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ABSTRACT 

 

     In contrast to standard aerial imagery, unmanned aerial systems (UAS) utilize recent 

technological advances to provide an affordable alternative for imagery acquisition.  

Increased value can be realized through clarity and detail providing higher resolution (2-5 

cm) over traditional products.  Many natural resource disciplines such as urban forestry 

will benefit from UAS.  Tree inventories for risk assessment, biodiversity, planning, and 

design can be efficiently achieved with the UAS.  Recent advances in photogrammetric 

processing have proved automated methods for three dimensional rendering of aerial 

imagery.  Point clouds can be generated from images providing additional benefits.  

Association of spatial locational information within the point cloud can be used to 

produce elevation models i.e. digital elevation, digital terrain and digital surface.  Taking 

advantage of this point cloud data, additional information such as tree heights can be 

obtained.  Several software applications have been developed for LiDAR data which can 

be adapted to utilize UAS point clouds.    This study examines solutions to provide tree 

inventory and heights from UAS imagery.  Imagery taken with a micro-UAS was 

processed to produce a seamless orthorectified image.  This image provided an accurate 

way to obtain a tree inventory within the study boundary.  Utilizing several methods, tree 

height models were developed with variations in spatial accuracy. Model parameters 

were modified to offset spatial inconsistencies providing statistical equality of means. 

Statistical results (p = 0.756) with a level of significance (α = 0.01) between measured 
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and modeled tree height means resulted with 82% of tree species obtaining accurate tree 

heights.  Within this study, the UAS has proven to be an efficient tool for urban forestry 

providing a cost effective and reliable system to obtain remotely sensed data.  

 

Keywords: Aerial Photography, Arboriculture, Clemson University, GIS, LiDAR, 

Remote Sensing, Tree Height, Tree Inventory, UAVS, UAV 
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CHAPTER 1 

INTRODUCTION 

     Unmanned aerial vehicles (UAV) or unmanned aircraft vehicle systems (UAVS) have 

in recent years, established their presence across the world even though they have been 

around since the 1920’s (Arjomandi, 2007). Comprising 93% of aerial reconnaissance 

during World War I, balloons were the forerunner of the modern day UAV (Blom, 2010).  

Primarily developed for the military, advancement in technologies has lead to increased 

UAV applications within natural resource disciplines.  Monitoring, surveillance, mapping 

and three dimensional (3D) modeling are the primarily natural resource UAV 

applications.  Little of the potential has been realized in civilian UAV applications 

(Merino et.al. 2006).  In the United States, existing/unclear regulatory restrictions 

governing UAV/UAVS use has limited commercial use.   Within natural resource 

disciplines, research is ongoing and new opportunities are rapidly emerging as the 

technology advancements continue.  Despite the regularity uncertainty, UAV use is 

showing extensive value within natural resources and agriculture communities. 

     The UAV is an aircraft that can be controlled from the ground maintaining a level 

flight pattern in the absence of an onboard pilot (Elias, 2012).  There are many different 

designs for UAV air frames which fall into two general categories; fixed and rotary 

winged (Figure 1) (Elias, 2012; DIY, 2013).  With varying design in body and wing type 

general classifications can be further divided by performance parameters which include: 

weight, payload, longevity, range, motor type, maximum altitude and speed (Remondino 

et. al. 2011).  Additionally alternate characteristics for classification can include: cost and 
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wing span (Arjomandi, 2007).  Autonomous, air, hand and mechanical launch methods 

vary with size and type of UAV.  The UAV size limits the type of application and sensor 

carried onboard. Sensor development within consumer digital camera markets has seen 

many technological advances resulting in much smaller, affordable and effective sensors 

for smaller UAV platforms.  Technological advances in digital cameras, geographical 

positioning systems (GPS), and autopilots allowed the use of smaller UAV’s as platforms 

for remote sensing. Autopilots with onboard GPS aid in flight control, positioning of data 

being collected and even landing, resulting in ease of use and autonomous flight.  Data 

collected while in flight can be directly stored on the aircraft or sent in real time back to 

ground control station (DIY, 2013) 

       Sensors on UAV’s can produce an array of remotely sensed products.  True color 

UAV orthophotography results in imagery with higher resolution (2 – 3 cm) and detail 

compared to traditional aerial imagery.  Hyperspectral or multi-spectral imagery can be 

acquired from onboard UAV sensors. (Johnston et. al, 2003)   Near Infrared (NIR) filters 

can be used to modify standard digital camera sensors resulting in vegetative monitoring 

products (Hunt, et. al, 2010).  Thermal sensors allow for detecting temperature changes 

across the landscape (Rudol and Doherty, 2008).     Development efforts are ongoing to 

fit Light Detection and Ranging (LIDAR) sensors on smaller UAV’s (Wallace, 2012).  In 

addition, full motion videos with real time data acquisition are possible using current 

technologies (Eugster and Nebiker, 2008). 

     UAV applications are in their infancy, however many applications are beginning to 

emerge.  Vegetative health monitoring, precision agriculture, urban forestry, emergency 
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management, biological and traffic monitoring represent current application areas for the 

UAVs.  Once legislative and regulatory factors in the United States are clarified, civilian 

applications of UAV’s will become more prevalent.  Modern UAV systems provide; low 

cost, high resolution imagery, currency of information, repeatability, short turnaround 

processing, mobility, reliability and an ease of use system (Laliberte et. al. 2008, Rango 

and Laliberte, 2010). 

     National Air Space (NAS) in the United States is governed by the Federal Aviation 

Administration (FAA).  Civilian and commercial UAV’s are limited in their application 

until new FAA rules can be developed.  A detailed look at regulation and control of UAV 

use has begun due to increased civilian and commercial interests.  In 2006, the FAA 

produced a document, “Unmanned Aircraft Operations in the National Airspace System”, 

to detail special considerations towards use of a UAV within government, police, 

emergency management and university research. This is limiting the commercial/civilian 

growth of the UAV in the United States not only from its use but through research and 

development as companies are reluctant to move forward with regulatory uncertainty.  

Congress has increased the FAA budget to include funds to develop a UAV program.  In 

February 2012, an appropriation was signed by President Obama and with financial 

support included mandates to streamline permits for UAV use and rule development 

(Mitchell, 2012).  The FAA Modernization and Reform Act of 2012; details the 

requirements for the FAA to integrate UAV into the NAS by fiscal year 2015.   In July 

2012, the FAA released a fact sheet detailing its current stance on commercial use.  The 

primary concern of FAA is focused on safety and they are considering the need for 
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integrated sense and avoid technology in UAV’s.  Privacy, national security, and GPS 

signal interference have factored into the decision by the FAA to limit UAV civilian and 

commercial applications. (GAO, 2012)    

In natural resources, the urban forest is well suited for small UAV applications.  UAV 

generated products for urban forestry can be used in many ways (Table 1).  Urban forest 

management objectives are dictated by human use of the areas around trees.  To 

understand how people use the urban forest and to determine tree diversity, it is important 

to create a spatial tree inventory.  Tree diversity across the landscape can be identified 

with accurate inventories that detail forest characteristics (Rowntree, 1988).  An indirect 

benefit of inventory analysis with the UAV is the collection and archive of aerial imagery 

for future temporal comparison.  The affordable repeatability of acquiring UAV imagery 

offers the opportunity to complete spatiotemporal analysis to detect change over time.  

Remotely sensed data is ideal for detecting urban forest spatial patterns to map this 

change (Jomaa et. al, 2008).  Traditional aerial photography methods may be limited in 

this respect because of the high cost of obtaining repeated imagery.  Multi-temporal data 

can be collected by the UAV that will provide effective comparisons to provide 

understanding in landscape change and monitoring (Zhou and Wang, 2011).  Inventory 

and spatial comparisons will provide valuable information of urban forest structure, 

diversity, and management.  This information will lead to more effective management 

decisions.   

     Urban forest management begins with a tree inventory. Tree inventories provide 

information as to tree diversity, location, condition, size and species.  They also provide 
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positive benefits to communities and jurisdictions (Table 2).  Tree inventories are an 

essential component of developing an urban forest management plan.   Inventories 

represent urban forest conditions at the time of data collection.  Urban forests are 

dynamic with natural and man-made changes occurring often and inventories require 

updating on a regular basis.  There are several ways to develop tree inventories with each 

having its own set of advantages and disadvantages.  Economic considerations may 

dictate which methods are used for obtaining a tree inventory (NCFS, 2014).  

     Urban forest inventories have data collected depending on the primary motivation for 

the inventory.  Typically, standard information that is collected from each tree includes: 

species, diameter, condition, maintenance needs, location (x, y coordinate) and growing 

conditions (canopy, soil type/volume, and moisture regimes) (NCFS, 2014).  As part of 

an urban tree inventory, tree risk assessment is typically included.  Management of tree 

risk is designed to mitigate both basic and complex urban infrastructure to identify 

potential for tree failure.  Urban forest managers have the responsibility to identify 

varying tree risk levels present and to manage them in accordance to acceptable risk.  

Tree risk involves inspection and assessment of the risk trees pose to property or human 

injury (Pokorny et. al, 2003). Tree risk assessment can be divided into three levels; Level 

1- limited visual inspection, Level 2- complete visual inspection, and Level 3- advanced 

assessment (ISA, 2013).  Tree risk identifies the potential for failure and environmental 

conditions contributing to failure along with target analysis.  In the urban forest, tree 

failure could result in significant damage to human health and property.  (Ellison, 2005)   
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         Light Detection and Ranging (LiDAR) uses light pulsed from a laser to measure 

distance to the earth’s surface (Figure 2).  Highly accurate three dimensional information 

regarding the earth’s surface and objects on the surface can be obtained from LiDAR 

information (NOAA, 2013).  Forest inventory, urban planning, landscape ecology, 

floodplain mapping, hydrologic modeling, geomorphology are some of the examples of 

how LiDAR data is being utilized (Chen, 2007).  Using LiDAR has key advantages: it 

can be quickly collected, provides high sample density, collected in dense forest, 

collected day or night, and contains no geometric distortion (ESRI, 2014).  A limiting 

factor to temporal acquisition of LiDAR is high acquisition cost (Chen, 2007).  LiDAR 

data can be processed to determine vertical canopy structure and individual tree 3D 

modeling (Wang et. al, 2008).  LiDAR data is in the form of a point cloud and when 

classified can produce results in the form of digital terrain models (DTM), digital 

elevation models (DEM) and canopy height models (CHM) (Yunfei et. al, 2008, ESRI, 

2014).  The Log ASCII Standard (LAS) file format is used to interchange LiDAR data 

between users.  This file type is binary and maintains specific LiDAR characteristics 

while reducing complexity found in generic ASCII file structure.   The LAS format is 

flexible to allow for customization within specific applications using an LAS Domain 

Profile (ASPRS, 2012).  Each point in the LiDAR data set is classified to define object 

types encountered by laser pulses.  Using classification codes (LAS 1.1 or LAS 1.2 or 

LAS 1.3) standardization is achieved to define classification values (Table 3).  

Delineation of ground and high vegetation points can be converted to raster data to 

determine tree heights using tools within ArcGIS software (ESRI, 2014).  In contrast to 
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traditional LiDAR data acquisition, UAV generated imagery can be processed using 

multi-view stereopsis, to produce a point cloud similar to LiDAR.  These point clouds 

can be processed using LiDAR methods resulting in DEM, DTM, and CHM products.  

(Harwin and Lucieer, 2012) 

It is hypothesized that UAV products (imagery and 3D point cloud) can be used in 

place of traditional data to obtain tree inventories and heights.  Objectives of this study 

are to: 1) evaluate the efficacy of a small UAV for routine urban aerial photo acquisitions 

in urban forestry, 2) produce spatially-referenced aerial photo orthomosics from a UAV, 

3) produce a tree inventory from UAV imagery, 4) use 3D point cloud from UAV 

imagery to develop a model that will accurately produce tree height values. 
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CHAPTER 2 

MATERIALS AND METHODS 

Study Area 

     Clemson University lies in the southwest corner of Pickens County in northwest South 

Carolina.  This land grant university was founded in 1889 from a private gift of Thomas 

Clemson and was formally opened in 1893.  Today the main campus covers 566 ha with 

an additional 12,949 ha of agriculture and forest land (Clemson, 2013).  The purchase of 

a single winged vehicle called the SwingletCam (Figure 1) was acquired to aid in campus 

planning, and tree inventory.  On the campus of Clemson University, deployment of a 

UAV occurred in October 2012.  This study will be conducted across the main campus 

located in Clemson, SC (Figure 3). 

UAV Aerial Imagery 

     Multiple missions were conducted between July and October 2013 (Table 4) to 

evaluate operational procedures and acquisition of aerial images.  Missions were planned 

using strategic landing/take off zones to make efficient use of topography and 

photographic parameters.  Geodetic ground control points (115) were established using 

geographic positioning system (GPS) to aid spatial referencing of images.  Results were 

analyzed to evaluate altitude preferences, radio connectivity, image resolution/detail, and 

flight parameters. 

Imagery Processing 

     Imagery was transferred from the UAV storage media to a computer for orthophoto 

processing.  Images were geotagged with flight log data and processed to produce a 
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seamless orthorectified image for the study boundary. Open source, third party 

applications, and cloud based services were used to evaluate effectiveness in producing a 

seamless image derived from multiple temporal missions. 

Tree Inventory 

     A tree inventory was conducted using the orthorectified images.  A feature class 

representing the tree inventory was created based on UAV imagery using ArcGIS 10.1 

software (ESRI, 2010).  A heads up digitizing technique records tree locations as points 

through visual inspection of the high-resolution imagery.  Each point corresponds to a 

single tree added in a feature class representing the overall tree inventory.  Using pre-

identified tree maintenance zones, the tree inventory process was conducted along a 

gridded pattern until each zone was complete.  This process meets the requirement for 

Level 1 tree risk assessment. 

Field Analysis 

     Field visits were conducted at each tree identified within the tree inventory.  Species, 

diameter at breast height (DBH), and total tree height data was obtained.  DBH was 

measured with a Biltmore stick (Black, 2014) and a Nikon Forestry Pro Model 8381 laser 

range finder ( 0.31 m) was used to obtain total tree heights. During field visits, visible 

defects were noted and recorded using a gps-enabled digital camera.  The field analysis 

represents a level 2 tree risk assessment. 

Generation of DEM, DTM, and CHM 

     Using LiDAR and UAV 3D point cloud data, a DEM, DTM, and CHM were 

generated.  LiDAR data was used as a base line to validate UAV point cloud results.  
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Processing of both data sets was conducted using different approaches.  Raw LiDAR data 

in LAS format were processed using the Fusion LIDAR viewing and analysis software 

developed by the United States Forest Service (USFS) to produce 3D terrain and canopy 

surface models (USFS, 2014).  A Toolbox for LiDAR Data Filtering and Forest Studies 

(TiFFS) analyzes LiDAR LAS data processing them into terrain raster files (object height 

models (OHM), DEM, DSM), GIS feature classes (tree points, tree canopy polygons) and 

statistical raster files (kurtosis height, mean height, percent height, quad mean height, 

skewness height, standard deviation height). TiFFS utilize an automated routine that does 

not require pre-classified LIDAR point clouds for input.  Having a more focused 

approach to obtaining forest information from LiDAR, TiFFS is designed to extract 

specific statistical related information in addition to terrain modeling (Globalidar, 2014).  

Among many tools that ArcGIS contains, LiDAR LAS files can be utilized to obtain 

terrain models.  Additional toolsets can be used to analyze the terrain models and extract 

information such as tree heights.  Using the UAV point cloud data may require additional 

software to prepare it for use.  Converting the point cloud into LAS or ASCII format for 

input is typically required.  There are products such as Microsoft Excel and Structured 

Query Language (SQL) Database for example, that can accomplish this conversion but 

due to the number of table rows (tens of millions for each mission) there may be 

limitations encountered due to large file sizes.  Martin Isenburg has produced a set of 

tools (LASTools) specifically for LAS management (Rapidlasso, 2014).  These tools can 

be used in a standalone graphical user interface, as a toolbox in ArcGIS or executed 

within operating system command line.  This toolbox allows for quick and efficient 
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conversion of UAV point cloud data into LAS format.  Agisoft is commercial based 

software that can process UAV images into a seamless orthorectified product.  A single 

orthomosaic seamless image along with a 3D point cloud can be produced with Agisoft to 

develop a tree inventory and tree height model. 

 

Calculate Tree Heights 

     Canopy Height Models (CHM) and object height models (OHM) derived from point 

cloud analysis can be used to directly obtain tree heights.  Spatial interpolation at each 

tree location was used to extract these values to the tree inventory attribute table.  ArcGIS 

10.1 was used to spatially join this information to the point location files.  Utilizing other 

tools in ArcGIS 10.1 (LASTools), the elevation models were developed and elevation 

values spatially joined to tree inventory points.   These values were subtracted to obtain 

estimated tree heights.   

Statistical Analysis 

     Statistical comparison of tree heights to field measured heights was conducted.  

Hypothesis testing of two means was used to validate the tree height model.  If the null 

hypotheses are not rejected then the conclusion will show the means are equal and 

validate the tree height model.  In the case of rejecting the null hypothesis, further 

statistical analysis was conducted to determine what factors may contribute to the 

rejection.  Results can reveal if some tree species may not be subject to tree height 

modeling or other factors may cause spatial inconstancies or inaccurate elevation values 

limiting accurate interpolated values to be obtained. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

UAV Imagery 

     Nineteen UAV flights were flown between July and October 2013 (Table 4).  A 

portable ground control station (Figure 4) was used to manage flight control with 

Emotion2 software (Figure 5).  A total of 3466 color images with resolutions of 2.6-3.6 

cm were collected from a typical altitude of 90 m.  Between each image, 60% side lap 

and 40% forward lap parameters were used.  This was needed to minimize distortional 

balances between images.  The resolution obtained is useful to provide the scale needed 

to describe forest canopy and diversity variables within the forested landscape (Anderson 

and Gaston, 2013).   During flight, images were stored on a secure digital (SD) card.  

Flight functions were provided with an onboard autopilot and GPS.  Autonomous take off 

and landings provided ease of use.  Ground control communication with the UAV was 

maintained using a 2.4 GHz radio link via a universal serial bus (USB) computer 

connection.  The UAV functioned flawless at low altitudes and provided an effective 

solution for obtaining high resolution aerial photography.  

Imagery Processing 

     Processing of images began with geotagging flight and camera information to each 

image.  Geotagging was completed using a proprietary software (Post Flight Suite) 

supplied with the UAV.  Geotagging adds information to the EXIF header that contains 

camera parameters and spatial x, y coordinate.  A cloud based service (DroneMapper, 

http://dronemapper.com) was used to orthorectify and mosaic flights into a seamless 

http://dronemapper.com/


13 

 

image. Only 2497 of the 3466 images were used for mosaic processing.  Some images 

were dropped as they represented extended overlap between flights.  In between flights 

with varying temporal periods introduced tonal imbalances, excessive shading (sun angle 

differences) and color inconsistencies.  The extra images allowed for a selection process 

to choose the best image for orthorectification and minimization of potential visual 

inaccuracies.  Prior to uploading flight images, ground control information was created 

using a GCP application supplied by DroneMapper.  Two text files were needed to allow 

for georeferencing images to ground control.  A file containing the name, x coordinate, y 

coordinate, z value and horizontal/vertical precision for each ground control point was 

used as a ground reference file (3D file).  With DroneMapper’s proprietary GCP 

software, images were analyzed to determine if any ground control was present.  If 

present, the ground control point was selected with the computer mouse which correlated 

to the x, y pixel value on the image.  A separate file (2D file) stored the name, x pixel, 

and y pixel values.  The 2D file was edited changing the name to match its corresponding 

ground control point name.  After all images were examined, both text files containing 

the ground control (3D file) and image control (2D file) information was uploaded with 

flight images.  Due to the large number of images sent for processing, Dronemapper 

divided the image set into five processing blocks for increased efficiency.  After 

processing by DroneMapper, products were returned which included orthorectified 

seamless image, DEM, DSM, and 3D point cloud for each block of images. 

     Upon receipt of DroneMapper products, each flight block was loaded into ArcGIS 

10.1 for evaluation.  In ArcGIS 10.1 additional mosaic tools were used to create a 



14 

 

seamless image of all flight blocks.  Tonal imbalance (Figure 6) between flights occurred 

and with further analysis where not completely eliminated.  A spatial grid (305 m x 305 

m) was developed to clip original flight images.  This process allowed for areas of tonal 

balance issues to be further edited by choosing flight overlaps that could be used to 

replace the tonal imbalances. From the tiled images, a new mosaic (Figure 7) was 

developed however tonal imbalances and color matching were not totally removed. The 

results from the additional processing improved the original product making it useful to 

obtain tree inventories. 

     Further investigation to enhance the image processing, a commercial application, 

Agisoft PhotoScan Professional Edition Ver. 1.0.4 (64bit) (http://www.agisoft.ru/) was 

used.  Agisoft is designed to process photogrammetry data for orthorectification with 

additional functionality to produce an orthomosic image, DEM, DTM and 3D point 

clouds.  The same 2466 images used for Dronemapper processing were used as inputs to 

Agisoft creating a single orthorectified mosaic.  This operation stressed computer 

resources (8 core processor, 32 gb RAM) during implementation.  Results were examined 

in ArcGIS 10.1 and although minor tonal balances were present. Agisoft had overall 

better results over DroneMapper resulting in improved spatial accuracy and tonal 

balancing.   Dronemapper minimized building distortion in contrast to Agisoft were 

buildings were misshaped and warped.  In addition, a 3D point cloud was exported from 

Agisoft for utilization in tree height modeling.    

 

 

http://www.agisoft.ru/
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Tree Inventory 

          The high resolution characteristics of the completed mosaic enhanced visual 

identification of individual trees for urban forest analysis and level 1 tree risk assessment.  

Using ArcGIS 10.1, individual trees were located and assigned a unique x/y coordinate 

by mouse click with the point added to the tree inventory feature class (Figure 8).  

Acquisition for both field and UAV tree inventory data was timed to calculate a total time 

per tree.  The time per tree was multiplied by the total number of trees acquired during 

data collection for each method.  The results (Table 5) reflected a realized savings of 29.3 

days when using UAV methods.  This information is invaluable as a way to offset limited 

resources for arboriculture applications.  

Field Analysis 

     Field work is still ongoing to visit non-sampled trees. The goal is to visit all trees 

identified within the tree inventory.  Currently, 1831 trees have been examined for level 2 

risk assessment.  Species, DBH, total height, and general condition were noted.  DBH 

was obtained using a Biltmore stick (Black, 2014).  Total tree heights were measured 

using a Nikon Forestry Pro Model 8381 range finder.  A three point method was used to 

compute heights with the rangefinder.  Ranging measurements were taken directly from 

three tree positions: eye level, base, and top of tree.  Internally these measurements were 

used to return a tree height value.  Data collected were field recorded pen and paper 

method.  ArcGIS 10.1 was used to edit the tree inventory feature class, keycoding field 

data associated with each tree (Figure 9).  A total of 57 unique tree species were 
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identified through field observations.  Diversity among trees is represented by 31 genus 

and 46 species.   

Generation of DEM, DTM, and CHM 

     Generation of elevation models was conducted using Agisoft and Dronemapper 

products.  Models were derived utilizing TiFFS, Fusion, ArcGIS and LASTools. Each 

model was evaluated for spatial and tree height accuracies.   

     Dronemapper supplied DEM, DTM and point cloud files.  The DEM and DTM were 

compared to LiDAR DEM.  It was observed, pixel values for the UAV based DEM and 

DTM products were not true elevation values.  It was surmised that these values were 

missing a scale factor to correlate with actual elevation values.  In an attempt to develop a 

scale factor, a point grid was developed using the LiDAR and DroneMapper DEM pixel 

values.  These were spatially assigned to each point in the grid.  Using the field calculator 

in ArcGIS 10.1, a new attribute was assigned a scale up factor derived from dividing the 

LiDAR elevation by the pixel value.  Points were then randomly selected and classified 

into grass (open flat areas) and buildings (top of building).  The means of each classified 

group of points were looked at statistically to see if there were differences based on cover 

type.  The result was used to scale the pixel value to represent actual elevation.  The 

results, where successful for ground elevation (DEM) however, the scale factor was not 

valid to accurately assimilate height elevations.   

     The point cloud provided by DroneMapper included x, y and z values for each pixel in 

the mosaic imagery.  Assuming the z value represents object height, the x and y values 

could be used to spatially locate each pixel.  Through tools in ArcGIS 10.1, a raster 
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model representing the y value could be produced.  Due to extremely large (millions) 

point cloud files, data preparation was necessary to use the files in ArcGIS.  The X, Y 

Data tool requires a text or Microsoft Excel file to spatially locate each pixel.  Excel has a 

1,048,000 row limit so each point cloud file had to be parsed into smaller files.  Each 

point cloud file can be programmatically split into manageable sizes then converted to 

excel format for processing.  This task did not prove to be efficient due to the number of 

files produced and time needed for conversion.  This method was processed at a smaller 

scale for testing.  One flight was processed to produce a point file that could be spatially 

joined to tree inventory.  Spatial inaccuracies occurred with actual tree inventory 

locations not in line with x, y generated points.  In an attempt to correct spatial offsets, 

the near tool in ArcGIS 10.1 was used to select the closes elevation to a measured tree.  It 

was found that the closest point was not always the correct one.  In many instances, the 

correct pixel was farther away from the closest point.  The neighborhood analysis (3 x 3) 

tool in ArcGIS 10.1 was used to evaluate the points.  This method captured in many cases 

the correct pixel and the maximum value within each neighborhood could be used for tree 

height interpolation (Figure 10).  This process contained variability across spatial extents 

and was not considered a feasible method without modification.   

     The LAS Toolkit (Rapidlasso, 2014) includes the txt2LAS tool. DroneMapper point 

cloud files were converted without parsing of data into a file similar to LiDAR.  The new 

file was used to build a raster model representing the z value.  A comparison was made 

against the LiDAR DEM.  When compared to the LiDAR DEM, resulting point cloud z 

values were negative.  This indicates it was representing elevations below the DEM.  It 
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was concluded that the z value in DroneMapper’s point cloud did not represent object 

height and were not in the same scale.  More information needs to be gathered from 

DroneMapper as to methods and metadata before the point cloud can be used in tree 

height modeling. 

     Utilizing TiFFS proved to be user friendly with its automated process to take LAS 

files and create estimates of forest metrics.  It was designed specifically to utilize LiDAR 

information to analyze forest structure.  The outcome from TiFFS produced several 

results: DEM, DSM, OHM, ground and object LAS point cloud, and ESRI shapefiles 

representing crown, and trees.  Interpolated tree height values are present in the attribute 

table and can be compared with tree inventory measured heights.  Both LiDAR and 

DroneMapper point clouds were analyzed in TiFFS.    Outcomes for both point clouds 

were compared to the tree inventory both visually and statistically.  Spatial comparisons 

show inaccuracies in tree location for both LiDAR and UAV Dronemapper derived point 

clouds (Figure 11-12).  The LiDAR results have a closer spatial relationship to inventory 

trees.  Further investigation is needed to determine the cause for spatial inaccuracies; 

however it is hypothesized that map projections and projection transformations may be 

the cause of the inaccuracy. 

     Fusion (USFS, 2014) utilizes user developed command line files to produce canopy 

(CHM) and elevation models (DEM).  LiDAR point clouds were processed using this 

method.  CHM returned spatial correlation to tree inventory (Figure 13).  Spatial 

interpolation at tree locations joined CHM elevations to tree inventory points.  Measured 

tree heights were compared to CHM values statistically to determine equality.  The 
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results were inconsistent across the tree inventory.  Slight to moderate differences in tree 

heights were observed.   

     ArcGIS 10.1 provides tools designed for processing LiDAR point clouds.  These tools 

were utilized to develop a DTM model.  A DEM model was not needed, since one was 

provided with the LiDAR point cloud.  Inconsistent point cloud classifications (only 

ground point’s classified-LAS 2) were used to develop a DTM from vegetative 

classifications (LAS 1-first returns).  The result was spatially interpolated to tree 

inventory points.  Using the LIDAR (3.05 m x 3.05 m) derived DEM supplied with the 

LiDAR point cloud, the tree inventory revealed interpolated elevation values in like 

manner.  A comparison of the DEM and DTM values concluded dissimilarity between 

measured and estimated tree heights.  Statistical analysis was performed to determine 

equality.  Measured and interpolated tree heights were considered equal if pvalue < level 

of significance (0.01).  Statistical results concluded that inequality existed across the 

study boundary.  It was perceived that this result was not spatially explicit and elevation 

data was subdivided into tiles for statistical analysis.  A pattern of discontinuity was 

found indicating that the model did represent object heights within certain spatial extents.  

There seems to be some indication that map projection, datum and unit transformation 

may have introduced error into the model.  In addition it is hypothesized, that filtering of 

unclassified points during processing could have included outliers that skewed the results.  

In addition, the date of acquisition between LIDAR (2011) and UAV (2013) data could 

cause dissimilarity between elevations. 
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     Agisoft was used to generate a seamless orthomosaic and 3D point cloud by using 

each UAV image (2497 total) in a six step process.  The process aligned, built 

geometries, georeferenced, meshed, textured, and mosaicked the images into a single true 

color high resolution image and point cloud.  The resulting image was an improvement 

over other results with no tonal imbalances and spatial accuracies within 10.5 cm of 

geodetic control.  Some building distortion was present but did not distract from the trees.  

A point cloud containing x, y, z, Red (R), Green (G), Blue (B) values for each point was 

exported as a text file.  LASTools was used to convert the text file into an unclassified 

LiDAR (. las) format.  In Agisoft, to obtain increased spatial accuracy, native UAV map 

projection (WGS1984 Lat/Long) was used.   To utilize LASTools, a conversion of the 

map projection was required to convert the point cloud file to UTM WGS 1984 Zone 

17N.  Due to point cloud file size (209
+
 million points) tiling was used to parse the file 

into smaller units for processing.  Each file was batched processed (Table 6) to: tile, 

classify ground points, convert z values to true heights, and classify building/high 

vegetation points using default parameters built into each tool.  A LASTool (las2DEM) 

for creating DEM’s was used to convert the ground and high vegetation points into 

separate DSM and DTM models.  These tools were utilized within an application 

developed in ArcGIS Model Builder to streamline LASTool utilization.  A BAT file was 

created to enable LASTool to process all tiles in sequence for greater efficiency using a 

step value of 0.25 representing a 25 cm neighborhood for point processing.  The ground 

DEM obtained increased accuracy for surface elevations as a result.  To classify high 

vegetation into a DTM, only class 3, 4, and 5 were used in the “–keepclass” parameter to 
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exclude all other classified point while also using the “–extrapass” parameter to improve 

point processing.  The result of executing the bat file inside the command line improved 

overall efficiency of executing.  Output DEM and DTM for each tiled point cloud 

resulted in elevation values with a higher degree of spatial accuracy.  The mosaic tool 

was used in ArcGIS to stitch all tiles into a single DEM and DTM for the study boundary.  

Once complete, elevations (DEM and DTM) could be interpolated and then compared to 

each tree within the inventory. 

Calculate Tree Heights 

     The DEM, DTM, and CHM elevation models provided the basis to compare data layer 

elevation values to tree point locations and the associated measured tree height.  The 

elevation models (DEM and DTM) were developed for both LiDAR and UAV point 

clouds.  Ground elevation (DEM) was compared by subtracting from object height 

(DTM) values to create a layer (CHM) with the height of objects above ground level.  

Values from this height raster were added to the feature class for the point tree locations 

so that measured tree heights could be statistically compared with estimated heights. 

Filtering of the estimated heights was needed to remove erroneous values attributed to no 

data areas.  Descriptive statistics were calculated on the filtered results for statistical 

analysis.  Accuracy with this process is dependent upon the density of the point cloud, 

and the resulting elevation model. 

     Examining the outputs of the models tested, the DEM and DTM from LASTools 

provided the best results when compared to point cloud processing in Fusion or TIFF’s.  

Dissimilar map projection units, spatial inaccuracies, temporal differences between data 
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collections and unclassified points caused varying levels of inaccuracy.  UAV point cloud 

processing with LASTools reduced many of these inaccuracies.  Tree heights were 

interpolated and incorporated as an attribute in the tree inventory feature class (Figure 

14).  Descriptive statistics were calculated on the filtered results for statistical analysis. 

Statistical Analysis 

     Statistical comparisons were made between measured and estimated tree heights.  

Descriptive statistics for mean, N, and standard deviation calculated in ArcGIS 10.1, 

were used in a t-test calculator (GraphPad (http://www.graphpad.com/quickcalcs/ttest1/) 

for p-value determination. Trees (27% of total inventory) with measured and estimated 

tree heights were used for comparison of means.   

     LiDAR derived CHM’s results found that tree heights were not equal to measured tree 

heights (p = 0.0001) which was unexpected.  LiDAR data was parsed into tiles to 

determine if this was spatially consistent across the study boundary.  A neighborhood 

search for LiDAR values at varying distances was used to determine if position accuracy 

could have caused the poor height estimates with the LIDAR data.  Statistical analysis 

(Table 7) for each tile shows there is an exception and spatial areas exist where tree 

heights are equal (p > 0.01).  These results indicate that spatial inaccuracies between the 

CHM and tree location(s) provided inaccurate height results for certain spatial extents.  It 

is concluded if spatial alignment issues can be resolved accurate tree height values could 

be interpolated.  

     The DEM and DSM provided from DroneMapper did not have a consistent scale 

factor to convert pixel value into a usable elevation value, which made it unusable for 

http://www.graphpad.com/quickcalcs/ttest1/
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estimating tree heights.  A gridded method was used to construct a model to compare 

grass or open areas to building tops.  If the scale factor for each classification is equal the 

derived scale then it could be used to convert pixel values.  GraphPad was used to 

compare two means using a t-test.  The results (Table 8) show that both scale factors are 

equal (p = 0.056).  Further testing is needed to determine if the scale factor is valid for 

both the DEM and DSM models and if a variable scale factor would be necessary. 

     The results (Table 9) of LASTool processing of the Agisoft point cloud concluded at 

the level of significance (α = 0.01) that the measured and estimated tree heights were 

equal (p = 0.7641).  These statistical results show that using the point cloud from high 

resolution imagery can be accurate for tree height determination.  Further statistical 

testing was performed stratifying the measured height sample to look at individual tree 

species.   Individual species (70.2% of all species with measured heights) with n > 1 were 

tested to compare measured and estimated tree height means.  This testing (α = 0.01) 

show that 82% of individual species had equal means (Table 10).  The 18% with unequal 

means include Cornus florida, Ilex opaca, Lagertroemia indica, Magnolia virginiana, 

Quercus alba, Pinus teada, and Thuja occidentalis.  Three species, Pinus teada, Quercus 

alba and Thuja occidentalis showed measured mean values higher (22%, 20% and 40% 

respectively) than estimated means.  In contrast, Cornus florida, Ilex opaca, 

Lagertroemia indica and Magnolia virginiana, showed higher estimated means (42%, 

31%, 21%, and 54%, respectively).   

     Multiple statistical and physical characteristics were examined to determine factors 

that could have explained the seven species with unequal means.  Plausible explanations 
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indicate that no single factor contributes to the error in height estimation.  A combination 

of factors likely caused the error.  Stratifying the data by species, an evaluation was 

conducted that revealed three characteristics: sparse point cloud, tree point proximity (< 5 

m) to buildings and miss-classified/unclassified points as probable causes of error.  When 

examining these factors, adjoining point values influenced estimated tree height results.  

Proximity to buildings caused estimated tree heights to increase while areas of little to no 

points (sparse point cloud) caused measured heights to be greater than estimated heights.  

Miss-classified and unclassified points could cause either height value to increase over 

the other and is dependent upon closest point to actual tree location.  Additional analysis 

was conducted spatially adjusting (increased neighborhood size to 1meter from 25 

centimeters) DEM parameters in an attempt to increase accuracy among estimated 

heights.  Statistical analysis for all species revealed at the level of significance (α = 0.01) 

estimated and measured tree heights were still equal (p = 0.9628).  Comparing the seven 

species with unequal means, statistically they remained unequal (p = 0.0001).  It was 

observed that 71% of the individual species showed estimated height means were higher 

than measured means.  For these species distance to buildings was the contributing factor 

as elevation points representing the building influenced (increasing) estimated tree 

height.  The other 29% of species show mean measured heights greater than mean 

estimated heights.  This was due to sparse point cloud and miss-classified points 

influencing (decreasing) estimated tree heights.   
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CHAPTER 4 

CONCLUSION 

    Research objectives were to evaluate UAV implementation potential within the urban 

forest, build a tree inventory and develop a tree height model from an imagery derived 

point cloud.  The UAV proved to be an effective tool to acquire high resolution imagery. 

Agisoft rendered orthomosic photos that had high spatial and tonal accuracies. Findings 

include that ground control points are required to provide spatial accuracy needed for 

imagery and terrain model correlation to tree position(s).  Tree inventory acquisition 

using the high-resolution UAV imagery and resulting point cloud was simple with 

increased efficiency resulting in time savings over traditional methods.  Tree height 

model processing had varied results depending on software used.    Future opportunities 

exist to uncover deficiencies related to height modeling within different software 

applications. Agisoft mosaic generation provided the best solution for image processing 

and point cloud extraction.  LASTools proved to be effective in producing accurate tree 

heights (p = 0.7641) from UAV point clouds.  Due to inequality with several individual 

tree species it is suggested that parameters for point cloud creation and classification 

needs user customization to account for factors contributing to their difference of means.  

This study has shown how the UAV can improve tree inventory workflows while 

generating a higher degree of visibility to assist in effective management decisions.  
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Figure 1 General classification categories of UAV’s 

                              

                    Fixed Wing Swinglet Cam      http://www.sensefly.com/products/swinglet-cam     

 

                                                                            

                             Multicopter        http://diydrones.com/profiles/blogs/a-newbies-guide-to-uavs 

http://www.sensefly.com/products/swinglet-cam
http://diydrones.com/profiles/blogs/a-newbies-guide-to-uavs
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Figure 2 LiDAR returns when laser pulses hit the ground and trees (FRA, 2014) 
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Figure 3 Study boundary used for UAV implementation to collect high resolution 

imagery for developing a tree inventory and tree height model.  Green dots represent 

geodetic control locations
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Figure 4 Ground control station for Sensefly Swinglet UAV.  The control station provides 

continuous flight monitoring and UAV control   
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Figure 5 Screen capture of Emotion2 software (Sensefly, Inc.) during aerial photo 

mission. The screen contains flight controls, current mission parameters, communication 

limits, and flight path(s) 
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Figure 6 Tonal imbalances and spatial alignment inaccuracies occurring between flights 

following image processing
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Figure 7 Completed georeference mosaic of Clemson University.  This seamless 

orthomosaic was used for tree inventory acquisition 
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Figure 8 Tree inventory results using high resolution mosaic of Clemson campus 
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OBJECTID GENUS SPECIES COMMON DBH HEIGHT CROWND LOC_VALUE CONDITION INSPE_ZONE VALUE OWNER EDIT_USER ZoneNumb_1 Tree TreeID Tree_Code

12 Cornus florida Flowering Dogwood 6.0 34.0 0.0 0 0 0 0 Facilities RBuchanan 01 0012 010012 COFL

13 Cornus florida Flowering Dogwood 6.0 34.0 0.0 0 0 0 0 Facilities RBuchanan 01 0013 010013 COFL

14 Cornus florida Flowering Dogwood 6.0 35.0 0.0 0 0 0 0 Facilities RBuchanan 01 0014 010014 COFL

15 Cornus florida Flowering Dogwood 5.0 33.0 0.0 0 0 0 0 Facilities RBuchanan 01 0015 010015 COFL

16 Cornus florida Flowering Dogwood 5.0 32.0 0.0 0 0 0 0 Facilities RBuchanan 01 0016 010016 COFL

17 Cornus florida Flowering Dogwood 5.0 32.0 0.0 0 0 0 0 Facilities RBuchanan 01 0017 010017 COFL

18 Cornus florida Flowering Dogwood 5.0 32.0 0.0 0 0 0 0 Facilities RBuchanan 01 0018 010018 COFL

19 Cornus florida Flowering Dogwood 6.0 25.0 0.0 0 0 0 0 Facilities RBuchanan 01 0019 010019 COFL

20 Cornus florida Flowering Dogwood 5.0 34.0 0.0 0 0 0 0 Facilities RBuchanan 01 0020 010020 COFL

21 Cornus florida Flowering Dogwood 8.0 30.0 0.0 0 0 0 0 Facilities RBuchanan 01 0021 010021 COFL

22 Cornus florida Flowering Dogwood 6.0 35.0 0.0 0 0 0 0 Facilities RBuchanan 01 0022 010022 COFL

23 Cornus florida Flowering Dogwood 8.0 33.0 0.0 0 0 0 0 Facilities RBuchanan 01 0023 010023 COFL

24 Cornus florida Flowering Dogwood 8.0 32.0 0.0 0 0 0 0 Facilities RBuchanan 01 0024 010024 COFL

25 Cornus florida Flowering Dogwood 3.0 13.0 0.0 0 0 0 0 Facilities RBuchanan 01 0025 010025 COFL

26 Cornus florida Flowering Dogwood 6.0 27.0 0.0 0 0 0 0 Facilities RBuchanan 01 0026 010026 COFL

27 Cornus florida Flowering Dogwood 6.0 25.0 0.0 0 0 0 0 Facilities RBuchanan 01 0027 010027 COFL

28 Cornus florida Flowering Dogwood 6.0 28.0 0.0 0 0 0 0 Facilities RBuchanan 01 0028 010028 COFL

29 Cornus florida Flowering Dogwood 5.0 27.0 0.0 0 0 0 0 Facilities RBuchanan 01 0029 010029 COFL

30 Cornus florida Flowering Dogwood 9.0 37.0 0.0 0 0 0 0 Facilities RBuchanan 01 0030 010030 COFL

34 Magnolia ╫ soulangeana Saucer Magnolia 3.0 19.0 0.0 0 0 0 0 Facilities RBuchanan 01 0034 010034

37 Magnolia ╫ soulangeana Saucer Magnolia 4.0 19.0 0.0 0 0 0 0 Facilities RBuchanan 01 0037 010037

51 Betula nigra River Birch 16.0 58.0 0.0 0 0 0 0 Facilities RBuchanan 01 0051 010051 BENI

55 Juniperus virginiana Eastern Red Cedar 19.0 38.0 0.0 0 0 0 0 Facilities RBuchanan 01 0055 010055 JUVI

68 Acer nigrum Black Maple 10.0 38.0 0.0 0 0 0 0 Facilities RBuchanan 01 0068 010068 ACNI

69 Acer nigrum Black Maple 11.0 41.0 0.0 0 0 0 0 Facilities RBuchanan 01 0069 010069 ACNI

75 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0075 010075 ILOP

76 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0076 010076 ILOP

77 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0077 010077 ILOP

78 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0078 010078 ILOP

79 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0079 010079 ILOP

80 Ilex opaca American Holly 2.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0080 010080 ILOP

81 Lagerstroemia indica Crape myrtle 4.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0081 010081 LAIN

82 Lagerstroemia indica Crape myrtle 3.0 7.0 0.0 0 0 0 0 Facilities RBuchanan 01 0082 010082 LAIN

83 Lagerstroemia indica Crape myrtle 3.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0083 010083 LAIN

84 Lagerstroemia indica Crape myrtle 3.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0084 010084 LAIN

85 Lagerstroemia indica Crape myrtle 3.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0085 010085 LAIN

86 Lagerstroemia indica Crape myrtle 3.0 8.0 0.0 0 0 0 0 Facilities RBuchanan 01 0086 010086 LAIN

87 Lagerstroemia indica Crape myrtle 3.0 12.0 0.0 0 0 0 0 Facilities RBuchanan 01 0087 010087 LAIN

88 Lagerstroemia indica Crape myrtle 4.0 8.0 0.0 0 0 0 0 Facilities RBuchanan 01 0088 010088 LAIN

89 Lagerstroemia indica Crape myrtle 4.0 10.0 0.0 0 0 0 0 Facilities RBuchanan 01 0089 010089 LAIN

90 Lagerstroemia indica Crape myrtle 3.0 8.0 0.0 0 0 0 0 Facilities RBuchanan 01 0090 010090 LAIN

91 Lagerstroemia indica Crape myrtle 3.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0091 010091 LAIN

92 Lagerstroemia indica Crape myrtle 3.0 9.0 0.0 0 0 0 0 Facilities RBuchanan 01 0092 010092 LAIN

93 Lagerstroemia indica Crape myrtle 3.0 8.0 0.0 0 0 0 0 Facilities RBuchanan 01 0093 010093 LAIN

94 Lagerstroemia indica Crape myrtle 4.0 10.0 0.0 0 0 0 0 Facilities RBuchanan 01 0094 010094 LAIN

95 Lagerstroemia indica Crape myrtle 2.0 11.0 0.0 0 0 0 0 Facilities RBuchanan 01 0095 010095 LAIN

96 Prunus pensylvanica Pin Cherry 7.0 20.0 0.0 0 0 0 0 Facilities RBuchanan 01 0096 010096 PRPE

97 Prunus pensylvanica Pin Cherry 7.0 20.0 0.0 0 0 0 0 Facilities RBuchanan 01 0097 010097 PRPE

98 Prunus pensylvanica Pin Cherry 5.0 18.0 0.0 0 0 0 0 Facilities RBuchanan 01 0098 010098 PRPE

99 Prunus pensylvanica Pin Cherry 4.0 15.0 0.0 0 0 0 0 Facilities RBuchanan 01 0099 010099 PRPE

100 Prunus pensylvanica Pin Cherry 6.0 11.0 0.0 0 0 0 0 Facilities RBuchanan 01 0100 010100 PRPE

101 Prunus pensylvanica Pin Cherry 3.0 16.0 0.0 0 0 0 0 Facilities RBuchanan 01 0101 010101 PRPE  

Figure 9 Screen capture of tree inventory attribute table in ArcGIS after field data was 

collected and keycoded as values into the table
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Figure 10 Spatial comparison of Dronemapper point cloud (blue) with tree inventory 

(red) 
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Figure 11 TiFFS output using LiDAR point cloud showing trees (blue) and canopy 

(green) Trees (red) identified during UAV inventory process are shown for spatial 

comparison 
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 Figure 12 UAV point cloud (DroneMapper) results (blue) using TiFFS showing spatial 

inaccuracies when compared to tree inventory (red) results  
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Figure 13 Fusion canopy height model (CHM) results with UAV tree inventory 

(measured trees -red, unmeasured trees-green) used for spatial comparison 
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Figure 14 Snapshot of tree inventory attribute table in ArcGIS showing interpolated 

elevations from DEM (RASTERVALU) and DTM (VegOnlyElv).  The difference in the 

DEM and DTM elevations (EstHtMeter) results in tree height 
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Table 1 Unmanned aerial vehicle (UAV) products related to Urban Forestry uses 

UAV products Urban forestry uses 

 

Color aerial photography 

 

- Land cover/use mapping 

- Tree inventory 

- Historical documentation 

- Vegetation analysis (crown density) 

- Temporal comparison 

- Planning 

- Maintenance 

- Planting 

- Wildlife corridors 

- Landscape fragmentation 

 

Near Infrared (NIR) photography - Vegetation analysis 

- Tree monitoring 

- Vegetation health monitoring (e.g. insect/disease 

detection) 

 

LiDAR - Tree heights 

- Topographic analysis 

- Watershed analysis 

- Infrastructure analysis 

- Soil moisture,  

- Forest structure 

- Riparian analysis 

 

DEM - 3D modeling  

- Contours  

- Road/trail design  

- Slope/aspect  

- Elevation   

 

Thermal imaging - Vegetative analysis,  

- Insect/disease monitoring  

- Drought sensitivity 

 

Note: Digital elevation model (DEM) is a product of color images and is used to support 

other analysis.  Technology for LiDAR sensors are creating smaller packages which in 

time can be incorporated into a UAV platform. 
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Table 2 Benefits for having a tree inventory (adapted from NCFS, 2014) 

Benefits   Examples 

 

Liability Mitigation                Maintenance  

 

Complaints 

 

Site visits 

 

Tree inspection 

 

Budget Considerations Economic value 

 

Value-engineered budget allocations 

 

Budget awareness for maintenance and planting 

 

Planning   Estimated potential 

 

Future strategies 

 

Diversity allocation 
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Table 3 American Society of Photogrammetry and Remote Sensing (ASPRS) Standard 

LiDAR Point Classes (ESRI, 2014) 

 

Classification Code  Classification type 

0 Never classified 

1 Unassigned 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Noise 

8 Model Key 

9 Water 

10 Reserved for ASPRS Definition 

11 Reserved for ASPRS Definition 

12 Overlap 

13–31 Reserved for ASPRS Definition 
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Table 4 Arial coverage by UAV flights in summer of 2013 

Flight Number of photos Date 

F01 401 7/17/2013 

F02 337 7/17/2013 

F03 110 7/17/2013 

F001 153 7/17/2013 

F002 73 7/17/2013 

F01 204 7/19/2013 

F02 161 7/19/2013 

F01 240 10/1/2013 

F02 95 10/1/2013 

F01 59 10/2/2013 

F02 189 10/2/2013 

F01 245 10/3/2013 

F02 256 10/3/2013 

F01 208 10/4/2013 

F02 259 10/4/2013 

F01 100 10/18/2013 

F02 82 10/18/2013 

F01 107 10/29/2013 

F02 167 10/29/2013 

Total 3446 ------------- 
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Table 5 Comparative analyses between UAV and field tree inventory techniques for 

summer 2013 flight mission 

 

Parameter UAV image Field identification 

   

Total trees identified: 6700 5360 1340 

Identification time per tree 22.8 sec/tree 2.1 min/tree 

Total tree time cost  5.3 days 29.3 days 

 



45 

 

Table 6 Flow design of processing UAV point cloud using LASTools to classify points 

into ground and high vegetation to produce DTM and DEM models 

Step Input File Tool Output File 

    1 pointcloud.txt TXT2LAS pointcloud.las 

2 pointcloud.las LAS2LAS pointcloud_prj.las 

3 pointcloud_prj.las LASTILE Muliple _temp.las files 

4 Multiple las Files LASGROUNDPRO Multiple _tile_g.las files 

5 Multiple _tile_g.las files LASHEIGHTPRO Multiple _temp_g_h.las Files 

6 Multiple _temp_g_h.las Files LASCLASSIFYPRO Multiple _temp_g_h_c.las Files 

7 Multiple _temp_g_h_c.las Files LAS2DEMPRO Multiple _temp_DEM Files 

8 Multiple _temp_g_h_c.las Files LAS2DEMPRO Multiple _temp_DTM Files 

9 Multiple _temp_DEM Files Mosaic pointcloud_DEM 

10 Multiple _temp_DTM Files Mosaic pointcloud_DTM 

11 pointcloud_DEM Extract Values to Points TreePoints_DEM 

 

treeinventory feature class 

  12 pointcloud_DTM Extract Values to Points TreePoints_DEM_DTM 

 

TreePoints_DEM 
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Table 7 Statistical results of LiDAR comparing measured and estimated tree heights 

based on tree inventory location to closest LiDAR point.  LiDAR data comparison was 

calculated using all (Composite) and tiled points  

  

Heights (m) Mean     Std Dev      n  p 

 

Measured 10.005464 6.416815 1831 ---------- 

     

Composite     

LIDAR  <  3.05 12.814899 9.705101 12286 <0.0001 

LIDAR  <  1.52 8.249866 6.618261 818 <0.0001 

LIDAR  <  2.44 8.702054 7.465525 1843 <0.0001 

     

Tiled     

4043-02 LIDAR < 2.44 9.435164 8.139745 957 0.0428 

4043-01 LIDAR < 2.44 10.867264 1.697426 16 0.5875 

4044-04 LIDAR < 2.44 8.734319 7.353198 419 0.0004 

4054-03 LIDAR < 2.44 8.421214 7.447031 163 0.0029 

4053-01 LIDAR < 2.44 6.508336 4.257981 299 0.0001 
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Table 8 Statistical comparison of grass and building values to develop a scale factor for 

pixel conversion to actual elevation heights 

 

 

Mean       Std Dev        n p 

Grass  3.59688 0.733275 407 0.056 

Building 3.810796 2.123046 380 -------- 
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Table 9 Statistical results of comparing measured and estimated tree heights using 

Agisoft/LASTool point cloud analysis interpolated to tree inventory points  

  

Heights(m)  Mean StdDev n p 

Measured 9.997911 6.395687 1814 --------- 

Estimated 10.066329 7.303170 1814 0.7641 
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Table 10 Comparison of means for individual tree species that have measured and 

estimated heights  

 

Species 

% of 

Total Measured Heights (m) Estimated Heights (m) 

 

 

  

Mean StdDev n Mean StdDev n p 

         Acer ginnala 1.28 4.37605719 0.75198153 14 4.3899488 1.22707024 14 0.972 

Acer nigrum 6.59 13.8091335 4.15245774 72 12.863055 4.60020711 72 0.197 

Acer palmatum 0.73 3.8862 1.04201946 8 6.4467705 2.93613941 8 0.036 

Acer rubrum 9.33 8.91390587 4.32538053 102 7.7796987 4.52671678 102 0.069 

Acer 

saccharinum 0.18 11.8872 1.8288 2 16.115983 4.98739333 2 0.378 

Aquifolaceae 

ilex 12.35 6.95621327 2.62169118 135 7.9871215 3.85926726 135 0.011 

Betula nigra 1.10 11.7094001 3.90425361 12 13.637374 3.56710823 12 0.22 

Carya 

illnoinensis 1.37 18.57248 8.54996461 15 16.562615 8.05530561 15 0.513 

Cedrus 

deodara 1.65 13.5974666 7.54727228 18 12.119252 7.07711158 18 0.573 

Cercis 

canadensis 0.37 8.4582 1.72925323 4 5.4733908 1.75409657 4 0.052 

Cornus florida 4.30 7.24386674 2.58647641 47 12.69317 6.6115884 47 0.0001 

Cupressus x 

leylandii 1.92 9.28914271 3.01534068 21 10.650126 3.00641278 21 0.151 

Fagus 

grandifolia 0.64 5.74765719 4.21219488 7 7.1562748 4.22674969 7 0.544 

Ginkgo bibola 1.28 9.2964 4.15332428 14 8.7577672 4.15367998 14 0.734 

Juniperus 

virginiana 0.27 16.1544 4.66254358 3 14.178036 4.07077716 3 0.61 

Ilex opaca 10.43 7.01842112 2.01473227 114 10.293291 5.46253477 114 0.0001 

Lagerstroemia 

indica 31.11 5.70872478 1.72064812 340 7.3093856 4.40564077 340 0.0001 

Liquidambar 

styraciflua 0.18 21.336 2.7432 2 15.552559 3.36119236 2 0.2 

Magnolia 

grandiflora 4.12 10.24128 4.03872466 45 13.169164 9.51982358 45 0.061 

Magnolia x 

soulangeana 0.46 7.0104 1.27870763 5 5.841955 1.09522382 5 0.159 

Magnolia 

virginiana 2.29 3.47472 0.58775041 25 7.6909931 4.6599284 25 0.0001 

Quercus alba 12.90 18.6187403 8.62923736 141 14.882221 10.463966 141 0.001 

Querecus 

coccinea 1.83 12.55776 3.45191883 20 13.020363 5.22263827 20 0.743 

Quercus 

falcata 0.27 15.4432001 4.23319773 3 14.944955 2.61896261 3 0.871 

Quercus 

glauca 0.27 6.4008 1.08479112 3 8.4583036 2.62126119 3 0.277 

Quercus 

macrocarpa 0.82 10.0584 3.01394317 9 10.048625 3.80715012 9 0.995 

Quercus 0.82 13.3434667 1.01373981 9 13.370267 2.23069831 9 0.974 
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palustris 

Quercus nigra 1.10 17.653001 3.3399792 12 14.687491 6.12000513 12 0.1548 

Quercus 

virginiana 0.73 13.4112 2.23981335 8 14.455445 3.80807519 8 0.5147 

Parrotia 

persica 0.55 4.0132001 1.22448036 6 4.7621269 1.87422465 6 0.432 

Pinus taeda 11.71 5.5387875 1.34494036 128 4.2771447 1.60987801 128 0.0001 

Pinus 

virginiana 0.27 14.2240001 0.57473637 3 15.729783 0.83668149 3 0.062 

Prunus 

pensylvanica 3.02 6.14218177 2.39544332 33 14.243165 21.635794 33 0.036 

Prunus x 

yedoensis 2.20 5.6134001 1.34572065 24 7.0661031 3.83576231 24 0.087 

Pyrus 

calleryana 0.37 12.192 1.27506984 4 17.183432 6.05538967 4 0.158 

Taxodium 

distichum 4.12 8.2499201 4.04587466 45 8.4800145 5.11828237 45 0.814 

Thuja 

occidentalis 1.19 5.55673839 0.2714241 13 3.2774434 0.87714734 13 0.0001 

Thuja spp. 0.18 5.4864 0.6096 2 3.0650798 0.56440791 2 0.054 

Tilia 

heterophylla 0.27 13.8175999 2.72999789 3 12.536152 4.51010945 3 0.695 

Ulmus 

parvifolia 5.03 8.23514187 1.3809473 55 7.2475688 1.50065567 55 0.0005 

Unknown 1.56 8.44475283 3.28073949 17 6.9956836 3.35958546 17 0.212 

         Total 100.00 

  

1093 

     
Note:  Species with p shown in red have measured heights ≠ estimated heights. 
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APPENDIX 

Glossary 

 

American Standard Code (ASCII):     

code that is used for information exchange and is based on the English alphabet 

using 128 specified characters, 0-9 numbers, letters a-z, and letters A-Z 

 

Agisoft:      

a commercial based 3D reconstruction software that uses digital photos.  

The professional edition allows authoring of geographic information system (GIS) 

data to produce seamless imagery and 3D point clouds 

 

ArcGIS:      

a commercial based geographic information system (GIS) developed by 

Environmental Systems Research Institute 

 

Autonomous: 

operation of a UAV by onboard computer or ground based pilot by remote control  

Canopy:  

uppermost layer of the forest formed by tree crowns 

Canopy Height Model (CHM): 

raster based model representing the canopy elevation of the forest and or trees 

Diameter at Breast Height (DBH): 

measurement location to obtain tree diameter usually at 4.5’ off the ground 

Digital Elevation Model (DEM):      

raster based model representing ground or surface elevations 

Digital Terrain Model (DTM):      

raster based model representing vegetation height elevations 

DroneMapper:      

commercial based software for geo-spatial mapping of aerial imagery to produce 

orthomosaic, digital elevation and digital surface models 
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Federal Aviation Administration (FAA):      

government agency charged with the primary responsibility for safety, 

advancement and regulation related to civil aviation 

 

Fusion:      

free software developed by the United States Forest Service to view and 

analyze LiDAR data 

 

Geodetic Control Point (GCP):      

global positioning system (GPS) derived point that 

can be used to accurately position non-spatially referenced geographic  data by 

serving as reference object that can be tied to its complimentary location in 

geographic data  

 

Geographic Information System (GIS):      

a computer based software that captures, manages, analyzes, edits and displays 

geographic data 

 

Geotagging:      

process of adding geographic metadata to photographs or imagery 

Global Positioning System (GPS):     

satellite based navigation system that provides locational information 

Ground Control Station:      

facilities and computer hardware that maintains human control over unmanned 

aerial vehicles during flight 

 

Heads-Up-Digitizing:      

GIS process for creating feature objects from data (i.e. imagery) displayed on a 

computer screen 

 

Hyperspectral:      

imaging technique that collects data by scanning objects across the 

electromagnetic spectrum using three techniques: scanning spatial images, 

sequential capture of full spectral data, or capture spatial and spectral data at the 

same time 
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Imagery: 

 images representing spatial objects on the earth’s surface 

LASTools: 

toolset developed by Martin Isenburg for LiDAR las formatted data.  Can be used 

through DOS command window and as a toolkit or pipeline in ArcGIS 

 

Light Detection and Ranging (LiDAR):  

remote sensing technique that uses a laser to measure distance by analyzing 

reflected light of a laser illuminated object on the earth 

 

Log ASCII Standard (LAS):      

standard file format for exchanging LiDAR data  

Mosaic:      

process of creating a single image from a collection of images 

Multi-Spectral:     

 process of capturing image data at specific frequencies of the electromagnetic 

spectrum 

 

Multi-Temporal:      

data that contains information which spans across different time ranges i.e. 

multiply years 

 

National Airspace System (NAS):      

constitutes the facilities, systems, equipment, procedures, and airports for a flying 

environment that is safe and efficient 

 

Near Infrared (NIR):     

 image data collected in the near infrared region of the electromagnetic spectrum 

this is closest to the radiation detected by the human eye 

 

Orthomosaic:      

combination of orthorectification and mosaicing to create a rectified image with 

limited distortion to form a single image from a collection of images 
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Orthorectification :     

process of correcting imagery distortion by using based data such as elevation 

along with camera metadata to match map projection 

 

Photogrammetry:      

the scientific process(s) of developing measurements from photographs 

Point Cloud:      

consists of data points referenced to a coordinate system so that each point 

contains a value for the x, y, and z 

 

Random Access Memory (RAM):      

a type of computer data storage for accessing and writing data at the same speed 

regardless of the order it is accessed 

 

Spatialtemporal:      

term used to describe spatial data over a period of time 

Soil Type:    

 defines a soil based upon the soil texture or the size of minerals contained within 

a soil sample 

 

Soil Volume:      

the amount of soil available for a plant to grow into 

Structured Query Language (SQL):      

programming language used to managing data within a relational database 

Toolbox for LiDAR Data Filtering and Forest Studies (TiFFS):      

commercial based computer software for automatic viewing and analysis of 

LiDAR point clouds 

 

Urban Forest:      

a collection of trees or forest stands within a city, town or suburb 

Unmanned Aerial Vehicle (UAV):      

term used to describe a remotely operated airborne vehicle that is flown in 

absence of a human pilot 
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Unmanned Aerial System (UAS):      

ground control equipment, communication system and other support equipment 

including the unmanned aerial vehicle to maintain flight mission objectives  

 

X,Y:      

coordinate pair point representing values of a map projection that spatially locates 

an object on the earth’s surface 

 

Z-Value:      

spatial value of a map projection that represents elevation of a located object 
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Flow Diagram for LASTool Batch Processing 
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