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ABSTRACT 

 

Understanding spatial and population ecology of organisms allows land managers 

to predict how changes in distribution and composition of landscape features influence 

persistence. Our goal was to investigate body size, sex ratios, survival, individual 

movements, and habitat selection of a vulnerable freshwater turtle species, the spotted 

turtle (Clemmys guttata), in an intensively-managed forest landscape in eastern North 

Carolina, USA. Spotted turtles naturally occur in wetland-dominated landscapes, but this 

system is heavily-altered, with >222,000 hectares of pine plantations and >10,000 km of 

ditches managed by Weyerhaeuser Company. During 2012-2013, we captured and 

individually marked 280 turtles, and used radio-telemetry (n = 31) to investigate 

movements and habitat selection at multiple scales. Spotted turtle monthly survival 

estimates were high with an annual population growth rate >1. According to a stage-

based population matrix, adult and juvenile survival were the most sensitive vital rates in 

the population. Turtle movements and habitat selection were focused on ditch networks, 

which appeared to provide travel corridors between upland and aquatic sites as well as 

access to potential mates. At the local scale, turtles selected for greater understory 

closure, more pine needle substrate cover, and greater substrate temperature, suggesting 

scale-dependent behaviors (i.e. thermoregulation) and the importance of pine forest cover 

around the ditches. At the landscape scale, ditch features and middle-old aged stands 

were important predictors of turtle locations, which may provide important habitat for 

imperiled species in highly-managed forest ecosystems. Also, the persistence of spotted 
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turtles, a vulnerable, wetland-dwelling species, in an intensively-managed upland and 

aquatic landscape may suggest credibility of certain management regimes given the 

decline of the species in more natural ecosystems.  
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INTRODUCTION 

 

Burgeoning human population and per capita consumption have resulted in an 

increased demand for wood products throughout the USA (Wernick et al. 1996) which 

subsequently has resulted in an increase in high-yield production forestry. High-yield 

production forestry is based on single-aged, single-species forest stands managed on short 

rotations to produce high volumes of wood fiber (Smith et al. 1997). Since 1952 there has 

been a 16-fold increase in the area of pine plantations in the southern United States (Fox 

et al. 2007). With over 74 million ha of commercial forest lands (Schultz 1997), the 

Southern Gulf Coast and Atlantic states are considered the wood basket of the United 

States, providing approximately 15% of the world’s wood fiber (Siry et al., 2006). 

Loblolly pine (Pinus taeda), a dominant planted species, occupies nearly 14 million ha of 

land in the southeastern US, provides large yields per hectare, is fast-growing, and is 

marketable at a relatively early age (Schultz 1997; Prestemon and Abt 2002; Jokela et al. 

2004), making it a valuable wood fiber resource.  

To produce high yields of wood fiber, commercial forest landowners manage pine 

plantations with genetically improved seedlings, mechanical and chemical site 

preparation and maintenance, and/or fertilization (Schultz 1997; Jokela et al. 2004; Fox et 

al. 2007; Jones et al. 2010a).  In addition to chemical and mechanical management of 

forest stands, soil moisture is managed through dredging and maintenance of historical 

water control structures (Allen et al. 1990) where the water table is continuously high 

(Schultz 1997). The Middle Atlantic Coastal Plain of the United States had extensive 
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pocosin wetland surface hydrology in the 19
th

 Century (Richardson 1983), with longleaf 

pines (Pinus palustris) (Brinson and Rheinhardt 1996). Prior to the “Swampbuster” 

Provisions of the Food Security Act of 1985, much of the Coastal Plain of North Carolina 

was heavily drained by a network of ditches for agriculture, forestry, and peat mining 

(Richardson 1983; Cashin et al. 1992). Although further draining of wetlands cannot be 

created after the Act, current ditches can be maintained via mechanical dredging to 

original configurations.  In such areas there are extensive ditch networks to lower the 

water tables for the growth and survival of planted pines. As a consequence of intensive 

management of the upland and aquatic matrix, the structure, composition, and 

hydrological regimes of high-yield production landscapes differ from more natural forests 

(Miller and Miller 2004). Although a monoculture, intensively-managed forestlands are 

comprised of patches of stand ages, with varying successional stages (Smith et al. 1997). 

Also, forests that are certified under programs such as the Sustainable Forestry Initiative 

are required to support and incorporate research into management for forest 

sustainability, and include significant set-asides of forest for streamside and wetland 

buffers, cultural sites, and other areas of ecological importance (Jones et al. 2010).   

Understanding the impacts of silvicultural regimes is important for proper 

management of species and affects economic and ecological stability (Homyack and 

Haas 2008). Hence, the impacts of intensive forest management have been the subject of 

numerous studies, with species-specific effects (Wigley and Roberts 1997; Hocking et al. 

2013). Commercial forestry has been documented in some cases to negatively impact 

wildlife populations, at least in the short term (Petranka et al. 1993; Barber et al. 2001; 
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Homyack and Haas 2009; Hanberry et al. 2013; Hocking et al. 2013). However, 

landscape-level heterogeneity of habitat types has been shown to be an important factor 

in maintaining species richness (Nogués-Bravo and Martínez-Rica 2004; MacKay et al. 

2014). Unlike urbanized landscapes which have been the cause of the greatest forest loss 

in the southeast (Wear and Greis 2013), intensively-managed forests are spatially and 

temporally dynamic, which can be beneficial to populations at the landscape scale 

(Wigley and Roberts 1997; Thompson et al. 2003). The Shifting Mosaic Steady State 

(SMSS) concept, developed by Bormann and Likens (1979), describes that patches of 

forests are at different successional stages, with varying biomass, species richness, and 

abundance, but can remain relatively constant at the landscape scale over time (Foushee 

and Wright 2009). Therefore, maintaining stand diversity, structure, and spatial 

connectivity may result in sustainable management of wildlife populations and promote 

biodiversity (Baskent and Jordan 1996; Wigley and Roberts 1997; Loehle et al. 2005), 

with minimal to no negative effects on landscape scale population structure (Chazal and 

Niewiarowski 1998; Renken et al. 2004).  

There is limited information on responses of long-lived ectotherms to forest 

management (Jones and Dorr 2004; Diemer Berish et al. 2012; Currylow et al. 2012), 

especially turtles. Semi-aquatic turtles are ideal study organisms for understanding effects 

of intensively-managed forests because they require aquatic habitats to meet many life 

history needs, but also make frequent movements upland for nesting and 

thermoregulation. Because southern pine forest management involves manipulation of 

both terrestrial and aquatic systems, studies of impacts of those regimes on semi-aquatic 



4 
 

wildlife may illuminate synergistic effects of the terrestrial and aquatic matrices. 

However, not all managed forest lands have manipulated aquatic habitats in the southeast, 

and ditch systems are not universal. Our study species, the spotted turtle (Clemmys 

guttata; Figure 1), ranges from northern Florida to Maine along the Atlantic Coastal Plain 

and Piedmont, westward through Ontario, New York, Pennsylvania, central Ohio, 

Indiana, and Michigan to northeastern Illinois (Ernst and Lovich 2009). Across their 

range, spotted turtles use shallow wetland habitats including ephemeral pools, swamps, 

bogs, fens, marshes, and small woodland streams (Lovich 1990; Joyal et al. 2001; Milam 

and Melvin 2001; Litzgus and Mousseau 2004; Beaudry et al. 2009).  

Globally, turtles are a highly-imperiled taxa (Gibbons et al. 2000), and the spotted 

turtle is no exception. Spotted turtles are listed as endangered under the International 

Union for Conservation of Nature (IUCN) Red List of Threatened Species, because the 

species has experienced an overall population reduction of 50% given a generation time 

of 25 years or more (van Dijk 2011), and international trade is regulated by recent 

inclusion on Appendix II of the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES; Commission Regulation (EU) No 750/2013).  

The state provincial status of spotted turtles in the southeast is primarily “vulnerable” 

(Florida, Georgia, and North Carolina), but is considered “secure” in the state of South 

Carolina. Vulnerable is defined as being at moderate risk of extirpation due to a restricted 

range, relatively few populations (21-80), recent widespread declines, etc. (Bailey et al. 

2006). Being a K-selected organisms with low fecundity (Litzgus and Mousseau 2006) 

and low egg survival (Ernst 1976), spotted turtle populations rely on survival of adults for 
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population persistence (Enneson and Litzgus 2008). Spotted turtles, like most semi-

aquatic turtles, have been declining due to loss of wetland habitat, poaching for the pet 

trade, and vehicle-related mortality (Ernst and Lovich 2009), all which negatively impact 

adults. Vehicle-related mortality is of particular concern and occurs during inter-wetland 

movements (Joyal et al. 2001) that often require crossing roads (Beaudry et al. 2008; 

Shepard et al. 2008; Patrick and Gibbs 2010). Ultimately, death by vehicle collision is 

reported mostly for gravid females who move upland to seek nest sites (Aresco 2005).  

Monitoring spatial ecology and demography provides insight regarding an 

organism’s susceptibility to management practices (Garshelis 2000; Fahrig 2007). 

Presumably, animals have higher fecundity and survival in habitats they prefer (Garshelis 

2000), and the structure of a population hinges on the balance between recruitment and 

mortality. Therefore, understanding habitat selection and survival of a population is 

paramount for proper management and conservation (Lebreton et al. 1993). Spatial 

ecology integrated with information on population structure and multi-scale habitat 

selection can give a comprehensive picture of the aforementioned impacts, in that they 

are ecologically important by influencing species interactions, speciation, fitness, and 

population and community responses (Morris 2003; Borger et al. 2008). Few spotted 

turtle populations have been studied in highly reconfigured landscapes (Bottini 2005; 

Kaye et al. 2006; Yagi and Litzgus 2012); thus, we studied spotted turtles in an 

intensively-managed forest. If spotted turtles, classified as vulnerable, threatened, or 

endangered due to anthropogenic causes associated with development, can persist in a 

landscape that is managed for timber production, we can confidently give insight as to 
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how to restore turtle populations in other areas. We investigated spotted turtles on 

loblolly pine plantations with extensive ditch networks in the Atlantic Coastal Plain of 

North Carolina. The objective of this study was to investigate three components of 

spotted turtle response to intensively managed landscapes: 1) population and life-history 

characteristics including population structure, nesting ecology, survival, and growth rate; 

2) movement patterns and home ranges; and 3) habitat selection at the local-scale and 

landscape-scale.  We hypothesized that our study population of spotted turtles in this 

intensively-managed forest landscape was sustained due to the ditch network, which may 

provide adequate movement corridors between essential aquatic and terrestrial sites, such 

as wetland areas, hibernacula, and estivation habitat. We predicted that movements and 

home range size would be different between males and females in this highly-ditched 

landscape, and that male movements would be considerably greater in the pre-nesting 

season compared to other seasons, because they are known to actively seek out females 

for courtship (Ernst 1970).   
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Figure 1. Spotted turtles (Clemmys guttata) are semi-aquatic, freshwater turtles that 

reside in a variety of wetland ecosystems. The species is declining due to habitat 

destruction and alteration, poaching for the pet trade, and vehicle mortality.  

 

METHODS AND MATERIALS  

Study site  

We conducted this study on privately-owned timberlands in the Middle Atlantic 

Coastal Plain Ecoregion in Beaufort and Craven Counties of eastern North Carolina 

(Figure 2). The exact study location remains confidential due to the threat of poaching on 

spotted turtles for the pet trade. We conducted this study on an intensively managed pine 

landscape owned and managed by Weyerhaeuser Company for loblolly pine sawtimber. 
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Weyerhaeuser Company manages >10,000 km of ditches by dredging each ditch 

approximately every 20-25 years. They also manage >222,577 hectares of pine 

plantations with extensive, gated gravel roads in the Coastal Plain of North Carolina.  

From this landscape, we selected 16 roadside ditch segments that varied in the 

length of time since maintenance had occurred.  Prior to the start of the study, we used an 

approximate chronosequence approach and selected ditch segments that were last 

maintained 3 years (n=4), 6-8 years (n=4), 10-12 years (n=4), and 15-17 years (n=4) prior 

to the start of the study. Each site had ≥ 500 m segment maintained to avoid confounding 

effects of varying stand age.  Of the ditch segments, we surveyed 25% of each site with a 

random starting point. We relied on hard copies of engineering reports from the 

landowner, which described the extent and timing of ditch maintenance, to compile a list 

of potential study sites.  We visited sites and visually confirmed that the recorded 

maintenance history was consistent with vegetation structure and ditch 

configuration.  Although available information regarding ditches prevented us from 

randomly selecting sites from the study area, the ditch segments we studied spanned 3-17 

year post maintenance, were adjacent to plantations 1-33 years old, and thus were 

representative of those available on the landscape.     
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Figure 2. The study site and its setting in the Middle Atlantic Coastal Plain of North 

Carolina, USA. 

Capture and radiotelemetry 

We captured adult spotted turtles between January 2012 and April 2013 

opportunistically, during visual encounter surveys, or from hoop traps for radiotelemetry 

and tracked turtles until July 2013. We captured turtles across 16 ditch sites with varying 

years since they were maintained. Upon capture, we uniquely marked all individuals by 

shell notching on the carapace and plastron with a battery-powered rotary tool using a 

modification of Cagle’s method (1939).  We measured plastron length (mm), carapace 

length (mm), mass (g), and significant abnormalities and injuries (see “Population 

Structure” methods). We attached Holohil RI-2B very high frequency (VHF) transmitters 

(Holohil Systems Ltd., Carp, Ontario, Canada) to 31 animals (15 females; 16 males) with 
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high strength 5-minute epoxy (ITW Devcon, Danvars, MA, USA) on the anterior portion 

of the carapace to avoid interference with courtship and mating and to reduce drag from 

the antenna. Transmitter models weighed 10 g or 15 g, amounting to 8% of the body 

mass of the animal on average (range = 5-14%). We handled, marked, and released 

animals within an hour of capture. Transmitters were removed at the end of the study.   

We located radio-tagged individuals approximately 1-2 times per week with at 

least 48 hours between locations to avoid serial autocorrelation. We located turtles using 

an R-1000 VHF receiver (Communication Specialists, Inc., Orange, CA, USA) handheld 

unit and a “rubber ducky” (RA-23K VHF) antenna (Telonics, Inc., Mesa, AZ, USA). We 

recorded locations between 0600 and 2000 (>90% of locations between 0800 and 1700), 

and we estimated GPS coordinates using a Trimble Juno handheld GPS unit (Trimble 

Navigation Ltd., Sunnyvale, CA, USA). We converted coordinates to decimal degrees on 

the 1983 North American Datum and processed as a point layer in a geographic 

information system (GIS) using ArcMap (ArcGIS Desktop v. 10.0, ESRI Inc., Redlands, 

CA, USA). When possible, we recorded GPS coordinates at the visual location of the 

animal. When animals could not be visually located (18% of locations), we used local 

triangulation and took GPS coordinates within 1 m of the estimated location. 
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Population structure 

Upon initial capture and subsequent recaptures of an individual spotted turtle, we 

recorded the location and whether an individual was new or a recapture. We also 

recorded shell lengths (carapace and plastron) to the nearest 0.1 mm using a straight-line 

ruler or calipers. We recorded body mass of individuals with a spring scale (1000 g, 

Pesola, Kapuskasing, Ontario, Canada). We documented plastron length for the entirety 

of the study, and straight-line carapace length during 2013. Thus, we used plastron length 

for body-size frequency distributions. We compared our sex ratios and biometrics with 

those of other spotted turtle studies. We constructed body size frequency distributions by 

site, season, and month of capture, separated by gender and age stages for all captured 

turtles. We used three biologically-relevant seasons: pre-nesting, nesting, and post-

nesting. We defined pre-nesting season as the period between emergence from 

hibernation and the first detection of a gravid female; nesting season as the period from 

which the first gravid female was detected and the last day of known oviposition; and 

post-nesting season as the period after the last day of oviposition and the last day of 

hibernation.  We determined whether a female oviposited by direct observation or by 

recording no eggs via palpation from a known gravid female. Because female and male 

spotted turtles mature at similar sizes and ages (Litzgus and Brooks 1998), we determined  

size at sexual maturity (in plastron length) of males to be greater than or equal to the 

smallest individual showing secondary sex characteristics (concave plastron, dark chin 

morphology, and cloaca protruding past the posterior margin of the carapace; 71 mm). 

We determined size at sexual maturity of females to be ≥ the smallest gravid individual 
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documented during the study (81 mm), because sexually immature females could exhibit 

female secondary sex characteristics (Ernst 1975; Ernst and Lovich 2009)  

During the nesting season, we frequently monitored gravid, radio-marked 

females. We determined whether females were gravid by palpating between their hind 

legs and the edge of the plastron bridge, feeling the abdomen for eggs. Spotted turtles lay 

1-4 eggs per nest at night, and (Ernst and Lovich 2009), making nests difficult to find 

(Beaudry et al. 2010).  We employed two methods to determine nest locations: 1) we 

attached a thread-bobbin to the posterior margin of the carapace to track real-time 

movements of gravid turtles (Beaudry et al. 2010), and 2) we manually monitored gravid 

females at night using a high-beam red filter spotlight approximately 15 m away in order 

to avoid disturbing the turtles. We conducted nightly surveys of gravid females during 

nesting seasons from sunset to approximately 0300 hours depending on female behavior.  

Using our mark-recapture data, we calculated survival and detection probabilities 

for our population with a Cormack-Jolly-Seber (CJS) live capture-mark-recapture 

analysis for open populations (Cormack 1964; Jolly 1965; Seber 1965). CJS provides an 

apparent survival estimate, which does not discriminate between death and emigration. 

We limited our model selection approach to a set of eight parsimonious candidate models 

that described apparent survival and detection probabilities as a function of time. We 

compared different subsets of models from our data: survival (Φ(.)) or recapture (p(.)) (or 

both) constant with respect to time, models where either survival (Φ(t)) or recapture (p(t))  

(or both) varies with time, or models where either survival or recapture (or both) are 
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constant over time for males and females (Φ(g) and p(g), respectively (Lebreton et al. 

1992).  After conducting a sensitivity analysis on the time frame for survivability and 

detection, we chose to use monthly time increments, because our capture effort was 

roughly equal across the study area per month.  We conducted the CJS analysis using 

Program MARK, which uses numerical maximum likelihood techniques to produce 

model parameters (White and Burnham 1999), and we compared models using Akaike’s 

Information Criterion (Akaike 1974)  adjusted for small sample sizes (AICc; further 

described under “Local Scale Habitat Selection”).   

We investigated the projected intrinsic population growth rate (λ) of this 

population using adult annual survival estimated by our CJS analysis and vital rates from 

Enneson and Litzgus (2008).  We converted monthly survivorship (by sex if possible) to 

annual value by raising it to the power of 12. We constructed a pre-hatching pulse 

female-based, Lefkovitch three-stage population matrix (Lefkovitch 1965; Crouse et al. 

1987) with life stages separated by size: 1) pre-hatching (eggs), 2) juveniles (sexually-

immature), and 3) adults.  We considered sexually-mature females to have plastron 

lengths ≥81 mm, the size of the smallest gravid female documented on our study area. 

This size is similar to other populations, which have been reported from 72-88 mm in 

plastron length (Litzgus and Brooks 1998).  

We assumed a 1:1 sex ratio of hatchlings and estimated eggs laid/female (Fi) from 

the observed gravid females. However, we observed courtship activity during the post-

nesting period (Sept-Oct), strongly suggesting bimodal reproduction in the population. 
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Bimodal reproduction has been observed in southern populations of spotted turtles 

(Enneson and Litzgus 2008; Ernst and Lovich 2009), which may be attributed to warmer 

climates. Given the observed behavior we assumed two nesting seasons and we doubled 

our estimate of eggs produced per year per female. We adopted egg and juvenile 

survivorship estimates Enneson and Litzgus (2008), who conducted a long-term study on 

spotted turtle demographics. Also, we had too small of a nest sample size to confidently 

determine egg survival.  

Using our stage-based population matrix, we constructed analytical sensitivity and 

elasticity simulations (Caswell 2001) to predict how changes in vitals rates affect the 

population growth rate. We also constructed a population projection from the 

aforementioned population matrix to illustrate growth over 10 time steps for eggs, 

juveniles, and adults. Population matrices, sensitivity, elasticity, and projections were 

calculated with the PopTools 3.2.5 (G.M Hood, CSIRO Corporation) add-in to Microsoft 

Excel 2011 (Microsoft Corporation).  

Movements 

We estimated movement metrics for each individual radio-tagged turtle (n=31) by 

calculating the distance between two locations in a time series (Nieuwolt 1996).  We 

calculated individual average daily distance by summing Euclidean straight-line 

movements during a season and dividing by the number of days in that season. We used a 

two-way analysis of variance (ANOVA) to test for differences in average daily distance 

between spotted turtle with sex and seasons as factors. Prior to analyses, we examined 
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normality of data using a Shapiro-Wilk test and homogeneity of variances using a 

Bartlett’s test. For a significant ANOVA, we used Tukey’s honest significant difference 

(HSD) multiple comparison of means test to examine for differences in average daily 

distance between seasons. We calculated the distance between turtle locations using the 

adehabitatLT package in R (R Development Core Team 2012) and the ANOVA and HSD 

tests using R statistical software v.3.0.2 with alpha set to 0.05.  

Home Range and Utilization Distribution 

We employed two methods for home range and utilization distribution estimation 

for radio-marked animals. Burt (1943) defined the home range as the area traversed by 

the animal during its normal activities of foraging, mating and caring for young. First, we 

constructed 95% minimum convex polygons (MCP 95%; Mohr 1947) to compare the 

current study with prior ones (Burgman and Fox 2003). The MCP is the smallest polygon 

in which no internal angle exceeds 180 degrees and which contains all or most of the 

locations (Burgman and Fox 2003). By omitting 5% of the points, 95% MCP controls for 

outliers, and is commonly used for constructing utilization distributions (Getz et al. 

2007). The MCP method is useful for defining an inclusive area, yet overestimates area 

and provides little information as to patterns of space-use, especially in linear aquatic 

systems like ours (Figure 3), and does not incorporate space-time relationships in the data 

(Lyons et al. 2013). 

 In addition to the MCP method, we used the time local convex hull method (T-

LoCoH; Lyons et al. 2013), which is a better method for contouring to linear landscape 
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features. The LoCoH approach is a non-parametric, bounded home range analysis that 

incorporates spatio-temporal patterns, constructs home ranges from movements 

influenced by boundaries such as streams and ditches, and applies the MCP construction 

to a subset of data (Lyons et al. 2013; Getz et al. 2007). The LoCoH method has been 

employed in numerous studies (Ryan et al. 2006; Temple-Miller et al. 2008; Loveridge et 

al. 2009; Beest et al. 2011; Bombi et al. 2011; Scull et al. 2012; Leuchtenberger et al. 

2013). Further, the LoCoH approach creates convex hulls and density isopleths (i.e. 

utilization distributions) for each individual, by combining local MCPs constructed 

around each point (Getz and Wilmers 2004). The algorithm for the home range requires 

identification of a set of nearest neighboring points, and there are three options: fixed 

radius, adaptive, or fixed-k (Lyons et al. 2013). The fixed radius takes all points within a 

fixed radius; adaptive method selects the points whose cumulative distance is less than or 

equal to a; while the fixed-k method selects the k
th

 nearest neighbors around each point, a 

value selected by the researcher (Lyons et al. 2013). Further, local convex hulls are sorted 

by density which is proxied by hull area for the fixed-k method, and merged together 

creating an isopleth for a given percentage of points (i.e. 95% isopleths; Lyons et al. 

2013). We chose to use the fixed-k method for our study animals, because it best 

represented their space use by contouring the home range to the extensive use of linear 

ditches. Due to the requirement of regularity between relocations of the LoCoH method, 

we used one location per week per individual for this analysis. In cases when there were 

multiple locations in a week, the first location was used for the home range analysis. We 

calculated home range and UDs using the T-LoCoH package for R statistical software 
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v.3.0.2 (Lyons et al. 2013; R Development Core Team 2012). We compared home range 

sizes across gender, year, and method using a two-way ANOVA as described in 

“Movements”. 

Figure 3. Linear ditch systems are maintained to regulate the water table for loblolly pine 

sawtimber production by Weyerhaeuser Company in the Atlantic Coastal Plain of NC. 

The blue linear features are the ditches and the white linear features are roads. Ditches 

typically border both sides of the roads in addition to inner-stand ditches. The landscape 

is a shifting mosaic of stand structure with dark green pine plantations and gray, 

young/harvested patches.  
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Local-level habitat selection 

Habitat selection occurs when an organism uses habitats or habitat features 

disproportionate to available habitats (Johnson 1980). We adopted Garshelis’ (2000) 

definition of a “habitat” to be a set of specific environmental features often equated to 

plant physiognomy, vegetative association, or cover type.  We investigated local-scale 

habitat selection following a case-control (Keating and Cherry 2004), paired logistic 

regression design for radio-marked individuals under an information theoretic framework 

with a priori model selection (North and Reynolds 1996; Burnham and Anderson 2002; 

Compton et al. 2002). We estimated habitat metrics in square-meter plots centered on 

turtle locations (case plots) and at two additional locations (random/control plots) 2 m 

and 20 m away along a random compass azimuth. This design assumes that the habitat 

associated with the “control” plot is habitat that could be used by the animal. We 

considered the 2 m and 20 m scales to provide an accurate estimate of micro-habitat 

selection at biologically-relevant distances from the individuals. For example, the 2 m 

scale may provide inference as to the habitat selection of turtles in ditch systems, but the 

20 m scale might provide insight to the influence of upland stands and other habitats that 

neighbor the ditch system. We visually estimated percent cover of deciduous leaf, pine 

needles, grasses/sedges, moss, bare soil, water, coarse woody debris (CWD), 

sticks/branches, woody shrubs, and herbaceous vegetation in the plot and followed a 

modified version described by Daubenmire (1959) to convert to cover classes (1= 0%, 

2=1-5%, 3=6-25%, 4=26-50%, 5=51-75%, 6= >75%). Additionally, we measured 

substrate temperature (either soil or water), air temperature, and relative humidity with a 
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soil thermometer or thermo-psychrometer (Optimum Energy Products Ltd., Alberta, 

Canada), and understory openness from the turtle’s perspective at ground-level using a 

spherical convex densitometer.  Further, we estimated forest stand structure by measuring 

basal area with a 10-BAF cruising prism. We described animal locations (e.g. road, 

upland, wetland, or ditch) and distance from CWD and standing water when known. 

When an individual was completely or partially covered by substrate, we considered that 

a “form” and recorded the form type (depression, leaf cover, woody cover, etc.), wetness 

(damp, saturated, or dry) and height/depth of the form. Forms are structures used for 

thermoregulation and protective cover (Baldwin et al. 2006) especially in ectothermic 

organisms like turtles. 

To ensure stability of coefficients, we ran a Spearman’s non-parametric rank-

correlation coefficient matrix on our 40 habitat variables across all location plots (case 

plots; see Appendix A for data-sheet). We removed inter-correlated (r > 0.4) variables 

and variables with limited readings across plots. We chose the correlation cutoff of 0.4, 

because it represented a natural break in the data. We constructed eight biologically-

meaningful, a priori candidate models (Hosmer and Lemeshow 1989; Tables 1) with 10 

habitat variables (Table 2). We assessed model goodness-of-fit using a global chi-square 

test, which tests whether the model is different from the null model (β = 0; Allison 1999), 

and adjusted models as necessary. We ran paired logistic regressions for each individual 

with ≥30 location and paired random plots (n = 27) at the 2 m and 20 m scale. Paired 

logistic regression has been used in multiple habitat selection studies (Compton et al. 

2002; Harden et al. 2009; Gorman and Haas 2011; Foley et al. 2012), and does not 



20 
 

require multivariate normality or covariance equality of independent variables, thus 

allowing categorical variables in the analyses (North and Reynolds 1996). Additionally, 

paired logistic regression compares the location and paired random plots at the same time 

and location (Compton et al. 2002).  

We conducted paired logistic regressions across the eight candidate models for 

each individual.  Pooling locations leads to bias associated with individuals with more 

locations (Garshelis 2000). Conducting analyses separately by individuals allows the 

turtles to be the experimental unit, and inferences can be made of the larger population 

(Millspaugh and Marzluff 2001). We used an information theoretic approach (Burnham 

and Anderson 2002) and Akaike’s Information Criterion to examine a priori models for 

parsimony and fit (AIC; Akaike 1974).  However, AIC does not account for a small 

sample size, so we used corrected AIC (AICc; Hurvich and Tsai 1989), which is ideal for 

small sample sizes or models with many parameters (Burnham and Anderson 2002). 

Because AICc values are conditional for the data-set (i.e. the individual; Burnham and 

Anderson 2002), they cannot be compared across individuals. We used two approaches to 

examine the relative strength of models across individuals and separately by scale (i.e., 2 

m or 20 m): 1) cumulative ranks, and 2) summed model weights (wi).   First, we adapted 

cumulative ranks from the low point scoring system used in sailboat regattas for 

comparing individual boat race results across races to produce a “winner” for the series 

(http://raceadmin.ussailing.org). Here, we ranked models from 1-8 based on ∆AICc values 

ranked (1-8) with “1” being the model where ∆AICc = 0. Next, model ranks were 

summed across individuals to produce a cumulative rank for the model set. The most 
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supported model across individuals had the lowest cumulative rank. Because the 

mathematical relationships within the cumulative rank approach are ordinal, we also 

summed across model weights, which are interpreted as the probability that a given 

model is the actual expected best model for the sampling situation considered (Hosmer 

and Lemeshow 1989). Together, we used a weight of evidence approach that combined 

information from the cumulative rank and summed model weights to summarize model 

selection results across individuals.   

Table 1. Eight candidate models and their justification used to quantify local-level habitat 

selection of spotted turtles at the 2 m and 20 m scale in an intensively-managed forest 

landscape of eastern North Carolina, USA. 

Model Name Model Variables  k A Priori Justification Supporting Papers 

Pine stand protective 

cover 

under.open + 

lob.trees 

2 Have been documented to estivate under 

relatively closed canopies  

Milam and Melvin 

2001; Beaudry et al. 

2009 

Aquatic form protective 

cover 

under.open + water + 

decid.leaf + pine 

needles 

4 Known to bury under leaf cover in the 

water while hibernating, resting, or 

avoiding predators  

Litzgus and Brooks 

2000 

Vegetation and woody 

debris cover 

under.open + grass + 

herb + stick 

4 Documented to bury under branches and 

vegetation while estivating, resting, or 

avoiding predators 

Litzgus et al. 1999; 

Litzgus and Brooks 

2000 

Woody debris foraging 

and thermoregulatory 

conditions 

sub.temp + water + 

stick 

3 Feed mostly in the water with substrate 

temperatures above 15°C  

 

Ernst 1976 

Deciduous leaf foraging 

and thermoregulatory 

conditions 

sub.temp + water + 

decid.leaf 

3 Feed mostly in the water with substrate 

temperatures above 15°C 

 

Ernst 1976 

Pine needle foraging 

and thermoregulatory 

conditions 

sub.temp + water + 

pine needles 

3 Feed mostly in the water with substrate 

temperatures above 15°C 

 

Ernst 1976 

Soil foraging and 

thermoregulatory 

conditions 

sub.temp + water + 

soil 

3 Feed mostly in the water with substrate 

temperatures above 15°C 

 

Ernst 1976 

Global sub.temp + 

under.open + 

lob.trees + ALL 

COVER VARIABLES 

10 Model with all parameters. This model 

is used to assess goodness of fit.  

Burnham and 

Anderson 1998 
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Table 2. Variables included in the local-scale analyses of spotted turtle habitat selection 

in an intensively-managed forest landscape of eastern North Carolina, USA. 

Variable Description Method of measurement 

decid.leaf Categorical percent deciduous leaf surface 

cover estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

grass Categorical percent grass and/or sedge surface 

cover estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

herb Categorical percent herbaceous plant surface 

cover estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

lob.trees Pine basal area of loblolly pine trees 

surrounding plot 

Estimated with a 10 BAF cruising prism  

pine 

needles 

Categorical percent loblolly pine needle surface 

cover estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

soil Categorical percent bare soil surface cover 

estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

stick Categorical percent woody debris (< 10 cm in 

diameter) surface cover estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

sub.temp Substrate temperature (°C) of soil or water, 

depending on the plot location 

Estimated with a pocket case thermometer 

(water) or soil thermometer 

under.open Understory openness from a turtle's perspective 

(i.e. openness above 10 cm) 

Estimated with a densiometer  

water Categorical percent water surface cover 

estimated visually 

0% (1), 1-5% (2), 6-25% (3), 26-50% (4), 51-

75% (5), ≥ 75% (6) 

 

Landscape-level habitat selection 

Studies of landscape-level patterns of forest disturbance have emphasized the 

importance of understanding species-specific responses in varying locales (Guerry and 

Hunter 2002; Russell et al. 2004; Loehle et al. 2005; Semlitsch et al. 2009; Currylow et 

al. 2012) . To assess selection of landscape features by spotted turtles, we compared 

individual turtle activity areas (n = 32) with random areas (n = 32) across the study site.  

Activity areas were defined for each turtle as those areas encompassing the 10% density 

isopleth constructed from the T-LoCoH home range estimate. We conducted an 

examination of isopleth size and chose 10% because it contained areas used intensively 
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by each individual (Getz et al. 2007). Secondly, we constructed centroids for each of the 

resultant activity area polygons, and generated an equal number of random points for 

each activity area (Figure 4). We constrained random points to the ditch network and 

isolated wetlands within the outermost boundaries of all animal locations (100% MCP), 

because these were the expected and observed areas of our radio-tagged individuals. 

Although the landscape contains a network of ditches, it still has surface hydrology 

including abundant ephemeral wetlands (Leonard et al. 2012), which turtles often used.  

To reduce spatial autocorrelation, we removed random points within 300 m from any 

activity area. To maintain independence of activity areas, we averaged parameter values 

for those individuals with multiple activity areas (n = 3). Next, we constructed 

biologically-relevant buffers (Bodie 2001) around activity area centroids and random 

points with three radial distances: 30 m, 175 m, and 300 m. We chose the 30 m because it 

equaled the average daily distance moved by our radio-marked individuals, the 175 m 

because it represented average weekly distance moved and the 300 m because Semlitsch 

and Bodie (2003) recommended nearly 300 m as buffers for terrestrial habitat use in 

reptiles.  Within these scales, we compared landscape features from GIS. These included: 

percent of the buffer in forest stand age classes (young: 0-5 years old; mid-late: 6-20 

years old; late: 20-30 years old, and natural: 30+ years old), total length of ditches (both 

inner-stand and roadside ditches), length of roads, distance to nearest wetland, and area of 

wetland within the buffer (Table 3). We obtained wetland GIS layers originating from 

Leonard et al. (2012) of which mapped isolated wetlands using LiDAR technology in 

Beaufort and Craven Counties of NC. Stand ages and ditches were validated by visual 
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confirmation or using 2012 orthoimagery from the United States Department of 

Agriculture (USDA) Natural Resources Conservation Service (NRCS) Geospatial Data 

Gateway.  

After quantifying landscape-feature data, we ran a Spearman’s non-parametric 

rank-correlation coefficient matrix on our set of eight habitat variables across all 32 

activity areas. We removed highly correlated (r > 0.6) variables and discarded 

“Area.Wetland”, which was highly correlated with “Dist.Wetland” (r = -0.82) and 

“Ditch.Length” (r = -0.61). We used a backward elimination procedure to produce a set 

of top candidate models for habitat selection. Since stepwise model selection can produce 

a false reliance on a single best model (Wittingham et al. 2006), we chose to include all 

competing models within two AICc values of each other (Burnham and Anderson 2002). 

Logistic regressions were conducted in program R (R Development Core Team 2012). 
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Figure 4. An example of activity area centroids (green dots) with an equal number of 

random points (red dots) buffered by multiple scales (30 m, 175 m, 300 m) to assess 

landscape-level habitat selection of spotted turtles in an intensively-managed forest 

landscape in eastern North Carolina, USA.  Both activity area centroids and random 

points were constrained to the ditch network and isolated wetlands.  
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Table 3.  Variables used to quantify landscape-level habitat selection of spotted turtles at 

the 30 m, 175 m, and 300 m scales in an intensively-managed forest landscape in eastern 

North Carolina, USA. 

Variable Description Method of measurement Supporting papers 

Young.Stand Area of forest stands (in square 

meters) that have no tree cover, 

or are < 5 years old 

Stand polygons were clipped and area 

measurements calculated for each 

buffer scale in GIS, using the “clip” 

tool   

Russell et al. 2002a 

Renken et al. 2004 

Currylow et al. 2012 

 

Mid-Late.Stand Area of forest stands (in square 

meters) between 6-20 years old 

Stand polygons were clipped and area 

measurements calculated for each 

buffer scale in GIS, using the “clip” 

tool   

 

Renken et al. 2004 

Old.Stand Area of forest stands (in square 

meters) between 20-30 years 

old, and near the end of the 

rotation 

Stand polygons were clipped and area 

measurements calculated for each 

buffer scale in GIS, using the “clip” 

tool   

 

Renken et al. 2004 

Stand.Natural Area of forest stands (in square 

meters) > 30 years old and/or are 

restricted from commercial 

harvest  

Stand polygons were clipped and area 

measurements calculated for each 

buffer scale in GIS, using the “clip” 

tool   

 

Renken et al. 2004 

Ditch.Length Length of ditches (in meters). 

This includes both 3rd stage and 

roadside ditches 

Ditches were clipped and measured for 

each buffer scale in GIS, using the 

“clip” tool   

Yagi and Litzgus 2012 

Road.Length Length of roads (in meters) Roads were clipped and measured for 

each buffer scale in GIS, using the 

“clip” tool   

Patrick and Gibbs 2010 

Langen et al. 2012 

Dist.Wetland Distance to the nearest wetland 

(in meters) 

Distance was calculated for each buffer 

scale in GIS, using the “near” tool 

Joyal et al. 2001 

Russell et al. 2002b 

Beaudry et al. 2009 

 

Area.Wetland Area of wetland (in square 

meters)  

Wetland polygons were clipped and 

area measurements calculated for each 

buffer scale in GIS, using the “clip” 

tool  

Gibbs 1993 

Joyal et al. 2001 

Russell et al. 2002b 

Beaudry et al. 2009 
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RESULTS 

Population structure 

We captured 280 spotted turtles and marked 276. Three of the unmarked turtles 

were too small to be marked and one was an adult that escaped before marking. Most 

turtles were adults (94.6%); males (n = 177) were twice as common as females (n = 86), 

and juveniles (n = 15) and adults of unknown gender (n = 2) were least detected (Figure 

5). We captured 73% of spotted turtles during the pre-nesting season, 21% during the 

nesting season, and 6% during the post-nesting season (Figure 6).  February (21%) and 

March (25%) accounted for the most captures.  Most individuals captured (56%) were 

between 81-90 mm in plastron length. Twelve gravid females were monitored during the 

2012 field season, and 10 females were monitored in 2013. We identified five nests 

during the study (2012: n = 1; 2013: n = 4). All five nests failed during incubation 

periods from predation (n = 1) or flooding (n = 4). Four of five nests were constructed on 

ditch banks and eggs were exposed or under water following heavy rains. We 

documented 16 eggs ( ̅   2.7 eggs/nest).  

We ran CJS models with 226 individuals (159 males and 67 females) from our 

mark-recapture individuals after omitting radio-marked animals, juveniles, and adults 

with unknown gender. The most parsimonious model included constant apparent survival 

and time varying detection probabilities (Φ(.) p(t)) (wi = 0.72). Additionally, the model 

with constant survival and time-dependent detection probabilities (Φ(g) p(t); Table 4) 

also received substantial support (wi  = 0.28), but other models were not within two AICc 
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values of the minimum. For the first model, monthly survival was estimated to be 1.00. 

For the second model, monthly survival was similar between males (0.98) and females 

(1.00). The monthly detection probability averaged 12% for model 1 and 9% for model 2 

(Table 4). We estimated annual survival by raising our monthly survival value to the 

power of 12.  Our gender-based model indicated that males have a 78% probability and 

females a 100% probability of yearly apparent survival in our population.  

In addition to the apparent survival estimates from the complete mark-recapture 

data-set, we conducted a post-hoc known-fate model from our 31 radio-tracked animals 

in Program Mark. The results indicated high weekly apparent survival (0.996), with 

annual apparent survival of 0.81. Two males died from predation and no female deaths 

were documented. Using our estimated apparent survival from the known-fate model 

(0.81), we conducted 400 simulations of population projection matrices in program R, 

with a range of egg (0.30 – 0.70) and juvenile annual survival values (0.45 – 0.85) from 

the literature (Enneson and Litzgus 2008) to examine uncertainties of these parameters 

(Figure 7). The results of the simulations show that greater juvenile and egg annual 

survival increases the population growth rate. 

Our stage-based population projection matrix indicated probability of surviving 

and remaining a juvenile was 0.797 and the probability of surviving and remaining an 

adult was 1.00. Further, we estimated λ = 1.06, indicating the population was growing at 

an annual rate of 6%. We projected our population matrix over 10 time steps (in years) 

using the number of eggs, juveniles, and adults captured during the study as a baseline 
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vector. The resultant time projection reveals a sharp increase in juveniles in slightly over 

a year, with a steady increase in number of eggs, but a slower rate of increase for adults 

(Figure 8).  

Sensitivity and elasticity analyses indicated that the population growth rate was 

sensitive to a small change in adult survival and juvenile survival. The probability of 

surviving from being a juvenile to an adult was the most sensitive vital rate (2.55) in 

regards to the sensitivity analysis. Elasticity of the adult survival value (0.73) was >2× 

other elements of the population matrix (Figure 9).   

 

 

 

 

 

 

 

Figure 5.  Body size frequency distributions of juveniles (n  = 15), adult female (n = 79), 

and adult male (n  = 172) spotted turtles in an intensively-managed forest landscape in 

eastern North Carolina, USA. 
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Figure 6.  Number of individual spotted turtles captured across seasons in an intensively-

managed forest landscape in eastern North Carolina, USA. 
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Table 4. Monthly apparent survival and detection probabilities for the top two selected 

CJS models along with yearly apparent survival estimates of spotted turtles in an 

intensively-managed forest landscape in eastern North Carolina, USA. 

Model 

# 

Model  k AICc Delta 

AICc 

wi Monthly  Φ 

(± SE) 

Mean 

Monthly p 

(± SE) 

Yearly  Φ 

1 Φ(.) p(t) 12 915.76 0 0.72 1.00 

(± <0.001) 

0.12 

(± 0.12) 

1.00 

2 Φ(g) p(t) 13 917.67 1.92 0.28 M: 0.98 (± 0.049) 

F: 1.00 (± <0.001) 

0.091 

(± 0.091) 

M: 0.78 

F: 1.00 
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Figure 7. Surface contour plot of population growth rates (black lines and color scheme) 

as an effect of various juvenile and egg annual survival values reveals that increasing egg 

and juveniles survival rates will increase population growth rate. This is a result of 400 

population projection matrix simulations of spotted turtles in an intensively-managed 

forest landscape in eastern North Carolina, USA. 

 

 

 

 



33 
 

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11

P
o

p
u

la
ti

o
n

 s
iz

e
 

Time step (years) 

Eggs/Hatchlings

Juveniles

Adults

 

Figure 8. Number of individuals from a stage-based population matrix of spotted turtles 

with egg/hatchling, juvenile, and adult life-stages projected to 10 years in an intensively-

managed forest landscape in eastern North Carolina, USA. We used the number of eggs, 

juveniles and adults observed during our study as the baseline vector for this projection.  
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Figure 9. Life table diagram based off a stage-based population matrix of spotted turtles 

with arrows for each vital rate’s elasticity value in an intensively-managed forest 

landscape in eastern North Carolina, USA. Adult survival had the greatest influence on 

the population growth rate. The size of the bubbles indicates reproductive value, which is 

the importance of different age classes to future reproduction –the larger the bubble, the 

more reproductive value.  

Movements 

We radio-tracked turtles 1-2 times/week. However, the emergence/courtship 

period had the most telemetry locations for both years, amounting to 45% of locations 

(Table 5). Data were normally distributed for males (W = 0.956, P = 0.127) and females 

(W = 0.939, P = 0.035), and variances were homogenous across genders (k
2
 = 0.399, df = 



35 
 

1, P = 0.528).  Average distance moved between relocations was 173.4 m (± 73.1 SE).  

Mean average daily distance was 29.7 m (± 16.6 SE) across all turtles (Table 6), and 

differed among seasons (F = 11.9, df = 2, P < 0.05) and between sexes (F = 8.87, df = 1, 

P < 0.05) but there was not a significant interaction (F = 2.89, df = 2, P = 0.062; Table 

7).  Mean average daily distance for the pre-nesting season was 39.1 m (± 24.6 SE), 43.4 

m (± 22.5 SE) for the nesting season, and 26.4 m (± 21.7 SE) for the post-nesting season. 

More specifically, males differed from females significantly during the pre-nesting 

season (Table 8) and showed considerably longer movements (average daily distance = 

43.5 m, ± 11.7 SE) than females (28.2 m, ± 14.7 SE) during this time, but were similar 

during other seasons (Figure 10).  

 

Table 5. Individual radio-tagged spotted turtle (n=31) average number of relocations per 

week and number of locations for males and females by season in an intensively-

managed forest landscape in eastern North Carolina, USA. 

 

Season Average # of locations 

per week per individual 

Males 

total locations 

Females 

total locations 

Total 

Pre-nesting 2 466 430 896 

Nesting 1 193 211 404 

Post-nesting 1 345 327 672 

 Total 1004 968 1972 
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Table 6. (n=31) Mean average daily distances of individual radio-tagged spotted turtles 

compared across sex and season in an intensively-managed forest landscape in eastern 

North Carolina, USA. 

Season Average Daily 

Distance 

Males (SE) 

 

Average Daily 

Distance 

Females (SE) 

 

Average Daily 

Distance 

Total (SE) 

Pre-nesting 50.1 (± 13.7) 28.2 (± 14.7) 39.1 (± 24.6) 

Nesting 44.5 (± 24.6) 42.4 (± 21.1) 43.4 (± 22.5) 

Post-nesting 25.3 (±12.7) 27.4  (± 28.2) 26.4 (± 21.7) 

Total (all seasons) 32.6 (±13.7) 26.9 (± 18.9) 29.7 (± 16.6) 

 

Table 7.  Two-way ANOVA test of season, gender, and interaction of season and gender 

for average daily distance of spotted turtle individuals (n=26) in an intensively-managed 

forest landscape in eastern North Carolina, USA. 

  DF Sum of Squares Mean Squares F value P-value (>F) 

Season 2 4450 2220 11.9 <0.001 

Gender 1 1660 1660 8.87 0.004 

Season:Gender 2 1080 539 2.89 0.062 

Residuals 72 13400 187   
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Table 8. Tukey’s HSD test of pairwise comparisons between seasons for average daily 

distance of spotted turtle individuals (n=26) in an intensively-managed forest landscape 

in eastern North Carolina, USA.  

Season Difference in 

means 

Lower 95% CI Upper 95% CI P-value 

(adjusted) 

Post-nesting-Nesting -17.9 -27.0 -8.83 <0.001 

Pre-nesting-Nesting -4.91 -14.0 4.15 0.401 

Pre-nesting-Post-

nesting 

13.0 3.92 22.1 <0.001 
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Figure 10. Average daily distance moved in meters and standard errors (SE) for spotted 

turtle individuals (n=26) across sex and season in an intensively-managed forest 

landscape in eastern North Carolina, USA. 

Home Range and Utilization Distributions  

We constructed home ranges for 28 of 31 radio-tracked spotted turtles with >40 

locations. We tested for differences between years on 27 individuals, because one 

individual did not have enough locations for one of the years.  Across all seasons, 95% 

MCP home ranges averaged 24.3 ha (± 6.73 SE), but averaged 12.3 ha (± 3.69 SE) during 

pre-nesting, 7.71 ha (± 2.89 SE) during nesting, and 11.8 ha (± 2.18 SE) during post-

nesting seasons. There was a significant difference in MCP home range size between 
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years (Wilcoxon signed rank: z = 317, P < 0.05; Figure 11), with home ranges in 2012 

being 5.5 ha > than 2013 (2012: 15.9 ± 2.89 SE; 2013: 10.4 ± 1.86 SE). Male MCP home 

range sizes (mean 37.3 ± 50.3 ha) were significantly larger than females (12.2 ± 7.0 ha) 

(F = 6.12, df = 1, P < 0.05; Table 9). However, home range size did not differ across 

season (F = 0.59, df = 2, P = 0.56) and there was not a season × gender interaction (F = 

0.20, df = 2, P = 0.82). 

For the local convex hull approach, we used the 95% density isopleth as our home 

range metric. Individuals occupied home ranges that were on average 12.6 ha (± 2.54 SE) 

across all seasons of the project, 52% of average MCP home ranges. Further, sizes of 

turtle home ranges had less seasonal variation, amounting to 8.67 ha (± 2.16 SE) during 

pre-nesting, 8.96 ha (± 3.34 SE) during nesting, and 7.72 ha (± 1.49 SE) during post-

nesting. There was a significant difference in LoCoH home range size between the years 

of the study (Wilcoxon signed rank:  z = 286, P < 0.05), with 2012 home ranges on 

average 10.2 ha (± 2.22 SE) and 2013 home ranges on average 5.85 ha (± 1.04 SE).  

Conversely, home range size was not significantly different across season (F = 0.30, df = 

2, P = 0.74), gender (F = 1.96, df = 1, P = 0.17), and season × gender interaction (F = 

0.77, df = 2, P = 0.47) (Table 10). Although not significant, males have generally larger 

home ranges than females during the pre-nesting and post-nesting seasons (Figure 12).  
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Table 9.  Two-way ANOVA test of season, gender, and interaction of season and gender 

for 95% minimum convex polygon (MCP) home range area (ha) of spotted turtle 

individuals (n=28)  in a highly-managed landscape of Coastal North Carolina, USA. 

  DF Sum of 

Squares 

Mean 

Squares 

F 

value 

P-value 

(>F) 

Season 2 310 155 0.594 0.555 

Gender 1 1596 1596 6.124 0.0155 

Season:Gender 2 101 50.7 0.195 0.824 

Residuals 77 20100 261     
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Figure 11. Ninety-five percent minimum convex polygon (MCP) home range area (ha) 

and standard errors of spotted turtle individuals (n=28) across sex and season in an 

intensively-managed forest landscape in eastern North Carolina, USA. 
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Table 10.  Two-way ANOVA test of season, gender, and interaction of season and gender 

for time local convex hull (T-LoCoH) 95% isopleth home range area (ha) of spotted turtle 

individuals (n=28)  in an intensively-managed forest landscape in eastern North Carolina, 

USA. 

  DF Sum of 
Squares 

Mean 
Squares 

F value P-value 
(>F) 

Season 2 43 21.63 0.299 0.743 

Gender 1 142 141.58 1.96 0.169 

Season:Gender 2 110 55.25 0.765 0.472 

Residuals 44 3179 72.25     
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Figure 12. Time local convex hull (T-LoCoH) 95% isopleth home range area (ha) and 

standard errors of spotted turtle individuals (n=28) across sex and season in an 

intensively-managed forest landscape in eastern North Carolina, USA. 
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Local-level Habitat Selection 

We collected habitat data for 31 individual turtles at 2256 location and paired 

random plots at the 2 m scale and 20 m scale. Turtle locations ranged from 9 – 106 per 

individual.  Individuals were pared down by number of locations (at least 30 paired use 

and random plots) and presence of variables across plots, resulting in 1969 points for the 

2 m scale analyses and 1974 locations at the 20 m scale analyses for 27 turtles. Nearly 

85% of all locations were in the ditch system, with approximately 15% of locations in 

upland habitat (Figure 13). The remaining <1% of turtle locations were on roads. Turtles 

were in forms for >18% of locations with most forms consisting of leafy debris 

(deciduous and pine litter) or vegetation. We were confident in our placement of location 

plots for habitat selection analyses in that over 91% of locations had visual confirmation 

of radio-tracked individuals. Seventeen habitat variables were used for subsequent habitat 

analyses. 

Both the cumulative rank and sum of weights approach indicated that the same 

models best described habitat selection at the 2 m scale. The model that described aquatic 

form protective cover was the highest ranked model (∆AICc = 0) for 23 of 27 turtles 

(total cumulative rank of 70), which also accounted for 30.7% of the total model weight 

(8.29 of 27; Table 11). The model that described soil cover foraging/thermoregulatory 

conditions was the second-highest ranked model for 20 of 27 turtles (total cumulative 

rank of 72), which also accounted for 25.9% of the total model weight (Table 11). 

Maximum likelihood coefficients of the highest-ranked model (under.open + water + 
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decid.leaf + pine needles; see Table 2 for detailed description of variables) indicated that 

turtles selected for habitats with increased closed canopy,  percent water cover, slight 

presence of deciduous leaf cover, and a slight absence of pine needles. The median odds 

ratios (Table 12) suggested that water was the most important descriptor of selection 

(likelihood of selection increases over 600% with every one categorical unit increase of 

water cover).  Further, for every 1% increase in understory openness, there was a 46% 

decrease in likelihood of selection, for every one categorical unit increase in percent 

deciduous leaf cover there is a 32% decrease in likelihood of selection, and for every one 

categorical unit increase in percent pine needle cover there is a 12% increase in 

likelihood of selection.  

For the 20 m scale, the model describing deciduous leaf 

foraging/thermoregulatory conditions was the highest ranked (∆AICc = 0; total 

cumulative rank of 74), which also accounted for 20.8% of the total model weight (of 27; 

Table 13). The model that described aquatic form protective cover was the second-

highest ranked model for 25 of 27 turtles (total cumulative rank of 72), which also 

accounted for 28.6% of the total model weight (Table 13). Maximum likelihood 

coefficients of the highest-ranked model (sub.temp + water + decid.leaf) indicated that 

turtles selected for habitats with increased percent water cover, deciduous leaves, and 

warmer temperatures. The median odds ratios (Table 14) suggest that water was the best 

predictor of selection. Further, for every 1°C increase in substrate temperature (either 

water or soil), there was a 12% increase in the likelihood of selection, and for every one-
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unit increase in percent deciduous leaf cover there was a 13% increase in the likelihood 

of selection.  

Figure 13. Number of road, ditch, upland, and basking locations of radio-tracked spotted 

turtles in an intensively-managed forest landscape in eastern North Carolina, USA. 
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Table 11. Comprehensive paired logistic regression models (n = 8) of habitat selection at 

the 2 m scale by spotted turtles in a highly-managed landscape of Coastal North Carolina, 

USA, supported by AICc (n = 27). *Models were ranked by level of AICc support and 

summed across individuals (maximum cumulative rank is 216). **AIC weights (wi) were 

summed across individuals (maximum weight is 27) and converted to percentages to 

account for total model weight. ***AIC weights (wi) were averaged across individuals 

(maximum weight is 1) and include standard deviation (SD) in parenthesis. 

   Sum Sum Mean 

Model Name Model k Cumulative 

Rank 

wi ** 

(%) 

wi *** 

(SD) 

Aquatic form 

protective cover 

under.open + water + decid.leaf 

+ pine needles 

4 70 8.29  

(30.7) 

0.307 

 (0.304) 

Soil foraging 

conditions 

sub.temp + water + soil 3 72 7.00  

(25.9) 

0.260  

(0.287) 

Woody debris 

foraging conditions 

sub.temp + water + stick 3 91 3.50 

 (13.0) 

0.130 

 (0.194) 

Deciduous leaf 

foraging conditions 

sub.temp + water + decid.leaf 3 96 2.43  

(0.090) 

0.090 

 (0.106) 

Pine needle 

foraging conditions 

sub.temp + water + pine needles 3 113 1.85 

 (0.069) 

0.069  

(0.077) 

Global sub.temp + under.open + 

lob.trees + ALL COVER 

VARIABLES 

10 126 3.91  

(14.5) 

0.145 

 (0.212) 

Vegetation and 

woody debris 

cover 

under.open + grass + herb + 

stick 

4 191 0.019 

 (0.070) 

<0.001 

(0.004) 

Pine stand 

protective cover 

under.open + lob.trees  2 213 <0.001 

(<0.001) 

<0.001 

(<0.001) 
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Table 12.  Paired logistic regression model that best explains habitat selection at the 2 m 

scale across all spotted turtles (n = 27) in an intensively-managed forest landscape in 

eastern North Carolina, USA. 

Variable Coefficient 
(median) 

Odds ratio 
(median) 

Odds ratio 
(interquartile range) 

under.open -0.617 0.54 (0.320, 0.692) 

water 1.97 7.148 (5.39, 10.0) 

decid.leaf -0.383 0.682 (0.553, 0.863) 

pine needles 0.112 1.118 (0.780, 1.62) 
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Table 13. Comprehensive paired logistic regression models (n = 8) of habitat selection at 

the 20 m scale by spotted turtles in a highly-managed landscape of Coastal North 

Carolina, USA, supported by AICc (n = 27). *Models were ranked by level of AICc 

support and summed across individuals (maximum cumulative rank is 216). **AIC 

weights (wi) were summed across individuals (maximum weight is 27) and converted to 

percentages to account for total model weight. ***AIC weights (wi) were averaged across 

individuals (maximum weight is 1) and include standard deviation (SD) in parenthesis. 

   Sum Sum Mean 

Model Name Model k Cumulative 
Rank 

wi ** 
(%) 

wi *** 

(SD) 
Deciduous leaf foraging 
conditions 

sub.temp + water + 
decid.leaf 

3 74 5.63 
 (20.9) 

0.208 
 (0.212) 

Aquatic form protective 
cover 

under.open + water + 
decid.leaf + pine needles 

4 79 7.73  
(28.6) 

0.286 
 (0.289) 

Pine needle foraging 
conditions 

sub.temp + water + pine 
needles 

3 84 3.82  
(14.1) 

0.141 
 (0.183) 

Woody debris foraging 
conditions 

sub.temp + water + stick 3 94 3.86 
 (14.3) 

0.143 
 (0.188) 

Soil foraging conditions sub.temp + water + soil 3 101 3.58  
(13.3) 

0.133  
(0.157) 

Global sub.temp + under.open + 
lob.trees + ALL COVER 
VARIABLES 

10 146 2.39  
(8.85) 

0.0887 
(0.231) 

Vegetation and woody 
debris cover 

under.open + grass + 
herb + stick 

4 194 <0.001  
(5.56) 

<0.001 
(<0.001) 

Pine stand protective 
cover 

under.open + lob.trees  2 200 <0.001 
(<0.001) 

<0.001 
(<0.001) 
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Table 14. Paired logistic regression model that best explains habitat selection at the 20 m 

scale across all spotted turtles (n = 27) in an intensively-managed forest landscape in 

eastern North Carolina, USA. 

Variable Coefficient 
(median) 

Odds ratio 
(median) 

Odds ratio 
(interquartile range) 

sub.temp 0.226 0.877 (0.572, 1.83) 

water 3.12 22.659 (9.33, 37.6) 

decid.leaf 0.213 1.127 (0.640, 2.23) 

 

 

Landscape-level Habitat Selection 

We conducted backwards elmination regression with AIC model selection to 

assess whether landscape characteristics in activity areas compared to available habitats.  

We conducted the analysis across 32 activity areas and 32 random points constrained to 

the ditch network and isolated wetlands. Regarding spatial independence of buffered 

activity areas, we determined that spatial independence decreases as buffer size increases, 

with the 300 m scale having >80% overlap with adjacent 300 m buffers (Figure 14). 

Also, 19% of the 10% density isopleth activity areas overlapped with adjacent activity 

areas. We expected to see some overlap in turtle activity areas, because spotted turtles 

spend a considerable amount of time in the ditch network, and often interact with other 

individuals, especially during courtship. 
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Figure 14. Percentage of overlap across spotted turtle activity area buffers indicating a 

decrease in spatial independence as buffer size increases. For example, about 13% of the 

30 m buffers overlapped with each other.    

 

 For the 30 m scale analysis, turtles used road length disproportionate to the 

randomly available landscape features we examined (ΔAICc = 0, wi = 0.58). The second 

supported model revealed selection of middle-late aged forest stands in conjunction with 

road length (ΔAICc = 0.67, wi = 0.42). However, the independent variables odds ratios 

and corresponding confidence intervals were large (Table 15). At the 175 m scale, turtles 
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were positively associated with forest stands >30 years old and natural stands and with 

ditch length and road length (ΔAICc = 0, wi = 0.67). The maximum likelihood estimates 

and odds ratios indicated that areas with a greater proportion of older forests were more 

likely to have a turtle activity area, while a greater length of roads and ditches within the 

buffer decreased likelihood of an activity area being present (Table 16). However, the 

second supported model indicated selection of middle-late aged forest stands along with 

forests older than 30 years, ditch length, and road length (ΔAICc = 1.39, wi = 0.33), and 

the maximum likelihood estimates and odds ratios revealed a similar pattern as the top 

model, but greater ditch length results in an increased likelihood of activity area 

selection.  

The 300 m scale revealed turtle selection of all forest stand ages coupled with 

ditch length and road length (ΔAICc = 0, wi = 0.68). The second supported model 

revealed the same variables with an addition of distance to wetland (ΔAICc = 0.76, wi = 

0.41), but both models did not converge (no upper confidence limit). A post-hoc 

sensitivity analysis of buffer scales between 30 m and 175 m (90 m) revealed that 

proximity to nearest wetland was an important factor in activity area selection (ΔAICc = 

0, wi = 0.59). Also, the greater the road length resulted in an increase in likelihood of 

activity area selection, but was not the case for ditch length (Table 17). The competing 

model of the sensitivity analysis showed that middle-late aged stands were also important 

for activity area selection (ΔAICc = 0.76, wi = 0.41), with a greater proportion of middle-

late aged stands resulting in an increased likelihood that an activity area will be present.  
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Table 15. Coefficients and odds ratios of top-supported models from a stepwise logistic 

regression of the 30 m scale for landscape-level habitat selection across all spotted turtle 

activity areas (n = 32) in an intensively-managed forest landscape in eastern North 

Carolina, USA. 

Model # Variable Coefficient 

(SE) 

Odds Ratio 95% CI 

1 Road.Length 14.49 

(3.77) 

1971731 (1922, 6483217290) 

2 Mid-Late.Stand  18.46 

(15.84) 

104086957 (0.0000016, 5.95e+21) 

2 Road.Length 14.12 

(3.82) 

1355776 (1189, 4856973000) 

 

 

Table 16. Coefficients and odds ratios of top-supported models from a stepwise logistic 

regression of the 175 m scale for landscape-level habitat selection across all spotted turtle 

activity areas (n = 32) in an intensively-managed forest landscape in eastern North 

Carolina, USA. 

 

 

 

 

Model 

# 

Model variable(s) Coefficient    

(SE) 

Odds Ratio 95% CI 

1 

1 

1 

Natural.Stand 

Ditch.Length 

Road.Length 

2.38 (0.73) 
-4.08 (1.47) 
-0.98 (0.54) 

 

0.38 
0.017 
10.85 

 

(0.12, 1.00) 
(0.00065, 0.24) 

(3.00, 55.29) 
 

2 

2 

2 

2 

Mid-Late.Stand 

Stand.Natural 

Ditch.Length 

Road.Length 

0.49 (0.62) 
-0.80 (0.58) 
-4.05 (1.49) 
2.27 (0.74) 

 

1.63 
0.45 

0.017 
9.7 

 

(0.48, 5.81) 
(0.13, 1.30) 

(0.00065, 0.25) 
(2.60, 50.41) 
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Table 17. Coefficients and odds ratios of competing models from a post hoc logistic 

regression at the 90 m scale for landscape-level habitat selection across all spotted turtle 

activity areas (n = 32) in an intensively-managed forest landscape in eastern North 

Carolina, USA. 

Model # Model variable(s) Coefficient (SE) Odds Ratio 95% CI 

1 

1 

1 

Ditch.Length 

Road.Length 

Dist.Wetland 

-0.59 (0.37) 
1.14 (0.36) 
-0.84 (0.42) 

 

0.55 
3.11 
0.43 

 

(0.25, 1.11) 
(1.60, 6.76) 
(0.16, 0.88) 

 

2 

2 

2 

2 

Ditch.Length 

Road.Length 

Dist.Wetland 

Mid-Late.Stand 

-0.54 (0.37) 
1.05 (0.37) 
-0.83 (0.42) 
0.33 (0.30) 

 

0.58 
2.86 
0.44 
1.40 

 

(0.26, 1.17) 
(1.43, 6.29) 
(0.16, 0.91) 
(0.77, 2.61) 

 

 

 

DISCUSSION 

Persistence in an intensively-managed landscape  

Using multiple lines of evidence examining population demography, spatial 

ecology, and multi-scale habitat selection, we determined that spotted turtles are 

persisting in an intensively-managed forest landscape. This persistence is likely attributed 

to the extensive ditch network, a system with a high density of individual turtle locations, 

movements, and home ranges. Individuals also selected for ditches at the landscape scale. 

Although spotted turtles have been well-studied in wetland-dominated ecosystems, 

particularly at the northern extent of their range, few populations have been intensively 

studied in highly-reconfigured landscapes (Bottini 2005; Kaye et al. 2006; Yagi and 

Litzgus 2012), and none that we are aware of have been examined in intensively-
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managed forests. Moreover, this landscape was once dominated by pocosin-like 

wetlands, but now has been structurally changed. This study elucidates potential 

behavioral plasticity of a long-lived ectotherm to a highly-reconfigured aquatic and 

terrestrial landscape. We demonstrate that spatial ecology and multi-scale habitat 

selection indicates the quality of the ditch network and surrounding forest stand ages, and 

suggests the importance of a shifting mosaic in landscape features for sensitive, long-

lived organisms. 

 

Population structure 

Our demographic data of spotted turtles, including survival and population growth 

rate, indicate a persisting population in this intensively-managed forest landscape of 

North Carolina, USA. Spotted turtles on our intensively managed study area were 

abundant, and were the most commonly detected reptile in roadside ditches (Appendix 

B). Spotted turtles were quite abundant, but only 5% of turtles we observed were 

hatchling and juvenile aquatic turtles. This stage class of turtles is notoriously difficult to 

find, presumably due to their smaller size which limits detection or differential habitat 

use compared to adults (Ernst 1976, Reeves and Litzgus 2008).  Further, our methods 

were not designed to target juveniles.  However, the proportion of juveniles we observed 

was smaller than other studies (Table 18) and may suggest low recruitment (Ernst 1976) 

or high mortality (Bodie and Semlitsch 2000), but one of our captured hatchlings was 

found in a roadside flooded depression, a feature rarely used by adults. Compared to 



56 
 

other studies, our study population included the largest number of juveniles, males, and 

females (Table 19). Further, our sex ratio of males to females was opposite of what has 

been documented in other studies. The shell lengths and weights of the animals were 

comparable to other studies. 

The male: female sex ratios were ca. 2:1.  Skewed sex ratios may be evidence of 

intersexual differences in mortality (Aresco 2005) or maturation schedules (Gibbons and 

Lovich 1990), temperature dependent development, or detection bias. Here we discuss 

each in turn and present supporting evidence where available. Freshwater turtle 

populations that are skewed male have occurred near roadways, but not in populations 

without roadways, suggesting high female mortality due to vehicles (Steen and Gibbs 

2004; Aresco 2005; Steen et al. 2006). However, our population is subject to little vehicle 

traffic, as roads are gated with limited access. Further, we radio-tracked turtles for two 

years and documented no road-related mortalities.  Because this species, like many 

reptiles, exhibits temperature-dependent sex determination (TSD), skewed sex ratios may 

be caused by specific temperature regimes during egg developmental stages, with 1:1 sex 

ratio at 29°C, males being produced at temperatures <29°C and females being produced 

at >29°C (Ewert and Nelson 1991). To explore the possibility of TSD as a causal factor 

of overabundance of males, we consolidated all soil temperature collected from the 

location, 2 m, and 20 m habitat plots for the habitat selection analysis during an 

approximate nest incubation period (June-August, 2012-2013; Ernst 1970) and found that 

soil temperatures (n = 1092) averaged 23.7°C (range: 12.2-35.8°C, median: 23.9°C), 

supporting the hypothesis that the male bias we observed may be due to temperature 



57 
 

effects during development. We did not, however, record soil temperatures of the 

incubation periods for when the observed adult spotted turtles were incubating (anywhere 

from 7-30+ years ago; Ernst 1970), which may have completely different temperature 

profiles. Instead we suggest that detectability may have influenced our observed sex ratio 

in that we used a combination of opportunistic and systematic surveys. Also, the pre-

nesting season is when males seek out females for courtship (Ernst 1976), and males 

were often out in the open, oblivious to our presence. We caught 76% of males during the 

pre-nesting season (Figure 6), often capturing males that were courting females. After 

releasing the captured individuals, we frequently observed males immediately finding the 

female they were originally chasing. Although anecdotal, it suggests high-detectability 

and subsequent vulnerability to predation and poaching for spotted turtles during the 

courtship season.  

Further, spotted turtles exhibited high apparent survival in this intensively-

managed landscape. This high adult survival may be attributed to the fact that this project 

was short in duration relative to the lifespan of the organism, and no females died during 

the project.  Our mark-recapture CJS models indicated apparent survival of females was 

higher than males, and thus less likely to emigrate and/or die. Other turtle studies have 

also revealed higher apparent survival estimates for females compared to males (Bowen 

et al. 2004; Converse et al. 2005), but the opposite has been documented (Dodd et al. 

2006),  of which may be a result of mortality or permanent emigration due to overland 

nesting movements by females.  However, our observed nesting females oviposited on 

ditch banks, effectively reducing risk of overland movements.  Males moved 
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considerably longer distances (Table 6) and had larger home ranges than females (Figure 

7) especially during the pre-nesting season, which may result in higher detection and 

predation risk. Apparent survival estimates were slightly lower in our known-fate model, 

but this could be attributed to the fact that an individual lost its transmitters during the 

first season of the project. Our CJS annual survival estimate for females is higher than 

what has been previously recorded in spotted turtle populations (1.00 compared to 0.97; 

Enneson and Litzgus 2008).   

This population is experiencing a positive population growth rate according to our 

mark-recapture population projection matrix. Similarly, Enneson and Litzgus (2008) 

documented 2% annual growth in an Ontario, Canada spotted turtle population. Our 

elasticity and sensitivity analyses, along with Enneson and Litzgus (2008) indicate that 

changing adult survival vital rates in spotted turtles would have the greatest effects on the 

population growth rate. Although importance of adult survival is expected for long-lived, 

K-selected organisms with low annual fecundity and low juvenile survival, it further 

demonstrates the need for research and conservation of all age classes (Congdon et al. 

1993).  
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Table 18. The percentage of juvenile spotted turtles captured during our study compared 

to other studies.  

% 

Juveniles 

captured 

 

Study 

5.4 Current study 

9.3 Litzgus and Brooks (1998) 

11.7 Rowe and Gradel (2013) 

13.6 Litzgus and Mousseau (2004) 

15.6 Seburn (2003) 

17.5 Graham (1995) 

27.5 Reeves and Litzgus (2008) 
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Table 19. Table modified from Rowe and Gradel (2013) showing demographic (J = 

juveniles, including hatchlings, F = females, M = males), sex ratio, and body-size 

statistics across the distributions of spotted turtles. We include our study as a comparison. 

Location of 

population 

N 

(J : M : F) 

Sex ratio  

M : F 

CL (mm) 

 Mean  

Min-Max 

PL (mm) 

Mean 

Min-Max 

Mass (g) 

Mean 

Min-Max 

Study 

Lancaster Co., PA - 1 : 1.5 - F:89.8  

-  

M: 86.3 

 - 

- Ernst 1976 (as 

reported in Litzgus 

and Brooks 1998) 

Cedar Bog, OH - - F: 92.4  

-  

86.1 

80.7 - Lovich 1985 (as 

reported in Litzgus 

and Brooks 1998) 

Lockport Prairie, IL - - F: 106.4 

 -  

M: 104.8 

- 

F: 94.9  

-  

M: 87.9 

- Mauger 1990 (as 

reported in Litzgus 

and Brooks 1998) 

Cedar Swamp, MA 7 : 12 : 21 1 : 1.8 F:110.2  

79-126  

M:113.3  

105-123 

F: 101.5  

72-116  

M: 96.4  

89-105 

- Graham 1995 

Georgian Bay 

(inland), Ontario 

11 : 49 : 58 1 : 1.2 F: 115.0  

- 

 M: 116.3  

- 

F: 101.1 

 -  

M: 94.9 

 - 

- Litzgus and Brooks 

1998 

Perry Nuclear Site, 

OH 

- - F: 98.0 

 -  

M: 104.8 

 - 

F: 87.3  

-  

M: 87.6 

 - 

- Collins (as reported 

in Litzgus and 

Brooks 1998) 

Mer Bleue Bog, 

Ontario 

5 : 6 : 21 1 : 3.5 F: 106.4  

-  

M: 108.5 

- 

F: 192  

- 

M: 187 

- 

- Seburn 2003 

Francis Beidler 

Forest, SC 

6 : 17 1 : 1.2 F: 103.8 

 -  

M: 105.2 

- 

F: 91.2  

-  

M: 86.8 

 - 

F: 190 

 -  

M: 168 

 - 

Litzgus and 

Mousseau 2004 

Georgian Bay 

(island), Ontario 

11 : 6 : 23 1 : 3.8 F: 108.9  

-  

M: 117.9 

 - 

F: 96.8 

 -  

M: 97 

 - 

F: 212.2  

-  

M: 219.8 

 - 

Reeves and Litzgus 

2008 

Southwestern 

Michigan 

10 : 28 : 47 1 : 1.7 F: 88.2  

66-114  

M: 87.5 

 65-105 

F: 80.3  

53-105  

M: 75.7  

48-90 

F: 105.9  

45-200 

 M: 102.3 

54-150 

Rowe and Gradel 

2013 

Coastal North 

Carolina 

15 : 177 : 86 2.1 : 1 F: 104.2  

90-104.2  

M: 107.9  

99.5-120.8 

F: 89.5  

69-105 

 M: 86.5  

71-130 

F: 166.5  

80-158  

M: 156.9 

97-183 

Current Study 



61 
 

Spatial ecology 

Spotted turtles extensively used the anthropogenic aquatic system, a ditch 

network designed to manipulate the water table for improved pine growth and survival, 

for movements, activity areas, and home ranges. Given heterogeneity in habitat structure, 

spotted turtles are known to stay in aquatic sites with permanent and ephemeral water 

sources (Seburn 2012; Yagi and Litzgus 2012), but frequently move upland in response 

to drought, temperature increases, or for nesting (Ernst and Lovich 2009). Average daily 

distance moved by males was nearly double that of females during the pre-nesting period 

(50.1 vs 28.2 ha; Figure 8). Large movements by males during courtship are indicative of 

mate-searching (Rasmussen and Litzgus 2010). More natural populations are subject to 

mortality when migrating between isolated wetlands and water bodies (e.g. road traffic; 

Langen et al. 2012), but the ditch network may allow for increased connectivity between 

individuals in this managed forest. Also, turtles often used the ditch network to access the 

upland matrix, which may also reduce potential risk of extensive overland movements.  

Home ranges were often centered on ditches, and the T-LoCoH method appeared 

to better represent use of space in this highly-linear aquatic system compared to the 

standard MCP method, which is frequently used in home range studies. Home range size 

(T-LoCoH) was comparable to other studies, but was slightly greater (and the MCP 

greater still) than the largest average home range reported from a South Carolina 

population (Litzgus and Mousseau 2004).  Home ranges did not differ by gender, season, 

or gender by season interaction for the T-LoCoH method (Figure 8) which did not 
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support our hypothesis of gender differences in home range size. However, we did 

hypothesize that male movement patterns would be significantly different between males 

and females during the pre-nesting season, which was the case in our movement data 

(Figure 6). Space-use can elucidate the areas of a landscape that have higher fitness 

potential for an organism (Garshelis 2000), and both the MCP and T-LoCoH home range 

methods indicate a centralization of utilization distributions over the ditch network.  

Multi-scale habitat selection 

Using an individual-based cumulative ranks approach to habitat selection 

modeling, we found that spotted turtles selected for behaviorally-relevant habitats at the 

local-level. Also, turtle activity areas selected for old forest stands and proximity to 

wetlands at the landscape-level. Individual-based analyses of habitat selection allow for 

better understanding of individual contribution to variation, and stronger inference at the 

population level. To this end we average (or take the median of) model selection results 

across individuals (Compton et al. 2002). However, it is ill-advised to compare AIC 

values across data sets (Burnham and Anderson 2002), because their absolute values are 

contingent to the input data. We devised two new approaches to compare AIC-derived 

top models across individuals, and compared their efficacy in the context of this study. 

Summed/averaged model weights and cumulative ranks across individual models 

produced similar model selection results, indicating the promise of using a cumulative 

ranks and weights approach when comparing information theoretic models across data 

sets.  
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For local-level habitat selection, presence of water in a given plot was a good 

predictor of selection. Selection of percent water cover is well known for this species 

(Ernst and Lovich 2009). Over 80% of turtle locations were documented in the ditch 

network. Therefore, at the 2 m scale, most locations and paired random plots were within 

the ditch environments and around the ditch system or in adjacent stands at the 20 m 

scale. Specifically, spotted turtles selected for closed understory and thicker pine needle 

cover at the 2 m scale and for warmer substrate temperatures and deciduous leaf cover 

within and around the ditch system at the 20 m scale. Spotted turtles, along with most 

ectothermic organisms, often utilize substrate cover for forms, which provide protection 

and thermoregulatory opportunities (Litzgus and Brooks 2000; Baldwin et al. 2006). The 

fact that closed understory openness was selected for at the 2 m scale, and warmer 

temperatures were selected for at the 20 m scale may indicate a balance between 

thermoregulation, feeding, and/or form protective cover within the ditch environment.  

Additionally, behaviors at the 2 m scale are potentially different than the 20 m scale for 

this species. For example, we observed individuals seeking cover under substrate within 

2-3 m of capture, suggesting use of habitat for protective cover from predators. We also 

documented turtles estivating under thick forest leaf cover closer to the 20 m scale. Other 

organisms are known to select for behaviorally-specific habitats at multiple scales. Multi-

scale habitat selection studies are rare in the literature (du Toit 2010), but animal space 

use and habitat selection is often scale-dependent, warranting the need for multi-scale 

habitat selection research.  Our local-level results suggest the importance of maintaining 
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canopy closure near and around the ditch system, comprised of both deciduous trees and 

loblolly pines.  

At the landscape-level, spotted turtle activity areas selected for the ditch system 

and road length consistently across scales. Wetland-dwelling species are often subject to 

road-related mortality, in that they make frequent movements within and among isolated 

wetlands and water features (Litzgus and Mousseau 2004; Beaudry et al. 2009), which 

increases the chances of crossing roadways. However, on Weyerhaeuser Company 

property, roadways are heavily gated with limited public access, resulting in little vehicle 

traffic. Consequently, we believe that vehicle mortality is of little concern for this 

population, and suggest that forest industry companies continue to keep their roads gated. 

This may also reduce poaching risk for the pet trade.  

We found that turtles selected for older stands and/or stands that are restricted 

from harvest at the 175 m scale. Old stands in coniferous plantations have shown to be 

important features for other animals (MacKay et al. 2014), and indicate the importance of 

a shifting mosaic in landscape features.  A post-hoc analysis at the 60-90 m scale 

indicated proximity to wetlands as an important landscape metric in addition to older 

stands. The analysis at the 30 m and 300 m scales indicated lack of fit, of which could be 

caused by poor model parameters. This documented selection of older stands and 

proximity to isolated wetlands may give insight as to how vulnerable, semi-aquatic 

organisms can persist in highly-modified landscapes.   
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CONCLUSION 

Our study indicates short-term (i.e., 2-year) persistence of a declining, freshwater 

turtle species in an intensively-managed forest landscape. Our landscape-level habitat 

selection analysis suggested that spotted turtles select for old forest stands and proximity 

to wetlands, which may give insight as to how this population is able to persist. 

Therefore, managers can identify activity areas that form a landscape-level complex with 

nearby isolated wetlands and more mature forests. Our data also suggest that maintaining 

connectivity between the aquatic and terrestrial landscape features (i.e. ditch networks 

and forest congruity) would be important for the persistence of sensitive organisms like 

spotted turtles in highly-reconfigured systems. Further, the ditch network appears to be a 

vital landscape feature for spotted turtles in that over 85% of locations were documented 

there, and the landscape analysis indicated selection of activity areas to ditches. Before 

the intensive dredging of pocosin wetlands for agriculture, forestry, and development, we 

suspect that spotted turtle populations were abundant in the Atlantic Coastal Plain.  This 

study indicates that spotted turtles, considered vulnerable or threatened throughout most 

of their range, are persisting in a highly-reconfigured aquatic and terrestrial landscape. 

Organisms are often subject to anthropogenic habitat modification. Some species 

are able to persist, while others do not survive (e.g. relic populations).  Moreover, 

organisms may not survive habitat modification if sensitive to a specific aspect of the 

reconfiguration in that a resource is removed or a key threat is enhanced (Baldwin 2010). 

The ability for a species to persist in the presence of habitat reconfiguration may be 
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attributed to adaptation, whether genetically, or through a plastic response in behavior 

(Chevin et al. 2010). Consequently, more research is necessary, including comparing 

spatial ecology and habitat selection across pre- and post-harvest treatments (in the case 

of forest management) to determine the mechanisms behind persistence.  Spotted turtles 

tended to focus their spatial ecology around the ditch network, indicating the importance 

of the network for this population’s persistence. Currently, Weyerhaeuser Company 

mechanically manages their ditch networks by scouring accumulated sediment and 

vegetation with an excavator approximately every 20-25 years. We captured spotted 

turtles across a series of ages since ditch maintenance (Figure A-2). Also, given stand 

rotations around the ditch network, this species appears to be persisting in spite of the 

intensive management. This persistence is likely attributed to the shifting mosaic of 

landscape structure in this system. For example, turtles selected for closed canopy and 

warmer temperatures at the local-level, and for proximity to wetlands and older stands at 

the landscape-level, suggesting the importance of habitat heterogeneity for this species. 

However, additional study investigating the effects of space-use and habitat selection pre- 

and post-ditch management at varying frequencies may give insight as to the appropriate 

management regimes for this species. Although using population structure, spatial 

ecology, and habitat selection gives a robust picture of the status of a species and its 

response to landscape alteration, long-term projects are paramount to understanding the 

future status of a species (Bennett and Adams 2004; Jones et al. 2010b). However, our 

findings can aid forest managers in developing effective management regimes for this 

species in intensively-managed landscapes.  
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APPENDIX A 

Telemetry datasheet: local-scale habitat plots 

TELEMETRY DATASHEET (Observer: ________________________; Site:______________) 

 

Date: ____________ Time: ___________ Frequency (MHz): __________________ Serial #: ______________ 

GPS: _______________________________________________________________________ # satellites: ____ 

New capture:  Y   N     New transmitter:  Y (new transmitter freq:__________ serial #:_________________)   N 

Notch Code: __________________ 

Gender:     Male      Female       Gravid: Y   N   Photo #s: ___________________________________________ 

Mass (g): ___________  Plastron Length (mm): __________  Transmitter & glue mass (g):____________ 

Method found:  Hoop Trap   VES   Local triangulation  Visual (w/ receiver)      Time to locate:__________ 

Inspection: In hand   On ground/water   Not obs.   Tag injuries:  N/A    None    Abrasion  Other__________ 

Activity state:  Active   Alert   Inert/tucked Basking? 

Macrohabitat:    Upland    Canal (main or 3rd stage)     Road  Other______________________ 

Last location distance: _________________ Bearing: ________________ 

Weather:   Overcast   Partly cloudy   Clear   Sunny   Rain   Mist   Snow   Frost   Ice skim   Other________ 

Microhabitat:  In form   Under log   In water body   In open   Other ________________________________ 

Approximate distance to water body (M): ____________________ 

Form class:  Lean-to   Tent   Sleeping bag   Open cup   Earthen cave   Other _________________________ 

Form cover:  Leaf [Species:_____________________; Thickness (mm):__________; Damp   Saturated   Dry] 

   CWD [Diameter (cm): ________; Length (cm): ________ Decay class: _____; Damp   Saturated   Dry] 

   Other:__________________________________________________________________________________ 

Distance to nearest CWD (cm): __________ [Diameter (cm): ________; Length (cm): ______Decay class: ___] 

Substrate characteristics:   Inundated (i.e., in standing water)    Damp    Saturated    Dry 

    Full Leaf/leaves [Species:_____________________; Thickness (mm):_______]    Leaf fragments       Moss 

    CWD [Diameter (cm): ________; Length (cm): ______Decay class: ______]   Other___________________ 

 

Other vertebrate species present?  Y    N   Species: 

 

Notes: 
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Date: ____________ Frequency: ___________________ 

 

LOCATION PLOT 

 

1 m: Macrosite slope:_________ aspect:__________; Microsite slope:_________ aspect:______ 

Microhabitat: RH: ________ Ambient Temp. (oC): ________; Water Temp. (oC): ________;    

Air: RH: ________ Ambient Temp. (oC): ________;Soil Temp. (oC): ________; Water depth (cm):________; 

Soil moisture (VWC): _____________          Light: _____________________________________lux 

Canopy openness:______________ X 1.04      Understory openness:______________ X 1.04 

Decid. 

L

e

a

f 

Sat. leaf Tree/root Fern Grass/ 

sedge 

Bryophyte(moss) Lichen Pine eedles Gravel Packed gravel 

          

Soil Water CWD 1 CWD 2 CWD 3 CWD 4 Stick Shrub Herb Other 

          

 

CWD species        

Decay class        

Type        

Touching (Y/N)        

Diam. class        

 

Tree spp. Loblolly         

#          

 

Illustration and Field Notes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2=1-5%,  

3=6-25% 

4=26-50% 

5=51-75% 

6=>75% 

Type: shard/bark, stump, log 

Diam class: 

1=1-5 cm 

2=6-10cm 

3=11-20cm 

4=21-30cm 

5=31-50cm 

6=51-75cm 

7=>75cm 
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Date: ____________ Frequency: ___________________ Direction of random plots: __________________ 

 

2M PLOT 

 

1 m: Macrosite slope:_________ aspect:__________; Microsite slope:_________ aspect:______ 

Microhabitat: RH: ________ Ambient Temp. (oC): ________; Water Temp. (oC): ________;    

Air: RH: ________ Ambient Temp. (oC): ________;Soil Temp. (oC): ________; Water depth (cm):________; 

Soil moisture (VWC): _____________          Light: _____________________________________lux 

Canopy openness:______________ X 1.04      Understory openness:______________ X 1.04 

Decid. 

L

e

a

f 

Sat. leaf Tree/root Fern Grass/ 

sedge 

Bryophyte(moss) Lichen Pine eedles Gravel Packed gravel 

          

Soil Water CWD 1 CWD 2 CWD 3 CWD 4 Stick Shrub Herb Other 

          

 

CWD species        

Decay class        

Type        

Touching (Y/N)        

Diam. class        

 

Tree spp. Loblolly         

#          

 

Illustration and Field Notes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2=1-5%,  

3=6-25% 

4=26-50% 

5=51-75% 

6=>75% 

Type: shard/bark, stump, log 

Diam class: 

1=1-5 cm 

2=6-10cm 

3=11-20cm 

4=21-30cm 

5=31-50cm 

6=51-75cm 

7=>75cm 
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Date: ____________ Frequency: ___________________ Direction of random plots: __________________ 

 
20M PLOT 

 

1 m: Macrosite slope:_________ aspect:__________; Microsite slope:_________ aspect:______ 

Microhabitat: RH: ________ Ambient Temp. (oC): ________; Water Temp. (oC): ________;    

Air: RH: ________ Ambient Temp. (oC): ________;Soil Temp. (oC): ________; Water depth (cm):________; 

Soil moisture (VWC): _____________          Light: _____________________________________lux 

Canopy openness:______________ X 1.04      Understory openness:______________ X 1.04 

Decid. 

L

e

a

f 

Sat. leaf Tree/root Fern Grass/ 

sedge 

Bryophyte(moss) Lichen Pine eedles Gravel Packed gravel 

          

Soil Water CWD 1 CWD 2 CWD 3 CWD 4 Stick Shrub Herb Other 

          

 

CWD species        

Decay class        

Type        

Touching (Y/N)        

Diam. class        

 

Tree spp. Loblolly         

#          

 

Illustration and Field Notes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2=1-5%,  

3=6-25% 

4=26-50% 

5=51-75% 

6=>75% 

Type: shard/bark, stump, log 

Diam class: 

1=1-5 cm 

2=6-10cm 

3=11-20cm 

4=21-30cm 

5=31-50cm 

6=51-75cm 

7=>75cm 
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APPENDIX B 

Reptile and amphibian surveys  

We conducted visual encounter surveys for reptiles and amphibians and aural 

surveys for amphibians across 16 roadside ditch sites intermittently during the project. 

We also recorded all haphazard/opportunistic captures that occurred during the study. 

The goal of this project was to examine assemblages of herpetofauna across a 

choronosequence of time since ditch maintenance on detection, richness, occupancy, and 

species composition in an intensively-managed forest landscape.  The 16 ditch sites were 

stratified by the time since they were maintained, with sites aging from 3 years (n=4), 6-8 

years (n=4), 10-12 years (n=4), and 15-17 years (n=4), and each site had ≥500 m segment 

maintained to avoid confounding effects of varying stand age.  Of the ditch segments, we 

surveyed 25% of each site with a random starting point. We relied on hard copies of 

engineering reports from the landowner, which described the extent and timing of ditch 

maintenance, to compile a list of potential study sites.  We visited sites and visually 

confirmed that the recorded maintenance history was consistent with vegetation structure 

and ditch configuration.  Although available information regarding ditches prevented us 

from randomly selecting sites from the study area, the ditch segments we studied spanned 

3-17 year post maintenance, were adjacent to plantations 1-33 years old, and thus were 

representative of those available on the landscape.     
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Visual encounter surveys and opportunistic captures  

We conducted visual encounter surveys at ditch sites from January – May 2012 

and March – July 2013. Opportunistic captures were made from January 2012 – July 

2013. We conducted the visual encounter surveys by walking the length of a site and 

recording all reptile and amphibian species observed. We would visually scan the 

embankments, the water surface, and the bottom of the ditches if possible for 

herpetofauna. Opportunistic captures included incidences when a reptile or amphibian 

was captured haphazardly or via hoop trap at a site, but not during a formal visual 

encounter survey. For this descriptive analysis, we include the opportunistic captures 

with the visual encounter survey data across the ditch sites. When an observed/captured 

individual could not be identified to species (i.e. escaped prior to identification), we 

recorded genus or family level if possible. When animals were captured, we recorded 

snout-vent or plastron lengths (mm) and weight (g). Additionally, we documented 

abnormalities such as lost limbs, scars, bite marks, and contusions. If an individual could 

not be captured, we recorded the sighting as “visual only”.  Prior to surveys, we 

documented ambient and water temperature of the ditch site with a thermo-psychrometer 

(Optimum Energy Products Ltd., Alberta, Canada) and pocket-thermometer, respectively. 

We also visually estimated cloud cover and precipitation. 

Across 2012-2013, we completed 22 visual encounter surveys for each of the 16 

sites. We documented 12 amphibian and 19 reptile species (Table A-1). For amphibians, 

Southern leopard frogs (Lithobates sphenocephalus; 90 detections) and Southern cricket 
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frogs (Acris gryllus; 48 detections; Figure A-1) were most commonly documented.   For 

reptiles, the most encountered was the spotted turtle (Clemmys guttata; 203 detections), 

followed by the green anole (Anolis carolinensis; 108 detections; Figure A-2). 

Amphibian species within genus Lithobates were the most common across ditch ages 

comprising 79% of detections (Figure A-1). The American bullfrog (L. catesbeianus) was 

observed at the “5-year” (21 detections) and “10-year” sites (11 detections) considerably 

more than the “0-year” (four detections) and “15-year” sites (five detections), and the 

Southern leopard frog (L. sphenocephalus) was detected more at “0-year” (26 detections) 

and “5-year” sites (29 detections) than the “10-year” (16 detections) and “15-year” sites 

(19 detections).  Also noteworthy were the large number of detections of Southern cricket 

frogs (Acris gryllus) at the “0-year” sites (32 detections) amounting to 67% of detections. 

In contrast, Oak toads (Anaxyrus quercicus) were only detected at “15-year” sites (one 

detection). Pine woods treefrogs (Hyla femoralis; two detections) along with carpenter 

frogs (L. virgatipes; one detection) were detected only at “0-year” sites. Similarly, a 

greater siren (Siren lacertina) was captured using a minnow trap at a “10-year” site, but 

was not captured at any other age since ditch maintenance. However, trapping was 

limited to January – April, 2012 due to logistical restraints. Further, Cope’s gray treefrogs 

(H. chrysoscelis) and squirrel treefrogs (H. squirella) were found in less than five 

surveys. On the other hand, green treefrogs (H. cinerea) were found across all ditch ages, 

but with minimal observations (<5). 

 For reptiles, green anoles (Anolis carolinensis) were observed across all ditch 

ages, but were most detected at the “10-year” sites, nearly twice as much (42 vs at the 
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most 23 detections; Figure A-2).  Further, spotted turtles were detected at all ditch ages, 

but were detected half as much in the “0-year” sites compared to the other ages since 

maintenance (31 vs at least 52 detections). Additionally, the cottonmouth (Agkistrodon 

piscivorous; x  = 5.8 detections), black racer (Coluber constrictor; x  = 3.5 detections), 

redbelly watersnake (Nerodia erythrogaster; x  = 3.8 detections), and mud turtle 

(Kinosternon subrubrum; x  = 6.5 detections) were observed across all ages since 

maintenance.  A. piscivorous was also detected more at the “10-year” sites (12 vs at the 

most five detections. Corn snakes (Elaphe guttata; four detections) and rough green 

snakes (Opheodrys aestivus; two detections) were recorded only at the “10-year” sites. 

Further, black rat snakes (E. obsolete; one detection) and Eastern glass lizard 

(Ophisaurus ventralis; one detection) were documented at only the “5-year” sites.  

Yellowbelly sliders (Trachemys scripta) were not observed at “15-year” sites, but 

cottonmouths (A. contortrix) were documented only at “15-year” sites with one detection. 
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Table A-1. Reptiles and amphibians captured or observed during the visual encounter 

surveys or opportunistic captures across 16 sites with varying years since maintenance in 

an intensively-managed forest landscape in eastern North Carolina, USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reptiles Amphibians 

Agkistrodon contortrix 
Agkistrodon piscivorous 

Anolis carolinensis 
Chyrsemys picta 

Chelydra serpentina 
Clemmys guttata 

Coluber constrictor  
Crotalus horridus 

Elaphe guttata 
Elaphe obsoleta 

Eumeces fasciatus 
Kinosternon subrubrum 

Lampropeltis getula  
Nerodia erythrogaster 

Nerodia fasciata  
Opheodrys aestivus  
Terrepene carolina 
Trachemys scripta 

Ophisaurus ventralis 

Acris gryllus 
Anaxyrus quercicus  

Hyla chrysoscelis 
Hyla cinerea 

Hyla femoralis 
Hyla squirella  

Lithobates catesbeianus  
Lithobates clamitans 

Lithobates sphenocephalus 
Lithobates virgatipes 
Unknown Lithobates 

Siren lacertina 
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Figure A-1. Number of amphibian species detections (with standard errors) during visual 

encounter surveys or opportunistic captures across 16 sites with varying years since 

maintenance in an intensively-managed forest landscape in eastern North Carolina, USA. 
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Figure A-2. Number of reptile species detections (with standard errors) during visual 

encounter surveys or opportunistic captures across 16 sites with varying years since 

maintenance in an intensively-managed forest landscape in eastern North Carolina, USA. 
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and April – July, 2013, for 14 survey nights in order to cover the phenologies of all 

known species in the region. Call surveys were structured similar to the North American 

Amphibian Monitoring Program guidelines (NAAMP; 

https://www.pwrc.usgs.gov/naamp/index.cfm?fuseaction=app.description), in that 
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We did not conduct surveys with temperatures below 5.6
○
C or if there was a moderate to 

heavy breeze (13-18 mph) or heavy rain as that would impair our ability to hear calls. 

Each survey was conducted by a single, consistent observer. All amphibian species heard 

within a five-minute period were documented.  The observer was stationed at the center 

of the ditch site, which was marked at the beginning of the study to be the half-way point 

between the start and end of the ditch site.  

We documented 15 amphibian species (Table A-2). The most detected species of 

amphibian was Southern leopard frogs (L. sphenocephalus; 81 detections) and green 

frogs (L. clamitans; 77 detections; Figure A-4). Similar to the visual encounter and 

opportunistic survey data, the Southern cricket frog (Acris gryllus) was detected 

considerably more at the “0-year” sites (31 vs at most 15 detections). Further, both toad 

species, oak toads (Anaxyrus quercicus) and southern toads (Anaxyrus terrestris), were 

found at all ditch ages, but oak toads were more commonly detected at more recently 

maintained sites, while southern toads were found more at the “0-year” and “5-year” 

sites. For Hyla, no considerable trends were observed across sites, but they were detected 

at all ditch ages since maintenance. However, the squirrel treefrog (H. squirella) was 

found considerably less at “0-year” sites than the other ages (two vs at least six 

detections). Green frogs had only six detections at “15-year” sites, but >20 detections at 

the other ages since maintenance. Also, American bullfrogs (L. catesbeianus) were not 

detected at “15-year” sites. Carpenter frogs (L. virgatipes) and little grass frogs 

(Pseudacris ocularis) were only found at “0-year” and “10-year” sites, respectively. 
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Further, Brimley’s chorus frogs (P. brimleyi) were not detected at “5-year” sites, and had 

the majority of detections at “15-year” sites (seven vs two detections).  

 

Table A-2. Amphibian species documented during the anuran call surveys across 16 sites 

with varying years since maintenance in an intensively-managed forest landscape in 

eastern North Carolina, USA. 

Amphibians 

Acris gryllus 

Anaxyrus quercicus 

Anaxyrus terrestris 

Gastrophryne carolinensis 

Hyla chrysoscelis 

Hyla cinerea 

Hyla femoralis 

Hyla squirella 

Lithobates catesbeianus 

Lithobates clamitans 

Lithobates sphenocephalus 

Lithobates virgatipes 

Pseudacris brimleyi 

Pseudacris crucifer 

Pseudacris ocularis 
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Figure A-3. Number of amphibian species detections (with standard errors) during anuran 

call surveys across 16 sites with varying years since maintenance in an intensively-

managed forest landscape in eastern North Carolina, USA. 
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