
Clemson University
TigerPrints

All Theses Theses

8-2013

COMPUTATIONAL REPRESENTATION OF
LINGUISTIC SEMANTICS FOR
REQUIREMENT ANALYSIS IN
ENGINEERING DESIGN
Alex Lash
Clemson University, alash@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Lash, Alex, "COMPUTATIONAL REPRESENTATION OF LINGUISTIC SEMANTICS FOR REQUIREMENT ANALYSIS IN
ENGINEERING DESIGN" (2013). All Theses. 1698.
https://tigerprints.clemson.edu/all_theses/1698

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1698?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

COMPUTATIONAL REPRESENTATION OF LINGUISTIC SEMANTICS FOR

REQUIREMENT ANALYSIS IN ENGINEERING DESIGN

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Alex Vincent Lash

August 2013

Accepted by:

Dr. Gregory M. Mocko, Committee Chair

Dr. Joshua D. Summers

Dr. Georges Fadel

ii

ABSTRACT

The objective of this research is to use computational linguistics to identify

semantic implicit relationships between text-based relationships. Specifically, natural

language processing is used to implement linguistic semantics in requirement analyzers.

Linguistic semantics is defined as the meaning of words beyond their string form, part of

speech, and syntactic function. Many existing design tools use part of speech tagging and

sentence parsing as the foundation of their requirement analysis but ultimately use string

algorithms to evaluate requirements. These string algorithms cannot capture the implicit

knowledge in requirements. This research compares five methods of requirement

analysis. A manual analysis provides the benchmark against which the subsequent

analyzers are judged. A syntactic analysis is implemented and compared to the manual

method to gain insight into the capabilities of current methods. The other three analyzers

implement semantic tools for requirement analysis through semantic ontologies and latent

semantic analyses. The results from the semantic analyzers are compared to the results of

the other two analyzers to judge the capabilities of semantics in requirement analysis. The

findings show that semantics can be identified with at least 74% accuracy. Further, the

agreement between the semantic results and the manual results are more related than the

syntax results and the manual results. While the implementation of semantics into

requirement analysis does not completely agree with manual findings, the semantic

analyses improve upon syntactic and string matching analyses used in current research.

iii

DEDICATION

For my Mom and Dad.

iv

ACKNOWLEDGEMENTS

Dr. Gregory Mocko

Dr. Joshua Summers

Dr. Georges Fadel

Dr. Mackay Salley

Dr. Anne Catlla

Dr. David Sykes

Ms. Kaye Autrey

Dr. Melissa Thibodeau

Ms. Barbara Booth

——————————

Andrew Klas

William Lefever

Bill Sharp

Alex Taylor

Cameron Ferguson

Nathan Milam

Ryan Linton

John Dubose

Geoff Goff

Lukeus Wingo

v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1. OVERVIEW OF REQUIREMENT ANALYSIS ..1

RESEARCH

RO 1: Supplementing Requirements with Semantics3

RO 2: Forming Semantic Relationships ..4
RO 3: Value of Linguistic Semantics to Design ..5
Overview of Thesis ..6

2. LITERATURE REVIEW OF RESEARCH IN ...9

NATURAL LANGUAGE REQUIREMENT

ANALYSIS

Importance of Requirement Analysis ..9

Linguistic Approach to NL Requirement Analysis12
Established Syntactic NLP Methods for Requirement

Analysis..13
Semantic NLP Tools ..16

Established Method for Gaining Conceptual Insight into

Requirements ...20
Research Opportunities ..24

Chapter Conclusions ..25

3. DESIGN OF THE REQUIREMENT ANALYZERS......................................27

Requirements for Analyzers ..28

vi

Table of Contents (Continued)

Page

Algorithm Development ..29
Code Implementation ...58

Chapter Conclusions ..63

4. TEST CASES AND INTERPRETATION OF ..66

REQUIRMENT ANALYSIS RESULTS

BMW Accelerator Pedal Module Overview ..67
Manual Requirement Relation Study ...69

Test Case 1: Manual Comparison ..71

Test Case 2: Semantic Mapping ..78
Test Case 3: Manual to Syntax Comparison ..81
Test Case 4: Manual to Component LSA ..83

Comparison

Test Case 5: Manual to Semantics Comparison ..84

Test Case 6: Manual to LSA Comparison ...86
Requirement Analyzer Comparison ...87
Chapter Conclusions ..95

5. CONCLUSIONS AND FUTURE WORK ..97

Fulfillment of Research Objectives ...97

Broader Impact of Semantics in Requirement ...106

Analysis

Future Work ...106

REFERENCES ..109

APPENDICES ...112

A: Analyzer Scripts ...113
B: Accelerator Pedal Module Requirements ..152
C: Requirement Analysis Conceptual Models ..154

vii

LIST OF TABLES

Table Page

1-1 List of research objectives. .. 2

2-1 Levels of interpretation for understanding natural

language text. ... 13

2-2 Semantic relations between words [14] ... 19

2-3 List of core quality metrics [15]... 22

2-4 Topics reviewed and opportunities for research

identified .. 25

3-1 List of the requirement analyzers created including the

Syntactic Analyzer (1) and three semantic analyzers

(2-4).. 27

3-2 List of requirements showing which analyzers the

requirement applies to and the respective

opportunity it addresses. .. 28

3-3 Algorithm for parsing requirements. .. 30

3-4 Algorithm for identifying significant terms. .. 33

3-5 Algorithm for comparing requirements. .. 35

3-6 Algorithm for running LSA in the LSA Analyzer. 38

3-7 Algorithm for comparing requirements to create

coceptual model in LSA Analyzer. .. 40

3-8 Inputs and outputs of the term identification function. 43

3-9 Algorithm for running LSA in the component LSA

analyzer. ... 43

3-10 Inputs and outputs of the compare requirements

function. ... 45

3-11 Inputs and outputs of the term identification function. 48

3-12 Algorithm for searching the semantic ontology for term

definitions. ... 50

3-13 Algorithm for running LSA. .. 51

3-14 Algorithm for extracting latent term keywords. .. 53

3-15 Algorithm for mapping terms to the semantic ontology. 54

viii

List of Tables (Continued)

Table Page

3-16 Algorithm for comparing requirements. .. 57

3-17 Description of computation tools used in the

requirement analyzers [6, 14, 23]. ... 59

4-1 List of test cases to validate research ... 66

4-2 Education level of each engineer used in the manual

study. .. 69

4-3 Education level of engineers used in Test Case 1 to

compare to results found in manual study. .. 72

4-4 Cohen’s Kappa values comparing the individual manual

results to the results of the manual collaborative

study. .. 78

4-5 Education level of raters used in the semantic

interpretation study. ... 79

4-6 Sample of semantic validation process showing method

for raters assessing terms. .. 80

4-7 Results of semantic validation. .. 81

4-8 Cohen’s Kappa values comparing the Component LSA

Analyzer to manually obtained results. .. 84

4-9 Cohen’s Kappa values comparing the Semantic

Analyzer to the manually obtained results. .. 85

4-10 Cohen’s Kappa values comparing the LSA Analyzer to

the manually obtained results. .. 86

5-1 Statistical analysis results at 0.6 semantic threshold.

Cohen’s Kappa value is in relation to the manual

collaborative study results.. 102

ix

LIST OF FIGURES

Figure Page

1-1 Overview of thesis chapters showing completed

chapters (grey chevron)..8

2-1 Adapted systematic design process detailing the use of

requirements throughout the process [1]..11

2-2 Sample parse tree showing general structure, key

elements, and an example of an adjectival noun [6].14

2-3 Dependency tree (left) versus a standard parse tree

(right) of a requirements statement. ...15

2-4 LSA workflow (left) with sample objects from each

function (right). ..17

2-5 Semantic relationships between automobile and related

terms. ..20

2-6 Adapted model of syntactic elements mapped to

elements in a requirements statement [7, 8]...23

2-7 Overview of thesis chapters showing chapters one and

two completed (grey chevrons). ...26

3-1 Functional model of the syntactic analysis of all

requirement analyzers. ...29

3-2 Functional decomposition of requirement parsing. ...30

3-3 Text file of sample set of requirements for the

accelerator pedal module. ..31

3-4 Sample dependency parse of a NL requirement. ...31

3-5 Functional model of the Syntax Analyzer with implied

syntactic analysis. ..32

3-6 Functional decomposition of significant term

identification. ...33

3-7 Visualization of selection process for identifying

significant words from dependency trees. ...34

3-8 Functional decomposition of requirement comparison

in Syntax Analyzer. ..35

x

List of Figures (Continued)

Figure Page

3-9 DSM of sample requirements showing relationships

between requirements (grey boxes) found via the

Syntax Analyzer. ..36

3-10 Functional model of the LSA Analyzer with implied

syntactic analysis. ..37

3-11 Workflow of inputting requirements into LSA (left)

showing an example requirement (right). ..38

3-12 Sample of the reduced term-document matrix

performed on five accelerator pedal module

requirements. ..39

3-13 Functional decomposition for comparing requirements

in LSA Analyzer. ...40

3-14 DSM of sample requirements showing relationships

between requirements (grey boxes) found via the

LSA Analyzer. ...41

3-15 Functional model of the component LSA Analyzer with

implied syntactic analysis. ...42

3-16 Workflow of inputting requirements into LSA (left)

showing an example requirement (right). ..44

3-17 Reduced term-document matrix performed on five

accelerator pedal module requirements. ..44

3-18 DSM of sample requirements showing relationships

between requirements (grey boxes) found via the

component LSA Analyzer. ...46

3-19 Functional model of the Semantic Analyzer with

implied syntactic analysis. ...47

3-20 Semantic analysis sub-model showing sub-functions......................................48

3-21 Functional decomposition of the semantic analysis...49

3-22 Sample synsets for the term sound showing keywords

found for each synset ...51

3-23 Workflow of inputting requirements into LSA (left)

showing an example requirement (right) ...52

xi

List of Figures (Continued)

Figure Page

3-24 Example of terms latently related to the significant term

sound ..53

3-25 Example mapping of significant term sound (right) to

the semantic ontology (left) by comparing

keywords. ...55

3-26 Output of semantic analysis showing significant terms

(middle) mapped to the synsets in the semantic

ontology (right). ...56

3-27 Functional decomposition of requirement comparison....................................57

3-28 Sample DSM showing relationships between

requirements (grey boxes) for the Semantic

Analyzer. ..58

3-29 Embodied function model of the Syntax Analyzer

showing functions, classes, and methods. ..59

3-30 Embodied function model of the LSA Analyzer

showing functions, classes, and methods. ..60

3-31 Embodied function model of the component LSA

Analyzer showing functions, classes, and methods.62

3-32 Embodied function model of the Semantic Analyzer

showing functions, classes, and methods. ..63

3-33 Overview of thesis chapters showing chapters 1-3

completed (grey chevrons). ..65

4-1 Solid model of the BMW accelerator pedal module [24]68

4-2 Image of the BMW requirements document showing a

sample of the requirements and document

formatting. ..69

4-3 Sample of pairwise relating requirements on a

whiteboard. Each box (R1-R5) contains the

requirement statement text ...70

4-4 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) found via manual study. ...71

xii

List of Figures (Continued)

Figure Page

4-5 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) from Engineer 1 ..74

4-6 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) from Engineer 2. ...76

4-7 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) from Engineer 3. ...77

4-8 Percent of the terms mapped correctly based on the

number of raters needed to agree to consider a term

correctly mapped ..80

4-9 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) found via the Syntax Analyzer ...82

4-10 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) found via the Component LSA Analyzer at a

semantic threshold value of 1.0 ...84

4-11 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) found via the Semantic Analyzer at a

semantic threshold value of 0.6 ...85

4-12 DSM of accelerator pedal module requirements

showing relationships between requirements (grey

boxes) found via the LSA Analyzer at a semantic

threshold value of 0.8 ...87

4-13 Cohen’s Kappa values of each analyzer by semantic

threshold value. ..88

4-14 Overview of thesis chapters showing chapters 1-4

completed (grey chevrons). ..96

5-1 Sample rank-reduced term-document matrix on five

requirements highlighting column vectors R1 and

R2. ..99

1

CHAPTER ONE

OVERVIEW OF REQUIREMENT ANALYSIS RESEARCH

The purpose of this research is to use computational linguistics to identify implicit

relationships between text-based requirements. Specifically, these relationships are

identified based on requirement semantics. Relationships between requirements aid

engineering designers by providing a graphical representation of requirements that allows

multiple relationships between requirements. For instance, requirement relationships are

used to predict change propagation when an initial requirement is modified or deleted.

This prediction can save time and money by minimizing the need to iterate over the

design process. Current manual methods find intelligent relationships between

requirements, but become tedious and error prone when scaled up. Also, existing

automated methods use string matching and syntax to identify relationships. These

relationships are not in agreement with those found manually.

Through the implementation of a semantic analysis into current automated

methods, this research seeks to build upon syntactic methods to bring requirement

analysis results in closer agreement with manual results. Semantics afford the scalability

of automated methods while finding relationships that more closely replicate manual

Chapter Objectives:

 Establish the motivating research problem.

 Identify and describe research objectives.

 Provide a comprehensive overview of semantic requirement analysis research.

 Provide an outline of the thesis.

2

methods. To accomplish this goal, three semantic requirement analyzers are created that

derive the semantic relationships between the requirements. The results from the

semantic analyzers are compared to:

 Existing syntactic and string matching requirement analysis methods.

 Requirements models based on human expertise (manual).

The manual models provide a benchmark against which the analyzers are evaluated. A

requirement analyzer using only string matching and syntax analysis is also created. This

analyzer is representative of the automated requirement analysis method used in current

research. As with the semantic analyzers, this analyzer is also compared to the manual

models. The performance of the syntactic analyzer serves as the baseline against which

the abilities of the semantic analyzers are evaluated.

In particular, this research aims to meet three research objectives (RO). These

objectives are shown in Table 1-1.

Table 1-1: List of research objectives.

RO Description

1
Apply linguistic semantics to requirement statements to improve computational

understanding of requirement statements.

2 Identify and form semantic relationships between requirements.

3
Compare semantic analysis methods against syntax and manual methods to show

the value of semantics to requirement analysis.

The following sections detail these research objectives and how each objective is tested.

Also, the sections show how each research objective (RO) relates to the overarching

research purpose and motivation.

3

1.1 RO 1: Supplementing Requirements with Semantics

Linguistic semantics is defined as the meaning of terms beyond their string form,

part of speech, and syntactic function. Linguistic semantics can be thought of as the

implicit knowledge in a text. Many existing design tools do not use linguistic semantics

to analyze requirements and use part of speech tagging and sentence parsing alone as the

foundation of their requirement analysis. These tools use string operations to evaluate the

requirements. Syntax and string matching methods do not replicate manual results. This

conclusion is drawn by finding the level of agreement between the manual results and

result of a method using syntax and string matching methods alone. The level of

agreement is found using Cohen’s Kappa, which determined a poor agreement of 0.27.

By incorporating linguistic semantics, implicit knowledge can be identified.

Consequently, the results of the semantic analyzers more closely represent manual results

with a maximum kappa value of 0.48. These results are discussed in further depth in the

test cases performed in Chapter Four.

Linguistic semantics are applied using natural language processing (NLP). NLP

provides a set of tools to apply semantics in computational methods. Two semantic tools

are used in the semantic requirement analyzers. These semantic tools are latent semantic

analysis (LSA) and semantic ontologies. Two of the analyzers employ only LSA. The

third tool implements both LSA and a semantic ontology. The relationships discovered by

the semantic analyzers are evaluated relative to the manual approach and syntactic/string

matching approach.

4

Semantics are supplied to the requirements in two ways. LSA find latent

relationships between requirement statements. The other method is performed by

mapping the objects of the requirement statements to a semantic ontology. While LSA

supplies semantics, the LSA model does not explicitly define two semantically related

terms or documents. The semantic ontology relies on external expertise and relationships

between words such as those captured in traditional dictionaries and thesauruses.

Mapping to a semantic ontology defines the terms and the terms are related based upon

defined semantics such as synonymy. As a result, the semantic ontology allows for an

accuracy analysis of the semantic mapping. This accuracy analysis judges the ability of

an analyzer to automatically supply a term with meaning (i.e. define a term). The results

of this accuracy analysis show the ability of computational methods to add meaning to

requirement terms and statements. In turn, the mapped semantic terms are used to relate

requirements based on the semantic similarity in the ontology.

1.2 RO 2: Forming Semantic Relationships

In this research, semantics are used to form relationships between requirements.

Two of the semantic requirement analyzers form relationships based upon cosine

similarity from the requirement vectors created by LSA. The other semantic requirement

analyzer forms relationships by calculating the ontology path length based on the mapped

semantic terms.

The requirement analyzers model these relationships in a design structure matrix

(DSM). The DSMs are n×n matrices where n is the number of requirements. Each cell is

a value indicating the relationship between the requirements. The relationships are based

5

on the semantics supplied by the analyzers (RO 1). The relationships are bidirectional

forming symmetric matrices. Relationships between requirements have applications as

formal models in requirement repositories and have been demonstrated in requirement

analyzers such as requirement change propagation detection. Also, relationships between

requirements capture conceptual knowledge of the requirements that is often overlooked

by traditional hierarchal requirement list formatting. For instance, a traditional structure

is usually subdivided into headings such as geometry and safety. Yet some requirements

pertain to multiple headings, but a traditional requirements list cannot capture multiple

relationships. Forming relationships between requirements using a DSM provides a

web/graph structure that can capture this information.

1.3 RO 3: Value of Linguistic Semantics to Design

To assess the value of semantics to requirement analysis, the developed

requirement analyzers are used to evaluate a requirements document of a BMW

accelerator pedal module. In addition to the three semantic analyzers and the

syntactic/string-matching analyzer, the requirements document is manually analyzed. The

manual analysis serves as the benchmark against which the requirement analyzers are

judged. It should be noted that the time efficiency of the analyzers is not evaluated

directly by this research.

Six test cases are then performed to evaluate the results of each tool. The results

of the manual analysis are first compared to one another to measure the level of

agreement between engineers when relating requirements. The manual results are also

compared to each requirement analyzer. The level of agreement between the manual and

6

syntactic/string-matching analyzer represents the abilities of existing requirement

analysis methods. The semantic analyzers aim to improve upon the results obtained by

the syntactic/string-matching analyzer. Also, the ability to map requirement terms to a

semantic ontology is measured.

1.4 Overview of Thesis

The first two research objectives relate to the computation interpretation of

requirements. The first objective interprets the semantics or implicit knowledge in the

requirements. The second objective gains conceptual insight about the requirements by

finding relationships between requirements. Each of the three analyzers meets these

objectives in a unique approach. The third research objective seeks to show the value of

semantics to requirement analysis by evaluating the analyzers against each other and

established methods that use syntax and string matching alone. The remainder of the

thesis details the research from literature review through conclusions of the semantic

requirement analyzers. Specifically, the thesis:

 Surveys current literature and research in requirements analysis.

 Identifies opportunities in current literature that will be addressed by this research.

 Defines the problem and derive requirements for the requirement analyzers based

on the identified opportunities in literature.

 Conceptualizes, embodies, and details the analyzers to meet the derived

requirements.

 Implements the analyzers on a test case requirements document to evaluate

solutions.

 Answers research objectives and draw conclusions including future work.

7

Figure 1-1 provides a visual outline of the thesis showing the deliverables of each chapter

as they relate to the objective of this research.

8

Figure 1-1: Overview of thesis chapters showing completed chapters (grey chevron).

9

CHAPTER TWO

LITERATURE REVIEW OF RESEARCH IN NATURAL LANGUAGE

REQUIREMENT ANALYSIS

A variety of analysis methods are used to interpret requirements. The goal of each

analyzer is to provide the user/designer with valuable information about the requirements

document. This chapter discusses the foremost methods for analyzing requirements:

 Established syntactic method for analyzing requirements.

 Established semantic NLP tools and their roles in requirement analysis.

 Established methods for gaining valuable conceptual information about

requirements.

These methods are better understood through the linguistic approach to requirement

analysis. Therefore, this method is detailed in this chapter. Before understanding the

methods for analyzing requirements, it is important to understand the importance of

requirement analysis.

2.1 Importance of Requirement Analysis

Understanding the importance of requirements in the design process is needed to

understanding the importance and benefits of requirement analysis. Though many

different design methodologies exist, requirements are consistently established as the

foundation of the design process [1, 2, 3]. Requirements are realized from customer

Chapter Objectives:

 Perform a literature review of current requirement analysis research.

 Provide relevant background information pertaining to requirement analysis.

 Identify opportunities and gaps for development of current research.

10

wants and refined over the course of the product development. Therefore, requirements

serve as the connection between customer needs and the realized product. The

requirements document also serves as a guide to judge the success of the product. Figure

2-1 shows the systematic design process and the role of requirements during each phase.

11

Figure 2-1: Adapted systematic design process detailing the use of requirements

throughout the process [1].

12

Figure 2-1 shows that not only are requirements used to assess the final product, but also

to assess the concepts and principles developed within the process. For instance, during

concept evaluation and selection, the requirements are used as a metric to select the

concept(s) to embody. It is important then that the requirements document is of high

quality to ensure that the use of the document is both efficient and valuable. Also, Figure

2-1 shows that the requirements list is refined over the course of the design process.

Requirements are added, deleted, and modified throughout the design process.

Consequently, the requirements must be analyzed often, and therefore, an efficient

requirement analysis method is beneficial.

2.2 Linguistic Approach to NL Requirement Analysis

Most requirements are written in natural language (NL). NL is chosen because it

is ergonomic for both efficient formulation and efficient communication, especially

among non-technical stakeholders. Customer wants for products are often expressed in

NL and therefore, requirements are often first derived in NL.

NLP tools address a given text such as a requirements document in levels. [4, 5].

These categories are based on the linguistic level of interpretation. The three levels of

interpretation are shown in Table 2-1. The levels can affect one another. For instance,

ambiguity on the syntactic level can affect the understanding at the semantic and

conceptual levels. More importantly, a better understanding at the semantic level can

improve the conceptual understanding.

13

Table 2-1: Levels of interpretation for understanding natural language text.

Level of

Interpretation
Description Computational Methods

Syntactic Part of speech and sentence structure
Part of Speech Tagging

Sentence Parsing

Semantic
Word or sentence meaning; Requires

context

Latent Semantic Analysis

Semantic Ontologies

Conceptual
Requirements meaning; Requires

domain knowledge

Formal Modeling

Quality Metrics

The syntactic level of interpretation is well-established in requirement analysis.

This level provides the base upon which a conceptual understanding of requirements can

be formed. The semantic level can provide meaning to words beyond their syntax thus

furthering the understanding of requirements. Like the syntactic level, the conceptual

level is also well-established in requirement analysis. At the conceptual level, domain

knowledge is applied. Using this knowledge, useful information can be supplied to the

user/designer. This research seeks to enhance the conceptual level of interpretation by

improving upon the established syntactic methods through semantics.

2.3 Established Syntactic NLP Methods for Requirement Analysis

Syntax is defined as the understanding of the structure of text. Text can be a word,

statement, paragraph, or an entire document depending on the analysis. For requirement

analysis, this text is most often words and sentences. For a word, syntax involves its part

of speech—its structural purpose in a statement. For a statement, syntax involves its parse

tree—the structure of a statement. Syntactic meaning is applied to requirements via three

NLP methods.

1. Tokenizing – separating a text into its respective tokens (e.g. words, numbers)

14

2. Tagging – applying part of speech tags to each token

3. Parsing – creating a tree structure of a statement

It is common practice to refer to the combination of all three steps as parsing and the

combination of the first two steps as tagging. Tagging and parsing are well-established

NLP methods for requirement analysis. Many requirement analysis tools use tagging and

parsing as the foundation of their requirement analysis. Tagging applies part of speech

tags to each token. Parsing creates a tree structure by applying part of speech tags as well

as phrase tags. Figure 2-2 shows a sample parse tree of a requirement.

Figure 2-2: Sample parse tree showing general structure, key elements, and an

example of an adjectival noun [6].

Dependency trees are parse trees that provide the syntactic function of each word

in a statement as opposed to only the part of speech or phrase tag. As seen in Figure 2-3,

the requirement statement:

Quick-release assembly pins shall not be painted.

15

is parsed in both formats [6]. From the dependency tree, it can easily be found that the

word pins is the subject by the tag NSUBJPASS, which stands for noun subject passive.

On the right, the standard parse tree provides similar information except the finding of

the subject can only be found through the finding of the plural noun (NNS) pins under the

first noun phrase (NP). In this way, the dependency tree provides more direct, valuable

information as compared to standard parse tree.

Figure 2-3: Dependency tree (left) versus a standard parse tree (right) of a

requirements statement.

Being able to identify specific syntactic elements in a requirement such as the

subject and direct object is important to requirement analysis. Research has shown that a

link between syntactic elements and requirement concepts can be obtained [7, 8]. This

method is discussed further in Section 2.5.2. This research seeks to build on the

established syntactic NLP methods for requirement analysis. The requirement analyzers

designed for this research implement parsing to provide a foundation for the semantic and

conceptual requirement analysis methods.

Dependency Tree Standard Parse Tree

16

2.4 Semantic NLP Tools

Once the syntactic methods have been performed in a requirement analysis, the

semantic and conceptual interpretations of requirements are performed. Semantic analysis

is not used often in requirement analysis and only syntax and string matching methods

are used to gain conceptual insight [9, 10, 11, 12, 13]. However, string matching and

syntax alone may not be an effective way to gain conceptual insight about requirements.

Therefore, semantics may provide a method for gaining further insight about

requirements in order to enhance conceptual understanding. Two accepted semantic tools

are used in the requirement analyzers. These tools are latent semantic analysis and

semantic ontologies.

2.4.1 Latent Semantic Analysis

One tool for identifying semantics in text is latent semantic analysis (LSA). LSA

utilizes singular value decomposition (SVD) to reduce the noise in a set of texts to reveal

latent semantics. This method provides a way to relate texts based upon the implicit

relationships within a given domain. In terms of a requirement analysis, the domain is

typically the requirements list as a whole, where each requirement is considered a

document. Figure 2-4 shows the basic workflow of a LSA with sample objects at each

phase.

17

Figure 2-4: LSA workflow (left) with sample objects from each function (right).

First, all the terms in the requirements are extracted. An n×m term-document

matrix is created where n is all the unique terms in the requirements list and m is all of

the individual requirements. The matrix is populated with the frequencies of each term

per requirement. Next, the matrix is decomposed through singular value decomposition

(SVD). While decomposed, the rank can be reduced while preserving the relationships of

the term-document matrix. The decomposed matrix is then reassembled and the resulting

matrix provides a term-document matrix where the rank—related to the implicit topics in

the requirements list—is reduced. As a result, the latent semantics or implicit

18

relationships between the requirements can be revealed. The row vectors can be related

via cosine similarity (or other vector comparison method) to find similarity between

terms. Also, the column vectors can be compared in a similar fashion to find the

similarity between requirements.

If LSA is being run on raw NL text, it may be valuable to normalize the original

term-document matrix before performing SVD. This normalization can minimize the

effects of common words that have no semantic meaning. Normalization can include

methods such as:

 Term frequency – inverse document frequency (TF-IDF)

 Stopword removal

 Log – entropy normalization

Through these methods, words with higher semantic meaning are given more weight

before performing SVD, dimension reduction, and reassembly.

This research uses LSA in the requirement analyzers to supply semantics to the

requirement statements. The reduced term-document matrix provides a way to find

relationships between terms and requirements. While LSA can find semantic

relationships, it cannot identify the semantics. For instance, LSA can tell if a term is

semantically related to another term but cannot directly identify the meaning of the term.

To directly apply meaning to terms and requirements, LSA must be supplemented with

another semantic tool.

19

2.4.2 Semantic Ontologies

Another NLP tool that can add linguistic semantics to a requirements analysis is a

semantic ontology. In general, an ontology is a structured corpus. For instance, a regular

corpus such as a stopword list is a list of words, while an ontological corpus can have

relationships between items in the corpora. The structure of the ontology provides expert

knowledge outside the domain of the requirements list. One example of such a corpus is

WordNet [14]. WordNet provides relationships between words in its database through

semantic relations such as a synonym. Other semantic relationships can also be found.

Specifically, a semantic ontology can provide relationships between words beyond string

matching algorithms. A sample list of semantic relations between words is provided in

Table 2-2.

Table 2-2: Semantic relations between words [14].

Semantic Relation Description

Synonym A word has the same meaning as another word

Meronym A word is a member of another word

Hyponym A word is more specific instance of another word

Hypernym A word is a more general instance of another word

The relationships in a corpus are defined by experts in the field of linguistics. The

benefit of having these relationships is the enhanced ability to query the corpus. In a

regular corpus, only string matching operations can be performed, while with an

ontological corpus any number of query operations can be performed depending on the

structure of the ontology. For example, the relationship between the component

20

automobile and bumper can be identified where a non-semantic, string matching

algorithm would not address. Figure 2-5 shows a sample of possible relationships that can

be found.

Figure 2-5: Semantic relationships between automobile and related terms.

In WordNet, it is possible to retrieve a similarity value between two words in the

ontology by traversing the web of relationships in the ontology. Because an ontological

corpus was used, these values have defined semantic relations and have context from

experts in the field of linguistics.

In this research, one of the requirement analyzers is supplemented with a semantic

ontology. This analyzer shows that a mapping to a semantic ontology can be performed.

Using this mapping, the requirement analyzer is used to relate the components in the

requirements. This result is then compared to the other analyzers and the established

syntactic method.

2.5 Established Method for Gaining Conceptual Insight into Requirements

To provide valuable information to designers, a requirement analysis must gain a

conceptual interpretation of the requirements. In particular, the requirement analyzers in

this research are interested in finding the relationships between requirements. The

21

relationships between requirements have been shown to provide valuable information to

designers. Chen shows that relating requirements to one another via components can

provide a model to aid the development of a product lifecycle model [9]. Morkos has

shown that relationships between requirements can aid in change propagation prediction

[12, 13]. Further, tools like IBM’s DOORS™ tool and NASA’s ARM tool [10] have

identified the value of traceability to requirements. Traceability is the ability to find the

source and relations between requirements. Two established methods for conceptual

interpretation are formal models and quality metrics. These tools are discussed in light of

this research.

2.5.1 Quality Metrics

Quality metrics judge the value of a requirement by checking a requirement for

certain characteristics. Researchers have identified their own respective metrics to

conform to their requirement analyzer, but a set of core metrics can be identified [15, 10,

11]. These metrics are listed in Table 2-3. This table shows the quality metrics and a

description of each.

22

Table 2-3: List of core quality metrics [15].

Quality Metric Description

Unambiguity Requirement has same meaning to all readers

Conciseness Requirement consists of only necessary details

Testability Requirement has a method to check if it is met

Traceability
Requirement source can be traced and all links to other

requirements are made

Consistency
Requirement has no overlap in content, terms in requirements

are consistent

Correctness
Requirement does not contradict other requirements, standards,

or physical laws

Completeness All possible quantifications of a requirement have been made

The purpose of each metric is to provide a method to calculate the quality of a

requirement and/or requirements document. However, many of these metrics are checked

by using syntax and string matching algorithms. For instance, NASA’s ARM tool checks

for traceability of a requirement by detecting if a requirement is started with a string of

numbers separated and terminated with periods [10]. Traceability can also be managed by

a requirement tool such as DOORS™. However, DOORS™ requires the relationships

between requirements to be identified manually. This manual identification can be

tedious and is not scalable.

2.5.2 Formal Modeling

A formal model allows for domain knowledge to be applied to requirements. This

application of domain knowledge allows the computer to perform conceptual

interpretations. Formal models are often used to relate the conceptual elements in

requirements—such as components—to one another. These relationships create an

23

intelligent web of conceptual understanding that the requirement analyzer can process

once the proper syntactic elements have been input into the formal model. Formal models

can take on various forms. Some are ontologies that can analyze requirements using

predicate logic [16]. Other formal models can identify ambiguity on a conceptual level

[5]. Still other formal models attempt to create dependency repositories [9, 17, 18].

It has been shown that syntactic elements can be mapped to certain requirement

concepts [19, 9, 7, 8]. For instance, the existence of a modal in a statement conveys the

necessity of a requirement. Figure 2-6 shows how certain syntactic elements can be

mapped to requirement concepts. The requirement concepts are the terms that add

semantic and conceptual meaning to the requirement statement.

Figure 2-6: Adapted model of syntactic elements mapped to elements in a

requirements statement [7, 8].

Of specific importance to this research is the identification of subjects and objects

as they are semantically significant in requirements. Three of the requirement analyzers

in this research create relationships between requirements based upon subjects and

objects identified in the requirements. Subjects and objects have been used in established

24

research in requirement analysis. For instance, Chen implements a component-centric

formal model to aid in developing a product lifecycle model [9]. McLellan uses

components to identify requirements critical to mass reduction [20, 21]. Also, research by

Morkos in requirement change propagation relies on subjects and objects to create

relationships between requirements [12, 13].

An issue with many formal models is that they forgo a semantic analysis. In other

words, using the syntactic interpretation (parsing), the syntactic data is used to map

directly to a formal model [5, 17, 18, 19, 9, 16]. Without a semantic understanding, a

requirement analysis may not be as valuable. The formal model may be incomplete

because it cannot identify semantic relationships between words such as synonymy and

meronymy. Considering the design of an automobile, the component suspension is

evidently related to the component suspension in another requirement. However,

suspension is also related to the component spring. Considering change propagation

through requirements, it is likely that a change to a spring requirement could change a

suspension requirement. The research areas above do not use a semantic analysis and

therefore cannot find relationships such as the example above. In particular, this research

explores the value of a formal model supplemented with semantics to requirement

analysis.

2.6 Research Opportunities

The literature review conducted in this chapter has provided an overview of

relevant research in requirement analysis. From each topic reviewed, opportunities for

further research have been identified.

25

Table 2-4: Topics reviewed and opportunities for research identified.

Section Topic Opportunity

2.1
Importance of

Requirement Analysis

Requirement analysis can efficiently improve the

quality of a requirements document and in turn,

improve the design process.

2.2
Approach to NL

Requirement Analysis

Linguistic approach provides a structured method

for understanding NL requirement analysis.

2.3
Established NLP Methods

for Requirement Analysis

Syntactic interpretation provides a base for

extending requirement analysis to include

semantics.

2.4 Semantic NLP Tools
Semantic NLP tools provide a way to enhance

requirements with semantics.

2.5
Established Requirement

Analysis Methods

Methods for requirement analysis use only syntax

and string matching to conceptualize requirements.

2.7 Chapter Conclusions

In this chapter, a literature review of current research is performed and relevant

background information pertaining to requirement analysis is identified. Further,

opportunities have been identified for development of current research. In Chapter 3,

these opportunities are translated into requirements of the requirement analyzers. Figure

2-7 shows the completed chapters (grey chevrons) and upcoming chapters (white

chevrons) along with their respective deliverables.

26

Figure 2-7: Overview of thesis chapters showing chapters one and two completed

(grey chevrons).

27

CHAPTER THREE

DESIGN OF THE REQUIREMENT ANALYZERS

This chapter details the development of the requirement analyzers. Three semantic

requirement analyzers are designed. Further, one syntactic requirement analyzer is

designed that represents methods used in existing research. All of the analyzers share the

same syntactic interpretation, but each semantic analyzer interprets the semantics in the

requirements in a different fashion.

Table 3-1: List of the requirement analyzers created including the Syntactic

Analyzer (1) and three semantic analyzers (2-4).

ID Analyzer NLP Tools

1 Syntax Tagging, Parsing

2 LSA Tagging, Parsing, LSA

3 Component LSA Tagging, Parsing, LSA

4 Semantic Tagging, Parsing, LSA, Semantic Ontology

The analyzers are designed in three phases. First, task clarification converts the

identified opportunities from Chapter Two to requirements of the analyzers. Next,

conceptual design provides a functional model for the analyzers and the function

algorithms. Then, the functions are programmed and integrated during embodiment and

Chapter Objectives:

1. State the motivation for the requirement analyzers.

2. Explain the design method used to create the analyzers.

3. Identify the requirements of the analyzers from literature opportunities.

4. Provide a functional understanding of the analyzers.

5. Detail the design of the analyzers.

28

detail design. The analyzers are improved throughout the design process and final testing

is performed before the solutions can be presented.

3.1 Requirements for Analyzers

The task clarification phase uses the identified opportunities in literature to create

requirements for the requirement analyzers. Table 3-2 shows the requirements that

address the opportunities identified from literature and which analyzers it applies to.

Table 3-2: List of requirements showing which analyzers the requirement applies to

and the respective opportunity it addresses.

ID Analyzers Requirement Opportunity

1 1, 2, 3, 4 Analyzer shall be automated.

Requirement analysis can

efficiently improve the quality

of a requirements document and

in turn, improve the design

process.

2 1, 2, 3, 4
Analyzer shall be developed

based upon linguistic approach.

Linguistic approach provides a

structured method for

understanding NL requirement

analysis.

3 1, 2, 3, 4

Analyzer shall use established

syntactic approach to

requirement analysis.

Syntactic interpretation

provides a base for extending

requirement analysis to include

semantics.

4 2, 3, 4
Analyzer shall implement

semantic tools.

Semantic NLP tools provide a

way to enhance requirements

with semantics.

5 1

Analyzer shall implement only

syntactic tools to provide a

baseline analysis.

Methods for requirement

analysis use only syntax and

string matching to

conceptualize requirements.

29

3.2 Algorithm Development

Once the requirements have been elaborated, the functional models for each

analyzer can be derived from the analyzer requirements, and the function algorithms for

each analyzer are formulated. This conceptual design section presents the functional

models and function algorithms for each analyzer individually with one exception. The

syntactic analysis method is the same across all analyzers. Therefore, this design is

presented only once.

3.2.1 Syntactic Analysis

Section 2.3 has shown that dependency trees provide an automated method to

identify syntax in requirements. The syntactic analysis inputs raw NL requirements and

outputs these dependency trees. The functional model of these requirements is presented

in Figure 3-1. This analysis serves as the foundation for all of the requirement analyzers.

Figure 3-1: Functional model of the syntactic analysis of all requirement analyzers.

In Figure 3-1, each white box represents a function and each grey box represents

an input and/or output of each function. The dependency trees are created via the

Stanford Parser [6]. As shown in Figure 3-2 parsing the requirements requires three sub-

functions.

30

Figure 3-2: Functional decomposition of requirement parsing.

The algorithm to parse the requirements is shown in Table 3-3:

Table 3-3: Algorithm for parsing requirements.

Function Parse Requirements

Input NL requirements Type .txt file

Parse text file into dependency trees.

Open dependency tree text file.

Convert dependency tree text file to objects.

Output Dependency trees Type List of objects

A sample set of five requirements for a BMW accelerator pedal module have been

applied to this function. As shown in Figure 3-3, the input is a list of the NL requirements

in a text file.

31

Figure 3-3: Text file of sample set of requirements for the accelerator pedal module.

The output is a list of dependency objects within the program. A sample dependency tree

for the second requirement in Figure 3-3 is shown in Figure 3-4.

Figure 3-4: Sample dependency parse of a NL requirement.

3.2.2 Syntax Analyzer

The Syntax Analyzer does not incorporate semantics, but uses syntax and string

matching alone to create a conceptual model of the requirements. Figure 3-5 shows the

32

functional model of the Syntax Analyzer. The syntactic analysis has already been detailed

in Section 3.2.1 and thus is not shown in the model.

Figure 3-5: Functional model of the Syntax Analyzer with implied syntactic analysis.

The functional model provides the structure for the Syntax Analyzer. Now, each

function must be conceptually defined. The algorithms for functional models provided in

Figure 3-5 are shown along with inputs/outputs and any sub-functions. These functions

are applied to a sample set of requirements to aid the understanding of functions.

3.2.2.1 Term Identification

Once the requirements have been parsed and dependency tree objects have been

created, the significant terms can be identified. Section 2.5.2 showed that the syntactic

elements of a requirement can be mapped to requirement elements. To find the syntactic

elements the dependency trees must be traversed. As shown in Figure 3-6, identifying the

significant terms has two sub-functions.

33

Figure 3-6: Functional decomposition of significant term identification.

The algorithm to identify significant terms is shown in Table 3-4.

Table 3-4: Algorithm for identifying significant terms.

Function Identify Significant Terms

Input Dependency trees Type List of objects

For each dependency tree:

Call Traverse Dependency Tree function.

Remove duplicates from key terms

Append key terms list to a list of list.

Call Remove Stopwords Function.

Output Key terms by requirement Type List of list of strings

The key terms are selected by identifying the subjects (NSUBJ) and direct objects

(DOBJ) of the requirements through the dependency tags. Figure 3-7 shows a

visualization of this selection process performed on the dependency tree from the

previous example.

34

Figure 3-7: Visualization of selection process for identifying significant words from

dependency trees.

For all of the sample requirements the identified key terms are:

1. pedal/NSUBJ

2. pedal/NSUBJ

3. pedal/NSUBJ, sound/DOBJ

4. pedal/NSUBJ, rest/DOBJ

5. pedal/NSUBJ, supply/DOBJ

Once the syntax has been used to identify key terms, a semantic analysis can be

performed on these key terms to give semantic meaning to the requirements.

3.2.2.2 Conceptual Modeling

The conceptual model relates the requirements based on the identified strings.

This analyzer calculates a binary value on whether or not the strings match between

requirements. Using the values derived between requirements, a design structure matrix

35

(DSM) is used to model the requirements. The conceptual analysis is performed via a

comparison and modeling of the requirements as shown in Figure 3-27.

Figure 3-8: Functional decomposition of requirement comparison in Syntax

Analyzer.

The algorithm to perform conceptual modeling is given in Table 3-16.

Table 3-5: Algorithm for comparing requirements.

Function Compare Requirements

Input Terms by requirement Type List of list of objects

For each pair of requirements:

For each pair of terms across requirements:

If terms match:

Add 1 to requirement similarity value.

Append requirement similarity value to a requirement DSM.

Create conceptual model files from requirement DSM.

Output DSM conceptual model Type .csv file

Once the terms for each requirement are input, the terms across each requirement pair are

compared to see if the terms are a string match. An example of the output DSM can be

seen in Figure 3-28.

36

Figure 3-9: DSM of sample requirements showing relationships between

requirements (grey boxes) found via the Syntax Analyzer.

The DSM is symmetric, so the upper and lower triangular matrices show the same

information. Along the diagonal, the requirements are compared to themselves and are

evidently related. The sample DSM shows that all requirements are related because every

requirement has the word pedal identified. The purpose of this example is to detail how

the analysis is performed. Chapter Four applies the requirement analyzers to a complete

requirements document.

3.2.3 LSA Analyzer

This analyzer incorporates LSA to create relationships between requirements.

Figure 3-10 shows the functional model of the LSA Analyzer. As with the Syntax

Analyzer functional model, the syntactic analysis is not explicitly shown but is how the

dependency trees are created.

37

Figure 3-10: Functional model of the LSA Analyzer with implied syntactic analysis.

From the functional model, the two functions in Figure 3-10 are defined. To aid

understanding, the five sample accelerator pedal module requirements are applied to this

analyzer.

3.2.3.1 Latent Semantic Analysis

The tokens from the dependency trees are used as input for the LSA. Running

LSA provides a way to computationally measure similarity between terms in the

requirements. The function for this algorithm is provided in Table 3-13.

38

Table 3-6: Algorithm for running LSA in the LSA Analyzer.

Function Run Latent Semantic Analysis

Input All terms by requirement Type List of list strings

Create term-document matrix using term frequency.

Normalize term-document matrix using log-entropy model.

Decompose term-document matrix.

Rank-reduce decomposed matrices.

Reconstructed term-document matrix with reduced matrices.

Output
Reduced term-document

matrix
Type List of lists of floats

The input for running LSA is all the terms in each requirement. In other words, each term

from each dependency tree is fed into the function to create the term-document matrix.

Figure 3-23 shows the process for inputting a sample accelerator pedal module

requirement into the LSA function.

Figure 3-11: Workflow of inputting requirements into LSA (left) showing an

example requirement (right).

39

Once the terms are inserted into the term-document matrix, the LSA is performed via

singular value decomposition (SVD). The output is a rank-reduced term-document

matrix. The rank lowering decreases the complexity of the matrix to bring forth the latent

relationships. Returning to the five accelerator pedal module requirements example,

Figure 3-12 shows a sample portion of the outputted rank-reduced term-document matrix.

Figure 3-12: Sample of the reduced term-document matrix performed on five

accelerator pedal module requirements.

The reduced term-document matrix relates the requirements and the terms in the

requirements. Each value represents the semantic importance of the respective term to the

respective requirement. For instance, Figure 3-12 shows that the terms accelerator and

module have the highest displayed importance to requirement three (R3), while rest has

the least displayed importance. With the latent semantics identified through the reduced

term-document matrix, the conceptual model can be made by comparing column vectors.

40

3.2.3.2 Conceptual Modeling

Using the reduced-term-document matrix, semantic relationships between

requirements are formed. Figure 3-13 shows the sub-functions for comparing

requirements to create the conceptual model.

Figure 3-13: Functional decomposition for comparing requirements in LSA

Analyzer.

The algorithm to compare requirements in the LSA Analyzer is shown in Table 3-7.

Table 3-7: Algorithm for comparing requirements to create conceptual model in

LSA Analyzer.

Function Compare Requirements

Input
Reduced term-document

matrix
Type List of list of floats

For each pair of column vectors:

Compute cosine similarity requirement between requirements.

Append requirement similarity value to a requirement DSM.

Create conceptual model files from requirement DSM.

Output DSM conceptual model Type .csv file

Similar to the conceptual model of the Syntax Analyzer created in Section 3.2.2.2, the

LSA Analyzer outputs a DSM of the relationships between requirements. This conceptual

model is shown in Figure 3-14.

41

Figure 3-14: DSM of sample requirements showing relationships between

requirements (grey boxes) found via the LSA Analyzer.

The relationships found by the LSA Analyzer are different than those found by the

Syntax Analyzer. Chapter Four draws comparisons between these analyzers as well as the

other two analyzers.

3.2.4 Component LSA Analyzer

Similar to the LSA Analyzer, the Component LSA Analyzer also uses a latent

analysis to interpret semantics in the requirements. The Component LSA Analyzer on

components only. This component-centric analysis is consistent with the other

requirement analyzers discussed previously—Syntax Analyzer (Section 3.2.2) and

Semantic Analyzer (Section 3.2.5). Figure 3-15 shows the functional model of the

Component LSA Analyzer except the syntactic analysis, which is detailed in Section

3.2.1.

42

Figure 3-15: Functional model of the component LSA Analyzer with implied

syntactic analysis.

From the functional model, each function is decomposed and algorithms are

detailed. As with the previous analyzers, the sample accelerator pedal module

requirements are analyzed to aid understanding.

3.2.4.1 Term Identification

Identifying significant terms is identical to the algorithm performed for the Syntax

Analyzer. This functional decomposition and algorithm is provided in Section 3.2.2.1.

The inputs and outputs of the function are reiterated in Table 3-8.

43

Table 3-8: Inputs and outputs of the term identification function.

Function Identify Significant Terms

Input Dependency trees Type List of objects

Output Key terms by requirement Type List of list of strings

3.2.4.2 Latent Semantic Analysis

The significant terms from the dependency trees are used as input for the LSA.

The LSA function for the Component LSA Analyzer is different from the LSA function of

the LSA Analyzer described in Section 3.2.3.1. The function for this algorithm is

provided in Table 3-9.

Table 3-9: Algorithm for running LSA in the component LSA analyzer.

Function Run Latent Semantic Analysis

Input
Significant terms by

requirement
Type List of list strings

Create term-document matrix using term frequency.

Decompose term-document matrix.

Rank-reduce decomposed matrices.

Reconstructed term-document matrix with reduced matrices.

Output
Reduced term-document

matrix
Type List of lists of floats

Since the input terms are all of significance to the requirement, there is no need to

normalize the term-document matrix. Figure 3-16 shows the process for inputting a

sample accelerator pedal module requirement into the LSA function.

44

Figure 3-16: Workflow of inputting requirements into LSA (left) showing an

example requirement (right).

Once the terms are inserted into the term-document matrix, the LSA is performed via

singular value decomposition (SVD). Returning to the five accelerator pedal module

requirements example, Figure 3-17 shows the outputted rank-reduced term-document

matrix.

Figure 3-17: Reduced term-document matrix performed on five accelerator pedal

module requirements.

With the latent semantics identified through the reduced term-document matrix,

the conceptual model can be made by comparing column vectors.

45

3.2.4.3 Conceptual Modeling

The function for creating the conceptual model of the requirements in the

component LSA Analyzer is identical to the function in the LSA Analyzer. This function

is detailed in Section 3.2.3.2. The function uses the reduced-term-document matrix to

create semantic relationships between requirements. The inputs and outputs from

comparing requirements in the component LSA Analyzer are shown in Table 3-10.

Table 3-10: Inputs and outputs of the compare requirements function.

Function Compare Requirements

Input
Reduced term-document

matrix
Type List of list of floats

Output DSM conceptual model Type .csv file

Similar to the conceptual model of the previous analyzers, the component LSA Analyzer

outputs a DSM of the relationships between requirements. This conceptual model is

shown in Figure 3-18.

46

Figure 3-18: DSM of sample requirements showing relationships between

requirements (grey boxes) found via the component LSA Analyzer.

3.2.5 Semantic Analyzer

The Semantic Analyzer incorporates both LSA and a semantic ontology. Figure

3-19 shows the functional model of this analyzer. As with the previous models, the

syntactic analysis has already been detailed in Section 3.2.1 and thus is not shown in the

model.

47

Figure 3-19: Functional model of the Semantic Analyzer with implied syntactic

analysis.

First, requirements are parsed and dependency trees are created for each

requirement. Next, significant terms are identified. Using the identified significant terms,

the semantic analysis is performed. The semantic analysis applies semantic meaning to

the significant terms. The sub-functions of the semantic analysis are shown in Figure

3-20.

48

Figure 3-20: Semantic analysis sub-model showing sub-functions.

The algorithms for functional models provided in and Figure 3-20 are shown

along with inputs/outputs and any sub-functions. These functions are applied to a sample

set of requirements to aid the understanding of functions.

3.2.5.1 Term Identification

Identifying significant terms is identical to the algorithm performed for the Syntax

Analyzer and component LSA Analyzer. This functional decomposition and algorithm is

provided in Section 3.2.2.1. The inputs and outputs of the function are reiterated in Table

3-11.

Table 3-11: Inputs and outputs of the term identification function.

Function Identify Significant Terms

Input Dependency trees Type List of objects

Output Key terms by requirement Type List of list of strings

49

3.2.5.2 Semantic Analysis

Figure 3-20 shows that the semantic analysis is broken down into four main sub-

functions. These sub-functions are provided in a functional model in Figure 3-21.

Figure 3-21: Functional decomposition of the semantic analysis.

The semantic analysis supplies the terms identified as significant terms with

semantic meaning thereby providing the requirement with semantics. This action is

performed by the function Search Semantic Ontology for Term Definitions. In this

function, each term is found in the semantic ontology and all semantically related words

are captured for each possible definition. A particular meaning of a term within the

semantic ontology is called a synset. A synset encapsulates all syntactic and semantic

information about a particular term. The algorithm for this function is given in Table

3-12.

50

Table 3-12: Algorithm for searching the semantic ontology for term definitions.

Function Search Semantic Ontology for Term Definitions

Input Key terms Type List of strings

For term in key terms:

Find all possible synsets.

For synset in possible synsets:

Find all keywords of a synset.

Append keywords to a list.

Append keywords list to a list.

Place list of lists into a dictionary with term as key.

Output
Dictionary of possible

definitions
Type

Dictionary of lists of

lists of strings

The keywords for each synset are derived from the lemmas (synonyms), definitions,

and/or example sentences. Continuing the example from Section 3.2.5.1, the input for this

function is each significant term from the requirements document. These inputs are:

 pedal

 sound

 rest

 supply

After the function is performed, the output is a dictionary of possible synsets for a word.

For instance, the possible synsets for the term sound are shown in Figure 3-22.

51

Figure 3-22: Sample synsets for the term sound showing keywords found for each

synset.

Next, a specific meaning (synset) must be identified from all of the possible

meanings of a word. Context from the requirements document aids in this process to help

ensure the correct synset is chosen. In this semantic analysis, context is provided via the

functions Run Latent Semantic Analysis and Extract Latent Term Keywords. Running

LSA provides a way to computationally measure semantic similarity between terms in the

requirements. The function for this algorithm is provided in Table 3-13.

Table 3-13: Algorithm for running LSA.

Function Run Latent Semantic Analysis

Input All terms by requirement Type List of list strings

Create term-document matrix using term frequency.

Normalize term-document matrix using log-entropy model.

Decompose term-document matrix.

Rank reduce decomposed matrices.

Reconstructed term-document matrix with reduced matrices.

Output
Reduced term-document

matrix
Type List of lists of floats

52

The input for running LSA is all the terms in each requirement. In other words, each

requirement is broken into terms and fed into the function to create the term-document

matrix. Figure 3-23 shows the process for inputting the requirement into the LSA

function. A sample requirement is shown on the right.

Figure 3-23: Workflow of inputting requirements into LSA (left) showing an

example requirement (right).

The output is a rank-reduced term-document matrix. Similar to the original matrix, the

reduced matrix limits the rank to decrease noise. By decreasing this variance, the latent

relationships can be found.

Once LSA is complete, the terms within the term-document matrix identified as

most related to the significant terms are then extracted. In this way, context for each

significant term is applied. The algorithm for this function is shown in Table 3-14.

53

Table 3-14: Algorithm for extracting latent term keywords.

Function Extract Latent Term Keywords

Input
Reduced term-document

matrix
Type List of list of floats

For each pair of rows in reduced term-document matrix:

Compute cosine similarity of row vectors.

Append similarity value into design structure matrix.

For each value in design structure matrix:

If value greater than similarity cutoff value:

Relate corresponding terms to one another.

Create dictionary of related terms to a given term.

Modify dictionary to only contain significant terms as keys.

Output
Dictionary of latently

related terms
Type

Dictionary of lists of

strings

The output of the function is a dictionary of latently related terms for each significant

term in the requirements. Each significant term has a key and a value in the dictionary.

The example in Figure 3-24 shows a sample of the dictionary for the significant term

sound.

Figure 3-24: Example of terms latently related to the significant term sound.

54

Once context has been applied and possible definitions are known, the meaning

for an unknown term can be found by mapping to a term to the semantic ontology. The

function Map Terms to Semantic Ontology uses the found context to apply meaning to the

terms (i.e. define the terms). In the semantic analysis, context is applied by relating the

terms extracted from the requirements document to the terms captured for each possible

definition. The definition that the context terms are most related to is selected as the

definition of the word in the semantic ontology. The algorithm for this mapping is shown

in Table 3-15.

Table 3-15: Algorithm for mapping terms to the semantic ontology.

Function Map Terms to Semantic Ontology

Inputs

Dictionary of latently

related terms
Types

Dictionary of lists of

strings

Dictionary of possible

definitions

Dictionary of lists of

lists of strings

For term in latently related terms:

Look up possible definitions.

For each possible definition:

Compare to latently related terms.

For each comparison:

If the comparison is the most similar:

Append synset to a dictionary with term as key.

Replace terms by requirement with semantic terms.

Output Semantic terms by requirement Type List of list of objects

An example mapping for the term sound is provided in Figure 3-25.

55

Figure 3-25: Example mapping of significant term sound (right) to the semantic

ontology (left) by comparing keywords.

The keywords from the latent analysis are related to the keywords from the semantic

ontology. In the example in Figure 3-25, sound is mapped to the synset sound.n.02

because the relationship between the latent and semantic keywords is stronger. The output

for all requirements is the significant semantic terms for each requirement. This full

output is shown in Figure 3-26.

56

Figure 3-26: Output of semantic analysis showing significant terms (middle)

mapped to the synsets in the semantic ontology (right).

Once semantics have been applied to the requirements, conceptual modeling can be

performed.

3.2.5.3 Conceptual Modeling

This analyzer calculates a similarity value based on semantics between any two

requirements. Using the similarity metric derived between requirements, a DSM is used

to model the requirements. The conceptual analysis is performed via a comparison and

modeling of the requirements as shown in Figure 3-27.

57

Figure 3-27: Functional decomposition of requirement comparison.

The algorithm to perform conceptual modeling is given in Table 3-16.

Table 3-16: Algorithm for comparing requirements.

Function Compare Requirements

Input Semantic Terms by Requirement Type List of list of objects

For each pair of requirements:

For each pair of semantic terms across requirements:

Traverse semantic ontology to find similarity.

Add similarity value to requirement similarity value.

Append requirement similarity value to a requirement DSM.

Create conceptual model files from requirement DSM.

Output DSM conceptual model Type .csv files

Once the semantic terms for each requirement are input, the terms across each

requirement pair are compared to find the semantic similarity between requirements. An

example of the output DSM can be seen in Figure 3-28.

58

Figure 3-28: Sample DSM showing relationships between requirements (grey boxes)

for the Semantic Analyzer.

3.3 Code Implementation

Embodiment of the design entails programming the functions from the algorithms

and integrating the functions together. The computational tools and programming

language are implemented. To integrate the functions, the analyzers must be tested and

iterations of the function programs must be performed when integration issues arise.

Using the algorithms from Section 3.2, the functions are coded. The code for all

functions is provided in Appendix A. The requirement analyzers are programmed in

Python [22]. The computational tools used to support the requirement analyzers are the

Stanford Parser, Natural Language Toolkit (NLTK), and WordNet [6, 14, 23]. Table 3-17

provides an overview of these tools and where they are used in the program.

59

Table 3-17: Description of computational tools used in the requirement analyzers

[6, 14, 23].

Computational

Tool
Description

Functions Where

Applied

Stanford Parser
Parser that provides dependency

graphs for syntactic understanding.
Parse Requirements

NLTK

Set of NLP methods that provide

access to corpora and semantic

tools.

Semantic Analysis

WordNet
Semantic ontology that is mapped

to for semantic understanding.

Semantic Analysis,

Compare Requirements

Embodied functional models with functions, classes, and methods identified are

provided. Each function in the grey boxes corresponds with the function coding in the

Appendix. The embodied function model for the Syntax Analyzer is shown in Figure

3-29.

Figure 3-29: Embodied function model of the Syntax Analyzer showing functions,

classes, and methods.

The embodied function model for the LSA Analyzer is shown in Figure 3-30.

60

Figure 3-30: Embodied function model of the LSA Analyzer showing functions,

classes, and methods.

61

The embodied function mode for the component LSA Analyzer is shown in Figure 3-31.

62

Figure 3-31: Embodied function model of the component LSA Analyzer showing

functions, classes, and methods.

63

The embodied function model for the Semantic Analyzer is shown in Figure 3-32.

Figure 3-32: Embodied function model of the Semantic Analyzer showing functions,

classes, and methods.

3.4 Chapter Conclusions

In this chapter, the design of each requirement analyzer was detailed. The four

requirement analyzers designed are:

64

 Syntax Analyzer

 LSA Analyzer

 Component LSA Analyzer

 Semantic Analyzer

The Syntax Analyzer implements only parsing and string matching. This analyzer is

representative of existing methods used for requirement analysis. The LSA Analyzer

extends the Syntax Analyzer by using LSA to find latent relationships between the

requirements. The Component LSA Analyzer performs similar to the LSA Analyzer

except only on identified components in the text instead of the entire requirement

statement. The Semantic Analyzer extends the Component LSA Analyzer by using a

semantic ontology in unison with LSA. To create these analyzers, the identified

opportunities from research are converted to analyzer requirements. Using the derived

requirements, the analyzers are conceptualized via a functional model and subsequently

detailed. Figure 3-33 shows the completed chapters (grey chevrons) and upcoming

chapters (white chevrons) along with their respective deliverables.

65

Figure 3-33: Overview of thesis chapters showing chapters 1-3 completed (grey

chevrons).

66

CHAPTER FOUR

TEST CASES AND INTERPRETATION OF REQUIRMENT ANALYSIS RESULTS

In this chapter, the semantic requirement analyzers designed in Chapter Three are

applied to a BMW accelerator pedal module requirements document. The results are

compared to manual findings in a series of test cases. These test cases are introduced in

Table 4-1.

Table 4-1: List of test cases to validate research.

ID Test Case Description

1 Manual Comparison Compare manually-obtained relationships.

2 Semantic Mapping
Compare semantic ontology mapping and LSA to

manually identified semantics.

3 Manual to Syntax
Compare syntax and string matching algorithms

to manual relationships.

4
Manual to Component

LSA

Compare LSA performed on the components to

manual relationships.

5 Manual to Semantics
Compare semantic ontology mapping and LSA to

manual relationships.

6 Manual to LSA
Compare LSA performed on entire requirements

to manual relationships.

Chapter Objectives:

1. Apply the requirement analyzers to a requirements document.

2. Provide overview of requirements document evaluated by requirement

analyzers.

3. Perform manual study to show engineers’ abilities to find concepts in

requirements.

4. Perform test cases to draw conclusions about the value of semantics to

requirement analysis.

5.

67

The first test case relates manual findings to one another. The goal of this test case

is to determine the level to which engineers conceptually agree on requirement

relationships. To gather these findings, subjects are asked to relate requirements to one

another individually. These results are then compared to one another and a manual

collaborative study. The second test case assesses a requirement analyzer’s ability to

interpret requirements. Test cases 3-6 evaluate the ability of semantics to extend

conceptual understanding of requirements beyond those of syntax and string matching

algorithms that are often found in requirement analyses.

Before the test cases are introduced, an overview of the accelerator pedal module

is provided. Also, the manual study performed in this research is detailed. This study

relates the accelerator pedal module requirements to one another based on the expertise

of engineers. The manual study provides the standard against which the conceptual

models of the requirement analyzers are judged. Afterwards, the test cases are presented

and the results of each are discussed.

4.1 BMW Accelerator Pedal Module Overview

A requirements document for a BMW accelerator pedal module is analyzed using

the semantic requirement analyzers. The accelerator pedal module provides both the

pedal and pedal mechanism that accelerate the vehicle. Figure 4-1 shows a model of the

accelerator pedal module.

68

Figure 4-1: Solid model of the BMW accelerator pedal module [24].

While the pedal module has already been designed and produced, the requirements

document used for analysis is an early design phase revision of the document. This

document was chosen because it is an industry requirements document that is feasible for

manual analysis. The requirements document consists of 24 natural language

requirements. This requirements document is text-based and has no tables or figures. A

sample of the formatted requirements document is shown in Figure 4-2. The full

requirements text is provided in the Appendix B.

69

Figure 4-2: Image of the BMW requirements document showing a sample of the

requirements and document formatting.

4.2 Manual Requirement Relation Study

Value in this research is based on whether or not the conceptual models found by

the analyzers map to that of manually derived conceptual models. In other words, if the

requirement analyzers do not derive the relationships between requirements that

engineers expect, the requirement analyzers are not useful. The study involved three

engineers. The background of each engineer is provided in Table 4-2.

Table 4-2: Education level of each engineer used in the manual study.

ID Engineering Design Requirements Linguistics

Engineer 1 Undergraduate Graduate Graduate

Engineer 2 Graduate Graduate Undergraduate

Engineer 3 Graduate Graduate Undergraduate

70

The engineers were provided a brief overview of the accelerator pedal module and

a problem statement:

Draw the relationships between requirements on the board provided.

The problem statement was designed to create the relationships between requirements

that engineers would find beneficial to the design process for any reason they deemed fit.

Then, the engineers collaboratively pairwise related the 24 accelerator pedal module

requirements to one another on the whiteboard provided. The whiteboard had the 24

requirements around the edges of the board and a marker was used to draw lines between

related requirements. A sample of these relationships on five requirements is shown in

Figure 4-3.

Figure 4-3: Sample of pairwise relating requirements on a whiteboard. Each box

(R1-R5) contains the requirement statement text.

The relations where created on a binary scale:

 Line drawn between two requirements: Yes, the requirements are related.

 No line drawn between two requirements: No, the requirements are not related.

71

The results from the whiteboard were converted to a DSM showing the relations. The

DSM is a conceptual model of the manually derived relationships between requirements.

Figure 4-4: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) found via manual study.

This final DSM is compared to the requirement analyzers in Test Case 1 and Test Cases 3

– 8 to evaluate the ability of the analyzers to form relationships between requirements.

4.3 Test Case 1: Manual Comparison

In addition to the collaborative conceptual model created by the study in Section

4.2, three individual manual models were created. Using the same process described in

Section 4.2, three engineers were asked to pairwise relate the 24 accelerator pedal module

requirements to one another on a whiteboard. This study differs in that each individual

engineer separately drew relationships, resulting in three individually obtained sets of

results.

72

Table 4-3: Education level of engineers used in Test Case 1 to compare to results

found in manual study.

ID Engineering Design Requirements Linguistics

Engineer 1 Undergraduate Graduate Graduate

Engineer 2 Graduate Graduate Undergraduate

Engineer 3 Graduate Graduate Undergraduate

73

Each result from the whiteboard was converted to a DSM for a total of three

DSMs—one per engineer. The DSM for Engineer 1 is shown in Figure 4-5.

74

Figure 4-5: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) from Engineer 1.

75

The DSM for Engineer 2 is shown in Figure 4-6.

76

Figure 4-6: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) from Engineer 2.

77

The DSM for Engineer 3 is shown in Figure 4-7.

Figure 4-7: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) from Engineer 3.

Each of the individual DSMs are compared to one another and the DSM from the manual

collaborative study. Cohen’s Kappa is used to relate and compare these DSM’s to one

another. The kappa value between any two DSMs is a measure of the agreement between

them. To use Cohen’s Kappa, the relationships in each DSM are extracted and placed into

n × 1 vectors respectively, where n is the number of relationships in the DSM. Both

vectors are then related to one another. The resulting Kappa values are shown in Table

4-4.

78

Table 4-4: Cohen’s Kappa values comparing the individual manual results to the

results of the manual collaborative study.

Comparison Kappa Value

E1 – E2 0.57

E1 – E3 0.49

E2 – E3 0.68

E1 – Collaborative 0.61

E2 – Collaborative 0.58

E3 – Collaborative 0.56

Kappa values are considered relative to their application. Ideally, the kappa value

would be 1.00, indicating complete agreement between two conceptual models. However,

these kappa values show that the highest kappa value relationship between any two

engineers or group of engineers is 0.68. Therefore, to expect a computational tool to

exceed a kappa value of 0.68 when compared to manual findings may be unreasonable. In

addition, the highest value obtained by comparing the individual results to the manual

study is 0.61. As are all the individual manual results in this test case, all requirement

analyzers are compared to the manual study. This test case provides a reasonable frame of

reference on which to judge the requirement analyzers.

4.4 Test Case 2: Semantic Mapping

The Semantic Analyzer applies semantic meaning to the requirement elements by

mapping them to a semantic ontology. This semantic interpretation method must be

validated. The validation seeks to prove that the supplied semantics are accurate with

79

manually obtained results. Using the semantics supplied to the requirements, the

similarity metric between the requirements is found through a semantic comparison of the

requirements.

Accuracy of the semantic interpretation is measured against the knowledge of 6

raters. The background of each rater is provided in Table 4-5.

Table 4-5: Education level of raters used in the semantic interpretation study.

ID Engineering Design Requirements Linguistics

Rater 1 Undergraduate Graduate Graduate

Rater 2 Graduate Graduate Undergraduate

Rater 3 Graduate Graduate Undergraduate

Rater 4 Graduate Graduate Graduate

Rater 5 Graduate Graduate Undergraduate

Rater 6 Graduate Graduate Undergraduate

Each rater was provided a list of the significant terms mapped to the semantic

ontology. Each significant term was paired with the definition provided by the semantic

ontology. Using the definition of the term, each rater individually asserted whether the

term was correctly or incorrectly mapped to the semantic ontology. A sample of this

process is shown in Table 4-6.

80

Table 4-6: Sample of semantic validation process showing method for raters

assessing terms.

Requirement Term Definition Rater 1 Rater 2 …

1 burrs
seed vessel having hooks or

prickles
Incorrect Correct …

2 pedal
a lever that is operated with the

foot
Correct Correct …

2 noises
electrical or acoustic activity that

can disturb communication
Correct Correct …

3 sound
the subjective sensation of

hearing something
Correct Correct …

… … … … …

The raters were provided information about the pedal module and provided the original

requirements document. The original requirements document was provided so that the

raters could identify the context in which the term was used. The results of the study are

shown in Figure 4-8.

Figure 4-8: Percent of the terms mapped correctly based on the number of raters

needed to agree to consider a term correctly mapped.

Figure 4-8 shows accuracy based on the constraint of number of raters that must

agree. For instance, the third bar in Figure 4-8 shows 91% mapping accuracy when at

least three raters agree that the term is mapped correctly. Figure 4-8 also shows what

81

percent of the terms were incorrect based on the constraint of number of raters. The

notable outcomes of this validation are presented in Table 4-7.

Table 4-7: Results of semantic validation.

Statistic Value

Number of Raters 6

Number of Terms 35

6 Raters Agree Correct 74% (26/35)

≥4 Raters Agree Correct (majority) 89% (31/35)

6 Raters Agree Incorrect 3% (1/35)

The results of the semantic validation show that the worst case accuracy of the

semantic mapping is 74%. This percent means that every rater agreed that the term was

correctly mapped to the semantic ontology for 74% of the terms. Over half the raters

agreed that a term was correctly mapped for 89% of the terms. In only one instance (3%)

did every rater believed that the term was incorrectly mapped to the ontology. With this

validation, the effective accuracy of the semantic mapping can be considered between 74-

89%.

4.5 Test Case 3: Manual to Syntax Comparison

As discussed in Section 2.5, many existing methods for gaining conceptual

understanding of requirements are based upon syntax and string matching methods alone.

This test case serves a representation of the capabilities of syntax and string matching

methods to form relationships between requirements. In particular, the Syntax Analyzer

results are compared the results obtained from the manual study in Section 4.2.

82

The results of both the Syntax Analyzer and the manual study are binary DSMs

that state either the requirements are related or are not related to one another. The manual

study DSM is provided in Section 4.2. The Syntax Analyzer DSM is provided in Figure

4-9.

Figure 4-9: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) found via the Syntax Analyzer.

Cohen’s Kappa is used to relate and compare these DSM’s to one another. The

resulting kappa value is:

K = 0.26

This kappa value represents a fair agreement between the syntactic conceptual

model and the manual model. Analysis of the other requirement analyzers provides

further insight into the meaning of this kappa value.

83

4.6 Test Case 4: Manual to Component LSA Comparison

This test case compares the performance of the Component LSA Analyzer to the

manually obtained results from Section 4.2. Similar to Test Case 3 described in Section

4.5, the resulting DSMs from both analyses are compared using Cohen’s Kappa. Unlike

the Syntax Analyzer, the Component LSA Analyzer is not on a binary scale. The values

of the component LSA DSM vary from -1.00 to 1.00, where less than 0.00 indicates no

relationship and 1.00 indicates an identical relationship. The results of the Component

LSA Analyzer must be on a binary scale in order to use Cohen’s Kappa.

To enable the comparison, a set of semantic threshold values are implemented

creating new DSMs that are on binary scales. These semantic threshold values are the

sensitivity of the tool to semantic meaning. For example, at a high semantic threshold

(low sensitivity) the terms must be nearly synonymous in order to be able to assert that

any two requirements are related. Below the threshold value, the new DSM cells are

assigned a value of zero, indicating no relationship between the requirements. Above or

equal to the threshold value, new DSM cells are assigned a value of one, indicating a

relationship between the requirements. 10 threshold values are used for this test case.

Using the 10 new DSMs obtained from assigning threshold values to the original DSM,

each DSM can be compared to the manually obtained DSM from Section 4.2. The

Cohen’s Kappa values are obtained using the method described in Section 4.5. The

resulting Kappa values at each cutoff value are shown in Table 4-8.

84

Table 4-8: Cohen’s Kappa values comparing the Component LSA Analyzer to

manually obtained results.

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kappa Value 0.25 0.25 0.26 0.26 0.28 0.33 0.33 0.36 0.43 0.48

Table 4-8 shows that the highest agreement between the Component LSA

Analyzer model and the manually obtained model is at a threshold value of 1.0. Figure

4-10 shows the DSM obtained at this threshold.

Figure 4-10: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) found via the Component LSA Analyzer at a

semantic threshold value of 1.0.

4.7 Test Case 5: Manual to Semantics Comparison

This test case compares the performance of the Semantic Analyzer to the

manually obtained results from Section 4.2. The method for comparison is identical to the

method used for Test Case 4 described in Section 4.6. The DSM values from the

Semantic Analyzer vary from 0.00 to 1.00, where 0.00 indicates no relationship and 1.00

indicates an identical or synonymous relationship. The semantic threshold values applied

85

to the Semantic DSM are the same as those used in Test Case 4. Table 4-9 shows the

results of the comparison between the Semantic Analyzer and the manually obtained

values.

Table 4-9: Cohen’s Kappa values comparing the Semantic Analyzer to the manually

obtained results.

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kappa Value 0.30 0.30 0.30 0.30 0.30 0.43 0.29 0.30 0.30 0.30

Table 4-9 shows that the highest agreement between the Semantic Analyzer model

and the manually obtained model is at a threshold value of 0.6. Figure 4-11 shows the

DSM obtained at this threshold.

Figure 4-11: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) found via the Semantic Analyzer at a semantic

threshold value of 0.6.

86

4.8 Test Case 6: Manual to LSA Comparison

This test case compares the performance of the LSA Analyzer to the manually

obtained results from Section 4.2. Similar to Test Case 4 and 5, the comparison method

uses Cohen’s Kappa to compare the converted LSA DSMs to the manually obtained

results. The values of the LSA DSM vary from -1.00 to 1.00, where less than 0.00

indicates no relationship and 1.00 indicates an identical relationship. The kappa values

comparing the LSA Analyzer to the manual results are shown in Table 4-10.

Table 4-10: Cohen’s Kappa values comparing the LSA Analyzer to the manually

obtained results.

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kappa Value 0.16 0.24 0.27 0.33 0.36 0.35 0.41 0.43 0.39 0.35

Table 4-10 shows that the highest agreement between the LSA Analyzer model

and the manually obtained model is at a threshold value of 0.8. Figure 4-12 shows the

DSM obtained at this threshold.

87

Figure 4-12: DSM of accelerator pedal module requirements showing relationships

between requirements (grey boxes) found via the LSA Analyzer at a semantic

threshold value of 0.8.

4.9 Requirement Analyzer Comparison

From the collected data in the test cases, the requirement analyzers can be

compared to one another. In the test cases, all requirement analyzers were compared to

the collaborative manually obtained results. Figure 4-13 shows all of the Cohen’s Kappa

values collected from the test cases. The manual line represents the highest agreement

(0.61) between an individual engineer and the collaborative manually obtained results.

The syntax line represents the agreement between the Syntax Analyzer and the manual

collaborative results. These are used as a frame of reference for the requirement analyzers

that used semantics.

88

Figure 4-13: Cohen’s Kappa values of each analyzer by semantic threshold value.

Higher Cohen’s Kappa values show that the conceptual model for that analyzer

better represents the manual model. Figure 4-13 shows that no analysis performs better

than the manually-formed relationships. These results suggest that the semantics added

by the requirement analyzers cannot capture all of the context and concepts that an

engineer uses to relate requirements. The analyzers that use LSA to relate requirements

(LSA Analyzer and Component LSA Analyzer) may be limited by the context that is used

to relate requirements. The context that LSA uses to relate requirements is limited to how

terms within the document are related to one another. Expanding the scope of the LSA to

include some corpus data could improve the results. Also, Semantic Analyzer is limited

89

by the ability of the semantic ontology to relate requirements. While the semantic

mapping is at least 74% accurate, the relations within the ontology are based upon expert

knowledge in linguistics. If the relations within the ontology are not ideal, this factor

could add to the discrepancy between manual findings and computational results. As

semantic analysis tools improve, the abilities of semantic requirement analyzers should

also improve.

While the results show that the semantic analysis methods do not fully agree with

manually-found concepts, the data does show that all analyzers employing a semantic

interpretation perform better than syntactic and string matching methods alone. This is

evident in Figure 4-13 as all semantic requirement analyzers outperform the Syntax

Analyzer at a threshold value above 0.5. At low thresholds (high sensitivity),

requirements that are only slightly related are related to one another. At this high

sensitivity, syntactic methods alone can outperform semantic methods. Figure 4-13 shows

that at a threshold of 0.1, the syntax analyzer outperforms both the LSA and Component

LSA Analyzer. However, when semantics are added to a requirement analysis, this data

shows that there is an increased ability to differentiate between requirements. At a

threshold of 0.9, every analyzer that employs semantics outperforms the Syntax Analyzer.

This finding supports the hypothesis that semantics increase the computational abilities of

forming requirement relationships beyond string matching and syntax alone.

The Semantic Analyzer performs better than the Syntax Analyzer at every

threshold. This finding shows that employing semantics in a requirement analysis can be

beneficial no matter the sensitivity to semantics. Even when mildly related requirements

90

are found via semantics, they have the capability to outperform syntactic methods alone.

The data also shows that the Semantic Analyzer has a specific threshold range where it

has optimum performance—where the agreement between the Semantic Analyzer and

manual analysis is highest. Figure 4-13 shows that the Semantic Analyzer has a

substantially higher agreement with manually obtained concepts at a threshold of 0.6. If a

requirement analysis could be trained to find these areas of optimum performance,

requirement analysis methods could provide much more valuable results to designers.

The Component LSA Analyzer improves as the threshold increases. It

outperforms the Syntactic Analyzer at a threshold of 0.5. This shows that if only the

requirements that are highly semantically related to one another are observed, the

relationships between requirements are more significant. This finding is also generally

true for the LSA Analyzer. The LSA Analyzer outperforms the Syntactic Analyzer at a

threshold of 0.3. From these results, one can conclude that a latent analysis to find

relationships between requirements is more beneficial when only requirements that are

very similar are considered related to one another. The Semantic Analysis did not use

LSA to relate requirements, but to relate terms. The semantic ontology was used to relate

requirements. This may be the reason that the trend in Figure 4-13 for the Semantic

Analyzer is different than those using LSA to relate requirements.

This research seeks to build upon other research in the requirement analysis field.

In particular, the research in the area of requirement change propagation prediction uses a

DSM model of relationships between requirements [12, 13]. This method employs

syntactic and string matching methods to automatically find relationships between

91

requirements. The research of this thesis shows that the relationships found can be

improved using semantics. Also, selection of keywords is performed manually in current

research. This research has shown that LSA is a viable option for finding those keywords.

While, adding semantics to requirement analysis has not matched the conceptual

understanding of engineers, it has shown a proof of concept and promise for further

research. The subsequent sections detail the reasoning for the discrepancies between the

requirement analyzers and the manual analysis methods.

4.9.1 Manual to Syntax Analyzer Results Comparison

From Figure 4-13, it is shown that manual methods have an agreement of 0.61,

while the Syntactic Analyzer agrees with the manual analysis with a kappa value of 0.27.

The manual agreement of 0.61 represents the highest agreement between an individual

engineer from Test Case 1 and the manual collaborative study. The kappa values show

that the Syntax Analyzer results do not agree with the manual collaborative study as well

as an individual engineer agrees. This discrepancy can be attributed to the inability of

string comparison and syntactic methods alone to capture complex relationships between

requirements.

The Syntax Analyzer finds the subject and direct object of a requirement and

pairwise compares them to the same elements in the other requirement statements. Any

string match draws a relationship between the requirements. For instance, requirement 7

states:

Pedal angle generated by the actuating force must be limited.

Requirement 8 states:

92

Pedal angle should be in the range of 16 degrees (+/- 0.5 degrees).

In this instance, the subject angle is the same in both requirements and the requirements

are related by the Syntax Analyzer. The manual collaborative study results and all of the

individual engineers agree that requirements 7 and 8 are related.

However, sometimes string matching relates two requirements that the engineers

study did not find. For example, requirement 3 states:

Accelerator pedal module should not make noticeable sound when

knocked.

Requirement 5 states:

Accelerator pedal module must use external voltage supply.

The Syntax Analyzer relates these two requirements because the subjects are string

matched. However, this disagrees with the results of the collaborative study.

The Syntax Analyzer can also miss relationships due to only using explicit

syntactic information. For instance, requirement 14 states:

Slope response on the pedal (i.e. spring stiffness) must be within 0.8 N per

degrees and 1.1 N per degrees.

Requirement 21 states:

The ascending force should be 30 percent (+6 N / -3 N) of the descending

force.

In these requirements, neither the subjects nor direct objects are sting matches. However,

the manual analysis related these requirements because of the knowledge of forces. This

93

example and the previous example are attributed to the ability of engineers to use implicit

knowledge in addition to the explicit syntactic information in a requirement statement.

4.9.2 Manual to LSA and Component LSA Results Comparison

At a semantic threshold of 0.6 both the LSA Analyzer and Component LSA

Analyzer have higher kappa values than the Syntax Analyzer. The LSA Analyzer agrees

with the collaborative study with a kappa value of 0.35, and the Component LSA

Analyzer agrees with the collaborative study with a kappa value of 0.33. As previously

stated, the Syntactic Analyzer has an agreement of 0.26. The increase in agreement in

analyzer using LSA is due to the implicit information added by LSA. For instance

requirement 9 states:

The sensor must be redundant with respect to output voltage.

Requirement 11 states:

The requirements refer to an electrical wiring output.

The Syntax Analyzer did not relate these two requirements that the collaborative study

related because neither the subject nor direct object string matched. However, LSA looks

at all terms in the requirement and weights them based on a normalization scheme. Using

this information, the LSA Analyzer found the relationship between these two

requirements.

Using LSA also improved the agreement to the manual analysis by not identifying

incorrect relationships that the Syntax Analyzer identified. For instance, requirement 3

states:

94

Accelerator pedal module should not make noticeable sound when

knocked.

Requirement 17 states:

Accelerator pedal module must not send a signal to the electronic control

unit against the driver’s wishes.

Neither the LSA nor Component LSA Analyzers identified the relationship between these

requirements. This result agrees with the manual analysis. However, the Syntax Analyzer

identified this relationship because the requirements’ subjects string match.

4.9.3 Manual to Semantic Analyzer Comparison

At the 0.6 semantic threshold, the Semantic Analyzer had the highest agreement

to the manual analysis of all the requirement analyzers. The kappa value between the

Semantic Analyzer and the collaborative study is 0.43. The Semantic Analyzer maps the

subject and direct object in a requirement statement to a semantic ontology. The ontology

path length is then used to derive a relationship value between the requirements. As with

LSA, the Semantic Analyzer minimizes the number of identified relationships that

disagree with the collaborative study. For example, requirement 4 states:

Accelerator pedal module must fit the rest of the car.

Requirement 12 states:

If pedal breaks, the pedal must not be operational.

The Syntax Analyzer asserted the relationship between these two requirements where the

collaborative results did not. Further, the Semantic Analyzer has shown greater

improvement over the LSA and Component LSA Analyzers at the 0.6 threshold as both of

95

these analyzers asserted a relationship between requirements 4 and 12. The minimization

of false positives shows the most increase in agreement between the manual analyses and

requirement analyzers.

4.10 Chapter Conclusions

This chapter details a set of test cases to show the findings of the three

requirement analyzers employing semantics. The BMW accelerator pedal module

requirements were evaluated by the analyzers and the results were compared. Test Case 2

shows that the semantic mapping within the Semantic Analyzer has at least 74%

accuracy. Test Cases 3-6 show that the analyzers that implement semantics agree more

with manually found concepts than the Syntax Analyzer. Further investigation shows that

the semantic requirement analyzers agree more with the manual results because of the

ability to minimize the number of false positive relationships. A semantic analysis

increases the computational ability to filter requirement relationships because of the

increase in implicit knowledge. Further, the LSA Analyzer was able to discover

relationships found by the manual analysis that the Syntax Analyzer did not. This shows

that semantics can find implicit relationships not able to be captured by syntax and string

matching alone. Figure 4-14 shows the completed chapters (grey chevrons) and

upcoming chapters (white chevrons) along with their respective deliverables.

96

Figure 4-14: Overview of thesis chapters showing chapters 1-4 completed (grey

chevrons).

97

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

This thesis presents the development and application of semantics in requirement

analysis. Current research has identified opportunities to implement semantics in

requirement analyzers to extend the existing requirement analysis methods. The

contributions of these analyzers are organized into three research objectives. This chapter

identifies how these objectives are met by this research. Through completion of the

research objectives the contributions of the analyzers to requirement analysis research is

realized. Further, the broader impact of a semantic requirement analysis is discussed and

possible ways to extend the analyzers and this research are analyzed.

5.1 Fulfillment of Research Objectives

5.1.1 RO 1: Supplementing Requirements with Semantics

Section 3.2.5.2 demonstrates that a computational method for applying semantic

meaning has been realized. The Semantic Analyzer achieves this by mapping requirement

terms to a semantic ontology. Significant terms are first identified by the analyzer. These

significant terms represent terms that provide the requirement statement with meaning.

Using LSA to identify the context of a requirements document, the significant terms in a

Chapter Objectives:

1. Summarize the research presented in this thesis.

2. Describe the broader impact of applying semantics to requirement analysis.

3. Identify areas of future work for this research.

98

requirement are mapped to a semantic ontology [14]. In this way, semantic meaning is

supplied to each requirement. For instance, requirement 2 states:

Accelerator pedal module may not radiate disturbing mechanical noises

(airborne sounds or mechanical vibrations).

The Semantic Analyzer identifies pedal and noises as the significant terms in the

requirement statement. These terms are mapped to the semantic ontology. The semantic

ontology provides a definition of each mapped term. The definitions for pedal states:

A lever that is operated with the foot.

All six raters identified that this mapping was correct based upon the definition provided.

This meaning of pedal was mapped to automatically using insight into the context of the

requirement terms from LSA. This helped select the definition above as opposed to

another meaning of pedal in the semantic ontology such as:

A sustained bass note.

Similarly, the definition for noises states:

Electrical or acoustic activity that can disturb communication.

As with pedal this meaning was automatically mapped to by the Semantic Analyzer. It

was chosen over other meanings in the ontology such as:

A loud outcry of protest or complaint.

As validated by Test Case 1 in Section 4.4, the method of supplying semantics to the

requirements list has been demonstrated by this research to be at least 74% accurate.

99

5.1.2 RO 2: Forming Semantic Relationships

The requirement analyzers create conceptual models that relate requirements to

one another. While the Syntax Analyzer uses only string matching and syntax to draw

relationships between requirements, the other three requirement analyzers implement

semantics. In the LSA Analyzer and the Component LSA Analyzer, the reduced-term

document matrix is used to create requirement vectors. These vectors are then related

using cosine similarity. For example, on a sample of five requirements from the

accelerator pedal module requirements document, five requirement vectors are obtained

via the reduced term-document matrix shown in Figure 5-1. Figure 5-1 has two of the

column vectors highlighted in boxes.

Figure 5-1: Sample rank-reduced term-document matrix on five requirements

highlighting column vectors R1 and R2.

100

Performing the cosine similarity between vectors R1 and R2 in Figure 5-1, yields the

relationship value between the two requirements. Requirement 1 is:

If pedal breaks, the pedal must not be operational.

Requirement 2 is:

Accelerator pedal module must mount to car.

In this case, the cosine similarity value between these two requirements is 0.97. The

cosine similarity values are on a scale from -1.00 to 1.00 where 0.00 and less is no

relationship and 1.00 is identical. While 0.97 seems intuitively high for these

requirements, LSA is based upon the given context. With a sample of 5 requirements, the

context is not complete and the given example serves only as a way to demonstrate the

method.

The Semantic Analyzer maps to a semantic ontology then relates the requirements

based upon the connections within the ontology. For instance, requirement 11 states:

The requirements refer to an electrical wiring output.

Requirement 13 states:

If pedal breaks, the pedal must not be operational.

Identifying the significant terms in these requirement statements yields requirements in

requirement 11 and pedal in requirement 13. Traversing the ontology provides a

similarity value on a scale from 0.00 to 1.00 where 0.00 is no relationship and 1.00 is

synonymy. In this instance, the obtained value between pedal and requirements is 0.11.

101

These connections consider semantic relationships such as synonymy, hypernymy,

hyponymy, and meronymy. The output conceptual models from these analyses are n × n

DSMs, where n is the number of requirements. The values in the DSM identify the

strength of relation between requirements in a requirements document. The value of these

conceptual models to requirement analysis and engineering design are evaluated by RO

3.

5.1.3 RO 3: Value of Linguistic Semantics to Design

Chapter Four seeks to understand the application of supplying semantics to a

requirements document. The requirement analyzers developed in Chapter Three are each

applied to a requirements document for a BMW accelerator pedal module to find the

relationships between requirements. In addition, three engineers were asked to

individually draw relationships between requirements. Further, a study was conducted

where a group of three engineers collaboratively drew relationships between the

requirements.

To judge the ability of the requirement analyzers, all results are compared to the

manual collaborative study. The comparisons are performed in Test Case 1 (Section 4.3)

and Test Cases 3-6 (Sections 4.5-4.8). The ability of each requirement analysis is

quantified by the level of agreement between the manual collaborative study and each

analyzer. The level of agreement was measured using Cohen’s Kappa. Test Case 1

showed that conceptual models between engineers moderately agree as the highest kappa

value between an individual engineer and the collaborative study was 0.61. Test Cases 3-

6 showed that none of the analyzers perform as well as the manually obtained results.

102

However, when comparing the analyzers that implement semantics against the Syntax

Analyzer, the semantic analyzers agree more with manually found concepts.

Further statistical analysis of the requirement analyzers provides reasoning for

how the analyzers performed against the manual analysis. Table 5-1 shows the statistical

analysis of all analyzers at 0.6 semantic threshold.

Table 5-1: Statistical analysis results at 0.6 semantic threshold. Cohen’s Kappa value

is in relation to the manual collaborative study results.

Analyzer
True

Positives

True

Negatives

False

Positives

False

Negatives

Cohen’s

Kappa

Syntax 18 181 54 23 .26

LSA 11 211 24 30 .35

Component

LSA
18 190 45 23 .33

Semantic 9 226 9 32 .43

In certain instances, all analyzers identified relationships between requirements

that agreed with the collaborative study. This corresponds to the overlap of true positive

throughout all analyzers. For instance, requirement 12 states:

If pedal breaks, the pedal must not be operational.

Requirement 16 states:

If pedal breaks, the pedal must be recognizable as broken.

All four analyzers from Table 5-1 identified the relationship between these two

requirements. Identification of this relationship is straightforward because of the strong

text similarity and string matched subjects. For the two LSA analyzers, LSA creates

103

vectors based on the importance of terms in a statement—and importance of latent terms

that should be in a statement. Therefore, if two requirements have a large portion of

similar text, they are more likely to be related as with requirements 12 and 16. The

semantic analyzer captures the term pedal in each requirement and maps it to the

ontology where the ontology realizes the identical terms are direct synonyms.

The LSA Analyzer, which evaluates the whole requirement statement, is able to

identify relationships that engineers identified but the Syntax Analyzer did not identify.

For instance, requirement 9 states:

The sensor must be redundant with respect to the output voltage.

Requirement 11 states:

 The requirements refer to an electrical wiring output.

The manual collaborative study related these two requirements where the Syntax

Analyzer did not but the LSA Analyzer did. The use of LSA on the entire requirement

allowed for a computational selection of the significant terms of the requirement

statement as opposed to the Syntax Analyzer where the subject and direct object were

pre-selected as significant terms. This allowed for the LSA Analyzer to compare the

terms output in both requirements. Also the LSA Analyzer compared other terms such as

sensor, electrical, wiring, and voltage, which often appear in the same statement and

therefore are latently related. Similarly, requirements 7 and 18 were related by the LSA

Analyzer. Requirement 7 states:

Pedal angle generated by the actuating force must be limited.

104

Requirement 18 states:

Pedal must not exhibit “stick slip effect” (instability in the force angle –

response behavior).

The Syntax Analyzer did not draw the relationship between requirements 7 and 18, where

the LSA Analyzer and manual study did. Again, LSA enabled the analyzer to select the

significant terms such as force and angle where the Syntax Analyzer selected pedal. This

selection of terms, plus the ability to weight the terms’ importance and find the latent

significance of terms in a requirement resulted in the relating of these two requirements.

Another reason for the increase in agreement between the results of the semantic

analyzers and manual analysis is the minimization of the false positives between a

semantic analyzer and the manual analysis. For instance, while the Syntax Analyzer

identified the most true positives (18) at a semantic threshold of 0.6, it had the most false

positive relationships (54). This means that 54 relationships were found between

requirements by the Syntax Analyzer that the manual analysis did not. Conversely, the

Semantic Analyzer, which agreed most with the manual results, only had nine false

positives.

Table 5-1 shows that the Component LSA Analyzer matches or outperforms the

Syntax Analyzer in every category. It has as many true positives and false negatives as

the Syntax Analyzer while improving in true negatives and false positives. This is evident

in the improved agreement between the Component LSA Analyzer as seen in the Cohen’s

Kappa value as compared to the Syntax Analyzer.

105

These results show that enhancing requirement analysis with semantics improves

the computational ability to differentiate between related requirements and unrelated

requirements. For instance, requirements 2 and 17 of the BMW accelerator pedal module

are related by the Syntax Analyzer but not by any of the analyzers that use semantics.

Requirement 2 reads:

Accelerator pedal module may not radiate disturbing mechanical noises

(airborne sounds or mechanical vibrations).

Requirement 17 reads:

Accelerator pedal module must not send a signal to the electronic control

unit against the driver’s wishes.

The Syntax Analyzer identifies that the subjects of both requirements, pedal, are string

matched and therefore related. However, the semantic analysis shows that while the two

requirements share the same subject, the remaining terms are not semantically related and

therefore there is no relationship between the requirements. By implementing semantics,

computational methods can better filter requirement relationships that string matching

methods identify that are not identified by engineers.

The analyzers in this research are applied to requirement analyses that draw

relationships between requirements. Research in the field of change propagation in

requirements uses a formal model that relates requirements to one another [12, 13]. The

goal of the change propagation tool is to predict what other requirements will change if a

requirement is changed. The current method uses string matching and syntax to draw

relationships. This research has shown that using semantics can create relationships that

agree more with manually found relationships. Implementation of semantics in the

106

change propagation tool could further the capabilities of this tool. Further, the keywords

to use for drawing relationships are performed manually. Implementing a method such as

LSA enables this method to be automated.

5.2 Broader Impact of Semantics in Requirement Analysis

This research extends the computational support available for engineering design.

By improving requirement analysis, the requirements document can be refined earlier.

This refinement adds value to the design by saving effort and money that would be

needed if the design was refined later in the process. Computational support is beneficial

as it seeks to not only improve the results of requirement analysis, but also increase the

efficiency of the design process. By automating a tedious process, designers can

accomplish the task quicker and/or while performing another task in parallel.

5.3 Future Work

5.3.1 Integration of Analyzer with Existing Tools

The requirement analyzers have been shown to apply linguistic semantics to

requirements and find implicit relationships between requirements that cannot be found

by string matching or syntactic methods. Most existing requirement analysis tools do not

employ a semantic analysis, and therefore cannot find these relationships [12, 9, 19, 13].

The next phase of for a semantic requirement analysis is to integrate it with an existing

tool. Then, validation of a specific tool can be performed to show that the semantic

analysis has improved the results of tool. The following research question summarizes

the areas of future work identified for integration of the tool:

107

How can the semantic requirement analysis tool be integrated with an

existing requirement analysis tool to improve the results?

5.3.2 Implementing Machine-Learning Techniques

While the semantic requirement analysis tool has been largely-automated, there

are parameters that must be hard-coded into the analysis that could change between

requirement documents. For instance, the performed LSA has to define a rank value to

which the term-document matrix is reduced. Parameters such as this dimension value can

be input into a vector along with defining parameters of the requirements document. This

vector can then be used to optimize the analysis for each requirements document using

machine-learning techniques such as classifiers or neural nets. This area of future work

would allow for further automation and adaptability of the tool. The research question for

this future work is:

How can machine-learning techniques improve a semantic interpretation

of a requirements document?

5.3.3 Further Validation of Tool

The application of semantics to requirement terms has been shown by this

research to be at least 74% accurate. However, validation on requirements documents of

different sizes, designs, formats, and phases in the design process should be considered.

Hypotheses about these results can be drawn based on the implemented method of

applying semantics and the performed validation. The semantic analysis relies on the

context provided by the requirements document. As long as the full context of the design

is represented in the requirements document, the accuracy of the tool should not change

significantly. This means that different size, designs, and formats should not significantly

108

affect the accuracy. However, as the requirements document is refined over the phases of

the design process, more information is known about the design. This may indicate that

the accuracy could be better on a later revision of a requirements document. The research

question for this area of future work is:

How does the variation across requirements documents affect the ability of

the tool to provide reliable results?

109

REFERENCES

[1] G. Pahl, W. Beitz, J. Feldhusen and K. H. Grote, Engineering Design: A Systematic

Approach, London: Springer-Verlag, 2007.

[2] K. T. Ulrich and S. D. Eppinger, Product Design and Development, McGraw-Hill

Inc., 1995.

[3] K. N. Otto and K. L. Wood, Product Design, Upper Saddle River: Prentice-Hall,

Inc., 2001.

[4] V. Berzins, C. Martell, Luqi and P. Adams, "Innovations in Natural Language

document Processing for Requirements Engineering," Monterey Workshop 2007, pp.

125-146, 2008.

[5] O. Ormandjieva, I. Hussain and L. Kosseim, "Toward a text classification system for

the quality assessment of software requirements written in natural language," in

SOQUA, Dubrovnik, 2007.

[6] M.-C. d. Marneffe, B. MacCartney and C. D. Manning, "Generating Typed

Dependency Parses from Phrase Structure Parses," in Language Resources and

Evaluation Conference, Genoa, 2006.

[7] C. Lamar, Linguistic Analysis of Natural Language Engineering Requirements, M.S.

Thesis: Clemson University, USA, 2009.

[8] C. Lamar and G. M. Mocko, "Linguistic Analysis of Natural Language Engineering

Requirement Statements," in TMCE 2010, Ancona, Italy, 2010.

[9] Z. Y. Chen, S. Yao, J. Q. Lin, Y. Zeng and A. Eberlein, "Formalisation of product

requirements: from natural language descriptions to formal specifications," Int. J.

Manufacturing Research, vol. 2, no. 3, pp. 362-387, 2007.

[10] W. M. Wilson, L. H. Rosenberg and L. E. Hyatt, "Automated Quality Analysis of

Natural Language Requirement Specifications," NASA Software Assurance

Technology Center.

110

[11] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami, "The Linguistic Approach to the

Natural Language Requirements Quality: Benefit of the use of an Automatic Tool,"

in 26th Annual NASA Goddard Software Engineering Workshop, Washington DC,

USA, 2001.

[12] B. W. Morkos, Computational Representation and Reasoning Support for

Requirements Change Management in Complex System Design, Clemson: Clemson

Department of Mechanical Engineering, 2012.

[13] B. Morkos, P. Shankar and J. Summers, "Predicting Requirement Change

Propagation Using Higher Order Design Structure Matrice: An Industry Case Study

of Engineering Design," Journal of Engineering Design, vol. 23, no. 12, pp. 905-

926, 2011.

[14] G. A. Miller, "WordNet: A Lexical Database for English," Communications of the

ACM, vol. 38, no. 11, pp. 39-41, 1995.

[15] D. Ott, "Defects in Natural Language Requirement Specifications at Mercedes-Benz:

An Investigation Using a Combination of Legacy data and Expert Opinion," in IEEE

International Conference on Requirements Engineering, Chicago, 2012.

[16] A. Ferrari and S. Gnesi, "Using Collective Intelligence to Detect Pragmatic

Ambiguities," in IEEE International Requirements Engineering Conference,

Chicago, 2012.

[17] H. Krishnan and P. Samuel, "Relative Extraction Methodology for Class Diagram

Generation using Dependency Graph," in IEEE ICCCT, 2010.

[18] E.-V. Chioasca, "Using Machine Learning to Enhance Automated Requirements

Model Transformation," in IEEE ICSE 2012, Zurich, 2012.

[19] L. Chen and Y. Zeng, "Automatic Generation of UML Diagrams from Product

Requirements Described by Natural Language," in ASME 2009 International Design

Engineering Technical Conferences & Computer and Information in Engineering

Conference, San Diego, 2009.

[20] J. M. McLellan, A Proposed Method to Identify Requirements Significant to Mass

Reduction, Clemson: Clemson University, 2010.

[21] J. M. McLellan, J. R. Maier, G. M. Fadel and G. Mocko, "A Method for Identifying

Requiremetn Critical to Mass Reduction," in International Design Structure Matrix

Conference, Greenville, SC, 2009.

111

[22] J. Zelle, Python Programming: An Introduction to Computer Science, Wilsonville,

OR: Franklin, Beedle & Associates Inc., 2004.

[23] S. Bird, E. Klein and E. Loper, Natural Language Processing with Python,

Sebastopol, California: O'Reilly Media Inc., 2009.

[24] BMW, "RealOEM.com Online BMW Parts Catalog," [Online]. Available:

http://realoem.com/bmw/. [Accessed 18 April 2013].

112

APPENDICES

113

5.4 Appendix A: Analyzer Scripts

This appendix contains the primary scripts for each of the requirement analyzers

as well as all of the functions used. The coding is written in Python. The scripts and

functions are delimited by file.

1. Semantic Analyzer

main.py

By: Alex Lash

Created: 2/14/13

Last modified: 2/22/13

Executable that takes text-based dependency parses and creates DSM

conceptual models.

from deptree_text_to_obj import *

from requirement import Requirement

from stopword_remove import *

from lsa import *

from latent_analysis import *

from ontology_analysis import *

from semantic_mapping import *

from compare import *

def main():

 # Open file of requirements.

 # Either raw NL (slower) or tagged requirement statements (faster).

 deptree_str_lst = open_file().split('\n\n')

 deptree_lst = []

 for deptree_str in deptree_str_lst:

 deptree = deptree_str_to_obj(deptree_str)

 deptree_lst.append(deptree)

 print deptree_lst

 nouns_lst_by_req = []

verbs_lst_by_req = []

 tokens_lst_by_req = []

 # Get artifacts and functions

 for deptree in deptree_lst:

 nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj'])

verbs_lst = deptree.verbs(gram_rel = ['dobj'])

 tokens_lst = deptree.tokens(numtags=False)

114

 nouns_lst = list(set(nouns_lst))

verbs_lst = list(set(verbs_lst))

 nouns_lst_by_req.append(nouns_lst)

verbs_lst_by_req.append(verbs_lst)

 tokens_lst_by_req.append(tokens_lst)

 # Remove stopwords

 nouns_lst_by_req = remove_stops(nouns_lst_by_req)

verbs_lst_by_req = remove_stops(verbs_lst_by_req)

 print("\nAll requirements extracted.")

 # Run LSA on requirements.

 print("\nRun LSA...")

 dim_cutoff_val = int(raw_input("\nLSA dimension cutoff value (0 - # reqs):

"))

 print("\n Running LSA on nouns...")

 n_td_mat,nouns = lsa(nouns_lst_by_req, csv=True, normalize=False,

s_cutoff=dim_cutoff_val)

 print("\n Complete.")

print("\n Running LSA on verbs...")

v_td_mat,verbs = lsa(verbs_lst_by_req, csv=False, normalize=False,

s_cutoff=dim_cutoff_val)

print("\n Complete.")

 print("\n Running general LSA...")

 td_mat,tokens = lsa(tokens_lst_by_req, csv=False, log_entropy=True,

s_cutoff=dim_cutoff_val)

 print("\n Complete.")

 print("\nLSA complete.")

 print

 print nouns

print

print verbs

 # Get latent keywords.

 print("\nFinding latent word relationships...")

 sim_cutoff_val = float(raw_input("\nSimilarity cutoff value (0 - 1): "))

 print("\n Finding similar nouns in requirements document...")

 n_latent_dict = latent_keywords(td_mat,tokens,sim_val = sim_cutoff_val)

 noun_dict = modify_dict(n_latent_dict,nouns)

 print "noun_dict"

115

 print noun_dict

 print("\n Similar nouns in requirements document found.")

print("\n Finding similar verbs in requirements document...")

v_latent_dict = latent_keywords(td_mat,tokens,sim_val = sim_cutoff_val)

verb_dict = modify_dict(v_latent_dict,verbs)

print("\n Similar verbs in requirements document found.")

 print("\nLatent relationships found.")

 # Get ontological keywords.

 print("\nFinding possible definitions for words...")

 def_cutoff_val = int(raw_input("\nMax number of definitions per word (1 -

100): "))

 print("\n Finding possible artifacts...")

 artifact_dict = synset_keywords(nouns,count_max=def_cutoff_val,p_of_s='n')

 print

 print artifact_dict

 print("\n Possible artifacts found.")

print("\n Finding possible functions...")

function_dict =

synset_keywords(verbs,count_max=def_cutoff_val,p_of_s='v')

print("\n Possible functions found.")

 print("\nDefinitions found...")

 # Map nouns to artifacts.

 print("\nPerforming semantic analysis...")

 print("\n Defining each noun term (mapping to an artifact)...")

 n_semantic_dict = define_terms(noun_dict,artifact_dict,pos='n')

 print

 print n_semantic_dict

 print("\n Noun terms defined.")

print("\n Defining each verb term (mapping to a function)...")

v_semantic_dict = define_terms(verb_dict,function_dict,pos='v')

print("\n Verb terms defined.")

 print("\n Relating noun terms to requirements...")

 n_semantic_lst_by_req = mapping(nouns_lst_by_req,n_semantic_dict)

116

 print

 print nouns_lst_by_req

 print("\n Noun terms related to requirements.")

print("\n Relating verb terms to requirements...")

v_semantic_lst_by_req = mapping(verbs_lst_by_req,v_semantic_dict)

print("\n Verb terms related to requirements.")

 print

 print n_semantic_lst_by_req

 for lst in n_semantic_lst_by_req:

 print

 for i in lst:

 try:

 print i.definition

 except:

 print i

 print("\nSemantic analysis complete.")

 # Pairwise compare requirements

 print("\nCreating DSM and outfiles for visualization...")

 n_dsm = ontology_dsm(n_semantic_lst_by_req,name="n_sem")

v_dsm = ontology_dsm(v_semantic_lst_by_req,name="v")

 print"\nFiles written."

--

def tag_check():

 print('Is the input file pretagged?')

 print(' (1) Yes')

 print(' (2) No')

 while True:

 response = raw_input()

 if response == '1' or response.lower() == 'yes':

 return True

 if response == '2' or response.lower() == 'no':

 return False

 print('Not a valid response\nType (1) Yes or (2) No.')

--

117

def open_file():

 while True:

 fname = raw_input("File Name: ")

 try:

 infile = open(fname,'r')

 break

 except:

 print('File not found. Try again. ctrl-C to exit.\n')

 f = infile.read()

 infile.close()

 return f

--

if __name__ == "__main__":

 main()

2. LSA & Component LSA Analyzers

lsa_only.py

By: Alex Lash

Created: 2/14/13

Last modified: 2/22/13

Executable that takes text-based dependency parses and creates DSM

conceptual models.

from deptree_text_to_obj import *

from requirement import Requirement

from stopword_remove import *

from lsa import *

from compare import *

def main():

 # Open file of requirements.

 # Either raw NL (slower) or tagged requirement statements (faster).

 deptree_str_lst = open_file().split('\n\n')

 deptree_lst = []

 for deptree_str in deptree_str_lst:

 deptree = deptree_str_to_obj(deptree_str)

118

 deptree_lst.append(deptree)

 print deptree_lst

 nouns_lst_by_req = []

verbs_lst_by_req = []

 tokens_lst_by_req = []

 # Get artifacts and functions

 for deptree in deptree_lst:

 nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj'])

verbs_lst = deptree.verbs(gram_rel = ['dobj'])

 tokens_lst = deptree.tokens(numtags=False)

 nouns_lst = list(set(nouns_lst))

verbs_lst = list(set(verbs_lst))

 nouns_lst_by_req.append(nouns_lst)

verbs_lst_by_req.append(verbs_lst)

 tokens_lst_by_req.append(tokens_lst)

 # Remove stopwords

 nouns_lst_by_req = remove_stops(nouns_lst_by_req)

verbs_lst_by_req = remove_stops(verbs_lst_by_req)

 print("\nAll requirements extracted.")

 # Run LSA on requirements.

 print("\nRun LSA...")

 dim_cutoff_val = int(raw_input("\nLSA dimension cutoff value (0 - # reqs):

"))

 print("\n Running LSA on nouns...")

 n_td_mat,nouns = lsa(nouns_lst_by_req, csv=False, normalize=False,

s_cutoff=dim_cutoff_val)

 print("\n Complete.")

 print("\n Running LSA on verbs...")

v_td_mat,verbs = lsa(verbs_lst_by_req, csv=False, normalize=False,

s_cutoff=dim_cutoff_val)

 print("\n Complete.")

 print("\n Running general LSA...")

 td_mat,tokens = lsa(tokens_lst_by_req, csv=True, log_entropy=True,

s_cutoff=dim_cutoff_val)

 print("\n Complete.")

 print("\nLSA complete.")

 print

 print nouns

119

print

print verbs

 # Pairwise compare requirements

 print("\nCreating DSM and outfiles for visualization...")

 dsm = lsa_dsm(n_td_mat,name="n_lsa")

 dsm_too = lsa_dsm(td_mat,name="all_lsa")

 print"\nFiles written."

--

def tag_check():

 print('Is the input file pretagged?')

 print(' (1) Yes')

 print(' (2) No')

 while True:

 response = raw_input()

 if response == '1' or response.lower() == 'yes':

 return True

 if response == '2' or response.lower() == 'no':

 return False

 print('Not a valid response\nType (1) Yes or (2) No.')

--

def open_file():

 while True:

 fname = raw_input("File Name: ")

 try:

 infile = open(fname,'r')

 break

 except:

 print('File not found. Try again. ctrl-C to exit.\n')

 f = infile.read()

 infile.close()

 return f

--

120

if __name__ == "__main__":

 main()

3. Syntax Analyzer

string_matching.py

By: Alex Lash

Created: 2/14/13

Last modified: 2/22/13

Executable that takes text-based dependency parses and creates DSM

conceptual models.

from deptree_text_to_obj import *

from requirement import Requirement

from stopword_remove import *

##from lsa import *

##from latent_analysis import *

##from ontology_analysis import *

##from semantic_mapping import *

from compare import *

def main():

 # Open file of requirements.

 # Either raw NL (slower) or tagged requirement statements (faster).

 deptree_str_lst = open_file().split('\n\n')

 deptree_lst = []

 for deptree_str in deptree_str_lst:

 deptree = deptree_str_to_obj(deptree_str)

 deptree_lst.append(deptree)

 print deptree_lst

 nouns_lst_by_req = []

verbs_lst_by_req = []

tokens_lst_by_req = []

 # Get artifacts and functions

 for deptree in deptree_lst:

 nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj'])

verbs_lst = deptree.verbs(gram_rel = ['dobj'])

tokens_lst = deptree.tokens(numtags=False)

 nouns_lst = list(set(nouns_lst))

verbs_lst = list(set(verbs_lst))

 nouns_lst_by_req.append(nouns_lst)

verbs_lst_by_req.append(verbs_lst)

tokens_lst_by_req.append(tokens_lst)

121

 # Remove stopwords

 nouns_lst_by_req = remove_stops(nouns_lst_by_req)

verbs_lst_by_req = remove_stops(verbs_lst_by_req)

 print("\nAll requirements extracted.")

 # Pairwise compare requirements

 print("\nCreating DSM and outfiles for visualization...")

 n_dsm = string_dsm(nouns_lst_by_req,name="n_str")

v_dsm = string_dsm(verbs_lst_by_req,name="v")

 print"\nFiles written."

--

def tag_check():

 print('Is the input file pretagged?')

 print(' (1) Yes')

 print(' (2) No')

 while True:

 response = raw_input()

 if response == '1' or response.lower() == 'yes':

 return True

 if response == '2' or response.lower() == 'no':

 return False

 print('Not a valid response\nType (1) Yes or (2) No.')

--

def open_file():

 while True:

 fname = raw_input("File Name: ")

 try:

 infile = open(fname,'r')

 break

 except:

 print('File not found. Try again. ctrl-C to exit.\n')

 f = infile.read()

 infile.close()

122

 return f

--

if __name__ == "__main__":

 main()

4. Dependency and Dependency Tree Classes

dependency.py

Set of classes for dependency trees in Python.

from copy import deepcopy

class Dependency:

 def __init__(self,token,gram_rel,dep_token):

 """Create a dependency object consisting of a token, a grammatical

relation

 , and a dependent token."""

 # Create token

 self.token = token

 # Creat grammatical relation

 self.gram_rel = gram_rel

 # Relate to a dependent token

 self.dep_token = dep_token

 def token(self):

 """Finds the token of the dependency."""

 return self.token

 def gram_rel(self):

 """Returns the grammatical relation of the dependency."""

 return self.gram_rel

 def dep_token(self):

 """Returns the dependent token of the dependency."""

 return self.dep_token

 def obj(self):

 """Builds an image of the dependency object for viewing, comparing,

etc."""

 return (self.token,self.gram_rel,self.dep_token)

--

123

class DependencyTree:

 def __init__(self):

 """Create empty dependency tree."""

 self.dep_list = []

 def insert(self,token,gram_rel,dep_token):

 """Add a dependency object to the tree."""

 # Create dependency object using Dependency class

 dep_obj = Dependency(token,gram_rel,dep_token)

 # If dependency not already in tree add the dependency to the tree.

 if not self.__in(dep_obj,self.dep_list):

 self.dep_list.append(dep_obj)

 # Otherwise, state that the dependency already exists.

 else:

 print ('Dependency object: {obj}\nalready exists in tree. Object

not added.\n'.format(obj=dep_obj.obj()))

 def __search(self, token=[], gram_rel=[], dep_token=[]):

 """Input a list of tokens, grammatical relations, and/or dependant

tokens

 as search parameters. Returns a list of dependency objects matching

 parameters."""

 # Create a blank list that will have searched data added to be

returned.

 return_list = []

 # Traverse tree to find dependencies that match searched criteria.

 for dep_item in self.dep_list:

 if (dep_item.token[0] in token or not token) and (dep_item.gram_rel

in gram_rel or not gram_rel) and (dep_item.dep_token[0] in dep_token or not

dep_token):

 return_list.append(dep_item)

 return return_list

 def verbs(self, gram_rel =

['subj','csubj','nsubjpass','nsubj','obj','dobj','iobj','agent']):

 """Find significant verbs from the dependency tree. Defaults are verbs

of subjects

 and objects"""

 # Traverse dependency tree and find verbs. Default is root verb.

 dep_list = self.__search([],gram_rel,[])

 verb_list = []

 # From the found dependencies pull out the verbs and put into a new

list to return.

 for dep in dep_list:

124

 verb_list.append(dep.token[0])

 return verb_list

 def nouns(self, gram_rel =

['subj','csubj','nsubjpass','nsubj','obj','dobj','iobj','nn']):

 """Find significant nouns from the dependency tree. Default are

subjects

 and objects."""

 # Traverse dependency tree and find nouns. Defaults are objects and

subject.

 dep_list = self.__search([],gram_rel,[])

 noun_list = []

 # From the found dependencies pull out the nouns and put into a new

list to return.

 for dep in dep_list:

 noun_list.append(dep.dep_token[0])

 return noun_list

 def tokens(self,numtags=True):

 """Return a list of all the tokens in the dependency tree as a list of

tuples."""

 # Traverse tree to return all dependencies.

 dep_list = self.__search()

 token_list = []

 # Create a list of all the tokens (including dependent tokens).

 for dep in dep_list:

 token_list.append(dep.dep_token)

 token_list.append(dep.token)

 # Delete duplicates due to dependencies having multiple grammatical

relations

 # and/or being both a token and a dependent token in different

dependencies.

 token_list = list(set(token_list))

 # Remove tree root because it is an implied token.

 token_list.remove(('root',0))

 word_lst = []

 if not numtags:

 for token in token_list:

 word_lst.append(token[0])

 token_list = word_lst

 return token_list

 def __in(self,dep_obj,dep_lst):

 """Modified in function to correctly find if a dependency object is in

125

 a list of dependency objects."""

 for dep_item in dep_lst:

 if dep_item.obj() == dep_obj.obj():

 return True

 return False

5. Dependency Syntax Conversion Functions

Convert a string

Function that takes a string dependency tree parse and converts it to a

Python object.

Input a string dependency tree parse having dependences delimited with

'\n' --> Output a dependency tree object.

Main function: 'deptree_str_to_obj'

Could suppress functions 'word_str_to_tup' and 'dep_str_to_lst' but left

available for possible utility.

from dependency import *

def word_str_to_tup(word_str):

 """Reformats the string 'Word-#' as the tuple (word,#)"""

 rev_word_lst = word_str[::-1].split('-',1)[::-1]

 word_lst = []

 for word in rev_word_lst:

 word_lst.append(word[::-1])

print word_lst

 word_lst[1] = int(word_lst[1])

 word_lst[0] = word_lst[0].lower()

 word_tup = tuple(word_lst)

 return word_tup

def dep_str_to_lst(dep_str):

 """Refomats the string 'dep(word-#, dep_word-#)'

 as ['dep', ('word', '#'), ('dep_word', '#')]"""

 # Replace all delimiting characters with ',' and remove whitespace.

 dep_str = dep_str.replace('(',',')

 dep_str = dep_str.replace(')','')

 dep_str = dep_str.replace(' ','')

 # Split along delimiter ','.

 dep_as_lst = dep_str.split(',')

 # Use function 'word_str_to_tup' to reformat the two tokens in the

 # dependency list as tuples.

 for i in range(2):

 word_str = dep_as_lst.pop(1)

126

 word_tup = word_str_to_tup(word_str)

 dep_as_lst.append(word_tup)

 return dep_as_lst

def deptree_str_to_obj(deptree_str):

 """Converts a string dependency tree from Stanford Parser output to

 a DependencyTree object."""

 # Split dependencies along delimiter '\n'.

 deptree_lst = deptree_str.split('\n')

 # Create an empty DependencyTree object to be populated with Dependency

 # objects.

 deptree_obj = DependencyTree()

 # Populate dependency tree with dependencies

 for dep_str in deptree_lst:

 dep_as_lst = dep_str_to_lst(dep_str)

 deptree_obj.insert(dep_as_lst[1],dep_as_lst[0],dep_as_lst[2])

 return deptree_obj

6. Stopword Removal Function

stopword_remove.py

By: Alex Lash

Created: 2/22/13

Last modified: 2/22/13

from nltk.corpus import stopwords

from latent_analysis import alpha

--

def remove_stops(word_lst_by_req):

 stops = set(stopwords.words('english'))

 keep_lst_by_req = []

 for word_lst in word_lst_by_req:

 keep_lst = [word for word in word_lst if word not in stops]

 final_keep_lst = []

 for term in keep_lst:

 last_char_ascii = ord(term[-1])

 if len(term)>1 and alpha(last_char_ascii):

 final_keep_lst.append(term)

 keep_lst_by_req.append(final_keep_lst)

127

 return keep_lst_by_req

7. Latent Semantic Analysis Functions

lsa.py

By: Alex Lash

Created: 1/31/13

Last modified: 2/19/13

Set of functions that runs latent semantic analysis on a set of documents and

provides a matrix of the completed LSA as output.

Input a list of lists containing the tokenized documents/requirements -->

outputs a list of numpy arrays that is a SVD document by word matrix.

from numpy import *

from math import *

def tf(lst_of_docs,csv=False):

 # Preallocate dictionaries to store values for calculations

 # Pre-allocate dictionary to store global frequency

 gf = {} # term <Type = str> : collection count <Type = int>

 # Pre-allocate dictionary to store term frequency for each term per

document

 tf = {} # term <Type = str> : count per doc <Type = list of ints>

 num_docs = 0

 # Create gf

 for doc in lst_of_docs:

 for word in doc:

 try:

 gf[word] += 1

 except:

 gf[word] = 1

 num_docs += 1

 # Create tf

 for term in gf:

 count_lst = []

 for doc in lst_of_docs:

 count_lst.append(doc.count(term))

 tf[term] = count_lst

 # Create Term-Document Matrix

128

 # Pre-allocate term-document matrix

 td_mat = []

 # Add column headers to matrix, i.e. document numbers

 doc_header_row = ['']

 for i in range(num_docs):

 doc_header_row.append("R{doc_num}".format(doc_num = i+1))

 # Place header row with column headers into term-document matrix

 td_mat.append(doc_header_row)

 # Populate term-document matrix

 for term in tf:

 # Add row header, i.e. term

 term_row = [term]

 # Populate matrix with log-entropy tf-idf values

 for freq in tf[term]:

 term_row.append(freq)

 td_mat.append(term_row)

 if csv:

 to_csv(td_mat, fname="tf.csv")

 return td_mat

def tfidf(lst_of_docs,csv=False):

 """Function that runs TF-IDF on a set of documents and provides matrix of

 the completed TF-IDF as output. Uses the TF-IDF model as shown on

 wikipedia under the LSI. Input a list of lists containing the

 tokenized documents/requirements --> outputs a list of lists that is

 the term-document matrix."""

 # Preallocate dictionaries to store values for calculations

 # Pre-allocate dictionary to store global frequency

 gf = {} # term <Type = str> : collection count <Type = int>

 # Pre-allocate dictionary to store term frequency for each term per

document

 tf = {} # term <Type = str> : count per doc <Type = list of ints>

 # Pre-allocate dictionary to store log values for each term per document

 L_ij = {} # term <Type = str> : log value per doc <Type = list of floats>

 # Pre-allocate dictionary to store the number of documents in which each

term appears

 df = {} # term <Type = str> : sum value per doc <Type = list of floats>

 # Pre-allocate dictionary to store entropy global weight values for each

term per document

 g_i = {} # term <Type = str> : entropy value <Type = float>

129

 num_docs = 0

 # Create gf

 for doc in lst_of_docs:

 for word in doc:

 try:

 gf[word] += 1

 except:

 gf[word] = 1

 num_docs += 1

 # Create tf

 for term in gf:

 count_lst = []

 for doc in lst_of_docs:

 count_lst.append(doc.count(term))

 tf[term] = count_lst

 # Create L_ij

 for term in tf:

 log_lst = []

 for val in tf[term]:

 log_lst.append(log10(val+1))

 L_ij[term] = log_lst

 # Create df

 for term in tf:

 dfi = 0

 for i in range(len(tf[term])):

 if tf[term][i] > 0:

 dfi += 1

 df[term] = dfi

 # Create g_i

 for term in gf:

 g_i[term] = log2(float(num_docs)/(1+df[term]))

 return createMat(num_docs,L_ij,g_i,csv)

def logent(lst_of_docs,csv=False):

 """Function that runs TF-IDF on a set of documents and provides matrix of

 the completed TF-IDF as output. Uses the log-entropy model as shown on

 wikipedia under the LSI. Input a list of lists containing the

130

 tokenized documents/requirements --> outputs a list of lists that is

 the term-document matrix."""

 # Preallocate dictionaries to store values for calculations

 # Pre-allocate dictionary to store global frequency

 gf = {} # term <Type = str> : collection count <Type = int>

 # Pre-allocate dictionary to store term frequency for each term per

document

 tf = {} # term <Type = str> : count per doc <Type = list of ints>

 # Pre-allocate dictionary to store log values for each term per document

 L_ij = {} # term <Type = str> : log value per doc <Type = list of floats>

 # Pre-allocate dictionary to store probability values for each term per

document

 p_ij = {} # term <Type = str> : tf/gf per doc <Type = list of floats>

 # Pre-allocate dictionary to store entropy global weight values for each

term per document

 g_i = {} # term <Type = str> : entropy value <Type = float>

 num_docs = 0

 # Create gf

 for doc in lst_of_docs:

 for word in doc:

 try:

 gf[word] += 1

 except:

 gf[word] = 1

 num_docs += 1

 # Create tf

 for term in gf:

 count_lst = []

 for doc in lst_of_docs:

 count_lst.append(doc.count(term))

 tf[term] = count_lst

 # Create L_ij

 for term in tf:

 log_lst = []

 for val in tf[term]:

 log_lst.append(log10(val+1))

 L_ij[term] = log_lst

 # Create p_ij

 for term in tf:

131

 p_lst = []

 for val in tf[term]:

 p_lst.append(float(val)/gf[term])

 p_ij[term] = p_lst

 # Create g_i

 for term in p_ij:

 summ = 1

 for val in p_ij[term]:

 if val != 0:

 summ += ((val*log10(val))/log(num_docs))

 g_i[term] = summ

 return createMat(num_docs,L_ij,g_i,csv)

def createMat(num_docs,L_ij,g_i,csv):

 # Create Term-Document Matrix

 # Pre-allocate term-document matrix

 td_mat = []

 # Add column headers to matrix, i.e. document numbers

 doc_header_row = ['']

 for i in range(num_docs):

 doc_header_row.append("R{doc_num}".format(doc_num = i+1))

 # Place header row with column headers into term-document matrix

 td_mat.append(doc_header_row)

 # Populate term-document matrix

 for term in L_ij:

 # Add row header, i.e. term

 term_row = [term]

 # Populate matrix with log-entropy tf-idf values

 for freq in L_ij[term]:

 term_row.append(g_i[term]*freq)

 td_mat.append(term_row)

 if csv:

 to_csv(td_mat)

 return td_mat

def to_csv(mat, fname = "tf_idf.csv"):

132

 outfile = open(fname, 'w')

 for row in mat:

 for item in row:

 outfile.write("{0};".format(item))

 outfile.write("\n")

 outfile.close()

def

lsa(lst_of_docs,csv=False,normalize=True,log_entropy=False,s_cutoff=999999):

 # Run TF-IDF

 if normalize:

 if log_entropy:

 td_mat = logent(lst_of_docs,csv)

 else:

 td_mat = tfidf(lst_of_docs,csv)

 else:

 td_mat = tf(lst_of_docs,csv)

 col_headers = td_mat.pop(0)

 row_headers = []

 for row in td_mat:

 row_headers.append(row.pop(0))

 td_array = array(td_mat)

 u,s,vT = linalg.svd(td_array,full_matrices=False)

 td_red = rank_reduce(u,s,vT,s_cutoff)

 if csv:

 lsa = td_red.tolist()

 num_docs = len(lsa[0])

 # Pre-allocate term-document matrix

 lsa_mat = []

 # Add column headers to matrix, i.e. document numbers

 lsa_mat.append(col_headers)

 # Populate term-document matrix

 j=0

 for term in row_headers:

133

 # Add row header, i.e. term

 term_row = [term]

 # Populate matrix with lsa matrix values

 for row_val in lsa[j]:

 term_row.append(row_val)

 lsa_mat.append(term_row)

 j+=1

print lsa_mat

 to_csv(lsa_mat,fname="lsa.csv")

 return (td_red,row_headers)

def rank_reduce(u,s,vT,s_cutoff=99999999):

 if s_cutoff <= 0:

 s_cutoff = 1

 red_s = []

 cut_count = 0

 for s_val in s:

 if cut_count >= s_cutoff:

 break

 red_s.append(s_val)

 cut_count += 1

 red_dim = len(red_s)

 red_s = diag(red_s)

 red_u = u[:,:red_dim]

 red_vT = vT[:red_dim,:]

 return red_u.dot(red_s).dot(red_vT)

8. Latent Analysis Functions

latent_analysis.py

By: Alex Lash

Created: 1/31/13

Last modified: 2/4/13

from numpy import *

from math import *

from requirement import *

134

from nltk.corpus import stopwords

def cos_sim(u,v):

 return u.dot(v) / (sqrt(u.dot(u)) * sqrt(v.dot(v)))

--

def dsm(red_td_mat):

 num_words = len(red_td_mat)

 dsm = zeros((num_words,num_words))

 i = 0

 j = 0

 for row in red_td_mat:

 for other_row in red_td_mat:

 dsm[i,j] = cos_sim(row,other_row)

 j += 1

 i += 1

 j = 0

 return dsm

--

def latent_keywords(red_td_mat, tokens, sim_val = .9):

 sim_mat = dsm(red_td_mat)

 i = 0

 keyword_dict = {}

 for token in tokens:

 row = sim_mat[i].tolist()

 keywords = []

 j = 0

 for cos_sim in row:

 if cos_sim >= sim_val and token != tokens[j]:

 keywords.append(tokens[j])

 j += 1

 keyword_dict[token] = keywords

 i += 1

135

 return keyword_dict

--

def modify_dict(dictionary,words_to_keep):

 stops = set(stopwords.words('english'))

 for term in dictionary:

 definition = dictionary[term]

 dictionary[term] = [word for word in definition if word not in stops]

 keep_dict = {}

 for word in words_to_keep:

 last_char_ascii = ord(word[-1])

 if len(word)>1 and alpha(last_char_ascii):

 keep_dict[word] = dictionary[word]

 for term in keep_dict:

 definition = keep_dict[term]

 keep_items = []

 for item in definition:

 last_char_ascii = ord(item[-1])

 if len(item)>1 and alpha(last_char_ascii):

 keep_items.append(item)

 keep_dict[term] = keep_items

 return keep_dict

--

def alpha(ascii_code):

 if 65 <= ascii_code <= 90:

 return True

 if 97 <= ascii_code <= 122:

 return True

 return False

9. Latent Analysis Functions

latent_analysis.py

136

By: Alex Lash

Created: 1/31/13

Last modified: 2/4/13

from numpy import *

from math import *

from requirement import *

from nltk.corpus import stopwords

def cos_sim(u,v):

 return u.dot(v) / (sqrt(u.dot(u)) * sqrt(v.dot(v)))

--

def dsm(red_td_mat):

 num_words = len(red_td_mat)

 dsm = zeros((num_words,num_words))

 i = 0

 j = 0

 for row in red_td_mat:

 for other_row in red_td_mat:

 dsm[i,j] = cos_sim(row,other_row)

 j += 1

 i += 1

 j = 0

 return dsm

--

def latent_keywords(red_td_mat, tokens, sim_val = .9):

 sim_mat = dsm(red_td_mat)

 i = 0

 keyword_dict = {}

 for token in tokens:

 row = sim_mat[i].tolist()

 keywords = []

 j = 0

 for cos_sim in row:

 if cos_sim >= sim_val and token != tokens[j]:

137

 keywords.append(tokens[j])

 j += 1

 keyword_dict[token] = keywords

 i += 1

 return keyword_dict

--

def modify_dict(dictionary,words_to_keep):

 stops = set(stopwords.words('english'))

 for term in dictionary:

 definition = dictionary[term]

 dictionary[term] = [word for word in definition if word not in stops]

 keep_dict = {}

 for word in words_to_keep:

 last_char_ascii = ord(word[-1])

 if len(word)>1 and alpha(last_char_ascii):

 keep_dict[word] = dictionary[word]

 for term in keep_dict:

 definition = keep_dict[term]

 keep_items = []

 for item in definition:

 last_char_ascii = ord(item[-1])

 if len(item)>1 and alpha(last_char_ascii):

 keep_items.append(item)

 keep_dict[term] = keep_items

 return keep_dict

--

def alpha(ascii_code):

 if 65 <= ascii_code <= 90:

 return True

 if 97 <= ascii_code <= 122:

 return True

138

 return False

10. Ontology Analysis Functions

ontology_analysis.py

By: Alex Lash

Created: 1/31/13

Last modified: 2/4/13

from nltk.corpus import wordnet

from requirement import Requirement

def synset_keywords(tokens,count_max=999999,p_of_s='n'):

 keyword_dict = {}

 for token in tokens:

 synset_list = []

 synsets = wordnet.synsets(token, pos=p_of_s)

 count = 0

 for synset in synsets:

 if count >= count_max:

 break

 # Get synonym (lemma) keywords for a synset

 lems = [lemma.name for lemma in synset.lemmas]

 keywords = []

 for lem in lems:

 split_lems = lem.split('_')

 for split_lem in split_lems:

 keywords.append(split_lem)

Get definition keywords for a synset

definition = synset.definition

def_obj = Requirement(definition)

if p_of_s == 'v':

def_toks = def_obj.vbs(w_tags = False)

else:

def_toks = def_obj.nns(w_tags = False)

keywords = keywords + def_toks

Get example keywords for a synset

examples = synset.examples

139

for example in examples:

ex_obj = Requirement(example)

if p_of_s == 'v':

ex_tokens = ex_obj.vbs(w_tags = False)

else:

ex_tokens = ex_obj.nns(w_tags = False)

keywords = keywords + ex_tokens

 synset_list.append(keywords)

 count += 1

 keyword_dict[token] = synset_list

 print

 print keyword_dict[token]

 return keyword_dict

11. Semantic Mapping Functions

semantic_mapping.py

By: Alex Lash

Created: 2/14/13

Last modified: 2/14/13

from nltk.corpus import wordnet

def define_terms(keyword_dict, definition_dict,pos='n'):

 semantic_dict = {}

 for word in keyword_dict:

 keywords = keyword_dict[word]

 if keywords == []:

 max_index = 0

 else:

 possible_defs = definition_dict[word]

 if possible_defs == []:

 max_index = 0

 else:

 sim_val_lst = []

140

 for definition in possible_defs:

 sim_val = max_word_sim(keywords,definition,pos)

 sim_val_lst.append(sim_val)

 max_index = sim_val_lst.index(max(sim_val_lst))

 try:

 semantic_dict[word] = wordnet.synsets(word,pos)[max_index]

 except IndexError:

 semantic_dict[word] = None

 return semantic_dict

--

def max_word_sim(text,other_text,pos='n'):

 sim_val_lst = []

 for word in text:

 try:

 synset = wordnet.synsets(word,pos)[0]

 except IndexError:

 synset = word

 for other_word in other_text:

 try:

 other_synset = wordnet.synsets(other_word,pos)[0]

 except IndexError:

 other_synset = other_word

 if type(synset) == type(other_synset):

 if synset == other_synset:

 sim_val_lst.append(1.0)

 elif type(synset) != str:

 wup_sim = synset.wup_similarity(other_synset)

 sim_val_lst.append(wup_sim)

 else:

 sim_val_lst.append(0.0)

 else:

 sim_val_lst.append(0.0)

 max_sim = max(sim_val_lst)

 return max_sim

--

141

def mapping(word_lst_by_req,dictionary):

 semantic_lst_by_req = []

 for word_lst in word_lst_by_req:

 semantic_lst = []

 for word in word_lst:

 if type(dictionary[word]) == type(None):

 semantic_lst.append(word)

 else:

 semantic_lst.append(dictionary[word])

 semantic_lst_by_req.append(semantic_lst)

 return semantic_lst_by_req

12. Compare Requirements Functions

compare.py

By: Alex Lash

Created: 2/14/13

Last modified: 2/19/13

from numpy import *

from math import *

from latent_analysis import cos_sim

from nltk.corpus import wordnet

--

def semantic_sim_sum(term_lst,other_term_lst,term_cutoff=.5):

 sim_val_lst = []

 for term in term_lst:

 for other_term in other_term_lst:

 if type(term) == str or type(other_term) == str:

 if type(term) == type(other_term):

 if term == other_term:

 sim_val_lst.append(1.0)

 else:

 sim_val_lst.append(0.0)

 else:

 sim_val_lst.append(0.0)

 else:

142

 wup_sim = term.wup_similarity(other_term)

 if type(wup_sim) == type(None):

 wup_sim = 0.0

 sim_val_lst.append(wup_sim)

 sum_sim = 0

 for val in sim_val_lst:

 if val >= term_cutoff:

 sum_sim += val

 else:

 sum_sim -= val

sum_sim = sum(sum_lst)

 return sum_sim

--

def ontology_dsm(term_lst_by_req,to_file=True,node_edge=False,name=""):

 dsm = []

 for term_lst in term_lst_by_req:

 dsm_row = []

 for other_term_lst in term_lst_by_req:

 if term_lst == [] or other_term_lst == []:

 sim_val = 0.0

 else:

 sim_val = semantic_sim_sum(term_lst,other_term_lst)

 dsm_row.append(sim_val)

 append_row = []

 for val in dsm_row:

 if val >= .8:

 append_row.append(val)

 else:

 append_row.append(0.0)

 dsm.append(append_row)

 if to_file:

 dsm_file(dsm,name)

 if node_edge:

143

 node_file(dsm,name)

 edge_file(dsm,name)

 return array(dsm)

--

def max_semantic_sim(term_lst,other_term_lst):

 sim_val_lst = []

 for term in term_lst:

 for other_term in other_term_lst:

 if type(term) == str or type(other_term) == str:

 if type(term) == type(other_term):

 if term == other_term:

 sim_val_lst.append(1.0)

 else:

 sim_val_lst.append(0.0)

 else:

 sim_val_lst.append(0.0)

 else:

 wup_sim = term.wup_similarity(other_term)

 if type(wup_sim) == type(None):

 wup_sim = 0.0

 sim_val_lst.append(wup_sim)

 max_sim = max(sim_val_lst)

 return max_sim

--

def semantic_cos_sim(term_lst,other_term_lst):

 words = term_lst + other_term_lst

 words = list(set(words))

 term_vector = []

 other_term_vector = []

 for word in words:

 if __in(word,term_lst):

 term_vector.append(1.0)

 else:

144

 sim_val = max_semantic_sim(term_lst,[word])

 term_vector.append(sim_val)

 if __in(word,other_term_lst):

 other_term_vector.append(1.0)

 else:

 sim_val = max_semantic_sim(other_term_lst,[word])

 other_term_vector.append(sim_val)

 similarity = cos_sim(array(term_vector),array(other_term_vector))

 return similarity

--

def __in(item,lst):

 try:

 return item in lst

 except AttributeError:

 return False

--

def string_dsm(term_lst_by_req,to_file=True,node_edge=False,name=""):

 dsm = []

 for term_lst in term_lst_by_req:

 dsm_row = []

 for other_term_lst in term_lst_by_req:

 if term_lst == [] or other_term_lst == []:

 sim_val = 0.0

 else:

 sim_val = semantic_sim_sum(term_lst,other_term_lst)

 dsm_row.append(sim_val)

 append_row = []

 for val in dsm_row:

 if val >= .8:

 append_row.append(val)

 else:

 append_row.append(0.0)

 dsm.append(append_row)

145

 if to_file:

 dsm_file(dsm,name)

 if node_edge:

 node_file(dsm,name)

 edge_file(dsm,name)

 return array(dsm)

--

def lsa_dsm(td_mat, to_file=True, node_edge=False, name=""):

 dt_mat = td_mat.T

 dsm = []

 for doc_row in dt_mat:

 dsm_row = []

 for other_doc_row in dt_mat:

 sim_val = cos_sim(doc_row,other_doc_row)

 dsm_row.append(sim_val)

 dsm.append(dsm_row)

 if to_file:

 dsm_file(dsm,name)

 if node_edge:

 node_file(dsm,name)

 edge_file(dsm,name)

 return array(dsm)

--

def node_file(dsm, name):

 fname = name + "_nodes.csv"

 outfile = open(fname, 'w')

 outfile.write("Id;Label")

 num_reqs = len(dsm[0])

 for i in range(num_reqs):

 outfile.write("\n{0};R{0}".format(i+1))

 outfile.close()

146

--

def edge_file(dsm, name):

 fname = name + "_edges.csv"

 outfile = open(fname, 'w')

 outfile.write("Source;Target;Type;Weight")

 num_reqs = len(dsm[0])

 i = 0

 for dsm_row in dsm:

 for j in range(i+1):

outfile.write("\n{0};{1};Undirected;{2}".format(i+1,j+1,dsm_row[j]))

 i += 1

 outfile.close()

--

def dsm_file(dsm, name):

 fname = name + "_dsm.csv"

 outfile = open(fname, 'w')

 outfile.write("DSM")

 num_reqs = len(dsm[0])

 for i in range(num_reqs):

 outfile.write(";R{0}".format(i+1))

 outfile.write("\n")

 j = 1

 for row in dsm:

 outfile.write("R{0}".format(j))

 j += 1

 for item in row:

 outfile.write(";{0}".format(item))

 outfile.write("\n")

 outfile.close()

147

13. Requirement Class

requirement.py

By: Alex Lash

Created: 1/31/13

Last modified: 2/19/13

Tag requirements and extract nouns and verbs.

from nltk.corpus import treebank

from nltk.tokenize import TreebankWordTokenizer

import pickle

class Requirement:

 """[state methods here.]"""

 def __init__(self, req, pretagged=False, trained=True):

 if pretagged:

 tag_word_lst = req.split(' ')

 tagged_req = []

 for tag_word in tag_word_lst:

 tag_tuple = self.__to_tuple(tag_word)

 tagged_req.append(tag_tuple)

 self.tagged_req = tagged_req

 else:

 self.NL_req = req

 if not trained:

 self.__train_tagger()

 f = open('tagger.pickle', 'r')

 tagger = pickle.load(f)

 tokenizer = TreebankWordTokenizer()

 tokenized_req = tokenizer.tokenize(self.NL_req)

 self.tagged_req = tagger.tag(tokenized_req)

 self.nouns = self.__get_nouns()

 self.verbs = self.__get_verbs()

148

 def __to_tuple(self, word_str):

 """Reformats the string 'Word/tag' as the tuple (word,tag)"""

 rev_word_lst = word_str[::-1].split('/',1)[::-1]

 word_lst = []

 for word in rev_word_lst:

 word_lst.append(word[::-1])

 word_lst[0] = word_lst[0].lower()

 word_tup = tuple(word_lst)

 return word_tup

 def __train_tagger(self):

 from nltk.tag.sequential import ClassifierBasedPOSTagger

 from nltk.tag import DefaultTagger

 train_sents = treebank.tagged_sents()

 default = DefaultTagger('NN')

 tagger = ClassifierBasedPOSTagger(train=train_sents, backoff = default,

cutoff_prob = 0.3)

 f = open('tagger.pickle', 'w')

 pickle.dump(tagger, f)

 f.close()

 print "Tagger trained..."

 def tag_req(self, as_tuples = True):

 tagged_req = self.tagged_req

 req_wo_punct = []

 while tagged_req != []:

 token = tagged_req.pop(0)

 last_char_ascii = ord(token[0][-1])

 if self.__alpha(last_char_ascii):

 req_wo_punct.append(token)

 if not as_tuples:

 req_wo_punct = self.__delimit(req_wo_punct)

149

 return req_wo_punct

 def __delimit(self,tagged_req, delimiter="/"):

 delimited_tagged_req = []

 for tag_tuple in tagged_req:

 tag_str = self.__join(tag_tuple)

 delimited_tagged_req.append(tag_str)

 return delimited_tagged_req

 def __join(self, tup, char = '/'):

 return tup[0] + char + tup[1]

 def __extractor(self, tag_list):

 extracted_words = [word for word in self.tagged_req if (word[1] in

tag_list)]

 return extracted_words

 def nns(self, as_tuples = True, w_tags = True):

 if not w_tags:

 noun_lst = []

 for tag_tup in self.nouns:

 noun_lst.append(tag_tup[0])

 return noun_lst

 if not as_tuples and w_tags:

 return self.__delimit(self.nouns)

 return self.nouns

 def __get_nouns(self):

 nouns_lst = self.__extractor(['NN','NNS','NNP','NNPS'])

 req_nouns = []

 while nouns_lst != []:

150

 noun = nouns_lst.pop(0)

 last_char_ascii = ord(noun[0][-1])

 if self.__alpha(last_char_ascii):

 req_nouns.append(noun)

 return req_nouns

 def __alpha(self, ascii_code):

 if 65 <= ascii_code <= 90:

 return True

 if 97 <= ascii_code <= 122:

 return True

 return False

 def vbs(self, as_tuples = True, w_tags = True):

 if not w_tags:

 verb_lst = []

 for tag_tup in self.verbs:

 verb_lst.append(tag_tup[0])

 return verb_lst

 if not as_tuples and w_tags:

 return self.__delimit(self.verbs)

 return self.verbs

 def __get_verbs(self):

 verbs_lst = self.__extractor(['MD','VB','VBD','VBG','VBN','VBP','VBZ'])

 req_verbs = []

 while verbs_lst != []:

 verb = verbs_lst.pop(0)

 last_char_ascii = ord(verb[0][-1])

 if self.__alpha(last_char_ascii):

 req_verbs.append(verb)

151

 return req_verbs

152

5.5 Appendix B: Accelerator Pedal Module Requirements

This appendix contains the full list of BMW accelerator pedal module

requirements.

1. Surfaces and edges that may be touched during assembly or use may not exhibit sharp

burrs.

2. Accelerator pedal module may not radiate disturbing mechanical noises (airborne

sounds or mechanical vibrations).

3. Accelerator pedal module should not make noticeable sound when knocked.

4. Accelerator pedal module must fit the rest of the car.

5. Accelerator pedal module must use external voltage supply.

6. Each measuring channel is to be operated from its own voltage supply.

7. Pedal angle generated by the actuating force must be limited.

8. Pedal angle should be in the range of 16 degrees (+/- 0.5 degrees).

9. The sensor must be redundant with respect to output voltage.

10. The requirements of the output signals of the driving pedal module must be

maintained at all operating temperatures and over the entire life span of the driving

pedal module.

11. The requirements refer to an electrical wiring output.

12. If pedal breaks, the pedal must not be operational.

13. Pedal must not stick (by sticking or hooking).

14. Slope of response on the pedal (i.e., spring stiffness) must be within 0.8 N per degrees

and 1.1 N per degrees.

15. Response force must be linear and within 2 N of the response line from required 5

from 0.5 degrees to 13.5 degrees.

16. If pedal breaks, the pedal must be recognizable as broken.

17. Accelerator pedal module must not send a signal to the electronic control unit against

the driver’s wishes.

153

18. Pedal must not exhibit “stick slip effect” (instability in the force angle – response

behavior).

19. Pedal must self-return.

20. Force angle must exhibit clear hysteresis from 0 degrees to 16 degrees.

21. The ascending force should be 30 percent (+6 N / -3 N) of the descending force.

22. Accelerator pedal module must mount to car.

23. Re-entry point should be scheduled within first 0.50 pedal angle.

24. Accelerator pedal module must maintain full functional ability over its expected life

(5000 hours, from -40 C to 80 C).

154

5.6 Appendix C: Requirement Analysis Conceptual Models

This appendix contains all the conceptual models for every requirement analyzer

and manual analysis.

14. Syntax Analyzer DSM

155

15. LSA Analyzer DSM

156

16. Component LSA Analyzer DSM

157

17. Semantic Analyzer DSM

158

18. Individual Engineer 1 DSM

159

19. Individual Engineer 2 DSM

160

20. Individual Engineer 3 DSM

161

21. Manual Collaborative Study DSM

	Clemson University
	TigerPrints
	8-2013

	COMPUTATIONAL REPRESENTATION OF LINGUISTIC SEMANTICS FOR REQUIREMENT ANALYSIS IN ENGINEERING DESIGN
	Alex Lash
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter One Overview of Requirement Analysis Research
	1.1 RO 1: Supplementing Requirements with Semantics
	1.2 RO 2: Forming Semantic Relationships
	1.3 RO 3: Value of Linguistic Semantics to Design
	1.4 Overview of Thesis

	Chapter Two Literature Review of Research in Natural Language Requirement Analysis
	2.1 Importance of Requirement Analysis
	2.2 Linguistic Approach to NL Requirement Analysis
	2.3 Established Syntactic NLP Methods for Requirement Analysis
	2.4 Semantic NLP Tools
	2.4.1 Latent Semantic Analysis
	2.4.2 Semantic Ontologies

	2.5 Established Method for Gaining Conceptual Insight into Requirements
	2.5.1 Quality Metrics
	2.5.2 Formal Modeling

	2.6 Research Opportunities
	2.7 Chapter Conclusions

	Chapter Three Design of the Requirement Analyzers
	3.1 Requirements for Analyzers
	3.2 Algorithm Development
	3.2.1 Syntactic Analysis
	1.1.1
	1.1.1
	3.2.2 Syntax Analyzer
	3.2.2.1 Term Identification
	3.2.2.2 Conceptual Modeling

	3.2.3 LSA Analyzer
	3.2.3.1 Latent Semantic Analysis
	3.2.3.2 Conceptual Modeling

	3.2.4 Component LSA Analyzer
	3.2.4.1 Term Identification
	3.2.4.2 Latent Semantic Analysis
	3.2.4.3 Conceptual Modeling

	3.2.5 Semantic Analyzer
	3.2.5.1 Term Identification
	3.2.5.2 Semantic Analysis
	3.2.5.3 Conceptual Modeling

	3.3 Code Implementation
	3.4 Chapter Conclusions

	Chapter Four Test Cases and Interpretation of Requirment Analysis Results
	4.1 BMW Accelerator Pedal Module Overview
	4.2 Manual Requirement Relation Study
	4.3 Test Case 1: Manual Comparison
	4.4 Test Case 2: Semantic Mapping
	4.5 Test Case 3: Manual to Syntax Comparison
	4.6 Test Case 4: Manual to Component LSA Comparison
	4.7 Test Case 5: Manual to Semantics Comparison
	4.8 Test Case 6: Manual to LSA Comparison
	4.9 Requirement Analyzer Comparison
	4.9.1 Manual to Syntax Analyzer Results Comparison
	4.9.2 Manual to LSA and Component LSA Results Comparison
	4.9.3 Manual to Semantic Analyzer Comparison

	4.10 Chapter Conclusions

	Chapter Five Conclusions and Future Work
	5.1 Fulfillment of Research Objectives
	5.1.1 RO 1: Supplementing Requirements with Semantics
	5.1.2 RO 2: Forming Semantic Relationships
	5.1.3 RO 3: Value of Linguistic Semantics to Design

	5.2 Broader Impact of Semantics in Requirement Analysis
	5.3 Future Work
	5.3.1 Integration of Analyzer with Existing Tools
	5.3.2 Implementing Machine-Learning Techniques
	5.3.3 Further Validation of Tool

	References
	APPENDICES
	5.4 Appendix A: Analyzer Scripts
	5.5 Appendix B: Accelerator Pedal Module Requirements
	5.6 Appendix C: Requirement Analysis Conceptual Models

