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Abstract

The performance of a packet-level iterative detection technique is examined for a

slow-frequency-hop packet radio system using interleaved Reed-Solomon codes and per-dwell

differential encoding. A per-dwell soft-input-soft-output detector along with successive-

erasures decoding results in a system that performs better than previously considered de-

tection techniques in the presence of partial-band interference. The log-MAP algorithm

and two forms of its max-log-MAP approximation are considered for the soft-input-soft-

output detector along with different channel estimators. The performance and detection

complexity of the systems is compared. A limit on the number of erasures allowed in

successive-erasures decoding is also considered, and its effect on the system’s performance

and detection complexity is examined.
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Chapter 1

Introduction

Packet radio communication systems often operate in environments in which por-

tions of the available frequency band may be occupied by intentional or unintentional in-

terference, and a receiver in the system often lacks a priori knowledge of the portion of the

frequency band in which interference is present or the strength of the interference. Slow-

frequency-hop (SFH) spread spectrum provides good protection against such partial-band

interference when used with proper channel coding and decoding. Reed-Solomon (R-S) cod-

ing with errors-and-erasures (EE) decoding is particularly well matched to counter partial-

band interference in a SFH system [1]. As an example, the most widely deployed SFH

tactical military packet radio system incorporates R-S coding with multiple code words per

packet [2]. It uses a technique to erase unreliable code symbols at the receiver for use with

one-shot EE decoding of each received word.

Concatenation of an inner R-S code with an outer channel code allows for effective

exploitation of iterative decoding which can achieve much better performance than one-shot

EE decoding. Iterative erasure insertion and decoding [3] results in better performance

than the test-symbol method [4] in a SFH system with R-S coding. Iterative equalization-

and-decoding significantly improves the performance of a SFH system with R-S coding

if the system is subjected to multipath fading [5]. Furthermore, the use of a R-S outer

code and a convolutional inner code with an erasure-insertion technique has been shown to
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provide improved protection against partial-band interference [6]. An early form of iterative

decoding [7] is shown to enhance the performance of a concatenated coding system with an

outer R-S code.

Packet-level iterative detection techniques have been shown in [8] to provide better

performance than one-shot decoding in the presences of partial-band interference for a SFH

packet radio system with R-S coding and parity bits [4]. Differential encoding is exploited

in packet-level iterative erasure insertion and bounded-distance EE decoding to obtain good

performance with a modest increase in the average decoding time for a packet. Maximum-

likelihood sequence detection [9] of the differentially encoded binary representation of each

code symbol transmitted in a dwell interval is employed using the Viterbi algorithm [10],

and parity bits [4] are used to determine erasures for bounded-distance EE decoding of each

received word. The code words that have been detected through a given iteration are used

as feedback to constrain the valid transitions in the two-state trellis of the Viterbi algorithm

in each dwell interval for the next iteration. This step is referred to as branch pruning [8].

In this thesis, an alternative is considered for packet-level iterative detection in a

SFH packet radio system with R-S encoding and differential encoding. Instead of inserting

parity bits, soft measures of the reliability of the received symbols are utilized for erasure

insertion prior to EE R-S decoding of each word. For this purpose, MLSE detection using

the Viterbi algorithm is replaced by a soft-input, soft-output (SISO) detector using the

BCJR (log-MAP) algorithm [11] or a variant of the algorithm. A branch-pruned version of

the BCJR algorithm and its variants is used in analogy with iterations of the branch-pruned

Viterbi algorithm used in [8].

Per-dwell SISO detection of the content of each dwell interval is considered in con-

junction with bounded-distance successive-erasures (SE) decoding [12] (a form of generalized-

minimum distance decoding [13]). The soft outputs from SISO detection are used to assign

a reliability ranking to the hard code-symbol decisions for each received word; the ranking

determines the order of erasure insertion in SE decoding. As with the previously investi-

gated packet-level iterative detection method [8], successful decoding of some received words
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in the received packet provide feedback which constrains the trellis for SISO detection in

each dwell interval in the subsequent iterations.

In the investigation, we consider the log-MAP algorithm and two forms of its max-

log-MAP approximation [14] as per-dwell SISO detectors. The performance of the system is

considered with each SISO detector and compared with the performance of some previously

considered SFH systems using R-S coding. Both the packet error probability and the

computational complexity of packet detection are used as measures of performance.

We also consider several practical estimation algorithms for use with the SISO de-

tectors and compare their effectiveness. Finally, we consider a limit on the number of

code-symbol erasures in a received word for SE decoding, and we examine the effect that

the choice of the limit has on the system performance.

The remainder of the thesis is organized as follows. Chapter 2 contains a description

of the SFH system, including each receiver considered in the thesis. The SISO differential

detectors are discussed in Chapter 3. The chapter also includes a comparison of the system

performance and the detection complexity of the systems using each detection technique.

In Chapter 4, various practical channel estimators are discussed, and differences in the

system performance due to the use of the estimators are analyzed. Chapter 5 details how

system performance and decoding complexities are affected by the changes in the maximum

number of erasures allowed in SE decoding. Finally, a summary of the results is presented

in Chapter 6.
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Chapter 2

System Description

2.1 Transmitter

The block diagram of the transmitter for the SFH system is shown in Fig. 2.1. A

singly extended (n, k) R-S code is used to encode the information message. (The code

redundancy n− k is even in all the examples in the thesis.) The code symbols of each R-S

code word are elements of GF(n), n = 2m.

Each packet of data contains Ns R-S code words
(

s
(p)
0 . . . s

(p)
n−1

)

, 0 ≤ p ≤ Ns − 1.

The rectangular interleaver interleaves the Ns code words in an n×Ns matrix such that each

row contains one code symbol from each code word in the packet. Each code symbol s
(p)
i is

expanded into an m-bit binary (code bit) representation
(

b
(p)
i,0 . . . b

(p)
i,m−1

)

by a code-symbol-

to-bit mapper. The code-bit sequence forming the ith row of the resulting n× (mNs)matrix

is denoted
(

b̃
(i)
0 . . . b̃

(i)
mNs−1

)

, 0 ≤ i ≤ n− 1.

A pseudo-random interleaver reorders the code-bit sequence in each row using a

different interleaving pattern for each row. If πi(·) denotes the interleaver for row i, the

interleaved code-bit sequence is given by

(

b
(i)
0 . . . b

(i)
mNs−1

)

=
(

b̃
(i)
πi(0)

. . . b̃
(i)
πi(mNs−1)

)

.
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The contents of each row are then passed through a differential encoder which is

initialized to the zero state prior to encoding each row; the resulting contents of the ith row

are given by
(

d
(i)
0 . . . d

(i)
mNs−1

)

where d
(i)
0 = b

(i)
0 , d

(i)
j = d

(i)
j−1 ⊕ b

(i)
j , 1 ≤ j ≤ mNs − 1. The differentially encoded code bits

of each row are then transmitted as a single dwell interval using BPSK modulation in a

frequency slot with a pseudo-randomly selected carrier frequency.

In practice, the transmission in each dwell interval of a SFH system includes a

preamble for symbol synchronization, and the preamble can be used to derive the reference

phase for coherent demodulation of the received symbols in the dwell interval. In the thesis,

we do not model the presence of the per-dwell preamble in the received signal but we assume

that the correct reference phase is available at the receiver for coherent demodulation in

each dwell interval. The baseband-equivalent signal transmitted at time t = 0 is thus given

by

s(t) = Re





√
P

n−1
∑

i=0

mNs−1
∑

j=0

(−1)d
(i)
j pT (t− (i(mNS) + j)T )ej2πfit





where T is the channel symbol duration, pT is the unit amplitude pulse over [0, T ] and P

is the power of the transmitted signal.

The center frequencies of the frequency slots used for the n dwell intervals are

{f0 = fc + k0∆f, . . . fn−1 = fc + kn−1∆f} where fc is the center frequency of the lowest-

frequency slot, ∆f is the offset between the center frequencies of adjacent frequency slots ,

ki ∈ {0, . . . , S − 1} and S is the number of frequency slots available. The offset frequency

∆f = 2
T ; thus, Bt =

2S
T is the total system bandwidth.

2.2 Channel

The channel considered is a static, single-path channel that is subjected to both

full-band additive white Gaussian noise and partial-band additive Gaussian interference.
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The double-sided power spectral density (p.s.d.) of the noise is N0
2 . The interference

occupies a fraction ρ of the total frequency band, and within that portion of the band its

p.s.d. is constant and equal to NI

2ρ . Consequently, there is a probability ρ that a randomly

selected frequency slot is subjected to the interference; in each such slot, the received signal

encounters a total noise-plus-interference p.s.d. of N0
2 + NI

2ρ . With a probability 1 − ρ, the

received signal encounters only a noise p.s.d. of N0
2 .

The (instantaneous) signal-to-interference-plus noise ratio (SINR) at the receiver

during a dwell interval depends on the frequency slot that is used. It is given by

SINR =















Eb

N0
, if there is no interference in the frequency slot

Eb

N0+(NI/ρ)
, if there is interference in the frequency slot

(2.1)

where Eb = (n/k)PT is the energy per bit of information. The signal-to-noise ratio (SNR)

at the receiver is given by Eb/N0, and the signal-to-interference ratio (SIR) (which does not

depend on ρ) is given by Eb/NI .

2.3 Receiver

The block diagram of the baseband-equivalent receiver is shown in Fig. 2.2 for each

of the new systems considered in the thesis. Only some of the systems include the channel

estimator (and its connections shown as dashed lines), whereas the remaining subsystems

shown in the figure are included in each system. (The lines shown in bold represent feedback

paths for iterative decoding in the receiver.)

The received signal in each dwell interval is passed through a coherent, matched-filter

receiver that samples the output at the optimal instant for each received binary channel

symbol. It is assumed that an automatic gain-control subsystem [15] normalizes the samples

with respect to the received energy per channel symbol so that the jth received symbol at
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the demodulator output in dwell interval i is given by

r
(i)
j = (−1)d

(i)
j + n

(i)
j .

The noise random variables
{

n
(i)
j

}

, 0 ≤ i ≤ n−1, 0 ≤ j ≤ mNs−1, are conditionally

mutually independent given the subset of dwell intervals that are subjected to interference.

Under this condition, the zero-mean Gaussian random variable n
(i)
j has a variance that

depends on the frequency slot used in the ith dwell interval. It is given by

σ2
i =















N0
2Eb(k/n)

, if there is no interference in the frequency slot

N0+(NI/ρ)
2Eb(k/n)

, if there is interference in the frequency slot.

(2.2)

Consequently, the channel during the ith dwell interval is characterized by a single pa-

rameter, σ2
i , that is unknown a priori at the receiver. In the first iteration of differential

detection and R-S decoding, the mNs real-valued demodulator outputs for each dwell in-

terval are provided as the input to a SISO code-bit detector.

The SISO algorithm is executed on the two-state trellis of the differential encoder.

For dwell interval i, the state of the trellis at time j is equal to d
(i)
j−1 if j ≥ 1 and it is equal

to zero if j = 0. Each branch of the trellis connecting a state at time j − 1 with a state at

time j is labeled by both the code-bit polarity b
(i)
j that generates the corresponding state

transition and the resulting channel symbol (−1)d
(i)
j .

The SISO detector provides both a hard-decision output for each differentially en-

coded code bit in the dwell interval and a measure of the reliability of each bit decision (the

bit reliability). The hard decisions on the m code bits corresponding to a code symbol yield

the hard decision on the code symbol, and the m bit reliabilities are used to determine the

reliability of the code-symbol decision (the symbol reliability). If (r0, r1, . . . rm−1) are the

7



bit reliabilities of the code bits forming a code symbol, the symbol reliability R is given by

R =
m−1
∏

i=0

eri

1 + eri
. (2.3)

Each individual product term of equation (2.3) is the probability that the corresponding

code bit is detected correctly if MAP detection with a priori knowledge of the noise variance

is used in the SISO detector. The symbol reliability R is then the probability that the code

symbol is detected correctly.

The hard code-symbol decisions and their reliabilities are employed in successive-

erasures bounded-distance decoding of the received word for each R-S code word in the

packet. A predetermined maximum allowable number of erasures is used in the first decoding

attempt by erasing the least-reliable code symbols. The number of erasures is reduced by

two in each subsequent decoding attempt until either successful decoding to a valid (correct

or incorrect) code word occurs or a decoding failure is declared for the decoding attempt

with zero erasures (which corresponds to errors-only decoding).

Bounded-distance R-S decoding often produces successful decoding to an erroneous

code word (i.e., an undetectable decoder error occurs) if the number of erasures is close

to n − k [16]; thus, a maximum allowable number of erasures much less than n − k is

used. The packet-level iterative detector is terminated (and packet detection fails) if none

of the received words is successfully decoded in the iteration. If all the received words are

successfully decoded, packet detection is successful and the iterative decoder is terminated.

If, instead, one or more code words are successfully decoded in the iteration using

successive-erasures decoding but others are not successfully decoded, another packet-level

iteration of differential detection and R-S decoding occurs. In the new packet-level iteration,

all code bits representing code symbols from received words successfully decoded in previous

iterations are presumed to be known a priori; thus, the two-state trellis for each dwell

interval is pruned to include only branches consistent with the known code-bit polarities,

and the SISO algorithm is restricted to the remaining trellis branches when it is executed for

8



that dwell interval in the current iteration. This is illustrated in Fig. 2.3, which shows the

pruned trellis for dwell intervals v and w in an iteration occurring later than the iteration

in which received word 0 was successfully decoded. In the illustration, n = 16 and Ns = 2;

the code bits of the ith code symbol of the detected code word are denoted
(

b̂
(0)
i,0 . . . b̂

(0)
i,3

)

.

The output of the SISO algorithm for each dwell interval in the current packet-level

iteration is used for successive-erasures decoding of the received words that have not yet

been decoded successfully. Packet-level iterations continue until either all received words

are decoded successfully or an iteration occurs in which no additional received words are

decoded successfully.

Six variants are considered for the receiver using packet-level iterative detection

with per-dwell SISO detection and successive-erasures R-S decoding. They are denoted by

systems A-F, and they differ only in the SISO algorithm that is used in each iteration.

The six systems are described below along with two previously introduced systems. (The

performance of either of the previously introduced systems provides a benchmark against

which the performance of each new system is compared.)

2.3.1 System A

System A uses the BCJR algorithm for log-MAP detection of the (differentially

encoded) code bits in each dwell interval. The algorithm requires an estimate of the channel

parameter σ2
i given in equation (2.2) for each dwell interval. The estimate of σ2

i , denoted

σ̂2
i , is referred to as the channel estimate for the ith dwell interval.

We assume that system A obtains a perfect channel estimate for each dwell interval;

that is, σ̂2
i = σ2

i for 0 ≤ i ≤ n− 1. The bit reliabilities obtained from the BCJR algorithm

are the log-likelihood ratios (LLRs) of the code bits; thus, the symbol reliability calculated

by equation (2.3) is the probability that the code-symbol decision is correct at the output of

the bit-to-code-symbol mapper. This is true for the first iteration of packet-level detection;

it is also true for subsequent iterations under the condition that each successfully decoded

received word is decoded correctly.
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2.3.2 System B

In system B, the max-log-MAP algorithm is used instead of the log-MAP algorithm

for the detection of the code bits and the determination of the bit reliabilities. The bit

reliabilities are not LLRs in this instance, but they preserve the rank ordering of the code-

bit LLRs. (The resulting symbol reliabilities do not necessarily preserve the rank ordering

of code-symbol LLRs, however.) The correlator form of the max-log-MAP algorithm is

considered in this system; it does not require channel estimates.

2.3.3 System C

System C is a modification of system B in which the outputs of the max-log-MAP

algorithm for each dwell interval are weighted in inverse proportion to the channel estimate

for the dwell interval. A perfect estimate is assumed for each dwell interval.

2.3.4 System D

System D operates in the same manner as system C, but it uses a practical channel

estimator [17] based on the estimated moments of the demodulator outputs in the dwell

interval. The channel estimate σ̂i
2 for the ith dwell interval is obtained once per packet,

and it is used for all iterations of the decoder. The channel estimator is described in Section

5.1.

2.3.5 System E

System E differs from System D in that it updates the channel estimate for each

dwell interval in each packet-level iteration, using the code-bit polarities for received words

that were successfully decoded in previous iterations. Conditioning on the hard code-bit

decisions that are used as feedback alters the joint distribution of the remaining received

symbols. A large-variance approximation to the maximum-likelihood estimate for the noise

variance in the ith dwell interval is used, as described in Section 5.2.
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2.3.6 System F

System F is a hybrid of system D and system B. The decoder of system D is employed

first. If the packet-level iterative detection algorithm is terminated with one or more received

words that are not decoded successfully, packet-level iterative detection using System B is

attempted with the successful decoding results from system D used as initial feedback to

the SISO detector for each dwell interval.

2.3.7 System EO

Reference system EO uses the same transmitter as in Fig. 2.1, except that the code

bits are not differentially encoded prior to transmission. The non-iterative receiver uses

hard-decision detection of code bits, mapping of detected code bits to 2m-ary code symbols,

and one-shot errors-only decoding of the Ns received words in the received packet [6].

2.3.8 System PB

Reference system PB uses the same transmitter as in Fig. 2.1, except that the

mapping of each 2m-ary code-symbol to a binary representation includes the addition of an

even-parity bit to the m code bits prior to bit interleaving [8]. The packet-level iterative

receiver uses the Viterbi algorithm (instead of a SISO algorithm) with the (pruned) two-

state trellis for each dwell interval. The Viterbi algorithm results in a hard decision for

each differentially encoded code-bit and parity bit. The m + 1 bits corresponding to each

code-symbol are then mapped to either a detected code-symbol (if even parity is satisfied)

or an erasure symbol (if parity is not satisfied). The detected and erased symbols are used

for a single instance of errors-and-erasures decoding in the packet-level iteration for each

previously undecoded received word.
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2.4 Measures of system performance

Each packet-detection attempt results in one of three outcomes: correct detection

of the packet, a packet-detection error, or packet-detection failure. Correct detection of

the packet occurs if all Ns received words in the received packet are decoded correctly at

termination. A packet-detection error occurs if all received words are successfully decoded

at termination, but one or more of them is decoded to an incorrect code word. Packet-

detection failure occurs if one or more received words has not been successfully decoded at

termination.

A packet-detection failure is known to the receiver. Furthermore, the use of an

outer error-detection code and decoder allows the receiver to identify most occurrences of

a packet-detection error. While we do not model the presence of an outer error-detection

code and decoder in the systems considered in the thesis, we approximate the effect of

their presence by classifying both a packet-detection error and a packet-detection failure

as a packet error and using the probability of packet error as a measure of each system’s

performance. Specifically, the system performance is characterized by the SIR required to

obtain a desired probability of packet error for a specified fractional interference bandwidth

ρ and a specified SNR. A lower required SIR corresponds to better system performance.

The second measure of system performance is the computational cost or delay at

the receiver to decode a packet. The variable computational burden of packet detection

includes the work required for each decoding attempt for a received word and each instance

of trellis-based code-bit detection for a dwell interval as well as each instance of channel

estimation in the systems using it. The SISO algorithms operating on the two-state trellis

used in each system impose only a small computational burden, however. Furthermore,

we assume that the computation required for channel estimation is small in comparison

with the computation required for R-S decoding. Consequently, we approximate the total

detection complexity as the complexity of decoding.

One approach to SE decoding employs an underlying EE decoder that is used once

12



for each set of erasures applied to a received word. We assume that the computation required

for EE decoding is similar regardless of the number of code-symbol erasures. Consequently,

we approximate the total detection complexity in systems A-F using this SE decoder ar-

chitecture as the number of EE decoding attempts per transmitted R-S code word. (The

same measure of detection complexity is used for system EO and PB; the resulting detec-

tion complexity for system EO is thus constant and equal to one decoding attempt per

transmitted R-S code word.)

Another approach to SE decoding employs an underlying decoder that shares much

of the computation among all of the EE decoding attempts for a given received word [18],

[19], [20]. We approximate the total detection complexity using this SE decoder architecture

as the number of SE decoding attempts per transmitted R-S code word (regardless of how

many EE decoding attempts any SE decoding attempt includes).

2.5 Examples used in thesis

All of the numerical results in the thesis are for packets of twelve code words from a

(32, 12) singly extended R-S encoder. Each packet is thus transmitted as 32 dwell intervals.

Each dwell interval in each system includes 60 channel symbols representing twelve 32−ary

code symbols. System PB also includes a channel symbol for each of the twelve parity bits

per dwell interval. The signal-to-noise ratio in each example is 20 dB.
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Figure 2.1: Transmitter for SFH system.

Figure 2.2: Baseband-equivalent receiver for SFH system.

Figure 2.3: Examples of the branch-pruned trellis for two typical dwell intervals.
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Chapter 3

Performance Using Different SISO

Algorithms

3.1 MAP detection of code bits

The SISO detector uses the MAP algorithm for differential detection. The MAP

algorithm decodes a code word by maximizing the a posteriori probability that an infor-

mation bit is correctly decoded. In other words, the MAP decision for input information

bit b
(i)
j is the value b̃ ∈ {0, 1} that maximizes Pr

(

b
(i)
j = b̃|r(i)0,mNs−1

)

, where r
(i)
0,mNs−1 =

(

r
(i)
0 . . . r

(i)
mNs−1

)

is the received channel-symbol sequence in the ith dwell interval. To ob-

tain the MAP decision of a bit b
(i)
j , its log a posteriori probability (log APP) ratio is

calculated as

L
(

b
(i)
j

)

= log





Pr
(

b
(i)
j = 0|r(i)0,mNs−1

)

Pr
(

b
(i)
j = 1|r(i)0,mNs−1

)



 ,

and the MAP decision for bk−1 is

b̂
(i)
j =











0, L
(

b
(i)
j

)

> 0

1, otherwise.
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The differential encoder can be viewed as a rate-one convolutional encoder. An

i.i.d. information source at the transmitter and the linearity of the R-S encoder results in a

sequence of i.i.d. code bits within any single dwell interval. The sequence of code bits thus

represents a special case of a Markov source; consequently, MAP detection of each code bit

based on the sequence of channel outputs in the dwell interval (without consideration of the

channel outputs for the other dwell intervals) is achieved using the BCJR algorithm [11].

This is expressed as

Pr
(

b
(i)
j = 0|r(i)0,mNs−1

)

=
∑

(m′,m)∈Ã

Pr (Sj−1 = m′, Sj = m) f
(

r
(i)
0,mNs−1|Sj−1 = m′, Sj = m

)

f
(

r
(i)
0,mNs−1

) ,

Pr
(

b
(i)
j = 1|r(i)0,mNs−1

)

=
∑

(m′,m)∈Ãc

Pr (Sj−1 = m′, Sj = m) f
(

r
(i)
0,mNs−1|Sj−1 = m′, Sj = m

)

f
(

r
(i)
0,mNs−1

) .

The set Ã =
{

(m′,m) : b
(i)
j−1 = 0

}

corresponds to all state transitions resulting from a chan-

nel input equal to zero, and Ãc =
{

(m′,m) : b
(i)
j−1 = 1

}

corresponds to all state transitions

resulting from a channel input equal to one.

Since the source is Markov and the channel is memoryless,

Pr
(

Sj−1 = m′, Sj = m
)

f
(

r
(i)
0,mNs−1|Sj−1 = m′, Sj = m

)

=
[

Pr(Sj−1 = m′)f
(

r
(i)
0,j−2|Sj−1 = m′

)]

×
[

Pr(Sj = m|Sj−1=m′)f
(

r
(i)
j−1|Sj−1 = m′, Sj = m

)]

f
(

r
(i)
j,mNs−1|Sj = m

)

= αj−1

(

m′
)

γj
(

m′,m
)

βj(m).

For an AWGN channel with variance σ2
i and equally likely input bits, if the state transition

from m′ to m results in output d(m′,m),

γj
(

m′,m
)

=



















1
2

1√
2πσ2

i

e
−

(

r
(i)
j−1

−(−1)d(m
′,m)

)2

2σ2
i , Pr (Sj = m|Sj−1 = m′) 6= 0

0, otherwise,
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αj(m) =
∑

m′

[

Pr(Sj−1 = m′)f
(

r
(i)
0,j−2|Sj−1 = m′

)]

[

Pr(Sj = m|Sj−1 = m′)f
(

r
(i)
j−1|Sj−1 = m′, Sj = m

)]

=
∑

m′

αj−1

(

m′
)

γj
(

m′,m
)

,

and

βj(m) =
∑

m′

f
(

r
(i)
j+1,mNs−1|Sj+1=m′

)

[

Pr(Sj+1 = m′|Sj = m)f
(

r
(i)
j |Sj = m,Sj+1 = m′

)]

=
∑

m′

βj+1

(

m′
)

γj+1

(

m,m′
)

.

The BCJR algorithm is used to efficiently determine the values of each auxiliary function

γj(m), αj(m), and βj(m) for a given received channel-symbol sequence. Since the differential

encoder begins at state 0 and terminates at either of the two states with equal probability,

the initial values of αj(m) and βj(m) are given as

α0(m) =











1, m = 0

0, otherwise

βmNs(m) =
1

2

Thus the log APP ratio is given by

L
(

b
(i)
j

)

= log

(
∑

(m′,m)∈Ã αj−1(m
′)γj(m

′,m)βj(m)
∑

(m′,m)∈Ãc αj−1(m′)γj(m′,m)βj(m)

)

.

If a subset of the code bits in the dwell interval are known a priori (as occurs with

feedback of successfully detected code words in packet-level iterative decoding), the same

argument holds with the channel-symbol trellis for the dwell interval constrained to reflect

known code-bit polarities.
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3.1.1 Log-MAP form of the MAP algorithm

The large number of multiplications in the BCJR algorithm for MAP detection may

cause numerical instability particularly when the block length is very large. A more stable

form of the algorithm is obtained by converting all the calculations to the log domain; the

resulting algorithm is referred to as the log-MAP algorithm [14].

In the log domain,

γ̂j(m
′,m) = log

(

γj(m
′,m)

)

=















log

(

1

2
√

2πσ2
i

)

−
(

r
(i)
j−1−(−1)d(m

′,m)
)2

2σ2
i

, Pr (Sj = m|Sj−1 = m′) 6= 0

0, otherwise,

α̂j(m) = log (αj(m)) = log

(

∑

m′

e(α̂j−1(m)+γ̂j(m
′,m))

)

,

β̂j(m) = log (βj(m)) = log

(

∑

m

e(γ̂j+1(m,m′)+β̂j+1(m
′))

)

,

α0(m) =











0, m = 0

−∞, otherwise,

βmNs(m) = log

(

1

2

)

and the log APP ratio is given as

L
(

b
(i)
j

)

= log





∑

(m′,m)∈Ã

e(α̂j−1(m)+γ̂j(m
′,m)+β̂j(m))





− log





∑

(m′,m)∈Ãc

e(α̂j−1(m)+γ̂j(m
′,m)+β̂j(m))



 .
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The unstable multiplications are replaced by additions, and calculations of the form

log (ex + ey) are simplified by using log (ex + ey) = max(x, y) + log
(

1 + e−|x−y|
)

[14]. Out-

puts of the log-MAP algorithm are exactly the same as BCJR algorithm because only the

method of computation is changed to simplify calculations.

3.2 Max-log-MAP detection of code bits

The calculations of the form log (ex + ey) in the log-MAP algorithm can be further

simplified by using the approximation log (ex + ey) ≈ max(x, y) as the term log
(

1 + e−|x−y|
)

ranges between 0 and 0.7 . The approximation results in the max-log-MAP approximation

[21] to the log-MAP algorithm, which is implemented as in the BCJR algorithm, but with

the modified auxiliary functions

α0(m) =











0, m = 0

−∞, m 6= 0

βmNs
= log

(

1

2

)

αj(m) = max
m′

(αj−1(m) + γ̂j(m,m))

βj(m) = max
m′

(

γ̂j+1(m,m′) + βj+1(m
′)
)

and the approximate log-APP ratio

L
(

b
(i)
j

)

= max
(m′,m)∈Ã

(

αj−1(m
′) + γ̂j(m

′,m) + βj(m)
)

− max
(m′,m)∈Ãc

(

αj−1(m
′) + γ̂j(m

′,m) + βj(m)
)

.

The value of γ̂j(m
′,m) in the max-log-MAP algorithm is the same as that in the

log-MAP algorithm, but αj(m) and βj(m) are different than α̂j(m) and β̂j(m), respectively,
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of the log-MAP algorithm. Hence, even though it is easy to compute, L
(

b
(i)
j

)

is only an

approximation to L
(

b
(i)
j

)

. Iterative decoders in which the algorithm is repeated a number

of times, the approximation can have an observable effect on the probability of error at the

decoder’s output.

3.2.1 Correlator form of the max-log-MAP approximation

For a Gaussian noise channel with variance σ2
i , if r

(i)
0 , r

(i)
2 , . . . r

(i)
mNs−1 are mNs re-

ceived channel symbols, we have

γ̂j(m
′,m) = log





1

2
√

2πσ2
i



−

(

r
(i)
j−1 − (−1)d(m

′,m)
)2

2σ2
i

= − log 2
√
2πσ2 −







(

r
(i)
j−1

)2
+ 1− 2r

(i)
j−1(−1)d(m

′,m)

2σ2
i






.

Let γ̃j(m
′,m) = σ2

i

(

log
(

2
√

2πσ2
i

)

+ Cj + γ̂j(m
′,m)

)

= r
(i)
j−1(−1)d(m

′,m)

where, Cj =

(

r
(i)
j−1

)2
+1

2σ2
i

. Then,

α̃j(m) = σ2
i

(

j log

(

2
√

2πσ2
i

)

+

j
∑

k=1

Ck + αj(m)

)

β̃j(m) = σ2
i



(mNs − j) log

(

2
√

2πσ2
i

)

+

mNs
∑

k=j+1

Ck + βj(m)



 .
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And the a posteriori probability is given by

L̃
(

b
(i)
j

)

= max
(m′,m)∈Ã

(

α̃j−1(m
′) + γ̃j(m

′,m) + β̃j(m)
)

− max
(m′,m)∈Ãc

(

α̃j−1(m
′) + γ̃j(m

′,m) + β̃j(m)
)

= σ2

[

max
(m′,m)∈Ã

(

mNs log

(

2
√

2πσ2
i

)

+

mNs
∑

k=1

Ck + αj−1(m
′) + γ̂j(m

′,m) + βj(m)

)

− max
(m′,m)∈Ãc

(

mNs log

(

2
√

2πσ2
i

)

+

mNs
∑

k=1

Ck + αj−1(m
′) + γ̂j(m

′,m) + βj(m)

)]

= σ2
iL
(

b
(i)
j

)

.

This form of the max-log-MAP approximation is known as the correlator form of

the max-log-MAP algorithm [22]. Here, γ̃j(m
′,m) in every step is obtained by the multipli-

cation of r
(i)
j−1 and (−1)d(m

′,m). The evaluation of γ̃ (m′,m) does not require noise variance

estimation, and neither does the evaluation of α̃j(m) and β̃j(m). The value L̃
(

b
(i)
j

)

com-

puted in this manner is a scaled version of L
(

b
(i)
j

)

. But the scaling of the log APP ratio

does not affect its polarity; hence, the bit decisions using either L̃
(

b
(i)
j

)

or L
(

b
(i)
j

)

give

the same results. The correlator form of the max-log-MAP algorithm is relatively easy

to implement compared to all the previously discussed algorithms. If needed, its outputs

L̃
(

b
(i)
j

)

can be scaled with the estimated channel variance to recover L
(

b
(i)
j

)

.

3.3 Bit and code-symbol reliability

Along with code-bit decisions, log-MAP detection also provides a measure of the

reliability of each of the decisions. If L
(

b
(i)
j

)

is the log APP ratio of b
(i)
j , its log reliability

R
(

b
(i)
j

)

is given by

R
(

b
(i)
j

)

=
∣

∣

∣L
(

b
(i)
j

)∣

∣

∣ .
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The a posteriori probability that b
(i)
j has been detected correctly is given by

Pr
(

b
(i)
j detected correctly

)

=
e
R
(

b
(i)
j

)

1 + e
R
(

b
(i)
j

) .

Thus the larger R
(

b
(i)
j

)

, the greater the probability that b
(i)
j has been detected correctly.

If
(

b
(i)
0 , b

(i)
1 , . . . b

(i)
m−1

)

are the m bits forming a code-symbol, the a posteriori prob-

ability that the code-symbol has been detected correctly is

Pr(code-symbol detected correctly) =
m−1
∏

k=0

e
R
(

b
(i)
k

)

1 + e
R
(

b
(i)
k

) . (3.1)

The probability that a code-symbol has been detected correctly is described as the reliability

of the code-symbol decision. The code-symbol reliabilities are used in SE decoding to

determine erasure insertions.

If the max-log-MAP algorithm or its correlator form is used instead of the log-MAP

algorithm, the respective log APP ratios L
(

b
(i)
j

)

or L̃
(

b
(i)
j

)

are produced. Even though

L
(

b
(i)
j

)

and L̃
(

b
(i)
j

)

are not equal to the log APP ratio L
(

b
(i)
j

)

produced by the log-

MAP algorithm, with an AWGN channel each results in the same rank ordering of the bit

reliabilities. The approximations do not necessarily result in the same rank ordering of code-

symbol reliability as log-MAP detection, however. If different channel symbols are subjected

to differing noise variance (as in the channels with partial-band Gaussian interference), even

the rank ordering of code-bit reliabilities may differ among the log-MAP algorithm and the

two forms of the max-log-MAP algorithm.

3.4 Comparison of systems with various SISO algorithms

In this section, the performance of systems A, B and C is compared with the perfor-

mance of reference systems EO and PB and among systems A, B and C. Systems A and C

use noise-variance estimation which is assumed to provide perfect estimates for each dwell
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interval. The maximum number of erasures used for SE decoding in systems A, B and C is

10.

For a given SNR and value of ρ, the system with the smaller SIR required to achieve

a specified packet error probability is the better performing of two systems. The robustness

of a system to interference in an unknown fraction of the band is characterized by SIRmax

(corresponding to ENR∗ in [1]), which is the largest value of the required SIR for the system

over all values of ρ (for the given SNR). A smaller value of SIRmax represents greater system

robustness, and it represents better system performance in the presence of a hostile interferer

that is able to adapt the fraction of the band it jams to maximize its harm to the system.

Many unintentional sources of interference (and some intentional jammers) are likely

to have a much narrower bandwidth than the SFH system. Consequently, another parameter

of interest is ρ∗ [1], which measures the system’s ability to perform well in the presence of

very strong narrow-band interference. It is the largest fraction of the band jammed below

which the system achieves the target packet error probability irrespective of the value of

interference power. (That is, even if the interference power is infinite, acceptable system

performance is achieved as long as the fraction of the band jammed is less than ρ∗.) Hence,

a larger value of ρ∗ represents a greater ability of the system to mitigate the effect of strong,

narrowband interference.

The SIR required to achieve a packet error probability of 10−2 is shown as a function

of ρ in Fig. 3.1 for system A and the two reference systems. System EO does not employ

differential encoding and uses one-shot errors-only decoding; it results in ρ∗ = 0.15 and

SIRmax = 8.83 dB. System PB includes per-dwell differential encoding, parity bits for use

with erasure insertion and packet-level iterative decoding. System PB results in ρ∗ = 0.19

and SIRmax = 7.53 dB. The use of log-MAP detection in each dwell interval and SE decoding

results in much better performance for system A, with ρ∗ = 0.28 and SIRmax = 6.12 dB.

Fig. 3.2 compares the performance of systems A, B and C using the same perfor-

mance criterion as in Fig. 3.1. System B employs the correlator form of the max-log-MAP

algorithm without channel estimation, and it has a performance very similar to that of
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system A for values of ρ greater than 0.33. Thus, SIRmax = 6.12 dB for system B as well

as for system A. The disadvantage of not using channel estimation is demonstrated by the

performance degradation of system B relative to system A for smaller values of ρ, however.

Since the correlator form of the max-log-MAP algorithm used in system B does not scale the

reliability based on the channel estimate for the dwell interval, there may be a substantial

mismatch between the calculated code-symbol reliabilities and the ranking of the detected

code symbols for a received word according to their probability of correct detection. Errors

in the ranking are most common if there is a large difference in the noise variance among

the dwell intervals, which is exactly the condition that determines ρ∗. System B thus results

in ρ∗ = 0.16; it can tolerate severe interference in only six-tenths as large a fraction of its

system bandwidth as can be tolerated by system A.

Errors in ranking the detected code symbols by their reliability is largely eliminated

by scaling the outputs of the max-log-MAP algorithm for each dwell interval by the inverse

noise variance for the dwell interval, as done in system C. Hence, the performance of system

C is almost identical to the performance of system A. The effect of using the max-log-

MAP approximation in place of the log-MAP algorithm is not significant, if perfect channel

estimates are used with both, as seen in Fig. 3.2.

The SIR required to achieve the more stringent packet error probability of 10−3

is shown in Fig. 3.3 for systems A, B and C. As the target probability of packet error

is decreased, ρ∗ decreases for all the three systems, as seen by comparing Fig 3.2 with

Fig. 3.3. Systems A and C both result in ρ∗ = 0.22 whereas ρ∗ = 0.12 for system B. For

large values of ρ, use of the max-log-MAP approximation in systems B and C results in

a small degradation in performance compared with system A; the degradation is greatest

when ρ = 1. The performance of system A is about 0.36 dB better than that of system C

and 0.22 dB better than that of system B for full-band noise. For system A, SIRmax = 6.85

dB, which is 0.08 dB and 0.04 dB lower than SIRmax for systems C and B, respectively.

The detection complexity (as measured by EE decoding attempts) is shown as a

function of ρ in Fig. 3.4 for systems A and PB under the condition that the SIR for each
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values of ρ is equal to the SIR that results in a probability of packet error of 10−2. Since the

detection complexity is equal to one for system EO, it is not shown in the figure. If ρ is small,

there is a greater disparity in the signal quality in different dwell intervals; consequently,

erasure insertion is more effective and most received words are decoded in one of the first

few EE decoding attempts of SE decoding in the first iteration of the packet-level iterative

decoder. This is illustrated by the performance of System A. It has a detection complexity

which increases with ρ — from an average of 1.14 EE decoding attempts per code word if

ρ = 0.3 to an average of 5.41 EE decoding attempts per code word if ρ = 1. Since system

PB does not use SE decoding in each iteration, the average EE decoding attempts per code

word is small — between 1.01 to 1.15 over all values of ρ.

The average number of EE decoding attempts per code word for systems A, B and

C is shown in Fig. 3.5 with a target probability of packet error of 10−2. For system B, the

average number of EE decoding attempts per code word decreases as ρ increases from 0.12

to 0.3; the average then increases with further increases in ρ. The detection complexity

of system B and system C are very similar to the detection complexity of system A for

ρ ≥ 0.3. The average number of SE decoding attempts per code word for systems A, B and

C is also shown in Fig. 3.5. The average number of SE decoding attempts increases steadily

with increasing ρ for all three systems. However, the percentage increase is less than for the

average number of EE decoding attempts. This indicates that more EE decoding attempts

are required per SE decoding, on average, if ρ is large.

The average number of EE and SE decoding attempts per code word is shown in

Fig. 3.6 for systems A, B and C and a target packet error probability of 10−3. At the higher

SIR required to achieve a lower probability of packet error, more code words are decoded

in the first few iterations, decreasing the average number of EE and SE decoding attempts

for all the systems. The dependence of detection complexity on ρ is the same for systems

A and C for 0.3 ≤ ρ ≤ 0.8. For larger values of ρ, there is little change in the detection

complexity of system A as ρ varies, but the detection complexity of system C decreases

slightly with an increase in ρ. On the other hand, the detection complexity of system B is
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slightly less than that of system A for ρ < 0.8, but they are equal for ρ > 0.8. The average

number of SE decoding attempts per code word demonstrates similar behavior among the

three systems.
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Figure 3.1: Performance of three SFH systems, Pe = 10−2.
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Figure 3.2: Performance of systems with reference SISO algorithms, Pe = 10−2.
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Figure 3.3: Performance of systems with reference SISO algorithms, Pe = 10−3.

29



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fractional interference bandwidth, ρ

A
v

e
ra

g
e

 d
e

c
o

d
in

g
 a

tt
e

m
p

ts
 p

e
r 

c
o

d
e

 w
o

rd

 

 

System PB − EE decoding attempts

System A − EE decoding attempts

Figure 3.4: Detection complexity of two SFH systems, Pe = 10−2.
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Figure 3.5: Detection complexity of systems with reference SISO algorithms, Pe = 10−2.
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Chapter 4

Performance Using Different

Channel Estimators

The log-MAP algorithm and the form of the max-log-MAP algorithm that uses the

noise variance both require channel estimation. The estimators discussed in this chapter

estimate the per-dwell variance of the noise in the normalized received channel outputs.

Two types of estimator are considered in this chapter: one is based on the method of

moments, and the other is an approximate maximum-likelihood (ML) estimator.

4.1 Channel estimation using the method of moments

The estimator considered in this section is a previously reported estimator [17]. It

does not require the transmission of training bits; instead, it uses the demodulator outputs

for the data portion of the packet to estimate the noise variance in each dwell interval. The

noise variance for each dwell interval is estimated from the demodulator outputs once for

each packet, and it is used in all the iterations of packet-level detection.

If σ2
i is the noise variance of the ith dwell interval, each demodulator output, r

(i)
j , in

the dwell interval is a conditionally Gaussian random variable with variance σ2
i and mean

33



±
√
Es given the polarity of the corresponding channel symbol. Consequently,
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The estimate is determined from an approximation to the left side of equation (4.1)

using empirical moments. Specifically, σ̂2
i is the solution to the equation

1
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[
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Es

2σ̂2
i

)]

}2 (4.2)

in the unknown σ̂2
i . There is a one-to-one relationship between the left side of equation

(4.2) and the channel estimate σ̂2
i . There is no simple, closed-form explicit solution for

σ̂i
2. Instead, in its implementation a lookup table is constructed and σ̂2

i is computed by

extrapolating between entries in the table.

A value exceeding π/2 for the ratio in the left side of equation (4.2) results in a

negative value of σ̂2
i . The ratio is thus restricted to a maximum value somewhat less than

π/2, which results in a maximum possible value for σ̂2
i , denoted σ̂2

max.

4.2 Approximate maximum-likelihood channel estimation

The ML estimator discussed in this section chooses as the estimated noise variance,

σ̂2
i , for the ith dwell interval the value that maximizes the joint density function of the

demodulator outputs in the dwell interval if the additive, zero-mean, interference-plus-noise

34



random process is additive, white and Gaussian with a variance that is unknown a priori.

The estimator uses decision feedback; specifically, it makes use of successfully decoded

received words after each packet-level iteration to update the joint density function of the

demodulator outputs and obtain a modified channel estimate in each dwell interval for use

in the next packet-level iteration.

The ML channel estimator for the ith dwell interval results in the noise-variance

estimate given by the solution for σ2
i in equation (A.8) if the left side of the equation is set

equal to zero. An approximation to σ̂2
i under the assumption that σ2

i is small is given by

σ̂2
i ≈ 1

mNs

[

(

r
(i)
0 − (−1)b

(i)
0

)2

+
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as developed in the appendix where ν, (j0, . . . , jν−1), (p0, . . . , pν−1) and (x1, . . . , xν−1) are

defined in the appendix. An approximation to σ̂2
i under the assumption that σ2

i is large is

given by

σ̂2
i ≈ 1

mNs

[

(
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which is also developed in the appendix.

Figures 4.1, 4.2 and 4.3 compare the normalized expected value of the channel esti-

mate in decibels
(

10 log
[

E(σ̂2
i )/σ

2
i

])

for the actual ML estimate σ̂i
2 and the approximations

made to σ̂2
i in equations (4.3) and (4.4) when the number of code words detected in previ-

ous iterations is zero, four and eight, respectively. Without loss of generality for our model,

the channel affecting the dwell interval is assumed to contain thermal noise only. The
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normalized expected value of the large-variance approximation approaches the normalized

expected value of the ML estimate as the SNR approaches −∞ dB, and the normalized

expected value of the small-variance approximation approaches the normalized expected

value of the ML estimate as SNR approaches +∞ dB. (Note that the ML estimator is not

an unbiased estimator.)

The normalized expected value of the ML estimate and the normalized expected

value of the small-variance approximation are both small compared to the normalized ex-

pected value of the large-variance approximation in all examples. Furthermore, the variance

of the ML estimate and the variance of its small-variance approximation are very similar

throughout the observed region; they are also smaller than the variance of the large-variance

approximation. In spite of this, the system using the large-variance approximation as its

channel estimator (system E) results in system performance very close to the performance

of the reference system (system C), as described in Section 4.3. The large-variance approx-

imation, σ̂2
i in equation (4.4), is used as the estimator in system E in the remainder of the

thesis.

4.3 Comparison of systems with practical channel estimators

In this section, the performance of systems D, E and F (each using practical channel

estimators) is compared with the performance of system C (with perfect channel estimation).

In both examples, the parameter σ2
max in system D is set to 133 which corresponds to an

SINR of −20 dB. The performance is illustrated for two values of the target probability of

packet error: 10−2 and 10−3. The maximum number of erasures allowed in SE decoding is

10.

Figure 4.4 illustrates the SIR required to achieve a packet error probability of 10−2

as a function of ρ for systems C, D, E and F. The estimators of systems D, E and F are

able to discriminate effectively between dwell intervals subject to severe interference and

dwell intervals that are free of interference; consequently, ρ∗ is essentially the same for the
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three systems as for system C (that is, ρ∗ = 0.28). The penalty in performance due to

imperfect channel estimation is negligible in systems D, E and F compared with system C

for all values of ρ. For example, the value of SIRmax is 6.26 dB for systems D and F and

6.25 dB for system E, whereas SIRmax = 6.22 dB for system C.

The relative performance of the four systems is also nearly identical if a more strin-

gent performance requirement is considered. The SIR required to achieve a probability of

packet error of 10−3 is shown in Fig. 4.5 for each system . Each system achieves comparable

robustness in the presence of severe partial-band interference, with ρ∗ = 0.23 for all four

systems. Similarly, there is only a minimal difference in the worst-case performance among

the four systems. The perfect channel estimates of system C result in SIRmax = 6.93 dB.

System E results in the same value of SIRmax, whereas SIRmax = 6.94 dB for system D and

SIRmax = 6.98 dB for system F.

The detection complexity of the four systems is also very similar. It is shown in

Fig. 4.6 for systems C, D, E and F with a SIR for each value of ρ that is equal to the SIR

required for the corresponding system to achieve a probability of packet error of 10−2. The

average number of EE decoding attempts and the average number of SE decoding attempts

per transmitted code word for systems D, E and F exhibit similar dependence on ρ as

for system C. Moreover, the difference in the detection complexity of the four systems is

negligible.

The detection complexity of the four systems is shown in Fig. 4.7 for a target

probability of packet error of 10−3. Again, the detection complexity of all four systems is

similar using either of the two measures of complexity. The detection complexity of any

two of the systems differs by less than 5% for each value of ρ.
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Figure 4.1: Normalized expected value of different channel estimates, zero code words
previously detected.
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Figure 4.2: Normalized expected value of different channel estimates, four code words pre-
viously detected.
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Figure 4.3: Normalized expected value of different channel estimates, eight code words
previously detected.
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Figure 4.4: Performance of systems with different channel estimators, Pe = 10−2.
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Figure 4.5: Performance of systems with different channel estimators, Pe = 10−3.
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Figure 4.7: Detection complexity of systems with different channel estimators, Pe = 10−3.
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Chapter 5

Performance Using Different

Erasure Constraints for SE

Decoding

The form of SE decoding considered in the thesis first employs bounded-distance EE

decoding of the received word using a maximum allowable number of code-symbol erasures,

emax, where emax ≤ n−k. The number of erasures is reduced by two in each subsequent EE

decoding attempt, until either a decoding attempt results in a valid detected code word or

the attempt with zero erasures (bounded-distance errors-only decoding) results in a decoder

failure. SE decoding is most effective in circumstances in which the channel between the

encoder and the input to the decoder produces code-symbol decisions of widely differing

probabilities of correctness and those differences can be identified at the receiver prior to

decoding.

Increasing the value of emax in SE decoding increases the probability of successful

decoding for a given channel between the encoder and the input to the decoder, but in

some channels it also increases the probability that an incorrect code word will satisfy the

decoder’s distance bound, with a corresponding increase in the probability of undetected

45



code-word error at the output of the decoder. (For example, an increase in the value of emax

results in an increase in the probability of undetected code-word error in a single instance of

SE decoding if there is an i.i.d. channel between the encoder and the input to the decoder

[16].) In the context of the iterative packet-level detection considered in the thesis, the

impact of the two counteracting effects on the probability of packet error is not apparent a

priori.

Similarly, their impact on the average detection complexity is uncertain a priori.

Since a change in emax alters the occurrences of both correct and incorrect detected code

words up to any given packet-level iteration in a manner that is difficult to predict, and

those occurrences affect the subsequent decoding of the received words that have not yet

been successfully decoded, it is not immediately apparent what effect the change will have

on the success or failure of SE decoding in each remaining iteration for any of the received

words. Furthermore, an increase in emax can potentially increase or decrease the average

number of EE decoding attempts in the SE decoding attempts that are successful. This

chapter is focused on examining the effect of emax on both the system’s probability of error

and its detection complexity.

5.1 Effect of emax on the probability of packet error

The effect of emax on the probability of packet error is illustrated in Fig. 5.1 which

shows the SIR required to achieve a probability of packet error of 10−2 for system D. (Recall

that system D uses the max-log-MAP SISO detector with one-shot channel estimation.) The

performance is shown for even values of emax between 8 and 14.

The performance of the system in full-band noise (ρ = 1) improves as emax is

decreased. If emax = 14, a SIR of 7.22 dB is required to achieve the desired probability of

packet error. A reduction of emax to 12 reduces the occurrences of undetected code-word

errors significantly in the presence of full-band noise so that the required SIR is reduced by

0.58 dB to 6.64 dB. The required SIR decreases to 5.82 dB if emax is decreased to 10, and
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emax = 8 results in a required SIR of 5.8 dB in full-band noise.

The worst-case performance of the system occurs with a fairly wide interference

bandwidth for each choice of emax; thus, the dependence of the worst-case performance on

emax is similar to its dependence with full-band noise. If emax = 14, the performance of the

system is characterized by SIRmax = 7.45 dB. A reduction of emax to 12 reduces SIRmax by

0.73 dB to 6.72 dB. If emax is equal to 8 or 10, SIRmax = 6.25 dB.

The frequently occurring low reliability of a code-symbol decision in dwell intervals

with severe interference is readily identified by the SISO detector. The ability of the receiver

to compensate for severe interference by erasing the corresponding symbols is limited by

the choice of emax, however, thus limiting the fraction of the frequency band in which the

system can tolerate very strong interference. Consequently, a smaller value of emax results

in a smaller value of ρ∗. In Fig. 5.1, it is seen that a reduction in emax from 14 to 12 results

in a reduction in ρ∗ from 0.34 to 0.32. Further reductions in emax to 10 and 8 result in

values of ρ∗ of 0.29 and 0.26, respectively. System D can tolerate severe interference in

a 31% wider bandwidth if the SE decoder uses emax = 14 than if it uses emax = 8. By

comparing the results of Fig. 5.1 with those of Fig. 3.1, it is also seen that system D with

emax = 14 tolerates severe interference in a 126% wider bandwidth than system EO and a

79% wider bandwidth than system PB.

The choice of emax results in a clear tradeoff between the system’s robustness against

severe interference occupying a moderate fraction of the frequency band and its performance

in the presence of wide-band interference (including a hostile interferer that selects its

bandwidth to maximize the harm it causes). The highest limit on the number of erasures,

emax = 14, results in the best performance in interference that occupies up to 42% of the

frequency band, yet it results in the poorest performance among the four choices for emax

if the interference occupies more than 47% of the frequency band. Conversely, the system

with emax = 10 is less effective against severe partial-band interference, but it achieves the

best performance among all four choices for emax if the interference occupies more than

51% of the frequency band and it matches the system with emax = 8 in achieving the lowest
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value of SIRmax.

5.2 Effect of emax on the detection complexity

The detection complexity of system D is shown in Figs. 5.2 and 5.3 as a function of

ρ for each of the same four values of emax considered in Section 5.1. The average number

of SE decoding attempts per transmitted code word is shown in Fig. 5.2, and the average

number of EE decoding attempts per transmitted code word is shown in Fig. 5.3. For each

choice of emax and a given value of ρ, the detection complexity of the system is shown for the

SIR required to achieve a probability of packet error of 10−2 in a partial-band interference

channel characterized by that value of ρ.

The average number of SE or EE decoding attempts is greater if a small value of

emax is used than if a large value is used when the system operates in a channel with wide-

band interference. If the channel exhibits full-band noise only, for example, the average

number of SE decoding attempts decreases as emax is increased from 8 to 10, decreases

markedly if emax is increased from 10 to 12, and decreases further if emax is increased from

12 to 14. Increasing emax from 8 to 10 results in a reduction in the average number of

SE decoding attempts per transmitted code word from 1.7 to 1.6. The increase in emax

increases the average number of EE decoding attempts per SE decoding from 2.84 to 3.25.

however, so that the average number of EE decoding attempts per transmitted code word

increases from 4.85 to 5.3. Further increases in emax to 12 and 14 result in a decrease in the

average number of SE decoding attempts to 1.14 and 1.03, respectively, and a decrease in the

average number of EE decoding attempts to 2.4 and 1.7, respectively. The average number

of SE decoding attempts with emax = 12 and emax = 14 are thus 29% less and 36% less,

respectively, than with emax = 8 in full-band noise. The average number of EE decoding

attempts with emax = 12 and emax = 14 are 51% less and 65% less, respectively, than with

emax = 8 in full-band noise. The SIR required to achieve the target error probability is

higher if emax = 12 and emax = 14 than if emax = 8 and emax = 10; hence, a typical SE
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decoding attempt requires fewer EE decoding attempts with the larger values of emax than

with the smaller values of emax at their respective values of the required SIR.

The average number of SE decoding attempts decreases with each increase in emax

for each value of ρ and those values of emax for which the corresponding value of ρ∗ is less

than ρ. The same dependence of the average number of EE decoding attempts on emax

exhibited in full-band noise occurs in partial-band interference with ρ ≥ 0.4. For lower

values of ρ, the average number of EE decoding attempts is slightly greater if emax = 8

than if emax = 10. Both measures of complexity increase with increasing ρ if either of

the two smaller values of emax is used, whereas both measures exhibit a maximum at an

intermediate value of ρ if emax = 12. The average number of SE decoding attempts is only

slightly greater than one for all values of ρ if emax = 14, and the average number of EE

decoding attempts never exceeds 1.7 in that instance. The detection complexity of system

D with emax = 14 is still greater than the detection complexity of system PB for each value

of ρ, however, as seen by comparing Fig. 5.3 with Fig. 3.4.

The discussion of the performance tradeoff in Section 5.1 can be expanded to account

for the computational cost of the system’s performance. A moderate value of the erasure

constraint (emax = 10 in this example) provides good performance in full-band noise at

the cost of high detection complexity and modest protection against severe partial-band

interference. Larger values of the erasure constraint result in a lower detection complexity

for all of the partial-band interference channels considered and improved protection against

severe partial-band interference at the cost of poorer worst-case performance (and poorer

performance in full-band noise) than with the smaller value of emax.
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Figure 5.1: Required SINR of system D for several values of emax.
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Figure 5.2: SE decoding complexity of system D for several values of emax.
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Figure 5.3: EE decoding complexity of system D for several values of emax.
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Chapter 6

Conclusion

In this thesis we have considered a SFH packet radio system in which multiple

R-S code words are interleaved across the dwell intervals of a packet transmission and the

contents of each dwell interval are differentially encoded prior to transmission. Each dwell

interval is transmitted in a randomly selected frequency slot within the system’s frequency

band. The received signal is subjected to both full-band white Gaussian noise and partial-

band white Gaussian noise that is present in a fraction of the available frequency slots.

The use of SISO detection of the code bits within each dwell interval is exploited for

SE decoding of each received word during each iteration of packet-level iterative detection.

The performance of packet-level iterative detection using SISO per-dwell code-bit detection

and SE decoding results in performance that is substantially better than the performance of

either of two reference SFH systems: a system that uses a non-iterative receiver with one-

shot EO decoding of each received word, and a system that uses a parity bit per code symbol

and an iterative receiver with one EE decoding attempt per iteration for each received word.

The performance is improved by a minimum of 2 dB and 1 dB over all the partial-band

interference channels in comparison with the latter two systems, respectively, and severe

interference is tolerated in a much larger fraction of the frequency band. The improvement

in performance is achieved at the cost of up to a five-fold increase in the computation

required at the receiver, however, which is most pronounced in the presence of wide-band
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interference.

Three SISO detection algorithms are considered in the thesis: log-MAP detection

(which requires an estimate of the noise variance of the samples in each dwell interval) and

two forms of max-log-MAP detection, including one that requires an estimator and another

that does not. The two SISO algorithms with noise-variance estimation result in essentially

the same performance if perfect estimation occurs in each. Both exhibit greater robustness

to severe partial-band interference than the system using max-log-MAP detection without

estimation. The three choices of the SISO algorithm result in similar detection complexity

at the receiver.

Two practical forms of noise-variance estimation in each dwell interval are considered

in the thesis. A one-shot estimator uses the method of moments applied to the soft channel

outputs in the dwell interval to produce a single estimate that is used throughput the

detection of the packet. In contrast, an iterative decision-feedback ML estimator updates

its estimate after each packet-level iteration based on the previous results of SE decoding.

Two computationally efficient approximations to the ML estimator are also considered:

a small-variance approximation, and a large-variance approximation. The fidelity of the

ML estimator and its small-variance approximation are both very good, and both achieve

better fidelity than the large-variance approximation. Yet the system using the large-

variance approximation (as well as the one using the method-of-moments estimator) achieves

performance and detection complexity almost identical to that of the system with access to

perfect noise-variance estimates.

An erasure constraint in SE decoding (the maximum number of allowable code-

symbol erasures in a received word) is also considered in the thesis, and its effect on the

system performance is evaluated. An intermediate value of the constraint results in the best

system performance in full-band noise. The performance is approximately 2 dB better than

the performance if a large number of erasures is allowed or if no erasures are allowed (EO

decoding). The worst-case performance over all partial-band channels is also optimized by

the same choice of the erasure constraint. The tolerance of the system to severe partial-
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band interference improves as the erasure constraint is increased, however, so the choice of

the constraint provides a tradeoff between good performance in the presence of moderate-

strength wide-band interference and good performance in the presence of severe interference

of narrow bandwidth. The superior system performance in wide-band interference that is

achieved at the cost of as much as a three-fold increase in detection complexity, however.
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Maximum-Likelihood Channel Estimator

In this appendix, we derive the ML estimator of the noise variance in the demod-

ulator outputs within a single dwell interval of the SFH system. Two approximations to

the ML estimator are developed, first in a form that provides some insight and analyti-

cal tractability and then in a form that is computationally feasible. The development is

based on the assumption of independent, equally likely information bits at the source, so

that the code bits within any single row of the interleaver (represented by the signal in

the corresponding dwell interval) are independent and equally likely random variables. The

circumstance is considered in which an arbitrary subset of the code bits are known a priori

as a result of feedback of correctly detected code words from earlier iterations of packet-

level detection. It is assumed that conditioning on the known code bits does not alter the

joint distribution of the remaining unknown code bits. Only the contents of a single dwell

interval are considered; thus, the notation introduced in Chapter 2 is simplified by omitting

the notation that designates the dwell interval.

Derivation of the Estimator and Its Approximations

Suppose the interleaved code bits which correspond to received words decoded in a

previous packet-level iteration have indices in B1,0 ∪B1,1 ∪ . . . ∪B1,ν−1 where

B1,l = {jl, . . . , jl + pl − 1} for 0 ≤ l ≤ ν − 1. (1)

Similarly, suppose the interleaved code bits which correspond to received words not decoded

in any previous packet-level iteration have indices in B0,0 ∪B0,1 ∪ . . . ∪B0,ν−1 where

B0,l = {jl + pl, . . . , j(l+1) − 1} for 0 ≤ l ≤ ν − 1.
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The ordered sequence of interleaved code bits at the transmitter for the dwell interval can

thus be expressed as

{

bj0 , . . . , bj0+p0−1, bj0+p0 , . . . , bj1−1, . . . bj(ν−1)
, . . . , bj(ν−1)+p(ν−1)−1, bj(ν−1)+p(ν−1)

, . . . , bjν−1

}

.

Without loss of generality, j0 = 0, p0 ≥ 0, jl+1 > jl + pl for 0 ≤ l ≤ ν − 2, pl > 0 for

1 ≥ l ≥ ν − 2, either pν−1 > 0 or jν−1 + pν−1 = jν , and jν = mNs.

Let

b̃ =
(

bj0+p0 , . . . , bj1−1, bj1+p1 , . . . , bj2−1, . . . , bjν−1+pν−1 , . . . , bjν−1

)

be the ordered sequence of the q unknown code bits, where

q =
ν−1
∑

l=0

(jl+1 − jl − pl).

Then the conditional joint distribution of the demodulator outputs in the dwell interval,

given the known code bits can be expressed as

f(r) =
1

2q

[

f(r|b̃ = (0, 0, . . . , 0)) + f(r|b̃ = (0, 0, . . . , 1)) + . . .+ f(r|b̃ = (1, 1, . . . , 1))
]

=
1

2q
[f0(r) + f1(r) + . . .+ f2q−1(r)] . (2)

Suppose {dj,0, . . . , dj,mNs−1} is the sequence of differential encoder outputs in the dwell

interval under the jth condition in equation (2), 0 ≤ j ≤ 2q − 1. Then

fj(r) =
1

(2πσ2)
mNs

2

e
−Aj

2σ2

where

Aj =

mNs−1
∑

k=0

(

rk − (−1)dj,k
)2

.

The joint conditional density function of the demodulator outputs given the known code
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bits can thus be written as

f(r) =
1

2q
1

(2πσ2)
mNs

2

[

e
−A0
2σ2 + e

−A1
2σ2 + . . .+ e

−A2q−1
2σ2

]

.

The ML estimate, σ̂2
ML, is the value of σ

2 that maximizes f(r) for the given demod-

ulator outputs. The derivative of f(r) with respect to σ2 is given by

d (f(r))

dσ2
=

1

2q
1

(2πσ2)
mNs

2

[

A0

2σ4
e

−A0
2σ2 +

A1

2σ4
e

−A1
2σ2 + . . .+

A2q−1

2σ4
e

−A2q−1
2σ2

]

+
1

2q(2π)
mNs

2

(

− mNs

2σ(mNs+2)

)[

e
−A0
2σ2 + e

−A1
2σ2 + . . .+ e

−A2q−1
2σ2

]

=
1

2q(2π)
mNs

2

[

1

2σmNs+4

(

A0e
−A0
2σ2 +A1e

−A1
2σ2 + . . .+A2q−1e

−A2q−1

2σ2

)

+

(

− mNs

2σ(mNs+2)

)(

e
−A0
2σ2 + e

−A1
2σ2 + . . .+ e

−A2q−1
2σ2

)]

.

Equating d(f(r))
dσ2 to 0, we get

σ̂2
ML =

1

mNs





A0e
−A0
2σ2 +A1e

−A1
2σ2 + . . .+A2q−1e

−A2q−1

2σ2

e
−A0
2σ2 + e

−A1
2σ2 + . . .+ e

−A2q−1
2σ2



 . (3)

A closed-form expression for σ̂2
ML cannot be obtained from equation (3). Approxi-

mations for small values of σ2 and for large values of σ2 do lead to a closed-form expressions,

however. From equation (3), for small values of σ2,

σ̂2
ML ≈ σ̂2

small =
1

mNs
min(A0, A1, . . . , A2q−1)., (4)

and for large values of σ2,

σ̂2
ML ≈ σ̂2

large =
1

mNS

A0 +A1 + . . .+A2q−1

2q
. (5)
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Computationally efficient approximations

The approximation of σ̂2
ML using either equation (4) or equation (5) involves calcula-

tion of a number of terms that increases exponentially in the number of unknown code bits

(q). Hence, although the expressions in equations (4) and equations (5) are conceptually

simple, they are not calculated efficiently in the forms written above. Therefore, we obtain

a different (equivalent) expression for σ2
ML which leads to computationally efficient forms

for the same small-variance and large-variance approximations.

Assuming all detected code words are correct, the joint density function of the

demodulator outputs is given as
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f(r) =
1√
2πσ2

e−

(

rj0
−(−1)

bj0

)2

2σ2

j0+p0−1
∏

k=j0+1







1√
2πσ2

e−

(

rk−(−1)
bj0

⊕...⊕bk

)2

2σ2







×





ν−1
∏

l=0

j(l+1)−2
∏

(k=jl+pl)

(

1

2
√
2πσ2

e−
(rk−1)2

2σ2 +
1

2
√
2πσ2

e−
(rk+1)2

2σ2

)





×
(

1

2
√
2πσ2

e−
(rjν−1−1)2

2σ2 +
1

2
√
2πσ2

e−
(rjν−1+1)2

2σ2

)

×
ν−1
∏

l=1







1

2× 2πσ2
e−

(rjl−1−1)
2

2σ2 e−

(

rjl
−(−1)

bjl

)2

2σ2

(jl+pl−1)
∏

q=jl+1

1

2
√
2πσ2

e−

(

rq−(−1)
bjl

⊕...⊕bq
)2

σ2

+
1

2× 2πσ2
e−

(rjl−1+1)
2

2σ2 e−

(

rjl
+(−1)

bjl

)2

2σ2

(jl+pl−1)
∏

q=jl+1

1

2
√
2πσ2

e−

(

rq+(−1)
bjl

⊕...⊕bq
)2

σ2







=
1√
2πσ2

e−

(

rj0
−(−1)

bj0

)2

2σ2

j0+p0−1
∏

k=j0+1







1√
2πσ2

e−

(

rk−(−1)
bj0

⊕...⊕bk

)2

2σ2







×
jν−1
∏

(k=j0+p0)

(

1

2
√
2πσ2

e−
((rk)2+1)

2σ2

)





ν−1
∏

l=0

j(l+1)−2
∏

(k=jl+pl)

(

e
rk

σ2 + e−
rk

σ2

)





×
ν−1
∏

l=1



e
rjl−1+rjl

(−1)
bjl +

∑(jl+pl−1)
q=jl+1

rq(−1)
bjl

⊕...⊕bq

σ2

+ e−
rjl−1+rjl

(−1)
bjl +

∑(jl+pl−1)
l=jl+1

rq(−1)
bjl

⊕...⊕bq

σ2



×
(

e
rjν−1

σ2 + e−
rjν−1

σ2

)

(6)

Let

xl = rjl−1 + rjl(−1)bjl +

(jl+pl−1)
∑

l=jl+1

rq(−1)bjl⊕...⊕bq .
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Then taking the natural log on both sides of equation (6),

ln(f(d)) = ln(c)− mNs

2
ln(σ2)−

(

rj0 − (−1)bj0
)2

2σ2
−

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

2σ2

−
(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)

2σ2
+

ν−1
∑

l=0

j(l+1)−2
∑

(k=jl+pl)

ln
(

e
rk
σ2 + e−

rk
σ2

)

+
ν−1
∑

l=0

ln
(

e
xl
σ2 + e

xl
σ2

)

+ ln
(

e
rjν−1

σ2 + e−
rjν−1

σ2

)

. (7)

Taking the derivative of equation (7) with respect to σ2 results in

d(ln (f(r)))

dσ2
= −mNs

2σ2
+

(

rj0 − (−1)bj0
)2

2σ4
+

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

2σ4

+

(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)

2σ4
+

ν−1
∑

l=0

j(l+1)−2
∑

(k=jl+pl)

[

( rk
σ4

)

(

e−
rk
σ2 − e

rk
σ2

e
rk
σ2 + e−

rk
σ2

)]

+
ν−1
∑

l=0

[

( xl
σ4

)

(

e−
xl
σ2 − e

xl
σ2

e
xl
σ2 + e−

xl
σ2

)]

+
(rjν−1

σ4

)

(

e−
rjν−1

σ2 − e
rjν−1

σ2

e
rjν−1

σ2 + e−
rjν−1

σ2

)

. (8)

The value of σ2 that makes the expression in equation (8) equal to 0 is the ML

estimate of the variance, σ̂2
ML. But a closed-form solution for σ̂2

ML can not be obtained due to

the complexity of equation (8); numerical methods must be applied instead. Approximations

can be made for large and small values of σ2 to simplify equation (8) and obtain a closed-

form solution, however.

If σ2 is small, we use the approximation ±ey−e−y ≈ ±ey for y >> 0. Thus equation
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(8) can be approximated as

d(ln (f(r)))

dσ2
≈ −mNs

2σ2
+

(

rj0 − (−1)bj0
)2

2σ4
+

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

2σ4

+

(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)

2σ4
−

ν−1
∑

l=0

j(l+1)−2
∑

(k=jl+pl)

[( |rk|
σ4

)]

−
ν−1
∑

l=0

[( |xl|
σ4

)]

+

( |rjν−1|
σ4

)

.

Solving for σ2, the approximate solution of equation (8) for σ̂2
ML is given by

σ̂2
ML ≈ σ̂2

small =
1

mNs





(

rj0 − (−1)bj0
)2

+

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

+

(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)

−
ν−1
∑

l=0

j(l+1)−2
∑

(k=jl+pl)

2 |rk| −
ν−1
∑

l=1

2|xl| − 2 |rjν−1|



 . (9)

Similarly if σ2 is large, we use the approximation e−y − ey ≈ 0 for y ≈ 0. Under

this approximation, equation (8) is reduced to

d(ln (f(r)))

dσ2
≈ −mNs

2σ2
+

(

rj0 − (−1)bj0
)2

2σ4
+

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

2σ4

+

(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)

2σ4
.

Solution of the approximating equation yields

σ̂2
ML ≈ σ̂2

large =
1

mNs





(

rj0 − (−1)bj0
)2

+

j0+p0−1
∑

k=j0+1

(

rk − (−1)bj0⊕...⊕bk
)2

+

(jν−1)
∑

(k=j0+p0)

(

(rk)
2 + 1

)



 . (10)
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