
Clemson University
TigerPrints

All Theses Theses

5-2013

PARALLEX FILE SYSTEM (PXFS): BRIDGING
THE GAP BETWEEN EXASCALE
PROCESSING CAPABILITIES AND I/O
PERFORMANCE
Shane Snyder
Clemson University, sdsnyde@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Snyder, Shane, "PARALLEX FILE SYSTEM (PXFS): BRIDGING THE GAP BETWEEN EXASCALE PROCESSING
CAPABILITIES AND I/O PERFORMANCE" (2013). All Theses. 1658.
https://tigerprints.clemson.edu/all_theses/1658

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268632454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1658?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

PARALLEX FILE SYSTEM (PXFS): BRIDGING THE GAP BETWEEN EXASCALE

PROCESSING CAPABILITIES AND I/O PERFORMANCE

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Shane Snyder

May 2013

Accepted by:

Dr. Walter B. Ligon III, Committee Chair

Dr. Adam Hoover

Dr. Jim Martin

 ii

Abstract

Due to processors reaching the maximum performance allowable by current

technology, architectural trends for computer systems continue to increase the number of

cores per processing chip to maximize system performance. Most estimates suggest

massively parallel systems will be available within the decade, containing millions of

cores and capable of exaFlops of performance. New models of execution are necessary to

maximize processor utilization and minimize power costs for these exascale systems.

ParalleX is one such execution model, which attempts to address inefficiencies of current

execution models by exposing fine-grained parallelism, increasing system utilization

using asynchronous workflow, and resolving resource contention through the use of

adaptive and dynamic resource scheduling.

A particularly important aspect of these exascale execution models is the design

of the I/O subsystem, which has seen limited performance increases compared to

processor and network technologies. Parallel file systems have been designed to help

alleviate the poor performance of storage technologies by distributing file data across

multiple nodes of a parallel system to maximize the aggregate throughput attainable by

file system clients. However, the design of parallel file systems needs to be modified to

 iii

explicitly address the inherent high-latency of remote file system operations without

degrading file system performance and scalability.

We present modifications to OrangeFS, a high-performance, working model

parallel file system geared towards the facilitation of research in the field of parallel I/O,

to help address the inefficiencies of current file systems. We deem our resultant parallel

file system implementation ParalleX File System (PXFS), as it attempts to support the

features required by the I/O subsystem of the ParalleX execution model. Specifically,

PXFS offers mechanisms for masking the latency of file system operations, defining

meaningful computation to be overlapped with file system communication, and

maintaining the high-performance and scalability exhibited by OrangeFS. Our results

indicate PXFS successfully improves file system performance and supports the semantics

of ParalleX with limited programmer intervention, potentially simplifying the design and

increasing the performance of many ParalleX applications.

 iv

Dedication

First, this work is dedicated to my family for their constant patience with me and

their pushing me to succeed over the years. Also, this work is dedicated to all of my

friends for their encouragement and the balance they have given me throughout my

academic career.

 v

Acknowledgements

First and foremost I would like to thank my advisor, Dr. Walt Ligon for his

consistent support and guidance in helping me complete this work. None of this would be

possible without his assistance and wealth of knowledge in this field. Also, I would like

to thank Dr. Adam Hoover and Dr. Jim Martin for taking the time to serve on my

committee and providing valuable feedback regarding my research.

 vi

Table of Contents

Page

Title Page ... i

Abstract ... ii

Dedication .. iv

Acknowledgements .. v

List of Tables ... viii

List of Figures .. ix

Chapters

 1 Introduction .. 1

 1.1 High-performance Computing .. 2

 1.2 Parallel Execution Models .. 5

 1.3 Parallel File Systems ... 7

 1.4 Goals ... 11

 1.5 Methodology ... 12

 1.6 Thesis Organization .. 13

 2 Background and Related Work .. 15

 2.1 ParalleX Execution Model .. 15

 2.2 OrangeFS .. 22

 2.2 Related Work .. 26

 vii

Table of Contents (Continued)

Page

 3 Design and Methodology ... 29

 3.1 ParalleX I/O Characteristics ... 29

 3.2 PXFS Design ... 31

 3.3 Summary ... 45

 4 Results ... 47

 4.1 Read/Write Throughput Results ... 47

 4.2 Metadata Results ... 58

 4.3 File Operation Blocking Time Results ... 60

 4.4 Effect of PXFS Continuation Complexity .. 62

 5 Conclusion .. 65

 5.1 Future Work .. 66

Bibliography ... 68

 viii

List of Tables

Table Page

 3.1 I/O operations currently implemented by PXFS .. 33

 3.2 Definition of the PXFS asynchronous control block 37

 4.1 Client and server hardware specifications for PXFS testing 48

 4.2 OrangeFS aggregate throughput percentage decrease results

 for case 3 .. 56

 4.3 PXFS aggregate throughput percentage decrease results

 for case 3 .. 57

 4.4 OrangeFS and PXFS file metadata performance comparison 60

 ix

List of Figures

Figure Page

 1.1 Basic execution model for an abstract computer system 5

 1.2 The single server architecture of NFS ... 9

 1.3 The multi-server architecture of parallel file systems allows

 for increased I/O performance .. 10

 2.1 Modular diagram of the HPX runtime system ... 21

 2.2 Software stacks for OrangeFS clients and servers 24

 3.1 Prototype for the PXFS write operation... 34

 3.2 Data flow diagram illustrating an example I/O operation

 in the PXFS I/O library ... 35

 3.3 Architecture of the AIO common runtime system 38

 3.4 Flow diagram for the AIO common progress thread 40

 3.5 Pseudocode for the file rename operation in OrangeFS 42

 3.6 Example PXFS state machine for the file rename operation 44

 3.7 Modified client-side stack for PXFS clients .. 46

 4.1 Average read throughput for case 1 using OrangeFS and

 PXFS ... 50

 4.2 Average write throughput for case 1 using OrangeFS and

 PXFS ... 50

 x

List of Figures (Continued)

Figure Page

 4.3 Aggregate read throughput results for case 2 .. 52

 4.4 Aggregate write throughput results for case 2 ... 53

 4.5 OrangeFS aggregate read throughput results for case 3 55

 4.6 OrangeFS aggregate write throughput results for case 3 55

 4.7 PXFS aggregate read throughput results for case 3 56

 4.8 PXFS aggregate write throughput results for case 3 57

 4.9 Effect of computation time on apparent I/O time in PXFS

 and OrangeFS... 58

 4.10 OrangeFS and PXFS blocking times for file reads 61

 4.11 OrangeFS and PXFS blocking times for file writes..................................... 62

 4.12 PXFS throughput versus continuation computational complexity 63

1

Chapter 1

Introduction

While the transistor density of integrated circuits continues to increase with

Moore's Law, the clock speed of modern processors has peaked, due mostly to the energy

efficiency of the underlying technology. Consequently, current processor design trends

opt to include multiple compute elements on a single chip, rather than continue to push

the performance of a single processor. For instance, according to the Top500 list, the four

fastest computers in the world all have over 0.5M cores and offer nearly 20 petaFlops of

performance [32]. According to most approximations, computer chips will offer hundreds

or even thousands of compute elements per node by 2018, resulting in massively parallel

exascale systems [2]. Of course, programmers will have to find a way to exploit this

billion-way parallelism if they hope to achieve exaFlops of performance.

 Unfortunately, current programming and execution models do not take advantage

of the massive amount of parallelism available in systems with many cores. The cause of

this lack of efficiency ranges from the lack of rich parallel programming constructs

 2

available in most programming languages to the inability of current runtime systems to

distribute work to avoid load imbalances. It is clear that for computer performance to

continue to improve in these many-core environments, changes must be made to current

execution models to allow compute resources to be leveraged efficiently and adaptively

with limited burden on the programmer. Otherwise, the performance of systems with

increasing numbers of compute elements will continue to scale poorly.

1.1 High-performance Computing

 High-performance computing (HPC) is the application of supercomputers to solve

large science and engineering problems, ranging from the simulation of complex physical

systems to solving linear systems of equations. On standard computers, the computational

requirements and large data sets inherent to these problems make it infeasible to obtain

results in a reasonable amount of time or within a desired precision. Simulations are

particularly useful applications, since some physical systems are difficult to observe

experimentally or model analytically. For example, [11] present a biomolecular network

simulator used to model complex biological processes, which are difficult to analyze due

to their stochastic nature. Also, [27] claims their turbulence simulation engine executed

on a 10,000 core supercomputer achieves similar results as an actual experiment

conducted in a wind tunnel. This is convenient, as a scientist can obtain “real” results via

simulation rather than going through the trouble of setting up a physical experiment.

 3

 Currently, most HPC systems are realized using clusters. A cluster is a set of

interconnected nodes, in which each node consists of (often) the same commodity

hardware components. Clusters have continued to gain popularity, due mostly to their

ease of implementation and improved scalability over single node systems. Even the

world's fastest supercomputers follow the architecture of computer clusters, although they

often utilize specialized hardware and proprietary high-speed interconnection networks.

As of this writing, typical hardware specifications for an HPC node are given as [9]:

 Processing elements – high-end multi-core processors (generally at least 8 cores)

placed on multi-socket motherboards (2 sockets are typical). Some systems may

also include GPUs or other acceleration hardware.

 Memory – tens of gigabytes of DDR3 DRAM.

 Interconnection network – a high-speed, dedicated interconnection network.

Lower-end systems may use Ethernet, while higher-end systems may opt for

InfiniBand or Myrinet technologies.

 Storage – a subset of nodes (I/O nodes) in the HPC system will serve data to the

compute nodes, usually using a high-performance parallel file system (e.g. PVFS,

Lustre, or GPFS) and the interconnection network.

 As long as there have been HPC systems, there has been the need for software

libraries and other development tools to allow programmers to obtain the highest

performance from the underlying hardware. The Message Passing Interface (MPI)

 4

Standard [19] is one such example, providing parallel programmers a standard API for

passing messages between processes on a distributed-memory system, e.g. a cluster.

Provided functionality includes both point-to-point communication between processes,

collective communication between groups of processes, and synchronization primitives,

such as global barriers. Another parallel programming tool available is OpenMP [20],

which is used to parallelize code for shared-memory systems. Unlike MPI, OpenMP is a

set of compiler directives used to extend the Fortran and C/C++ languages. In particular,

OpenMP provides constructs for thread creation and work-sharing, which are most

frequently used to parallelize large loops. In the case of clusters, it is not uncommon to

use a hybrid programming model, in which MPI may be used for inter-node

communication and OpenMP may be used for intra-node (inter-core) communication.

 As the number of processing elements in HPC clusters continues to increase, it is

necessary to reconsider the design of longstanding models of execution. Newly proposed

models include innovative design principles for achieving higher utilization and lower

power consumption than conventional models, making them appealing for more complex

parallel systems. Since the datasets of many HPC applications are increasing rapidly, too,

these execution models also require a high-performance parallel file system that supports

highly concurrent access. Otherwise, data starvation may severely limit the performance

of I/O intensive applications. This suggests that explicit cooperation between parallel

execution models and parallel file systems is instrumental in achieving continued

performance increases in HPC applications.

 5

1.2 Parallel Execution Models

It would be extremely challenging to develop programs that execute correctly

without a well-defined interface to the underlying hardware resources of the system.

More specifically, the high-level software components of a system, such as the

programming models, compilers, runtime environments, software libraries etc., must be

aware of how to make efficient use of the system architecture. The execution model

describes the interface between the software and hardware architecture of the system

[14], as shown in Figure 1.1. Also, the execution model defines the governing principles

of all computation, which include system semantics, referentiable structures, and policies

of resource management [3].

 For example, the execution model for the basic von Neumann architecture

Figure 1.1 – Basic execution model for an abstract computer system.

 6

involves the translation of application source code into a sequence of machine executable

instructions via compilers or interpreters. Once the runtime system loads the executable

program in memory, which includes instructions for managing the program stack and

storing local variables, the processor can fetch and execute instructions sequentially.

Concurrency may only be achieved by interleaving instructions from multiple tasks and

through the use of instruction pipelines. Though the complexity of this model precludes it

from use in highly concurrent, distributed systems, it has proven to be extremely robust

and will remain relevant as long as von Neumann processors are the standard computing

building blocks [13].

 High-performance parallel systems obviously warrant a more sophisticated

execution model, in which distributed concurrent processes may communicate and

coordinate execution with each other. The most prevalent parallel execution model is that

of communicating sequential processes (CSP), where a group of distributed processes

communicate using a message passing library, such as MPI. A parallel application

following this model creates a fixed number of processes at startup, where each

distributed process has a globally unique name and a private address space. Generally, a

single process per node is used, although multiple threads per process may be utilized to

make more efficient use of multicore architectures. These processes operate on data

contained locally in their own private address space and cooperate with other processes

by sending and receiving messages. The sending and receiving of messages is often used

as an implicit form of synchronization, but many CSP implementations include explicit

synchronization mechanisms, like global barriers or mutexes.

 7

 With exascale HPC systems on the horizon, much research is needed in

developing parallel execution models that more effectively abstract the massive pool of

resources contained in each system. While the CSP execution model is well-understood

and performs well on many classes of parallel applications, it offers limited functionality

for efficiently representing the fine-grained parallelism and dynamic workloads typical of

other classes of scaling-impaired applications [3]. Future execution models must provide

more programmer and system support for the lightweight creation of tasks,

synchronization between these tasks, and dynamic distribution and scheduling of these

tasks across a system. This requires extensive co-design between all layers of the

execution model: system architects will have to modify or redesign low-level system

components of the execution model, such as operating systems, file systems, and network

interfaces, while application programmers will have to rewrite or completely redesign

portions of longstanding application codes. Clearly, the transition from a well-known,

stable execution model to a revolutionary, untested one will be met with resistance, but a

paradigm shift is necessary to meet the computing and power requirements of the

exascale systems of the future [2].

1.3 Parallel File Systems

 At the most elementary level, a file system is simply an abstraction of the storage

hardware on a computer system. In other words, a file system provides a common

interface to a range of storage devices (hard disk drives, SSDs, RAIDs, tape drives, etc.),

 8

such that a user can create, update, and delete files without a detailed knowledge of the

low-level mechanisms involved. It is important to note that, depending on the file system

capabilities, files may be stored on either local or remote devices. Files include program

executables, images, configuration files, and other data. On Unix systems, everything is

stored as a file, meaning directories, sockets, devices, and links are all stored and

accessed in the same manner as regular files, as far as the file system is concerned. File

systems are tasked with not only storing data, but also metadata – that is, data about data.

Metadata includes permissions, timestamps, physical layout of the file on storage devices,

and other attributes associated with a particular file.

 The advent of computer networks brought need for file systems that allowed

sharing of files across networks, typically referred to as network file systems. One such

file system is the Network File System (NFS) [28], which allows a single server to serve

file data to multiple clients over a network. The benefits of NFS include: relaxed storage

requirements on client nodes, ability to provide a consistent home directory for all clients

network-wide, and the ability to share other storage devices, such as CDROM drives,

over a network. However, a single file server causes a single point of failure in the system

and is an obvious performance bottleneck for applications that are I/O intensive, as

shown in Figure 1.2.

Since most HPC systems follow a distributed node architecture, a high-

performance distributed file system is necessary for I/O intensive parallel applications.

Parallel file systems were proposed to alleviate the performance issues inherent in single

 9

server network file systems. Typically, this has been achieved by striping file data across

multiple data servers in a manner similar to RAID 0, while maintaining a consistent

network-wide namespace [7]. As shown in Figure 1.3, striping file data across multiple

servers allow clients to utilize the aggregate network bandwidth of a set of file servers,

rather than overloading a single server.

Of course, the file system must provide a standard interface to programmers to

facilitate portable coding. Arguably, the most prevalent file I/O API is provided as a

subset of the Portable Operating System Interface (POSIX) standard [23], which specifies

a standard operating system interface and environment for providing software

compatibility between conforming systems – Unix-like systems, historically. The POSIX

file I/O standards include definitions for many basic file operations, such as read, write,

open, close, and seek, among others. While these operations benefit from their simplicity

and high portability, they lack support for the collective communication and

Figure 1.2 – The single server architecture of NFS.

 10

noncontiguous disk access typical of many parallel applications [30]. On the other hand,

the MPI standard [19] includes definitions for collective I/O, noncontiguous accesses

using derived data types, and other advanced I/O routines, which allow for more

expressive parallel programming. File system developers may also decide to implement

their own native APIs, which are generally optimized for high performance and allow for

a range of specialized capabilities, including asynchronous operations and configurable

data distribution parameters.

Figure 1.3 – The multi-server architecture of parallel file systems allows for increased

I/O performance.

 11

1.4 Goals

With massively parallel systems capable of exaFlops of performance expected

within the decade, the time for researching, designing, and analyzing execution models to

most efficiently utilize their resources is now. Current parallel execution models do not

offer the fine-grained parallelism necessary for the high-performance of some classes of

scaling-impaired applications. In exascale systems with orders of magnitude more

processing elements, these execution inefficiencies will only worsen. A crucial design

consideration for these exascale execution models is the I/O subsystem, which,

historically, has seen limited performance improvements compared to processor and

network technologies. Future parallel execution models must address the I/O bottleneck

to prevent processors from wasting compute cycles waiting for the completion of high-

latency I/O operations. Parallel file systems are an obvious choice for the basis of

exascale I/O research, due to their high-performance and distributed architecture.

We propose that the design characteristics of a high-performance parallel file

system may be customized for integration with ParalleX, a new parallel execution

model targeted for massively parallel HPC systems. Specifically, the semantics,

capabilities, interfaces, and runtime environment of the file system may be modified

for supporting the I/O requirements of the ParalleX execution model. To

demonstrate this supposition, we develop a proof-of-concept parallel file system dubbed

PXFS (ParalleX File System) to integrate with the ParalleX model. In order to satisfy the

ParalleX I/O model, PXFS should exhibit the following characteristics:

 12

 High-performance, high-concurrency I/O to support exascale workloads

 Low overhead of I/O operations to maintain system scalability

 I/O operation semantics that accommodate the semantics of programming

languages, the runtime system, and other higher level execution model

components

 Modular architecture to facilitate incremental development and continued

research in exascale I/O

1.5 Methodology

To assist in the development of our initial prototype of PXFS, we adhere to the

following design methodology:

 Select a suitable parallel file system to serve as a basis for our I/O model. We

choose OrangeFS for our basis, since it is a working model parallel file system

and is highly modifiable. This allows us to redesign file system components,

while, ideally, maintaining high-performance. We discuss OrangeFS in further

detail in Section 2.2.

 Select a suitable parallel execution model for our prototype. As mentioned in the

previous section, we choose ParalleX as our target parallel execution model. We

discuss the design of ParalleX in detail in Section 2.1.

 13

 Characterize the I/O requirements of the ParalleX execution model. We analyze

the I/O model used by ParalleX to gain an understanding of what semantics a

compatible I/O subsystem would provide.

 Modify the architecture of OrangeFS to satisfy the I/O model of ParalleX. Armed

with a detailed specification of the I/O model of ParalleX, we make the necessary

modifications to OrangeFS to satisfy these specifications, yielding our PXFS

prototype.

 Test the function and performance of our modified I/O subsystem. We test the

PXFS prototype in a production environment to ensure its functionality and high-

performance.

 Analyze the feasibility of PXFS. To determine the feasibility of our modifications,

we analyze the performance results obtained to evaluate if PXFS effectively

satisfies the I/O requirements of the ParalleX model.

1.6 Thesis Organization

In Chapter 2 we present more detailed information concerning the design of the

ParalleX execution model and OrangeFS file system. We also summarize related research

in the area of exascale execution environments and file systems. In Chapter 3, we

characterize the I/O requirements of the ParalleX execution model and outline

modifications to be made to OrangeFS to satisfy these requirements. In Chapter 4, we

 14

analyze the performance results from our testing to gauge the viability of our

implementation. Finally, in Chapter 5, we offer conclusions we have drawn from this

research project and, also, we propose future avenues of research regarding parallel file

systems and exascale execution models.

 15

Chapter 2

Background and Related Work

2.1 ParalleX Execution Model

ParalleX is a working hypothesis parallel execution model motivated by two

primary goals in the field of HPC: the long-term objective of achieving exaFlop

performance on the million core parallel systems expected within the next decade and the

current objective of improving the performance of a diverse group of scaling-impaired

parallel applications [29]. The predominant parallel execution model of present HPC

systems, CSP (i.e., MPI), does not provide suitable mechanisms for representing fine-

grained parallelism, intrinsically hiding latency, or balancing workloads across a system.

These shortcomings suggest the necessity of a paradigm shift in the area of parallel

execution, as the system semantics of current models offer little support for managing

dynamic and irregular parallelism – a problem only intensified by the steady increase in

the core counts of HPC systems. The designers of ParalleX present four critical

bottlenecks affecting the efficiency of current parallel execution models [3]:

 16

• Starvation due to an inability to utilize and manage application parallelism

• Latencies of accessing local and remote resources

• Overhead of managing parallel access to machine resources

• Waiting for contention resolution of multi-core chip I/O pins, memory banks, and

network interfaces

A core design principle of the ParalleX model is to improve parallel performance by

attempting to offset the effects of these inefficiencies. This goal transcends the design of

any single component in the system, and, instead, encompasses considerable co-design

between all layers of the execution model.

 ParalleX aims to improve the parallel performance of future systems through the

application of message-driven execution in the context of a global namespace using

lightweight synchronization primitives [29]. The model is largely dependent on the use of

active messages [34, 33] to implement the message-driven flow control, which allows for

the overlapping of computation and communication. The global namespace framework

facilitates the dynamic distribution of data and simplifies parallel programming, as data

may migrate from node to node and may be referenced regardless of where it is

physically stored. Lightweight synchronization mechanisms improve processor efficiency

by avoiding the over-constraining nature of global synchronization. Other key design

features of the model for improving parallel performance include the application of finer-

 17

grained multithreading, inherent latency hiding of remote operations, and dynamic,

adaptive resource management techniques for contention resolution.

 To provide more insight into the ParalleX execution model, it is necessary to

consider the function and cooperation of the fundamental components of the model [29],

which include:

 Active Global Address Space (AGAS) - The AGAS module provides mechanisms

for maintaining a system-wide global namespace, which decouples the access of a

data object from its actual physical location.

 ParalleX Processes - A ParalleX process provides the full context of all

computation contained in a particular parallel application, including threads,

application data, methods, synchronization mechanisms, and child-processes.

Processes may span multiple nodes and even share nodes, in contrast to

contemporary processes which generally are statically mapped to a single

processing core.

 Threads and Thread Management – ParalleX threads provide the smallest unit of

computational work that may be represented and scheduled for execution on a

single node. A thread manager is responsible for scheduling threads in the most

efficient manner, given runtime system information.

 Parcels and Parcel Management - The ParalleX model achieves inter-node

communication using parcels, active messages which typically encapsulate an

 18

action to be performed, but may also reference user data. A parcel manager is

used to demultiplex incoming parcels to different parts of the system.

 Lightweight Control Objects (LCOs) - LCOs represent a set of flow control

mechanisms whose semantics allow for the event-driven instantiation of threads,

dynamic work distribution, and the prevention of race conditions in parallel

applications.

 Percolation – Percolation is a special technique for moving work to data to make

efficient use of heterogeneous resources, like GPGUs, by hiding the latency of

accessing the resource and reducing the overhead of using it.

As a first attempt for implementing the ParalleX execution model, the designers

of ParalleX have developed High Performance ParalleX (HPX), a parallel runtime system

meeting the specifications of the model. Although the ParalleX model suggests potential

redesign of all system layers, including hardware architecture, an experimental runtime

system like HPX can be used to validate the model and provide necessary feedback for

guiding future parallel system design. The core design objective of the HPX runtime

system is to provide an efficient, modular, and portable framework for the development

and execution of ParalleX applications [29]. A modular diagram demonstrating the HPX

runtime architecture is given in Figure 2.1. Currently, HPX does not support ParalleX

processes or percolation, but implements all other ParalleX components, which are

described in further detail below.

 19

The AGAS component maintains a translation table that provides the global

virtual address for all objects in the execution environment, both local and remote. This

allows for a less restrictive programming model, as a programmer does not need to be

aware of where an object is stored to reference it. The design of the AGAS component is

largely based on previous research in Partitioned Global Address Space (PGAS)

programming models, which provide a logical global address space composed of each

contributing thread’s local memory partition. PGAS models attempt to improve the

productivity and performance of parallel programming by combining the convenience of

shared memory programming with the performance control of message passing models

[36]. The AGAS model improves upon previous PGAS implementations by allowing

objects to migrate throughout the system without the added overhead of a virtual address

translation. This seamless migration is crucial to supporting the dynamic load-balancing

inherent to the ParalleX model. To assist in providing a global namespace abstraction, the

ParalleX model introduces the notion of a locality to delineate the boundaries in a parallel

system. A locality is defined as a contiguous physical domain, which guarantees atomic

operations on local resources [3]. In a cluster environment, a locality is typically equated

to a node, where intra-locality accesses require access to local memory and inter-locality

accesses require access to the interconnection network.

The HPX thread manager is responsible for the runtime scheduling of a

potentially large amount of independent HPX threads. To support dynamic and adaptive

work-load balancing, the thread manager employs a work queue based scheduling

discipline [29]. Also, the thread manager schedules threads in a cooperative manner to

 20

limit the ill effects of context switching and cache thrashing. It is worth noting that HPX

treats threads as first-class objects, so, they may be managed remotely or even migrated

between localities. However, thread migration is typically avoided as it is more

computationally efficient to send a parcel that spawns a thread remotely, rather than

transmit the entire thread context across the network.

As mentioned previously, parcels are an extended form of active messages used

for inter-locality communication. To perform an operation on a remote object, typically a

HPX thread will send a parcel to that locality encapsulating the function to be executed

and the corresponding parameters. When the remote locality receives the parcel, it

decodes it and schedules the contained function for execution via the thread manager.

This functionality allows the moving of work to data (instead of data to work), which is

preferable in many scenarios since it takes advantage of data locality and allows

overlapping of computation with communication.

Two of the more useful synchronization operations utilized by HPX are the future

and dataflow LCOs, although conventional mechanisms like semaphores, mutexes, and

conditions are also included. A future is used as a proxy for a result that has not yet been

calculated [4]. A thread requesting the value of the future may suspend its execution until

the value is available, allowing other threads to perform meaningful work while the

remote operation completes. The dataflow LCO defines a set of pre-conditions that must

be satisfied before a specific follow-on thread is instantiated [3]. This mechanism helps

address the inefficiencies of typical global barriers by using a light-weight, event-driven

 21

synchronization mechanism that allows each given precondition to be updated

asynchronously.

The following discussion describes the flow of data and control throughout the

HPX runtime environment (Figure 2.1). Incoming parcels are delivered over the

interconnection network to the parcel port, which passes each parcel to a parcel handler

to buffer. The action manager then fetches and decodes each parcel, scheduling the

encapsulated thread for execution with the thread manager. The thread manager

dynamically schedules a pool of threads, which operate on local and remote objects. The

action manager queries the AGAS translation table on behalf of threads to determine if

Locality

Figure 2.1 - Modular diagram of the HPX runtime system.

 22

referenced objects are remote or local. If the object is local, the action manager simply

creates a new thread, but if it is remote, the action manager encapsulates the necessary

work and sends it to the remote object using the parcel port. LCOs (created by individual

threads) notify the action manager when new or suspended threads may begin executing.

2.2 OrangeFS

OrangeFS is a recent branch of Parallel Virtual File System 2 (PVFS2), a high-

performance, open-source parallel file system designed for use in HPC systems. Some of

the more appealing features of PVFS2 include high parallel I/O performance, reliability,

and hardware independence [24]. PVFS2 achieves high I/O throughput by dynamically

distributing file data and metadata across a system. This strategy alleviates file system

bottlenecks and improves system scalability. The reliability and performance of the file

system also benefit from relaxed consistency semantics, which obviate the need for a file

locking subsystem. PVFS2 maintains compatibility with a wide range of instruction-set

architectures, storage systems, and network architectures, exhibiting a high level of

hardware independence. Also, the modular software architecture of PVFS2 allows new

hardware technologies to be integrated smoothly. PVFS2 offers an ideal platform for

research in the area of parallel I/O, due mostly to the high-performance and modular

nature of its architecture coupled with the fact the software is openly available for

redesigning. OrangeFS offers many of the same features of PVFS2, but was branched

specifically to provide additional capabilities that seek to improve the performance of a

 23

wide range of parallel systems. This is in contrast to PVFS2, which focused design solely

on improving the performance of specific parallel system architectures (typically, clusters

or other large distributed systems) [22]. Among the new features provided by OrangeFS

are improved scalability of metadata and directory operations, configurable redundancy

and fail-over mechanisms, and secure access controls for protecting file system data.

 OrangeFS utilizes an intelligent server architecture, in which server processes

serve file data and metadata to client processes [21]. In a cluster environment, I/O nodes

generally execute the server processes (due to their specialized storage hardware), while

the compute nodes execute the client applications. The file system may be configured to

use any number of servers, with each serving file data and/or metadata. Tunable data

distribution parameters allow users to increase file system performance by distributing

data in a manner that complements the file access patterns of a particular program. By

default, file data is striped evenly across a set of servers to take advantage of the

aggregate sum of network bandwidth, however, numerous data distribution

configurations are supported. Similarly, metadata may be distributed among servers at a

per directory granularity to avoid overloading individual servers [8]. Also, the file

system utilizes server-to-server collective communication to improve the performance

and scalability of many metadata operations [22].

 The software architecture of OrangeFS clients and servers is given below in

Figure 2.2. Typically, a client will make calls into a high-level I/O library (e.g., an MPI-

IO implementation) to utilize the file system. These libraries must leverage the system

 24

interface, the lowest level API available to programmers for accessing the file system.

Essentially, the system interface provides programmers with the necessary building

blocks for developing both general and domain-specific I/O libraries. The system

interface implements file system operations using state machines, a software module that

allows multi-step file operations to be represented using explicit state machines.

Specifically, state machines define the function to be executed for each state (step) and

the order in which these functions are executed. State transitions typically occur after

completion of a low-level I/O operation, where the operation's error code is used to

determine which state to transition to next [8]. State machines are particularly valuable to

a parallel file system, as they allow independent I/O operations to be serviced in a

concurrent and asynchronous manner. The server-side libraries also utilize state machines

to manage the execution of concurrent file system operations. The job interface's primary

purpose is to bind together the high-level file system libraries described above with the

Figure 2.2 - Software stacks for OrangeFS clients and servers.

 25

low-level hardware components of the file system architecture [22]. It provides a single

interface for the posting and completion checking of storage and network operations.

 The lowest level of the OrangeFS software stack is composed of hardware

abstractions for the storage and network subsystems. Both the client and the server utilize

the Buffered Message Interface (BMI), which provides consistent access to a variety of

network architectures, including TCP/IP and InfiniBand. The design of BMI simplifies

the integration of new network architectures, due to its layered interface model – a high-

level API is provided to BMI users while implementation-specific API's are maintained

in separate software modules [8]. The OrangeFS server leverages the Trove storage

abstraction to provide bytestream and key/value access to available storage resources.

Trove uses regular files to store bytestreams, while a database implementation is used to

store key/value pairs (metadata). The flows subsystem is used to coordinate the network

and disk transfers initiated by BMI and Trove. Particularly, it handles the buffering,

scheduling, and datatype processing necessary for bulk data transfers [8]. The server

process contains an additional software component for managing the consistency between

concurrent file system requests. The request scheduler analyzes incoming requests and

orders them in a manner that protects the consistency of the file system. Also, the client

software stack includes the optional kernel module, which allows an OrangeFS file

system to be mounted and used like a standard Linux file system.

 26

2.3 Related Work

Many languages have been proposed to satisfy the PGAS execution model, with

UPC [5] and Titanium [31] representing two of the more well-known attempts. UPC

(Unified Parallel C) is an explicit parallel extension to ISO C, which coordinates

independent threads in a SPMD fashion. Titanium offers similar features as UPC, except

that it is a dialect of the Java language targeted for application in large HPC systems like

clusters. Both UPC and Titanium support the PGAS global memory model which allows

programmers to control the processor affinity of shared data, which increases potential

performance of parallel applications. Also, both languages utilize GASNet [6], a low-

level, language-independent networking layer that provides a portable interface for high-

performance one-sided communication. The GASNet core API is largely based on the

use of active messages, while an extended API offers more expressive operations like

collective communication and remote memory access.

 APGAS (Asynchronous Partitioned Global Address Space) languages improve

upon standard PGAS languages by allowing the asynchronous creation of both local and

remote tasks. One such APGAS language is X10 [26], an object-oriented, high-

performance parallel programming language (Java-based) targeted for application on

non-uniform memory access (NUMA) compute clusters. X10 distributes asynchronous

computation activities among a set of places, abstractions that encapsulate local data and

computation. Chapel [12] is another global address space language that offers many high-

level operations for expressing data parallelism, task parallelism, and nested parallelism.

 27

[37] present a fine-grained parallel execution model based on compiling parallel

applications into small code snippets called codelets. High-performance parallel

languages like X10 and Chapel can be implemented on top of this runtime model, as long

as a compiler exists that can translate the respective parallel applications to a set of

independent codelets.

 There has been extensive research into adding parallelism constructs to C++, one

of the most popular programming languages for application developers. Cilk++ [17] is a

proposed parallel programming environment (incorporating a compiler, runtime system,

and race-detection toolkit) that extends C++ with operations that allow for thread

spawning, automatic loop parallelization, and local barrier synchronization. The Cilk++

runtime environment guarantees to effectively load-balance parallel computation, due in

large part to the use of a work-stealing scheduler. Charm++ [16] is an object-oriented

parallel programming language based on C++, which utilizes message-driven

computation on parallel processes called chares. An important design feature of

Charm++ is the extension of traditional object-oriented principles like inheritance and

dynamic binding to concurrent objects. Intel presents a C++ library for supporting

scalable parallel programming called Threading Building Blocks (TBB) [25]. This library

allows for convenient parallel programming through the specification of concurrent tasks

that are dynamically scheduled by the runtime environment, freeing the programmer from

the burden of creating, synchronizing, and destroying actual threads.

 28

 Many parallel file systems have been proposed improve the performance,

portability, and consistency of concurrent I/O operations. Lustre [18] is a POSIX-

compliant file system for use in large-scale clusters. Lustre is renowned for its ability to

support a large number of client processes while maintaining high I/O throughput. IBM’s

General Parallel File System (GPFS) [15] provides another high-performance parallel file

system which offers high availability through dynamic file system management and data

replication.

 Since the I/O subsystem has historically been the largest hindrance to the high

performance of parallel applications, much research is necessary in improving the

performance and scalability of I/O architectures for exascale systems. [10] propose a new

I/O architecture that dynamically coordinates I/O accesses according to program access

patterns, network topology, network condition, and physical data distribution on storage

devices to reduce contention and preserve data locality. [35] present numerous tools for

utilizing latent I/O asynchrony in HPC applications. Latent I/O asynchrony is essentially

the decoupling of ancillary I/O operations from the core computation of a parallel

application. [1] propose a new I/O paradigm, referred to as I/O forwarding, in which

compute nodes ship I/O calls to dedicated I/O nodes. The dedicated I/O nodes then

perform requests on behalf of the compute nodes, optimizing I/O performance by

aggregating and caching file system operations.

 29

Chapter 3

Design and Methodology

 In this chapter, we first propose the desired features for an I/O subsystem fitting

the ParalleX execution model. We then outline modifications to be made to the OrangeFS

file system to accommodate these features, yielding our PXFS prototype.

3.1 ParalleX I/O Characteristics

Before developing our PXFS prototype, we first characterize the I/O requirements

of the ParalleX model. Above all, the ParalleX I/O subsystem must support the overall

goals of the execution model, which include the use of asynchronous communication to

mask high-latency operations. While there are numerous parallel I/O libraries available

with support for asynchronous operations, none directly support the advanced semantics

required by the ParalleX model. Essentially, a ParalleX thread attempting an I/O

operation will make a call to the I/O subsystem to submit the asynchronous request to the

 30

underlying file system. It is desirable that this asynchronous I/O operation incur as little

overhead as possible, to limit the blocking time of calling thread. This allows the calling

thread to continue performing meaningful computation while waiting for the I/O

operation to complete. The I/O subsystem should also utilize continuations to notify of

the completion of an operation, where a continuation is a specifier for some follow-on

action to be taken. This continuation can be used to notify the calling thread of the

completion of the operation, submit another I/O operation, instantiate a new thread of

execution, or perform any other defined functionality.

Obviously, the I/O subsystem must scale with the increasing number of

concurrent I/O operations that are probable in exascale HPC applications. Otherwise, any

potential I/O performance gains will be offset by the high contention for accessing the

I/O subsystem. Also, the I/O subsystem should include a complete set of high-level file

operations, not just basic file reads and write. ParalleX applications require the ability to

perform a range of file operations, such as open, close, seek, make directory, create file,

etc., and expect that all operations follow the same asynchronous model discussed above.

These I/O operations should all be contained within a well-defined, consistent user

interface, which provides the necessary ParalleX I/O semantics with limited programmer

intervention.

So, we conclude that any I/O subsystem attempting to satisfy the I/O requirements

of the ParalleX model should provide the following features:

 Asynchronous I/O operations

 31

 Low overhead for submitting operations

 Continuation support for notifying of I/O completions

 Support for high-performance, high-concurrency I/O

 Breadth of high-level I/O operations

 Well-defined user interface providing the ParalleX I/O model semantics

3.2 PXFS Design

As stated previously, we will implement our PXFS prototype by modifying the

OrangeFS file system source code to accommodate the changes required by the ParalleX

model. To support the asynchronous submission of high-level file system operations,

modifications must be made to the OrangeFS client-side software stack (Figure 2.2). The

server-side libraries remain unchanged, because client requests are handled the same way

by the server, regardless of whether they are synchronous or asynchronous. The

modifications to the client software stack are detailed in the following sections, starting

with the highest level (the PXFS I/O library) and moving to the lowest level (client-side

state machines).

3.2.1 PXFS I/O Library

The PXFS I/O library is the high-level interface exposed to ParalleX components

or applications needing to perform I/O operations. Therefore, this library must explicitly

 32

support the semantics of the ParalleX I/O model, but must do so by leveraging

functionality contained within the OrangeFS file system. Before focusing on the actual

implementation of the library, we first decide on the set of I/O operations we wish to

support. Leaning on convention, we initially seek to implement many of the file and I/O

operations included in the POSIX specification. POSIX was chosen as a reference

because most of its I/O operations and datatypes are well-understood by programmers

and straight-forward to implement – we are not interested in designing a POSIX-

conformant I/O library. Basically, we borrow the naming conventions and functional

parameters of POSIX operations as a basis for our PXFS I/O library. Since the PXFS I/O

functions are asynchronous and do not return the desired value immediately, output

values are passed as pointers to the functions and are updated after the completion of the

I/O operation. A complete list of operations currently supported by PXFS is given in

Table 3.1.

From our characterization of the ParalleX I/O model, we already know that a

ParalleX thread calling into the PXFS I/O library expects to submit an asynchronous

operation that blocks for as short as possible, requiring that the I/O library incur minimal

overhead. To support this requirement, we design the PXFS I/O library to perform only

the necessary computation before submitting an operation to the asynchronous I/O (AIO)

subsystem. This necessary computation includes checking and modifying functional

parameters, specifying the asynchronous operation to be performed, and submitting the

operation to the AIO subsystem. To specify an asynchronous operation, a data structure

called an asynchronous control block is allocated and populated with the necessary

 33

parameters. These parameters include original function arguments, as well as internal file

system data structures necessary to servicing the operation. The asynchronous control

block is all that is required by the AIO subsystem to service a particular I/O request.

Further details explaining the design and implementation of the AIO subsystem are

provided in Section 3.2.2.

Since the ParalleX I/O model also requires support for continuations, the PXFS

I/O library should include the necessary definitions for specifying continuations for

completed I/O operations. Accordingly, we first define a continuation specifier, which

simply represents a continuation as two separate pointers: a pointer to a function to be

executed upon the completion of a particular I/O operation and a pointer to a block of

PXFS I/O Operation Purpose

pxfs_open(64) Open a file.

pxfs_creat(64) Create a new file.

pxfs_unlink Remove a file.

pxfs_rename Rename a file.

pxfs_read, pxfs_pread(64), pxfs_readv Variations of file read.

pxfs_write, pxfs_pwrite(64),

pxfs_writev
Variations of file write.

pxfs_lseek(64) Repositions a specific file pointer.

pxfs_ftruncate(64), pxfs_truncate(64) Truncate a file to a desired length.

pxfs_close Close a file.

pxfs_fstat(64), pxfs_stat(64),

pxfs_lstat(64)
Retrieve a file’s status.

pxfs_fchown Change a file’s user and group ownership.

pxfs_fchmod Change a file’s permissions.

pxfs_mkdir Make a new directory.

pxfs_rmdir Remove a directory.

pxfs_symlink Create a symbolic link to a file.

Table 3.1 - I/O operations currently implemented by PXFS. Note that 64-bit functions

allow files over 2 GB to be manipulated by the file system.

 34

user data to be passed as input to this function. A valid continuation function must also

accept a resultant I/O error code as input, which states whether the I/O operation

succeeded, and if not, the specific error (as defined by the POSIX error code definitions).

Basically, a continuation specifier defines an arbitrary function that operates on a specific

block of data supplied by the programmer, depending on the error code of the I/O

operation. With a suitable definition for a continuation specifier, we update all operations

in the PXFS I/O library to accept this specifier as a functional parameter, along with the

operation’s respective POSIX arguments. This specifier is subsequently stored in the

asynchronous control block to be leveraged by the AIO subsystem upon completion of

the I/O operation. To demonstrate the general structure of the PXFS I/O library functions,

we provide an example function call in Figure 3.1.

A data flow diagram illustrating the asynchronous nature of the PXFS architecture

is given in Figure 3.2. This diagram provides insight into how ParalleX threads submit

I/O operations and respond to their completion. As stated earlier, a ParalleX thread

blocks for a short time to submit an I/O operation then resumes normal execution after it

Figure 3.1 – Prototype for the PXFS write operation. The first three arguments

correspond directly to the POSIX write definition: fd represents the associated file

descriptor, buf points to the buffer of data to be written, and count specifies the

amount of bytes to be written from the buffer. The next argument, bcnt, points to the

location where the output value (number of bytes written) should be written. The last

two arguments correspond to the continuation specifier: cb stores the associated

callback function for the continuation and cdat stores the pointer to the user-supplied

data block. The function returns 0 on a successful asynchronous submission to PXFS

and returns -1 if an error occurred before submission.

 35

has been submitted, allowing for autonomous overlapping of computation with file

system communication. After a thread has submitted an I/O operation, the PXFS AIO

subsystem manages all client-side computation and communication necessary to service

the operation, clearly alleviating the programmer from the burden of repeatedly checking

for its completion. When the operation has finally completed, the AIO subsystem utilizes

the provided continuation specifier to notify the ParalleX application. In the case of

Figure 3.2, the continuation spawns a new thread of execution, but could be easily

modified to notify the original thread or perform any other functionality.

Figure 3.2 – Data flow diagram illustrating an example I/O operation in the PXFS I/O

library. Thread 1 submits a PXFS write operation with a continuation which spawns

Thread 2.

 36

3.2.2 AIO Common Interface

The main purpose of the AIO Common interface is to offer a consistent interface

to high-level I/O libraries, such as the PXFS I/O library, wishing to utilize the

asynchronous file system operations supported by PXFS. The benefit of layering

libraries in this manner is that it directly supports our design goal of providing modular

software architecture. Changes or optimizations may be made to the AIO common

interface without requiring any modifications to be made to high-level libraries. Also,

unnecessary complexity is removed from high-level I/O libraries – these libraries may

utilize functionality contained in the AIO common interface which abstracts away the

low-level details of performing an asynchronous I/O operation. This modularity not only

increases programmer productivity, but also reduces the likelihood of developing buggy

I/O libraries.

To simplify the design of the AIO common interface, we expose a single function

(aiocommon_submit_op) for submitting asynchronous operations to PXFS. This function

simply queues the referenced control block for service by the file system then returns

control back to the caller, which minimizes the blocking time for user threads. However,

managing this queue in a highly concurrent environment represents a potential

bottleneck, as many threads contend for queue access simultaneously. The submit

function accepts an asynchronous control block as its only parameter, so, clearly, the

asynchronous control block must contain all information required by the file system to

service the operation and notify the caller of its completion. Table 3.2 provides an

 37

overview of each of the fields that compose a PXFS asynchronous control block. It is

important to note that the file system relies solely on the use of callback functions to

notify a user of the completion of an I/O operation, requiring user applications to supply a

function meeting the specifications given in the asynchronous control block. While this

could be considered burdensome to library developers, it also allows for a wide range of

Field Data Type Purpose

op_id PVFS_sys_op_id

Unique identifier used to track the

progress of a particular file system

operation.

op_code PVFS_aio_op_code

Code indicating the particular file

system operation represented by

the control block (open, read, write,

etc.).

error_code PVFS_error

Code indicating the current status

of the asynchronous operation (i.e.,

in progress, finished, or in error).

link qlist_head

Linked list node used to store the

control block in a waiting or

running queue.

call_back_fn void (*)(void *c_dat, int status)

Function pointer which points to a

user-supplied callback function to

be executed upon the completion of

an operation. c_dat points to a

block of data given by the user and

status provides the final error code

of the operation.

call_back_dat void *

Void pointer used to store an

arbitrary block of user data that

will be passed to the given callback

function.

u union

Union used to store the operation-

specific parameters and internal

data structures necessary to service

an asynchronous file system

operation.

Table 3.2 – Definition of the PXFS asynchronous control block.

 38

high-level functionality by providing mechanisms for defining some arbitrary function to

be performed upon the completion of an operation.

A major design consideration of the AIO common interface is the architecture of

its runtime system, which services asynchronous file system operations and notifies

application threads when these operations complete. An overview of our proposed AIO

common runtime system is given in Figure 3.3. As illustrated, the runtime architecture

utilizes three primary components: a waiting queue, a running queue, and a progress

Figure 3.3 – Architecture of the AIO common runtime system.

 39

thread. Asynchronous control blocks submitted by a high-level I/O library are buffered at

the tail of the waiting queue, where they wait to be serviced by the file system. The AIO

common progress thread then moves the control blocks from the head of the waiting

queue to the running queue, where they are finally submitted to the file system. Note that

the progress thread and a potentially large number of application threads may access the

waiting queue simultaneously, so a mutex lock is required to protect the integrity of the

queue. On top of submitting asynchronous operations to the file system, the progress

thread is also tasked with forcing progress on any currently running operations, removing

completed operations from the running queue, and notifying applications of operation

completions using supplied callback functions.

To provide a more complete understanding of the functionality necessary to

servicing asynchronous file operations, a flow diagram of the AIO common progress

thread is given in Figure 3.4. The progress thread first moves any waiting operations to

the running queue, assuming it has not reached capacity. It is necessary to impose a limit

on the number of running operations, because submitting many concurrent operations can

negatively affect the performance of the file system. The waiting queue may grow

arbitrarily long, depending on the rate of incoming requests and the service time of the

file system. If there are no operations waiting or running, the progress thread suspends

execution – a user thread that submits an asynchronous I/O operation and finds the

progress thread idle signals the progress thread to wake up and service its request. If

operations are running, progress is forced on each eligible operation (i.e., file operations

with work available) using a test function. The test function returns any operations which

 40

executed to completion, whether they be successful or in error. These completed

operations are then removed from the running queue and their respective callback

functions are executed to notify the caller of their completion. This entire process is

repeated until there are no requests left to service. To aid in our implementation of this

Figure 3.4 – Flow diagram for the AIO common progress thread.

 41

algorithm, we rely on the POSIX Pthreads API, which provides mechanisms for creating

threads and synchronizing their execution.

For each supported asynchronous operation, the AIO common interface defines

functionality for submitting the request to the file system (initializers) and returning the

file system response (finalizers). Initializers perform any necessary transformation on

functional parameters contained in an asynchronous operation’s control block then

initiate an operation-specific state machine to service the request. When the operation

completes, the finalizer copies the file system response into the appropriate output fields,

as specified by the operation. For example, the finalizer for the asynchronous open

operation would copy the file descriptor returned by the file system to a user-supplied

variable so that it may be accessed by the original application.

3.2.3 State Machines

OrangeFS utilizes a finite-state machine implementation to represent and service

low-level, multi-step I/O operations. Each state represents a specific function to be

executed, which typically includes the posting of a remote file system operation. The

nesting of state machines is also allowed, so a single state may represent an entire state

machine to be executed. This is convenient as it simplifies state machine complexity and

facilitates code reuse. The return value of a particular state function or nested state

machine is used to determine which state to transition to next, a process that continues

until the file system operation succeeds or fails. Essentially, state machines offer a way

 42

to define the structure and manage the flow of multi-step file system operations, which

may require multiple nested operations, such as a file lookups, file creates, etc.

Conventionally, high-level OrangeFS file system operations have been defined as

a sequence of calls to the system interface, as shown in Figure 3.5. The system interface,

the lowest level interface available for accessing OrangeFS files, offers a comprehensive

set of low-level file system operations in synchronous and asynchronous form – the

synchronous code simply calls the asynchronous code and waits for its completion before

Figure 3.5 – Pseudocode for the file rename operation in OrangeFS. This high-

level operation accepts two file paths as input (old_path and new_path) and

renames the first path to the second path. After breaking these paths into

respective directory and file names, the function looks up the references for both

directories using the system interface lookup call. After obtaining the parent

directory references, the system interface rename call may be used to submit the

rename request to OrangeFS. It can be seen that the OrangeFS file rename

operation requires 3 separate system interface calls, each of which requires an

operation-specific state machine.

 43

returning. Each asynchronous operation concludes by starting a state machine for

servicing the given file system request. After a state machine has been started, it must be

repeatedly polled by a test function to check for its completion. If the operation has not

been completed, the test function will force progress on that operation and any other

operation with an incomplete state machine. This demonstrates the concurrent processing

abilities of state machines, as the execution of states from independent machines may be

interleaved with each other. Once a state machine has completed execution, the data from

the server response is returned to the user through the system interface.

So, while OrangeFS supports the asynchronous submission of low-level file

system operations via state machines, there is no explicit support for asynchronous high-

level operations, like file open, close, seek, etc. This is mostly because these high-level

operations involve a possibly complex sequence of state machines, making it extremely

cumbersome for library developers to manage the flow between the operations in a

manner that appears completely asynchronous to the user. Obviously, new low-level

mechanisms are required for representing and executing asynchronous file system

operations without adding unnecessary complexity to high-level I/O libraries or requiring

an inordinate amount of programmer intervention. To support this functionality, we must

provide a meaningful and efficient way of managing the necessary state and dynamic

flow of high-level I/O operations.

Therefore, we propose the addition of new PXFS state machines to represent

these high-level file operations, allowing each state to specify some nested state machine

 44

or necessary function for providing the desired result. Essentially, we extend the state

machine abstraction to define high-level file operations, which generally require the

execution of a sequence of nested state machines and state functions. An example state

machine implementing the rename operation defined in Figure 3.5 is presented below in

Figure 3.6. The benefits of using state machines to implement high-level file system

operations are two-fold: the potentially complex flow of these operations is easily

specified using finite-state machines and the use of state machines allows an arbitrary

Figure 3.6 – Example PXFS state machine for the file rename operation. Note that

an operation’s state trajectory depends on the error code of each nested operation.

 45

function to be serviced asynchronously by the file system. This allows higher level

libraries, such as the AIO common interface, to define asynchronous file operations in

terms of a single state machine, which is much more manageable than an elaborate

sequence of state machines.

3.3 Summary

Initially, we analyzed the ParalleX execution model in an attempt to define a

suitable I/O subsystem to be used with model. We concluded that an I/O subsystem

meeting the semantics of the ParalleX execution model must support the following

features: asynchronous I/O operations, low operation submission overhead, continuation

support, high operation concurrency, a wide-range of I/O operations, and a well-defined

interface for utilizing the library.

We then proposed modifications and additions to the OrangeFS file system to

satisfy these requirements, resulting in our first PXFS prototype. Our implementation

involves the design of the high-level PXFS I/O library, the AIO common interface, and

new client-side state machines. The PXFS I/O library defines a wide-range of I/O

operations supporting the semantics of the ParalleX I/O model. The AIO common

interface provides functionality for servicing asynchronous operations using a runtime

system that manages these requests and forwards their response back to users. New state

machines were developed to allow high-level I/O operations to be represented and

 46

managed using a single asynchronous state machine. The resultant client-side software

stack is shown in Figure 3.7.

It is important to note that this is only our first prototype of the PXFS file system,

and, thus, is not fully compatible with the ParalleX execution model. Eventually, we hope

to fully integrate PXFS with the execution model by modifying PXFS to utilize ParalleX

parcels and threads directly. This reduces potential I/O overhead and allows the ParalleX

thread manager to explicitly manage the execution of all threads, including the PXFS

progress thread. However, our initial implementation will allow us to analyze the long-

term feasibility of integrating our current I/O model with the ParalleX execution model.

Figure 3.7 – Modified client-side stack for PXFS clients.

 47

Chapter 4

Results

 In this chapter we outline experiments to benchmark the performance of PXFS

with the original OrangeFS file system, as well as, verify the feasibility of PXFS as a

suitable I/O subsystem for the ParalleX execution model.

4.1 Read/Write Throughput Results

To compare the potential performance of PXFS with the original OrangeFS file

system, we first outline experimental application test cases for submitting file reads and

writes to the underlying file system. This allows us to analyze the performance of the file

systems from the perspective of numerous application I/O patterns. These test cases are

outlined below:

 Case 1: A number of threads simultaneously read and write a set of files. Each

thread waits for the completion of its previous I/O operation before submitting

a new one, and each operation references a random block in the file.

 Case 2: A single thread submits a list of sequential I/O operations to either

read or write a file one block at a time. It is unnecessary to wait for the

 48

completion of prior operations to submit new ones, as there is no file or buffer

overlap between operations.

 Case 3: A single thread repeatedly submits sequential I/O operations then

simulates computation after each operation has been submitted. Each I/O

operation references equal size blocks and the length of the computation time

is fixed. Similarly to case 1, the PXFS application must wait for the

completion of the current I/O operation (and computation) before submitting a

new operation.

Before running any experiments, it is important to note the hardware configuration details

of our testing environment. For simplicity, we use a single file system client and a single

file server for our testing environment, both containing identical hardware, detailed in

Table 4.1. Both the client and server nodes run the CentOS 5.6 Linux distribution.

4.1.1 Random Read/Write (Case 1)

 For test case 1, a simple OrangeFS application was developed that spawned a

specified number of threads, each of which performs a sequence of I/O operations on a

set of files. Each I/O operation is completely random – it is equally likely that the

CPU Memory Storage
Network

Interconnect

Intel Xeon 3040

(dual-core 1.86 GHz)

2 GB DDR2

RAM

Seagate 500 GB

HDD

Gigabit Ethernet

Table 4.1 – Client and server hardware specifications for PXFS testing.

 49

operation is a read or write and the referenced block of data (512 KB) is randomly

selected, as well. When a thread finishes its sequence of I/O operations, it terminates.

Once all threads complete, the program calculates each thread’s read and write

throughput and then terminates. A similar PXFS application was developed, however

changes were made to account for the asynchronous nature of its interface. Specifically, a

thread submits an asynchronous I/O operation specifying a continuation for recursively

submitting more I/O operations. The main thread suspends and awaits the completion of

this chain of asynchronous operations. This functionality was required to enforce the

requirement that I/O operations may not be submitted before previous operations have

completed.

The average read and write throughput results for case 1 using PXFS and

OrangeFS are given in Figure 4.1 and Figure 4.2, respectively. It is clear from these

graphs that the potential read and write throughput for PXFS slightly exceeds that of the

original OrangeFS file system, regardless of the number of application threads used. This

was not anticipated, as the OrangeFS I/O library is much more established, in the sense

that it has been around for a long time and has been optimized for high-performance.

Most likely, PXFS is able to attain higher throughput performance due to the lightweight

and simplistic nature of the AIO common interface, which simply submits I/O operations

to the underlying file system and awaits their completion – all optimizations are

concealed from the interface and handled internally by the file system (the state machines

and job interface, specifically). These results prove that PXFS is capable of providing

high-performance, high-concurrency I/O operations for this test case. However, the slight

 50

Figure 4.1 – Average read throughput for case 1 using OrangeFS and PXFS.

Figure 4.2 – Average write throughput for case 1 using OrangeFS and PXFS.

 51

throughput increase possible with PXFS does not justify rewriting all applications using

the PXFS I/O library, as applications that perform asynchronous I/O are inherently more

complex than their synchronous counterparts, since they must specify callback functions

and often require synchronization mechanisms to be notified of I/O completions.

4.1.2 Sequential Read/Write (Case 2)

In test case 2, OrangeFS and PXFS applications were developed in which a single

thread reads or writes a 1 GB file one block at a time. The time required to finish this

operation was calculated and used to determine which file system was able to obtain the

highest aggregate throughput. The OrangeFS application is very similar to the one

developed for case 1, except the sequence of reads or writes is sequential, not random.

Clearly, since the OrangeFS I/O library utilizes synchronous file operations, the

application thread must wait for the completion of previous I/O operations before

submitting additional ones, just as in case 1. However, since the PXFS I/O library is

asynchronous and no overlap exists between the sequence of I/O operations, the PXFS

application is able to submit all I/O operations at once. After all asynchronous I/O

operations have been submitted, the PXFS application thread suspends execution until a

specified continuation function notifies it that all operations have completed.

 52

Figures 4.3 and 4.4 illustrate the aggregate read and write throughput results

achieved by both file systems using varying block sizes. It is clear from these graphs that

the performance of PXFS easily exceeds that of OrangeFS for reads and writes across all

block sizes. This makes sense, because the PXFS application is able to submit all I/O

operations at once, while the OrangeFS application must submit one operation at a time.

Essentially, the PXFS AIO subsystem may run as many simultaneous operations as

possible and queues the remaining operations. As operations complete, the AIO

subsystem runs new operations, achieving maximum utilization of the underlying file

system. Conversely, the OrangeFS application may only submit one I/O operation at a

time and cannot submit further I/O operations until the current one has been returned to

the application thread. This does not allow for high file system utilization, because each

I/O operation must traverse the file system stack before a new operation may be

submitted, due to the synchronous nature of the library. The only way to achieve higher

Figure 4.3 – Aggregate read throughput results for case 2.

 53

performance with OrangeFS is to use multiple application threads or modify the file

system to define an operation for submitting a list of I/O operations at once.

4.1.3 Sequential Read/Write with Computation Overlap (Case 3)

The goal of test case 3 was to analyze the ability of each file system at

overlapping I/O with computation, an important requirement for satisfying the ParalleX

I/O model. The ability to overlap I/O with computation is important as it allows

applications to continue performing meaningful computation while waiting for

potentially high latency I/O operations to complete, with negligible effects on the I/O

throughput. Obviously, multiple processing cores are required to overlap computation

with I/O – one or more cores to perform computation and at least one core dedicated to

performing I/O. For test case 3, the same OrangeFS application from case 2 was modified

Figure 4.4 – Aggregate write throughput results for case 2.

 54

to perform a constant amount of computation after the submission of each I/O operation.

Again, we simply calculate the aggregate throughput for reading or writing a 1 GB file,

except we include simulated computation. Similarly, a PXFS application was developed

which reads or writes a 1 GB file by sequentially submitting asynchronous operations

referencing each block, simulating computation, and waiting for completion of the

submitted operation before continuing. Unlike case 2, the PXFS application may not

submit a list of operations but must submit operations one at a time. Note that the

processor affinities for the PXFS application thread and the AIO progress thread were set

to different cores to obtain the most accurate results.

Case 3 results for OrangeFS reads and writes are given in Figures 4.5 and 4.6.

Also, Table 4.2 gives the percentage decrease in I/O throughput between an OrangeFS

application with no computation overlap (like case 1 or case 2) and an application which

performs computation after I/O completions. As expected, OrangeFS aggregate I/O

throughput clearly suffers when overlapping computation with I/O. This can be attributed

to the synchronous nature of the OrangeFS I/O library. Specifically, OrangeFS

application threads are blocked while waiting for the completion of an I/O operation, and

thus, cannot perform any other computation before the operation completes. Computation

may only be overlapped with I/O by spawning additional threads, which is burdensome to

programmers and leads to complex applications.

 55

Figure 4.5 – OrangeFS aggregate read throughput results for case 3.

Figure 4.6 – OrangeFS aggregate write throughput results for case 3.

 56

The case 3 results for a PXFS application are given below in Figures 4.7 and 4.8,

and percentage decrease values like that of Table 4.2 are given in Table 4.3. It is obvious

from these results that PXFS is much more suitable for writing applications which seek to

overlap meaningful computation with I/O operations. The read and write aggregate

throughput graphs clearly show that a PXFS application is able to obtain nearly the same

performance regardless of whether computation is overlapped with I/O operations. This

confirms the PXFS I/O library effectively offloads I/O operations from application

Block

Size

(MB)

Read

Throughput

(MB/s)

Read +

Work

Throughput

(MB/s)

Percentage

Decrease

Write

Throughput

(MB/s)

Write +

Work

Throughput

(MB/s)

Percentage

Decrease

.5 94.17 48.41 48.6 % 86.06 44.51 48.3 %

1 96.50 65.17 32.5 % 92.80 63.34 31.7 %

2 96.02 77.13 19.7 % 100.67 80.74 19.8 %

4 102.43 91.05 11.1 % 106.60 93.58 12.2 %

Table 4.2 – OrangeFS aggregate throughput percentage decrease results for case 3.

Figure 4.7 – PXFS aggregate read throughput results for case 3.

 57

threads and efficiently notifies these applications of the completion of these operations.

This is extremely beneficial as PXFS applications can achieve maximum utilization of

the file system without sacrificing the utilization of application threads.

 To further illustrate the benefits of using PXFS for overlapping computation and

I/O, Figure 4.9 shows the effect of computation time on the apparent I/O time as seen by

an application thread in OrangeFS and PXFS. With OrangeFS, the apparent length of an

Figure 4.8 – PXFS aggregate write throughput results for case 3.

Block

Size

(MB)

Read

Throughput

(MB/s)

Read +

Work

Throughput

(MB/s)

Percentage

Decrease

Write

Throughput

(MB/s)

Write +

Work

Throughput

(MB/s)

Percentage

Decrease

.5 90.87 90.25 .7% 88.03 87.28 .9 %

1 96.81 95.15 1.7 % 98.13 96.56 1.6 %

2 95.72 95.51 .2% 104.70 82.44 21.2 %

4 103.00 102.09 .9 % 108.07 107.34 .7 %

Table 4.3 – PXFS aggregate throughput percentage decrease results for case 3.

 58

I/O operation remains constant independent of the computation time, as expected.

However, with PXFS, as the overlapping computation time of an application increases,

the apparent length of the I/O operation decreases. If the computation length is long

enough, the apparent length of the I/O operation may actually be completely hidden from

the application. Obviously, the I/O operation requires roughly the same amount of time

using PXFS as OrangeFS, but the PXFS AIO subsystem effectively masks this latency by

offloading the operation to a thread dedicated to performing I/O (the progress thread).

4.2 Metadata Results

While the results of file reads and writes seem to support the feasibility of the

PXFS file system, it is also important to consider the potential performance of metadata

Figure 4.9 – Effect of computation time on apparent I/O time in PXFS and OrangeFS.

 59

operations. Many parallel applications not only read and write large amounts of data, but

also create, update, and remove potentially large numbers of files and directories. Thus,

poor metadata performance can drastically reduce the overall performance of many

parallel applications. OrangeFS and PXFS applications were developed which perform a

sequence of metadata operations to determine the comparative performance of each file

system. The metadata operations tested include: file create, file open, file close, file

truncate, file stat, file remove, directory create, and directory remove.

The average time to complete each metadata operation for both file systems is

given below in Table 4.4, as well as the percentage decrease in operation time from the

PXFS library to the OrangeFS library. These results indicate minimal performance

differences between the two file systems, with OrangeFS offering better performance for

half of the operations (file create, file open, file close, and file stat) and PXFS offering

better performance for the other half (file truncate, file remove, directory create, and

directory remove). OrangeFS offers particularly high percentage increases for file opens

and file stats, but there is only a negligible 70 microsecond and 180 microsecond

difference for these operations, respectively, compared to PXFS. We conjecture that

OrangeFS likely offers higher metadata performance for metadata operations whose

minimal computational complexity suffer from the overhead of the high-level state

machines used in PXFS.

 60

4.3 File Operation Blocking Time Results

Another important requirement of the ParalleX I/O model is the minimization of

the blocking time necessary for submitting file operations to the underlying file system.

Lower blocking times mean higher computational efficiency for applications, as

application threads spend less time waiting for the file system to relinquish control of

processing resources. Ideally, the blocking time required for an asynchronous file system

operation should remain constant independent of the type of request (I/O or metadata),

the size of an I/O request, and the number of simultaneous threads accessing the file

system. To determine the blocking characteristics of PXFS we simply measured the

average blocking time for a range of operations and compared them to the average

blocking times achieved using OrangeFS.

Metadata Operation

OrangeFS

Operation Time

(ms)

PXFS Operation

Time (ms)
Percentage Decrease

File Create 3.75 3.76 -0.27

File Open 0.21 0.28 -33.33

File Close 6.59 6.82 -3.49

File Truncate 2.59 2.58 0.39

File Stat 0.93 1.11 -19.35

File Remove 3.26 3.22 1.23

Directory Create 3.39 3.19 5.9

Directory Remove 3.32 2.93 11.75

Table 4.4 – OrangeFS and PXFS file metadata performance comparison.

 61

Figure 4.10 shows the comparative blocking times of file read operations using

PXFS and OrangeFS. Similarly, Figure 4.11 shows the comparative blocking times of file

writes using both file systems. These graphs clearly illustrate the disparity of the blocking

times between each file system, with OrangeFS blocking times growing proportional to

the block size of the I/O operation and PXFS blocking times remaining constant

independent of the referenced block size. This was expected, as OrangeFS blocking times

are directly related to the time required to manage the transfer of file data to or from the

file server. On the other hand, PXFS blocking times depend solely on the time required to

copy functional parameters, obtain a mutex lock, and add the file operation to the AIO

subsystem waiting queue. The obtained results indicate the average blocking time for a

PXFS file operation is consistently less than a microsecond, orders of magnitude less than

that of an identical OrangeFS file operation. Also, since the critical section of submitting

a PXFS operation only involves adding the operation to the tail of the waiting queue, the

Figure 4.10 – OrangeFS and PXFS blocking times for file reads.

 62

blocking time exhibits little variance, regardless of the number of application threads

accessing the file system. Thus, it can be seen that PXFS I/O library definitively satisfies

the blocking requirements of a ParalleX application, allowing application threads to

achieve maximum processor utilization.

4.4 Effect of PXFS Continuation Complexity

Before presenting any conclusions, it is important to consider the unobvious effect

high complexity continuation functions have on the overall performance of the file

system. Since the AIO subsystem is currently designed to execute given continuations

using the progress thread, the performance of the file system will suffer if these

continuations consume too many compute cycles. To confirm this, a series of tests were

run in which I/O operations specified continuation functions that required increasing

Figure 4.11 – OrangeFS and PXFS blocking times for file writes.

 63

amounts of execution time. These results were then analyzed to determine the extent of

file system performance degradation caused by complex continuation functions.

The resulting performance of the PXFS file system when subjected to varying

amounts of continuation complexity is given below in Figure 4.12. As projected, file

system performance degrades proportional to the amount of computation performed in

specified continuation functions. This suggests programmers should explicitly design

PXFS applications to utilize continuations with minimal computational requirements.

However, this requirement can severely limit the expressability of PXFS applications and

place unnecessary burden on application developers. The most sensible way to avoid this

problem is to implement a thread manager for controlling the execution of user

continuations, such that continuations of arbitrary complexity may be specified with

limited impact on file system performance. Since the ParalleX execution model defines

such a thread manager, this requirement can be easily satisfied when PXFS is fully

Figure 4.12 – PXFS throughput versus continuation computational complexity.

 64

integrated with ParalleX. As mentioned earlier, this is our first PXFS prototype and is

intended to simply determine the feasability of our file system design – further

performance enhancements may be realized (such as the utilization of ParalleX threads

and thread management) in future PXFS implementations.

 65

Chapter 5

Conclusion

We have identified the necessary characteristics for an I/O subsystem satisfying

the I/O model required by ParalleX, a proposed exascale parallel execution model. These

characteristics were integrated into the OrangeFS file system, resulting in our first

implementation of the ParalleX File System (PXFS). Performance results obtained using

PXFS confirmed our initial hypothesis that an existing parallel file system may be easily

modified to meet the semantics of future exascale execution models, which attempt to

achieve exaFlops of performance in part by addressing the inherent inefficiencies of I/O

subsystems by explicitly masking the high latency of remote file system operations.

Specifically, we have shown that our initial PXFS prototype offers increased file

read and write performance relative to OrangeFS, an already well-established high

performance file system. Also, PXFS provides comparable performance to OrangeFS for

metadata operations, an important requirement for applications which create or modify a

large number of files or directories simultaneously. These results suggest that PXFS is a

suitable I/O subsystem for exascale workloads, which demand high-concurrency, high-

performance management of file data and metadata.

 66

More importantly, our results prove that PXFS directly supports the advanced

semantics required by exascale applications, and in particular ParalleX applications.

Specifically, PXFS offers a wide range of asynchronous file operations within a well-

defined user interface. These asynchronous operations allow computation to be easily and

efficiently overlapped with necessary file system communication with limited

programmer intervention. The utilization of user-specified continuations allows for the

execution of arbitrary functions immediately upon the completion of file system

operations, leading to much more expressive parallel applications. Also, the low overhead

incurred by the PXFS I/O library limits blocking time as seen by ParalleX threads,

allowing for higher utilization of processing resources.

5.1 Future Work

While the results obtained from our first implementation of PXFS support the

feasibility of our design, there is still room for further research and improvements. As

mentioned previously, PXFS performance could benefit from a tighter integration with

the ParalleX execution model. In particular, PXFS may be redesigned to explicitly utilize

ParalleX threads and parcels. The ParalleX thread manager may allow application threads

and the PXFS progress thread to be scheduled in a more efficient and cooperative

manner. A more intelligent thread manager could help alleviate the performance issues

that arise from continuations with high computational complexity, as discussed in Section

4.4. Also, modifying PXFS to directly utilize ParalleX parcels could lead to further

performance improvements, as they may be used by the file servers to deliver file data

 67

directly to ParalleX threads or to seamlessly migrate stored data between servers.

Ultimately, our goal is to offer the same execution model semantics for objects stored on

disk as in-memory objects, effectively unifying the namespace of local memory and

remote storage devices in exascale parallel systems.

 68

Bibliography

 [1] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward, P.

Sadayappan, “Scalable I/O Forwarding Framework for High-Performance

Computing Systems,” in Cluster ’09, New Orleans, LA, 2009, pp. 1-10.

 [2] S. Amarasinghe et al., “Exascale Programming Challenges,” in Report 2011

Workshop Exascale Programming Challenges, Marina del Ray, CA, 2011, pp. 10-

17.

 [3] M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling, “An Application Driven

Analysis of the ParalleX Execution Model,” Louisiana State University, Baton

Rouge, LA, Technical report, Sept. 2011.

 [4] H.G. Baker Jr. and C. Hewitt, “The Incremental Garbage Collection of Processes,”

in Proc. 1977 Symp. Artificial Intelligence and Programming Languages,

Rochester, NY, 1977, pp. 55-59.

 [5] Berkeley Unified Parallel C (UPC) Project [Online]. (Jan. 2013). Available:

http://upc.lbl.gov.

 [6] D. Bonachea and J. Jeong, “GASNet: A Portable High-Performance

Communication Layer for Global Address-Space Languages,” CS258 Parallel

Computer Architecture Project, 2002.

 [7] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, “PVFS: A Parallel File

System for Linux Clusters,” in Proc. Extreme Linux Track: 4th Annu. Linux

Showcase and Conf., Atlanta, GA, 2000, pp. 317-327.

 [8] P.H. Carns, “Achieving Scalability in Parallel File Systems,” Ph.D. dissertation,

ECE Dept., Clemson Univ., Clemson, SC, 2005.

 [9] D. Chavarría-Miranda, Z. Huang, and Y. Chen, “High-Performance Computing

(HPC): Application & Use in the Power Grid,” in Power and Energy Society

General Meeting, Richmond, WA, 2012, pp. 1-7.

 69

[10] Y. Chen, “Towards Scalable I/O Architecture for Exascale Systems,” in Proc. 2011

ACM Int. Workshop on Many Task Computing on Grids and Supercomputers,

Seattle, WA, 2011, pp. 43-48.

[11] Y. Chushak, B. Foy, and J. Frazier, “Biomolecular Network Simulator: Software for

Stochastic Simulation of Cellular Biological Processes,” in Proc. High Performance

Computing Symp., Norfolk, VA, 2007, pp. 345-349.

[12] Cray Inc., Seattle, WA. Chapel Specification 0.92 [Online], 2012. Available:

http://chapel.cray.com/spec/spec-0.92.pdf.

[13] I. Foster, “Parallel Computers and Computation,” in Designing and Building

Parallel Programs, Version 1.3, ch. 1, sec. 3 [Online]. Available:

http://www.mcs.anl.gov/~itf/dbpp/text/book.html.

[14] G.R. Gao. (2012). Introduction of Parallel Program Execution and Architecture

Models [Online]. Available:

http://www.capsl.udel.edu/courses/eleg652/2012/slides/02_pxm.pdf.

[15] General Parallel File System (GPFS) Wiki [Online], 2013, Available:

http://www.ibm.com/developerworks/connect/GPFS.

[16] L.V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented

System Based On C++,” in Proc. 8th Annu. Conf. on Object-oriented Programming

Systems, Languages, and Applications, Washington, D.C., 1993, pp. 91-108.

[17] C.E. Leiserson, “The Cilk++ Concurrency Platform,” in Proc. 46th Annual Design

Automation Conf., San Francisco, CA, 2009, pp. 522-527.

[18] Lustre File System Operations Manual [Online], Version 2.0, 2011. Available:

http://wiki.lustre.org/manual/LustreManual20_HTML/index.html.

[19] MPI: A Message-Passing Interface Standard, Version 2.2, 2009.

[20] OpenMP Application Programming Interface, Version 3.0, 2008.

[21] OrangeFS Developer’s Guide [Online]. (Dec. 2012). Available:

http://www.orangefs.org/documentation/releases/current/doc/pvfs2-guide/pvfs2-

guide.php.

[22] Orange File System (OrangeFS) Project [Online]. (Dec. 2012). Available:

http://www.orangefs.org.

 70

[23] POSIX.1-2008, Standard for Information Technology – Portable Operating System

Interface (POSIX), IEEE Standard 1003.1, 2008.

[24] Parallel Virtual File System (PVFS) Project [Online]. (Dec. 2012). Available:

http://www.pvfs.org.

[25] J. Reinders, “Why Threading Building Blocks?” in Intel Threading Building Blocks,

1st edition, O’Reilly Media, 2007.

[26] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. The X10 language

specification. Technical report, IBM T.J. Watson Research Center, 2008.

[27] P. Schlatter, J. Malm, G. Brethouwer, A.V. Johansson, and D.S. Henningson,

“Large-scale Simulations of Turbulence: HPC and Numerical Experiments,” in 7th

IEEE Conf. e-Science, Stockholm, Sweden, 2011, pp. 319-224.

[28] Sun Microsystems, Inc. NFS: Network File System Protocol Specification. IETF

RFC 1094, Mar. 1989.

[29] A. Tabbal, M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling, “Preliminary

Design Examination of the ParalleX System from a Software and Hardware

Perspective,” SIGMETRICS Performance Evaluation Review, 38:4, Mar. 2011.

[30] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably and with

High Performance,” in Proc. 6th Workshop I/O in Parallel and Distributed Systems,

Atlanta, GA, 1999, pp. 23-32.

[31] Titanium Project [Online]. (Jan. 2013). Available: http://titanium.cs.berkeley.edu/.

[32] Top500.org (2012, Jun.). Top 500 Supercomputing Sites [Online]. Available:

http://www.top500.org/lists/2012/11.

[33] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser, “Active Messages: a

Mechanism for Integrated Communication and Computation,” in Proc. 19th Int.

Symp. on Computer Architecture, Gold Coast, Australia, 1992, pp. 256-267.

[34] D.W. Wall, “Messages as Active Agents,” in ACM Symp. Principles of

Programming Languages (POPL), Albuquerque, NM, 1982, pp. 256-267.

[35] P. Widener, M. Payne, P. Bridges, M. Wolf, H. Abbasi, S. McManus, K. Schwan,

“Exploiting Latent I/O Asynchrony in Petascale Science Applications,” in Proc.

2009 Int. Conf. on Parallel Processing Workshops, Vienna, Austria, 2009, pp. 105-

112.

 71

[36] K. Yelick et al., “Productivity and Performance Using Partitioned Global

Address Space Languages,” in PASCO ’07: Proc. 2007 Int. Workshop on Parallel

Symbolic Computation, London, Ontario, Canada, 2007, pp. 24-32.

[37] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G.R. Gao, “Position Paper: Using

a “Codelet” Program Execution Model for Exascale Machines,” in EXADAPT '11:

Proc. 1st Int. Workshop on Adaptive Self-Tuning Computing Systems for the

Exaflop Era, San Jose, CA, 2011, pp. 64-69.

	Clemson University
	TigerPrints
	5-2013

	PARALLEX FILE SYSTEM (PXFS): BRIDGING THE GAP BETWEEN EXASCALE PROCESSING CAPABILITIES AND I/O PERFORMANCE
	Shane Snyder
	Recommended Citation

	tmp.1387585722.pdf.ED7GM

