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Abstract 

 

Due to processors reaching the maximum performance allowable by current 

technology, architectural trends for computer systems continue to increase the number of 

cores per processing chip to maximize system performance. Most estimates suggest 

massively parallel systems will be available within the decade, containing millions of 

cores and capable of exaFlops of performance. New models of execution are necessary to 

maximize processor utilization and minimize power costs for these exascale systems. 

ParalleX is one such execution model, which attempts to address inefficiencies of current 

execution models by exposing fine-grained parallelism, increasing system utilization 

using asynchronous workflow, and resolving resource contention through the use of 

adaptive and dynamic resource scheduling. 

A particularly important aspect of these exascale execution models is the design 

of the I/O subsystem, which has seen limited performance increases compared to 

processor and network technologies. Parallel file systems have been designed to help 

alleviate the poor performance of storage technologies by distributing file data across 

multiple nodes of a parallel system to maximize the aggregate throughput attainable by 

file system clients. However, the design of parallel file systems needs to be modified to 
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explicitly address the inherent high-latency of remote file system operations without 

degrading file system performance and scalability. 

We present modifications to OrangeFS, a high-performance, working model 

parallel file system geared towards the facilitation of research in the field of parallel I/O, 

to help address the inefficiencies of current file systems. We deem our resultant parallel 

file system implementation ParalleX File System (PXFS), as it attempts to support the 

features required by the I/O subsystem of the ParalleX execution model. Specifically, 

PXFS offers mechanisms for masking the latency of file system operations, defining 

meaningful computation to be overlapped with file system communication, and 

maintaining the high-performance and scalability exhibited by OrangeFS. Our results 

indicate PXFS successfully improves file system performance and supports the semantics 

of ParalleX with limited programmer intervention, potentially simplifying the design and 

increasing the performance of many ParalleX applications.   



 iv 

 

 

Dedication 

 

First, this work is dedicated to my family for their constant patience with me and 

their pushing me to succeed over the years. Also, this work is dedicated to all of my 

friends for their encouragement and the balance they have given me throughout my 

academic career. 

  



 v 

 

 

Acknowledgements 

 

First and foremost I would like to thank my advisor, Dr. Walt Ligon for his 

consistent support and guidance in helping me complete this work. None of this would be 

possible without his assistance and wealth of knowledge in this field. Also, I would like 

to thank Dr. Adam Hoover and Dr. Jim Martin for taking the time to serve on my 

committee and providing valuable feedback regarding my research. 

  



 vi 

 

 

Table of Contents 

 

 

Page 

 

Title Page ......................................................................................................................... i 

 

Abstract ........................................................................................................................... ii 

 

Dedication ...................................................................................................................... iv 

 

Acknowledgements ........................................................................................................ v 

 

List of Tables ............................................................................................................... viii 

 

List of Figures ................................................................................................................ ix 

 

Chapters 

 

 1 Introduction .................................................................................................. 1 

 

  1.1 High-performance Computing .............................................................. 2 

  1.2 Parallel Execution Models .................................................................... 5 

  1.3 Parallel File Systems ............................................................................. 7 

  1.4 Goals ................................................................................................... 11 

  1.5 Methodology ....................................................................................... 12 

  1.6 Thesis Organization ............................................................................ 13 

 

 2 Background and Related Work ................................................................ 15 

 

  2.1 ParalleX Execution Model .................................................................. 15 

  2.2 OrangeFS ............................................................................................ 22 

  2.2 Related Work ...................................................................................... 26 

 

 

 



 vii 

Table of Contents (Continued) 

 

Page 

 

 3 Design and Methodology ........................................................................... 29 

 

  3.1 ParalleX I/O Characteristics ............................................................... 29 

  3.2 PXFS Design ....................................................................................... 31 

  3.3 Summary ............................................................................................. 45 

 

 4 Results ......................................................................................................... 47 

 

  4.1  Read/Write Throughput Results ......................................................... 47 

  4.2  Metadata Results ................................................................................. 58 

  4.3  File Operation Blocking Time Results ............................................... 60 

  4.4  Effect of PXFS Continuation Complexity .......................................... 62 

 

 5 Conclusion .................................................................................................. 65 

 

  5.1  Future Work ........................................................................................ 66 

 

Bibliography ................................................................................................................. 68 

  



 viii 

 

 

List of Tables 

 

 

Table                                                                                                                               Page 

 

 3.1 I/O operations currently implemented by PXFS .......................................... 33 

 

 3.2 Definition of the PXFS asynchronous control block ................................... 37 

 

 4.1 Client and server hardware specifications for PXFS testing ....................... 48 

 

 4.2 OrangeFS aggregate throughput percentage decrease results 

   for case 3 ................................................................................................ 56 

 

 4.3 PXFS aggregate throughput percentage decrease results  

   for case 3 ................................................................................................ 57 

 

 4.4 OrangeFS and PXFS file metadata performance comparison ..................... 60 

  



 ix 

 

 

List of Figures 

 

 

Figure                                                                                                                             Page 

 

 1.1 Basic execution model for an abstract computer system ............................... 5 

 

 1.2 The single server architecture of NFS ........................................................... 9 

 

 1.3 The multi-server architecture of parallel file systems allows 

    for increased I/O performance .............................................................. 10 

 

 2.1 Modular diagram of the HPX runtime system ............................................. 21 

 

 2.2 Software stacks for OrangeFS clients and servers ....................................... 24 

 

 3.1 Prototype for the PXFS write operation....................................................... 34 

 

 3.2 Data flow diagram illustrating an example I/O operation 

    in the PXFS I/O library ......................................................................... 35 

 

 3.3 Architecture of the AIO common runtime system ....................................... 38  

 

 3.4 Flow diagram for the AIO common progress thread ................................... 40 

 

 3.5 Pseudocode for the file rename operation in OrangeFS .............................. 42 

 

 3.6 Example PXFS state machine for the file rename operation ....................... 44 

 

 3.7 Modified client-side stack for PXFS clients ................................................ 46 

 

 4.1 Average read throughput for case 1 using OrangeFS and 

    PXFS ..................................................................................................... 50 

 

 4.2 Average write throughput for case 1 using OrangeFS and 

    PXFS ..................................................................................................... 50 



 x 

 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 4.3 Aggregate read throughput results for case 2 .............................................. 52 

 

 4.4 Aggregate write throughput results for case 2 ............................................. 53 

 

 4.5 OrangeFS aggregate read throughput results for case 3 .............................. 55 

 

 4.6 OrangeFS aggregate write throughput results for case 3 ............................. 55 

 

 4.7 PXFS aggregate read throughput results for case 3 ..................................... 56 

 

 4.8 PXFS aggregate write throughput results for case 3 .................................... 57 

 

 4.9 Effect of computation time on apparent I/O time in PXFS 

   and OrangeFS......................................................................................... 58 

 

 4.10 OrangeFS and PXFS blocking times for file reads ...................................... 61 

 

 4.11 OrangeFS and PXFS blocking times for file writes..................................... 62 

 

 4.12 PXFS throughput versus continuation computational complexity .............. 63  



1 

 

 

Chapter 1 

Introduction 

 

While the transistor density of integrated circuits continues to increase with 

Moore's Law, the clock speed of modern processors has peaked, due mostly to the energy 

efficiency of the underlying technology.  Consequently, current processor design trends 

opt to include multiple compute elements on a single chip, rather than continue to push 

the performance of a single processor. For instance, according to the Top500 list, the four 

fastest computers in the world all have over 0.5M cores and offer nearly 20 petaFlops of 

performance [32]. According to most approximations, computer chips will offer hundreds 

or even thousands of compute elements per node by 2018, resulting in massively parallel 

exascale systems [2]. Of course, programmers will have to find a way to exploit this 

billion-way parallelism if they hope to achieve exaFlops of performance.  

 Unfortunately, current programming and execution models do not take advantage 

of the massive amount of parallelism available in systems with many cores. The cause of 

this lack of efficiency ranges from the lack of rich parallel programming constructs 
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available in most programming languages to the inability of current runtime systems to 

distribute work to avoid load imbalances. It is clear that for computer performance to 

continue to improve in these many-core environments, changes must be made to current 

execution models to allow compute resources to be leveraged efficiently and adaptively 

with limited burden on the programmer. Otherwise, the performance of systems with 

increasing numbers of compute elements will continue to scale poorly. 

 

1.1 High-performance Computing 

 High-performance computing (HPC) is the application of supercomputers to solve 

large science and engineering problems, ranging from the simulation of complex physical 

systems to solving linear systems of equations. On standard computers, the computational 

requirements and large data sets inherent to these problems make it infeasible to obtain 

results in a reasonable amount of time or within a desired precision. Simulations are 

particularly useful applications, since some physical systems are difficult to observe 

experimentally or model analytically. For example, [11] present a biomolecular network 

simulator used to model complex biological processes, which are difficult to analyze due 

to their stochastic nature. Also, [27] claims their turbulence simulation engine executed 

on a 10,000 core supercomputer achieves similar results as an actual experiment 

conducted in a wind tunnel. This is convenient, as a scientist can obtain “real” results via 

simulation rather than going through the trouble of setting up a physical experiment.  
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 Currently, most HPC systems are realized using clusters. A cluster is a set of 

interconnected nodes, in which each node consists of (often) the same commodity 

hardware components. Clusters have continued to gain popularity, due mostly to their 

ease of implementation and improved scalability over single node systems. Even the 

world's fastest supercomputers follow the architecture of computer clusters, although they 

often utilize specialized hardware and proprietary high-speed interconnection networks. 

As of this writing, typical hardware specifications for an HPC node are given as [9]: 

 Processing elements – high-end multi-core processors (generally at least 8 cores) 

placed on multi-socket motherboards (2 sockets are typical). Some systems may 

also include GPUs or other acceleration hardware. 

 Memory – tens of gigabytes of DDR3 DRAM. 

 Interconnection network – a high-speed, dedicated interconnection network. 

Lower-end systems may use Ethernet, while higher-end systems may opt for 

InfiniBand or Myrinet technologies. 

 Storage – a subset of nodes (I/O nodes) in the HPC system will serve data to the 

compute nodes, usually using a high-performance parallel file system (e.g. PVFS, 

Lustre, or GPFS) and the interconnection network.  

 As long as there have been HPC systems, there has been the need for software 

libraries and other development tools to allow programmers to obtain the highest 

performance from the underlying hardware. The Message Passing Interface (MPI) 
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Standard [19] is one such example, providing parallel programmers a standard API for 

passing messages between processes on a distributed-memory system, e.g. a cluster. 

Provided functionality includes both point-to-point communication between processes, 

collective communication between groups of processes, and synchronization primitives, 

such as global barriers. Another parallel programming tool available is OpenMP [20], 

which is used to parallelize code for shared-memory systems. Unlike MPI, OpenMP is a 

set of compiler directives used to extend the Fortran and C/C++ languages. In particular, 

OpenMP provides constructs for thread creation and work-sharing, which are most 

frequently used to parallelize large loops. In the case of clusters, it is not uncommon to 

use a hybrid programming model, in which MPI may be used for inter-node 

communication and OpenMP may be used for intra-node (inter-core) communication. 

 As the number of processing elements in HPC clusters continues to increase, it is 

necessary to reconsider the design of longstanding models of execution. Newly proposed 

models include innovative design principles for achieving higher utilization and lower 

power consumption than conventional models, making them appealing for more complex 

parallel systems. Since the datasets of many HPC applications are increasing rapidly, too, 

these execution models also require a high-performance parallel file system that supports 

highly concurrent access. Otherwise, data starvation may severely limit the performance 

of I/O intensive applications. This suggests that explicit cooperation between parallel 

execution models and parallel file systems is instrumental in achieving continued 

performance increases in HPC applications. 
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1.2 Parallel Execution Models 

It would be extremely challenging to develop programs that execute correctly 

without a well-defined interface to the underlying hardware resources of the system. 

More specifically, the high-level software components of a system, such as the 

programming models, compilers, runtime environments, software libraries etc., must be 

aware of how to make efficient use of the system architecture. The execution model 

describes the interface between the software and hardware architecture of the system 

[14], as shown in Figure 1.1. Also, the execution model defines the governing principles 

of all computation, which include system semantics, referentiable structures, and policies 

of resource management [3]. 

 For example, the execution model for the basic von Neumann architecture 

Figure 1.1 – Basic execution model for an abstract computer system. 
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involves the translation of application source code into a sequence of machine executable 

instructions via compilers or interpreters. Once the runtime system loads the executable 

program in memory, which includes instructions for managing the program stack and 

storing local variables, the processor can fetch and execute instructions sequentially. 

Concurrency may only be achieved by interleaving instructions from multiple tasks and 

through the use of instruction pipelines. Though the complexity of this model precludes it 

from use in highly concurrent, distributed systems, it has proven to be extremely robust 

and will remain relevant as long as von Neumann processors are the standard computing 

building blocks [13].  

 High-performance parallel systems obviously warrant a more sophisticated 

execution model, in which distributed concurrent processes may communicate and 

coordinate execution with each other. The most prevalent parallel execution model is that 

of communicating sequential processes (CSP), where a group of distributed processes 

communicate using a message passing library, such as MPI. A parallel application 

following this model creates a fixed number of processes at startup, where each 

distributed process has a globally unique name and a private address space. Generally, a 

single process per node is used, although multiple threads per process may be utilized to 

make more efficient use of multicore architectures. These processes operate on data 

contained locally in their own private address space and cooperate with other processes 

by sending and receiving messages. The sending and receiving of messages is often used 

as an implicit form of synchronization, but many CSP implementations include explicit 

synchronization mechanisms, like global barriers or mutexes.  
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 With exascale HPC systems on the horizon, much research is needed in 

developing parallel execution models that more effectively abstract the massive pool of 

resources contained in each system. While the CSP execution model is well-understood 

and performs well on many classes of parallel applications, it offers limited functionality 

for efficiently representing the fine-grained parallelism and dynamic workloads typical of 

other classes of scaling-impaired applications [3]. Future execution models must provide 

more programmer and system support for the lightweight creation of tasks, 

synchronization between these tasks, and dynamic distribution and scheduling of these 

tasks across a system. This requires extensive co-design between all layers of the 

execution model: system architects will have to modify or redesign low-level system 

components of the execution model, such as operating systems, file systems, and network 

interfaces, while application programmers will have to rewrite or completely redesign 

portions of longstanding application codes. Clearly, the transition from a well-known, 

stable execution model to a revolutionary, untested one will be met with resistance, but a 

paradigm shift is necessary to meet the computing and power requirements of the 

exascale systems of the future [2]. 

 

1.3 Parallel File Systems 

 At the most elementary level, a file system is simply an abstraction of the storage 

hardware on a computer system. In other words, a file system provides a common 

interface to a range of storage devices (hard disk drives, SSDs, RAIDs, tape drives, etc.), 
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such that a user can create, update, and delete files without a detailed knowledge of the 

low-level mechanisms involved. It is important to note that, depending on the file system 

capabilities, files may be stored on either local or remote devices. Files include program 

executables, images, configuration files, and other data. On Unix systems, everything is 

stored as a file, meaning directories, sockets, devices, and links are all stored and 

accessed in the same manner as regular files, as far as the file system is concerned. File 

systems are tasked with not only storing data, but also metadata – that is, data about data. 

Metadata includes permissions, timestamps, physical layout of the file on storage devices, 

and other attributes associated with a particular file.  

 The advent of computer networks brought need for file systems that allowed 

sharing of files across networks, typically referred to as network file systems. One such 

file system is the Network File System (NFS) [28], which allows a single server to serve 

file data to multiple clients over a network. The benefits of NFS include: relaxed storage 

requirements on client nodes, ability to provide a consistent home directory for all clients 

network-wide, and the ability to share other storage devices, such as CDROM drives, 

over a network. However, a single file server causes a single point of failure in the system 

and is an obvious performance bottleneck for applications that are I/O intensive, as 

shown in Figure 1.2.  

Since most HPC systems follow a distributed node architecture, a high-

performance distributed file system is necessary for I/O intensive parallel applications. 

Parallel file systems were proposed to alleviate the performance issues inherent in single 
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server network file systems. Typically, this has been achieved by striping file data across 

multiple data servers in a manner similar to RAID 0, while maintaining a consistent 

network-wide namespace [7]. As shown in Figure 1.3, striping file data across multiple 

servers allow clients to utilize the aggregate network bandwidth of a set of file servers, 

rather than overloading a single server.  

Of course, the file system must provide a standard interface to programmers to 

facilitate portable coding. Arguably, the most prevalent file I/O API is provided as a 

subset of the Portable Operating System Interface (POSIX) standard [23], which specifies 

a standard operating system interface and environment for providing software 

compatibility between conforming systems – Unix-like systems, historically. The POSIX 

file I/O standards include definitions for many basic file operations, such as read, write, 

open, close, and seek, among others. While these operations benefit from their simplicity 

and high portability, they lack support for the collective communication and 

 
 

Figure 1.2 – The single server architecture of NFS. 
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noncontiguous disk access typical of many parallel applications [30]. On the other hand, 

the MPI standard [19] includes definitions for collective I/O, noncontiguous accesses 

using derived data types, and other advanced I/O routines, which allow for more 

expressive parallel programming. File system developers may also decide to implement 

their own native APIs, which are generally optimized for high performance and allow for 

a range of specialized capabilities, including asynchronous operations and configurable 

data distribution parameters.  

 

 

 
Figure 1.3 – The multi-server architecture of parallel file systems allows for increased 

I/O performance. 
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1.4 Goals 

With massively parallel systems capable of exaFlops of performance expected 

within the decade, the time for researching, designing, and analyzing execution models to 

most efficiently utilize their resources is now. Current parallel execution models do not 

offer the fine-grained parallelism necessary for the high-performance of some classes of 

scaling-impaired applications. In exascale systems with orders of magnitude more 

processing elements, these execution inefficiencies will only worsen. A crucial design 

consideration for these exascale execution models is the I/O subsystem, which, 

historically, has seen limited performance improvements compared to processor and 

network technologies. Future parallel execution models must address the I/O bottleneck 

to prevent processors from wasting compute cycles waiting for the completion of high-

latency I/O operations. Parallel file systems are an obvious choice for the basis of 

exascale I/O research, due to their high-performance and distributed architecture.  

We propose that the design characteristics of a high-performance parallel file 

system may be customized for integration with ParalleX, a new parallel execution 

model targeted for massively parallel HPC systems. Specifically, the semantics, 

capabilities, interfaces, and runtime environment of the file system may be modified 

for supporting the I/O requirements of the ParalleX execution model. To 

demonstrate this supposition, we develop a proof-of-concept parallel file system dubbed 

PXFS (ParalleX File System) to integrate with the ParalleX model. In order to satisfy the 

ParalleX I/O model, PXFS should exhibit the following characteristics: 
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 High-performance, high-concurrency I/O to support exascale workloads 

 Low overhead of I/O operations to maintain system scalability 

 I/O operation semantics that accommodate the semantics of programming 

languages, the runtime system, and other higher level execution model 

components 

 Modular architecture to facilitate incremental development and continued 

research in exascale I/O 

 

1.5 Methodology 

To assist in the development of our initial prototype of PXFS, we adhere to the 

following design methodology: 

 Select a suitable parallel file system to serve as a basis for our I/O model. We 

choose OrangeFS for our basis, since it is a working model parallel file system 

and is highly modifiable. This allows us to redesign file system components, 

while, ideally, maintaining high-performance. We discuss OrangeFS in further 

detail in Section 2.2.  

 Select a suitable parallel execution model for our prototype. As mentioned in the 

previous section, we choose ParalleX as our target parallel execution model. We 

discuss the design of ParalleX in detail in Section 2.1.  
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 Characterize the I/O requirements of the ParalleX execution model. We analyze 

the I/O model used by ParalleX to gain an understanding of what semantics a 

compatible I/O subsystem would provide.  

 Modify the architecture of OrangeFS to satisfy the I/O model of ParalleX. Armed 

with a detailed specification of the I/O model of ParalleX, we make the necessary 

modifications to OrangeFS to satisfy these specifications, yielding our PXFS 

prototype. 

 Test the function and performance of our modified I/O subsystem. We test the 

PXFS prototype in a production environment to ensure its functionality and high-

performance. 

 Analyze the feasibility of PXFS. To determine the feasibility of our modifications, 

we analyze the performance results obtained to evaluate if PXFS effectively 

satisfies the I/O requirements of the ParalleX model. 

 

1.6 Thesis Organization 

In Chapter 2 we present more detailed information concerning the design of the 

ParalleX execution model and OrangeFS file system. We also summarize related research 

in the area of exascale execution environments and file systems. In Chapter 3, we 

characterize the I/O requirements of the ParalleX execution model and outline 

modifications to be made to OrangeFS to satisfy these requirements. In Chapter 4, we 
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analyze the performance results from our testing to gauge the viability of our 

implementation. Finally, in Chapter 5, we offer conclusions we have drawn from this 

research project and, also, we propose future avenues of research regarding parallel file 

systems and exascale execution models. 
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Chapter 2 

Background and Related Work 

 

2.1 ParalleX Execution Model 

ParalleX is a working hypothesis parallel execution model motivated by two 

primary goals in the field of HPC: the long-term objective of achieving exaFlop 

performance on the million core parallel systems expected within the next decade and the 

current objective of improving the performance of a diverse group of scaling-impaired 

parallel applications [29]. The predominant parallel execution model of present HPC 

systems, CSP (i.e., MPI), does not provide suitable mechanisms for representing fine-

grained parallelism, intrinsically hiding latency, or balancing workloads across a system. 

These shortcomings suggest the necessity of a paradigm shift in the area of parallel 

execution, as the system semantics of current models offer little support for managing 

dynamic and irregular parallelism – a problem only intensified by the steady increase in 

the core counts of HPC systems. The designers of ParalleX present four critical 

bottlenecks affecting the efficiency of current parallel execution models [3]:  
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• Starvation due to an inability to utilize and manage application parallelism 

• Latencies of accessing local and remote resources 

• Overhead of managing parallel access to machine resources 

• Waiting for contention resolution of multi-core chip I/O pins, memory banks, and 

network interfaces 

A core design principle of the ParalleX model is to improve parallel performance by 

attempting to offset the effects of these inefficiencies. This goal transcends the design of 

any single component in the system, and, instead, encompasses considerable co-design 

between all layers of the execution model.  

 ParalleX aims to improve the parallel performance of future systems through the 

application of message-driven execution in the context of a global namespace using 

lightweight synchronization primitives [29]. The model is largely dependent on the use of 

active messages [34, 33] to implement the message-driven flow control, which allows for 

the overlapping of computation and communication. The global namespace framework 

facilitates the dynamic distribution of data and simplifies parallel programming, as data 

may migrate from node to node and may be referenced regardless of where it is 

physically stored. Lightweight synchronization mechanisms improve processor efficiency 

by avoiding the over-constraining nature of global synchronization. Other key design 

features of the model for improving parallel performance include the application of finer-



 17 

grained multithreading, inherent latency hiding of remote operations, and dynamic, 

adaptive resource management techniques for contention resolution. 

 To provide more insight into the ParalleX execution model, it is necessary to 

consider the function and cooperation of the fundamental components of the model [29], 

which include: 

 Active Global Address Space (AGAS) - The AGAS module provides mechanisms 

for maintaining a system-wide global namespace, which decouples the access of a 

data object from its actual physical location. 

 ParalleX Processes - A ParalleX process provides the full context of all 

computation contained in a particular parallel application, including threads, 

application data, methods, synchronization mechanisms, and child-processes. 

Processes may span multiple nodes and even share nodes, in contrast to 

contemporary processes which generally are statically mapped to a single 

processing core.  

 Threads and Thread Management – ParalleX threads provide the smallest unit of 

computational work that may be represented and scheduled for execution on a 

single node. A thread manager is responsible for scheduling threads in the most 

efficient manner, given runtime system information. 

 Parcels and Parcel Management - The ParalleX model achieves inter-node 

communication using parcels, active messages which typically encapsulate an 
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action to be performed, but may also reference user data. A parcel manager is 

used to demultiplex incoming parcels to different parts of the system.  

 Lightweight Control Objects (LCOs) - LCOs represent a set of flow control 

mechanisms whose semantics allow for the event-driven instantiation of threads, 

dynamic work distribution, and the prevention of race conditions in parallel 

applications. 

 Percolation – Percolation is a special technique for moving work to data to make 

efficient use of heterogeneous resources, like GPGUs, by hiding the latency of 

accessing the resource and reducing the overhead of using it.  

As a first attempt for implementing the ParalleX execution model, the designers 

of ParalleX have developed High Performance ParalleX (HPX), a parallel runtime system 

meeting the specifications of the model. Although the ParalleX model suggests potential 

redesign of all system layers, including hardware architecture, an experimental runtime 

system like HPX can be used to validate the model and provide necessary feedback for 

guiding future parallel system design. The core design objective of the HPX runtime 

system is to provide an efficient, modular, and portable framework for the development 

and execution of ParalleX applications [29]. A modular diagram demonstrating the HPX 

runtime architecture is given in Figure 2.1. Currently, HPX does not support ParalleX 

processes or percolation, but implements all other ParalleX components, which are 

described in further detail below. 
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The AGAS component maintains a translation table that provides the global 

virtual address for all objects in the execution environment, both local and remote. This 

allows for a less restrictive programming model, as a programmer does not need to be 

aware of where an object is stored to reference it. The design of the AGAS component is 

largely based on previous research in Partitioned Global Address Space (PGAS) 

programming models, which provide a logical global address space composed of each 

contributing thread’s local memory partition. PGAS models attempt to improve the 

productivity and performance of parallel programming by combining the convenience of 

shared memory programming with the performance control of message passing models 

[36]. The AGAS model improves upon previous PGAS implementations by allowing 

objects to migrate throughout the system without the added overhead of a virtual address 

translation. This seamless migration is crucial to supporting the dynamic load-balancing 

inherent to the ParalleX model. To assist in providing a global namespace abstraction, the 

ParalleX model introduces the notion of a locality to delineate the boundaries in a parallel 

system. A locality is defined as a contiguous physical domain, which guarantees atomic 

operations on local resources [3]. In a cluster environment, a locality is typically equated 

to a node, where intra-locality accesses require access to local memory and inter-locality 

accesses require access to the interconnection network. 

The HPX thread manager is responsible for the runtime scheduling of a 

potentially large amount of independent HPX threads. To support dynamic and adaptive 

work-load balancing, the thread manager employs a work queue based scheduling 

discipline [29]. Also, the thread manager schedules threads in a cooperative manner to 
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limit the ill effects of context switching and cache thrashing. It is worth noting that HPX 

treats threads as first-class objects, so, they may be managed remotely or even migrated 

between localities. However, thread migration is typically avoided as it is more 

computationally efficient to send a parcel that spawns a thread remotely, rather than 

transmit the entire thread context across the network.  

As mentioned previously, parcels are an extended form of active messages used 

for inter-locality communication. To perform an operation on a remote object, typically a 

HPX thread will send a parcel to that locality encapsulating the function to be executed 

and the corresponding parameters. When the remote locality receives the parcel, it 

decodes it and schedules the contained function for execution via the thread manager. 

This functionality allows the moving of work to data (instead of data to work), which is 

preferable in many scenarios since it takes advantage of data locality and allows 

overlapping of computation with communication. 

Two of the more useful synchronization operations utilized by HPX are the future 

and dataflow LCOs, although conventional mechanisms like semaphores, mutexes, and 

conditions are also included.  A future is used as a proxy for a result that has not yet been 

calculated [4]. A thread requesting the value of the future may suspend its execution until 

the value is available, allowing other threads to perform meaningful work while the 

remote operation completes. The dataflow LCO defines a set of pre-conditions that must 

be satisfied before a specific follow-on thread is instantiated [3].  This mechanism helps 

address the inefficiencies of typical global barriers by using a light-weight, event-driven 
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synchronization mechanism that allows each given precondition to be updated 

asynchronously.  

The following discussion describes the flow of data and control throughout the 

HPX runtime environment (Figure 2.1). Incoming parcels are delivered over the 

interconnection network to the parcel port, which passes each parcel to a parcel handler 

to buffer. The action manager then fetches and decodes each parcel, scheduling the 

encapsulated thread for execution with the thread manager. The thread manager 

dynamically schedules a pool of threads, which operate on local and remote objects. The 

action manager queries the AGAS translation table on behalf of threads to determine if 

Locality 

Figure 2.1 - Modular diagram of the HPX runtime system. 



 22 

referenced objects are remote or local. If the object is local, the action manager simply 

creates a new thread, but if it is remote, the action manager encapsulates the necessary 

work and sends it to the remote object using the parcel port. LCOs (created by individual 

threads) notify the action manager when new or suspended threads may begin executing. 

 

2.2 OrangeFS 

OrangeFS is a recent branch of Parallel Virtual File System 2 (PVFS2), a high-

performance, open-source parallel file system designed for use in HPC systems. Some of 

the more appealing features of PVFS2 include high parallel I/O performance, reliability, 

and hardware independence [24]. PVFS2 achieves high I/O throughput by dynamically 

distributing file data and metadata across a system. This strategy alleviates file system 

bottlenecks and improves system scalability. The reliability and performance of the file 

system also benefit from relaxed consistency semantics, which obviate the need for a file 

locking subsystem. PVFS2 maintains compatibility with a wide range of instruction-set 

architectures, storage systems, and network architectures, exhibiting a high level of 

hardware independence. Also, the modular software architecture of PVFS2 allows new 

hardware technologies to be integrated smoothly. PVFS2 offers an ideal platform for 

research in the area of parallel I/O, due mostly to the high-performance and modular 

nature of its architecture coupled with the fact the software is openly available for 

redesigning. OrangeFS offers many of the same features of PVFS2, but was branched 

specifically to provide additional capabilities that seek to improve the performance of a 
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wide range of parallel systems. This is in contrast to PVFS2, which focused design solely 

on improving the performance of specific parallel system architectures (typically, clusters 

or other large distributed systems) [22]. Among the new features provided by OrangeFS 

are improved scalability of metadata and directory operations, configurable redundancy 

and fail-over mechanisms, and secure access controls for protecting file system data.   

 OrangeFS utilizes an intelligent server architecture, in which server processes 

serve file data and metadata to client processes [21]. In a cluster environment, I/O nodes 

generally execute the server processes (due to their specialized storage hardware), while 

the compute nodes execute the client applications. The file system may be configured to 

use any number of servers, with each serving file data and/or metadata. Tunable data 

distribution parameters allow users to increase file system performance by distributing 

data in a manner that complements the file access patterns of a particular program. By 

default, file data is striped evenly across a set of servers to take advantage of the 

aggregate sum of network bandwidth, however, numerous data distribution 

configurations are supported. Similarly, metadata may be distributed among servers at a 

per directory granularity to avoid overloading individual servers [8].  Also, the file 

system utilizes server-to-server collective communication to improve the performance 

and scalability of many metadata operations [22]. 

 The software architecture of OrangeFS clients and servers is given below in 

Figure 2.2.  Typically, a client will make calls into a high-level I/O library (e.g., an MPI-

IO implementation) to utilize the file system. These libraries must leverage the system 
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interface, the lowest level API available to programmers for accessing the file system. 

Essentially, the system interface provides programmers with the necessary building 

blocks for developing both general and domain-specific I/O libraries. The system 

interface implements file system operations using state machines, a software module that 

allows multi-step file operations to be represented using explicit state machines. 

Specifically, state machines define the function to be executed for each state (step) and 

the order in which these functions are executed. State transitions typically occur after 

completion of a low-level I/O operation, where the operation's error code is used to 

determine which state to transition to next [8]. State machines are particularly valuable to 

a parallel file system, as they allow independent I/O operations to be serviced in a 

concurrent and asynchronous manner. The server-side libraries also utilize state machines 

to manage the execution of concurrent file system operations. The job interface's primary 

purpose is to bind together the high-level file system libraries described above with the 

 
Figure 2.2 - Software stacks for OrangeFS clients and servers. 
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low-level hardware components of the file system architecture [22]. It provides a single 

interface for the posting and completion checking of storage and network operations.  

 The lowest level of the OrangeFS software stack is composed of hardware 

abstractions for the storage and network subsystems. Both the client and the server utilize 

the Buffered Message Interface (BMI), which provides consistent access to a variety of 

network architectures, including TCP/IP and InfiniBand. The design of BMI simplifies 

the integration of new network architectures, due to its layered interface model – a high-

level API is provided to BMI users while implementation-specific API's are maintained 

in separate software modules [8]. The OrangeFS server leverages the Trove storage 

abstraction to provide bytestream and key/value access to available storage resources. 

Trove uses regular files to store bytestreams, while a database implementation is used to 

store key/value pairs (metadata). The flows subsystem is used to coordinate the network 

and disk transfers initiated by BMI and Trove. Particularly, it handles the buffering, 

scheduling, and datatype processing necessary for bulk data transfers [8]. The server 

process contains an additional software component for managing the consistency between 

concurrent file system requests. The request scheduler analyzes incoming requests and 

orders them in a manner that protects the consistency of the file system. Also, the client 

software stack includes the optional kernel module, which allows an OrangeFS file 

system to be mounted and used like a standard Linux file system. 
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2.3 Related Work 

Many languages have been proposed to satisfy the PGAS execution model, with 

UPC [5] and Titanium [31] representing two of the more well-known attempts. UPC 

(Unified Parallel C) is an explicit parallel extension to ISO C, which coordinates 

independent threads in a SPMD fashion. Titanium offers similar features as UPC, except 

that it is a dialect of the Java language targeted for application in large HPC systems like 

clusters. Both UPC and Titanium support the PGAS global memory model which allows 

programmers to control the processor affinity of shared data, which increases potential 

performance of parallel applications. Also, both languages utilize GASNet [6], a low-

level, language-independent networking layer that provides a portable interface for high-

performance one-sided communication. The GASNet core API is largely based on the 

use of active messages, while an extended API offers more expressive operations like 

collective communication and remote memory access. 

 APGAS (Asynchronous Partitioned Global Address Space) languages improve 

upon standard PGAS languages by allowing the asynchronous creation of both local and 

remote tasks. One such APGAS language is X10 [26], an object-oriented, high-

performance parallel programming language (Java-based) targeted for application on 

non-uniform memory access (NUMA) compute clusters. X10 distributes asynchronous 

computation activities among a set of places, abstractions that encapsulate local data and 

computation. Chapel [12] is another global address space language that offers many high-

level operations for expressing data parallelism, task parallelism, and nested parallelism. 
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[37] present a fine-grained parallel execution model based on compiling parallel 

applications into small code snippets called codelets. High-performance parallel 

languages like X10 and Chapel can be implemented on top of this runtime model, as long 

as a compiler exists that can translate the respective parallel applications to a set of 

independent codelets.  

 There has been extensive research into adding parallelism constructs to C++, one 

of the most popular programming languages for application developers. Cilk++ [17] is a 

proposed parallel programming environment (incorporating a compiler, runtime system, 

and race-detection toolkit) that extends C++ with operations that allow for thread 

spawning, automatic loop parallelization, and local barrier synchronization. The Cilk++ 

runtime environment guarantees to effectively load-balance parallel computation, due in 

large part to the use of a work-stealing scheduler. Charm++ [16] is an object-oriented 

parallel programming language based on C++, which utilizes message-driven 

computation on parallel processes called chares. An important design feature of 

Charm++ is the extension of traditional object-oriented principles like inheritance and 

dynamic binding to concurrent objects. Intel presents a C++ library for supporting 

scalable parallel programming called Threading Building Blocks (TBB) [25]. This library 

allows for convenient parallel programming through the specification of concurrent tasks 

that are dynamically scheduled by the runtime environment, freeing the programmer from 

the burden of creating, synchronizing, and destroying actual threads.  



 28 

 Many parallel file systems have been proposed improve the performance, 

portability, and consistency of concurrent I/O operations. Lustre [18] is a POSIX-

compliant file system for use in large-scale clusters. Lustre is renowned for its ability to 

support a large number of client processes while maintaining high I/O throughput. IBM’s 

General Parallel File System (GPFS) [15] provides another high-performance parallel file 

system which offers high availability through dynamic file system management and data 

replication.  

 Since the I/O subsystem has historically been the largest hindrance to the high 

performance of parallel applications, much research is necessary in improving the 

performance and scalability of I/O architectures for exascale systems. [10] propose a new 

I/O architecture that dynamically coordinates I/O accesses according to program access 

patterns, network topology, network condition, and physical data distribution on storage 

devices to reduce contention and preserve data locality. [35] present numerous tools for 

utilizing latent I/O asynchrony in HPC applications. Latent I/O asynchrony is essentially 

the decoupling of ancillary I/O operations from the core computation of a parallel 

application. [1] propose a new I/O paradigm, referred to as I/O forwarding, in which 

compute nodes ship I/O calls to dedicated I/O nodes. The dedicated I/O nodes then 

perform requests on behalf of the compute nodes, optimizing I/O performance by 

aggregating and caching file system operations. 
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Chapter 3 

Design and Methodology 

 

 In this chapter, we first propose the desired features for an I/O subsystem fitting 

the ParalleX execution model. We then outline modifications to be made to the OrangeFS 

file system to accommodate these features, yielding our PXFS prototype.  

 

3.1 ParalleX I/O Characteristics 

Before developing our PXFS prototype, we first characterize the I/O requirements 

of the ParalleX model. Above all, the ParalleX I/O subsystem must support the overall 

goals of the execution model, which include the use of asynchronous communication to 

mask high-latency operations. While there are numerous parallel I/O libraries available 

with support for asynchronous operations, none directly support the advanced semantics 

required by the ParalleX model. Essentially, a ParalleX thread attempting an I/O 

operation will make a call to the I/O subsystem to submit the asynchronous request to the 
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underlying file system. It is desirable that this asynchronous I/O operation incur as little 

overhead as possible, to limit the blocking time of calling thread. This allows the calling 

thread to continue performing meaningful computation while waiting for the I/O 

operation to complete. The I/O subsystem should also utilize continuations to notify of 

the completion of an operation, where a continuation is a specifier for some follow-on 

action to be taken. This continuation can be used to notify the calling thread of the 

completion of the operation, submit another I/O operation, instantiate a new thread of 

execution, or perform any other defined functionality.  

Obviously, the I/O subsystem must scale with the increasing number of 

concurrent I/O operations that are probable in exascale HPC applications. Otherwise, any 

potential I/O performance gains will be offset by the high contention for accessing the 

I/O subsystem. Also, the I/O subsystem should include a complete set of high-level file 

operations, not just basic file reads and write. ParalleX applications require the ability to 

perform a range of file operations, such as open, close, seek, make directory, create file, 

etc., and expect that all operations follow the same asynchronous model discussed above. 

These I/O operations should all be contained within a well-defined, consistent user 

interface, which provides the necessary ParalleX I/O semantics with limited programmer 

intervention.  

So, we conclude that any I/O subsystem attempting to satisfy the I/O requirements 

of the ParalleX model should provide the following features: 

 Asynchronous I/O operations 
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 Low overhead for submitting operations 

 Continuation support for notifying of I/O completions 

 Support for high-performance, high-concurrency I/O 

 Breadth of high-level I/O operations 

 Well-defined user interface providing the ParalleX I/O model semantics 

 

3.2 PXFS Design 

As stated previously, we will implement our PXFS prototype by modifying the 

OrangeFS file system source code to accommodate the changes required by the ParalleX 

model. To support the asynchronous submission of high-level file system operations, 

modifications must be made to the OrangeFS client-side software stack (Figure 2.2). The 

server-side libraries remain unchanged, because client requests are handled the same way 

by the server, regardless of whether they are synchronous or asynchronous. The 

modifications to the client software stack are detailed in the following sections, starting 

with the highest level (the PXFS I/O library) and moving to the lowest level (client-side 

state machines).  

 

3.2.1 PXFS I/O Library 

The PXFS I/O library is the high-level interface exposed to ParalleX components 

or applications needing to perform I/O operations. Therefore, this library must explicitly 
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support the semantics of the ParalleX I/O model, but must do so by leveraging 

functionality contained within the OrangeFS file system. Before focusing on the actual 

implementation of the library, we first decide on the set of I/O operations we wish to 

support. Leaning on convention, we initially seek to implement many of the file and I/O 

operations included in the POSIX specification. POSIX was chosen as a reference 

because most of its I/O operations and datatypes are well-understood by programmers 

and straight-forward to implement – we are not interested in designing a POSIX-

conformant I/O library. Basically, we borrow the naming conventions and functional 

parameters of POSIX operations as a basis for our PXFS I/O library. Since the PXFS I/O 

functions are asynchronous and do not return the desired value immediately, output 

values are passed as pointers to the functions and are updated after the completion of the 

I/O operation. A complete list of operations currently supported by PXFS is given in 

Table 3.1. 

From our characterization of the ParalleX I/O model, we already know that a 

ParalleX thread calling into the PXFS I/O library expects to submit an asynchronous 

operation that blocks for as short as possible, requiring that the I/O library incur minimal 

overhead. To support this requirement, we design the PXFS I/O library to perform only 

the necessary computation before submitting an operation to the asynchronous I/O (AIO) 

subsystem. This necessary computation includes checking and modifying functional 

parameters, specifying the asynchronous operation to be performed, and submitting the 

operation to the AIO subsystem. To specify an asynchronous operation, a data structure 

called an asynchronous control block is allocated and populated with the necessary 
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parameters. These parameters include original function arguments, as well as internal file 

system data structures necessary to servicing the operation. The asynchronous control 

block is all that is required by the AIO subsystem to service a particular I/O request. 

Further details explaining the design and implementation of the AIO subsystem are 

provided in Section 3.2.2.  

Since the ParalleX I/O model also requires support for continuations, the PXFS 

I/O library should include the necessary definitions for specifying continuations for 

completed I/O operations. Accordingly, we first define a continuation specifier, which 

simply represents a continuation as two separate pointers: a pointer to a function to be 

executed upon the completion of a particular I/O operation and a pointer to a block of 

PXFS I/O Operation Purpose 

pxfs_open(64) Open a file. 

pxfs_creat(64) Create a new file. 

pxfs_unlink Remove a file. 

pxfs_rename Rename a file. 

pxfs_read, pxfs_pread(64), pxfs_readv Variations of file read. 

pxfs_write, pxfs_pwrite(64), 

pxfs_writev 
Variations of file write. 

pxfs_lseek(64) Repositions a specific file pointer. 

pxfs_ftruncate(64), pxfs_truncate(64) Truncate a file to a desired length. 

pxfs_close Close a file. 

pxfs_fstat(64), pxfs_stat(64), 

pxfs_lstat(64) 
Retrieve a file’s status. 

pxfs_fchown Change a file’s user and group ownership. 

pxfs_fchmod Change a file’s permissions. 

pxfs_mkdir Make a new directory. 

pxfs_rmdir Remove a directory. 

pxfs_symlink Create a symbolic link to a file. 

 

Table 3.1 - I/O operations currently implemented by PXFS. Note that 64-bit functions 

allow files over 2 GB to be manipulated by the file system. 
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user data to be passed as input to this function. A valid continuation function must also 

accept a resultant I/O error code as input, which states whether the I/O operation 

succeeded, and if not, the specific error (as defined by the POSIX error code definitions). 

Basically, a continuation specifier defines an arbitrary function that operates on a specific 

block of data supplied by the programmer, depending on the error code of the I/O 

operation. With a suitable definition for a continuation specifier, we update all operations 

in the PXFS I/O library to accept this specifier as a functional parameter, along with the 

operation’s respective POSIX arguments. This specifier is subsequently stored in the 

asynchronous control block to be leveraged by the AIO subsystem upon completion of 

the I/O operation. To demonstrate the general structure of the PXFS I/O library functions, 

we provide an example function call in Figure 3.1.  

A data flow diagram illustrating the asynchronous nature of the PXFS architecture 

is given in Figure 3.2. This diagram provides insight into how ParalleX threads submit 

I/O operations and respond to their completion. As stated earlier, a ParalleX thread 

blocks for a short time to submit an I/O operation then resumes normal execution after it 

 
Figure 3.1 – Prototype for the PXFS write operation. The first three arguments 

correspond directly to the POSIX write definition: fd represents the associated file 

descriptor, buf points to the buffer of data to be written, and count specifies the 

amount of bytes to be written from the buffer. The next argument, bcnt, points to the 

location where the output value (number of bytes written) should be written. The last 

two arguments correspond to the continuation specifier: cb stores the associated 

callback function for the continuation and cdat stores the pointer to the user-supplied 

data block. The function returns 0 on a successful asynchronous submission to PXFS 

and returns -1 if an error occurred before submission. 
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has been submitted, allowing for autonomous overlapping of computation with file 

system communication. After a thread has submitted an I/O operation, the PXFS AIO 

subsystem manages all client-side computation and communication necessary to service 

the operation, clearly alleviating the programmer from the burden of repeatedly checking 

for its completion. When the operation has finally completed, the AIO subsystem utilizes 

the provided continuation specifier to notify the ParalleX application. In the case of 

Figure 3.2, the continuation spawns a new thread of execution, but could be easily 

modified to notify the original thread or perform any other functionality. 

 

 
Figure 3.2 – Data flow diagram illustrating an example I/O operation in the PXFS I/O 

library. Thread 1 submits a PXFS write operation with a continuation which spawns 

Thread 2. 
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3.2.2 AIO Common Interface 

The main purpose of the AIO Common interface is to offer a consistent interface 

to high-level I/O libraries, such as the PXFS I/O library, wishing to utilize the 

asynchronous file system operations supported by PXFS.  The benefit of layering 

libraries in this manner is that it directly supports our design goal of providing modular 

software architecture. Changes or optimizations may be made to the AIO common 

interface without requiring any modifications to be made to high-level libraries. Also, 

unnecessary complexity is removed from high-level I/O libraries – these libraries may 

utilize functionality contained in the AIO common interface which abstracts away the 

low-level details of performing an asynchronous I/O operation. This modularity not only 

increases programmer productivity, but also reduces the likelihood of developing buggy 

I/O libraries. 

To simplify the design of the AIO common interface, we expose a single function 

(aiocommon_submit_op) for submitting asynchronous operations to PXFS. This function 

simply queues the referenced control block for service by the file system then returns 

control back to the caller, which minimizes the blocking time for user threads. However, 

managing this queue in a highly concurrent environment represents a potential 

bottleneck, as many threads contend for queue access simultaneously. The submit 

function accepts an asynchronous control block as its only parameter, so, clearly, the 

asynchronous control block must contain all information required by the file system to 

service the operation and notify the caller of its completion. Table 3.2 provides an 
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overview of each of the fields that compose a PXFS asynchronous control block.  It is 

important to note that the file system relies solely on the use of callback functions to 

notify a user of the completion of an I/O operation, requiring user applications to supply a 

function meeting the specifications given in the asynchronous control block. While this 

could be considered burdensome to library developers, it also allows for a wide range of 

Field Data Type Purpose 

op_id PVFS_sys_op_id 

Unique identifier used to track the 

progress of a particular file system 

operation. 

op_code PVFS_aio_op_code 

Code indicating the particular file 

system operation represented by 

the control block (open, read, write, 

etc.).  

error_code PVFS_error 

Code indicating the current status 

of the asynchronous operation (i.e., 

in progress, finished, or in error). 

link qlist_head 

Linked list node used to store the 

control block in a waiting or 

running queue. 

call_back_fn void (*)(void *c_dat, int status) 

Function pointer which points to a 

user-supplied callback function to 

be executed upon the completion of 

an operation. c_dat points to a 

block of data given by the user and 

status provides the final error code 

of the operation. 

call_back_dat void * 

Void pointer used to store an 

arbitrary block of user data that 

will be passed to the given callback 

function. 

u union 

Union used to store the operation-

specific parameters and internal 

data structures necessary to service 

an asynchronous file system 

operation. 

 

Table 3.2 – Definition of the PXFS asynchronous control block. 
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high-level functionality by providing mechanisms for defining some arbitrary function to 

be performed upon the completion of an operation.  

A major design consideration of the AIO common interface is the architecture of 

its runtime system, which services asynchronous file system operations and notifies 

application threads when these operations complete. An overview of our proposed AIO 

common runtime system is given in Figure 3.3.  As illustrated, the runtime architecture 

utilizes three primary components: a waiting queue, a running queue, and a progress 

 
Figure 3.3 – Architecture of the AIO common runtime system. 
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thread. Asynchronous control blocks submitted by a high-level I/O library are buffered at 

the tail of the waiting queue, where they wait to be serviced by the file system. The AIO 

common progress thread then moves the control blocks from the head of the waiting 

queue to the running queue, where they are finally submitted to the file system. Note that 

the progress thread and a potentially large number of application threads may access the 

waiting queue simultaneously, so a mutex lock is required to protect the integrity of the 

queue. On top of submitting asynchronous operations to the file system, the progress 

thread is also tasked with forcing progress on any currently running operations, removing 

completed operations from the running queue, and notifying applications of operation 

completions using supplied callback functions.  

To provide a more complete understanding of the functionality necessary to 

servicing asynchronous file operations, a flow diagram of the AIO common progress 

thread is given in Figure 3.4. The progress thread first moves any waiting operations to 

the running queue, assuming it has not reached capacity. It is necessary to impose a limit 

on the number of running operations, because submitting many concurrent operations can 

negatively affect the performance of the file system. The waiting queue may grow 

arbitrarily long, depending on the rate of incoming requests and the service time of the 

file system. If there are no operations waiting or running, the progress thread suspends 

execution – a user thread that submits an asynchronous I/O operation and finds the 

progress thread idle signals the progress thread to wake up and service its request. If 

operations are running, progress is forced on each eligible operation (i.e., file operations 

with work available) using a test function. The test function returns any operations which 
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executed to completion, whether they be successful or in error. These completed 

operations are then removed from the running queue and their respective callback 

functions are executed to notify the caller of their completion. This entire process is 

repeated until there are no requests left to service. To aid in our implementation of this 

 
Figure 3.4 – Flow diagram for the AIO common progress thread. 
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algorithm, we rely on the POSIX Pthreads API, which provides mechanisms for creating 

threads and synchronizing their execution. 

For each supported asynchronous operation, the AIO common interface defines 

functionality for submitting the request to the file system (initializers) and returning the 

file system response (finalizers). Initializers perform any necessary transformation on 

functional parameters contained in an asynchronous operation’s control block then 

initiate an operation-specific state machine to service the request. When the operation 

completes, the finalizer copies the file system response into the appropriate output fields, 

as specified by the operation. For example, the finalizer for the asynchronous open 

operation would copy the file descriptor returned by the file system to a user-supplied 

variable so that it may be accessed by the original application. 

 

3.2.3 State Machines 

OrangeFS utilizes a finite-state machine implementation to represent and service 

low-level, multi-step I/O operations. Each state represents a specific function to be 

executed, which typically includes the posting of a remote file system operation. The 

nesting of state machines is also allowed, so a single state may represent an entire state 

machine to be executed. This is convenient as it simplifies state machine complexity and 

facilitates code reuse. The return value of a particular state function or nested state 

machine is used to determine which state to transition to next, a process that continues 

until the file system operation succeeds or fails.  Essentially, state machines offer a way 
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to define the structure and manage the flow of multi-step file system operations, which 

may require multiple nested operations, such as a file lookups, file creates, etc.  

Conventionally, high-level OrangeFS file system operations have been defined as 

a sequence of calls to the system interface, as shown in Figure 3.5. The system interface, 

the lowest level interface available for accessing OrangeFS files, offers a comprehensive 

set of low-level file system operations in synchronous and asynchronous form – the 

synchronous code simply calls the asynchronous code and waits for its completion before 

 
 

Figure 3.5 – Pseudocode for the file rename operation in OrangeFS. This high-

level operation accepts two file paths as input (old_path and new_path) and 

renames the first path to the second path. After breaking these paths into 

respective directory and file names, the function looks up the references for both 

directories using the system interface lookup call. After obtaining the parent 

directory references, the system interface rename call may be used to submit the 

rename request to OrangeFS. It can be seen that the OrangeFS file rename 

operation requires 3 separate system interface calls, each of which requires an 

operation-specific state machine. 
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returning. Each asynchronous operation concludes by starting a state machine for 

servicing the given file system request. After a state machine has been started, it must be 

repeatedly polled by a test function to check for its completion. If the operation has not 

been completed, the test function will force progress on that operation and any other 

operation with an incomplete state machine. This demonstrates the concurrent processing 

abilities of state machines, as the execution of states from independent machines may be 

interleaved with each other. Once a state machine has completed execution, the data from 

the server response is returned to the user through the system interface.  

So, while OrangeFS supports the asynchronous submission of low-level file 

system operations via state machines, there is no explicit support for asynchronous high-

level operations, like file open, close, seek, etc. This is mostly because these high-level 

operations involve a possibly complex sequence of state machines, making it extremely 

cumbersome for library developers to manage the flow between the operations in a 

manner that appears completely asynchronous to the user. Obviously, new low-level 

mechanisms are required for representing and executing asynchronous file system 

operations without adding unnecessary complexity to high-level I/O libraries or requiring 

an inordinate amount of programmer intervention. To support this functionality, we must 

provide a meaningful and efficient way of managing the necessary state and dynamic 

flow of high-level I/O operations.  

Therefore, we propose the addition of new PXFS state machines to represent 

these high-level file operations, allowing each state to specify some nested state machine 
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or necessary function for providing the desired result. Essentially, we extend the state 

machine abstraction to define high-level file operations, which generally require the 

execution of a sequence of nested state machines and state functions. An example state 

machine implementing the rename operation defined in Figure 3.5 is presented below in 

Figure 3.6. The benefits of using state machines to implement high-level file system 

operations are two-fold: the potentially complex flow of these operations is easily 

specified using finite-state machines and the use of state machines allows an arbitrary 

 
Figure 3.6 – Example PXFS state machine for the file rename operation. Note that 

an operation’s state trajectory depends on the error code of each nested operation. 



 45 

function to be serviced asynchronously by the file system. This allows higher level 

libraries, such as the AIO common interface, to define asynchronous file operations in 

terms of a single state machine, which is much more manageable than an elaborate 

sequence of state machines. 

 

3.3 Summary 

Initially, we analyzed the ParalleX execution model in an attempt to define a 

suitable I/O subsystem to be used with model. We concluded that an I/O subsystem 

meeting the semantics of the ParalleX execution model must support the following 

features: asynchronous I/O operations, low operation submission overhead, continuation 

support, high operation concurrency, a wide-range of I/O operations, and a well-defined 

interface for utilizing the library. 

We then proposed modifications and additions to the OrangeFS file system to 

satisfy these requirements, resulting in our first PXFS prototype. Our implementation 

involves the design of the high-level PXFS I/O library, the AIO common interface, and 

new client-side state machines. The PXFS I/O library defines a wide-range of I/O 

operations supporting the semantics of the ParalleX I/O model. The AIO common 

interface provides functionality for servicing asynchronous operations using a runtime 

system that manages these requests and forwards their response back to users. New state 

machines were developed to allow high-level I/O operations to be represented and 
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managed using a single asynchronous state machine. The resultant client-side software 

stack is shown in Figure 3.7. 

It is important to note that this is only our first prototype of the PXFS file system, 

and, thus, is not fully compatible with the ParalleX execution model. Eventually, we hope 

to fully integrate PXFS with the execution model by modifying PXFS to utilize ParalleX 

parcels and threads directly. This reduces potential I/O overhead and allows the ParalleX 

thread manager to explicitly manage the execution of all threads, including the PXFS 

progress thread. However, our initial implementation will allow us to analyze the long-

term feasibility of integrating our current I/O model with the ParalleX execution model.  

 

 

 

 
Figure 3.7 – Modified client-side stack for PXFS clients. 
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Chapter 4 

Results 

 

 In this chapter we outline experiments to benchmark the performance of PXFS 

with the original OrangeFS file system, as well as, verify the feasibility of PXFS as a 

suitable I/O subsystem for the ParalleX execution model. 

 

4.1 Read/Write Throughput Results 

To compare the potential performance of PXFS with the original OrangeFS file 

system, we first outline experimental application test cases for submitting file reads and 

writes to the underlying file system. This allows us to analyze the performance of the file 

systems from the perspective of numerous application I/O patterns. These test cases are 

outlined below: 

 Case 1: A number of threads simultaneously read and write a set of files. Each 

thread waits for the completion of its previous I/O operation before submitting 

a new one, and each operation references a random block in the file.  

 Case 2: A single thread submits a list of sequential I/O operations to either 

read or write a file one block at a time. It is unnecessary to wait for the 
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completion of prior operations to submit new ones, as there is no file or buffer 

overlap between operations.  

 Case 3:  A single thread repeatedly submits sequential I/O operations then 

simulates computation after each operation has been submitted. Each I/O 

operation references equal size blocks and the length of the computation time 

is fixed. Similarly to case 1, the PXFS application must wait for the 

completion of the current I/O operation (and computation) before submitting a 

new operation. 

Before running any experiments, it is important to note the hardware configuration details 

of our testing environment. For simplicity, we use a single file system client and a single 

file server for our testing environment, both containing identical hardware, detailed in 

Table 4.1. Both the client and server nodes run the CentOS 5.6 Linux distribution.  

 

4.1.1 Random Read/Write (Case 1) 

 For test case 1, a simple OrangeFS application was developed that spawned a 

specified number of threads, each of which performs a sequence of I/O operations on a 

set of files. Each I/O operation is completely random – it is equally likely that the 

CPU Memory Storage 
Network 

Interconnect 

Intel Xeon 3040 

(dual-core 1.86 GHz) 

2 GB DDR2 

RAM 

Seagate 500 GB 

HDD 

Gigabit Ethernet 

 

Table 4.1 – Client and server hardware specifications for PXFS testing. 
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operation is a read or write and the referenced block of data (512 KB) is randomly 

selected, as well.  When a thread finishes its sequence of I/O operations, it terminates. 

Once all threads complete, the program calculates each thread’s read and write 

throughput and then terminates. A similar PXFS application was developed, however 

changes were made to account for the asynchronous nature of its interface. Specifically, a 

thread submits an asynchronous I/O operation specifying a continuation for recursively 

submitting more I/O operations. The main thread suspends and awaits the completion of 

this chain of asynchronous operations. This functionality was required to enforce the 

requirement that I/O operations may not be submitted before previous operations have 

completed.  

The average read and write throughput results for case 1 using PXFS and 

OrangeFS are given in Figure 4.1 and Figure 4.2, respectively. It is clear from these 

graphs that the potential read and write throughput for PXFS slightly exceeds that of the 

original OrangeFS file system, regardless of the number of application threads used. This 

was not anticipated, as the OrangeFS I/O library is much more established, in the sense 

that it has been around for a long time and has been optimized for high-performance. 

Most likely, PXFS is able to attain higher throughput performance due to the lightweight 

and simplistic nature of the AIO common interface, which simply submits I/O operations 

to the underlying file system and awaits their completion – all optimizations are 

concealed from the interface and handled internally by the file system (the state machines 

and job interface, specifically). These results prove that PXFS is capable of providing 

high-performance, high-concurrency I/O operations for this test case. However, the slight  
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Figure 4.1 – Average read throughput for case 1 using OrangeFS and PXFS. 

 

 

 

 
Figure 4.2 – Average write throughput for case 1 using OrangeFS and PXFS. 
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throughput increase possible with PXFS does not justify rewriting all applications using 

the PXFS I/O library, as applications that perform asynchronous I/O are inherently more 

complex than their synchronous counterparts, since they must specify callback functions 

and often require synchronization mechanisms to be notified of I/O completions.  

 

4.1.2 Sequential Read/Write (Case 2) 

In test case 2, OrangeFS and PXFS applications were developed in which a single 

thread reads or writes a 1 GB file one block at a time. The time required to finish this 

operation was calculated and used to determine which file system was able to obtain the 

highest aggregate throughput. The OrangeFS application is very similar to the one 

developed for case 1, except the sequence of reads or writes is sequential, not random. 

Clearly, since the OrangeFS I/O library utilizes synchronous file operations, the 

application thread must wait for the completion of previous I/O operations before 

submitting additional ones, just as in case 1. However, since the PXFS I/O library is 

asynchronous and no overlap exists between the sequence of I/O operations, the PXFS 

application is able to submit all I/O operations at once. After all asynchronous I/O 

operations have been submitted, the PXFS application thread suspends execution until a 

specified continuation function notifies it that all operations have completed. 
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Figures 4.3 and 4.4 illustrate the aggregate read and write throughput results 

achieved by both file systems using varying block sizes. It is clear from these graphs that 

the performance of PXFS easily exceeds that of OrangeFS for reads and writes across all 

block sizes. This makes sense, because the PXFS application is able to submit all I/O 

operations at once, while the OrangeFS application must submit one operation at a time. 

Essentially, the PXFS AIO subsystem may run as many simultaneous operations as 

possible and queues the remaining operations. As operations complete, the AIO 

subsystem runs new operations, achieving maximum utilization of the underlying file 

system. Conversely, the OrangeFS application may only submit one I/O operation at a 

time and cannot submit further I/O operations until the current one has been returned to 

the application thread. This does not allow for high file system utilization, because each 

I/O operation must traverse the file system stack before a new operation may be 

submitted, due to the synchronous nature of the library. The only way to achieve higher 

 
Figure 4.3 – Aggregate read throughput results for case 2. 
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performance with OrangeFS is to use multiple application threads or modify the file 

system to define an operation for submitting a list of I/O operations at once.  

 

4.1.3 Sequential Read/Write with Computation Overlap (Case 3) 

The goal of test case 3 was to analyze the ability of each file system at 

overlapping I/O with computation, an important requirement for satisfying the ParalleX 

I/O model. The ability to overlap I/O with computation is important as it allows 

applications to continue performing meaningful computation while waiting for 

potentially high latency I/O operations to complete, with negligible effects on the I/O 

throughput. Obviously, multiple processing cores are required to overlap computation 

with I/O – one or more cores to perform computation and at least one core dedicated to 

performing I/O. For test case 3, the same OrangeFS application from case 2 was modified 

 
Figure 4.4 – Aggregate write throughput results for case 2. 
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to perform a constant amount of computation after the submission of each I/O operation. 

Again, we simply calculate the aggregate throughput for reading or writing a 1 GB file, 

except we include simulated computation. Similarly, a PXFS application was developed 

which reads or writes a 1 GB file by sequentially submitting asynchronous operations 

referencing each block, simulating computation, and waiting for completion of the 

submitted operation before continuing. Unlike case 2, the PXFS application may not 

submit a list of operations but must submit operations one at a time. Note that the 

processor affinities for the PXFS application thread and the AIO progress thread were set 

to different cores to obtain the most accurate results.  

Case 3 results for OrangeFS reads and writes are given in Figures 4.5 and 4.6. 

Also, Table 4.2 gives the percentage decrease in I/O throughput between an OrangeFS 

application with no computation overlap (like case 1 or case 2) and an application which 

performs computation after I/O completions. As expected, OrangeFS aggregate I/O 

throughput clearly suffers when overlapping computation with I/O. This can be attributed 

to the synchronous nature of the OrangeFS I/O library. Specifically, OrangeFS 

application threads are blocked while waiting for the completion of an I/O operation, and 

thus, cannot perform any other computation before the operation completes. Computation 

may only be overlapped with I/O by spawning additional threads, which is burdensome to 

programmers and leads to complex applications.  
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Figure 4.5 – OrangeFS aggregate read throughput results for case 3. 

 

 

 

 
Figure 4.6 – OrangeFS aggregate write throughput results for case 3. 
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The case 3 results for a PXFS application are given below in Figures 4.7 and 4.8, 

and percentage decrease values like that of Table 4.2 are given in Table 4.3. It is obvious 

from these results that PXFS is much more suitable for writing applications which seek to 

overlap meaningful computation with I/O operations. The read and write aggregate 

throughput graphs clearly show that a PXFS application is able to obtain nearly the same 

performance regardless of whether computation is overlapped with I/O operations. This 

confirms the PXFS I/O library effectively offloads I/O operations from application 

Block 

Size 

(MB) 

Read 

Throughput 

(MB/s) 

Read + 

Work 

Throughput 

(MB/s) 

Percentage 

Decrease 

 

Write 

Throughput 

(MB/s) 

Write + 

Work 

Throughput 

(MB/s) 

Percentage 

Decrease 

.5 94.17 48.41 48.6 % 86.06 44.51 48.3 % 

1 96.50 65.17 32.5 % 92.80 63.34 31.7 % 

2 96.02 77.13 19.7 % 100.67 80.74 19.8 % 

4 102.43 91.05 11.1 % 106.60 93.58 12.2 % 

 

Table 4.2 – OrangeFS aggregate throughput percentage decrease results for case 3. 

 
Figure 4.7 – PXFS aggregate read throughput results for case 3.  
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threads and efficiently notifies these applications of the completion of these operations. 

This is extremely beneficial as PXFS applications can achieve maximum utilization of 

the file system without sacrificing the utilization of application threads.  

 To further illustrate the benefits of using PXFS for overlapping computation and 

I/O, Figure 4.9 shows the effect of computation time on the apparent I/O time as seen by 

an application thread in OrangeFS and PXFS. With OrangeFS, the apparent length of an 

 
Figure 4.8 – PXFS aggregate write throughput results for case 3.  

Block 

Size 

(MB) 

Read 

Throughput 

(MB/s) 

Read + 

Work 

Throughput 

(MB/s) 

Percentage 

Decrease 

 

Write 

Throughput 

(MB/s) 

Write + 

Work 

Throughput 

(MB/s) 

Percentage 

Decrease 

.5 90.87 90.25 .7% 88.03 87.28 .9 % 

1 96.81 95.15 1.7 % 98.13 96.56 1.6 % 

2 95.72 95.51 .2% 104.70 82.44 21.2 % 

4 103.00 102.09 .9 % 108.07 107.34 .7 % 

 

Table 4.3 – PXFS aggregate throughput percentage decrease results for case 3. 
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I/O operation remains constant independent of the computation time, as expected. 

However, with PXFS, as the overlapping computation time of an application increases, 

the apparent length of the I/O operation decreases. If the computation length is long 

enough, the apparent length of the I/O operation may actually be completely hidden from 

the application. Obviously, the I/O operation requires roughly the same amount of time 

using PXFS as OrangeFS, but the PXFS AIO subsystem effectively masks this latency by 

offloading the operation to a thread dedicated to performing I/O (the progress thread).  

 

4.2 Metadata Results 

While the results of file reads and writes seem to support the feasibility of the 

PXFS file system, it is also important to consider the potential performance of metadata 

 
Figure 4.9 – Effect of computation time on apparent I/O time in PXFS and OrangeFS. 
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operations. Many parallel applications not only read and write large amounts of data, but 

also create, update, and remove potentially large numbers of files and directories. Thus, 

poor metadata performance can drastically reduce the overall performance of many 

parallel applications. OrangeFS and PXFS applications were developed which perform a 

sequence of metadata operations to determine the comparative performance of each file 

system. The metadata operations tested include: file create, file open, file close, file 

truncate, file stat, file remove, directory create, and directory remove.  

The average time to complete each metadata operation for both file systems is 

given below in Table 4.4, as well as the percentage decrease in operation time from the 

PXFS library to the OrangeFS library. These results indicate minimal performance 

differences between the two file systems, with OrangeFS offering better performance for 

half of the operations (file create, file open, file close, and file stat) and PXFS offering 

better performance for the other half (file truncate, file remove, directory create, and 

directory remove). OrangeFS offers particularly high percentage increases for file opens 

and file stats, but there is only a negligible 70 microsecond and 180 microsecond 

difference for these operations, respectively, compared to PXFS. We conjecture that 

OrangeFS likely offers higher metadata performance for metadata operations whose 

minimal computational complexity suffer from the overhead of the high-level state 

machines used in PXFS.  
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4.3 File Operation Blocking Time Results 

Another important requirement of the ParalleX I/O model is the minimization of 

the blocking time necessary for submitting file operations to the underlying file system. 

Lower blocking times mean higher computational efficiency for applications, as 

application threads spend less time waiting for the file system to relinquish control of 

processing resources. Ideally, the blocking time required for an asynchronous file system 

operation should remain constant independent of the type of request (I/O or metadata), 

the size of an I/O request, and the number of simultaneous threads accessing the file 

system. To determine the blocking characteristics of PXFS we simply measured the 

average blocking time for a range of operations and compared them to the average 

blocking times achieved using OrangeFS.  

Metadata Operation 

OrangeFS 

Operation Time 

(ms) 

PXFS Operation 

Time (ms) 
Percentage Decrease 

File Create 3.75 3.76 -0.27 

File Open 0.21 0.28 -33.33 

File Close 6.59 6.82 -3.49 

File Truncate 2.59 2.58 0.39 

File Stat 0.93 1.11 -19.35 

File Remove 3.26 3.22 1.23 

Directory Create 3.39 3.19 5.9 

Directory Remove 3.32 2.93 11.75 

 

Table 4.4 – OrangeFS and PXFS file metadata performance comparison.  
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Figure 4.10 shows the comparative blocking times of file read operations using 

PXFS and OrangeFS. Similarly, Figure 4.11 shows the comparative blocking times of file 

writes using both file systems. These graphs clearly illustrate the disparity of the blocking 

times between each file system, with OrangeFS blocking times growing proportional to 

the block size of the I/O operation and PXFS blocking times remaining constant 

independent of the referenced block size. This was expected, as OrangeFS blocking times 

are directly related to the time required to manage the transfer of file data to or from the 

file server. On the other hand, PXFS blocking times depend solely on the time required to 

copy functional parameters, obtain a mutex lock, and add the file operation to the AIO 

subsystem waiting queue. The obtained results indicate the average blocking time for a 

PXFS file operation is consistently less than a microsecond, orders of magnitude less than 

that of an identical OrangeFS file operation. Also, since the critical section of submitting 

a PXFS operation only involves adding the operation to the tail of the waiting queue, the 

 
Figure 4.10 – OrangeFS and PXFS blocking times for file reads. 
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blocking time exhibits little variance, regardless of the number of application threads 

accessing the file system. Thus, it can be seen that PXFS I/O library definitively satisfies 

the blocking requirements of a ParalleX application, allowing application threads to 

achieve maximum processor utilization.  

  

4.4 Effect of PXFS Continuation Complexity 

Before presenting any conclusions, it is important to consider the unobvious effect 

high complexity continuation functions have on the overall performance of the file 

system. Since the AIO subsystem is currently designed to execute given continuations 

using the progress thread, the performance of the file system will suffer if these 

continuations consume too many compute cycles. To confirm this, a series of tests were 

run in which I/O operations specified continuation functions that required increasing 

 
Figure 4.11 – OrangeFS and PXFS blocking times for file writes. 



 63 

amounts of execution time. These results were then analyzed to determine the extent of 

file system performance degradation caused by complex continuation functions.  

The resulting performance of the PXFS file system when subjected to varying 

amounts of continuation complexity is given below in Figure 4.12. As projected, file 

system performance degrades proportional to the amount of computation performed in 

specified continuation functions. This suggests programmers should explicitly design 

PXFS applications to utilize continuations with minimal computational requirements. 

However, this requirement can severely limit the expressability of PXFS applications and 

place unnecessary burden on application developers. The most sensible way to avoid this 

problem is to implement a thread manager for controlling the execution of user 

continuations, such that continuations of arbitrary complexity may be specified with 

limited impact on file system performance. Since the ParalleX execution model defines 

such a thread manager, this requirement can be easily satisfied when PXFS is fully 

 
Figure 4.12 – PXFS throughput versus continuation computational complexity. 
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integrated with ParalleX. As mentioned earlier, this is our first PXFS prototype and is 

intended to simply determine the feasability of our file system design – further 

performance enhancements may be realized (such as the utilization of ParalleX threads 

and thread management) in future PXFS implementations. 
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Chapter 5 

Conclusion 

 

We have identified the necessary characteristics for an I/O subsystem satisfying 

the I/O model required by ParalleX, a proposed exascale parallel execution model. These 

characteristics were integrated into the OrangeFS file system, resulting in our first 

implementation of the ParalleX File System (PXFS). Performance results obtained using 

PXFS confirmed our initial hypothesis that an existing parallel file system may be easily 

modified to meet the semantics of future exascale execution models, which attempt to 

achieve exaFlops of performance in part by addressing the inherent inefficiencies of I/O 

subsystems by explicitly masking the high latency of remote file system operations.  

Specifically, we have shown that our initial PXFS prototype offers increased file 

read and write performance relative to OrangeFS, an already well-established high 

performance file system. Also, PXFS provides comparable performance to OrangeFS for 

metadata operations, an important requirement for applications which create or modify a 

large number of files or directories simultaneously. These results suggest that PXFS is a 

suitable I/O subsystem for exascale workloads, which demand high-concurrency, high-

performance management of file data and metadata. 
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More importantly, our results prove that PXFS directly supports the advanced 

semantics required by exascale applications, and in particular ParalleX applications. 

Specifically, PXFS offers a wide range of asynchronous file operations within a well-

defined user interface. These asynchronous operations allow computation to be easily and 

efficiently overlapped with necessary file system communication with limited 

programmer intervention. The utilization of user-specified continuations allows for the 

execution of arbitrary functions immediately upon the completion of file system 

operations, leading to much more expressive parallel applications. Also, the low overhead 

incurred by the PXFS I/O library limits blocking time as seen by ParalleX threads, 

allowing for higher utilization of processing resources. 

 

5.1 Future Work 

While the results obtained from our first implementation of PXFS support the 

feasibility of our design, there is still room for further research and improvements. As 

mentioned previously, PXFS performance could benefit from a tighter integration with 

the ParalleX execution model. In particular, PXFS may be redesigned to explicitly utilize 

ParalleX threads and parcels. The ParalleX thread manager may allow application threads 

and the PXFS progress thread to be scheduled in a more efficient and cooperative 

manner. A more intelligent thread manager could help alleviate the performance issues 

that arise from continuations with high computational complexity, as discussed in Section 

4.4. Also, modifying PXFS to directly utilize ParalleX parcels could lead to further 

performance improvements, as they may be used by the file servers to deliver file data 
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directly to ParalleX threads or to seamlessly migrate stored data between servers. 

Ultimately, our goal is to offer the same execution model semantics for objects stored on 

disk as in-memory objects, effectively unifying the namespace of local memory and 

remote storage devices in exascale parallel systems.   
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