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ABSTRACT 

Topology optimization techniques have been applied to structural design 

problems in order to determine the best material distribution in a given domain. The 

topology optimization problem is ill-posed because optimal designs tend to have infinite 

number of holes. In order to regularize this problem, a geometrical constraint, for 

instance the perimeter of the design (i.e., the measure of the boundary of the solid region, 

length in 2D problems or the surface area in 3D problems) is usually imposed. In this 

thesis, a novel methodology to solve the topology optimization problem with a constraint 

on the number of holes is proposed. Case studies are performed and numerical tests 

evaluated as a way to establish the efficacy and reliability of the proposed method. 

In the proposed topology optimization process, the material/void distribution 

evolves towards the optimum in an iterative process in which discretization is performed 

by finite elements and the material densities in each element are considered as the design 

variables. In this process, the material/void distribution is updated by a two-step 

procedure. In the first step, a temporary density function, ϕ
*
(x), is updated through the 

steepest descent direction. In the subsequent step, the temporary density function ϕ
*
(x) is 

used to model the next material/void distribution, χ
*
(x), by means of the level set concept. 

With this procedure, holes are easily created and quantified, material is conveniently 

added/removed.  

If the design space is reduced to the elements in the boundary, the topology 

optimization process turns into a shape optimization procedure in which the boundaries 

are allowed to move towards the optimal configuration. Thus, the methodology proposed 
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in this work controls the number of holes in the optimal design by combining both 

topology and shape optimization.  

In order to evaluate the effectiveness of the proposed method, 2-D minimum 

compliance problems with volume constraints are solved and numerical tests performed. 

In addition, the method is capable of handling very general objective functions, and the 

sensitivities with respect to the design variables can be conveniently computed. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

Since 1988, with the pioneer work by Bendsoe and Kikuchi [1], the topology 

optimization method for continuum structures has been an active research area and has 

been applied to many industrial problems. Topology optimization (TO) is a powerful 

design tool which finds the optimal material distribution (i.e., optimal structural 

configuration) in a given domain. Topology optimization of solid structures involves the 

determination of features such as the number and location and shape of holes and the 

connectivity of the domain [2]. Different approaches to solve the topology optimization 

problem have been studied and implemented along these years.  

The TO problem can be ill-posed, and lacks a solution in general because optimal 

designs tend to have an infinite number of holes. For example, if the structural goal is to 

maximize the stiffness of a structure with a given volume constraint, the introduction of 

more holes without changing the volume improves its stiffness. Also, this issue leads to 

numerical instabilities like checkerboards patterns that are undesired. Discretizing the 

domain in N finite elements, considering each element material or void, is a common 

practice in the literature of TO, and, the larger the number of elements N, the larger the 

number of holes that can appear for the optimal solutions. The TO problem is ill-posed 

basically because it lacks a finite set of feasible designs. In order to regularize this 

problem, either a geometrical constraint (e.g., perimeter) or a topological constraint (e.g., 

number of holes) must be imposed. Constraining the number of holes bounds the set of 

feasible designs. However, in the literature there are no methods that constrain the 
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number of holes explicitly.  

Overcoming the numerical instabilities and defining a well-posed problem (i.e., a 

problem for which one or more solutions exist) are the motivations to impose a constraint 

on the number of holes in the designs of the TO problem. The gap in the literature, about 

methods to constraint the number of holes explicitly, gives a great research opportunity. 

Current methods in the literature do not control the number of holes obtained in the 

optimal designs directly. The perimeter constraint method requires perimeter bound 

values [3].  Ultimately, the optimal solution with a perimeter constraint has a certain 

finite number of holes, that number is not known until the solution is obtained. On the 

other hand, other methods incorporate an energy term in the objective to control the 

“complexity” of the optimal designs and require a regularization parameter [4] [5] [6]. 

This energy term is related to the shape of the design. This parameter allows exploring 

different solutions for different number of holes, but there is no direct relationship 

between the regularization parameter and the specific number of holes obtained. This 

thesis proposes a procedure to obtain optimal configurations with a desired number of 

holes. 

It should be noted that designs with a large number of holes are difficult or almost 

impossible to manufacture. The designer should be able to specify the number or the 

maximum number of holes allowed for the solution, determining the “complexity” level 

of the design. More holes means more complexity to manufacture and usually results in 

structures with thinner beam-like elements at low weight. Most of the systems work 

better if they are kept simple rather than complex, and unnecessary complexity is usually 
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avoided in design according to the simplicity rule in design [7]. Hence designers should 

always aim at the minimum number of components with the simplest shapes [7]. These 

ideas encourage us to obtain optimal topologies with a limited number of holes, and to 

compare their performance with topologies with more holes. The number of holes is a 

feature of the material distribution which incorporates a topology constraint. However, 

the location, shape, size of the holes as well as the connectivity of the domain must be 

obtained. Besides obtaining optimal topologies with a specific number of holes, this 

thesis explores the effectiveness of the number of holes in the performance of the 

structures. 

 

1.2 Hypotheses and Research Questions 

In the current literature, different methods to do topology optimization have been 

studied as well as methods to regularize the ill-posed nature of the topology optimization 

problem. This thesis investigates a method that solves the topology optimization problem 

with a constraint on the number of holes explicitly with the following research questions:  

1.2.1 Research questions 

The main focus of the work is directed to answer one question: Is it possible to 

formulate a topology optimization problem with a constraint on the number of holes? 

To answer this question, several sub-questions can be derived.  They are: 

a. If it is possible to reformulate the topology optimization problem can a 

method be constructed to obtain the solution? 

Again, to derive the method, the question can be decomposed in two:   
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i. How can the number of holes be controlled in the optimization process? 

ii. Can a gradient descent method be used in the algorithm to update the 

designs and decrease faster the objective?  

If this first sub-question (a) is answered, a natural extension is:  

b. Does the problem have a numerically stable solution?  

and if the solution is stable,  

c. Is it possible to prove local optimality? i.e. are the positions, shapes, and 

sizes of these holes in the solution locally optimal? 

The research questions are addressed by the following hypotheses to be confirmed 

in this thesis: 

1.2.2 Primary Hypotheses 

In the topology optimization problem, constraining the number of holes bounds 

the set of feasible designs. The topology optimization problem with a constraint on the 

number of holes is well-posed and solutions are numerically stable. 

 In the topology optimization problem, if a constraint on the number of holes in a 

design is imposed, a method can be devised to obtain optimal designs. 

1.2.3 Secondary Hypotheses 

In order to control the number of holes, the topology optimization method should 

obtain material/void distribution at every step of the optimization process rather than 

intermediate densities. The number of holes can be counted easily if each element is 

either material or void (1/0) in a discrete domain. Gradient methods, used to solve 
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optimization problems, update the material distribution with intermediate densities. Thus, 

configurations with intermediate densities obtained by the gradient methods can be 

penalized towards material/void (1/0) configurations using the level set concept. Thus, 

holes can easily counted and controlled if the material distribution is described using 

level sets. 

The number, position, shape and size of the holes in the optimal configurations 

affect the performance of the designs. Since, the number of holes is imposed, the 

topology optimization method deals basically with the position, shape and size of the 

holes. 

 

1.3 Dissertation Outline 

The remainder of this thesis is organized as follows: 

Chapter Two provides an overview of the literature, including topology optimization 

methods and problem formulation. 

Chapter Three details the topology optimization methodology used. Providing the 

optimization setup, the procedure to obtain the sensitivities, the explanation of the 

level set penalization, and proposes the topology optimization algorithm. 

Chapter Four describes the implementation of the topology optimization algorithm. 

Also, the question of the methodology to constraint the number of holes in the 

topology optimization problem is addressed and the respective algorithm and 

results are provided. 

Chapter Five provides concluding remarks and the suggested directions of future work. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Topology Optimization 

Optimization is a powerful, design-improvement tool that systematically helps the 

designer to find the design that maximizes or minimizes some criterion or criteria while 

satisfying some constraint(s). Computer-aided optimization processes aim to reduce 

design time, improve quality, and deal with large number of repetitive operations. Two 

main components can be distinguished in the optimization process: the analysis and the 

design update. The analysis determines the response of a specified system, and the design 

update defines new designs, hopefully better than the previous ones. Analysis tools such 

as Finite Elements Analysis (FEA), Computational Fluid Dynamics (CFD) and others 

validate designs by testing if they fail or if they produce an expected performance. In the 

optimization process, alternative designs are analyzed in order to find the optimal 

solution that meets the needs [8]. 

Specifically, structural optimization can be classified into: sizing, shape, 

topometry, topography, and topology optimization (see Figure 2.1).  

 Sizing finds the best dimensions for elements like bars, beams, or mechanical 

parts. Sizing usually deals with a few number of design variables.  

 Shape optimization tools obtain the best possible shape of a structure, modifying 

its external contour.  

 Topometry optimization finds the optimal distribution of the elements’ 

dimensions in a given designable domain [9], it can be seen as an “element by 
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element” sizing optimization problem. Topometry usually deals with a large 

number of design variables.  

 Topography optimization is an advance form of shape optimization in which the 

shape is improved with the location of internal patterns, for example, the bend 

patterns in a sheet metal part [10].  

 Lastly, topology optimization obtains the best possible distribution of material in 

a design domain [2]. 

 

Figure 2.1: Structural optimization schematic classification, a) Design domain and problem b) Sizing 

optimization c) Shape optimization d) Topometry optimization e) Topography optimization f) Topology 

optimization. 

The topology of a structure, i.e., the arrangement of the material, is crucial for its 

structural performance. At the early stages of the design process, it is desired and 

(a) (b) (c) 

(d) (e) (f) 
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necessary to improve the quality of a product and reduce costs by finding the best 

possible topology of that product. 

TO started with the pioneer work of Michell [11] back in 1904. Michell 

developed a design theory for the optimal layout of thin-bar trusses that minimized their 

weight. As seen in Figure 2.2, the bars in the optimal structures are all perpendicular to 

each other and the maximum tensile or compressive stress governs the arrangement of the 

structure. Important extensions and implementations were made by Prager [12] [13], 

Rozvany and Prager [14] using the optimality criteria, i.e. conditions for the optimal 

design. 

 

Figure 2.2: Michell-cantilever. Representation of the analytical solution of the least-weight truss for a cantilever 

with point load [15]. 

TO can be divided into discrete and continuous. A discrete structure (i.e., truss) is 

a set of (designable) elements or members (i.e., bars). For discrete structures, the 

optimum topology determines the best number, position and connectivity of the structural 

members. On the other hand, a continuum structure is a continuous mass that completely 

fills the space it occupies (i.e., solid objects). For continuum structures the optimum 

topology determines the external shape as well as the internal boundaries and inner holes 

with respect to a design objective and constraints [16]. Because the focus of this work is 

the topology optimization of continuum structures, this literature review covers 

exclusively continuum structures. For more comprehensive reviews on TO of continuum 
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structures, the reader is referred to the works of Eschenauer and Olhoff [16], Hassani and 

Hinton [17], Bendsoe and Sigmund [2] and Rozvany [18].  

 

 

 

 

 

   

 

Figure 2.3: Conceptual processes of topology optimization [16]. 

TO of continuum structures can be classified into Micro and Macro approaches 

(see Figure 2.3) [16]. Microstructure approaches use a fixed finite element mesh to 

describe the geometry and the mechanical behavior. The finite elements have constitutive 

properties using a relationship between the material stiffness tensor and the material 

density based on the physical modeling of the porous microstructures. In other words, the 

properties of the micro-structured or porous material are related to the microstructure 

Topology Domain Topology Domain 

Topology Design Topology Design 

Microstructure- 

Approaches 

(Material) 

Macrostructure- 

Approaches 

(Geometry) 

 

 

Conceptual Processes  

of Topology Optimization  

of Continuous Structures 
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dimensions and shape, therefore its density. Since the material properties are related with 

the microstructure and the optimization process consists in determining the elements that 

should have material or not, this method is also called Material approach. Thus, the 

density of material in each element is used as a design variable defined between the limits 

0-void and 1-solid, however the optimization penalizes or pushes towards the limits 

{0,1}, resulting in a rough description of the boundaries in the continuous domain. Based 

on this topology, subsequent shape optimization is usually carried out in order to obtain 

more defined results. 

On the other hand, macrostructure approaches do not consider solid materials as 

porous or micro structured. Since the optimization is carried by defining the geometry of 

where the material is present, this approach is also called Geometry approach. Thus, the 

finite element mesh can either be fixed or it can change in the optimization process, 

allowing changes and creation of new boundaries. In these methods, material from the 

admissible design domain is appropriately added/removed. Usually holes and boundaries 

are subjected to shape optimization simultaneously. 

 

2.2 Microstructure approaches 

Microstructure approaches are based on material models that allow the density of 

the material within each element to have intermediate values from 0 (void) to 1 (solid). 

For example, the material properties of a plate with periodic perforated holes as a 

microstructure can be modeled as a function of the dimensions of these periodic holes. In 

order to study the effect of these microstructures in a domain, the homogenization 



 11 

method is used. Homogenization [19] [20] [21] analyzes a unit cell with given periodicity 

constraints assuming it is very small compared to the design domain. Using the 

homogenization method, the relationship between the density of material in the 

composite (i.e., sizes of holes) and the effective material properties can be obtained. 

Bendsoe and Kikuchi [1], in their pioneer work, proposed the use of these artificial 

composite materials with microscopic voids in order to obtain the optimal topology 

design using a homogenization method. The design space is fixed and divided in a finite 

element mesh with a periodic repetition of a unit cell. Each cell has its own design 

variables (i.e., size of the hole) and its material properties relationship can be known 

using homogenization. Thus, the optimization problem is changed to obtain the 

parameters that characterize the cells (i.e., sizes of holes) in the design domain (see 

Figure 2.4). Thus, the optimization problem changes to a sizing problem. The optimal 

solution has intermediate densities that require a “lumping” or “cut-off” procedure to 

decide whether these elements should be solid or void in a macroscopic structure. This 

homogenization design method (HDM) has been applied and studied for different design 

problems. Also, other techniques like smear-out [22] and quasiconvexification [23] can 

replace homogenization to obtain the effective mechanical properties of periodic 

microstructures. 
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Figure 2.4: Basic concept of HDM using a square microcell with centrally placed rectangular hole as material 

model. (Top) Before optimization – uniform homogenized material for all Fes and (Bottom) after optimization – 

each FE has different material density [24]. 

In the past decade, HDM has been used less frequently, and replaced by the Solid 

Isotropic Material with Penalization (SIMP) material model [25]. This approach uses an 

artificial or fictitious material model where the elasticity tensor is given with a power law 

of the density function given by:     0p

ijkl ijklE Ex x ,  p>1, where    x , Dx . 

 0 1 x  is a density function of the material, 0

ijklE  is the elasticity tensor of a given 

solid isotropic base material,  and D is the design space. In a discrete finite element mesh, 

the power p>1 lowers the stiffness of the element as an exponential function of its density 

ρe. In this way, this approach effectively penalizes intermediate densities, favoring the 

creation of more distinctive 0-1 designs. If the power tends to infinity, ρ
p
 tends to {0,1} 

(see Figure 2.5). Thus, SIMP is used to approximate the {0,1} problem. Solutions depend 

on the power p and the mesh. Also, checkerboard patterns appear due to the 

discretization. However, some of these drawbacks disappear with the use of perimeter or 

surface constraints, filtering sensitivities techniques, or with a local constraint on the 
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gradient of the material density. The intermediate densities can be interpreted as elements 

with microstructures but are difficult or impossible to produce. The SIMP method has 

been extended successfully to other material interpolations [26] and used for the solution 

of different design problems. 

 

Figure 2.5: The action of the power p. The value of xp tends to zero for a fixed x ∈ [0, 1) as p tends to infinity 

[27]. 

 

2.3 Macrostructure approaches 

The macrostructure techniques do topological changes by two main approaches: 

removing/adding material (degenerating and/or growing a structure) and by inserting 

holes in a structure. [16]  

The first main technique, degenerating and/or growing structures, considered that 

the solution can be obtained by adding/removing material from/to the design domain. In 

these techniques the design domain is discretized in a ground mesh, and the design 

variables are the densities of the elements, which are however forced to assume either a 0 
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or 1 value. First, Rossow and Taylor [28] proposed a variable thickness sheets model. 

Thus, in a discrete planar sheet, a very close to zero thickness in the elements implies 

voids. Similarly, Atrek [29] developed the SHAPE method using Lagrange multipliers, 

the optimality criteria, and the element volumes as design variables. In this technique, the 

optimization process forces the intermediate volumes to assume 0-1 values internally. 

Also, an optimality criterion function termed “virtual volume” measures the volume 

(objective) compared with the most critical factor (constraints). This virtual volume of 

the current configuration is compared with the one obtained in the previous step.  If there 

is no improvement in the virtual volume (should be smaller), a small increase in the 

current volume can alleviate the critical factor preventing the optimization process from 

developing towards a local minimum. Similarly, the Karlsruhe Research Center 

developed an optimization process simulating the biological growth with the Computer 

Aided Optimization (CAO) and the Soft Kill Option (SKO) methods. SKO cuts away 

under stressed sub-domains (remove inefficient material), and the CAO achieves a 

constant stress distribution. Similar to SKO, Xie and Steven [30] proposed the so-called 

method of Evolutionary Structural Optimization (ESO) combining an intuitive-heuristic 

and a gradient-based approach. ESO removes the lowest stressed elements and re-

analyzes the structure iteratively until a fully stressed design is obtained.  An extension of 

this method allows adding material where the structure is over stressed calling this 

method Bidirectional ESO or (BESO).  

For all the methods mentioned above, the capability to add/remove material 

depends on a ground mesh and on its size. In this sense, Liu, Parks and Clarkson [31] 
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developed a Metamorphic Development (MD) method that does not rely on a ground 

mesh, and allows adding/removing material through adding/removing nodes/elements 

during the optimization process. With MD, growth is guided to occur only in certain 

regions called “growth cones” of the current structure and using network topologies, as 

shown in Figure 2.6. MD can start from a very basic structure (e.g. plate) and can be used 

in large scale engineering problems which may be impracticable for ground-mesh based 

optimization methods [31] . 

 

Figure 2.6: Structural growth in growth cones by network topologies [31]. 

The second main technique is inserting holes in the structure. This technique 

introduces and positions new small holes or bubbles in the existing structure, and then 

shape optimization of the boundaries, including the new holes, is carried out with 

parameterized boundaries. For this technique, the boundaries of the structure are taken as 

design parameters.  In the so-called bubble method, developed by Eschenauer, Kobelev 

and Schumacher [32], the bubble is positioned at the point of the structure that satisfies a 

position criterion. This position criterion is derived using calculus of variations, and 

consists in evaluating a derived “characteristic function” (function of the principal 

stresses) for each point of the structure; the bubble is positioned at the point of the 

structure where the characteristic function is the minimum. Following this approach, 

Garreau et al. [33] derive the topological sensitivities for a large class of cost functions. A 
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topological sensitivity calculates the variation of the cost function with respect to the 

creation of the small bubble as a perturbation of the structural domain. These topological 

sensitivities provide the information of the location to create the bubbles improving the 

cost function. Sokolowski and Zochowski [34] gave some mathematical justifications to 

these topological sensitivities. 

 

2.4 Level set methods for topology optimization 

The Level set method is considered a non-traditional topology optimization 

method because the mesh is a fixed grid used to define a scalar function that describes the 

geometry of the structures “implicitly”. As mentioned in the previous sections, the Micro 

and Macrostructure approaches use a fixed grid with the exception of the metamorphic 

development (mesh increase/decrease) and the bubble method (mesh can change or mesh 

free methods can be used). However, in all of these Micro and Macrostructure methods, 

the geometry is represented “explicitly”. Nevertheless, level set methods for topology 

optimization can be considered as a macroscopic approach (see Figure 2.7). 

 

Figure 2.7: (Left) Topology domain. (Right) Topology design using level set function ϕ =0 in the boundary, ϕ >0 

material, ϕ <0 void. 

 The level set method was originally developed by Osher and Sethian in 1988 [35] 

for numerically tracking the propagation of fronts and free boundaries (see Figure 2.8). 
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The level set method represents the boundaries implicitly (Γ) as the zero level curve of a 

grid function so-called “level set function” (ϕ see Equation 1).  

  | 0  x x        (1)  

To describe the movement of the boundary “Γ” in the normal direction with a 

speed “v”, the level set function “ϕ” satisfies the following level set equation in time “t”: 

v
t





 


        (2) 

This partial differential equation (PDE) is also known as the Hamilton-Jacobi 

equation. The evolution or propagation of the boundaries is tracked by solving this PDE 

numerically in an Eulerian framework (i.e. fixed Cartesian grid) without parameterizing 

the curves or the object. The normal velocity can be an arbitrary function of the local 

curvature as in a variety of physical phenomena [35], and in the PDE, viscous terms can 

be incorporated to model more general time varying objects e.g., viscous fluids. These 

algorithms are versatile, can be constructed with a desired accuracy, topological merging 

and breaking occurs naturally (see Figure 2.8), and are useful in a variety of applications 

such as fluid mechanics, phase transitions, image processing, and solid modeling in CAD. 
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Figure 2.8: Boundary propagation using level set method. 

Sethian and Wiegmann [36] first proposed a structural optimization method using 

the level set approach. First, a level set function is initialized. Then, the equilibrium 

equations are solved using finite difference techniques for the current configuration. The 

velocity of the Hamilton-Jacobi equation is used as a function of the Von Mises stresses 

of the current design, such that the algorithm adds material in regions of high stress and 

removes it in regions of low stress (Similar to SKO method but using a different 

evolution technique).  Solving this PDE numerically, the level set function is updated. 

The process is repeated until convergence has been achieved.  

Several researchers extended the level set method deriving a velocity function to 

update the Hamilton-Jacobi equations using the “sensitivities” (i.e., shape derivatives). 

Osher and Santosa [37] used this optimization strategy with the shape derivatives for 

solving eigen-frequency problems for a two-density heterogeneous drum. Furthermore, 
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Wang, Wang, and Guo [38] [39] derived a velocity function using the sensitivities for 

general objectives and constraints.  In their studies, the level set function uses the same 

mesh as the finite elements used to solve the equilibrium equations. With their proposed 

method, minimum compliance problems with volume constraints were solved. Using the 

same approach, Wang and Wang [40] solved multi-material topology optimization 

problems using a multi-phase modeling referred as “color ” level set representation. This 

approach avoids the problem of overlapping different material phases. Using m 

independent level set functions, each phase is then defined as a specific combination rule 

(i.e. [all ϕi>0], or [all ϕi<0], or [ϕ1<0, ϕ2>0,  ϕ3<0,…, ϕm<0]) representing up to n=2
m

 

distinct material phases. In their work, 2D minimum compliance problems with two to 

four material phases were studied. Independently. Allaire, Jouve and Toader [41] [42] 

also derived shape derivatives and used them in combination with the level-set algorithm 

to do shape optimization of structures. The displacement field was calculated using an 

ersatz material model (i.e., fill the holes by a weak phase) and doing finite element 

analysis. 

The level set methods mentioned above were successfully applied to obtain best 

topologies. However, they have some difficulty to create new holes or they get stuck at 

shapes with fewer holes than the optimal shapes. To overcome this drawback some 

researchers incorporated topological derivatives [43] [44] and others did not use the 

Hamilton-Jacobi evolution equation [45] [4].   

In this sense, Allaire et al. [43] extended the level set method using a “topology 

gradient”, based on the bubble method (discussed in section 2.3), in order to allow the 
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creation of new holes. These techniques have been applied to two and three dimensional, 

linear and non-linear elastic problems, targeting minimum compliance, vibrations and/or 

multiple loads [46]. Also, Burger et al. [44] in an independent work derived and 

incorporated topological derivatives into the level set method. 

Belystchko, Xiao and Parimi [45] used the Heaviside function of a level set 

function (implicit function) to describe the shape (density) of a design. The level set 

function is defined in terms of nodal variables and C
0
 (i.e., continuous across boundaries) 

finite element shape functions. To solve the equilibrium equation, an extended finite 

element approach “X-FEM” [47] is used. The Heaviside function is regularized in order 

to obtain the sensitivities of the objectives and constraints numerically, and these 

gradients are used to update the implicit function. Structural examples were implemented 

for single and multi-material problems. The level set function with C
0
 shape functions 

ensures continuity across the elements, but not on the derivative, suggesting that the mesh 

must be sufficiently fine, or it will lead to high numerical errors defining the sensitivities.  

Similarly, Wang and Wang [48] used a “superimposed” finite element method 

(instead of FEA or finite difference method) to improve the results to track the 

boundaries in the level set method.  

Amstutz and Andra [49] noted that the nature of the Hamilton-Jacobi evolution 

equation allows merging and cancellation of the holes but the nucleation of new holes 

seems to be rather unlikely. The Hamilton-Jacobi equation, as it was mentioned earlier, 

models well the movement of the “boundaries” with a given normal velocity. And if the 

level set function is bounded (e.g., between -1 and +1) the gradient term tends to zero 
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0   in the object, so there is no change in time of the level set in the object (see 

equation 2). Thus, these authors use an evolutionary equation based on the topological 

gradient instead of the Hamilton-Jacobi equation obtaining satisfactory results to nucleate 

new holes in the optimization process.  

Some issues can still be noticed in these methods: the mesh dependency, the 

solution of a complicated partial differential equation, numerical accuracy requiring a re-

initialization operation of the level set function and the dependency on initial designs. To 

address some of the issues, many researchers have tried to improve or extend these 

methods. 

For example, Wang et al. [50] [51] incorporated radial basis functions (RBF) with 

multiquadric (MQ) splines into the conventional level set method to improve its 

efficiency. Also, with the transformation of the Hamilton-Jacobi equation (PDE), into an 

ordinary differential equation (ODE) the proposed method was implemented for 

minimum compliance problems to allow a smooth propagation of the front of the implicit 

function avoiding re-initialization and alleviating other issues. 

Chen et al. [52] combined parametric shape optimization with topology 

optimization using the theory of R-functions. The R-functions are also level set functions, 

and represent implicitly the geometries. In the theory of R-functions, “primitives” (i.e., 

basic geometries) can be defined with parameters (e.g., radius of a circle) and still 

represent in an implicit way the geometries. Also, the theory of R-functions allows 

operations between primitives (and/or level set functions) like union, intersection and 

subtraction. These authors represent the shapes implicitly with a level set function 
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defined with B-splines, and combined with parameterized geometries using the R-

functions to support desired parametric changes. For the solution of the equilibrium 

equations, a mesh free method developed by the authors is used. Solutions examples of 

topology optimization combined with shape parametric optimization were successfully 

obtained. 

Luo et al. [5]  and Chen et al. [6] employed a quadratic energy functional in the 

objective of the topology optimization which introduces geometric information and 

realizes shape feature control of the width of the structural components obtained. The 

optimal structure obtained is a network of interconnected beam elements where the width 

of the beams is likely the same and can be controlled. The methods have been 

implemented for minimum compliance structures and compliant mechanisms in two 

dimensions. This method imposes implicitly a constraint on the width of the structural 

components regularizing the TO problem. 

Wei and Wang [53] used a piecewise constant level set function, keeping the 

advantages of the implicit representation of the geometry and defining the density as a 

piecewise function. Also, instead of updating with the Hamilton-Jacobi equation, a 

simple gradient method is used. Optimal designs were obtained for minimum compliance 

problems without the need to solve a PDE, and without the re-initialization of the level 

set function. 

Another different technique to model the material distribution is the phase field. 

The phase field model is used to represent the surface dynamics of phase transition 

phenomena, i.e., solid-liquid transitions. This model was initially proposed by Cahn and 
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Hilliard [54], and Allen and Cahn [55] in order to represent the interfacial energy of a 

mixture of fluids. The phase field model has been extended and used in many dynamic 

simulations of multi-phase flow, crack propagation, interface tracking, etc. Bourdin and 

Chambolle were the first to apply the phase field method to structural optimization [56] 

[57]. In this method, a phase field function is allowed to take any real value in the design 

domain, and ideally should take just the different boundary phase values (e.g., 0-void 1-

solid).  Thus, the energy of the interface between the phases is measured using the so 

called Cahn and Hilliard equation. This energy is included in the topology optimization 

process in order to force the phase field function to take boundary phase values. This 

method initially was used to implement perimeter constraints, however the advantages of 

obtaining topologies with no intermediate densities attracted many researchers and have 

been studied and extended [58] [59] [60]. The phase field model itself does not 

incorporate topological changes (new holes), basically it is a surface tracking method.  

Rong and Liang [61] used a dynamic level set model to update the level set 

function instead of the Hamilton-Jacobi equation. A nonlinear velocity mapping using the 

concept of the conjugate gradient is proposed. Also, a topology mutation and crossover 

operators based on genetic algorithms approach where implemented to improve the 

numerical results. In spite of the mixture of these gradient and non-gradient techniques 

and of the complexity of the algorithm, this method shows fair results without any 

specific benefit among other implementations. 

Yamada et al. [4] proposed a topology optimization method based on the level set 

method but incorporating a fictitious energy term in the objective function. This fictitious 
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energy depends on the shape of the level set function (
2 ) and its use controls 

implicitly the geometry of the optimal structure. Additionally, instead of the Hamilton-

Jacobi equation for the update of the level set function the authors propose that the 

change of the level set function is proportional to the derivative of the objective function. 

With this method, minimum compliance problems, compliant mechanisms and vibration 

problems were solved numerically.  The weight parameter of the fictitious energy allows 

controlling implicitly the geometrical “complexity”, that is the number of holes and 

number of beam-like elements of the optimal solutions. 

These level set methods and their extensions have been applied and implemented 

by many researchers [62] [63] [64] [65] [66] [67]. However, the methods are diverse, and 

numerical tuning and details are needed to ensure their success in specific cases. There is 

a lack of what can be considered a general robust level set method approach. 

2.5 Well-posed problem formulation 

Is it well known that the discrete (0/1) topology optimization problem is ill-posed 

[16]. Some attempts to solve this problem do not converge to patterns of material and 

void, or solutions tend towards designs with an infinite number of macroscopic holes. 

Regularization corrects or approximates solutions of ill-posed problems.  Relaxation (i.e., 

extend the design space) and restriction (i.e., reduce the set of feasible designs) are ways 

to regularize the ill-posed problems, obtaining well-posed problems or numerically stable 

solutions.  

In the literature, by introducing intermediate densities (as the HDM and SIMP 

method), the problem is relaxed. In the optimization process intermediate densities are 
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penalized, and finally some difficulties are alleviated. However, mesh dependency (no 

convergence), checkerboards, and solutions with large number of holes are still obtained.  

According to Sigmund and Petersson [68], common numerical problems 

appearing in TO are checkerboards, mesh dependency and local minima. Checkerboards 

denote the problem of formation of regions of alternating solid and void elements in a 

checkerboard fashion. Mesh dependency refers to the problem of not obtaining 

qualitatively the same solution for different mesh-sizes or discretization. Local minima 

refers to the problem of obtaining different solutions to the same discretized problem 

when choosing different algorithmic parameters. 

Heuristic methods as filters of the sensitivities [69] based on image processing 

techniques have shown to stabilize convergence. The implementation is easy, the 

computation costless and can be combined with other methods as SIMP. These filters 

produce dubious optimal designs because the topology optimization problem is still ill-

posed. The solution obtained by these filters can be an optimal configuration of a well-

posed problem but the specific formulation of the problem is not known. 

On the other hand, restriction of the problem can regularize the problem and 

define a well-posed one. Either a geometrical constraint (e.g., perimeter) or a topological 

constraint (e.g., number of holes) must be imposed in the TO problem.   

If a constraint is imposed on the perimeter of the structure [3], stable results, 

defined patterns, and configurations with a finite number of holes are obtained. However, 

predicting the perimeter constraint value can be difficult especially for 3D problems. 

Since the goal is to obtain optimal topologies, designers usually do not know the 
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perimeter constraint values for the problem. Also, if the perimeter constraint is too tight, 

the optimization problem may result in no solution. 

Instead of a perimeter constraint, a point wise constraint on the gradient of the 

density of material can be imposed [70]. This local gradient constraint incorporates 2N 

(N is the number of elements) extra constraints rendering this method impractical.  

Besides these methods, a fictitious energy term in the objective function [4] in a 

topology optimization method based on the level set method allows also overcoming the 

ill-posed difficulties. This fictitious energy depends on the shape of the level set function. 

The weight parameter of the fictitious energy allows controlling the geometrical 

“complexity”, that is, the number of holes and number of beam-like elements of the 

optimal solutions. However, there is no direct relation between the weight parameter 

value and the scale of the structure (volume, weight). So, predicting the desired weight is 

difficult. 

Similarly, a quadratic energy functional in the objective of the topology 

optimization can be incorporated to realize shape feature control of the width of the 

structural components obtained [5] [6]. This method impose implicitly a constraint on the 

width of the structural components regularizing the TO problem. The optimal structure 

obtained is a network of interconnected beam elements where the width of these beams is 

likely the same and can be controlled.  
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2.6 Summary 

Table 2.1 (extracted from [68]) summarizes the problems found in topology 

optimization. Table 2.2 summarizes the different techniques of topology optimization of 

continuum structures.  

Table 2.1: Definition of problems found in discretized topology optimization. An “Ǝ” indicates existence of 

solutions has been proven. [68] 

Numerical 
experience 

Mathematical 
problem 

Physical 
explanation  

Prevention techniques 

Checkerboards No convergence 
of FE-solutions 

Erroneous FE-
modeling of 
checkerboards 

-Higher order finite elements 

-Patches 

-Filtering 

-Restriction methods below 

Mesh 
dependence 

   

(a) Necessarily 
finer and finer 
structure 

(a) Nonexistence (a) 
"convergence" 
to 
microstructure 

(a) -Relaxation (Ǝ) 

-Perimeter (Ǝ) 

-Global/local gradient constraint (Ǝ) 

-Mesh-independent filtering 

(b) Possibly 
finer and finer 
structure 

(b) No 
uniqueness 

(b) Ex.: 
uniaxial stress 

(b) Nothing (maybe manufacturing 
preferences) 

Local minima No convergence 
of algorithm 

-No convexity Continuation methods 

-Flatness 

 

 

 

 

 

 

 

 



 28 

Table 2.2: Summary of topology optimization methods of continuum structures. 
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Porous 
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SIMP 
Penalize 

gray 
elements 
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elements 

Use 
Add/remove 

mass to 
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Versatile, 
and robust 

defined, 
depend on 

p 

Other 
material 
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model 

Penalize 
gray 
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Use 
Add/remove 
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Degenerate 
add/or grow 

structure 
0/1 

Elements or 
parametric 

curves 
Some use 

Add/remove 
element 

Heuristic 
and 

gradient 

Insert new 
holes 

0/1 
Elements or 
parametric 

curves 
Use 

Move 
boundaries/ 
create holes 

Not easy to 
extend to 

other 
objectives 

Phase model 
0 / 1 

(boundary 
0-1) 

Control 
points phase 

function 
Some use 

Solve 
evolutionary 

equation 

Track 
boundaries 

not new 
holes 

Level set 
methods 

0 / 1 
(boundary 

0-1) 
implicit 

represen-
tation 

Control 
points level 
set function 

Some use 
Solve 

evolutionary 
equation 

Need 
mechanism 

to 
generate 

holes 

 

In general, according to Rozvany [18], most of the authors in numerical topology 

optimization simply compare their solutions visually with the exact optimal truss 

topology and are satisfied with a vague resemblance. This is a very subjective method for 

verifying topology optimization methods and solution. After this literature review, we 
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also agree that there is a need for reliable methods with more quantitative confirmation of 

the benefits and accuracy of the numerical results. 

Furthermore, regularization methods such as heuristic filters and the perimeter 

constraint method have successfully obtained stable numerical results. As it was 

mentioned in this literature review, these methods have some advantages and 

disadvantages. However, there is a gap in the current literature, there is no method that 

imposes a constraint explicitly on the number of holes in the TO problem. A finite and 

controlled number of holes are obtained by some TO methods implicitly. In these 

methods, parameters such as the perimeter or weights are related indirectly to the number 

of holes.  

In order to explore this research gap, in this thesis, the TO problem with an 

imposed constraint on the number of holes is attempted to be solved. The constraint on 

the number of holes closes the set of feasible designs. Thus, regularizes by restriction the 

ill-posed problem, defining a well-posed one. A methodology to solve this problem is 

proposed and quantitative confirmation of the results is presented.  
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CHAPTER THREE: METHODOLOGY 

This chapter explains the use of the level sets to represent the material distribution 

of a structure. A brief overview of structural static elastic problems is presented. Finally, 

the methodology to do topology optimization through the use of the level set concept is 

described in detail. 

 

3.1 Level set function to represent material distribution 

The level set of a real scalar function ϕ(x) is the set of points x∈R
n
, n=1, 2, 3… 

where the function ϕ(x)  takes on a constant given value C:  

     :n

CL C   x x x      (3) 

 

Figure 3.1: Representation of the level set function, the level set Lc and the super level set L+c. 

The scalar function ϕ(x) is so-called “level set function” because it takes any point 

x as an input and returns a certain “level” or “height” as an output. Thus, the level set Lc 

specifies a boundary in an implicit form as the iso-curve(s) (level curve(s), or contour 

line(s)) of the level set function when n=2 dimensions (see Figure 3.1). However, the 
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level set specifies a boundary as the iso-surface (or level surface) of the level set function 

when n=3 dimensions. For higher dimensions the level set is a level hyper-surface. 

The “super level set” is defined in the same sense to include all the points x on the 

level set function which are above a level C, including that level C: 

     :n

CL C    x x x      (4) 

This super level set 
CL  specifies a region in an implicit form as a surface in n=2 

dimensions (see Figure 3.1) or a solid in n=3 dimensions.  

The main properties of the level sets are [71]: 

 The super level set of a convex function is convex (converse is not generally true) 

 The gradient of the level set function at a point x is perpendicular to the level set 

of the function at that point.  

 A very complicated contour or level set can have a well-behaved (continuous and 

differentiable) level set function. 

 Shape and topological changes (creation of new holes, breaking and merging 

boundaries) are easily handled by changes of the level set function.  

   C x  can be interpreted as the distance of the point x from the boundary 

defined by the level set LC. If CLx , the distance is zero   0C  x . If CLx

,then   0C  x .  

Topology optimization is a “Boolean” problem that consists in determining the 

material/void distribution. If x is any point in R
2
 or R

3
 that belongs to the design domain 

D, and Γ is the boundary of the material domain Ω, the super level set Lc+ definition 
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properly fits the topology optimization problem, that is x∈Lc+ represents the region 

where the material is and x∉Lc+ represents where void is (see Figure 3.1). 

 

if

if

if

C

C

C



 

 
 

x

x x

x

       (5)  

3.2 Structural equilibrium equation for linear elastic problems 

 

Figure 3.2: Representation of a structural problem and characteristic function of the current configuration. 

 

Linear elastic problems are based on the following assumptions:  

 The deformation process is reversible (no permanent deformations occur) 

and isothermal.   

 The load process is quasi-static and the volumes in the deformed/un-

deformed bodies are equal. 

For the static case, the theorem of virtual displacements states that the virtual 

work W of external forces acting on a body equals the increase of the virtual 

deformation energy eU of the body.  

work eW U          (6) 


D

t

u

t1 

0 

X

Y

0
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Consider a structural mechanical problem, with a material domain  in the design 

domain D. The characteristic function   x is defined as 1 in the material domain and 0 

in void domains (see Figure 3.2): 

 
1 if

0 if \D



 

 

x
x

x
      (7)  

Γu is part of boundary of the domain Ω were displacements are given. Traction 

forces 
T

x y zt t t   t are imposed at the boundary Γt (see Figure 3.2) and body forces 

T

x y zb b b   b  are applied through the material domain  . The displacement vector 

of the elastic body at each point is expressed as 
T

x y zu u u   u with the respective 

virtual displacement vector
T

x y zv v v   v . The strain tensor is defined as 

1

2

ji
ij

j i

uu

x x

 
     

. The constitutive equation or material law is expressed as ij ijkl klE 

Using the elasticity tensor 
0

E of the prescribed material, the virtual energy terms can be 

defined.  

 ,a u v  is defined as the (energy) bilinear form that represents the internal virtual 

work of an elastic body at the equilibrium displacement u, and for an arbitrary virtual 

displacement v. Using the characteristic function χ, the bilinear form can be defined as an 

integral in the design domain D: 

           0 0, : :
T

D

a d d


    u v u E v u E x v   (8) 
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 l v  is the linear form that represents the external virtual work of the loads for 

the arbitrary virtual displacement v.  

   
t

T T

t D

l d d d d
  

          v t v b v t v x b v   (9) 

Using all these definitions, the principle of virtual work or displacement (equation 

6) states that:  

   ,a lu v v        (10) 

Using the finite element method, the design domain D is discretized in N finite 

elements.  χe is the discrete value of the characteristic function in the element e. Thus, χe 

defines if there is material or not in the element e and collectively, χ1, χ2,…, χN are the 

design variables of the optimization problem. Defining e as the domain of the element 

e: 

1 if

0 if \

e

e

e D


 
 

  
      (11) 

eu and ev are the displacement and virtual displacement vectors of the element e. 

0
k is the stiffness matrix of an element filled with material. U and V are the global and 

virtual displacement vectors respectively. Finally, K is the global stiffness matrix, and F

is the global force vector. The linear and bilinear can be expressed as: 

        0

1

, : :
N

e

eD

a d 


   
T

e 0 e
u v u E x v u k v U KV  (12) 

   
t D

l d d


       
T

v t v x b v F V     (13) 
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Since the virtual displacement V is arbitrary, using equations 12 and 13 in 10, the 

discrete equilibrium equation can be reduced to: 

KU F         (14) 

 Finite element analysis deals with the construction and definition of the element 

matrices and the assembly to global matrices and vectors (i.e., K, F, U, and V) due to the 

discretized mesh. The solution of the equilibrium equations requires boundary conditions 

in order to set the given displacement and forces of the structural problem in the 

equilibrium equation. Then, the displacements of the free nodes of the discretized 

element mesh are obtained, as well as the reaction forces of the fixed nodes. After solving 

the equilibrium equations other physical quantities can be obtained such as the stresses, 

strains, strain energy, compliance, volume, weight, etc. in a post-processing procedure. 

The objective and constraints for the topology optimization problem can be 

defined with these results. A common practice is to minimize the compliance of the 

structure (work done by external forces) considering certain volume constraint, or to 

minimize the weight subject to stress constraints for instance, etc. Starting from a current 

configuration the goal of the approach is to propose a new configuration at each step in 

which the objective is improved. 

 

3.3 Minimum compliance topology optimization problem with volume constraint 

3.3.1 Formulation of the problem 

First, let us assume a fixed design domain D with a material domain Ω and a void 

domain D\ . This constitutes the current configuration. Consider the problem of 
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topology design for minimum compliance (maximum stiffness) of statically loaded linear 

elastic structures under a single loading condition. The compliance is defined as the work 

done by the set of given loads against the displacements at equilibrium [16].This external 

work depends on the loads and obviously on the structure (material distribution), the 

stiffer the structure the lower the compliance. The compliance can be defined using the 

linear form  l u . The compliance and the volume (mass) are conflicting. In general, a 

heavier structure is stiffer. With no constraint on the volume, the optimal solution will be 

a fully filled design domain D. The objective is to minimize the compliance under a 

volume constraint: 

 

   

 

   

,

0

        min :

subject to  : , , ,   

 :

 : 0,1

u
l

a l U U

V
f

V





   





u

u v v v u

x

x

    (15)

 

 V χ , 0V  , and f  are the volume, the design domain volume and the prescribed 

volume fraction respectively. U is the space of any admissible displacement. In order to 

solve problem (15), it is reformulated as the following problem according to the finite 

element discretization (I is the set of elements): 

 

 

,

0

       min :

subject to:

:

: 0,1     

T

i

V
f

V

i I





 

U χ
F U

F KU

χ       (16) 
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Let N define the number of elements. The constrained problem is transformed to 

an unconstrained problem using Lagrange relaxation, defined as: 

 

 

, ,
     min  : 

subject to: 0,1     

N
TT i

i

i

L f
N

i I






 
     

 

 


U V χ

F U F KU V
   (17) 

Notice that in this case, the vector  1 2 ...T

nV V VV  represents a set of 

Lagrange multipliers that enables us to satisfy each finite element equation as an equality 

constraint. At the same time, V is called the adjoint vector of the mechanical problem, 

and  can be interpreted as pseudo initial displacements because it must have units of 

displacement. Furthermore, λ is the Lagrange multiplier for the volume constraint. 

3.3.2 Sensitivities in the optimization process 

The optimality conditions expressed through the Karush-Kuhn-Tucker (KKT) 

equations are the conditions that must necessarily hold a design to be a local optimum. 

The KKT equations are: 

Stationary conditions 

0
i

dL

dU
         (18)    

0
i

dL

d
          (19)  

Primal feasibility conditions 

F KU         (20)   

 

0

0
V

f
V

 
χ

        (21) 
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Dual feasibility 

0           (22) 

Complementary slackness 

 

0

0
V

f
V


 

  
 

χ
       (23) 

The primal feasibility conditions hold in every step of the optimization process. 

The finite element method is used to guarantee the primal feasibility condition by solving 

the equilibrium equation F KU , obtaining the displacement vector U for the given 

configuration. 

Also, the first stationary condition  dL d U 0 is forced to be satisfied at every 

step of the optimization. Thus, the following equations should hold:  

0i ij j

i

dL
F K V

dU
     0 F KV  Adjoint problem (24)  

The obtained equation 24 is called the adjoint problem because it is similar (or 

identical) to the equilibrium equation, where V, the adjoint displacement, is the unknown. 

To guarantee the first stationary condition at every step of the optimization process, the 

adjoint displacements jV are calculated by solving the adjoint problem of equation 24. 

Since it is the same problem as the equilibrium equation 20, this is called a self-adjoint 

problem, and: 

V U          (25) 

On the other hand, the second stationary condition  dL d χ 0 holds just in local 

optimal configurations which are the ones that are desired in the optimization process, 
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and it is not necessary true for the initial (or current) configuration. Satisfying the 

equilibrium equation and the adjoint problem in the optimization process at every step, 

the sensitivities of the Lagrangian with respect to the design variables can be calculated 

as: 

             

N
T T T e

ei i

N
jT T T e

ej i

dL
f

d N

u
f

u N




 






   
       
   

   
      
   





F U F V U KV

F U F V U KV

  

 
1

N N
T T Te

e

e ei i i

dL

d N


 

  

   
      
   

 e 0 e

U
u k v F U U KV

U
 

 
i

dL

d N




    

i 0 i
u k v F KV

i





U
 

It is known according to equation 24 that  F KV 0 , then V U  at every step. 

Thus, the steepest direction can be expressed as: 

k T

i

i

dL
S

d N




   

i 0 i
u k u       (26) 

3.4 Update techniques for the optimization algorithm 

Using the sensitivities of the topology optimization problem, for example 

Equation 26,  the steepest descent direction  can be computed to minimize the Lagrangian 

function L using a linear search. Thus, to update the material distribution, a two-step 

procedure is proposed:  

1) obtain a temporary material density distribution (ϕ), and  

2) penalize this new material distribution towards 1/0 material distribution.  
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The first step, generates the updated material densities (ϕ) with the steepest 

descent direction, as shown in the equation below:  

k k

i i iS              (27) 

α defines the distance by which to move in the direction Si
k
 in the k

th
 iteration. In 

the optimization process, to improve L, the j
th

 element of the design space D should be 

removed, maintained or added. However, the updated material densities ϕi will not take 

only the integer values of {0,1}, in general they can be any real number (ϕi∈R), between 

1 and 0, higher than 1 and below 0.  

In the second step, the updated material densities (ϕ) are used as a level set 

function. The super level set of the function (ϕ(x)≥C) is used to penalize the intermediate 

values and obtain a discrete material-void distribution (χ
k+1

). Thus, elements where ϕi≥C 

jump immediately to χi
k+1

=1, and elements where ϕi<C drop to χi
k+1

=0. The constant C 

can be for example 0.5. 

1
1 if

0 if

ik

i

i

C

C








 


         (28) 

For different values of α, different configurations are obtained. The selected α 

should give the best configuration update but the search must be computational efficient. 

The value of α can be determined mainly in 3 ways: 

 Minimize L(χ
k+1

(α) ), which is a tedious problem because the function L is 

evaluated multiple times  for different configurations. 
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 Add/remove a certain amount of volume dV(χ
k+1

(α))=dV at each step. This is 

simple, but the value of dV is arbitrary and does not guarantee best improvement 

in L. 

 Obtain a configuration with a prescribed number of holes. Usually there is an 

interval for α which can generate configuration with the same number of holes. 

Since the configurations are 1/0 designs, counting the number of holes is simple. 

However, obtaining the desired number of holes in the first iteration is not 

common. Thus, an algorithm with several iterations is required.  

The material distribution χ
k+1

(α
*
) obtained replaces the old vector of design 

variables χ
k
 for the next iteration. In the next chapter, algorithms using these techniques 

are explained and implemented. 

 

3.5 Shape optimization  

Noticing that the material-void boundary ΓL (see Figure 3.3) is just part of the 

whole boundary of a defined structure that occupies the material domain , 

 

Figure 3.3: Structural boundaries defined by the level set. 

the whole boundary of the material domain Ω (ΓΩ = ΓL + ΓD) is defined as the 

union of the material-void boundary ΓL and the boundary of the material with the fixed 

D

ΓL material-void 

boundary 

Γ
D
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domain D (ΓD). To perform shape optimization, only changes in the level set boundary ΓL 

are allowed to minimize the compliance. Thus, using the results of the previous sections, 

the optimization problem is: 

 

 

,

0

       min :

subject to:

:

: 0,1     for   

T

i j L

V
f

V

 





  

U χ
F U

F KU

x      (29) 

The Lagrangian and sensitivities are similar to the ones of the topology 

optimization problem but in (29), the design variables correspond to the boundary 

elements. A method to define the elements that belong to the boundary ΓL is needed. In 

this sense, the gradient with respect to the coordinates (not the design variables) of the 

characteristic function is different from zero in the boundary ΓL because the characteristic 

function changes from 0 to 1 or vice versa at the boundary. So, the design variables that 

are part of the design space in the optimization process are the ones for which ∇χ(x)≠0. A 

gradient of χ can be defined, such that it is zero for the elements in the material and void 

domain excluding the boundary (Ω\ΓL and D\Ω), using forward and backward finite 

differences numerically. Note that this gradient is non-zero for all the elements that 

correspond to ΓL. In the next chapter, the details of the implementation are explained. 

The definition of the modulus of the gradient for each discrete design space is: 

    if   

0    if   

i L

i

i

a 





 

 L





      (30) 
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For the shape optimization problem the design domain is just ΓL at each iteration 

step. Thus, all the elements whose modulus of the gradient is different from zero are 

updated.  

           if  0i i i

i

dL

d
   


         (31) 

This update guarantees changes only in the material-void and not in the material 

or void domain. With this procedure, no holes are created in the material domain, there is 

just an evolution of the boundary. However, the boundary changes allow merging and 

breaking of the boundaries and can produce creation/elimination of new holes (see Figure 

3.4).  

 

Figure 3.4: Shape optimization: a) no holes are created in the material; b) merging and breaking boundaries can 

produce new holes. 

 

Since only the design variables updated are the ones with the nonzero gradient, 

the update equation can be reformulated as: 

i i i

i

dL

d
   


          (32) 

Eq.(29) is the discrete version of the Hamilton-Jacobi equation used in the level-

set method. For a bounded and continuous level set function, the highest values of the 

modulus of the gradient are in the boundary, and are zero or near zero far from the 

boundary and inside the domain. Thus, the Hamilton-Jacobi equation easily tracks the 

(b) 

(a) 
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movement of the boundary, but shows difficulties to create holes in the topology 

optimization because the sensitivities tend to be zero inside the domain producing no-

changes inside the domain. This point is highly supported in the literature and many 

researchers have tried to use different evolutionary equations instead of the Hamilton-

Jacobi equation [45] [4] [49]. However, the benefits of separating the topological changes 

(creation of new holes) from the shape changes can help to control the desired number of 

holes in the optimal configuration. For example, it may be desired to put some 

manufacturing restrictions on the maximum number of holes in a structure. A large 

number of holes using the same amount of material can make a structure stiff but almost 

impossible to manufacture. As a solution, once the optimization process reaches the 

desired number of holes, just shape optimization is allowed. 

 

3.6 Sensitivities of a general topology optimization problem 

In this section, the sensitivities of a topology optimization to minimize a general 

objective function are obtained. The optimization process iteratively improves this 

objective obtaining a better material distribution. The objective function Fobj can be any 

scalar function that depends on the material distribution and the displacements in the 

deformation state. This is because structural quantities such as the strains, stresses, 

weight, volume, energy terms, etc., can be defined using the displacements and the 

material distribution. The displacements are obtained subject to a certain material 

distribution and the equilibrium equation, so the equilibrium equation is a constraint for 

any static structural topology optimization problem. χ  is the vector of the discrete 
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characteristic function representing our design variables. The general optimization 

problem is defined as: 

 

 

,
       min : ,

subject to:

: 0,1

j i
obj

U

j

F f










χ U

F KU       (33) 

 The Lagrangian of the problem and the KKT equations are: 

   ,
T

L f  χ U F KU V       (34) 

Stationary conditions 

0
i

dL

dU
         (35)    

0
i

dL

d
          (36)  

Primal feasibility conditions 

F KU         (37)   

In the optimization process the primal feasibility is achieved by solving the 

equilibrium equation and obtaining the unknown displacements U given the current 

material distribution. Also, the first stationary condition  dL d U 0  is forced to be 

achieved at each step, which turns to be the adjoint problem (obtaining the adjoint 

displacements V): 

    

 

0 ,

0 ,

T

i i

dL
f

dU U

dL
f

d


   




  



χ U F KU V

χ U KV
U U
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If the adjoint force vector is defined as:  * ,adj f





F χ U
U

, the adjoint problem 

is similar to the equilibrium equation: 

*adj F KV         (38) 

The second stationary condition  0dL d χ  is only satisfied for local minima. 

The derivatives of the function L with respect to the variable
j  can be obtained by: 

         , ,
T T

j

j j i

dL
S f f

d U 

 
      

 
χ U F KU V χ U F KU V i

j

U






 (39)  

If the adjoint displacement V is used, obtained by eq. 38, the second term of  eq. 

39 disappears. Thus, the sensitivities are: 

 , T

j j j

j j

dL
S f

d 


  


0χ U u k v      (40) 

Using this as the steepest descent direction we can minimize the Lagrangian 

function L iteratively using the techniques described in section 3.4. 

3.7 Summary 

In this chapter, a methodology to perform topology optimization was described. 

The topology optimization problem for minimum compliance with a volume constraint 

was studied. Using finite elements and considering the material densities in each element 

as the design variables, a Lagrangian formulation is developed and the sensitivities of the 

Lagrangian with respect to the design variables are analytically derived in detail for this 

problem. 
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In order to minimize the Lagrangian, the material/void distribution is updated by a 

two-step procedure. In the first step, a temporary density function, ϕ
*
(x), is updated 

through the steepest descent direction using sensitivities. In the subsequent step, the 

temporary density function ϕ
*
(x) is used to model the next material/void distribution, 

χ
*
(x), by means of the level set concept. The updated configurations exhibit a 0/1 

configuration, consequently holes are easily created and quantified with this procedure. 

 If the design space is reduced to the elements in the boundary, the topology 

optimization process turns into a shape optimization procedure using the same update 

technique. Finally, the sensitivities are derived for a topology optimization problem with 

general objective function to minimize. 

In the next Chapter, using these techniques, the algorithms to obtain optimal 

topologies in an iterative process are explained. Also, the implementations of the 

algorithms are described and examples are solved. 
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CHAPTER FOUR: IMPLEMENTATION AND EXAMPLES 

In this chapter, the implementation in Matlab of the method proposed in this work 

is presented. The code includes a Finite Element Analysis, a topology optimization 

procedure to place a prescribed number of holes and perform shape optimization. Finally, 

solutions for topology optimization problems for minimum compliance with constrained 

volume and number of holes are shown.  

 

4.1 Finite Element Analysis (FEA) 

The FEA evaluates the current structure given a material distribution. Structural 

outputs such as displacements, strains, stresses, elastic energy, etc. can be calculated by 

the FEA. The design domain is assumed rectangular with “xL” width, “yH” height, and it 

is discretized by “nex” and “ney” elements along the horizontal and vertical directions 

respectively. The numbering of these rectangular elements starts from the lower left 

corner, proceeding column by column until the upper right (see Figure 4.1).  

 

Figure 4.1: Mesh and schematic representation of the discrete fixed domain with 4-node linear rectangular 

elements. 
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Figure 4.2: Mesh and schematic representation of the discrete fixed domain with 9-node quadratic rectangular 

elements. 

Four-node bi-linear rectangular elements (“4L” see Figure 4.1) or 9-node bi-

quadratic rectangular elements (“9Q” see Figure 4.2) are used to solve a given plane 

stress problem. These elements are paired in two (bi-linear or bi-quadratic) in order to 

define the displacement field in the horizontal (U1) and vertical direction (U2). Thus, 

each node has two degrees of freedom, horizontal and vertical. The element dimensions 

are dx (width), dy (height) and th (thickness). The stiffness matrix for these elements is 

calculated using an isotropic material with a unit elastic modulus E=1 Pa, a Poisson’s 

Ratio ν, and satisfies the following relation:  

e e

0
f = k u         (41) 

where the element nodal displacements and forces are collected in vectors as:  

 For 4-node bilinear elements 
 1 1 2 2 3 3 4 4

T

x y x y x y x yu u u u u u u u  
e

4 Lu = , 

and 
  1 1 2 2 3 3 4 4

T

x y x y x y x yf f f f f f f f  
e

4 Lf =   
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 For 9-node biquadratic elements 
 1 1 2 2 9 9... ...

T

x y x y x yu u u u u u  
e

9 Qu = , 

and 
 1 1 2 2 9 9... ...

T

x y x y x yf f f f f f  
e

9 Qf =  

The stiffness matrix of an element using an isotropic material with Young’s 

Modulus E
0
 and Poisson’s Ratio ν is given by: 

0

  mat E
e 0

k k          (42) 

notice that the stiffness matrices ke mat and k0 correspond to the same Poisson’s Ratio ν 

but different Young’s Modulus (E
0
 and 1 Pa).  

The characteristic function χ(x) determines which points x of the design domain 

are material points χ=1, or voids χ=0. This characteristic function is discretized with the 

same mesh of the finite elements, so the variables χ
e
 represent if the element “e” is 

material or void. To avoid singularity of the global stiffness matrix, the void elements are 

modeled as a weak phase material (Ersatz material [42]) with Young’s Modulus equals to 

a small fraction of the Young’s Modulus of the base material: 

-6

min min

0

1      if material                    

    if void,   (e.g., =1e )

e

e eE E


 




 




    (43) 

A table of the corresponding nodes for each element is created.  The global 

stiffness matrix (KG) is assembled using this table to insert the element stiffness matrix   

( 0eE
0

k ) of each element in the right position. 

On the other hand, given the structural problem, the boundary conditions are 

defined by the fixed global nodal displacements (UG
fixed

), the global nodal forces (FG) 

and the free degrees of freedom. 
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The structural equilibrium problem is reduced to a linear system of equations, and 

the unknown nodal displacements for the free nodes (UG
free

) can be solved with: 

free,free free free free,fixed fixed

G G G G G
K U = F - K U     (44) 

And the reaction forces for the fixed ones: 

free fixed,free free fixed,fixed fixed

G G G G G
F = K U K U     (45) 

As post processing process the strains, stresses, strain energy density, compliance, 

etc. can be obtained using the found nodal displacements (UG). A cantilever beam 

problem (see Figure 4.3) is solved using the FEA code implemented in Matlab with the 

following characteristics: Young’s Modulus E=210GPa, Poisson’s Ratio ν=0.3, load 

t=[0,-1kN], height yH=5m, width xL=8m, and thickness th=0.1m. 

To validate the Matlab code, the same example is implemented in Abaqus 6.10 

(FEA commercial software). The displacement fields in the horizontal (U1) and vertical 

(U2) directions are shown in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7. The maximum 

displacement in the vertical direction is obtained at the node at which the force is applied. 

The maximum displacement is used to compare the results (see Figure 4.8). 

 

Figure 4.3: Cantilever beam problem. 

xL 

t yH 
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Figure 4.4: Displacements in horizontal U1 and vertical U2 direction, using Abaqus 64x40 4 node bi-linear 

elements. 

 

Figure 4.5: Displacements in horizontal U1 and vertical U2 direction, using Abaqus 64x40 9 node bi-quadratic 

elements. 

     

Figure 4.6: Displacements in horizontal U1 and vertical U2 direction, using Matlab 64x40 4 node bi-linear 

elements. 

     

Figure 4.7: Displacements in horizontal U1 and vertical U2 direction, using Matlab 64x40 9 node bi-quadratic 

elements. 
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Figure 4.8: Plot of the maximum vertical displacement obtained by different element types and software. 

 

 Figure 4.4 through Figure 4.8 show that our FEA implementation in Matlab 

obtains similar results to the commercial software. If the number of nodes is incremented, 

there is a clear convergence of the results. In Figure 4.8 the Abaqus’ results are truncated 

because the educational version of Abaqus does not allow solving problems with more 

than 40000 nodes. The results using Abaqus’ linear element show a disagreement with 

respect to the others (Abaqus’ quadratic elements, and our linear and quadratic elements 

in Matlab). Also, the displacement fields obtained using the Abaqus’ linear element show 

non-smooth patterns (see Figure 4.4). The implementation in Matlab is validated and can 

be considered sufficiently accurate (error ≈ 0.5%). 
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Notice that the compliance (c=1.16e
-3

J) of this problem can be obtained with the 

product of the external force (-1kN) with the maximum vertical displacement (U2≈-

1.16e
-6

m). Any structure in this rectangular domain with less material will produce more 

displacement and consequently more compliance with the same loading condition. The 

same problem is solved for the cantilever beam with a rectangular hole in the center. The 

hole dimensions are a width of hx = xL/2 = 4m and a height hy = yH/2 =2.5m] (see 

Figure 4.9). In Matlab the hole is modeled using elements with a low Young’s Modulus 

and in Abaqus the hole is actually void. The results for the maximum displacement in the 

vertical direction are shown in Figure 4.10. 

 

Figure 4.9: Cantilever beam problem with a rectangular hole in the center. 

xL 

t yH 

hx 

hy 
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Figure 4.10: Plot of the maximum vertical displacement of a cantilever beam with a rectangular hole. 
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required. The results using the quadratic elements show convergence for a larger number 

of nodes. Based on this preliminary analysis, linear elements with  χmin=1e-6 are 

selected limiting the number of nodes to 50000 for a reasonable computational time. 

 

4.2 Implemented algorithm to place a prescribed number of holes 

The FEA computes the objective and its sensitivities with respect to the design 

variables χ
e
. These design variables are updated by the two-step procedure described in 

section 3.4 (see Figure 4.11). First, a temporary material density distribution is obtained 

through the steepest descent direction (ϕ=χ
k
+αS). Then, these temporary densities are 

penalized to a 1/0 distribution using the level set concept (ϕχ
k+1

). However, this 

technique requires choosing the value of the linear search parameter α. Since any updated 

configuration has a 1/0 distribution, the number of holes for the updated configuration 

can be counted. Thus, an algorithm to place and obtain “nh” number of holes starting 

from the whole design domain full of material can be formulated as: 

1) The initial configuration has the whole domain filled with material.  

2) Finite element analysis of the initial configuration is executed. The objective 

and its sensitivities with respect to the design variables (dL/dχ) are obtained.  

3) Using an upper bound α1, a new configuration can be updated (χ1) and the 

number of holes (n1) for the new configuration can be counted.  

4) Using the interval halving algorithm, the lower bound (α2) for the obtained 

number of holes (n2) is computed. Configurations with n1 number of holes can be 
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obtained for any α in the interval [α1, α2]. For example, in Figure 4.11, if α1=αB then n1=3 

holes, and if α2=αA then n2=2 holes.  

 

Figure 4.11 Left: Representation of the sensitivities of the full design domain. Right: Configurations obtained 

with the sensitivities for two different values of α. 

5) Repeat step 4, using α2 as the upper bound for the configurations with n2 

number of holes. Then, repeat again step 4 until the lower bound obtained is zero 

αlower=0. The intervals for the different number of holes are obtained sequentially. The 

limit of the lower bound is 0, where no update is produced. 

6) Check if an interval for the desired nh number of holes was obtained. 

 - If yes, exit 

 - If not, repeat the procedure from step 2 starting with a configuration of 

n1 number of holes using α=(α1+ α2)/2 to avoid unstable configurations. 

The flowchart of this algorithm to obtain nh number of holes is presented in 

Figure 4.12: 

k k
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Figure 4.12: Topology optimization algorithm to obtain and place nh holes.  
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4.3  Numerical examples to place nh number of holes: minimum compliance with volume 

constraint problem. 

 

Figure 4.13 Left: Cantilever beam problem. Center: MBB-beam full domain. Right: MBB-beam half domain. 

A cantilever beam problem and the called Messerschmitt-Bölkow-Blohm (MBB for the 

German aerospace company) beam problem (see  

Figure 4.13) are treated using the algorithm to place nh number of holes. The 

parameters are set as follows: Young’s Modulus E=210GPa, Poisson’s Ratio ν=0.3, load 

t=[0,-10kN], height yH=5m, width xL=8m, and thickness th=0.1m. The mesh size is 96 

by 60 bi-linear quadratic elements (11834 nodes < limit 50000 nodes).  

Figure 4.14 and Figure 4.15 show the configurations with different number of 

holes produced by the algorithm. The sensitivities choose which regions of material are 

more effective to remove with lower cost in compliance. The higher the number of holes 

for the configuration, the lower the volume fraction obtained. The algorithm is not able to 

obtain configurations with 1 or 5 holes for the cantilever beam problem, and 6 holes for 

the MBB-beam, because of symmetry reasons. These configurations are not optimal and 

in general violate the volume constraint but they represent good starting points for the 

shape optimization procedure explained in the next sections. 
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Figure 4.14: Configurations for the cantilever beam problem with different number of holes obtained by the 

implemented algorithm with the respective volume fraction. 

 

   

   

     
Figure 4.15: Configurations for the MBB beam problem with different number of holes obtained by the 

implemented algorithm with the respective volume fraction. 

2 Holes  volf=0.98 3 Holes  volf=0.95 4 Holes  volf=0.92

7 Holes  volf=0.86 6 Holes  volf=0.86 9 Holes  volf=0.84
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4.4 Boundary elements 

As was discussed in the section 3.5, the elements in the material/void boundary 

(ΓL) can be conveniently identified because the material distribution is a 1/0 

configuration. The norm of the gradient of the characteristic function (χ) is non-zero for 

the elements in the boundary:  

    if   

0    if   

i L

i

i

a 





 

 L





      (46) 

The characteristic function of the structure configuration is defined with values of 

either 1 or χmin. Thus, forward and backward finite differences of the material densities in 

the horizontal and vertical direction are non-zero on the boundary ΓL: 

          

          

i i dx i i i i dx

forward backward

i dy i i i dyi i

forward backward

x dx x dx

y dy y dy

     

    

 

 

   
 

 

  
 

 

   (47) 

i dx  , i dx  , i dy  and i dy  are the densities of the neighbor elements of the “ith” 

element. Also, dx and dy are the element sizes in the horizontal and vertical direction 

respectively. The numerical norm of the gradient obtained is: 

 

22

1

2

i i i i
i

forward backward forward backward
x x y y

   


     
              

  (48) 
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Figure 4.16: Visual representation examples of the numerical gradient. Two boundary elements: orange 

elements from the material boundary, red elements from the void boundary. 

 

 

Figure 4.17: Visual representation examples to compare the effect of the mesh in the resolution of the topology 

and the boundary. 

In Figure 4.16, the material/void boundaries are identified for different topologies. 

Since the boundary is the transition between the material and the void in the design 

domain, two layers of elements are obtained: one in the material domain, and one in the 

void domain. A finer mesh will obviously result in thinner layers (see Figure 4.16 and 

Figure 4.17).  
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4.5 Shape optimization 

Using the numerical gradient implemented in the previous section, all the 

elements that have a non-zero gradient are part of the material/void boundary. If the 

elements of this boundary are added or removed, the boundary will change but the 

number of holes will remain the same (exceptions are discussed in section 3.5 see Figure 

3.4). Shape optimization is like topology optimization considering as design variables 

only the densities of the boundary elements. Only these densities of the elements of the 

boundary are updated.  

The boundary design variables (χb) can be updated with the same technique 

presented in 3.4 selecting α to add/remove a certain amount of material dV. The volume 

dV should be small and can be chosen constant in the optimization process. However, if 

the volume constraint is active, dV is negative (remove material) and if the volume 

constraint is inactive, dV is positive. The sign changes because the Lagrange multiplier of 

the volume constraint is zero if the volume constraint is inactive. In the iterative process, 

once the volume fraction is close to the volume constraint and no improvement in the 

compliance is obtained the material added/removed dV is reduced in order to achieve 

convergence. 

If the volume constraint is active, the sensitivities must be positive to remove 

material using the steepest descent method. To ensure this, the Lagrange multiplier of the 

volume constraint is estimated as follows: 

k T

i

i

dL
S

d N




   

i 0 i
u k u   Sensitivities   (49) 



 64 

 max TN 
i 0 i

u k u        (50) 

If the volume constraint is inactive the Lagrange multiplier of the volume 

constraint is zero 0  . 

A flowchart of the update algorithm that adds/removes an amount of volume dV 

is presented:  

 

Figure 4.18 Left: Detail algorithm for the update of the material void distribution adding/removing an amount 

of volume dV with level set penalization. Right: non-detail algorithm.  

A flowchart for the overall shape optimization algorithm is shown:  
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Figure 4.19: Algorithm for shape optimization. 
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4.6 Shape optimization numerical examples: minimum compliance with volume 

constraint problem. 

The minimum compliance with a volume constraint for the cantilever beam 

problem described in section 4.3 is solved using the shape optimization algorithm. A 80 

by 50 element mesh is used. Initial configurations with holes located in different places 

are used to show the effectiveness of the shape optimization process. The constraint on 

the volume fraction is 0.3 and the volume fraction removed is kept constant in each 

iteration with dV=1%. The convergence criteria used in the Lagrangian is 5e-4% for the 

last 6 configurations. Optimal shapes are obtained at the end of the process when 

convergence is achieved. Starting with three and six holes, the optimization history is 

shown for the Lagrangian, the compliance, and the volume constraint for the cantilever 

beam problem in the following figures 4.20 to 4.23: 

 

 

Figure 4.20: Optimization history of the Lagrangian for the cantilever beam problem with an initial 

configuration of three and six holes 
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Figure 4.21: Optimization history of the volume constraint for the cantilever beam problem with an initial 

configuration of three and six holes 

 

 

Figure 4.22: Optimization history of the compliance for the cantilever beam problem with an initial 

configuration of three and six holes 
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Figure 4.23: Initial configuration with three holes (volume fraction 0.83), configurations obtained in the shape 

optimization process, and optimal configuration for the cantilever beam problem. 

 

 

 

Figure 4.24: Initial configuration with six holes (volume fraction 0.70), configurations obtained in the shape 

optimization process, and optimal configuration for the cantilever beam problem. 

Initial Configuration volf: 0.80  fun.eval: 4 volf: 0.70  fun.eval: 14
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volf: 0.30  fun.eval: 54 volf: 0.30  fun.eval: 71

Initial Configuration volf: 0.60  fun.eval: 10 volf: 0.50  fun.eval: 20

volf: 0.40  fun.eval: 30 volf: 0.30  fun.eval: 40 volf: 0.30  fun.eval: 57
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This procedure of shape optimization changes the size and shape of the holes. 

Also, the location of the holes can be calibrated. The number of holes can be maintained 

easily unless two boundaries merge. The sensitivities determine which elements of the 

material boundary should be removed, and which elements of the void boundary should 

be added. The convergence of the Lagrangian when adding/removing material (dV) 

implies that the elements added at certain volume are again removed to obtain the same 

volume. 

 

4.7 Minimum compliance with volume and the number of holes constrained 

The topology optimization problem for minimum compliance with constrained 

volume and number of holes is solved in two main steps.  

 First, starting form a full solid plate, the topology optimizer will obtain the first 

configuration with nh holes removing iteratively the material as was presented and 

explained in sections 4.2 and 4.3. At this point the topology satisfies the constraint 

on the number of holes.  

 Second, shape optimization is carried out, maintaining the number of holes as 

explained in sections 4.5 and 4.6.  

The following figures show the results for the cantilever beam problem. Optimal 

topologies for various volume fractions and various numbers of holes are obtained. The 

characteristics of the problems are the same as the problems in section 4.3. A mesh with 

96 by 60 elements is used. 
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Figure 4.25: Optimal compliance vs. volume fraction constraint obtained for the cantilever beam problem with 

controlled number of holes. 

 

    

Figure 4.26: Optimal design configurations obtained for the cantilever beam problem with 2 holes. 
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Figure 4.27: Optimal design configurations obtained for the cantilever beam problem with 3 holes. 

 

 

 

   
Figure 4.28: Optimal design configurations obtained for the cantilever beam problem with 6 holes. 

 

 

 
Figure 4.29: Optimal design configurations obtained for the cantilever beam problem with 11 holes. 

 

Initial config.  volf=0.94 volf: 0.70  fun.eval: 145 volf: 0.52  fun.eval: 223

volf: 0.41  fun.eval: 275 volf: 0.32  fun.eval: 313 volf: 0.25  fun.eval: 337

Initial config.  volf=0.86 volf: 0.71  fun.eval: 249 volf: 0.50  fun.eval: 501

volf: 0.41  fun.eval: 583 volf: 0.30  fun.eval: 689 volf: 0.22  fun.eval: 763

Initial config.  volf=0.76 volf: 0.70  fun.eval: 99 volf: 0.50  fun.eval: 311
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Figure 4.25 through Figure 4.29 show that the proposed algorithm improves the 

Lagrangian while the number of holes is fixed according to ensure manufacturing 

constraints. Notice that optimal configurations with more holes at the same volume 

constraint have lower compliance. However, this difference is not always very 

significant. For the cantilever beam problem, Figure 4.25, the curve of 2 holes differs 

from the others for volume fractions below 0.85. The advantage of having more than 2 

holes is important for volume fractions below 0.85. The curves of 3, 6, and 11 holes are 

very close, that means that it is no worth increasing the complexity of the solution since 

the advantage in terms of compliance is relatively small. The following figures show the 

results for the MBB-beam problem. 

 

Figure 4.30: Optimal compliance vs volume fraction constraint obtained for the MBB-beam problem with 

number of holes controlled. 
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Figure 4.31: Optimal design configurations obtained for the MBB-beam problem with 1 holes. 

 

 
Figure 4.32: Optimal design configurations obtained for the MBB-beam problem with 2 holes. 

 

 

Figure 4.33: Optimal design configurations obtained for the MBB-beam problem with 4 holes. 

Initial config.  volf=0.98 volf: 0.71  fun.eval: 177 volf: 0.53  fun.eval: 291

Initial config.  volf=0.96 volf: 0.70  fun.eval: 157 volf: 0.53  fun.eval: 275

volf: 0.44  fun.eval: 335 volf: 0.30  fun.eval: 409

Initial config.  volf=0.90 volf: 0.71  fun.eval: 125 volf: 0.50  fun.eval: 275

volf: 0.43  fun.eval: 301 volf: 0.31  fun.eval: 341 volf: 0.27  fun.eval: 359
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Figure 4.34: Optimal design configurations obtained for the MBB-beam problem with 5 holes. 

 

For the MBB-beam problem, Figure 4.30 through Figure 4.34, similarly to the 

cantilever beam problem, optima,l topologies with the desired number of holes were 

obtained. For low volume fraction a high number of holes is difficult to maintain because 

of boundary merge. 

4.8 Comparison with the literature 

The problem solved in this work for the cantilever beam with a volume constraint 

of 0.4 is similar as the one solved by Belytschko et al. (Young modulus is 1000Pa, 

thickness of the plate is 0.2m and the load is 1N, solution shown in Figure 4.36 [45]) and 

Yamada et al. (Poisson’s Ration of 0.31 and load is not specified, solutions shown in 

Figure 4.36 [4]), however the optimal material distribution must be the same because the 

structural problem is linear. Position, shape, and size of these holes in the optimal 

configurations obtained are quite similar to the ones reported in the literature as shown in 

the following figures: 

Initial config.  volf=0.87 volf: 0.70  fun.eval: 149 volf: 0.53  fun.eval: 241

volf: 0.40  fun.eval: 291 volf: 0.36  fun.eval: 303
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Figure 4.35: Optimal configurations for the cantilever beam by Belytschko et al. [45] for a volume constraint of 

0.4. 

 

Figure 4.36: Optimal configurations for the cantilever beam by Yamada et al. [4] for a volume constraint of 0.4 

with different parameter a) τ=5e-4, 3 holes, b) τ=5e-5, 6 holes, c) τ=3e-5, 9 holes, and d) τ=2e-5, 11 holes. 

   

Figure 4.37: Optimal configurations for the cantilever beam by our method for a volume constraint of 0.4 (mesh 

128x80). 

 The configuration with 6 holes obtained by us is exactly the same one reported by 

Belytschko. However, there is some difference of our configurations compared for the 

one reported by Yamada using the different parameters τ. 

 For a quantitative comparison, the SIMP method is implemented with the same 

characteristics as our problem. Modifying Sigmund’s 99 line Matlab code [72] to solve 

3 holes 6 holes 9 holes 11 holes
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the cantilever beam problem for a volume constraint of 0.4, the following results are 

obtained: 

   

Figure 4.38: Optimal configurations for the cantilever beam by SIMP for a volume constraint of 0.4 with 

different the filter parameter a) rmin=2 (6 holes) b) rmin=1 (198 holes) (mesh 128x80). 

  

Our optimal configuration with 6 holes is exactly the same as the one obtained by 

the SIMP method with the filter parameter rmin=2. Also, this configuration is the same as 

the one reported by Belytschko. In the following table, the compliance of the optimal 

configurations obtained is shown: 

Table 4.1: Compliance of the optimal configurations. 

Number of holes 3 6 9 11 198 

Compliance by SIMP (J) - 22.366 - - 22.125 

Compliance by our method (J) 24.396 21.549 21.470 21.190 - 

 

The results obtained by our method compared with the ones obtained by SIMP 

show better values of compliance (see Table 4.1). Also, it can be notice that more number 

of holes results in lower compliance. 

4.9 Summary 

In this chapter, the algorithms of the procedure to place a prescribed number of 

holes and do shape optimization was presented. The implementation in Matlab of the 
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methods proposed in this work was explained. Example problems for topology 

optimization problems for minimum compliance with constrained volume and number of 

holes are solved. This method shows numerical stable solutions and was validated by 

comparing the results with the ones obtained by the literature. In the next chapter, the 

concluding remarks and the future work is presented. 
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CHAPTER FIVE: CONCLUDING REMARKS 

Several research questions were posed at the beginning of this work.  This chapter 

restates them then shows how they were addressed and what conclusions were obtained.  

The main question was:  

Is it possible to formulate a topology optimization problem with a constraint on the 

number of holes? 

This question was then decomposed into: 

a. If so, can a method be constructed to obtain the solution?  

i. How can the number of holes be controlled in the optimization process? 

ii. Can a gradient descent method be used in the algorithm to obtain 

optimal solutions?  

b. Does the problem have a numerically stable solution?  

c. Is it possible to prove local optimality? Are the position, shape, and size of 

these holes in the solution local optimum? 

the answer to the main question is yes.  In order to achieve that goal, the topology 

optimization problem was reformulated by dividing it into three sequential sub-problems:  

1) Defining the number of holes. 

2) Locating the holes. 

3) Obtaining the optimal shape and size of the holes. 

The number of holes is imposed as a constraint of the optimization problem and is 

defined by the designer and obviously by the complexity level desired for the solution.  
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a. The method constructed to solve the topology optimization problem with a 

constraint on the number of holes, first locates the number of holes and 

subsequently obtains their optimal shapes and sizes. 

To locate the number of holes improving the objective and the constraints of 

the problem, the topology optimization problem is formulated using 

Lagrange relaxation where the other constraints are included in the objective 

by the use of Lagrange multipliers. The process should generate the 

prescribed number of holes, and then keep the number of holes fixed.  

i. To control the number of holes every configuration obtained in the 

optimization process consist of elements that either have or do not have 

material. The number of holes and the boundaries are well defined for a 

material/void (1/0) configuration without intermediate densities. 

Starting from a full-design domain, updated configurations with certain 

number of holes are obtained, although not necessarily the number of 

holes desired. So, the update process is repeated starting from the last 

configuration until the prescribed number of holes is obtained.  

Once the constraint on the number of holes is satisfied and the holes are 

practically well located, only the size and the shape of these holes must 

be changed. If only the elements that belong to the boundaries can be 

added/removed, changes on the boundaries are allowed without the 

creation of new holes. The update configuration has also a 1/0 

distribution, and the procedure is repeated by changing the shape and 
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the size of the holes towards the optimal configuration. Thus, in this 

shape optimization process the number of holes is fixed but the 

objective minimized in an iterative process.  

ii. In a discrete domain, the gradient of the Lagrangian with respect to 

the densities represents how the Lagrangian changes with respect to the 

change of the densities in each element. The information of this 

gradient is vital because it shows which elements can reduce the 

Lagrangian the most. The gradient descent method updates the densities 

but the new configuration has intermediate densities. Thus, the level set 

concept is used to penalize the intermediate densities towards a 1/0 

configuration. Densities above or equal to a threshold C are updated as 

material and densities below that threshold are voids. Thus, the 

elements with significant gradient values will effectively change the 

element from material to void or vice versa. In this way, since the 

elements that reduce the Lagrangian the most change, the Lagrangian 

should decrease for the new configuration. This cannot be justified 

analytically; just numerical convergence of the implementation can 

prove the effectiveness of the method. 

b. The topology optimization problem to minimize the compliance with a 

constraint on the volume and number of holes for a cantilever beam problem 

and MBB beam problem have numerically stable solutions. Examples of 

these solutions are shown in Chapter Four. Also, the use of a sensitivity filter 
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that smoothens the distribution of the sensitivities helps eliminate numerical 

instabilities that are due to the FEA discretization. Numerical instabilities 

such as checkerboards as well as mesh dependency have not occurred in the 

configurations. Each void element in a checkerboard pattern is a hole in the 

method presented, so the method itself deals with the checkerboard patterns 

by the use of the sensitivity filter and the constraint on the number of holes. 

c. Local optimality for the topology optimization problem for minimum 

compliance with a constraint on the volume is not proven analytically in this 

work.  

On the other hand, the convergence of the algorithms proposed is evidence 

that local optimal solution is achieved. If the constraints of the problem, 

including the constraint on the number of holes, are satisfied and no further 

improvement on the objective is produced, convergence is achieved. 

Position, shape, and size of these holes in the optimal configurations obtained 

are similar to the ones reported in the literature showing evidence that the 

solution obtained is a local optimum. 

5.2 Contributions 

The list of contributions to the engineering community in this work includes: 

 A methodology to solve the topology optimization problem with a constraint 

on the number of holes. 
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 Topology optimization divided and formulated in three subsequent sub-

problems: number of holes, location of the holes and optimal size and shape 

of the holes. 

 Justification of the use of the level set penalization for obtaining 1/0 

configuration in order to define properly the holes and their boundaries.  

 Shape optimization process that updates the elements in the boundary using 

the same procedure as the topology optimization update. 

5.3 Future work 

The method to obtain optimal topologies with a constraint on the number of holes 

presented in this work is general, but it was implemented just for minimum compliance 

with volume constraint problems. There are several areas in which this research could be 

further explored. 

5.3.1 Prove local optimality for 1/0 configuration 

Local optimality can be proven if intermediate densities are allowed with the 

satisfaction of the KKT conditions. However, the optimal configuration must have a 1/0 

material distribution and the constraint on the number of holes must be included also in 

the KKT conditions. Thus, a further explanation and exploration of the local optimality 

conditions including the constraint on the densities to 1/0 configurations and the 

constraint on the number of holes should be done. 
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5.3.2 Different objectives and constraints 

This method for topology optimization with a constraint on the number of holes 

should be implemented for different objectives and constraints. Also, examples should be 

solved to show the strength of the method. Potential problems that can be solved are: 

compliant mechanisms, vibrations, thermal problems, maximum stress problems, etc. 

5.3.3 Three dimensions space problems 

Major industrial applications involve 3D problems.  The extension of this method 

from a 2D problem to 3D should not face major hurdles, and implementations and 

examples of 3D problems should be addressed. 

5.3.4 Multi-material topology optimization 

In this work, optimal material/void distribution is obtained for a constraint 

number of holes. This method can be extended to solve multi-material topology 

optimization problems. Constraints on the number of holes for each material can be 

imposed and/or constraints on the number of the instances of each material can be 

prescribed.  
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