
Clemson University
TigerPrints

All Theses Theses

8-2013

3D Fractal Flame Wisps
Yujie Shu
Clemson University, yujies@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Fine Arts Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Shu, Yujie, "3D Fractal Flame Wisps" (2013). All Theses. 1704.
https://tigerprints.clemson.edu/all_theses/1704

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1141?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1704?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

3D Fractal Flame Wisps

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Fine Arts

Digital Production Arts

by

Yujie Shu

August 2013

Accepted by:

Dr. Jerry Tessendorf, Committee Chair

Dr. Robert Geist

Dr. Donald House

Abstract

This thesis presents a method for integrating two algorithms, fractal flames and wisps, to

create visually rich and interesting patterns with 3D volumetric structure. Twenty-one single 3D

flame variations are described and specified. These patterns were used to produce an aesthetically

designed animation, inspired by both Hubble Telescope photographs and data from a simulation

of a predicted collision between the Milky Way and Sagittarius galaxies. The thesis also describes

Python tools and a Houdini pre-visualization pipeline that were developed to facilitate the animation

design and production.

ii

Acknowledgements

I would like to express my sincere grattitude to my advisor, Dr. Jerry Tessendorf, for pro-

viding guidance, support, and inspiration throughout my research. His insight into visual effects

industry and his mentorship are invaluable to this work.

I would also like to offer special thanks to committee member, Dr. Robert Geist, for intro-

ducing me to the Digital Production Arts Program and the field of Computer Graphics. My sincere

thanks also go to committee member, Dr. Donald House, for introducing me to Physically Based

Animation.

In addition, I would like to thank Dr. Jeanette Myers and Dr. Lih-Sin The in Physics and

Astronomy Department for providing galactic simulation data. Also, special thanks go to a DPA

alumnus Robert Helms who gives an important feedback to the galaxy animation.

Finally, I would like to thank my mother, Xianping Shu, and my hunsband, Weixin Wu,

who have always supported me.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgements . iii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Background . 6

3 Implementation . 15

4 Animation . 29

5 Conclusions and Discussion . 36

Appendices . 38
A Catalog of 3D Fractal Flame Wisp Variations . 39

Bibliography . 51

iv

List of Tables

4.1 Simulation Data Statistics . 29
4.2 Guide Particle Statistics . 31
4.3 Animation Data Statistics . 34

v

List of Figures

1.1 Flame Artwork By Richard “Doc” Baily [4] . 2
1.2 The wisp effect from The Lord of the Rings: Fellowship of the Ring [7]

Copyright 2001 New Line Cinema. All rights reserved. 3
1.3 Andromeda Galaxy Photograph by Hubble Telescope [8] and Elliptical Galaxy Her-

cules A [9] . 5

2.1 Wisp Generated Using Random Walk (Left), Correlated Walk (Middle), and Levy
Walk (Right) Algorithms . 11

2.2 Wisp With Random Color . 12
2.3 3D Fractal Flame Wisps Pattern Example Images.

These images were selected for aesthetic properties 13

3.1 Sparse Grid Visualization from SIGGRAPH course notes 2010 [5] 17
3.2 Frustum Sparse Grid Visualization from SIGGRAPH course notes 2010 [5] 19
3.3 Wisp Color Design Test . 25
3.4 Example Image of Noise Parameter Wedge . 26
3.5 Wisp Color Illuminance Correction.

Before Correction (Left) and After Correction (Right). 27
3.6 Example Image of 3D Fractal Flame Wisp With Different Viewing Angles 28

4.1 Galaxy Simulation Visulazation . 30
4.2 Houdini Galaxy Animation Pre-Visulazation . 31
4.3 Houdini 3D Fractal Flame Wisps Pre-Visulazation 32
4.4 Galaxy Animation Screenshot Using 3D Fractal Flame Wisps 34
4.5 Galaxy Animation Screenshot Using 3D Fractal Flame Wisps 35

vi

Chapter 1

Introduction

In this thesis, the word “flame” does not refer to combustion products but to the artistic

visual style pioneered in fractal flames. In 1992, Scott Draves developed the fractal flame algorithm

which uses a 2D Iterated Function System (IFS) of non-linear functions to create enchanting images.

The three main differences between fractal flame algorithm and standard IFS functions are: (1) affine

transformations are replaced by non-linear functions, (2) tone mapping is used in fractal flames to

generate log-density displays, and (3) color is assigned to the flame according to the density map [1].

Richard “Doc” Baily was one of the pioneers who brought fractal flames into film production.

His feature film credits include Superman Returns (2006), Stay (2005), The Core (2003), and Solaris

(2002) [2]. He developed a proprietary high-speed particle renderer, SPORE, to generate fascinating

3D fractal flames. The SPORE system uses a proprietary method to build a collection of iterated

functions that tranform a 3D seed point into another 3D output point [3].

The images in Figure 1.1 [4] are examples of his fractal flames with artistic style. The image

on the left appears as a black hole and indicates the swirl motion with stylized strokes. The one

on the right, named “Angel”, illustrates a comet with a nice tail in front of the aurora. In both

images, those fractal flames are created by SPORE using millions of particles. In this thesis, I hope

to achieve this type of artistic feel from wisps and volume rendering.

Widely adapted in medical and data visualization, volume rendering has become an essential

tool in visual FX production. It deals with true 3D volumes, including volume modeling, volume

animation, and photorealistic rendering [5]. One of the primary applications of volume rendering in

film production is to generate FX elements such as clouds, smoke, fire, wisps, water splashes, etc [6].

1

Figure 1.1: Flame Artwork By Richard “Doc” Baily [4]

Fields are mathematical functions that return a value at any point in 3D space. Volume

modeling is a process to construct fields. There are five types of fields: (1) scalar field, (2) vector

field, (3) matrix field, (4) color field, and (5) signed distance field. A scalar field f(x) returns a scalar

value which can be a floating-point value at a point x; a vector field f(x) returns a vector value

with 3 scalar components; a matrix field f(x) returns a 3x3 matrix value; a color field F returns a

rgba-value at the point x; and a signed distance f returns a floating-point value to represent the

distance from a point to a geometry surface [6]. Many math operations can be used on the fields

to construct new fields, such as addition, subtraction, multiplication, division, sine, cosine, tangent,

etc. Transformations, such as scaling and rotation, can be applied to fields, too.

Generally, there are four ways to animate volumetric data. First, traditional keyframe

animation of shapes can be used to drive volumes. Second, Physically Based Simulations can be

used to create motion drived by forces. Third are advections on the volume. Fourth, animation

on the noise parameters will greatly change the looks of the effects. Some examples are pyroclasts,

wisps, auroras and clouds.

To build a volumetrics system, three elements are needed. There are voxel fields, camera

information, and lighting information. Volume rendering, the ray marcher system, makes use of

this data and generates a final image [5]. To present the realistic look of the translucence within

the volumetric data, opacity has to be correctly interpreted in the rendering. The ray marching

algorithm accumulates opacity and opacity-weighted color along the viewing direction vector that

2

Figure 1.2: The wisp effect from The Lord of the Rings: Fellowship of the Ring [7]
Copyright 2001 New Line Cinema. All rights reserved.

traverses the viewing space [6].

Wisps are a type of volumetric FX generated from many dots sampled in a grid. The

algorithm creates wisps using a uniform random number generator and two separate copies of fractal

summed Perlin Noise. The random number generator is controled by an input seed parameter. Each

wisp has a guide particle with attributes that drive all of the parameters in the algorithm.

Wisps have been used in many feature films, for example, The Lord of the Rings: Fellowship

of the Ring (2001), X2: X-Men United (2003), Stealth (2005), Superman Returns (2006), Happy Feet

(2006), Pirates of the Caribbean: Dead Man’s Chest (2006), Night at the Museum (2006), Pirates

of the Caribbean: At World’s End (2007), Night at the Museum: Battle of the Smithsonian (2009),

and The A-Team (2010). Figure 1.2 [7] shows an example of wisps in The Lord of The Rings:

Fellowship of The Ring. This is the debut of wisps by Alan Kaplan at Digital Domain. Wisps create

photo-realistic white water for this river scene with artistically controlled motion.

The Fractal Flame and Wisps generate different visually captivating and enchanting com-

puter graphics, while the first one creates countless patterns and the second one presents elegant

3D structure. This thesis will present a method and implementation to integrate the Fractal Flame

3

and Wisps together to create 3D Fractal Flame Wisps. An effort has been put into the exploration

of the artistic look and how to control the look. In order to make an animation with an artistic

design, a customized production pipeline has been developed. The rendering system is implemented

in C++ and Python and pre-visualization of galaxy animation is implemented in Houdini.

Inspired by Hubble Telescope’s space photographs, I made a galaxy animation using those

3D Fractal Flame Wisps I created. The two images in Figure 1.3 are space photographs from Hubble

Telescope. The image on the top [8] is the Andromeda Galaxy, which is the nearest spiral galaxy to

the Milky Way galaxy. The Great Andromeda Nebula has an interesting wispy look in a disk shape.

The one on the bottom [9] is the elliptical galaxy Hercules A. The red radio-emitting object, 3C

348, is the brightest galaxy in the constellation Hercules [10]. This galaxy has two wispy spherical

shapes with tails connecting back to the galactic center. The color variance and translucency nicely

demonstrate its volume.

Those images from Hubble Telescope are the inspirations for this galaxy animation project.

Patterns of 3D Fractal Flame Wisps were investigated to produce a visual similarity between the

galaxy nebula and 3D Fractal Flame Wisps. The galaxy could be visualized more artistically using

the 3D Fractal Flame Wisp algorithm. Milky Way galaxy and Sagittarius galaxy simulation data

were provided by Dr. Jeanette Myers and Dr. Lih-sin The in collaboration with the Physics and

Astronomy Department of Francis Marian University and Clemson University. Based on the simu-

lation data, I interpolated, copied, and tranformed the galaxy motion and made a galaxy animation

with a center disk galaxy and three smaller galaxy groups.

4

Figure 1.3: Andromeda Galaxy Photograph by Hubble Telescope [8] and Elliptical Galaxy Hercules
A [9]

5

Chapter 2

Background

Iterated Function System (IFS) is a mathematical method for constructing self-similar forms

called “fractals.” The IFS is a finite collection of functions that transform a point in space X to

another point in the same space [1]:

{fi : X → X | i = 1, 2, ..., N}, N ∈ N

Fractal Flame IFS, introduced by Scott Draves, is made in 2D space. The propery of the

system matches Hutchinson’s set equation [11]:

S =

n⋃
i=0

fi(S)

where the set S is the solution of the system, n is the dimention of the space, and fi are

iterated functions. Scott Draves’ Fractal Flame IFS is 2D, but according to the equation, it could

be easily extended to 3D space.

Micharel Barnsley created the chaos game algorithm to solve the system to get the fractal

image. The algorithm starts with an initial random point and then iterates [12]. Fractal Flames use

this algorithm to generate enchanting images. The pseudocode is as follows [1]:

6

(x,y) = a random point in the bi-unit square

iterate

{
i = a random integer from 0 to n-1 inclusive

(x,y) = Fi(x,y)

plot(x,y)

}

where x and y are both initially in [-1,1]. Because (x, y) ∈ S, Fi(x, y) ∈ S.

One of the innovations of Fractal Flames is the use of non-linear functions. These are

composed by transforming the affine functions [1]:

Fi(x, y) = Vj(aix+ biy + ci, dix+ eiy + fi)

To extend the Fractal Flame algortithm to 3D, a z-axis element is added in my algorithm:

Fi(x, y, z) = Vj(aix+ biy + ciz + di, eix+ fiy + giz + hi, kix+ liy +miz + ni)

Each function Vj is a single shape variation with distinct characteristics. In Scott Draves

and Erik Reckase’s paper “The Fractal Flame Algorithm”, they list 49 single variations in the

appendix [1]. Here are some 2D example functions:

V0(x, y) = (x, y)

V1(x, y) = (sin(x), sin(y))

V2(x, y) =
1
r2
(x, y)

V3(x, y) = (x sin(r2)− y cos(r2), x cos(r2) + y sin(r2))

V4(x, y) =
1
r
((x− y)(x+ y), 2xy)

where r =
√
x2 + y2

In my algorithm, I added the z-axis value to the equations to form 3D patterns for those

basic non-linear functions. And each variation had a correspondent flame class in code. For example:

V0(x, y, z) = (x, y, z)

V1(x, y, z) = (sin(x), sin(y), sin(z))

7

V2(x, y, z) =
1
r2
(x, y, z)

V3(x, y, z) = (x sin(r2)− y cos(r2), x cos(r2) + y sin(r2), x cos(r2)− z sin(r2))

V4(x, y, z) =
1
r
((x− y)(x+ y), 2xy, (x− z)(x+ z))

where r =
√
x2 + y2 + z2

Based on those single variations, more variations can be generated through subsequent affine

transforms which change the coordinate systems of the variations. The post transform function is

generalized as follows:

Pi(x, y) = (αix+ βiy + γiz + δi, εix+ ζiy + ηiz + θi, κix+ λiy + µiz + σi)

then Fi is redefined as:

Fi(x, y, z) = Pi(Vj(aix+ biy + ciz + di, eix+ fiy + giz + hi, kix+ liy +miz + ni))

Accordingly, in my volume rendering code, I built post transformation classes, such as scale,

translate, rotation, and parametric transformation classes to accommodate post transformations for

flame classes.

Wisps, introduced by Alan Kaplan at Digital Domain, were first used in The Lord of the

Rings: Fellowship of the Ring (2001). The algorithm of wisps is a 3D volumetric method which

generates many dots and samples in a 3D grid.

The wisp generating algorithm uses a uniform random number generator, a guide particle,

and two separate copies of fractal sum Perlin noise (FSPN) [13]. In pseudo code it is:

for(loop over number of dots for this guide particle)

{

1.random walk, correlated walk, or levy walk

−→
X(x,y,z) = R(x,y,z)

2. record the
−→
X for color

−→
X color(x,y,z) =

−→
X(x,y,z)

3. map the position to a unit sphere

8

P0(x,y,z) = (x,y,z)/|(x,y,z)|

4. displace radially from sphere using FSPN

P1(x,y,z) = P0r

r = |FSPN1|α

5. map to the guide particle coordinate

−→
X0 = guide particle position

S = guide particle scale

N̂ = guide particle normal

r̂ = guide particle right

t̂ = guide particle tangent

−→
X =

−→
X0 + [(

−→
P1)xN̂ + (

−→
P1)y r̂ + (

−→
P1)z t̂]S

6. displace
−→
X with FSPN

S2 = guide particle scale2

−−−→
Xwisp =

−→
X + V (FSPN2(

−→
X)) ∗ S2

V (FSPN2(
−→
X)) = (FSPN2(

−→
X), FSPN2(

−→
X + offset), FSPN2(

−→
X + offset))

7. sample the dot to the grid

stamp(x,y,z)

8. sample color to grid

color = (FSPN3(
−→
X), FSPN3(

−→
X + offset), FSPN3(

−→
X + offset), 1.0)

stamp color

}

For step one in pseudo code, the three types of walks that can be used to generate wisps are

random, correlated, and levy. Random walk is the most basic. It generates a randomized position

using uniform pseudo random number generator (UniformPRN) with Mersenne Twister [14]. A

random walk is generalized as follows:

x = 2 ∗ prn− 1

y = 2 ∗ prn− 1

z = 2 ∗ prn− 1

where prn is a sample value from a UniformPRN generator. (x,y,z) are contained in a 2x2x2

9

cube with each element in [-1,1]. The left image in Figure 2.1 shows an example of random walk.

Each wisp particle is totally random and has no correlation with the particle in previous step.

The correlated walk adds a procedure. A correlation parameter (ε) is used to make correla-

tions with the last value, so that the wisp looks more continuous.

vx = 2 ∗ prn− 1

vy = 2 ∗ prn− 1

vz = 2 ∗ prn− 1

x = x(1− ε) + vxε

y = y(1− ε) + vyε

z = z(1− ε) + vzε

If ε = 1, then the wisp particle does not move and the positions are completely correlated.

The image of wisp would be just a single dot. If ε = 0, then the walk is totally random and

uncorrelated. The image of wisp would be the same as the random walk image. For 0 < ε < 1,

the collection of values is a random walk with positions that are partially correlated. The middle

image in Figure 2.1 shows an example of correlated walk with a correlation coefficient ε = 0.7. Each

wisp particle is 30% random and has 70% correlation with the particle in previous step. So the wisp

shape is much more coherent.

The levy walk is a correlated walk with an additional scaling to make the correlation uneven.

vx = 2 ∗ prn− 1

vy = 2 ∗ prn− 1

vz = 2 ∗ prn− 1

x = x(1− ε) + vxε

y = y(1− ε) + vyε

z = z(1− ε) + vzε

mag = x2 + y2 + z2

x = x/magq

y = y/magq

z = z/magq

where user-defined parameter q is a scalar value to control the divisor. The right image

in Figure 2.1 shows an example of levy walk. Each wisp particle has different randomness and

correlation with the particle in previous step. So the wisp shape is more coherent than random walk

but more spread-out than correlated walk.

There are several important parameters inside noise to control the shape of wisps, including

frequency, octaves, roughness, fjump, and translate. The total collection of parameters are encap-

10

Figure 2.1: Wisp Generated Using Random Walk (Left), Correlated Walk (Middle), and Levy Walk
(Right) Algorithms

sulated in the guide particle class. Since there are two copies of FSPN, two sets of noise parameters

are defined in the particle class. Five noise parameters are used very often, shown as follows:

float frequency

float octaves

float fjump

float roughness

Vector translate

The FSPN equation is generalized as:

FSPN =

n−1∑
i=0

riPN((−→x −−→x t))f(f ijump)

where n is the number of octaves, f is the frequency, r is the roughness, fjump is fjump,

and −→x t is the translate vector.

Animating the parameters above creates an animated wisp. The frequency can change the

frequency of the noise. The octaves numbers add more bumps to the wisp. The roughness and

fjump can make the noise shape expand or shrink to look more rough or plain. The translate

vector changes the position of the noise. I animated those 5 parameters in my galaxy animation for

the 3D Fractal Flame Wisps.

To add colors to Wisps, another FSPN can be used: FSPN3(p0). To make sure colors are

11

Figure 2.2: Wisp With Random Color

continuous throughout the wisp, p0 should be the position before displacement between step 2 and

3 in pseudo code. Figure 2.2 shows an example of Wisp with random color.

To explore new looks of Wisps, the step one of random walk, correlated walk, or levy walk

has been replaced by the fractal flame algorithm. Some of the test results are shown in Figure 2.3.

Those patterns are distinguished from the usual wisp patterns. Later, a more complete algorithm

of 3D Fractal Flame Wisps has been generalized. Comparing the previous wisp pseudo code, step

one has been replaced by the flame functions and step 3 to 5 are deleted.

To make a single 3D Fractal Flame Wisp, wisp and IFS algorithms can be combined together

as follows in pseudo code:

for(loop over number of dots for this guide particle)

{

P0(x,y,z) = a random point in the 2x2x2 cube with axes between [-1,1]

for(loop over IFS variation numbers)

{

1. fractal flame functions

−→
X(x,y,z) = fi(P0(x,y,z))

2. record the
−→
X for color

−→
X color(x,y,z) =

−→
X(x,y,z)

12

Figure 2.3: 3D Fractal Flame Wisps Pattern Example Images.
These images were selected for aesthetic properties

13

3. displace
−→
X with FSPN

S = user-defined displacement coefficient

P0 =
−→
X + V (FSPN(

−→
X)) ∗ S

V (FSPN(
−→
X)) = (FSPN(

−→
X), FSPN(

−→
X+(0.1, 0, 0)), FSPN(

−→
X+(0, 0.1, 0)))

4. sample dot to grid

pscale = guide particle scale

stamp P0*pscale

P0 is the input of the next point in the IFS loop

5. sample color to grid

color = (FSPN2(
−→
X), FSPN2(

−→
X + (0.1, 0, 0)), FSPN2(

−→
X + (0, 0.1, 0)), 1.0)

stamp color

}

}

This thesis uses this new algorithm to explore new looks and patterns of 3D Fractal Flame

Wisps. Also, a great effort has been put into experimenting with artistic controls of the shapes,

colors, and the animations. More details will be discussed in the next chapter.

14

Chapter 3

Implementation

The research implementation consists of three main components: the Volume Render,

Python interface, and 3D Fractal Flame Wisp patterns. The Volume Render, which is the main

renderer for this thesis, utilizes the ray marching algorithm to image the volumetric data in voxel

buffers. Written in C++, the Volume Render is not sufficiently user-friendly for testing the impact

of a large number of parameters. Therefore, a Python wrapper has been added to the volume ren-

dering code to improve usability. The workflow for testing and rendering is embedded in one or

more Python scripts. The Fractal Flame class includes all 3D Fractal Flame Wisp base patterns

used to experiment within this thesis. Also, IFS and noise displacement has been added to the flame

to improve the visual quality of the shapes. Last but not least, color design is critical to the looks

of the 3D Fractal Flame Wisps.

The essential algorithm for Volume Rendering is the ray marching algorithm, which is the

numerical approximation of the rendering equation [6]:

L(xC ,nP) =

∫ smax

s0

ds CT (x(s)) κ ρ(x(s)) e−
∫ s
0
ds′ κ ρ(x(s′))

L(xC ,nP) is the light received by a camera at the position xC with a pointing direction nP

for pixel P . Since the volumetric material only takes a finite volume of space, setting up starting

point xnear and finishing point xfar can reduce the time of integration. The ray marcher traverses

along the line:

15

x(s) = xnear + snP

with a step size ∆s and a unit direction vector nP , s ∈ [0, |xfar − xnear|]. CT is the color

representing the amount of light emittable at the point x(s). ρ is density and κ is the extinction

coefficient [6].

Wisps are represented by scalar fields and color fields that are discretized consisting of

many small voxel samples. Wisp particles’ density and color are rasterized into a voxel grid before

rendering. Four types of grids have been implemented in this thesis to accelerate the rendering

process.

A rectangular grid is a typical method for a voxel buffer. It is a 3D orthogonal array, which

stores scalarfield values (such as wisp density) or colorfield values (such as wisp color) in each voxel.

The memory is allocated all at once when initializing the grid. The normal range of the resolution

for rectangular grids is up to roughly 10003.

In implementation, a rectangular grid can store its data as a contiguous one dimentioanl

array. For example,

float * grid = new float[sizeX * sizeY * sizeZ];

And the mapping from a 3D coordinate to 1D array can be done through an index function:

int RectangularGrid::index(int i, int j, int k)

{
return i + sizeX * (j + sizeY * k);

}

A sparse grid has two layers of information: data pointers and actual data. The data

pointers are allocated dynamically where wisps dots are located. They are not assigned ahead of

time. A sparse grid is shown in Figure 3.1 [5]. The outline of the larger cube is the dimention of the

3D grid. The smaller cubes represents the valid voxels with data. All the empty space in the larger

cube shows those voxels do not have any memory allocated. This method is more memory efficient

comparing to rectangular grid. Therefore, when initialing the sparse grid only the memory for data

pointers is allocated. An extra parameter, partition size, is needed.

16

Figure 3.1: Sparse Grid Visualization from SIGGRAPH course notes 2010 [5]

int blockSizeX = sizeX / partitionX;

int blockSizeY = sizeY / partitionY;

int blockSizeZ = sizeZ / partitionZ;

float *grid = new float*[blockSizeX * blockSizeY * blockSizeZ];

Later, when sampling the particles, if there are values needing to be assigned to the voxels

then the memory will be allocated through the data pointers.

if(grid[bi] == NULL)

{
grid[bi] = new float[partitionX * partitionY * partitionZ];

for(int i=0; i<partitionX*partitionY*partitionZ; i++)

grid[bi][i] = dvalue;

}

To render 3D Fractal Flame Wisps, a sparse grid would be a better choice than a rectangular

grid in memory usage. It saves memory because wisps have a large amount of empty space where

sparse grid will not need allocated memory.

The double sparse grid adds another partition layer to the sparse grid in order to accom-

modate larger dimensions of grids. The grid dimension is about 30003 for sparse grid while double

sparse grid can go up to 50003 for my animation project. It helped me to get finer details of the 3D

17

Fractal Flame Wisps.

int blockSizeX = sizeX / (partitionX * partitionX);

int blockSizeY = sizeY / (partitionY * partitionY);

int blockSizeZ = sizeZ / (partitionZ * partitionZ);

float *grid = new float**[blockSizeX * blockSizeY * blockSizeZ];

When sampling the particles later, if values need to be assigned to voxels, the memory will

be allocated through the two layers of data pointers.

if(grid[bi] == NULL)

{
grid[bi] = new float* [partitionX * partitionY * partitionZ];

for(int i=0; i<partitionX*partitionY*partitionZ; i++)

grid[bi][i] = NULL;

}
int dbi = dindex(i,j,k);

if(grid[bi][dbi] == NULL)

{
grid[bi][dbi] = new float[dparsizeX * dparsizeY * dparsizeZ];

for (int i=0; i<dparsizeX*dparsizeY*dparsizeZ; i++)

grid[bi][dbi][i] = dvalue;

}

To visualize the volumetric data, camera information decides the viewing frustum. Since

information outside the viewing frustum is not visible, it does not need to be sampled onto the grid.

Furthermore, voxels closer to the camera requires more details than the voxels further away. To

better accommodate situation like this, a frustum-shaped grid is a more suitable choice.

The frustum grid uses information from a camera to shape the grid in the space projection

as the camera. Each voxel has a different size.

The transformation of a point in space
−→
P to a location in the frustum volume projects the

point to the camera plane location
−→
X :

−→
X =

−→
P −−→Pc

n̂c ∗ (
−→
P −−→Pc)

− n̂c

where
−→
Pc is the camera position, and n̂c is the unit vector of camera viewing direction.

To further opitimize the volume render, the frustum grid can be combined with the sparse

grid, as shown in Figure 3.2 [5]. The sparse grid changes from cube shape to frustum shape. Also,

the frustum grid uses the camera information to cut out the data outside viewing frustum. It is very

18

Figure 3.2: Frustum Sparse Grid Visualization from SIGGRAPH course notes 2010 [5]

memory efficient for the close up shot when the viewing data is only a small part of the scene data.

The frame in my animation project used frustum grid in a resolution of 2000x1200x2000 has finer

details than the one used double sparse grid in a resolution of 5000x5000x5000.

Aliasing issues may appear in Volume Rendering. If voxel size is not small enough, it may

cause aliasing artifacts. Furthermore, the sampling frequency, that is ray marching step, needs to

match the voxel size. Similar to ray tracing, a technique used for antialiasing in Volume Rendering

is to shoot multiple rays for each pixel. Each ray would add a small offset to each voxel’s sample

position when ray marching.

In the design phase of this project, there were many variations of the parameters for 3D

Fractal Flame Wisps. If the render programs were C++ main files, the code would be compiled

each time before running, complicating the process. Python scripting of the design process made

the parameter tweaking simpler and more effective.

A Python interface for the volume rendering code was generated through Simplified Wrapper

and Interface Generator (SWIG). SWIG is an open-source software used to connect libraries or

programs in C or C++ with scripting languages such as Python [15]. SWIG generates a shared

library that later Python scripts can import. The Python scripts invoke the underlining C++

19

library.

To generate the Python wrapper for the volume code, the first step is to create corresponding

SWIG interface (.i) files. For example, Camera.h file defines the camera class in the volume code. A

corresponding camera.i file maps the camera class to the SWIG wrapper. In this file, the %module

defines the name of the module that will be created by SWIG.

%module vr

%{
#include Camera.h

%}
%include Camera.h

The volume render (vr) module has multiple interface files that are collected together in a

comprehensive interface.

%module vr

%include "std string.i"

%include "boost shared ptr.i"

%include "Vector.i"

%include "Matrix.i"

%include "Camera.i"

%include "Image.i"

%include "Color.i"

From the interface file and C++ library for the volume code, SWIG generates two files:

a shared object file and a Python module. Together they make the C++ functions and objects

available in Python. For example, a block of C++ code in volume render test:

#include "DoubleSparseGrid.h"

#include "Vector.h"

DoubleSparseGrid dg;

dg.init(Vector(-80.0,-80.0,-80.0), Vector(80.0,80.0,80.0), 800,800,800);

DoubleSparseColorGrid cg;

dg.init(Vector(-80.0,-80.0,-80.0), Vector(80.0,80.0,80.0), 800,800,800);

can turn into a block of Python script:

import vr

dg = vr.DoubleSparseGrid()

dg.init(vr.Vector(-80.0,-80.0,-80.0), vr.Vector(80.0,80.0,80.0), 800,800,800)

cg = vr.DoubleSparseColorGrid()

cg.init(vr.Vector(-80.0,-80.0,-80.0), vr.Vector(80.0,80.0,80.0), 800,800,800)

20

To create 3D Fractal Flame Wisps, flame classes and a wisp class were built. A base flame

class was created first and more variations of flames inherited this base flame class. The base flame

class is shown as the following:

class Flame

{
public:

Flame(){ iteration = 1;}
virtual ∼Flame(){}

void setIteration(int i){ iteration = i;}
virtual const Vector eval(const Vector& P){ return Vector(0,0,0); }

protected:

int iterations;

};

Appendix A is a catalog of the 21 basic variation formulas I constructed and their render

examples of 3D Fracal Flame Variations. Each variation was turned into a flame class in C++.

The formulas were inspired by Scott Draves’ 2D Fractal Flame and evolved from 2D to 3D. The 21

formulas are 3D forms corresponded to the appendix in Scott Draves and Erik Reckase’s paper “The

Fractal Flame Algorithm” [1]:

V0(x, y, z) = (x, y, z)

V1(x, y, z) = (sin(x), sin(y), sin(z))

V2(x, y, z) = 1
r2 (x, y, z)

V3(x, y, z) = (x sin(r2)− y cos(r2), x cos(r2) + y sin(r2), x cos(r2)− z sin(r2))

V4(x, y, z) = 1
r ((x− y)(x+ y), 2xy, (x− z)(x+ z))

V5(x, y, z) = (θπ , r − 1, θ2π)

V6(x, y, z) = r(sin(θ + r), cos(θ − r), sin(θ2 + r))

V7(x, y, z) = r(sin(θr1),− cos(θr1),− cos(θ2r2))

V8(x, y, z) = (θπ sin(πr), θπ cos(πr), θ2π cos(πr))

V9(x, y, z) = 1
r (cos θ + sin r, sin θ − cos r, cos θ2 + sin r)

V10(x, y, z) = (sin θ
r , r cos θ, sin θ2r)

V11(x, y, z) = (sin θ cos r, cos θ sin r, sin θ2 cos r)

21

V12(x, y, z) = r(p30 + p31, p
3
0 − p31, p32 − p33)

V13(x, y, z) =
√
r(cos(θ/2), sin(θ/2), sin(θ2/2))

V14(x, y, z) =



(x, y, z) x ≥ 0, y ≥ 0

(2x, y, 2z) x < 0, y ≥ 0

(x, y/2, z/2) x ≥ 0, y < 0

(2x, y/2, z) x < 0, y < 0

V15(x, y, z) = (x+ b sin(yc2), y + e sin(xf2), z + h sin(zi2))

V16(x, y, z) = 2
r+1 (y, x, z)

V17(x, y, z) = (x+ c sin(tan 3y), y + f sin(tan 3z), z + g sin(tan 3x))

V18(x, y, z) = (exp(x− 1) cos(πy), exp(x− 1) sin(πy), exp(y − 1) sin(πz)

V19(x, y, z) = rsin θ(cos θ, sin θ, cos θ2)

V20(x, y, z) = (cos(πx) cosh(y),− sin(πx) sinh(y), sin(x))

where

r =
√
x2 + y2 + z2

r1 =
√
x2 + y2

r2 =
√
x2 + z2

θ = tan(y/x)

θ2 = tan(z/x)

p0 = sin(θ + r)

p1 = cos(θ − r)

p2 = sin(θ2 + r)

p3 = cos(θ2 − r)

(a,b,c,d,e,f,g,h,i) are the affine transform coefficients.

All those vairations can be generated as a non-linear function:

Fi(x, y, z) = Vj(aix+ biy + ciz + di, eix+ fiy + giz + hi, kix+ liy +miz + ni)

Those variations are non-linear functions, which are different remapping functions of a 2x2x2

22

cube volume. The recognizable shapes are defined by the affine transform. Additional parameters

can be added to the variations as the post transformation Pi.

Pi(x, y) = (αix+ βiy + γiz + δi, εix+ ζiy + ηiz + θi, κix+ λiy + µiz + σi)

to generate a parametric Fi function:

Fi(x, y, z) = Pi(Vj(aix+ biy + ciz + di, eix+ fiy + giz + hi, kix+ liy +miz + ni))

In this way, 3D fracal flame can have countless variations after post transformation. To

accommodate the post tranforms, a parametric flame class has been created as the following:

class Parametric3dFlame : public Flame

{
public:

Parametric3dFlame(Flame* flame, float a0,float b0, float c0,

float d0, float e0, float f0, float g0, float h0, float i0,

float j0, float k0, float l0): elem(flame),a(a0),b(b0),c(c0),

d(d0),e(e0),f(f0),g(g0),h(h0),i(i0),j(j0),k(k0),l(l0){}
∼Parametric3dFlame(){}

const Vector eval(const Vector& P)

{
Vector x = elem->eval(P);

Vector newx;

newx[0] = a*x[0]+b*x[1]+c*x[2]+d;

newx[1] = e*x[0]+f*x[1]+g*x[2]+h;

newx[2] = i*x[0]+j*x[1]+k*x[2]+l;

return newx;

}
};

In this way, flames can have multiple passes of post transformation which would greatly

change the look of flames. In addition, translate, scale, and rotation flame classes have been created

in order to have exact control of transformation.

The wisp class needs to have flames as its member variable. A fractalwalk function uses 3D

fractal flame algorithms to generate the next point. For example in C++,

23

class Wisp

{
public:

Wisp(){}
∼ Wisp(){}
void init(const Particle& p);

const Vector fractalwalk(const Vector& p, int i);

Color getColor(int i) { return colors[i]; }

std::vector<Flame*> flames;

std::vector<Color> colors;

private:

Particle guide;

Vector walkpos;

Vector colorpos;

};

In the Wisp class, there is a flame pointer array to save multiple flame variations. And

each flame has a corresponding color which is saved in the colors array. The fractalwak() function

implement the 3D Fractal Flame Wisps algorithm in pseudo code as follows:

fractalwalk(P0(x,y,z))

{

1. fractal flame functions

−→
X(x,y,z) = fi(P0(x,y,z))

2. record the
−→
X for color

−→
X color(x,y,z) =

−→
X(x,y,z)

3. displace
−→
X with FSPN

k = user-defined displacement coefficient

P0 =
−→
X + V (FSPN(

−→
X)) ∗ k

V (FSPN(
−→
X)) = (FSPN(

−→
X), FSPN(

−→
X+(0.1, 0, 0)), FSPN(

−→
X+(0, 0.1, 0)))

4. sample dot to grid

5. sample color to grid

ci = flame color using getColor() in Wisp class

color = (FSPN(
−→
X), FSPN(

−→
X + (0.1, 0, 0)), FSPN(

−→
X + (0, 0.1, 0)), 1.0)

color = (color + ci)/2.0

stamp color

}

24

Figure 3.3: Wisp Color Design Test

There are two color contributions to the wisps’ color. The first contribution is from the

positions of wisp points. In pseudo code step two, the position is recorded for color. Later in step

five, color is evaluated from the FSPN of the color position. This is a lower level of color control,

displacement of the position would change the color. However, the changes from position to the

color is not intuitive and the FSPN evaluation is not linear and hard to predict.

The second contribution is from the color assignment ci of the fractal flames stored in the

colors array. Therefore, the final color is: (color+ci)/2. This is a higher level of control to the overall

look. As shown in Figure 3.3, I tried to assigned four different color schemes to the same wisp group

only change the second color contribution. It worked very well and is very artistic controllable.

Noise can greatly change the look of 3D Fractal Flame Wisps. In pseudo code step three,

the FSPN is used as the displacement V of wisp points. Also, a noise coefficient k is added to the

equation to have more control of the artistic look.

25

Figure 3.4: Example Image of Noise Parameter Wedge

pos = pos+ k ∗ V (FSPN)

As shown in Figure 3.4, the left image has a coefficient k = 0.1 and the right image has

a coefficient k = 0.6. The displacement level drastically changes the look of the 3D Fractal Flame

Wisps. This parameter gives artists a higher level control over the look depending on the animation

context.

In addition, to have a more saturated look of 3D Fractal Flame Wisps, color scaling has

been used in image processing. Because the final color is determined by the numerical accumulation

from ray marching algorithm, the RGB values can easily go up much larger than one when wisp

particles clustered together. This can wash out the highlights. When the particle numbers go up,

the whole image tends to be overexposed. Therefore, in order to get a more saturated color range

and prevent overexposure, an illuminance correction has been implemented as follows:

lmax = max(L.r, L.g, L.b)

L.r = L.r/(lmax+1)

L.g = L.g/(lmax+1)

L.b = L.b/(lmax+1)

The two images in Figure 3.5 show the comparison between the raw illuminance and cor-

rected illuminance. The right image has been corrected compared to the left image. It is more

26

Figure 3.5: Wisp Color Illuminance Correction.
Before Correction (Left) and After Correction (Right).

saturated and closer to the artistic look I planned.

Figure 3.6 shows an example of 3D Fractal Flame Wisp images with all the elements dis-

cussed above in four different camera angles. These are the four images selected from a 360 turn

table sequence. Different viewing angles demonstrates the volumetric shape of the 3D Fractal Flame

Wisp. This wisp has 10 millions particles and 12 parametric flame variations. At this stage, I got

lots of interesting patterns generated by the 3D Fractal Flame Wisps. Then I decided to apply those

patterns to a galaxy animation project to add more artistic meanings to their representation.

27

Figure 3.6: Example Image of 3D Fractal Flame Wisp With Different Viewing Angles

28

Chapter 4

Animation

3D Fractal Flame Wisps were integrated in the production pipeline to produce a two-minute

sequence of galaxy animation. There were several tools that had been built to facilitate the FX

production pipeline and artistic iterations. The process includes pre-visualization and rendering

pipeline.

SideFX’ Houdini is a valuable tool for the pre-visulization of the animation. It provides

several programming interfaces, such as Python, C++ API and Hscript. In this project, Python

was heavily used to set up volume rendering scripts and manage files.

Before the animation, simulation data of Milky Way galaxy and Sagittarius galaxy was

provided by Dr. Lih-sin The in the Physics and Astronomy Department at Clemson University and

Dr. Jeanette Myers in the Physics and Astronomy Department at Francis Marian University. The

simulation is 275 frames in total. The information of particles is listed in Table 4.1. The Milky Way

data has three elements: bulge, disk, and halo. The Sagittarius data has two elements: disk and

halo. Each particle has a ID, position vector and velocity vector.

File Name Particle number

milkywayBulge particles.txt 320,000
milkywayDisk particles.txt 320,000
milywayHalo particles.txt 960,000

sagittariusDisk particles.txt 100,000
sagittariusHalo particles.txt 100,000

Table 4.1: Simulation Data Statistics

29

Figure 4.1: Galaxy Simulation Visulazation

The data was converted from text files to obj files and imported into Houdini. Python scripts

were created to assist the process. In Figure 4.1, the galaxy simulation visualization illustrates galaxy

particles’ positions. The yellow color is the bulge of the Milky Way. The blue color is the main disk

of the Milky Way. They purple color is the halo of the Milky Way. And the mixing red and orange

are the disk and halo of Sagittarius galaxy. Only 5% of the data in this figure was used to be the

starting point of the animation.

The simulation data has been linearly interpolated from 275 frames to 2740 frames to slow

down the speed of movement. Also the Sagittarius galaxy has been copied to three groups and

transformed to different positions to increase the visual complexity of the scene. As shown in Figure

4.2, a center disk galaxy and three smaller galaxy groups were animated in Houdini. The positions

of galaxy groups were recorded and set to the starting position of the 3D Fractal Flame Wisps.

The pre-visualization of animation has the advantage of a fast experiment with different staging,

compositions, and camera movements. Once the camera movement was set, it was exported as

caminfo.txt files frame-by-frame with three vector information: eye, view, and up. In addition, the

positions of selected particles in each galaxy were exported in text files. As shown in Table 4.2,

those particles were used as guide particles for 3D Fractal Flame Wisps.

30

Figure 4.2: Houdini Galaxy Animation Pre-Visulazation

Object Guide Particle number

Center Disk 1
Golden Ball 67
Purple Wisp 50

Magenta Wisp 61

Table 4.2: Guide Particle Statistics

31

Figure 4.3: Houdini 3D Fractal Flame Wisps Pre-Visulazation

Another pipeline tool was developed to pre-visualize the 3D Fractal Flame classes. Houdini

provides a programmable operator interface, inclulding SOPs (surface operators), POPs (particle

operators), CHOPs (channel operators), COPs (composite operators), DOPs (synamic operators),

SHOPs (shading operators), ROPs (render operators), and VOPs (VEX operators). For this project,

Python SOPs were built to integrate Python scripts and visualize the 3D Fractal Flame Wisp dots.

As shown in Figure 4.3, the custom SOPs invoked the volume code to evaluate 3D fractal flame wisp

dots and display them as Houdini particles. In the figure, the flame SOP procedurally models the

heart shaped fractal flame wisp in Houdini. This is an easy and efficient way to test the shapes of

wisps.

After pre-visualization, camera and guide particle information was exported in text files for

each frame. This allowed the automatic creation of render scripts for 2740 frames. This automation

for the rendering was critical since the file management could be time consuming.

The rendering pipeline depended heavily on the Python scripts, which included the following

steps:

1) Output particle and camera positions from Houdini

2) Generate rendering scripts

3) Submit jobs to the queue

32

For render scripts, templates need to be created first, which store the data that is shared

by each frame. Then, other scripts parse the templates, the camera information, and guide particle

positions to generate render scripts according to the frame number.

The Palmetto Cluster was used to generate this animation. It is a high-performance super

computer cluster with a PBS queueing system [16]. Each frame was a job and there were 2740 jobs

submited to the cluster at the same time. Usually, there can be up to 100 jobs running at the same

time depending on how much resource is available. The automation of job management makes the

pipeline more efficient.

The efficiency of the production pipeline is critical. The rendering time and memory usage

were flags to the efficiency of the pipeline. Adding more particles in the wisps will consume more

memory to construct the volumetric grid. To take down the memory usage and seek higher visual

quality of resolution, rectangular grids were first upgraded to sparse grids, then to double sparse

grids, and at last to frustum double sparse grids.

The result of this animation project is a two-minute long movie with a camera dolly into

the center disk galaxy. Figure 4.4 and 4.5 are frames from the galaxy animation. Figure 4.4 is

a far shot of four galaxies. Each galaxy has a distinct color range to differentiate from others

and demonstrates various looks of 3D Fractal Flame Wisps. The look of those galaxies has taken

the references from Hubble Telescope photographs in Figure 1.3. The three smaller galaxies have

three layers of animation, including orbiting movement, self rotation, self transformation, and noise

animation.

Figure 4.5 is a close up shot of the golden ball galaxy and the center disk galaxy. More wispy

details are revealed from this angle. Furthermore, the artistic feel of the the center-disk galaxy is

referencing the Andromeda Galaxy Nebula in Figure 1.3. The center-disk galaxy is purely animated

by the noise parameters. Table 4.3 is the statistics of the particle counts in the rendering pipeline.

33

Object Particle number

Center Disk 72,000,000
Golden Ball 3,000,000
Purple Wisp 1,920,000

Magenta Wisp 2,160,000
Total 79,080,000

Table 4.3: Animation Data Statistics

Figure 4.4: Galaxy Animation Screenshot Using 3D Fractal Flame Wisps

34

Figure 4.5: Galaxy Animation Screenshot Using 3D Fractal Flame Wisps

35

Chapter 5

Conclusions and Discussion

In conclusion, I have successfully constructed an algorithm to integrate Fractal Flames and

Volumetric Wisps. Twenty-one basic patterns are shown in appendix A, as well as other patterns

created through IFS, affine transformation and noise displacement. In addition, a custom visual

effects production pipeline has been implemented to put the 3D Fractal Flame Wisps into a two-

minute galaxy animation in HD quality. The animation starts from a far shot and steps into the

galaxy to show much finer details in the mysterious and artistically stylized space.

There are three artistic aspects in which this animation could be improved. First, the

camera angles and movements can be explored more and improved using cinematic techniques. The

current two-minute animation is a single shot with a camera rotation in first 1000 frames followed

by a dolly move. It is a nice way to illustrate the interesting features in those galaxies. However,

more cinematic shots and camera movements might enhance the spectacular scenes.

Recently, I had two email interviews with two pioneers in Fractal Flame area, Josh Aller

and J-Walt Adamczyk, who both worked at Imagesavant with Richard “Doc” Baily in the past.

They mentioned that colors in their flames is handled differently than mine. In the future, I would

like to try out other methods to explore more color schemes.

An important aspect of my 3D Fractal Flame Wisps artistic research is the great amount of

experimentation required to find the look “gem” in 3D Fractal Flame Wisps. Because of the geometry

originated with a physical simulation of galactic collisions, there was relatively little control of the

geometric structure. Once a parameter is changed, the whole wisp is changed rather than a part of

it.

36

I found two technical issues worth pointing out. First, the Python version is very sensitive

to the pipeline since it is the glue of different tools and platforms. Houdini 12.1 uses Python 2.6

while my volume rendering code is using Python 2.7. This has caused me to go back and recompile

the volume render library with a link to the Houdini Python 2.6 library.

Second, one must be very cautious about using pointers. C/C++ pointers are supported

by SWIG when creating the Python interface for volume code. Python, however, has the automatic

garbage collection for its memory management. It may deallocate the volumetric data before stamp-

ing it onto the grid. A safe way to avoid this segmentation fault is to use reference-counted pointers.

This project used the Boost library, a shared ptr class template, to store a pointer to an object.

An infinite number of patterns can be explored for 3D Fractal Flame Wisps. Only a small

collection has been rendered for this thesis. Also, colors can greatly change the look of the wisps.

Different color schemes will create more variations as well.

The current render time is about one hour per HD frame with two 2000x1200x2000 frustum

double sparse grid. The memory requirement for each frame is 20gb on Palmetto. Optimizing

the render time or memory usage would be worthwhile. There are two new directions that can be

explored to further reduce the render time or memory usage.

One possible direction could be using OpenCL to massively parallelize the ray march ren-

dering [17]. OpenCL provides parallel computing standard on graphics processing units. Each voxel

can be paralleled as a computing kernel.

Furthermore, OpenVDB [18], recently released by DreamWorks Animation for use in volu-

metric applications, is an open-source library with a highly optimized hierarchical data structure and

tools for the efficient storage and manipulation of 3D grids. It is also fully integrated into Houdini

12.5. It may help to reduce the memory usage.

37

Appendices

38

Appendix A Catalog of 3D Fractal Flame Wisp Variations

The 21 formulas are listed below with two example images each variation. On the left, the

image is the single vairation of each formular; on the right, the image is the Wisp IFS with noise

displacement.

All those vairations can be generated as a non-linear function Vj :

Fi(x, y, z) = Vj(aix+ biy + ciz + di, eix+ fiy + giz + hi, kix+ liy +miz + ni)

where

r =
√
x2 + y2 + z2

r1 =
√
x2 + y2

r2 =
√
x2 + z2

θ = tan(y/x)

θ2 = tan(z/x)

p0 = sin(θ + r)

p1 = cos(θ − r)

p2 = sin(θ2 + r)

p3 = cos(θ2 − r)

(a,b,c,d,e,f,g,h,k) are the affine transform coefficients.

39

Variation 0 - Linear

V0(x, y, z) = (x, y, z)

Variation 1 - Sinusoidal

V1(x, y, z) = (sin(x), sin(y), sin(z))

40

Variation 2 - Spherical

V2(x, y, z) = 1
r2 (x, y, z)

Variation 3 - Swirl

V3(x, y, z) = (x sin(r2)− y cos(r2), x cos(r2) + y sin(r2), x cos(r2)− z sin(r2))

41

Variation 4 - Horseshoe

V4(x, y, z) = 1
r ((x− y)(x+ y), 2xy, (x− z)(x+ z))

Variation 5 - Polar

V5(x, y, z) = (θπ , r − 1, θ2π)

42

Variation 6 - Handkerchief

V6(x, y, z) = r(sin(θ + r), cos(θ − r), sin(θ2 + r))

Variation 7 - Heart

V7(x, y, z) = r(sin(θr1),− cos(θr1),− cos(θ2r2))

43

Variation 8 - Disc

V8(x, y, z) = (θπ sin(πr), θπ cos(πr), θ2π cos(πr))

Variation 9 - Spiral

V9(x, y, z) = 1
r (cos θ + sin r, sin θ − cos r, cos θ2 + sin r)

44

Variation 10 - Hyperbolic

V10(x, y, z) = (sin θ
r , r cos θ, sin θ2r)

Variation 11 - Diamond

V11(x, y, z) = (sin θ cos r, cos θ sin r, sin θ2 cos r)

45

Variation 12 - Ex

p0 = sin(θ + r)
p1 = cos(θ − r)
p2 = sin(θ2 + r)
p3 = cos(θ2 − r)
V12(x, y, z) = r(p30 + p31, p

3
0 − p31, p32 − p33)

Variation 13 - Julia

V13(x, y, z) =
√
r(cos(θ/2), sin(θ/2), sin(θ2/2))

46

Variation 14 - Bent

V14(x, y, z) =


(x, y, z) x ≥ 0, y ≥ 0
(2x, y, 2z) x < 0, y ≥ 0
(x, y/2, z/2) x ≥ 0, y < 0
(2x, y/2, z) x < 0, y < 0

Variation 15 - Wave

V15(x, y, z) = (x+ b sin(yc2), y + e sin(xf2), z + h sin(zi2))

47

Variation 16 - Fisheye

V16(x, y, z) = 2
r+1 (y, x, z)

Variation 17 - Popcorn

V17(x, y, z) = (x+ c sin(tan 3y), y + f sin(tan 3z), z + g sin(tan 3x))

48

Variation 18 - Exponential

V18(x, y, z) = (exp(x− 1) cos(πy), exp(x− 1) sin(πy), exp(y − 1) sin(πz)

Variation 19 - Power

V19(x, y, z) = rsin θ(cos θ, sin θ, cos θ2)

49

Variation 20 - Cosine

V20(x, y, z) = (cos(πx) cosh(y),− sin(πx) sinh(y), sin(x))

50

Bibliography

[1] S. Draves and E. Reckase, “The fractal flame algorithm.” http://flam3.com/flame draves.pdf,
2008.

[2] “IMDB.” http://www.imdb.com/name/nm0047665/.

[3] J. Aller. Email Interview, May 2013.

[4] R. Baily, “Image savant spore.” http://www.imagesavant.com/info.html, 2005.

[5] M. Wrenninge, N. Zafar, J. Clifford, G. Graham, D. Penney, J. Kontkanen, J. Tessendorf,
and A. Clinton, “Volumetric methods in visual effects,” (Los Angeles, CA, USA), SIGGRAPH
course, July 2010.

[6] J. Tessendorf and M. Kowalski, “Resolution independent volume,” in Production Volume Ren-
dering 2, (Los Angeles, CA, USA), SIGGRAPH course, July 2011.

[7] “Wisp image in Lord of The Rings: Fellowship of The Ring.” http://wpc.4846.edgecastcdn.net
/804846/www//r/dd/filfo/44/64/4464/Lord of the Rings G 07.jpg.

[8] “Andromeda galaxy.” http://www.scienceinthebible.net/KNOWLEDGE BIBLE/andromeda big.jpg.

[9] “Elliptical galaxy hercules a.” http://www.dailymail.co.uk/news/article-2254802/Dazzling-
collection-Hubble-Telescope-photographs-released-year-captures-countless-swirling-stars-
sparkle-space.html.

[10] “Nasa.” http://www.nasa.gov/mission pages/hubble/science/hercules-a.html.

[11] J. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J., vol. 30, no. 5, pp. 713–747,
1981.

[12] M. Barnsley, J. Hutchinson, and O. Stenflo, “V-variable fractals and superfractals,” eprint
arXiv:Math/0312314, 2003.

[13] J. Tessendorf, “Volume modeling and rendering.” CPSC 819 Notes, 2012.

[14] R. Wagner, “Mersenne twister: A random number generator since(1997/10).”
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html, 2009.

[15] “SWIG.” http://www.swig.org/.

[16] “Palmetto Cluster.” http://citi.clemson.edu/palmetto/.

[17] B. Pelfrey, “A mathematical framework for volume modeling and simulation,” Master’s thesis,
Clemson University, August 2012.

[18] “OpenVDB.” http://www.openvdb.org/.

51

	Clemson University
	TigerPrints
	8-2013

	3D Fractal Flame Wisps
	Yujie Shu
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	Implementation
	Animation
	Conclusions and Discussion
	Appendices
	Catalog of 3D Fractal Flame Wisp Variations

	Bibliography

