
Clemson University
TigerPrints

All Theses Theses

5-2014

Volumetric Cloud Rendering: An Animation of
Clouds
Zhaoxin Ye
Clemson University, zhaoxin@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Communication Commons, Computer Sciences Commons, and the Film and Media
Studies Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Ye, Zhaoxin, "Volumetric Cloud Rendering: An Animation of Clouds" (2014). All Theses. 1924.
https://tigerprints.clemson.edu/all_theses/1924

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/325?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/563?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/563?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1924?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Volumetric Cloud Rendering: An Animation of Clouds

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Fine Arts

Digital Production Arts

by

Zhaoxin Ye

May 2014

Accepted by:

Dr. Jerry Tessendorf, Committee Chair

Dr. Donald House

Dr. Timothy Davis

Abstract

This paper demonstrates a production workflow for a volumetric-rendering-based short an-

imation about clouds. The animation is based on the concept of a giant fish swimming in the sky

from Zhuangzi’s philosophical story. The algorithm and implementation for the modeling and ren-

dering of clouds are also presented. A renderer was developed that uses the OpenVDB library for

data storage, fast retrieving and grid manipulation. A user-friendly pipeline was also developed for

cloud modeling and rendering, which used Python and XML for adjusting rendering parameters.

The pipeline includes Maya to build the rough cloud model and Houdini to calculate the

interior light points. Final compositing was done in Nuke. Several MEL and Python scripts were

also used to retrieve camera and light information from Maya and Houdini, thereby facilitating the

production process.

ii

Acknowledgments

I would like to acknowledge Dr. Jerry Tessendorf who has been giving me valuable guidance

in volumetric rendering. His Physically Based Effects class provided me with the essential knowledge

of how to build a volumetric renderer. I also used and modified his C++ classes like Camera,

Volume, Color, PerlinNoise, Image, OIIOFiles, Utilities and CmdLineFind class in my renderer. My

implementation for doing cloud rendering is based on his method for making clouds in feature film

production. I also thank him for his wise and critical suggestions from each week’s thesis meeting.

I thank DreamWorks Animation Studio whose engineers developed and maintained Open-

VDB. I want to thank Jeff Budsberg for his presentation during the DreamWorks/Digital Production

Arts Summer 2013 course on the Clemson University campus about the clouds in Puss in boots, which

helped me and gave me inspiration.

I would also like to thank Dr. Donald House and Dr. Timothy Davis for being my committee

members. They both gave me great feedback and support.

I thank Dr. Brian Malloy for the XML parser from his Object Oriented Software Design

class, which facilitated my pipeline.

I thank Kacey Coley who contributed his MeshPotato tool to the Digital Production Arts

(DPA) pipeline, and who helped me to install libraries. He also introduced deep image and parallel

rendering to me, which made my production easier.

I thank Samuel Casacio for his help and advice with using OpenVDB. I also thank to all the

other people in the thesis meeting each week who also gave me valuable feedback and suggestions.

I thank Chen Chen for the calligraphy, which perfectly matches the theme of my animation.

He and Kara Gunderson also gave me a lot reference images and videos.

I thank my parents for the financial and emotional support for doing my graduate study in

the United States.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Concepts and Design . 5

3 Background . 8

4 Implementation . 17

5 Results . 32

6 Conclusion and Discussion . 38

Bibliography . 40

iv

List of Tables

4.1 Noise attributes for each layer . 20
4.2 Parameters for interior and exterior lights . 22
4.3 Render time comparison of single or multi-thread ray marching 25

5.1 Number of lights used for different pieces in shot01 36

v

List of Figures

1.1 NASA’s Sky Weather Chart[1] . 1
1.2 Clouds Rendered from Commercial Packages . 2
1.3 Cloud Shot in A-Team, Rhythm & Hues, 2010 . 3
1.4 Cloud Shot in Puss in Boots, DreamWorks Animation Studio, 2011 3
1.5 Partly Cloudy, A Pixar CGI animated short film, 2009 4

2.1 Storyboard . 6
2.2 Screen shot of the toon shaded layout . 6
2.3 Photograph of clouds from an airplane by Chen Chen 7
2.4 Cirrus example [2] . 7

3.1 Data structure of VDB grids. Picture from OpenVDB website [3] 9
3.2 Levelset . 10
3.3 Fractal Noise [4] . 11
3.4 Nuke nodes for RGB lights . 15
3.5 Cloud bunny render and compositing in Nuke Bunny grid downloaded from the Open-

VDB website [5] . 16

4.1 Workflow Chart . 17
4.2 The process of adding displacement . 19
4.3 One Cloud Sample model from vdb view . 21
4.4 Exterior and interior lights . 23
4.5 Implementation of shadow gobos . 24
4.6 One frame of the shadow gobo file in shot03 . 24
4.7 Deep images’ concept and structure . 27
4.8 Deep image of cloud bunny Bunny grid downloaded from the OpenVDB website [5] . 27
4.9 Example of calculating the holdout alpha channel from multiple deep images and

applying it. 28
4.10 Depth calculated from deep images in shot01 . 29
4.11 Customized Photoshop brushes for matte painting 30
4.12 Matte painting for shot01 . 30
4.13 Matte painting for shot02 . 30

5.1 One Cloud Sample . 32
5.2 One Cloud Light Pass . 33
5.3 Shot01 Screenshot . 34
5.4 Shot02 Screenshot . 34
5.5 Shot03 Screenshot . 35
5.6 All cloud clusters in shot01 . 35
5.7 Title Calligraphy by Chen Chen . 36
5.8 Credit . 37

vi

Chapter 1

Introduction

Clouds are formed by droplets of water and ice in the sky in the low temperature environment

at high altitudes. Different types of clouds are classified by their height, formation and shape

characteristic (Figure 1.1). Cloud rendering is always a topic of interest for computer graphic

scientists and visual effects artists because of its varied shape and whimsical movements.

Figure 1.1: NASA’s Sky Weather Chart[1]

1

There are several methods of generating computer-graphic clouds in featured films. For

clouds that are far away from the camera, matte painting is widely used to generate backgrounds

based on what the scene needs. Layered matte-painted clouds can also be animated to create an

illusion of motion within the clouds. For shots that have dramatically changing camera angles and

that require traveling through clouds, volumetric rendering is used for physical accuracy and visual

interest. In some commercial packages such as Houdini and RenderMan, there are also methods

that have been developed in order to create clouds. In a tutorial from the SideFX website [6], the

Cloud Rig tool in Houdini (Figure 1.2a) is demonstrated. On the Pixar website, there is a tutorial

[7] that creates clouds using a SLIM [8] shading network(Figure 1.2b).

(a) Clouds rendered using Cloud Rig in Houdini [6] (b) Clouds rendered using RenderMan [7]

Figure 1.2: Clouds Rendered from Commercial Packages

Volumetric rendering is an accurate way to render fog, clouds, smoke, explosions and fan-

tasy elements. Houdini has its own volumetric renderer that can handle rendering simulations of

Pyro effects. Magnus Wrenninge developed the PVR System [9] for his book Production Volume

Rendering, which is a volumetric renderer that was built in C++. Rhythm & Hues Studios devel-

oped their FELT (Field Expression Language Toolkit) [10] language for volumetric modeling and

rendering which was used in feature film production like A-Team (2010) (Figure 1.3). DreamWorks

Animation studio has developed a cloud rendering method [11] which was first applied in Puss in

Boots (2011) (Figure 1.4), and later in the Croods (2013) and How to Train Your Dragon 2 (2014).

2

Figure 1.3: Cloud Shot in A-Team, Rhythm & Hues, 2010

Figure 1.4: Cloud Shot in Puss in Boots, DreamWorks Animation Studio, 2011

Not only have clouds been used as natural elements for environments in feature films, but

also they have been developed as main characters in some animations like Pixar’s short animation

Partly Cloudy (Figure 1.5). To apply this spectacular natural phenomenon as the driving element

in my animation, a volumetric renderer that supports cloud modeling and rendering was designed

and built.

3

Figure 1.5: Partly Cloudy, A Pixar CGI animated short film, 2009

4

Chapter 2

Concepts and Design

The concept of my animation came from Inner Chapters Enjoyment in Untroubled Ease by

Zhuangzi, a Chinese Daoist [12] philosopher who lived in the 4th century BC. At the beginning of

the story, it says:

“In the Northern Ocean there is a fish, the name of which is Kun, - I do not know how

many li1 in size. It changes into a bird with the name of Peng, the back of which is (also) - I do

not know how many li in extent. When this bird rouses itself and flies, its wings are like clouds all

round the sky. When the sea is moved (so as to bear it along), it prepares to remove to the Southern

Ocean. The Southern Ocean is the Pool of Heaven [13].”

Inspired by Zhuangzi’s philosophy, I combined the concept of the ocean and the sky, which

share some similarities: they are both endless, blue, connected by the horizon, and keep a large

distance from each other. I illustrated Kun - the giant fish - in the sky, swimming around the sea of

clouds. Because Kun is enormously large in scale and is an imaginary creature in Chinese literature,

I decided to depict it by showing only its shadow on the cloud to demonstrate its size and mystery.

The silhouette of a whale was used as a reference for the shape of the giant fish Kun.

Three shots were designed for my animation. After the first draft of the concept storyboard

(Figure 2.1) was approved, some proxy models were placed and camera movement was designed

for each shot. After the cameras were locked in Maya, a layout reel (Figure 2.2) was made in

toon shading in order to display shadow movements in layout. The clouds are stationary while the

shadow and cameras are animated.

1Li is an old Chinese unit of length, 1 li equals 500 meters

5

Figure 2.1: Storyboard

(a) Layout Shot01 (b) Layout Shot02 (c) Layout Shot03

Figure 2.2: Screen shot of the toon shaded layout

There are two types of clouds in my animation - cumulus (See reference Figure 2.3) and

cirrus (See reference Figure 2.4). Cumulus are low-level clouds that might precipitate. They usually

have clear edges and round shapes, and play an important role in my animation. The camera is

close to the cumulus and a traveling shadow of Kun is cast on them, which is a major technical

challenge. Volumetric rendering is required for rendering those clouds, which provided the motivation

for building the volumetric renderer. Cirrus are high level clouds that are feather-like and wispy.

They serve as part of the backgroud in the sky, and I decided to illustrate using matte paintings

because they are far away and would not change its apperance as the camera moves.

6

Figure 2.3: Photograph of clouds from an airplane by Chen Chen

Figure 2.4: Cirrus example [2]

7

Chapter 3

Background

My volumetric renderer is based on a renderer I wrote in the Physically Based Effects class.

The earlier renderer supported levelsets, deep shadow maps, frustum lights, Obj loading, advection

and characteristic maps. However, to fulfill the need of modeling and rendering groups of clouds,

the new renderer needed to be faster and more memory efficient. The desired features include:

1. OpenVDB [14] for grid storage and manipulations.

2. Faster implementation of deep shadow map (DSM) and Ray Marching.

3. Layered Fractal Sum Perlin noise implemented on OpenVDB level-set.

4. Support for rendering deep images.

5. Separate light passes for each light.

6. Python support for a user-friendly interface and flexibility.

OpenVDB is an open source C++ library that is capable of large volumetric data storage

and efficient data retrieval [15]. It was developed by DreamWorks Animation and has been used

for several feature films. OpenVDB is efficient because it uses a sparse tree structure (Figure 3.1).

The library also has useful levelset tools that accelerate various grid manipulation, such as levelset

rebuild, re-sampling, ray intersector and advection. Houdini also supports OpenVDB.

8

Figure 3.1: Data structure of VDB grids.
Picture from OpenVDB website [3]

Levelsets are represented by floating point values in 3D space that indicate the distance

from the point in space to the closest surface. In OpenVDB’s levelset implementation, the surface

is represented by the value 0. The interior of the volume has negative values and the exterior

has positive values. Dense grids are memory expensive as level sets because all grid points have

values, when in practice, values are needed only near the surface. OpenVDB has a narrow band

representation which saves memory and provides constant-time access to the narrow grid. Figure

3.2a showcases the structure of the grid data in vdb view1: the blue boxes are the leaf nodes, which

are actie voxels. The larger orange boxes are internal nodes, and the even larger green boxes are

higher level internal nodes.

The narrow band is the volume where there are exact distance values that represent the

levelset. An interior and exterior narrow band are defined with correspondent bandwidth. In Figure

3.2a, the blue leaf nodes outside the surface indicate the exterior narrow band. A background value

is set for a levelset outside the exterior narrowband when a grid is first built. Normally, the absolute

value of the background value is the exbandwidth 2 multiplied by the voxel size of the exterior narrow

band. As a result, the volume is represented in a simpler and memory-efficient way. The structure of

the same VDB grid is shown in Figure 3.2b. However, the precision of the grid outside the exterior

and inside the interior narrow band is lost since the voxels inside the interior narrowband and outside

the exterior narrowband have a constant signed value which is the background value. In the case of

1vdb view is a commandline tool from the OpenVDB distribution that can view a VDB grid and display its internal
leaf nodes.

2Exbandwidth is the width of the exterior narrowband

9

implementing noise displacement, the magnitude of which depends on the noise amplitude, a larger

narrow band might be required. Details about the implemention of the layered Fractal Sum Perlin

noise is discussed in Chapter 4.

(a) Levelset displayed in vdb view,
with grid nodes turned on.

(b) Structure of the same levelset

Figure 3.2: Levelset

While levelsets are efficient for storing signed distance functions and manipulating them,

they do not properly represent the density of the volume. This issue occurs because the values stored

inside narrowband are distances, which can be largely depending on the interior narrowband and

size of the levelset, and background values inside the narrowband are signed constant. The values

need to be negated and clamped between 0 to 1 to represent the density. When calculating deep

shadow maps or ray marching, fog volumes were used to represent the density field, which have

values between 0 and 1. In OpenVDB, the sdfToFogVolume() tool converts a levelset into a fog

volume, in which all exterior values are set to 0, inside the interior narrowband the value is 1, and

within the interior narrowband the value is clamped between 0 and 1.

OpenVDB distinguishes between a world space and an index coordinate space. An Open-

VDB tree is defined in index space. A transform is associated with each grid to specify the relation-

ship between the world space positions and the index space positions using the worldToIndex() and

indexToWorld() methods. Linear and frustum transforms are currently available in OpenVDB. A

frustum transform can be applied to deep shadow maps (DSM) to store lighting information, and it

is also associated with a camera.

10

Each transform has a map that evaluates the mapping between world space and index space.

Transforms can be created from maps. The implementation inside a map is a matrix that executes

the transformation. For the most common situations, a linear transform for a grid is enough to

represent its scale and the level of detail. However, to build a frustum grid from a camera, there is

not a direct way of creating it from any transform. Instead, A frustum map must be created first

from a camera, followed by a frustum transform.

Layered Fractal Sum Perlin noise was used to achieve the pyroclastic look of the clouds.

Perlin noise [16] is widely used in computer graphics and the film industry because it is a procedural

noise texture that varies with spatial location. Fractal Sum Perlin noise is implemented by adding

several Perlin noises of different scales and parameters to achieve a more detailed and organic look

[17](Figure 3.3).

Figure 3.3: Fractal Noise [4]

In volumetric rendering, ray marching is an approximate representation of a ray penetrating

the volume and returning the accumulated color back to the camera. According to Dr. Tessendorf’s

notes Volumes Modeling and Rendering [18] for the physically based effects class, the rendering

equation for ray marching is:

L(~x, n̂) =

Smax∫
S0

dsKC(~x(s))ρ(~x(s))e
−

S∫
S0

ds′Kρ(~x(s′))

(3.1)

~x(s) = ~x+ n̂s (3.2)

11

In which, the final color of the ray march is L(~x, n̂), it is an integral from distance S0 to Smax where

the density ρ(~x(s)) > 0 along the direction n̂. K is the scatter value, C(~x(s)) is the color at position

~x(s), which is a combination of emission and scatter. e
−

S∫
S0

ds′Kρ(~x(s′))

is a secondary ray march that

accumulate the transmissivity of a light through the density from the light position towards ~x(s′).

It is time-consuming to calculate this information every step during ray marching. Therefore, deep

shadow maps (DSMs) are introduced to calculate and store the light information in advance.

DSMs store the amount of light at depth in the volume. By doing a ray march from the light

position towards the volume, a DSM encodes shadows that are used at render time. A DSM only

needs to be calculated once for each light and volume, and can be reused if the light position and

volume density do not change. DSMs reduce render time compared with calculating the secondary

ray march during render time. The DSM value that is stored in each voxel is:

DSM(~X) =
∑

∆sρ(~X + N̂Ls) (3.3)

In Equation 3.3, ρ(~X + N̂Ls) is the density at position ~X + N̂Ls and ∆s is the length of each

marching step. N̂L is the direction of the secondary ray marching. This equation is an approimation

of −
S∫
S0

ds′Kρ(~x(s′)) in Equation 3.1. The exponential calculation should be executed during render

time because it is not a linear function that can be stored in grid and interpolated later on.

A DSM can be stored in a rectangular grid or a frustum grid. A frustum shape can be

represented as a camera frustum, which can be defined by the camera’s position, view, up, right,

angle of view, near and far plane.

The benefit of storing the exterior lights of a DSM in a frustum grid can be summarized as

follows:

1. The closer to the light, the more detail the DSM will have.

2. When accumulating the light into the frustum grid, there is no need to do the same ray

marching from every voxel in the grid. Instead, the light can be accumulated from the direction of

each ray and stored into each of the frustum grid voxels.

Even though frustum grids have such benefits, they cannot be applied to interior lights.

Because the frustum light shape should surround the bounding box of the object and the light

position needs to be outside the bounding box. Only rectangular grids can be used for interior

lights, and a lower resolution of the interior light grid would reduce memory and time.

12

To approximate the integral of ray marching in Equation 3.1, a step size ∆s are specified.

~xi = ~x+ n̂i∆s (3.4)

Along the direction of n̂, the ray is marching from ~x with a distance ∆s for each step. For each

marching step:

~Xi+1 = ~Xi + n̂∆s (3.5)

∆T = e(−Kρ(~Xi+1)∆s) (3.6)

L = L+ C(~Xi+1)T (1−∆T) (3.7)

T = T∆T (3.8)

∆T represents the transmissivity in each step, T is the accumulated transmissivity, n̂ is the direction

of the ray, ρ(X) is the density at position X, C(X) is the color at position X, and L is the final

color. Normally, the color of the volume comes from the contribution of emission and scatter.

C(X) = Cemission + Cscatter (3.9)

For clouds in which there is no emission, only scatter color is involved, so that the equation

for the accumlation of the lights is:

C(X) = ICSe−DSM(X)K (3.10)

In Equation 3.10, I is the intensity of the light, CS is the material color. K is the DSM scatter

coefficient value.

The OpenEXR 2.0 [19] format supports deep images. A traditional flat image usually

contains red, green, blue and alpha (RGBA) channels in each pixel. A deep image has multiple color

samples per pixel, each containing not only the RGBA channels but also a depth channel. The depth

channel indicates the distance from that sample position towards the camera [20]. Deep.front and

deep.back in each sample indicate the front and back distances of that sample. In my implementation,

13

only deep.front is stored. Deep images enable more flexibility for adjustment in post production and

can calculate hold out matte in Nuke instead of during render time.

There are some changes to the ray marching process when deep images are involved. In

Equation 3.5, the color and transmisivity value are accumulated along the ray. When rendering

deep images, instead of accumulating, these values in each step should be stored separately in a

list of deep samples along with the deep values. More details of deep image implementation and

calculation will be discussed in Chapter 4.

In my cloud animation, I have several groups of clouds that are intersecting each other.

Rendering all of them in one giant VDB grid is not memory efficient, and would prevent adjusting

the position of each cloud individually in Nuke. Introducing deep images solves these problems.

OpenEXR uses the additive color model3 in which red, green, and blue channels are used to

represent the color displayed on a monitor. In cloud rendering, several lights are used to illuminate

one cloud. In the film industry, it is common practice that three lights are set to pure red, green

and blue respectively to light a single volume. Lights are stored in the red, green, and blue color

channels of an image. In Nuke, the color channels can be seperated by shuffle node and the artist can

adjust the color and intensity of each light seperately. Next, the three lights can be added together

to achieve the cumulative result of volume lit by three lights. Adjustment of intensity and color

of different lights that is done in post production saves render time and unnecessary iterations of

rendering.

3The additive color model is represented by mixing the red, green, and blue colored lights. It is used for computer
screen and projectors.

14

Figure 3.4: Nuke nodes for RGB lights

A simple Nuke network of color correcting a deep image rendered with RGB lights is pre-

sented in Figure 3.4. The image was converted from a deep image to a flat image. An unpremultiply

node was used to get the raw color data in each channel. Three shuffle nodes, each corresponding

to a color channel, were applied to separate different channels for color correction. In the example

shown in Figure 3.5a, the key, fill and rim lights were stored into one image. The key light was color

corrected to a warm yellow color with a higher intensity (Figure 3.5b). The fill light had a dim blue

color (Figure 3.5c) and the rim light had a dim brown color (Figure 3.5d). The 3 channels were

merged back into one image (Figure 3.5e). The image in Figure 3.5f resulted from applying other

color corrections.

15

(a) Cloud bunny rendered with RGB lights (b) Key light after color correction

(c) Fill light after color correction (d) Rim light after color correction

(e) Result image, added by the
key, fill and rim lights

(f) Result image with another
set of color corrections

Figure 3.5: Cloud bunny render and compositing in Nuke
Bunny grid downloaded from the OpenVDB website [5]

To better manage the image assets and the Nuke scripts versioning, the Digial Production

Arts (DPA) pipeline was used. The DPA pipeline was developed by Dr. Tessendorf and a group of

DPA students to manage assets, keep track of versions and allocate render jobs in the render farm of

the DPA lab. Commercial packages like Maya, Houdini, Nuke, Mari and Blender are also integrated

into the pipeline, and it is capable of handling the entire production of personal or team-based

animations.

16

Chapter 4

Implementation

In addition to the custom renderer, Maya, Houdini and Nuke were used to previsualize the

rough shape, camera movement, light distribution, and to do final compositing. The volume renderer

handled three major parts: cloud modeling, lighting and rendering. The entire workflow is shown

in Figure 4.1.

Figure 4.1: Workflow Chart

17

The cloud modeling process used an algorithm called “Cumulo” [21] developed by Rhythm

& Hues. This algorithm has been used in multiple feature film productions. The implementation of

the Cumulo algorithm on OpenVDB levelset grids is discussed in this chapter.

In order to get the pyroclastic look of cumulus clouds, 3 layers of noise displacement were

applied to the base levelset of the cloud. To do that, enough exterior narrowband is needed for

the displacement. openvdb::tools::levelSetRebuild() is a fuction that can rebuild the levelset with a

specified narrowband value. This operation can get more precise values outside the grid, or fix an

existing levelset after adding the displacement to get the correct representation of the levelset. The

expanded exterior narrowband from levelSetRebuild() was driven by the amplitude of the displaced

noise and the voxel size of the grid. This relationship can be expressed by Equation 4.1:

exteriorNarrowband =
(amplitude + offset)

voxelSize
(4.1)

In Equation 4.1, amplitude is the amplitude parameter for the Fractal Sum Perlin noise. The

offset is added to the amplitude to make sure that the displacement does not exceed the exterior

narrowband. The voxelSize is grid->voxelSize().x(), in which, grid is an openvdb::FloatGrid::Ptr,

and voxelSize() would return a openvdb::Vec3d which represents the voxel size in 3 axis directions.

The process of one noise displacement is as follows:

1. A levelset rebuild was implemented and the exterior narrowband was specified according

to Equation 4.1. This is dipicted in Figure 4.2a.

2. The active voxels of the levelset were iterated, for each voxel, CPT RANGE1 was used

to find the correspondent closest surface point of the volume. The noise value on the surface point

was added to the current voxel value. The surface of the volume was shifted towards the exterior

area as shown in Figure 4.2b.

3. Another levelset rebuild with a small exterior narrowband was implemented to make the

levelset cleaner (Figure 4.2c) and more accurate. The larger the exterior bandwidth is, the more

unnecessary leaf nodes for the ray intersector2 to process during ray marching. In conclusion, if any

value in a grid is changed, a levelset rebuild is necessary to make the levelset more efficient and

1openvdb::math::CPT RANGE in OpenVDB would find the surface point from which its position to the current
voxel is the smallest.

2openvdb::tools::VolumeRayIntersector<openvdb::FloatGrid>or (LevelSetRayIntersector) would check if a ray hit
a tile or leaf node of a volume and return the time of the start and end of the current intersection.

18

accurate because it is represented by the smallest possible number of nodes for the corresponding

narrowband width.

(a) Levelset after levelset rebuild (b) Adding noise displacement

(c) After second levelset rebuild

Figure 4.2: The process of adding displacement

The attributes that are used to control the Fractal Sum Perlin noise include octaves, fjump,

roughness, frequency, gamma, amplitude, billow and scale. The values chosen for these parameters

are shown in Table 4.1.

A second or third layer of noise can be multiplied by the first layer or second layer of cloud

to achieve a billowy look in the cloud and causing smaller amplitudes in vallies of the noise, and

larger amplitudes on smoother surfaces. The second layer of displacement is defined in Equation 4

[21] :

N2(x)× [clamp(|N1(x)

Q
|, 0, 1)]billow (4.2)

19

In which N1(x) is the first layer of noise and N2(x) is the second layer of noise. billow

controls how much the amplitude of the second layer varies in the vallies or peaks of the first layer

of noise. Q is a scale factor.

Layer octaves fjump roughness frequency gamma amplitude billowy scale
1 2 1 0.3 2.5 0.2 1.8 0.1 5
2 2 3.2 0.24 3.5 0.4 0.6 0.8 4
3 3.5 3.5 0.5 5 1 0.2 0.6 1

Table 4.1: Noise attributes for each layer

After 3 layers of displacement, the volume was advected to achieve the fluffy look of the

cloud surface. The velocity field applied to the volume was generated by the cross product of two

Fractal Sum Perlin noise with different sets of parameters, which maintain the incompressible flow

of the volume and are also random enough to achieve an interesting look.

A mask can be applied to the velocity field used in the advection. In the implementation,

the mask was defined as a linear interpolation between two points specified by the user, and the

value was clamped between 0 and 1. With the mask applied to the velocity field, the advection on

the bottom part of the cloud is more extensive than that on the top. Other kinds of mask can be

applied too if the user specifies them.

A final volume for a single cloud sample viewed from vdb view is shown in Figure 4.3.

20

Figure 4.3: One Cloud Sample model from vdb view

In the implementation of deep shadow maps in a rectangular grids, several issues were

resolved. First, the grid for a DSM need not have the same scale as the density grid. Especially when

rendering interior lights, a less detailed grid is enough to achieve a desired look. Before stamping the

DSM into a grid, openvdb::tools::resampleToMatch() was used to re-sample the original grid into a

sparser grid in which voxelsize is specified by the user.

Second, in order to get the correct density, a fog volume was used instead of a levelset

grid. The reason as discussed in Chapter 3. Because of the differences in voxelsize for density and

light in the grid, some voxels around the surface of the volume should have non-zero DSM, but

do not because of the different interpolations of the density and DSM grid. The artifact looks like

some light has leaked in the shadow area of the volume, where the interpolated values are zero by

default according to the DSM grid, but the density grid has a positive value. To solve this problem,

openvdb::tools::activate() was used first to activate all of the interior voxels of the sparser density

grid, and then openvdb::tools::dilateVoxels() was employed to dilate the active voxels with a small

width. This dilation only convert some voxels on the surface to active voxels, but does not change

the actual value of those voxels. Active voxels in this slightly larger grid were used to calculated the

21

DSM. This method is better than an old method in order to solve the light leaking artifact. The old

method would iterate every voxel and test the value of that voxel to determine if it is larger than 0

to judge if a voxel needs to calculate DSM value.

There are basically two ways to set up the light distribution to fake the multiple scattering

of clouds. Both use Houdini. The interior lights should be distributed in the area where this

phenomenon happens the most. The first method is to scatter some random points inside an eroded

volume. The purpose of the erosion is to ensure the light position is not too close to the surface of the

geometry. Lights positioned in the volume were rendered with red, green and blue color channels.

Experimentation with this method showed that the best locations for interior lights are

around the areas shadowed by the exterior lights. The camera position also made some interior light

positions unnecessary. In a second method, lights are placed by hand to make the process of light

distribution more efficient. In Houdini spheres were created and translated into the shadow area to

represent areas affected by light. These spheres were buried into the volume, and their positions

were evaluated as the interior lights positions. Three lights were rendered in one image using RGB

lighting, and a sequence of the interior lights were rendered according to the camera movement.

A larger scatter coefficient value (K) for DSMs would make sure that the interior lights react

more sensitively towards the density of the volume than the exterior lights, which have a smaller

scatter coefficient. The scatter coefficient value for ray marching should be set consistently in an

XML file to ensure the same alpha channel of the image is rendered by both types of lights. Typical

parameters used for different types of lights is listed in Table 4.2. Figure 4.4 displays an interior

light and an exterior light with the same cloud volume. The light ray would penetrate more in the

case of an exterior light than an interior light. The interior light in Figure 4.4a showcases the leak of

light through the valley of the cloud geometry. Normally, multiple interior lights and three exterior

lights would be rendered for each piece of cloud. In Chapter 5 there is a example of number of lights

in each clouds (table 5.1).

DSM K value Ray march K value
Re-sampled grid voxel size

(if rectangular DSM)
Exterior lights 1.0 1.0 0.1 - 0.2
Interior lights 3.0 1.0 0.3

Table 4.2: Parameters for interior and exterior lights

22

(a) An interior light for a sample cloud (b) An exterior light for a sample cloud

Figure 4.4: Exterior and interior lights

In the animation story, there is a shadow silhouette of a giant fish swimming in the sky. In

order to avoid modeling, rigging and animation of a fish, a gobo was used. The gobo was applied

either to a frustum light or a light with rectangular DSM. When the gobo is applied to a frustum

light, it projected onto the near plane of the frustum grid (Figure 4.5a). For a rectangular DSM

the gobo is projected onto a user specified plane in 3D world space (Figure 4.5b). For each ray that

intersects with the plane, a value on the plane texture’s alpha channel will be returned for shadow

information while calculating the DSMs. The shadow shape cast by the second method is more

accurate and can be consistent if multiple chunks of cloud are rendered separetely. The first method

is faster in terms of using frustum grid to store the DSM. In addition, because different chunks of

cloud might construct a different frustum grid from the same light, it is hard to keep the shadows

on different chunks of cloud consistent.

23

(a) Inplementation of gobo on DSM
stored on a frustum grid

(b) Inplementation of gobo on DSM
stored on a rectangular grid

Figure 4.5: Implementation of shadow gobos

There is a close up shot in which the shadow travels on top of the clouds. A ramp that

is traveling left to right was created for the shadow gobo in Nuke. The fish silhouette was hand

animated in Nuke by rotopainting. A transform node and a blur node were used to make the fish

shape travel slowly from right to left and blur according to the story needs. One frame of the gobo

is shown in Figure 4.6.

Figure 4.6: One frame of the shadow gobo file in shot03

The rendering process is time-consuming, especially for HD images. To make full use of

24

all the cores of the work stations in the studio, Threading Building Blocks (TBB) [22] was used to

implement parallel programming in the ray marching process. Since OpenVDB uses TBB for its

library, TBB was chosen for my implementation as well. A new class was defined in order to be

used in the tbb::parallel-for() function. For each thread, one ray intersector and one grid sampler

were assigned to avoid conflicts. The render time was decreased after the usage of multi-threaded

rendering.

A comparison of single-threaded and multi-threaded render time is shown in Table 4.3. All

images are HD (1920x1080) resolution, and they share the same render parameters, such as scatter

coefficient value, ray marching step size and DSM step size. The same camera angle, light positions

and cloud model were used for each image. The render time took into account all the processes

required to render an image, including reading the VDB grid, building DSMs3, ray marching and

exporting exr images.

No. Hostname Cores Memory Render Time If Paralleled
1 l0003 8 16GB 24’6” no
2 l0003 8 16GB 7’13” yes
3 l0021 4 32GB 8’22” yes

Table 4.3: Render time comparison of single or multi-thread ray marching

In order to have better control over the parameters and the process of rendering, Boost.Python

[23] was used to expose the C++ function in Python. The whole rendering and modeling process

in my renderer was controlled using different Python scripts. The library only required recompiling

for major changes in the C++ source code. An XML4 file was used for render parameters that were

not animated. For example, image resolution, ray marching scatter coefficient value and steps were

stored in XML files. The parameters that are specific to each image were set in Python scripts,

such as grid name, light positions, color, DSM scatter coefficient value, DSM steps and camera po-

sitions. By applying both methods, changing parameters for a render is independent from building

the renderer’s lirary.

My renderer supports deep images by using Kacey Coley’s Deepimage class. The previous

ray marching of a flat image stores one value for each of the RGBA channel in each pixel. The alpha

3Building DSMs is single-threaded in this case. But theoretically this process can also be multi-threaded.
4XML parser was from Dr. Brian Malloy’s Object Oriented Software Design class.

25

channel is calculated by 1 minus the accumulated transmisivity along the ray. To render a deep

image, the steps for ray marching were modified. For each marching step:

~Xi+1 = ~Xi + n̂∆s (4.3)

∆T = e(−Kρ(~Xi+1)∆s) (4.4)

L = C(~Xi+1)∆T (1−∆T) (4.5)

D = (~Xi+1 − Pcam)× Vcam (4.6)

T = T∆T (4.7)

In which, D is the value stored at the deep.front channel. Pcam is the camera position, Vcam

is the normalized camera view. For each deep sample, 1−∆T at the corresponding step defines the

alpha value. Equation 4.7 is optional since the accumulated transmisivity can be calculated from

the list of alpha channels in each pixel. However, a threshold of transmisivity T can still be used to

stop the ray marching to decrease the image size and save memory in render time. Red, green, blue,

alpha and deep.front channels construct one sample along the ray, and a list of unlimited samples

would be set to represent one pixel. Figure 4.7 demonstrates the process of ray marching when

rendering deep images.

26

Figure 4.7: Deep images’ concept and structure

OpenImageIO [24] was used to save the deep image data into an image of OpenEXR [19]

format. Nuke’s DeepToPoint node is a visualization tool for deep images, which converts a deep

image to a 3D camera space with each sample displayed as a colored dot (See example Figure 4.8a),

and the user can view the deep samples at any angle. A flat image of the same deep image is shown

in Figure 4.8b.

(a) Cloud bunny, viewed in Nuke’s camera space (b) Cloud bunny image

Figure 4.8: Deep image of cloud bunny
Bunny grid downloaded from the OpenVDB website [5]

27

One benefit of using deep images in my show is that different pieces of clouds could be

rendered separately. In Nuke, a deep merge or holdout node can calculate the holdout alpha channels

based on the deep data of multiple deep images. More flexibility is also provided with the possibility

of translating the volume in Nuke by applying a deep transform node. One drawback of deep image

compositing is that it has long buffering time and large memory consumption. In order to save time

and memory, the alpha channel that was shuffled from deep merge (hold out) nodes were cached

out to image sequences and were read back in later. In this way the artist can get faster feedback

from Nuke when changes are only made in color correction nodes. An example of calculating and

applying the holdout alpha channel is presented in Figure 4.9.

(a) Cloud 1 (b) Cloud 2

(c) Cloud 3 (d) Holdout alpha for cloud 1

(e) Result of applying the holdout (f) Compositing result

Figure 4.9: Example of calculating the holdout alpha channel
from multiple deep images and applying it.

Deep data in a deep image can be used for simulating depth of field. A depth channel for

a flat image can be used in a ZDefocus node in Nuke to create a controllable depth of field in post

production. The depth value is between 0 and 1, which is a reverse of the deep channel5. A deep

5The deep channel stores the actural distance from camera to the point on object

28

image pixel contains a list of deep values calculated from the ray march process. Nuke calculates

the depth channel based on the deep data when converting the deep image to a flat image.

In the process of compositing, the depth.z channel should be kept in merge nodes or premul-

tiply nodes to keep the depth channel. Since both the ZDefocus node and depth value calculation

take a long time, the depth channel was cached out in advance and read back in. In this way, the

time for buffering the image was minimized and the adjustment of color made more efficient. An

example of a composited depth channel is shown in Figure 4.10.

Figure 4.10: Depth calculated from deep images in shot01

The background of the sky, stars and cirrus are all matte paintings created in Photoshop

from images retrieved from the Internet. See Figure 4.13 and Figure 4.12.

Some customized brushes were made to paint the fluffy feather cloud and scatter the stars

from the universe. The settings for the cloud brush are shown in Figure 4.11a. A soft and organic

base shape is choosen from the default Photoshop tip shape. Based on the pen pressure of the

stylus for the tablet, the stroke displays different size and transparency, which provides more artistic

control when painting the clouds. The settings for the star brush are shown in Figure 4.11b. The

scattering feature is turned on to illustrate the star cluster. In the Color Dynamics tab, there is a

slightly random variance of hue and value on each “star” it scattered.

29

(a) Cloud brush sample (b) Stars Brush Sample

Figure 4.11: Customized Photoshop brushes for matte painting

Figure 4.12: Matte painting for shot01

Figure 4.13: Matte painting for shot02

30

The camera positions and angles were set and animated in Maya to match the layout (Figure

2.2). The first shot is a pan for the introduction of the animation from left to right. This is followed

by a a close up shot of cloud chunks with a shadow traveling trough them towards the camera. The

last shot is a birds’ eye view long shot that looks down on the entire shadow shape. A MEL script

was written to write out the camera position and aim for each frame and save that information out

to files. In the rendering Python script, the camera information was read back in.

31

Chapter 5

Results

Before the actual production of my animation, I used the proposed cloud modeling and

rendering pipeline and created one piece of test cloud in a turn table. The final composited image

of that cloud is shown in Figure 5.1.

Figure 5.1: One Cloud Sample

The raw cloud model was built in maya and exported into a VDB grid using MPConvert1.

1MPConvert is a Maya plugin developed by Kacey Coley using MeshPotato.

32

Three layers of Fractal Sum Perlin noise displacement were applied to the VDB grid. Advections

were also applied according to the same method discussed in Chapter 5. The final model is shown

in Figure 4.3.

Figure 5.2 illustrates the steps of compositing. Three exterior lights were rendered in one

image for each frame. The key light was represented by the green channel, fill light was blue, and

rim light was red. The fill light was color corrected to a dim blue for the environment light from

sky. The key light and rim light were set to light yellow and peachpuff accordingly for a warmer

light color from the sum. Six interior lights were used to simulate the multiple scattering inside the

cloud volume. Numbers 3-8 in Figure 5.2 display the effect of applying each of the interior light.

The interior lights were corrected to a color that varied from light yellow to warmer yellow, in order

to create contrast with the blue fill light.

Figure 5.2: One Cloud Light Pass

After using the pipeline to create the sample cloud, larger scenes were created according

to my storyboard (Figure 2.1). Serveral issues were encountered when applying the same method

to much larger scenes. These include more run-time memory, longer render time and difficulty in

compositing. Some solutions were developed accordingly, such as introducing multi-thread rendering,

optimizing code and caching out intermediate images in compositing. Finished shots are listed in

33

Figure 5.3, Figure 5.4 and Figure 5.5.

Figure 5.3: Shot01 Screenshot

Figure 5.4: Shot02 Screenshot

34

Figure 5.5: Shot03 Screenshot

Figure 5.6 displays differnt clusters of clouds in shot01.

(a) Cloud 1 (b) Cloud 2

(c) Cloud 3 (d) cloud 4

(e) cloud 5

Figure 5.6: All cloud clusters in shot01

Table 5.1 shows how many exterior and interior lights were used in shot01. The cloud sea

35

(Figure 5.6c) has less interior lights because their thickness is not large engough to block that much

sun light and create a larger shadow. Cloud 2 has less interior light because it is partially blocked

by cloud 1.

Cloud 1 Cloud 2 Cloud 3 Cloud 4 Cloud 5
Exterior lights 3 3 3 3 3
Interior lights 12 3 3 0 0

Table 5.1: Number of lights used for different pieces in shot01

The title of my animation, Kun, is writen in the traditional Chinese calligraphy style with

ink, brush and rice paper by Chen Chen (Figure 5.7). The credit of my animation (Figure 5.8)

uses a similar font to match the style of the title.

Figure 5.7: Title Calligraphy by Chen Chen

36

Figure 5.8: Credit

37

Chapter 6

Conclusion and Discussion

A short animation was created based on Zhuangzi’s story. An OpenVDB based volumetric

renderer was built to implement the displacement of Fractal Sum Perlin noise, apply advection, build

deep shadow maps and manage rendering of both flat and deep images. The pipeline consisted of

my own renderer implemented in C++ and Python, Maya, Houdini and Nuke, and was applied to

building cloud geometries, manage lighting, rendering images and compositing the final film. The

flexibility of the pipeline came from the ability to adjust camera inputs, render parameters, and

batch rendering.

There are several potential improvements for the pipeline of rendering clouds as well as my

volumetric render. The advection that came with OpenVDB is slow and inefficient. Characteristic

maps [25], which are mapping of 3D space points from the original state of the volume to the specific

moment of the advections of several velocity grids, can largely improve the efficiency of the advection

and can be reused. More complicated masks for the cloud advection could be used to generate a

varied look of cloud surface. Rendering other kinds of cloud types can be explored, based on how

they are formed and how dense the clouds are.

A higher resolution grid could be applied to achieve a more detailed clouds. A frustum

grid, which was used for exterior lights, can also be applied to the cloud density field. DreamWorks

Animation Studio has been using this method for storing the cloud geometry data in their production,

which not only saves space but can also achieve a heigher level of detail closer to the camera. The

drawback of this method is that if the camera is changing, the frustum grid needs to be recalculated.

In terms of light distribution, the method that was used in this paper involves a lot of

38

manual steps. The other method investigated, using Houdini to scatter points inside the volume

randomly, generated a lot unwanted points and was not efficient. If a technique could be developed

to pick the scattered points based on the key light’s DSM values (so that the interior light would not

be generated in the light area of the key light) and the levelset value range (so that the interior lights

would not be too close to the surface), that would narrow the range for selecting interior lights. The

whole lighting process would be more efficient.

The cloud that I built did not involve any fluid simulation. All coulds in this project were

stationary. For a real cloud, it is usually changing constantly but subtly. Simulations might be

useful to achieve a flow motion for close up clouds. Clusters of clouds can also be animated to mimic

formation and splitting to achieve a more dynamic look.

39

Bibliography

[1] K. Laman, L. Hilbert, J. Lee, and NASA. http://science-edu.larc.nasa.gov/cloud chart/.

[2] Cirrus, http://commons.wikimedia.org/wiki/file:cirrus over warsaw, june 26, 2005.jpg.

[3] OpenVDB About, http://www.openvdb.org/about/.

[4] Fractal noise, http://en.wikipedia.org/wiki/perlin noise.

[5] Cloud model download, http://www.openvdb.org/download/.

[6] Cloud FX in Houdini, http://www.sidefx.com/index.php?option=com content&task=view&id=2498&itemid=261.

[7] Cloud rendering in renderman, http://renderman.pixar.com/view/volume-clouds.

[8] SLIM, Pixar’s RenderMan Studio Shader Tool, http://renderman.pixar.com/view/slim-shader-
tool.

[9] M. Wrenninge. Production Volume Rendering Design and Implementation. 2013.

[10] M. Wrenninge, N. Zafar, J. Clifford, G. Graham, D. Penney, J. Kontkanen, J. Tessendorf,
and A. Clinton. Volumetric methods in visual effects. SIGGRAPH 2010 Course Notes, pages
287–296, 2010.

[11] B. Miller, K. Museth, D. Penney, V. Kulathumani, and N. Zafar. Cloud modeling and rendering
for puss in boots. 2012.

[12] Daoist, http://en.wikipedia.org/wiki/taoism.

[13] Z. Zhuang. Enjoyment in untroubled ease, http://ctext.org/zhuangzi/enjoyment-in-untroubled-
ease.

[14] K. Museth. OpenVDB, http://www.openvdb.org/.

[15] K. Museth. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions
on Graphics, 32:23, 2013.

[16] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296, 1985.

[17] N. Blevins. Fractal noise http://www.neilblevins.com/cg education/fractal noise/fractal noise.html.

[18] J. Tessendorf. Volume modeling and rendering. 2014.

[19] OpenEXR, http://www.openexr.com/.

[20] F. Kainz. Interpreting OpenEXR Deep Pixels. 2013.

40

[21] M. Wrenninge, N. Zafar, J. Clifford, G. Graham, D. Penney, J. Kontkanen, J. Tessendorf,
and A. Clinton. Volumetric methods in visual effects. SIGGRAPH 2010 Course Notes, pages
95–104, 2010.

[22] Threading Building Blocks, https://www.threadingbuildingblocks.org/.

[23] Boost.Python, http://www.boost.org/doc/libs/1 55 0/libs/python/doc/.

[24] OpenImageIO, https://sites.google.com/site/openimageio/home.

[25] J. Tessendorf and B. Pelfrey. The characteristic map for fast and efficient vfx fluid simulations.

41

	Clemson University
	TigerPrints
	5-2014

	Volumetric Cloud Rendering: An Animation of Clouds
	Zhaoxin Ye
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Concepts and Design
	Background
	Implementation
	Results
	Conclusion and Discussion
	Bibliography

