9 1.	.5 1.	burg	×		
191.7	459.8	587.1	520.5	902.6	1982	117.7	992.3	337.1	013.1	2168	532.1	468.4	513.5	919.8	580.5	2676	572.7	140.5	320.4	330.4	1609	552.7	1621	1542	195.2	419.1	290.3	527.4	075.2	283.5	252.8	350.4	196.2	480.4	771.4	575.2	508.6	586.6	789.9	452.3	410.2	glary 1			
4671.4	5217.3	5091.8	5777.9	6086.2	6021.4	6083.6	5589.8	5057.8	5046.1	5039.7	5602	5752	5631.5	5539.7	5625.5	5351.5	5023.1	2979.8	2790.8	2943.3	2938.7	2803.6	3466.3	3795.5	3691.1	3453.7	3662.2	1510.1	3245.8	3924.3	3959.4	3879.9	3854.9	4004.2	4252.9	4362.9	4258.1	4357.8	4546.7	4659.4	4025.5	arceny			
885.3	922.6	969.4	1116.9	1500.6	1797.8	1637.5	1190.1	1210.6	878.5	723.5	628.3	512.8	599.3	715.3	614.7	545.9	541.1	377.7	466.4	463.1	583.6	656.2	655.8	720	570.3	671.3	736.7	386	355	910.4	905	911.8	907.8	958.1	784.8	748.4	736.8	611.5	697.4	567.3	413.8	mvtheft			
0.055	0.049	0.05	0.056	0.062	0.066	0.075	0.068	0.066	0.073	0.075	0.072	0.068	0.067	0.076	0.09	0.092	0.087	0.1	0.101	0.065	0.056	0.054	0.059	0.061	0.062	0.057	0.044	0.04	0.043	0.05	0.049	0.056	0.067	0.074	0.066	0.057	0.055	0.061	0.07	0.082	0.089	rate	oyement	unempl	
0.1044	0.1052	0.106	0.1062	0.1064	0.1066	0.1068	0.107	0.1072	0.1074	0.1076	0.1078	0.108	0.1082	0.1084	0.1086	0.1088	0.109	0.106	0.1059	0.1058	0.1057	0.1056	0.1055	0.1054	0.1053	0.1052	0.1051	0.105	0.1069	0.1126	0.1145	0.1164	0.1183	0.1202	0.1221	0.124	0.122	0.12	0.118	0.116	0.114	pct	18-24		
0.0314	0.0312	0.031	0.03088	0.03076	0.03064	0.03052	0.0304	0.03028	0.03016	0.03004	0.02992	0.0298	0.02968	0.02956	0.02944	0.02932	0.0292	0.315	0.312	0.309	0.306	0.303	0.3	0.297	0.294	0.291	0.288	0.285	0.28101	0.26904	0.26505	0.26106	0.25707	0.25308	0.24909	0.2451	0.24111	0.23712	0.23313	0.22914	0.22515	black pct			
0.1318	0.1304	0.129	0.1282	0.1274	0.1266	0.1258	0.125	0.1242	0.1234	0.1226	0.1218	0.121	0.1202	0.1194	0.1186	0.1178	0.117	0.195	0.1932	0.1914	0.1896	0.1878	0.186	0.1842	0.1824	0.1806	0.1788	0.177	0.1759	0.1726	0.1715	0.1704	0.1693	0.1682	0.1671	0.166	0.1649	0.1638	0.1627	0.1616	0.1605	d pct	househol	aded	femalehe
655.045	579.836	502.505	478.158	470.028	473.256	437.812	360.726	541.239	544.158	593.675	425.776	368.07	354.689	332.826	332.027	317.762	295.665		716.648	698.562	736.736	744.14	689.774	673.634	640.621	603.115	556.284	498.661	473.002	450.899	478.531	520.036	472.679	452.561	412.785	383.889	351.055	343.051	371.479	361.867	325.198	spending	welfare	public	
1134.91	1083.5	1087.4	1000.56	965.57	950.12	961.854	969.943	699.429	674.325	688.88	593.027	574.031	617.214	561.271	538.165	504.683	458.955		929.685	872.248	887.517	869.834	859.509	844.94	834.925	819.179	776.757	729.179	702.238	629.21	623.346	579.898	589.757	591.593	578.745	585.93	552.983	532	565.357	538.708	505.953	spending	n	educatio	

Appendix B

F Statistics on the Excluded Instruments

First-Stage Regressions of Column (1) in Table 5

dlnofficer	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dunem	- 5557061	.2168887	-2.56	0.010	9809021	1305101
d∨ouna	3031931	.9138517	-0.33	0.740	-2.094739	1.488353
dblack	0094806	.3608311	-0.03	0.979	7168661	.697905
dfemaleh	.4965967	.9833648	0.50	0.614	-1.431225	2.424418
dlnpubwel	.0282374	.0072641	3.89	0.000	.0139967	.0424782
dlneduc	0125812	.025058	-0.50	0.616	0617058	.0365435
crime1	5.14e-15	.0046144	0.00	1.000	0090462	.0090462
crime2	0002518	.0046646	-0.05	0.957	0093965	.0088929
crime3	4.30e-15	.0046144	0.00	1.000	0090462	.0090462
year3	.0076972	.0064629	1.19	0.234	0049729	.0203674
years	.0238031	.0064108	3./1	0.000	.0112352	.0303/1
yearo	- 0007772	.000697	_0 10	0.005	- 0156501	.0337493
year 7	- 0041086	.0073911	-0.10	0.910	- 0158110	.0141048
year9	-0255737	.0055318	4.62	0.000	.014729	.0364184
vear10	.0014533	.0098695	0.15	0.883	0178952	.0208019
vear11	.0441541	.0103762	4.26	0.000	.0238122	.064496
vear12	.0130531	.005283	2.47	0.014	.002696	.0234101
year13	.00367	.0051198	0.72	0.474	0063671	.0137071
year14	.0165354	.0073773	2.24	0.025	.0020728	.0309981
year15	.0205987	.0060139	3.43	0.001	.008809	.0323885
year16	024421	.0058936	-4.14	0.000	0359751	0128669
year17	0018018	.0056619	-0.32	0.750	0129015	.0092979
year18	0070287	.0071761	-0.98	0.327	021097	.0070397
year19	.001012	.0063782	0.16	0.874	011492	.013516
year20	001//91	.0054125	-0.33	0.742	0123899	.0088317
year21	0025201	.0047781	-0.53	0.598	01188/3	.0068471
year22	0090580	.0001/03	-1.30	0.110	021/0/2	.0024501
year24	0247331	.0060002	2.00	0.004	.0070531	.0410132
year25	01722	0101499	1 70	0.002	- 0026782	0371182
region1	004943	.0055441	-0.89	0.373	015812	.0059259
region2	0023322	.0032899	-0.71	0.478	0087818	.0041175
region3	0067744	.0034043	-1.99	0.047	0134483	0001005
region5	0011451	.0030269	-0.38	0.705	0070791	.0047889
region6	.0089722	.0034478	2.60	0.009	.0022129	.0157314
region7	0011639	.0037557	-0.31	0.757	0085267	.0061989
region8	0024221	.003205	-0.76	0.450	0087053	.0038612
region9	0023107	.0036492	-0.63	0.527	0094647	.0048434
citysizel	.0157124	.0062156	2.53	0.012	.0035272	.0278977
citysize2	.0029537	.0024583	1.20	0.230	0018656	.00///3
crtysizes ocrime1	.0036494	.0030434	2 12	0.229	00242	.0101100
ecrime2	.0125570	.0039424	3.13	0.002	.0040200	0200804
ecrime3	0123576	0039424	3 13	0.002	0046288	0200864
ecrime4	.0123576	.0039424	3.13	0.002	.0046288	.0200864
ecrime5	0148827	.0062438	2.38	0.017	.0026422	.0271232
ecrime6	0144988	.0062902	2.30	0.021	.0021673	.0268303
ecrime7	.0148827	.0062438	2.38	0.017	.0026422	.0271232
ecrime8	.0148827	.0062438	2.38	0.017	.0026422	.0271232
lagecrime1	0023787	.0045625	-0.52	0.602	0113232	.0065658
lagecrime2	0020887	.0046487	-0.45	0.653	0112022	.0070249
lagecrime3	0023787	.0045625	-0.52	0.602	0113232	.0065658
lagecrime4	0023/87	.0045625	-0.52	0.602	UL13232	.0065658
lagecrime5	0134049	.0054723	-2.45	0.014	0241331	0026/68
lagecrime5	- 0124037	.005505	-2.43	0.015	0241959	0020115
lagecrime?	- 0134049	0054723	-2.43	0.014	- 0241331	- 0020708
cons	- 0093573	0067111	-1 30	0 163	- 0225130	0037004
_cons			2.33	0.100		

Test of excluded instruments:

F (58, 5048) =10.53

Prob > F = 0.0000

laqd]noffi∼r	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Intervall
	25227	2256700	1 57	0 110	7056005	
aunem	3532/	.2250/89	-1.5/	0.118	/950985	.0891280
dyoung	.5351363	.839114/	0.64	0.524	-1.109893	2.180165
dblack	.1962774	.3627028	0.54	0.588	5147776	.9073324
dfemaleh	7455128	1.05905	-0.70	0.481	-2.82171	1.330684
dlnpubwel	.0265776	.0076121	3.49	0.000	.0116546	.0415005
dIneduc	0287682	.0222989	-1.29	0.197	0724837	.0149473
crime1	-4.99e-15	.0050195	-0.00	1.000	0098405	.0098405
crime2	.0001465	.0050781	0.03	0.977	0098088	.0101017
crime3	-4.11e-15	.0050195	-0.00	1.000	0098405	.0098405
vear3	0030132	006521	0 46	0 644	- 0097707	0157972
vear5	0058704	0059975	0 98	0 328	- 0058873	0176281
vear6	0226862	0066617	3 41	0.001	0096262	0357461
year 0	0105597	0077952	2 51	0.001	.0030202	0240211
year 7	.0133307	.0077632	2.51	0.012	.0042902	.0340211
yearo	0120202	.0000048	-2.14	0.035	0245961	0010542
year9	002/5/9	.0046777	-0.59	0.555	0119282	.0064124
year10	.0250692	.0062181	4.03	0.000	.012879	.03/2594
year11	.0018969	.0100611	0.19	0.850	01/82/3	.0216211
year12	.0394287	.0096266	4.10	0.000	.0205564	.058301
year13	.0141998	.0051012	2.78	0.005	.0041993	.0242003
year14	.0058834	.005514	1.07	0.286	0049265	.0166933
vear15	.0115965	.0071712	1.62	0.106	0024621	.0256551
vear16	.0164251	.0047145	3.48	0.000	.0071827	.0256675
vear17	0202164	.0063699	-3.17	0.002	0327041	0077287
vear18	- 003654	0065322	-0.56	0 576	- 01646	0091519
vear19	- 015439	0063404	-2 44	0 015	- 0278689	- 003009
year20	- 0002455	0052852	_1 75	0.019	- 0196069	0011158
year 20	0092433	0052052	0 10	0.000	0190009	0101211
year 21	000322	.0034341	-0.10	0.925	0111732	.0101311
year22	0011512	.0034342	-0.21	0.035	011/640	.0095222
year23	0124599	.0063385	-1.9/	0.049	024880	0000337
year24	.0215309	.0086576	2.49	0.013	.0045582	.0385036
year25	.0324344	.0104284	3.11	0.002	.0119902	.0528/8/
region1	.0081836	.0055454	1.48	0.140	0026878	.019055
region2	.0001496	.0032197	0.05	0.963	0061623	.0064616
region3	0001245	.0037005	-0.03	0.973	0073792	.0071302
region5	.0015828	.0030424	0.52	0.603	0043817	.0075474
region6	.0110336	.0035574	3.10	0.002	.0040595	.0180077
region7	.0040527	.0041527	0.98	0.329	0040885	.0121938
region8	.002347	.0034093	0.69	0.491	0043368	.0090308
region9	0012757	0037846	0 34	0 736	- 0061438	0086952
citysize1	- 0026236	0040014	-0.66	0 512	- 0104681	0052209
citysize2	0028657	0026347	1 00	0.277	_ 0022005	0080308
citysizez	_ 0012215	0020347	_0.38	0.707	- 0076551	.0000300
citysizes	0012313	.0032700	-0.30	0.707	0070331	0001752
ecrimer	000034	.00410/4	-0.01	0.994	0002432	.0001/32
ecrimez	0002748	.0042447	-0.06	0.948	0085963	.0080466
ecrimes	000034	.0041874	-0.01	0.994	0082432	.0081/52
ecrime4	000034	.0041874	-0.01	0.994	0082432	.0081752
ecrime5	.0050629	.0048568	1.04	0.297	0044584	.0145843
ecrime6	.0049597	.0049001	1.01	0.312	0046466	.0145661
ecrime7	.0050629	.0048568	1.04	0.297	0044584	.0145843
ecrime8	.0050629	.0048568	1.04	0.297	0044584	.0145843
lagecrime1	.0104266	.0043516	2.40	0.017	.0018955	.0189578
lagecrime?	.0103784	.0044393	2.34	0.019	.0016754	.0190813
lagecrime3	.0104266	.0043516	2.40	0.017	.0018955	.0189578
lagecrime4	.0104266	.0043516	2 40	0.017	.0018955	.0189578
lagerimet	022457	0061035	2 62	0.000	010215	037200
lagocrimo	022024	10001333	2 54	0.000	.010313	0242251
lagecrime	.022034	.0002230	3.34	0.000	.009033	.0342331
lagecrime/	.02243/	.0001933	5.03	0.000	.010315	.034399
ragecrime8	.022457	.000TA32	5.05	0.000	.010312	.034599
_cons	0138537	.0060793	-2.28	0.023	0257718	0019356

Test of excluded instruments:

F (58, 5048) = 10.04

Prob > F = 0.0000

dlnofficer	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dunem	5755805	.2501565	-2.30	0.021	-1.066035	0851261
dblack	0287412	.4172	-0.07	0.945	8466993	.7892169
dfemaleh	4721961	1.130266	0.42	0.676	-1.743792	2.688184
d1npubwe1	.0280618	.0083818	3.35	0.001	.0116286	.044495
dİneduc	- 013408	.028961	-0.46	0.643	0701885	.0433726
crime1	0001716	.0046271	-0.04	0.970	0092435	.0089002
crime3	0001716	.0046271	-0.04	0.970	0092435	.0089002
year3	0161217	.0077252	-2.09	0.037	0312677	0009757
year4	0247299	.0073037	-3.30	0.001	039107	0102927
yearo	- 024034	0085083	-0.50	0.010	- 0206915	- 0073527
vear8	- 0280395	0069288	-4 05	0.000	- 0416241	- 0144548
vear9	.0012244	.0068036	0.18	0.857	0121147	.0145634
year10	0224962	.0114874	-1.96	0.050	0450182	.0000259
year11	.0200162	.0119754	1.67	0.095	0034627	.0434952
year12	0111939	.0065454	-1.71	0.087	0240268	.001639
year13	0203115	.006372	-3.19	0.001	0328042	0078187
year14	0076659	.0089528	-0.86	0.392	0252186	.0098868
year15	0037292	.0068922	-0.54	0.588	01/2419	.009/835
year16	0403009	.00/0/30	-0.04	0.000	0022000	034318
year 17	- 0200907	0085866	-3.69	0.000	- 0477593	- 0127383
vear19	0229956	.0073939	-3.11	0.002	037492	0084992
vear20	0260083	.0070017	-3.71	0.000	0397357	0122809
year21	0266625	.0061722	-4.32	0.000	0387637	0145613
year22	0335556	.0078901	-4.25	0.000	0490248	0180864
year23	.0005991	.0097423	0.06	0.951	0185016	.0196997
year24	0027533	.0080494	-0.34	0.732	018535	.0130283
year25	0059047	.0113313	-0.52	0.602	0281207	.0163114
region2	.0026099	.0063632	0.41	0.682	0098657	.0150856
region3	001334	.0059257	-0.23	0.822	0129518	.0175248
region5	0038505	0056653	0.78	0.437	- 0072568	0149578
region6	.0140177	.0060152	2.33	0.020	.0022243	.025811
region7	.0038543	.0065939	0.58	0.559	0090737	.0167823
region8	.0026417	.0059938	0.44	0.659	0091098	.0143931
region9	.0026088	.006851	0.38	0.703	0108232	.0160408
citysize1	.0153529	.0071432	2.15	0.032	.0013481	.0293578
citysize2	.0026535	.0027716	0.96	0.338	0027804	.0080875
Citysize3	.0036212	.0036152	1.00	0.31/	0034666	.010/091
ecrime1	0121440	.0039599	3.11	0.002	.004343	.0200703
ecrime3	0123066	0039599	3 11	0.002	004543	0200703
ecrime5	.0147596	.0066834	2.21	0.027	.0016562	.0278631
ecrime6	.0148499	.0066915	2.22	0.027	.0017306	.0279693
ecrime7	.0147596	.0066834	2.21	0.027	.0016562	.0278631
lagecrime1	0022554	.004606	-0.49	0.624	0112859	.0067751
lagecrime2	002547	.0046178	-0.55	0.581	0116006	.0065067
lagecrime3	0022554	.004606	-0.49	0.624	0112859	.0067751
lagecrime5	0133163	.0058486	-2.28	0.023	024783	0018495
lagecrime	0133804	.0038434	-2.29	0.022	0248428	- 0019405
rayecrime/	0100830	0030400	1 04	0.025	- 0088303	0010493
_0015	10100033	10030310	1.04	0.230	0000393	.0230072

First-Stage Regressions of Column(1) in Table 7

Test of excluded instruments:

F (58, 5048) =8.53

Prob > F =0.0000

laadlmaffi n	Coof	Robust	+	D. +	[0.5% conf	Tatomyall
Tayu morri~r	Coer.	Stu. EIT.	۔ 	P> L	[95% COIII .	
dunem	3522695	.2615713	-1.35	0.178	8651035	.1605645
dyoung	.5318251	.9673314	0.55	0.582	-1.364715	2.428365
dblack	.186721	.4195262	0.45	0.656	6357977	1.00924
dfemaleh	7820237	1.214973	-0.64	0.520	-3.164087	1.600039
d]npubwe]	.0269396	.0088289	3.05	0.002	.0096297	.0442495
dlneduc	0276891	.0258149	-1.07	0.284	0783016	.0229234
crime1	0001715	.0050368	0.03	0.973	- 0097035	.0100465
crime3	0001715	0050368	0.03	0 973	- 0097035	0100465
vear3	- 0025414	0075292	_0 34	0 736	- 0173031	0122203
year J	- 0048754	0068010	_0.54	0.750	- 0183876	0086368
year 4	0176454	.0000313	2 24	0.475	0103070	.0000300
year o	.01/04/04	.00/0342	2.24	0.023	.0021082	.0331220
year7	.013/3/	.008/851	1.2/	0.11/	00340/1	.0309811
yearð	01//4/8	.0069152	-2.5/	0.010	0313057	0041898
year9	0082761	.005/56/	-1.44	0.151	0195626	.0030105
year10	.0195843	.0076724	2.55	0.011	.0045418	.0346268
year11	003154	.0115141	-0.27	0.784	0257286	.0194205
year12	.0342255	.0112083	3.05	0.002	.0122506	.0562004
year13	.0087353	.0062421	1.40	0.162	003503	.0209736
year14	.0007234	.0067707	0.11	0.915	0125511	.0139979
year15	.0062013	.0081986	0.76	0.449	0098728	.0222754
vear16	.0109155	.0056664	1.93	0.054	0001941	.0220251
vear17	- 0255013	.0072145	-3.53	0.000	0396459	0113567
vear18	- 0089576	0075158	-1 19	0 233	- 0236929	0057777
vear10	- 0207993	0070205	-2.96	0.003	- 0345636	- 007035
year 19	- 014465	.0070203	-2.30	0.003	- 0269246	- 0021055
year 20	014403	.000304	-2.29	0.022	0200240	0021033
year21	0059055	.0005905	-0.92	0.330	0104323	.0000234
year 22	000/001	.0003439	-1.02	0.300	0193301	.0001238
year23	01/4952	.0070404	-2.48	0.013	0312985	003692
year24	.01614/2	.0100924	1.60	0.110	0036398	.0359342
year25	.0267179	.011728	2.28	0.023	.0037242	.0497117
region2	0080158	.0063105	-1.27	0.204	0203881	.0043566
region3	008059	.0058317	-1.38	0.167	0194926	.0033747
region4	0081348	.0063993	-1.27	0.204	0206812	.0044116
region5	0065287	.0055695	-1.17	0.241	0174483	.0043908
region6	.0030355	.005842	0.52	0.603	0084182	.0144892
region7	0040919	.0064505	-0.63	0.526	0167387	.0085548
region8	0059665	.0058569	-1.02	0.308	0174495	.0055165
region9	0068115	.0069039	-0.99	0.324	0203473	.0067243
citvsize1	0029565	.0045145	-0.65	0.513	0118076	.0058946
citysize2	.0027132	.0029814	0.91	0.363	0031321	.0085585
citysize3	0014761	0036945	-0.40	0.690	- 0087195	.0057673
ecrime1	8 870-06	0041822	0 00	0 998	- 0081907	0082085
ocrimo?	0001074	0041022	0.00	0.962	- 0080155	0084103
ocrimo?	8 870-06	0041922	0.05	0.902	- 0081007	0007105
ect times	0.076-00	.0041022	0.00	0.330	0001907	.0002003
ecrimes	.0030392	.005105	0.90	0.327	0050072	.0151033
ecrimeo	.0049524	.0051/05	0.90	0.336	0031649	.015009/
ecrime/	.0050592	.002102	0.98	0.32/	00506/2	.0100700
lagecrimel	.0103668	.0043899	2.30	0.018	.001/601	.0183/36
lagecrime2	.010536	.0044002	2.39	0.017	.001909	.0191629
lagecrime3	.0103668	.0043899	2.36	0.018	.0017601	.0189736
lagecrime5	.0222799	.0066538	3.35	0.001	.0092344	.0353253
lagecrime6	.0224127	.0066541	3.37	0.001	.0093667	.0354586
lagecrime7	.0222799	.0066538	3.35	0.001	.0092344	.0353253
cons	0003789	.0097131	-0.04	0.969	0194223	.0186645

Test of excluded instruments:

F (58, 5048) =8.15

Prob > F =0.0000

Appendix C

2SLS Estimates of Crimes (Partial)

	(1)	(2)	(3)
	$\Delta \ln violent$	Δ ln violent	Δ ln violent
ln sworn officer	0.601	0.583	0.376
	(0.725)	(0.342)	(0.246)
			a a i a
Lag In sworn officer	-1.151	0.00196	0.240
	(0.756)	(0.275)	(0.254)
Sum of ln sworn officer	-0.550	0.584	0.616
	(0.903)	(0.480)	(0.398)
State unemployment rate	-1.006	-1.354	-1.596
	(1.412)	(1.172)	(1.161)
Percent ages 18-24	-8.836	-12.04	-12.37
1 010011 uges 10 2 1	(8.964)	(8.398)	(8.364)
Percent black	1.224	2.571	2.570
	(2.873)	(2.377)	(2.340)
Percent female-headed household	-1.558	-2.853	-2.997
	(7.561)	(7.044)	(7.053)
In public welfare spending per capita	-0.00148	-0.0429	-0.0494
	(0.0508)	(0.0447)	(0.0462)
In education spending per capita	-0.0521	-0.0960	-0.113
	(0.0999)	(0.0896)	(0.0894)
N	1294	1294	1294
R^2		0.106	0.102

2SLS Estimates of Violent Crime with Respect to Police Using Data of Year 1985-1992

Note: Dependent variable is Δ In crime rate per capita for one of the three crime categories (burglary, larceny, motor vehicle theft). Right-hand-variables are all first differenced. Estimates are obtained estimating all property crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions. Column (1) instruments using mayoral and gubernatorial election-year indicators. Column (2) instruments using interactions between the city-size indicators and election years. Column (3) instruments using interactions between the region dummies and election years. S.D. in parentheses. * p < 0.05, *** p < 0.01, **** p < 0.001

In data are from the 1985-1992 period.

	(1)	(2)	(3)
	$\Delta \ln$ property	$\Delta \ln property$	$\Delta \ln property$
In sworn officer	0.568	0.700^{**}	0.416^{*}
	(0.614)	(0.271)	(0.192)
Lag ln sworn officer	-1.296*	-0.366	0.335
	(0.614)	(0.261)	(0.189)
Sum of ln sworn officer	-0.728	0.335	0.751
	(0.743)	(0.401)	(0.304)
State unemployment rate	0.352	0.191	-0.256
I J I I I I I I I I I I I I I I I I I I	(1.285)	(0.903)	(0.863)
		× /	
Percent ages 18-24	-4.548	-7.394	-8.885
6	(6.948)	(5.714)	(5.515)
			()
Percent black	0.0464	1.366	1.827
	(2.522)	(1.853)	(1.706)
	× ,	× /	× ,
Percent female-headed household	3.171	2.158	1.625
	(6.919)	(6.005)	(5.932)
			(,
In public welfare spending per capita	0.0538	0.0177	-0.00595
	(0.0416)	(0.0334)	(0.0338)
		× ,	
In education spending per capita	0.0418	0.00858	-0.0309
	(0.0782)	(0.0658)	(0.0674)
N	975	975	975
R^2		0.104	0.142

2SLS Estimates of Property Crime with Respect to Police Using Data of Year 1985-1992

Note: Dependent variable is $\Delta \ln$ crime rate per capita for one of the three crime categories (burglary, larceny, motor vehicle theft). Right-hand-variables are all first differenced. Estimates are obtained estimating all property crime categories jointly, allowing for a city-fixed effect across crime rates and heteroskedasticity across crime categories. Crime specific year dummies, region dummies and city-size indicators are included in all regressions. Column (1) instruments using mayoral and gubernatorial election-year indicators. Column (2) instruments using interactions between the city-size indicators and election years. Column (3) instruments using interactions between the region dummies and election years. S.D. in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001

All data are from the 1985-1992 period.

REFERENCES

- Becker, Gary. "Crime and Punishment: An Economic Approach." *Journal of Political Economy*, March-April 1968, 76(2), pp.169-217.
- Cameron, Samuel. "The Economics of Crime Deterrence: A Survey of Theory and Evidence." *Kyklos*, May 1988, *41*(2), pp. 301-23.
- Coleman, Michael. "The Finances of Public Safety." CA: Western City. November 1997.
- Cornwell, Christopher and Trumbull, William. "Estimating the Economic Model of Crime with Panel Data." *Review of Economics and Statistics*, May 1994, 76(2), pp. 360-66.
- Di Tella, Rafael, and Ernesto Schargrodsky. "Do police reduce crime? Estimates using the allocation of police forces after a terrorist attack." *American Economic Review*, March 2004, *94* (1), pp. 115-33.
- Donohue, John and Levitt, Steven. "The Impact of Legalized Abortion on Crime." *Quarterly Journal of Economics*, May 2001, *116*(2), pp. 379-420.
- Fisher, Franklin and Nagin, Daniel. "On the Feasibility of Identifying the Crime Function in a Simultaneous Equations Model of Crime and Sanctions," in Alfred Blumstein, Daniel Nagin, and Jacqueline Cohen, eds., *Deterrence and incapacitation: Estimating the effects of criminal sanctions on crime rates*. Washington, DC: National Academy of Sciences, 1978, pp.361-99.
- Klick, Jonathan and Tabarrok, Alexander. "Using Terror Alert Levels to Estimate the Effect of Police on Crime." The Journal of Law and Economics, April 2005, 48(1), pp. 267-79.
- Levitt, Steven. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime." *American economic Review*, June 1997, 87(3), pp.270-90.
- Lin, Ming-Jen. "More Police, Less Crime: Evidence from US Sate Data." *International Review of Law and Economics*, June 2009, 29(2), pp.73-80.
- Marvell, Thomas and Moody, Carlisle. "Police Levels, Crime Rates, and Specification Problems." *Criminology*, November 1996, *34*(4), pp. 609-46.