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ABSTRACT 

Obesity is an increasing health problem in the US, associated with such dangerous 

health risks as heart disease and diabetes.  Self-monitoring in the form of calorie counting 

is a critical aspect of successful weight loss.  However, calorie estimations are subject to 

several perceptual and cognitive biases, and there are limited tools available to assist 

these estimations.  The present study seeks to assess the accuracy of participants’ 

estimations of the calorie content of meals in the presence or absence of calorie 

information, and to compare their accuracy with calorie estimations based on bite count.  

Data were analyzed for 87 participants from a study in which participants were allowed 

to select from a wide variety of meals in a cafeteria setting, which they consumed while 

wearing a device designed to count bites of food. They were asked to estimate the 

number of calories they consumed either with or without calorie information available.   

True calorie intake and a calorie intake estimation based on bite count were calculated for 

each participant.  A 2x2 Mixed-Design ANOVA revealed a significant main effect for 

estimation method (F(1, 83) = 14.381, p < .001), a marginally significant effect for the 

presence of calorie information (F(1, 83) = 3.835, p = .054), and a significant interaction 

between estimation method and the presence of calorie information (F(1, 83) = 6.384, p < 

.05).  Post-hoc tests revealed that errors in human calorie estimations were significantly 

improved by the presence of calorie information (t(45.89) = -2.731 p < .01).  Calorie 

estimations based on bite count were significantly more accurate than human estimates 

without the aid of calorie information (t(32) = -3.578, p < .005), but there was no 

significant difference between estimations based on bite count and human estimates with 
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the aid of calorie information (t(52) = -1.116, p = .270).  The results suggest that bite 

count may aid individuals with calorie estimation when other aids are unavailable or be a 

less burdensome alternative to certain calorie estimation aids. 
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INTRODUCTION 

Objective 

 The purposes of this study were to: 1) examine the accuracy of individuals’ 

estimations of calories eaten during a meal with and without the presence of a menu 

containing calorie information; and 2) compare the accuracy of an individualized bite-

based measure of calorie intake to individuals’ estimates.  

The Obesity Epidemic 

 Since the 1980’s obesity has increased dramatically to the point of being labeled a 

national epidemic.  The most recent annual National Health and Nutrition Examination 

Survey (NHANES) report states that currently a third of the U.S. population is classified 

as overweight (having a body-mass index between 25 and 29.9 kg/m
2
), and another third 

is classified as obese (having a body-mass index of greater than or equal to 30 kg/m
2
) 

(Flegal et al., 2010).  Obesity is associated with numerous health risks, including high 

blood pressure, coronary heart disease, and diabetes (Pi-Sunjyer, et al. 1998).  Total 

medical costs associated with obesity in 2008 were estimated at $147 billion, with 

average insurance payouts being $1,429 higher for obese than non-obese patients 

(Finkelstein et al., 2009).   

Despite increasing social awareness, the rise in the prevalence of obesity is 

showing no signs of slowing down (Flegal, 2005).  Societal and personal level 

interventions to counter the increase in obesity are confounded by an increase in 

restaurant portion sizes, easy access to foods high in calorie content, and lifestyles that 
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have led to an increased reliance on restaurants and fast foods rather than home cooked 

meals (Ello-Martin et al., 2005; Rolls et al., 2002; Rosenheck, 2008; Young & Nestle, 

2003).  Efforts to solve the societal problems associated with the obesity epidemic by 

increasing awareness and encouraging healthy lifestyles have had little influence on the 

national trend towards overweight and obesity.  However, a variety of interventions at the 

individual level have been shown to be effective. 

Interventions 

 The various interventions aimed at combating obesity for individuals tend to fall 

into one of three categories: surgical, pharmaceutical, and behavioral.  Bariatric surgical 

procedures, such as gastric bypass surgery, vertical banded gastroplasty, and the 

adjustable gastric band, manage obesity be restricting appetite.  The surgical treatment of 

obesity is currently the most effective method of treating severely obese patients (those 

with a BMI of 40 kg/m
2
 or greater) (Maggard et al. 2005).  While bariatric surgery has 

advanced to the point that morbidity rates are as low as 1%, there is still a tradeoff in 

quality of life, and should only be considered as a last resort for patients with BMIs 

higher than 40 kg/m
2
 (Bult et al., 2008; Karlsson et al., 2007; Maggard et al., 2005).  

Drug treatments have been shown to slightly increase weight loss when coupled with 

behavioral treatments.  However, these are only effective as assistants to behavioral 

interventions, and can be dangerous if used by patients with various comorbidities 

associated with obesity, such as hypertension, dyslipidemia, CHD, type-2 diabetes, and 

sleep apnea (Pi-Sunyer et al., 1998). 
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 Behavioral interventions attempt to combat obesity by reinforcing behaviors that 

lead to a negative energy balance, such as healthy eating and high levels of physical 

activity, and discouraging behaviors that lead to a positive energy balance, such as 

overeating, emotional eating, and sedentary lifestyles.  The term ‘energy balance’ 

describes the relationship between energy intake (EI) during eating, in the form of 

calories or kilocalories, and energy expenditure (EE),  a summation of an individual’s 

energy usage due to physical activity and metabolism. Calories come in the form of three 

macronutrients in human metabolism: protein, carbohydrate, and fat.  A positive energy 

balance occurs when more calories are being brought into the body than are being used, 

and results in the storage of energy.  Excessive energy storage leads to overweight and 

obesity.  A negative energy balance occurs when more calories are being burned than are 

being stored, resulting in weight loss.  While this relationship is generally true, recent 

studies have found differences in calorie-reduced diets emphasizing the reduction of one 

macronutrient over another, indicating that the different sources of calories may not be 

equal when it comes to energy balance, either through differences in thermodynamic 

efficiency or psychological cues, such as satiety (Buchholz & Schoeller, 2004; Fine & 

Feinman, 2004; Schoeller & Buchholz, 2005). 

Behavioral interventions prescribe the use of low calorie diets and reduced 

portion sizes to decrease calorie intake.  Low calorie diets result in weight loss of an 

average of 8% body weight within a year (Pi-Sunyer et al., 1998).  Physical activity can 

help contribute modestly to weight loss, but is primarily helpful in reducing some of the 

risk factors associated with obesity.  Physical activity is most effective when combined 
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with low calorie diets, as it can lead to improved weight loss maintenance (Pi-Sunyer et 

al., 1998).  The primary weakness of behavioral interventions is that compliance rates 

tend to be low, as does weight-loss maintenance beyond the first year.  Nevertheless, due 

to the low risk-levels and significant results in those who remain compliant, the 

behavioral treatment of obesity is still the recommended method for treating obesity in 

overweight and obese people with BMIs lower than 40 kg/m
2
 (Burke et al., 2009; Foster 

et al., 2005). 

Factors that Influence the Success of Behavioral Interventions 

 There are various factors that can contribute to both the short term and long term 

success or failure of behavioral weight-loss interventions.  While the short term 

effectiveness of behavioral interventions has shown steady improvement in recent years, 

those who have received treatment are still having trouble maintaining weight loss after a 

year (Pi-Sunyer et al., 1998).  A few factors have been shown to increase the likelihood 

of long term weight loss maintenance including: encouraging physical activity; 

prolonging the duration of the weight-intervention programs; and continuing counseling 

upon completion of the program (Svetkey et al., 2008).  Svetkey et al. (2008) also found 

that those who adhere to and complete weight-intervention programs are more likely to 

maintain weight loss than those who do not complete them.  In addition, Wing & Hill 

(2001) found that if weight loss is maintained for a set duration (2 to 5 years), then 

success rates for weight loss maintenance for even longer durations is increased 

dramatically, suggesting that healthy habits that maintain healthy weight levels have been 
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formed.  Many of the factors that are indicative of short term success also influence long 

term success, including physical activity levels and positive reinforcement through 

counseling (Burke et al., 2009).  According to Foster et al. (2005), successful weight loss 

requires “significant planning, proficiency in making healthy choices and estimating 

portion sizes, and diligence in monitoring calorie intake and activity,” leading most 

researchers to investigate ways of making these things easier.   

Perhaps the most critical component of successful behavioral interventions is 

consistent and frequent self-monitoring of EI (Burke et al., 2009).  Baker & 

Kirschenbaum (1998) found that during a weight loss intervention, only the participants 

who most consistently monitored intake were able to lose weight during the holiday 

weeks, whereas those with lower consistency gained up to five times as much weight 

during the holiday weeks compared to non-holiday weeks.  Likewise, Burke et al. (2008) 

found that frequency of food diary use correlated significantly with weight loss. 

Monitoring Energy Intake 

 The accurate monitoring of EI is important to both researchers who are studying 

eating behavior and individuals who are trying to lose weight.  In laboratory and clinical 

studies, EI is easily monitored through direct observation.  However, in field studies and 

behavioral interventions, more indirect methods must be used which have varying levels 

of accuracy and cost.  

 The most accurate method of measuring EE in the field is the doubly labeled 

water (DLW) method.  DLW has also been used to indirectly measure EI by combining 



6 
 

EE with weight gain or loss to derive EI.    DLW has been shown to estimate EI within 

2% to 8% in inpatient clinical studies and within 8% to 15% in field studies (Black & 

Cole, 2000; Schoeller, 1988).  Because of its high degree of accuracy, the DLW method 

is often used as an EI benchmark to compare other methods against (Johnson et al., 1994; 

Muhlheim et al., 1998; Speakman & Thomson, 1997; Tooze et al., 2004).  However, 

because of the high costs associated with obtaining the isotopes, the DLW method is only 

available to the most well-funded and equipped laboratories and clinics.  Many 

researchers fall back on the use of various methods of self-monitoring to obtain estimates 

of free-living EI such as food diaries. 

Methods used to Self-Monitor 

 Self-monitoring and self-reporting are often used to estimate the EI of participants 

outside of laboratory or clinical settings.  Self-reports come in the form of food diaries, 

food frequency questionnaires, and 24-hour dietary recalls.  Food frequency 

questionnaires are designed to assess usual EI over a given period of time, but are subject 

to large amounts of systematic and random error (Subar et al., 2003). Food diaries require 

participants to write down exactly what they ate and how much of each item they ate after 

every meal.  These records are later reviewed by experts who then derive EI.  However, 

in an early study assessing the validity of food diaries, Lansky & Brownell (1982) found 

that only 53% of food reports in the study were specific enough to allow for accurate 

estimates of calorie intake.  24-hour dietary recalls have many of the advantages of food 

diaries, in that they can get meal-specific calorie counts, and they do not burden the 
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participant with filling out a report after every meal.  However, these require participants 

to make the same estimations that food diaries require (i.e., foods chosen and portion size 

consumed), and they rely on the participant’s accurate memory rather than the immediate 

recall of diaries.  Subsequently, users tend to underreport on these as well (Johansson, 

Wikman, Ahren, Halllmans, & Johansson, 2001). 

Despite their shortcomings, self-reports do provide some general information 

about EI, and can greatly improve the success of behavioral interventions.  The act of 

self-monitoring itself is enough to facilitate weight loss, even if the food records are 

abbreviated or inaccurate (Helsel et al., 2007).  However, when using self-reports, 

participants notoriously underreport EI.  This may be due to a variety of factors, 

including portion size underestimation, forgetting, and intentional misreporting 

(Lichtman et al., 1992; Livingstone & Black, 2003; Martin et al., 1996; Muhlheim et al., 

1998; Rumpler et al., 2008; Subar et al., 2003; Tooze et al., 2004; Trabulsi & Schoeller, 

2001).  Underreporting can range from 20% for normal weight individuals up to 50% for 

overweight individuals (Schoeller et al., 1995).  Underreporting persists even after 

receiving training in the use of food records (Mertz et al., 1991).  

While participants do not make calorie estimations during self-monitoring for 

behavioral interventions, it is a critical part of the everyday self-monitoring of someone 

who is trying to monitor their energy balance outside of structured, behavioral 

interventions.  Even in interventions, accurate portion size estimations on the part of the 

participant are critical for transforming the reports into a measure of EI.    While self-
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reporting and calorie estimation are technically two different processes, errors in both can 

be explained by many of the same influences (Martin et al., 2007).  Additionally, while 

self-reporting has been studied extensively, few studies have directly examined how 

accurately people can estimate the calorie content of meals.  An appropriate 

understanding of the factors that influence self-reporting and calorie estimation is 

necessary for improving the methods currently used for self-monitoring. 

Calorie Estimation 

A kilocalorie (kcal, or Calorie) is a metric unit of energy measurement defined as 

the amount of heat needed to raise the temperature of 1kg of water 1
o
 Celsius and is 

currently the most popular form of food energy measurement in nutritional research and 

nutrition labeling in the United States (Hargrove, 2006).  Since the 1990 Nutrition 

Labeling and Education Act, all food manufacturers have provided nutrition labeling 

showing calorie content on nearly all packaged food (Backstrand et al., 1997).  However, 

many people do not have an understanding of the appropriate number of calories an 

average adult should be consuming on a daily basis.  Elbel (2011) found that only one 

third of respondents to a survey properly responded that adults should consume, on 

average, around 2,000 calories daily.   

Intake monitoring is an essential part of reducing EI in order to lose weight and 

counting calories is the most common method for monitoring intake.  Counting calories 

requires the dieter to make estimations of portion sizes and to have knowledge of the 

relative energy density (ED), or ‘calories per gram,’ of the food. Accurate calorie 
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counting requires multiplying the portion size of each individual food item, typically 

established by weighing the food, by its ED.  However, weighing individual foods and 

looking up their EDs is cumbersome and not practical for daily calorie counting.  Most 

people make estimations of calorie content of meals by guessing portion sizes relative to 

assumed standard serving sizes, or by simply relying on their own knowledge and simple 

heuristics (Carels et al., 2006).   

As with self-reporting, studies have shown that participants perform poorly when 

estimating the calorie content of meals.  For example, Stanton & Tips (1990) found that 

only 28% of participants were able to estimate within 100 kcals of actual calorie content. 

While calorie estimation hasn’t been studied as extensively as self-reporting, errors in 

calorie estimation have been shown to be associated with many of the same factors 

associated with inaccurate self-reporting (Chandon & Wansink, 2007; Stanton & Tips, 

1990; Wansink, 2006).  These factors include BMI, portion size and portion size 

estimation, perceived ‘healthiness’ of food items, and diet history (Carels et al., 2007; 

Chandon & Wansink, 2007; Harris & George, 2010; Stanton & Tips, 1990).  However, 

other factors, such as forgetting and intentional misreporting, are specific to self-reports 

and do not contribute to calorie estimations.   

Factors Associated with Errors in Self-Reporting and Calorie Estimation 

Association with BMI.  Studies investigating the changes in the accuracy of 

calorie estimations and the extent of underreporting intake associated with BMI have 

reported mixed results.  Kretsch et al. (1999) found that obese participants underreported 
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calorie intakes by 10% more than normal weight participants.  Likewise, Johnson et al. 

(1994) found that as BMI increased, so did the amount of error in reporting intake.  

However, this effect was only found for women.  Stanton & Tips (1990) found that 

higher BMI resulted in overestimations of calories.  Carels et al. (2006) found that people 

with a higher BMI tended to have lower calorie estimation accuracy.  However, Carels et 

al. (2007) found no difference between overweight and normal weight participants’ 

calorie estimations.  Likewise, Martin et al. (1996) found no relationship between 

underreporting and BMI. 

 It is possible that results showing a relationship between calorie estimation and 

BMI are being mediated by portion size. Wansink and Chandon performed two studies 

investigating the relationship between BMI and calorie estimations and found that 

accuracy declined as BMI rose, but this effect disappeared once portion size was added as 

a covariate (Chandon & Wansink, 2007, Wansink & Chandon, 2006).  

Portion Size Estimation.  Perhaps the most significant contributor to inaccurate 

calorie estimations is poor estimation of portion size.  Portion estimations depend on 

human size and volume perception, which is subject to error, biases, illusions, and 

oversimplified heuristics.  In an early study on human size perception, Teghtsoonian 

(1965) found that apparent size increases with actual size by a power function of about 

0.6, meaning that an object looks like it increases in size more slowly than it actually 

does.  This can lead to perceptual underestimations of portion size. 
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Most studies have shown declining portion estimation accuracy with increases in 

portion size.  Chandon & Wansink (2007) found that sensitivity to changes in meal size 

decreases with meal size, implying that estimations of absolute portion size (and 

subsequently overall calorie content) would decrease in accuracy with increases in meal 

size. Oddly enough, the findings that accuracy decreases with increases in portion size do 

not hold true for all studies investigating calorie estimation. Holmstrup, Stearns-

Bruening, & Fairchild (2008) found that participants were more accurate at estimating the 

calorie content of large meals than that of small meals.  

Several studies have shown that food shape can have a significant impact on 

portion size perception.  Chandon & Ordabayeva (2009) found that consumers perceive 

changes in all three dimensions (length, width, and height) to be less dramatic than 

changes of equal volumes in only one dimension, showing that human volume 

perceptions are not influenced by all dimensions the same.  Specifically, when a glass is 

increased in height by the same volume as another glass that is increased in width and 

height, we perceive the change in height alone to be a more dramatic change than the 

change in both height and width.  Garber et al. (2008) found that package shape can also 

affect volume perceptions.   In a study investigating the effects of breaking a fixed 

portion into more numerous, smaller pieces, Scisco et al. (2012) found that participants 

perceived a fixed amount of Jell-O to be a larger portion when it was split into several 

smaller pieces. 
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Some researchers refer to errors in portion size estimation as the result of 

heuristics and biases.  Raghubir and Krishna (1999) found that height is a vital dimension 

used as a simplifying heuristic to make volume judgments.  However, height has a 

negative effect on perceived consumption, but a positive effect on actual consumption. 

Geier & Rozin (2009) found that estimators tend to devalue portion size in making 

calorie estimations; that is, people tend to give more weight to other factors such as 

‘healthiness’, and devalue or disregard portion size.  In this example, when making 

calorie estimations participants increased their estimations to a much smaller magnitude 

due to portion size changes than they did for changes in the ED of foods. 

Various other factors can contribute to the accuracy of portion size estimations.  

External influences, such as advertising claims, can also have a significant effect on 

portion size perceptions.  Size labels that infer smaller portion size (such as “bite size”) 

can lead consumers to underestimate portion size and, subsequently, eat more (Aydinoglu 

& Krishna, 2010).  However, participants still feel like they’ve eaten less than they did 

when eating out of a package with no size claims.  Yuhas et al. (1989) found that training 

could also improve portion size estimation accuracy. 

The effect of diet history.  There is some evidence that people can be trained to 

improve their calorie and portion size estimations (Martin et al., 2007).  Dieticians are 

better at estimating EI because of their familiarity with counting calories (Champagne et 

al., 2002).  Aoki et al. (2006) found that trained dieticians could estimate the calorie 

content of meals with an accuracy of around 85%.  Carels et al. (2007) found that dieters 
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were more accurate at estimating calories than non-dieters.  Visona & George (2002) 

examined the accuracy of calorie estimations among dieters and non-dieters.  They found 

that while dieters are better at estimating calorie intake than non-dieters, they still 

underestimate by about 30% compared to non-dieters who underestimated EI by about 

40%.  Stanton & Tips (1990) found that those who reported disordered or restricted 

eating had a tendency to overestimate the calorie content of foods, providing evidence 

that being conscious of a food’s energy content doesn’t necessarily improve accuracy. 

Harris & George (2010) found that men underestimated calories by approximately the 

same amount regardless of physical activity levels. 

The effect of gender.   A small number of studies have investigated the 

relationship between gender and knowledge about daily energy requirements, energy 

balance, and calorie intake.  Most significantly, Krukowski, Harvey-Berino, Kolodinsky, 

Narsana, and DeSisto (2006) examined the relationship between gender and an 

understanding of daily energy requirements and nutrition labeling use among college 

students and community members.  They found that only 61.2 percent of men could 

accurately state typical daily energy requirements (2000 kcals) to within plus or minus 

500 kcals, compared to 80.9% of college females.  Furthermore, 64 percent of college 

males reported that they would not use nutrition labeling information even if it was 

presented to them compared to 28.4 percent of college females. 

The effect of nutrition labeling.  Another factor that contributes to calorie 

estimation, and subsequently accurate self-monitoring, is the presence or absence of 
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nutrition labeling. The effect of Nutrition Labeling on self-monitoring has not been 

extensively studied because it is not relevant to most forms of self-report used for 

behavioral interventions.  However, nutrition labeling is the most readily available source 

of calorie information for most meals, and is one of the most critical factors in 

determining energy intake outside of structured behavioral interventions.  That is, it is the 

primary means of determining the calorie content of a meal for routine monitoring of EI. 

In an effort to curb the obesity epidemic, legislation has been passed in many 

states requiring chain restaurants to post nutrition labeling information on their menus 

(Berman & Lavizzo-Mourey, 2008; Burton et al., 2006).  The effectiveness of this 

method hinges on several assumptions (Roberto et al., 2009).  First, nutrition labeling 

must be accurate to the actual nutrition content of the meals.  Urban et al. (2011) 

measured the actual calorie content in a fast food chain using a bomb calorimeter and 

found that, with the exception of a few menu items, actual calorie content was very close 

to the labeled calorie content.  Second, people need to have an understanding of healthy 

calorie intake levels, and be willing to use nutrition labeling.  In a study investigating the 

potential effectiveness of menu labeling, Krukowski et al. (2006) found that around 50% 

of respondents reported that they wouldn’t even use the labeling information if it were 

available in restaurants.  Third, people have to be willing to alter their food choices.  

Several studies have shown that the presence of nutrition labeling information has had 

minimal effect on food choices (Elbel et al., 2009; Elbel, 2011).  However, other studies 

have shown the opposite.  For example, Bollinger, Leslie, & Sorensen (2010) found that 

the presence of nutrition labeling reduced calories per transaction by 6% at a Starbucks. 
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Despite the requirements of the 1990 Nutrition Labeling and Education Act, there 

are still questions about how much nutrition labels utilized in monitoring EI and how 

easily they are understood.  According to the 2005 - 2006 National Health and Nutrition 

Examination Survey, 61.6% of U.S. citizens report using nutrition labels (Ollberding et 

al., 2010).  Also, women, people with higher education, and individuals with higher 

income levels are more likely to report nutrition label use, and people who report using 

nutrition labeling also report lower levels of EI. 

 Even though the effectiveness of the use of nutrition labeling in altering food 

choices remains inconclusive, nutrition labeling has been shown to improve calorie 

estimations.  After the use of calorie content information on menus was mandated in New 

York City, Elbel (2011) found that the number of people who were able to estimate the 

calorie content of their fast-food meals to within 100 kcals increased from 15% before 

labeling to 24% after labeling.  Roberto et al. (2010) found that nutrition labeling 

improved calorie estimations, reduced the number of calories ordered and consumed, and 

reduced calories consumed later in the day. 

New Self-Monitoring Tools 

There is a dire need for tools that can accurately monitor EI in a field setting.  

More accurate clinical methods, such as the DLW method, are too costly and impractical 

for use by individuals.  Other more commonly used methods, such as 24-hour dietary 

recalls and food frequency questionnaires, rely on human memory and perception, and 

are notoriously inaccurate.  Traditional pen-and-paper methods of self-monitoring 
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increase both the short-term and the long-term success of weight loss, but can discourage 

compliance because they are burdensome to remember and use (Burke et al., 2009).  

Newer methods attempt to improve compliance, convenience, and accuracy by 

automating part or all of the dietary assessment process. 

Automated self-reports.  Automated self-reports are digitized versions of their 

pen-and-paper or interview counterparts, and include tools such as web-based 24-hour 

dietary recalls and PDA-based food records.  Digital food records offer the advantages of 

ease of entry, alerting the user to enter meals, and providing feedback in real time 

(Beasley et al., 2005).  Additionally, they are portable, socially acceptable, and they can 

also make it so that the user doesn’t need to look up the calorie content of each food item, 

increasing convenience and compliance (Burke et al., 2009). 

Beasley, Riley, & Jean-Marie (2005) assessed the accuracy of a PDA-based food 

record, finding that it correlated moderately with a 24-hour dietary recall (r = .713) and 

observed intake (r = .720), showing good agreement with both.  Fifty percent of the error 

in the PDA assessment was due to portion size estimation error, and omissions and 

misreporting of food items accounted for the other fifty percent.  

Unfortunately, automated self-reports fail to eliminate many of the problems with 

pen-and-paper methods and bring some new problems to the table.  Some participants 

find the software on these PDA-based food records to be difficult to use (Burke et al., 

2009).  There is a tradeoff between accuracy and convenience; as automated food records 

get more detailed and accurate, it becomes more difficult to navigate through the food 



17 
 

selection menus (Chen, Lee, Rabb, & Schatz, 2010).  Also, despite the added 

convenience, digital food records have been shown to be subject to many of the same 

sources of error as pen-and-paper methods, such as inaccurate portion size estimation, 

forgetting, and underreporting (Ngo et al., 2009).  Beasley et al. (2005) found comparable 

errors in dietary intake estimation using a PDA based assessment program due to errors 

in portion-size estimation.   

Digital photography.  Digital photography is a new method for monitoring EI in 

the field that attempts to mimic direct observation.  Participants take pictures of their own 

meals, and the pictures are sent to a nutritionist via the web for nutritional analysis.  Over 

the past ten years, several studies have attempted to validate the use of digital 

photography by comparing it to other methods used for determining EI in the field.  

Williamson et al. (2003) found nutritionist analysis of portion sizes, plate waste, and food 

intake to be highly correlated with weighed calculations.  Aoki, Nakai, and Yamauchi 

(2006) found that dieticians and licensed nutritionists were able to estimate the calorie 

and protein content of digital pictures with an accuracy of about 85%.  Martin et al. 

(2007) validated the digital photography method as a means of monitoring food intake in 

children, finding strong inter-rater reliability and accuracy among dieticians for the use of 

digital photography for estimating macronutrient intake.  Matthiessen et al. (2011) found 

that nutritionist estimations based on digital photography correlated strongly with 

estimations based on food records.  Martin et al. (2009) used digital photos taken with a 

camera phone, estimating EI to within 6.6% in free-living environments. 
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 The digital photography method allows for accurate estimation of calorie content 

for meals in a field setting.  However, it requires the use of trained dieticians to analyze 

the photographs and estimate calorie content.  Recently, pattern-recognition software has 

been incorporated into the digital photography method to attempt to automate the 

nutritional analysis aspect of the digital photography method (Martin, Kaya, & Gunturk, 

2009).  While this method is still being developed, and as of yet has limited applicability, 

it shows great potential as a device that may assist the routine self-monitoring of energy 

intake. 

Devices for monitoring ingestive behavior.  With the exception of the DLW 

method, methods for monitoring EI in the field and for routine self-monitoring rely on 

subjective estimations and reporting, which are themselves subject to cognitive and 

perceptual limitations.  One way to get around this subjectivity is to develop devices that 

can directly monitor ingestive behavior and translate that into a measure of energy intake.  

Lopez-Meyer, Schuckers, Makeyev, & Sazonov (2010) describe devices for monitoring 

ingestive eating behavior as “objective tools… that can detect and characterize food 

intake.”  Lopez-Meyer et al. (2010) describe a device that can detect food intake with an 

accuracy of 94% by using a device that detects chewing and swallowing.  Unfortunately, 

this tool has yet to be studied as a device for estimating calorie intake.  Another tool that 

offers the potential of objectively and automatically calculating energy intake through 

monitoring ingestive behavior is the Bite Counter, developed by Hoover, Muth, & Dong 

(2010).  The Bite Counter tracks the ingestive behavior of taking a bite of food, where a 

bite is defined as putting food in the mouth. 
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Present Study 

Routine, personal self-monitoring outside of behavioral intervention programs 

requires people to estimate portion size and relative energy density to determine the 

overall calorie content of the meal.  Generally, the only tools available to assist in 

measuring portion size are normal kitchen measuring utensils.  Often, these will be 

neglected in favor of simple portion size estimations (e.g. “this looks like about a serving 

and a half”).  Portion size estimations are affected by a variety of factors.  Information 

about relative energy density must be gathered (in most cases) from nutrition labeling if it 

is present, or from personal estimations if no nutrition labeling is available.  ED 

estimations are themselves subject to perceptions of healthfulness.  The wide margins of 

error tend to lead towards generally poor overall calorie estimations. 

The present study examined how calorie estimation accuracy is affected by the 

presence of calorie information.  Since nutrition labeling has been shown to increase 

accuracy of calorie estimations, if calorie information is not given, then accuracy should 

decline.   

This study compared calories as estimated by humans in the previously mentioned 

conditions (calories per serving information present and absent) and compared them to an 

estimate of EI derived from bite count.  Bite count is a largely unstudied, physiological 

measure that has the potential to serve as a proxy for EI.  A recent dissertation by one of 

our lab members examining bite count and energy intake over a two week period found 

an average of 15 calories-per-bite for women and 18 calories-per-bite for men, and this 
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ratio could be further refined by accounting for gender, age, height, and weight (Scisco, 

2012).  Further evidence for the relationship between bite count and EI is needed to 

assess its utility for monitoring EI.  Specifically, a bite count proxy for EI needs to be 

compared to human estimations of EI with varying levels of information.  If calorie 

estimations based on bite count can be shown to be more accurate than individual 

estimates with and without calorie information present, then a device that monitors bite 

count could be used to monitor free-living EI and improve currently available calorie 

estimation methods. 

Hypotheses 

There were two primary hypotheses of this study: 1) Human estimates of calorie 

intake would be better in the presence of calorie information than in its absence, 2) An 

estimation of calorie intake derived from bite count using the previously mentioned 

equations would be more accurate than a human’s ability to estimate calorie intake, at 

least in the absence of calorie information. There was also a third, secondary hypothesis: 

3) In line with previous research, human calorie estimates will be related to BMI, caloric 

intake, body fat %, and gender.  
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METHOD 

Participants 

 Participants were recruited from the student population of Clemson University 

and the surrounding area via fliers, e-mails, and word of mouth.  Participants were given 

$10 and offered a free meal for participating in the study.  Those with a self-report 

history of eating disorders were excluded from the study.  Participants were also screened 

to achieve a demographic spread that was representative of the area population. 

Of the 361 participants who volunteered and completed the online pre-screening 

survey, a total of 280 participants were enrolled in this study. Data were excluded from 

193 participants:  7 because of faulty recordings, 2 because they did not provide calorie 

estimations and 184 because we could not confidently determine their actual calorie 

intake, leaving a sample size of 87 (48 male) for analysis.  Participants had a mean age of 

27.38 (SD = 11.10, range = 18 to 63). Nine identified themselves as African American, 

12 as Asian or Pacific Islander, 62 as Caucasian, 2 as Hispanic, and 2 as other.  Seven 

participants were left-handed.  Participants had a mean body fat percentage of 22.8 (SD = 

8.95, range = 6.4 to 42) and a mean BMI of 24.96 (SD = 4.92, range = 17.4 to 46.2).   

Design 

 This study was a mixed design.  There was one between-subjects variable, calorie 

information (CI) presence, with two conditions: CI given and CI not given.  Both 

conditions also had a within-subjects variable with two conditions: human calorie 

estimation error (HCE error) and bite count calorie estimation error (BCE error).  
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Additional analyses were performed to examine the relationship between BMI, body fat 

percentage, gender, and calorie intake and HCE error and BCE error. 

It is important to distinguish between HCE and HCE error, as well as between 

BCE and BCE error.  HCE is the human’s estimate of their caloric intake, whereas HCE 

error is HCE minus actual calorie intake.  BCE is the bite count based estimated of 

caloric intake and BCE error is BCE minus actual calorie intake.  HCE error and BCE 

error provide an estimate of the method’s accuracy for an individual participant.  For 

example, if a participant ate 750 kcals and their HCE was 1000 kcals, their HCE error 

would be 250, showing an overestimate of 250 kcals.   It is also important to note that 

while an automated measure of bite count was obtained, the purpose of this study was to 

examine true bite count as a measure of energy intake rather than to validate the 

algorithms used to detect bites.  Therefore, true bite count was used for all analyses.  The 

process for finding true bite count is described in further detail below. 

Materials 

Eating station.  To simulate a real-world environment, participants ate in a 

cafeteria setting at a four-person table customized for the purpose of monitoring bite 

count and food weight (Figure 2.1).  Four scales were hidden in recesses cut out at each 

place setting.  There were four cameras mounted above the eating station, each 

monitoring one participant.  Each participant also wore a tethered bite counter.  All of the 

measuring equipment was connected to two laptops (Dell Lattitude E6520) that were 
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located near the eating station (Figure 2.2).  The eating station was set up in Harcombe 

dining hall, an on-campus cafeteria at Clemson University. 

Food items.  Participants were allowed to select from any of the food items 

available in Harcombe during the day and time of their session.  A record was kept of all 

of the food items available for each day and time of the study. 

Tanita WB-3000 Digital Beam Scale.  The Tanita Wb-300 Digital Beam Scale 

was used to measure participant height and weight, which was then used to calculate BMI 

(Tanita Corp., Arlington Heights, IL). 

Omron Body Logic Body Fat Analyzer.  The Omron Body Fat Analyzer was 

used to calculate body fat percentage based on electrical impedance and an individual’s 

demographics (Omron Corp., Kyoto, Japan). 

Cisco PVC300 cameras.  Four cisco PVC300 cameras were mounted above the 

eating station, each positioned to monitor food as it was brought from the plate to the 

mouth (Cisco Systems, Inc., San Jose, CA).  The cameras had a resolution of 640 x 480.  

The video recordings were used to ascertain true bite count.  A bite was be defined as 

food being brought from the plate to the mouth and entering the mouth. 
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Figure 2.1. The Eating Station 

 

 

Figure 2.2. Two Dell Lattitude E6520 laptops were used to store raw sensor data 
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Calorie information.  Upon completion of the meal, participants in the CI given 

condition were given a copy of the menu containing all of the food items available for 

that session with calorie information for each one.  Calorie information was copied from 

Harcombe Dining Hall’s website.  They were instructed to use the information provided 

to assist them in their calorie estimations.  An example of a daily menu as used by 

participants can be seen in Appendix A. 

Questionnaires.  An online pre-screening questionnaire asked participants to 

report height, weight, food allergies, dieting status, and history of eating disorders 

(Appendix B).  An online demographics questionnaire asked participants about age, 

gender, height, weight, handedness, and ethnicity (Appendix C).  Upon completion of the 

eating session, participants were given a questionnaire, which asked them to estimate 

overall calories consumed (Appendix D). 

Software.  Video footage was recorded using video monitoring software that was 

included with the Cisco cameras and raw sensor data was recorded using custom software 

(Figure 2.3). True bite count was measured using customized software that synchronized 

video footage with wrist-sensor and scale data.  Figure 2.4 shows the interface of the 

software, where experimenters could move the video forward or backwards at 1 frame or 

15 frame intervals.   
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Figure 2.3. Video monitoring and raw sensor recording software. 

 

Figure 2.4. Custom Software for detecting true bite count. 
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Procedure 

Experimental protocol.  Detailed protocols for both the experimenters and the 

undergraduate assistants can be found in Appendices E and F respectively.  The order in 

which participants were placed into one of the two groups was randomized.  Upon 

recruitment, participants completed the online demographics and pre-screening 

questionnaire.  Participants completed the eating session in groups of four.  Upon arrival, 

their height and weight were measured using the digital beam scale.  Participants were 

then led to Harcombe Dining Hall, where they received further instructions. 

The participants were instructed to eat as much as they liked.  To allow portion 

size and food selection to vary, participants will be allowed to serve themselves any of 

the food items in Harcombe that day, and were allowed to go back for as many courses as 

they wished.  A course was defined as the time between sitting down with food and being 

connected to the wrist-worn sensor and being disconnected from the sensor, either to get 

another course or to complete the meal.  Data recording was stopped between courses and 

restarted once the participant had been reseated for the next course.  Participants were 

then connected to the Bite Counters and instructed to eat and interact naturally. 

After each participant had made their food selections, the assistants wrote down 

each food item, the portion size, who served the item, and any customization made to the 

item.  A daily menu was included in the subjects’ folders each day that contained each 

food item that was supposed to be served in the cafeteria that day, along with a reference 

portion size for each item (as determined by what Aramark would consider to be a 
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“standard” portion of that food item) and calorie content for that portion.  Food items 

would be listed on each daily menu in the following format: 

Food item   Reference Portion Size  Calorie Content 

For example, the following entry is taken directly from a daily menu: 

Seasoned Corn    1 cup  103.15 (calories) 

An example daily menu can be found in Appendix A.  The assistants were instructed to 

cross-reference each food item with the menu and to make alterations of any items were 

mismatched.   

 Upon completion of the meal, participants were given the post-meal 

questionnaire, which recorded their overall calorie estimations.  Participants in the CI 

condition were also given the daily menu with calorie information for their session to 

assist them in their estimations.  After completing the questionnaire, the participants were 

debriefed and dismissed. 

Data Reduction 

From the initial sample of 280 participants, 7 participants were immediately 

excluded from all further data reduction because of recording errors.  True bite count was 

calculated for the entire remaining sample of 273.  This sample was further reduced to the 

final sample of 87 used for analysis during the “determining calorie intake” phase, 

described below. 
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Determining true bite count.  Bites were manually identified using custom 

software that paired video footage with data obtained from the scales and wrist-worn 

sensors.  Participant meals were split up by courses.  For the sample of 273 participants 

who had useable recordings, bites were counted for a total of 518 courses, averaging 1.9 

courses per participant.  The final sub-sample of 87 participants had a total of 160 

courses, averaging 1.84 courses per participant. 

Figure 2.4 above shows the interface used by the experimenters to count bites.  

Experimenters watched the videos and placed markers where bites occurred, noting what 

the food item was, what utensil was used, what container the item was eaten out of, and 

what hand was used.  To account for inter-rater variability, an intra-class correlation 

using a two-way, random effects model and an absolute agreement definition was 

calculated for a subset of 57 courses that were counted by 3 groups of independent raters 

(Shrout & Fleiss, 1979).  This subset of 57 was taken from the sample of 273 participants 

who had usable recordings via a convenience sampling of the first 1/3
rd

 of the dataset.  

The intra-class correlation was found to be very strong at .929.  Based on this, true bite 

count was measured for each participant based off of one rater’s counted bites.  For those 

courses that had already been counted by more than one rater, the count from the rater 

whose first initial came first alphabetically was used as the ground truth bite count for 

that course.  For a detailed protocol on this procedure, see Appendix G. 

Determining BCE and HCE.  Human calorie estimations were provided by each 

participant at the end of their experimental session.  Calorie estimations based on bite 
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count were determined by applying equations that were derived from data from an 

unpublished dissertation by Scisco (2012).  This was a field study that compared bite 

count to calorie intake as measured by a 24-hour dietary recall.  These equations used 

gender, height (in inches), weight (in pounds), and age to calculate a kilocalories-per-bite 

(KPB) ratio that is tailored to each individual.  The equation for males was: 

    (            )  (             )  (         ) 

The equation for females was: 

    (            )  (             )  (         ) 

These same equations were used in the present study to calculate a KPB ratio for each of 

the 273 participants with usable data recordings.  The ratios were then multiplied by that 

participant’s bite count to determine BCE. 

Determining calorie intake.  True calorie intake was determined using a four 

step process.  All 273 participants with useable data recordings were included in the first 

step.  After step one, 59 participants were excluded from all future steps for selecting 

food items with a high level of customization leaving a sample of 214.  An example of an 

item with a high level of customization would be a sandwich from the sandwich station.  

Participants could build sandwiches using whatever bread type, meat type, cheeses, and 

toppings they desired.  This made it particularly difficult to determine the calorie content 

of these items.  This sample of 214 was used in steps two through four, after which 127 
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additional participants were excluded for selecting salads and pastas, for which calorie 

information could not be confidently determined, leaving the final sample of 87. 

The process, described in detail below, is summarized as follows: 1) First, the 

food items selected by each participant were identified and verified.  2) Then, for each 

item that was absent from Harcombe’s daily menus, reference information (defined in 

further detail below) was obtained from an online database.  3) Each participant’s 

selected portion of each food item was then defined as a percentage of the reference 

portion of that food item. 4) The percentage of the selected portion of each food item 

consumed by each participant was then visually estimated by three raters.5) Finally, 

calories were determined for each food item by multiplying the reference calorie content 

of the selected food item by the percentage of the reference portion selected and the 

percentage of the selected portion consumed.  Each participant’s total calorie intake was 

then determined by summing their calorie intake for each selected food item. 

Food item identification.  A simplified decision tree for this procedure is shown 

in Figure 2.5.  All 273 participants who had useable data recordings were included in this 

procedure.  For these 273 participants, a total of 1,840 food items were consumed at an 

average of 6.74 items per participant.  Food selection was initially documented during 

each experimental session by the undergraduate assistants on hand written records as 

described above and in Appendix F.  Unfortunately, there were several unforeseen 

problems with this procedure.  Many days’ items that were available in the cafeteria were 

not listed on the menu for that day.  Some items, such as drinks, deserts, and soups, were 
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never or almost never listed on the menu.  Additionally, the undergraduate assistants 

were under significant time pressure and had several responsibilities to keep track of, and 

subsequently often failed to cross-reference recorded food selections with menu items 

available that day.  These problems required recorded food selections to be verified post 

data collection. 

 

Figure 2.5. Decision tree for the food item verification process. 

 

Selected food items were verified post data collection using a multi-step process.  

First, a master menu (MM) file was created by combining each day’s daily menu (DM) 
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items into one document and deleting duplicate items.  Then, two experimenters cross-

referenced each recorded food item in the food log database (FL), which contained every 

food item consumed by every participant, with items that were available on the DM for 

that participant’s meal time. If the item matched an item from the DM exactly, it was 

considered “verified” and left unchanged.  If the two experimenters agreed that a 

recorded item matched a similarly labeled item from DM, the recorded food item was 

changed to match the item from the DM.  If no similar item was listed in the DM, the 

MM was scanned for matches.  If the item in the FL matched an item in the MM, the item 

was left unchanged.  If the two experimenters agreed that a recorded item matched a 

similarly labeled item from MM, the recorded food item was changed to match the item 

from the MM.  If an item in the FL was changed, it was visually compared to images of 

other verified items with the same label.  If the experimenters then agreed that the similar 

food items looked the same, then the name of the item in the FL was replaced with the 

agreed upon name of the similar food item and considered “verified”.   If no match could 

be found for the food item or if no consensus could be reached, one of two actions was 

taken.   

If the experimenters could not agree upon a match for an item in the FL, either 

because the initial recorded item was not specific enough and the item could not be 

determined using the video recordings, or because the item contained a level of 

customization that made determining calorie content very difficult (such a sandwich from 

the sandwich station where participants could choose their own bread, meat, and 

toppings), it was labeled as “custom” and it was assumed that kcal information could not 



34 
 

be confidently determined for that food item.  If the item consistently appeared and was a 

reasonably simple item (such as a “brownie” or “coca-cola”) but could not be found on 

the MM, it was added to the MM.  At the end of this procedure, 59 food items had been 

labeled as “custom.”  Fifty-nine participants were found to have selected “custom” food 

items.  These participants (and all of their food items) were excluded from all following 

steps, leaving a sample of 1,438 food items for step 2 through step 4. 

Determining Reference Information for Missing Items.  A simplified decision 

tree for this procedure is shown below in Figure 2.6.  For items that were added to the 

MM during the food selection verification procedure, kilocalorie information and 

reference portion size information were obtained from a database on myfitnesspal.com, 

which contained all food items served by Aramark Cafeterias, uploaded by Aramark 

employees (Personal Communication, December 2012).   

 

Figure 2.6: Decision Tree for Missing Reference Information Replacement 
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The database was searched for each item in the MM file that was added in the 

above procedure by using the search terms “Aramark (item name)”.  For example, the 

item “vanilla pudding” was added to the MM during the food selection verification 

procedure.  Reference information was added to the MM by searching the MyFitnessPal 

database using the search terms “Aramark vanilla pudding.”  This search returned with 

one search result: “Vanilla Pudding w/ Whip cream (Aramark).”  This is a very close 

match to the terms used in the MM, so the reference information for “Vanilla Pudding” in 

the MM was changed to the information listed in the MyFitnessPal database. 

The MyFitnessPal database contained nutrition information obtained from a 

variety of sources other than Aramark.  If no match could be found in the MyFitnessPal 

database that was uploaded by Aramark (that is, the search terms “Aramark (item name)” 

turned up no results), a generic version of that food item obtained from the same database 

was used.  For example, Aramark had no listing for “Coca Cola” in the MyFitnessPal 

database.  For this item, the database was searched for “Coca Cola,” excluding the search 

term “Aramark” and information from the positive search result was used as reference 

information. 

If no approximate generic match could be found for an item in the MM, that item 

was changed to a “Custom” item, as described in the food selection verification 

procedure.  Each food item on the MM was labeled according to the source from which 

its information was obtained: either from the original menus provided by Harcombe, 
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uploaded to the MyFitnessPal database by Aramark employees, or listed as a generic item 

obtained from the MyFitnessPal database. 

Portion size determination.  During each experimental session, portion size 

selection was also recorded by the undergraduate assistants.  If the food item was served 

by a cafeteria worker, then the selected portion was just recorded as the reference portion 

defined by the menu information that was provided daily by Harcombe Dining Hall.  For 

example, the menu lists “buttermilk mashed potatoes” as having a standard portion size 

of one cup and 124 kcals.  The cafeteria workers are instructed to serve these items by the 

reference portions unless a diner requests otherwise. These items were therefore assumed 

to be consistent with the reference portion size unless otherwise recorded by the 

undergraduate assistant.  If the item was served by the participant themselves, then the 

portion was recorded as what seemed appropriate (1 glass of coke, 1 bowl of ice cream, 

etc.). 

Post-experimental session portion size selection was verified for the 1,438 items 

that remained after step 1 using a two-step process.  First, three raters visually estimated 

initial portion sizes of each food item using videos recorded during the experimental 

session.  If the food item was divided into discreet portions (e.g. 2 chicken fingers or 1 

cheeseburger) it was labeled according to those discreet portions. If the food item was 

amorphous (e.g. mashed potatoes or peas) or if it was a drink, it was labeled according to 

the percentage of its container that it occupied (e.g. 80% of a glass, or 40% of a plate).  

This information was only used for those items that were self-served by the participants, 
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as items that were served by cafeteria workers were assumed to be a “standard portion” 

with an accepted amount of variability.  This procedure was performed at the same time 

as the procedure for determining portion consumption, and additional details are 

described below. Finally, each food item was labeled according to what percentage of a 

‘standard portion’ it consisted of (e.g. 2 servings of mashed potatoes would be 200% of a 

standard portion).   

Portion consumed.  A detailed protocol for this procedure is shown in Appendix 

H.  Portion consumed was measured using a method similar to the Digital Photography 

method described by Williamson et al., who found visual estimations of portion 

consumption based on photographs to be highly correlated with visual estimations based 

on direct observation (2003).  This process was applied to the sample of 1,438 food items 

consumed by participants who had useable data recordings and had not selected “custom” 

items.  Three raters compared screenshots, taken from the videos recorded during an 

experimental session, of courses prior to meal commencement to screenshots of courses 

after meal completion (Figures 2.7a and 2.7b). 
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a.  b.  

Figure 2.7. Before (a) and after (b) screenshots used to visually estimate starting 

portions and portions consumed. 

The experimenters rated portions using course by course screenshots.  

Experimenters were given a list of foods consumed by that participant for that course (as 

listed in the food log that was created and verified in step one).  The raters first had to 

identify which items present in the screenshots matched up to which items on the list of 

foods for that course.  Regardless of their confidence in their decision, each rater was 

forced to estimate percentages for each food item.  The raters then visually estimated the 

starting portions using the “before” screenshot (seen in Figure 7a), as described in step 3 

above.  Finally, the raters visually estimated what percentage of each starting portion of 

each item was consumed by comparing before and after (seen in Figure 7b) screenshots.   

An intra-class correlation was calculated for the percentage ratings using a 2-way, 

random effects model using an absolute agreement definition and found to be very strong 

at 0.859 (Shrout & Fleiss, 1979).  Still, some food items were found to have very 

different ratings for one rater as opposed to the other two.  For example, nine items from 

the food log were rated by two raters as being 100 percent consumed and by the third to 
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be 0 percent consumed.  To mitigate the effects of such extreme ratings, the two raters 

whose ratings were closest to each other were averaged together.  If all 3 raters rated a 

food item as the same percentage consumed (e.g. 30, 30, and 30), or if one rating was 

equidistant from the other two and two raters were not equal (e.g. 20, 30, and 40), all 

three ratings were averaged together.  This process was applied to food items who met a 

minimum criterion of having at least two raters within 25 percent of one other.  This 

criterion of 25% was chosen because it captured a majority of the food items, but was 

still stringent enough that items had large gaps between ratings could be reexamined.  

Only 20 out of 1,438 food items examined had 3 ratings with a difference of greater than 

25 percent.  A fourth rater rated each of these items, and their score was averaged with 

the nearest of the original 3 (this fourth rating was found to be within 25% of at least one 

other rater for each of the 20 items).  To better adhere to the procedure described by 

Williamson et al., who had their experimenters rate items to the nearest ten percent, the 

averaged ratings of our three raters were rounded to the nearest ten percent. 

Once food selection, portion selection, and portion consumption had all been 

verified, total calorie intake for a specific food item was determined by multiplying kcals 

of the “standard” portion of that item (provided by the master menu) by percentage of 

a “standard” portion selected and percentage of selected portion consumed: 

 

Total Caloric 

Intake 
= 

Kcals of 

Reference 

Portion 
X 

% of 

Reference 

Portion 

Selected 

X 

% of 

Reference 

Portion 

Consumed 
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For example, say a participant selected buttermilk mashed potatoes.  The master menu 

lists this item as 1 cup having 124 calories, and the item is served by a cafeteria 

employee.  The participant reported having asked for only half of a serving of the item.  

The average rating for the two closest raters for portion consumed was 80%.  Total 

caloric intake for that item would be determined by: 

124 (kcals of standard) x .5 (% of standard) x .8 (% of portion consumed) = 49.6 kcals 

Total calorie intake for a participant was calculated by summing that participant’s kcal 

intake for all items that individual selected.  After computing total calories, it was found 

that pastas from the pasta bar and salads from the salad bar had to be excluded due to the 

large amount of variability in energy density between these items and an inability to 

precisely determine their total calorie intake. Out of 1,438 items, 31 were pastas from the 

pasta bar and 114 were salads from the salad bar.  A total of 127 participants who 

selected these items were excluded from further analysis, leaving a final sample size of 

87. 

Statistical analyses.  The distribution of estimations for each of the four 

conditions were checked to ensure that the estimations followed a normal distribution 

using Q-Q plots, a graphical assessment of normality that plots observed values against 

values that would be expected of a sample with a normal distribution.  Hypotheses 1 and 

2 were tested using a 2 x 2 mixed-design ANOVA to assess differences between the CI 

conditions as a between subjects factor and HCE error and BCE error as a within subjects 

factor, with post-hoc t-tests examining the effects of CI condition and estimation method 



41 
 

separately.  Hypothesis 3 was tested using Pearson’s r correlations to examine the 

relationships between age, body fat percentage, BMI, caloric intake, HCE error, and BCE 

error. To examine gender effects, analyses were again performed with gender as a 

between subjects factor.  All analyses were performed with a set alpha level of .05. 
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RESULTS 

Outliers and Descriptive Statistics 

 Outlier analyses were conducted by standardizing HCE error and BCE error 

scores and calculating Cook’s Distance for each score.  Cook’s Distance provides an 

estimate of an individual score’s impact on a given analysis, or leverage, relative to other 

scores.  Outlier analyses showed two cases of human kcal estimations that were extreme 

outliers, having z-scores of 5.04 and 5.27 and Cook’s Distances of .25 and .43.  Each of 

these participants estimated consuming 4,500 calories (an unusually high estimate) and 

were excluded from all analyses.  Outlier analyses revealed no significant outliers for 

BCE error in either CI condition. 

Descriptive statistics for calorie intake, HCE, and BCE overall and across both CI 

conditions are displayed in Table 3.1.  Mean calorie intake, HCE, and BCE are shown in 

Figure 3.1 for both CI conditions, showing general underestimations of calorie intake for 

both estimation methods in both conditions.  Q-Q plots (Figure 3.2a - d) reveal normal 

distributions for estimate error across all conditions. 
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Descriptive Statistics 

    

Calorie 

Intake HCE BCE 

Overall 

Sample 

Size 85 

  Mean 1177.69 900.61 1123.4 

  SD 508.87 424.06 551.83 

  Min 143 100 371.42 

  Max 2618 2541.67 2981.2 

CI Given 

Sample 

Size 52 

  Mean 1119.77 978.39 1065.76 

  SD 450.78 447.27 504.88 

  Min 329 254 371.42 

  Max 2143 2541.67 2777.66 

CI Not 

Given 

Sample 

Size 33 

  Mean 1268.97 778.03 1214.23 

  SD 584.68 357.6 615.77 

  Min 143 100 450.04 

  Max 2618 1600 2981.2 

Table 3.1. Descriptive statistics for calorie intake, HCE, BCE 

 

 

 
Figure 3.1. Mean calorie intake, HCE, and BCE overall and for both CI conditions.  

Error bars represent standard deviations. 
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 (a) (b)  

 

(c) (d)  

 

Figure 3.2. Q-Q plots showing normal distributions of CI given HCE error (a), CI given 

BCE error (b), CI not given HCE error (c), and CI not given BCE error (d).  The closer 

observed values are to the reference line, the more similar the distribution is to a normal 

distribution. 
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Effects of Estimation Method and Calorie Information  

Figure 3.3 shows mean HCE error and BCE error scores for both CI conditions, 

and Table 3.2 displays descriptive statistics for HCE error and BCE error in all 

conditions.  A 2x2 mixed-design ANOVA revealed a main effect for estimation method 

(F(1, 83) = 14.381, p < .001) with HCE error higher than BCE error and a marginally 

significant main effect for CI condition (F(1, 83) = 3.835, p = .054) with mean error in 

the CI not given condition higher than mean error in the CI given condition.  The analysis 

also revealed a significant interaction between estimation method and CI condition (F(1, 

83) = 6.384, p < .05).  As can be seen in Figures 3.1 and 3.3, all estimation methods 

underestimated caloric intake, with HCE appearing to dramatically underestimate calorie 

intake without the aid of CI. 

Descriptive Statistics 

    

HCE 

error 

BCE 

error 

CI Given 

Sample 

Size 52 

  Mean -141.37 -54 

  SD 388.11 529.67 

  Min -1078 

-

1248.19 

  Max 687 1221.2 

CI Not 

Given 

Sample 

Size 33 

  Mean -490.94 -54.74 

  SD 667.28 452.08 

  Min -2142 

-

1174.74 

  Max -857 756.57 

 

Table 3.2. Descriptive statistics for HCE error and BCE error across both CI conditions 
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Figure 3.3. Mean BCE error and HCE error for both CI conditions.  Error bars 

represent standard deviations. 

 

 Post-hoc Analyses.  The effect of estimation method was examined for CI given 
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samples t-test with equal variances not assumed was used to compare means.  The t-test 

showed that HCE error was significantly higher in the no CI condition than in the CI 

condition (t(45.89) = -2.731 p < .01).  Levene’s test revealed no significant difference in 

variance between CI info conditions for BCE error (F(1, 83) = .182, p = .671).  An 

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

HCE error BCE error

K
ilo

ca
lo

ri
e

s 

CI Given

CI Not Given



47 
 

independent samples t-test showed that mean BCE error for the CI info condition did not 

differ significantly from mean BCE error in the no nutrition info condition (t(83) = -.007, 

p = .995).  

Gender Effects and Overall Calorie Intake 

Hypothesis 3 was tested using Pearson’s r to examine the relationship between 

body fat percentage, BMI, caloric intake, HCE error, and BCE error.  Correlation 

matrices of age, BMI, body fat percentage, calorie intake, HCE error, and BCE error are 

shown in Table 3.3, including separate matrices for overall scores and for scores split by 

CI condition.  Age is also included for exploratory purposes.  Of note, HCE error shared 

a stronger correlation with caloric intake in the CI not given than in the CI given 

condition, indicating that caloric intake was more closely related to human estimation 

errors without calorie information.  A post-hoc two-tailed, independent samples z-test 

was used to examine the difference between this correlation and revealed that kcal intake 

shared a significantly stronger correlation with HCE error in the CI not given than in the 

CI given condition (z = 3.31, p < .001).  BCE error shared a significant overall correlation 

with kilocalorie intake, but it is similar in both CI conditions and not significant in the CI 

not given condition. Also, body fat percentage shared a moderate correlation with HCE 

error, but only in the CI not given condition. 

  



48 
 

Correlation Matrices 

    Age 

Body Fat 

% BMI 

Kcal 

Intake 

HCE 

Error 

BCE 

Error 

Overall Age 1           

  

Body Fat 

% 

.524
**

 1 

 

  
  

  BMI .345
**

 .684
**

 1 
  

  

  

Kcal 

Intake 

-.167 -.297
**

 .007 1  
  

  

HCE 

Error 

.216
*
 .158 .037 -.674

**
 1 

  

  

BCE 

Error 

-.068 -.036 -.017 -.400
**

 .241
*
 1 

No CI Age 1           

  

Body Fat 

% 

.597
**

 1 

 

  
  

  BMI .318 .530
**

 1 
  

  

  

Kcal 

Intake 

-.184 -.387
*
 .167 1 

 

  

  

HCE 

Error 

.311 .388
*
 .010 -.845

**
 1 

  

  

BCE 

Error 

.099 .284 .231 -.316 .264 1 

CI Given Age 1           

  

Body Fat 

% 

.497
**

 1 

 

  
  

  BMI .366
**

 .755
**

 1     

  

Kcal 

Intake 

-.152 -.282
*
 -.133 1 

 

  

  

HCE 

Error 

.135 .061 .129 -.439
**

 1 
  

  

BCE 

Error 

-.159 -.180 -.139 -.479
**

 .274
*
 1 

Table 3.3. Pearson’s correlations for age, body fat percentage, BMI, calorie 

intake, HCE error, and BCE error. 

*. Correlation is significant at the .05 level (2-tailed). 

**. Correlation is significant at the .01 level (2-tailed). 
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Mean HCE error and BCE error are displayed for men and women in both CI 

given and CI not given conditions are shown in Figure 3.4, and descriptive statistics are 

shown for gender across all conditions in table 4.  A 2x2x2 mixed-design ANOVA was 

used to assess the effect of gender on estimation method and the presence of CI, with 

estimation method as a within-subjects factor and gender and CI condition as between-

subjects factors.  There was no significant main effect for gender (F(1, 81) = .820, p = 

.368).  There was, however, a significant interaction between gender and CI condition 

(F(1, 81) = 5.682, p < .05) and a significant interaction between gender and estimation 

method (F(1, 81) = 8.608, p < .005).  There was also a significant three-way interaction 

between gender, CI condition, and estimation method (F(1, 81) = 5.059, p < .05).  As can 

be seen in Figure 3.4, it appears that men dramatically underestimate calorie intake in the 

absence of CI, but women appear to not be as affected.  Subsequently, all post-hoc 

analyses were repeated, separating conditions by gender, to examine the potential effects 

of gender differences on the outcomes. 



50 
 

 
Figure 3.4. Mean scores across all conditions for men (a) and women (b).  Error bars 

represent standard deviations. 

 

Descriptive Statistics for Gender 

    Men Women 

 

    

HCE 

error 

BCE 

error 

HCE 

error 

BCE 

error 

CI Given 

Sample 

Size 29 23 

 Minimum -1078.00 -848.54 -1078.00 -1248.19 

 Maximum 687.00 1221.20 269.00 760.04 

  Mean -103.93 23.21 -188.58 -151.36 

  SD 445.45 565.72 304.1 474.63 

CI Not 

Given 

Sample 

Size 17 16 

 Minimum -2142.00 -1174.74 -1426.00 -637.77 

 Maximum 175.00 756.57 857.00 630.08 

  Mean -795.77 -29.65 -167.06 -81.4 

  SD 659.4 511.32 518.56 394.53 

Table 3.4. Descriptive statistics for gender across all conditions. 
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 Post-hoc Analysis of Gender.  Levene’s test revealed a significant difference in 

variance between CI conditions for HCE error of men (F(1, 43) = 4.318, p < .05) but  no 

significant effect for women (F(1, 36) = 3.203, p = .082 ).  Further t-tests revealed a 

significant effect for menu condition on the HCE error of men (t(24.70) = -3.842, p < 

.005) but not for women (t(37) = .163, p = .872).  No significant differences were found 

for the effect of menu condition on BCE error for either gender.  Repeated-measures 

ANOVAs revealed a significant main effect for estimation method for men in the CI not 

given condition (F(1, 16) = 20.293, p < .001) but not for men in the CI given condition 

(F(1, 28) = 1.062, p = .312).  There was no significant main effect of estimation method 

for women in either the CI given (F(1, 22) = .185, p = .671) or the CI not given (F(1, 15) 

= .440, p = .517) conditions. 

Levene’s test shows no significant difference between CI conditions for the 

variance of overall calorie intake (F(1, 82) = 2.487, p = .119) and a 2-tailed  t-test shows 

no significant difference in calorie intake for either CI condition (t(83) = 1.323, p =.189).  

Levene’s test also reveals no significant difference in variance of kcal intake between the 

two genders (F(1, 82) = 1.408, p = .239).  However, males did consume significantly 

more kilocalories that women (t(83)=-4.161, p < .001).  Furthermore, when overall 

calorie intake is added as a covariate into a Univariate ANCOVA, the effect of gender on 

HCE error disappears (F(1, 80) = .278, p =.599), but now has a significant effect on BCE 

error (F(1, 80 = 12.199, p < .005) such that kcals derived from bite count tend to 

overestimate slightly for men but underestimate for women.  
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DISCUSSION 

The first hypothesis of this study was that human calorie estimates would be more 

accurate in the presence of calorie information than in its absence.  The findings of this 

study support this hypothesis, showing that humans are able to estimate their caloric 

intake for a meal to within 13% with calorie information and within 37% without calorie 

information on average.  This is similar to the findings of Elbel (2011), who found that 

the introduction of calorie information reduced errors in calorie estimates from 24% to 

14%, and the findings of Roberto et al. (2010) who were able to reduce errors in 

estimation from an average 49% to an average of 38% after providing calorie 

information.   

The second hypothesis was that estimations of caloric intake derived from bite 

count would be more accurate than human estimates without calorie information.  This 

hypothesis was also supported, showing that estimations based on bite count were 

accurate on average to within 5% of actual intake compared to 37% for human estimates 

without calorie information and 13% for human estimates with calorie information, 

although this difference was only significant in the no calorie information given 

condition.  As expected, there was no difference between CI conditions for BCE error.     

The third hypothesis was that BMI, body fat percentage, total caloric intake, and 

gender would all be related to human calorie estimation accuracy.  Previous studies have 

obtained mixed results regarding the relationship between BMI and calorie estimation 

accuracy.  Some studies have found that underreporting increases with increases in BMI 
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(Carels et al. , 2006; Johnson et al., 1994; Kretsch et al, 1999).  However, our results 

were more in line with previous work that has found no relationship between the two 

(Carels et al., 2007; Martin et al., 1996).  Interestingly, percent body fat did share a 

significant, albeit small, negative correlation with HCE error in the CI not given 

condition.  Previous work has favored examining BMI as a possible correlate of 

underreporting and calorie estimation errors (possibly because of its ease of 

measurement), and the relationship between percent body fat and calorie estimations has 

been largely unexplored.  While age was positively correlated with BMI and percent 

body fat, it shared no relationship with either BCE error or HCE error.  Of the variables 

examined, overall caloric intake shared the strongest relationship with both HCE error 

and BCE error, indicating that the accuracy of both human and bite count estimates of 

caloric intake decreased as actual caloric intake increased.  Oddly enough, the 

relationship between BCE error and caloric intake was significant in the CI given 

condition but not in the CI not given condition. 

The results showed a significant three-way interaction between gender, CI 

condition, and estimation method.  Post-hoc analyses revealed that calorie estimates for 

women are not significantly affected by the presence or absence of calorie information, 

and men are perform worse at estimating calories than women without the presence of 

calorie information.  This would, at first, seem to support previous research showing that 

women were better at calorie estimates than men (Krukowski et al., 2006).  However, 

when controlling for the effect of overall calorie intake, the gender effect disappears, 
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suggesting that males were worse at estimating calories only because they, in fact, ate 

more calories than women.  

Post-hoc analyses for the effects of gender on BCE error revealed that when 

controlling for the effect of calorie intake, gender has an effect on the accuracy of the bite 

counter device, such that it overestimated slightly for men and underestimated slightly for 

women.  This is likely a result of the equations used to determine kilocalories-per-bite for 

both men and women, which were derived from another study that derived KPB by 

comparing bite count to kilocalories as measured by a 24-hour dietary recall, which is 

known to underestimate calorie intake (Johansson, Wikman, Ahren, Halllmans, & 

Johansson, 2001).  This may be especially true for meals that are higher in overall calorie 

content, as evidenced by the significant relationship between overall calorie intake and 

human estimation accuracy.    

Sources of Variance for HCE and BCE 

 A variety of the factors discussed previously likely contributed to the large 

margins of error and variances found for human calorie estimates with and without 

calorie information.  Our findings were in line with previous studies that found that 

humans are generally poor at estimating calories (Stanton & Tips, 1990).   “Calorie” is a 

meaningless term to many people, with only a third aware of human daily energy 

requirements (Elbel, 2011).  Two participants, who we excluded as outliers, estimated 

that they had consumed 4,500 calories in one meal.  One of those was even given calorie 

information and still estimated consuming 4,500 calories.  Perhaps calories are difficult to 
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estimate because they aren’t interpretable without a fair amount of knowledge about 

energy balance and energy density.  However, even with training, high error is present 

(Visona & George, 2002).  One advantage of using the bite counter device as a tool for 

self-monitoring as that a “bite” is a unit of measurement that people can understand and 

they already relate to portion consumption.  A human who would not normally use 

calorie information may have a better intuitive understanding of bite count as a proxy for 

amount consumed. 

 Portion size perception also likely played a role in HCE errors found in this study.  

Previous work has found that both food and container size and shape can impact 

individuals’ estimates of portion size (Chandon & Orbadayeva, 2009; Garber et al., 2008; 

Scisco et al., 2012).  The food items served in Harcombe came in a variety of shapes, 

sizes, and containers.  While not a goal of this study, the dataset could be examined for 

the effect of food shape and container type on HCE errors. 

 The results of this study indicate a gender effect similar to the findings of 

Krukowski et al. (2006).  However, Krukowski did not examine the possibility of calorie 

intake mediating the effect of gender on calorie estimation errors.  Unfortunately, for the 

present study there was an imbalance of gender between the CI conditions, and while 

there is some evidence that the gender effect found in this study may be accounted for by 

total calorie intake, a formal mediation analysis should be performed on data collected 

specifically to examine gender.  This relationship between calorie intake and HCE error 

is of particular interest.  Calorie intake shared a stronger relationship with HCE error than 
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BMI or percent body fat, and accounted for gender differences.  Previous work has 

shown that the effect of BMI on errors in calorie estimates may be mediated by overall 

caloric intake, which can lead to poorer calorie estimates (Chandon & Wansink, 2006 and 

2007).  Furthermore, the effect of calorie intake on human calorie estimates may be, 

itself, caused by errors in portion size estimation. 

Comparison to Other Methods 

 One of the primary weaknesses of traditional self-report methods is the well-

documented, systematic underreporting (Lichtman et al., 1992; Livingstone & Black, 

2003; Martin et al., 1996; Muhlheim et al., 1998; Rumpler et al., 2008; Subar et al., 2003; 

Tooze et al., 2004; Trabulsi & Schoeller, 2001).  This study found a similar pattern; 

average human calorie estimates across all conditions were lower than actual calorie 

intake.  While bite count estimates were significantly more accurate than human 

estimates, they still underestimated calorie intake.  One possible cause of this is that our 

KPB equations were derived from a study that compared bite count to caloric intake as 

measured by a 24-hour dietary recall, which has been shown to underreport calorie intake 

(Johansson et al., 2001).  Hence, the prediction equations were derived in such a way to 

accurately predict caloric intake as measured with a self-report device that is likely to 

produce underestimations.  Therefore, the equations would likely produce 

underestimation.  Future work should work on the development of equations with ground 

truth calorie meals that are not based on self-report. 
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 The bite counter offers the significant advantage of removing human biases and 

perceptual errors from the equation in measuring EI, making it more objective than 

classical forms of self-report and modern forms that attempt to use technology in 

combination with self-report to improve estimates.  The digital photography method 

described by Williamson et al. (2003) attempts to improve upon these measures by 

having a trained nutritionist examine photographs taken by participants.  While training 

can improve calorie estimates, this method still relies on human perception, and is 

subsequently subjective.  Other tools, like the Bite Counter, are being developed that will 

attempt to automatically, inexpensively, and objectively monitor EI in real-world 

scenarios, but these tools are still very new, meaning as of yet there is not a lot of 

published research on them. 

The Importance of Monitoring EI 

 The findings of this study support previous work that has shown that the presence 

of calorie information can improve calorie estimates (Elbel, 2011; Roberto et al., 2010).  

It is important that calorie information be present so that individuals can make informed 

food choices.  There does appear to be a growing trend among legislators of making it 

mandatory for restaurants to make calorie information available (Baerman & Lavizzo-

Mourey, 2008; Burton et al., 2006).  However, as described previously, the effectiveness 

of this as a method of reducing weight gain is still questionable, as many people either 

don’t understand calorie information or simply wouldn’t use calorie information even if it 

was present (Krukowski et al., 2006).    



58 
 

Bite Count as a Proxy for Calorie Intake 

 When examining the value of bite count as a proxy for EI, it is important first to 

determine the purpose of monitoring EI.  Monitoring EI accurately may be more 

important for researchers than it is for individuals who are trying to lose weight, and the 

bite counter may have different values as a proxy for EI depending on what the goal of 

the user is.  The results of this study show that while BCE may be, on average, more 

accurate than HCE, there is still a large amount of variance in the error, indicating that 

while estimates may be very accurate over time, it may not be a good proxy for energy 

intake at the meal level for an individual compared to DLW and pre-measured foods, but 

it is likely equivalent to self-report measures with the advantage of being unbiased.  This 

error variance is likely because estimations based on bite count currently do not account 

for energy density in any way, indicating that meals with a lot of foods that are low in 

energy density will be overestimated and meals with a lot of high ED foods will be 

underestimated.  It should be noted, however, that the variance of estimation error for 

BCE was still lower than that of HCE without CI given, indicating that even without 

taking ED into consideration, bite count is a better proxy for EI than most humans. 

Beyond Counting Calories 

The most important factor contributing to successful weight loss is not necessarily 

accurate calorie counting, but the act of consistent self-monitoring itself (Burke et al., 

2009; Helsel et al., 2007).  Butryn et al. (2007) found that participants in a weight loss 

study who simply weighed themselves regularly were more likely to lose weight and 
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keep it off, and the more often they reported self-monitoring, the greater the success.  

Perhaps the greatest strength of the bite counter device is not in its ability to count 

calories, but in its ability to keep users cognizant of how much they are eating and to let 

them know when they should push the plate away.  To serve this purpose, it is not 

necessary that bite count be an accurate proxy for energy intake, but that it may be a 

reasonable proxy for portion consumption.   

The Bite Counter also has other self-monitoring applications.  It could be used as 

a device to promote overall “mindful eating” by forcing users to pay attention to their 

overall intake, their rate of eating, their meal times, and their total number of meal 

sessions per day.  Recently, eating rate has been investigated as a possible correlate of 

meal-level energy intake (Guss & Kissileff, 2000, Takayama et al. 2002).  The Bite 

Counter has been shown to be useful as a device for slowing eating rate and reducing 

energy intake (Scisco et al., 2011).  There is also evidence that people with higher BMIs 

are more prone to aberrant meal patterns and snacking sessions, and that numerous small 

meal sessions may reduce obesity (Drummond, Crobie, & Kirk, 1996; Ma et al., 2003; 

Pearcey & Castro, 2002).  While it has yet to be examined for this purpose, the Bite 

Counter could be used as a tool to regulate eating patterns by prompting users to eat at 

certain times and warning users when they are snacking outside of a scheduled time 

period. 

While an accurate measure of calorie intake can be obtained by diligently 

measuring portions and using what nutrition information may be available, it is a terribly 
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tedious and time consuming process.  Many individuals who are trying to monitor their 

intake may not have the time to measure out portions or may not have the ability, 

depending on the setting.  Many others won’t use nutrition information even if it’s readily 

available.  An individualized estimation of calorie intake derived from bite count offers 

an objective, convenient, and easily understandable alternative to traditional methods.  A 

device that monitors bite count and provides feedback to users could be used as a tool for 

self-monitoring that may be a powerful weapon in the fight against obesity. 

Limitations 

 The primary limitation of this study was also one of its greatest strengths.  One of 

the main purposes of this study was to capture a large sample of meal data from a 

realistic cafeteria environment.  While this goal was accomplished, it made it extremely 

difficult to confidently determine true calorie intake.  A conservative approach was taken 

so that only those meals that kilocalorie content could be confidently determined were 

used in the data analysis, and subsequently 184 participants who had complete data were 

excluded from the final analyses.  Additionally, while the Harcombe cafeteria workers 

are trained to serve standard portions and the foods served were usually consistent with 

what was on the menu, it was still not a fully controlled laboratory environment.  There 

were many times foods were served that did not appear on the menu.  Also, many items 

(such as drinks and desserts) were consistently absent from the menu.  Participants in the 

CI given condition who were making their estimates often did not have full nutritional 
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information available to them.  However, the results indicate that these participants still 

made better estimations than participants in the CI not given condition. 

 Another limitation of this study is that the equations used to determine 

individualized kilocalories-per-bite were derived from data collected in a separate, free-

living type of study.  Kilocalories were determined for this other study based on 24-hour 

dietary recalls, which are known to underestimate total calorie intake (Johansson et al., 

2001).  Therefore, rather than having equations that were derived from true calorie intake, 

equations derived from a known underestimate were used.  However, the results reveal 

that even with this known error, these equations were better at estimating calorie intake 

than humans. 

 Another serious limitation of this study is the lack of certain items available on 

the daily menus.  Had each item consumed by each participant been present on the daily 

menus, it is possible that human calorie estimates in the CI given condition may have 

been improved, possibly to the point of being significantly more accurate that bite count 

calorie estimates.  However, this would not affect the findings that BCE is more accurate 

than HCE in the no CI given condition. 

 A final limitation of this study is that while the cafeteria setting used was far more 

realistic than many laboratory studies, the results still cannot be fully generalized to real 

world environments.  While there were a wide variety of foods to choose from, selection 

was limited to the foods that Harcombe supplied.  Also, participants ate their meals often 

sitting with total strangers while tethered to a computer and being observed by both 
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experimenters and cameras mounted in the ceiling above them.  This artificial setup could 

potentially have altered a variety of things, such as how much food participants were 

willing to eat, how many trips they made to the buffets, and what foods they chose to 

consume. 

Future Directions 

 Based on the findings of this study, overall caloric intake should be examined as a 

possible mediator for the effects of gender, BMI, and percent body fat on human calorie 

estimates and calorie estimates based on bite count.  It may be that all of these factors can 

be explained by the general tendency of humans to underreport caloric intake by greater 

margins as overall caloric intake increases. 

 Future studies should also compare the acceptability of bite count to that of 

calorie information.  Calorie information is an abstract measure that is often disregarded 

even in its presence.  If bite count is a more acceptable measure, perhaps it would be used 

by people who wouldn’t use calorie intake to try to track eating.  The effects of food and 

container size and shape on HCE and BCE should also be further examined.  It may be 

that bite count is a better measure for some types of food than others.  For example, it 

may be far more accurate at examining the calorie content of ‘main course’ dishes than 

desserts or salads, indicating that perhaps users wanting an accurate measure of calorie 

intake should avoid foods especially high or low in energy density.  

While we only used a subset of participants for whom we were most confident in 

our measures of their true calorie intake, because portion sizes were not controlled there 
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is some inherent error in our measure.  Future studies should examine the relationship 

between bite count and EI in a more controlled laboratory studied where calorie intake 

can be monitored accurately.  To generate a realistic food selection, data collected in this 

study could be examined for the most common food selections, and similar items can be 

used with more controlled portions.  Such a study could be used to further refine the 

equations used to calculate KPB, and subsequently get a better individualized estimate of 

calorie intake.  Also, should future studies be conducted in a similar cafeteria-like setting, 

food selection should be controlled by limiting it to items for which calorie content can 

be confidently determined. 

 A source of error in converting bites to kilocalories is ED.  Currently, the Bite 

Counter does not take ED into account when determining calorie intake.  A bite of lettuce 

is counted as the same number of calories as a bite of cake.  This is a likely cause four the 

large amount of variance in BCE error found in this study.  While bite count may provide 

an consistent reading of kilocalorie intake at the day, week, or monthly level, specific 

meal-level and bite-level estimates could still be inaccurate, which could lead to users not 

trusting and subsequently, not using the device.  Future studies should examine the 

viability of incorporating some form of ED input into the device.  Perhaps participants 

could label meals as snacks, desserts, or appetizers, or they could rank a meal by its 

relative perceived overall ED.  Along this line, future studies should examine human 

abilities to estimate the relative ED of meals and calculate how this could be used to 

refine the KPB equations. 
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Conclusions 

 Obesity is a major health problem in the United States, and currently no single 

treatment is making clear headway on a population scale.  It is a multi-faceted problem, 

meriting investigation from multiple disciplines and treatment at both societal and 

individual levels.  For researchers to better understand obesity there needs to be tools that 

can accurately monitor calorie intake in the field.  However, most of the commonly used 

tools are either costly or prone to subjective error.  At the individual level, self-

monitoring is one of the most critical aspects of successful weight loss and weight loss 

maintenance, yet there is a dearth of tools that can do this process easily and accurately.  

A device that can automatically detect bites of food offers the potential to address both of 

these problems by measuring free living energy intake and serving as a tool to help 

individuals track their eating.  While a significant amount of research still needs to be 

done, this tool could prove to be a valuable weapon in the fight against obesity. 
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Appendix A 

Sample Daily Menu 

Menu for 1/26/2012; Dinner 

Deli       Serving Size  Calories 

 Signature Chips     1, 1 ozw  242.52 

 Ham, Provolone, & Salami Wrap   1 Wrap   422.38 

 Chicken Ranch Mesquite Wrap   1 Wrap   709.53 

Dessert 

 Chunky Chocolate Chip Cookies   1 Cookie  125.59 

Exhibition 

 Baby Bok Choy     3 pieces  12.5 

 Hunter’s Chicken     8 fl oz   471.12 

 Jasmine Rice      1 cup   126 

Grill 

 Shoestring French Fries    3 ozw   261.82 

 Hot Dog      1 dog   297.02 

 Homestyle Chicken Sandwich   1 Sandwich  433.24 

 Monte Cristo Sandwich    1 Sandwich  442.89 

 

Homeline 

 BBQ Turkey London Broil    3 ozw   94.17 

 Buttermilk Mashed Potatoes    1 cup   124.69 

 Cauliflower      1 cup   14.76 

 Broccoli      1 cup   19.05 

Nature’s Marketplace 

 Garden Burger      1 burger  315.52 

 Szechuan Tofu     1 cup   118.28 

Pasta 
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 Pasta       1 each   813.77 

 

Pizza        Serving Size 

 Calories 

 Breadsticks      1 stick   106.3 

 Cheese Pizza      1 slice   250.12 

 Pepperoni Pizza     1 slice   293.88 

 Meatball Pizza      1 slice   312.63 

 Sweetzza Chocolate Peanut Butter   1 piece   334.24 

 Garden Salad      1 serving  47.28  

 

 

Salad Bar 

 Pesto, Red Pepper, and Orzo Salad   1 cup   173.35 

 Waffle Bar      1 Waffle  619.05 

 Salad Bar      1 serving  350.53 
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Appendix B 

Online Pre-screening Questionnaire 

What is your Participant Number?  

Please list any known food allergies: 

Do you normally eat breakfast? 

Do you normally eat lunch? 

Do you normally eat dinner? 

Have you ever been diagnosed with an eating disorder? 

Do you follow a special diet? If so, please describe: 
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Appendix C 

Demographics 

What is your age? 

What is your gender? 

Are you left or right handed? (If you are ambidextrous, please list the hand that you use 

more often for eating): 

How much do you weigh (pounds)? 

How tall are you (feet, inches)? 

What is your ethnicity? 

Are you a student? 

Please list three times that you are available to participate in the study. 
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Appendix D 

Post-Study Questionnaire 

 

(1) While eating, I was aware of the device on my wrist. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(2) The device on my wrist caused me to change my arm, wrist, or hand movement while 

eating. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(3) While eating, I was aware of the video camera. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(4) The video camera caused me to change my arm, wrist, or hand movement while 

eating. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(5) I ate my meal faster than I would normally eat. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(6) While eating I took larger bites than I normally would take when eating the same 

food. 

1      2  3  4  5 
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Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(7) I ate my meal slower than I would normally eat. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(8) While eating I took smaller bites than I normally would take when eating the same 

food. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(9) I felt comfortable eating my meal during the study. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(10) Overall I felt I ate the same way I always eat. 

1      2  3  4  5 

Strongly Disagree    Disagree Neutral Agree  Strongly Agree 

 

(11) Please estimate the number of calories that you just consumed: ____________ 

 

 

 

 

  



72 
 

Appendix E 

Experimental Protocol 

Eating Session 

1. 24 hours before each participant is scheduled to have their eating session, send 

them the following e-mail: 

Dear Participants, 

 

I am sending you this e-mail to remind you of your participation in the eating study.  You 

are scheduled for tomorrow (date) at time.  We will be meeting in Brackett Hall, Room 

421 at your scheduled time.  

  

Thank you, 

(experimenter) 

 

2. Refer to the Undergraduate Assistant Protocol for details on the undergrad’s role 

in the procedure. 

3. CI team members will be interacting with the participants; the Graduate Assistant’s 

job is to monitor the equipment and oversee the session to ensure that no 

significant problems arise. 

4. Before leaving the lab, make sure you bring the following items: 

a. The Experimenter Notebook (this may be kept in the cafeteria). 

b. The participant compensation ($10 per participant). 

c. The key for the equipment cabinet (hanging by the door in James’s and 

Mike’s office). 

d. Your ID tag. 

e. The External Hard drive (if you are doing a data backup). 

5. Arrive at Harcombe at the scheduled start time.  The undergraduates will be 

greeting the participants in the lab. 

6. Stand in line to enter the cafeteria.  Greet the cashier and let them know that you 

are here for the eating study, and 6 more people should be following shortly. 

7. Prepare the table and boot up the equipment (refer to Computer Boot Up). 

8. Call one of the undergrad assistants that are helping out for that day.  Phone 

numbers will be in the experimenter notebook. 
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9. Once the participants arrive, monitor their activities and ensure that the CI 

members are adhering to the Undergraduate Assistant Protocol. 

10. Once the participants return with their food, begin recording. 

a. Start the video recording before you start the scale/bite counter recording. 

b. To begin the video recording, right click on the video screen. 

c. Click “Manual record.” 

d. Click the colored square in the EatStat program to begin recording bite 

and scale data. 

11. Make a note of any problems or anomalies that arise. 

12. Monitor the equipment to make sure that everything is running as it should be. 

13. If the participant finishes or goes to get seconds, stop the recording. 

a. Stop the scale/bite counter data before stopping the video. 

b. Click the colored square in the EatStat program to pause recording. 

c. Right click the video monitors. 

d. Click “Manual Record” to end the video recording. 

14. Resume the data recording when the participant returns with seconds or thirds. 

15. At some point in the session, make sure to give the CI assistants the compensation 

and the compensation forms. 

16. Once the session is finished, shut down the equipment (unless you are doing a 

backup) and help the CI assistants bus the tables. 

17. Wipe all of the trays down with the Clorox Wipes. 

18. Put the trays, the experimenter notebook, and the Clorox wipes in the equipment 

cabinet and lock it up. 

19. Cover up the table, and reposition the “Reserved” sign. 

Computer Boot-up 

1. Remember to bring the key that is hanging on the black karabiner by the door in 

room 421. 

2. Arrive in Harcombe at the participant’s scheduled arrival time.   

3. Unlock the cabinet and boot up both laptops. 

4. The password for each laptop is “tiger5”. 

5. Click “EatStat.exe”.  This is the program that monitors the bite count and the 

scale data. 

6. Click “Start” then “Record.”  This will not actually begin recording data; it will 

just begin monitoring the devices.  (Do this on each laptop) 

7. Clicking “Record” will open a new window showing the video from two of the 

four cameras.  The top laptop will show stations 1 and 2, and the bottom laptop 

will show stations 3 and 4: 
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 Station 1 Station 2 

(Blank) (Blank) 

   

(Blank) (Blank) 

Station 3 Station 4 

a. Make sure that each camera is focused on the correct station. 

8. Verify that the Gyroscope readout on the EatStat window is reading roughly 1.2. 

9. If there are any errors, close all windows and restart them.  If this does not fix the 

problem, contact the graduate assistant. 

10. Once the equipment is ready, call the assistant in Brackett and tell them that 

you’re good to go. 

Data Recording 

1. Once all of the participants have been allowed to go get food, begin the recording. 

2. Always start the video first and end the video last. 

3. Right click on EACH video and choose “Manual Record.” 

4. Within the EatStat window, click the green square button with the station number.  

The button will change to red. 

5. Once the participants have returned and have begun eating, check all of the data 

readouts and make sure they are changing as they should. 

6. It is not necessary to constantly monitor the laptops.  However, check them from 

time to time to make sure that there are no errors (e.g. frozen screens, equipment 

failures, etc.) 

7. When the graduate assistant tells you to end the recording, click the red square 

buttons in both EatStat windows. 

8. Right click each video and click manual record again. 

Video Conversion 

A: Before Video Conversion: 

1: Note down the approximate time when the subject has started eating their meal. 

2: Once the subject has finished his meal, note down the end time and go to the 

corresponding camera recording folder on the relevant laptop. 

3:  Every recording creates the new “.dat” file. The recorded “dat” files are stored in the 

specific naming convention i.e. “CameraName | S00A | Year (4) | Month (2) | Date (2) | 

Hrs (2) | Min (2) | Sec (2) | msec (3)” and file stores the recording lasting up to 5 minutes. 
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The file size should be around 30 MB for 5 minutes recording duration. There will be 

multiple dat files for one meal depending on the duration. Verify the dat files for start 

time and size. 

B: Video conversion: 

1: Open the “Playback System” from the “Start menu”. 

2: Click “Open Recording and provide username and password as “admin/admin”. 

3: Check whether the same day is highlighted in the calendar in the left corner. 

4: Select the recording for required camera (as shown below) depending upon the 

particular subject under recording and click OK. (The top row is camera 1 and the bottom 

row is camera 2) 

 

5: The video will be loaded in the playback system. 

6: Scroll bar can be used to start video at required time. 

7: Once the start time is set click the “Cue In” (red circled button below) this specifies the 

start time of video conversion. Slide the scroll to the end of the required end time and 

click “Cue Out” (green circled button below). 

 

8: After this click “Save Video”. In the dialog box provide the converted file destination 

and name. 

(The file destination should be the same recording folder for that subject i.e. C00000 or 

C00001 and file name should be of the format “| Year (4) | Month (2) | Date (2) | Hrs (2) | 

Min (2) | Sec (2) | msec (3).asf” ex: “20120202113610778.asf”.  It can be taken from the 

recorded .dat file name in the recording folder as mentioned in step A:3).The Export 

Format should be set to “ASF”. Set the “Use Profile” to “Windows Media 8 for Local 

Area Network (768 kbps) as shown below. Also check the “Export Audio”. 
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9: Click OK and the process will start indicating the progress in the dialog. 
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Appendix F 

Undergraduate Assistant Protocol 

Prior to Subject Arrivals 

1. Dress Professionally! 

2. Arrive at least 15 minutes before the participant is scheduled to arrive. 

3. All of the necessary materials will be on James’s desk.  A post-it note will be on 

top of the folders with each participant’s name and participant number.  Use this 

to match up participants with their correct folders.  Once you are done, shred the 

post-it and throw it away. 

4. Prior to the participants’ arrival, make sure their subject folders are prepared with: 

a. The consent form (2; 1 for the participant to sign, 1 for them to take after 

completion) 

b. The Participant Note Sheet 

c. SLIM Scale (2; Labeled START and END) 

d. The post-study questionnaire 

e. The menu for that day 

f. Food Logs (3) 

g. LAM scale 

5. Also ensure that the subject folders themselves are labeled with the following 

information: 

a. Participant Number 

b. Date and Time 

c. Station Number 

d. Menu or No-Menu (this refers to whether or not the participant is allowed 

to use a menu to make calorie estimations at the end of the study). 

6. Two experimenters should meet the participants in the lab; the graduate assistant 

will go to set up the equipment. 

7. Each CI team member present is responsible for two of the four participants.  

Decide beforehand who will be in charge of whom. 

8. You will interact primarily with your two participants; this includes: 

a. Giving them forms 

b. Taking their measurements 

c. Attaching Bite Counters 

d. Debriefing 
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9. Have the consent form prepared on a clipboard with a pen for the participant to 

fill out.  Note: The Start SLIM scale will not be given in the lab, but in 

Harcombe. 

10. Upon the participant’s arrival, introduce yourself and thank them again for their 

participation. 

11. Give them the consent form, and instruct them to read it, initial each page and 

sign and date the last page of the form. 

12. Once the participant has finished reading and signing the consent form, measure 

height (to the nearest ¼ inch) and weight (to the nearest ½ pound) using the scale.  

Record all measurements on the Participant Note Sheet. 

a. Power on the device, and wait for it to start up and zero itself. 

b. Extend the stadiometer so that it is above the participant’s head. 

c. Ask the participant to step onto the scale with their back to the 

stadiometer. 

d. Level the stadiometer with the participant’s head, and record height and 

weight. 

e. Measure height to the nearest quarter inch. 

13. Measure the participant’s body fat percentage. 

a. Turn the device on. 

b. Press set twice. 

c. Adjust each parameter to that of the participant.  Press set after each one to 

move it to the next. 

d. Instruct the participant to hold the device out in front of them with their 

arms straight and with the feet shoulder width apart. 

e. Record BMI and Body fat percentage. 

14. Take the participant’s waist and hip measurements (to the nearest ¼ inch).  Have 

female assistants measure female participants.  If none are present, or if the 

participant prefers, they may measure themselves. 

a. Using the measuring tape, measure the waist at the smallest point near the 

navel. 

b. Measure the hips around the buttocks. 

15. The graduate assistant should call you to confirm that the equipment is ready. 

16. Once all of the measurements have been taken and the computer technician has 

called to confirm that the equipment is prepared, lead the participants to 

Harcombe dining hall. 

.Upon Arrival at Harcombe 

1. Do not eat any food without paying! 
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2. When you arrive at the station, sit the participants at a separate table (if available; 

if not, sit them at the station. 

3. Give each participant a SLIM scale and instruct them to complete it. 

4. Give the participants the following instructions: 

a. “You are allowed to select anything you want.” 

b. “We ask that you try to use just one plate per line.  For example, if 

you want a burger and fries and some pizza, you can put the burger 

and fries on one plate, but put the pizza on a different plate.” 

c. “You are free to make as many trips as you like before you start 

eating; if it’s too much to carry, come and set it down, and then you 

can go back and get more.”   

d. “Please try to eat as you normally would.  The purpose of this study is 

the development of the wrist worn device; we are not interested in 

your specific eating behavior.” 

i. Be sure you emphasize this point.  Participants tend to want to be 

accommodating, but it is important that they eat as though the bite 

counter wasn’t there. 

e. “There are scales beneath your trays that are measuring the weight 

change in your food.  We ask that if you set your silverware down, 

please set it on the napkin beside your tray.  Also, please try to keep 

your hands off of the tray.” 

f. “Please note that there is sensitive equipment and wiring on the 

underside of the table.  Please try to avoid jolting the table with your 

knees.” 

g. “When you return, please do not set the plates on the trays just yet; 

set them to the side.  We will give you further instructions once you’ve 

returned. 

5. Once the participants return, tell each of them their station number. 

a. Make sure that they do not place the plates on the tray, but to the side.  

Note:  You do not have to wait for all of the participants to return 

before beginning the next steps. 

6. Fill in the participant food logs, asking about portion sizes, additions and 

subtractions, etc.  Use the menus provided to you in the subject folders to make 

sure that you are labeling the food items correctly (this can be done after the fact, 

while the participants are eating).  Note: There will always be a menu available 

for you to use to enter food, but participants will only use these half the time. 

a. Ask the participants if the item was self-serve or if it was served by a 

cook. 
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b. Ask the participants if they got the normal portion, or if they requested 

smaller or larger portions. 

c. As the participants if the made any unusual additions (such as ketchup, 

mayo, etc.) or if they requested any subtractions from the items (e.g., no 

chicken in the chicken and rice). 

d. Each food item gets its own entry (even if it’s on the same plate as another 

meal item). 

e. Note: Drinks are considered separate food items.  Ask them what drink 

they got, and whether or not they used ice. 

f. Note on the meal sheet the time that each participant begins eating by 

asking the graduate assistant what the time is on the computer (do not use 

watches/cell phones). 

g. Start a new data sheet for each course (that is, each time the participant 

gets up to get more food). 

h. Each food item gets its own entry (even if it’s on the same plate as another 

meal item). 

i. If there are any food items on the plates that are not on the menus, 

make a note of those items on the menu. 

7. Attach a bite counter to your two participants.  Make sure that you are placing it 

on the hand that they use for eating, and that the wire is running from the wrist to 

the body, and is on the outside side of the arm.  It should look like this: 

a.  
8. Note: Make sure the bite counter is oriented to the position displayed in the 

picture! The orientation should be off by no more than 20 degrees; that is, it 

should be as straight on the arm as possible.  If it is not, tighten the wrist 

band. 

9. Instruct the participants to place the food items on the tray, one at a time. 
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10. Make sure that the tray is balanced on the scale, and no part of the tray is touching 

the table itself.  This makes sure that the scale is capturing the full weight of the 

food, and none of the weight is resting on the table. 

11. Instruct the participants to begin eating: 

a. “You may begin eating.  Remember: eat as you normally would.  You 

are allowed to go get seconds, but let one of us know if you do by 

raising your hand.  Also, raise your hand if you are finished eating.” 

b. IMPORTANT: “When you are finished with a course, DO NOT 

combine your plate waste or stack your plates; leave each item on its 

own plate, and we will clear them for you.” 

12. If the participant goes to get seconds or completes the meal, unload their used 

dishes into the bus pan in the following way: 

a. Remove silverware, placing them off the tray. 

b. Remove each dish one at a time, placing it to the side of the tray. 

c. The goal is to allow the scale to get a good reading of the weight change 

for each dish. 

d. Note: Participants will want to continue using the same drink.  This is 

fine; just remove it like any other dish, but don’t bus it, just set it to 

the side and replace it on the tray once the participant has returned. 

13. Replace the tray with a fresh one, and wipe down the used tray with a Clorox 

wipe. 

14. Once the participant finishes the meal, unhook them from the bite counter. 

15. Upon each participant’s completion of the meal, give them the post-meal 

questionnaire, the end LAM scale, and the End SLIM scale. 

a. If the participant’s folder is labeled “MENU”, then give them a copy of 

the menu.  (If it says NO-MENU, then do not give them one). 

b. If they are given a menu, say the following: “The last question of the 

survey asks you to make an estimation of the number of calories that 

you’ve consumed.  Please use this menu to help with your 

estimations.” 

c. Make sure that participants are not sharing menus; it’s best to make sure 

they are sitting separately from each other. 

16. Debrief each participant quietly: 

a. “Thank you for agreeing to participate in this study.  Our team’s goal 

is to develop a tool called the “Bite Counter” that can help people 

monitor and reduce their food intake, which will help them lose 

weight.  The purpose of this experiment is to assess the relationship 

between bite count and calorie intake for a wide variety of meals.  The 



82 
 

data collected from this experiment will help us to further develop the 

Bite Counter to more accurately measure a person’s caloric intake.  

Do you have any questions? (…)  

b. Please sign and date this form.  Also, if you are a Clemson Student, 

please write down your CUID number.  If you are not a student, 

please write down your address. (…) 

c.  Would you like a copy of your consent form? (…) Once again, thank 

you for your participation. 

17. Have the participant sign the appropriate compensation form.  Use the provided 

cover sheet to hide other participants’ information.  Note: The subject folders 

are labeled “Student” or “Non-Student.” If the participant is a student, have 

them sign the “Student” compensation form.  If they are a non-student, have 

them sign the “non-student” compensation form. 

18. Give the participants their compensation ($10). 

19. If they’ve requested a copy of the consent form, make sure you give them the 

UNSIGNED copy in the back of the folder. 

20. Load the finished participant’s used dishes into the bus pan. 
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Appendix G 

Ground Truth Protocol 

Protocol for Determining Ground-Truth Bite Count 

1. Open the file to be ground-truthed. 

a. Open up the program “EatStatReview.exe.” 

b. Click “File” in the top-left corner. 

c. Click “Load.” 

d. Navigate to the appropriate participant folder, and the appropriate course 

subfolder where available. 

e. There should only be one visible file, named by year, month, day, hour, 

minute, second, millisecond.  It will be in the format of 

yyyymmddhhmmssmmm     (e.g. 

“20120419132734051.txt”). 

2. The program should load up with the data for the participant.  The screen will be 

laid out in the following format (see Figure 1): 

1. System Controls: A list of all of the controls for marking 

weight changes, playing the video, and marking bites. 

2. Video Data 

3. Scale Data: Shows changes in the weight on the scales. 

4. Bite-Counter Data: Shows changes in the sensors within the 

bite counter. 
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Figure 1: Initial Eatstat Screen Layout 

3. Begin playing the video. Pressing “d” moves the data in the direction and rate 

selected by the “a, s, f, g” keys, at a constant rate.  Pressing “d” again will pause 

the video, and you can move through the data frame-by-frame using the “a, s, f, 

g” keys. 

4. Be on the lookout for any technical problems that may occur that will make the 

bite marking process impossible or inaccurate.  If such a problem occurs, make a 

note of it and label it ‘technical,’ and move on to the next video.  These problems 

include but not limited to: 

a. The video and the data files are out of sync.  You will notice this if the 

scale data does not change in sync with the plates being added to the tray 

in the video file. 

b. Video crashes consistently in the same spot (Note that videos will crash 

periodically, but it will not always crash consistently.  If a video crashes, 

your data is saved automatically and will all be loaded when you re-open 

the file). 

c. Video skips frames or freezes. 

d. Data is not visible. 

e. Food items are present on the plate, but not in the data file. 

f. Food items in the data file are incorrect. 
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5. As you do the bite marking, also be on the lookout for “non-technical” problems.  

These are problems with the participant’s behavior that do not prevent you from 

analyzing the file.  If such a problem occurs, make a note of it and label it “non-

technical,” but continue to analyze the file to the best of your ability.  These 

include, but are not limited to: 

a. Participant is wearing a hat, and it is not clear when bites occur. 

b. Specific food items are not clearly visible. 

c. Different food items are indistinguishable from one another. 

Marking Container Weights 

1. Your first task is the mark when containers are added to or removed from the tray.  

Look for the tell-tale plateaus in the Scale Data section of the interface, as shown 

in Figure 2.  Each plateau is indicative of a new container being added to the tray. 

 

Figure 2: Scale data line with container markers. 

2. These plateaus should sync up with containers being added to or removed from 

the tray in the video.  If they do not, create an error note and move on to the next 

file. 

3. Move the cursor to the bottom of the first plateau.  Press “1” to define the 

contents of the first container.  Note: You will only press the “1” key the first time 

you measure each container.  For each of the 3 subsequent measurements, you 

will press the “2” key. 

4. A dialogue box (Figure 3) will appear that lists each food item selected by the 

participant.  Select all of the items that are visible in the container that is currently 

being added to the tray. 



86 
 

 

Figure 3: The container-marking dialogue box. 

5. There are four options at the bottom of the dialogue box: Start (before adding), 

Start (after adding), End (before removing), and End (after removing).   

6. Both “Start” options are used at the beginning of the meal, one to place a mark 

before the container is added and one to place a mark after a container is added.  

The “End” options are used at the end of the meal, before and after the container 

is removed. 

7. For this first container, choose “Start (before adding)” and press ok.  A blue mark 

will appear on the scale data line listing all of the foods for that container. 

8. Move the cursor to the most stable (flattest) point at the top of the first plateau.  

Press the “2” key. 

9. This dialogue box is very similar to the first one, except that the foods are already 

combined for the first container.  Select “Start (after adding)” and click ok. 

10. Repeat this procedure for all containers, at both the beginning and the end of the 

meal. 

 

Marking Bites 

1. Navigate through the file using the a, s, f, g, and h keys as described above. 



87 
 

2. Each time the participant takes a bite of food or a sip of drink, pause the file.  A 

bite/sip is defined as the point at which the pixels of the food touch the pixels 

of the participant’s mouth.  See figure 4 for an example. 

 

 
Figure 4: A bite is defined as the point where the pixels of the food touch the 

pixels of the participant’s mouth. 

3. Sometimes the participant will take bites or sips in rapid succession.  Only mark 

them as separate bites if there is a one second gap between them (1 second is the 

equivalent of pressing the “g” key once). 

4. Once you’ve identified a bite, press the “m” key to mark it. 

5. A dialogue box will appear (Figure 5).  Select the food item that is being eaten, 

what utensil is being used, what container the food item is in, and what hand is 

being used to take the bite. 
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Figure 5: The bite marking dialogue box 

6. You’ll notice that participants will often take bites of the same foods without 

changing hands, utensils, or containers.  These are called “bite patterns.”  Using 

the “n” key, you can cycle through recorded bite patterns.  Bite patterns are 

displayed in the lower-right hand corner of the screen.  When you press the “m” 

key, the dialogue box will open up with all of the options selected for the bite 

pattern that is currently displayed. 

7. You can select and move between specific bites using the “<” and “>” keys. 

8. You can delete as selected bite using the “Delete” key. 
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Appendix H 

Portion Estimation Protocol 

Protocol for Estimating Portion Consumption 

1. Open your Estimation Excel file. 

2. NOTE: DO NOT add, delete, or rearrange rows.  Once you finish your 

estimations, your columns will be copied and pasted into a master file, so if you 

rearrange anything, your estimations will be out of order.  If you feel a change 

needs to be made, add a comment to the Excel file in an appropriate place. 

3. Find a food item that currently has no estimation. 

4. Login to PARL and download the appropriate before and after screenshots if 

they are available (these will be available if another estimator has already 

completed this file).   

5. If the screenshots are NOT available (or if they aren’t working appropriately), 

perform steps 6 through 12.  Otherwise, skip to step 13. (Note: some screenshots 

have been made, but were made in the wrong format and don’t work 

appropriately.  Delete these and perform steps 6 through 12). 

Making Screenshots 

6. If the screenshots are not available, download the appropriate .m1v video file to 

your desktop and double click it to open it up. (Note: the best media player for 

this task is VLC media player.  If you don’t have it, I suggest you Google, 

download, and install it; it’s free and fast). 

7. Maximize the video so that it takes up the full screen and skip ahead until you 

reach the point where all the plates are on the tray, but the first bite has not 

yet been taken.  If any food item is obscured (say, a glass is blocking it), find an 

earlier spot where all of the food items are visible, but it must be before the first 

bite is take. 

8. VLC Media player has a feature that allows you to create screenshots of whatever 

is playing in the video.  Click "Video" then "Take Snapshot".   

9. Rename the screenshot file using the following naming template: 

pxxx_cx_screenbefore 

10. Return to the video and skip ahead to the end of the video.  Find a point after the 

last bite has been taken, but before the plates have been removed. 

11. Repeat steps 7 through 9, except use the following naming template: 

pxxx_cx_screenafter 
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12. Upload both screenshot files to the appropriate participant folder on PARL (but 

DON’T delete them from your desktop until after you’ve made your estimations). 

Making Estimations 

13. Open both screenshots.  Look at the before picture and try to make an estimate of 

the starting portion size for that participant.  You’ll notice in your excel file that 

you have a column for “Portion” and a column for “Units.”  The ‘portion’ column 

should only contain numbers, and the ‘units’ column is where you type the units.  

For example: 

Food Item Portion Unit 

pepperoni pizza 2 slices 

mashed potatoes .25 plate 

coca cola .5 glass 

grapefruit .25 grapefruit 

 

14. For all items that are in discreet units, you will label them as the number of 

discreet units of that item.  These items include but are not limited to: cake, hot 

dogs, sandwiches, cheeseburgers, pizza, chicken fingers, corn dogs, etc.  You 

should record them as "2 | cheeseburgers" or "6 | pieces".  Limit units to one 

word, and use 'pieces' as a default if you're unsure. 

15. For all non-discreet items, list them as a decimal of the container that they are 

in.  For example: .80 large bowl, .50 large plate, .25 small plate, .8 glass etc.  Use 

your best judgment on this.  Only use a 1 if it is very close to completely full of 

that item.  The following are the ONLY unit words we'll be using for non-discreet 

items: 

a. Glass 

b. Mug (coffee) 

c. Large Plate (Most plates are "Large Plates") 

d. Small Plate (Usually just for deserts) 

e. Large Bowl (Used for soups/salads) 

f. Small Bowl (Usually just for ice cream or yogurt) 

16. Compare the before and after screenshots side by side.  An example of this is 

shown in Figures 1a and 1b. 
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a.  b .  

Figure 1: Before (a) and after (b) screenshots used to visually estimate starting portions 

and portions consumed. 

 

17. Estimate the percentage of the starting portion that the participant has 

consumed by the end of the meal.   For example, if the participant had half a 

glass of coke at the start, and 1/5 of a glass of coke by the end, then that 

participant consumed 80% of that item. 

18. As you’re making your estimates, please make note of the following points: 

a. A fruit is 100% consumed if there is nothing left but rinds or peels. 

b. Do not worry too much about crumbs.  For example, if there are a few 

bread crumbs left from a sandwich, and you’re inclined to mark it as 98% 

consumed, go ahead and mark it as 100% consumed. 

c. Other food debris (e.g. sandwich and pizza crusts) DO count, as they are a 

source of calories.  These should be included in your estimations. 

19. Type your estimate into the appropriate column in the excel file. 
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