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ABSTRACT 
 
 

  The Timing Module and Optical Communication Card (OCC) are used for 

acquisition of neutron event data by the instrument systems at the Spallation Neutron 

Source (SNS) neutron scattering facility. The instrument systems produce a very large 

flux of neutrons of varying energies over a short time period through the spallation 

process.  The Timing Module and OCC require high-bandwidth communication to ensure 

high-speed data movement to the memory in the data collection system without loss of 

neutron data. The existing implementations use a standard PCI-X bus interface to transfer 

the data between the cards and the host computer. The data processing on the existing 

cards is implemented in a Xilinx Virtex-II FPGA. The bandwidth restrictions of the PCI-

X bus and the logic constraints of the Virtex-II FPGA have resulted in limited capabilities 

of the instrument systems. New designs for the timing and communication modules that 

will improve performance, avoid data loss, and provide for future logic expansion are 

desired. 

  In this project, we redesign the Timing Module and OCC moving from a PCI-X to 

PCI-Express bus interface to improve the data acquisition bandwidth. The new design 

also uses a Xilinx Virtex-5 FPGA to allow more channels to be processed per card and 

provide for further expansion. Further, the Virtex-5 device also has an embedded PCI-

Express Hard IP core. This internal core simplifies the Printed Circuit Board (PCB) 

design since there is no external PCI interface chip required and decreases the probability 

of errors between the PCI interface and user logic design. The Timing Module 

implements a simple PCI Express read and write for the data transfer. The OCC requires 
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a higher data rate than the Timing Module and therefore uses a more complex bus master 

direct memory access (DMA) for the endpoint PCI-Express block, which allows for 

lower CPU utilization and higher performance.  

  New user logic interfaces were designed to integrate the PCI-Express endpoint 

with the Timing Module and the OCC logic designs. A single PCB was designed to 

function as both the Timing Module and OCC. The logic designs were verified by both 

functional simulation and in-system JTAG signal capture on the new PCB. The results 

indicate that our design provides efficient data transfer, higher throughput, and 

scalability, benefitting both modules and meeting design requirements.   
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CHAPTER ONE 
 

INTRODUCTION 
 
 

  The Spallation Neutron Source (SNS) is a facility at Oak Ridge National 

Laboratory (ORNL) for neutron-scattering research. Neutron-scattering research has wide 

spread applications in improving medicines, foods, electronics, automobiles, and 

avionics. The instrumentation systems at SNS produce neutrons of different energies by a 

spallation process where high energy protons impact a target. The instrument system’s 

data acquisition system (DAS) [1] is designed for control and collection of neutron-

scattering data. The DAS group has developed a number of electronic boards which are 

capable of collecting data from neutron detector electronics. In addition to detector 

electronics, the boards are also used to send real-time digital signals via fiber optics. The 

need for high data rate capabilities necessitated the development of custom hardware 

boards. Two of the custom boards that accomplish these tasks are the PCI based Timing 

Module card and optical communication card (OCC). 

  The Timing Module [2, 3] maintains various registers that control the 

configuration and operation of the timing cards. The registers are responsible for 

maintaining the synchronization of the detector electronics with the chopper and 

accelerator phasing. The Timing Module also provides the master timing pulse to the 

chopper control system for phasing the chopper disk with the proton on target event. The 

registers are accessed by the host CPU over a PCI interface. The control registers are 

implemented on a Xilinx Virtex-II FPGA. The physical link between the host CPU and 

the Timing Module is a 66 MHz PCI-X bus. The PCI interface is implemented with the 
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Xilinx PCI-X IP core as a 32-bit endpoint device. The PCI-X interface, as implemented, 

is not able to satisfy the growing bandwidth requirements for the SNS systems, which 

results in the loss of timing data. It is practically impossible to achieve additional 

bandwidth and higher data rates with the existing PCI-X interface. Apart from the 

communication bus bandwidth limitation, there is also a logic area constraint in the 

Virtex-II FPGA making it impossible to add more functionality and registers to the 

current design. Originally, a single Timing Module was intended to control eight chopper 

systems, but the logic constraints have limited the module to only four chopper controls. 

To address the listed problems in the Timing Module, we consider redesign of the current 

module. In the redesign, we modify the PCB and FPGA design of the current Timing 

Module to allow operation on a PCI-Express bus thereby improving the bandwidth. 

Additionally, we implement the Timing Module logic in a larger FPGA that includes 

communication macros for the PCI Express interface and provides more room for 

additional functionality. 

 The optical communication card (OCC) [4, 5] is an interface to the high-

performance computers for communication to the SNS detector electronics. The detector 

electronics timestamp the events and calculate the position index of the neutrons 

detected.  Two 32-bit values determine the time event and position of a detected neutron.  

These values are stored locally in the detector memory and sent as a data packet 60 times 

a second. Up to 1 million bytes may be transferred during a frame. The OCC receives this 

data sent by the detector electronics via a fiber optic data link. The OCC also uses the 

Xilinx PCI-X 64bit/66MHz core (similar to that used in the Timing Module) for the 
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communication with the host CPU. The OCC is capable of initiating a DMA transfer of 

the data from the detector electronics to the memory of the host computers. The DMA 

transfer capability of OCC indicates that it has higher data rate requirements than the 

Timing Module. Therefore, like the Timing Module design, we modify the current FPGA 

design to use the PCI Express interface and bus master DMA operation. 

  The FPGA-based PCI Express implementation uses PCI Express IP cores 

available from Xilinx. The advantages of an FPGA-based solution are that it allows the 

designer to create a design that exactly matches the user’s requirements and provides 

flexibility in the design making an FPGA-based design an ideal solution for the SNS 

timing and communication cards. There are three options when an FPGA is used for PCI-

based designs: one-chip solution with a soft IP core, one-chip solution with a hard IP core 

[6], and two-chip solution [7]. The one-chip solution with a soft IP core utilizes a high-

performance FPGA such as Xilinx Virtex-4 to perform the PCI Express protocol, 

physical interface, and transmission and the soft IP core is implemented in the FPGA 

logic. The one-chip solution with a Hard IP core utilizes a Virtex-5 FPGA, which 

includes a PCI Express endpoint block in hard logic. Xilinx provides PCI Express 

endpoint solutions to configure the Virtex-5 Built-in Endpoint Block. These solutions 

require additional FPGA logic to create a complete Endpoint solution for the PCI Express 

operation. In the two-chip solution, the physical layer resides in a dedicated chip c (PHY) 

[7] and the logic and the transport layers reside in an FPGA. There is an interface 

between the external PHY device and the FPGA device called a PIPE (Physical Interface 

for PCI Express). A broad range of PHY devices are available from manufacturers such 
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as Genesys Logic, Philips Semiconductor, and Texas Instruments. This two-chip solution 

uses a low-cost FPGA such as a Xilinx Spartan-3 connected over a PIPE interface to the 

PCI Express PHY chip to implement all layers of the interface. Advantages of the single-

chip solution include higher performance and simplified PCB while the two-chip solution 

is more cost effective. In order to obtain better performance and more functionality, we 

selected Xilinx Virtex-5 FPGA with PCI Express hard IP core. 

  In our work, we primarily perform the following tasks to modify the current 

Timing Module and OCC: 

1) Circuit design, 

2) FPGA code design, 

3) Debug and troubleshooting of the design to assure design goals have been 

met. 

  In the circuit design phase, we reviewed the PCI-X design and investigated the 

bus changes needed for PCI Express. After deciding on the Xilinx FPGA and the PCI-

Express solution, we provided circuit board design assistance to the SNS DAS group. In 

the FPGA code design phase, we reviewed the current VHDL code and modified the 

code to work with the Xilinx Virtex-5 PCI Express hard IP core. Debugging and 

troubleshooting was conducted throughout the design of the FPGA code and continued 

through the debugging of the new board and system testing. The debugging was 

performed with test benches, simulations, and JTAG signal capture. 

  The thesis is organized in the following manner: Chapter 2 provides the existing 

design overview and requirements, Chapter 3 discusses the PCI Express architecture and 
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the Xilinx programmed I/O and DMA example designs used as references to integrate the 

PCI-Express with the existing design. Chapter 4 discusses the design and implementation 

methods. Chapter 5 provides experimental and performance results. Chapter 6 concludes 

the thesis. 
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CHAPTER TWO 

BACKGROUND 

 
  In this chapter, we discuss the existing PCI-X based Timing Module and the 

Optical Communication Card (OCC) designs that facilitate neutron data acquisition. We 

also discuss the theory of operation, block diagrams, and register information for the 

boards.  

2.1  Timing Module Technical Details 

 At the SNS neutron scattering facility, the instruments use time-of-flight (TOF) 

measurements to calculate the energies of the detected neutrons. TOF is the time 

difference between neutron generation and the time at which the neutron is detected by 

the detector electronics. The Timing Module [2] [3] in the SNS facility is responsible for 

providing timing signals to the detector electronics. The Timing Module also provides 

signals to the chopper system [8] for phasing of the chopper disk with the proton on 

target event. A chopper in the instrument system is designed to slow down fast neutrons 

in a prompt pulse. The Timing Module can also help with analysis of the chopper 

performance. The Timing Module communicates with the detector electronics [9], the 

chopper timing system, and the accelerator timing system via fiber optic links. The 

Timing Module registers implemented in the FPGA are divided into three major 

subsystems: Tsync generation circuit, veto generation circuit, and phase and timing 

circuit. The Timing Module also handles the multi-frame timing requirement for multiple 

protons in the beam line. Finally, the Xilinx FPGA also implements the PCI-X soft core 

and interface registers.     
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  Figure 2.1 shows the Timing Module printed circuit board (PCB) and Figure 2.2 

shows the functional block diagram of the Timing Module. The diagrams show three 

optical transceivers and the Virtex-II FPGA for the timing logic and the PCI-X interface. 

The PCI-X interface uses the Xilinx PCI-X logic IP core [10]. 

 

Figure 2.1: Timing Module PCB 

 

Figure 2.2: System blocks of Timing Module 
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2.1.1  Optical Link Signals 

 There are three optical transceivers in the Timing Module board. The first optical 

link is used to receive signals from the accelerator system and to send signals to the 

chopper system, forming a timing loop described in section 2.1.5. The second optical link 

is responsible for sending signals to the detector electronics. The third optical link is a 

spare link for testing. 

 The timing loop input signals are given below: 

• PT0 or proton on target signal is an approximately 1 us pulse indicating the start 

of the proton beam on target. It periodically occurs every 16.67 ms. 

• Tstart signal is an approximately 1 us long pulse that indicates the time of the 

extraction event. 

• Beam veto signal is an approximately 1 us long pulse that indicates when the 

beam has been dumped and no proton pulse will be on the target. 

• Loss of lock signal indicates that the master timing unit has lost lock. 

• The chopper Top Dead Center (TDC) pulse is an approximately 1 us long pulse 

that indicates when the chopper has reached a position known as TDC. There may 

be up to 8 TDC pulses for the 8 chopper systems. 

The timing loop output signals are given below: 

• Chopper reference pulse is an approximately 200 us long pulse that is phased with 

the Tstart signal generated by the accelerator. This signal is used by the chopper 

control system to synchronize the phasing of the chopper disk.  
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• Tsync pulse is an approximately 1 us long pulse to the detector electronics. The 

signal indicates that the detector electronics should reset the time stamp counts. 

• Veto pulse is an approximately 1 us long pulse to the detector electronics. It 

indicates that the detector electronics should veto the neutron data from the 

current neutron pulse.  

2.1.2 FPGA User Logic   

 The user logic is implemented in a Xilinx Virtex-II FPGA. It generates the 

appropriate signals for the detector electronics in the current neutron frame such as the 

veto and Tsync signals. It is also responsible for maintaining the timing and phase 

information on the accelerator and chopper pulses. The Timing Module registers 

implemented in the FPGA are in little endian format.  Figure 2.3 shows the input and 

output signals to the FPGA. The Timing Module receives PT0, Tstart, Beam Veto, and 

Loss of Lock input signals from the accelerator systems. As shown in Figure 2.3, the 

Timing Module also receives chopper TDC pulses from chopper systems and provides 

chopper reference pulses to the choppers. The Tsync and Veto output pulses are 

transmitted to the detector electronics. 
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Figure 2.3: FPGA logic I/O signals  
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Figure 2.4). The pulses on the time axis represent PT0. The slots at the chopper position 

indicate the position of the chopper opening. The TOF is determined by adding the time 
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calculation of the TOF requires the addition of the time PT0(n+1) – PT0(n) term to the 

time stamp generated at the detector electronics.  
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Figure 2.4: Short instrument system neutron detection 

 

Figure 2.5: Long instrument system neutron detection 

2.1.4  Timing Module Subsystems 

 The three subsystems of the Timing Module logic are timing and phase register 

circuitry, veto generation circuitry, and Tsync generation circuitry. 

 The timing and phase register circuitry, as shown in Figure 2.6, contains PT0 to 

PT0 time registers and chopper phase registers. The PT0 to PT0 time registers keep track 

of the successive PT0 times. There are 16 such registers stored in a block RAM memory. 

The first register keeps time difference between PT0 of the nth pulse and PT0 of the (n-

1)th pulse. Similarly the second register keeps track of the time difference between PT0 of 

the nth pulse and PT0 of the (n-2)th pulse and so on. The chopper phase registers keep 
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track of the time difference between successive TDC pulses of the corresponding 

choppers.  

 

Figure 2.6: Timing and phase register circuitry 
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Tstart is seen. The free running divisor generates a 60 Hz clock that can be used in place 

of Tstart and PT0 for testing purpose. 

 

Figure 2.7: Veto generation circuitry 

 

Figure 2.8: Tsync generation circuitry 
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2.1.5 Timing Loop 

 The timing loop, as shown in Figure 2.9, is a closed loop created between the 

chopper Optical Distribution Module (ODM), accelerator ODM, and the Timing Module. 

The ODM is an optical transceiver that converts digital signals to optical pulses. It also 

provides the inverse function of restoring optical pulses to digital outputs. The chopper 

TDC pulses from the chopper ODM are passed though the optical link to the accelerator 

ODM. The Tstart and PT0 signals from the accelerator are fed into the accelerator ODM 

and sent to the Timing Module with the chopper TDC pulses. All the above signals are 

used by the Timing Module to produce vetoes and pulse-by-pulse chopper phase error 

and reference signals that are passed both to the detector ODM and back to the chopper 

ODM.  

 

Figure 2.9: Timing loop 
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2.1.6  PCI-X Register Interface 

 All registers in the Timing Module are defined as 32-bits. However, not all 

registers use the full 32 bits assigned to them. The number of registers could be reduced 

by packing those registers that are shorter than 32-bits. This packing option is necessary 

in the Xilinx Virtex-II FPGA due to the logic constraints. However, register packing 

results in a more complex and less intuitive design. In the new Xilinx Virtex-5 design, 

there is ample logic and all registers are assigned the full 32 bits. 

 The registers are divided into two categories: Read/Write registers and Read-only 

registers. The Read/Write registers are used for configuration and control. These registers 

are accessed by the Windows-based software application through a device driver to 

configure and control the operation of the Timing Module. The Read-only registers 

provide the timing information, error information, and status of the Timing Module. 

Some of this information is required by the Data Acquisition Systems (DAS) operation 

while other information is required when debugging the Timing Module. 

2.2  Optical Communication Card Technical Details 

 The Optical Communication Card (OCC) [4, 5] receives data from the detector 

electronics via a fiber optic data link using a lightweight point-to-point protocol. There 

are two 32-bit registers kept locally in the detector electronics that store the time stamp 

and position index of the detected neutrons. The register values are sent to the OCC 

periodically at a rate of approximately 60 times a second. Figure 2.10 shows the block 

diagram of the link between detector electronics and the OCC. 
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Figure 2.10: OCC and detector electronics connection 

2.2.1 Optical Communication Card Block Architecture 

 Figure 2.11 shows the OCC printed circuit board with all the hardware 

components and Figure 2.12 shows the block diagram of the optical communication card.  
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Figure 2.12: System blocks of OCC 

 The interface logic consists of the Xilinx PCI-X 64bit/66MHz soft core on a 

Xilinx Virtex-II FPGA. The control logic consists of the control and status registers and 

state machines that implement the communication protocol for the optical and copper 

transceiver chips. The control logic is also responsible for reading from and writing to the 

internal FIFOs and handling the DMA transfers.       

 The high-speed data links consist of 21 signals that are serialized into 3 LVDS 

signal pairs for transmission. The fourth LVDS pair transmits the data clock. At the 

receiving end, the 3 LVDS signals are de-serialized and recovered into the 21 data link 

signals using the data clock on the fourth LVDS signal. The high-speed data links are 

connected to the ROC [11], FEM [12], and DSP [13] boards, which are interfaced to the 

detector electronics. The optical interface is handled by an optical transceiver through a 

TLK2501 chip [14]. 
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2.2.2 Communication Protocol 

 This section describes the communication protocol related to the PCI bus, the 

optical interface, and the LVDS interface. Data width for the PCI bus is 32-bits wide. The 

data sent via the optical interface and the LVDS interface is not formatted. The inbound 

data from the LVDS link has minimal processing, while the data from optical 

communication link is processed according to the SNS protocol format discussed in the 

following subsections.  

2.2.2.1 OCC Memory  

 The control and status registers are referenced to BAR0 of the OCC memory 

space. The other memory areas IDMA or input FIFO, ODMA, and output FIFO are 

implemented on the FPGA as a circular buffer with producer and consumer index and 

referenced to BAR1 of the OCC memory space. These memory areas store data that are 

transferred between the LVDS or optical communication interface and the host PC. 

 For target write, the OCC IDMA memory area is written. The memory area is a 

32-bit addressable dual port memory with 8 KB length. For target read, the OCC ODMA 

memory is written. The memory is a 32-bit addressable dual port memory with 16 KB 

length. The memories are implemented as a circular buffer to allow reading and writing 

of the ODMA and the IDMA memory areas. The circular buffers use the producer and 

consumer index. The producer index keeps track of the writing position and the consumer 

index keeps track of the reading position of the buffer. The buffer is considered empty 

when both the indexes are equal and full when the producer index is one less than the 
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consumer index. The output FIFO consists of the Inbound Message Queue (IMQ), Data 

Queue (DQ), and Command Queue (CQ). 

2.2.2.2 LVDS Interface Protocol 

 Figure 2.13 shows the data communication between the LVDS interface and the 

host PC. During a target write, the data is transferred from the host PC to the OCC and 

then sent over the LVDS link. The data is first written to the IDMA at the current 

producer index. Then the producer index and the IDMA length are updated. The software 

application writes to bit 0 of the configuration register which sets the TX-GO bit in the 

firmware. Then the OCC firmware sets TX_IP bit automatically, which indicates the that 

the transmission is in progress. When the transmission cycle is done, a hardware interrupt 

occurs. 

 During a target read, bit 1 of the status A register is set to indicate that the 

received data is available from the LVDS link. The data is transferred from the OCC 

without a DMA transfer. The target ODMA length register contains the number of bytes 

to read. If desired, an interrupt can be enabled whenever data is available for reading. In 

the case of initiator writes, the data at the LVDS deserializer is connected to the output 

FIFO. The data transfer from the output FIFO to the host PC memory is discussed in the 

section 2.2.2.3. The FPGA keeps track of the input count. Later the data from the output 

FIFO is transferred to the system memory through DMA transfer. 
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Figure 2.13: Data communication between LVDS interface and host PC 

2.2.2.3 Optical Interface Protocol 

 For the transmission of the data between the OCC and the optical communication 

link, the OPTCVR bit in the control register is set. When data is written from the host PC 

to the OCC card via the PCI bus, it is written to an internal input FIFO on the OCC. 

When TX_GO bit is set through the control register, the data transfer from input FIFO is 

initiated over the optical communication link. An interrupt can be generated after the 

successful completion of the entire DMA transfer. Figure 2.14 shows the data transfer 

between the optical communication interface and the host PC. 
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Figure 2.14: Data communication between optical interface and host PC 

The optical serializer is a 16-bit data interface used to transfer 32-bit data. When 

the data is sent from the input FIFO to the optical communication card, the lower 16-bits 

are sent in the first clock cycle followed by the upper 16 bits in the next clock cycle. Data 

from the optical deserializer is connected to the output FIFO implemented on the FPGA, 

as shown in Figure 2.14.  The FPGA keeps track of the input count and also keeps track 

of the reception of the command descriptor which decides whether the packet received is 

a command packet or a data packet.  

 The data transfer from the output FIFO to the host PC memory via the PCI bus is 

done in one of the following two ways: 

• The OCC receives the entire data packet including the header and payload 

DWORDs. The header is written to the Inbound Message Queue (IMQ) of the 

host PC via the PCI initiator protocol. The payload is sent to the Data Queue 

(DQ). The DQ is a circular buffer of length N where N is power of 2. The 
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maximum limit of the DQ in length is 4 GB. The DQ producer index is a circular 

offset pointer to this memory and is incremented on quadword boundaries. The 

incremented DQ producer index and the IMQ producer index are written to the 

host at the DQ producer address and the IMQ producer address respectively. An 

interrupt is set to inform the host to process the data at DQ. 

• When the OCC receives a command packet, the header is written to the IMQ of 

the host via the PCI bus. The payload is written to the Command Queue (CQ). 

The CQ is also a circular queue but much smaller that the DQ. The incremented 

CQ producer index and the IMQ producer index are written to the host at the CQ 

producer address and the IMQ producer address respectively. An interrupt is set 

to inform the host to process the data at CQ. 

2.4 Summary 

 This chapter discussed the original PCI-X based Timing Module and OCC design. 

We thoroughly studied the earlier designs to migrate the design to work with the Virtex-5 

FPGA and PCI Express. We discussed all the registers and memory buffers required for 

the Timing Module and OCC implementation. Our approach to integrate the PCI Express 

bus in the designs was also discussed. Chapter 3 discusses the PCI Express architecture 

and Xilinx Endpoint Block Plus for PCI Express used in the new design.  
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CHAPTER THREE 
 

PCI EXPRESS ARCHITECTURE 
 
 

  This chapter discusses the PCI Express architecture and Xilinx Endpoint Block 

Plus solution for PCI Express. It also discusses the programmed input/output (PIO) [19] 

and bus master DMA (BMD) example design [20] available from Xilinx. 

3.1 PCI Express Architecture 

 The PCI Express architecture includes the PCI Express topology, the PCI Express 

Endpoint that is implemented as three-layer architecture, and the software compatibility. 

3.1.1 PCI Express Topology 

  PCI Express is a point-to-point serial interconnect that provides high-bandwidth 

communication over fewer pins than older PCI implementations. The PCI Express 

topology [15], shown in Figure 3.1, is composed of a root complex, several endpoints 

(I/O devices), and a switch.  

  PCI Express connects the CPU and memory subsystems to the I/O endpoints 

through a switch. An endpoint refers to a device that acts as a requester and/or completer 

to the PCI Express transaction. An Endpoint is an I/O device connected to the PCI 

Express, such as the Timing Module and the Optical Communication Card (OCC) in our 

case. Each port of the switch is connected to a PCI Express endpoint or a legacy 

endpoint. A switch enables a series of connectors for add-in I/O and appears to the 

configuration software as two or more logical PCI-PCI bridges. The switch uses address 

base routing to forward transactions. 
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Figure 3.1: PCI Express topology 

3.1.2 PCI Express Layering 

 The PCI Express protocol has three discrete logical layers: the transaction layer, 

the data link layer, and the physical layer. Each layer can be divided into two sections for 

data flow as shown in Figure 3.2 [15]: the transmit section and the receive section.  
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Figure 3.2: PCI Express data flow 

 PCI Express uses packets to communicate between layers. The major function of 

the protocol layers is to generate and process Transaction Layer Packets (TLPs). Figure 

3.3 [15] shows the TLP packet flow through the layers. Other functions of the protocol 

layers include flow control management, initializing and power management functions, 

data protection, error checking and retry functions, and maintenance and status tracking.  

 The transaction layer is the upper layer of the architecture and its primary 

function is to assemble and disassemble the TLPs. Read, write and certain types of PCI 

Express events happen through TLPs. The transaction layer supports three PCI address 

spaces: memory, I/O, and configuration. 
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Figure 3.3: TLP flow through the layers 

 The Data Link layer is the intermediate layer between the transaction and physical 

layers. The responsibilities of the Data Link layer are: link management, error detection, 

and error correction. The transmitting side of the Data Link layer accepts TLP from 

transaction layer. It applies the data protection code and TLP sequence number and 

passes it to the physical layer for physical transmission through the link. The receiving 

side of the Data Link layer checks the integrity of the received TLP and submits them to 

the transaction layer for further processing. If a TLP error is detected, the layer requests 

retransmission of the TLP until the TLP is received correctly, or the link is considered to 

have failed. The Data Link layer also generates and consumes its own packets called the 

Data Link Layer Packets (DLLP) that are used for link management functions. 

 The physical layer performs all interfacing operations, including driver and input 

buffers, framing, de-framing, parallel-to-serial and serial-to-parallel conversion, Phased 

Locked Loop (PLL), and 8b/10b encoding and decoding of TLPs and DLLPs. The 

physical layer also supports lane reversal for multi-lane designs and lane priority 

inversion. 
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3.1.3  Software Compatibility 

 PCI Express uses PCI compatible configuration and device driver interfaces [16] 

allowing backward compatibility with legacy PCI designs. The PCI architecture layer 

with PCI driver compatibility is shown in Figure 3.4. The PCI configuration space and 

programmability of I/O devices are unchanged in PCI Express. Therefore, current 

operating systems, which are PCI compatible can boot for PCI Express without any 

changes in the device driver. The run-time software model such as load-store and shared 

memory model of PCI is also maintained within the PCI Express architecture. New 

software may be developed to utilize new capabilities of the PCI Express architecture. 

 

Figure 3.4: PCI Express architecture layer 
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3.2 Xilinx Endpoint Block Plus for PCI Express 

 The Endpoint Block Plus for PCI Express [17] from Xilinx is a scalable serial 

interconnect building block used with the Xilinx Virtex-5 series FPGAs. The solution 

supports x1, x4, and x8 lane options for the PCI Express base specifications v1.1.  Table 

3.1 shows the device support, resource usage, and data path width for the Endpoint Block 

Plus solution.  

 Figure 3.5 shows the top-level functional blocks and interfaces for the PCI 

Express Endpoint Block Plus core. The Endpoint Block configuration management layer 

implements the PCI Type 0 Endpoint configuration space providing the following 

functions: 

• PCI Configuration Space 

• Power management 

• Error reporting and status functionality 

• Configuration Reads and Writes for receive 

• Completion with or without data for transmit 

• Interrupt emulation 

Product I/O Device 
Support 

LUTs FFs Data Path 
Width 

1-lane Endpoint Block Plus 1  
Virtex 5 

LXT/SXT 

2100 2250 64 
4-lane Endpoint Block Plus 4 2100 2250 64 
8-lane Endpoint Block Plus 8 2100 2250 64 

 

Table 3.1: PCI Express lane overview 
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Figure 3.5: Top-level functional blocks of PCI Express endpoint 

  The Xilinx PCI Express Endpoint Block uses the RocketIO GTP transceivers [18] 

for the packet transaction. The RocketIO is a power-efficient high speed serial I/O 

available in the Virtex 5 FPGAs. Using these I/O pins, transceiver module is designed to 

operate at a serial bit rate of 2.5 GB/s for the PCI Express protocol. 

  The interfaces to the Block Plus core as shown in Figure 3.5 are defined below:  

• System Interface 

• PCI Express Interface 

• Configuration Interface 

• Transaction Interface 

  The system interface consists of the reset signal, clock signal, and a free running 

reference clock output signal. The assertion of the asynchronous system reset signal 

performs a hard reset of the entire core.  The system clock signal is either 100 MHz or 
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250 MHz depending on the user’s selection. The PCI Express endpoint uses a 

synchronous clocked system as shown in Figure 3.6 where a 100 MHz clock from the 

link is fed to a jitter attenuator to get a 100 MHz or a 250 MHz input clock to the core. 

 

Figure 3.6: PCI Express clock 

  The PCI Express interface consists of a pair of transmit and receive differential 

signals. For example, the x1 core uses only lane 0 with a pair of differential signals for 

transmit and a second pair for receive. To achieve higher bandwidth, the x4 core uses 

lanes 0-3 and x8 core supports lanes 0-7. 

  The transaction interface is the interface to the user logic that allows the user 

design to generate and consume TLPs. The most common transaction interface signals 

are transaction clock, transaction reset, and transaction link-up. Transaction of the TLP is 

synchronous with the transaction clock. The transaction clock frequency can be fixed 

when generating the PCI Express core using Xilinx CORE generator. Recommended and 

optional frequencies for each lane width are shown in Table 3.2. 
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Lane Width Recommended 
Frequency (MHz) 

Optional Frequency 
(MHz) 

x1 62.5 125 
x4 125 250 
x8 250 250 

 

Table 3.2: PCI Express lane frequency 

  The transaction link-up signal is asserted when a connection is established 

between the core and the link partner. It is de-asserted when the link is lost due to an 

error on the transmission channel. Figure 3.7 shows a timing diagram where an 

approximate delay between the transaction reset (trn_reset_n) and transaction link-up 

(trn_lnk_up_n) signals is shown. There are several transmit and receive transaction 

interface signals that are responsible for sending and receiving a TLP from the user logic. 

These signals are discussed in detail in Chapter 5 of the thesis.   

  The configuration interface allows the user logic in the FPGA to access and 

examine the configuration space of the Endpoint for PCI Express. It also provides the 

link and device status through the configuration signal. The user logic can also initiate a 

message signaling interrupt (MSI) or legacy interrupts through the configuration 

interface. Interrupt operation and implementation is discussed further in Chapter 4 and 5 

of the thesis.   
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Figure 3.7: Transaction interface signal timing  

3.3 Programmed I/O Design 

 A Programmed I/O (PIO) example design [17, 19] is used in this project to test 

and verify the basic PCI Express functionality in both of the new designs. The example 

design was also referenced closely when designing the Timing Module. The example 

design allows the host CPU to access the memory mapped input output (MMIO) and 

configuration mapped input output (CMIO).  

 The design consumes 8192 bytes of target space in the FPGA Block RAM. It 

supports one DWORD payload size with 32-bit or 64-bit addressing. In a typical write 

operation, the CPU issues a store register to a MMIO address command and the data is 

moved downstream. Then the Root Complex (see Figure 3.1) generates a Memory Write 

TLP with the specified MMIO location address, byte enables, and data payload. Finally, 

the Endpoint receives the Memory Write TLP and updates the corresponding local 

register to communicate that the transaction has been completed successfully.  

  In a typical read operation, the CPU issues a load register from a MMIO address 

command and the data is moved upstream. The Root Complex generates a Memory Read 
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TLP with the specified MMIO location address and byte enables. The Endpoint generates 

a Completion with Data TLP after receiving the Memory Read TLP.  

3.3.1 TLP Flow in PIO 

 The PIO design processes a single DWORD payload in 32-bit/64-bit memory 

read/write and I/O read/write TLPs. The example design supports one I/O Base Address 

Register (BAR), one 32-bit Memory space, and one 64-bit Memory space.  

 In the case of a memory or I/O write, when the endpoint receives a TLP, the TLP 

transaction type is compared with the value in the core BAR. If the two values match, the 

TLP is sent to the receive module of the PIO design. The receive transaction interface has 

several handshaking signals that indicate the start of the packet, end of the packet, and 

packet ready. Along with the handshaking signals, the interface asserts the appropriate 

receive BAR hit signal (trn_rbar_hit_n[6:0]) to indicate the destination BAR for writing. 

The receive engine of the PIO design extracts the data and address fields and passes them 

to the internal block RAM write request controller.  

 In the case of a memory or I/O read, the TLP transaction type and address is again 

matched with the core BAR. If the TLP passes the check, the TLP is passed to the receive 

transaction interface of the PIO design. When the core asserts the specific receive BAR 

hit signal (trn_rbar_hit_n[6:0]), the receive engine determines the appropriate 2 KB block 

RAM to use. The receive state machine then collects the lower address bit from the 

memory/IO Read TLP and instructs the internal memory read request controller to start a 

read operation. Figure 3.8 shows the top-level functional blocks of the PIO design. The 

Timing Module design also implements a similar functional block for integrating the PCI 
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Express interface with the timing logic. This implementation is discussed further in 

Chapter 4. 

 

Figure 3.8: Functional block diagram of the PIO design 

3.4 Bus Master DMA Design 

 The bus master DMA (BMD) design [20] moves data to and from host memory 

without the use of the CPU and is implemented with the Xilinx endpoint block plus core 

for PCI express. The core contains a DMA engine that controls memory writes and 

memory reads from the system memory. A requestor-completer model is used to transfer 

data from main memory to the endpoint. Memory write TLPs are used to transfer data 

from an endpoint buffer into main memory through the memory controller. Memory read 

TLPs are sent from the main memory to the endpoint. The TLP contains the starting 

address of the memory from which the DMA read will occur.  
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 The bus master DMA design contains target logic, status/control registers, 

initiator logic, and interface logic along with endpoint block plus for PCI Express as 

shown in Figure 3.9 [20]. The target logic captures one DWORD memory write and 

memory read TLPs. It sends a completion with data signal in the case of the incoming 

memory reads. It also updates the status/control registers during writes and reads. The 

status/control register contains operational information regarding the DMA controller. 

The status registers are also used to measure the performance of the DMA transfer over 

the PCI Express bus. The initiator logic generates the memory write and memory read 

TLPs for transfer. A memory write TLP is generated when transferring data from the 

endpoint to the system main memory. The write DMA controller determines the address, 

size, payload content, and number of TLPs to be sent. An interrupt is generated when all 

of the memory TLPs are sent. Memory read TLPs are generated when transferring data 

from the system memory to the endpoint. The read DMA registers determine the address, 

size, payload content, and number of TLPs to be sent.   
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Figure 3.9: Bus master DMA architecture 

3.5 Summary 

 This chapter presented the PCI Express architecture and key concepts for 

designing a PCI Express based system. We also reviewed the PCI Express base 

specification from PCI Special Interest Group (SIG) for details regarding transaction 

layer packets. Transaction layer specifications were examined for the interface design 

that connects the user logic with the Xilinx PCI Express endpoint core on the Virtex-5 

FPGA. We also discussed the basic operation of the Xilinx PIO and BMD example 

designs. Chapter 4 discusses the design and implementation methods in detail. 
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CHAPTER FOUR 
 

DESIGN AND IMPLEMENTATION 
 
 

  The operation speed of the two timing cards are limited by the current PCI-X bus 

implementation. To achieve the desired operation speed, the designs should be migrated 

to the high-bandwidth PCI Express bus. Our initial work involved the selection of a 

suitable FPGA-based PCI Express solution for the SNS timing cards. We considered the 

Endpoint Block plus Wrapper for PCI Express Xilinx IP core provided in the Virtex-5. 

The FPGA built-in Endpoint Block for PCI Express includes additional logic to create a 

complete solution for the PCI Express interface. We used an Avnet PCI Express 

development kit to test an example design for simple read and write operations. The 

board also confirmed the compatibility of the SNS PCI-X software application with the 

PCI Express operation. The board schematic also aided in designing the layout for the 

new Printed Circuit Board (PCB). The new board design also avoided the use of two 

separate custom cards for both Timing Module card and OCC. A daughter card slot was 

also designed in the new board for replacing the accelerator cards used to read accelerator 

links. Verification and debugging of the hardware was performed prior to the final layout 

of the board. On recommendation of the circuit changes for the PCI Express operation 

with the current design, the modifications were made to the existing VHDL code. 

  The implementation is divided in two parts, as shown in Figure 4.1: software and 

hardware. The hardware part consists of a PCB with a Xilinx Virtex-5 FPGA. The 

software part consists of the SNS PCI Express driver and the SNS custom application to 

initiate read/write commands. 
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Figure 4.1: The entire system diagram 

4.1 Hardware Systems 

 The hardware system consists of the new printed circuit board and FPGA 

firmware designed for both the Timing Module and OCC. The custom board is designed 

at ORNL with collaboration from Clemson University. The board consists of a Xilinx 

Virtex-5 FPGA that implements the Timing Module logic and OCC logic, the PCI 

Express interface, and the PCI express core.  The other major components on the board 

such as the optical link, the transceivers chips and the LVDS links are for communication 

with the SNS instruments. The PCB will also add a daughter card in the future to replace 

an Accelerator Timing Card (ATC). Figure 4.2 shows the new fabricated Timing Module 
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board that also implements the OCC design. In this section, we also discuss the FPGA 

firmware implementation for the PCI Express operation. 

 

Figure 4.2: Timing Module printed circuit board 

4.1.1  FPGA Device 

 The Xilinx Virtex-5 FPGA [21] was selected for the new SNS timing cards due to 

higher logic capacity and built-in PCI Express compatibility. Table 4.1 shows the 

XC5VLX50T FPGA device and resources available on the device. 

Device Configurable Logic 
Blocks (CLBs) 

Block RAM 
Blocks 

PCI 
Express 

Endpoint 
Block 

Maximum 
RocketIO 
GTP 
Transceivers 

Max 
User 
I/O Virtex-5 

Slices 
Max 

Distribution 
RAM (KB) 

18 
KB 

36 
KB 

Max 
(KB) 

XC5VLX50T 7200 480 120 60 2160 1 12 480 

 

Table 4.1: Virtex-5 XC5VLX50T device resource table 

  The Virtex-5 FPGA [21] has the following advantages over the Virtex-4 FPGA 

[22] that was also considered: 
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• The Virtex-5 device has a built-in PCI Express endpoint block that does not 

require the procurement of a separate soft IP core.  

• The Virtex-5 FPGAs have 6-input look up tables (LUTs) compared to 4-input 

LUTs in earlier FPGAs. Therefore it provides more logic resources and is capable 

of higher complexity designs desirable for the future design expansion of the user 

application. 

• The Virtex-5 uses a Phased Lock Loop (PLL) technology for lower jitter clock 

generation, which is very important for timing signals. 

• The Virtex-5 has a 1.0V VCCINT instead of Virtex-4's 1.2V, which consumes 

less power. 

4.1.2  Daughter Card 

 The new PCB design provides expansion capabilities through a customized 

daughter interface header card on the board. The daughter card will replace a rack-

mounted PC and Accelerator Timing Card (ATC) that are currently used to read two 

accelerator links: the Real Time Data Link (RTDL) and Event Link (EvLNK).  The 

EvLNK is a data link signal that triggers when a selected event is decoded on the data 

stream. The 60 Hz Tsync signal used by the Timing Module is received through this 

EvLNK data link. The RTDL collects the pulse ID, the type of pulse, and the number of 

stored turn’s from the accelerator and forwards them to the DAS software applications.   

 Replacing the ATC and PC with a daughter card eliminates a lot of unnecessary 

hardware. Since the daughter card will receive the accelerator-timing signals directly, the 
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Xilinx Virtex-5 FPGA on the Timing Module will directly receive the signals via the 

daughter card instead from an ODM and optical receiver. Addition of the daughter card 

will also simplify the software from two separate applications that communicate via User 

Datagram Protocol (UDP) packets to one application that will reside on the timing card 

PC.   

4.2  Firmware Design 

 In this section, the firmware design for the Timing Module and the optical 

communication card is described. In the firmware design, an interface module is designed 

in VHDL to interface the PCI Express endpoint core with the timing logic or the OCC 

logic described in the background section of the thesis. 

4.2.1  Timing Module Design 

 The Timing Module design can be divided into four sections, as shown in Figure 

4.3: endpoint block plus core, interface logic, timing logic, and TLK sync logic. The 

endpoint block plus core is generated via the CORE Generator utility of the Xilinx ISE 

tool. The core is configured and customized to match the Timing Module design. 

Customization of the core consists of four sections: basic parameter settings, base address 

registers (BAR) setting, configuration registers setting, and advanced settings. In the 

basic parameter settings, the lane width, interface frequency, ID initial values, and class 

code are specified. The base address register settings allow the user set the BAR address 

space. The configuration registers setting let the user set options for the device 

capabilities register and the link capabilities register. The advanced setting is left at the 
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default setting in this design. Table 4.2 shows the settings used for the Timing Module 

design. 

 

Figure 4.3: Timing Module firmware design 

Lane Width Reference frequency (MHz) Base Address Registers (64 bit) 
BAR0 (KB) BAR2(KB) 

x4 100 2 0 

 

Table 4.2: Timing Module core customization settings 
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  The interface logic is a VHDL module designed to interface the PCI Express core 

with the SNS timing logic. It also implements the interrupt generation. It can be divided 

into 3 major blocks: transmit engine, receive engine, and memory access. The transmit 

engine implements the transmission and the receive engine implements the reception of 

the PCI Express TLPs as discussed in Chapter 3. Packets sent to the core for transmission 

must follow the formatting rules for TLPs as specified in the PCI Express Base 

Specification [15]. The memory access unit utilizes block RAMs in the FPGA to store the 

PCI interface registers. Each PCI interface register is assigned a unique address in the 

BAR memory space. In case of a write request, the write data is stored at the incoming 

write address. In the case of a read request, the completion with data is fetched from the 

read address and sent via the transmit engine to the core.  The timing logic configuration 

registers are also updated by the memory access module. 

 The transmit engine, as shown in Figure 4.4 is a state machine that transmits the 

outbound TLPs. The user logic is responsible for constructing the outbound packet 

whenever the completion of memory read request occurs. There are three states in the 

transmit engine: reset, transaction without complete, and transaction complete with data. 

In the reset state, the user logic asserts the transmit source ready (trn_tsrc_rdy_n) and 

start of frame (trn_tsof_n) transaction interface signals and presents the first QWORD 

when it is ready to transmit. Figure 4.5 [17] shows the operation of the outbound packet 

transmission. The core keeps the QWORD presented until the core asserts the destination 

ready signal (trn_tdst_rdy_n). Once the trn_tdst_rdy_n signal is asserted the QWORD is 

accepted immediately. If the read request is completion with data, the state will change to 



 44

transaction complete with data, otherwise the state will be complete without data. In each 

of the transaction complete states, the user application keeps the trn_tsrc_rdy_n asserted 

and submits the next QWORD as shown in Figure 4.5. 

 

Figure 4.4: Transmit engine state machine 

 

Figure 4.5: Outbound packet transmission 
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 The receive engine, as shown in figure 4.6 has four states: reset, receive memory 

read TLP, receive memory write TLP, and wait. In the reset state, when the user logic is 

ready to receive the data, the user application asserts the receive destination ready 

transaction interface signal (trn_rdst_rdy_n) to indicate that it is ready to receive TLPs. 

The core asserts the receive source ready (trn_rsrc_rdy_n) and the receive start of frame 

(trn_rsof_n) signals to indicate that the user application is ready to receive the first TLP 

QWORD. Figure 4.7 [17] shows the waveforms describing the reception of the inbound 

packets. The TLP could be a read or write TLP request. The user application decodes the 

header information from the TLP to determine if it is a read or write request. If it is a 

write request, the state changes to the receive memory write TLP. When it is read request, 

the header information is sent to the transmit engine and the state is changed to the 

receive memory read TLP. The first and second DWORD of the memory TLP is decoded 

in both read and write TLP states. The state is then changed to the wait state and the state 

machine waits there until the write has been completed or the read has been successfully 

transmitted.     
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Figure 4.6: Receive engine state machine 

 

Figure 4.7: Inbound packet reception 

 The memory access module implements the Block RAM interface for the read 

and write data storage. Along with the data storage, it also generates and clears the 

interrupts by implementing several interrupt registers. The PCI Express interrupt 

generation is considerably more complex than that for the PCI-X interface. Legacy mode 
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interrupt operation, as shown in the Figure 4.8 [17], has been implemented in the Timing 

Module. The user application first asserts cfg_interrupt_n and cfg_interrupt_assert_n 

signals to indicate the assertion of the interrupt. The user application also selects the 

legacy interrupt INTA using cfg_interrupt_di[7:0]. The core then asserts 

cfg_interrupt_rdy_n to indicate that an interrupt has been accepted. On the following 

cycle, the user application deasserts cfg_interrupt_n. After a certain period of time, the 

user application asserts cfg_interrupt_n and deasserts cfg_interrupt_assert_n to indicate 

deassertion of the interrupt. The core asserts cfg_interrupt_rdy_n to indicate that the 

interrupt deassertion has been accepted. On the following clock cycle user application 

deasserts cfg_interrupt_n.  

 

Figure 4.8: Legacy interrupt operation 

  Interrupts can be generated by the eight chopper vetoes, the beam veto, the PT0, 

Tstart pulse, or the Loss of lock pulse in the Timing Module design. The Tsync 

generation circuitry in the timing logic generates a Tsync signal if a chopper veto, PT0, 

or Tstart pulse is seen. The Timing Module interrupts the device driver if a Tsync pulse is 

asserted and updates all the read-only registers through the PCI Express bus. Therefore, 
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the read-only registers are updated after every Tsync cycle ensuring fresh values from the 

instrument systems.  

  The interrupt module is designed as a state machine as shown in Figure 4.9 and 

has five states: intr reset, intr ACK, intr service, intr ACK2, and intr done. If an interrupt 

is requested, the cfg_interrupt_n and cfg_interrupt_assert_n signals are asserted in the intr 

reset state. Then the state changes to the intr ACK state. The state machine remains in the 

intr ACK state until the cfg_interrupt_rdy_n signal is asserted by the core to acknowledge 

the assertion of the interrupt. Once received, then the state is changed to the intr service 

state and the state machine then waits there for a random time until the interrupt has been 

serviced. The cfg_interrupt_n signal is asserted by the user logic to indicate deassertion 

of the interrupt. Once received, the state is then changed to intr ACK2. The state machine 

remains in the interrupt ACK2 state until the cfg_interrupt_rdy_n is asserted by the core 

to acknowledge deassertion of the interrupt. Both cfg_interrupt_n and 

cfg_interrupt_assert_n are deasserted and the state is changed to interrupt done state to 

indicate the completion of a single interrupt cycle as shown in Figure 4.9. 
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Figure 4.9: Interrupt generation state machine 

 The timing logic and the TLK sync blocks shown in Figure 4.3 are based on the 

previous PCI-X design. In the new design, we have added seven more status registers to 

verify the functionality of the Timing Module. We have also added four additional 

chopper control systems, meeting the total chopper control system originally planned for 

each Timing Module.  

4.2.2 OCC Design 

  The OCC design is divided into four modules as shown in Figure 4.10: Endpoint 

Block Plus Core, Interface Logic, TLK Sync, and LVDS Sync. A simple MUX is 

implemented to select between the LVDS and the optical interface for data transfer. The 

endpoint block plus core is different from that for the Timing Module as it is customized 

for DMA transfer. In the BAR settings, the address space BAR0 is configured to be 64-

bit memory with 4 KB aperture. The higher aperture is justified due to higher memory 

requirement for the DMA transfers in the OCC design. All other settings in the endpoint 
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customization are the same as those for the Timing Module. Table 4.3 shows the settings 

used for the OCC design. 

 

Figure 4.10: OCC firmware design 
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Lane Width Reference frequency (MHz) Base Address Registers (64 bit) 
BAR0 (KB) BAR2(KB) 

x8 250 4 2 

 

Table 4.3: OCC core customization settings 

  The receive engine is a state machine as shown in Figure 4.11. It has four states: 

reset, wait, TLP format type, and payload. The function of the receive engine is to 

process incoming TLPs and update the configuration register when the memory write 

requests are received. It also processes reads and transfers control to the transmit engine 

which generates the completion for read request. In the reset state, the receive engine 

decodes the received TLP header and handles the TLP according to the TLP format type. 

The TLP format type could be the read request, the write request, or the completion with 

the data TLP in response to the memory read request. In the wait state, the receive engine 

stalls and waits for a response from the other blocks, such as the transmit engine and the 

DMA engine, to satisfy its request. In the payload state, the receive engine receives the 

request completion with data TLPs and changes the state to the reset state when it 

receives all the data requested by the DMA engine.    
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Figure 4.11: OCC receive engine 

 The transmit engine, as shown in Figure 4.12 has three states: reset, TLP format 

type, and payload. The transmit engine sends memory read and memory write requests to 

the root complex. The interrupt module is also a part of the transmit engine since the 

endpoint application must interrupt the driver after a successful requested transmission. 

The interrupt module generates legacy interrupts and has the same functionality as the 

Timing Module interrupt design.  In the reset state, if a transmission request occurs, the 

DMA engine packs the TLP header and initiates the DMA transfer. Then the state 

changes to the TLP format type, which could be a simple read completion, memory write, 

or memory read. For a simple read, the state changes to the reset state after the 

completion with data. For memory read, the transmit engine sends the TLP with the read 

address and read count to the root complex (see Figure 3.1). The state changes to the reset 

state after sending the read request TLP. For memory write, the state machine changes to 



 53

the payload state, where it sends out the write TLP packets until it reaches the expected 

count.  

 

Figure 4.12: OCC transmit engine 

  The DMA engine initiates a DMA write or read operation. In OCC design, the 

DMA engine consists of status registers and configuration registers. Some operational 

information is required from the software application to configure the configuration 

registers. The DMA engine also implements the IDMA and ODMA memory areas as 

discussed in chapter 2. The Command Queue (CQ), Data Queue (DQ), and Inbound 

Message Queue (IMQ) for optical data transfer are also implemented. The software 

application sets up the configuration register to inform the DMA engine to initiate DMA 

write operations. The DMA engine generates memory write TLPs with the write DMA 

address, write DMA TLP size, and write DMA TLP count. Then the DMA engine writes 

either the LVDS data or optical interface data depending upon the configuration register 

settings. An interrupt is generated when the number of TLPs transferred matches the 
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write DMA TLP count. When the DMA engine initiates a DMA read operation, it sends 

out a memory read TLP request to root complex via the transmit engine. The TLPs 

include read DMA TLP address, read DMA TLP size, and read DMA TLP count. The 

completion acknowledgement with data is received through the receive engine in 

response to the memory read request and stored in the IDMA memory area. Once the 

requested data size is received, the engine interrupts the driver through the transmit 

engine. The total payload received must match the read TLP count times the read DMA 

TLP size. There are several local registers implemented in the DMA engine to control the 

start and operation of DMA transfer initiation. 

4.3 Software Systems 

 The software systems consist of the PCI driver and SNS user application. The PCI 

driver establishes a link between the user application and the Timing Module card or 

OCC. There are two PCI drivers designed by the SNS DAS group to communicate with 

the Timing Module and OCC respectively. Since both of the PCI-X drivers are 

compatible with the new PCI Express based design, the drivers provided the necesary 

basic operations for the new design without any modifications. The drivers are compiled 

with Microsoft visual studio 2005 and the appropriate communication parameters 

including device ID, vendor ID, and driver version were changed to make the driver 

completely compatible with the new designs. We were able to run the applications and 

perform read and write operations through the PCI Express bus with these drivers as will 

be discussed in the next chapter.  
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4.4  Summary  

  This chapter discussed the design and implementation of the new Timing Module 

and OCC. In the new PCB design, we provided the Virtex-5 FPGA schematic and pinout 

details. We also performed the FPGA schematic and other hardware verification. In the 

FPGA code modification, we designed the interface logics that interfaces the PCI Express 

core with the Timing Module and OCC user logic. We also discussed the state machines 

that are part of the interface logic. Chapter 5 discusses the resource utilization, 

performance estimation, and design verification of the new design.  
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CHAPTER FIVE 
 

RESULTS 
 
 

            This chapter describes the results obtained from the design and implementations 

of the new PCI Express based Timing Module and Optical Communication Card (OCC). 

We discuss the FPGA resource utilization, the system performance analysis, and the 

verification of the PCI Express operations with the new designs. We also compare the 

results with the earlier PCI-X based Timing Module and OCC design. 

5.1  Resource Utilization 

5.1.1 Timing Module   

 The FPGA implementation of the earlier PCI-X based Timing Module requires 

99% of the logic slices, 84% of the external IOBs, and 17% of the Block RAM on a 

Virtex-II XC2V1000 FPGA. Table 5.1 shows the resource utilization of the earlier design 

from the place and route report. One of the initial requirements of the Timing Module 

was to control eight chopper systems while presently it can control only four chopper 

systems due to logic area limitations. Implementing an additional four channels of the 

chopper controls would require 8% more logic slices in the Virtex-II device used in the 

original Timing Module card. As shown in Table 5.1 there is only 1% of logic slices 

remaining in the Virtex-II FPGA. In our new design, we use a Xilinx Virtex-5 

XC5VLX50T FPGA, which has 3 times more logic slices to overcome the logic resource 

problem.  

  The new FPGA implementation for the PCI Express based Timing Module on the 

Virtex-5 including the PCI Express endpoint and Timing Module logic requires only 46% 
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of the total available logic slices, 34% of the external IOBs, and 16% of the Block RAM. 

The complete resource utilization of our design is shown in Table 5.2. Four additional 

channels of chopper control are implemented in the new design. With the new design and 

chopper control expansion, the Virtex-5 FPGA still has 50% of the logic space available 

for future expansion. The addition of a new daughter card and implementation of the 

associated transceiver logic will utilize this free logic space in the FPGA. The Virtex-5 

device also provides twelve DCMs compared to only eight in Virtex-II FPGA, which will 

allow us to add the necessary DCMs for the daughter card reference clocks. 

Logic Utilization Used Available Utilization 
Number of Slices 5118 5120 99% 

Number of Slice Flip Flops 4882 10240 47% 
Number of LUTs 8043 10240 78% 

Number of BRAMs 7 40 17% 
Number of DCMs 5 8 62% 
Number of IOBs 275 324 84% 

 
Table 5.1: Virtex-II XC2V1000 utilization table for the Timing Module 

Logic Utilization Used Available Utilization 
Number of Slices 3102 7200 46% 

Number of Slice Flip Flops 5863 28800 20% 
Number of LUTs 6956 28800 24% 

Number of BRAMs 10 60 16% 
Number of DCMs 8 12 56% 
Number of IOBs 167 480 34% 

 

Table 5.2: Virtex-5 XC5VLX50T utilization table for the Timing Module 
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5.1.2 Optical Communication Card 

 Table 5.3 shows the resource utilization of the original OCC design. The PCI-X 

based implementation of the original OCC design requires 48% of the logic slices, 34% 

of the IOBs, and 41% of the Block RAM on a Virtex-II XC2V1500 FPGA. With only 

48% of the logic slices used, the logic resources are not a major limitation in the OCC 

design. The Block Ram utilization in the design however is high (41%) due to large 

memory space implementation required for the PCI-X DMA transfer logic. 

  The new FPGA implementation of the PCI Express based OCC design requires 

42% of the logic slices, 34% of the external IOBs, and 41% of the Block RAM available 

on the Virtex-5 XC5VLX50T FPGA. The complete resource utilization of the new OCC 

design is shown in Table 5.4.  The PCI Express implementation of the OCC design also 

reveals that there is enough resources available in the FPGA for future logic expansion. 

The primary reason of Virtex-5 migration of OCC design is to implement PCI Express 

DMA transfer for higher throughput. The Block RAM utilization in the Virtex-5 device is 

still high due to increased memory requirements for the PCI Express DMA transfer 

compared to the old design. Virtex-5 provides more Block RAM memories compared to 

the Virtex-II device used in the original OCC design, so the absolute number of BRAMs 

is higher and the percentage of resources utilized remains roughly the same. 
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Logic Utilization Used Available Utilization 
Number of Slices 3757 7680 48% 

Number of Slice Flip Flops 2487 15360 16% 
Number of LUTs 5414 15360 35% 

Number of BRAMs 20 48 41% 
Number of DCMs 3 8 37% 
Number of IOBs 184 528 34% 

 

Table 5.3: Virtex II XC2V1500 utilization table for the OCC 

Logic Utilization Used Available Utilization 
Number of Slices 3072 7200 42% 

Number of Slice Flip Flops 5837 28800 20% 
Number of LUTs 6526 28800 23% 

Number of BRAMs 35 60 41% 
Number of DCMs 8 12 66% 
Number of IOBs 164 480 34% 

 

Table 5.4: Virtex-5 XC5VLX50T utilization table for the OCC 

5.2 Performance Estimation and Analysis 

5.2.1 Timing Module 

  The maximum transfer rate of the PCI Express system is 2.5 GB/s per lane. This 

data rate is the raw bit transfer rate while the effective data transfer rate is much lower 

due to overheads and system design trade-offs. Table 5.5 [22] shows the link efficiency 

or the theoretical maximum data throughput with a maximum payload size of 128 bytes 

for the writes and reads. 
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Link Width Write Read 
x1 1720 1520 
x4 6880 6080 
x8 13760 12160 

 

Table 5.5: Theoretical bandwidth of different PCI Express link 

  The bandwidth of the PCI Express system is given by the following formula: 

  Bandwidth (BW) = [(Total Bytes transferred) ⁄ (Transfer Time)] x GB/s                                       (1) 

5.2.1.1 Write Bandwidth 

 In the Timing Module design, approximately 55-posted writes are transmitted at 

256 bytes (Maximum Payload Size) each on x8 link. The total number of bytes 

transferred over the PCI Express link is given by: 

  Total bytes transferred = (number of posted writes) x (maximum payload size)           (2) 

Using Eqn. 2, the total bytes transferred for our system is 14080 bytes. 

  The transaction clock period is 4 ns. Therefore, the PCI Express x8 link can send 

8 bytes every 4 ns. We assume a TLP with a 12-byte header with no Error Cyclic 

Redundancy Check (ECRC) and 8 bytes of address, results in 20 bytes of overhead. The 

transfer time of a single 32-bit addressable memory write is given by: 

  Write TLP transfer time = [(maximum payload + overhead) / 8 bytes / clock] x 4 ns/clock          (3)                                                                                           

Using Eqn. 3, the write TLP transfer time is 138 ns for our system. 

  The Data Link Layer (DLL) also introduces traffic overhead to the total transfer 

time. The DLL packet transfer time is 4 ns. For every TLP sent, an acknowledgement 

(ACK) must be returned to the sender of the TLP to indicate successful receipt of the 

packet. Flow Control (FC) DLL packets are also sent by the link partner to indicate that 
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the receiver has sufficient buffer space. The FC DLL packets are used to avoid receiver 

buffer overflow. We assume that the TLP to ACK ratio is one ACK for every five TLPs 

and an FC DLL packet is received every four TLPs. Therefore, the Total transfer time of 

all posted writes is given by [22]: 

Total transfer time = (number of posted writes x write TLP transfer time) +                         

(number of ACKs x 4ns) + (number of FC DLL packets x 4 ns)                                                     (4) 

  Using Eqn. 4, the total write transfer time is 7686 ns for our system. Using Eqns. 

1, 2, and 4, the total estimated write bandwidth in our case is obtained as 1.831 GB/s. 

5.2.1.2 Read Bandwidth 

 There are a maximum of 10240 bytes of data reads on an x8 link considering a 

maximum read request size of 256 bytes and 40 status registers to be read at a time for 

the Timing Module. Therefore, the total number of bytes to be transferred over the PCI 

Express link is 10240 bytes. Here we assume 20 bytes of overhead for a memory read 

TLP. The memory read request does not contain any payload. The 32-bit addressable 

memory read TLP transfer time is given by: 

  Read TLP transfer time = [(overhead) / 8 bytes / clock] x 4 ns/clock                                            (5)           

Using Eqn. 5, the read TLP transfer time is 10 ns for our system. 

  The DLL packet transfer time is 4 ns. The majority of the read TLPs are 64 bytes. 

Therefore, the Read Completion Boundary (RCB) payload is assumed to be 64 bytes. The 

read completion transfer time is given by: 

RCB transfer time = [(RCB payload + overhead) / 8 bytes / clock] x [4 ns / clock]                      (6)                                                                    

Using Eqn. 6, the RCB transfer time is 42 ns for our system. 
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  We assume that the TLP to ACK ratio is one ACK for every five TLPs and an FC 

DLL packet is received every four TLPs. We also assume the receiver incoming read to 

completion generation time is 300 ns [22]. Therefore the Total transfer time of the 

memory reads is given by: 

Total transfer time = (number of memory reads) x [Read TLP transfer time + read completion 

generation time + 4 ns] + (RCB payload x RCB transfer time) + (overhead x 4ns)                      (7)     

  Using Eqn. 7, the total transfer time for 40 memory reads is 15328 ns for our 

system. Using Eqns. 1 and 7, the estimated total read bandwidth is calculated as 668 

MB/s. 

5.2.1.3 Comparison 

 The PCI Express implementation of the Timing Module has an estimated 1.832 

GB/s write and 668 MB/s read bandwidth. The write bandwidth meets the desired 1 GB/s 

bandwidth requirement for the Timing Module operation. The read bandwidth of 668 

MB/s is much lower than the theoretical bandwidth. The main reason is due to the 

assumption that the reads are not pipelined and can only process one read at a time. But 

the read bandwidth of the PCI-Express is higher that the PCI-X read bandwidth [27]. The 

graph in the Figure 5.1 shows the bandwidth comparison of the PCI-X, the x4 PCI 

Express, and the x8 PCI Express with respect to the Timing Module data payloads. 
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Figure 5.1: Performance comparison 

5.2.2 Optical Communication Card  

  The OCC design has a higher bandwidth requirement compared to that of the 

Timing Module. To achieve the required higher data rate and performance, a bus master 

DMA is implemented to provide the desired data transfer rate for the OCC design. We 

studied the performance of the DMA transfer over the PCI Express bus using the new 

SNS PCI Express board with the Virtx-5 FPGA. We used the Xilinx Bus Master DMA 

(BMD) reference design [20] and Avnet software application [20] to study the 

performance of the system. We a used a 32 DWORD TLP size and a maximum payload 

size of 128 bytes to monitor the performance. We transferred 32 KB of data over x1, x4, 

and x8 links separately and studied the data rates over the PCI Express link, as shown in 

Figure 5.2. The data rates obtained are sufficient for the OCC design operation. 

0

0.5

1

1.5

2

PCI-X

(66Mhz)

PCI Express

x4

PCI Express

x8

Read

Write

G
B

/s
 



 64

 

Figure 5.2: PCI Express DMA performance 

5.3 Design Verification 

 The Timing Module and OCC designs were verified by both functional simulation 

and real-time debug and verification tools. The functional simulations were performed 

using the Xilinx ISE 10.1 [23] and the ModelSim 6.5 SE simulators [24]. Real-time 

debug and verification tools such as the ChipScope Pro Core Generator, the ChipScope 

Pro Core Inserter, and the ChipScope Pro Core Analyzer [25] were also used to verify the 

design. The ChipScope Pro tool suite [26] enables real-time verification for FPGA 

designs by inserting low-profile soft debug cores into the design or netlist. The 

ChipScope Pro Analyzer tool is a logic and bus analysis interface that enables and sets 

the trigger conditions to show the real-time signals from the FPGA.  

5.3.1 Timing Module Verification 

  We simulated the PCI Express functionalities when integrated with the Timing 

Module user logic to show the basic read and write operations over the PCI Express bus. 
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Figure 5.3 shows the simple read and write operations of the PCI Express protocol 

simulation. The trn_lnk_up_c signal assertion indicates that the PCI Express link is 

active. Whenever there is a target write, the trn_rsof_n_c signal is asserted and the 

trn_rd_c receives the TLP data for the target write. Assertion of the trn_reof_n_c signal 

indicates the end of the write transaction. The simulation also shows the target 

completion with data TLP. The real time read and write operations of the PCI Express 

protocol are also verified on the FPGA using ChipScope pro Analyzer. Figure 5.4 shows 

a Timing Module read completion with data packet. The trn_td bus contains valid packet 

header and data between the assertion of trn_tsof_n and trn_teof_n signals. When the PCI 

Express core is ready to receive the data, it asserts trn_tsrc_rdy_n signal and the packet is 

transmitted. Figure 5.5 shows the PCI Express write operation. The data header and the 

payload is received via trn_rd. Assertion of trn_rsof_n indicates the reception of the 

header packet and assertion of trn_esof_n indicates the completion of one write 

operation. The PCI Express core asserts trn_rsrc_rdy_n signal to indicate transmission of 

the TLP. 
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5.3.2 OCC Verification 

  We also simulated the DMA memory burst for the OCC design using ModelSim 

6.5 SE simulator. The simulation waveform in Figure 5.6 shows the DMA transfer from 

the OCC to the system memory. When the OCC design is ready to transfer data to the 

system memory, it asserts the wr_dma_start signal. The wr_dma_done signal is asserted 

to indicate that the dma_wr_count value matches the number of TLPs to be transferred. 

Figure 5.7 shows the DMA transfer from the system memory to the OCC. The 

rd_dma_start signal is asserted to initiate a read DMA transfer. When the dma_rd_count 

value matches the number of the TLPs to be transferred, the DMA read is completed with 

the assertion of the rd_dma_done signal. 

 The DMA transfers were also verified on the OCC system using the ChipScope 

pro logic analyzer. Figure 5.8 shows the 16 TLPs being transferred from the OCC to the 

system memory and Figure 5.9 shows the burst transfer from the system memory to the 

OCC. 
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5.3.3 Interrupt Verification 

  The PCI Express interrupt module was also simulated to verify the operation of 

the interrupt generation. The waveforms in Figure 5.10 shows the PCI Express legacy 

interrupt generation. It also shows the five states of operation that completes a single 

interrupt. As shown in Figure 5.10, the interrupt module state machine enters the intr_rst 

state and asserts cfg_interrupt_n and cfg_interrupt_assert_n signals to indicate the 

interrupt generation. Then the state changes to the intr_ack state. When the user 

application receives the cfg_interrupt_rdy_n signal from the core, it de-asserts the 

cfg_interrupt_n signal and changes the state to the intr_srvc state. The state machine 

remains in the intr_srvc state for a random period until the interrupt is serviced and then 

asserts the cfg_interrupt_n signal again. The state changes to the intr_ack2 state and waits 

there for the cfg_interrupt_rdy_n signal from the core. Once the cfg_interrupt_rdy_n 

signal is asserted by the core, the state changes to the intr_done state to indicate the 

completion of a single legacy interrupt operation.  

 

Figure 5.10: Interrupt generation simulation 
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5.3.4 LVDS and Optical Transceiver Loopback 

 Apart from the verification of the PCI Express integration, the optical transceiver 

loopback tests were also performed to verify the operation of the optical transceiver 

hardware on the board. We designed a diagnostic test bench in VHDL using Block RAM 

for the loopback data source to verify the optical transceiver hardware. For the optical 

tranceivers, we sent random data for transmission over the optical link. When the 

transmission is complete we wait for the reception of data to complete. If the transmitted 

data and the received data matches, it verifies the integrity of the optical transceiver 

hardware. 

5.3.5  SNS Application and Driver Testing    

 We used the SNS PCI Express driver and application to write and read from the 

timing registers. The driver is a kernel mode PCI driver designed in the Windows 

operating system by SNS DAS group. We re-compiled the driver in Windows Visual 

Studio 2005 and changed the device parameters to work with the new PCI Express based 

PCB. Figure 5.11 shows a screenshot of the SNS application that is used to read and write 

to the configuration registers.  
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Figure 5.11: SNS software application 

5.4 Summary 

 The Timing Module and the OCC designs were verified using the functional 

simulations and in-system debugging methods. The Timing Module and the OCC designs 

were verified with the appropriate data from the function generators implemented in the 

designs. As a part of the future work, the designs will be tested in the real-time 

environment with Optical Ditribution Module (ODM) data at SNS. Chapter 6 will 

conclude the thesis with the discussion of possible future work for this project. 
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CHAPTER SIX 
 

CONCLUSION 
 
 

         In this thesis, we have presented the implementation of the PCI Express in the 

SNS Timing Module and Optical Communication Card (OCC) designs. The PCI Express 

is a standard interface for the next generation of embedded applications due to its high 

bus throughput.  The PCI-X bus interface used in the original Timing Module and OCC 

designs does not provide the required data rates due to its limited bandwidth. Therefore, 

the PCI Express bus was selected to replace the PCI-X bus in the Timing Module and 

OCC designs. The new designs also use a much larger FPGA to provide more 

functionality and room for future expansion. 

  In chapter 2, we presented the theory of operation of the earlier Timing Module 

and OCC design. We studied the operation of the original designs to modify the PCI 

interface and allow it to work with the PCI Express bus. We also presented all of the 

timing signals and registers that are required for the Timing Module and OCC operation.  

  Chapter 3 discussed the detailed PCI Express architecture and topology. We 

described the PCI Express protocol and how it works with the PCI Express endpoint core. 

The PCI Express core is more complex than the existing PCI-X core due to the 

implementation of three additional protocol layers. We also discussed the transaction 

layer packets (TLP) of the PCI Express protocol, which are responsible for the 

transmission of data between the endpoint core and the user application. We finally 

examined the Programmed I/O (PIO) and the Bus Master DMA (BMD) designs from 

Xilinx to understand the PCI Express TLP processing and the DMA transfers. 
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  In Chapter 4, we presented the detailed design and implementation 

methodologies. For the Timing Module, we designed the receive engine, the transmit 

engine, the memory access module, and the interrupt module to interface the timing logic 

with the PCI Express core. For the OCC, we designed the receive engine, the transmit 

engine, and the DMA engine to initiate DMA transfers. Additional functionality will be 

added in the future for the complete operation of the OCC design. 

 Chapter 5 discussed some of the results we obtained from our design and 

implementation. The earlier Timing Module consumes 99% of the logic slices of the 

Xilinx Virtex-II FPGA. Migration of the FPGA design to a Xilinx Virtex-5 provided 

enough logic to meet current requirements and allow expansion of the design in the 

future. The Virtex-5 FPGA also provided a PCI Express hard IP core, which simplifies 

the design by creating a wrapper around the core. We also explained the achievable 

bandwidth for the PCI Express bus for both non-DMA and DMA transfers. The 

bandwidth analysis shows that the PCI Express bus provides much higher bandwidth 

compared to the earlier PCI-X bus. We also verified our design using VHDL simulators 

and real time JTAG signal captures. Testing with the real time data from the instrument 

systems still remains for both designs. It is important to note that the designs can only be 

tested at SNS with real-time signals from Optical Distribution Modules (ODM). We 

tested our designs using the data generated from the function generators implemented 

within the FPGA design. We also used the SNS PCI Express software application and 

drivers to verify the PCI Express operation and compatibility. 



 76

 This work has yielded the following contributions to the design of the new 

Timing Module and OCC for the SNS instrument systems.  

• FPGA related circuit design for the new PCB that functions as both the Timing 

Module and OCC board 

• Schematic verification and hardware testing 

• Simulation of the PCI Express core using ModelSim 6.5 SE simulators 

• VHDL code implementation for the Timing Module PCI Express interface 

• VHDL code implementation help for the OCC PCI Express DMA design 

• Hardware debugging and troubleshooting using ChipScope Pro tools and on-

board LEDs 

 The future work for this project involves testing the Timing Module and OCC 

design in the real-time environment at SNS. We will also add the daughter card to the 

system eliminating the need for the Accelerator Timing Card (ATC). To simplify the 

Printed Circuit Board design for the daughter card, we can replace the TLK2501 [14] 

transceivers currently used on the ATC with the in-build RocketIO transceivers on the 

Virtex-5 FPGA. The transceiver logic can then reside on the Virtex-5 FPGA, which has 

ample remaining logic resources for the implementation. The work will involve 

implementation of the RocketIO GTP cores on the Virtex-5 FPGA with interface logic. 

The bandwidth provided by the Virtex-5 RocketIO GTP is higher than that of the 

TLK2501 transceivers and therefore sufficient for our requirements. 
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  There are 24 instrument systems installed in the SNS facility at Oak Ridge 

National laboratory. In many of the instrument systems, the transfer rate requirement is at 

least 1GB/s to collect all neutron events. Redesign of the Timing Module and OCC to 

incorporate the Virtex-5 FPGA and PCI-Express interface not only provides the 

necessary throughput but also provides enough logic area for future expansion as 

required. 
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