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Abstract

Design of continuum robots, i.e. robots with continuous backbones, has been an active area

of research in robotics for minimally invasive surgery, search and rescue, object manipulation, etc.

Along the same lines, NASA developed “Tendril”, the first long and thin continuum robot of its

kind, intended for in-space inspection applications.

The thesis starts with describing and discussing the key disadvantages of the current state

of the art mechanical design of “Tendril” producing undesirable effects during operation. It then

includes the design specifics of a novel concept for construction of a next generation long and thin,

space-cable, multi-section, continuum cable-like robot, with a modified mechanical design for better

performance. The new design possesses key features including controllable bending along its entire

length, local compression and a compact actuation package. This new design is detailed in two

versions. The first is a planar variant (suited for a 2D workspace), explaining the principle which

allows the cable robot to achieve the above mentioned features. It is followed by a refined spatial

version (suited for 3D workspace), where the functional characteristics are achieved within the

desired aspect ratio of thin (less than 1 cm diameter) and relatively longer length (more than 100

cm) of the robotic cable.

A new forward kinematic model is then developed extending the established models for

constant-curvature continuum robots, to account for the new design feature of controllable compres-

sion (in the hardware) and is validated by performing experiments with the robot in (2D) planar

and (3D) spatial scenarios. This new model is found to be effective as a baseline to predict the

performance of such a long and thin continuum “cable” robot.
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Chapter 1

Introduction

The study of robotics and automation has seen considerable intrigue over the last few

decades. Various kinds of robots have been designed and implemented. We can find them in action

in the traditional sense of being able to do repetitive tasks or useful in an industrial environment

which is potentially hazardous for humans to work (say near nuclear reactors or handling chemical

wastes). Domestic or service robots are seen doing in-house cleaning and even assisting patients in

certain super-specialty hospitals. Biomimetic robots is a relatively new sub-category of study, where

behavior such as manipulation, locomotion or navigation of the robot, in general, is inspired from

its counterpart in nature. The majority of biomimetic robots implement locomotion such as legged

(like that of human, cheetah, cockroach, etc) or limbless locomotion (like that of snakes, worms,

octopus, etc), climbing (like that of a gecko), jumping (like that of locusts), etc. Certain robots

even imitate the morphology of humans (humanoids-human looking robots), ants (swarm robots)

and even starfish (soft robots).

Rigid-link or traditional industrial robots have been commercially successful in manufac-

turing and general factory settings, with a highly structured and well-defined task and work-space.

Outside industry, however, their utility is highly restricted due to their need for predetermined mo-

tion, limited manipulation and grasping abilities. A structure which is adaptable to its surrounding

environment with a fluid like motion is possible by eliminating the hard vertebral links and replacing

with a continuous and flexible backbone. Such robots are called as continuum robots.

Due to the absence of joints, continuum robots can perform terrain-adaptive motion [16] and

full-body grasping [17] operation by means of their full-body compliant deformation. They have the

1



ability to bend at any (selected) points, sometimes with additional extension/contraction/twisting.

This gives a continuum robot a unique advantage over its rigid counterpart, enabling the robot to

avoid obstacles, manipulate with adjustable stiffness over irregularly shaped objects and even adapt

its body shape while maneuvering itself in an unknown and non-uniform environment.

Over the past few years various types of continuum robots have been designed. The three

major design alternatives commonly used are tendon-based approaches, concentric-tube designs

and locally actuated backbone designs [18]. Serially connected constant curvature sections is the

underlying principle in almost all continuum robots [19].

Figure 1.1: Continuum robot with constant curvature segments [1]

Minimally Invasive Surgery has been an active area of application especially for continuum

concentric tube robots with small contour but restricted work environment [20–22]. Drawing inspi-

ration, NASA developed “Tendril”, the first long and thin continuum robot of its kind, intended for

in-space inspection applications [2] (see figure 1.2). Unfortunately, its operation was compromised

due to major limitations in its mechanical (spring backbone elements based) construction. Hence,

the need for a new and improvised design was perceived [18].

2



Figure 1.2: NASA’s Tendril [2]

Such very long, cable like robots, intended by NASA for space applications such as inspec-

tion, remote exploration, and as a support structure, could also have potential terrestrial applica-

tions. These long continuum manipulators could be highly useful in areas of defense and security,

teleoperation in hazardous environmental conditions, and even as an innovative option in traditional

industrial automation [18].

Figure 1.3: Long and slim continuum robotic cable

3



This thesis presents a novel design for constructing multi-section continuum robots (see

figure 1.3) with a special focus on thin (less than 1 cm diameter) and relatively long length (more

than 100 cm), along with its new and novel kinematic modeling and performance evaluation. The

design reported in this thesis is particularly intended to be space-capable as may be perceived by

NASA.

Different new alternative designs were evaluated based on an analysis and extension of the

three core existing continuum robot design types [18]. Various types of continuum and continuum-

style robots (viz., snake and hyper-redundant robots [1, 23–25]) have already been implemented.

A few of these have certain aspects which might be applicable for development of a long thin

robotic cable or rope, with suitability for employment in space, but simultaneously they have other

undesired aspects preventing direct implementation of their current form. In Chapter 2, these robots

are reviewed in detail.

The first generation long thin “Tendril” continuum manipulator was analyzed with respect

to its mechanical design, modeling and control at Clemson under NASA-funded research [26]. “Ten-

dril” produces undesired effects while in operation, such as buckling and torsion under load, as well

as possessing the inability for any local extension or contraction and fixed bending backbone loca-

tions concentrated mainly at the tip. The new analysis presented in Chapter 3 discusses these key

disadvantages due to the current mechanical design structure in detail.

A new and improved robotic cable design concept, illustrating the principle of operation,

together with its planar and spatial prototypes are introduced in Chapter 4. The new spring-loaded

design, which is still tendon-based like its precursor, has the favorable features of a concentric

tube robot, but notably without a bulky actuator system. It overcomes most of the drawbacks of

“Tendril”.

Chapter 5 presents a new and novel procedure for forward kinematic modeling of the new

design for operation in 2D and 3D workspace. The results from the performance evaluation of the

proposed kinematics for the hardware designed are presented and discussed in Chapter 6.

Chapter 7 presents the conclusion summarizing the thesis and and provides suggestions for

future work that could be done based on the lessons learned from the work in this therein.

4



Chapter 2

Literature Review

Figure 2.1: Tentacle robot with incompressible flexible backbone rod

The tentacle robot (see figure 2.1) developed previously at Clemson is a tendon based

continuum robot with a flexible but incompressible backbone (garolite) rod [27]. It has spacers at

fixed intervals which serve as guides for the actuating tendons. It is constructed such that each

section will bend maintaining the curvature within that section approximately constant [1]. It has a

slender backbone profile but lacks local extension or contraction. A modified version was developed

with varying section lengths to achieve greater variety of shapes [28], but still lacked in the same

area (local extension or contraction) as its predecessor. The underlying design cannot be confined

to a compact form say by reeling it inside an actuator housing due to the stiff backbone rod.
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Figure 2.2: JHUs snake robot (Credit:JHU/Vanderbilt University)

A tendon-driven snake robot designed by John Hopkins University (JHU) for laryngeal

surgery (see figure 2.2) has a thin profile of 4mm [29]. The robot consists of a base disk, an end

disk, several spacer disks and four super-elastic tubes called the backbone tubes made from a shape

memory alloy. However, it has significant complexity in degrees of freedom (DOF) and heating

problems due to the use of shape memory alloy [30].

Figure 2.3: Hyper-redundant continuous robot [3]

The hyper-redundant continuous robot [3] is a 48 DOF (see figure 2.3) robot actuated by 24

motors. It is analogous to an elephant’s trunk and similar to another robot with 8 DOF, developed

by researchers earlier [31]. A spring is used as the backbone but with spacers in between and tendons

to actuate bending. This gives the robot the ability to achieve a variety of shapes. However, both

these robots lack local extension and contraction. The springy backbone in the former causes the

same issues as seen in “Tendril”. Also, the higher DOF are at the cost of the large number of motors

required which is undesirable for use in space applications.
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Figure 2.4: Snake-like continuum colonoscope [4]

The snake like continuum colonoscope [4] (see figure 2.4) is composed of a series of universal

joints connected together by rivets with guides for carrying spring tubes. The drive cables are

enclosed in the spring tubes and the entire colonoscope body is covered by an outer metallic mesh.

The drawback, again, is the large number of actuators (20) needed for a relatively smaller length

(60 cm) in spite of having a clean and relatively slim design.

Figure 2.5: Concentric tube robot [5]

Continuum robots developed with a concentric tube structure [5] consist of pre-curved tubes

sliding within each other (see figure 2.5). They are commonly used in Minimally Invasive Surgery.

Some have restricted curving due to the pre-bent nature of the concentric tube design but can

inherently achieve local extension and contraction as well as possessing a thin contour.
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Figure 2.6: HARP snake robot (Credit: Howie Choset/CMU)

The Highly articulated Robotic Probe (HARP) introduced by Carnegie Mellon University

(see figure 2.6) [30] and the multi-turn catheter by Massachusetts Institute Technology (MIT) [32]

are snake robots, working on variations of the principle implemented in the ShapeLock® patent of

USGI Medical [33]. They are basically concentric tubes (or one above the other adjacent tubes by

MIT) having rigid cylindrical links (or modular designed beads in case of MIT) connected by a type

of spherical joint (or spherical bearing surfaces by MIT). The links (or beads) are strung together

by cables, three for the outer tube and one for the inner tube (or three for each of the tandem tube

by MIT).

Both use a leader-follower motion mechanism. In case of the HARP, only the outer tube

is bent via cables. The inner and outer tubes are alternately made rigid/limp by pulling/releasing

all of their respective cables. When all the cables are pulled, friction between the links and the

spherical joints make the concerned tube rigid. When the outer tube is limp it extends/bends into

environment. It is then made rigid. When the inner tube is limp it catches up with the shape

“locked” by the outer tube. The process is then repeated.

In case of the MIT design, each of the (adjacent) tubes can bend/extend while the other

holds the shape (again by friction in between the specially designed beads). Thus, both snake robots

are rigid proximally but compliant distally. Their ability to achieve multiple bends about their entire

length is promising. Both however, have highly complicated mechanical designs and require a large

size actuator package. The former is rather bulky and the latter, especially, needs a contact surface

to enable its motion. All this is unfavorable for a robot operating in space.
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Figure 2.7: Active scope camera [6]

The Active scope camera developed (see figure 2.7), is to our knowledge, the longest type of

continuum styled snake robot (8 meter) [6] to date. But its motion is only possible if its ciliary based

vibration drive mechanism has a contact surface to push against. This is not promising from the

point of view of in space inspection, where minimal contact is desired. Also, it lacks local backbone

extension and contraction.

Figure 2.8: OCTARM (example of locally actuated backbone)
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Figure 2.9: Layer Jamming snake (example of variable stiffness design) [7]

Continuum robots that work on the principle of locally actuated backbone design (see fig-

ure 2.8) and/or the variable stiffness design mostly use pneumatics (see figure 2.9) [7, 34–36] or

hydraulics [37]. These have the advantage of providing both local bending and extension while in

operation, but the complicated routing or valving, the requirement for fluid compression and mul-

tiple independent pressure regulation systems [19] and the resulting larger size, makes this design

approach an unattractive option as a robotic cable system.

Figure 2.10: i-Snake [8]

Figure 2.11: Disposable Endoscope [9]
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The i-Snake (see figure 2.10) [8, 38] uses 5 universal joints having a micromotor per joint

to enable bending. The disposable endoscope (see figure 2.11) incorporates motors inside the

backbone to enable better steering [9] and utilizes variable stiffness (shape-lock) principle. However,

this compromises the size, requires more motors for longer length and has high complexity from the

design point of view.

Figure 2.12: Snake-Continuum hybrid robots [10,11]

Hybrid robots involving snake and continuum elements [10, 11] have been developed to

eliminate the disadvantages each type has individually. See figure 2.12. The image on the left is the

HARP design with nitinol inserted in between inner and outer probe through a channel to provide

more dexterity at tip with the remaining robot being relatively stiffer. The right image is that of

a hybrid robot which possesses spherical joints with an elastic backbone and tendons to control

bending. However, both these structures rely strongly on the snake counterpart (i.e. segmented

backbone) with respect to the mechanical design. This increases their structural complexity and

decreases their ability to maintain a slender profile.
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Figure 2.13: Flexible imaging probe for RAVEN [12]

Figure 2.14: Treebot [13] (copyright John Wiley and Sons, reprinted with permission)

Figure 2.15: Steerable drill [14]
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Springs (compression and/or extension) have been used in several designs of continuum

robots. NASA’s “Tendril” used a spring backbone to make it light and thin [2]. A compliant probe

having a camera was integrated to RAVEN (see figure 2.13), a type of surgical robot [12]. RAVEN

served as a flexible tool, again for minimally invasive surgery, comprising of compression springs for

the distal section, and a spring enclosing a flexible tube for the proximal section. These springs were

mainly used to achieve bending with the help of cables running through them on the inner side, and

thus utilizing their capacity to compress and extend for turning. A tool adapter slides along a linear

insertion axis providing translation of the probe. The “Treebot” (see figure 2.14) has a continuum

section formed by triangular shaped spacers. Mechanical spring rods are used as part of a rack and

pinion arrangement to achieve contraction [13]. The steerable drill (see figure 2.15) developed for

ACL (Anterior Cruciate Ligament) reconstruction uses a series of variable stiffness tension springs

as the backbone. It is wire controlled but has limited bending curvature [14].

Figure 2.16: Robotic catheter [15]

Figure 2.17: Electromechanical sytem and flexible catheter [15]
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Another catheter styled robotic system (see figure 2.16) merges the tendon based approach

with a concentric tube design permitting extension as well as bending. It has a teflon spine being

articulated by tendons, inside an expandable mesh sleeve. However, it is relatively short in length

and larger in width. Also, the motion of the robot is only made possible with a heavy servo apparatus

based testbed (see figure 2.17) [15].

The above review suggests that for a new space-robot design which is long and thin, locally

actuated design approach is to be avoided due to sizing constraints. Design strategies used to

build snake robots are mechanically complicated and result in a relatively heavy structure. The

concentric and tendon-based designs are most suitable due to their simple and relatively light-weight

hardware. However, the bulky actuation system required by almost all of the pure concentric-tube

design approach is also undesirable. Thus, an optimal approach may be to have a tendon actuated

design which has a concentric style arrangement of backbones. This will facilitate incorporation of

the desired local compression/extension feature lacking in pure tendon-based designs. In addition,

springs may also be used to provide a non-fluidic but effective local compression/extension feature

without a dedicated linear actuation. A novel design concept, using these findings and eliminating

the shortcomings in the construction of the current state of the art in spring-tendon designs described

in Chapter 3, is explained in detail in Chapter 4
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Chapter 3

Tendril Experiments

3.1 Hardware and Software Description

Figure 3.1: Tendril body springs connected by threaded links (inset) [2]

NASA’s “Tendril” is a tendon-based design. It comprises of a series of compression and

extension springs that are interconnected (see figure 3.1) using threaded links [2]. “Tendril” has

only two actively controlled bending sections. The compression springs form the two short actuated

sections at the distal end of the backbone and tension springs provide passive bending in the re-

mainder of the backbone. The tendons actuating the top section are offset from the bottom section

by 45° in counter-clockwise direction.
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Figure 3.2: Tendril body housing (NASA) [2]

NASA’s original version of “Tendril” has a body housing (see figure 3.2) with embedded

actuators which can reel the backbone out (extend or retract its entire length) and rotate the entire

limb. However, it lacks the ability to control any local extension or contraction. The actuator

assembly subsequently developed in Clemson [26] is much simpler and designed for verifying the

core features of “Tendril”. This assembly is described next.

Figure 3.3: Motor and pulley assembly used in the lab

Two antagonistic pairs of tendons are attached to each section and terminated at a pulley,

whose motion is achieved (see figure 3.3) by DC motors. Thus, there are four controllable DOFs.

The tendons run along the entire length of the body terminating at the distal end of each section.

The motors have encoders connected to them to provide position feedback. A second version of
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the body was constructed at Clemson from the spare parts of the original “Tendril” for testing and

evaluating its capabilities. Linear amplifiers are used to provide the required power signals to the

motors. The control system uses the interface Qmotor [39] to directly control the motors. A simple

closed loop proportional control algorithm with an error tolerance was implemented.

Figure 3.4: Tendril (truncated for experiments)

For the purpose of experiments the Tendril was truncated (part of the proximal backbone

passive structure was removed), since some of the problematic issues identified previously [26] were

due to the mechanical structure (see figure 3.4) of the actively controllable sections.

3.2 Methods and Observations

The major problem which “Tendril” exhibits is the strong coupling between the sections.

When the section at the end of the robot is moved, it results in misalignment of the proximal sections.

This is mainly due to the relative stiffness of different sections.
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Figure 3.5: Joint buckling due to coupling of springs

When the tendon connected to the end section is pulled to achieve bending, it causes all the

earlier sections (see figure 3.5) to compress/buckle (in this case only one as it is truncated to two

sections).

Figure 3.6: External support to prevent buckling

One potential solution to this problem is to prevent the buckling of springs by using an

external wrapping (see figure 3.6) on the proximal section. A spirally cut simple cable-wrap was

used for this purpose. However, this only serves to restrict its bending capability and also thicken

the backbone, an undesirable feature.
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Figure 3.7: Twisting of spring due to gravity/load

Another problem exhibited by “Tendril” is twisting (see figure 3.7) of the joint springs

themselves under loading. This effect is accentuated due to gravity or any load connected to the

robot.

Figure 3.8: Internal support to prevent torsion

This issue can be reduced using quick-fix provision for an internal support like a bendable

but stiff rod (see figure 3.8). A garolite rod was used for this purpose successfully. However this was

at the cost of significantly reducing the bending ability of the backbone.

The current arrangement of (one) motor and corresponding pulley controlling two tendons

causes slack in one of them. This results in the need to remove the slack by drawing in the appropriate

tendon for some time before beginning the operation. Each tendon could be controlled by a single

motor to prevent this issue.

Gravity causes the robot to sag a little even when it is in a vertical configuration. This
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effect will be more prominent if it is intended to be used in a horizontal configuration for terrestrial

applications. “Tendril” is ideally supposed to follow the actively bending sections. But since the

main body is only composed of passive tension springs, it is largely affected by gravity and exhibits

flopping or sagging behavior.

Thus, in conclusion, “Tendril”, while possessing a compact body and actuator package

(in NASA’s original), is hard to control due to the inherent uncontrollable compressibility of the

backbone, torsion of joints and inability to locally extend or contract. Also, most of its length is

unactuated. Kinematic model-based control has been attempted to improve its performance to some

extent [26], but the undesirable effects are too strong to be used in useful applications. All the above

shortcomings emphasize the need for a significantly improved structural design dedicated for long

and thin robots. A new approach aimed at this need is described in Chapter 4.
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Chapter 4

Cable Robot Design Concept and

its Prototypes

In this chapter, we introduce a new design concept for long thin space-capable robot cables

[40]. We discuss the design concept and its potential via simple prototypes. The overall performance

goal specifications are given below.

4.1 Performance goals

1. Clean and simple mechanical design.

2. Thin profile but relatively long length (1:100 diameter/ length ratio).

3. Controllable bending about the entire cable length.

4. Local controllable compression and extension.

5. Absence of large and heavy actuation mechanism.

“Tendril” utilized springs to ensure a thin profile but ended up facing issues such as uncon-

trollable buckling of backbone elements, twisting of sections and inability to compress/extend locally

[2], as discussed in Chapter 3. Since pneumatics/hydraulics which provide contraction/extension eas-

ily are to be avoided due to sizing constraints, springs are considered essential to achieve the same

(non-fluidic) feature. The inspiration for the robotic “cable” was a modified version (see figure 4.1)
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of the tentacle robot [28] with varying section lengths. In that design tension springs were used

in between the spacers, which were in turn attached to the flexible but incompressible backbone

to achieve limited changes in section length. The new “cable” design, introduced in this thesis,

attempts to utilize compression springs in a similar manner so as to convert the disadvantage of

uncontrollable buckling into a desired feature of local controllable contraction.

Figure 4.1: Modifed tentacle robot

The underlying concept for the robotic “cable” is to combine the most favorable properties

of concentric tube and spring-loaded, tendon driven backbone designs. The core backbone of the

design is made of concentric tubes. However, in extending and contracting the tubes relative to each

other, instead of a bulky mechanism using linear actuators, a spring-loaded tendon based approach

is adopted. The tubes “float” in and out of one another (telescopic arrangement) with springs along

the backbone providing tunable resistance. Tendons are used to pull against the springs. Thus,

the design concept provides both local contraction/extension and bending with a compact actuator

package.

4.2 Initial prototype design

To evaluate the potential of the concept a simple prototype (see figure 4.2) was constructed.
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Figure 4.2: “Cable” initial prototype (alongside a US nickel)

The design features three flexible and incompressible backbone sections (see figure 4.2).

PETG (Polyethylene Terephtalate Glycol-modified) was selected as the material of all three backbone

sections for the initial prototype since it is readily available, bendable and machinable. The distal

end is a rod with the proximal and base sections being tubes. These are arranged in a telescopic

manner (see figure 4.3) as in traditional concentric tube robots [20]. The section diameters are

chosen such that the distal backbone can slide freely inside the proximal adjacent one and that in

turn can slide freely inside the base section.

Figure 4.3: Concentric arrangement of backbone sections

The dimensions of the tubes are as specified in Table 4.1
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“Cable”

section

Outer

Diameter

(mm)

Inner

Diameter

(mm)

Free

Length

(mm)

Length inside next

section (mm)

Distal 3.5 NA 450 150

Proximal 8 6 450 150

Base 12 10 600 NA

Table 4.1: Backbone dimensions for cable’s (initial) prototype

3D printed spacers are used as tendon guides. They have a central circular cavity to allow

the backbone to pass through them and tendons pass through peripheral circular holes. The base

section has equidistant spacers fixed permanently on it. The proximal and distal sections only have

a single spacer fixed permanently at the tip. The remaining spacers for both these sections can slide

freely along their respective backbone sections. ABS (Acrylonitrile Butadiene Styrene) plastic was

used as the material for the spacer since it has a high durability. The dimensions of the spacers are

as specified in Table 4.2.

“Cable”

spacers

Spacer

length

(mm)

Spacer

breadth

(mm)

Central cavity

radius (mm)

Tendon hole

diameter (mm)

Distal 40 25 7 1

Proximal 34 25 4.5 1

Base 28 25 2 1

Table 4.2: Spacer dimensions for for cable’s (initial) prototype

Figure 4.4: Spacers and spring arrangement (alongside a US nickel)

Compression springs (see figure 4.4) are used to hold the floating spacers together at a
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fixed distance with respect to each other and also provide the necessary controllable variation in the

length of the backbone through active compression. All springs have the same dimensions i.e. outer

diameter of 9.53 mm, inner diameter of 7 mm, wire diameter of 0.8 mm and compression rate of

0.21 lbs/in. A fishing line of 0.07 cm diameter serves as the material for tendons. There is a pair of

antagonistic tendons for each section.

4.3 Principle of operation

The resulting prototype is a three section planar continuum robot. Tendon actuation pro-

duces bending in the plane and in the corresponding direction as the actuated tendon. Each section

could be bent in two dimensions with the help of two tendons (2 DOF). The above design has its

resulting backbone (see figure 4.5) approximating a series of connected set of constant curvature

sections [19]. Hence, a constant curvature model may be assumed for modeling and analysis.

Figure 4.5: Constant curvature (alongside a US nickel)

Also since the backbones are concentric and telescoping in nature, each can achieve con-

trolled linear motion with respect to each other. In this case compression springs are used to support

the linear motion (see figure 4.6). The tendons pull the distal backbone section inside the middle

and that in turn inside the base compressing each spring to its solid length. This is counteracted

by the compression springs which, on releasing the tendons help to return the backbones to their

original position by reassuming their relaxed state.
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Figure 4.6: “Cable” prototype (a) Relaxed state (b) Distal section compressed (c) Middle section
compressed (alongside a US nickel)

Thus, the key novelty of our design provides for limited translational motion without requir-

ing any dedicated linear actuators. Thus, the “cable” prototype has 6 DOF in total. This design

is also able to achieve a significant amount of bending (see figure 4.7). A hook shaped bend is also

possible.

Figure 4.7: Maximum bending for distal section (alongside a US nickel)

There is some amount of coupling during compression and between the distal and proximal

section, which is seen in figures 4.6 and 4.7. Coupling is also seen between the distal and proximal
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as well as proximal and the base section during bending. This can be sufficiently compensated

for at the design phase using proper dimensions of backbones and choosing the right stiffness for

springs for each section. However, the prototype is able to achieve almost 83.3% compression for the

distal section (with respect to its normal length). The maximum compression achieved and bending

possible in this type of prototype of the “cable” for each section, is detailed in Table 4.3.

“Cable”

section

Bending radius

(mm)

Free length

(mm)

Maximum

compression (%)

Distal 70 300 60(uncoupled)

83.3(coupled)

Proximal 120 300 60(uncoupled)

Base 220 600 NA

Table 4.3: Bending and compression specifics for cable’s (initial) prototype

If the cumulative maximum compression with respect to the entire structure (length being

120 cm) is considered, it was empirically found to be 64.16% (compressed by 43 cm).

Following the promising characteristics of the first prototype of the new design, a second

prototype was constructed. This prototype is closer to the desired scale (small diameter) of a space-

capable robot cable and also driven by a compact actuator package. Details of the prototype are

presented in the following sections.

4.4 Architecture of the First Long and Thin Prototype

The second prototype robotic cable (see figure 4.8) is a 139 cm long tendon-based three

section continuum arm. About 57% of its length is 0.7 cm in diameter and the remainder is 1.4

cm in diameter. All three sections use nitinol as the main backbone element. Nitinol is an alloy

composed of nickel and titanium and was found to be the most suitable material for the backbone

for developing slim but long continuum cables. Nitinol can be obtained in various forms including

wires, tubes and sheets with profile ranging in millimeters and length in feet. Nitinol’s property of

super elasticity helps it to deform easily and regain its initial shape again. It’s oxide surface provides

low frictional resistance, ensuring smooth sliding of the tubes relative to each other. It is light in

weight and has good tensile strength. Such nitinol tubes can be easily bent and coiled into a reel-like
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mechanism simplifying its storage, like the actuator package for “Tendril” [2]. The distal section is a

rod while the middle and base sections are tubes. The dimensions of the three sections are so chosen

that they can be arranged in a concentric telescoping fashion, with the distal rod sliding freely inside

the middle tube and the middle tube in turn sliding freely in the base tube. The dimensions of the

tubes are specified in Table 4.4.

Robotic“cable”

section

Outer

Diameter

(cm)

Inner

Diameter

(cm)

Free

Length

(cm)

Length inside

next section

(cm)

Distal 0.1 NA 34 15

Middle 0.17 0.13 45 7.5

Base 0.21 0.19 60 NA

Table 4.4: Nitinol backbone dimensions

Figure 4.8: Robotic cable prototype (alongside a US quarter)

Small plastic spacers, which are 3D printed, are used as the tendon guides. The material

used for the plastic is PolyJet photopolymer. They are circular in profile with a central cavity to

accommodate the nitinol backbone elements. Each has three tendon guide holes spaced at 120° along

the periphery of the spacer. The tendon guide hole set for each backbone element is thus spaced at

40° with respect to the adjacent section set. The dimensions of the spacers are specified in Table 4.5.
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Robotic

“cable”

spacers

Spacer

diameter

(cm)

Spacer

width

(cm)

Central cavity

diameter (cm)

Tendon hole

diameter

(cm)

Distal 0.7 2.5 0.12 0.1

Middle 0.7 2.5 0.2 0.1

Base 1.4 2.5 0.25 0.1

Table 4.5: Spacer dimensions

Figure 4.9: Spring supported concentric arrangement of continuum sections

Compression springs (in their relaxed state) hold the spacers in their place at a fixed distance

and provide for the active local compression of their telescoping backbones as shown in figure 4.9.

This translation is achieved using motor driven tendons, avoiding any additional or dedicated linear

actuation mechanism. The material used for the springs is music wire. The spring parameters are

as in Table 4.6. In order to minimize coupling between sections, it was ensured that the springs for

the middle section have double the stiffness constant in comparison with the ones used for the distal

section.

Nylon fishing lines of 0.15 cm diameter with 30 lb load carrying capacity serve as tendons

for this cable robot.

Robotic“cable”

section

Outer

Diameter

(cm)

Inner

Diameter

(cm)

Spring rate

(lb/in)

Length

(mm)

Distal 0.224 0.163 2.3 2.54

Middle 0.3 0.188 11.60 3.81

Table 4.6: Spring Parameters
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4.5 Functioning of the Robotic Cable

The constructed robotic cable consists of three backbone elements, which can be approx-

imated as a series of constant curvature sections. The actuation caused by pulling on a specific

tendon produces bending in a plane containing the tendon and corresponding direction. TThe three

tendons can effect bending in two dimensions and extension/contraction (limited by springs) i.e. 3

actuated DOF are provided per section. Since the robotic cable comprises of three sections, it has

9 actuated DOF in total.

The springs are normally (with the robot unactuated) in a relaxed state. However, on

pulling on all three tendons simultaneously, the concentric and telescoping arrangement of the tubes

enable limited controlled translational motion of the sections relative to each other. In the case of

retracting all three tendons of, say, the distal section, the springs on it will contract up to their base

length, thus counteracting the force, and that backbone section will slide inside the middle tube.

The coupling between the sections will cause the springs on the middle section to compress as well

to some extent and that in turn will move inside the base section. When the tendons are relaxed,

the springs will acquire their initial relaxed state and the sections will return to their positions as

before. The springs thus support finite controllable translational motion.

Figure 4.10: Actuation mechanism

The actuator assembly consists of 9 standard continuous rotation RC servo motors spaced

at 40° which are arranged on an acrylic base plate as shown in figure 4.10. All the motors fit on a
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base plate in a square of area 0.1122 m. of The technical specifications of the actuators are given

in Table 4.7. Each of the 9 tendons is connected to an individual servo via a pulley mechanism.

Each servo is provided with an encoder (analog line sensor) to provide position feedback, with the

encoder technical specifications as in Table 4.8. The servos are controlled using Arduino [41] boards

(see figure 4.11). Every section of the robotic cable may have one such board.

Figure 4.11: Arduino microcontroller

Robotic“Cable”

section

Working

Voltage (V)

Stall

Current(A)

Stall Torque

(kg-cm)

No-load

speed

Distal 5 1.8 12.2 50 rpm

Middle 5-7.4 3 @ 8.5V 19.3 @ 7.4V 60°per 0.16 s

at 7.4v

Base 5-7.4 3 @ 8.5V 19.3 @ 7.4V 60°per 0.16 s

at 7.4v

Table 4.7: RC Servo parameters

Dimensions

(mm×mm)

DC Operating

Voltage (V)

Stall Current

(mA)

Optimal sensing

distance (mm)

7.62×13.97 5 25 3

Table 4.8: Encoder sensor parameters

The RC servos enable a simple control scheme. They have high torque capacities which

actuate the robotic cable effectively. They are easily controlled using the Arduinos. The encoders

give pulses or counts corresponding to the motor shaft position enabling determination of the cable
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tip.

In order to make such a novel continuum robot to work, the effects of compression need to

be taken into account in addition to the effects resulting from the length changes of the tendons.

Chapter 5 explains the need and approach to a new procedure for kinematic modeling for this cable

robot in 2D and 3D arrangement.
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Chapter 5

Kinematic Modeling

The novel combination of springs and concentric tubes in the design introduced in this

Thesis offers significant physical advantages as discussed in the previous Chapter. However, the

spring loading requires the development of new models [42] to describe the kinematics of the design.

In particular, in order to achieve desired configurations (shapes), relationships between such shapes

and measurable quantities (i.e. tendon lengths and/or encoder counts) must be established. Such

relationships are introduced in this Chapter.

5.0.1 Modeling approach

There are a wide variety of conventions and coordinate frame choices that exist in the

literature to determine kinematics of a continuum robot [43]. We choose two particular frame

conventions and use it throughout the thesis - one for planar and other for spatial modeling. The

details are explained in sections 5.1.2 and 5.2.2 respectively.

5.1 2D Planar Model

We first consider the situation of operating the new design of Chapter 4 in the plane. Note

that the introduction of springs in the design does not alter the fundamental property of constant

curvature of each section.
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5.1.1 Determination of Length Change and Compression Variables for

the Robotic Cable as a Function of the Encoder Counts

The initial baseline modeling for the robotic cable is based on the continuum robot forward

kinematic formulas introduced in [44]. The key issue is to incorporate the effects of coupling between

bending and extension/compression.

Figure 5.1: Continnum section schematic and geometrical variables

Continuum sections are approximated by constant curvature models using shape variables

viz., λ, φ and θ as shown in figure 5.1. λ gives the radius of curvature, φ determines the elevation

(or bending) angle and θ gives the angle of the bending plane as a function of length changes

qj =

[
ljl lj2 lj3

]>
for each section (here j = 1, 2, 3) with respect to the unactuated original

length L0 for each section. rj is the distance from the center of the manipulator to the location of

the tendons. The forward kinematic equations derived in [44] can be implemented as shown below

for each section.

λj(qj) =
(3Lj0 + lj1 + lj2 + lj3)rj

2
√
l2j1 + l2j2 + l2j3 − lj1lj2 − lj2lj3 − lj1lj3

(5.1)

φj(qj) =
2
√
l2j1 + l2j2 + l2j3 − lj1lj2 − lj2lj3 − lj1lj3

3rj
(5.2)
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θj(qj) = tan−1

{ √
3(lj3 − lj2)

lj2 + lj3 − 2lj1

}
(5.3)

The arc length can then be computed as sj = λjφj .

sj =
(3Lj0 + lj1 + lj2 + lj3)

3
(5.4)

The above formulation, however, cannot be applied directly to the new continuum robotic

cable due to the added unique feature of actively controllable contraction in its middle and distal

sections, which is coupled with its bending. To model this effect, we introduce a uniform compression

factor cj ∈ R0
− in the kinematic formulation in λ and in s as below,

λj(qj) =
(3(Lj0 + cj) + lj1 + lj2 + lj3)rj

2
√
l2j1 + l2j2 + l2j3 − lj1lj2 − lj2lj3 − lj1lj3

(5.5)

sj =
(3(Lj0 + cj) + lj1 + lj2 + lj3)

3
(5.6)
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Figure 5.2: Modeled and apparent length changes

Figure 5.2 (top) shows a single tendon controlling a backbone of length initial length L0,

and is connected to a motor through a pulley. When the backbone is in relaxed state length change

lobserved = 0. When all the tendons are pulled equally as in figure 5.2 (middle), the spring-loaded

backbone compresses and lobserved becomes L − L0. This is the length change observed (or in this

case same as compression cj) at the actuator (or encoder). In a generic case as in figure 5.2 (bottom)

however, both compression and bending occur simultaneously and length change lobserved contains

both compression and bending effects.

Hence, to use the kinematic models, the new effective backbone length change will be in-

corporated as in (5.5) and (5.6). This length change lmodeled will be used in developing a kinematic

model for this design and is given as lmodeled = lobserved − cj . This terminology observed length

change (length change without modeling spring-induced compression) and modeled length change

(length change with compression subtracted from base section length) will be used frequently in the
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following subsections of the Chapter. The length changes used in the new kinematic formulation

will be the modeled length changes.

The compression cannot be distinguished from the observed length change, as a separate

entity, when the tendons are pulled. It is incorporated in all the observed length changes itself.

In order to justify and validate the introduction of compression in the modeling, experiments were

performed to obtain the compression term separately from the observed length changes when the

tendons are pulled to achieve bending.

The modeled change in length qj in every case, however, is now not with respect to the initial

length L0 but with the modified initial length (Lj0 + cj) where cj ∈ R0
− reflects compression (due

to the springs) in addition to the modeled length changes to account for the coupling. A method to

compute cj and relate the model to measurable encoder counts is given next.

To simplify the initial analysis and reduce the effect of gravity, the cable was placed on a

table to analyze the 2D planar performance of its middle section and distal sections (as shown in

figure 4.8), since these are the sections having springs in their design wherein compression has to

be taken into account in the kinematics. Let lji(i = 1, 2, 3) indicate the modeled length changes

qj of the three tendons for given jth section of the robot. Similarly σji(i = 1, 2, 3) are the encoder

counts to the corresponding length changes. Since we consider 2D operation, only lj1 and lj2 will

be considered in this section of the Chapter. The index j can be either 2 or 3 depending on whether

the analysis is for the middle or distal section of the cable respectively.

Note that the models (5.2) and (5.6) provide key information regarding the modeled length

changes corresponding to given shape φ and s of the distal section. Note also that in the plane, θ

can be neglected. Actuating tendon 1 for the distal section (i.e. modeled length change is l31) for

the planar case, (5.2) simplifies to (5.7). Similarly, equation (5.4) simplifies to (5.8).

φ3(q3) =
2l31
3r3

(5.7)

s3 =
3(L30 + c31) + l31

3
(5.8)

Equation (5.7) shows that a linear relation exists between bending angle φ and modeled
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length change l31 (since r3 is constant), which can be represented as,

φ3(q3) = p3l31 (5.9)

where p3 =
2

3r3
is the slope constant of the line.

We next relate φ to encoder counts σ31. Table 5.1 shows experimental data obtained by

actuating tendon 1 for the distal section. A general procedure for obtaining the data is explained in

detail in 5.2.1. The table illustrates the mapping relating the encoder pulse counts (σ) corresponding

to given shape variables of the distal section.

Encoder Counts

σ

Angle φ

(rad)

Radius λ

(cm)

Arc Length s=λ φ

(cm)

0 0 Inf 34

14 0.4794 69.89 33.52

31 0.6365 51.76 32.95

57 0.9070 35.6 32.29

81 1.0948 28.05 30.71

107 1.3175 22.46 29.59

145 1.5167 18.612 28.23

Table 5.1: 2D experimental data for distal section (average values)

The data obtained from the experiments suggested that line fit approximations could be

used to establish a relationship between φ and encoder pulses σ i.e.

φ3(q3) = q3σ31 (5.10)

where q3 is slope constant of the line.

Knowing r3 and φ3 from the experimental data, l31 can be computed by equation (5.9) and

a relationship can be established between modeled length change l31 and the corresponding encoder

count (σ31) by equating equations (5.9) and (5.10). The resulting linear model relating modeled

length changes and encoder counts for the distal section is hence given by,

l3i = m3σ3i (5.11)

38



where m3 =
q3
p3

. Note that there is no shape of interest when the encoder count σi is zero (and

hence when length change li is zero).

On repeating the experiment several times the slope constant average m3 was computed to

be m3 = −3.648× 10−5(m).

Next knowing L30, taking s3 from experimental data and l31 computed in (5.11), the com-

pression factor c31 can be determined from (5.8) as

c31 = s3 −
l31
3
− L30 (5.12)

Note that while bending the robot, when there is no modeled length change l31, the arc length s is

equal to the initial default length L30 and hence compression c31 is zero.

The coupling compression factor c31 was then plotted with respect to the corresponding

encoder counts σ31. The plot showed a linear correlation between them. The resulting linear model

relating compression and encoder counts for the distal section for a general tendon is hence given

by,

c3i = n3σ3i (5.13)

After multiple tests, the slope constant n3 was computed to be n3 = −4.12× 10−4(m).

Encoder Counts

σ

Angle φ

(rad)

Radius λ

(cm)

Arc Length s=λ φ

(cm)

0 0 Inf 34

37 0.17 260.64 44.31

55 0.2754 158.43 43.63

91 0.3752 113.89 42.73

118 0.475 88.9 42.25

126 0.5365 78.28 41.99

151 0.6032 68.67 41.42

Table 5.2: 2D experimental data for middle section (average values)

The above procedure was repeated for the middle section. Table 5.2 shows the experimental

data obtained by actuating one tendon of the middle section. After several experiments, the slope

constant averages m2 and n2 were determined to be m2 = −1.329 × 10−5(m) and n2 = −2.36 ×
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10−4(m) using the same procedure described above for the distal section.

Using these derived changes in modeled lengths and coupled compressions as a function of

encoder counts in the forward kinematic equations (5.5), (5.2) and (5.3), the kinematic performance

of the robotic cable can be predicted effectively (see Chapter 6). The unactuated original length

Lj0 is now augmented with additional compression values cji for the middle and distal sections.

The modified formulations, using (5.11) and (5.13) for describing the shape configuration of the

continuum cable are expressed in (5.14), (5.15) and (5.16).

λj(σji) =

(3(Lj0 + nj
3∑
i=1

σji) +mj

3∑
i=1

σji)rj

2mj

√
σ2
j1 + σ2

j2 + σ2
j3 − σj1σj2 − σj2σj3 − σj1σj3

(5.14)

φj(σji) =
2mj

√
σ2
j1 + σ2

j2 + σ2
j3 − σj1σj2 − σj2σj3 − σj1σj3

3rj
(5.15)

Since the robot is analyzed in a planar orientation thus far, the angle of bending plane θ is

zero. In general, it will be given as,

θj(σji) = tan−1

{ √
3(σj3 − σj2)

σj2 + σj3 − 2σj1

}
(5.16)

5.1.2 Direct Kinematic Modeling

The convention for assigning frames for the purpose of planar modeling is as shown in

figure 5.3. A local coordinate frame is assigned at the base of the constant curvature section of the

continuum robot under consideration such that the origin of the frame coincides with the center of

the manipulator. We align the positive y-axis along the tangent to the section. The frame can in

general rotate about the backbone through angle θ, but since the model is planar, in this section

of the Chapter we assume that the frame can only translate along frame axis in the bending plane.

Thus, with θ being zero, a positive bending angle φ will produce bending about the positive z-axis,

such that when φ becomes 180° the tip of the section will touch the positive x-axis. The plane of

each section is, thus, modeled in the local xy-plane.
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Figure 5.3: Transformations used to get HTM for planar motion

The homogenous transformation matrix (HTM) for the jth section [44] can now use the

shape variables derived in equations (5.14) and (5.15) as function of the encoder counts. The HTM

is derived by using following sequence of transformations to model planar bending.

j−1
jT = Px(λj)R

T
z (φj)Px(−λj) (5.17)

The coordinate frame assigned to the base of the jth section of the continuum cable robot is

first translated through distance λ about the x-axis, rotated clockwise through angle φ about z- axis

and finally translated through distance λ along the current negative x-axis to reach the tip frame of

the robot section.

Since the shape variables λj and φj have been shown in the previous section as functions of

the measurable encoder counts (σji) in equations (5.14) and (5.15), the HTM will be expressed as,

j−1
jT =



cos(φj(σji)) sin(φj(σji)) 0 λj(σji)(1− cos(φj(σji)))

− sin(φj(σji)) cos(φj(σji)) 0 λj(σji) sin(φj(σji))

0 0 1 0

0 0 0 1


(5.18)

Considering that the robotic cable is a 3 section continuum arm, the complete HTM will be
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given as,

0
3T = 0

1T ·
1
2T ·

2
3T (5.19)

Since there are no springs in the base section, 0
1T can be computed using the direct kinematic

formulas as in (5.1), (5.2) and (5.3). However, it is still necessary to relate its shape variables to

measurable variables. The method is the same as described in the previous section for the middle

and distal sections, except that compression term is absent and only the linear relationship between

length changes and the encoder counts needs to be used for computation of 0
1T .

This completes the forward kinematic model for 2D operation of the long and slim continuum

robotic cable.

5.2 3D Spatial Model

We next generalize the kinematic modeling approach of section 5.1 to the spatial case.

5.2.1 Determination of Compression and Length Change Variables for

the Robotic Cable as a Function of the Encoder Counts

In case of the general spatial arrangement, the procedure of computing modeled length

change directly from φ as in the planar case cannot be used since angle φ is now dependent on more

than one modeled length change. Similarly, λ is also dependent on compression and modeled length

changes caused by multiple tendons. The situation becomes a case of an underdetermined system

of equations with more unknowns (four - compression and three modeled length changes) than the

number of independent equations (three - kinematic equations (5.5), (5.2) and (5.3)). Thus, for

a given shape of a a section of the cable, a simple linear mapping of modeled length changes and

compression with the encoder counts, as in the 2D case, cannot be used. Hence, a different approach

is needed.

As noted earlier, the compression is inherent in all the three (observed) length changes visible

when the tendons are actuated. Physically when tendons are actuated, it is seen that compression

occurs first in most cases (since it is easier than bending). Bending will also begin slowly as it

is coupled with compression. Once maximum compression is reached pure bending will be seen.
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Let us assume that compression is equally distributed in the three length changes. Hence, by

logical intuition, let the maximum of the three observed length changes be the compression c. If

that compression is subtracted from the three observed length changes the residual modeled length

change will cause the effective bending.

Figure 5.4: Continnum section schematic and geometrical relationship

Knowing λ, φ and θ for a given configuration of a section, the observed length change for a

tendon (l1observed
) can be computed as follows from basic geometry.

The total length of the tendon will be equal to the arc length subtended by it. The backbone

arc length (say L1) is L1 = λφ, where λ is the radius of the arc and φ is angle subtended by it.

Note we assume that the tendons curve to match the backbone curvature, a reasonable assumption

for the cable robot hardware. However, since the section is bending in a plane at an angle θ with

respect to the x-axis of the reference frame (as shown in figure 5.4), a projection (equal to rcosθ)

from the reference to the bending plane, needs to be subtracted from the radius λ. The parameter

r, as specified earlier, is the distance from center of the manipulator to the location of the tendon.

This is illustrated in figure 5.4. Thus, the arc length is L1 = φ(λ−rcosθ). Since we are interested in

observed length change l1observed
of the tendon, this will be (L1−L0), where L0 is the tendon’s default

(or relaxed state) length. Thus, the observed length change for the jth section can be generalized
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as below:

lj1observed
= φj(λj − rjcosθj)− Lj0 (5.20)

The observed length changes for the remaining two tendons can be computed by moving θ

through an angle of 120° and 240° respectively (see figure 5.1).

lj2observed
= φj(λj − rjcos

(
2π

3
− θj

)
)− Lj0 (5.21)

lj3observed
= φj(λj − rjcos

(
4π

3
− θj

)
)− Lj0 (5.22)

Since, compression cj is assumed to be the maximum length change of the three observed

ones computed in (5.20) to (5.22), the modeled length changes can be then computed as follows,

lj1 = l1observed
− cj (5.23)

lj2 = l2observed
− cj (5.24)

lj3 = l3observed
− cj (5.25)

We observe from equations (5.23) to (5.25) that compression and the modeled length changes

can be expressed using the kinematic models as functions of shape variables as defined below,

cj = gc(λj , φj , θj) (5.26)

lj1 = glj1(λj , φj , θj) (5.27)

lj2 = glj2(λj , φj , θj) (5.28)

lj3 = glj3(λj , φj , θj) (5.29)

We next empirically determine the relationship between the shape variables and the en-

coder counts. Experiments were performed with the cable across the achievable range of spatial

configurations, to compute the shape variables λ, φ and θ for the distal and middle sections with
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reference to the measurable encoder counts. Approximately 200 data points were collected for the

distal section and about 130 for the middle section. The details of the data is provided in Appendix

A and B respectively, for purpose of brevity. It provides a set of data points sampling the following

relationships,

λj = hλ(σj1, σj2, σj3) (5.30)

φj = hφ(σj1, σj2, σj3) (5.31)

θj = hθ(σj1, σj2, σj3) (5.32)

These data points obtained from experiments were substituted in equations (5.20) to (5.22)

to obtain a corresponding set of data points for observed length changes given encoder counts. Then

using the assumption that maximum of the observed length changes is compression, equations (5.23)

to (5.25) were used to obtain modeled length changes.

In order to verify whether the this assumption for compression was valid, the modeled length

changes and the compression computed for a given configuration were substituted in the kinematic

formulations (5.5), (5.2) and (5.3). The shape parameters matched the experimental values of λ, φ

and θ, validating the (logical) intuitive assumption.

Thus, substituting a finite sampled data set for equations (5.30) to (5.32) in (5.26) to (5.29),

we obtain a finite sampling of the functional relationship between the controllable kinematic variables

compression and modeled length changes (which define the shape configuration) given the actual

measurable encoder readings:

cj = fcj (σj1, σj2, σj3) (5.33)

lj1 = flj1(σj1, σj2, σj3) (5.34)

lj2 = flj2(σj1, σj2, σj3) (5.35)

lj3 = flj3(σj1, σj2, σj3) (5.36)

Once the nature of these four functions is known, the kinematic modeling will be complete.

Since we have a large amount of data, we can approximate these functions with the resulting in-
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terpolation functions to then be able to provide the controllable variables from arbitrary encoder

readings as inputs. The first step would ideally be to plot the dependent and independent variables.

However, since the length changes and compression (dependent variables) are a function of three

encoder values (independent variables), the plotting will be a four dimensional case and the output

not make sense visually. Hence, a polynomial regression method was adopted.

Polynomial regression establishes a nonlinear relationship between the value of the indepen-

dent variable and the conditional mean of the dependent variable. As it is considered as a statistical

estimation problem the regression is linear in-spite of fitting a non-linear model to the data. In

other words, the regression function is linear in the unknown coefficients that are estimated from

the data. Polynomial models are useful in predicting and estimating the nature of responses for

given values of input variables. The approach gives a sense of how the input variables can cause the

output variables to respond to a particular value and direction. It one of the most common models

used for analysis of designed experiments. Second-order polynomial models are mostly utilized in

engineering applications [45].

The generalized second order polynomial used herein for the spatial case of the robotic cable

is as given below,

Y = α0 + α1x+ α2x
2 (5.37)

where Y is the dependent variable (one of (5.33) to (5.36)), x is the independent variable (encoder

values) and αi(i = 0, 1, 2) are the model coefficients. However, since here the dependent variables

(being compression and length changes) each being dependent on three independent parameters

(encoder values), multiple regression needs to be used [45]. Hence, the complete polynomial model

for a given section j will be given as in (5.38) where Yj is either compression cj or any of length

changes lj1, lj2 and lj3, since all are (independent) polynomial functions of the encoder counts

σji(i = 1, 2, 3).

Yj = (αj0 + αj1σj1 + αj2σ
2
j1)(αj3 + αj4σj2 + αj5σ

2
j2)(αj6 + αj7σj3 + αj8σ

2
j3) (5.38)

There are 9 independent coefficients in this multiple polynomial regression model. The total number

of model coefficients αjk (including the dependent ones generated in the multiple regression process)
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becomes 27 (k = 1, 2, .., 27). In total, four such polynomial models are implemented (one each for

cj , lj1, lj2 and lj3). The model coefficients were determined as follows:

1. A data set of shape variables λ, φ, θ and the corresponding measured encoder counts σ is

collected. This was achieved using the following procedure (used in measurements for 2D

model as well),

(a) Corresponding to each (set of three) encoder data point, for a particular bending plane

angle θ (in case of measurements used for the planar model θ is not needed), we take

images of the articulating section such that the bending angle φ will increase from 0° to

desired angle in arbitrary steps in the plane.

(b) A grid having squares of 1 inch was used as the backdrop plane for measurement reference.

(c) For every curved position of the section for a given configuration of θ, width and height of

the curved section was measured in Paint.NET (free image and photo editing software).

Paint.NET provides the number of pixels corresponding to the figure (in this case width

and height measuring lines)drawn.

(d) Using the grid as reference, these length measurements were converted into actual widths

and height of the section for given orientation.

(e) The radius λ and bending angle φ is then computed using geometry (see figure 5.5),

Figure 5.5: Measurement of radius and bending angle of an arc

λ =
H

2
+
W 2

8H
(5.39)

φ = 2sin−1
W/2

λ
(5.40)
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2. Equations (5.20) to (5.22) are used to compute the observed length changes for every case.

3. Maximum of the three observed length changes is selected as compression in each case.

4. Equations (5.23) to (5.25) are used to compute the modeled length changes.

5. Then the resulting large set of {σji|cj , lji, lj2, lj3} data points are interpolated in MATLAB®

using structure (5.38) to find four interpolated functions of (5.33) to (5.36).

All the coefficients for each of the four polynomial model are listed in the Appendix C.

Using these derived function approximations for changes in lengths and coupled compres-

sions as a function of three encoder counts in the forward kinematic equations (5.2) to (5.3) and

(5.5), the performance of the robotic cable can be predicted. The modified kinematic formulation

for describing the shape configuration of the continuum cable in spatial arrangement is as expressed

in (5.41), (5.42) and (5.43). In these expressions, cjest is the estimated compression from the polyno-

mial function (5.33) while lj1est , lj2est and lj3est are estimated length changes from the polynomial

functions (5.34) to (5.36) respectively. All these functions are of the form (5.38).

λj(σji) =
(3(Lj0 + cjest) + lj1est + lj2est + lj3est)rj

2
√
l2j1est + l2j2est + l2j3est − lj1est lj2est − lj2est lj3est − l1est l3est

(5.41)

φj(σji) =
2
√
l2j1est + l2j2est + l2j3est − lj1est lj2est − lj2est lj3est − l1est l3est

3rj
(5.42)

θj(σji) = tan−1

{ √
3(lj3est − lj2est)

lj3est + lj2est − 2lj1est

}
(5.43)

5.2.2 Direct Kinematic Modeling

The convention for assigning frames for the purpose of spatial modeling is as shown in

figure 5.6. A local coordinate frame is assigned at the base of the constant curvature section of the

continuum robot under consideration such that the origin of the frame coincides with the center of

the manipulator. We align the positive z-axis along the tangent to the section. The frame rotates

about the backbone through angle θ (selecting the plane in which bending is to occur i.e. bending

plane) and translates along the frame axis through λ in the bending plane. At a given bending plane

angle θ, a positive bending angle φ will produce bending about the positive y-axis, such that when
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the φ becomes 180° the tip of the section will touch the positive x-axis of the corresponding bending

plane (i.e. translation by λj about local x then rotate by θj about z to put frame at section tip).

The plane of each section is, thus, modeled in the local xz-plane.

Figure 5.6: Transformations used to get HTM for spatial motion

The homogenous transformation matrix (HTM) for a jth section [44] can now use the shape

parameters derived in equations (5.41), (5.42) and (5.43) as function of the encoder counts. The

HTM is derived by using following sequence of transformations to achieve spatial bending.

Tj = Rz(θj)Px(λj)Ry(φj)Px(−λj)RTz (θj) (5.44)

The coordinate frame assigned to the base of jth the section of the continuum cable robot

is first rotated through angle θ about z-axis, then translated through distance λ about the x-axis,

then rotated through angle φ about y-axis, then translated through distance λ along the negative

x-axis and finally rotated clockwise through angle θ about z-axis to reach the tip frame of the robot.

Let cos(φj(σji)) = cpji, cos(θj(σji)) = ctji, sin(φj(σji)) = spji and sin(θj(σji)) = stji. As

in 2D, since the shape variables λj and φj have been shown in the previous section as functions of

the measurable encoder counts (σji) in equations (5.41), (5.42) and (5.43) then the HTM obtained
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from (5.44) is,

j−1
jT =



cpjict
2
ji + st2ji ctjistji(cpji − 1) ctjispji λjictji(1− cpji)

ctjistji(cpji − 1) ct2ji + cpjist
2
ji stjispji λjistji(1− cpji)

−ctjispji −stjispji cpji λjispji

0 0 0 1


(5.45)

Considering that the robotic cable is a 3 section continuum arm, the complete HTM will be

the product of the three HTM for j = 1, 2, 3. Again, as in the 2D case, since there are no springs

in the base section, 0
1T can be computed using the direct kinematic formulas as in (5.1), (5.2) and

(5.3). However, it is still necessary to relate its shape to measurable parameters. As in the 2D case,

this can be achieved by using the same method described in previous section for the middle and

distal sections, except that compression term is absent and only the polynomial regression function

approximations for length changes (in terms of the encoder counts) need to be used for computation

of 0
1T . Also, an additional R4×4 homogeneous rotation matrix, given for our particular hardware

arrangement as RTz (
2π

9
), has to be taken into consideration to account for the relative arrangement

of tendons in the adjacent sections (eg: starting from an ith tendon for base section a 40° clockwise

shift will lead to the ith tendon of middle section and another 40° clockwise shift will lead to the ith

tendon of distal section). Hence, the complete HTM for the spatial operation of the cable will be

given as,

0
3T = 0

1T ·RTz (
2π

9
) · 12T ·RTz (

2π

9
) · 23T (5.46)

This completes the forward kinematic model for the general 3D case of the long and slim

continuum robotic cable.
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Chapter 6

Results and Discussion

In this Chapter we compare results generated using the kinematic model of Chapter 5 with

those measured using the cable robot hardware of Chapter 4. The objective is to assess the ability

of the kinematic model to predict the shape (configuration) of the hardware.

6.1 2D Planar Model

The modified direct kinematic equations derived in subsection 5.1.1 of Chapter 5 were

implemented in MATLAB® providing the encoder counts as inputs and computing the various shape

variables (viz., λ, φ and s) of the robot. The results were then compared with the corresponding

results with the cable robot hardware of Chapter 4 to consider the effectiveness of the new modeling

procedure on the performance of the robot in 2D space.

Considering the cable as a single section continuum cable consisting of the distal section

alone, the results obtained were as in figures 6.1-6.6. The general procedure for obtaining the data

in the plot is described in detail in section 5.2.1.
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Figure 6.1: Actual and calculated radius of curvature λ relative to encoder counts for the distal
section bending left
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Figure 6.2: Actual and calculated bending angle φ relative to encoder counts for the distal section
bending left
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Figure 6.3: Actual and calculated arc s length relative to encoder counts for the distal section
bending left
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Figure 6.4: Actual and calculated radius of curvature λ relative to encoder counts for the distal
section bending right
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Figure 6.5: Actual and calculated bending angle φ relative to encoder counts for the distal section
bending right
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Figure 6.6: Actual and calculated arc length s relative to encoder counts for the distal section
bending right

For the distal case, the results for λ are unimpressive in comparison to the middle section

results to follow next. This can be attributed to the fact that the compression caused by the springs

used in this section is heavily coupled with its bending. The orientation of tendons for the section in

this particular 2D arrangement also affects its accuracy (explained in more detail after figure 6.11).

The procedure was then repeated for the middle section, and figures 6.7-6.9 show the out-
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come.
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Figure 6.7: Actual and calculated radius of curvature relative λ to encoder counts for the middle
section
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Figure 6.8: Actual and calculated bending angle φ relative to encoder counts for the middle section
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Figure 6.9: Actual and calculated arc length s relative to encoder counts for the middle section

The computed kinematic variables using the linear models are generally in good agreement

with the experimental kinematic variables. This can be attributed to the fact that the springs used

in this section are relatively stiffer in comparison to the distal section. The orientation of tendons

for the section in this particular 2D arrangement also plays a major role (which is explained after

figure 6.13) in getting superior results.

6.1.1 2D Forward Kinematics Result

These shape variables were then fed into the direct kinematic model obtained in subsection

5.1.2 of Chapter 5 to obtain the position variables (x, y) of the cable tip.

The x and y coordinates indicating the position of the tip of the robotic cable were computed

first considering the cable as a single section continuum cable consisting of the distal section alone.

The coordinates are plotted with reference to their corresponding encoder counts provided as inputs.
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Figure 6.10: Y-coordinate of distal section tip relative to encoder counts
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Figure 6.11: X-coordinate of distal section tip relative to encoder counts

Figures 6.10-6.11 show the output given by the kinematic model taking as input the cal-

culated shape variables value in comparison with the actual values obtained from the hardware of

Chapter 4. The actual coordinates were computed by substituting experimental shape variables in

2D HTM obtained previously in (5.17), while the model coordinates were computed by substituting

the modeled shape variables in the 2D HTM obtained in (5.18). The results are reasonable for the

y-coordinate of the tip position. For the x-coordinate, however, the results are not as satisfactory.
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The main reason for this may be attributed to various unmodeled effects. One major factor is the

inherent friction present on the 2D experimental surface. Also, the robot is designed for operation in

3D space but is arranged in a planar manner. Thus, due to the orientation of tendons (120°apart),

only a component of the force actuating the tendon intended to cause bending, deflects it in the

horizontal plane in this section. The tendon tries to deflect in a plane angular to the horizontal

surface, thereby thrusting the section on the surface. This results in more frictional forces. Thus,

friction and tendon orientation affects the results obtained significantly. Another factor can be the

unmodeled effects of the motor and sensor systems.

The same procedure was repeated for the middle section. Figures 6.12-6.13 depict the

comparative results.
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Figure 6.12: Y-coordinate of middle section tip relative to encoder counts
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Figure 6.13: X-coordinate of middle section tip relative to encoder counts

The results agree quite well. They imply that the linear approximations incorporated in the

modeling to account for the effect of the spring-loaded tendon design are justified. Also, the middle

section is less compressible as compared to the distal section and there is absence of compressive

coupling with the base section (which lacks springs). The actuating tendon for the middle section

was also oriented in the horizontal plane where bending is actually intended. All this helps the direct

transfer of the total forces to achieve bending.
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Figure 6.14: XY-coordinates of multi-section cable tip relative to encoder counts

59



Finally, the robotic cable was operated as a two section continuum manipulator cable (middle

and distal sections operating since those incorporated the spring-loaded concentric tube aspect of

the design) and the 2D HTM for the multi-section version, as a function of the encoder inputs, as

in (5.19), was computed. The resulting position of the end of the robotic cable provided by the

kinematic model was plotted in comparison with the actual position. Figure 6.14 shows excellent

results for this two section version of the cable.

Thus, the linear regression method is quite effective in the kinematic modeling of such multi-

section long and slim continuum robotic cables having local compression feature using spring driven

tubular backbone elements.

6.2 3D Spatial Model

The modified direct kinematic equations derived in subsection 5.2.1 of Chapter 5 were

implemented in MATLAB® providing the encoder counts as inputs and computing the various shape

variables (viz., λ, φ and θ) of the robot. The results were then compared with the corresponding

results with the cable robot hardware of Chapter 4 to consider the effectiveness of the new modeling

procedure on the performance of the robot in 3D space.

Considering the robot as a single section continuum cable consisting of the distal section

alone, the results obtained were as in figures 6.15-6.17.
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Figure 6.15: Actual and calculated radius of curvature λ for the distal section in 3D space
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Figure 6.16: Actual and calculated bending angle φ for the distal section in 3D space
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Figure 6.17: Actual and calculated bending plane angle θ for the distal section in 3D space

The procedure was then repeated for the middle section, and figures 6.18-6.20 show the

outcome.
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Figure 6.18: Actual and calculated radius of curvature λ for the middle section in 3D space
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Figure 6.19: Actual and calculated bending angle φ for the middle section in 3D space
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Figure 6.20: Actual and calculated bending plane angle θ for the middle section in 3D space

In general, the results for each shape variable for both the distal and middle sections operated

individually as cable robots are good. The deviation in the estimation can be attributed to various

unmodeled factors like effect of gravity opposing the bending motion (deviating the hardware from

constant curvature) to some extent, encoder noise, slippage at the pulley, the minimal free rotational

DOF due to the concentric arrangement of backbone elements, friction between tendons sliding
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through holes etc. The most prominent is the free rotational DOF. Since the surface of nitinol is

very smooth (almost frictionless) it enhances the relative sliding between the backbone sections, but

simultaneously results in limited free rotation about the point where the last tendon spacers and

spring (for that backbone section) connects to the adjacent backbone section when multiple tendons

try to bend the section. However, the rudimentary multiple polynomial regression method is able to

track the kinematic shape estimation reasonably well when the only input provided are the encoder

values. This implies that the analytic approach used to compute the modeled length changes and the

compression variables incorporated in the kinematics to account for the effect of the springs-loaded

tendon design is justified.

6.2.1 3D Forward Kinematics Result

The shape variables were then fed into the direct kinematic model obtained in section 5.2.2

of Chapter 5 to obtain the position variables (x, y, z) of the cable tip.

The x,y and z coordinates indicating the position of the tip of the robotic cable were

computed, considering the robot as a single section continuum cable consisting of the distal section

alone. Figures 6.21-6.23 depict the results. As in 2D, the actual coordinates were computed by

substituting experimental shape variables in 3D HTM obtained previously in (5.44), while the model

coordinates were computed by substituting the modeled shape variables in the 3D HTM obtained

in (5.45).
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Figure 6.21: X-coordinate of distal section tip in 3D space
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Figure 6.22: Y-coordinate of distal section tip in 3D space
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Figure 6.23: Z-coordinate of distal section tip in 3D space

The same procedure was repeated for the middle section. Figures 6.24-6.26 depict the

results.
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Figure 6.24: X-coordinate of middle section tip in 3D space
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Figure 6.25: Y-coordinate of middle section tip in 3D space
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Figure 6.26: Z-coordinate of middle section tip in 3D space

The model predicts the location of all three coordinates for the cable tip quite well, for each

individual section under consideration. It can be used to make the robot achieve an orientation

agreeably close to the desired orientation.

As in the 2D case, the robotic cable was finally operated as a two section continuum ma-

nipulator cable and the 3D HTM for the multi-section version, as a function of the encoder inputs,
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as in (5.46), was computed. Figures 6.27-6.29 show the results for this two section version of the

cable, which demonstrates very good correspondence between model and hardware.
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Figure 6.27: X-coordinate of multi-section cable tip in 3D space
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Figure 6.28: Y-coordinate of multi-section cable tip in 3D space
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Figure 6.29: Z-coordinate of multi-section cable tip in 3D space

In general, for all the cases depicted in this subsection of this Chapter, the errors in the model

can be attributed to those resulting from the assumptions made in the shape variable estimation,

as mentioned earlier and discussed further in Chapter 7. Using these coordinates as starting point

references, another mode of sensory feedback (say vision) can be employed and a suitable control

system could be designed to drive the cable to a more precise position, if desired.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

The objectives of the research presented in this thesis were to design a novel long (more than

100 cm) and thin (less than 1 cm diameter) continuum robotic cable suitable for NASA’s needs, the

construction of its first prototype and it’s actuation assembly and finally validating a new kinematic

model derived to predict its performance in both planar and spatial work-space operation. The

successful attainment of all these goals were discussed in detail in the preceding Chapters. In this

Chapter, we summarize the results and provide suggestions to augment this research.

Chapter 2 provides an extensive review of the present state of the art in the field of contin-

uum, snake and corresponding hybrid robots from the point of view of suitability for a new design

with space application and sizing constraints in mind. This review helps to narrow and shortlist the

most satisfactory and feasible design approach for an improved space-capable cable robot. The find-

ings of the review led to our selection of a spring-loaded, tendon actuated design with a concentric

style arrangement of backbone elements.

In Chapter 3, the disadvantages of the “Tendril” design, which is NASA’s current (and only)

version of such a long and thin continuum robot, especially with respect to its mechanical structure

were identified and analyzed through simple experiments. A considerable portion of the “Tendril”

being passive, uncontrollable compressibility of the backbone, torsion of joints and inability to locally

extend or contract were the most prominent drawbacks inferred from the experimental analysis. The

analysis gives insight into the approach for a new structural design.
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Avoiding the existing disadvantages in the current “Tendril” design analyzed in Chapter 3

and exploiting the possibilities for a potential optimal approach for a new hardware from Chapter

2, we implement simple functional prototypes to verify the feasibility of a new design concept for

the cable. This is discussed in detail in Chapter 4. The design consists of three backbone elements

arranged in a telescopic concentric arrangement. The distal and middle sections of the cable robot

have compression springs held at uniform distance by spacers serving as guides for tendons. Each

section has its end spacer attached permanently to the corresponding backbone section. The base

section is devoid of springs and only has tendon spacers at a fixed distance (all attached permanently

to the section). When the tendons are pulled for a particular section, the design produces (constant-

curvature) bending of that section in a plane corresponding to the direction of the actuated tendon.

The compression springs and telescoping nature of the backbone enable limited but controlled linear

motion of the (distal and middle) backbone sections relative to each other. The first prototype

analyzed in Chapter 4 is a planar version of the cable to validate the concept’s prospect with manual

actuation. The refined prototype is a spatial version incorporating the new features at desired sizing

and developing an actuation mechanism to drive the cable robot. The actuation assembly consists of

nine RC servos, nine encoders and an Arduino microcontroller. These two prototypes are the first of

this type of continuum manipulator. The design features a compact actuator package (5.05×10−3m3)

in comparison with most of the current state of the art continuum robots used for Minimally Invasive

Surgery (eg: CREST [46] requires a space of about 0.1026 m3). This novel design concept and its

implementation with its space-saving actuation system is one of the main contributions of this thesis

to the construction of multi-section, long and thin continuum cable-like robots.

Chapter 5 evaluates the need for a new kinematic modeling method arising out of the spring

loading and concentric nature of the new robotic cable design. A new kinematic model is introduced.

The first step involves introduction of compression (c) as a variable in the established formulation

of continuum variables (λ, φ and θ) and its computation. This is augmented by the frequent use

of observed and modeled length change terminology introduced in this Chapter. Experiments are

performed with the refined cable prototype collecting data related to the shape configuration of the

robot’s middle and distal sections to operate in both 2D and 3D workspace. For the 2D arrangement,

computation of compression and length change variables is straightforward as it reduces to a simple

case and results in a deterministic set of equations representing its forward kinematic variables. In the

2D kinematics, linear regression is used to model the length change and compression as a function of
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encoder inputs using the corresponding 2D experimental data collected using the prototype. For the

3D arrangement, however, compression and length change variables depend on multiple independent

variables leading to an underdetermined system of equations. Hence, an analytic approach based on a

logical intuitive assumption is used (i.e. compression is equally distributed in the three length changes

and the maximum of the three observed length changes is the compression c). This assumption is

later verified to be reasonable when comparing the resulting model to empirical data from the

prototype. In the 3D kinematics introduced in Chapter 5, multiple polynomial regression is used to

model the length changes and compression as a function of encoder inputs using the corresponding

3D experimental data collected using the prototype. The modeled shape variables are substituted

in the 2D and 3D direct kinematic equations so as to predict the position coordinates of the robotic

cable tip and thus validate the (new) planar and spatial forward kinematic model’s performances

corresponding to the cable hardware’s operation in 2D and 3D workspace. This new modified

kinematic formulation for 2D and 3D operation is the other significant contribution of this thesis for

modeling of such long and thin continuum cable-like robots.

In Chapter 6, the results of the new 2D and 3D kinematic formulations for determining

continuum (shape) variables are validated by implementing them in in MATLAB®, once using

the model (linear and polynomial regression respectively) generated shape variables and then with

shape variables extracted from the experimental data. Note that the model generated shape variables

were functional approximations of the encoder inputs only. The same procedure was repeated for

the forward kinematic equations for 2D and 3D workspace. The results agree well, in general, for

both 2D and 3D case. The deviation in the estimation in certain cases in 2D operation, is due to

the orientation of tendons, fiction on the experimental surface and the unmodeled effects of motor

and sensor systems. In 3D the estimation is less accurate at certain data points due to the effect

of gravity opposing the bending motion (deviating the hardware from constant curvature) to some

extent, the minimal free rotational DOF due to the concentric arrangement of backbone elements,

friction between tendons sliding through guides, etc. Thus, introduction of the new compression

variable in the kinematic formulation and linear and polynomial regression methods to estimate a

given configuration as a function of encoder counts gives effective baseline results to evaluate the

performance of this new kind of robotic cable.
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7.2 Suggestions for Future Work

The research work proposed in this thesis is an initial investigation into space-capable con-

tinuum cable robots. This section provides ideas and suggestions which could be implemented to

extend and improve different aspects the work. The potential improvement areas include construc-

tion of refined prototypes of the robotic cable using this design concept, refined actuation module

designs with additional features, incorporation of a vision system and dedicated modeling and control

algorithms.

The nitinol backbone elements used in the current prototype were procured by trial and

error since except size, we found no information about their physical and material properties as a

reference. This was also the case with the compression springs. Judicious selection of both nitinol

and springs helped to provide reasonable bending as well as local compression/extension in the

refined prototype. However, more research would be helpful in selection of nitinol rods/tubes in

terms of their material, size and physical properties. Nitinol has a convenient combination of super-

elastic bending and strength exists and is available commercially. A more systematic selection of

compression springs having more optimal stiffness and size can play a significant role in superior

performance of the cable robot. The current prototype can serve as a reference for future selection of

nitinol and springs. A relatively significant improvement to the current design should be the method

used to fix the plastic spacers onto the nitinol. Adhesive (a combination of Epoxy and Superglue)

was used for the current refined prototype of the cable due to the sizing restraint. This adhesive

is only just sufficient to hold the spacer with nitinol, when the tendons are actuated. However,

it restricts the evaluation of the maximum bending/breaking capacity of the nitinol, since at high

bending the spacer can seperate. An alternative super-strong adhesive (matched to the two surfaces

in contact) or another approach needs to be developed without increasing the size of the cable robot.

Nylon fishing lines used as tendons herein, though thin and strong, show signs of stretching after

continuous and prolonged use. This can affect the accuracy of the encoder readings for a given

configuration. An alternative for the tendon material will also be helpful. The selection of plastic

used for spacers can be investigated more to reduce friction (as they slide along with the springs on

the backbone as well) between tendons and their guide holes on the periphery of the spacers.

A suitable soft covering sheath can be added to enclose the entire length of cable and thereby

protect the tendons, spacers and the nitinol backbone from inadvertent damage. An actuator unit
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consisting of a coiling mechanism on the lines of the “Tendril” housing [2] can be constructed. Since

the nitinol can be easily bent and coiled, such a system will be useful to simplify the storage and

mobility of the robotic cable for practical use in space or terrestrial applications in future. It will also

enable rotational base motion of the entire cable as in the original “Tendril”. Two additional motors

(brushless DC preferred for their efficient operation) would be required, one for coiling and other for

the rotation of the entire cable base. Once the maximum bending capacity of the nitinol (and/or

breaking capacity of tendons/spacers) is estimated for each section, motors with higher torques can

be employed for more bending of each section. Simple line sensors (as encoders) for sensing position

were used herein due to their compact size. However, better and more accurate position sensors can

also be employed. String encoders can also be used to obtain the observed lengths directly instead of

relying on encoder counts. This would avoid the analytic (assumption) method used for estimating

compression as then the system will no longer remain under-determined.

As the cable is to be potentially used for inspection applications in space, a vision system

(say a CCD as in “Tendril” [2]) may be incorporated at the robotic cable’s tip. Firstly, such a system

will be useful from practical point of view for example, in remote explorations. It may also serve as

an additional sensory feedback made to be used as an input in model and control algorithms to be

developed in the future to achieve desired shape configuration and navigate more precisely.

The forward kinematic model developed in Chapter 5 is one possible method of modeling.

Other alternative approaches (for forward as well as inverse kinematics) may also be verified to

find the most optimal/accurate method. Dynamics and models of torsion have not been utilized in

the current strategy. In fact, a torsion model may be useful to minimize the error due to the free

rotational DOF in every section. The effect of gravity can also be added in the model for superior

spatial performance. A suitable control algorithm is needed to use feedback (from the position

and/or vision sensors) to ensure precise navigation and manipulation through a given unstructured

environment.

Considering the suggestions enumerated above, the design strategy for this new class of

multi-section continuum cable robot and its novel kinematic modeling introduced in this thesis to

predict its performance can be used as a baseline to ultimately realize a “rope-like” robotic cable

with huge potential for deployment in real-life space and terrestrial scenarios of need in the near

future.
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Appendix A 3D Experimental Data for Distal Section

Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

6 0 2 9.572918331 188.8002913 -30

11 0 10 15.27775374 117.6496909 -30

14 0 10 18.37657928 97.01948276 -30

16 0 10 19.63947292 91.61207997 -30

17 0 11 20.42112682 86.28957374 -30

19 0 11 21.38982709 84.15602047 -30

27 0 13 19.32584763 93.84543672 -30

31 0 21 28.93697296 62.76525066 -30

36 0 21 31.67482397 57.75802124 -30

45 0 26 33.01057556 54.96868194 -30

50 0 39 35.25664668 51.32523778 -30

3 0 0 1.716550902 1083.280135 30

3 2 0 6.661866151 279.1046435 30

9 5 0 7.822772318 239.2012672 30

12 9 0 11.86827588 155.9625872 30

14 18 0 12.64843765 144.7885805 30

23 26 0 14.2396521 127.9737978 30

28 30 0 17.48583867 104.4263132 30

36 40 0 19.39949737 92.79638634 30

40 48 0 20.63941915 86.35969513 30

44 57 0 24.74456212 71.03096484 30

51 73 0 32.79439503 53.25448686 30

3 0 1 6.212192082 306.3270573 -45

4 0 1 11.38482351 165.7209861 -45

6 0 1 11.33634942 168.9767936 -45

11 0 8 14.11980841 133.4587542 -45

15 0 11 15.92156894 117.4605561 -45

19 0 17 17.31321751 106.4485417 -45

22 0 20 20.92507415 88.04889787 -45

29 0 26 19.55640991 93.21723819 -45

38 0 31 27.32293549 67.08729964 -45

41 0 33 33.12310254 54.04967839 -45

47 0 38 35.00168103 49.97079651 -45

3 2 0 4.688951325 407.3401767 45
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

7 5 0 7.162976676 260.8145729 45

9 10 0 7.856279323 234.6429811 45

14 18 0 12.28707899 148.678111 45

19 23 0 9.399669457 196.8908631 45

25 29 0 13.60912272 134.5444382 45

30 37 0 16.38678327 110.3555303 45

35 44 0 18.54919407 94.87509469 45

40 55 0 25.05025753 70.40546849 45

45 68 21 30.66461396 55.23219287 45

45 71 25 31.58757679 54.37274032 45

2 0 2 4.241893733 451.3663596 -60

5 0 5 11.34809364 168.2033399 -60

12 0 7 12.90917665 146.128836 -60

18 0 17 13.49780301 138.2568449 -60

20 0 26 16.55611399 111.8233176 -60

27 0 32 17.05903708 107.3353504 -60

35 0 37 21.38890729 85.99287324 -60

44 0 47 29.9912073 61.00707695 -60

51 0 51 31.62339602 57.20555028 -60

57 0 57 29.18747135 60.1151254 -60

1 5 0 5.167453799 365.3804616 60

2 11 0 12.14636651 150.8556604 60

6 15 0 13.29191887 139.0028658 60

12 20 0 14.5438233 126.8243097 60

14 24 0 17.78135849 102.5189811 60

17 26 0 26.39046881 68.06722873 60

17 29 0 28.32731933 63.33983368 60

21 34 0 27.41142135 65.22344274 60

22 46 12 32.68152635 54.12382131 60

22 48 17 31.97723667 54.92927117 60

22 50 23 32.05475492 54.03326594 60

0 0 1 9.500796766 203.3435502 -75

2 0 1 12.31246029 155.8333141 -75

4 0 11 21.35818095 89.74673139 -75

5 0 16 24.0549603 79.29619206 -75

6 0 23 29.00964746 64.9648111 -75
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

6 0 35 31.59388331 59.21244157 -75

6 0 45 33.74639597 54.350938 -75

6 0 56 36.6057628 50.0980929 -75

6 0 70 39.04561411 46.60560021 -75

6 0 85 44.11534934 40.88852801 -75

6 0 91 49.61499516 35.76844313 -75

2 19 0 4.083643229 467.4551858 75

5 20 0 5.877146471 325.4430574 75

6 30 0 9.42334651 202.204482 75

9 33 0 13.73736471 139.0601744 75

13 38 0 16.47008375 115.000693 75

14 45 0 18.38500531 102.2200135 75

16 47 0 19.45064431 96.05636044 75

16 52 0 28.65704011 65.14470388 75

17 53 13 22.13496544 83.87309925 75

17 54 13 31.41728019 58.91480057 75

17 54 29 27.08543361 67.5213872 75

1 0 0 0.792530485 2438.345197 90

2 0 0 4.272200334 449.445488 90

6 3 0 7.872854113 243.8946621 90

9 7 0 9.707299682 197.3187676 90

12 12 0 11.40620246 166.5123557 90

25 25 0 12.64979662 147.117701 90

37 29 0 15.68319397 116.4129147 90

42 37 0 17.77501101 101.56726 90

44 40 0 17.57875203 101.7465238 90

48 44 0 17.15541711 103.4601473 90

51 49 0 20.43187748 86.89213907 90

0 4 11 10.27204916 187.8505776 -90

0 14 16 12.84678936 148.2187178 -90

0 22 25 17.7788094 105.8395297 -90

0 24 27 19.86938563 94.03779379 -90

0 26 35 22.53133732 82.15220518 -90

0 35 47 23.74429103 76.26430188 -90

0 47 54 29.17816978 60.9508224 -90

0 52 68 30.89768409 57.16428355 -90
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

0 60 81 35.11862922 49.03281199 -90

0 69 87 39.72232599 42.88224715 -90

0 76 96 45.59240736 37.07024028 -90

1 0 4 10.19073903 181.2015355 -105

1 0 8 11.7118342 158.4494703 -105

2 0 13 15.94351349 116.7428344 -105

6 0 16 19.63248836 94.12893757 -105

8 0 22 19.93824636 92.43436271 -105

8 0 28 33.255695 55.08757977 -105

8 0 30 35.20220974 51.62970773 -105

14 0 36 38.33152679 47.23957907 -105

14 0 44 43.36205545 41.27001276 -105

14 0 51 47.49209569 37.18345287 -105

14 0 56 52.05329882 33.40024478 -105

2 3 0 3.010318955 633.2511052 105

4 3 0 10.32058641 183.9642799 105

7 3 0 12.00998008 158.2800371 105

10 6 0 12.82571785 147.3159801 105

13 8 0 15.86565113 119.1572788 105

16 8 0 16.00672009 117.7705987 105

16 11 0 18.43186128 102.0895992 105

16 13 0 22.30912519 84.5763522 105

16 15 0 22.2967314 83.72932686 105

16 18 0 21.16138559 87.56671639 105

16 24 0 26.48853356 69.08263064 105

0 0 4 6.599567502 281.1378426 -120

0 0 8 13.68176027 135.5006438 -120

0 0 11 18.29798414 100.9969205 -120

0 0 15 20.07715008 91.07659764 -120

3 0 18 23.667583 76.42372974 -120

9 0 24 26.8668609 66.74558888 -120

12 0 28 28.00178852 63.35904588 -120

13 0 37 35.46536407 49.83041205 -120

13 0 43 37.52096066 46.82711906 -120

13 0 50 43.10863496 40.25993693 -120

13 0 54 45.55151063 37.82175148 -120
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

0 3 0 3.489443488 530.5843199 120

0 4 0 6.101767897 303.7123757 120

0 5 0 8.167803114 227.442945 120

0 6 0 12.397808 148.8436173 120

0 8 0 15.78140245 116.4835647 120

0 10 0 18.19075526 100.5812996 120

1 19 0 23.24481175 78.37137538 120

1 21 0 28.63080166 62.98731648 120

1 27 0 31.49066481 56.75476689 120

1 28 0 35.20168696 50.85928981 120

1 29 0 36.13911977 49.46815045 120

0 0 4 6.293608856 298.8681524 -135

0 0 6 13.42549391 140.0385598 -135

0 0 11 18.2393267 101.6588336 -135

0 0 17 23.771265 77.39014887 -135

0 0 21 27.24608278 67.27567708 -135

0 0 23 27.86879263 65.52334525 -135

6 0 33 32.44624058 56.03801925 -135

8 0 40 33.1154681 54.23908896 -135

8 0 48 39.76625985 44.0752094 -135

33 0 57 42.76338588 40.85208226 -135

33 0 74 52.68296927 32.40554657 -135

0 2 0 3.830161146 491.4263302 135

0 4 0 17.97851538 104.1787153 135

0 5 0 20.88559249 90.19497026 135

0 8 0 20.61920204 91.51908314 135

0 11 0 21.18205176 89.21792207 135

0 15 0 23.07174705 81.73140307 135

0 15 9 19.63648618 94.07682114 135

0 16 9 23.17659809 80.52710371 135

0 17 9 24.70133751 75.76391742 135

0 21 15 23.88197706 76.67685061 135

0 4 3 7.76921872 236.4007468 150

0 4 5 10.29214025 178.9917256 150

0 7 7 12.40708502 147.6644265 150

0 11 8 18.44321692 99.93862394 150
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

0 16 14 19.04079734 95.64118304 150

0 17 16 20.11668483 90.10269807 150

0 21 21 21.94902348 81.78177391 150

0 24 26 20.43056351 86.85110391 150

0 30 31 22.59420414 77.88927203 150

0 32 40 30.11364701 57.77118013 150

3 37 61 30.04789494 56.79755533 150

0 0 10 11.20648511 166.5458184 -150

0 4 15 16.88770583 110.0567501 -150

0 9 21 19.38668319 94.15931485 -150

0 15 25 26.76175223 68.03389706 -150

0 25 31 26.46529243 67.57515899 -150

0 26 39 31.89938081 54.88955618 -150

0 30 45 32.45075595 53.45914051 -150

6 51 46 24.37619923 70.90913425 -150

6 56 50 25.08498893 68.38883803 -150

6 61 71 32.6039347 52.69251483 -150

6 73 77 31.54470738 53.07262239 -150

Table 1: 3D experimental data for distal section
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Appendix B 3D Experimental Data for Middle Section

Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

2 8 0 485.1021058 5.297555948 5

8 24 0 372.2719004 6.915793638 5

19 39 0 283.3675928 8.998545633 5

32 42 0 233.6706889 10.96389813 5

38 54 0 202.6516109 12.52959634 5

50 66 0 183.4643688 13.67778996 5

60 76 0 164.3954805 15.27510179 5

2 0 0 427.8097595 6.005923759 -10

7 0 0 313.9071212 8.087836563 -10

17 0 0 242.4445803 10.50118795 -10

26 0 0 203.1957787 12.51893279 -10

32 0 0 164.2467859 15.44082351 -10

41 11 0 148.9466213 16.89784412 -10

50 25 0 145.4218802 17.1293702 -10

4 8 0 536.1889958 4.752706434 20

9 11 0 418.8624857 6.069745587 20

15 16 0 258.1720476 9.817764524 20

28 32 0 246.2455709 10.25831265 20

39 41 0 194.9180406 12.97346192 20

45 71 0 169.3005687 14.65181877 20

55 80 0 151.1223821 16.41278528 20

5 0 0 509.1047902 5.034588209 35

8 0 0 382.7687964 6.656494716 35

12 7 0 331.2020017 7.672263057 35

18 16 0 278.6404777 9.074594029 35

26 22 0 251.7410043 9.913224182 35

34 30 0 200.7451319 12.53533103 35

38 43 0 201.3181418 12.49730019 35

7 7 0 427.813758 5.993711714 50

13 16 0 312.7918735 8.137111331 50

19 23 0 321.1665913 7.88010358 50

25 36 0 202.7312755 12.46471309 50

32 45 0 208.7313123 12.15759828 50

35 49 0 184.5641388 13.87436702 50
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

40 53 0 197.9092466 12.64039458 50

1 0 0 587.2136323 4.351478968 65

5 9 0 533.1787039 4.766106213 65

13 19 0 314.1799191 8.117951896 65

24 30 0 249.1954265 10.16362018 65

33 49 0 219.8369391 11.37616062 65

40 65 0 204.428342 12.22320128 65

49 87 0 148.4724656 16.6493694 65

7 0 5 444.7136202 5.775595323 -70

17 0 15 289.6062797 8.848342036 -70

28 0 20 215.5638419 11.9059615 -70

37 0 20 217.4911852 11.70398231 -70

49 0 23 154.5718289 16.46384156 -70

60 0 36 159.7635045 15.83356719 -70

62 0 40 158.5080965 15.96508312 -70

0 9 0 328.6186621 7.654062735 80

12 20 0 246.3093664 10.18128507 80

20 33 0 296.0734277 8.446366891 80

29 45 0 242.170122 10.26798497 80

39 58 0 166.9968487 14.85950046 80

43 77 0 136.636992 17.96872814 80

43 87 0 125.9423806 19.33303597 80

6 0 4 475.5983745 5.405817681 -85

13 0 15 419.0909198 6.12090619 -85

22 0 24 262.5417499 9.798722469 -85

33 0 24 243.221167 10.5252305 -85

41 0 39 209.5706818 12.09571719 -85

53 0 44 163.2516716 15.45109346 -85

66 0 46 132.2881998 18.9863162 -85

0 9 0 567.0417927 4.455382026 95

0 15 0 339.9964335 7.474006506 95

0 45 0 251.2706708 10.04040126 95

0 65 0 190.1134218 13.19134799 95

0 73 0 153.8125409 16.26837985 95

0 99 0 147.9295582 16.8873613 95

0 108 0 142.0194495 17.61738909 95
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

0 0 6 947.4871847 2.683489314 -100

0 0 15 511.5868097 4.976122036 -100

10 0 20 363.6099095 6.997708855 -100

11 0 20 261.4846842 9.706695784 -100

13 0 22 216.8853175 11.55065502 -100

21 0 39 176.6123126 14.30742331 -100

26 0 40 163.7605233 15.19621755 -100

0 5 0 1232.789589 2.093906499 110

0 17 0 515.5855652 5.008379982 110

0 30 0 315.5371753 8.187070347 110

0 43 0 234.5062058 10.93444478 110

0 63 0 183.5129217 13.7634705 110

0 70 22 211.3945533 12.06032217 110

0 75 29 181.3497741 14.04205524 110

0 0 1 885.8656049 2.893367645 -115

0 0 8 537.4459126 4.757584227 -115

0 0 18 324.3553636 7.900435221 -115

0 0 21 230.2120112 11.04627374 -115

0 0 25 173.3872055 14.73583474 -115

0 0 34 162.8880259 15.55090887 -115

0 0 39 137.7522094 18.33839323 -115

0 0 2 1022.030671 2.486365771 -130

0 2 11 836.7270472 3.033279917 -130

0 2 19 558.1515612 4.545704286 -130

0 2 23 457.4714525 5.499241612 -130

0 0 26 356.0253137 7.118244568 -130

0 0 28 250.2610752 10.09483334 -130

0 0 31 242.955839 10.36821787 -130

0 0 3 537.4717852 4.743464117 -145

0 0 8 380.6408523 6.728073173 -145

0 0 15 320.3305367 8.041204575 -145

0 0 21 273.4237715 9.34787576 -145

0 0 25 243.6408987 10.46201127 -145

0 0 27 190.0296419 13.50527926 -145

0 15 27 213.0857711 11.86927931 -145

0 16 0 950.1364609 2.714325726 -160
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Encoder

Count σ1

Encoder

Count σ2

Encoder

Count σ3

Angle φ

(deg)

Radius λ

(cm)

Angle θ

(deg)

0 25 4 445.8922219 5.767955505 -160

0 34 12 372.892918 6.885372984 -160

0 41 20 277.6709035 9.25516225 -160

0 50 20 230.421757 11.06849107 -160

0 58 24 236.0164766 10.73968992 -160

0 58 39 219.9961214 11.5281216 -160

0 0 5 532.4412328 4.796280274 170

0 8 8 377.6982193 6.743870842 170

0 20 11 343.5486026 7.415123662 170

0 34 18 298.2106935 8.550195347 170

0 48 19 237.4263642 10.57761521 170

0 59 27 184.8871272 13.54888859 170

0 66 34 182.0037666 13.88848166 170

0 18 0 968.610191 2.671026384 -175

0 27 8 456.2574583 5.665370363 -175

0 35 17 328.31044 7.755246805 -175

0 35 20 290.5998764 8.776361217 -175

0 35 22 251.691583 10.16674844 -175

0 44 27 192.8699096 13.13052749 -175

0 56 32 187.0950408 13.53647604 -175

Table 2: 3D experimental data for middle section

85



Appendix C Polynomial Coefficients used for 3D Modeling

Fdistal =

[
fc3 fl31 fl32 fl33

]
=



−0.0091563 −6.89E − 05 −0.00011641 −0.00019856

−0.00045909 8.32E − 07 −8.36E − 06 −8.40E − 05

3.65E − 06 −4.30E − 07 2.06E − 07 7.37E − 07

−0.000773 2.15E − 06 −9.08E − 05 2.14E − 05

2.07E − 05 4.28E − 07 1.63E − 06 1.59E − 06

−8.06E − 08 1.03E − 08 −2.57E − 08 −1.25E − 08

1.79E − 05 2.74E − 08 1.14E − 06 −4.39E − 07

−6.59E − 07 −2.26E − 08 8.51E − 09 −2.42E − 08

3.81E − 09 8.26E − 11 1.33E − 11 1.90E − 10

3.48E − 05 −7.70E − 05 5.48E − 08 9.41E − 06

−1.65E − 05 2.22E − 06 1.79E − 06 2.31E − 06

9.62E − 08 9.75E − 09 −3.88E − 08 −5.02E − 08

2.77E − 05 2.45E − 06 3.72E − 06 −1.16E − 06

−2.08E − 05 5.58E − 07 −5.23E − 07 4.43E − 07

2.50E − 07 −9.31E − 09 4.52E − 09 −6.81E − 09

−9.24E − 07 −6.91E − 08 −5.44E − 08 2.56E − 08

4.24E − 07 −7.24E − 09 5.30E − 09 −6.51E − 09

−5.15E − 09 1.48E − 10 −5.24E − 11 1.11E − 10

−1.24E − 05 6.45E − 07 −6.08E − 07 −1.01E − 07

9.59E − 07 −6.18E − 08 −1.44E − 09 −2.84E − 08

−1.03E − 08 4.10E − 10 3.32E − 10 7.48E − 10

−9.96E − 08 −5.40E − 09 −3.23E − 08 1.38E − 08

5.78E − 07 −4.06E − 08 5.28E − 09 −1.69E − 08

−1.06E − 08 7.15E − 10 3.05E − 10 3.14E − 10

9.58E − 09 7.60E − 10 5.98E − 10 −3.24E − 10

−1.13E − 08 6.37E − 10 −6.67E − 11 2.61E − 10

1.98E − 10 −1.32E − 11 −3.72E − 12 −5.26E − 12
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Fmiddle =

[
fc2 fl21 fl22 fl23

]
=



−0.0030884 −0.00014095 −0.00012441 −9.85E − 05

−6.72E − 05 1.38E − 05 1.60E − 07 −1.67E − 05

−2.57E − 06 −3.49E − 07 2.99E − 08 −1.65E − 07

−1.83E − 05 1.07E − 06 −1.17E − 05 2.73E − 06

2.00E − 05 2.71E − 07 2.55E − 07 −1.02E − 06

−7.65E − 07 −5.97E − 09 −7.58E − 09 1.30E − 08

−8.78E − 07 −4.38E − 08 1.80E − 08 −1.76E − 08

−2.92E − 07 −5.63E − 09 −2.56E − 09 1.75E − 08

1.27E − 08 1.70E − 10 8.70E − 11 −2.12E − 10

−0.0001025 −3.56E − 05 5.69E − 06 7.49E − 06

2.33E − 05 1.00E − 06 3.68E − 07 −1.48E − 06

−5.61E − 07 −5.64E − 09 −1.05E − 08 3.90E − 08

−1.18E − 06 5.80E − 07 −3.25E − 07 −3.01E − 08

0.067439 0.067439 0.067439 0.067439

0.016864 0.016864 0.016864 0.016864

−6.05E − 08 −3.09E − 09 −2.71E − 09 −1.03E − 09

0.085192 0.085192 0.085192 0.085192

0.083521 0.083521 0.083521 0.083521

−3.73E − 06 3.03E − 07 −1.31E − 07 −3.11E − 07

−3.98E − 08 −1.82E − 08 −3.41E − 09 2.81E − 08

4.36E − 09 2.13E − 10 1.40E − 10 −6.15E − 10

1.97E − 07 −8.74E − 09 1.81E − 08 5.09E − 09

0.074185 0.074185 0.074185 0.074185

0.0018875 0.0018875 0.0018875 0.0018875

−5.07E − 10 5.70E − 11 −7.19E − 11 −1.08E − 11

0.019249 0.019249 0.019249 0.019249

0.018885 0.018885 0.018885 0.018885
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Appendix D MATLAB® and Arduino Programs for the Robotic

Cable

D.1 MATLAB® code for 2D results of λ, φ and s (a): Distal section

bending left

clc

% Bend left

% data=[counts, subtended angle, lambda, s]

data=[0 0 Inf 34;

23 24.72 73.34 31.64;

42 41.62 42.92 31.18;

64 53.98 33.05 31.13;

87 60.21 28.905 30.37;

118 73.73 22.5 28.95;

158 80.06 19.2 26.83];

data(:,2:4)=[pi/180.*(data(:,2)) .01*data(:,3:4)]

r=.00213; % radius of cross-section

L0=.34; % relaxed unactuated length of tendon

% // Here we derive two length changes, dl: length change

% and c: compression of the spring from the

% measurements made above and fit a*x type fits.

% effective length change, dl for phi is derived

% from the definition of phi as

dl=-3*data(:,2)*r/2

lengthChangeModel=fit(data(:,1),dl,’a*x’)

A1= -3.415e-05; A2=0; % linear fit model

% plot(data(:,1),dl,data(:,1),A1*data(:,1)+A2)

% title(’Relationship between encoder counts

% and length changes & corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Change in length’)

% figure

% % now calculate compression from the definition of S

compression=(3*data(:,4)-3*L0-dl)/3

compressionModel=fit(data(:,1),compression,’a*x’)

B1= -0.000443; B2= 0; % linear fit model

% plot(data(:,1),compression,data(:,1),B1*data(:,1)+B2)

% title(’Relationship between encoder counts and

compression & corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Compression’)

% figure

% % now try to compute lambda from above values

calcLambda=(3*(L0+compression)+dl)*r./(2*dl)

% % plot to see if it matches and

% % from the figure it shows that it matches very well.
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% plot(data(:,3),abs(calcLambda))

% title(’Radius of curvature comparison \lambda’)

% xlabel(’Experimental \lambda’)

% ylabel(’Calculated \lambda’)

% figure

% based on these fit models, phi can be given as

approx_phi=abs(2*(A1*data(:,1)+A2)/(3*r))

plot(data(:,1),data(:,2),’r’,data(:,1),approx_phi)

title(’Subtended angle \phi Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Calculated subtended angle \phi and approx \phi’)

legend(’Measured \phi’,’Calculated \phi’,’Location’,’NorthEast’)

approx_Lambda=abs((3*(L0+(B1*data(:,1)+B2))+(A1*data(:,1)+A2))*r

./(2*(A1*data(:,1)+A2)))

figure

plot(data(:,1),data(:,3),’r’,data(:,1),approx_Lambda)

legend(’Measured \lambda’,’Calculated \lambda’,’Location’,’NorthEast’)

title(’Radius of curvature \lambda Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental radius \lambda and approx \lambda’)

figure

approx_s=approx_phi.*approx_Lambda

plot(data(:,1),data(:,4),’r’,data(:,1),approx_s)

title(’Arc length s Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental arc length s and approx s’)

legend(’Measured s’,’Calculated s’,’Location’,’NorthEast’)

D.2 MATLAB® code for 2D results of λ, φ and s (b): Distal section

bending right

clc

% Bend right

% data=[counts, subtended angle, lambda, s]

data=[0 0 Inf 34;

14 27.47 69.89 33.52;

31 36.47 51.76 32.95;

57 51.97 35.6 32.29;

81 62.73 28.05 30.71;

107 75.49 22.46 29.59;

145 86.9 18.612 28.23];

data(:,2:4)=[pi/180.*(data(:,2)) .01*data(:,3:4)]

r=.00213; % radius of cross-section

L0=.34; % relaxed unactuated length of tendon

% // Here we derive two length changes, dl: length change

% and c: compression of the spring from the

% measurements made above and fit a*x type fits.
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% effective length change, dl for phi is derived

% from the definition of phi as

dl=-3*data(:,2)*r/2

lengthChangeModel=fit(data(:,1),dl,’a*x’)

A1= -3.881e-05; A2=0; % linear fit model

% plot(data(:,1),dl,data(:,1),A1*data(:,1)+A2)

% title(’Relationship between encoder counts

% and length changes & corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Change in length’)

% figure

% now calculate compression from the definition of S

compression=(3*data(:,4)-3*L0-dl)/3

%compressionModel=fit(data(:,1),compression,’a*x’)

B1= -0.000381; B2= 0; % linear fit model

% plot(data(:,1),compression,data(:,1),B1*data(:,1)+B2)

% title(’Relationship between encoder counts and compression &

% corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Compression’)

% based on these fit models, phi can be given as

approx_phi=abs(2*(A1*data(:,1)+A2)/(3*r))

plot(data(:,1),data(:,2),’r’,data(:,1),approx_phi)

title(’Subtended angle \phi Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Calculated subtended angle \phi and approx \phi’)

legend(’Measured \phi’,’Calculated \phi’,’Location’,’NorthEast’)

approx_Lambda=abs((3*(L0+(B1*data(:,1)+B2))+(A1*data(:,1)+A2))*r

./(2*(A1*data(:,1)+A2)))

figure

plot(data(:,1),data(:,3),’r’,data(:,1),approx_Lambda)

legend(’Measured \lambda’,’Calculated \lambda’,’Location’,’NorthEast’)

title(’Radius of curvature \lambda Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental radius \lambda and approx \lambda’)

figure

approx_s=approx_phi.*approx_Lambda

plot(data(:,1),data(:,4),’r’,data(:,1),approx_s)

title(’Arc length s Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental arc length s and approx s’)

legend(’Measured s’,’Calculated s’,’Location’,’NorthEast’)

D.3 MATLAB® code for 2D results of λ, φ and s (c): Middle section

bending right

clc

% middle

% data=[counts, subtended angle, lambda, s]
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% Bend right

data=[0 0 Inf 45;

37 9.74 260.64 44.31

55 15.78 158.43 43.63;

91 21.5 113.89 42.73;

118 27.21 88.9 42.25;

126 30.74 78.28 41.99;

151 34.56 68.67 41.42];

% Bend left

% data=[0 0 Inf 45;

% 74 18.51 130.55 42.17;

% 128 30.74 78.28 41.99;

% 178 43.09 55.82 41.98];

data(:,2:4)=[pi/180.*(data(:,2)) .01*data(:,3:4)]

r=.00213; % radius of cross-section

L0=.45; % relaxed unactuated length of tendon

% // Here we derive two length changes, dl: length change

% and c: compression of the spring from the

% measurements made above and fit a*x type fits.

% effective length change, dl for phi is derived

% from the definition of phi as

dl=-3*data(:,2)*r/2

lengthChangeModel=fit(data(:,1),dl,’a*x’)

A1= -1.329e-05; A2=0; % linear fit model right bend

%A1= -1.351e-05; A2=0; % linear fit model left bend

% plot(data(:,1),dl,data(:,1),A1*data(:,1)+A2)

% title(’Relationship between encoder counts

and length changes & corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Change in length’)

% figure

% % now calculate compression from the definition of S

compression=(3*data(:,4)-3*L0-dl)/3

compressionModel=fit(data(:,1),compression,’a*x’)

B1= -0.000236; B2= 0; % linear fit model right bend

%B1= -0.000207; B2= 0; % linear fit model left bend

% plot(data(:,1),compression,data(:,1),B1*data(:,1)+B2)

% title(’Relationship between encoder counts and compression &

% corresponding best fitting line’)

% xlabel(’Encoder counts’)

% ylabel(’Compression’)

% figure

% % now try to compute lambda from above values

calcLambda=(3*(L0+compression)+dl)*r./(2*dl)

% % plot to see if it matches and

% % from the figure it shows that it matches very well.

% plot(data(:,3),abs(calcLambda))

% title(’Radius of curvature comparison \lambda’)

% xlabel(’Experimental \lambda’)

% ylabel(’Calculated \lambda’)
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% figure

% based on these fit models, phi can be given as

approx_phi=abs(2*(A1*data(:,1)+A2)/(3*r))

plot(data(:,1),data(:,2),’r’,data(:,1),approx_phi)

title(’Subtended angle \phi Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Calculated subtended angle \phi and approx \phi’)

legend(’Measured \phi’,’Calculated \phi’,’Location’,’NorthEast’)

approx_Lambda=abs((3*(L0+(B1*data(:,1)+B2))+(A1*data(:,1)+A2))*r

./(2*(A1*data(:,1)+A2)))

figure

plot(data(:,1),data(:,3),’r’,data(:,1),approx_Lambda)

legend(’Measured \lambda’,’Calculated \lambda’,’Location’,’NorthEast’)

title(’Radius of curvature \lambda Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental radius \lambda and approx \lambda’)

figure

approx_s=approx_phi.*approx_Lambda

plot(data(:,1),data(:,4),’r’,data(:,1),approx_s)

title(’Arc length s Vs Counts’)

xlabel(’Encoder counts’)

ylabel(’Experimental arc length s and approx s’)

legend(’Measured s’,’Calculated s’,’Location’,’NorthEast’)

D.4 MATLAB® code for 2D results of forward kinematics (d) Distal and

Middle sections considered individually

clc

%distal right

data=[0 0 Inf 34;

14 27.47 69.89 33.52;

31 36.47 51.76 32.95;

57 51.97 35.6 32.29;

81 62.73 28.05 30.71;

107 75.49 22.46 29.59;

145 86.9 18.612 28.23];

%distal left

% data=[0 0 Inf 34;

% 23 24.72 73.34 31.64;

% 42 41.62 42.92 31.18;

% 64 53.98 33.05 31.13;

% 87 60.21 28.905 30.37;

% 118 73.73 22.5 28.95;

% 158 80.06 19.2 26.83];

%middle right

% data=[0 0 Inf 45;

% 37 9.74 260.64 44.31

% 55 15.78 158.43 43.63;

% 91 21.5 113.89 42.73;
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% 118 27.21 88.9 42.25;

% 126 30.74 78.28 41.99;

% 151 34.56 68.67 41.42];

data(:,2:4)=[pi/180.*(data(:,2)) .01*data(:,3:4)]

r=.00213; %cross-section radius

L0=.34; %distal (relaxed unactuated length of tendon)

%L0=.45; %middle (relaxed unactuated length of tendon)

A1= -3.648e-5; A2=0; % linear fit model distal

B1= -0.000412; B2= 0; % linear fit model distal

%A1= -1.329e-05; A2=0; % linear fit model middle

%B1= -0.000236; B2= 0; % linear fit model middle

approx_Lambda=abs((3*(L0+(B1*data(:,1)+B2))+(A1*data(:,1)+A2))*r

./(2*(A1*data(:,1)+A2)))

approx_phi=abs(2*(A1*data(:,1)+A2)/(3*r))

%computed x-coordinate from 2D forward kinematics

approx_x=approx_Lambda.*(1-cos(approx_phi))

%computed y-coordinate from 2D forward kinematics

approx_y=approx_Lambda.*sin(approx_phi)

%actual x-coordinate from 2D forward kinematics

actual_x=data(:,3).*(1-cos(data(:,2)))

%actual y-coordinate from 2D forward kinematics

actual_y=data(:,3).*sin(data(:,2))

plot(data(:,1),actual_x,’r*-’,data(:,1),approx_x,’bv-’)

grid on

xlabel(’Encoder counts’)

ylabel(’Actual x-coordinate and Calculated x-coordinate’)

legend(’Actual x-coordinate’,’Calculated x-coordinate’,’Location’,’NorthWest’)

title(’x-coordinate of tip Vs Counts’)

figure

plot(data(:,1),actual_y,’r*-’,data(:,1),approx_y,’bv-’)

grid on

xlabel(’Encoder counts’)

ylabel(’Actual y-coordinate and Calculated y-coordinate’)

legend(’Actual y-coordinate’,’Calculated y-coordinate’,’Location’,’NorthEast’)

title(’y-coordinate of tip Vs Counts’)

D.5 MATLAB® code for 2D results of forward kinematics (e) Distal and

Middle sections combined

clc

%distal right

data_d=[0 0 Inf 34;

14 27.47 69.89 33.52;

31 36.47 51.76 32.95;

57 51.97 35.6 32.29;

81 62.73 28.05 30.71;

107 75.49 22.46 29.59;

145 86.9 18.612 28.23];

%distal left
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% data=[0 0 Inf 34;

% 23 24.72 73.34 31.64;

% 42 41.62 42.92 31.18;

% 64 53.98 33.05 31.13;

% 87 60.21 28.905 30.37;

% 118 73.73 22.5 28.95;

% 158 80.06 19.2 26.83];

%middle right

data_m=[0 0 Inf 45;

37 9.74 260.64 44.31

55 15.78 158.43 43.63;

91 21.5 113.89 42.73;

118 27.21 88.9 42.25;

126 30.74 78.28 41.99;

151 34.56 68.67 41.42];

data_d(:,2:4)=[pi/180.*(data_d(:,2)) .01*data_d(:,3:4)]

data_m(:,2:4)=[pi/180.*(data_m(:,2)) .01*data_m(:,3:4)]

r=.00213; %cross-section radius

L0_d=.34; %distal (relaxed unactuated length of tendon)

L0_m=.45; %middle (relaxed unactuated length of tendon)

A1_d= -3.648e-5; A2_d=0; % linear fit model distal

B1_d= -0.000412; B2_d= 0; % linear fit model distal

A1_m= -1.329e-05; A2_m=0; % linear fit model middle

B1_m= -0.000236; B2_m= 0; % linear fit model middle

%lambda for distal from linear approximation

approx_Lambda_d=abs((3*(L0_d+(B1_d*data_d(:,1)+B2_d))+

(A1_d*data_d(:,1)+A2_d))*r./(2*(A1_d*data_d(:,1)+A2_d)))

%phi for distal from linear approximation

approx_phi_d=abs(2*(A1_d*data_d(:,1)+A2_d)/(3*r))

%lambda for middle from linear approximation

approx_Lambda_m=abs((3*(L0_m+(B1_m*data_m(:,1)+B2_m))+

(A1_m*data_m(:,1)+A2_m))*r./(2*(A1_m*data_m(:,1)+A2_m)))

%phi for middle from linear approximation

approx_phi_m=abs(2*(A1_m*data_m(:,1)+A2_m)/(3*r))

%computed x-coordinate from 2D forward kinematics

approx_x=(cos(approx_phi_m).*approx_Lambda_d.*(1-cos(approx_phi_d)))+

(approx_Lambda_d.*sin(approx_phi_m).*sin(approx_phi_d))+

(approx_Lambda_m.*(1-cos(approx_phi_m)))

%computed y-coordinate from 2D forward kinematics

approx_y= -(sin(approx_phi_m).*approx_Lambda_d.*(1-cos(approx_phi_d)))

+(approx_Lambda_d.*cos(approx_phi_m).*sin(approx_phi_d))+

(approx_Lambda_m.*sin(approx_phi_m))

%actual x-coordinate from 2D forward kinematics

actual_x=(cos(data_m(:,2)).*data_d(:,3).*(1-cos(data_d(:,2))))+

(data_d(:,3).*sin(data_m(:,2)).*sin(data_d(:,2)))+

(data_m(:,3).*(1-cos(data_m(:,2))))

%actual y-coordinate from 2D forward kinematics

actual_y=-(sin(data_m(:,2)).*data_d(:,3).*(1-cos(data_d(:,2)))) +

(data_d(:,3).*cos(data_m(:,2)).*sin(data_d(:,2)))+(data_m(:,3).*sin(data_m(:,2)))

plot(actual_x,actual_y,’r*-’,approx_x,approx_y,’bv-’)

grid on
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xlabel(’X-coordinate of the robotic cable tip’)

ylabel(’Y-coordinate of the robotic cable tip’)

legend(’ Actual x-y coordinate’,’Calculated x-y-coordinate’,’Location’,’NorthEast’)

title(’Position of the robotic cable tip’)

D.6 MATLAB® code for 3D results of λ, φ and θ and forward kinematics

(f) Distal and Middle sections considered individually

% distal section

r=.00213; %cross-section radius

L0=.34; %distal (relaxed unactuated length of tendon)

%L0=.45; %middle (relaxed unactuated length of tendon)

%random initialize coefficients for model

a = 0.001 + 0.09.*rand(27,1) %model constant used later

b=a % initialize model_1 coefficients used later

c=b % initialize model_2 coefficients used later

d=c % initialize model_3 coefficients used later

% % %lambda, phi, theta

Data=[lambda, phi, theta]

%Data into standard units

Data=[Data(:,1)*.01 (pi/180)*(Data(:,2:3))];

l1=(Data(:,1)-r*cos(Data(:,3))).*Data(:,2)-L0;

l2=(Data(:,1)-r*cos(2*pi/3-Data(:,3))).*Data(:,2)-L0;

l3=(Data(:,1)-r*cos(4*pi/3-Data(:,3))).*Data(:,2)-L0;

LC=[l1 l2 l3]

% compression is maximum of observed lengths

C=max(LC,[],2)

%modeled lengths dL

dL=LC-C*ones(1,3)

% evaluate shape variables from modeled lengths

den=(2*(sqrt((dL(:,1).^2)+(dL(:,2).^2)+(dL(:,3).^2)-

(dL(:,1).*dL(:,2))-(dL(:,2).*dL(:,3))-(dL(:,1).*dL(:,3)))));

%lambda

calclambda=[abs((3*(L0+C)+dL(:,1)+dL(:,2)+dL(:,3))*r./den)]

%phi

calcphi=[2*sqrt(dL(:,3).^2+dL(:,1).^2+dL(:,2).^2-dL(:,1).*dL(:,2)

-dL(:,1).*dL(:,3)-dL(:,3).*dL(:,2))/(3*r)]

%theta

calctheta =[atan2(sqrt(3)*(dL(:,3)-dL(:,2)),dL(:,2)+dL(:,3)-2*dL(:,1))]

% shape variables from modeled lengths matches with data shape variables.

%Counts

enc=[enc, enc2, enc3]

%mapping function between counts and compression

modelfun=@(a,enc)(a(1)+(a(2)*enc(:,3))+(a(3)*(enc(:,3).^2))+

(a(4)*enc(:,2))+(a(5)*enc(:,2).*enc(:,3))+

(a(6)*enc(:,2).*(enc(:,3).^2))+(a(7)*(enc(:,2).^2))+

(a(8)*enc(:,3).*(enc(:,2).^2))+(a(9)*(enc(:,3).^2).*(enc(:,2).^2))+
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(a(10)*enc(:,1))+(a(11)*enc(:,1).*enc(:,3))+

(a(12)*enc(:,1).*(enc(:,3).^2))+(a(13)*enc(:,1).*enc(:,2))+

(a(14)*enc(:,1).*enc(:,3).*enc(:,2))+

(a(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(a(16)*enc(:,1).*(enc(:,2).^2))+

(a(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(a(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+

(a(19)*(enc(:,1).^2))+

(a(20)*enc(:,3).*(enc(:,1).^2))+

(a(21)*(enc(:,1).^2).*(enc(:,3).^2))+(a(22)*(enc(:,1).^2).*enc(:,2))+

(a(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(a(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(a(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(a(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(a(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

beta = nlinfit(enc,C,modelfun,a)

a=beta

format short g

giva=a % coefficients of compression model

%Compression computed from model

Computedcompr=(a(1)+(a(2)*enc(:,3))+(a(3)*(enc(:,3).^2))+

(a(4)*enc(:,2))+(a(5)*enc(:,2).*enc(:,3))+(a(6)*enc(:,2).*(enc(:,3).^2))+

(a(7)*(enc(:,2).^2))+(a(8)*enc(:,3).*(enc(:,2).^2))+

(a(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(a(10)*enc(:,1))+(a(11)*enc(:,1).*enc(:,3))+(a(12)*enc(:,1).*(enc(:,3).^2))+

(a(13)*enc(:,1).*enc(:,2))+

(a(14)*enc(:,1).*enc(:,3).*enc(:,2))+(a(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(a(16)*enc(:,1).*(enc(:,2).^2))+(a(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(a(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+(a(19)*(enc(:,1).^2))+

(a(20)*enc(:,3).*(enc(:,1).^2))+(a(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(a(22)*(enc(:,1).^2).*enc(:,2))+(a(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(a(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(a(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(a(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(a(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

Compare=[Computedcompr C]

% plot(C,’r’)

% hold on;

% plot(Computedcompr)

% hold on;

% err=((Computedcompr-C)./C).*100

% figure

% plot (err)

modelfun_1=@(b,enc)(b(1)+(b(2)*enc(:,3))+(b(3)*(enc(:,3).^2))+

(b(4)*enc(:,2))+(b(5)*enc(:,2).*enc(:,3))+

(b(6)*enc(:,2).*(enc(:,3).^2))+(b(7)*(enc(:,2).^2))+

(b(8)*enc(:,3).*(enc(:,2).^2))+(b(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(b(10)*enc(:,1))+(b(11)*enc(:,1).*enc(:,3))+

(b(12)*enc(:,1).*(enc(:,3).^2))+(b(13)*enc(:,1).*enc(:,2))+

(b(14)*enc(:,1).*enc(:,3).*enc(:,2))+

(b(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+
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(b(16)*enc(:,1).*(enc(:,2).^2))+

(b(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(b(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+

(b(19)*(enc(:,1).^2))+

(b(20)*enc(:,3).*(enc(:,1).^2))+

(b(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(b(22)*(enc(:,1).^2).*enc(:,2))+

(b(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(b(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(b(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(b(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(b(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

%format short g

beta = nlinfit(enc,dL(:,1),modelfun_1,b)

b=beta

givb=b % coefficients of length model 1

a=b

%Modeled length change 1 computed from model

ComputedL_1=(a(1)+(a(2)*enc(:,3))+(a(3)*(enc(:,3).^2))+

(a(4)*enc(:,2))+(a(5)*enc(:,2).*enc(:,3))+(a(6)*enc(:,2).*(enc(:,3).^2))+

(a(7)*(enc(:,2).^2))+(a(8)*enc(:,3).*(enc(:,2).^2))+

(a(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(a(10)*enc(:,1))+(a(11)*enc(:,1).*enc(:,3))+(a(12)*enc(:,1).*(enc(:,3).^2))+

(a(13)*enc(:,1).*enc(:,2))+

(a(14)*enc(:,1).*enc(:,3).*enc(:,2))+(a(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(a(16)*enc(:,1).*(enc(:,2).^2))+(a(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(a(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+(a(19)*(enc(:,1).^2))+

(a(20)*enc(:,3).*(enc(:,1).^2))+(a(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(a(22)*(enc(:,1).^2).*enc(:,2))+(a(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(a(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(a(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(a(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(a(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

Compare_dl1=[ComputedL_1 dL(:,1)]

% figure

% plot(dL(:,1),’r’)

% hold on

% plot(ComputedL_1)

% hold on

%

modelfun_2=@(c,enc)(c(1)+(c(2)*enc(:,3))+(c(3)*(enc(:,3).^2))+

(c(4)*enc(:,2))+(c(5)*enc(:,2).*enc(:,3))+

(c(6)*enc(:,2).*(enc(:,3).^2))+(c(7)*(enc(:,2).^2))+

(c(8)*enc(:,3).*(enc(:,2).^2))+(c(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(c(10)*enc(:,1))+(c(11)*enc(:,1).*enc(:,3))+

(c(12)*enc(:,1).*(enc(:,3).^2))+(c(13)*enc(:,1).*enc(:,2))+

(c(14)*enc(:,1).*enc(:,3).*enc(:,2))+

(c(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(c(16)*enc(:,1).*(enc(:,2).^2))+

(c(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(c(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+
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(c(19)*(enc(:,1).^2))+

(c(20)*enc(:,3).*(enc(:,1).^2))+

(c(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(c(22)*(enc(:,1).^2).*enc(:,2))+

(c(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(c(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(c(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(c(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(c(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

beta = nlinfit(enc,dL(:,2),modelfun_2,c)

c=beta

givc=c % coefficients of length model 2

a=c

%Modeled length change 2 computed from model

ComputedL_2=(a(1)+(a(2)*enc(:,3))+(a(3)*(enc(:,3).^2))+

(a(4)*enc(:,2))+(a(5)*enc(:,2).*enc(:,3))+(a(6)*enc(:,2).*(enc(:,3).^2))+

(a(7)*(enc(:,2).^2))+(a(8)*enc(:,3).*(enc(:,2).^2))+

(a(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(a(10)*enc(:,1))+(a(11)*enc(:,1).*enc(:,3))+(a(12)*enc(:,1).*(enc(:,3).^2))+

(a(13)*enc(:,1).*enc(:,2))+

(a(14)*enc(:,1).*enc(:,3).*enc(:,2))+(a(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(a(16)*enc(:,1).*(enc(:,2).^2))+(a(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(a(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+(a(19)*(enc(:,1).^2))+

(a(20)*enc(:,3).*(enc(:,1).^2))+(a(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(a(22)*(enc(:,1).^2).*enc(:,2))+(a(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(a(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(a(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(a(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(a(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

Compare_dl2=[ComputedL_2 dL(:,2)]

% figure

% plot(dL(:,2),’r’)

% hold on

% plot(ComputedL_2)

% hold on

%

modelfun_3=@(d,enc)(d(1)+(d(2)*enc(:,3))+(d(3)*(enc(:,3).^2))+

(d(4)*enc(:,2))+(d(5)*enc(:,2).*enc(:,3))+

(d(6)*enc(:,2).*(enc(:,3).^2))+(d(7)*(enc(:,2).^2))+

(d(8)*enc(:,3).*(enc(:,2).^2))+(d(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(d(10)*enc(:,1))+(d(11)*enc(:,1).*enc(:,3))+

(d(12)*enc(:,1).*(enc(:,3).^2))+(d(13)*enc(:,1).*enc(:,2))+

(d(14)*enc(:,1).*enc(:,3).*enc(:,2))+

(d(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(d(16)*enc(:,1).*(enc(:,2).^2))+

(d(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(d(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+

(d(19)*(enc(:,1).^2))+

(d(20)*enc(:,3).*(enc(:,1).^2))+

(d(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(d(22)*(enc(:,1).^2).*enc(:,2))+
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(d(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(d(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(d(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(d(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(d(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

beta = nlinfit(enc,dL(:,3),modelfun_3,d)

d=beta

givd=d % coefficients of length model 3

a=d

%Modeled length change 3 computed from model

ComputedL_3=(a(1)+(a(2)*enc(:,3))+(a(3)*(enc(:,3).^2))+

(a(4)*enc(:,2))+(a(5)*enc(:,2).*enc(:,3))+(a(6)*enc(:,2).*(enc(:,3).^2))+

(a(7)*(enc(:,2).^2))+(a(8)*enc(:,3).*(enc(:,2).^2))+

(a(9)*(enc(:,3).^2).*(enc(:,2).^2))+

(a(10)*enc(:,1))+(a(11)*enc(:,1).*enc(:,3))+(a(12)*enc(:,1).*(enc(:,3).^2))+

(a(13)*enc(:,1).*enc(:,2))+

(a(14)*enc(:,1).*enc(:,3).*enc(:,2))+(a(15)*(enc(:,1)).*(enc(:,3).^2).*enc(:,2))+

(a(16)*enc(:,1).*(enc(:,2).^2))+(a(17)*enc(:,1).*(enc(:,2).^2).*enc(:,3))+

(a(18)*enc(:,1).*(enc(:,2).^2).*(enc(:,3).^2))+(a(19)*(enc(:,1).^2))+

(a(20)*enc(:,3).*(enc(:,1).^2))+(a(21)*(enc(:,1).^2).*(enc(:,3).^2))+

(a(22)*(enc(:,1).^2).*enc(:,2))+(a(23)*(enc(:,1).^2).*enc(:,2).*enc(:,3))+

(a(24).*(enc(:,1).^2).*enc(:,2).*(enc(:,3).^2))+

(a(25)*(enc(:,1).^2).*(enc(:,2).^2))+

(a(26)*enc(:,3).*(enc(:,1).^2).*(enc(:,2).^2))+

(a(27)*(enc(:,1).^2).*(enc(:,2).^2).*(enc(:,3).^2)))

Compare_dl3=[ComputedL_3 dL(:,3)]

% figure

% plot(dL(:,3),’r’)

% hold on

% plot(ComputedL_3)

% hold on

%modeled lengths

dL_computed=[ComputedL_1 ComputedL_2 ComputedL_3]

Computed shape variables

den_cmprcomp=(2*(sqrt((dL_computed(:,1).^2)+(dL_computed(:,2).^2)+

(dL_computed(:,3).^2)-(dL_computed(:,1).*dL_computed(:,2))-

(dL_computed(:,2).*dL_computed(:,3))-(dL_computed(:,1).*dL_computed(:,3)))));

% %lambda

lambda_cmprcomp=[abs((3*(L0+Computedcompr)+dL_computed(:,1)

+dL_computed(:,2)+dL_computed(:,3))*r./den_cmprcomp)]

index=1:size(lambda_cmprcomp);

figure

plot(calclambda,’r’)

hold on

plot(lambda_cmprcomp)

xlabel(’Data index’)

ylabel(’Experimental radius \lambda and approx \lambda’)

legend(’Measured \lambda’,’Calculated \lambda’,’Location’,’NorthEast’)

title(’Radius of curvature \lambda’)
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% %phi

calcphi_cmprcomp=[2*sqrt(dL_computed(:,3).^2+dL_computed(:,1).^2+

dL_computed(:,2).^2-dL_computed(:,1).*dL_computed(:,2)

-dL_computed(:,1).*dL_computed(:,3)-dL_computed(:,3).*dL_computed(:,2))/(3*r)]

figure

plot(calcphi,’r’)

hold on

plot (calcphi_cmprcomp)

xlabel(’Data index’)

ylabel(’Experimental subtended angle \phi and approx \phi’)

legend(’Measured \phi’,’Calculated \phi’,’Location’,’NorthEast’)

title(’Bending angle \phi’)

% %theta

%calctheta_cmprcomp =[atan2(sqrt(3)*(dL_computed(:,3)-

dL_computed(:,2)),dL_computed(:,2)

+dL_computed(:,3)-2*dL_computed(:,1)) Data(:,3)]

theta

calctheta_cmprcomp =[atan2(sqrt(3)*(dL_computed(:,3)-

dL_computed(:,2)),dL_computed(:,2)

+dL_computed(:,3)-2*dL_computed(:,1))]

figure

plot(calctheta,’r’)

hold on

plot (calctheta_cmprcomp)

xlabel(’Data index’)

ylabel(’Experimental bending plane angle \theta and approx \theta’)

legend(’Measured \theta’,’Calculated \theta’,’Location’,’NorthEast’)

title(’Bending plane angle \theta’)

% computed x-coordinate from 3D forward kinematics

approx_x= lambda_cmprcomp.*cos(calctheta_cmprcomp).*(1-cos(calcphi_cmprcomp))

% computed y-coordinate from 3D forward kinematics

approx_y= lambda_cmprcomp.*sin(calctheta_cmprcomp).*(1-cos(calcphi_cmprcomp))

% computed z-coordinate from 3D forward kinematics

approx_z= lambda_cmprcomp.*sin(calcphi_cmprcomp)

% actual x-coordinate from 3D forward kinematics

actual_x= -Data(:,1).*cos(Data(:,3)).*(cos(Data(:,2))-1)

% actual y-coordinate from 3D forward kinematics

actual_y= -Data(:,1).*sin(Data(:,3)).*(cos(Data(:,2))-1)

% actual z-coordinate from 3D forward kinematics

actual_z= Data(:,1).*sin(Data(:,2))

compare_x=[approx_x actual_x]

compare_y=[approx_y actual_y]

compare_z=[approx_z actual_z]

figure

plot(index,actual_x,’r*-’,index,approx_x,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual x-coordinate and Calculated x-coordinate’)

legend(’Actual x-coordinate’,’Calculated x-coordinate’,’Location’,’NorthEast’)

title(’x-coordinate of tip’)

figure
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plot(index,actual_y,’r*-’,index,approx_y,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual y-coordinate and Calculated y-coordinate’)

legend(’Actual y-coordinate’,’Calculated y-coordinate’,’Location’,’NorthEast’)

title(’y-coordinate of tip’)

figure

plot(index,actual_z,’r*-’,index,approx_z,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual z-coordinate and Calculated z-coordinate’)

legend(’Actual z-coordinate’,’Calculated z-coordinate’,’Location’,’NorthEast’)

title(’z-coordinate of tip’)

giv=[giva givb givc givd] % all coefficents of the 4 models

D.7 MATLAB® code for 3D HTM formula (g) Distal and Middle sec-

tions

clc

syms ct_m st_m l_m cp_m sp_m ct_d st_d l_d cp_d sp_d

% matrices for producing 3D HTM of middle section

A_m=[ct_m -st_m 0 0;st_m ct_m 0 0;0 0 1 0; 0 0 0 1]

B_m=[1 0 0 l_m;0 1 0 0; 0 0 1 0;0 0 0 1]

C_m=[cp_m 0 sp_m 0;0 1 0 0;-sp_m 0 cp_m 0; 0 0 0 1]

D_m=[1 0 0 -l_m;0 1 0 0;0 0 1 0;0 0 0 1]

E_m=[ct_m st_m 0 0;-st_m ct_m 0 0; 0 0 1 0;0 0 0 1]

T_m=A_m*B_m*C_m*D_m*E_m;

%middle section HTM

T_m=simplify(T_m)

%4X4 homogenous rotational matrix

R=[cos(2*pi/9) -sin(2*pi/9) 0 0;sin(2*pi/9) cos(2*pi/9) 0 0;0 0 1 0; 0 0 0 1]’

% matrices for producing 3D HTM of distal section

A_d=[ct_d -st_d 0 0;st_d ct_d 0 0;0 0 1 0; 0 0 0 1]

B_d=[1 0 0 l_d;0 1 0 0; 0 0 1 0;0 0 0 1]

C_d=[cp_d 0 sp_d 0;0 1 0 0;-sp_d 0 cp_d 0; 0 0 0 1]

D_d=[1 0 0 -l_d;0 1 0 0;0 0 1 0;0 0 0 1]

E_d=[ct_d st_d 0 0;-st_d ct_d 0 0; 0 0 1 0;0 0 0 1]

T_d=A_d*B_d*C_d*D_d*E_d;

%distal section HTM

T_d=simplify(T_d)

%Combined HTM 3D

HTM=T_m*R*T_d

simplify(HTM)

v=HTM(:,4) % x-y-z coordinates formula
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D.8 MATLAB® code for 3D results of λ, φ and θ and forward kinematics

(h) Distal and Middle sections combined

clc

%Choose any random but same number of data points from distal and middle section

%data shown earlier for 3D (In this case 124 data points were taken)

% repeat the 3D code for computing shape variables for each section

%for that many number of data.

% Subscript m (_m) denotes data, parameters and shape variables

for middle section and subscript d (_d) denotes all that for distal section

%trignometric values of computed shape variables

ct_m = cos(calctheta_m_cmprcomp);

st_m = sin(calctheta_m_cmprcomp);

l_m = lambda_m_cmprcomp;

cp_m = cos(calcphi_m_cmprcomp);

sp_m = sin(calcphi_m_cmprcomp);

ct_d = cos(calctheta_d_cmprcomp);

st_d = sin(calctheta_d_cmprcomp);

l_d = lambda_d_cmprcomp;

cp_d = cos(calcphi_d_cmprcomp);

sp_d = sin(calcphi_d_cmprcomp);

% computed x-coordinate of combined section from 3D combined forward kinematics

approx_x=ct_m.*l_d.*sp_d.*sp_m - ct_m.*l_m.*(cp_m - 1) -

ct_d.*l_d.*(cp_d - 1).*((0.7660.*cp_m.*ct_m.^2) + (0.7660.*st_m.^2)

- (0.6428.*ct_m.*st_m.*(cp_m - 1))) -

l_d.*st_d.*(cp_d - 1).*((0.6428.*cp_m.*ct_m.^2) +

(0.6428.*st_m.^2) + (0.7660.*ct_m.*st_m.*(cp_m - 1)));

% computed y-coordinate of combined section from 3D combined forward kinematics

approx_y=l_d.*sp_d.*sp_m.*st_m - l_m.*st_m.*(cp_m - 1) -

l_d.*st_d.*(cp_d - 1).*((0.7660.*cp_m.*st_m.^2) +

(0.7660.*ct_m.^2) + (0.6428.*ct_m.*st_m.*(cp_m - 1))) +

ct_d.*l_d.*(cp_d - 1).*((0.6428.*cp_m.*st_m.^2) + (0.6428.*ct_m.^2)

- (0.7660.*ct_m.*st_m.*(cp_m - 1)));

% computed z-coordinate of combined section from 3D combined forward kinematics

approx_z=l_m.*sp_m + cp_m.*l_d.*sp_d + ct_d.*l_d.*((0.7660.*ct_m.*sp_m)

- (0.6428.*sp_m.*st_m)).*(cp_d - 1) + l_d.*st_d.*((0.6428.*ct_m.*sp_m)

+ (0.7660.*sp_m.*st_m)).*(cp_d - 1);

%trignometric values of actual shape variables

ct_m = cos(Data_m(:,3));

st_m = sin(Data_m(:,3));

l_m = Data_m(:,1);

cp_m = cos(Data_m(:,2));

sp_m = sin(Data_m(:,2));

ct_d = cos(Data_d(:,3));

st_d = sin(Data_d(:,3));

l_d = Data_d(:,1);

cp_d = cos(Data_d(:,2));

sp_d = sin(Data_d(:,2));

% actual x-coordinate of combined section from 3D combined forward kinematics
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actual_x=ct_m.*l_d.*sp_d.*sp_m - ct_m.*l_m.*(cp_m - 1) -

ct_d.*l_d.*(cp_d - 1).*((0.7660.*cp_m.*ct_m.^2) + (0.7660.*st_m.^2) -

(0.6428.*ct_m.*st_m.*(cp_m - 1))) -

l_d.*st_d.*(cp_d-1).*((0.6428.*cp_m.*ct_m.^2) +

(0.6428.*st_m.^2) + (0.7660.*ct_m.*st_m.*(cp_m - 1)));

% actual y-coordinate of combined section from 3D combined forward kinematics

actual_y=l_d.*sp_d.*sp_m.*st_m - l_m.*st_m.*(cp_m - 1) -

l_d.*st_d.*(cp_d - 1).*((0.7660.*cp_m.*st_m.^2) +

(0.7660.*ct_m.^2) + (0.6428.*ct_m.*st_m.*(cp_m - 1))) +

ct_d.*l_d.*(cp_d - 1).*((0.6428.*cp_m.*st_m.^2) + (0.6428.*ct_m.^2)

- (0.7660.*ct_m.*st_m.*(cp_m - 1)));

% actual z-coordinate of combined section from 3D combined forward kinematics

actual_z=l_m.*sp_m + cp_m.*l_d.*sp_d + ct_d.*l_d.*((0.7660.*ct_m.*sp_m)

- (0.6428.*sp_m.*st_m)).*(cp_d - 1) + l_d.*st_d.*((0.6428.*ct_m.*sp_m)

+ (0.7660.*sp_m.*st_m)).*(cp_d - 1);

Comparex=[approx_x actual_x]

Comparey=[approx_y actual_y]

Comparez=[approx_z actual_z]

index=1:size(actual_x);

figure

plot(index,actual_x,’r*-’,index,approx_x,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual x-coordinate and Calculated x-coordinate ’)

legend(’Actual x-coordinate’,’Calculated x-coordinate’,’Location’,’NorthEast’)

title(’x-coordinate for multi-section robotic cable tip ’)

figure

plot(index,actual_y,’r*-’,index,approx_y,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual y-coordinate and Calculated y-coordinate’)

legend(’Actual y-coordinate’,’Calculated y-coordinate’,’Location’,’NorthEast’)

title(’y-coordinate for multi-section robotic cable tip’)

figure

plot(index,actual_z,’r*-’,index,approx_z,’bv-’)

grid on

xlabel(’Data points’)

ylabel(’Actual z-coordinate and Calculated z-coordinate’)

legend(’Actual z-coordinate’,’Calculated z-coordinate’,’Location’,’NorthEast’)

title(’z-coordinate for multi-section robotic cable tip’)
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D.9 Arduino code

This program is used in actuating the cable robot for obtaining various shape configurations
for a given section, used in data collection process by taking images of the shapes obtained.

#include <Servo.h>

#include <PinChangeInt.h>

#include <PinChangeIntConfig.h>

#include < avr/io.h >

// ISR interrupt service routine

#include < avr/interrupt.h >

Servo servo1_unwind; // create servo object to control a servo

Servo servo1_wind;

Servo servo2_unwind; // create servo object to control a servo

Servo servo2_wind;

Servo servo3_unwind; // create servo object to control a servo

Servo servo3_wind;

volatile int count1 = 0;

volatile int count2 = 0;

volatile int count3 = 0;

int servotime=200;

//middle servos stop at given

int servo1stop=94;

int servo2stop=91;

int servo3stop=93;

//all distal servos stop at 85

//int servo1stop=85;

//int servo2stop=85;

//int servo3stop=85;

int servowind1=91;

int servounwind1=97;

int servowind2=87;

int servounwind2=94;

int servowind3=90;

int servounwind3=96;

// Pins generated by software for taking input from 2 encoders

#define PIN2 4

#define PIN3 7

void setup()

{

// ready to be made as interrupts through software

pinMode(PIN2, INPUT);
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digitalWrite(PIN2, HIGH); // pull up resistor

pinMode(2, INPUT);

digitalWrite(2, HIGH); // pull up resistor

pinMode(PIN3, INPUT);

digitalWrite(PIN3, HIGH); // pull up resistor

// servo control pins

servo1_wind.attach(3);

servo2_wind.attach(5);

servo3_wind.attach(6);

// software interrupt for 2 encoders

PCintPort::attachInterrupt(PIN2, servocount2,CHANGE);

PCintPort::attachInterrupt(PIN3, servocount3,CHANGE);

// hardware interrupt for 1 encoder

attachInterrupt(0, servocount1, CHANGE);

Serial.begin(9600);

}

void loop()

{

byte servo;

// stops all servos

servo1_wind.write(servo1stop);

servo2_wind.write(servo2stop);

servo3_wind.write(servo3stop);

if (Serial.available())

{

servo = Serial.read();

// keyboard letter a and z control servo 1

if(servo==’a’)

{

servo1_wind.write(servounwind1);

delay(servotime);

servo1_wind.write(servo1stop);

}

else if(servo==’z’)

{

servo1_wind.write(servowind1);

delay(servotime);

servo1_wind.write(servo1stop);

}

// keyboard letter s and x control servo 2

else if(servo==’s’)
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{

servo2_wind.write(servounwind2);

delay(servotime);

servo2_wind.write(servo2stop);

}

else if(servo==’x’)

{

servo2_wind.write(servowind2);

delay(servotime);

servo2_wind.write(servo2stop);

}

// keyboard letter d and c control servo 3

else if(servo==’d’)

{

servo3_wind.write(servounwind3);

delay(servotime);

servo3_wind.write(servo3stop);

}

else if(servo==’c’)

{

servo3_wind.write(servowind3);

delay(servotime);

servo3_wind.write(servo3stop);

}

// keyboard number 7 stops all servos

else if(servo==’7’)

{

servo1_wind.write(servo1stop);

servo2_wind.write(servo2stop);

servo3_wind.write(servo3stop);

count1=0;

count2=0;

count3=0;

}

}

// encoder readings

Serial.print(count1);

Serial.print(" ");

Serial.print(count2);

Serial.print(" ");

Serial.print(count3);
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Serial.println(" ");

}

// functions for counting encoder signals

void servocount1()

{

count1++;

}

void servocount2()

{

count2++;

}

void servocount3()

{

count3++;

}
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