
Clemson University
TigerPrints

All Theses Theses

5-2010

ACCELERATION OF SPIKING NEURAL
NETWORKS ON SINGLE-GPU AND MULTI-
GPU SYSTEMS
Venkittaraman vivek Pallipuram krishnamani
Clemson University, nitt.vivek@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Pallipuram krishnamani, Venkittaraman vivek, "ACCELERATION OF SPIKING NEURAL NETWORKS ON SINGLE-GPU AND
MULTI-GPU SYSTEMS" (2010). All Theses. 791.
https://tigerprints.clemson.edu/all_theses/791

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268632605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/791?utm_source=tigerprints.clemson.edu%2Fall_theses%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ACCELERATION OF SPIKING NEURAL NETWORKS ON SINGLE-
GPU AND MULTI-GPU SYSTEMS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Venkittaraman Vivek, Pallipuram Krishnamani

May 2010

Accepted by:

Dr. Melissa C. Smith, Committee Chair

Dr. Stanley Birchfield

Dr. John Gowdy

 ii

ABSTRACT

There has been a strong interest in modeling a mammalian brain in order to study

the architectural and functional principles of the brain and offer tools to neuroscientists

and medical researchers for related studies. Artificial Neural Networks (ANNs) are

compute models that try to simulate the structure and/or the functional behavior of

neurons and process information using the connectionist approach to computation.

Hence, the ANNs are the viable options for such studies.

Of many classes of ANNs, Spiking Neuron Network models (SNNs) have been

employed to simulate mammalian brain, capturing its functionality and inference

capabilities. In this class of neuron models, some of the biologically accurate models are

the Hodgkin Huxley (HH) model, Morris Lecar (ML) model, Wilson model, and the

Izhikevich model. The HH model is the oldest, most biologically accurate and the most

compute intensive of the listed models. The Izhikevich model, a more recent

development, is sufficiently accurate and involves the least computations. Accurate

modeling of the neurons calls for compute intensive models and hence single core

processors are not suitable for large scale SNN simulations due to their serial

computation and low memory bandwidth. Graphical Processing Units have been used for

general purpose computing as they offer raw computing power, with a majority of logic

solely dedicated for computing purpose.

The work presented in this thesis implements two-level character recognition

networks using the four previously mentioned SNN models in Nvidia’s Tesla C870 card

and investigates performance improvements over the equivalent software implementation

 iii

on a 2.66 GHz Intel Core 2 Quad. The work probes some of the important parameters

such as the kernel time, memory transfer time and flops offered by the GPU device for

the implementations. In this work, we report speed-ups as high as 576x on a single GPU

device for the most compute-intensive, highly biologically realistic Hodgkin Huxley

model. These results demonstrate the potential of GPUs for large-scale, accurate

modeling of the mammalian brain. The research in this thesis also presents several

optimization techniques and strategies, and discusses the major bottlenecks that must be

avoided in order to achieve maximum performance benefits for applications involving

complex computations. The research also investigates an initial multi-GPU

implementation to study the problem partitioning for simulating biological-scale neuron

networks on a cluster of GPU devices.

 iv

DEDICATION

I dedicate this thesis to my parents, my academic advisor and all the elders; who

have been guiding me throughout; be it in my work or in walks of life. I also dedicate this

thesis to my younger brother, who has always stood by my side.

This thesis is also dedicated to Kameswarie, whose instant messages would make

my GPUs work.

 v

ACKNOWLEDGMENTS

This thesis was made possible due to the help and support of the following faculty

members, friends and colleagues.

I must begin by thanking my advisor Dr. Melissa C. Smith, who graciously took

me as her pupil. Dr. Smith’s encouragement, words of wisdom, and insightful

suggestions helped me in carrying research and writing this thesis.

I would also like to thank Dr. Stanley Birchfield and Dr. John Gowdy for being in

my committee and teaching me various aspects of Signal Processing.

I am indebted to my fellow colleagues from FCTL: Ashraf, Sudha, Randy,

Ananth and many others whom I fail to mention, for providing me a stimulating and

joyful environment at work.

I am also thankful to my roommates: Abhishek and Koushik, who never hesitated

to help me out, when this manuscript was in progress.

 vi

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. xi

CHAPTER

 I. Introduction .. 1

 Our Work ... 2

 II. Related Work ... 5

 III. Background .. 9

 Spiking Neural Networks ... 9

 Izhikevich Model .. 11

 Wilson Model... 12

 Morris Lecar Model ... 12

 Hodgkin Huxley Model .. 13

 The Two-Level Network.. 14

 IV. GPU Architecture, Multi-GPU Systems and CUDA 17

 GPU Architecture Overview .. 17

 Multi-GPU Systems ... 22

 Compute Unified Device Architecture (CUDA) 23

 Optimization Techniques ... 25

 vii

Table of Contents (Continued)

 Page

 V. Experimental Setup and Implementation ... 30

 Single-GPU and Multi-GPU Setup .. 30

 The Compiler and Profiler tools .. 32

 Parallelization and Mapping of Models ... 32

 VI. Results and Discussion ... 38

 Single Node Results .. 38

 Hodgkin Huxley Model .. 38

 Morris Lecar Model .. 48

 Wilson Model .. 56

 Izhikevich Model .. 63

 FLOPs Study ... 69

 Multi-GPU Results .. 72

 VII. Conclusion and Future Work .. 76

REFERENCES .. 79

 viii

LIST OF TABLES

Table Page

 3.1 Flop requirements for all the models ... 14

 5.1 Features available on the Tesla C870 and GeForce 8400 GS

 Devices ... 31

 5.2 Tesla C870 device memory features .. 31

 5.3 Network configurations for different Images .. 33

 6.1 HH model: Speed-up values for intermediate

 network sizes; All Implementations... 39

 6.2 HH model: Speed-up values for intermediate

 network sizes; Implementation 1 ... 40

 6.3 HH model: CUDA Profiler results; Implementation 1 41

 6.4 HH Model: Speed-up values for intermediate

 network sizes; Implementation 2 ... 43

 6.5 HH model: Speed-up values for intermediate

 network sizes; Implementation 3 ... 44

 6.6 HH model: Speed-up values for intermediate

 network sizes; Implementation 4 ... 46

 6.7 HH model: CUDA Profiler results;

 All Implementations... 46

 6.8 ML model: Speed-up values for intermediate network

 sizes; All Implementations ... 49

 6.9 ML model: Speed-up values for intermediate network

 sizes; Implementation 1 ... 50

 6.10 ML model: CUDA Profiler results; Implementation 1 51

 ix

List of Tables (Continued)

Table Page

 6.11 ML model: Speed-up values for intermediate

 network sizes; Implementation 2 ... 52

 6.12 ML model: Speed-up values for intermediate

 network sizes; Implementation 3 ... 53

 6.13 ML model: Speed-up values for intermediate

 network sizes; Implementation 4 ... 54

 6.14 ML model: CUDA Profiler results; All Implementations 55

 6.15 Wilson model: Speed-up values for intermediate

 network sizes; All Implementations... 57

 6.16 Wilson model: Speed-up values for intermediate

 network sizes Implementation 1 .. 57

 6.17 Wilson model: CUDA Profiler results; Implementation 1 58

 6.18 Wilson model: Speed-up values for intermediate

 network sizes; Implementation 2 ... 59

 6.19 Wilson model: Speed-up values for intermediate

 network sizes; Implementation 3 ... 60

 6.20 Wilson model: Speed-up values for intermediate

 network sizes; Implementation 4 ... 61

 6.21 Wilson Model: CUDA Profiler results; All Implementations 62

 6.22 Izhikevich model: Speed-up values for intermediate

 network sizes; All Implementations... 63

 6.23 Izhikevich model: Speed-up values for intermediate

 network sizes, Implementation 1 ... 64

 6.24 Izhikevich Model: CUDA Profiler results; Implementation 1 65

 6.25 Izhikevich Model: Speed-up values for intermediate

 network sizes; Implementation 2 ... 66

 x

List of Tables (Continued)

Table Page

 6.26 Izhikevich model: Speed-up values for intermediate

 network sizes; Implementation 3 .. 67

 6.27 Izhikevich Model: Speed-up values for intermediate

 network sizes; Implementation 4 ... 68

 6.28 Izhikevich Model: CUDA Profiler results; All Implementations 69

 6.29 Flops/Byte Ratio for all models ... 70

 6.30 FLOPs achieved for intermediate network sizes ... 71

 6.31 HH Model: Multi-GPU: Speed-up values for intermediate

 network sizes ... 73

 6.32 HH model: Varying Ratios: Speed-up values for intermediate

 network sizes .. 74

 xi

LIST OF FIGURES

Figure Page

 3.1 Two-Level Character Recognition Network .. 14

 4.1 Traditional GPU Pipeline ... 18

 4.2 Rasterization of a triangle and interpolation of its

 color values .. 19

 4.3 GeForce 8800 GTX block diagram.. 20

 4.4 Streaming Processors and Texture Units ... 21

 4.5 A Tesla S1070 Multi-GPU system .. 22

 4.6 Thread Hierarchy in CUDA framework .. 24

 4.7 Memory Hierarchy in CUDA framework .. 25

 5.1 SNN models implementation on the Multi-GPU system 37

 6.1 HH model: Speed-up vs Network Size;

 All Implementations... 39

 6.2 HH model: Speed-up vs Network Size; Implementation 1 40

 6.3 HH model: Speed-up vs Network Size; Implementation 2 42

 6.4 HH model: Speed-up vs Network Size; Implementation 3 44

 6.5 HH model: Speed-up vs Network Size; Implementation 4 45

 6.6 ML model: Speed-up vs Network Size;

 All Implementations... 48

 6.7 ML model: Speed-up vs Network Size; Implementation 1 49

 6.8 ML model: Speed-up vs Network Size; Implementation 2 52

 6.9 ML model: Speed-up vs Network Size; Implementation 3 53

 xii

List of Figures (Continued)

Figure Page

 6.10 ML model: Speed-up vs Network Size; Implementation 4 54

 6.11 Wilson model: Speed-up vs Network Sizes;

 All Implementations... 56

 6.12 Wilson model: Speed-up vs Network Size;

 Implementation 1 ... 57

 6.13 Wilson model: Speed-up vs Network Size;

 Implementation 2 ... 59

 6.14 Wilson Model: Speed-up vs Network Size;

 Implementation 3 ... 60

 6.15 Wilson Model : Speed-up vs Network Size;

 Implementation 4 ... 61

 6.16 Izhikevich Model: Speed-up vs Network Size;

 All Implementations... 63

 6.17 Izhikevich Model: Speed-up vs Network Size;

 Implementation 1 ... 64

 6.18 Izhikevich Model: Speed-up vs Network Size;

 Implementation 2 ... 66

 6.19 Izhikevich Model: Speed-up vs Network Size;

 Implementation 3 ... 67

 6.20 Izhikevich Model: Speed-up vs Network Size;

 Implementation 4 ... 68

 6.21 FLOPs vs Network Size; All Models... 70

 6.22 FLOPs vs Network Size; Izhikevich Model .. 71

 6.23 HH Model: Multi-GPU: Speed-up vs Network Size;

 Implementation 4 ... 73

 xiii

List of Figures (Continued)

Figure Page

 6.24 HH model: Varying Ratios: Speed-up vs Network Size;

 Implementation 4 ... 74

1

Chapter 1

Introduction

The complexity of the mammalian brain has continued to interest the scientific

community. A mammalian brain has the ability to perform cognitive tasks reliably and

much faster than a silicon-based processor. The complex brain mechanisms of the

mammalian brain, its ability to make decisions, remember, think and make inferences to

its surroundings are of interest to neuroscientists and computing community alike. This

interest has motivated several researchers to accurately model mammalian brain activity

revealing several implications. The modeling research will help neuroscientists better

understand human brain activity, hence assisting in the diagnosis and treatment of

nervous disorders. Modeling the brain has also encouraged the domain of Artificial

Intelligence, giving hope to creating a machine with human-like capabilities.

The brain is populated with neurons that are connected to one another with

dendrites and axons, which act like “biological wiring”. The brain processes information

by sending electrical signals across neurons through these connections. Tens of thousands

of neurons are grouped together in a microcircuit called “the neocortical column.” These

microcircuits are repeated several millions of times in the cortex and are responsible for

cognitive processes such as thinking, remembering, and making decisions and inferences.

Mammals differ only in the neuron density of neocortical column, for instance, 11 billion

in humans and about 4 million in rats.

 2

The brain structure, with the neuron connections as described, is amenable to a

systematic modeling approach and has given rise to Artificial Neural Networks (ANNs),

an important area of study in Digital Signal Processing. ANNs use neuron models to

process signals and have been used in a multitude of applications such as Pattern

Recognition, Computer Vision, Robotic control, etc. Since ANNs were inspired by the

structure of neurons in the brain, they are practical options for brain modeling and related

studies. However, to keep pace with the brain’s superior processing capabilities, dense

neuron models are needed, and given their ability to accurately model the brain, these

models are highly compute-intensive. For instance, the highly accurate Hodgkin Huxley

model for a neuronal simulation presented in this thesis requires about 246 flops to

update the dynamics of a single neuron. If this model is used to simulate a rat size cortex

with 4 million neurons, it will require approximately 10 billion flops to update the

complete network. Further, to closely model the operation of said cortex, the calculations

must be accomplished in real time. Hence specialized architectures such as GPUs and

clusters for high-performance computing are intriguing platforms for implementing these

large scale simulations which can enable highly accurate real time simulations of

mammalian brain.

Our Work

Of several available Neural Networks, Spiking Neural Networks (SNNs) are of

particular interest for modeling a mammalian brain because their functionality is highly

biologically realistic. This research will investigate the acceleration of a two-level

character recognition network that can recognize 48 alpha-numeric characters: English

 3

characters (A-Z), 10 numerals (0-9), 8 Greek letters and 4 symbols as used in [1]. The

two-level network was implemented on an Nvidia Tesla C870 GPU with four SNN

models, namely, the Izhikevich model, Wilson model, Morris Lecar model and lastly the

Hodgkin Huxley model. A detailed discussion of the computation requirements for each

of these models is presented in Chapter 3.

Our single computing node implementation performs the most compute-intensive

portion of the algorithm in the GPU device and the remaining calculations are executed

on the host processor. As we will discuss in Chapter 3, of the two levels, the input level-1

is the most compute-intensive level since it involves the neuron dynamics computation

for N
2
 neurons, where each neuron corresponds to a pixel in the input image. The output

level-2, has significantly fewer total computations because it involves the neuron

dynamics computation for only 48 neurons. The neurons for level-1 are implemented in

the GPU and the level-2 neurons are simulated by the host processor, an Intel Core 2

Quad. The networks were written using CUDA for C version 2.1. The implementation

details are discussed in Chapter 5. We have analyzed runtime performance on the GPU

for each of the neuron models, evaluated each of the individual optimization techniques

in detail, and investigated important device performance metrics such as kernel execution

time, memory transfer time and flops offered for each of the implementations. The

primary contribution of this thesis is the analysis of algorithmically different neuron

models with their mappings on the compute device and implementing effective

optimization strategies for optimal performance. Additionally, we investigate multiple

GPUs in a single workstation to provide additional computing performance that will

 4

allow the accommodation of larger networks and provide higher application throughput.

It also serves as an initial study for a cluster based implementation of the algorithms used

in this research and similar applications.

The chapters hereafter are organized as follows: Chapter 2 surveys related work.

Chapter 3 discusses Spiking Neural Networks in detail. Chapter 4 explores the GPU

architecture, Nvidia’s CUDA and the single node multi-GPU model. Experimental Setup

and Implementation are presented in Chapter 5. Chapter 6 discusses the results of our

implementations. Finally, conclusions and future work are discussed in Chapter 7.

 5

Chapter 2

Related Work

 Izhikevich in his classic paper [2] has described the features of biologically

realistic neurons and proposed various models that describe the spiking and bursting

properties of neurons. The simplest model to implement is the “Integrate & Fire” (I&F)

model, which involves only 4 flops and one additional comparison with the threshold

voltage. Many models for neural network simulations have used this I&F approach and

this chapter will summarize some of the prominent works in this area and how they differ

from the research presented in this thesis.

In [3], Delorme et al. attempted to capture the biophysical activity of neurons in

their SpikeNET implementation, a simulator for modeling large networks of

asynchronous spiking neurons using the I&F approach. The authors claim their

implementation is efficient due to the small number of neuron updates required with each

neuron occupying merely 16 bytes of RAM. The authors also claim that this

implementation is fast as it can update roughly 20 million connections per second, which

is sufficient to model 400,000 neurons in real time with a 1 ms time-step. The authors

have applied this system to face and finger print recognition, demonstrating that the

implementation is not only fast, but computationally efficient.

I&F based SNNs have been implemented to identify online cursive handwriting

by Baig [4]. Baig was successful in recognizing 72% of the individual characters written

digitally by the same writer with sample size of 1000 characters. Other implementations

 6

of spiking neural networks in the literature have been for sequence learning and detection

[5]. In [6], Panchev et al. have used a temporal sequence detection scheme with spiking

neurons for robot navigation and grasping tasks.

Several research activities have been motivated by the idea of modeling the

neocortex. In [7], the authors have studied the mammalian neocortex in detail and

implemented an abstract and scalable neural network model of the neocortex. The authors

investigated its computation, memory and communication requirements while running on

a parallel computer. The authors were successful in simulating a rat size cortex in 42% of

real time and a cat size cortex in 23% of real time. The algorithms were written in MPI

for C and executed on a Dell Xeon Cluster with 442 nodes. The authors found that the

execution time is dependent on the computation rather than communication. The authors

have also implemented a two-layer version of the model to detect 128x128 pixel images

from the COIL-100 database [8]. They have instantiated their model with sparse

recurrently connected neural networks that have spiking leaky integrator units and

continuous Hebbian learning. These models also fit in the I&F category.

According to Izhikevich [2], the I&F based method used by the previous authors,

is not biophysically meaningful and it does not model some of the prominent features of

biological neurons. In his discussion, Izhikevich asserts that despite I&F’s simplicity,

they are not viable models for use in cortical spiking neuron simulations unless one wants

to prove analytical results. In his study, Izhikevich proposed the use of biologically

accurate models if the goal is to study true neuronal behavior.

 7

In [9], the authors successfully used a biologically accurate Izhikevich model

based neuronal simulation with 10
9
 neurons and 10

13
synapses (equivalent to a cat-scale

cortical model) using the state-of-the-art Blue Gene/P machine with 147,456 processors

and 144 TB of main memory. The authors claim that this simulation scale is roughly 1-2

orders smaller than the human cortex and 2-3 orders slower than real-time. EPFL’s blue

brain project is trying to reverse engineer the brain using highly biologically realistic

models. They have used Hodgkin Huxley [10] and Wilfred Rall [11] models for

simulating 100,000 neurons on the IBM BlueGene/L supercomputer.

 The previous two research activities have focused on large scale supercomputers,

which imply significant investment in machine procurement, maintenance and operation.

Alternative architectures such as the Graphical Processing Units (GPUs) are now being

investigated for biologically realistic simulations. In [12], the authors have implemented

Izhikevich’s random network on Nvidia’s GTX-280 GPU with 1GB memory. They

achieved a speedup of 26x over an equivalent software implementation for a network

simulation of 100K neurons with 50 million synaptic connections. The authors have

written their models in C++ similar to PyNN programming interface for neuronal

simulations. They have discussed efficient mapping strategies on the GPU such that

memory bandwidth and parallelism are efficiently utilized and have proposed the use of a

GPU cluster for larger simulations.

 The research presented in this thesis makes use of four different highly

biologically realistic spiking neuron models to implement the image recognition system

described in [1], whereas the research work in [3], [4], [5], [6], and [7] rely on I&F

 8

approach, which is not biologically meaningful, hence cannot be used for the purpose of

modeling studies. This effort to model accurate neuronal behavior in a complete network

on a GPU differs from the work in [12], which focuses solely on implementing

Izhikevich’s random network on a single GPU. The research in this thesis also analyzes

multiple combinations of optimization strategies available with the CUDA programming

model and investigates the appropriateness of an optimization technique for a particular

application characteristic. Neither of these analyses is found in the related work. Further

we analyze device performance metrics such as kernel time, memory transfer time, and

flops in order to draw relationships between the achieved speed-up and network

scalability and model complexity. We further initiate a first study of a GPU cluster

implementation of the four networks using a single host multi-GPU system and study

their feasibility for neuronal simulations.

 In the next chapter we introduce the SNN models explored in this research and

develop the two-level character recognition system based on these models.

 9

Chapter 3

Background

 This chapter presents background on the Spiking Neural Network (SNN) models

used in this research, namely, the Izhikevich model, Wilson model, Morris Lecar model

and the Hodgkin Huxley model. We present neuronal update equations for each of the

models and compare them based on their Flop requirements. The chapter is concluded

with the discussion of the two-level network implemented using the above mentioned

SNN models.

Spiking Neural Networks

Simon Haykin in his book [14] defines a neural network as “A massively parallel

distributed processor made up of simple processing units, which has a natural propensity

for storing experiential knowledge and making it available to use. It resembles brain in

two aspects: 1. Knowledge is acquired through a learning process; and 2. Interneuron

connection strengths, called synaptic weights, are used to store acquired knowledge.”

Artificial Neural Networks (ANNs) are an attempt to mimic certain functionalities of the

brain such as pattern recognition, decision-making, learning etc. The most fundamental

component of the brain, the “neuron”, takes electrochemical signals from other neurons

and determines how to act based on those signals: fire or not. Accumulation and passing

of these signals by collection of neurons describes the most basic functionality of the

mammalian brain. In essence, neural networks are simulations of these neurons, typically

10
3
 neurons for small applications. But in order to understand brain functionality,

 10

network sizes of more than a million neurons are required. Present day neural network

simulations involve a kind of “clock timing” where time frames are specified for inter-

neuron firing and the amplitude of these firings are considered to be constant, “Binary

High” for instance. These models do not accurately replicate the behavior of the

mammalian brain where signals are sent as brief spikes, typically 1 ms, and of small

amplitude, typically 0.1 V.

The third generation of Neural Networks, the Spiking Neural Networks (SNNs),

is highly biologically accurate. A “spiking” neuron fires an electric pulse at certain points

in time which is commonly referred to as action potential or spike. The amplitude of the

spike is irrespective of the input but the time of the spike is governed by the input

received and hence this form of time encoding is used for processing information. Hence

the SNNs are more suited for those applications where timing carries significant

information such as speech recognition and signal processing.

Several models have been proposed for SNNs, some of them are compute

efficient and some are more compute intensive and complex. As cited by Izhikevich in

[2], biologically realistic models can describe the spike dynamics of each neuron and

neuron connectivity. [2] describes the 20 most prominent features of biological neurons

and ranks different models based on the number of neuro-computational features they can

produce, their computational efficiency and the number of floating point operations per

second each require. Four models namely the Izhikevich Model, Wilson Model, Morris

Lecar Model and the Hodgkin Huxley Model were found to satisfy the requirements of

accurately modeling neuron dynamics and hence were used in this research. In the

 11

following sections, we briefly describe each model as under and later describe the two

level network based on [15].

Izhikevich Model

 Izhikevich [16] developed a simple spiking model of neurons that is almost as

biologically plausible as the Hodgkin-Huxley (HH) models and as computationally

efficient as the I&F models for SNN. Using bifurcation methodologies, Izhikevich in [16]

was successful in reducing the complex HH type models to 2-D system of ordinary

equations as follows:

v’ = 0.04*v
2
 + 5*v + 140 – u +I EQ. 3.1

u’ = a*(b*v – u) EQ. 3.2

After Spike resetting is done as:

If v ≥ +30 mV, then v ←c and u ←u + d EQ. 3.3

The variable v represents membrane potential of the neuron and u represents the

membrane recovery variable which accounts for K
+
 ionic current activations and Na

+

ionic current inactivation. Once the membrane potential reaches a peak of +30 mV, the

membrane voltage and recovery variables are reset as given by equation 3. This model is

reported to mimic firing patterns of all types of cortical neurons with appropriate

selection of variables a, b, c and d. The model requires only 13 Flops to simulate 1 ms

time-step of the model and hence highly plausible for large-scale simulations. Selection

of parameters in this research is based on [1].

 12

Wilson Model

 In [17], the author attempted to model cortical neurons with system of polynomial

equations. This model introduces additional Ca
2+

 and K
+
 channels to the Hodgkin Huxley

model. These are “T” channel, “H” channel and the “R” channel. It has been reported in

[2], that on proper tuning of its parameters, the Wilson model can mimic all the

characteristics of spiking neurons. Four differential equations which govern the Wilson

Model are:

H’ = (1.0 / 45.0) * (- H + 3.0 * T); EQ. 3.4

T’ = (1.0 / 14.0) * (- T + T_infty); EQ. 3.5

 R’ = dt * (1/tau_R) * (- R + R_infty) ; EQ. 3.6

v’ = (C) * (- m_infty * (v - E_Na) - 26.0 * R * (v + E_K) - g_T * T * (v - E_Ca) -

g_H * H * (v+ E_K) + I) ; EQ. 3.7

where,

T_infty = 8.0 *(v + 0.725) * (v + 0.725); EQ. 3.8

R_infty = 1.24 + 3.7 * v + 3.2 * v * v; EQ. 3.9

m_infty = 17.8 + 47.6 * v + 33.8 * v * v; EQ. 3.10

The model takes 45 Flops for 0.25 ms time-step and hence takes 180 Flops/ 1 ms.

The parameters used in this thesis for the Wilson model are given in [1].

Morris Lecar Model

 The Morris Lecar model is another biophysically accurate model replicating

almost all the spiking neuron properties. As given in [18], the following equations

 13

describe the membrane potential with instantaneous Ca current activation and slow K

current activation:

Cv’ = I – gL*(V-VL) – gCa*m∞(V)*(V-VCa) –gKn(V-VK) EQ. 3.11

n’ = λ(V)*(n∞(V) –n) EQ. 3.12

where

m∞(V) = 0.5*(1 + tanh[(V-V1)/V2] EQ. 3.13

n∞(V) = 0.5*(1 + tanh[(V-V3)/V4] EQ. 3.14

λ(V) = λ’cosh[(V-V3)/2V4] EQ. 3.15

Parameters used in this thesis for these equations are used as mentioned in [1].

Since the model involves the evaluation of hyperbolic tangents and cosines, the model

takes 60 Flops per 0.1ms time-step and hence 600 Flops/ 1 ms.

Hodgkin Huxley Model

 The Hodgkin Huxley model [10] is considered to be the most accurate and the

most important model in the neuroscience community to date. As mentioned in [2], the

model involves 4 equations and ten parameters describing the Na and K current

activation and Na current inactivation. The model is very computationally expensive to

implement. Relevant equations are given as under:

v’ = (1/C)*{I - gK*n
4
*(V-Ek) – gNa*m

3
h(V-ENa) – gL*(V – EL)} EQ. 3.16

n’ = (n∞(V) – n)/Γn(V) EQ. 3.17

m’ = (m∞(V) – m)/Γm(V) EQ. 3.18

h’ = (h∞(V) – h)/Γh(V) EQ. 3.19

 14

The model takes 120 Flops for 0.1 ms time-step and hence 1200 Flops/ 1 ms.

Table 3.1 shows the comparison of each of the models based on their Flop requirements.

Table 3.1: Flop requirements for all the models

SNN Model Flops Required

Izhikevich Model 13 Flops/ms

Wilson Model 180 Flops/ms

Morris Lecar Model 600 Flops/ms

Hodgkin Huxley Model 1200 Flops/ms

The Two-Level Network

 The SNN used for this research is based on [15] and the network used to test the

models is shown in Figure 3.1. The task of the network is to detect images from a training

set and its detailed operations is discussed in Chapter 5. The first level of neurons acts as

an input collection layer and the second level of neurons acts as an output collection

layer.

Figure 3.1: Two-Level Character Recognition Network

 15

Each neuron in the input layer corresponds to a single pixel in the test images;

hence the input layer level-1 has number of neurons equal to the total number of pixels in

the image. The output layer, level-2, has number of neurons equal to the number of

images in the database. Each level-1 neuron is fully connected to the level-2 neurons. A

binary input image is presented to the input layer level-1 neurons and each neuron

generates its membrane potential based on the pixel level presented to it. If a pixel is

“on”, a constant current is supplied to the input neuron for evaluating its membrane

potential. A neuron is said to have “fired” if its membrane potential crosses a threshold

value that is determined based on the model chosen. The input current for level-2 neuron

is determined as:

Ij = ∑w(i,j)f(i) EQ. 3.20

Where, Ij is net input current for neuron j in level-2, w(i,j) is the element (i,j) of the

weight matrix representing the weight of the synaptic connection from neuron i of level-1

to neuron j in level-2. The weight matrix w is determined as described in [1]. A neuron

fire in level-2 implies an image detected in a particular time step. The networks can be

scaled to accommodate any images of larger size. The research presented in this thesis

accelerates the recognition phase of each network by implementing all of the level-1

neurons on the single node and multi GPU systems.

 In this chapter, we have introduced the four types of spiking neural network

models which according to [2], are highly biologically accurate. We have presented

neuronal update equations for each of the models and compared them based on their Flop

requirements. The Hodgkin Huxley model was identified as the most compute intensive

 16

of all, with a Flop requirement of 1200 Flops/ 1 ms time-step. Izhikevich’s model is the

least compute intensive requiring only 13 Flops/ 1 ms time-step. The chapter has further

discussed the two-level character recognition system, which uses the SNN models

discussed. In the next chapter, we explore the single-GPU and multi-GPU architectures

and the programming model used in this research, the Compute Unified Device

Architecture (CUDA).

 17

Chapter 4

GPU Architecture, Multi-GPU Systems and CUDA

 This chapter will introduce the GPU architecture and multi-GPU systems, cover

the main features of the Compute Unified Device Architecture (CUDA) by Nvidia, and

discuss several of the optimization techniques available within the CUDA framework.

The CUDA environment and optimizations covered are used in several implementations

discussed in later chapters.

GPU Architecture Overview

 A Graphical Processing Unit (GPU) also called a Visual Processing Unit (VPU),

off-loads the computations for 3D graphics rendering from the microprocessor. Since

their inception, GPUs have been employed in a variety of domains such as personal

computer graphics rendering, gaming consoles, embedded systems such as mobile phones

etc. Highly parallel structure of the GPUs makes them even more useful than the

commodity processors for implementing complex algorithms.

 A GPU is a fixed many-core processor dedicated to transforming 3-D scenes to a

2-D image composed of pixels. Figure 4.1 provides an outline of a traditional GPU

pipeline, which is based on the purpose for which they were originally designed. As

described in [19], the geometry stage, also called “Transform and lighting” stage,

transforms objects to various spaces, each with its own co-ordinate system before

transforming the object from 3-D to 2-D. Transformations are applied on a vertex-to-

 18

vertex basis. Lighting, which is another major component of this pipeline stage, computes

the lighting properties of the vertex based on the camera and source positions.

Figure 4.1: Traditional GPU Pipeline

The rasterization stage involves traversal of the generated 2-D image and

conversion of the data into pixel candidates called fragments. A fragment is a data

structure with data properties such as color, depth, pixel coordinates, etc. and is generated

by checking which parts of the primitive intersect with the pixels in the scene. If a

fragment intersects with the primitive but not with any of its vertices, the fragment

attributes are calculated by interpolation. In Figure 4.2, it is seen that vertices of the

fragment intersecting with the primitive take on the primitive’s vertex colors. Pixels in

the region inside the rectangle need to be evaluated by interpolation. Additional methods

such as “alpha-bending” and “optional fog” can also be applied to obtain the colors.

 19

Additional processes such as anti-aliasing can be applied to obtain the final result:

declaring fragments as pixels.

Figure 4.2: Rasterization of a triangle and interpolation of its color values.

The composite stage is responsible for combining fragments to produce an output

image. The above description provides an outline of a traditional Graphics Pipeline which

according to [20], has certain limitations:

1. Limited data reuse in subsequent stage

2. High state change overhead

3. Excessive variations in hardware usage, different code path for different hardware

4. Lack of integer instructions and weak floating point precision

5. Inability to write to the memory in the middle of the pipeline and read back on the

top of the pipeline, limited resource utilization such as textures, shaders and

registers, etc.

In November 2006, NVIDIA introduced the GeForce 8800 GTX which was

designed to overcome these limitations with its unified pipeline and shader architecture.

Figure 4.3 [20] shows the block diagram of the GeForce 8800 GTX GPU. The major

processing stages of the traditional pipeline follow a fairly linear sequence, starting from

vertex shading and proceeding to pixel shading, raster operations and writing pixels to the

 20

buffer. The shading stage in the traditional pipeline, for instance in the GeForce 7, has

about 200 pipeline stages in the shader. The GeForce 8800 has a unified shader stage,

such that the inputs are fed to the shader cores, outputs are written to the registers and

again fed back to the cores forming a loop, hence significantly reducing the number of

pipeline stages.

Figure 4.3: GeForce 8800 GTX block diagram [20]

GPUs perform vertex and pixel shading operations on the images and the

workload on these shaders may vary from scene to scene. The traditional pipeline would

simply have one of these units underutilized if the workload for that unit is less, hence

not an optimal performance. GeForce 8800’s unified shader architecture better utilizes

the hardware such that it is not idle, irrespective of the vertex and pixel shader workload.

 21

Unified stream processors in the GeForce 8800 can support vertex, pixel, geometry, and

physics workloads and different workloads can be mapped on different processors.

Of the many features of the GeForce 8800, the streaming processor (SPs)

architecture is the most pertinent to GP-GPU programming. Stream processors can work

together in close proximity with extremely high parallel processing power. The outputs

produced can be stored in fast cache and can be used by other streaming processors. SPs

have instruction decoder units and execution logic performing similar operations on the

data. This architecture allows SIMD instructions to be efficiently ported across groups of

streaming processors. Figure 4.4 provides a layout of the SPs with relevant units.

Figure 4.4: Streaming Processors and Texture Units

The streaming processors are accompanied by units for texture fetch (TF), texture

addressing (TA), and caches. The structure is maintained and scaled upto 128 SPs. The

SPs are fully decoupled, generalized, and scalar. They can dual issue MAD and MUL

 22

operations and support IEEE floating point precision. The SPs operate at 2.35 GHz in the

GeForce 8800, which is separate from core clock operating at 575 MHz .

Multi-GPU Systems

Figure 4.5: A Tesla S1070 Multi-GPU system

Figure 4.5 shows an example of a multi-GPU system; this figure specifically

depicts the Tesla S1070 architecture. Many systems contain multiple GPUs, for instance

many servers have Quadro/Tesla multi-GPU systems and often desktops are equipped

with multiple GeForce/Tesla GPUs. Many applications consume more memory than

provided in current GPUs and require investigation in multi-GPU systems. As shown in

the above figure, each of the GPUs has its own bank of global memory. In order to

transfer data from the global memory of one device to the global memory of another

requires the host to act as a mediator. Typically a GPU transfers its data to the host and

 23

the host establishes context with the destination GPU to complete the transfer. Data

transfers are accomplished through the PCIe bus although the GPUs may be connected to

the same switch. Multiple GPUs in a single host requires explicit context creation

between the host and the GPU device and only one such context can be created at a time.

Multiple CPU threads can be created to establish contexts with multiple GPUs. A CPU

thread can have context with a single GPU, although single GPU can establish context

with multiple CPU threads. Device API management will be discussed in detail in

Chapter 5.

Compute Unified Device Architecture (CUDA)

 In this sub-section, we introduce the CUDA architecture framework and describe

some of its prominent features. We introduce kernels and thread hierarchy, and then

conclude this sub-section with the memory hierarchy.

 In CUDA, the GPU functionality is defined by writing device functions in C,

which are called in the literature, as kernels. Only one kernel can be executed in the GPU

device at a time. A thread is a fundamental entity which is a sequence of instructions and

is instantiated several millions of times. Typically, when a kernel is called, N threads

execute the same kernel in parallel. The thread hierarchy is described as follows. A

thread, in a CUDA program, is accessed inside kernels using in-built variable threadIdx.

The threadIdx is a 3-D vector used to access 1-D, 2-D or a 3-D thread. Threads are

further collected into 1-D, 2-D or 3-D blocks. Blocks are further divided into SIMD

groups of 32 threads called warps. Warps are further divided into groups of 16 threads

 24

called the half-warps. The thread blocks can further be arranged in 1-D or 2-D grids.

Figure 4.6 shows the thread hierarchy described above.

Figure 4.6: Thread Hierarchy in CUDA framework

Before we delve into the memory hierarchy, it is worth mentioning that the GPU

device memory and the host memory reside in separate spaces. Host controls the data

transfer flow between the GPU device memory and the host memory.

We now describe the memory hierarchy. At the fundamental level, each of threads

have their own set of local memory and a set of registers. The local memory is off-chip

and resides in the external device memory space. The term “local” refers to the scope of

the variable. Threads in a block have collective access to shared memory and the shared

memory is local to that block. Threads need to synchronize with each other in order to

communicate via shared memory. All the threads have access to a global memory which

 25

resides off-chip in a DRAM. Off-chip, cached, read-only memory spaces, namely, the

constant memory and the texture memory are also available. Texture cache is usually

bound to either, pitch memory to satisfy padding requirements, CUDA arrays to provide

specialized functions such as interpolation and filtering, or to the global memory itself.

Figure 4.7 summarizes pictorally the memory hierarchy described above.

Figure 4.7: Memory Hierarchy in CUDA framework

The following sub-section will introduce some of the prominent optimization

techniques made available by the CUDA programming model.

Optimization Techniques

CUDA programming model provides optimization strategies that can be used by

the programmer for writing optimal codes. They are as follows. Memory Optimization

involves the use of coalesced global memory access, use of registers, use of shared

 26

memory, and the use of texture cache and constant memory spaces. Execution

configuration optimization will deal with the effects of varying the number of threads per

block, and finally, this sub-section will be concluded with the discussion of instruction

optimization.

Coalesced global memory accesses are discussed as the first memory optimization

technique as the global memory accesses form the bottleneck for several applications.

Global memory is off-chip and is not cached. This implies that each global memory

access is an explicit memory access consuming 4 cycles for issuing reads and writes, and

as many as 400-500 cycles to get the data from the global memory. Hence it is required to

keep the use the global memory to a minimum and use registers and/or shared memory

instead. Hence an application would typically fetch the data from the global memory

space and load them into the registers or the shared memory space, where they are further

operated upon. Once all the operations are completed, the data is sent back to the global

memory. This process further involves the problem of uncoalesced accesses to global

memory. According to compute capability 1.0, accesses to the global memory are

coalesced if threads in a half-warp complete access to 32-bit word in a single 64-byte

transaction, 64-bit word in a single 128-byte transaction, or 128-bit word in a series of

128-byte transactions. This is achievable if:

1) All 16 words lie in the same memory segment equal to memory transaction size

2) Threads access words in sequence, i.e., k
th

 thread accesses k
th

 word in the segment

If these conditions are not satisfied, it results in uncoalesced global memory

accesses which are serialized, thus hurting performance. Hence in order to make use of

 27

maximum global memory bandwidth, it is required to keep the accesses coalesced.

CUDA profiler signals gld_incoherent and gst_incoherent inform about uncoalesced

loads and stores.

Registers are the fastest form of memory available on-chip, taking only 1 clock

cycle for access. As discussed previously, in order to save clock cycles incurred by

accessing global memory, operating on registers can improve performance. Registers are

limited resources, typically 8192 registers per multiprocessor is made available for Tesla

C870. Using too many registers leads to register spilling, a condition where off-chip local

memory is used if the compiler cannot satisfy the programmer’s request for register

usage. This can lead to performance degradation as the local memory is off-chip. Hence

in order to reduce the pressure on registers, shared memory can be utilized.

Shared memory is on-chip and is cached. 16 KB shared memory is made available

for use per multiprocessor. Shared memory is as fast as registers if there are no bank

conflicts. Shared memory is divided into banks and successive words are stored in

successive banks. Threads in a half-warp are required to fetch data from these banks. If

threads in a half-warp access the same bank, it leads to serialized accesses, and this is

referred to as a bank conflict. The CUDA profiler signal warp_serialize informs about

any bank conflicts. A broadcast mechanism is invoked if all threads try to access the

same bank, hence avoiding serialization. Hence the key to maximum performance

benefits is to avoid these bank conflicts.

Texture memory space is slow since it is off-chip but unlike the global memory, it

is cached. Only on a cache miss will it incur a read from device memory; else, it leads to

 28

one read from texture cache. As mentioned previously, a texture cache can be bound to

linear pitch memory, or to CUDA arrays, or to global memory. Since our application

does not require specialized functions accompanying CUDA arrays, we have used texture

binding to global memory. In our research, we have used texture bound to global memory

as a fast look-up of the input image. Constant memory is again a limited, 8 KB per

multiprocessor, read-only space, which is usually used to denote constants to reduce

excessive register usage. It is also off-chip and incurs several clock cycles only if threads

read different constant address spaces.

We will now discuss the Execution Configuration optimization. This technique

involves changing number of threads per block, which leads to varying register and

shared memory usage, and subsequently changing the multiprocessor occupancy. This

value is provided by the CUDA profiler. Multiprocessor occupancy is defined as the ratio

of number of active warps running on a multiprocessor and the maximum number of

warps that can physically run on a multiprocessor. It is advisable to keep multiprocessor

occupancy high. It is usually accomplished by keeping a large number (typically greater

than or equal to 192) of threads per block and keeping this number a multiple of 32. This

facilitates coalescing and hence hiding latency on memory bound kernels. A high

multiprocessor occupancy does not always imply performance. A block configuration

sufficiently higher with lower occupancy may still perform better than the one with lower

block configuration and higher occupancy. This will become more evident in chapter 6.

Instruction optimization is discussed next. To execute an instruction, a

multiprocessor must issue an operand read, evaluate the arithmetic instruction, and then

 29

write the result back. Hence the instruction throughput will depend on memory latency

and bandwidth, and the nominal instruction throughput. All of these components can be

optimized. Memory latency and bandwidth can be optimized by the use of fast memory

spaces discussed previously. Nominal instruction throughput can be optimized by using

fast math functions, for instance, replacing funcf() with __funcf(), replacing integer

multiplication by __mul24(), floating point division by __fdividef(), etc. The fast math

instructions can significantly reduce the number of clock cycles required for an operation

thereby improving performance. One consequence of using the fast math instructions is

that the accuracy may drop. Control flow instructions may require modification. For

example, threads in a half-warp following different execution paths will lead to divergent

branches whose execution is serialized. Programmer’s ingenuity is required to avoid such

divergent branches, although the compiler may choose to optimize the control flow

instructions such that there are no divergent branches.

In summary, this chapter has served to introduce the GPU architecture and multi-

GPU systems. We have also discussed the CUDA programming model used to program

Nvidia’s Tesla C870 card, several optimization techniques made available to the

programmer, and how to use the CUDA profiler for optimizing performance. In the next

chapter, we describe the experimental setup and implementation of the two-level

character recognition networks based on the four SNN models introduced in Chapter 3.

 30

Chapter 5

Experimental Setup and Implementation

 In this chapter, we describe the single-GPU and multi-GPU setup used to

implement the two-level character recognition system based on the four neuron models

described in Chapter 3. We discuss the features of the two available GPU cards, and

compare them in terms of compute and memory resources available to the programmer.

This chapter concludes with a detailed section on parallelization and mapping of the

models on single-GPU and multi-GPU systems.

Single-GPU and Multi-GPU Setup

 The single-GPU experimental setup consists of a single Tesla C870 and a 2.66

GHz Intel Core 2 Quad host processor. The multi-GPU system consists of a Tesla C870

as the primary GPU accelerator and a GeForce 8400 GS as the secondary GPU

accelerator. The host processor was the same 2.66 GHz Intel core 2 Quad. The SNN

networks were developed using CUDA 2.1 installed on the host system running a 32 bit

Fedora 8. The CUDA SDK provides the deviceQuery utility, which enables the developer

to check various device properties. Table 5.1 lists some of the features offered by the two

accelerators. CUDA, by default, sets Tesla C870 as Device 0. A single CPU thread can

only establish context with a single device. Multiple threads are needed to establish

multiple contexts across more than one GPU device on the same host and the details are

discussed later in this chapter.

 31

Table 5.1: Features available on the Tesla C870 and GeForce 8400 devices

Features Tesla C870 GeForce 8400 GS

Compute Capability 1.0 1.1

Total Global Memory 1.5 GB 0.25 GB

Number of Multiprocessors 16 2

Number of Cores 128 16

Total amount of Constant Memory 64 KB 64 KB

Total Shared Memory Per Block 16 KB 16 KB

Total Registers available per block 8192 8192

Warp Size 32 32

Maximum number of Threads per block 512 512

Maximum Dimensions of each block 512 x 512 x 64 512 x 512 x 64

Maximum Dimension of Grid 65535 x 65535 x 1 65535 x 65535 x 1

Maximum Memory Pitch 256 KB 256 KB

Clock Rate 1.19 GHz 0.92 GHz

Concurrent Copy and Execution No Yes

The theoretical bandwidth of a device is an important factor to consider which is

not provided by the deviceQuery but can be calculated from the data provided in the

device specification sheet and as given in EQ. 5.1. The theoretical bandwidth of a device

can be computed as:

Theoritical BW in GB/s

 = (Memory Clock)*(Memory Interface)*(DDR) /1024
3
 EQ. 5.1

Figure 5.2: Tesla C870 Device Memory features

Memory Size 1536 MB

Memory Clock 800 MHz

Memory Interface 384-bit GDDR3

 32

From EQ. 5.1 and the data in Table 5.2, the theoretical Bandwidth of the Tesla

C870 card is 71.53 GB/s.

The Compiler and Profiling tools

 Source files with the extension .cu should be compiled with the nvcc compiler.

The nvcc compiler invokes all the necessary intermediate compilers and tools such as

cudacc, g++ and cl to create the final executable. The nvcc can either create C code that

will be compiled with other tools, or ptx codes or object code. An executable with CUDA

code requires the CUDA core library (cuda) and CUDA runtime library (cudart). More

information on nvcc can be found in [21].

 The CUDA SDK offers both textual and visual profilers to profile codes written

in CUDA. In this thesis, the visual profiler is used to produce important information

regarding the number of coalesced and uncoalesced global loads and stores, divergent

branches, and other information such as total number of branches taken, microprocessor

occupancy, GPU and CPU times, and the time taken for memory transfers. The CUDA

occupancy calculator is yet another utility that can be used to obtain the microprocessor

occupancy.

Parallelization and Mapping of Models

 Table 5.3 provides the number of neurons at each level for the two-level

networks. The initial neuron models with 576 neurons in level-1 and 48 neurons in level-

2 were developed, trained and tested in MATLAB before converting them to C [1]. The

research published in [13] used this model but could simulate only up to 5.7 million

neurons. In this thesis, the above mentioned implementations were further improved,

 33

allowing the models to be scaled from 5.7 million neurons to 9.7 million neurons in level-

1 as shown in the Table 5.3.

Table 5.3: Network Configurations for different Images

Input Image size Level 1 neurons Level 2 neurons Total Neurons

96 x 96 9216 48 9264

192 x 192 36864 48 36912

240 x 240 57600 48 57648

384 x 384 147456 48 147504

480 x 480 230400 48 230448

720 x 720 518400 48 518448

960 x 960 921600 48 921648

1200 x 1200 1440000 48 1440048

1680 x 1680 2822400 48 2822448

2160 x 2160 4665600 48 4665648

2400 x 2400 5760000 48 5760048

2592 x 2592 6718464 48 6718512

2640 x 2640 6969600 48 6969648

2784 x 2784 7750656 48 7750608

2880 x 2880 8294400 48 8294448

3120 x 3120 9734400 48 9734448

An initial implementation described in [13], which was improved to be scaled up

to 9.7 million neurons, involved acceleration of the level-1 neurons on the GPU

accelerator and level-2 neurons on the host. The GPU computes the level-1 neuron firing

information and sends this firing vector to the host processor, which in turn uses this

information to evaluate the level-2 neuron dynamics. Single neuron dynamics in level-1

are computed by a single thread in the GPU; hence the number of threads is equal to the

number of level-1 neurons, which is equal to the number of pixels in the input image.

 34

Optimization techniques such as memory optimizations involving the use of coalesced

global memory access (G), use of shared memory (GS), coalesced global memory access

with texture cache look-up (GT), and a combination of these (GST) will be explored.

Execution configuration optimization and instruction optimizations as described in the

previous chapter will also be applied. The implementation described involves a single

host to device transfer of all the parameters pertaining to the level-1. These parameters,

from the equations discussed in the Chapter 3, can be viewed as vectors of neurons. Prior

to computing the neuron dynamics, this set of data is transferred to the GPU device RAM

in a single large transfer. Once the simulation begins, the firing vector, which is the

neuron fire status vector is transferred from the GPU device to host at each time-step.

This implementation uses the integer data-type for vector representation. Since each

integer occupies 4 bytes, an image of size 3120 x 3120 would involve the transfer of

about 37 MB firing vector. Since more accurate models such as the Hodgkin Huxley

require several time-steps, this transfer from the host to device will constitute a

significant amount of overhead. The performance achieved for this implementation is

discussed in Chapter 6. We will refer the above implementation as Implementation 1.

 Studying Implementation 1, it is apparent that the data transfers will cause

significant overhead. Since the firing vector is merely a collection of flags, one per

neuron, the data transfer overheads can be reduced significantly by changing the data-

type for the firing vector from integer to character. This change will reduce the amount of

data transfer by 1/4
th

. Discussed in detail in Chapter 6, this step although it saves transfer

time introduces new uncoalesced global memory accesses. The Tesla C870 has Compute

 35

Capability 1.0 that has stricter rules regarding coalesced accesses. Character data-types

will involve uncoalesced accesses if successive threads access successive character data

elements. Uncoalescing can be avoided if thread k
th

 accesses (k+4)
th

 character. The

speedup achieved and details of the uncoalesced accesses are discussed in Chapter 6. The

approach described in this paragraph will be referred to as Implementation 2 in future

chapters.

 Careful study of the models reveals that the level-1 neurons only fire every few

time steps. In Implementation 2, the device kernel updates the vector at each kernel call

leading to unnecessary global memory accesses and in turn uncoalesced accesses that

lead to poor performance. To improve performance, the previous method was extended to

perform vector updates inside the kernel only when a neuron fires instead of at each time

step. This method removes a significant number uncoalesced access. The algorithm was

also inspected for redundant computations and key mathematical operations such as

division and exponentiation, which were replaced with fast math functions. Fast user-

defined device functions were also written to evaluate the hyperbolic functions such as

hyperbolic cosine, sine, and tangent. Additionally, registers were used to store the global

memory data elements during operation to avoid repeated accesses to the high-latency

un-cached global memory. This technique provides a savings of several clock cycles

since a global memory read takes approximately 600 cycles and registers only require 1

clock cycle. A complete discussion of the implementation, Implementation 3, and

performance is provided in Chapter 6.

 36

 Implementation 3, however, still involves the device to host transfer of the firing

vector at each time step. By introducing a block vector to collect the flags per block, the

frequency of transfer can be reduced. This block vector is similar to the firing vector, but

instead of acting as collection of flags for neurons, it acts as a collection of flags for

blocks. As discussed in previous chapters, a collection of threads called a thread block is

defined by the user. The block vector is blocksize magnitude smaller than the complete

firing vector and therefore reduces the data to be transferred to the host. If at any time-

step, the block vector contains information of a firing event, only then will the entire

firing vector be transferred from the device to the host. For instance, the HH model

involves 373 time-step evaluations and the level-1 fires just once. Hence a nominal

transfer of the block vector would mean merely a single transfer of the firing vector

instead of 373 transfers. Results obtained using this implementation are discussed in

Chapter 6. The technique introduced in this paragraph will be referred to as

Implementation 4.

 For the multi-GPU implementation, two POSIX-threads (p-threads) were created

from the main CPU thread, each thread establishing a context with a single GPU. Both

level-1 and level-2 parameter vectors were equally divided among the threads. Each

thread was responsible for obtaining a partial firing vector from their respective GPU

accelerator and synchronizing with each other to combine their partial firing vectors into

a single global firing vector. The global firing vector is then used by the two CPU threads

to evaluate the partial level-2 dynamics. Figure 5.1 illustrates this method. Figure shows

two POSIX threads being spawned from the master CPU thread. POSIX thread-1

 37

establishes context with the Tesla C870 and POSIX thread-2 establishes context with

GeForce 8400. Each of the devices computes their designated partial firing vectors and

passes it to their respective CPU threads. CPU threads then synchronize to obtain a global

firing vector, and use the global firing vector to evaluate partial level-2 dynamics. The

Implementations discussed for single node are also applied for Multi-GPU experiments.

The multi-GPU system is studied for performance of different ratios of data division

among the threads.

Figure 5.1: SNN models implementation on the Multi-GPU system

 In this chapter we have introduced the single-GPU and multi-GPU setups for

implementing the two-level character recognition systems based on the four models

introduced in Chapter 3. Parallelization and mapping of the models has been described

for both single-GPU and multi-GPU setups. Chapter 6 will present a detailed discussion

of the results obtained.

 38

Chapter 6

Results and Discussion

 Although the models were introduced in order of increasing complexity, we will

discuss the results obtained with highest complexity HH model first and then proceed to

the lowest complexity Izhikevich model, as most of the features connecting the GPU

architecture to algorithm are more apparent in the higher compute density models. We

will discuss the single node experimental results first, analyze the Flop rate achieved

using single node, and finally review multi-GPU results.

Single Node Results

The Hodgkin Huxley Model

 Figure 6.1 shows the speed-up performance with the Hodgkin Huxley (HH)

model for all four implementations discussed in Chapter 5. Table 6.1 provides the

performance results for the intermediate network sizes. Clearly in the figure,

Implementation 4 outperforms the other implementations. For the largest network size, a

speed-up of 576.9x was observed for Implementation 4, 213.81x for Implementation 3,

145.79x for Implementation 2, and 119.72x for Implementation 1. Such high speed-up

values are expected for the HH model since the model has a high Flop/Byte ratio of 9.84.

Calculation of the Flop/Byte ratio is discussed later in this chapter. Minimizing the

communication and maintaining high arithmetic intensity enables the GPU to perform

 39

even better for this model. Next we will discuss the results for each of the

implementations with the HH model.

Figure 6.1: HH model: Speed-up vs Network Size; All Implementations

Table 6.1: HH model: Speed-up values for intermediate network sizes; All

Implementations

Image Size Implementation 1 Implementation 2 Implementation 3 Implementation 4

3120x3120 119.72 145.79 213.81 576.89

2400x2400 115.21 145.07 203.72 561.363

1680x1680 114.69 140.59 204.39 548.97

960x960 107.42 133 174.47 477.95

480x480 94.26 117.58 148.5 315.043

Implementation 1 consists of 4 designs corresponding to the optimizations

introduced in Chapter 5: G, GT, GS, and GST. Figure 6.2 compares each of these

memory optimization techniques with a common block configuration of 192. As

discussed in Chapter 4, blocksize refers to the number of threads per block and is defined

by the user.

 40

Figure 6.2: HH model: Speed-up vs. Network Size; Implementation 1

It has been observed that memory technique GST performs better than the others

with a maximum speed-up of 119.7x for the largest network. Technique S has the lowest

performance. Table 6.2 shows performance results for some of the intermediate network

sizes across each of the optimizations.

Table 6.2: HH model: Speed-up values for intermediate network sizes; Implementation 1

Image Size G GT GS GST

3120x3120 115.95 114.93 113.11 119.73

2400x2400 113.85 114.37 110.44 115.22

1680x1680 112.334 112.12 110.2 114.7

960x960 103.18 103.28 100.7 107.42

480x480 94.53 94.46 92.21 94.25

The CUDA Visual Profiler is a useful tool for analyzing performance results.

Table 6.3 shows the relevant profiler information that could potentially limit the

performance. The data shown in the table corresponds to an image size of 3120. This

network size will be used in similar studies throughout the thesis for consistency.

 41

Table 6.3: HH model: CUDA Profiler results; Implementation 1

Parameter G GT GS GST

Block

Configuration

192 192 192 192

Execution time

(ms)

16876 16779 17094 16217

of kernel calls 373 373 373 373

of memcpy 379 379 379 379

Occupancy 1 1 0.5 0.5

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 0 0 0

Divergent Branch 79430 79430 79430 79430

Serialized warps 0 0 0 0

Registers used per

thread

11 12 18 18

Shared memory

used per block

52 52 4660 3892

GPU time (sec)

kernel

4.702 4.747 5.07 4.123

GPU time(sec)

memcpy

10.13 10.125 10.025 10.0377

As seen in Table 6.3, GST optimization has the lowest kernel execution time

while GS has the maximum kernel execution time of all designs. Overall for this

implementation, GST has provided optimum performance with the use of fast shared

memory to store parameters from global memory and texture cache as look-up for the

image. GS and GST both have the minimum multiprocessor occupancy of 0.5, but GST

was able to utilize texture cache resulting in lower kernel execution time since texture

cache can provide better performance as discussed in Chapter 4. Memory transfer size

was uniform across all the designs for implementation 1. The firing vector was

transferred to the host at each time-step with its size equal to number of neurons in level-

1, 3120
2
 in this case. The last row of Table 6.3 also suggests the need to minimize the

time spent in memory transfers for better performance.

 42

 Implementation 2, as discussed in Chapter 5, changes the firing vector from

integer to character data-type to reduce the communication time. This implementation

only uses GT memory optimization since the subsequent implementations will use faster

and preferred registers instead of shared memory. A maximum speed-up of 145.8x was

observed for this implementation for the largest network size.

Figure 6.3: HH model: Speed-up vs Network Size; Implementation 2

 Figure 6.3 compares the speed-up achieved for various block sizes and shows that

optimal performance occurs at block size 192. Table 6.4 shows the intermediate

performance values for the network sizes in this implementation. Occupancy equal to

unity for blocksize of 192 confirms that it is the preferred size, for this implementation.

 43

Table 6.4: HH Model: Speed-up values for intermediate network sizes; Implementation 2

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 145.8 138.15 143.03 1 0.667 0.75

2400x2400 145.07 136.53 142.3 1 0.667 0.75

1680x1680 140.6 135.77 138.05 1 0.667 0.75

960x960 133 126.7 130.97 1 0.667 0.75

480x480 117.58 111.91 115.38 1 0.667 0.75

Implementation 3 is an extension of Implementation 2, using fast registers to

minimize redundant accesses to global memory. Since the global memory is not cached,

these accesses can lead to additional clock cycles. In this implementation, arithmetic

intensity is further increased by maximizing utilization of math functions and removing

redundant computation. The GT memory optimization was used in this implementation

since it employs the use of registers instead of shared memory. A speed-up of 213.81x

was observed for this implementation for the largest network size. Figure 6.4 shows the

performance for different block configurations and Table 6.5 shows the performance for

intermediate network sizes. A block configuration of 256 is most suited for this

implementation given its high multiprocessor occupancy. Block configuration size of 288

has the least occupancy of 0.375 so it is unlikely that it will be capable of hiding global

memory latencies.

 44

Figure 6.4: HH model: Speed-up vs Network Size; Implementation 3

Table 6.5: HH model: Speed-up values for intermediate network sizes; Implementation 3

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 206.67 213.81 186.32 0.75 0.67 0.375

2400x2400 197.35 203.72 182.26 0.75 0.67 0.375

1680x1680 197.89 204.38 181.17 0.75 0.67 0.375

960x960 171.234 174.5 163.8 0.75 0.67 0.375

480x480 146.54 148.5 137.92 0.75 0.67 0.375

Implementation 4, a further extension to Implementation 3, minimizes the transfer

frequency of the global firing vector with the introduction of the block vector as

discussed in Chapter 5. Similar to Implementation 3, the GT optimization has been used

as the memory optimization technique. A maximum speed-up of 576.89x was observed

for this model. Figure 6.5 provides a graphical view of the performance for all the

configurations and Table 6.6 shows the performance for different block configurations

for this implementation. A block configuration of 256 has performed the best with

 45

occupancy of 0.67. Although it is slightly lower than that of block configuration 192,

adding more threads per block for the configuration of 256 has lead to better

performance. Clearly a lower occupancy of 0.375 for configuration of 288 has the least

performance and hence is the least suited. This implementation shows clear difference in

performance for configurations with different occupancy values. It also suggests

maintaining a high multiprocessor occupancy, while maintaining larger block

configurations. An unexpected drop in the performance was seen for image sizes 2640

and 2784. Inspection with the visual profiler, reveals that these network sizes had higher

instruction counts than the other network sizes and thus an increase in execution time.

Figure 6.5: HH model: Speed-up vs Network Size; Implementation 4

 46

Table 6.6: HH model: Speed-up values for intermediate network sizes; Implementation 4

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 527.44 576.89 421.31 0.75 0.67 0.375

2400x2400 514.1 561.36 412.5 0.75 0.67 0.375

1680x1680 505.33 548.97 414 0.75 0.67 0.375

960x960 446.48 477.95 373.13 0.75 0.67 0.375

480x480 300.85 315.04 272 0.75 0.67 0.375

Now we present the CUDA visual profiler output in Table 6.7 for each of the 4

implementations with their best block configurations to provide a better insight of their

relative performance. All implementations are compared with the same image size, 3120.

Table 6.7: HH model: CUDA Profiler results; All Implementations

Parameter Implementation 1 Implementation 2 Implementation 3 Implementation 4

Block

Configuration

192 192 256 256

Execution time

(ms)

16217 13266.56 8998.98 3327.87

of kernel calls 373 373 373 373

of memcpy 379 379 375 376

Occupancy 0.5 1 0.67 0.67

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 907732992 97920 3643432

Divergent Branch 79430 79430 51489 937954

Serialized warps 0 0 0 60861901

Registers used per

thread

18 12 14 14

Shared memory

used per block

3892 52 52 1084

GPU time (sec)

kernel

4.123 6.74 2.65 3.02

GPU time(sec)

memcpy

10.0377 2.5 2.42 0.384

 47

Implementation 1 has a large memory transfer time due to the large firing vector

that is transferred in each time-step. Introducing the use of character data-type for the

firing vector in Implementation 2, reduces the firing vector byte count by ¼ and is

reflected in an almost ¼ reduction in transfer time. The use of character firing vectors

introduces uncoalesced accesses in Implementations 2, 3, and 4. Implementation 2 has the

maximum uncoalesced accesses due to the firing vector update in each kernel call,

resulting in significantly higher kernel time due to uncoalesced stores. Implementation 3

minimizes uncoalesced accesses as discussed in Chapter 5, reducing the kernel time, but

Implementation 4 will have additional uncoalesced accesses due to the introduction of the

block vector. Serialized warps in Implementation 4 are primarily a result of synchronized

access to and update of the block vector element by multiple threads in an active block.

Table 6.7 also shows the importance of minimizing the host to device communication to

gain better performance, as was accomplished in Implementation 4. Although a memory

transfer is involved in each time-step, as discussed in Chapter 5, transfer of a relatively

smaller block vector is more affordable than transferring the large firing vector in each

time-step. It is seen that the memory transfer time is the primary reason for performance

degradation in this application, dominating the other factors. The next hazard to

performance is the uncoalesced accesses to global memory. Reducing the serialized

warps, although not removed for Implementation 4, could further improve the

performance. Since the access to shared memory is sufficiently fast in this case, this

improvement is not expected to be as significant as removing the uncoalesced accesses to

the global memory.

 48

Morris Lecar Model

 Figure 6.6 shows the performance results for all optimization techniques applied

to the Morris-Lecar (ML) Model. Morris Lecar is the second most compute intensive

algorithm after the HH model discussed in this thesis. Table 6.8 shows the intermediate

performance results for each of the models. As seen in Figure 6.6, Implementation 4

outperforms all the others. For an image size of 3120, Implementation 4 gives a

maximum speed-up of 105.86x, Implementation 3 follows with a speed-up performance

of 75.56x, Implementation 2 has a speed-up of 65.7x, and finally Implementation 1 is last

with a speed-up performance of 55.4x. The Flop/Byte ratio for this model is slightly less

than the HH model but is still sufficiently high to hide the data transfer overhead and

utilize the computing performance of the GPU. We will now discuss each of the

implementations in detail.

Figure 6.6: ML model: Speed-up vs Network Size; All Implementations

 49

Table 6.8: ML model: Speed-up values for intermediate network sizes; All

Implementations

Image Size Implementation 1 Implementation 2 Implementation 3 Implementation 4

3120x3120 55.4 65.7 75.6 105.86

2400x2400 54.6 65.3 75.17 103.51

1680x1680 55.55 66.66 76.94 107.96

960x960 54.1 62.08 71.8 102.77

480x480 48.03 55.33 61.02 87.17

 Implementation 1 involves the use of the memory optimization techniques

discussed in Chapter 5 with the best block configuration for each. The performance graph

is shown in Figure 6.7 and performance results for intermediate networks are given in

Table 6.9.

Figure 6.7: ML model: Speed-up vs Network Size; Implementation 1

 50

Table 6.9: ML model: Speed-up values for intermediate network sizes; Implementation 1

Image Size G GT GS GST

3120x3120 54.8 55.4 53.2 54.9

2400x2400 54.72 54.59 52.89 54.44

1680x1680 55.85 55.55 53.6 55.65

960x960 53.53 54.13 51.70 53.09

480x480 48.17 48.03 46.17 47.64

It has been observed that memory optimization techniques G, GT and GST have

near similar performance with G being marginally ahead of the others. The CUDA visual

profiler results for image size 3120 are provided in Table 6.10 for each of the memory

optimization techniques with their respective block configurations. For G, GT and GST,

the optimal block configuration was found to be 192 whereas for GS, the configuration of

256 performed the best. The kernel execution time is maximum for the GS memory

technique, which also has the least multiprocessor occupancy of 0.667. Optimization G,

due to its maximum multiprocessor occupancy of 1, is capable of hiding latency, and

results in the best choice for the implementation.

 51

Table 6.10: ML model: CUDA Profiler results; Implementation 1

Parameter G GT GS GST

Block

Configuration

192 192 256 192

Execution time

(ms)

906.47 902.4 934.25 907.934

of kernel calls 16 16 16 16

of memcpy 21 21 21 21

Occupancy 1 1 0.667 0.75

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 0 0 0

Divergent Branch 3055 3055 3048 3055

Serialized warps 0 0 0 0

Registers used per

thread

10 10 15 12

Shared memory

used per block

44 44 5164 3116

GPU time (sec)

kernel

0.124782 0.12485 0.156337 0.129281

GPU time(sec)

memcpy

0.497625 0.496658 0.497551 0.501096

 Implementation 2, as discussed in Chapter 5, reduces the size of the firing vector

and hence is expected to perform better than Implementation 1. Optimization G was the

chosen memory optimization technique given its performance in Implementation 1.

Figure 6.8 shows the speed-up performance for different block configurations and Table

6.11 shows the performance of the implementation for intermediate network sizes.

 52

Figure 6.8: ML model: Speed-up vs Network Size; Implementation 2

A block configuration of 192 was found to be optimal for this implementation

with highest occupancy of 1. Configuration 256 with occupancy identical to 192

performed similar to block configuration of 192, whereas a configuration of 288 with

least occupancy of 0.75 could not perform better than the others.

Table 6.11: ML model: Speed-up values for intermediate network sizes; Implementation 2

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 65.7 64.5 64.2 1 1 0.75

2400x2400 65.39 64.1 63.83 1 1 0.75

1680x1680 66.66 65.61 65.38 1 1 0.75

960x960 62.1 60.96 61.22 1 1 0.75

480x480 55.34 56.46 56.23 1 1 0.75

 Implementation 3 further enhances the previous implementation with the

introduction of the fast math functions as discussed in Chapter 5. Optimization G was

again chosen as the memory optimization technique. Figure 6.9 shows the performance of

 53

different block configurations chosen and Table 6.12 provides performance results for

intermediate network sizes.

Figure 6.9: ML Model: Speed-up vs Network Size; Implementation 3

Table 6.12: ML model: Speed-up values for intermediate network sizes; Implementation 3

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 74.6 75.56 72.03 0.75 0.667 0.375

2400x2400 75.53 75.17 71.36 0.75 0.667 0.375

1680x1680 76.46 77.3 73.74 0.75 0.667 0.375

960x960 71.77 71.8 68.69 0.75 0.667 0.375

480x480 64.67 61.02 61.92 0.75 0.667 0.375

This study also shows that high multiprocessor occupancy is important for

performance, but is not the only factor. Clearly, although with a very large block

configuration of 288, the implementation did not perform well due to its lower processor

occupancy. The block configuration of 256, with similar occupancy to block size 192

performed marginally better. In this implementation, both the block configuration and

occupancy need to be sufficiently high in order to provide optimal performance.

 54

Results for Implementation 4 of the ML model with the G memory optimization

are given in Figure 6.10. Table 6.13 shows the results for intermediate network sizes.

Block configuration of 192 performs the best, given its occupancy of 0.75.

Figure 6.10: ML model: Speed-up vs Network Size; Implementation 4

Table 6.13: ML model: Speed-up values for intermediate network sizes; Implementation 4

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 105.86 103.63 97.54 0.75 0.667 0.375

2400x2400 106.51 101.76 96.28 0.75 0.667 0.375

1680x1680 112.3 106.66 99.43 0.75 0.667 0.375

960x960 102.77 99.63 93.2 0.75 0.667 0.375

480x480 87.17 86.12 80.2 0.75 0.667 0.375

Details of the CUDA profiler are presented now to analyze the difference between

the four implementations. The best block configuration from each of the implementations

is chosen. Table 6.14 shows the relevant parameter details for all the implementations.

 55

Table 6.14: ML model: CUDA Profiler results; All Implementations

Parameter Implementation 1 Implementation 2 Implementation 3 Implementation 4

Block

Configuration

192 192 256 192

Execution time

(ms)

906.47 739.35 632.627 441.74

of kernel calls 16 16 16 16

of memcpy 21 21 20 21

Occupancy 1 1 0.667 0.75

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 38937600 97564 300104

Divergent Branch 3055 3055 1521 50700

Serialized warps 0 0 0 1977096

Registers used per

thread

10 10 14 13

Shared memory

used per block

44 44 44 820

GPU time (sec)

kernel

0.124782 0.215743 0.108979 0.157908

GPU time(sec)

memcpy

0.497625 0.160376 0.157359 0.0599104

Implementation 1 does not involve any uncoalesced accesses or serial warps but

memory transfer is a bottleneck (see last row of Table 6.14). This bottleneck is overcome

in Implementation 2 with the introduction of the character data-type firing vector, but it

also introduces a large number of uncoalesced stores. While these uncoalesced accesses

increase the kernel execution time, the reduction of memory transfer time dominates.

Implementation 3 reduces the number of uncoalesced accesses and introduces fast math

functions, which together reduces kernel execution time. Implementation 4 reduces the

transfer frequency of the global firing data using the block vector approach and reduces

the overall execution time, even though it introduces uncoalesced stores and serial warps.

Since all threads of a warp access a particular block vector element, it leads to bank

 56

conflicts that result in serialized warps. Still, the significant reduction in data transfer

time provides the best performance.

Wilson Model

 The performance results for all implementations with the Wilson model are given

in Figure 6.11 and Table 6.15. Again Implementation 4 provides the best performance

with a speed-up of 13.34x for the maximum image size 3120, followed by

Implementation 3 with 7.79x, Implementation 2 with 5.72x, and lastly Implementation 1

with a speed-up of 4.856x.

The best performance for Implementation 1 was achieved with the GS memory

optimization technique and a block configuration of 192. The speed-up performance for

Implementation 1 with different memory optimization techniques and their respective

optimal block configuration are given in Figure 6.12 and intermediate results for the

network sizes are given in Table 6.16.

Figure 6.11: Wilson model: Speed-up vs Network Sizes; All Implementations

 57

Table 6.15: Wilson model: Speed-up values for intermediate network sizes; All

Implementations

Image Size Implementation 1 Implementation 2 Implementation 3 Implementation 4

3120x3120 4.856 5.72 7.79 13.34

2400x2400 4.90 5.82 7.79 13.23

1680x1680 4.88 5.75 7.79 13.34

960x960 4.67 5.42 7.23 12.49

480x480 4.16 4.95 6.5 9.6

Figure 6.12:Wilson model: Speed-up vs Network Size; Implementation 1

Table 6.16: Wilson model: Speed-up values for intermediate network sizes;

Implementation 1

Image Size G GT GS GST

3120x3120 4.839 4.826 4.856 4.847

2400x2400 4.836 4.823 4.9 4.84

1680x1680 4.832 4.831 4.88 4.86

960x960 4.66 4.672 4.667 4.7

480x480 4.1 4.136 4.158 4.168

 58

 In this implementation, all of the optimizations have provided similar results. The

CUDA visual profiler results are given in Table 6.17. As is evident from the Table 6.17,

GS although with lower occupancy spends less time in the kernel than the other

optimizations. This behavior was not observed for Implementation 1 with the HH and

ML Models which are significantly more compute intensive than the Wilson Model.

Table 6.17: Wilson model: CUDA Profiler results; Implementation 1

Parameter G GT GS GST

Block

Configuration

192 192 192 192

Execution time

(ms)

1644.1 1645.81 1638.86 1639.99

of kernel calls 30 30 30 30

of memcpy 37 37 37 37

Occupancy 0.75 0.75 0.5 0.5

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 0 0 0

Divergent Branch 1833 1833 1833 1833

Serialized warps 0 0 0 0

Registers used per

thread

11 12 18 17

Shared memory

used per block

52 52 5428 4660

GPU time (sec)

kernel

0.334729 0.335067 0.315549 0.325544

GPU time(sec)

memcpy

0.893263 0.897693 0.906602 0.891313

 Figure 6.13 shows the performance results for Implementation 2 with the G

memory optimization for different block configurations. Table 6.18 shows the

performance of the block configurations for intermediate network sizes. A block

configuration of 192 has provided the best performance with a multiprocessor occupancy

 59

of 0.75. The block configuration of 288 with occupancy of 0.75 is marginally better than

the block configuration of 256 with occupancy 0.667.

Figure 6.13: Wilson model: Speed-up vs Network Size; Implementation 2

Table 6.18: Wilson model: Speed-up values for intermediate network sizes;

Implementation 2

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 5.72 5.55 5.63 0.75 0.667 0.75

2400x2400 5.82 5.63 5.68 0.75 0.667 0.75

1680x1680 5.747 5.62 5.63 0.75 0.667 0.75

960x960 5.42 5.28 5.35 0.75 0.667 0.75

480x480 4.95 4.82 4.92 0.75 0.667 0.75

 Implementation 3 results are shown in Figure 6.14 and Table 6.19. For this

implementation, the block configuration of 288 provided the best performance with

relatively higher occupancy of 0.75. Again this model indicates that the multiprocessor

 60

occupancy and the block configuration together impact performance; Occupancy alone is

not an indicator of performance.

Figure 6.14: Wilson Model: Speed-up vs Network Size; Implementation 3

Table 6.19: Wilson model: Speed-up values for intermediate network sizes;

Implementation 3

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 7.71 7.66 7.79 0.75 0.667 0.75

2400x2400 7.86 7.83 7.79 0.75 0.667 0.75

1680x1680 7.73 7.72 7.79 0.75 0.667 0.75

960x960 7.21 7.2 7.23 0.75 0.667 0.75

480x480 6.35 6.4 6.5 0.75 0.667 0.75

Implementation 4 performs the best with a block configuration of 192 yielding a

multiprocessor occupancy of 0.75. The block configuration of 288 with occupancy of

0.375 performed significantly slower than the others as shown in Figure 6.15 and Table

6.20. This implementation also shows that significantly lower multiprocessor occupancy

 61

is likely to perform worse than one with lower block configuration but much higher

occupancy.

Figure 6.15: Wilson Model : Speed-up vs Network Size; Implementation 4

Table 6.20: Wilson model: Speed-up values for intermediate network sizes;

Implementation 4

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 13.25 13.25 11.75 0.75 0.67 0.375

2400x2400 13.47 13.23 11.91 0.75 0.67 0.375

1680x1680 13.56 13.33 12.06 0.75 0.67 0.375

960x960 12.58 12.49 11.9 0.75 0.67 0.375

480x480 9.6 10.26 0.5 0.75 0.67 0.375

The CUDA profiler results contrasting the different implementations for the

Wilson model follow in Table 6.21. As shown in the table and discussed in the previous

models, the relative performance of each of the implementations is as expected. The

 62

memory transfer time is reduced almost by ¼ when the firing vector size is reduced by a

forth. Uncoalesced accesses clearly affect the kernel execution time but since the memory

transfer time dominates, Implementation 2 performs better than Implementation 1.

Reducing the uncoalesced accesses in Implementation 3 reduces the kernel execution

time. The serial warps in Implementation 4 do not significantly affect the kernel

execution time. The order of impact on performance starting from the most important,

memory transfer time, uncoalesced accesses and serial warps, is followed by Wilson

Model.

Table 6.21: Wilson Model: CUDA profiler results; All Implementations

Parameter Implementation 1 Implementation 2 Implementation 3 Implementation 4

Block

Configuration

192 192 288 192

Execution time

(ms)

1638.86 1376.99 993.35 565.924

of kernel calls 30 30 30 30

of memcpy 37 36 36 37

Occupancy 0.5 0.75 0.75 0.75

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 73008000 97412 477554

Divergent Branch 1833 1822 570372 95062

Serialized warps 0 0 0 5375455

Registers used per

thread

18 12 12 13

Shared memory

used per block

5428 52 52 828

GPU time (sec)

kernel

0.315549 0.516097 0.146388 0.182418

GPU time(sec)

memcpy

0.906602 0.274549 0.274465 0.0870184

 63

Izhikevich Model

 Performance results for all the implementations of the Izhikevich model are

shown in Figure 6.16 and Table 6.22 shows the performance results for intermediate

network sizes. Similar to the previously discussed models, Implementation 4 outperforms

the rest by minimizing communication and maintaining high arithmetic intensity. For the

largest network size, a maximum speed-up of 11.82x over the equivalent software

implementation was observed.

Figure 6.16: Izhikevich Model : Speed-up vs Network Size; All Implementations

Table 6.22: Izhikevich model: Speed-up values for intermediate network sizes; All

Implementations

Image Size Implementation 1 Implementation 2 Implementation 3 Implementation 4

3120x3120 7.23 8.16 9.33 11.82

2400x2400 7.36 8.38 9.8 11.91

1680x1680 7.51 8.6 9.94 12.48

960x960 7.1 7.9 9.3 11.5

480x480 6.33 7.11 8.22 9.75

 64

Implementation 1 results are shown in Figure 6.17 and intermediate network size

performance is given in Table 6.23. Similar to the Wilson Model, the GS optimization

performed better than the other memory optimizations. It has been observed that GS has

performed better for models having a lower flop/byte ratio (Wilson and Izhikevich);

models with higher a flop/byte ratio (HH and ML) perform better than GST or G

optimization.

Figure 6.17: Izhikevich Model: Speed-up vs Network Size; Implementation 1

Table 6.23: Izhikevich model: Speed-up values for intermediate network sizes;

Implementation 1

Image Size G GT GS GST

3120x3120 7.13 7.17 7.23 7.17

2400x2400 7.3 7.32 7.36 7.27

1680x1680 7.44 7.4 7.52 7.33

960x960 7 7.04 7.1 7.04

480x480 6.31 6.33 6.33 6.28

 65

The CUDA visual profiler details for Implementation 1 with the Izhikevich model

are given in Table 6.24. All of the memory techniques have the same multiprocessor

occupancy of 1 and GS minimum kernel execution time. It is noted that GS performs

better when the occupancy is high, but since Occupancy is a function of shared memory

usage, a balanced usage between registers and shared memory can provide a higher

occupancy and better performance.

Table 6.24: Izhikevich Model: CUDA Profiler results; Implementation 1

Parameter G GT GS GST

Block

Configuration

192 192 192 192

Execution time

(ms)

778.26 779.02 77.39 77.9

of kernel calls 12 12 12 12

of memcpy 16 16 16 16

Occupancy 1 1 1 1

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 0 0 0

Divergent Branch 622 622 0 0

Serialized warps 0 0 0 0

Registers used per

thread

6 6 8 9

Shared memory

used per block

40 40 3112 3112

GPU time (sec)

kernel

0.0598476 0.060057 0.0528743 0.056899

GPU time(sec)

memcpy

0.369568 0.373658 0.378529 0.375308

Implementation 2 results are given in Figure 6.18. Block configuration 192 has

provided optimal performance with occupancy of 0.75. Table 6.25 provides performance

results for intermediate network sizes. The performance difference for block

configurations 192 and 288 is very small even though these configurations share a high

occupancy of 0.75. Additionally, the effects of multiprocessor occupancy and block

 66

configuration are somewhat nebulous for lesser compute density models. It can be

established that algorithms need higher compute density in order to gain benefits from

block configuration optimization.

Figure 6.18: Izhikevich Model: Speed-up vs Network Size; Implementation 2

Table 6.25: Izhikevich Model: Speed-up values for intermediate network sizes;

Implementation 2

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 8.17 8.07 8.09 0.75 0.667 0.75

2400x2400 8.38 8.27 8.45 0.75 0.667 0.75

1680x1680 8.6 8.45 8.5 0.75 0.667 0.75

960x960 7.9 7.88 7.85 0.75 0.667 0.75

480x480 7.12 7.08 7.08 0.75 0.667 0.75

Implementation 3 results follow in Figure 6.19 and Table 6.26. For

Implementation 3 with the Izhikevich model, a block configuration of 192 with a higher

occupancy of 1 performed better in general although a clear winner was difficult to

choose for this implementation. Discussion for this implementation is similar to

 67

Implementation 2. Multiprocessor occupancy and block configuration do not appear to

have significant direct impact on the performance.

Figure 6.19: Izhikevich Model: Speed-up vs Network Size; Implementation 3

Table 6.26: Izhikevich model: Speed-up values for intermediate network sizes;

Implementation 3

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 9.34 9.2 9.46 1 1 0.75

2400x2400 9.8 9.42 9.62 1 1 0.75

1680x1680 9.94 9.65 9.96 1 1 0.75

960x960 9.3 8.98 9.2 1 1 0.75

480x480 8.22 7.93 7.61 1 1 0.75

Implementation 4 results are given in Figure 6.20 and Table 6.27. Following the

trend seen in previous models, the block configuration with the maximum multiprocessor

occupancy performs best. In this implementation, a configuration of 256 and occupancy 1

 68

provides optimal performance for the largest image size, although a block configuration

of 192 appears to perform better for other image sizes.

Figure 6.20: Izhikevich Model: Speed-up vs Network Size; Implementation 4

Table 6.27: Izhikevich Model: Speed-up values for intermediate network sizes;

Implementation 4

Image Size Performance for BLOCKSIZE Occupancy

192 256 288 192 256 288

3120x3120 11.5 11.82 11.61 1 1 0.75

2400x2400 12.03 11.91 11.82 1 1 0.75

1680x1680 12.68 12.5 12.61 1 1 0.75

960x960 11.69 11.52 11.5 1 1 0.75

480x480 9.84 9.74 9.6 1 1 0.75

 The CUDA visual profiler results are provided in Table 6.28. As seen in previous

models, change of data-type, reducing the data transfer, reducing uncoalesced accesses

 69

and reducing the number of firing vector transfers gives significant performance

improvement in each case.

Table 6.28: Izhikevich Model: CUDA Profiler results; All Implementations

Parameter Implementation 1 Implementation 2 Implementation 3 Implementation 4

Block

Configuration

192 192 192 192/256

Execution time

(ms)

77.39 658.91 564.58 453.25

of kernel calls 12 12 12 12

of memcpy 16 16 16 17

Occupancy 1 1 1 1

Uncoalesced load 0 0 0 0

Uncoalesced Store 0 29203200 194500 308006

Divergent Branch 0 622 0 28518

Serialized warps 0 0 0 1589350

Registers used per

thread

8 6 6 8

Shared memory

used per block

3112 40 40 1072

GPU time (sec)

kernel

0.0528743 0.135464 0.0370735 0.1052

GPU time(sec)

memcpy

0.378529 0.122646 0.122912 0.0541576

FLOPs Study

 We now present a study of Flops and Flop/Byte ratio for the best performing

implementation of each of the models, Implementation 4. The Flop/Byte ratio is an

important parameter for determining the appropriateness of an algorithm for architecture

and vice versa. In Table 6.29, we present the Flop requirements for each of the four

models. The HH model requires the most, since it is more biologically accurate, followed

by Morris Lecar, Wilson, and Izhikevich Models. The memory requested by each of the

models is another significant parameter and is used to evaluate the Flops/Byte ratio.

 70

Table 6.29: Flops/Byte Ratio for all models

Model FLOPS Required for

Neuron Update

Flops/Byte Ratio

HH 246 9.84

Morris Lecar 147 8.65

Wilson 38 1.52

Izhikevich 13 0.9997

The Flops/Byte ratio in our research is viewed as an algorithm specific value and

is defined as the ratio of the Flops required by all the neuron updates (level-1 and level-2)

to the overall bytes requested for all neuron updates (all the parameters, firing vector and

block vector).

Figure 6.21 shows the Flop count vs. image size for each of the models using

Implementation 4. Table 6.30 shows the Flops achieved for the intermediate network

sizes. Figure 6.22 provides a closer look at the Flops achieved for the Izhikevich’s model.

Figure 6.21: FLOPs vs Network Size; All Models

 71

Figure 6.22: FLOPs vs Network Size; Izhikevich Model

Table 6.30: FLOPs achieved for intermediate network sizes; All Models

Image Size HH (GFLOPs) Morris Lecar

(GLFOPs)

Wilson

(GFLOPs)

Izhikevich(GFLOPs)

3120 261.97 44.47 17.58 3.19

2640 261.27 44.2 17.68 3.36

1680 255.06 46.68 17.96 3.5

480 146.72 36.21 12.77 2.73

240 62.06 22.26 7.67 2.1

Flops are calculated as:

Total Flops=(flops per neuron update)*(number of time-steps)*(total number of

neurons)/ (Application time in seconds). EQ. 6.1

 As shown in Figures 6.21 and 6.22, the device saturates beyond a certain network

size. For the HH model, the saturation occurs beyond image size 1680, which

corresponds to 2.3 million neurons. The ML model saturates beyond the same network

 72

size as that of the HH model. The less compute density Wilson model saturates beyond

image size 1200, corresponding to 1.44 million and the same was observed for the

Izhikevich’s model. It is seen that the higher the Flops/Byte ratio, the better the device is

expected to perform. In our case the HH model, with highest Flop/Byte ratio, 9.84,

performed the best (576.9x). Izhikevich with lowest Flop/Byte ratio of 0.9997 performs

the least (11.82x).

Multi-GPU Results

 This section investigates the feasibility of multi-GPU systems for large-scale SNN

simulations. In this section, we consider implementing the most compute-intensive

Hodgkin Huxley model on a multi-GPU system. The best implementation,

Implementation 4, from the single-GPU investigations will be used here. This section also

provides an initial study of partitioning the problem across multi-GPUs. Figure 6.23

shows the performance achieved for different block configurations of Implementation 4

on the multi-GPU system when the data is divided equally between the GPU devices.

Table 6.31 shows the performance results for the network sizes for Implementation 4.

The block configuration of 256 consistently performed better than 192 and 288 block

configurations; for the multi-GPU implementation. Context creation, described in

Chapter 5 involves significant overhead. Although not presented in this section, all of the

models have similar application time for the lower network sizes. The CUDA visual

profiler was not able to determine multiprocessor occupancy for each of the GPU

devices.

 73

Figure 6.23: HH Model: Multi-GPU: Speed-up vs Network Size;

Implementation 4

Table 6.31: HH Model: Multi-GPU: Speed-up values for intermediate network sizes;

Implmentation 4

Image Size Performance for BLOCKSIZE

192 256 288

3120x3120 421.26 457.16 327

2400x2400 382.28 412.94 327.17

1680x1680 318.51 344.6 282.26

960x960 193.66 199.97 174.97

480x480 68.31 69.19 66.5

 Since the GPU devices are heterogeneous (having different compute capabilities,

clock frequency, etc.), we will analyze the results when the data is split between the

GPUs in different proportions. When the data is equally divided between the GPUs, the

block configuration of 256 performed the best and was therefore chosen for this study.

 74

Figure 6.24 and Table 6.32 summarize the results as the amount of data processed by

each of the GPU is varied. The Ratio_x in the Figure 6.24 denotes the fraction of data to

be processed by the Tesla C870 card. Hence a ratio 0 would mean the entire data is

moved to GeForce 8400 device memory and hence entirely processed by the GeForce

8400 GPU device; a ratio 1 would mean the entire data is moved to Tesla C870 device

memory and hence solely processed by Tesla C870.

Figure 6.24: HH model: Varying Ratios: Speed-up vs Network Size; Implementation 4

Table 6.32: HH model: Varying Ratios: Speed-up values for intermediate network sizes

Image Size Performance for different Ratios

0 0.25 0.5 0.75 1

3120x3120 459.11 429.3 428.3 416.9 439.8

2400x2400 411.4 368.1 375.1 380.23 430.41

1680x1680 368.91 314.86 313.5 305.45 373.17

960x960 261.96 179.78 194.01 175.73 261.7

480x480 110.76 61.67 68.86 61.72 111.62

 75

Analysis of the performance for the ratios 0 and 1 in Table 6.32 indicates that the

GPU devices have near similar processing power. The multi-GPU system performance

for a ratio of 0.25 or 0.75 is also similar. From these results, it is inferred for these

applications, multi-GPU systems do not provide additional speed-up, although they can

be useful when the problem size is too large for the memory capacity of a single GPU

system.

In summary, this chapter has presented and analyzed the single-GPU results for

four implementations utilizing the different parallelization techniques introduced in

chapter 5. It was observed that the effects of multiprocessor occupancy and block

configuration size are more noticeable for highly compute-intensive models. While the

optimizations G and GT are the viable memory optimization techniques for the compute-

intensive models, GS proved to be a better technique for the lesser compute-intensive

models. The best performing implementation, Implementation 4, was applied for the most

compute-intensive Hodgkin Huxley model on the multi-GPU systems. The problem was

partitioned in several ratios and evaluated. Although the devices are heterogeneous (see

Table 5.1), the performance of the two devices in the multi-GPU system was found to be

similar. The conclusion is multi-GPU systems are more suited for situations where the

GPU device memory is insufficient to hold the network data (problem size). Equal

division of the data between the GPUs will provide optimal performance. In the next

chapter we present the conclusions and future work.

 76

Chapter 7

Conclusions and Future Work

 In this thesis, we were successful in implementing the level-1 neurons, the most

compute intensive layer of neurons in a two-level SNN character recognition network.

The neuron dynamics of the network were based on the four most biologically realistic

SNN models, namely, the Izhikevich model, Wilson model, Morris Lecar model and the

Hodgkin Huxley (HH) model. In contrast to the implementation in [13] which could scale

only upto 5.76 million neurons, the implementations in this thesis were enabled to be

scaled upto 9.7 million neurons. For the single-GPU implementation, substantial speed-

ups were achieved, 576.9x for the HH model, 105.86x for Morris Lecar model, 13.34x

for lesser compute intensive Wilson model, and 11.82x for the least compute intensive

Izhikevich model. Speed-ups were reported to increase with network size, except for a

few intermediate network sizes. It is important to note that the GPUs perform best when

the applications have a significantly high Flop/Byte ratio. Optimization techniques made

available by the CUDA programming model, namely, Memory optimization techniques,

Execution configuration optimization, and Instruction optimization were applied to

develop four successive mapping methods described in Chapter 5.

Each of the implementations was examined for the speed-up performance and

parameters that could lead to performance degradation. Study of Implementation 1

revealed that for heterogeneous systems involving problem partitioning between the host

and the device, memory transfer size and frequency are the most important bottlenecks

 77

that should be minimized. For Implementation 1, it was also observed that the memory

optimization techniques G and GT performed the best for models with significantly

higher Flop/Byte ratios, whereas for the models with lower Flop/Byte ratio, GS is best

suited. Implementation 2 has showed significant improvement by reducing the transfer

size of the firing vector, but suffered from the problem of uncoalesced accesses. These

uncoalesced accesses were avoided in Implementation 3, which together with use of

registers and fast math operations produced performance improvements over the previous

two implementations. Implementation 4 successfully reduced the global firing vector

transfer frequency with the use of block vectors, hence significantly reducing the overall

application time. Although a large number of uncoalesced accesses (due to character

data-type for firing vector) and serialized warps (due to shared memory) were observed,

reducing the memory transfer time overshadows the effects of these hazards. Another

important observation is made regarding the Execution configuration optimization.

Higher occupancy and large number of threads per block have more direct implication on

the performance only for models with higher Flop/Byte ratio such as the HH model and

the Morris Lecar model. The effect of the execution configuration optimization was not

direct in the cases of the two less compute-intensive models, although it is observed in

general that one should strive to keep the occupancy and block configuration sufficiently

high to avoid memory access latencies.

The multi-GPU system was successfully used to implement the best

implementation, Implementation 4, for the most compute intensive HH model. Although

speed-ups as high as the single-GPU implementation were not observed, the problem

 78

partitioning was successful. It is inferred that for applications that may run out of GPU

device memory, multi-GPU systems can be of great use and partitioning the data equally

between the GPU devices can yield desirable performance. Nonetheless, a need for

further studies is required with equivalent GPUs to determine true performance.

The research work in this thesis sufficiently establishes GPU accelerators as a

potential candidate for large-scale, accurate neuron model simulations. With the speed-

ups achieved in this research, it is inferred that a cluster of GPUs can be more effective in

performing these simulations accurately and in near-real time compared to the large

clusters of commodity processors. Hence, the next step will be to investigate the use of a

cluster of GPU devices and develop parallelization methods for large-scale neural

network simulations. Additionally, programming models for GP-GPUs, such as CUDA

and OpenCL, are both gaining in popularity and a comparison of the capabilities of these

developing programming models to fully exploit GPU computing performance is another

interesting investigation. Finally, in this thesis we have only considered Nvidia GPUs and

future studies should include a comparison with AMD/ATI GPUs.

 79

References

1. M.A. Bhuiyan, T.M. Taha, and R. Jalasutram, “Character recognition with two

spiking neural network models on multi-core architectures,” in Proceedings of

IEEE Symposium on CIMSVP, Nashville, TN, pp. 29-34, March 2009.

2. E. Izhikevich, “Which Model to Use for Cortical Spiking Neurons?” IEEE

Transactions on Neural Networks, vol. 15(5), pp. 1063-1070, 2004.

3. A. Delorme and S.J. Thorpe, “SpikeNET: an event-driven simulation package for

modeling large networks of spiking neurons,” Network-computation in neural

systems, vol. 14(4), pp. 613-627, November 2003.

4. A.R. Baig, “Spatial-temporal artificial neurons applied to online cursive

handwritten character recognition,” in Proceedings of the European Symposium

on Artificial Neural Networks, pp. 561-566, April 2004.

5. T. Ichishita, R. Fujii, “Performance evaluation of a temporal sequence learning

spiking neural network,” Proceedings of the 7
th

 IEEE International Conference on

Computer and Information Technology, pp. 616-620, October 2007.

6. C. Panchev and S. Wermter, “Temporal sequence detection with spiking neurons:

towards recognizing robot language instructions,” Connect. Sci., vol. 18, issue 1,

pp.1-22, 2006.

7. C. Johansson and A. Lansner, “Towards Cortex Sized Artificial Neural Systems,”

Neural Networks, 20(1), pp. 48-61, January 2007.

8. Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia Object Image Library

(COIL-100) (No. CUCS-006-96): Columbia Automated Vision Environment.

9. R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, “The Cat is

Out of the Bag: Cortical Simulations with 10
9
 Neurons, 10

13
 Synapses,”

Proceedings of SC ’09, Portland, Oregon, November 2009.

 80

10. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane

current and application to conduction and excitation in nerve,” Journal of

Physiology, vol. 117, pp. 500-544, 1952.

11. W. Rall, “Branching dendritic trees and motoneuron membrane resistivity,”

Experimental Neurology, vol. 1, pp. 503-532, 1959.

12. J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, A. V. Veidenbauma, “A

configurable simulation environment for the efficient simulation of large-scale

spiking neural networks on graphics processors,” Special issue of Neural

Network, Elsevier, vol. 22(5-6), pp. 791-800, July 2009.

13. M. A. Bhuiyan, Vivek K. Pallipuram, Melissa C. Smith, “Acceleration of Spiking

Neural Networks in Emerging Multi-core and GPU architectures”, to be presented

in HiCOMB 2010, a workshop in IPDPS 2010, April 2010.

14. Simon Haykin, “Neural Networks, A Comprehensive Foundation, Second

Edition.”

15. A. Gupta, L. Long, “Character Recognition using Spiking Neural Networks,” in

Proceedings of IJCNN, pp. 53-58, August 2007.

16. E. M. Izhikevich, “Simple Model to Use for Cortical Spiking Neurons,” IEEE

transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572, November 2003.

17. H. R. Wilson, “Simplified dynamics of human and mammalian neocortical

neurons,” J. Theor. Biol., vol. 200, pp. 375-388, 1999.

18. C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,”

Biophys. J., vol. 35, pp. 193-213, 1981.

19. Minh Tri Do Dinh, “GPUs – Graphical Processing Units,” Vertiefungsseminar

Architektur von Prozessoren, SS 2008, Inst. of Comp. Sci., Univ. of Innsbruck,

July 2008.

20. www.nvidia.com, “Technical Brief: NVIDIA GeForce 8800 GPU Architecture

Overview,” November 2006.

 81

21. www.nvidia.com, “The CUDA compiler driver: NVCC”, May 2007.

	Clemson University
	TigerPrints
	5-2010

	ACCELERATION OF SPIKING NEURAL NETWORKS ON SINGLE-GPU AND MULTI-GPU SYSTEMS
	Venkittaraman vivek Pallipuram krishnamani
	Recommended Citation

	tmp.1387585722.pdf.l1klN

