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ABSTRACT 
 
 

This thesis is aimed at applying the probabilistic approaches for back analysis of 

geotechnical systems. First, a probabilistic back-analysis of a recent slope failure at a site 

on Freeway No. 3 in northern Taiwan is presented. The Markov Chain Monte Carlo 

(MCMC) simulation is used to back-calculate the geotechnical strength parameters and 

the anchor force. These inverse analysis results, which agree closely with the findings of 

the post-event investigations, are then used to validate the maximum likelihood method, a 

computationally more efficient back-analysis approach. The improved knowledge of the 

geotechnical strength parameters and the anchor force gained through the probabilistic 

inverse analysis better elucidate the slope failure mechanism, which provides a basis for a 

more rational selection of remedial measures.  

Then the maximum likelihood principle is adapted to formulate an efficient 

framework for probabilistic back analysis of soil parameters in a braced excavation using 

multi-stage observations. The soil parameters are updated using the observations of the 

maximum ground settlement and/or wall deflection measured in a staged excavation. The 

updated soil parameters are then used to refine the predicted wall and ground responses in 

the subsequent excavation stages, as well as to assess the building damage potential at the 

final excavation stage. Case study shows that the proposed approach is effective in 

improving the predictions of the excavation-induced wall and ground responses. More-

accurate predictions of the wall and ground responses, in turn, lead to a more accurate 

assessment of the damage potential of buildings adjacent to the excavation.  
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CHAPTER ONE 

INTRODUCTION 

 
Motivation and Background 

 
Uncertainties in the parameters of earthen materials have long been recognized 

(Christian et al. 1994; Phoon and Kulhawy 1999). To deal with these uncertainties, the 

probabilistic or reliability-based approach that considers explicitly the uncertainties in the 

geotechnical parameters has been proposed (e.g., Wu et al. 1989; Christian et al. 1994; 

Duncan 2000; Baecher and Christian 2003; Phoon et al. 2003; Shou et al. 2005; Hsiao et 

al. 2008; Najjar and Gilbert 2009; Juang et al. 2011; Lee et al. 2012). The results of the 

probabilistic analysis are realistic only if the input parameters can be well characterized 

statistically. Thus, the challenge of the probabilistic approach lies in determining the 

probability distribution of input parameters, which is quite challenging since in a typical 

project, available data is often very limited (Gilbert et al. 1998; Baecher and Christian 

2003; Hoek 2006; Lee et al. 2012). In geotechnical engineering, it is often desirable to 

back analyze the input parameters based on field observations to improve statistical 

characterization on the input parameters.  

Past work on back analysis of geotechnical system is primarily based on 

deterministic approach, with which the calibration parameters are assumed to be “non-

random” and the analysis model is assumed to be “error-free” (i.e., no model error). For 

example, in the deterministic back analysis, the solutions obtained through the 

deterministic analysis are often matched with field observations of the geotechnical 
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system (e.g., Ou and Tang 1994; Tang et al. 1999; Calvello and Finno 2004; Rechea et al. 

2008; Stark et al. 2008; Hashash et al. 2010). However, the deterministic back analysis 

techniques simply neglect the uncertainty in the input parameters (e.g., the key soil 

parameters) that are generally high (Harr 1987; Phoon and Kulhawy 1999; Hsiao et al. 

2008; Lee et al. 2012). It is reported that the uncertainty in soil parameters has a 

significant influence on the predicted response of geotechnical systems (Hsiao et al. 2008; 

Wang et al. 2010; Zhang et al. 2011). 

In this regard, it is desirable to perform the probabilistic back analysis of 

geotechnical systems to improve one’s knowledge on the parameters of a geotechnical 

model based on field observations. This thesis focuses on developing an efficient 

probabilistic back analysis framework for geotechnical problems such as slope failure 

and braced excavation. Chapter II of this thesis is devoted to develop efficient procedures 

for probabilistic back analysis of slope failure based on the Maximum Likelihood 

principle and the Markov Chain Monte Carlo simulation. The improved knowledge of the 

geotechnical strength parameters and the anchor force gained through the probabilistic 

back analysis can better elucidate the slope failure mechanism, which provides a basis for 

a more rational selection of remedial measures. Chapter III of this thesis further 

formulates an efficient procedure based on the maximum likelihood principle for 

probabilistic back analysis of braced excavations. The soil parameters are updated using 

the observations of the maximum ground settlement and/or the maximum wall deflection 

measured in a staged excavation. The updated soil parameters are then used to refine the 
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predicted wall and ground responses in the subsequent excavation stages, as well as to 

assess the building damage potential at the final excavation stage. 

 
 

Objectives and Thesis Organization 

 
The scope of this thesis focuses on the application of probabilistic back analysis 

methods in geotechnical systems. The first objective of this thesis is to establish a 

Markov Chain Monte Carlo (MCMC) simulation-based framework for the probabilistic 

back analysis of slope failure. The second objective of this thesis is to develop an 

efficient probabilistic back analysis framework for slope failure based on the maximum 

likelihood principle and validate this framework with MCMC simulation results. The 

third objective of this thesis is to develop an efficient framework based on the maximum 

likelihood principle for back analysis of soil parameters in braced excavations using 

multi-stage observations.  

This thesis consists of four chapters. In Chapter I, an introduction is presented that 

sets the outline and stage for the entire thesis. Chapter II and Chapter III present major 

contents of the thesis work. In Chapter II, a probabilistic back analysis of a recent slope 

failure in northern Taiwan is presented. In Chapter III, an efficient framework based on 

the maximum likelihood principle for back analysis of soil parameters in a staged 

excavation using field observations is proposed and demonstrated with a case study. 

Finally, in Chapter IV, the last chapter, the main conclusions of this thesis are presented. 
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CHAPTER TWO 

PROBABILISTIC BACK ANALYSIS OF SLOPE FAILURE 

 
Introduction 

 
The experience-calibrated factor of safety (FS) approach is traditionally used in 

the slope stability analysis. To account for the uncertainty in geotechnical parameters 

explicitly, however, probabilistic methods are often used (Christian et al. 1994; Juang et 

al. 1998; Duncan 2000; Park et al. 2005; Shou et al. 2005; Penalba et al. 2009; Wang et al. 

2010; Li et al. 2011; Lee et al. 2012; Park et al. 2012a; Park et al. 2012b; Wang et al. 

2012). The accuracy of the probabilistic analysis depends on the proper statistical 

characterization of the input parameters. However, a proper statistical characterization of 

the input parameters often requires testing of a large number of samples extracted from a 

wide range of sites in question. In a routine geotechnical practice, available data is often 

very limited (Gilbert et al. 1998; Hoek 2006). Apart from the uncertainties of the 

geotechnical parameters, the uncertainty and deterioration of anchors in a slope system 

are often more difficult to estimate (Xanthakos 1991). 

In a deterministic approach, the back-analysis of geotechnical strength parameters 

is usually determined through a trial-and-error process, in which various values for 

geotechnical strength parameters and slip angles are assumed and analyzed until the input 

______________________ 

*A similar form of this chapter has been published at the time of writing: Wang L, Hwang JH, Luo Z, 
Juang CH, Xiao J. (2013). Probabilistic back analysis of slope failure – a case study in Taiwan. 
Computers and Geotechnics, 51, 12-23. 
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values that yield FS = 1 are obtained (Tang et al. 1999; Stark et al. 2008). The 

deterministic approach is, however, inadequate for addressing the uncertainties in the 

estimated geotechnical strength parameters. In this study, a framework for a probabilistic 

back analysis of input parameters of a slope stability model based on field observations in 

a slope failure event is adopted. The improved knowledge on the input parameters 

through this probabilistic back analysis contributes to the safety evaluation, updating 

analysis, and remedial design of the slope (Tang et al. 1999; Zhang et al. 2011). 

In this chapter, two approaches for the probabilistic back analysis of slope failure 

are adopted by the author for a case study of rock slope failure at Freeway No. 3 in 

Taiwan (TGS 2011). The first approach employs a Markov Chain Monte Carlo (MCMC) 

simulation-based framework for the inverse analysis of the slope failure at Freeway No 3. 

This time-consuming procedure is generally capable of simulating uncertainty parameters 

and producing accurate results. The second approach involves a Maximum Likelihood 

(ML)-based optimization algorithm that can be easily implemented in a user-friendly 

spreadsheet environment. The ML-based approach requires much less computational 

effort and thus has a greater potential as a tool in the geotechnical engineering practice.  

With this enhanced knowledge of the input parameters for the slope system, it is 

possible to elucidate the failure mechanism to create a more reasonable estimate of the 

failure probability of the slope. This improved knowledge of input parameters, coupled 

with the reliability-based design approach, provides a more rational approach for 

selecting suitable measures to mitigate slope failures. 
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Overview of the 2010 Landslide on Freeway No. 3, Taiwan 

 
The Freeway No. 3 Landslide occurred at approximately 14:29 p.m. on April 25, 

2010 (local time) at the 3k+300m location of Freeway No. 3 on the Sai Gong Gek 

mountain, approximately 20 kilometers northeast of Taipei, the capital of Taiwan. In this 

landslide, approximately half of the hill gave way, in which more than 200,000 m3 of dirt 

and rocks crashed onto the motorway and destroyed an overpass, resulting in a road 

closure and blockage of this 6-lane freeway between Keelung and Taipei (TGS 2011; 

Hsiao et al. 2011). A panoramic view of this landslide is shown in Figure 2.1(a) and 

2.1(b), in which the sliding mass may be approximated as a triangular sliding mass. The 

base width of the triangular sliding mass (along the Freeway No. 3) is approximately 155 

m and the length of two sides of the triangular sliding mass is about 185 m (TGS 2011). 

At the time of landslide, it was a sunny day and no tremors occurred, thus excluding both 

heavy rainfall and earthquake, the two major causes of landslides in Taiwan, as the causes 

of failure.  

The site of collapsed rock slope is located in the Miocene Taliao formation. The 

geological map shows a sedimentary rock formation of shale, sandstone, alternation of 

sandstone and shale in this site. The geological profile of the slope mainly consists of six 

layers as shown in Figure 2.2. It is noted that in this area, the strike of rock formation is 

in the NE direction, and the dip slopes are in the SE direction at an angle of . 

Because of these rock slope characteristics, and the fact that Freeway No. 3 cut through 

the dip slope, there was a high potential for a dip-slope failure.  

o o10 30
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(a)

(b)
 

 
 

Figure 2.1: Site photograph of the Freeway No.3 landslide in Taiwan: (a) 
Panoramic view; (b) Another view (National Airborne Service Corps, Ministry of Interior, 

Taiwan, 2011, http://www.nasc.gov.tw/) 
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The top layer is an overburden soil layer with a thickness of 2-5 m, and the 

second layer is a sandstone (SS) layer with a thickness of approximately 10 m, which is 

interspersed with laminate shale and with vertical tension joints slid downward. The third 

layer consists of alternations of thin sandstone and shale (SS/SH) with an approximate 

thickness of 1 m, and the fourth layer is a dark gray shale (SH) with an approximate 

thickness of 6 m with laminate siltstones. The fifth and sixth layers are sandstone with an 

approximate thickness of 2-3 m with significant trace of fossil (SS-f) on the bedding 

plane, and alternating layers of thin sandstone and shale (SS/SH), respectively. The 

sliding plane is close to the interface of the third and fourth layers on top of the dark gray 

shale. During rock boring, clay seams, which had been suspected as a potential cause for 

dip slope failure, were found at the depth of the sliding plane within some boreholes.  

 

 

Unit : m 

 
 

Figure 2.2: Geometry and geological profile of a cross-section of the collapsed slope  
on Freeway No.3  
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The rock slope at Freeway No. 3 landslide site is geometrically classified as a dip 

slope with an easy flow direction surface that contains a shale and sandstone interlayer 

with a high porosity. During the construction of Freeway No. 3, the foot of the dip slope 

was excavated and 572 rock anchors (or bolts) were installed to support the slope. The 

horizontal spacing of the anchors was approximately 2.6 m and the vertical spacing of the 

anchors was approximately 1.8 m (TGS 2011). The construction of the anchor system 

was completed in 1998. Field investigations after the slope failure (April 2010) showed 

that only 58 anchors remained in place after the slope failure. Forty-eight percent (48%) 

of the remaining anchors showed a fracture of steel strands (TGS 2011).  

Post-event field measurements by the authors indicate an average slip surface of 

inclination of 15. In fact, the measured slip surface of inclination in various areas of the 

slip surface is in the range of 14 to 16. These observations are consistent with 

independent post-event failure investigation and analysis by Chen et al. (2010) and Lin et 

al. (2010), which reported a slip surface of inclination of 14 and 15, respectively.   

 

Deterministic Model for Rock Slope Stability Analysis 

 
The location of the slip surface was determined from a site investigation, which 

may be simplified as a single plane failure surface as indicated in Figure 2.3. The rock 

slope stability analysis may be obtained through the use of a deterministic model such as 

that developed by Hoek and Bray (1981). This model is a limit equilibrium analytical 

model for plane failure. The slope stability was determined by a factor of safety (FS), 
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defined as the ratio of the forces resisting sliding to the forces tending to induce sliding 

along the slip surface (Hoek and Bray 1981; Turner and Schuster 1996; Wyllie and Mah 

2004): 

 
[ cos( ) sin( ) cos( )] tan

sin( ) cos( ) sin( )

cA W U V T
FS

W V T

  
  

   


 


                                        (2.1) 

 
where c  is the cohesive strength along sliding surface (ton/m2);   is the friction angle of 

sliding surface (°); A  is the area of slip (or shear) plane (m2);   is the angle between the 

rock anchor and normal vector of slip surface (°);   is the angle of slip surface (°); W  is 

the weight of slipped volume (ton); U is the uplift force due to water pressure on the 

failure surface (ton); V is the horizontal force due to water in the tension crack (ton); T  is 

the summation of design forces of all rock anchors (ton).  

  

Freeway No. 3 

Sai Gong Gek mountain

Tension crack

Length of sliding mass = 185 m 

Sliding area = 14000 m2 

Base width of sliding mass = 155 m

Slip surface of inclination = 15° 

 

Figure 2.3: 3-D illustration of the collapsed slope on Freeway No.3 
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It should be noted that in the case study presented later, Eq. (2.1) was not used to 

analyze a single specific section of a 3-D sliding mass. The entire sliding rock mass was 

treated rather as a single unstable block, with Eq. (2.1) being used to analyze this 3-D 

sliding mass. This 3-D analysis nature can be detected by observing the units of the 

variables in Eq. (2.1). For example, the unit for the area of the slip plane is “m2” instead 

of “m2/m” or “m”; and the unit for the weight of the slipped rock mass is “ton” instead of 

“ton/m”. It is quite common in rock engineering (Turner and Schuster 1996) to analyze 

the stability of a rock slope in 3-D using Eq. (2.1). The back-analyzed rock properties, 

presented later, refer rather to the average properties along the entire failure surface in the 

actual 3-D space, not the properties along a single specific section.  

In a deterministic analysis, slope failure is said to occur if FS  1. Thus, in theory 

FS at the moment of failure is unity (Duncan and Wright 2005; Zhang et al. 2010a). This 

concept is usually used in the back analysis of slope stability, particularly for use in any 

post-event investigation.  

Based on the TGS report (TGS 2011), the groundwater table during the slope 

failure at the site of case study (Freeway No.3) was located at a great depth and not 

within the slope stability analysis domain. In addition, there was practically no 

precipitation for at least 15 days before the failure event, thus making it reasonable to 

assume that U and V were zero in the analysis. The detailed parameter values in this 

deterministic analysis of the stability of Freeway No.3 site slope are summarized in Table 

2.1. These data are used in the back-analysis presented in the subsequent sections. It 

should be noted that the back-analyzed geotechnical property in this case mainly refers to 
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the shear strength along the slip surface (in terms of the internal friction angle  ), which 

is an average effect of the shear properties of sandstone, shale and clay seams along the 

interface between the third and fourth layers. 

 
Table 2.1: Parameter values for the deterministic analysis of the stability of  

Freeway No. 3 slope (adapted from Hsiao et al. 2011 and TGS 2011) 
 

Parameter Value 

Unit weight of rock, r  (ton/m3) 2.1 

Volume of slipped rock,  (mrV 3) 225078.5 

Weight of slipped rock, W  (ton) 472664.9 

Anchor force of single anchor (ton) 60 

Number of anchors 572 

Inclined angle of anchor,   (°) 55 

Cohesion,  (kg/cmc 2) 0 

Dip angle of slip surface,   (°) 15 

Area of slip plane, A (m2) 14000 

 
 

Back Analysis of Strength Parameter and Anchor Load 

Markov Chain Monte Carlo (MCMC) technique 

The prior information of uncertain parameters is provided in Table 2.2. The mean 

value of the internal friction angle   was estimated from limited testing data of samples 

taken at the slip surface in the post-event investigation, and the COV of   was estimated 

based on those reported in the literature (Lee et al. 2012). The mean anchor force was the 

initial design value of this anchor system, and the COV of the anchor force was estimated 

at 38% based upon the results of the field tests reported by Li et al. (2007) and Zhang et 

al. (2009). 
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Table 2.2: Statistics of uncertain parameters (adapted from TGS 2011) 

 
Parameter Mean Std. dev. COV 

 ϕ (°) 21 3.15 0.15 
T (ton) 60 22.8 0.38 

      
 

The procedure developed by Zhang et al. (2010a) was adapted for back-analysis 

of the slope stability of Freeway No 3 slope. The model for analyzing this slope stability 

is expressed as: 

 
( )y g  θ                                                                                        (2.2) 

 
where y is the observed factor of safety;  g θ denotes the calculated factor of safety using 

Eq.(2.1); and θ is the vector of the input parameters of the model (  and T ). The error 

term  , assumed as statistically independent with the observation, follows a normal 

distribution with a mean   and a standard deviation  .  

The occurrence of this slope failure theoretically implies that the observed factor 

of safety is equal to unity. Thus, the likelihood of the factor of safety (y) being equal to 

the observation of slope failure (FS = 1) is the conditional probability density function 

(PDF) of , expressed as: θ

 
( ) 1

( | )
g

L Failure 






   
 

 

θ
θ                                                                           (2.3) 

According to the Bayesian inference methodology, the posterior PDF is 

proportional to the product of the likelihood function and the prior distribution (Ang and 
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Tang 2007): 

 

( ) 1
( | ) ( )

g
f Failure k f






   

  
 

θ
θ θ                                                                (2.4) 

 
where k is a normalization constant and  f θ is the prior distribution. The posterior 

distribution was obtained using sampling methods such as the Markov Chain Monte 

Carlo (MCMC) simulation technique. Here, we used the Metropolis-Hastings algorithm 

(Metropolis et al. 1953; Hastings 1970) to construct the Markov chains for the back-

analysis of Freeway No. 3 Slope, the details of which are listed below (with reference to 

Figure 2.4). In this procedure: 

 

1. The term 0θ  is randomly selected in the Markov chain. 

2. For the kth iteration, the k+1 point Y is generated from a proposal 

distribution  kJ Y θ , that is determined as a multivariate normal distribution with 

a mean of kθ  and a covariance matrix of   θC  where   is a scaling factor and 

θC  is the covariance matrix of the prior distribution of θ . 

3. A random number U is generated from a uniform distribution (0, 1). 

4. Accept Y as 1kθ  with a probability: 

 
 

min 1, k

k

q
r

q

 
  

  

θ Y

Y θ
                                                                   (2.5) 

 q θ Y  is the un-normalized posterior PDF adapted from Eq. (2.4). If U < r, 
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then accept the new point Y and set 1kθ = Y, else reject Y and set = . 1kθ kθ

5. The iteration is halted if k reaches the pre-specified number of samples (i.e., 

Markov chain “length”).  

 

We note that the initial samples acquired during the initial phase of the Markov 

Chain obtained from the Metropolis-Hastings algorithm are unstable and should be 

discarded (Juang et al. 2013). The number of these discarded, or “burn in” samples, 

depends on a specific problem. In this study, the number was 500, based upon a trial and 

error process for obtaining converged results.  

 

Back analysis using MCMC – Case study 

For demonstration purposes, the prior distributions of   and T were assumed to 

follow a lognormal distribution with the statistics listed in Table 2.2. The model error   

was assumed to follow a normal distribution with mean 0.0 5   and standard 

deviation 0.07   following the study by Zhang et al. (2011). It should be noted that 

the normal distribution assumption for this model error may be only suitable for this 

specific slope problem based on the study by Zhang et al. (2011); for other geotechnical 

problems, a different distribution (e.g., lognormal distribution) may be more appropriate. 

To study the effect of the scaling factor  , the Markov chains of friction angle 

were first simulated at three different   values (0.005, 1 and 100), the results of which 

are  shown in Figure 2.5. Here, the Markov Chain length, in terms of number of samples 

drawn from each simulation, is 10,000.  
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k = Max. No. of 
samples in chain? 

if U < r [Eq. (2.5)]?

Input:     Prior distribution f()  
Likelihood function L(|Failure) 

Proposal distribution J(Y|k) 

Randomly select the start point 0 

For kth iteration, generate candidate point 
Y from J(Y|k) 

No 

Yes

No 

k=k+1 

Iteration start at: k=0 

Generate U from a uniform (0,1) distribution 

Yes 

Accept 
k+1= Y 

Reject 
k+1= k 

Output:  Posterior distribution f(|Failure) 
      Posterior statistics of  

 
 

Figure 2.4: Flowchart for back analysis with Markov Chain Monte Carlo framework 
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Figure 2.5: Effects of   on the samples for   in a Markov chain: 
(a) 0.005  ; (b) 1  ; (c) 100   
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Table 2.3: Means and standard deviations of posterior statistics of input parameters  

from 10 Markov chains with 0.005   
 

Number 
of samples 

Statistics 
Mean of
ϕ (°) 

Std. dev. of 
ϕ (°) 

Mean of 
T (ton)

Std. dev. of  
T (ton) 

Mean 13.16 0.94 35.68 9.59 
10000 

Std. dev. 0.24 0.08 2.84 1.04 
Mean 13.23 0.91 34.83 9.52 

40000 
Std. dev. 0.08 0.03 1.11 0.77 

Mean 13.25 0.94 34.95 9.84 
60000 

Std. dev. 0.07 0.04 0.90 0.61 
 

 

Table 2.4: Means and standard deviations of posterior statistics of input parameters  
from 10 Markov chains with 1   

 
Number 

of samples 
Statistics 

Mean of
ϕ (°) 

Std. dev. of
ϕ (°) 

Mean of
T (ton)

Std. dev. of 
T (ton) 

Mean 13.20 0.93 35.38 9.79 
10000 

Std. dev. 0.02 0.02 0.31 0.20 
Mean 13.21 0.93 35.30 9.78 

40000 
Std. dev. 0.01 0.01 0.12 0.09 

Mean 13.21 0.93 35.29 9.81 
60000 

Std. dev. 0.01 0.01 0.11 0.11 
 

 
Table 2.5: Means and standard deviations of posterior statistics of input parameters  

from 10 Markov chains with 100   
 

Number 
of samples 

Statistics 
Mean of
ϕ (°) 

Std. dev. of 
ϕ (°) 

Mean of 
T (ton)

Std. dev. of  
T (ton) 

Mean 13.19 0.92 36.11 9.66 
10000 

Std. dev. 0.15 0.09 1.99 0.77 
Mean 13.19 0.95 35.68 10.14 

40000 
Std. dev. 0.07 0.05 0.79 0.87 

Mean 13.19 0.94 35.25 9.89 
60000 

Std. dev. 0.07 0.06 0.73 0.68 
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As show in Figure 2.5, when   is too small ( =0.005), the Markov chain moves 

quite slowly, requiring a large amount of time to move from one side of the posterior 

space to the other. When   is too large ( =100), the sampled points are frequently 

rejected, resulting in a “flat” plot in Figure 2.5(c), which indicates the efficiency of the 

MCMC is low. When  =1, the sampled points actively move through the effective 

parameter ranges, which is considered to be more effective. 

The effects of various scaling factor   and number of samples on the posterior 

statistics of input parameters are shown in Table 2.3 to Table 2.5, detailing how ten 

repeated Markov chains were drawn consecutively to illustrate the variance in the 

estimated posterior statistics. Here, an increase in the Markov chain length (number of 

samples in the Markov chain), resulted in a significant reduction of the variation in the 

estimated statistics (mean and standard deviation), thus yielding more converged results. 

Furthermore, a comparison of these tables shows that a nearly identical mean value of 

both statistics is obtained regardless of the   values. The variation in the estimated 

statistics is smallest when  =1, indicating that more converged outcomes (i.e., statistics 

of the posterior distributions) can be achieved with  =1. 

The proper scaling factor   was selected based upon the acceptance ratio, which 

is defined as the ratio of accepted sample number to the total sample number. For the 

maximum efficiency of the Markov chain, Gelman et al. (2004) recommend an 

acceptance ratio between approximately 20%-40%. The plot of   values against the 

acceptance ratios (Figure 2.6) showed an approximate acceptance ratio of 29.4% when 
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1  , well within the range of the recommendation by Gelman et al. (2004). At 1  , 

the Markov chain was efficient in collecting representative samples and moves actively in 

the posterior space as shown in the Figure 2.5(b), which is consistent with the previous 

conclusion in which 1   yielded a converged estimation of statistics of input 

parameters. Thus, the Markov chain with a sample number of 60,000 and a scaling factor 

1   was used in this study, as shown in Figure 2.7.  
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Figure 2.6: Effects of scaling factor   on the acceptance ratio of MCMC 
 

Through the resulting histogram of the posterior estimated input parameters, 

shown in Figure 2.8, the updated mean   was found to be 13.21° (the prior is 21°), and 

the updated standard deviation was found to be 0.93° (from a prior of 3.15°). These 

results are consistent with the findings of TGS (2011) in which it was determined that a 

weakening of shear strength along the slip surface over a long period due to long-term 

weathering processes was one of the major causes of failure of the slope that had an 
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observed “average” slip surface of inclination of 15. The updated parameters also show 

a reduction in the uncertainty in the friction angle with the new acquired data from field 

observations.  

Figure 2.8 also illustrates a decrease in the mean value of the anchor force T (from 

60 ton to 35.29 ton) and a decrease in its standard deviation (from 22.8 ton to 9.81 ton). 

The decrease of anchor force is consistent with the field observations, indicating that 

most of anchors underwent pullout failure during slope failure, and that all remaining 

anchors exhibited significant corrosion on their surfaces. These findings also agree well 

with the conclusion in the TGS report (2011), which also determined that the corrosion of 

the anchor system was a primary catalyst and major reason for this slope failure on 

Freeway No. 3 in Taiwan.  

The decrease of the anchor force T is mainly due to the deterioration caused by 

environmental factors such as the moisture content of the concrete, temperature 

fluctuation and underground corrosive substances. In a comprehensive seven-year study 

of bonded anchors, Eligehausen et al. (2006) reported a statistical relationship between 

the ratio of pullout load after a loading time t over the initial value at t0. It was 

determined that after this seven-year period, the strength of the anchors had decreased to 

approximately 60% of the initial value. In some isolated cases, the strength of the anchors 

decreased even further, to as little as 30%. The back calculated average ratio of the 

anchor strength after a long time over the initial design value at t0 for this failure slope is 

59%, which is consistent with the field testing results of 60% as reported by Eligehausen 

et al. (2006). 
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Figure 2.7: Plots of samples for   and T in a Markov chain ( 1  ) 
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Figure 2.8: Histogram of posterior distribution for   and T obtained from MCMC 
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Next, a Monte Carlo simulation of 10,000,000 samples was performed to compare 

the failure probability using prior information and updated parameters. When using the 

prior distribution, the probability of the slope failure was determined to be 41.77 10 , 

which is very low. When using the updated parameters, however, the probability of 

failure greatly increased, to 0.173, a much higher probability, suggesting the likelihood of 

slope failure. 

 
Effect of prior distributions 

To examine the effect of differently assumed distributions, the Markov Chain 

Monte Carlo (MCMC)-based back analysis for Freeway No. 3 slope failure was repeated 

with an assumption of normal prior distribution.  

 
Table 2.6: Comparison of results between the Markov Chain Monte Carlo (MCMC) 

simulation and the Maximum Likelihood (ML) method 
 

 
Mean of 
ϕ (°) 

Std. dev. of 
ϕ (°) 

Mean of  
T (ton) 

Std. dev. of  
T (ton) 

MCMC with 
lognormal 

distribution 
assumption 

13.21 0.93 35.29 9.81 

MCMC with 
normal 

distribution 
assumption 

13.02 1.55 30.62 21.13 

ML with 
lognormal 

distribution 
assumption 

13.26 1.03 35.02 13.08 

ML with normal 
distribution 
assumption 

12.88 1.49 33.05 20.86 
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The results of this analysis are shown in Table 2.6. Here, the posterior statistics 

from the back analysis were most sensitive to the assumed prior distributions, indicating 

the importance of obtaining high quality prior distributions for the back-analysis of slope 

failure. 

 

Back Analysis Using Maximum Likelihood Method 

Maximum Likelihood Formulation 

In addition to the Bayesian approach developed and implemented with MCMC, 

other methods are available for conducting a back-analysis, as regards to slope failure 

(e.g. the least squares method, Kalman filter approach, and maximum likelihood (ML) 

method). In this section, we describe the development of a simplified ML-based 

formulation in a user-friendly spreadsheet environment to perform this inverse analysis.  

In this ML-based formulation, the best estimation of system parameters was 

obtained by maximizing the likelihood of a hypothesis. The likelihood or posterior 

estimation is a multiplication of model uncertainty and parameter uncertainty, and is 

assumed as a multivariate normal distribution (See Appendix A based on Ledesma et al. 

1996a). Maximizing the likelihood is equivalent to minimizing the negative log-

likelihood function, which is expressed as (Ledesma et al. 1996a&b): 

 

1
2

[ ( ) ] [ ( ) ]
( ) ( ) (

T
Tg Y g Y

S  



 
) 


   

   θ θ θ

θ θ
θ θ C θ                             (2.6) 
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where Y is the observed factor of safety, which is equal to 1.0 when slope failure occurs. 

In this equation, the first term of the right-hand-side represents the error between model 

prediction and observed value, and the second item represents the difference between the 

prior information and parameters to be back analyzed. Using Eq. (2.6), the inverse 

analysis becomes an optimization problem that can be easily resolved using a commonly 

available spreadsheet (Zhang et al. 2010b). 

To solve this problem, the posterior covariance of parameter vector θ is obtained 

by linearizing θ  at |Yθ , which is expressed as (Tarantola 2005):  

 

1

2

1TG G
C









 

θ


                                                                                                     (2.7) 

 
where G is the partial derivative vector evaluated at the posterior mean value of 

uncertainty parameters |Yθ : 

 

|

( )
=

Y

g
G






 
  

θ θ

θ

θ
                                                                                                 (2.8) 

 
This formulation can be implemented within a spreadsheet making it quite handy for use 

in an engineering application, and requiring much less computational effort. Figure 2.9 

shows the layout of one such spreadsheet implemented with the ML-based formulation. 

The procedure for obtaining the posterior distribution using this approach is described 

below: 

(1) The slope stability model (Eq. 2.1) is implemented in the spreadsheet. The 
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prior estimation of the mean of input parameters is defined in cells C14:C15, 

the prior COVs are defined in cells E14:E15, and the model uncertainty 

parameters are defined in cells G21:H21. 

(2) To carry out optimization, the posterior mean of input parameters are obtained 

by minimizing Eq. (2.6) through the use of Solver function in the spreadsheet. 

Here, we try to “minimize G25 by changing cells C21:C22.” The optimization 

method can be specified within the Solver function. The resulting posterior 

mean is shown in cells C21:C22. 

(3) The posterior covariance of input parameter vector θ  is estimated with Eq. 

(2.7), the results of which are shown in cells F32:G33.  

 

Back analysis using maximum likelihood method – Case study 

A spreadsheet was developed to conduct the back-analysis of the strength 

parameter and anchor force of the failed slope on Freeway No. 3 (Figure 2.9). The input 

parameters were assumed as multivariate normal distributions, the statistics of which are 

listed in Table 2.2. Here, ( , )FS T  expressed in Eq. (2.1) is treated as . The 

parameters (

( )g θ

  and T) are back-calculated using the spreadsheet that implements the 

procedure described previously. Table 2.6 shows the resulting posterior statistics for both 

the friction angle and the anchor force. The posterior mean of   is 12 , with a 

standard deviation of ; and the posterior mean of T is 33.05 ton, with a standard 

deviation of 20.86 ton. The results agree closely with that obtained with MCMC using the 

normal prior distribution assumption.  

o.88

o1.49
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Step 1: Build the stability model for rock slope

Notes: FS denotes the factor of safety of slope; c is the cohesion ; ϕ is the  friction
angle; A is the area of slip plane; θ is the angle between the anchor and normal
vector of slip surface; W  is the weight of slipped volume; Ti is the single anchor
force; n is the number of anchors; Tn is the summation of forces of all anchors.

O( ) O( ) 2( )A m

O( )

Step 2: Calculate the posterior mean

O( )

O( )
θμ

Yθ|μ  

Step 3: Calculate the posterior covariance

Minimizing Eq.(2.6)

Sensitivity vector by Eq.(2.8) Posterior covariance
calculated by Eq.(2.7)

 
 
 

Figure 2.9: Spreadsheet for back analysis of slope with maximum likelihood (ML) 
method 
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Figure 2.10: Prior and posterior distribution of input parameters assuming  
lognormal distribution 
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If the prior distributions of input parameters are assumed as having a lognormal 

distribution, the prior distribution should first be transformed into normal distributions 

using a transformation technique (Der Kiureghian 1986; Zhang et al. 2010b). The back 

analysis results with the lognormal prior distribution assumption are also shown in Table 

2.6. In Figure 2.10, we provide a further comparison of the prior and posterior 

distribution of the input parameters. The results indicate that the uncertainty of input 

parameters can be reduced through the back analysis in this case. The results obtained 

from the use of this ML-based procedure were consistent with that obtained with the 

MCMC-based procedure. The minor difference is mainly caused by the simplification of 

the stability analysis model adopted by the ML-based approach, which involves a linear 

approximation in the posterior covariance estimation.  

In summary, both MCMC-based and ML-based approaches yielded results that 

were consistent with field observations and the findings of the TGS report (TGS 2011): 

that the weakening of the shear strength and deterioration of the anchor system were the 

primary causes for the Freeway No. 3 slope failure. The prior mean of internal friction 

angle   was 21° and the updated mean based on the probabilistic back analysis is 

approximately at 13° (Table 2.6), while the average observed slip surface of inclination 

was approximately 15. Compared with the MCMC simulation based approach, the ML-

based approach is easy to implement in a spreadsheet, requires much less computational 

effort, and represents a preferred tool for engineering practice. This tool is suitable for 

use in a post-event failure investigation, and for the evaluation of alternative remedial 

measures. 
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Summary 

 
In this chapter, two procedures for the probabilistic back analysis of slope failure 

were presented using as an example a recent slope failure case on Freeway No. 3 in 

Taiwan. The internal friction angle and anchor force were determined to be the key 

parameters in this case. These two parameters are first back-calculated using the Markov 

Chain Monte Carlo (MCMC) simulation. The second procedure was based on the 

maximum likelihood (ML) method. Though the two procedures yielded results that were 

almost identical, and agreed well with field observations, the ML-based procedure 

required much less computational effort and was easily implemented in a spreadsheet, 

thus, demonstrating its potential as a practical geotechnical engineering tool.    

The enhanced knowledge of the input parameters for the slope system through 

back analysis was used to elucidate the failure mechanism and yield a more reasonable 

estimate of the failure probability of the slope. Selecting a proper remediation method is 

now much more certain with the improved knowledge of input parameters coupling with 

the reliability-based design approach. In the case study of Freeway No. 3 slope, the back 

analysis results showed that besides weakening of the shear strength, the deteriorating 

anchor was a major influence on the slope failure, thus emphasizing the critical 

importance of maintenance to the anchor system for reducing the possibility of future 

slope failures. 
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CHAPTER THREE 

PROBABILISTIC BACK ANALYSIS OF BRACED EXCAVATIONS 

 
Introduction 

 
The observational method (Peck 1969) is an important tool in geotechnical 

engineering. Peck recognized the importance of the observational method, as he 

“emphasized the need to first compute the various quantities that can be measured in the 

field and then close the gaps in knowledge on the basis of such measurements” (Wu 

2011). In this chapter, this observational method is applied to supported excavation. Here, 

field observations in a staged excavation are used to update soil parameters, which, in 

turn, are used to refine the predictions of the wall deflection, ground settlement and 

damage potential of buildings adjacent to the excavation in the subsequent stages of 

excavation. 

The inverse analysis in the braced excavation is not uncommon. Conventionally, 

the finite element method (FEM) is utilized to predict the excavation-induced wall and 

ground responses (e.g., Hashash et al. 2004; Hashash et al. 2006; Tang and Kung 2009; 

Tang and Kung 2010). In the FEM analysis, the wall deflection, ground settlement and 

building damage potential are generally predicted and used to check against the 

acceptance criteria (i.e., Boone 1996). Due to the limited field explorations and 

______________________ 

*A similar form of this chapter has been submitted at the time of writing: Wang L, Luo Z, Xiao J, 
Juang CH. Probabilistic inverse analysis of excavation-induced wall and ground responses for 
assessing damage potential of adjacent buildings. 
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laboratory tests, the soil parameters used in the FEM analysis may not be representative 

of field behavior and thus the predicted excavation-induced responses often do not match 

the field observations. In a project such as braced excavation, the observed wall 

deflection and ground settlement from the initial excavation stages can be used to update 

the design soil parameters. The updated soil parameters, which represent the “refined” 

knowledge of the soil parameters at a given stage, can be used to refine the predictions in 

the subsequent excavation stages. As the excavation proceeds stage by stage, 

observations are collected in each stage and the soil parameters can be updated 

accordingly. Thus, the inverse analysis provides a means to update the prediction of 

ground responses and assessment of building damage during construction.  

Conventional inverse analysis relies on the deterministic approach such as the 

least squares method, gradient method (Ou and Tang 1994), genetic algorithms 

(Levasseur et al. 2008), artificial neural networks (Hashash et al. 2006). It should be 

noted that the deterministic inverse analysis techniques could not deal with explicitly the 

uncertainty in the soil parameters. It is reported that the uncertainty in soil parameters has 

a significant influence on the predicted wall and ground responses in braced excavations 

(Hsiao et al. 2008). In this regard, it is desirable to conduct the probabilistic inverse 

analysis of a braced excavation. To this end, it is noted that several approaches, including 

the Kalman filter approach (Eykhoff 1974), the maximum likelihood method (Ledesma et 

al. 1996b), and the Bayesian method (Honjo et al. 1994; Zhang et al. 2010a), have been 

shown effective for the probabilistic inverse analysis of some geotechnical problems.  

Although FEM can be used in the probabilistic inverse analysis of braced 
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excavations, it is more efficient, computationally, to combine the observational method 

with the empirical models such as KJHH (Kung et al. 2007) and KSJH (Schuster et al. 

2009). These models, which were developed using well-documented case histories and 

finite element simulations, can be readily adopted to predict the excavation-induced wall 

and ground responses and the potential of building damage caused by these responses. To 

this end, the KJHH model is adopted in this chapter for predicting the excavation-induced 

wall and ground responses in the probabilistic inverse analysis of braced excavations.  

In this chapter, the observational method is combined with the maximum 

likelihood formulation to update the soil parameters in braced excavations. The prior 

distributions of soil parameters are estimated based on those reported in the literature and 

engineering judgment. After the initial excavation stages are conducted, the maximum 

wall deflection and maximum ground settlement are measured (or observed). Those 

observations are used to update the soil parameters, and the updated soil parameters are 

presented as posterior distributions and characterized by their sample statistics. The 

updated soil parameters are then used to refine the predicted wall and ground responses in 

the subsequent excavation stages, as well as the building damage potential. This 

straightforward approach is repeated in a staged excavation, and the soil parameters are 

updated as the excavation proceeds. Comparing with the predictions using prior 

distributions, the predictions using the updated soil parameters generally result in an 

improved accuracy in the prediction of wall and ground responses, which in turn, yield an 

improved prediction of building damage potential.  
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Probabilistic Back Analysis Procedure for Braced Excavations 

 
The KJHH model (Kung et al. 2007), a semi-empirical model that was developed 

based on hundreds of simulations of case histories using finite element method (FEM), is 

employed herein to predict the maximum wall deflection ( hm ) and maximum ground 

settlement ( vm ) in a braced excavation in clay. The detailed formulation of the KJHH 

model is referred to Kung et al. (2007). There are six input parameters in this model, the 

excavation depth , the excavation width B, the system stiffness , the 

normalized clay layer thickness ratio 

eH 4/ w avgS EI h

wallclay HH / , the normalized undrained shear 

strength '/u vs  , and the normalized initial modulus 
'/i vE  . As reported in a sensitivity 

study by Hsiao et al. (2008), the two uncertain soil parameters ( '/u vs   and '/iE v ) are 

found to be the main factors affecting the responses of a braced excavation. Therefore, 

the focus of this chapter is to develop procedures for updating s '/u v  and '/iE v  in a 

braced excavation using the observed maximum wall and ground responses (or 

movements in this case). This updating procedure is basically an inverse analysis. 

However, to account for the uncertainty in the parameters, a probabilistic inverse analysis 

is presented.  

According to Hsiao et al. (2008), all but the two main factors ( '/us v  and '/i vE  ) 

can be treated as constants in the probabilistic inverse analysis. Furthermore, the model 

biases of the two component models ( hm  and vm ) of KJHH model were evaluated using 

case histories by Kung et al. (2007). For the component model that was used to predict 
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hm , the model bias, denoted as  herein, has a mean value of 1.0 and a COV of 0.25; 

for the component model that was used to predict 

hc

vm , the model bias, denoted as  

herein, has a mean value of 1.0 and a COV of 0.34. They considered these model bias 

factors normally distributed. 

vc

In this chapter, the soil parameters are updated using the maximum likelihood 

principles (Wang et al. 2013). The formulation of the maximum likelihood method for 

the probabilistic inverse analysis of braced excavations is presented below using the 

KJHH model as the means for predicting the excavation-induced wall and ground 

responses.   

Symbolically, KJHH model can be expressed as: 

 
( )Gy θ                                                                                                               (3.1) 

 
where θ  is the input vector including '/us '/iv  and E v and other fixed parameters, y  is 

the response vector including both maximum wall deflection and maximum ground 

settlement at the end of a given excavation stage. The response of the excavation is 

related to the input parameter vector through the KJHH model denoted as G. The 

correlation between the vector of observations (Y) and the vector of KJHH model 

predictions (y) can be expressed as follows: 

 
( )G   Y c y c θ                                                                                                 (3.2) 

 
where c is a term that represents the model uncertainty. For illustration purpose, let us 

assume that only one pair of observations (i.e., one observed maximum ground settlement 
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and one observed maximum wall deflection in the same excavation stage) is available for 

back analysis (or inverse analysis) of soil parameters. Note that the model uncertainty of 

the KJHH model is reflected through the use of bias factors in multiplication form (as in 

Eq. 3.2) with a mean vector of [ ,
h v

]  c c c  and a covariance matrix of: 

 
2 2

2

2 2

h hv

vh v

 


 

 
 
  

c c

c

c c

 3.3) 

where 

                                                                                                 (

 
2 2

hv vh h v
       c c c c  and   is the correlation coefficient between two model 

bias fa ng et l. 2013). In the common maximum likelihood 

formulation, the model bias of the observation model is often expressed in “addition” 

form (Tarantola 2005). With the mean vector of model bias, [1,  1]

ctors hc  and vc  (Jua  a

 c , Eq. (3.2) can be 

converted into an addition form as follows (Wang et al. 2013):

 

 

( ) ( )G G             c cY c θ θ y y                                                      (3.4) 

 
where   is the residual error vector and is assumed to follow a multivariate normal 

distribution ~ (0,  )N  C . The covariance C  depends on both the covariance of model 

bias factor vector  c  and the input parameter vector θ , which can be expressed as: 

 
2 2

2 2

( ( )) ( ( ))

( ( )) ( ( ))
h hv

vh v

h hv

vh v

G G

G G


 

 

  
  

   

c c

c c

θ θ
C

θ θ
                                                               (3.5) 

 
where θ  and where  and are the predicted 2 2( ) ( ) ( ) ( )hv vh v hG G G G  θ θ θ ( )hG θ ( )vG θ hm  
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and the predicted vm , respectively.  

      It should be that the aforementioned model uncertainty in the formulation of Eq. 

(3.5) is de e scenario when only one pair of observations (namely one 

noted 

rived for th

maximum ground settlement and one maximum wall deflection) at a given excavation 

stage is adopted. If the observations from multiple excavation stages (say, n stages with 

totally N=2n observations) are available, the covariance C  can be transformed into a 

th

N N  covariance matrix similar to one expressed in Eq. (3.5). For instance, when 

observations of the  and the j  stages are available, ith
C  can be expanded into: 

 

( ))
         (3.6) 

 
where (  and  denote the predicted maximum wall deflection and ground 

ent at ith ilar to Eq. (3.5). It should be noted that the correlation of model 

ncertainty exists  in the predicted wall deflection and ground settlement at the same 

stage, while observations at different stages are assumed independent from each other, 

2 2( ( )) ( ( )) 0
h hvhi hviG G   c cθ θ

2 2

2 2

2 2

0

( ( )) ( ( )) 0 0

0 0 ( ( )) (

0 ( ( )) ( ( ))

v

h hv

vh v

vhi vi

hj hvj

vhj vj

G G

G G

G G



 

 

 

 
  

    
   

c c

c c

c c

θ θ
C

θ θ

θ θ0

vh

viG

 stage sim

 only

)hiG θ ( )θ

settlem

u

and the model uncertainty of the observation model for various stages are assumed to be 

uncorrelated (Park et al. 2010).  

Assuming that the soil parameters follow a multivariate normal distribution, with 

M input parameters, the probability density function can be expressed as (Ang and Tang 

2007; Wang et al. 2010): 
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11 1

( ) exp[ ( ) ( )]
2(2 ) | |)

T

M
f  


   θ θ θθ θ C θ

C
                                          (3.7) 

 

θ

here θ  w is the prior mean vector of input parameters and is the prior covariance 

matrix of the input parameters. 

As in Eq. (3.4), the residual error 

θC  

  is assume to follow a multivariate normal 

distribution with a zero mean and a covariance matrix of C . Thus, the probability 

density function of the actual system y = , given the observed responses 

(Y), ca

 responses ( )G θ

n be described as follows (Ledesma et al. 1996b): 

 
11 1

( | ) exp[ ( ( ) ) ( ) )]
2(2 ) | |)

T

N
f G


   y Y θ Y C θ Y

C
                            (3.8) 

 

(G





here N is the number of observations and C  is N N  w covariance matrix of model 

uncertainty. The likelihood is proportional to the product of the joi

 responses given the observations (Eq. 3.8) and the prior distribution (Eq. 

                                                                                          (3.9) 

 
the parameters are estimated by maximizing the 

likelihood of a hypothesis. The posterior mean of , denoted as 

nt probability density 

of actual system

3.7) as follows (Ledesma et al. 1996a): 

 

In the maximum likelihood approach, 

( ) ( | ) ( )L f f θ y Y θ

θ |θY , is an optimal value 

aximizes Eq. (3.9). For computational efficiency, the logarithm of the likelihood which m

function is selected as the objective function. Thus, maximizing the likelihood (Eq. 3.9) 
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is equivalent to minimizing the negative log-likelihood function, defined 

as ( ) 2 ln ( )S L θ θ . This new likelihood function ( )S θ  can be simplified as (Ledesma et 

al. 1996a; Zhang et al. 2010b; Wang et al. 2013): 

 
1 1( ) (S G( ) ) ( ( ) ) ( ) ( )G

T T      Y C θ Y θ θ 
θ θC θ

The posterior mean |

θ θ                                  (3.10) 

 
θY  is obtained by minimizing S( )θ . Then, the covariance of the 

n can be calculated as follows (Tarantola 2005): 

sterior mean 

posterior distributio

 

 T  11 1   p θC H C H C                                                                                     (3.11) 

 
where H is defined as the partial derivative vector evaluated at the po |θY : 

 

|

( )
=

G



 
  

θYθ

θ
H

θ
                                                                             (3.12) 

The above procedure is for updating soil pa ters with both observations of the 

maximum ground settlem

observation is available, the above framework can be easily adapted. This formulation 

can be 

                

rame
 

ent and the maximum wall deflection. If only one type of 

implemented in a spreadsheet following the similar procedures in Chapter Two.  

 

Case Study: TNEC Excavation Case 

 
To demonstrate the maximum likelihood-based formulation for the probabilistic 

verse analysis, a well-documented excavation case history, the Taipei National in
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Enterprise Center (TNEC on site is located in the 

aipei Basin, and the seven-staged excavation is mainly conducted in deposits of soft to 

medium clay (see Figure 3.1). The well-documented field observations of ground surface 

settlement and wall deflection of TNEC case (Ou et al. 1998) is well suited for the 

validation of the proposed approach.  

 

), is analyzed here. TNEC excavati

T

B = 41.2 m

2.8 m
4.9 m
8.6 m
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17.3 m
19.7 m
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SM
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Depths

CL

Hwall=35 m

Depth of Hard 
Stratum= 46 m

 
 

Figure 3.1: Soil profile and excavation depths of TNEC (adapted from Kung et al. 2007) 
 

The TNEC excavation was carried out using the top-down construction method 

with a maximum depth of 19.7 m. A diaphragm wall with 35 m in depth and 0.9 m in 

t

al. (1998). Figure 3.1 shows the excavation depths for seven stages and the corresponding 

soil profile. The site of TNEC is mainly a clay-dominated site (Kung et al. 2007). It 

hickness was used as the retaining wall. The details of excavation can be found in Ou et 
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should be noted that '/u vs   and '/i vE   of the two clay layers in Figure 3.1 are 

approximately the same, and the maximum wall and ground responses in this excavation 

are mainly influenced by '/su v  and '/Ei v  of the clay layers. As aforementioned, the 

'soil parameters of the clay layers ( /u vs   and '/i vE  ) are the dominating parameters that 

will be updated with field observations. The input parameters of KJHH model of the 

TNEC case for each stage are listed in Table 3.1. 

(ada rom H
 

 
Table 3.1: Excavation depths and system stiffness of TNEC case history 

pted f siao et al. 2008) 

Excavation sequence (Stage No.) 
Factor 

3 4 5 6 7 

Depth, H  (m) 8.6 11.8 15.2 17.3 19.7 e

System stiffness, 
4 1023 966 1109 1115 1294 

w avgEI h  

 
 Note: Other deterministic factors req ired for computing maximum wall 

deflection and d surface settle excavation 
width 

u
 groun ment using KJHH model include: 

B  wallclayH H/= 41 ormalized cla ayer cknes.2 m, n y-l thi s  = 0.87. 

 

Updating using both observed wall deflection and ground settlement 

The prior distribution of the soil param m  e d e the soil 

s

eters ust be stimate  befor

 '/u vs   parame ers can be updated. Based on the typical range of the two soil parametert

and '/i vE   reported by Kung (2003), four different prior dis utions of soil paratrib

d and summarized in Table 3.2. For illustration purpose, Prior distribution 1 is 

adopted herein as the prior distribution of soil parameters vector (

meters 

are assume

'/u vs   and '/i vE  ). 
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The parametric study using various assumed prior distributions will be presented later. 

Since there is no information regarding the correlation between two model bias factors, 

the correlation coefficient (  ) is assumed to be zero for simplicity. Nevertheless, the 

effects of   on the updated results are investigated later. It should be mentioned that the 

field observations from Stage 1 and Stage 2 are not used in the updating process because 

the wall deformation shape at these early stages is of cantilever type, which is not 

compatible with the shape of bulging movement in latter stages (Kung et al. 2007). Thus, 

updating with the observations from Stages 1 and 2 is fruitless. Fortunately, the wall and 

Table 3.2: Statistics of four prior distributions used in the probabilistic back analysis 

 

     u v

ground responses in first two stages under normal workmanship are generally very small, 

and thus, the wall and ground movements at these early are negligible in the updating 

8; Juang et al. 2013).  

 

process of TNEC case history (adapted from Juang et al. 2013) 

process (Hsiao et al. 200

'/s       i v
'/E   Parameter 

Mean COV* Mean COV* 

Prior distribution 1 0.25 0.16 500 0.16 
Prior distribution 2 0.31 0.16 650 0.16 
Prior distribution 3 0.27 0.16 550 0.16 
Prior distribution 4 0.35 0.16 750 0.16 

    

 vari
 

As shown , the p d m  gr ttle excavation 

depth of 8.6 he m  soil parameters (Prior distribution 1) is 47.5 

mm prior to n, w s inconsistent wi ettlement in 

     
*COV suggested by Hsiao et al. (2008) for Taipei clays. The effects of  

ous assumed COVs are examined separately. 

 in Figure 3.2 redicte aximum ound se ment at 

 m (Stage 3) using t ean of

 Stage 3 of excavatio hich i th the observed s
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field at exc  m ( mm). The compa s of edicted and 

ed  depths 

(corresponding to different stages in Table 3.1) prior to Stage 3 are shown with “square” 

notatio

 final stage (Stage 7). It is also observed 

from Figure 3.2 that the predicted wall deflection matches the field observation better 

avation depth of 8.6 18.2 rison the pr

observ  maximum settlement and wall deflection at different excavation

ns in Figure 3.2. It is obvious that the predicted responses differ significantly from 

the observations. After Stage 3 is completed, the soil parameters are updated using the 

observed wall and ground responses and the developed procedure. With the updated soil 

parameters in Stage 3, the maximum wall and ground responses in subsequent stages are 

predicted and compared with field observations. The results are presented with “circle” 

symbols in Figure 3.2 and denoted as the predictions made “Prior to Stage 4”. With the 

updated soil parameters, the predicted responses match better with the observations (as 

evidenced by the data points being closer to the perfectly matched line). After Stage 4 of 

excavation is completed, the observations (settlement and wall deflection) at both Stage 3 

and Stage 4 are employed to update further the soil parameters as well as the predictions 

of the wall and ground responses in subsequent stages. This process continues until the 

stage prior to the final stage (Stage 7).  

As the staged excavation proceeds, more observations from the previous stages 

become available. In this study, those observations (in terms of maximum wall deflection 

and ground settlement) of all the previous stages are used to update the soil parameters 

using the maximum likelihood method. As shown in Figure 3.2, at the completion of 

Stage 6, the predicted wall deflection and ground settlement prior to the final stage agree 

well with the observations at the completion of
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than th

ity observations, the predicted wall and ground 

respon

ating soil parameters using the 

maxim ulation is repeated using the observed wall deflection (or 

ground settlem ation stages, 

the pre

e settlement does; this is consistent with findings by other previous investigators: 

the wall deflection is generally easier to predict accurately; the prediction of settlement is, 

however, more difficult (Finno 2007).  

The final excavation stage (Stage 7 with a final excavation depth of 19.7 m) is 

considered the most critical in the serviceability assessment of adjacent buildings. Figure 

3.3 shows the predicted maximum settlement and wall deflection of the last stage using 

the updated soil parameters at various excavation stages. In Figure 3.3, the predicted 

mean of wall deflection and ground settlement at the completion of the last stage of 

excavation is refined as the excavation proceeds. It indicates that as the soil parameters 

are updated with more and more qual

ses can be significantly improved accordingly.  

 

Updating using observed wall deflection or ground settlement 

When the observation data is limited (for example, in many case histories, only 

the observed wall deflection is available), the updating of soil parameters may also be 

realized using only one type of observation (either wall deflection or ground settlement). 

For demonstration purpose, Prior distribution 1 is selected as the prior distribution of soil 

parameters. The aforementioned procedure for upd

um likelihood form

ent) alone. With the updated soil parameters at various excav

dicted wall and ground responses at the final excavation stage are obtained and 

plotted in Figure 3.4. The updated predictions shown in Figure 3.3 are also plotted in 
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Figure 3.4 for comparison. The results show the proposed framework is also effective and 

efficient even when the soil parameters are updated with only one type of response 

observation (either maximum settlement or maximum wall deflection). 

It is also useful to examine the distributions of the predicted wall and ground 

responses using the updated soil parameters. The probability distributions of the updated 

ground settlement and wall deflection predictions, prior to the last stage, using three 

updating schemes are shown in Figure 3.5. The results show that the means of the 

updated predictions are quite consistent with the observations. The variation in the 

predicted wall and ground responses is the smallest when both types of observations are 

used in the updating. In addition, the variation of the predicted wall and ground responses 

using only settlement observation is smaller than that using only wall deflection. This is 

mainly because the error vector of the observational model for ground settlement is 

smaller than that for wall deflection. It should be noted that in the traditional back 

analysis of braced excavations, which tries to match “the prediction” to be exact as 

“observation,” the predicted ground settlement and wall deflection are a constant. 

However, the geotechnical inverse analysis involves model uncertainty as well as the 

uncertainty of soil parameters. Due to those uncertainties, it is more rational to interpret 

the updated soil parameters as well as the predicted wall and ground responses as a 

random variable rather than a single fixed value. The developed procedure for back 

analysis using the maximum likelihood method in this study contributes to the 

probabilistic characterization of soil parameters and the fully probabilistic analysis of 

serviceability assessment in a braced excavation. 
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Figure 3.2: Maximum settlement and wall deflection predictions prior to different stages 
using Prior distribution 1 
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aFigure 3.3: Updated mean value and one st ndard deviation bounds of settlement and 

wall deflection prior to different stages using Prior distribution 1 
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Figure 3.4: Comparisons of updated predictions with three updating schemes 
 (using Prior distribution 1) 
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Figure 3.5: Distributions of predictions prior to final stage of excavation (using 
Prior distribution 1) 

 50



 

Further Sensitivity Analyses and Discussions 

Effect of prior distribution on the updating results 

The posterior distribution depends on both model and prior distribution, as shown 

in Eq. (3.10). Due to the insufficient field investigations and potential disturbance in 

sampling, the estimation of the prior soil parameters could vary significantly. In this 

regard, it is necessary to investigate the effects of estimated or assumed prior distribution 

on the updating results. Thus, in addition to Prior distribution 1 (Table 3.2), three other 

prior distributions are assumed based on the test results of Taipei clay (Kung 2003), as 

shown in Table 3.2. The four assumed prior distributions cover the possible variation for 

the two soil parameters ( '/u vs   and '/i vE  ) for the TNEC case (Juang et al. 2013). The 

COV of the four distributions is set to be 0.16 as suggested by Hsiao et al. (2008), 

although other values may also be possible. The effects of the magnitude of COV will be 

examined later. 

The effects of prior distributions on the updated wall and ground responses are 

studied using two types of observations (both wall deflection and settlement). Following 

the aforementioned procedure, the updated mean values of '/u vs   and '/i vE   prior to 

various excavation depths are shown in Fi

updated mean values of 

gure 3.6. As shown in Figure 3.6(a), the 

'/u vs   

me

prior to last stage are almo tter what 

prior distribution is assu d. The updated means of 

st identical no ma

'/i vE   also tend to converge as the 

excavation proceeds, regardless of the assumed prior distributions. 
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 '/u vs   and '/i vE   Figure 3.7 shows the updated COV for with excavation depths. 

It is observed that th s in this example. It 

indicates that the n ns can reduce the 

estimat

e COV decreases as the excavation proceed

ewly gained “information” from field observatio

ed variation of soil parameters. Although the variation of soil parameters is 

reduced most for Prior distribution 1, the COV for all four assumed prior distributions 

decreases after updating, from 16% to about 10%. 

The effect of different assumed COV on the updated results is plotted in Figure 

3.8. The distribution 1 is used for illustration and additional COV values of 0.10 and 0.30 

are assumed to illustrate the possible overestimation and underestimation of the COV 

values for '/su v  and '/Ei v . It can be found that the updated COV value of parameters 

decreases stage by stage with the updating process regardless which prior COV value is 

assumed. When the prior estimation of COV is at higher end (30% in this example), the 

effects of reducing the parameter uncertainty is more effective, and the COV decreases to 

approximately 12%. When the prior estimation of COV is already quite small (10%), the 

COV can still be reduced (to approximately 6% in this case).  

Figure 3.9 further compares the probability distribution of '/su v  and '/Ei v  

before and after the updating process. The uncertainties of so ramete  reduced 

significantly through the soil parameters that are updated with field observations. In the 

example studied, the COV '/

il pa are

 of

rs 

 u vs   decreases from 0.16 to approximately 0.08 and the 

COV of '/i vE   decreases from 0.16 to approximately  0.09. 
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Figure 3.6: Comparisons of updated mean of soil parameters prior to different stages with 
various prior distributions 
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Figure 3.7: Comparisons of updated COV of soil parameters prior to different stages with 
various prior distributions 
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Figure 3.8: Updated COV of soil parameters prior to different stages assuming various 
COV using Prior distribution 1 
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The above results validate the efficiency of using observations to update the prior 

estimation of soil parameters. Even if the prior estimation is not characterized perfectly 

initially, the observations during the excavation can “move” the prior estimation to its 

“true” value through the presented maximum likelihood procedure. Furthermore, with the 

reduced uncertainties in the input parameters, the uncertainty in the predicted ground and 

wall responses at the final stage of excavation is further reduced. 

 

Effect of correlation between bias factors of KJHH model 

The effect of correlation between the bias factors of the two component models in 

KJHH model, namely wall deflection model and ground settlement model, is examined in 

this study. When no information regarding the correlation between the two component 

models is available, the two bias factors (  and ) may simply be assumed uncorrelated, 

as in the previous analysis (ρ = 0). However, the wall deflection and ground settlement in 

a braced excavation tend to be positively correlated, as reported by Kung et al. (2007).  

 To investigate the effect of the correlation between  and , the 

aforementioned back analysis procedure is repeated using Prior distribution 1 with two 

positive correlation coefficient levels, ρ = 0.5 and 0.8. The updated predictions for wall 

and ground responses with excavation depth at the three levels of correlation (0, 0.5, and 

0.8) are shown in Figure 3.10.  

 

hc vc

hc vc
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Figure 3.10: Influence of correlation coefficient between model biases on updated 
predictions using prior distribution 1 
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The results show that the effect of the correlation between bias factors on the 

outcome of the developed updating procedure appears to be quite limited. Even with no 

correlation assumption, the developed procedure for updating soil parameters and 

predictions is still effective and yields no inferior outcome. Furthermore, this example 

demonstrates that the developed procedure for probabilistic inverse analysis can be easily 

adapted to incorporate the known correlation between the model biases of the component 

models. 

 

Excavation-Induced Damage Potential of Adjacent Buildings 

 
The excavation-induced wall and ground settlement can cause damage to adjacent 

buildings. Schuster et al. (2009) has developed a framework to evaluate the damage 

potential of buildings adjacent to the excavation. The basis for this framework is the 

predicted wall deflection and ground settlement. With the soil parameters being updated 

during the excavation using the field observations, the predictions of the wall and ground 

movements are updated. This follows that the prior assessment of building damage 

potential can be updated with the updated predictions of wall deflection and ground 

settlement. Thus, updating of the building damage potential is simply an extension of the 

developed updating scheme for wall and ground movement predictions.   

The framework for excavation-induced building damage assessment established 

by Schuster et al. (2009) includes three components: (1) the profiles of the excavation-

indu 7) 

and KSJH model (Schus putation of the angular 

ced vertical and lateral ground movements using KJHH model (Kung et al. 200

ter et al. 2009), respectively; (2) com
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distortion ( ) and lateral strain ( l ) using the empirical equations; and (3) determination 

of damage potential index (DPI) based on the calculated  and l . The DPI is a 

normalization of the principal strain (Schuster et al. 2009): 

 
3 2

max max max20 10 ( cos sin cos )     lDPI                                                    (3.13) 

maxtan(2 ) /     l                                                                                            (3.14) 

 
  is angular distortion, l  is lateral strain, and maxwhere is direction of crack formation 

measured from 0. A smaller 

PI value indicates a lower damage potential.  

 the vertical plane. The DPI value ranges between 0 and 10

D

In addition to the input parameters that are related to soil conditions ( '/u vs   and 

'/i vE  ) and other excavation parameters, the prediction of DPI for an adjacen

the adjacent footings (e.g., d  and d , as shown in Figure 3.11, where d ts the 

the excavation to the furthest footing in a building). The second is the embedm

ess 

t building 

 represen

ent depth 

ture stiffn

requires four additional data regarding the properties of the adjacent building. The first is 

the location of the building, characterized in terms of the distance from the excavation to 

1 2 1

distance from the excavation to the nearest footing and d2 represents the distance from 

of the building (D1 in Figure 3.11). The third is the soil-struc

ratio, 2( /E )s L GHb , in which Es is the soil stiffness in the region of footing influence, L is 

the length of building portion subjected to ground movement, G is the elastic shear 

modulus of the building, H is the height of the building, and b is the building wall 

thickness.  
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Figure 3.11: Location of excavation and Building D in the TNEC case  
(adapted from Juang et al. 2011)  
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For the prediction of DPI, the fourth is the structure cracking strain t , which 

depends on characteristics of a specific building. Detailed parameters for the properties of 

the adjacent buildings in TNEC case are documented in Schuster et al. (2009). Figure 

3.11 shows the layout for Building D (Ou et al. 2000) that is adjacent to TNEC 

excavation. It should be noted that Building D could be split up into 4 bays for the 

purpose of computing DPI. As reported by Schuster et al. (2009), Bay No. 4 is identified 

to be the critical bay (see Figure 3.11) and thus it is selected here as an example to 

demonstrate the developed procedure for updating of DPI. 

According to Schuster et al. (2009), the distances from the excavation to the 

nearest and furthest footings in Bay No. 4 (d1 and d2) are 25.5 m and 31.0 m, respectively; 

the embedment depth of the footing (D1) is 4 m; the soil-structure stiffness ratio 

)2( /sE L GHb  is estimated to be 15; the structure cracking strain t  is estimated to be 0.9. 

In this study, we follow the procedure by Schuster et al. (2009) to calculate DPI. The 

readers can refer to Schuster et al. (2009) for details.  

In this chapter, the soil parameters are updated with the observed settlement and 

wall deflection. The updated soil parameters are then used to calculate the DPI at a target 

depth of 19.7 m (the final excavation stage). The four prior distributions of '/u vs   and 

'/i vE   listed in Table 3.2 are adopted herein. Prior to Stage 3 (the 

this point is 4.9 m), the predictions of DPI for the final stage using the means of the four 

prior dist ation is 

completed, the observed maximum settlement and wall deflection are used to update the 

excavation depth at 

ributions are made and shown in Figure 3.12. After Stage 3 excav
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soil parameters. Then, the updated soil parameters are used to calculate DPI at a target 

excavation depth of 19.7m (final excavation stage), and again, shown in Figure 3.12 (the 

depth at which this prediction is made is 8.6 m). More and more observations are 

obtained as the excavation proceeds, and this updating procedure is repeated at 

excavation depths of 11.8 m, 15.2 m, and 17.3 m.  

 

0

1

20

50

 U
pd

a

Prior distribution 1
Prior distribution 2

4 6 8 10 12 14 16 18
Excavation depth at which soil parameters
           were updated (m)

0

30

40

te
d 

D
P

I 
pr

ed
ic

ti
on

h 
of

 1
9.

7m Prior distribution 3
Prior distribution 4

et
 d

ep
t

at
 a

 ta
rg

 
 

Figure 3.12: Predicted DPI of Building D at the target excavation depth of 19.7m with 

 

Figure 3.12 shows the predictions of the DPI at the target depth of 19.7 m (the 

final stage) using the updated soil parameters prior to Stages 3, 4, 5, 6, and 7(the 

corresponding depths shown in Figure 3.12 are 4.9 m, 8.6 m, 11.8 m, 15.2 m, and 17.3 m, 

respectively). As shown in Figure 3.12, the predicted DPI values prior to Stage 3 of 

updated soil parameters under various assumptions of prior distribution 
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excavation differ significantly from each other, as the mean values of those prior 

distributions are different. With the updated soil parameters, the predictions of DPI tend 

to converge as shown in Figure 3.12. Thus, the updating scheme presented in this chapter 

is deemed effective for this evaluation of damage potential of an adjacent building. The 

predicted DPI values before the final stage of excavation (the excavation depth at this 

point is 17.3 m) converge into the range of 19 to 25 among the four prior distributions 

examined. According to the DPI criteria established by Schuster et al. (2009), the 

building with DPI = 19 to 25 would suffer a “slight damage.” As reported by Liao (1996) 

and Ou et al. (2000), the field observations during and after the construction showed that 

some cracks were found on the internal walls of Bay No. 4 of Building D in the TNEC 

excavation. This level of building damage would be characterized as “slight damage” 

according to the evaluation system established by Boscardin and Cording (1989). Thus, 

the updated prediction of DPI and the assessment of building damage are consistent with 

field observations.  

In summary, the case study of TNEC for the wall and ground movements during 

excavation and their effect on an adjacent building shows that as the soil parameters are 

updated at each stage based on the observed settlement and wall deflection, the accuracy 

of the pr t of the 

improved predictions of wall and ground movements, the assessment of damage potential 

of the building adjacent to the excavation becomes more accurate.   

 

 

edicted wall and ground movements improves significantly. As a resul
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Summary 

 

u v

This chapter presents an application of the maximum likelihood approach in the 

probabilistic inverse analysis in braced excavations. In this approach, the soil parameters 

( '/s   and '/Ei v ) are updated with the observed wall and ground responses in a braced 

edure is demonstrated to be effective 

regardless of the assumed prior distributions 

excavation. With the updated soil parameters, the predictions of those responses in the 

subsequent excavation stages and the predicted damage potential of an adjacent building 

are refined stage by stage. Comparing with the predictions using prior information, the 

predictions using the updated soil parameters are significantly improved in the case study 

of TNEC excavation.  

Unlike the deterministic inverse analysis, the developed probabilistic inverse 

analysis approach allows for considerations of the variation in the soil parameters and 

model bias factors. Accordingly, the updated soil parameters are represented by the 

posterior distributions. The developed proc

of the soil parameters provide that such 

assumption is within the reasonable range. The efficiency and the effectiveness of this 

probabilistic analysis approach are illustrated through the case study of TNEC excavation 

in Taiwan. 
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CHA UR 

CONCLUSIONS AND RECOMMENDATIONS 

 

PTER FO

Conclusions 

 

probabilistic back analysis of slope failure presented in Chapter II:  

(1) Two procedures for the probabilistic back analysis of slope failure were 

presented using as an example a recent slope failure case on Freeway No. 3 in 

Taiwan. The internal friction angle and anchor force are determined to be the 

key parame

The following conclusions are drawn from the results of the study on the 

ters in this case. These two parameters are first back-calculated 

likelihood based approach is easy to implement in a spreadsheet, requires 

much less computational effort, and represents a preferred tool for engineering 

practice. This tool is suitable for use in a post-event failure investigation, and 

for the evaluation of alternative remedial measures.  

using the Markov Chain Monte Carlo (MCMC) simulation. The second 

procedure is based on the maximum likelihood (ML) method. The two 

procedures yield results that are almost identical. The results indicate that the 

weakening of the shear strength and deterioration of the anchor system are the 

primary causes for the Freeway No. 3 slope failure, which is consistent with 

the field investigations. 

(2) Compared with the MCMC simulation based approach, the maximum 
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(3) The enhanced knowledg eters for the slope system through 

back ana ore 

reasonable estimate of the failure probability of the slope. Selecting a proper 

remediation method becomes much more certain with the improved 

probabilis

the updating. 

proved. 

e of the input param

lysis is used to elucidate the failure mechanism and yield a m

knowledge of input parameters coupling with the reliability-based design 

approach.  

 

The following conclusions are drawn from the results of the study on the 

tic back analysis of braced excavation presented in Chapter III:  

(1) The proposed probabilistic back analysis framework based on maximum 

likelihood approach is shown effective and efficient for updating key soil 

parameters in the staged excavation based on either maximum settlement or 

maximum wall deflection observation or both types of observations. Updating 

with both type of observation is most efficient overall, and the variation in the 

predicted wall and ground responses is the smallest when both types of 

observations are used in 

(2) With the proposed probabilistic back analysis framework, the predictions of 

excavation-induced ground responses in the subsequent excavation stages and 

the predicted damage potential of an adjacent building are refined stage by 

stage. Comparing with the predictions using prior information, the predictions 

using the updated soil parameters are significantly im
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(3) The proposed framework is shown effective in improving the responses 

prediction, regardless of the assumed prior distributions and the levels of the 

coefficient of variation of the soil parameters. The effect of the correlation 

between bias factors on the outcome of the proposed framework appears to be 

quite limited. Even with no correlation assumption, the developed procedure 

for updating soil parameters and predictions is still effective and yields no 

inferior outcome. 

  
 

Recommendations 

 

can

ent method for slope stability 

 procedure with 

To further expand the work presented in this thesis, a number of research topics 

 be undertaken, which include the following: 

(1) The analytical model adopted in probabilistic back analysis of slope failure is 

a simplified limit equilibrium model. It is also advisable to perform the 

probabilistic back analysis of slope failure combined with the finite element 

method. The feasibility of using finite elem

analysis in conjunction with the proposed probabilistic back analysis 

procedure should be investigated. 

(2) The analytical model adopted in probabilistic back analysis of braced 

excavation is a semi-empirical model called KJHH model. It should be of 

interest to combine the proposed probabilistic back analysis
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the finite element method for excavation-induced ground response and 

building damage analysis.  

(3) It should be of interest to further investigate the application of the proposed 

probabilistic back analysis approach in other geotechnical problems such as 

tunnels, embankments, and geothermal foundations. 
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APPENDIX A: MAXIMUM LIKELIHOOD FORMULATION 

 
In the maximum likelihood formulation for back analysis of slope failure, the 

posterior distribution is dependent on both the uncertainty in the observation data and 

prior information. The prior distribution of input parameters vector is assumed as a 

multivariate normal distribution, N

θ

( θ , θC ). When there are M input parameters, the 

prior joint probability density ( )f θ  is expressed as (Ang and Ta ang et al. 

2010): 

 

ng 2007; W

11
( ) ( )

2

1
( ) exp

(2 ) | |)

T

M
f  


      θ θ θ

θ

θ C θθ
C

                                          (A.1) 

 
Similarly, the probability density function of the observation (Y), given the prior 

distribution of input parameters, is assumed as a normal distribution, and expressed as: 

 

2

2

1
( ( ) ) ( ( ) )

2

1
( | ) exp

(2 ) | |)

Tg Y g Yf Y   



  
 

        
θ θθ                   (A.2) 

 
Based upon the maximum likelihood principle, the posterior probability density 

( | )f Yθ  is proportional to both the prior probability density and the probability density of 

observation given the prior distribution, which is expressed as (Ledesma et al. 1996a): 

 
( | ) ( | ) ( )f Y f Y f θ θ θ                                                                                      (A.3) 

 
The posterior estimator of , namely , is that which maximizes Eq. (A.3), θ dθ
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which is in turn equivalent to minimizing ( ) 2 ln ( | )S f Y θ θ . When there are two input 

arameters for the back-analysis,  remains as with our Freeway No. 3 slope, ( )S θp

identical as Eq. (2.6) except the constant terms are disregarded.  
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