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ABSTRACT

Speech enhancement is one of the most important and challenging issues in the speech com-

munication and signal processing field. It aims to minimize the effect of additive noise on the quality

and intelligibility of the speech signal. Speech quality is the measure of noise remaining after the

processing on the speech signal and of how pleasant the resulting speech sounds, while intelligibil-

ity refers to the accuracy of understanding speech. Speech enhancement algorithms are designed

to remove the additive noise with minimum speech distortion.The task of speech enhancement is

challenging due to lack of knowledge about the corrupting noise. Hence, the most challenging task

is to estimate the noise which degrades the speech. Several approaches has been adopted for noise

estimation which mainly fall under two categories: single channel algorithms and multiple channel

algorithms. Due to this, the speech enhancement algorithms are also broadly classified as single and

multiple channel enhancement algorithms.In this thesis, speech enhancement is studied in acoustic

and modulation domains along with both amplitude and phase enhancement. We propose a noise

estimation technique based on the spectral sparsity, detected by using the harmonic property of

voiced segment of the speech. We estimate the frame to frame phase difference for the clean speech

from available corrupted speech. This estimated frame-to-frame phase difference is used as a means

of detecting the noise-only frequency bins even in voiced frames. This gives better noise estimation

for the highly non-stationary noises like babble, restaurant and subway noise. This noise estima-

tion along with the phase difference as an additional prior is used to extend the standard spectral

subtraction algorithm. We also verify the effectiveness of this noise estimation technique when used

with the Minimum Mean Squared Error Short Time Spectral Amplitude Estimator (MMSE STSA)

speech enhancement algorithm. The combination of MMSE STSA and spectral subtraction results

in further improvement of speech quality.
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Chapter 1

INTRODUCTION

Speech signals from uncontrolled environment may contain degradation components along

with the natural speech components. The degradation components include background noises (train-

noise, machine-gun noise etc.), speech from other speakers, etc. Speech degraded by additive noise

makes listening difficult and gives poor performance in automatic speech processing tasks like speech

recognition, speaker identification, hearing aids, speech coders, etc. Consequently, it is desirable to

develop speech enhancement technique to minimize the influence of noise with minimum speech

distortion. This scenario is pictorially shown in figure 1.1

Figure 1.1: Scenario for speech enhancement. Taken from [1]

Speech enhancement algorithms aim to improve the quality and/or intelligibility of noisy

speech. Speech quality relates to the ease of listening and listening comfort while the intelligibility

is related to the word error rate of the perceived speech. It has been shown in [2] that the noise

1



reduction algorithms which try to increase the speech quality mostly fail to improve the speech

intelligibility due to inaccurate noise estimation. Hence, noise estimation is the most important and

challenging stage in a speech enhancement algorithm. In general, a speech enhancement algorithm

consists of three major steps as given below:

1. Transform time domain noisy speech to frequency domain.

2. Estimate the amount of noise added to the clean speech.

3. Use the noise estimate to process the noisy speech.

Figure 1.2: Typical speech enhancement algorithm.

Various approaches [3, 4, 5, 6, 7] can be used to estimate the noise trajectory in the spec-

tral domain. Accurate noise estimation is critical for better performance of speech enhancement

algorithm. For the reference algorithms in this thesis, noise estimation is carried out using ’Voice

Activity Detector’(VAD) due to its simplicity.

The problem of speech enhancement in presence of additive noise has received considerable

attention in the literature since the mid-1970 [3]. Various approaches exist to improve the quality

and intelligibility of speech signal. Those approaches can be classified based upon various criteria

as discussed below:

2



Various ways to classify the existing algorithms-

• Single channel or multi-channel depending on number of available microphones [8, 9].

• Time domain or spectral domain algorithms [10, 11].

• Inventory based algorithms.(HMMs or Code-books are used to model speech and noise

characteristics) [12, 13, 14].

Furthermore, single channel speech enhancement algorithms are classified as:

• Spectral subtraction [3].

• Statistical based algorithms. (Minimum mean squared error algorithms like the Wiener filter

and Short Time Spectral Amplitude (STSA) estimator) [15, 16, 17].

• Subspace based algorithms. (For example -Decomposition of noisy speech into speech and noise

subspaces using SVD) [18, 19].

The choice of the algorithm depends on the application and the problem issued. We may

process the speech for a human listener in order to improve its quality (e.g., in noisy environments

such as offices, streets, and motor vehicles), or to improve its intelligibility in harsh conditions (such

as airports). Transcription of recorded tapes degraded by additive noise is also of interest. We may

use speech enhancement as a preprocessing mechanism for speech compression algorithms or as a

front-end to Automatic Speech Recognition (ASR) systems.

In this thesis, we propose the single-channel noise estimation algorithm. When this algo-

rithm is combined with the existing speech enhancement algorithm, perceptual speech quality is

improved as confirmed by Perceptual Evaluation of Speech Quality (PESQ) score. The noise is

assumed to be additive. The improvement is verified against babble, restaurant and subway noises.

3



Chapter 2

OVERVIEW OF SPEECH

ENHANCEMENT TECHNIQUES

Typical single-channel speech enhancement methods make two assumptions about the ob-

served noisy speech signal: (1) the underlying clean speech and the additive noise are uncorrelated

and (2) noise statistics vary slower than the speech statistics. The signal model for single-channel

speech enhancement scheme is shown in figure below:

Figure 2.1: The signal model for single channel speech enhancement shows speech and the additive
noise.

Some basic speech enhancement algorithms are: spectral subtraction [3], Wiener filter [20],

Minimum Mean Square Error [15] and some recent advancements in this field like spectral subtraction

in modulation domain [21] and Phase estimation based speech enhancement [22] are explained in

the following sections.

4



2.1 Spectral Subtraction

Spectral subtraction [3] is historically the first algorithm proposed to reduce the noise from

the speech signal. It is based on the simple noise reduction technique: the estimated noise spectrum

is subtracted from the noisy speech to obtain the estimate of the clean speech signal. The noise is

estimated from the initial 10-15 noisy speech segments in which speech is assumed to be absent and

this estimate is updated accordingly whenever a speech-absent segment is observed in future. The

noise is assumed to be varying slowly and not changing significantly between updating periods. This

processing of the noise reduction is carried out in the frequency domain. Once noise is subtracted

from the noisy speech, the enhanced speech is reconstructed using inverse Fourier transform and

overlap-add technique [23].

2.1.1 Mathematical Formation of Spectral Subtraction Algorithm

Assume that y(n), the noisy(noise-corrupted) input signal, is composed of the clean speech

signal s(n) and the additive noise signal, w(n) i.e.,

y(n) = s(n) + w(n). (2.1)

Taking the discrete-time Fourier transform of both sides gives,

Y (ω) = S(ω) +W (ω). (2.2)

We can express Y (ω) in polar form as:

Y (ω) = |Y (ω)|ejΦy(ω). (2.3)

where, |Y (ω)| is the magnitude spectrum, and Φy(ω) is the phase spectrum of the noisy speech.

Similarly, noise spectrum W (ω) can be expressed in polar form as:

W (ω) = |W (ω)|ejΦw(ω). (2.4)

5



where, |W (ω)| is the magnitude spectrum, and Φw(ω) is the phase spectrum of the additive noise.

We don’t know the |W (ω)| and Φw(ω), and need to estimate each of these to get the estimate of the

clean speech.

In speech enhancement algorithms |W (ω)| is replaced by its average value computed during

non-speech activity(e.g., during speech pauses detected by voice activity detector). Noise phase

spectrum Φw(ω) is replaced by noisy speech phase spectrum Φy(ω). This phase replacement is

motivated by the fact that phase does not affect the speech intelligibility though it can affect speech

quality to some extent [24]. After making those substitutions in Equation (2.2) we get,

Ŝ(ω) = [|Y (ω)| − |Ŵ (ω)|]ejΦy(ω) (2.5)

where |Ŵ (ω)| is the estimate of the noise magnitude spectrum. So, the task becomes simple to

estimate the noise and subtract it from the noisy speech.

To avoid the negative magnitude the spectral subtraction rule was modified to

|Ŝ(ω)| =


|Y (ω)| − |Ŵ (ω)|, if|Y (ω)| > |Ŵ (ω)|

0, otherwise.

(2.6)

This is similar to half-wave rectification. This equation for magnitude domain spectral subtraction

can be easily extended to higher order spectra like power spectrum for example. Multiplying both

sides of Equation(2.2) by |Y ∗(ω)| leads to,

|Y 2(ω)| = |S2(ω)|+ |W 2(ω)|+ |S∗(ω)||W (ω)|+ |W ∗(ω)||S(ω)|

= |S2(ω)|+ |W 2(ω)|+ 2Re(S(ω) ∗W (ω)). (2.7)

The terms |W 2(ω)|,|S∗(ω)||W (ω)| and |W ∗(ω)||S(ω)| are approximated by their expectations, i.e.,

E(|W 2(ω)|),E(|S∗(ω)||W (ω)|) and E(|W ∗(ω)||S(ω)|). If w(n) is assumed to be zero mean and inde-

pendent of s(n) then E(|S∗(ω)||W (ω)|) and E(|W ∗(ω)||S(ω)|) reduce to zero and we have

|Ŝ(ω)|2 =


|Y (ω)|2 − |Ŵ (ω)|2, if|Y (ω)| > |Ŵ (ω)|

0, otherwise.

(2.8)
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2.1.2 Shortcomings of Spectral Subtraction Algorithm

• Musical noise

Due to half-wave rectification in the spectral subtraction rule, the enhanced speech power

spectrum may have small, isolated peaks occurring at random frequencies within the frame. When

speech is reconstructed into time domain, it includes tones with frequencies that change randomly

from frame to frame; that is, tones that are turned on and off at analysis frame rate (20-40 msec).

This type of artifact is called as musical noise in the literature [25]. Musical noise can be observed

in figure 2.2c due to presence of isolated peaks from time to time frames.
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(a) Clean speech

Figure 2.2: Spectral subtraction processing:(a) Clean speech spectrogram,(b) Noisy speech spectro-
gram and (c) Spectrogram for speech after spectral subtraction processing.
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(c) Enhanced speech

Figure 2.2: (Continued).

Some of the factors that contribute to musical noise are listed below:

1. Nonlinear processing of the negative subtracted spectral components.

2. Inaccurate estimate of the noise spectrum due to the fact that we are forced to use the average

estimates of the noise. Hence, there are some significant variations between true noise and the
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estimated noise spectrum. Using this averaged noise estimate may lead to isolated spectral peaks in

the enhanced speech which contributes to annoying musical noise.

3. Large variance in the estimate of noisy and noise signal spectra even when long analysis window

is used.

4. Large variability in gain.

To minimize the annoying effect of musical noise, the spectral subtraction rule is modified to [25],

|Ŝ(ω)|2 =


|Y (ω)|2 − α|Ŵ (ω)|2, if|Y (ω)| > (α+ β)|Ŵ (ω)|

β|Ŵ (ω)|2, otherwise.

(2.9)

There are several algorithms designed to minimize the amount of musical noise in processed

speech [26, 27, 28, 29]. It is very difficult to minimize musical noise without affecting the speech

signal itself. Hence, there exists a trade-off between noise reduction and speech distortion.

• Usage of noisy phase instead of true noise phase

For reconstructing speech, the original noisy phase is used without enhancement of phase.

Though phase is usually considered to be insignificant for human perception as compared to ampli-

tude, this is true only for high SNR(>5 dB). For lower SNRs phase leads to audible speech distortion.

But enhancing the phase is much more difficult and complex than enhancing the amplitude [24].

This is applicable for all amplitude-only estimators. Hence, more stress is given on minimizing the

effect of musical noise than enhancing phase.

Before leaving this section, it is very important to notice that there are several versions of

standard spectral subtraction (which is mentioned above). Those are listed below [23]:

1. Nonlinear spectral subtraction.

2. Multiband spectral subtraction.

3. MMSE spectral subtraction.

4. Spectral subtraction based on perceptual properties.

5. Selective spectral subtraction.
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2.2 Wiener Filter

Spectral subtraction algorithms are based largely on the intuitive and heuristically based

principle. Noise being additive, it is intuitively appealing to obtain the clean speech estimate by

subtracting the noise estimate from the noisy speech. This algorithm is not optimal in any sense.

Wiener filter and MMSE STSA are the optimal estimators of the clean speech in the ’minimum

mean square error’ sense.

The Wiener filter is an optimal filter that minimizes the estimation error e(n), as shown in

the figure below:

Figure 2.3: Block diagram for statistical filtering

The transfer function for Wiener filter can be derived in both time and frequency domain.

For simplicity, it is presented here in frequency domain.

Ŝ(ω) = H(ω)Y (ω). (2.10)

Then, estimation error at frequency ωk can be written as:

E(ωk) = S(ωk)− Ŝ(ωk).

= S(ωk)−H(ω)Y (ω). (2.11)
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We need to compute H(ω) that minimizes the mean-square error, i.e.,E[|E(ωk)|2],

E[|E(ωk)|2] = E[(S(ωk)−H(ω)Y (ω))∗(S(ωk)−H(ω)Y (ω))].

= E[|S(ωk)|2]−H(ωk)E[S∗(ωk)Y (ωk)]−H∗(ωk)E[Y ∗(ωk)S(ωk)] + |H(ωk)|2E[|Y (ωk)|2].

(2.12)

Since, Pyy(ωk) = E[|Y (ωk)|2] is the power spectrum of y(n), and Pys(ωk) = E[Y (ωk)S∗(ωk)] the

cross-power spectrum of y(n) and s(n), the above equation can be written as:

J2 = E[|E(ωk)|2] = E[|S(ωk)|2]−H(ωk)Pys(ωk)−H∗(ωk)Psy(ωk) + |H(ωk)|2Pyy(ωk). (2.13)

To find the optimal filter H(ωk) we take the complex derivative of J2 with respect to H(ωk) and set

it to zero:

∂J2

∂H(ωk)
= H∗(ωk)Pyy(ωk)− Pys(ωk).

= [H(ωk)Pyy(ωk)− Psy(ωk)]∗. (2.14)

= 0. (2.15)

Solving for H(ωk) we get

H(ωk) =
Psy(ωk)

Pyy(ωk)
. (2.16)

Note that H(ωk) is complex valued, since the cross-power spectrum is generally complex quantity.

For our signal model,Pyy(ωk) = Pss(ωk) + Pww(ωk) and Psy(ωk) = Pss(ωk), so we have

H(ωk) =
Pss(ωk)

Pss(ωk) + Pww(ωk)
. (2.17)

where Pyy(ωk) is complex power spectrum of noisy speech, Pss(ωk) is complex power spectrum

of clean speech and Pww(ωk) is the complex power spectrum of noise. This suggests that for our

problem, H(ωk) is real and even valued. This means hk is non-causal and therefore, the Wiener

filter is not realizable as it also requires the power spectrum of clean speech. This limitation of the

Wiener filter is resolved by using Wiener filtering iteratively where first iteration noisy speech is

taken as the clean speech [30].
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The subtractive-type speech enhancement methods such as spectral subtraction Wiener

fltering as discussed above are heavily dependent on the accuracy of voice detection, because noise

estimation cannot be correct unless the non-speech frames are known. Due to this, such algorithms

suffer from annoying musical noise artifacts.
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2.3 MMSE Estimator

The Wiener filter, covered in the last section is an optimal complex spectral estimator for

clean speech. It attempts to estimate the spectrum of clean speech from the given noisy speech

complex spectrum. But the short time spectral amplitude (STSA) is acknowledged to be more

important from speech intelligibility and quality perspectives. So, many approaches have been

invented to estimate the amplitude of the clean speech from the given noisy speech. MMSE STSA

estimator is an optimal estimator (in MSE sense) for clean speech amplitude. That is, it minimizes

the following error function:

e = E(Ŝk − Sk)2. (2.18)

where Ŝk is the estimate of the clean speech amplitude and Sk is a true clean speech amplitude. In

the Bayesian MSE approach the expectation is obtained with respect to the joint pdf p(Y, Xk), i.e.,

both Y and Xk are assumed to be random with Gaussian pdfs. The Bayesian MSE is given by:

Bmse(X̂k) =

∫ ∫
(Xk − X̂k)2p(Y, Xk) dY dXk. (2.19)

Minimization of Bayesian MSE with respect to X̂k leads to the optimal MMSE estimator given

by [23]:

X̂k = E(Xk|Y (ω0), Y (ω1), ....., Y (ωN − 1)) (2.20)

where Y = [Y (ω1), ....., Y (ωN − 1)] is the noisy speech spectrum and ’N ’ is order of FFT. Assuming

statistical independence between Fourier coefficients, we get E(Xk|Y (ω0), Y (ω1), ....., Y (ωN − 1)) =

E(Xk|Y (ωk)). So we have

X̂k = E[Xk|Y (ωk)].

=

∫ ∞
0

xkp(xk|Y (ωk)) dxk.

(2.21)

=

∫∞
0
xkp(Y (ωk)|xk)p(xk) dxk∫∞

0
p(Y (ωk)|xk)p(xk) dxk

. (2.22)
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But p(Y (ωk)|Xk)p(Xk) =
∫ 2π

0
p(Y (ωk)|xk, θx)p(xk, θx) dθx, where θx is the realization of the phase

random variable of X(ωk).With this simplification we get,

Ŝk =

∫∞
0

∫ 2π

0
xkp(Y (ωk)|xk, θx)p(xk, θx) dθx dxk∫∞

0

∫ 2π

0
p(Y (ωk)|xk, θx)p(xk, θx) dθx dxk

. (2.23)

From the assumed statistical model, Y (ωk) is the sum of two zero-mean complex Gaussian random

variables. Therefore, p(Y (ωk)|xk, θx) will also be Gaussian:

p(Y (ωk)|sk, θs) = pw(Y (ωk)− S(ωk)) (2.24)

where pW (.) is pdf of the noise Fourier transform coefficients, W (ωk). Then,

p(Y (ωk)|sk, θs) =
1

πλw(k)
exp[

−1

λw(k)
|Y (ωk)−X(ωk)|2]. (2.25)

where λw(k) = E(|W (ωk)|2), is the variance of the kth spectral component of noise. Similarly,

p(sk, θs) =
sk

πλs(k)
exp[

−s2
k

λs(k)
]. (2.26)

Using above two pdfs form, we get [23]:

Ŝk =

√
π

2

√
vk
γk

exp[
−vk

2
][(1 + vk)I0(

vk
2

) + vkI1(
vk
2

)]Yk. (2.27)

where I0 and I1 denote the modified Bessel functions of zero and first order.

In eqn.(2.27),

vk =
ζk

1 + ζk
γk. (2.28)

where

γk =
Y 2
k

λw(k)
. (2.29)

is a posteriori SNR and,

ζk =
λs(k)

λw(k)
. (2.30)
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is a priori SNR. The a posteriori SNR can be calculated easily from noisy speech using a voice

activity detector. The a priori SNR is determined using a decision-directed approach given below:

ˆζk(m) = a
ˆS2

k(m− 1)

λw(k,m− 1)
+ (1− a)max(γk(m)− 1, 0) (2.31)

where m is the frame index. For the first frame,

ˆζk(0) = a+ (1− a)max(γk(0)− 1, 0). (2.32)

where the value of a is typically set to 0.98.

2.3.1 Significance of a Decision-directed Approach

When a decision-directed approach is used to determine a priori SNR, the enhanced speech

had almost no musical noise. In the MMSE suppression rule, Equation (2.26), a priori SNR is a

dominant factor affecting the noise reduction [31]. This a priori SNR is calculated using a decision-

directed approach. The decision-directed approach exhibits two behaviors depending on the value of

γk. When γk stays below 0dB (e.g., in the low energy speech segments), the ζk estimate corresponds

to smooth version of γk. When γk is considerably larger than 0dB, the ζk estimate follows γk but

with the delay of one frame as shown in figure 2.4. This smoothed estimate of a priori SNR results

in smooth MMSE attenuation (unlike spectral subtraction). So, musical noise will be reduced or

eliminated altogether as shown in figure 2.5c.

Figure 2.4: Behavior of a priori SNR due to a decision-directed approach. Solid line indicates a
priori SNR and dotted line indicates a posteriori SNR. Taken from [15]
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(b) Noisy speech

Figure 2.5: MMSE STSA processing:(a) Clean speech spectrogram,(b) Noisy speech spectrogram
and (c) Spectrogram for speech after MMSE processing.
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(c) Enhanced speech

Figure 2.5: (Continued).
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2.4 Speech Enhancement in Modulation Domain

Speech enhancement algorithms discussed in previous sections have been implemented in

Fourier transform domain. Speech signal is divided into frames and those frames are transformed into

the frequency domain. This domain is referred as acoustic domain in the literature to differentiate

it from the modulation domain. The concept of modulation domain was proposed by Zadeh in

1950 [32]. Acoustic frequency is defined as the axis of the first STFT of the speech signal and

modulation frequency is defined as the frequency axis of second STFT as shown in figure below [33].

The acoustic spectrum is the STFT of speech signal, while the modulation spectrum at a given

acoustic frequency is the STFT of time series of the acoustic spectral magnitudes at that frequency.

The short-time modulation spectrum is thus a function of time, acoustic frequency and modulation

frequency [21].
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Figure 2.6: Acoustic domain to modulation domain transformation.

The modulation domain has been deeply studied for the processing of speech signals [34,

35, 36]. It has been shown that our perception of temporal dynamics corresponds to our perceptual

filtering of the speech signal into modulation frequency channels. Also, most of the speech infor-

mation is located in low frequency region (2-16 Hz) of the modulation spectrum, and this property

can be exploited for better noise and speech separation. These findings have motivated the noise
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reduction in the modulation domain instead of the acoustic domain. For this, standard Analysis-

Modification-Synthesis framework is extended to the modulation domain [21] as discussed below.

NoisyjSpeechjy(n)

Overlappedjframingjwithjanalysisjwindow

Fourierjtransform: |Y(n,k)|ejɸ(n,k)

Acousticjmagnitude
spectrum |Y(n,k)|

Acousticjphase
spectrum ɸ(n,k)

ModifiedjAcousticj
magnitude

spectrum |Ŝ(n,k)|

Modifiedjacousticjspectrum

Inversejfourierjtransform

Overlap-addjwithjsynthesisjwindowing

EnhancedjSpeechjŝ(n)

Figure 2.7: Analysis-Modification-Synthesis framework for acoustic domain.

For our signal model, y(n) = s(n) + w(n). The STFT of the corrupted speech is given by,

Y (n, k) =

∞∑
l=−∞

y(l)ω(n− l)e−j2πkl/N . (2.33)

where k is the index of discrete acoustic frequency, N is the acoustic frame duration, ω(n) is analysis

window function. In polar form,

Y (n, k) = |Y (n, k)|ejφ(n,k) (2.34)

where, |Y (n, k) and φ(n, k) are magnitude and phase spectrum of the noisy speech, respectively.

The modulation spectrum is calculated using second STFT as

Y(η, k,m) =

∞∑
l=−∞

|Y (n, k)|ν(η − l)e−j2πml/M . (2.35)
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where η is the acoustic frame number, k is index of discrete acoustic frequency, m is index of

discrete modulation frequency, M is modulation frame duration and ν(η) is modulation domain

window function. In the polar form,

Y(η, k,m) = |Y(η, k,m)|ejϕ(n,k) (2.36)

where, |Y(η, k,m)| and ϕ(n, k) are magnitude and phase spectrum of the noisy speech modulation

transform, respectively. So, in the modulation domain we can write,

Y(η, k,m) = S(η, k,m) +W(η, k,m). (2.37)

For this signal model, spectral subtraction rule becomes

|S(η, k,m)|2 =


|Y(η, k,m)|2 − ρ|Ŵ(η, k,m)|2, if|Y(η, k,m)|2 > (ρ+ β)|Ŵ(η, k,m)|2

β|Ŵ(η, k,m)|2, otherwise.

(2.38)

Acoustic domain window length is set to 30-40 msec and modulation domain window length is 256

msec. The noise is estimated in same manner as in acoustic domain algorithms, but in the modula-

tion domain. After modulation spectral subtraction, modified modulation spectrum is transformed

back into acoustic domain spectrum by inverse STFT and overlap-add synthesis. Finally, acoustic

spectrum is transformed into time domain by inverse STFT and overlap-add synthesis.

2.4.1 Advantages of Spectral Subtraction in Modulation Domain over

Spectral Subtraction in Acoustic Domain

1. As modulation domain is more closely related to human’s perceptual system, speech

enhancement in the modulation domain results in better perceptual speech quality. Also, the speech

distortion is much lower than in acoustic domain.

2. The enhanced speech has a very low amount of musical noise if the modulation window

length is large (180-280 msec). This results in smoothing in temporal dimension and hence less

musical noise as can be seen in figure below.
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(a) Clean speech
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(b) Noisy speech

Figure 2.8: Spectral subtraction processing:(a) Clean speech spectrogram,(b) Noisy speech spectro-
gram and (c) Spectrogram for speech after spectral subtraction in modulation domain.
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(c) Enhanced speech

Figure 2.8: (Continued).

Note: This is the result of our implementation of the mentioned algorithm.
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2.5 Harmonicity Based Speech Enhancement

Most earlier speech enhancement methods do not consider the structure of the speech.

Each frame of the speech signal is treated similarly and suppression gain differs depending upon the

SNR of that frame. But, the voiced segment (vowels and semivowels) of the speech signal exhibits

quasi-periodicity, also known as harmonicity. So, the speech signal can be decomposed into voiced

(vowels and semi-vowels) and unvoiced (consonants) segments. This voiced and unvoiced nature

of the speech signal is due to the behavior of the vocal folds, which provide the excitation to the

vocal tract. During the voiced segment of the speech, vocal folds vibrate periodically while during

unvoiced segment no such periodicity exists. This mechanism of the vocal folds and vocal tract is

used to design the engineering model of speech production as shown below:

Glottal pulse
Generator

G(z)

Random noise
generator

N(z)

Vocal tract 
model

V(z)

Radiation 
model

R(z)

Vocal tract parameters

Voiced/
Unvoiced

Speech

Figure 2.9: Engineering model of speech production.

The opening and closing of the vocal folds during the voiced segment produces the periodic

input signal. The time duration of one cycle of opening or closing of vocal folds is called fundamental

period and reciprocal is called fundamental frequency (F0). The fundamental frequency varies from

a low around 80 Hz for male speakers to a high of 280 Hz for children. The periodicity is broadly

distributed across frequency and time and is robust in presence of noise. This motivates the use of this

clue to gain more knowledge about underlying speech. Many speech enhancement algorithms have

been developed to exploit the harmonicity of the voiced speech [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

Below, we discuss one of such algorithms [22] which exploits harmonicity of voiced segment to

enhance the phase of the voiced speech using sinusoidal speech model.
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2.5.1 Phase Enhancement for Voiced Speech

For our signal model, y(n) = s(n) + w(n). The Fourier transform of y(n) is

Y (ω) = |Y (ω)|ejφy(ω) (2.39)

where |Y (ω)| is the magnitude spectrum of the noisy speech and φy(ω) is phase spectrum of noisy

speech. Due to additive noise both |Y (ω)| and φy(ω) are corrupted. Though the effect of this

corrupted phase spectrum is inaudible at higher SNRs (>5 dB), at lower SNRs the speech sounds

distorted. Hence, phase enhancement at such low SNR can further enhance the quality of speech [47].

The voiced speech can be modeled as a weighted superposition of H sinusoids, leading to harmonic

signal model,

s̃(n) =

H∑
h=0

Ahcos(Ωhn+ ψh) (2.40)

with real valued amplitude Ah, time domain phase ψh and normalized angular frequency,

Ωh = 2πfh/fs = 2π(h+ 1)f0/fs (2.41)

where fs, f0, fh denote sampling frequency, fundamental frequency and harmonic frequency, respec-

tively. Phase enhancement is carried out in baseband STFT domain instead modulated STFT due

to high correlation between phase and magnitude spectrum in the baseband domain. We provide

the brief introduction to those two versions of STFT below:

2.5.2 Two Versions of STFT

Baseband STFT

In this version STFT is implemented by following equation,

XB(n, ω) =

∞∑
m=−∞

x(m)w(n−m)e−jωm =

n+N−1∑
m=n

x(m)w(n−m)e−jωm (2.42)

where n is STFT frame index, ω is STFT frequency, N is order of FFT, x(m) is the time domain

speech signal and w(n) is the window function. As STFT is a function of two parameters, it can

be interpreted in two ways: 1) If n is fixed and ω is varied then we get standard frequency analysis

interpretation. 2) If n is varied and ω is fixed then we have the filtering interpretation. We will
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focus more on filtering interpretation of STFT. If we fix value of ω at ω0 then

XB(n, ω0) =

∞∑
m=−∞

x(m)w(n−m)e−jω0m. (2.43)

This is a convolution of x(m)e−jωm with w(n). In this view, the signal x(m) is modulated by e−jωm

and passed through a filter whose impulse response is a window function w(n). We can view this

as modulation a band of frequencies centered around ω0 down to base-band (hence this version is

named so), and then filtering by w(n). This is illustrated in following figure:

w(n)
x(n)

e-jω0
n

X(n,ω0)

Figure 2.10: Time domain view of Baseband STFT.

X(ω) X(ω+ω0) W(ω ) X(ω+ω0)

ω ω ω

Modulate Filter

W(ω )

ω0

Figure 2.11: Frequency domain view of Baseband STFT.

Modulated STFT

In the baseband STFT, the frames are extracted by keeping the signal as it is and shifting

and flipping the window function, but instead, if we keep the window at the constant position and

shift signal instead, then we get the modulated STFT. This is given by following equation,

XM (n, ω) =

N−1∑
m=0

x(n+m)w(m)e−jωm. (2.44)
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The name comes due to its relationship with the baseband domain STFT as derived below:

XB(n, ω) =

n+N−1∑
m=n

x(m)w(n−m)e−jωm.

=

N−1∑
m=0

x(n+m)w(−m)e−jω(n+m)........Putting, m = n + m.

= e−jωn
N−1∑
m=0

x(n+m)w(−m)e−jωm.

= e−jωn
N−1∑
m=0

x(n+m)w(m)e−jωm........assuming symmetric window.

= e−jωnXM (n, ω). (2.45)

From Equation (2.44),

XM (n, ω) = ejωnXB(n, ω). (2.46)

6 XM (n, ω) = ωn+ 6 XB(n, ω). (2.47)

From Equation (2.45), it is clear that XM (n, ω) is a modulated version of XB(n, ω). Hence, it is

named as modulated STFT. Also, from Equation (2.46), the phase of XM (n, ω) has larger dynamic

range, as it depends on the frame number n. So, it suffers from phase wrapping. On the other hand,

the phase of XM (n, ω) lies between −π to π. Hence, it avoids phase wrapping. Due to this behavior

of the baseband STFT, phase difference spectrum appears to be highly correlated to amplitude

spectrum in the voiced region of the speech. This can be seen in figure below. In the clean speech,

phase difference spectrum is correlated with the clean amplitude spectrogram but it is corrupted in

noisy speech phase difference.
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(a) Clean speech spectrogram
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(b) Clean speech phase difference

Figure 2.12: Phase difference from frame to frame for clean and noisy speech.
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(c) Noisy speech phase difference

Figure 2.12: (Continued).

Note:The results are generated by our implementation of this algorithm.

Assuming the harmonic signal model for voiced speech in (2.39), the phase can be recon-

structed in baseband domain for voiced speech using following formulas [22]:

φS̃B
(k, n) = φS̃B

(k, n− 1) + (Ωkh − Ωk)L (2.48)

where φS̃B
(k, n) stands for phase for voiced speech Fourier coefficient at index k, and frame n, L is

the window shift in number of samples. This equation is used recursively to find the phase values

at the frequency coefficient directly containing the harmonic component [22]. Also,

Ωkh = argmin
Ωh

(|Ωk − Ωh|)

where Ωk is angular frequency corresponding to current DFT bin, k. Ωkh is angular frequency of the

harmonic closest to current DFT bin, k.

To estimate the phase between the harmonics in the frame, the following equation is used:

φS̃B
(k + i, n) = φS̃B

(k, n) + iπ − i2πnL
N

(2.49)
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where i ∈ [d−f0/2fs
Ne, ......, d f0/2fs

Ne]. Once the phase is reconstructed in the baseband domain,

the STFT is transformed to the modulation domain and speech is reconstructed using overlap-add

synthesis. Amplitude of the transform is left unchanged. If the reconstructed speech is processed

again to plot the magnitude spectrogram, then even the amplitude spectrum looks enhanced as

shown in figure below. Noise is effectively suppressed between the harmonics due to this harmonic

model processing.
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(a) Clean speech spectrogram

Figure 2.13: Figure show the output of the phase enhancement algorithm.
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(b) Noisy speech spectrogram
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(c) Enhanced speech spectrogram

Figure 2.13: (Continued).

Note:The results are generated by our implementation of this algorithm.
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Chapter 3

OVERVIEW OF SPEECH

QUALITY ASSESSMENT

TECHNIQUES

As discussed earlier, speech enhancement algorithms attempt to improve the speech quality

and/or intelligibility. Speech quality is related to how pleasant the speech sounds to the listener,

while the speech intelligibility is related to the recognition accuracy for the processed speech. To

evaluate the performance of speech enhancement algorithms, we need to quantify these properties.

This has motivated researchers to devise the measures for speech quality and intelligibility. These

measures can be classified into two groups: 1) Subjective measures. 2) Objective measures. Sub-

jective measures are based on the response of the human listeners to speech and are calculated by

experiments with various listeners and speech samples. Objective measures are based on the mathe-

matical evaluation of the speech quality and intelligibility. Subjective quality assessments are often

accurate and reliable, provided they are performed under stringent conditions [48, 49]. However,

subjective evaluation is time consuming. Objective assessment, on the other hand, requires knowl-

edge of the clean speech to evaluate the performance of the speech enhancement algorithm. We will

describe some of the widely used measures for the speech quality in the following sections.
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3.1 Subjective Speech Quality Assessment

Subjective listening tests provide the most reliable method to assess the quality of the

enhanced speech. In this approach, listeners are subjected to the training and the testing phase.

In the training phase, listeners are provided the reference speech samples to bring all of them to

the same level of judgment, and in the testing phase actual enhanced speech is assessed. These

approaches are broadly classified into two categories: 1) Approaches based on a relative preference

task 2) Approaches based on assigning a numerical value to the speech quality. We will briefly

summarize both of these approaches below.

3.1.1 Relative Preference Methods

The isopreference test was perhaps the earliest paired-comparison test to measure the speech

quality [50, 51]. In [51], the test involved all possible forward and reverse combinations of test and

reference signals (as given in table 3.1). Listeners are asked to mark the preferred speech utterance

in each combination. The count of preferred test and reference signals are averaged for multiple

listeners. With this score the reference signal that is equally preferred to the test signal is obtained,

and it indicates the speech quality. Several extensions of this method are proposed in literature

which uses the different reference signals for the test [52, 53].

Table 3.1: Reference Conditions

System Signal Description

A High-fidelity speech(clean)

B Speech band-pass-filtered (800-3000Hz)

C Speech low-pass-filtered (3000 Hz) and combined

with low-pass-filtered white noise (500 Hz). Peak SNR 10 dB

D Speech combined with reverberant echo. Delay of first echo 150 msec.

E Speech peak-clipped, then band-pass-filtered (300-2000 Hz)

3.1.2 Absolute Category Rating Methods

Preference tests typically answer the question ”How well the listener liked the test signal

over the reference signal?”. So, these tests just compare the test signal against the reference signal.
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Due to such approach, all kinds of the distortions in the test signal can not be represented as only

a limited number of reference signals are available. Also, the reason a particular signal is preferred

over others is not evident in such tests. To address such issues, the rating methods are used. In

such tests, reference signals are not required and listeners are asked to rate the test signal over some

range of options.

3.1.2.1 Mean Opinion Score

This is the most widely used subjective speech quality test, in which the listeners are asked

to rate the quality of the speech over the five-point numerical scale (as in table 3.2). The measured

quality of speech is obtained by averaging the ratings from all listeners. This average is commonly

called as ’Mean Opinion Score (MOS)’. This test is carried out in two stages: training and evaluation.

Training is required to equalize the subjective range of the speech quality across all the listeners. In

the evaluation phase, the test utterance is given to the listeners and the scores are recorded [23].

Table 3.2: MOS rating Scale

Rating Speech Quality Level of Distortion

5 Excellent Imperceptible

4 Good Just perceptible, but not annoying.

3 Fair Perceptible and slightly annoying.

2 Poor Annoying but not objectionable

1 Bad Very Annoying and objectionable.

3.1.2.2 Diagnostic Acceptability Measure

The MOS requires the listener to state the overall quality value of the speech but it does

not ask for the basis of this judgment. So, two listeners may report the same quality of the speech

but for different attributes of the signal. Thus, MOS is known as a single dimension measure

of the speech quality, and it can not easily be used to improve the performance of the speech

enhancement algorithm. To eliminate this limitation of the subjective test Diagnostic Acceptability

Measure (DAM) test was proposed. DAM is a multidimensional speech quality test, and it evaluates

the speech quality over three dimensions namely, parametric, metametric and isometric as shown in

table 3.3. Listeners are asked to rate the speech and noise distortions along with metametric and
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isometric attributes over the range of 0 - 100 [54].

Table 3.3: Scales Used in the DAM Test

Parametric Scales

Name Abbreviation Description Example

Signal SF Fluttering,bubbling AM Speech

SH Distant,thin High-pass Speech

SD Rasping,crackling Peak-clipped Speech

SL Muffled,smothered Low-pass Speech

SI Irregular,interrupted Interrupted Speech

SN Nasa,whining Band-pass Speech

TSQ Total Signal Quality

Background BN Hissing,rushing Gaussian noise

BB Buzzing,humming 60-Hz hum

BF Chirping,bubbling Narrow-band noise

BR Rumbling,thumping Low-frequency Speech

TBQ Total Background Quality

Metametric Scales

I Intelligibility

P Pleasantness

Isometric Scales

A Acceptability

CA Composite Acceptability

3.2 Objective Speech Quality Assessment

Subjective speech quality provides the most reliable approach to assess the speech quality.

However, the tests are time consuming and require multiple listeners. Due to these limitations,

several researchers have worked to find an objective way to assess speech quality. Ideally, an objective

measure should be able to assess the speech quality of the enhanced speech without need of the

original clean speech samples. Objective measures must take into account the low-level processing
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(e.g, psychoacoustics) and higher level processing such as prosodics, semantics and pragmatics. But,

most of the objective assessment algorithms require access to the original clean speech and some

of them can exploit the low-level processing. Despite of these limitations, some of the objective

measures are significantly correlated with the subjective measures like MOS.

Objective measures are implemented by segmenting the speech signal into the frames of 10-

30 msec, and then computing the distortion measure between original and enhanced speech signal.

Frame level measures are then averaged to obtail the final objective speech quality score. The

measures can be calculated in both time and frequency domain as can be seen in the following

methods. In the frequency domain the speech spectrum magnitude is assumed to be correlated to

the speech quality [23, 55, 56].

3.2.1 Segmental SNR

Segmental SNR can be evaluated in both time and frequency domain. Time domain seg-

mental SNR is one of the easiest one to compute. This requires that both original clean speech and

the enhanced speech are time-aligned. The segmental SNR is defined as:

SNRseg =
10

M

M−1∑
m=0

log10(

∑Nm+N−1
n=Nm x2(n)∑Nm+N−1

n=Nm (x(n)− x̂(n))2
.) (3.1)

where x(n) is original clean speech, x̂(n) is enhanced speech, N is frame length and M is number of

frames in signal. One potential problem with this measure is that during silent frames the value can

be a large negative number which will bias overall SNR value. One way to avoid this is to exclude

the silent frames from the speech. Another version of this method which attempts to deal with the

problem of large negative SNR values is proposed in [57].

The segmental SNR can be extended to the frequency domain as follows [57]:

fwSNRseg =
10

M

M−1∑
m=0

∑K
j=1Bj log10[F 2(m, j)/(F (m, j)− F̂ (m, j))2]∑K

j=1Bj)
. (3.2)

where Bj is the weight for jth frequency band, K is the number of bands, M is the total number

of frames, F (m, j) is the filter-bank amplitude of the clean signal in j th frequency band and at m

th frame and F (m, j) is the filter-bank amplitude of the enhanced signal in jth frequency band and

at mth frame. The advantage of using SNR in the frequency domain is to have different weights for
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different frequency bins.

3.2.2 Spectral Distance Measures Based on LPC

Several objective measures have been proposed based on the dissimilarity between the all-

pole model of clean speech and the enhanced speech signals. These measures assume that over the

short time intervals, speech can be represented by the pth order all pole model of the form [23]:

x(n) =

p∑
i=1

ax(i)x(n− i) +Gxu(n). (3.3)

where ax(i) are the coefficients of the all-pole model, Gx is the filter gain and u(n) is unit variance

white noise excitation. Two common all-pole model based measures used to evaluates speech quality

are the log-likelihood ratio and Itakura-Saito(IS) measure.

The log-likelihood ratio(LLR) measure is defined as:

dLLR(ax, āx̂) = log
āTx̂Rxāx̂
aTxRxax̂

. (3.4)

where aTx are the LPC coefficients of the clean signal, âTx are the LPC coefficients of the enhanced

signal and Rx is the auto-correlation matrix of the clean signal.

The IS measure is defined as:

dIS(ax, āx̂) =
Gx
Ḡx̂

āTxRxāx̂
aTxRxax̂

+ log(
Ḡx̂
Gx

)− 1. (3.5)

where Gx and Ḡx̂ are the all-pole gains of the clean and enhanced signal, respectively.

3.2.3 Perceptual Evaluation of Speech Quality

Perceptual Evaluation of Speech Quality (PESQ) is an objective measure which is well cor-

related to the subjective MOS, and it predicts the speech quality accurately for distortions which

include channel losses in telecommunication network, packet loss, signal delays, and codec distor-

tion [58]. The speech is processed as shown in the following figure to compute this objective measure.
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Figure 3.1: Block diagram of PESQ measure computation.Taken from [23]

The structure of the PESQ computation system is shown in the above figure . The original

(clean) and degraded signals are first level-equalized to a standard listening level, and processed

by a filter whose response is similar to a standard telephone handset. The signals are aligned in

time to correct for time delays, and then processed through an auditory transform (this consists of

the short time Fourier transform followed by Bark scale transformation of the power spectrum) to

obtain the loudness spectra. The difference termed as disturbance between the loudness spectrum

of clean speech and the degraded speech is computed and averaged over time and frequency to get

the PESQ measure [23]. The range of PESQ is: 0.5 - 4.5. Higher values indicate higher resemblance

of the loudness spectra of clean speech and degraded speech.
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Chapter 4

USING BASEBAND PHASE

DIFFERENCE FOR

NON-STATIONARY NOISE

ESTIMATION

In this chapter, we discuss the use of Baseband Phase Difference to identify the frequency

bins dominated by noise in the voiced frames, and these are used to update the noise estimate

to track the non-stationary noise accurately. Noise estimation is the most important step in a

speech enhancement system and accurate noise estimation can help to reduce the annoying artifacts

introduced by speech processing. Depending on the environment, the noise corrupting the speech can

be quite non-stationary like noise originating from a train passing by, from passing cars or from people

walking on the street or in a restaurant. Most speech enhancement algorithms try to reduce the

amount of noise by applying a gain function in the spectral domain. This gain function is generally

a function of noisy speech power, clean speech power and noise power. Inaccurate noise estimation

can result in speech and noise distortion including annoying artifacts in the enhanced speech. If the

noise is under-estimated then residual noise or musical noise will be audible, while over-estimation of

noise will cause speech distortion resulting in loss in speech quality and intelligibility. In [22], phase
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enhancement is carried out assuming the sinusoidal model for the voiced speech. Although, this

results in reduction of noise between the speech harmonics, the processed speech sounds unnatural

due to inaccurate speech modeling. Also, only voiced frames in the speech are enhanced. We

propose to use this harmonic modeling to identify the noise dominated frequency bins to obtain

better noise estimates. These noise estimates can be integrated with existing speech enhancement

algorithms to improve the performance in non-stationary noise. This chapter is organized as follows.

Section 4.1 briefly discusses the existing noise estimation approaches. Section 4.2 explains proposed

noise estimation algorithm and Section 4.3 demonstrate the usage of the proposed noise estimation

algorithm.

4.1 Review of Existing Noise Estimation Algorithms

The most widely used approach in noise estimation involves voice activity detection (VAD)

based algorithms. VAD algorithms typically extract some feature/features (e.g., short time energy,

zero crossing rate) from the input signal that is in turn compared against a threshold value, usually

determined during speech-absent periods. VAD algorithms generally output a binary decision per

frame, where frames may last for 20-40 msec. A frame is declared to contain voice activity (VAD=1)

if the measured feature value exceeds a threshold, otherwise it is considered to be noise (VAD=0)

. So, this algorithm estimates and updates the noise spectrum only in speech inactive periods.

Although a VAD based algorithm works well for stationary noises (like white noise), it might fail

for the case of non-stationary noise [59]. Several VAD based noise estimation algorithms have

been proposed based on the extracting features from the input speech [60, 61, 62, 63]. Some VAD

algorithms are used in the commercial applications including audio-conferecing, cellular networks

and digital cordless telephone systems. VAD algorithms exploit the fact that there can be silence

not only at the end and beginning of the sentence, but also in the middle of sentence. These silence

segments correspond to the closures of the stop consonants, primarily the unvoiced stop consonants

i.e., /p/,/t/,/k/, etc. For example, the VAD based classification of speech and silence periods is

shown in the following figure.
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Figure 4.1: Speech and noise classification using VAD [64]. Time domain speech is shown in top
figure. Speech detection as indicated by speech presence probability is shown in bottom figure.

VAD based noise estimation works well only for stationary noises and in high SNR con-

ditions. Also, it is not able to track the noise during speech activity. Various noise estimation

algorithms are proposed to track the non-stationary noise even during speech activity and low SNR.

Those algorithm includes Minimum Statistics Noise Estimation [5], Moving Controlled Recursive

Averaging [4], histogram based noise estimation [65], MMSE noise estimation [66] etc. Those algo-

rithms are based on following facts:

1. Power of the noisy speech signal in individual frequency bands often decays to the power level of

the noise, even during speech activity. Hence, by tracking the minimum of the noisy power in each

frequency band, a rough estimate of the noise can be obtained. The minimum statistics algorithm is

based on this fact. This algorithm tracks the minimum of the noisy power spectrum within a finite

window.

2. Noise affects the signal spectrum non-uniformly. Some regions are affected more than others.

40



Hence, the noise is estimated by averaging the noise estimates at each frequency bin depending upon

the effective SNR at each frequency bin. Moving Controlled Recursive Averaging algorithm is based

on this fact.

3. Histogram based noise estimation is based on the fact that most frequent values of the energy

levels at given frequency band correspond to the noise at that frequency band.

All of these algorithms do not consider the fact that speech is composed of voiced speech

and unvoiced speech. Voiced speech presence can be detected even in low SNR due to its robust

harmonic structure. Using this additional information, noise estimate can be improved further. In

the following section, we propose a noise estimation algorithm which estimates the noise even during

voiced frames. This algorithm makes use of the harmonic structure of the voiced speech.

4.2 Baseband Phase Difference as a Clue for Noise Estima-

tion

4.2.1 Motivation

As discussed in section 2.5.1, in baseband STFT (Short Time Fourier Transform) the phase

difference from one frame to another is highly correlated to the magnitude spectrum of voiced speech.

Here, the harmonic model is used to represent voiced speech as given in the following equation:

s̃(n) =

H∑
h=0

Ahcos(Ωhn+ ψh). (4.1)

To compute the phase (in baseband domain) for voiced speech we use the following two equations

derived from the above voiced speech model.

φS̃B
(k, n) = φS̃B

(k, n− 1) + (Ωkh − Ωk)L. (4.2)

where, φS̃B
(k, n) stands for phase for voiced speech Fourier coefficient at index k and frame n and L

is the window shift in number of samples. This equation is used recursively to find the phase values

at the frequency coefficient directly associated with the harmonic component [22]. Also, Ωkh , the
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angular frequency of the harmonic closest to current DFT bin ’k’, is given by:

Ωkh = argmin
Ωh

(|Ωk − Ωh|),

where Ωk is angular frequency corresponding to current DFT bin ’k’.

To estimate the phase between the harmonics in a voiced frame following equation is used

φS̃B
(k + i, n) = φS̃B

(k, n) + iπ − i2πnL
N

(4.3)

where i ∈ [d−f0/2fs
Ne, ......, d f0/2fs

Ne]. Once the clean speech phase difference is estimated, it can be

used to detect the frequency bins dominated by noise. This can be seen from the following figures.

An enhanced speech spectrogram is obtained from speech reconstructed after phase enhancement.

Correlation between the enhanced speech spectrogram and estimated clean speech phase difference

indicates the use of estimated clean speech phase difference to estimate noise between harmonics

during voiced speech frames. This algorithm uses the YIN [67] algorithm to estimate the pitch

frequency.
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(a) Clean speech spectrogram
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(b) Noisy speech spectrogram

Figure 4.2: Clean, noisy and enhanced speech spectrogram are shown.

43



Time (sec)

F
re
q
u
en
cy

(H
z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

−80

−70

−60

−50

−40

−30

−20

−10

0

10

(c) Enhanced speech spectrogram using phase enhancement
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(d) Estimated clean speech phase difference i.e. φS̃B
(k, n) − φS̃B

(k, n− 1)

Figure 4.2: (Continued).

44



4.3 Proposed Noise Estimation Algorithm

4.3.1 Determination of Noise Dominant Frequencies

In [22], the estimated clean speech phase given by (4.2) and (4.3) is used to reconstruct the

speech, and the reconstructed speech is shown to be enhanced in the voiced segments. We used this

phase estimation method to identify the noise dominant frequency bins in the voiced frames. These

values are then used to further refine the final noise estimation. We compute the frame to frame

phase difference from the above estimated clean phase as ∆φS̃B
(k, n) = φS̃B

(k, n) − φS̃B
(k, n − 1).

This phase difference is highly correlated with the magnitude of the underlying clean speech in the

voiced frames as shown in Fig. 4.2a and Fig. 4.2d. Clean speech is corrupted by adding babble noise

at 0dB global SNR (See Fig. 4.2b). Estimated frame to frame phase difference for clean speech,

i.e., ∆φS̃B
(k, n) = φS̃B

(k, n)− φS̃B
(k, n− 1), is represented in Fig. 4.2d. Here, we have plotted the

absolute value of the phase difference in the range from 0 to 2π. From Fig. 4.2d, it can be noted

that phase difference can be used to determine the frequencies dominated by the harmonics and the

frequencies containing high amount of noise in the voiced frames. Those noise dominant frequencies

correspond to the gaps between the harmonics.

From (4.2) and (4.3), it can be noted that in voiced frames the phase difference is close

to zero for frequencies associated with the harmonics, and this phase difference deviates from zero

for other frequencies. Thus, we use a threshold(φT ) based test to separate such frequencies as

described below: Let H be the total number of harmonics in a voiced frame, let Fh be the set

of frequencies dominated by harmonic h, and let Fnh be the set of frequencies considered to be

valid noise candidates in the neighboring of harmonic h. If kh is the DFT bin corresponding to

harmonic h then we apply the following bin selecting rule in the range of frequencies kh + i, where

i ∈ [d−f0/2fs
Ne, ......, d f0/2fs

Ne], for each harmonic:

k ∈


Fnh, if ∆φS̃B

(k, n) > φT .

Fh, otherwise.

(4.4)

4.3.2 Computation of Noise PSD

For all frequencies in the frequency sets Fh and Fnh, the noise power is assumed to be

constant and is given as the average of spectral magnitudes over Fnh. The noise estimate is calculated
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as:

NFnh(n) =

|Fnh|∑
j=1

|Y (Fnh(j), n)|2

|Fnh|
......for k ∈ kh + i. (4.5)

This is repeated for each harmonic in a voiced frame, n. Final noise PSD is obtained by combining

the individual noise estimates and can be represented as:

|Ŵφ(n)|2 = {NFn1(n), NFn2(n), NFn3(n)......., NFnH(n)}. (4.6)

This noise estimation is valid only for voiced frames. In the unvoiced frames, noise estimation is

carried out using standard VAD based noise estimation [23, 68]. When a voiced frame is detected,

the noise estimate is updated with the proposed noise PSD as:

|Ŵ (k, n)|2 = 0.8|Ŵ (k, n− 1)|2 + 0.2|Ŵφ(k, n)|2. (4.7)

4.4 Use of Noise Estimation for Speech Enhancement

In this section, we describe the use of the previously discussed noise estimation algorithm

for the speech enhancement in presence of stationary and non-stationary noises. We combine this

noise estimation algorithm with the spectral subtraction and MMSE STSA algorithms. The spec-

tral subtraction over-attenuation factor is adjusted to further improve the quality of the enhanced

speech. The use of baseband phase difference as a means for detecting the noise dominant frequency

components in the voiced frames results in more accurate estimation of the noise spectrum, and can

be combined with any speech enhancement algorithm for noise estimation. But, this requires accu-

rate estimation of pitch frequency in presence of noise, hence a robust pitch detection algorithm like

the YIN algorithm [67] is used to detect the pitch frequency in each voiced frame. Also, aperiodicity

measure of the YIN algorithm is set to 0.5 to detect the voiced frames.

4.4.1 Spectral Subtraction with Proposed Noise Estimation

Here, we explain in detailed how spectral subtraction is modified to exploit the estimated

clean speech phase difference. With this phase difference, it becomes easier to detect the spectral

sparsity in the voiced frame facilitating the non-stationary noise estimation. The basic spectral
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subtraction rule is given as:

|Ŝ(n, k)|2 =


|Y (n, k)|2 − α|Ŵ (n, k)|2, if|Y (n, k)| > (α+ β)|Ŵ (n, k)|

β|Ŵ (n, k)|2, otherwise.

(4.8)

where Ŝ(n, k) is the estimated clean speech, Y (n, k) is noisy speech, Ŵ (n, k) is estimated noise, n is

STFT frame index, k is FFT bin index, α is the over-subtraction factor determined using [25] (This

factor is a constant number for all the frequency bins in the frame, and it is calculated by comparing

the SNR of the present frame against some threshold as mentioned in [25] ). The parameter β is

the floor parameter to reduce the amount of musical noise in the enhanced speech. We extend the

basic spectral subtraction algorithm to take the new noise estimation algorithm into account. The

overall algorithm is described in the following steps:

1. Noisy speech y(n) (sampled at 8000 Hz) is divided into the frames of 32 msec. with 4 msec. shift

using the Hamming window. This small shift is used as it gives higher correlation between the phase

difference of the clean speech and the magnitude spectrum.

2. For each frame, we take a 256 point DFT (modulated STFT) and transform into baseband STFT.

We decide whether a frame is voiced or not using YIN algorithm [67]. For voiced frames, baseband

phase difference is determined by using the algorithm described in section 2.5.

3. Noise estimation (on the power spectrum) is carried out differently in the voiced and non-voiced

frames. It is assumed that the first 30 frames (as frame shift is just 4 msec) are noise-only frames,

and those are averaged to obtain the initial noise estimate. In the non-voiced frames we use VAD to

detect the noise-only frame by comparing the current SNR to some threshold (in this case it is set to

3dB). If the current SNR is less than this threshold then the frame is taken as noise, and the noise

estimate is updated accordingly. In each voiced frame, we use the algorithm described in section4.3

to estimate the noise and running noise estimate is again updated. This all process is described in

the following set of equations.

Let

Y (n, k) = S(n, k) +W (n, k). (4.9)
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be the noisy speech frame where n is the frame index and k is the DFT bin index.

Let Ŵ (n, k) be the noise estimate for frame n.

Assuming that the first 30 frames as noise-only we have initial noise estimate:

Ŵ (n, k) =

∑30
n=1 Y (n, k)

30
. (4.10)

If a non-voiced frame is detected and SNR > 3dB, we update the noise estimate using

Ŵ (n, k) = 0.9Ŵ (n− 1, k) + 0.1Y (n, k). (4.11)

When a voiced frame is encountered, the noise estimate ŴV oiced(n, k) determined using 4.7 is used

to update the running noise estimate as:

Ŵ (n, k) = 0.8Ŵ (n− 1, k) + 0.2ŴV oiced(n, k). (4.12)

4. In addition to incorporating this new noise estimate, we also make the over-attenuation factor α

frequency dependant in the voiced frames. For test purpose, we set α = 8 if ∆φ(ω, n) > φT else α

= 2.7. This results in less attenuation for the harmonic dominant frequencies and more attenuation

for noise dominant frequencies in the voiced frame.

5. The new noise estimation algorithm and the adaptive over-attenuation factor α are used in equa-

tion (4.4) to obtain the estimate of the clean speech. Due to this new noise estimation method and

adaptive over-attenuation factor low energy voiced speech is maintained resulting in higher speech

quality.

4.4.2 MMSE STSA with Proposed Noise Estimation

We also verify the effectiveness of this new noise estimation algorithm for the MMSE STSA

noise reduction algorithm. The MMSE STSA parameters are kept as it is (except the frame shift

is changed to 4msec to exploit the baseband phase difference clue) as mentioned in section 2.3 but

the noise is estimated using the proposed algorithm. It is observed that due to this noise estimation

algorithm, the performance of the MMSE STSA is improved significantly for the non-stationary

noise. This will be discussed further in the next chapter where we discuss the performance of this
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method.

4.4.3 Combined MMSE STSA and Spectral Subtraction

As we have discussed previously, the spectral subtraction algorithm suffers from introducing

annoying musical noise though it suppresses the noise effectively. It is observed that due to our

proposed noise estimation algorithm which exploits the spectral sparsity for updating the noise

estimate, the amount of the musical noise is reduced significantly at low SNR(< 5 dB). Several

approaches exists to minimize the effect of musical noise [26, 28, 69]. On the other hand, the MMSE

noise reduction algorithm eliminates the musical noise due to its decision-directed based a prior

SNR estimation. We verify the effectiveness of the combination of those two algorithms to minimize

the effect of musical noise and obtain significant noise reduction in the voiced period of the speech.

The fusion of MMSE STSA and spectral subtraction is performed in the short-time spectral

domain by combining the magnitude spectra of these two speech enhancement algorithms. The

fusion is performed by following set of rules:

Let U and V denote the unvoiced and voiced frame detected by YIN algorithm respectively, |ŜMMSE(n, k)|

and |ŜSpecSub(n, k)| be the magnitude spectra of speech enhanced by MMSE STSA and spectral sub-

traction rule.

|ŜFusion(n, k)|2 =


|ŜLMMSE(n, k)|2 if |Y (n, k)| = U

or∆φ(n, k) < φT

ŜComb otherwise.

(4.13)

where ŜComb = 0.8 ∗ |ŜSS(λ, µ)|2 + 0.2 ∗ |ŜLMMSE(λ, µ)|2. i.e., we are using the contribution of

MMSE STSA enhanced spectra in the unvoiced and harmonic dominant speech to reduce the effect

of annoying musical noise with minimum speech distortion. We use spectral subtraction in the noise

dominant speech for effective noise reduction in the voiced frame.
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Chapter 5

RESULTS

We have evaluated the performance of the proposed noise estimation algorithm in this chap-

ter. This algorithm is combined with spectral subtraction and MMSE STSA, and the performance is

evaluated on 500 phonetically balanced sentences from the TIMIT database. The speech is degraded

by adding white, babble, restaurant and subway noises with global SNRs ranging from -5 dB to 10

dB. White noise is an example of stationary noise while the remaining noises are non-stationary. The

segment length is 32 ms with a 4 ms shift. With a sampling frequency of 8 kHz, this corresponds to

frame length of 256 samples with a shift of 32 samples. PESQ is employed as an objective measure

for speech quality. The fundamental frequency is estimated using the YIN [67] algorithm with a

threshold set to 0.5 and segment shift of 4 ms. The aperiodicity measure of the YIN algorithm is

set to 0.7 to classify each speech frame as voiced/unvoiced. For an analysis of the upper bound, we

also present the results when the fundamental frequency is estimated from clean speech.

5.1 Spectral Subtraction with the Proposed Noise Estima-

tion Algorithm

In the following tables, performance of the proposed noise estimation algorithm is evaluated

by combining it with the traditional spectral subtraction, which is denoted as ’SpecSub’. Pitch

estimation is carried out on both noisy speech and clean speech and results are presented separately.

SpecSub, combined with the proposed noise estimation algorithm, using pitch estimation on noisy
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speech, is denoted as ’SpecSub-NPE’. When the pitch estimation is based on clean speech, the

resulting combined method is denoted as ’SpecSub-CPE’.

5.1.1 Results and Analysis of Results

Table 5.1: PESQ evaluation of the proposed algorithm against standard spectral subtraction for
white noise.

PESQ

Global SNR(in dB) Noisy SpecSub SpecSub-NPE SpecSub-CPE

-5 1.22 1.32 1.63 1.76

0 1.43 1.84 2.05 2.12

5 1.72 2.21 2.41 2.43

10 2.05 2.45 2.67 2.68

Table 5.2: PESQ evaluation of the proposed algorithm against standard spectral subtraction for
babble noise.

PESQ

Global SNR(in dB) Noisy SpecSub SpecSub-NPE SpecSub-CPE

-5 1.32 1.21 1.47 1.76

0 1.66 1.73 1.99 2.17

5 2.02 2.17 2.38 2.47

10 2.38 2.57 2.66 2.72

Table 5.3: PESQ evaluation of the proposed algorithm against standard spectral subtraction for
restaurant noise.

PESQ

Global SNR(in dB) Noisy SpecSub SpecSub-NPE SpecSub-CPE

-5 1.35 1.12 1.45 1.78

0 1.66 1.64 1.91 2.11

5 2.00 2.07 2.31 2.42

10 2.34 2.46 2.64 2.68
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Table 5.4: PESQ evaluation of the proposed algorithm against standard spectral subtraction for
subway noise.

PESQ

Global SNR(in dB) Noisy SpecSub SpecSub-NPE SpecSub-CPE

-5 1.22 1.13 1.58 1.73

0 1.49 1.56 1.90 2.07

5 1.81 2.01 2.29 2.37

10 2.16 2.40 2.59 2.62

In the above tables, the first column, ’Global SNR(in dB)’, represents the signal-to-noise

ratio after speech is degraded. The second column, ’Noisy’, gives the value of the objective measure

’PESQ’ for the degraded speech. The third column indicates the PESQ value for speech enhanced

using the traditional spectral subtraction algorithm. Similarly, the fourth and fifth columns give the

values of the PESQ measure for the enhanced speech using proposed approach with pitch estimation

on noisy and clean speech, respectively. The upper bound due to pitch estimation on clean speech

can be observed from the data in the tables. We also give the graphical representation of the above

tabulated performance comparison in the figures 5.1, 5.2, 5.3 and 5.4, which follow.

52



−5 0 5 10

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

White noise:Input SNR(dB)

M
ea
n
P
E
S
Q

PESQ comparison for white noise

Noisy
SpecSub
SpecSub-NPE
SpecSub-CPE

Figure 5.1: Results of the proposed spectral subtraction speech enhancement algorithm for white
noise.
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Figure 5.2: Results of the proposed spectral subtraction speech enhancement algorithm for babble
noise.
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Figure 5.3: Results of the proposed spectral subtraction speech enhancement algorithm for restaurant
noise.
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Figure 5.4: Results of the proposed spectral subtraction speech enhancement algorithm for subway
noise.

From the above results, the effectiveness of the proposed noise estimation algorithm can

be confirmed for the mentioned types of noises. For stationary noises like white noise, though

initial noise estimation (noise estimation obtained by averaging first few silent frames of speech)

might be sufficient for noise reduction in all future frames, the improvement in the speech quality

with our algorithm for stationary noises is mainly due to less distortion of the dominant harmonic

bins in the voiced frames. For other non-stationary noises like babble noise, the noise estimation

even in the voiced frames results in effective noise tracking which provides further improvement of

the speech quality. Also, it should be noted that for low SNR, the YIN algorithm detects only few

voiced frames [70] and this limits the performance of proposed speech enhancement algorithm. Pitch

estimation on clean speech improves the quality further.
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5.2 MMSE STSA with the Proposed Noise Estimation Al-

gorithm

The proposed noise estimation algorithm is combined with the traditional MMSE STSA

algorithm and performance is evaluated in the following tables. The proposed noise estimation

algorithm combined with MMSE algorithm is denoted as ’MMSE-NE’. Pitch estimation is carried

out on both noisy speech and clean speech, and results are presented separately. MMSE-NE using

pitch estimation on noisy speech is denoted as ’MMSE-NPE’ and MMSE-NE using pitch estimation

on clean speech is denoted as ’MMSE-CPE’.

5.2.1 Results and Analysis of Results

Table 5.5: PESQ evaluation of the proposed algorithm against the standard MMSE for white noise.

PESQ

Global SNR(in dB) Noisy MMSE MMSE-NPE MMSE-CPE

-5 1.22 1.56 1.60 1.64

0 1.43 2.01 2.03 2.02

5 1.72 2.47 2.36 2.34

10 2.05 2.83 2.67 2.62

Table 5.6: PESQ evaluation of the proposed algorithm against the standard MMSE for babble noise.

PESQ

Global SNR(in dB) Noisy MMSE MMSE-NPE MMSE-CPE

-5 1.32 1.41 1.56 1.69

0 1.66 1.85 1.99 2.11

5 2.02 2.26 2.34 2.41

10 2.38 2.59 2.63 2.70
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Table 5.7: PESQ evaluation of the proposed algorithm against the standard MMSE for restaurant
noise.

PESQ

Global SNR(in dB) Noisy MMSE MMSE-NPE MMSE-CPE

-5 1.35 1.42 1.56 1.68

0 1.66 2.81 1.99 2.08

5 2.00 2.16 2.34 2.42

10 2.34 2.46 2.63 2.69

Table 5.8: PESQ evaluation of the proposed algorithm against the standard MMSE for subway
noise.

PESQ

Global SNR(in dB) Noisy MMSE MMSE-NPE MMSE-CPE

-5 1.22 1.36 1.64 1.76

0 1.49 1.68 2.01 2.12

5 1.81 2.05 2.37 2.46

10 2.16 2.40 2.67 2.74

In the above tables, the first column, ’Global SNR(in dB)’, represents the signal-to-noise

ratio after speech is corrupted. The second column, ’Noisy’, gives the value of objective measure

’PESQ’ for the corrupted speech. The third column indicates the PESQ value for speech enhanced

using the traditional MMSE STSA algorithm. Similarly, the fourth and fifth columns give the values

of PESQ measure for enhanced speech using the proposed approach with pitch estimation based on

noisy and clean speech, respectively. The upper bound due to pitch estimation on clean speech can

be observed from data in the tables for babble noise. We also give the graphical representation of

the above tabulated performance comparison in figures 5.5, 5.6, 5.7 and 5.8, which follow.
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Figure 5.5: Results of the proposed MMSE STSA speech enhancement algorithm for white noise.
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Figure 5.6: Results of the proposed MMSE STSA speech enhancement algorithm for babble noise.
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Figure 5.7: Results of the proposed MMSE STSA speech enhancement algorithm for restaurant
noise.
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Figure 5.8: Results of the proposed MMSE STSA speech enhancement algorithm for subway noise.

Improvement is obtained for non-stationary noises as seen from figures 5.6, 5.7 and 5.8.

However, white noise is a stationary noise type, and hence using proposed noise estimation does not

result in improvement over the traditional MMSE noise reduction algorithm as seen in figures 5.5.

We think this is because estimating the noise in the voiced frames further results in suppression of

unvoiced speech, and overall speech quality decreases for stationary noises. While traditional MMSE

can not respond to the non-stationary changes in the noise due to a decision-directed approach, since

a priori SNR is averaged over successive frames [15], the proposed noise estimation results in better

speech quality for highly non-stationary noises like babble noise. The MMSE algorithm is effective for

eliminating the annoying musical noise artifact in the unvoiced frames, while spectral subtraction

combined with the proposed noise estimation removes the noise in the voiced frames effectively

and consistently. This motivates the combination of MMSE and the proposed spectral subtraction

algorithm to improve the speech quality further with minimum musical noise. We present the result
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of this fusion in the next section.

5.3 Combined Spectral Subtraction and MMSE STSA with

the Proposed Noise Estimation Algorithm

Spectral subtraction provides high attenuation of background noise but with annoying mu-

sical noise effect. On the other hand, the MMSE STSA algorithm effectively eliminates the musical

noise by smoothing a priori SNR across frames. Due to this averaging, the noise attenuation is lower

as compared to spectral subtraction. Also, the MMSE STSA algorithm causes less speech distor-

tion. These two contradictory behaviors of the spectral subtraction and MMSE STSA algorithms are

combined to achieve maximum noise suppression in the low SNR periods during voiced frames and

minimum musical noise in the non-voiced frames. In this fusion, non-voiced frames are processed by

the basic MMSE-NE algorithm to minimize musical noise and in the voiced frames MMSE-NE and

SpecSub-NE are combined to suppress the noise between harmonics with minimal speech distortion.

As we have shown in the last section, MMSE STSA with the proposed noise estimation algorithm

works well only for non-stationary noises. Therefore, this combination provides better speech quality

only for non-stationary noises. The formulation of this combination is given below.

Let U and V denote the unvoiced and voiced frame detected by YIN algorithm, respectively,

|ŜMMSE(n, k)| and |ŜSpecSub(n, k)| be the magnitude spectra of speech enhanced by the MMSE

STSA and spectral subtraction rules:

|ŜFusion(n, k)|2 =


|ŜMMSE(n, k)|2 if |Y (n, k)| = U

or∆φ(n, k) < φT

ŜComb otherwise.

(5.1)

where ŜComb = 0.8 ∗ |ŜSpecSub(λ, µ)|2 + 0.2 ∗ |ŜMMSE(λ, µ)|2. We are using the contribution of the

MMSE STSA enhanced spectra in the unvoiced speech and harmonic dominant bins in voiced speech

to reduce the effect of annoying musical noise with minimum speech distortion. We use the spectral

subtraction in the noise dominant speech for effective noise reduction in the voiced frame.
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5.3.1 Results and Analysis of Results

Table 5.9: PESQ evaluation of the proposed algorithm for white noise when pitch is estimated from
noisy speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-NPE MMSE-NPE Fusion-NPE

-5 1.22 1.07 1.56 1.63 1.60 1.57

0 1.43 1.48 2.01 2.05 2.03 1.96

5 1.72 1.97 2.47 2.41 2.36 2.36

10 2.05 2.45 2.83 2.67 2.67 2.69

Table 5.10: PESQ evaluation of the proposed algorithm for white noise when pitch is estimated from
clean speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-CPE MMSE-CPE Fusion-CPE

-5 1.22 1.07 1.56 1.76 1.64 1.76

0 1.43 1.48 2.01 2.12 2.11 2.07

5 1.72 1.97 2.47 2.43 2.35 2.41

10 2.05 2.45 2.83 2.68 2.52 2.71

Table 5.11: PESQ evaluation of the proposed algorithm for babble noise when pitch is estimated
from noisy speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-NPE MMSE-NPE Fusion-NPE

-5 1.32 1.21 1.41 1.47 1.56 1.50

0 1.66 1.73 1.85 1.99 1.99 1.96

5 2.02 2.17 2.26 2.38 2.34 2.32

10 2.38 2.57 2.59 2.66 2.63 2.60
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Table 5.12: PESQ evaluation of the proposed algorithm for babble noise when pitch is estimated
from clean speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-CPE MMSE-CPE Fusion-CPE

-5 1.32 1.21 1.41 1.76 1.69 1.98

0 1.66 1.73 1.85 2.17 2.11 2.30

5 2.02 2.17 2.26 2.47 2.41 2.58

10 2.38 2.57 2.59 2.72 2.70 2.84

Table 5.13: PESQ evaluation of the proposed algorithm for restaurant noise when pitch is estimated
from noisy speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-NPE MMSE-NPE Fusion-NPE

-5 1.35 1.12 1.42 1.45 1.55 1.49

0 1.66 1.64 1.81 1.91 1.99 1.92

5 2.00 2.07 2.16 2.31 2.34 2.24

10 2.34 2.46 2.46 2.64 2.63 2.53

Table 5.14: PESQ evaluation of the proposed algorithm for restaurant noise when pitch is estimated
from clean speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-CPE MMSE-CPE Fusion-CPE

-5 1.35 1.12 1.42 1.78 1.68 1.97

0 1.66 1.64 1.81 2.11 2.08 2.27

5 2.00 2.07 2.16 2.42 2.42 2.53

10 2.34 2.46 2.46 2.68 2.69 2.73

Table 5.15: PESQ evaluation of the proposed algorithm for subway noise when pitch is estimated
from noisy speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-NPE MMSE-NPE Fusion-NPE

-5 1.22 1.13 1.36 1.58 1.64 1.66

0 1.49 1.56 1.68 1.90 2.01 2.01

5 1.81 2.01 2.05 2.29 2.37 2.36

10 2.16 2.40 2.40 2.59 2.67 2.64
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Table 5.16: PESQ evaluation of the proposed algorithm for subway noise when pitch is estimated
from clean speech.

PESQ

Global SNR(in dB) Noisy SpecSub MMSE SpecSub-CPE MMSE-CPE Fusion-CPE

-5 1.22 1.13 1.36 1.73 1.76 1.93

0 1.49 1.56 1.68 2.07 2.12 2.24

5 1.81 2.01 2.05 2.37 2.46 2.51

10 2.16 2.40 2.40 2.62 2.74 2.73

For better comparison of data in the above tables, results are shown separately for pitch

estimation on noisy speech and on clean speech. In the above tables, the first column, ’Global SNR(in

dB)’, represents the signal-to-noise ratio after speech is corrupted. The second column, ’Noisy’, gives

the value of objective measure ’PESQ’ for the corrupted speech. The remaining columns indicate

the PESQ measure when noisy speech is processed by the mentioned algorithms. For each row in

the above table, the value in the right-hand column, for Fusion-CPE, is the highest. We also give the

graphical representation of the above tabulated performance comparison in figures 5.9-5.14 which

follow.
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Figure 5.9: Results of the proposed fusion algorithm for white noise with pitch estimation on noisy
speech.
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Figure 5.10: Results of the proposed fusion algorithm for white noise with pitch estimation on clean
speech.
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Figure 5.11: Results of the proposed fusion algorithm for babble noise with pitch estimation on noisy
speech.
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Figure 5.12: Results of the proposed fusion algorithm for babble noise with pitch estimation on clean
speech.
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Figure 5.13: Results of the proposed fusion algorithm for restaurant noise with pitch estimation on
noisy speech.

71



−5 0 5 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Restaurant noise:Input SNR(dB)

M
ea
n
P
E
S
Q

PESQ comparison for restaurant noise with pitch estimation on clean speech

Noisy
SpecSub
MMSE
SpecSub-CPE
MMSE-CPE
Fusion-CPE

Figure 5.14: Results of the proposed fusion algorithm for restaurant noise with pitch estimation on
clean speech.
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Figure 5.15: Results of the proposed fusion algorithm for subway noise with pitch estimation on
noisy speech.
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Figure 5.16: Results of the proposed fusion algorithm for subway noise with pitch estimation on
clean speech.

As indicated in the above figures, good performance of this combined algorithm is dependent

on good estimation of pitch for the voiced speech and non-stationary noise. As inaccurate pitch

estimation will remove excessive amount of signal due to spectral subtraction in the voiced region,

and overall speech quality is reduced as seen in figures 5.11, 5.13 and 5.15. However, improvement is

significant when pitch is estimated using the clean speech for non-stationary noise as seen in figure

5.10 and 5.12. Accurate pitch estimation using some advanced pitch estimation algorithm would

result in better speech quality.

5.4 Spectrogram Based Comparison

Below, we have shown the spectrograms for all of the above mentioned algorithms. Clean

speech (See in Fig. 5.17a) is degraded by adding babble noise at 0 dB as shown in Fig. 5.17b .
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(a) Clean speech spectrogram
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(b) Noisy speech spectrogram
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(c) Spectrogram for SpecSub processed speech.
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(d) Spectrogram for MMSE processed speech.

Figure 5.17: Spectrograms of enhanced speech processed by the discussed algorithms.
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(e) Spectrogram for SpecSub-CPE processed speech.
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(f) Spectrogram for MMSE-CPE processed speech.
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(g) Spectrogram for Fusion-CPE processed speech.

Figure 5.17: (Continued).

The effectiveness of the proposed approach can also be confirmed by the spectrograms of the

processed speech as shown in Fig. 5.17. SpecSub-CPE processed speech has less speech distortion

as compared to SpecSub processed speech as shown in Fig. 5.17c and Fig. 5.17e. Also, MMSE-CPE

results in better noise reduction than the standard MMSE algorithm as shown in Fig. 5.17d and

Fig. 5.17f. Fusion-CPE suppresses the noise present between the harmonics effectively as shown in

Fig. 5.17g. Fusion-CPE utilizes the noise suppression properties of the spectral subtraction rule and

the minimum musical noise reduction capability of MMSE.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

The purpose of this chapter is two-fold, first is to draw some conclusions based on our

discussion, in previous chapters, and then to propose some future areas of research.

6.1 Conclusions

In chapter 2, we discussed some of the existing speech enhancement algorithms including

the spectral subtraction, MMSE STSA, modulation domain based speech enhancement and phase

enhancement using the harmonic model for voiced speech. These algorithms attempt to improve

the quality of speech with minimum speech distortion and maximum possible noise reduction. Due

to inaccurate noise estimation, performance of these algorithms is limited and also artifacts are

introduced in the processed speech. Various measures to quantify speech quality are discussed in

chapter 3.

In this work, we have used the harmonic model for voiced speech to estimate the noise even

in voiced frames. The harmonic model is used to estimate the frame to frame phase difference for the

clean speech, and this knowledge is exploited to track the noise in the voiced speech. This approach

for noise estimation has been shown to improve the performance of traditional spectral subtraction

significantly for white, babble, restaurant and subway noises. We also showed the effectiveness of
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this technique when used with MMSE STSA for non-stationary noise reduction. Thus, the proposed

technique of noise estimation can be combined with any of the existing amplitude enhancement

algorithms to further improve the performance in presence of non-stationary noises. Combined

spectral subtraction and MMSE further improved the quality of speech with minimum musical

noise and maximum possible noise reduction when good estimate of pitch is available. For non-

stationary noises, average PESQ improvement of spectral subtraction with new noise estimation is

0.3 when pitch is estimated on noisy speech. When pitch estimation is based on clean speech, PESQ

is increased to 0.5. MMSE with new noise estimation gives an average PESQ improvement of 0.2

when pitch is estimated on noisy speech and 0.3 when it is estimated on clean speech. With fusion of

these two algorithms average PESQ improvement is pushed further to 0.4 (over traditional MMSE)

when pitch is estimated on clean speech.

We have used the YIN fundamental frequency tracking algorithm to estimate the pitch for

the voiced frames. The performance of this algorithm degrades in the low SNR conditions, resulting

in less number of voiced frames detected. Better results can be obtained by using some more

advanced pitch estimation algorithms. Though we are estimating the frame to frame phase difference

for clean speech, this knowledge has not been used to carry out the actual phase enhancement for

the noisy speech. Phase difference is just used as an additional means to estimate the noise.

6.2 Future Work

In this section, we discuss some of the drawbacks of the proposed approach and further

scope of research to improve it.

It has been shown that phase enhancement using the harmonic model for the voiced speech

results in improved speech quality [22]. However, this also results in additional artifacts in the

processed speech due to inaccurate harmonic modeling for voiced speech. If the harmonic model is

improved further then the proposed noise estimation algorithm can be used to enhance the amplitude

spectrum along with the phase estimation. This combination of amplitude and phase enhancement

should result in better speech quality.

We have implemented noise estimation using the phase difference as an additional means

in the acoustic domain. Integrating this approach in the modulation domain might result in better

speech quality, as modulation domain speech enhancement is already superior to even MMSE STSA.
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Modulation domain speech enhancement consists of two STFTs, namely acoustic STFT and modu-

lation STFT. The technique we used in this work can be used to estimate the phase in the acoustic

STFT, but phase estimation in modulation STFT is still challenging and it is very important for

speech perception in our auditory system [24].

Also, the knowledge of phase difference to detect the noise-dominant frequency bins in the

voiced frames can be used to improve the performance of the existing noise estimation algorithms,

as most of them do not use the noise-robust harmonicity property of the voiced speech.
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