
Clemson University
TigerPrints

All Theses Theses

5-2010

FPGA BASED TIMING MODULE AND
OPTICAL COMMUNICATION CARD
DESIGN FOR SPALLATION NEUTRON
SOURCE
Biswa Singh
Clemson University, biswagourav.singh@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Singh, Biswa, "FPGA BASED TIMING MODULE AND OPTICAL COMMUNICATION CARD DESIGN FOR SPALLATION
NEUTRON SOURCE" (2010). All Theses. 758.
https://tigerprints.clemson.edu/all_theses/758

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/758?utm_source=tigerprints.clemson.edu%2Fall_theses%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

FPGA BASED TIMING MODULE AND OPTICAL COMMUNICATION
CARD DESIGN FOR SPALLATION NEUTRON SOURCE

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Biswa G. Singh

May 2010

Accepted by:
Melissa Smith, Committee Chair

Walter Ligon
Richard Brooks

 ii

ABSTRACT

 The Timing Module and Optical Communication Card (OCC) are used for

acquisition of neutron event data by the instrument systems at the Spallation Neutron

Source (SNS) neutron scattering facility. The instrument systems produce a very large

flux of neutrons of varying energies over a short time period through the spallation

process. The Timing Module and OCC require high-bandwidth communication to ensure

high-speed data movement to the memory in the data collection system without loss of

neutron data. The existing implementations use a standard PCI-X bus interface to transfer

the data between the cards and the host computer. The data processing on the existing

cards is implemented in a Xilinx Virtex-II FPGA. The bandwidth restrictions of the PCI-

X bus and the logic constraints of the Virtex-II FPGA have resulted in limited capabilities

of the instrument systems. New designs for the timing and communication modules that

will improve performance, avoid data loss, and provide for future logic expansion are

desired.

 In this project, we redesign the Timing Module and OCC moving from a PCI-X to

PCI-Express bus interface to improve the data acquisition bandwidth. The new design

also uses a Xilinx Virtex-5 FPGA to allow more channels to be processed per card and

provide for further expansion. Further, the Virtex-5 device also has an embedded PCI-

Express Hard IP core. This internal core simplifies the Printed Circuit Board (PCB)

design since there is no external PCI interface chip required and decreases the probability

of errors between the PCI interface and user logic design. The Timing Module

implements a simple PCI Express read and write for the data transfer. The OCC requires

 iii

a higher data rate than the Timing Module and therefore uses a more complex bus master

direct memory access (DMA) for the endpoint PCI-Express block, which allows for

lower CPU utilization and higher performance.

 New user logic interfaces were designed to integrate the PCI-Express endpoint

with the Timing Module and the OCC logic designs. A single PCB was designed to

function as both the Timing Module and OCC. The logic designs were verified by both

functional simulation and in-system JTAG signal capture on the new PCB. The results

indicate that our design provides efficient data transfer, higher throughput, and

scalability, benefitting both modules and meeting design requirements.

 iv

DEDICATION

 The thesis is dedicated to my family and friends.

 v

 ACKNOWLEDGEMENT

 The work presented in this thesis would not have been possible without the help

and support of many. My deepest gratitude goes to my advisor, Dr. Melissa Smith for her

guidance and support that made this work possible. Next, I would like to acknowledge

my fellow graduate students who have spent a lot of time discussing the work contained

herein. I would especially like to thank Steve Hicks from Oak Ridge National Laboratory

for his sincere support.

 vi

TABLE OF CONTENTS

 Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

 I. INTRODUCTION ... 1

 II. BACKGROUND ... 6

 2.1 Timing Module Technical Details ... 6
 2.1.1 Optical Link Signals ... 8
 2.1.2 FPGA User Logic ... 9
 2.1.3 Multi-Frame Timing Requirement .. 10
 2.1.4 Timing Module Subsystems ... 11
 2.1.5 Timing Loop ... 14
 2.1.6 PCI-X Register Interface... 15
 2.2 Optical Communication Card Technical Details 15
 2.2.1 Optical Communication Card Block Architecture 16
 2.2.2 Communication Protocol .. 18
 2.2.2.1 OCC Memory.. 18
 2.2.2.2 LVDS Interface Protocol .. 19
 2.2.2.3 Optical Interface Protocol ... 20
 2.3 Summary .. 22

 III. PCI EXPRESS ARCHITECTURE .. 23

 3.1 PCI Express Architecture ... 23
 3.1.1 PCI Express Topology .. 23

 vii

Table of Contents (Continued) Page

 3.1.2 PCI Express Layering ... 24
 3.1.3 Software Compatibility ... 27
 3.2 Xilinx Endpoint Block Plus for PCI Express ... 28
 3.3 Programmed I/O Design .. 32
 3.3.1 TLP Flow in PIO ... 33
 3.4 Bus Master DMA Design... 34
 3.5 Summary .. 36

 IV. DESIGN AND IMPLEMENTATION .. 37

 4.1 Hardware Systems ... 38
 4.1.1 FPGA Device .. 39
 4.1.2 Daughter Card ... 40
 4.2 Firmware Design .. 41
 4.2.1 Timing Module Design ... 41
 4.2.2 OCC Design .. 49
 4.3 Software Systems ... 54
 4.4 Summary .. 55

 V. RESULTS .. 56

 5.1 Resource Utilization... 56
 5.1.1 Timing Module ... 56
 5.1.2 Optical Communication Card ... 58
 5.2 Performance Estimation and Analysis ... 59
 5.2.1 Timing Module ... 59
 5.2.1.1 Write Bandwidth ... 60
 5.2.1.2 Read Bandwidth .. 61
 5.2.1.3 Comparison ... 62
 5.2.2 Optical Communication Card ... 63
 5.3 Design Verification .. 64
 5.3.1 Timing Module Verification ... 64
 5.3.2 OCC Verification .. 68
 5.3.3 Interrupt Verification .. 71
 5.3.4 LVDS and Optical Transceiver Loopback 72
 5.3.5 SNS Application and Driver Testing .. 72
 5.4 Summary .. 73

 VI. CONCLUSION .. 74

REFERENCES .. 78

 viii

LIST OF TABLES

Table Page

 3.1 PCI Express lane overview .. 28

 3.2 PCI Express lane frequency ... 31

 4.1 Virtex-5 XC5VLX50T device resource table .. 39

 4.2 Timing Module core customization settings .. 42

 4.3 OCC core customization settings ... 51

 5.1 Virtex-II XC2V1000 utilization table for the Timing Module 57

 5.2 Virtex-5 XC5VLX50T utilization table for the Timing Module 57

 5.3 Virtex II XC2V1500 utilization table for the OCC 59

 5.4 Virtex-5 XC5VLX50T utilization table for the OCC 59

 5.5 Theoretical bandwidth of different PCI Express link 60

 ix

LIST OF FIGURES

Figure Page

 2.1 Timing Module PCB .. 7

 2.2 System blocks of Timing Module .. 7

 2.3 FPGA logic I/O signals .. 10

 2.4 Short instrument system neutron detection .. 11

 2.5 Long instrument system neutron detection .. 11

 2.6 Timing and phase register circuitry ... 12

 2.7 Veto generation circuitry ... 13

 2.8 Tsync generation circuitry ... 13

 2.9 Timing loop .. 14

 2.10 OCC and detector electronics connection .. 16

 2.11 OCC PCB ... 16

 2.12 System blocks of OCC ... 17

 2.13 Data communication between LVDS interface and host PC 20

 2.14 Data communication between optical interface and host PC 21

 3.1 PCI Express topology .. 24

 3.2 PCI Express data flow .. 25

 3.3 TLP Flow through the layers ... 26

 3.4 PCI Express architecture layer ... 27

 3.5 Top-level functional blocks of PCI Express endpoint 29

 3.6 PCI Express clock .. 30

 x

List of Figures (Continued)

Figure Page

 3.7 Transaction interface signal timing .. 32

 3.8 Functional block diagram of the PIO design ... 34

 3.9 Bus master DMA architecture ... 36

 4.1 The entire system diagram ... 38

 4.2 Timing Module printed circuit board ... 39

 4.3 Timing Module firmware design ... 42

 4.4 Transmit engine state machine... 44

 4.5 Outbound packet transmission ... 44

 4.6 Receive engine state machine .. 46

 4.7 Inbound packet reception ... 46

 4.8 Legacy interrupt operation ... 47

 4.9 Interrupt generation state machine ... 49

 4.10 OCC firmware design .. 50

 4.11 OCC receive engine ... 52

 4.12 OCC transmit engine.. 53

 5.1 Performance comparison ... 63

 5.2 PCI Express DMA performance .. 64

 5.3 Timing Module PCI Express simulation.. 66

 5.4 Timing Module read operation .. 67

 5.5 Timing Module write operation ... 67

 xi

List of Figures (Continued)

Figure Page

 5.6 Simulation of DMA transfer from OCC to system memory........................ 69

 5.7 Simulation of DMA transfer from system memory to OCC 69

 5.8 DMA transfer from OCC to system memory .. 70

 5.9 DMA transfer from system memory to OCC .. 70

 5.10 Interrupt generation simulation .. 71

 5.11 SNS software application ... 73

i

CHAPTER ONE

INTRODUCTION

 The Spallation Neutron Source (SNS) is a facility at Oak Ridge National

Laboratory (ORNL) for neutron-scattering research. Neutron-scattering research has wide

spread applications in improving medicines, foods, electronics, automobiles, and

avionics. The instrumentation systems at SNS produce neutrons of different energies by a

spallation process where high energy protons impact a target. The instrument system’s

data acquisition system (DAS) [1] is designed for control and collection of neutron-

scattering data. The DAS group has developed a number of electronic boards which are

capable of collecting data from neutron detector electronics. In addition to detector

electronics, the boards are also used to send real-time digital signals via fiber optics. The

need for high data rate capabilities necessitated the development of custom hardware

boards. Two of the custom boards that accomplish these tasks are the PCI based Timing

Module card and optical communication card (OCC).

 The Timing Module [2, 3] maintains various registers that control the

configuration and operation of the timing cards. The registers are responsible for

maintaining the synchronization of the detector electronics with the chopper and

accelerator phasing. The Timing Module also provides the master timing pulse to the

chopper control system for phasing the chopper disk with the proton on target event. The

registers are accessed by the host CPU over a PCI interface. The control registers are

implemented on a Xilinx Virtex-II FPGA. The physical link between the host CPU and

the Timing Module is a 66 MHz PCI-X bus. The PCI interface is implemented with the

 2

Xilinx PCI-X IP core as a 32-bit endpoint device. The PCI-X interface, as implemented,

is not able to satisfy the growing bandwidth requirements for the SNS systems, which

results in the loss of timing data. It is practically impossible to achieve additional

bandwidth and higher data rates with the existing PCI-X interface. Apart from the

communication bus bandwidth limitation, there is also a logic area constraint in the

Virtex-II FPGA making it impossible to add more functionality and registers to the

current design. Originally, a single Timing Module was intended to control eight chopper

systems, but the logic constraints have limited the module to only four chopper controls.

To address the listed problems in the Timing Module, we consider redesign of the current

module. In the redesign, we modify the PCB and FPGA design of the current Timing

Module to allow operation on a PCI-Express bus thereby improving the bandwidth.

Additionally, we implement the Timing Module logic in a larger FPGA that includes

communication macros for the PCI Express interface and provides more room for

additional functionality.

 The optical communication card (OCC) [4, 5] is an interface to the high-

performance computers for communication to the SNS detector electronics. The detector

electronics timestamp the events and calculate the position index of the neutrons

detected. Two 32-bit values determine the time event and position of a detected neutron.

These values are stored locally in the detector memory and sent as a data packet 60 times

a second. Up to 1 million bytes may be transferred during a frame. The OCC receives this

data sent by the detector electronics via a fiber optic data link. The OCC also uses the

Xilinx PCI-X 64bit/66MHz core (similar to that used in the Timing Module) for the

 3

communication with the host CPU. The OCC is capable of initiating a DMA transfer of

the data from the detector electronics to the memory of the host computers. The DMA

transfer capability of OCC indicates that it has higher data rate requirements than the

Timing Module. Therefore, like the Timing Module design, we modify the current FPGA

design to use the PCI Express interface and bus master DMA operation.

 The FPGA-based PCI Express implementation uses PCI Express IP cores

available from Xilinx. The advantages of an FPGA-based solution are that it allows the

designer to create a design that exactly matches the user’s requirements and provides

flexibility in the design making an FPGA-based design an ideal solution for the SNS

timing and communication cards. There are three options when an FPGA is used for PCI-

based designs: one-chip solution with a soft IP core, one-chip solution with a hard IP core

[6], and two-chip solution [7]. The one-chip solution with a soft IP core utilizes a high-

performance FPGA such as Xilinx Virtex-4 to perform the PCI Express protocol,

physical interface, and transmission and the soft IP core is implemented in the FPGA

logic. The one-chip solution with a Hard IP core utilizes a Virtex-5 FPGA, which

includes a PCI Express endpoint block in hard logic. Xilinx provides PCI Express

endpoint solutions to configure the Virtex-5 Built-in Endpoint Block. These solutions

require additional FPGA logic to create a complete Endpoint solution for the PCI Express

operation. In the two-chip solution, the physical layer resides in a dedicated chip c (PHY)

[7] and the logic and the transport layers reside in an FPGA. There is an interface

between the external PHY device and the FPGA device called a PIPE (Physical Interface

for PCI Express). A broad range of PHY devices are available from manufacturers such

 4

as Genesys Logic, Philips Semiconductor, and Texas Instruments. This two-chip solution

uses a low-cost FPGA such as a Xilinx Spartan-3 connected over a PIPE interface to the

PCI Express PHY chip to implement all layers of the interface. Advantages of the single-

chip solution include higher performance and simplified PCB while the two-chip solution

is more cost effective. In order to obtain better performance and more functionality, we

selected Xilinx Virtex-5 FPGA with PCI Express hard IP core.

 In our work, we primarily perform the following tasks to modify the current

Timing Module and OCC:

1) Circuit design,

2) FPGA code design,

3) Debug and troubleshooting of the design to assure design goals have been

met.

 In the circuit design phase, we reviewed the PCI-X design and investigated the

bus changes needed for PCI Express. After deciding on the Xilinx FPGA and the PCI-

Express solution, we provided circuit board design assistance to the SNS DAS group. In

the FPGA code design phase, we reviewed the current VHDL code and modified the

code to work with the Xilinx Virtex-5 PCI Express hard IP core. Debugging and

troubleshooting was conducted throughout the design of the FPGA code and continued

through the debugging of the new board and system testing. The debugging was

performed with test benches, simulations, and JTAG signal capture.

 The thesis is organized in the following manner: Chapter 2 provides the existing

design overview and requirements, Chapter 3 discusses the PCI Express architecture and

 5

the Xilinx programmed I/O and DMA example designs used as references to integrate the

PCI-Express with the existing design. Chapter 4 discusses the design and implementation

methods. Chapter 5 provides experimental and performance results. Chapter 6 concludes

the thesis.

 6

CHAPTER TWO

BACKGROUND

 In this chapter, we discuss the existing PCI-X based Timing Module and the

Optical Communication Card (OCC) designs that facilitate neutron data acquisition. We

also discuss the theory of operation, block diagrams, and register information for the

boards.

2.1 Timing Module Technical Details

 At the SNS neutron scattering facility, the instruments use time-of-flight (TOF)

measurements to calculate the energies of the detected neutrons. TOF is the time

difference between neutron generation and the time at which the neutron is detected by

the detector electronics. The Timing Module [2] [3] in the SNS facility is responsible for

providing timing signals to the detector electronics. The Timing Module also provides

signals to the chopper system [8] for phasing of the chopper disk with the proton on

target event. A chopper in the instrument system is designed to slow down fast neutrons

in a prompt pulse. The Timing Module can also help with analysis of the chopper

performance. The Timing Module communicates with the detector electronics [9], the

chopper timing system, and the accelerator timing system via fiber optic links. The

Timing Module registers implemented in the FPGA are divided into three major

subsystems: Tsync generation circuit, veto generation circuit, and phase and timing

circuit. The Timing Module also handles the multi-frame timing requirement for multiple

protons in the beam line. Finally, the Xilinx FPGA also implements the PCI-X soft core

and interface registers.

 7

 Figure 2.1 shows the Timing Module printed circuit board (PCB) and Figure 2.2

shows the functional block diagram of the Timing Module. The diagrams show three

optical transceivers and the Virtex-II FPGA for the timing logic and the PCI-X interface.

The PCI-X interface uses the Xilinx PCI-X logic IP core [10].

Figure 2.1: Timing Module PCB

Figure 2.2: System blocks of Timing Module

User
Logic

Xilinx
PCI-X
core

Laser TLK2501

Laser TLK2501

Laser TLK2501

PCI-X
Bus

From Acc.
Systems/ To

Choppers
To/From Detector

Electronics

Spare

Virtex-II FPGA

Optical
Transceivers TLK2501

Virtex-II
FPGA

 8

2.1.1 Optical Link Signals

 There are three optical transceivers in the Timing Module board. The first optical

link is used to receive signals from the accelerator system and to send signals to the

chopper system, forming a timing loop described in section 2.1.5. The second optical link

is responsible for sending signals to the detector electronics. The third optical link is a

spare link for testing.

 The timing loop input signals are given below:

• PT0 or proton on target signal is an approximately 1 us pulse indicating the start

of the proton beam on target. It periodically occurs every 16.67 ms.

• Tstart signal is an approximately 1 us long pulse that indicates the time of the

extraction event.

• Beam veto signal is an approximately 1 us long pulse that indicates when the

beam has been dumped and no proton pulse will be on the target.

• Loss of lock signal indicates that the master timing unit has lost lock.

• The chopper Top Dead Center (TDC) pulse is an approximately 1 us long pulse

that indicates when the chopper has reached a position known as TDC. There may

be up to 8 TDC pulses for the 8 chopper systems.

The timing loop output signals are given below:

• Chopper reference pulse is an approximately 200 us long pulse that is phased with

the Tstart signal generated by the accelerator. This signal is used by the chopper

control system to synchronize the phasing of the chopper disk.

 9

• Tsync pulse is an approximately 1 us long pulse to the detector electronics. The

signal indicates that the detector electronics should reset the time stamp counts.

• Veto pulse is an approximately 1 us long pulse to the detector electronics. It

indicates that the detector electronics should veto the neutron data from the

current neutron pulse.

2.1.2 FPGA User Logic

 The user logic is implemented in a Xilinx Virtex-II FPGA. It generates the

appropriate signals for the detector electronics in the current neutron frame such as the

veto and Tsync signals. It is also responsible for maintaining the timing and phase

information on the accelerator and chopper pulses. The Timing Module registers

implemented in the FPGA are in little endian format. Figure 2.3 shows the input and

output signals to the FPGA. The Timing Module receives PT0, Tstart, Beam Veto, and

Loss of Lock input signals from the accelerator systems. As shown in Figure 2.3, the

Timing Module also receives chopper TDC pulses from chopper systems and provides

chopper reference pulses to the choppers. The Tsync and Veto output pulses are

transmitted to the detector electronics.

 10

Figure 2.3: FPGA logic I/O signals

2.1.3 Multi-Frame Timing Requirement

 In many SNS instruments, the lengths of the beam lines are long enough to hold

more than one neutron in a single beam line. The Timing Module FPGA is responsible

for handling these multi-frame situations. It also maintains the time difference between

proton pulses to correctly calculate TOF.

 Figure 2.4 shows the short instrument system operation. In this case, the neutrons

are detected (Tdet) prior to the generation of the next neutron pulse (the grey pulses in

Figure 2.4). The pulses on the time axis represent PT0. The slots at the chopper position

indicate the position of the chopper opening. The TOF is determined by adding the time

stamp Tdet at the detector electronics and the offset, which is a small correction due to

the finite speed at which the PT0 pulse is received by the detector electronics.

 Figure 2.5 shows the long instrument operation. In this scenario, a veto in frame n

will be associated with the neutron detection occurring in frame n+1. In this case,

calculation of the TOF requires the addition of the time PT0(n+1) – PT0(n) term to the

time stamp generated at the detector electronics.

FPGA LOGIC

PT0

 Tstart

 Beam Veto

 Loss of Lock

Chopper TDC 1-8

Tsysnc

 Veto

Chopper Ref 1-8

 11

Figure 2.4: Short instrument system neutron detection

Figure 2.5: Long instrument system neutron detection

2.1.4 Timing Module Subsystems

 The three subsystems of the Timing Module logic are timing and phase register

circuitry, veto generation circuitry, and Tsync generation circuitry.

 The timing and phase register circuitry, as shown in Figure 2.6, contains PT0 to

PT0 time registers and chopper phase registers. The PT0 to PT0 time registers keep track

of the successive PT0 times. There are 16 such registers stored in a block RAM memory.

The first register keeps time difference between PT0 of the nth pulse and PT0 of the (n-

1)th pulse. Similarly the second register keeps track of the time difference between PT0 of

the nth pulse and PT0 of the (n-2)th pulse and so on. The chopper phase registers keep

 12

track of the time difference between successive TDC pulses of the corresponding

choppers.

Figure 2.6: Timing and phase register circuitry

 The veto generation circuitry, as shown in Figure 2.7, consists of the registers

containing the beam veto mask, PT0 veto mask, and chopper veto masks. The beam veto

mask register generates veto pulses when the beam veto signal occurs. The PT0 veto

mask register controls the generation of the veto pulses whenever the PT0 overdue

counter from the Tsync generation circuit triggers. The chopper veto mask registers are

responsible for generating the veto pulses for the detector electronics when the chopper

veto is seen.

 The Tsync generation circuitry, as shown in Figure 2.8, consists of the Tsync

delay registers, PT0 overdue time, free running divisor, and Tsync control registers. The

Tsync delay register will delay the output by an amount up to 16.7 ms in intervals of 9.42

ns steps. The PT0 overdue time is loaded into a PT0 overdue counter whenever a PT0 or

Timing Phase Registers

PT0 to PT0 time

(1-16) Mux

Chopper Phase
Registers (1-8)

CLK

 Chopper 1 TDC

Tstart Tsync PT0

 Chopper 2 TDC

 Chopper 8 TDC

 13

Tstart is seen. The free running divisor generates a 60 Hz clock that can be used in place

of Tstart and PT0 for testing purpose.

Figure 2.7: Veto generation circuitry

Figure 2.8: Tsync generation circuitry

PT0 Overdue Time

PT0 Overdue Counter

Tsync
Delay

Register

Down Counter

Free Running Divisor

Tsync Control Register CLK

M
U

X

PT0

Tstart

From Other Circuitry To Other Circuitry

Tsync

Tsync Generation Circuitry

Beam Veto Mask

PT0 Veto Mask

Veto Shift Register

Interrupt Mask

 Chopper Veto 1

 Chopper Veto 2

 Chopper Veto 8 Tsync

Veto

 Veto Generation Circuit

From PT0
Overdue
Counter

 Beam Veto

Loss of Lock

Interrupt

Chopper Veto
Masks (1-8)

 14

2.1.5 Timing Loop

 The timing loop, as shown in Figure 2.9, is a closed loop created between the

chopper Optical Distribution Module (ODM), accelerator ODM, and the Timing Module.

The ODM is an optical transceiver that converts digital signals to optical pulses. It also

provides the inverse function of restoring optical pulses to digital outputs. The chopper

TDC pulses from the chopper ODM are passed though the optical link to the accelerator

ODM. The Tstart and PT0 signals from the accelerator are fed into the accelerator ODM

and sent to the Timing Module with the chopper TDC pulses. All the above signals are

used by the Timing Module to produce vetoes and pulse-by-pulse chopper phase error

and reference signals that are passed both to the detector ODM and back to the chopper

ODM.

Figure 2.9: Timing loop

Accelerator ODM

Tsync and Veto

To Detector
Electronics ODM

PT0, Master Clock

Chopper ODM

TDC Pulses

Tsysnc Pulses

Timing Module

Chopper

 15

2.1.6 PCI-X Register Interface

 All registers in the Timing Module are defined as 32-bits. However, not all

registers use the full 32 bits assigned to them. The number of registers could be reduced

by packing those registers that are shorter than 32-bits. This packing option is necessary

in the Xilinx Virtex-II FPGA due to the logic constraints. However, register packing

results in a more complex and less intuitive design. In the new Xilinx Virtex-5 design,

there is ample logic and all registers are assigned the full 32 bits.

 The registers are divided into two categories: Read/Write registers and Read-only

registers. The Read/Write registers are used for configuration and control. These registers

are accessed by the Windows-based software application through a device driver to

configure and control the operation of the Timing Module. The Read-only registers

provide the timing information, error information, and status of the Timing Module.

Some of this information is required by the Data Acquisition Systems (DAS) operation

while other information is required when debugging the Timing Module.

2.2 Optical Communication Card Technical Details

 The Optical Communication Card (OCC) [4, 5] receives data from the detector

electronics via a fiber optic data link using a lightweight point-to-point protocol. There

are two 32-bit registers kept locally in the detector electronics that store the time stamp

and position index of the detected neutrons. The register values are sent to the OCC

periodically at a rate of approximately 60 times a second. Figure 2.10 shows the block

diagram of the link between detector electronics and the OCC.

 16

Figure 2.10: OCC and detector electronics connection

2.2.1 Optical Communication Card Block Architecture

 Figure 2.11 shows the OCC printed circuit board with all the hardware

components and Figure 2.12 shows the block diagram of the optical communication card.

Figure 2.11: OCC PCB

Optical
Transceiver TLK2501

Ser/Deser with
RJ45 Jack

Virtex-II
FPGA

 17

Figure 2.12: System blocks of OCC

 The interface logic consists of the Xilinx PCI-X 64bit/66MHz soft core on a

Xilinx Virtex-II FPGA. The control logic consists of the control and status registers and

state machines that implement the communication protocol for the optical and copper

transceiver chips. The control logic is also responsible for reading from and writing to the

internal FIFOs and handling the DMA transfers.

 The high-speed data links consist of 21 signals that are serialized into 3 LVDS

signal pairs for transmission. The fourth LVDS pair transmits the data clock. At the

receiving end, the 3 LVDS signals are de-serialized and recovered into the 21 data link

signals using the data clock on the fourth LVDS signal. The high-speed data links are

connected to the ROC [11], FEM [12], and DSP [13] boards, which are interfaced to the

detector electronics. The optical interface is handled by an optical transceiver through a

TLK2501 chip [14].

User
Logic

Xilinx
PCI-X
core

Laser TLK2501

TLK2501

TLK2501

PCI-X
Bus

To/From Detector
Electronics DSP

Level

To ROC, FEM
Level

RJ45
Jacks

DMA

Virtex-II FPGA

 18

2.2.2 Communication Protocol

 This section describes the communication protocol related to the PCI bus, the

optical interface, and the LVDS interface. Data width for the PCI bus is 32-bits wide. The

data sent via the optical interface and the LVDS interface is not formatted. The inbound

data from the LVDS link has minimal processing, while the data from optical

communication link is processed according to the SNS protocol format discussed in the

following subsections.

2.2.2.1 OCC Memory

 The control and status registers are referenced to BAR0 of the OCC memory

space. The other memory areas IDMA or input FIFO, ODMA, and output FIFO are

implemented on the FPGA as a circular buffer with producer and consumer index and

referenced to BAR1 of the OCC memory space. These memory areas store data that are

transferred between the LVDS or optical communication interface and the host PC.

 For target write, the OCC IDMA memory area is written. The memory area is a

32-bit addressable dual port memory with 8 KB length. For target read, the OCC ODMA

memory is written. The memory is a 32-bit addressable dual port memory with 16 KB

length. The memories are implemented as a circular buffer to allow reading and writing

of the ODMA and the IDMA memory areas. The circular buffers use the producer and

consumer index. The producer index keeps track of the writing position and the consumer

index keeps track of the reading position of the buffer. The buffer is considered empty

when both the indexes are equal and full when the producer index is one less than the

 19

consumer index. The output FIFO consists of the Inbound Message Queue (IMQ), Data

Queue (DQ), and Command Queue (CQ).

2.2.2.2 LVDS Interface Protocol

 Figure 2.13 shows the data communication between the LVDS interface and the

host PC. During a target write, the data is transferred from the host PC to the OCC and

then sent over the LVDS link. The data is first written to the IDMA at the current

producer index. Then the producer index and the IDMA length are updated. The software

application writes to bit 0 of the configuration register which sets the TX-GO bit in the

firmware. Then the OCC firmware sets TX_IP bit automatically, which indicates the that

the transmission is in progress. When the transmission cycle is done, a hardware interrupt

occurs.

 During a target read, bit 1 of the status A register is set to indicate that the

received data is available from the LVDS link. The data is transferred from the OCC

without a DMA transfer. The target ODMA length register contains the number of bytes

to read. If desired, an interrupt can be enabled whenever data is available for reading. In

the case of initiator writes, the data at the LVDS deserializer is connected to the output

FIFO. The data transfer from the output FIFO to the host PC memory is discussed in the

section 2.2.2.3. The FPGA keeps track of the input count. Later the data from the output

FIFO is transferred to the system memory through DMA transfer.

 20

Figure 2.13: Data communication between LVDS interface and host PC

2.2.2.3 Optical Interface Protocol

 For the transmission of the data between the OCC and the optical communication

link, the OPTCVR bit in the control register is set. When data is written from the host PC

to the OCC card via the PCI bus, it is written to an internal input FIFO on the OCC.

When TX_GO bit is set through the control register, the data transfer from input FIFO is

initiated over the optical communication link. An interrupt can be generated after the

successful completion of the entire DMA transfer. Figure 2.14 shows the data transfer

between the optical communication interface and the host PC.

O
ut

pu
t

F
IF

O

IMQ

DQ

CQ

Input FIFO or

IDMA

ODMA

LVDS
Serializer

LVDS
deserializer

Target Write

Target Read

DMA Write

LVDS Interface

 21

Figure 2.14: Data communication between optical interface and host PC

The optical serializer is a 16-bit data interface used to transfer 32-bit data. When

the data is sent from the input FIFO to the optical communication card, the lower 16-bits

are sent in the first clock cycle followed by the upper 16 bits in the next clock cycle. Data

from the optical deserializer is connected to the output FIFO implemented on the FPGA,

as shown in Figure 2.14. The FPGA keeps track of the input count and also keeps track

of the reception of the command descriptor which decides whether the packet received is

a command packet or a data packet.

 The data transfer from the output FIFO to the host PC memory via the PCI bus is

done in one of the following two ways:

• The OCC receives the entire data packet including the header and payload

DWORDs. The header is written to the Inbound Message Queue (IMQ) of the

host PC via the PCI initiator protocol. The payload is sent to the Data Queue

(DQ). The DQ is a circular buffer of length N where N is power of 2. The

Input FIFO or

IDMA

O
ut

pu
t

F
IF

O

Optical
Serializer

Optical
deserializer

IMQ

DQ

CQ

Optical Interface

DMA Read

DMA Write

 22

maximum limit of the DQ in length is 4 GB. The DQ producer index is a circular

offset pointer to this memory and is incremented on quadword boundaries. The

incremented DQ producer index and the IMQ producer index are written to the

host at the DQ producer address and the IMQ producer address respectively. An

interrupt is set to inform the host to process the data at DQ.

• When the OCC receives a command packet, the header is written to the IMQ of

the host via the PCI bus. The payload is written to the Command Queue (CQ).

The CQ is also a circular queue but much smaller that the DQ. The incremented

CQ producer index and the IMQ producer index are written to the host at the CQ

producer address and the IMQ producer address respectively. An interrupt is set

to inform the host to process the data at CQ.

2.4 Summary

 This chapter discussed the original PCI-X based Timing Module and OCC design.

We thoroughly studied the earlier designs to migrate the design to work with the Virtex-5

FPGA and PCI Express. We discussed all the registers and memory buffers required for

the Timing Module and OCC implementation. Our approach to integrate the PCI Express

bus in the designs was also discussed. Chapter 3 discusses the PCI Express architecture

and Xilinx Endpoint Block Plus for PCI Express used in the new design.

 23

CHAPTER THREE

PCI EXPRESS ARCHITECTURE

 This chapter discusses the PCI Express architecture and Xilinx Endpoint Block

Plus solution for PCI Express. It also discusses the programmed input/output (PIO) [19]

and bus master DMA (BMD) example design [20] available from Xilinx.

3.1 PCI Express Architecture

 The PCI Express architecture includes the PCI Express topology, the PCI Express

Endpoint that is implemented as three-layer architecture, and the software compatibility.

3.1.1 PCI Express Topology

 PCI Express is a point-to-point serial interconnect that provides high-bandwidth

communication over fewer pins than older PCI implementations. The PCI Express

topology [15], shown in Figure 3.1, is composed of a root complex, several endpoints

(I/O devices), and a switch.

 PCI Express connects the CPU and memory subsystems to the I/O endpoints

through a switch. An endpoint refers to a device that acts as a requester and/or completer

to the PCI Express transaction. An Endpoint is an I/O device connected to the PCI

Express, such as the Timing Module and the Optical Communication Card (OCC) in our

case. Each port of the switch is connected to a PCI Express endpoint or a legacy

endpoint. A switch enables a series of connectors for add-in I/O and appears to the

configuration software as two or more logical PCI-PCI bridges. The switch uses address

base routing to forward transactions.

 24

Figure 3.1: PCI Express topology

3.1.2 PCI Express Layering

 The PCI Express protocol has three discrete logical layers: the transaction layer,

the data link layer, and the physical layer. Each layer can be divided into two sections for

data flow as shown in Figure 3.2 [15]: the transmit section and the receive section.

 25

Figure 3.2: PCI Express data flow

 PCI Express uses packets to communicate between layers. The major function of

the protocol layers is to generate and process Transaction Layer Packets (TLPs). Figure

3.3 [15] shows the TLP packet flow through the layers. Other functions of the protocol

layers include flow control management, initializing and power management functions,

data protection, error checking and retry functions, and maintenance and status tracking.

 The transaction layer is the upper layer of the architecture and its primary

function is to assemble and disassemble the TLPs. Read, write and certain types of PCI

Express events happen through TLPs. The transaction layer supports three PCI address

spaces: memory, I/O, and configuration.

 26

Figure 3.3: TLP flow through the layers

 The Data Link layer is the intermediate layer between the transaction and physical

layers. The responsibilities of the Data Link layer are: link management, error detection,

and error correction. The transmitting side of the Data Link layer accepts TLP from

transaction layer. It applies the data protection code and TLP sequence number and

passes it to the physical layer for physical transmission through the link. The receiving

side of the Data Link layer checks the integrity of the received TLP and submits them to

the transaction layer for further processing. If a TLP error is detected, the layer requests

retransmission of the TLP until the TLP is received correctly, or the link is considered to

have failed. The Data Link layer also generates and consumes its own packets called the

Data Link Layer Packets (DLLP) that are used for link management functions.

 The physical layer performs all interfacing operations, including driver and input

buffers, framing, de-framing, parallel-to-serial and serial-to-parallel conversion, Phased

Locked Loop (PLL), and 8b/10b encoding and decoding of TLPs and DLLPs. The

physical layer also supports lane reversal for multi-lane designs and lane priority

inversion.

 27

3.1.3 Software Compatibility

 PCI Express uses PCI compatible configuration and device driver interfaces [16]

allowing backward compatibility with legacy PCI designs. The PCI architecture layer

with PCI driver compatibility is shown in Figure 3.4. The PCI configuration space and

programmability of I/O devices are unchanged in PCI Express. Therefore, current

operating systems, which are PCI compatible can boot for PCI Express without any

changes in the device driver. The run-time software model such as load-store and shared

memory model of PCI is also maintained within the PCI Express architecture. New

software may be developed to utilize new capabilities of the PCI Express architecture.

Figure 3.4: PCI Express architecture layer

Data Link Layer

Physical Layer

Transaction Layer

PCI Driver Model

PCI PNP

Mechanical Link (Lane)

No OS Impact

PCI Express Specification

 28

3.2 Xilinx Endpoint Block Plus for PCI Express

 The Endpoint Block Plus for PCI Express [17] from Xilinx is a scalable serial

interconnect building block used with the Xilinx Virtex-5 series FPGAs. The solution

supports x1, x4, and x8 lane options for the PCI Express base specifications v1.1. Table

3.1 shows the device support, resource usage, and data path width for the Endpoint Block

Plus solution.

 Figure 3.5 shows the top-level functional blocks and interfaces for the PCI

Express Endpoint Block Plus core. The Endpoint Block configuration management layer

implements the PCI Type 0 Endpoint configuration space providing the following

functions:

• PCI Configuration Space

• Power management

• Error reporting and status functionality

• Configuration Reads and Writes for receive

• Completion with or without data for transmit

• Interrupt emulation

Product I/O Device
Support

LUTs FFs Data Path
Width

1-lane Endpoint Block Plus 1
Virtex 5

LXT/SXT

2100 2250 64
4-lane Endpoint Block Plus 4 2100 2250 64
8-lane Endpoint Block Plus 8 2100 2250 64

Table 3.1: PCI Express lane overview

 29

Figure 3.5: Top-level functional blocks of PCI Express endpoint

 The Xilinx PCI Express Endpoint Block uses the RocketIO GTP transceivers [18]

for the packet transaction. The RocketIO is a power-efficient high speed serial I/O

available in the Virtex 5 FPGAs. Using these I/O pins, transceiver module is designed to

operate at a serial bit rate of 2.5 GB/s for the PCI Express protocol.

 The interfaces to the Block Plus core as shown in Figure 3.5 are defined below:

• System Interface

• PCI Express Interface

• Configuration Interface

• Transaction Interface

 The system interface consists of the reset signal, clock signal, and a free running

reference clock output signal. The assertion of the asynchronous system reset signal

performs a hard reset of the entire core. The system clock signal is either 100 MHz or

Configuration Management Layer

Transaction

Layer

Data Link

Layer

Physical
Layer

Transaction

Configuratio
n

RocketIO
Transceiver

System

PCI Express

Endpoint Block Plus for PCI Express

User

Host
Interfac

e
Clock
and

Reset

 30

250 MHz depending on the user’s selection. The PCI Express endpoint uses a

synchronous clocked system as shown in Figure 3.6 where a 100 MHz clock from the

link is fed to a jitter attenuator to get a 100 MHz or a 250 MHz input clock to the core.

Figure 3.6: PCI Express clock

 The PCI Express interface consists of a pair of transmit and receive differential

signals. For example, the x1 core uses only lane 0 with a pair of differential signals for

transmit and a second pair for receive. To achieve higher bandwidth, the x4 core uses

lanes 0-3 and x8 core supports lanes 0-7.

 The transaction interface is the interface to the user logic that allows the user

design to generate and consume TLPs. The most common transaction interface signals

are transaction clock, transaction reset, and transaction link-up. Transaction of the TLP is

synchronous with the transaction clock. The transaction clock frequency can be fixed

when generating the PCI Express core using Xilinx CORE generator. Recommended and

optional frequencies for each lane width are shown in Table 3.2.

PCI Express Connector

Jitter Attenuator

Virtex-5
Endpoint

MGTs

250 MHz

100 MHz

+ -

PCI Express Clock

 31

Lane Width Recommended
Frequency (MHz)

Optional Frequency
(MHz)

x1 62.5 125
x4 125 250
x8 250 250

Table 3.2: PCI Express lane frequency

 The transaction link-up signal is asserted when a connection is established

between the core and the link partner. It is de-asserted when the link is lost due to an

error on the transmission channel. Figure 3.7 shows a timing diagram where an

approximate delay between the transaction reset (trn_reset_n) and transaction link-up

(trn_lnk_up_n) signals is shown. There are several transmit and receive transaction

interface signals that are responsible for sending and receiving a TLP from the user logic.

These signals are discussed in detail in Chapter 5 of the thesis.

 The configuration interface allows the user logic in the FPGA to access and

examine the configuration space of the Endpoint for PCI Express. It also provides the

link and device status through the configuration signal. The user logic can also initiate a

message signaling interrupt (MSI) or legacy interrupts through the configuration

interface. Interrupt operation and implementation is discussed further in Chapter 4 and 5

of the thesis.

 32

Figure 3.7: Transaction interface signal timing

3.3 Programmed I/O Design

 A Programmed I/O (PIO) example design [17, 19] is used in this project to test

and verify the basic PCI Express functionality in both of the new designs. The example

design was also referenced closely when designing the Timing Module. The example

design allows the host CPU to access the memory mapped input output (MMIO) and

configuration mapped input output (CMIO).

 The design consumes 8192 bytes of target space in the FPGA Block RAM. It

supports one DWORD payload size with 32-bit or 64-bit addressing. In a typical write

operation, the CPU issues a store register to a MMIO address command and the data is

moved downstream. Then the Root Complex (see Figure 3.1) generates a Memory Write

TLP with the specified MMIO location address, byte enables, and data payload. Finally,

the Endpoint receives the Memory Write TLP and updates the corresponding local

register to communicate that the transaction has been completed successfully.

 In a typical read operation, the CPU issues a load register from a MMIO address

command and the data is moved upstream. The Root Complex generates a Memory Read

 33

TLP with the specified MMIO location address and byte enables. The Endpoint generates

a Completion with Data TLP after receiving the Memory Read TLP.

3.3.1 TLP Flow in PIO

 The PIO design processes a single DWORD payload in 32-bit/64-bit memory

read/write and I/O read/write TLPs. The example design supports one I/O Base Address

Register (BAR), one 32-bit Memory space, and one 64-bit Memory space.

 In the case of a memory or I/O write, when the endpoint receives a TLP, the TLP

transaction type is compared with the value in the core BAR. If the two values match, the

TLP is sent to the receive module of the PIO design. The receive transaction interface has

several handshaking signals that indicate the start of the packet, end of the packet, and

packet ready. Along with the handshaking signals, the interface asserts the appropriate

receive BAR hit signal (trn_rbar_hit_n[6:0]) to indicate the destination BAR for writing.

The receive engine of the PIO design extracts the data and address fields and passes them

to the internal block RAM write request controller.

 In the case of a memory or I/O read, the TLP transaction type and address is again

matched with the core BAR. If the TLP passes the check, the TLP is passed to the receive

transaction interface of the PIO design. When the core asserts the specific receive BAR

hit signal (trn_rbar_hit_n[6:0]), the receive engine determines the appropriate 2 KB block

RAM to use. The receive state machine then collects the lower address bit from the

memory/IO Read TLP and instructs the internal memory read request controller to start a

read operation. Figure 3.8 shows the top-level functional blocks of the PIO design. The

Timing Module design also implements a similar functional block for integrating the PCI

 34

Express interface with the timing logic. This implementation is discussed further in

Chapter 4.

Figure 3.8: Functional block diagram of the PIO design

3.4 Bus Master DMA Design

 The bus master DMA (BMD) design [20] moves data to and from host memory

without the use of the CPU and is implemented with the Xilinx endpoint block plus core

for PCI express. The core contains a DMA engine that controls memory writes and

memory reads from the system memory. A requestor-completer model is used to transfer

data from main memory to the endpoint. Memory write TLPs are used to transfer data

from an endpoint buffer into main memory through the memory controller. Memory read

TLPs are sent from the main memory to the endpoint. The TLP contains the starting

address of the memory from which the DMA read will occur.

PIO_TO_CTRL

Mem

Access

RX

Engine

TX

Engine

PCI Express Endpoint Core

P
C

Ie
 L

in
k

R
ea

d
T

L
P

 W
rite T

L
P

 35

 The bus master DMA design contains target logic, status/control registers,

initiator logic, and interface logic along with endpoint block plus for PCI Express as

shown in Figure 3.9 [20]. The target logic captures one DWORD memory write and

memory read TLPs. It sends a completion with data signal in the case of the incoming

memory reads. It also updates the status/control registers during writes and reads. The

status/control register contains operational information regarding the DMA controller.

The status registers are also used to measure the performance of the DMA transfer over

the PCI Express bus. The initiator logic generates the memory write and memory read

TLPs for transfer. A memory write TLP is generated when transferring data from the

endpoint to the system main memory. The write DMA controller determines the address,

size, payload content, and number of TLPs to be sent. An interrupt is generated when all

of the memory TLPs are sent. Memory read TLPs are generated when transferring data

from the system memory to the endpoint. The read DMA registers determine the address,

size, payload content, and number of TLPs to be sent.

 36

Figure 3.9: Bus master DMA architecture

3.5 Summary

 This chapter presented the PCI Express architecture and key concepts for

designing a PCI Express based system. We also reviewed the PCI Express base

specification from PCI Special Interest Group (SIG) for details regarding transaction

layer packets. Transaction layer specifications were examined for the interface design

that connects the user logic with the Xilinx PCI Express endpoint core on the Virtex-5

FPGA. We also discussed the basic operation of the Xilinx PIO and BMD example

designs. Chapter 4 discusses the design and implementation methods in detail.

 37

CHAPTER FOUR

DESIGN AND IMPLEMENTATION

 The operation speed of the two timing cards are limited by the current PCI-X bus

implementation. To achieve the desired operation speed, the designs should be migrated

to the high-bandwidth PCI Express bus. Our initial work involved the selection of a

suitable FPGA-based PCI Express solution for the SNS timing cards. We considered the

Endpoint Block plus Wrapper for PCI Express Xilinx IP core provided in the Virtex-5.

The FPGA built-in Endpoint Block for PCI Express includes additional logic to create a

complete solution for the PCI Express interface. We used an Avnet PCI Express

development kit to test an example design for simple read and write operations. The

board also confirmed the compatibility of the SNS PCI-X software application with the

PCI Express operation. The board schematic also aided in designing the layout for the

new Printed Circuit Board (PCB). The new board design also avoided the use of two

separate custom cards for both Timing Module card and OCC. A daughter card slot was

also designed in the new board for replacing the accelerator cards used to read accelerator

links. Verification and debugging of the hardware was performed prior to the final layout

of the board. On recommendation of the circuit changes for the PCI Express operation

with the current design, the modifications were made to the existing VHDL code.

 The implementation is divided in two parts, as shown in Figure 4.1: software and

hardware. The hardware part consists of a PCB with a Xilinx Virtex-5 FPGA. The

software part consists of the SNS PCI Express driver and the SNS custom application to

initiate read/write commands.

 38

Figure 4.1: The entire system diagram

4.1 Hardware Systems

 The hardware system consists of the new printed circuit board and FPGA

firmware designed for both the Timing Module and OCC. The custom board is designed

at ORNL with collaboration from Clemson University. The board consists of a Xilinx

Virtex-5 FPGA that implements the Timing Module logic and OCC logic, the PCI

Express interface, and the PCI express core. The other major components on the board

such as the optical link, the transceivers chips and the LVDS links are for communication

with the SNS instruments. The PCB will also add a daughter card in the future to replace

an Accelerator Timing Card (ATC). Figure 4.2 shows the new fabricated Timing Module

SNS Application

 PCI Driver

PCI Express Endpoint
IP Core

Timing Module or OCC
User Logic

PCI Express

Windows

FPGA

SOFTWARE

HARDWAR
E

 39

board that also implements the OCC design. In this section, we also discuss the FPGA

firmware implementation for the PCI Express operation.

Figure 4.2: Timing Module printed circuit board

4.1.1 FPGA Device

 The Xilinx Virtex-5 FPGA [21] was selected for the new SNS timing cards due to

higher logic capacity and built-in PCI Express compatibility. Table 4.1 shows the

XC5VLX50T FPGA device and resources available on the device.

Device Configurable Logic
Blocks (CLBs)

Block RAM
Blocks

PCI
Express

Endpoint
Block

Maximum
RocketIO
GTP
Transceivers

Max
User
I/O Virtex-5

Slices
Max

Distribution
RAM (KB)

18
KB

36
KB

Max
(KB)

XC5VLX50T 7200 480 120 60 2160 1 12 480

Table 4.1: Virtex-5 XC5VLX50T device resource table

 The Virtex-5 FPGA [21] has the following advantages over the Virtex-4 FPGA

[22] that was also considered:

 40

• The Virtex-5 device has a built-in PCI Express endpoint block that does not

require the procurement of a separate soft IP core.

• The Virtex-5 FPGAs have 6-input look up tables (LUTs) compared to 4-input

LUTs in earlier FPGAs. Therefore it provides more logic resources and is capable

of higher complexity designs desirable for the future design expansion of the user

application.

• The Virtex-5 uses a Phased Lock Loop (PLL) technology for lower jitter clock

generation, which is very important for timing signals.

• The Virtex-5 has a 1.0V VCCINT instead of Virtex-4's 1.2V, which consumes

less power.

4.1.2 Daughter Card

 The new PCB design provides expansion capabilities through a customized

daughter interface header card on the board. The daughter card will replace a rack-

mounted PC and Accelerator Timing Card (ATC) that are currently used to read two

accelerator links: the Real Time Data Link (RTDL) and Event Link (EvLNK). The

EvLNK is a data link signal that triggers when a selected event is decoded on the data

stream. The 60 Hz Tsync signal used by the Timing Module is received through this

EvLNK data link. The RTDL collects the pulse ID, the type of pulse, and the number of

stored turn’s from the accelerator and forwards them to the DAS software applications.

 Replacing the ATC and PC with a daughter card eliminates a lot of unnecessary

hardware. Since the daughter card will receive the accelerator-timing signals directly, the

 41

Xilinx Virtex-5 FPGA on the Timing Module will directly receive the signals via the

daughter card instead from an ODM and optical receiver. Addition of the daughter card

will also simplify the software from two separate applications that communicate via User

Datagram Protocol (UDP) packets to one application that will reside on the timing card

PC.

4.2 Firmware Design

 In this section, the firmware design for the Timing Module and the optical

communication card is described. In the firmware design, an interface module is designed

in VHDL to interface the PCI Express endpoint core with the timing logic or the OCC

logic described in the background section of the thesis.

4.2.1 Timing Module Design

 The Timing Module design can be divided into four sections, as shown in Figure

4.3: endpoint block plus core, interface logic, timing logic, and TLK sync logic. The

endpoint block plus core is generated via the CORE Generator utility of the Xilinx ISE

tool. The core is configured and customized to match the Timing Module design.

Customization of the core consists of four sections: basic parameter settings, base address

registers (BAR) setting, configuration registers setting, and advanced settings. In the

basic parameter settings, the lane width, interface frequency, ID initial values, and class

code are specified. The base address register settings allow the user set the BAR address

space. The configuration registers setting let the user set options for the device

capabilities register and the link capabilities register. The advanced setting is left at the

 42

default setting in this design. Table 4.2 shows the settings used for the Timing Module

design.

Figure 4.3: Timing Module firmware design

Lane Width Reference frequency (MHz) Base Address Registers (64 bit)
BAR0 (KB) BAR2(KB)

x4 100 2 0

Table 4.2: Timing Module core customization settings

Timing Logic

TLK sync Logic

Endpoint Block plus Core

RocketIO Transceiver

Transmit
Engine

Receive
Engine

Memory
Access

Register Access

FPGA

PCI Express Bus

Optical Interface

Interface Logic

 43

 The interface logic is a VHDL module designed to interface the PCI Express core

with the SNS timing logic. It also implements the interrupt generation. It can be divided

into 3 major blocks: transmit engine, receive engine, and memory access. The transmit

engine implements the transmission and the receive engine implements the reception of

the PCI Express TLPs as discussed in Chapter 3. Packets sent to the core for transmission

must follow the formatting rules for TLPs as specified in the PCI Express Base

Specification [15]. The memory access unit utilizes block RAMs in the FPGA to store the

PCI interface registers. Each PCI interface register is assigned a unique address in the

BAR memory space. In case of a write request, the write data is stored at the incoming

write address. In the case of a read request, the completion with data is fetched from the

read address and sent via the transmit engine to the core. The timing logic configuration

registers are also updated by the memory access module.

 The transmit engine, as shown in Figure 4.4 is a state machine that transmits the

outbound TLPs. The user logic is responsible for constructing the outbound packet

whenever the completion of memory read request occurs. There are three states in the

transmit engine: reset, transaction without complete, and transaction complete with data.

In the reset state, the user logic asserts the transmit source ready (trn_tsrc_rdy_n) and

start of frame (trn_tsof_n) transaction interface signals and presents the first QWORD

when it is ready to transmit. Figure 4.5 [17] shows the operation of the outbound packet

transmission. The core keeps the QWORD presented until the core asserts the destination

ready signal (trn_tdst_rdy_n). Once the trn_tdst_rdy_n signal is asserted the QWORD is

accepted immediately. If the read request is completion with data, the state will change to

 44

transaction complete with data, otherwise the state will be complete without data. In each

of the transaction complete states, the user application keeps the trn_tsrc_rdy_n asserted

and submits the next QWORD as shown in Figure 4.5.

Figure 4.4: Transmit engine state machine

Figure 4.5: Outbound packet transmission

 45

 The receive engine, as shown in figure 4.6 has four states: reset, receive memory

read TLP, receive memory write TLP, and wait. In the reset state, when the user logic is

ready to receive the data, the user application asserts the receive destination ready

transaction interface signal (trn_rdst_rdy_n) to indicate that it is ready to receive TLPs.

The core asserts the receive source ready (trn_rsrc_rdy_n) and the receive start of frame

(trn_rsof_n) signals to indicate that the user application is ready to receive the first TLP

QWORD. Figure 4.7 [17] shows the waveforms describing the reception of the inbound

packets. The TLP could be a read or write TLP request. The user application decodes the

header information from the TLP to determine if it is a read or write request. If it is a

write request, the state changes to the receive memory write TLP. When it is read request,

the header information is sent to the transmit engine and the state is changed to the

receive memory read TLP. The first and second DWORD of the memory TLP is decoded

in both read and write TLP states. The state is then changed to the wait state and the state

machine waits there until the write has been completed or the read has been successfully

transmitted.

 46

Figure 4.6: Receive engine state machine

Figure 4.7: Inbound packet reception

 The memory access module implements the Block RAM interface for the read

and write data storage. Along with the data storage, it also generates and clears the

interrupts by implementing several interrupt registers. The PCI Express interrupt

generation is considerably more complex than that for the PCI-X interface. Legacy mode

Reset
State

Write TLP
State

Read TLP
State

Wait State

Read Request Write Request

Read Request
TLP

Write Request
TLP

 47

interrupt operation, as shown in the Figure 4.8 [17], has been implemented in the Timing

Module. The user application first asserts cfg_interrupt_n and cfg_interrupt_assert_n

signals to indicate the assertion of the interrupt. The user application also selects the

legacy interrupt INTA using cfg_interrupt_di[7:0]. The core then asserts

cfg_interrupt_rdy_n to indicate that an interrupt has been accepted. On the following

cycle, the user application deasserts cfg_interrupt_n. After a certain period of time, the

user application asserts cfg_interrupt_n and deasserts cfg_interrupt_assert_n to indicate

deassertion of the interrupt. The core asserts cfg_interrupt_rdy_n to indicate that the

interrupt deassertion has been accepted. On the following clock cycle user application

deasserts cfg_interrupt_n.

Figure 4.8: Legacy interrupt operation

 Interrupts can be generated by the eight chopper vetoes, the beam veto, the PT0,

Tstart pulse, or the Loss of lock pulse in the Timing Module design. The Tsync

generation circuitry in the timing logic generates a Tsync signal if a chopper veto, PT0,

or Tstart pulse is seen. The Timing Module interrupts the device driver if a Tsync pulse is

asserted and updates all the read-only registers through the PCI Express bus. Therefore,

 48

the read-only registers are updated after every Tsync cycle ensuring fresh values from the

instrument systems.

 The interrupt module is designed as a state machine as shown in Figure 4.9 and

has five states: intr reset, intr ACK, intr service, intr ACK2, and intr done. If an interrupt

is requested, the cfg_interrupt_n and cfg_interrupt_assert_n signals are asserted in the intr

reset state. Then the state changes to the intr ACK state. The state machine remains in the

intr ACK state until the cfg_interrupt_rdy_n signal is asserted by the core to acknowledge

the assertion of the interrupt. Once received, then the state is changed to the intr service

state and the state machine then waits there for a random time until the interrupt has been

serviced. The cfg_interrupt_n signal is asserted by the user logic to indicate deassertion

of the interrupt. Once received, the state is then changed to intr ACK2. The state machine

remains in the interrupt ACK2 state until the cfg_interrupt_rdy_n is asserted by the core

to acknowledge deassertion of the interrupt. Both cfg_interrupt_n and

cfg_interrupt_assert_n are deasserted and the state is changed to interrupt done state to

indicate the completion of a single interrupt cycle as shown in Figure 4.9.

 49

Figure 4.9: Interrupt generation state machine

 The timing logic and the TLK sync blocks shown in Figure 4.3 are based on the

previous PCI-X design. In the new design, we have added seven more status registers to

verify the functionality of the Timing Module. We have also added four additional

chopper control systems, meeting the total chopper control system originally planned for

each Timing Module.

4.2.2 OCC Design

 The OCC design is divided into four modules as shown in Figure 4.10: Endpoint

Block Plus Core, Interface Logic, TLK Sync, and LVDS Sync. A simple MUX is

implemented to select between the LVDS and the optical interface for data transfer. The

endpoint block plus core is different from that for the Timing Module as it is customized

for DMA transfer. In the BAR settings, the address space BAR0 is configured to be 64-

bit memory with 4 KB aperture. The higher aperture is justified due to higher memory

requirement for the DMA transfers in the OCC design. All other settings in the endpoint

 50

customization are the same as those for the Timing Module. Table 4.3 shows the settings

used for the OCC design.

Figure 4.10: OCC firmware design

Optical LVDS Interface

FPGA

TLK Sync

MUX/DEMUX

Interface
Transmit
Engine

Receive
Engine

DMA
Engine

Endpoint Block plus IP Core

RocketIO Transceiver

PCI Express Bus

TRN Interface CFG Interface

LVDS Sync

 51

Lane Width Reference frequency (MHz) Base Address Registers (64 bit)
BAR0 (KB) BAR2(KB)

x8 250 4 2

Table 4.3: OCC core customization settings

 The receive engine is a state machine as shown in Figure 4.11. It has four states:

reset, wait, TLP format type, and payload. The function of the receive engine is to

process incoming TLPs and update the configuration register when the memory write

requests are received. It also processes reads and transfers control to the transmit engine

which generates the completion for read request. In the reset state, the receive engine

decodes the received TLP header and handles the TLP according to the TLP format type.

The TLP format type could be the read request, the write request, or the completion with

the data TLP in response to the memory read request. In the wait state, the receive engine

stalls and waits for a response from the other blocks, such as the transmit engine and the

DMA engine, to satisfy its request. In the payload state, the receive engine receives the

request completion with data TLPs and changes the state to the reset state when it

receives all the data requested by the DMA engine.

 52

Figure 4.11: OCC receive engine

 The transmit engine, as shown in Figure 4.12 has three states: reset, TLP format

type, and payload. The transmit engine sends memory read and memory write requests to

the root complex. The interrupt module is also a part of the transmit engine since the

endpoint application must interrupt the driver after a successful requested transmission.

The interrupt module generates legacy interrupts and has the same functionality as the

Timing Module interrupt design. In the reset state, if a transmission request occurs, the

DMA engine packs the TLP header and initiates the DMA transfer. Then the state

changes to the TLP format type, which could be a simple read completion, memory write,

or memory read. For a simple read, the state changes to the reset state after the

completion with data. For memory read, the transmit engine sends the TLP with the read

address and read count to the root complex (see Figure 3.1). The state changes to the reset

state after sending the read request TLP. For memory write, the state machine changes to

 53

the payload state, where it sends out the write TLP packets until it reaches the expected

count.

Figure 4.12: OCC transmit engine

 The DMA engine initiates a DMA write or read operation. In OCC design, the

DMA engine consists of status registers and configuration registers. Some operational

information is required from the software application to configure the configuration

registers. The DMA engine also implements the IDMA and ODMA memory areas as

discussed in chapter 2. The Command Queue (CQ), Data Queue (DQ), and Inbound

Message Queue (IMQ) for optical data transfer are also implemented. The software

application sets up the configuration register to inform the DMA engine to initiate DMA

write operations. The DMA engine generates memory write TLPs with the write DMA

address, write DMA TLP size, and write DMA TLP count. Then the DMA engine writes

either the LVDS data or optical interface data depending upon the configuration register

settings. An interrupt is generated when the number of TLPs transferred matches the

 54

write DMA TLP count. When the DMA engine initiates a DMA read operation, it sends

out a memory read TLP request to root complex via the transmit engine. The TLPs

include read DMA TLP address, read DMA TLP size, and read DMA TLP count. The

completion acknowledgement with data is received through the receive engine in

response to the memory read request and stored in the IDMA memory area. Once the

requested data size is received, the engine interrupts the driver through the transmit

engine. The total payload received must match the read TLP count times the read DMA

TLP size. There are several local registers implemented in the DMA engine to control the

start and operation of DMA transfer initiation.

4.3 Software Systems

 The software systems consist of the PCI driver and SNS user application. The PCI

driver establishes a link between the user application and the Timing Module card or

OCC. There are two PCI drivers designed by the SNS DAS group to communicate with

the Timing Module and OCC respectively. Since both of the PCI-X drivers are

compatible with the new PCI Express based design, the drivers provided the necesary

basic operations for the new design without any modifications. The drivers are compiled

with Microsoft visual studio 2005 and the appropriate communication parameters

including device ID, vendor ID, and driver version were changed to make the driver

completely compatible with the new designs. We were able to run the applications and

perform read and write operations through the PCI Express bus with these drivers as will

be discussed in the next chapter.

 55

4.4 Summary

 This chapter discussed the design and implementation of the new Timing Module

and OCC. In the new PCB design, we provided the Virtex-5 FPGA schematic and pinout

details. We also performed the FPGA schematic and other hardware verification. In the

FPGA code modification, we designed the interface logics that interfaces the PCI Express

core with the Timing Module and OCC user logic. We also discussed the state machines

that are part of the interface logic. Chapter 5 discusses the resource utilization,

performance estimation, and design verification of the new design.

 56

CHAPTER FIVE

RESULTS

 This chapter describes the results obtained from the design and implementations

of the new PCI Express based Timing Module and Optical Communication Card (OCC).

We discuss the FPGA resource utilization, the system performance analysis, and the

verification of the PCI Express operations with the new designs. We also compare the

results with the earlier PCI-X based Timing Module and OCC design.

5.1 Resource Utilization

5.1.1 Timing Module

 The FPGA implementation of the earlier PCI-X based Timing Module requires

99% of the logic slices, 84% of the external IOBs, and 17% of the Block RAM on a

Virtex-II XC2V1000 FPGA. Table 5.1 shows the resource utilization of the earlier design

from the place and route report. One of the initial requirements of the Timing Module

was to control eight chopper systems while presently it can control only four chopper

systems due to logic area limitations. Implementing an additional four channels of the

chopper controls would require 8% more logic slices in the Virtex-II device used in the

original Timing Module card. As shown in Table 5.1 there is only 1% of logic slices

remaining in the Virtex-II FPGA. In our new design, we use a Xilinx Virtex-5

XC5VLX50T FPGA, which has 3 times more logic slices to overcome the logic resource

problem.

 The new FPGA implementation for the PCI Express based Timing Module on the

Virtex-5 including the PCI Express endpoint and Timing Module logic requires only 46%

 57

of the total available logic slices, 34% of the external IOBs, and 16% of the Block RAM.

The complete resource utilization of our design is shown in Table 5.2. Four additional

channels of chopper control are implemented in the new design. With the new design and

chopper control expansion, the Virtex-5 FPGA still has 50% of the logic space available

for future expansion. The addition of a new daughter card and implementation of the

associated transceiver logic will utilize this free logic space in the FPGA. The Virtex-5

device also provides twelve DCMs compared to only eight in Virtex-II FPGA, which will

allow us to add the necessary DCMs for the daughter card reference clocks.

Logic Utilization Used Available Utilization
Number of Slices 5118 5120 99%

Number of Slice Flip Flops 4882 10240 47%
Number of LUTs 8043 10240 78%

Number of BRAMs 7 40 17%
Number of DCMs 5 8 62%
Number of IOBs 275 324 84%

Table 5.1: Virtex-II XC2V1000 utilization table for the Timing Module

Logic Utilization Used Available Utilization
Number of Slices 3102 7200 46%

Number of Slice Flip Flops 5863 28800 20%
Number of LUTs 6956 28800 24%

Number of BRAMs 10 60 16%
Number of DCMs 8 12 56%
Number of IOBs 167 480 34%

Table 5.2: Virtex-5 XC5VLX50T utilization table for the Timing Module

 58

5.1.2 Optical Communication Card

 Table 5.3 shows the resource utilization of the original OCC design. The PCI-X

based implementation of the original OCC design requires 48% of the logic slices, 34%

of the IOBs, and 41% of the Block RAM on a Virtex-II XC2V1500 FPGA. With only

48% of the logic slices used, the logic resources are not a major limitation in the OCC

design. The Block Ram utilization in the design however is high (41%) due to large

memory space implementation required for the PCI-X DMA transfer logic.

 The new FPGA implementation of the PCI Express based OCC design requires

42% of the logic slices, 34% of the external IOBs, and 41% of the Block RAM available

on the Virtex-5 XC5VLX50T FPGA. The complete resource utilization of the new OCC

design is shown in Table 5.4. The PCI Express implementation of the OCC design also

reveals that there is enough resources available in the FPGA for future logic expansion.

The primary reason of Virtex-5 migration of OCC design is to implement PCI Express

DMA transfer for higher throughput. The Block RAM utilization in the Virtex-5 device is

still high due to increased memory requirements for the PCI Express DMA transfer

compared to the old design. Virtex-5 provides more Block RAM memories compared to

the Virtex-II device used in the original OCC design, so the absolute number of BRAMs

is higher and the percentage of resources utilized remains roughly the same.

 59

Logic Utilization Used Available Utilization
Number of Slices 3757 7680 48%

Number of Slice Flip Flops 2487 15360 16%
Number of LUTs 5414 15360 35%

Number of BRAMs 20 48 41%
Number of DCMs 3 8 37%
Number of IOBs 184 528 34%

Table 5.3: Virtex II XC2V1500 utilization table for the OCC

Logic Utilization Used Available Utilization
Number of Slices 3072 7200 42%

Number of Slice Flip Flops 5837 28800 20%
Number of LUTs 6526 28800 23%

Number of BRAMs 35 60 41%
Number of DCMs 8 12 66%
Number of IOBs 164 480 34%

Table 5.4: Virtex-5 XC5VLX50T utilization table for the OCC

5.2 Performance Estimation and Analysis

5.2.1 Timing Module

 The maximum transfer rate of the PCI Express system is 2.5 GB/s per lane. This

data rate is the raw bit transfer rate while the effective data transfer rate is much lower

due to overheads and system design trade-offs. Table 5.5 [22] shows the link efficiency

or the theoretical maximum data throughput with a maximum payload size of 128 bytes

for the writes and reads.

 60

Link Width Write Read
x1 1720 1520
x4 6880 6080
x8 13760 12160

Table 5.5: Theoretical bandwidth of different PCI Express link

 The bandwidth of the PCI Express system is given by the following formula:

 Bandwidth (BW) = [(Total Bytes transferred) ⁄ (Transfer Time)] x GB/s (1)

5.2.1.1 Write Bandwidth

 In the Timing Module design, approximately 55-posted writes are transmitted at

256 bytes (Maximum Payload Size) each on x8 link. The total number of bytes

transferred over the PCI Express link is given by:

 Total bytes transferred = (number of posted writes) x (maximum payload size) (2)

Using Eqn. 2, the total bytes transferred for our system is 14080 bytes.

 The transaction clock period is 4 ns. Therefore, the PCI Express x8 link can send

8 bytes every 4 ns. We assume a TLP with a 12-byte header with no Error Cyclic

Redundancy Check (ECRC) and 8 bytes of address, results in 20 bytes of overhead. The

transfer time of a single 32-bit addressable memory write is given by:

 Write TLP transfer time = [(maximum payload + overhead) / 8 bytes / clock] x 4 ns/clock (3)

Using Eqn. 3, the write TLP transfer time is 138 ns for our system.

 The Data Link Layer (DLL) also introduces traffic overhead to the total transfer

time. The DLL packet transfer time is 4 ns. For every TLP sent, an acknowledgement

(ACK) must be returned to the sender of the TLP to indicate successful receipt of the

packet. Flow Control (FC) DLL packets are also sent by the link partner to indicate that

 61

the receiver has sufficient buffer space. The FC DLL packets are used to avoid receiver

buffer overflow. We assume that the TLP to ACK ratio is one ACK for every five TLPs

and an FC DLL packet is received every four TLPs. Therefore, the Total transfer time of

all posted writes is given by [22]:

Total transfer time = (number of posted writes x write TLP transfer time) +

(number of ACKs x 4ns) + (number of FC DLL packets x 4 ns) (4)

 Using Eqn. 4, the total write transfer time is 7686 ns for our system. Using Eqns.

1, 2, and 4, the total estimated write bandwidth in our case is obtained as 1.831 GB/s.

5.2.1.2 Read Bandwidth

 There are a maximum of 10240 bytes of data reads on an x8 link considering a

maximum read request size of 256 bytes and 40 status registers to be read at a time for

the Timing Module. Therefore, the total number of bytes to be transferred over the PCI

Express link is 10240 bytes. Here we assume 20 bytes of overhead for a memory read

TLP. The memory read request does not contain any payload. The 32-bit addressable

memory read TLP transfer time is given by:

 Read TLP transfer time = [(overhead) / 8 bytes / clock] x 4 ns/clock (5)

Using Eqn. 5, the read TLP transfer time is 10 ns for our system.

 The DLL packet transfer time is 4 ns. The majority of the read TLPs are 64 bytes.

Therefore, the Read Completion Boundary (RCB) payload is assumed to be 64 bytes. The

read completion transfer time is given by:

RCB transfer time = [(RCB payload + overhead) / 8 bytes / clock] x [4 ns / clock] (6)

Using Eqn. 6, the RCB transfer time is 42 ns for our system.

 62

 We assume that the TLP to ACK ratio is one ACK for every five TLPs and an FC

DLL packet is received every four TLPs. We also assume the receiver incoming read to

completion generation time is 300 ns [22]. Therefore the Total transfer time of the

memory reads is given by:

Total transfer time = (number of memory reads) x [Read TLP transfer time + read completion

generation time + 4 ns] + (RCB payload x RCB transfer time) + (overhead x 4ns) (7)

 Using Eqn. 7, the total transfer time for 40 memory reads is 15328 ns for our

system. Using Eqns. 1 and 7, the estimated total read bandwidth is calculated as 668

MB/s.

5.2.1.3 Comparison

 The PCI Express implementation of the Timing Module has an estimated 1.832

GB/s write and 668 MB/s read bandwidth. The write bandwidth meets the desired 1 GB/s

bandwidth requirement for the Timing Module operation. The read bandwidth of 668

MB/s is much lower than the theoretical bandwidth. The main reason is due to the

assumption that the reads are not pipelined and can only process one read at a time. But

the read bandwidth of the PCI-Express is higher that the PCI-X read bandwidth [27]. The

graph in the Figure 5.1 shows the bandwidth comparison of the PCI-X, the x4 PCI

Express, and the x8 PCI Express with respect to the Timing Module data payloads.

 63

Figure 5.1: Performance comparison

5.2.2 Optical Communication Card

 The OCC design has a higher bandwidth requirement compared to that of the

Timing Module. To achieve the required higher data rate and performance, a bus master

DMA is implemented to provide the desired data transfer rate for the OCC design. We

studied the performance of the DMA transfer over the PCI Express bus using the new

SNS PCI Express board with the Virtx-5 FPGA. We used the Xilinx Bus Master DMA

(BMD) reference design [20] and Avnet software application [20] to study the

performance of the system. We a used a 32 DWORD TLP size and a maximum payload

size of 128 bytes to monitor the performance. We transferred 32 KB of data over x1, x4,

and x8 links separately and studied the data rates over the PCI Express link, as shown in

Figure 5.2. The data rates obtained are sufficient for the OCC design operation.

0

0.5

1

1.5

2

PCI-X

(66Mhz)

PCI Express

x4

PCI Express

x8

Read

Write

G
B

/s

 64

Figure 5.2: PCI Express DMA performance

5.3 Design Verification

 The Timing Module and OCC designs were verified by both functional simulation

and real-time debug and verification tools. The functional simulations were performed

using the Xilinx ISE 10.1 [23] and the ModelSim 6.5 SE simulators [24]. Real-time

debug and verification tools such as the ChipScope Pro Core Generator, the ChipScope

Pro Core Inserter, and the ChipScope Pro Core Analyzer [25] were also used to verify the

design. The ChipScope Pro tool suite [26] enables real-time verification for FPGA

designs by inserting low-profile soft debug cores into the design or netlist. The

ChipScope Pro Analyzer tool is a logic and bus analysis interface that enables and sets

the trigger conditions to show the real-time signals from the FPGA.

5.3.1 Timing Module Verification

 We simulated the PCI Express functionalities when integrated with the Timing

Module user logic to show the basic read and write operations over the PCI Express bus.

0

2000

4000

6000

8000

10000

12000

x1 x4 x8

Read

Write

M
B

/s

 65

Figure 5.3 shows the simple read and write operations of the PCI Express protocol

simulation. The trn_lnk_up_c signal assertion indicates that the PCI Express link is

active. Whenever there is a target write, the trn_rsof_n_c signal is asserted and the

trn_rd_c receives the TLP data for the target write. Assertion of the trn_reof_n_c signal

indicates the end of the write transaction. The simulation also shows the target

completion with data TLP. The real time read and write operations of the PCI Express

protocol are also verified on the FPGA using ChipScope pro Analyzer. Figure 5.4 shows

a Timing Module read completion with data packet. The trn_td bus contains valid packet

header and data between the assertion of trn_tsof_n and trn_teof_n signals. When the PCI

Express core is ready to receive the data, it asserts trn_tsrc_rdy_n signal and the packet is

transmitted. Figure 5.5 shows the PCI Express write operation. The data header and the

payload is received via trn_rd. Assertion of trn_rsof_n indicates the reception of the

header packet and assertion of trn_esof_n indicates the completion of one write

operation. The PCI Express core asserts trn_rsrc_rdy_n signal to indicate transmission of

the TLP.

 66

R
E

A
D

W
R

IT
E

F
ig

ur
e

5.
3:

 T
im

in
g

m
od

ul
e

P
C

I
E

xp
re

ss
 s

im
ul

at
io

n

 67

 F
ig

ur
e

5.
5:

 T
im

in
g

m
od

ul
e

w
ri

te
 o

pe
ra

ti
on

F
ig

ur
e

5.
4:

 T
im

in
g

m
od

ul
e

re
ad

 o
pe

ra
ti

on

 68

5.3.2 OCC Verification

 We also simulated the DMA memory burst for the OCC design using ModelSim

6.5 SE simulator. The simulation waveform in Figure 5.6 shows the DMA transfer from

the OCC to the system memory. When the OCC design is ready to transfer data to the

system memory, it asserts the wr_dma_start signal. The wr_dma_done signal is asserted

to indicate that the dma_wr_count value matches the number of TLPs to be transferred.

Figure 5.7 shows the DMA transfer from the system memory to the OCC. The

rd_dma_start signal is asserted to initiate a read DMA transfer. When the dma_rd_count

value matches the number of the TLPs to be transferred, the DMA read is completed with

the assertion of the rd_dma_done signal.

 The DMA transfers were also verified on the OCC system using the ChipScope

pro logic analyzer. Figure 5.8 shows the 16 TLPs being transferred from the OCC to the

system memory and Figure 5.9 shows the burst transfer from the system memory to the

OCC.

 69

F
ig

ur
e

5.
6:

 S
im

ul
at

io
n

of
 D

M
A

 t
ra

ns
fe

r
fr

om
 O

C
C

 t
o

sy
st

em
 m

em
or

y

F
ig

ur
e

5.
7:

 S
im

ul
at

io
n

of
 D

M
A

 t
ra

ns
fe

r
fr

om
 s

ys
te

m
 m

em
or

y
to

 O
C

C

 70

F
ig

ur
e

5.
8:

 D
M

A
 t

ra
ns

fe
r

fr
om

 O
C

C
 t

o
sy

st
em

 m
em

or
y

F
ig

ur
e

5.
9:

 D
M

A
 t

ra
ns

fe
r

fr
om

 s
ys

te
m

 m
em

or
y

to
 O

C
C

 71

5.3.3 Interrupt Verification

 The PCI Express interrupt module was also simulated to verify the operation of

the interrupt generation. The waveforms in Figure 5.10 shows the PCI Express legacy

interrupt generation. It also shows the five states of operation that completes a single

interrupt. As shown in Figure 5.10, the interrupt module state machine enters the intr_rst

state and asserts cfg_interrupt_n and cfg_interrupt_assert_n signals to indicate the

interrupt generation. Then the state changes to the intr_ack state. When the user

application receives the cfg_interrupt_rdy_n signal from the core, it de-asserts the

cfg_interrupt_n signal and changes the state to the intr_srvc state. The state machine

remains in the intr_srvc state for a random period until the interrupt is serviced and then

asserts the cfg_interrupt_n signal again. The state changes to the intr_ack2 state and waits

there for the cfg_interrupt_rdy_n signal from the core. Once the cfg_interrupt_rdy_n

signal is asserted by the core, the state changes to the intr_done state to indicate the

completion of a single legacy interrupt operation.

Figure 5.10: Interrupt generation simulation

 72

5.3.4 LVDS and Optical Transceiver Loopback

 Apart from the verification of the PCI Express integration, the optical transceiver

loopback tests were also performed to verify the operation of the optical transceiver

hardware on the board. We designed a diagnostic test bench in VHDL using Block RAM

for the loopback data source to verify the optical transceiver hardware. For the optical

tranceivers, we sent random data for transmission over the optical link. When the

transmission is complete we wait for the reception of data to complete. If the transmitted

data and the received data matches, it verifies the integrity of the optical transceiver

hardware.

5.3.5 SNS Application and Driver Testing

 We used the SNS PCI Express driver and application to write and read from the

timing registers. The driver is a kernel mode PCI driver designed in the Windows

operating system by SNS DAS group. We re-compiled the driver in Windows Visual

Studio 2005 and changed the device parameters to work with the new PCI Express based

PCB. Figure 5.11 shows a screenshot of the SNS application that is used to read and write

to the configuration registers.

 73

Figure 5.11: SNS software application

5.4 Summary

 The Timing Module and the OCC designs were verified using the functional

simulations and in-system debugging methods. The Timing Module and the OCC designs

were verified with the appropriate data from the function generators implemented in the

designs. As a part of the future work, the designs will be tested in the real-time

environment with Optical Ditribution Module (ODM) data at SNS. Chapter 6 will

conclude the thesis with the discussion of possible future work for this project.

 74

CHAPTER SIX

CONCLUSION

 In this thesis, we have presented the implementation of the PCI Express in the

SNS Timing Module and Optical Communication Card (OCC) designs. The PCI Express

is a standard interface for the next generation of embedded applications due to its high

bus throughput. The PCI-X bus interface used in the original Timing Module and OCC

designs does not provide the required data rates due to its limited bandwidth. Therefore,

the PCI Express bus was selected to replace the PCI-X bus in the Timing Module and

OCC designs. The new designs also use a much larger FPGA to provide more

functionality and room for future expansion.

 In chapter 2, we presented the theory of operation of the earlier Timing Module

and OCC design. We studied the operation of the original designs to modify the PCI

interface and allow it to work with the PCI Express bus. We also presented all of the

timing signals and registers that are required for the Timing Module and OCC operation.

 Chapter 3 discussed the detailed PCI Express architecture and topology. We

described the PCI Express protocol and how it works with the PCI Express endpoint core.

The PCI Express core is more complex than the existing PCI-X core due to the

implementation of three additional protocol layers. We also discussed the transaction

layer packets (TLP) of the PCI Express protocol, which are responsible for the

transmission of data between the endpoint core and the user application. We finally

examined the Programmed I/O (PIO) and the Bus Master DMA (BMD) designs from

Xilinx to understand the PCI Express TLP processing and the DMA transfers.

 75

 In Chapter 4, we presented the detailed design and implementation

methodologies. For the Timing Module, we designed the receive engine, the transmit

engine, the memory access module, and the interrupt module to interface the timing logic

with the PCI Express core. For the OCC, we designed the receive engine, the transmit

engine, and the DMA engine to initiate DMA transfers. Additional functionality will be

added in the future for the complete operation of the OCC design.

 Chapter 5 discussed some of the results we obtained from our design and

implementation. The earlier Timing Module consumes 99% of the logic slices of the

Xilinx Virtex-II FPGA. Migration of the FPGA design to a Xilinx Virtex-5 provided

enough logic to meet current requirements and allow expansion of the design in the

future. The Virtex-5 FPGA also provided a PCI Express hard IP core, which simplifies

the design by creating a wrapper around the core. We also explained the achievable

bandwidth for the PCI Express bus for both non-DMA and DMA transfers. The

bandwidth analysis shows that the PCI Express bus provides much higher bandwidth

compared to the earlier PCI-X bus. We also verified our design using VHDL simulators

and real time JTAG signal captures. Testing with the real time data from the instrument

systems still remains for both designs. It is important to note that the designs can only be

tested at SNS with real-time signals from Optical Distribution Modules (ODM). We

tested our designs using the data generated from the function generators implemented

within the FPGA design. We also used the SNS PCI Express software application and

drivers to verify the PCI Express operation and compatibility.

 76

 This work has yielded the following contributions to the design of the new

Timing Module and OCC for the SNS instrument systems.

• FPGA related circuit design for the new PCB that functions as both the Timing

Module and OCC board

• Schematic verification and hardware testing

• Simulation of the PCI Express core using ModelSim 6.5 SE simulators

• VHDL code implementation for the Timing Module PCI Express interface

• VHDL code implementation help for the OCC PCI Express DMA design

• Hardware debugging and troubleshooting using ChipScope Pro tools and on-

board LEDs

 The future work for this project involves testing the Timing Module and OCC

design in the real-time environment at SNS. We will also add the daughter card to the

system eliminating the need for the Accelerator Timing Card (ATC). To simplify the

Printed Circuit Board design for the daughter card, we can replace the TLK2501 [14]

transceivers currently used on the ATC with the in-build RocketIO transceivers on the

Virtex-5 FPGA. The transceiver logic can then reside on the Virtex-5 FPGA, which has

ample remaining logic resources for the implementation. The work will involve

implementation of the RocketIO GTP cores on the Virtex-5 FPGA with interface logic.

The bandwidth provided by the Virtex-5 RocketIO GTP is higher than that of the

TLK2501 transceivers and therefore sufficient for our requirements.

 77

 There are 24 instrument systems installed in the SNS facility at Oak Ridge

National laboratory. In many of the instrument systems, the transfer rate requirement is at

least 1GB/s to collect all neutron events. Redesign of the Timing Module and OCC to

incorporate the Virtex-5 FPGA and PCI-Express interface not only provides the

necessary throughput but also provides enough logic area for future expansion as

required.

 78

REFERENCES

[1] Spallation Neutron Source, Data Acquisition Systems,

http://neutrons.ornl.gov/instrument_systems/components/das.shtml, Aug 20, 2009.

[2] Spallation Neutron Source, Timing Module,

 http://neutrons.ornl.gov/instrument_systems/components/timing.shtml, Aug 20, 2009.

[3] Spallation Neutron Source, Instrument Systems Timing Module Technical Reference

 Manual, February, 2007.

[4] Spallation Neutron Source, Optical Communications Board,

 http://neutrons.ornl.gov/instrument_systems/components/optical_comm.shtml, Aug 20, 2009.

[5] Spallation Neutron Source, Instrument Systems Optical Communication Card

 Technical Reference Manual, Dec. 2004.

[6] Xilinx Endpoint Block Plus Wrapper for PCI Express,

 http://www.xilinx.com/products/ipcenter/V5_PCI_Express_Block_Plus.htm, Nov. 2009.

[7] A Low-Cost PCI Express Solution,

 http://www.xilinx.com/publications/solguides/be_01/xc_pdf/p07-08_be1-pci.pdf, Sep. 2005.

[8] Spallation Neutron Source, Neutron Choppers,

 http://neutrons.ornl.gov/instrument_systems/components/chopper/index.shtml, Aug 20, 2009.

[9] Spallation Neutron Source, Detectors,

 http://neutrons.ornl.gov/instrument_systems/components/detector.shtml, Aug 20, 2009.

[10] LogiCORE IP Initiator/Target v5.166 for PCI-X, User Guide,

 http://japan.xilinx.com/support/documentation/ip_documentation/pcix_64_ug160.pdf, Sep 19, 2008.

[11] Spallation Neutron Source, LPSD ROC Board,

 http://neutrons.ornl.gov/instrument_systems/components/roc.shtml, Aug 20, 2009.

 79

[12] Spallation Neutron Source, FEM Board,

 http://neutrons.ornl.gov/instrument_systems/components/fem.shtml, Aug 20, 2009.

[13] Spallation Neutron Source, DSP Board,

 http://neutrons.ornl.gov/instrument_systems/components/dsp.shtml, Aug 20, 2009.

[14] TLK2501 1.5 TO 2.5 GBPS Transceiver

 http://www.datasheetcatalog.org/datasheet/texasinstruments/tlk2501.pdf, Feb. 2002.

[15] PCI Express Base Specification Revision 1.0, April 29, 2002.

[16] Creating a PCI Express™ Interconnect,

 http://www.pcisig.com/specifications/pciexpress/resources/PCI_Express_White_Paper.pdf,

 Nov. 2009

[17] LogiCORE™ IP Endpoint Block Plus v1.12 for PCI Express, UG341 September 16,

 2009.

[18] Virtex-5 FPGA RocketIO GTP Transceiver, UG196 (v2.0) June 10, 2009.

[19] LogiCORE™ IP Endpoint Block Plus v1.9 for PCI Express, UG343 September 19,

 2008.

[20] Bus Master DMA Reference Design for the Xilinx Endpoint Block Plus Core for

 PCI Express, XAPP1052 (v1.1) August 22, 2008.

[21] Virtex-5 FPGA User Guide,

 http://www.xilinx.com/support/documentation/user_guides/ug190.pdf, Nov 5, 2009.

[22] Virtex-4 FPGA User Guide,

 http://www.xilinx.com/support/documentation/user_guides/ug070.pdf, Dec 1, 2008.

 80

[23] ISE 10.1 In-Depth Tutorial,

 http://www.xilinx.com/direct/ise10_tutorials/ise10tut.pdf, Nov. 2009.

[24] ModelSim SE User’s Manual,

 http://portal.model.com/modelsim/resources/references/modelsim_se_user.pdf, Nov. 2009.

[25] ChipScope Pro 10.1 Software and Cores User Guide,

 http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_10_1_ug029.pdf, March 24, 2008.

[26] ChipScope Pro 10.1 Serial I/O Toolkit User Guide

 http://www.xilinx.com/support/documentation/sw_manuals/chipscope_pro_siotk_10_1_ug213.pdf,

 Mar 24, 2008.

[27] Approaching PCI Bandwidth with FPGA,

 http://www.nalanda.nitc.ac.in/industry/appnotes/xilinx/documents/products/logicore/pci/docs

 /performa.pdf, Nov. 2009.

	Clemson University
	TigerPrints
	5-2010

	FPGA BASED TIMING MODULE AND OPTICAL COMMUNICATION CARD DESIGN FOR SPALLATION NEUTRON SOURCE
	Biswa Singh
	Recommended Citation

	Microsoft Word - $ASQ37335_supp_694E1248-E99C-11DE-B8FC-AE32F0E6BF1D.DOC

