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ABSTRACT 

The objective of this research is to use computational linguistics to identify 

semantic implicit relationships between text-based relationships. Specifically, natural 

language processing is used to implement linguistic semantics in requirement analyzers. 

Linguistic semantics is defined as the meaning of words beyond their string form, part of 

speech, and syntactic function. Many existing design tools use part of speech tagging and 

sentence parsing as the foundation of their requirement analysis but ultimately use string 

algorithms to evaluate requirements. These string algorithms cannot capture the implicit 

knowledge in requirements. This research compares five methods of requirement 

analysis. A manual analysis provides the benchmark against which the subsequent 

analyzers are judged. A syntactic analysis is implemented and compared to the manual 

method to gain insight into the capabilities of current methods. The other three analyzers 

implement semantic tools for requirement analysis through semantic ontologies and latent 

semantic analyses. The results from the semantic analyzers are compared to the results of 

the other two analyzers to judge the capabilities of semantics in requirement analysis. The 

findings show that semantics can be identified with at least 74% accuracy. Further, the 

agreement between the semantic results and the manual results are more related than the 

syntax results and the manual results. While the implementation of semantics into 

requirement analysis does not completely agree with manual findings, the semantic 

analyses improve upon syntactic and string matching analyses used in current research.   
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CHAPTER ONE 

OVERVIEW OF REQUIREMENT ANALYSIS RESEARCH 

 

The purpose of this research is to use computational linguistics to identify implicit 

relationships between text-based requirements. Specifically, these relationships are 

identified based on requirement semantics. Relationships between requirements aid 

engineering designers by providing a graphical representation of requirements that allows 

multiple relationships between requirements. For instance, requirement relationships are 

used to predict change propagation when an initial requirement is modified or deleted. 

This prediction can save time and money by minimizing the need to iterate over the 

design process. Current manual methods find intelligent relationships between 

requirements, but become tedious and error prone when scaled up. Also, existing 

automated methods use string matching and syntax to identify relationships. These 

relationships are not in agreement with those found manually.  

Through the implementation of a semantic analysis into current automated 

methods, this research seeks to build upon syntactic methods to bring requirement 

analysis results in closer agreement with manual results. Semantics afford the scalability 

of automated methods while finding relationships that more closely replicate manual 

Chapter Objectives: 

 Establish the motivating research problem. 

 Identify and describe research objectives. 

 Provide a comprehensive overview of semantic requirement analysis research. 

 Provide an outline of the thesis. 
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methods. To accomplish this goal, three semantic requirement analyzers are created that 

derive the semantic relationships between the requirements. The results from the 

semantic analyzers are compared to: 

 Existing syntactic and string matching requirement analysis methods. 

 Requirements models based on human expertise (manual). 

The manual models provide a benchmark against which the analyzers are evaluated. A 

requirement analyzer using only string matching and syntax analysis is also created. This 

analyzer is representative of the automated requirement analysis method used in current 

research. As with the semantic analyzers, this analyzer is also compared to the manual 

models. The performance of the syntactic analyzer serves as the baseline against which 

the abilities of the semantic analyzers are evaluated.  

In particular, this research aims to meet three research objectives (RO). These 

objectives are shown in Table 1-1. 

Table 1-1: List of research objectives. 

RO Description 

1 
Apply linguistic semantics to requirement statements to improve computational 

understanding of requirement statements. 

2 Identify and form semantic relationships between requirements. 

3 
Compare semantic analysis methods against syntax and manual methods to show 

the value of semantics to requirement analysis. 

The following sections detail these research objectives and how each objective is tested. 

Also, the sections show how each research objective (RO) relates to the overarching 

research purpose and motivation. 
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1.1 RO 1: Supplementing Requirements with Semantics 

Linguistic semantics is defined as the meaning of terms beyond their string form, 

part of speech, and syntactic function. Linguistic semantics can be thought of as the 

implicit knowledge in a text. Many existing design tools do not use linguistic semantics 

to analyze requirements and use part of speech tagging and sentence parsing alone as the 

foundation of their requirement analysis. These tools use string operations to evaluate the 

requirements. Syntax and string matching methods do not replicate manual results. This 

conclusion is drawn by finding the level of agreement between the manual results and 

result of a method using syntax and string matching methods alone. The level of 

agreement is found using Cohen’s Kappa, which determined a poor agreement of 0.27. 

By incorporating linguistic semantics, implicit knowledge can be identified. 

Consequently, the results of the semantic analyzers more closely represent manual results 

with a maximum kappa value of 0.48. These results are discussed in further depth in the 

test cases performed in Chapter Four. 

Linguistic semantics are applied using natural language processing (NLP). NLP 

provides a set of tools to apply semantics in computational methods. Two semantic tools 

are used in the semantic requirement analyzers. These semantic tools are latent semantic 

analysis (LSA) and semantic ontologies. Two of the analyzers employ only LSA. The 

third tool implements both LSA and a semantic ontology. The relationships discovered by 

the semantic analyzers are evaluated relative to the manual approach and syntactic/string 

matching approach. 
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Semantics are supplied to the requirements in two ways. LSA find latent 

relationships between requirement statements. The other method is performed by 

mapping the objects of the requirement statements to a semantic ontology. While LSA 

supplies semantics, the LSA model does not explicitly define two semantically related 

terms or documents. The semantic ontology relies on external expertise and relationships 

between words such as those captured in traditional dictionaries and thesauruses. 

Mapping to a semantic ontology defines the terms and the terms are related based upon 

defined semantics such as synonymy. As a result, the semantic ontology allows for an 

accuracy analysis of the semantic mapping. This accuracy analysis judges the ability of 

an analyzer to automatically supply a term with meaning (i.e. define a term). The results 

of this accuracy analysis show the ability of computational methods to add meaning to 

requirement terms and statements. In turn, the mapped semantic terms are used to relate 

requirements based on the semantic similarity in the ontology. 

1.2 RO 2: Forming Semantic Relationships 

In this research, semantics are used to form relationships between requirements. 

Two of the semantic requirement analyzers form relationships based upon cosine 

similarity from the requirement vectors created by LSA. The other semantic requirement 

analyzer forms relationships by calculating the ontology path length based on the mapped 

semantic terms.  

The requirement analyzers model these relationships in a design structure matrix 

(DSM). The DSMs are n×n matrices where n is the number of requirements. Each cell is 

a value indicating the relationship between the requirements. The relationships are based 
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on the semantics supplied by the analyzers (RO 1). The relationships are bidirectional 

forming symmetric matrices. Relationships between requirements have applications as 

formal models in requirement repositories and have been demonstrated in requirement 

analyzers such as requirement change propagation detection. Also, relationships between 

requirements capture conceptual knowledge of the requirements that is often overlooked 

by traditional hierarchal requirement list formatting. For instance, a traditional structure 

is usually subdivided into headings such as geometry and safety. Yet some requirements 

pertain to multiple headings, but a traditional requirements list cannot capture multiple 

relationships. Forming relationships between requirements using a DSM provides a 

web/graph structure that can capture this information. 

1.3 RO 3: Value of Linguistic Semantics to Design 

To assess the value of semantics to requirement analysis, the developed 

requirement analyzers are used to evaluate a requirements document of a BMW 

accelerator pedal module. In addition to the three semantic analyzers and the 

syntactic/string-matching analyzer, the requirements document is manually analyzed. The 

manual analysis serves as the benchmark against which the requirement analyzers are 

judged. It should be noted that the time efficiency of the analyzers is not evaluated 

directly by this research. 

Six test cases are then performed to evaluate the results of each tool. The results 

of the manual analysis are first compared to one another to measure the level of 

agreement between engineers when relating requirements. The manual results are also 

compared to each requirement analyzer. The level of agreement between the manual and 
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syntactic/string-matching analyzer represents the abilities of existing requirement 

analysis methods. The semantic analyzers aim to improve upon the results obtained by 

the syntactic/string-matching analyzer. Also, the ability to map requirement terms to a 

semantic ontology is measured.  

1.4 Overview of Thesis 

The first two research objectives relate to the computation interpretation of 

requirements. The first objective interprets the semantics or implicit knowledge in the 

requirements. The second objective gains conceptual insight about the requirements by 

finding relationships between requirements. Each of the three analyzers meets these 

objectives in a unique approach. The third research objective seeks to show the value of 

semantics to requirement analysis by evaluating the analyzers against each other and 

established methods that use syntax and string matching alone. The remainder of the 

thesis details the research from literature review through conclusions of the semantic 

requirement analyzers. Specifically, the thesis: 

 Surveys current literature and research in requirements analysis. 

 Identifies opportunities in current literature that will be addressed by this research. 

 Defines the problem and derive requirements for the requirement analyzers based 

on the identified opportunities in literature. 

 Conceptualizes, embodies, and details the analyzers to meet the derived 

requirements. 

 Implements the analyzers on a test case requirements document to evaluate 

solutions. 

 Answers research objectives and draw conclusions including future work. 
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Figure 1-1 provides a visual outline of the thesis showing the deliverables of each chapter 

as they relate to the objective of this research. 
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Figure 1-1: Overview of thesis chapters showing completed chapters (grey chevron).  
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CHAPTER TWO 

LITERATURE REVIEW OF RESEARCH IN NATURAL LANGUAGE 

REQUIREMENT ANALYSIS 

 

A variety of analysis methods are used to interpret requirements. The goal of each 

analyzer is to provide the user/designer with valuable information about the requirements 

document. This chapter discusses the foremost methods for analyzing requirements: 

 Established syntactic method for analyzing requirements. 

 Established semantic NLP tools and their roles in requirement analysis. 

 Established methods for gaining valuable conceptual information about 

requirements. 

These methods are better understood through the linguistic approach to requirement 

analysis. Therefore, this method is detailed in this chapter. Before understanding the 

methods for analyzing requirements, it is important to understand the importance of 

requirement analysis. 

2.1 Importance of Requirement Analysis 

Understanding the importance of requirements in the design process is needed to 

understanding the importance and benefits of requirement analysis. Though many 

different design methodologies exist, requirements are consistently established as the 

foundation of the design process [1, 2, 3]. Requirements are realized from customer 

Chapter Objectives: 

 Perform a literature review of current requirement analysis research. 

 Provide relevant background information pertaining to requirement analysis. 

 Identify opportunities and gaps for development of current research. 
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wants and refined over the course of the product development. Therefore, requirements 

serve as the connection between customer needs and the realized product. The 

requirements document also serves as a guide to judge the success of the product. Figure 

2-1 shows the systematic design process and the role of requirements during each phase.  
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Figure 2-1: Adapted systematic design process detailing the use of requirements 

throughout the process [1]. 
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Figure 2-1 shows that not only are requirements used to assess the final product, but also 

to assess the concepts and principles developed within the process. For instance, during 

concept evaluation and selection, the requirements are used as a metric to select the 

concept(s) to embody. It is important then that the requirements document is of high 

quality to ensure that the use of the document is both efficient and valuable. Also, Figure 

2-1 shows that the requirements list is refined over the course of the design process. 

Requirements are added, deleted, and modified throughout the design process. 

Consequently, the requirements must be analyzed often, and therefore, an efficient 

requirement analysis method is beneficial. 

2.2 Linguistic Approach to NL Requirement Analysis 

Most requirements are written in natural language (NL). NL is chosen because it 

is ergonomic for both efficient formulation and efficient communication, especially 

among non-technical stakeholders. Customer wants for products are often expressed in 

NL and therefore, requirements are often first derived in NL.  

NLP tools address a given text such as a requirements document in levels. [4, 5]. 

These categories are based on the linguistic level of interpretation. The three levels of 

interpretation are shown in Table 2-1. The levels can affect one another. For instance, 

ambiguity on the syntactic level can affect the understanding at the semantic and 

conceptual levels. More importantly, a better understanding at the semantic level can 

improve the conceptual understanding.  
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Table 2-1: Levels of interpretation for understanding natural language text. 

Level of 

Interpretation 
Description Computational Methods 

Syntactic Part of speech and sentence structure 
Part of Speech Tagging 

Sentence Parsing 

Semantic 
Word or sentence meaning; Requires 

context 

Latent Semantic Analysis 

Semantic Ontologies 

Conceptual 
Requirements meaning; Requires 

domain knowledge 

Formal Modeling 

Quality Metrics 

The syntactic level of interpretation is well-established in requirement analysis. 

This level provides the base upon which a conceptual understanding of requirements can 

be formed. The semantic level can provide meaning to words beyond their syntax thus 

furthering the understanding of requirements. Like the syntactic level, the conceptual 

level is also well-established in requirement analysis. At the conceptual level, domain 

knowledge is applied. Using this knowledge, useful information can be supplied to the 

user/designer. This research seeks to enhance the conceptual level of interpretation by 

improving upon the established syntactic methods through semantics. 

2.3 Established Syntactic NLP Methods for Requirement Analysis 

Syntax is defined as the understanding of the structure of text. Text can be a word, 

statement, paragraph, or an entire document depending on the analysis. For requirement 

analysis, this text is most often words and sentences. For a word, syntax involves its part 

of speech—its structural purpose in a statement. For a statement, syntax involves its parse 

tree—the structure of a statement. Syntactic meaning is applied to requirements via three 

NLP methods. 

1. Tokenizing  –  separating a text into its respective tokens (e.g. words, numbers) 
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2. Tagging – applying part of speech tags to each token 

3. Parsing – creating a tree structure of a statement 

It is common practice to refer to the combination of all three steps as parsing and the 

combination of the first two steps as tagging. Tagging and parsing are well-established 

NLP methods for requirement analysis. Many requirement analysis tools use tagging and 

parsing as the foundation of their requirement analysis. Tagging applies part of speech 

tags to each token. Parsing creates a tree structure by applying part of speech tags as well 

as phrase tags.  Figure 2-2 shows a sample parse tree of a requirement. 

 

Figure 2-2: Sample parse tree showing general structure, key elements, and an 

example of an adjectival noun [6]. 

Dependency trees are parse trees that provide the syntactic function of each word 

in a statement as opposed to only the part of speech or phrase tag. As seen in Figure 2-3, 

the requirement statement: 

Quick-release assembly pins shall not be painted. 
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is parsed in both formats [6]. From the dependency tree, it can easily be found that the 

word pins is the subject by the tag NSUBJPASS, which stands for noun subject passive. 

On the right, the standard parse tree provides similar information except the finding of 

the subject can only be found through the finding of the plural noun (NNS) pins under the 

first noun phrase (NP). In this way, the dependency tree provides more direct, valuable 

information as compared to standard parse tree. 

 

Figure 2-3: Dependency tree (left) versus a standard parse tree (right) of a 

requirements statement. 

Being able to identify specific syntactic elements in a requirement such as the 

subject and direct object is important to requirement analysis. Research has shown that a 

link between syntactic elements and requirement concepts can be obtained [7, 8]. This 

method is discussed further in Section 2.5.2. This research seeks to build on the 

established syntactic NLP methods for requirement analysis. The requirement analyzers 

designed for this research implement parsing to provide a foundation for the semantic and 

conceptual requirement analysis methods. 

Dependency Tree Standard Parse Tree 
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2.4 Semantic NLP Tools 

Once the syntactic methods have been performed in a requirement analysis, the 

semantic and conceptual interpretations of requirements are performed. Semantic analysis 

is not used often in requirement analysis and only syntax and string matching methods 

are used to gain conceptual insight [9, 10, 11, 12, 13]. However, string matching and 

syntax alone may not be an effective way to gain conceptual insight about requirements. 

Therefore, semantics may provide a method for gaining further insight about 

requirements in order to enhance conceptual understanding. Two accepted semantic tools 

are used in the requirement analyzers. These tools are latent semantic analysis and 

semantic ontologies. 

2.4.1 Latent Semantic Analysis 

One tool for identifying semantics in text is latent semantic analysis (LSA). LSA 

utilizes singular value decomposition (SVD) to reduce the noise in a set of texts to reveal 

latent semantics. This method provides a way to relate texts based upon the implicit 

relationships within a given domain. In terms of a requirement analysis, the domain is 

typically the requirements list as a whole, where each requirement is considered a 

document. Figure 2-4 shows the basic workflow of a LSA with sample objects at each 

phase. 



17 

 

 

Figure 2-4: LSA workflow (left) with sample objects from each function (right). 

First, all the terms in the requirements are extracted. An n×m term-document 

matrix is created where n is all the unique terms in the requirements list and m is all of 

the individual requirements. The matrix is populated with the frequencies of each term 

per requirement. Next, the matrix is decomposed through singular value decomposition 

(SVD). While decomposed, the rank can be reduced while preserving the relationships of 

the term-document matrix. The decomposed matrix is then reassembled and the resulting 

matrix provides a term-document matrix where the rank—related to the implicit topics in 

the requirements list—is reduced. As a result, the latent semantics or implicit 



18 

 

relationships between the requirements can be revealed. The row vectors can be related 

via cosine similarity (or other vector comparison method) to find similarity between 

terms. Also, the column vectors can be compared in a similar fashion to find the 

similarity between requirements. 

If LSA is being run on raw NL text, it may be valuable to normalize the original 

term-document matrix before performing SVD. This normalization can minimize the 

effects of common words that have no semantic meaning. Normalization can include 

methods such as: 

 Term frequency – inverse document frequency (TF-IDF) 

 Stopword removal 

 Log – entropy normalization 

Through these methods, words with higher semantic meaning are given more weight 

before performing SVD, dimension reduction, and reassembly. 

This research uses LSA in the requirement analyzers to supply semantics to the 

requirement statements. The reduced term-document matrix provides a way to find 

relationships between terms and requirements. While LSA can find semantic 

relationships, it cannot identify the semantics. For instance, LSA can tell if a term is 

semantically related to another term but cannot directly identify the meaning of the term. 

To directly apply meaning to terms and requirements, LSA must be supplemented with 

another semantic tool.  
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2.4.2 Semantic Ontologies 

Another NLP tool that can add linguistic semantics to a requirements analysis is a 

semantic ontology. In general, an ontology is a structured corpus. For instance, a regular 

corpus such as a stopword list is a list of words, while an ontological corpus can have 

relationships between items in the corpora. The structure of the ontology provides expert 

knowledge outside the domain of the requirements list. One example of such a corpus is 

WordNet [14]. WordNet provides relationships between words in its database through 

semantic relations such as a synonym. Other semantic relationships can also be found. 

Specifically, a semantic ontology can provide relationships between words beyond string 

matching algorithms. A sample list of semantic relations between words is provided in 

Table 2-2. 

Table 2-2: Semantic relations between words [14]. 

Semantic Relation Description 

Synonym A word has the same meaning as another word 

Meronym A word is a member of another word 

Hyponym A word is more specific instance of another word 

Hypernym A word is a more general instance of another word 

The relationships in a corpus are defined by experts in the field of linguistics. The 

benefit of having these relationships is the enhanced ability to query the corpus. In a 

regular corpus, only string matching operations can be performed, while with an 

ontological corpus any number of query operations can be performed depending on the 

structure of the ontology. For example, the relationship between the component 
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automobile and bumper can be identified where a non-semantic, string matching 

algorithm would not address. Figure 2-5 shows a sample of possible relationships that can 

be found.  

 

Figure 2-5: Semantic relationships between automobile and related terms. 

In WordNet, it is possible to retrieve a similarity value between two words in the 

ontology by traversing the web of relationships in the ontology. Because an ontological 

corpus was used, these values have defined semantic relations and have context from 

experts in the field of linguistics. 

In this research, one of the requirement analyzers is supplemented with a semantic 

ontology. This analyzer shows that a mapping to a semantic ontology can be performed. 

Using this mapping, the requirement analyzer is used to relate the components in the 

requirements. This result is then compared to the other analyzers and the established 

syntactic method. 

2.5 Established Method for Gaining Conceptual Insight into Requirements 

To provide valuable information to designers, a requirement analysis must gain a 

conceptual interpretation of the requirements. In particular, the requirement analyzers in 

this research are interested in finding the relationships between requirements. The 
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relationships between requirements have been shown to provide valuable information to 

designers. Chen shows that relating requirements to one another via components can 

provide a model to aid the development of a product lifecycle model [9]. Morkos has 

shown that relationships between requirements can aid in change propagation prediction 

[12, 13]. Further, tools like IBM’s DOORS™ tool and NASA’s ARM tool [10] have 

identified the value of traceability to requirements. Traceability is the ability to find the 

source and relations between requirements. Two established methods for conceptual 

interpretation are formal models and quality metrics. These tools are discussed in light of 

this research. 

2.5.1 Quality Metrics 

Quality metrics judge the value of a requirement by checking a requirement for 

certain characteristics. Researchers have identified their own respective metrics to 

conform to their requirement analyzer, but a set of core metrics can be identified [15, 10, 

11]. These metrics are listed in Table 2-3. This table shows the quality metrics and a 

description of each.   
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Table 2-3: List of core quality metrics [15]. 

Quality Metric Description 

Unambiguity Requirement has same meaning to all readers 

Conciseness Requirement consists of only necessary details 

Testability Requirement has a method to check if it is met 

Traceability 
Requirement source can be traced and all links to other 

requirements are made 

Consistency 
Requirement has no overlap in content, terms in requirements 

are consistent 

Correctness 
Requirement does not contradict other requirements, standards, 

or physical laws 

Completeness All possible quantifications of a requirement have been made 

The purpose of each metric is to provide a method to calculate the quality of a 

requirement and/or requirements document. However, many of these metrics are checked 

by using syntax and string matching algorithms. For instance, NASA’s ARM tool checks 

for traceability of a requirement by detecting if a requirement is started with a string of 

numbers separated and terminated with periods [10]. Traceability can also be managed by 

a requirement tool such as DOORS™. However, DOORS™ requires the relationships 

between requirements to be identified manually. This manual identification can be 

tedious and is not scalable.  

2.5.2 Formal Modeling 

A formal model allows for domain knowledge to be applied to requirements. This 

application of domain knowledge allows the computer to perform conceptual 

interpretations. Formal models are often used to relate the conceptual elements in 

requirements—such as components—to one another. These relationships create an 
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intelligent web of conceptual understanding that the requirement analyzer can process 

once the proper syntactic elements have been input into the formal model. Formal models 

can take on various forms. Some are ontologies that can analyze requirements using 

predicate logic [16]. Other formal models can identify ambiguity on a conceptual level 

[5]. Still other formal models attempt to create dependency repositories [9, 17, 18]. 

It has been shown that syntactic elements can be mapped to certain requirement 

concepts [19, 9, 7, 8]. For instance, the existence of a modal in a statement conveys the 

necessity of a requirement. Figure 2-6 shows how certain syntactic elements can be 

mapped to requirement concepts. The requirement concepts are the terms that add 

semantic and conceptual meaning to the requirement statement. 

 

Figure 2-6: Adapted model of syntactic elements mapped to elements in a 

requirements statement [7, 8]. 

Of specific importance to this research is the identification of subjects and objects 

as they are semantically significant in requirements. Three of the requirement analyzers 

in this research create relationships between requirements based upon subjects and 

objects identified in the requirements. Subjects and objects have been used in established 
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research in requirement analysis. For instance, Chen implements a component-centric 

formal model to aid in developing a product lifecycle model [9]. McLellan uses 

components to identify requirements critical to mass reduction [20, 21]. Also, research by 

Morkos in requirement change propagation relies on subjects and objects to create 

relationships between requirements [12, 13].  

An issue with many formal models is that they forgo a semantic analysis. In other 

words, using the syntactic interpretation (parsing), the syntactic data is used to map 

directly to a formal model [5, 17, 18, 19, 9, 16]. Without a semantic understanding, a 

requirement analysis may not be as valuable. The formal model may be incomplete 

because it cannot identify semantic relationships between words such as synonymy and 

meronymy. Considering the design of an automobile, the component suspension is 

evidently related to the component suspension in another requirement. However, 

suspension is also related to the component spring. Considering change propagation 

through requirements, it is likely that a change to a spring requirement could change a 

suspension requirement. The research areas above do not use a semantic analysis and 

therefore cannot find relationships such as the example above. In particular, this research 

explores the value of a formal model supplemented with semantics to requirement 

analysis. 

2.6 Research Opportunities 

The literature review conducted in this chapter has provided an overview of 

relevant research in requirement analysis. From each topic reviewed, opportunities for 

further research have been identified.  
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Table 2-4: Topics reviewed and opportunities for research identified. 

Section Topic Opportunity 

2.1 
Importance of 

Requirement Analysis 

Requirement analysis can efficiently improve the 

quality of a requirements document and in turn, 

improve the design process. 

2.2 
Approach to NL 

Requirement Analysis 

Linguistic approach provides a structured method 

for understanding NL requirement analysis. 

2.3 
Established NLP Methods 

for Requirement Analysis 

Syntactic interpretation provides a base for 

extending requirement analysis to include 

semantics. 

2.4 Semantic NLP Tools 
Semantic NLP tools provide a way to enhance 

requirements with semantics. 

2.5 
Established Requirement 

Analysis Methods 

Methods for requirement analysis use only syntax 

and string matching to conceptualize requirements. 

 

2.7 Chapter Conclusions 

In this chapter, a literature review of current research is performed and relevant 

background information pertaining to requirement analysis is identified. Further, 

opportunities have been identified for development of current research. In Chapter 3, 

these opportunities are translated into requirements of the requirement analyzers. Figure 

2-7 shows the completed chapters (grey chevrons) and upcoming chapters (white 

chevrons) along with their respective deliverables.   
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Figure 2-7: Overview of thesis chapters showing chapters one and two completed 

(grey chevrons).  
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CHAPTER THREE 

DESIGN OF THE REQUIREMENT ANALYZERS 

 

This chapter details the development of the requirement analyzers. Three semantic 

requirement analyzers are designed. Further, one syntactic requirement analyzer is 

designed that represents methods used in existing research.  All of the analyzers share the 

same syntactic interpretation, but each semantic analyzer interprets the semantics in the 

requirements in a different fashion. 

Table 3-1: List of the requirement analyzers created including the Syntactic 

Analyzer (1) and three semantic analyzers (2-4). 

ID Analyzer NLP Tools 

1 Syntax Tagging, Parsing 

2 LSA Tagging, Parsing, LSA 

3 Component LSA Tagging, Parsing, LSA 

4 Semantic Tagging, Parsing, LSA, Semantic Ontology 

The analyzers are designed in three phases. First, task clarification converts the 

identified opportunities from Chapter Two to requirements of the analyzers. Next, 

conceptual design provides a functional model for the analyzers and the function 

algorithms. Then, the functions are programmed and integrated during embodiment and 

Chapter Objectives: 

1. State the motivation for the requirement analyzers. 

2. Explain the design method used to create the analyzers. 

3. Identify the requirements of the analyzers from literature opportunities. 

4. Provide a functional understanding of the analyzers. 

5. Detail the design of the analyzers. 
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detail design. The analyzers are improved throughout the design process and final testing 

is performed before the solutions can be presented.  

3.1 Requirements for Analyzers 

The task clarification phase uses the identified opportunities in literature to create 

requirements for the requirement analyzers. Table 3-2 shows the requirements that 

address the opportunities identified from literature and which analyzers it applies to. 

Table 3-2: List of requirements showing which analyzers the requirement applies to 

and the respective opportunity it addresses. 

ID Analyzers Requirement Opportunity 

1 1, 2, 3, 4 Analyzer shall be automated. 

Requirement analysis can 

efficiently improve the quality 

of a requirements document and 

in turn, improve the design 

process. 

2 1, 2, 3, 4 
Analyzer shall be developed 

based upon linguistic approach. 

Linguistic approach provides a 

structured method for 

understanding NL requirement 

analysis. 

3 1, 2, 3, 4 

Analyzer shall use established 

syntactic approach to 

requirement analysis. 

Syntactic interpretation 

provides a base for extending 

requirement analysis to include 

semantics. 

4 2, 3, 4 
Analyzer shall implement 

semantic tools. 

Semantic NLP tools provide a 

way to enhance requirements 

with semantics. 

5 1 

Analyzer shall implement only 

syntactic tools to provide a 

baseline analysis. 

Methods for requirement 

analysis use only syntax and 

string matching to 

conceptualize requirements. 
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3.2 Algorithm Development 

Once the requirements have been elaborated, the functional models for each 

analyzer can be derived from the analyzer requirements, and the function algorithms for 

each analyzer are formulated. This conceptual design section presents the functional 

models and function algorithms for each analyzer individually with one exception. The 

syntactic analysis method is the same across all analyzers. Therefore, this design is 

presented only once.  

3.2.1 Syntactic Analysis 

Section 2.3 has shown that dependency trees provide an automated method to 

identify syntax in requirements. The syntactic analysis inputs raw NL requirements and 

outputs these dependency trees. The functional model of these requirements is presented 

in Figure 3-1. This analysis serves as the foundation for all of the requirement analyzers. 

 

Figure 3-1: Functional model of the syntactic analysis of all requirement analyzers. 

In Figure 3-1, each white box represents a function and each grey box represents 

an input and/or output of each function. The dependency trees are created via the 

Stanford Parser [6]. As shown in Figure 3-2 parsing the requirements requires three sub-

functions. 
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Figure 3-2: Functional decomposition of requirement parsing. 

The algorithm to parse the requirements is shown in Table 3-3: 

Table 3-3: Algorithm for parsing requirements. 

Function Parse Requirements 

Input NL requirements Type .txt file 

Parse text file into dependency trees. 

Open dependency tree text file. 

Convert dependency tree text file to objects.  

Output Dependency trees Type List of objects 

 

A sample set of five requirements for a BMW accelerator pedal module have been 

applied to this function. As shown in Figure 3-3, the input is a list of the NL requirements 

in a text file. 
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Figure 3-3: Text file of sample set of requirements for the accelerator pedal module. 

The output is a list of dependency objects within the program. A sample dependency tree 

for the second requirement in Figure 3-3 is shown in Figure 3-4. 

 

Figure 3-4: Sample dependency parse of a NL requirement. 

3.2.2 Syntax Analyzer 

The Syntax Analyzer does not incorporate semantics, but uses syntax and string 

matching alone to create a conceptual model of the requirements. Figure 3-5 shows the 
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functional model of the Syntax Analyzer. The syntactic analysis has already been detailed 

in Section 3.2.1 and thus is not shown in the model. 

 

Figure 3-5: Functional model of the Syntax Analyzer with implied syntactic analysis. 

The functional model provides the structure for the Syntax Analyzer. Now, each 

function must be conceptually defined. The algorithms for functional models provided in 

Figure 3-5 are shown along with inputs/outputs and any sub-functions. These functions 

are applied to a sample set of requirements to aid the understanding of functions. 

3.2.2.1 Term Identification 

Once the requirements have been parsed and dependency tree objects have been 

created, the significant terms can be identified. Section 2.5.2 showed that the syntactic 

elements of a requirement can be mapped to requirement elements. To find the syntactic 

elements the dependency trees must be traversed. As shown in Figure 3-6, identifying the 

significant terms has two sub-functions. 



33 

 

 

Figure 3-6: Functional decomposition of significant term identification. 

The algorithm to identify significant terms is shown in Table 3-4. 

Table 3-4: Algorithm for identifying significant terms. 

Function Identify Significant Terms 

Input Dependency trees Type List of objects 

For each dependency tree: 

Call Traverse Dependency Tree function. 

Remove duplicates from key terms 

Append key terms list to a list of list. 

Call Remove Stopwords Function. 

Output Key terms by requirement Type List of list of strings 

 

The key terms are selected by identifying the subjects (NSUBJ) and direct objects 

(DOBJ) of the requirements through the dependency tags. Figure 3-7 shows a 

visualization of this selection process performed on the dependency tree from the 

previous example. 
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Figure 3-7: Visualization of selection process for identifying significant words from 

dependency trees. 

For all of the sample requirements the identified key terms are: 

1. pedal/NSUBJ 

2. pedal/NSUBJ 

3. pedal/NSUBJ, sound/DOBJ 

4. pedal/NSUBJ, rest/DOBJ 

5. pedal/NSUBJ, supply/DOBJ 

Once the syntax has been used to identify key terms, a semantic analysis can be 

performed on these key terms to give semantic meaning to the requirements. 

3.2.2.2 Conceptual Modeling 

The conceptual model relates the requirements based on the identified strings. 

This analyzer calculates a binary value on whether or not the strings match between 

requirements. Using the values derived between requirements, a design structure matrix 
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(DSM) is used to model the requirements. The conceptual analysis is performed via a 

comparison and modeling of the requirements as shown in Figure 3-27. 

 

Figure 3-8: Functional decomposition of requirement comparison in Syntax 

Analyzer. 

The algorithm to perform conceptual modeling is given in Table 3-16. 

Table 3-5: Algorithm for comparing requirements. 

Function Compare Requirements 

Input Terms by requirement Type List of list of objects 

For each pair of requirements: 

For each pair of terms across requirements: 

If terms match: 

Add 1 to requirement similarity value. 

Append requirement similarity value to a requirement DSM. 

Create conceptual model files from requirement DSM. 

Output DSM conceptual model Type .csv file 

 

Once the terms for each requirement are input, the terms across each requirement pair are 

compared to see if the terms are a string match. An example of the output DSM can be 

seen in Figure 3-28. 
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Figure 3-9: DSM of sample requirements showing relationships between 

requirements (grey boxes) found via the Syntax Analyzer. 

The DSM is symmetric, so the upper and lower triangular matrices show the same 

information. Along the diagonal, the requirements are compared to themselves and are 

evidently related. The sample DSM shows that all requirements are related because every 

requirement has the word pedal identified. The purpose of this example is to detail how 

the analysis is performed. Chapter Four applies the requirement analyzers to a complete 

requirements document. 

3.2.3 LSA Analyzer 

This analyzer incorporates LSA to create relationships between requirements. 

Figure 3-10 shows the functional model of the LSA Analyzer. As with the Syntax 

Analyzer functional model, the syntactic analysis is not explicitly shown but is how the 

dependency trees are created. 
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Figure 3-10: Functional model of the LSA Analyzer with implied syntactic analysis. 

From the functional model, the two functions in Figure 3-10 are defined. To aid 

understanding, the five sample accelerator pedal module requirements are applied to this 

analyzer. 

3.2.3.1 Latent Semantic Analysis 

The tokens from the dependency trees are used as input for the LSA. Running 

LSA provides a way to computationally measure similarity between terms in the 

requirements. The function for this algorithm is provided in Table 3-13. 
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Table 3-6: Algorithm for running LSA in the LSA Analyzer. 

Function Run Latent Semantic Analysis 

Input All terms by requirement Type List of list strings 

Create term-document matrix using term frequency. 

Normalize term-document matrix using log-entropy model. 

Decompose term-document matrix. 

Rank-reduce decomposed matrices. 

Reconstructed term-document matrix with reduced matrices. 

Output 
Reduced term-document 

matrix 
Type List of lists of floats 

The input for running LSA is all the terms in each requirement. In other words, each term 

from each dependency tree is fed into the function to create the term-document matrix.  

Figure 3-23 shows the process for inputting a sample accelerator pedal module 

requirement into the LSA function. 

 

Figure 3-11: Workflow of inputting requirements into LSA (left) showing an 

example requirement (right). 
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Once the terms are inserted into the term-document matrix, the LSA is performed via 

singular value decomposition (SVD). The output is a rank-reduced term-document 

matrix. The rank lowering decreases the complexity of the matrix to bring forth the latent 

relationships. Returning to the five accelerator pedal module requirements example, 

Figure 3-12 shows a sample portion of the outputted rank-reduced term-document matrix. 

 

Figure 3-12: Sample of the reduced term-document matrix performed on five 

accelerator pedal module requirements. 

The reduced term-document matrix relates the requirements and the terms in the 

requirements. Each value represents the semantic importance of the respective term to the 

respective requirement. For instance, Figure 3-12 shows that the terms accelerator and 

module have the highest displayed importance to requirement three (R3), while rest has 

the least displayed importance. With the latent semantics identified through the reduced 

term-document matrix, the conceptual model can be made by comparing column vectors.  
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3.2.3.2 Conceptual Modeling 

Using the reduced-term-document matrix, semantic relationships between 

requirements are formed. Figure 3-13 shows the sub-functions for comparing 

requirements to create the conceptual model. 

 

Figure 3-13: Functional decomposition for comparing requirements in LSA 

Analyzer. 

The algorithm to compare requirements in the LSA Analyzer is shown in Table 3-7. 

Table 3-7: Algorithm for comparing requirements to create conceptual model in 

LSA Analyzer. 

Function Compare Requirements 

Input 
Reduced term-document 

matrix 
Type List of list of floats 

For each pair of column vectors: 

Compute cosine similarity requirement between requirements. 

Append requirement similarity value to a requirement DSM. 

Create conceptual model files from requirement DSM. 

Output DSM conceptual model Type .csv file 

Similar to the conceptual model of the Syntax Analyzer created in Section 3.2.2.2, the 

LSA Analyzer outputs a DSM of the relationships between requirements. This conceptual 

model is shown in Figure 3-14. 
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Figure 3-14: DSM of sample requirements showing relationships between 

requirements (grey boxes) found via the LSA Analyzer. 

The relationships found by the LSA Analyzer are different than those found by the 

Syntax Analyzer. Chapter Four draws comparisons between these analyzers as well as the 

other two analyzers. 

3.2.4 Component LSA Analyzer 

Similar to the LSA Analyzer, the Component LSA Analyzer also uses a latent 

analysis to interpret semantics in the requirements. The Component LSA Analyzer on 

components only. This component-centric analysis is consistent with the other 

requirement analyzers discussed previously—Syntax Analyzer (Section 3.2.2) and 

Semantic Analyzer (Section 3.2.5). Figure 3-15 shows the functional model of the 

Component LSA Analyzer except the syntactic analysis, which is detailed in Section 

3.2.1. 
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Figure 3-15: Functional model of the component LSA Analyzer with implied 

syntactic analysis. 

From the functional model, each function is decomposed and algorithms are 

detailed. As with the previous analyzers, the sample accelerator pedal module 

requirements are analyzed to aid understanding. 

3.2.4.1 Term Identification 

Identifying significant terms is identical to the algorithm performed for the Syntax 

Analyzer. This functional decomposition and algorithm is provided in Section 3.2.2.1.  

The inputs and outputs of the function are reiterated in Table 3-8.  
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Table 3-8: Inputs and outputs of the term identification function. 

Function Identify Significant Terms 

Input Dependency trees Type List of objects 

Output Key terms by requirement Type List of list of strings 

 

3.2.4.2 Latent Semantic Analysis 

The significant terms from the dependency trees are used as input for the LSA. 

The LSA function for the Component LSA Analyzer is different from the LSA function of 

the LSA Analyzer described in Section 3.2.3.1. The function for this algorithm is 

provided in Table 3-9. 

Table 3-9: Algorithm for running LSA in the component LSA analyzer. 

Function Run Latent Semantic Analysis 

Input 
Significant terms by 

requirement 
Type List of list strings 

Create term-document matrix using term frequency. 

Decompose term-document matrix. 

Rank-reduce decomposed matrices. 

Reconstructed term-document matrix with reduced matrices. 

Output 
Reduced term-document 

matrix 
Type List of lists of floats 

Since the input terms are all of significance to the requirement, there is no need to 

normalize the term-document matrix. Figure 3-16 shows the process for inputting a 

sample accelerator pedal module requirement into the LSA function. 
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Figure 3-16: Workflow of inputting requirements into LSA (left) showing an 

example requirement (right). 

Once the terms are inserted into the term-document matrix, the LSA is performed via 

singular value decomposition (SVD). Returning to the five accelerator pedal module 

requirements example, Figure 3-17 shows the outputted rank-reduced term-document 

matrix. 

 

Figure 3-17: Reduced term-document matrix performed on five accelerator pedal 

module requirements. 

With the latent semantics identified through the reduced term-document matrix, 

the conceptual model can be made by comparing column vectors.  
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3.2.4.3 Conceptual Modeling 

The function for creating the conceptual model of the requirements in the 

component LSA Analyzer is identical to the function in the LSA Analyzer. This function 

is detailed in Section 3.2.3.2. The function uses the reduced-term-document matrix to 

create semantic relationships between requirements. The inputs and outputs from 

comparing requirements in the component LSA Analyzer are shown in Table 3-10. 

Table 3-10: Inputs and outputs of the compare requirements function. 

Function Compare Requirements 

Input 
Reduced term-document 

matrix 
Type List of list of floats 

Output DSM conceptual model Type .csv file 

Similar to the conceptual model of the previous analyzers, the component LSA Analyzer 

outputs a DSM of the relationships between requirements. This conceptual model is 

shown in Figure 3-18. 



46 

 

 

Figure 3-18: DSM of sample requirements showing relationships between 

requirements (grey boxes) found via the component LSA Analyzer. 

 

3.2.5 Semantic Analyzer 

The Semantic Analyzer incorporates both LSA and a semantic ontology. Figure 

3-19 shows the functional model of this analyzer. As with the previous models, the 

syntactic analysis has already been detailed in Section 3.2.1 and thus is not shown in the 

model. 
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Figure 3-19: Functional model of the Semantic Analyzer with implied syntactic 

analysis. 

First, requirements are parsed and dependency trees are created for each 

requirement. Next, significant terms are identified. Using the identified significant terms, 

the semantic analysis is performed. The semantic analysis applies semantic meaning to 

the significant terms. The sub-functions of the semantic analysis are shown in Figure 

3-20.  
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Figure 3-20: Semantic analysis sub-model showing sub-functions. 

The algorithms for functional models provided in and Figure 3-20 are shown 

along with inputs/outputs and any sub-functions. These functions are applied to a sample 

set of requirements to aid the understanding of functions. 

3.2.5.1 Term Identification 

Identifying significant terms is identical to the algorithm performed for the Syntax 

Analyzer and component LSA Analyzer. This functional decomposition and algorithm is 

provided in Section 3.2.2.1.  The inputs and outputs of the function are reiterated in Table 

3-11. 

Table 3-11: Inputs and outputs of the term identification function. 

Function Identify Significant Terms 

Input Dependency trees Type List of objects 

Output Key terms by requirement Type List of list of strings 
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3.2.5.2 Semantic Analysis 

Figure 3-20 shows that the semantic analysis is broken down into four main sub-

functions. These sub-functions are provided in a functional model in Figure 3-21. 

 

Figure 3-21: Functional decomposition of the semantic analysis. 

The semantic analysis supplies the terms identified as significant terms with 

semantic meaning thereby providing the requirement with semantics. This action is 

performed by the function Search Semantic Ontology for Term Definitions. In this 

function, each term is found in the semantic ontology and all semantically related words 

are captured for each possible definition. A particular meaning of a term within the 

semantic ontology is called a synset. A synset encapsulates all syntactic and semantic 

information about a particular term. The algorithm for this function is given in Table 

3-12.  



50 

 

Table 3-12: Algorithm for searching the semantic ontology for term definitions. 

Function Search Semantic Ontology for Term Definitions 

Input Key terms Type List of strings 

For term in key terms: 

Find all possible synsets. 

For synset in possible synsets: 

Find all keywords of a synset. 

Append keywords to a list. 

Append keywords list to a list. 

Place list of lists into a dictionary with term as key. 

Output 
Dictionary of possible 

definitions 
Type 

Dictionary of lists of 

lists of strings 
 

The keywords for each synset are derived from the lemmas (synonyms), definitions, 

and/or example sentences. Continuing the example from Section 3.2.5.1, the input for this 

function is each significant term from the requirements document. These inputs are: 

 pedal 

 sound 

 rest 

 supply 

After the function is performed, the output is a dictionary of possible synsets for a word. 

For instance, the possible synsets for the term sound are shown in Figure 3-22. 



51 

 

 

Figure 3-22: Sample synsets for the term sound showing keywords found for each 

synset. 

Next, a specific meaning (synset) must be identified from all of the possible 

meanings of a word. Context from the requirements document aids in this process to help 

ensure the correct synset is chosen. In this semantic analysis, context is provided via the 

functions Run Latent Semantic Analysis and Extract Latent Term Keywords. Running 

LSA provides a way to computationally measure semantic similarity between terms in the 

requirements. The function for this algorithm is provided in Table 3-13. 

Table 3-13: Algorithm for running LSA. 

Function Run Latent Semantic Analysis 

Input All terms by requirement Type List of list strings 

Create term-document matrix using term frequency. 

Normalize term-document matrix using log-entropy model. 

Decompose term-document matrix. 

Rank reduce decomposed matrices. 

Reconstructed term-document matrix with reduced matrices. 

Output 
Reduced term-document 

matrix 
Type List of lists of floats 
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The input for running LSA is all the terms in each requirement. In other words, each 

requirement is broken into terms and fed into the function to create the term-document 

matrix.  Figure 3-23 shows the process for inputting the requirement into the LSA 

function. A sample requirement is shown on the right. 

 

Figure 3-23: Workflow of inputting requirements into LSA (left) showing an 

example requirement (right). 

The output is a rank-reduced term-document matrix. Similar to the original matrix, the 

reduced matrix limits the rank to decrease noise. By decreasing this variance, the latent 

relationships can be found.  

Once LSA is complete, the terms within the term-document matrix identified as 

most related to the significant terms are then extracted. In this way, context for each 

significant term is applied. The algorithm for this function is shown in Table 3-14.  
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Table 3-14: Algorithm for extracting latent term keywords. 

Function Extract Latent Term Keywords 

Input 
Reduced term-document 

matrix 
Type List of list of floats 

For each pair of rows in reduced term-document matrix: 

Compute cosine similarity of row vectors. 

Append similarity value into design structure matrix. 

For each value in design structure matrix: 

If value greater than similarity cutoff value: 

Relate corresponding terms to one another. 

Create dictionary of related terms to a given term. 

Modify dictionary to only contain significant terms as keys. 

Output 
Dictionary of latently 

related terms 
Type 

Dictionary of lists of 

strings 
 

The output of the function is a dictionary of latently related terms for each significant 

term in the requirements. Each significant term has a key and a value in the dictionary. 

The example in Figure 3-24 shows a sample of the dictionary for the significant term 

sound. 

 

Figure 3-24: Example of terms latently related to the significant term sound. 
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Once context has been applied and possible definitions are known, the meaning 

for an unknown term can be found by mapping to a term to the semantic ontology. The 

function Map Terms to Semantic Ontology uses the found context to apply meaning to the 

terms (i.e. define the terms). In the semantic analysis, context is applied by relating the 

terms extracted from the requirements document to the terms captured for each possible 

definition. The definition that the context terms are most related to is selected as the 

definition of the word in the semantic ontology. The algorithm for this mapping is shown 

in Table 3-15. 

Table 3-15: Algorithm for mapping terms to the semantic ontology. 

Function Map Terms to Semantic Ontology 

Inputs 

Dictionary of latently 

related terms 
Types 

Dictionary of lists of 

strings 

Dictionary of possible 

definitions 

Dictionary of lists of 

lists of strings 

For term in latently related terms: 

Look up possible definitions. 

For each possible definition: 

Compare to latently related terms. 

For each comparison: 

If the comparison is the most similar: 

Append synset to a dictionary with term as key. 

Replace terms by requirement with semantic terms. 

Output Semantic terms by requirement Type List of list of objects 

 

An example mapping for the term sound is provided in Figure 3-25. 
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Figure 3-25: Example mapping of significant term sound (right) to the semantic 

ontology (left) by comparing keywords. 

The keywords from the latent analysis are related to the keywords from the semantic 

ontology. In the example in Figure 3-25, sound is mapped to the synset sound.n.02 

because the relationship between the latent and semantic keywords is stronger. The output 

for all requirements is the significant semantic terms for each requirement. This full 

output is shown in Figure 3-26. 
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Figure 3-26: Output of semantic analysis showing significant terms (middle) 

mapped to the synsets in the semantic ontology (right). 

Once semantics have been applied to the requirements, conceptual modeling can be 

performed. 

3.2.5.3 Conceptual Modeling 

This analyzer calculates a similarity value based on semantics between any two 

requirements. Using the similarity metric derived between requirements, a DSM is used 

to model the requirements. The conceptual analysis is performed via a comparison and 

modeling of the requirements as shown in Figure 3-27. 
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Figure 3-27: Functional decomposition of requirement comparison. 

The algorithm to perform conceptual modeling is given in Table 3-16. 

Table 3-16: Algorithm for comparing requirements. 

Function Compare Requirements 

Input Semantic Terms by Requirement Type List of list of objects 

For each pair of requirements: 

For each pair of semantic terms across requirements: 

Traverse semantic ontology to find similarity. 

Add similarity value to requirement similarity value. 

Append requirement similarity value to a requirement DSM. 

Create conceptual model files from requirement DSM. 

Output DSM conceptual model Type .csv files 

 

Once the semantic terms for each requirement are input, the terms across each 

requirement pair are compared to find the semantic similarity between requirements. An 

example of the output DSM can be seen in Figure 3-28. 
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Figure 3-28: Sample DSM showing relationships between requirements (grey boxes) 

for the Semantic Analyzer. 

3.3 Code Implementation 

Embodiment of the design entails programming the functions from the algorithms 

and integrating the functions together. The computational tools and programming 

language are implemented. To integrate the functions, the analyzers must be tested and 

iterations of the function programs must be performed when integration issues arise. 

Using the algorithms from Section 3.2, the functions are coded. The code for all 

functions is provided in Appendix A. The requirement analyzers are programmed in 

Python [22]. The computational tools used to support the requirement analyzers are the 

Stanford Parser, Natural Language Toolkit (NLTK), and WordNet [6, 14, 23]. Table 3-17 

provides an overview of these tools and where they are used in the program.  
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Table 3-17: Description of computational tools used in the requirement analyzers  

[6, 14, 23]. 

Computational 

Tool 
Description 

Functions Where 

Applied 

Stanford Parser 
Parser that provides dependency 

graphs for syntactic understanding. 
Parse Requirements 

NLTK 

Set of NLP methods that provide 

access to corpora and semantic 

tools. 

Semantic Analysis 

WordNet 
Semantic ontology that is mapped 

to for semantic understanding. 

Semantic Analysis, 

Compare Requirements 

 

Embodied functional models with functions, classes, and methods identified are 

provided. Each function in the grey boxes corresponds with the function coding in the 

Appendix. The embodied function model for the Syntax Analyzer is shown in Figure 

3-29. 

 

Figure 3-29: Embodied function model of the Syntax Analyzer showing functions, 

classes, and methods. 

The embodied function model for the LSA Analyzer is shown in Figure 3-30. 
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Figure 3-30: Embodied function model of the LSA Analyzer showing functions, 

classes, and methods. 
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The embodied function mode for the component LSA Analyzer is shown in Figure 3-31. 
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Figure 3-31: Embodied function model of the component LSA Analyzer showing 

functions, classes, and methods. 
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The embodied function model for the Semantic Analyzer is shown in Figure 3-32. 

 

Figure 3-32: Embodied function model of the Semantic Analyzer showing functions, 

classes, and methods. 

3.4 Chapter Conclusions 

In this chapter, the design of each requirement analyzer was detailed. The four 

requirement analyzers designed are: 
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 Syntax Analyzer 

 LSA Analyzer 

 Component LSA Analyzer 

 Semantic Analyzer 

The Syntax Analyzer implements only parsing and string matching. This analyzer is 

representative of existing methods used for requirement analysis. The LSA Analyzer 

extends the Syntax Analyzer by using LSA to find latent relationships between the 

requirements. The Component LSA Analyzer performs similar to the LSA Analyzer 

except only on identified components in the text instead of the entire requirement 

statement. The Semantic Analyzer extends the Component LSA Analyzer by using a 

semantic ontology in unison with LSA. To create these analyzers, the identified 

opportunities from research are converted to analyzer requirements. Using the derived 

requirements, the analyzers are conceptualized via a functional model and subsequently 

detailed. Figure 3-33 shows the completed chapters (grey chevrons) and upcoming 

chapters (white chevrons) along with their respective deliverables.  
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Figure 3-33: Overview of thesis chapters showing chapters 1-3 completed (grey 

chevrons).  
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CHAPTER FOUR 

TEST CASES AND INTERPRETATION OF REQUIRMENT ANALYSIS RESULTS 

 

In this chapter, the semantic requirement analyzers designed in Chapter Three are 

applied to a BMW accelerator pedal module requirements document. The results are 

compared to manual findings in a series of test cases. These test cases are introduced in 

Table 4-1. 

Table 4-1: List of test cases to validate research. 

ID Test Case Description 

1 Manual Comparison Compare manually-obtained relationships. 

2 Semantic Mapping 
Compare semantic ontology mapping and LSA to 

manually identified semantics. 

3 Manual to Syntax 
Compare syntax and string matching algorithms 

to manual relationships.  

4 
Manual to Component 

LSA 

Compare LSA performed on the components to 

manual relationships. 

5 Manual to Semantics 
Compare semantic ontology mapping and LSA to 

manual relationships. 

6 Manual to LSA 
Compare LSA performed on entire requirements 

to manual relationships. 

Chapter Objectives: 

1. Apply the requirement analyzers to a requirements document. 

2. Provide overview of requirements document evaluated by requirement 

analyzers. 

3. Perform manual study to show engineers’ abilities to find concepts in 

requirements. 

4. Perform test cases to draw conclusions about the value of semantics to 

requirement analysis. 

5.  
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The first test case relates manual findings to one another. The goal of this test case 

is to determine the level to which engineers conceptually agree on requirement 

relationships. To gather these findings, subjects are asked to relate requirements to one 

another individually. These results are then compared to one another and a manual 

collaborative study. The second test case assesses a requirement analyzer’s ability to 

interpret requirements. Test cases 3-6 evaluate the ability of semantics to extend 

conceptual understanding of requirements beyond those of syntax and string matching 

algorithms that are often found in requirement analyses.  

Before the test cases are introduced, an overview of the accelerator pedal module 

is provided. Also, the manual study performed in this research is detailed. This study 

relates the accelerator pedal module requirements to one another based on the expertise 

of engineers. The manual study provides the standard against which the conceptual 

models of the requirement analyzers are judged. Afterwards, the test cases are presented 

and the results of each are discussed.  

4.1 BMW Accelerator Pedal Module Overview 

A requirements document for a BMW accelerator pedal module is analyzed using 

the semantic requirement analyzers. The accelerator pedal module provides both the 

pedal and pedal mechanism that accelerate the vehicle. Figure 4-1 shows a model of the 

accelerator pedal module.  
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Figure 4-1: Solid model of the BMW accelerator pedal module [24]. 

While the pedal module has already been designed and produced, the requirements 

document used for analysis is an early design phase revision of the document. This 

document was chosen because it is an industry requirements document that is feasible for 

manual analysis. The requirements document consists of 24 natural language 

requirements. This requirements document is text-based and has no tables or figures. A 

sample of the formatted requirements document is shown in Figure 4-2. The full 

requirements text is provided in the Appendix B. 



69 

 

 

Figure 4-2: Image of the BMW requirements document showing a sample of the 

requirements and document formatting. 

 

4.2 Manual Requirement Relation Study 

Value in this research is based on whether or not the conceptual models found by 

the analyzers map to that of manually derived conceptual models. In other words, if the 

requirement analyzers do not derive the relationships between requirements that 

engineers expect, the requirement analyzers are not useful. The study involved three 

engineers. The background of each engineer is provided in Table 4-2. 

Table 4-2: Education level of each engineer used in the manual study. 

ID Engineering Design Requirements Linguistics 

Engineer 1 Undergraduate Graduate Graduate 

Engineer 2 Graduate Graduate Undergraduate 

Engineer 3 Graduate Graduate Undergraduate 
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The engineers were provided a brief overview of the accelerator pedal module and 

a problem statement: 

Draw the relationships between requirements on the board provided. 

The problem statement was designed to create the relationships between requirements 

that engineers would find beneficial to the design process for any reason they deemed fit. 

Then, the engineers collaboratively pairwise related the 24 accelerator pedal module 

requirements to one another on the whiteboard provided. The whiteboard had the 24 

requirements around the edges of the board and a marker was used to draw lines between 

related requirements. A sample of these relationships on five requirements is shown in 

Figure 4-3. 

 

Figure 4-3: Sample of pairwise relating requirements on a whiteboard. Each box 

(R1-R5) contains the requirement statement text. 

The relations where created on a binary scale: 

 Line drawn between two requirements: Yes, the requirements are related. 

 No line drawn between two requirements: No, the requirements are not related. 
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The results from the whiteboard were converted to a DSM showing the relations. The 

DSM is a conceptual model of the manually derived relationships between requirements. 

 

Figure 4-4: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) found via manual study. 

This final DSM is compared to the requirement analyzers in Test Case 1 and Test Cases 3 

– 8 to evaluate the ability of the analyzers to form relationships between requirements. 

4.3 Test Case 1: Manual Comparison 

In addition to the collaborative conceptual model created by the study in Section 

4.2, three individual manual models were created. Using the same process described in 

Section 4.2, three engineers were asked to pairwise relate the 24 accelerator pedal module 

requirements to one another on a whiteboard. This study differs in that each individual 

engineer separately drew relationships, resulting in three individually obtained sets of 

results.  
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Table 4-3: Education level of engineers used in Test Case 1 to compare to results 

found in manual study. 

ID Engineering Design Requirements Linguistics 

Engineer 1 Undergraduate Graduate Graduate 

Engineer 2 Graduate Graduate Undergraduate 

Engineer 3 Graduate Graduate Undergraduate 
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Each result from the whiteboard was converted to a DSM for a total of three 

DSMs—one per engineer. The DSM for Engineer 1 is shown in Figure 4-5. 
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Figure 4-5: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) from Engineer 1. 
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The DSM for Engineer 2 is shown in Figure 4-6. 
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Figure 4-6: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) from Engineer 2. 
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The DSM for Engineer 3 is shown in Figure 4-7. 

 

Figure 4-7: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) from Engineer 3. 

Each of the individual DSMs are compared to one another and the DSM from the manual 

collaborative study. Cohen’s Kappa is used to relate and compare these DSM’s to one 

another. The kappa value between any two DSMs is a measure of the agreement between 

them. To use Cohen’s Kappa, the relationships in each DSM are extracted and placed into 

n × 1 vectors respectively, where n is the number of relationships in the DSM. Both 

vectors are then related to one another. The resulting Kappa values are shown in Table 

4-4.  
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Table 4-4: Cohen’s Kappa values comparing the individual manual results to the 

results of the manual collaborative study. 

Comparison Kappa Value 

E1 – E2 0.57 

E1 – E3 0.49 

E2 – E3 0.68 

E1 – Collaborative 0.61 

E2 – Collaborative 0.58 

E3 – Collaborative 0.56 

Kappa values are considered relative to their application. Ideally, the kappa value 

would be 1.00, indicating complete agreement between two conceptual models. However, 

these kappa values show that the highest kappa value relationship between any two 

engineers or group of engineers is 0.68. Therefore, to expect a computational tool to 

exceed a kappa value of 0.68 when compared to manual findings may be unreasonable. In 

addition, the highest value obtained by comparing the individual results to the manual 

study is 0.61. As are all the individual manual results in this test case, all requirement 

analyzers are compared to the manual study. This test case provides a reasonable frame of 

reference on which to judge the requirement analyzers.  

4.4 Test Case 2: Semantic Mapping 

The Semantic Analyzer applies semantic meaning to the requirement elements by 

mapping them to a semantic ontology. This semantic interpretation method must be 

validated. The validation seeks to prove that the supplied semantics are accurate with 
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manually obtained results. Using the semantics supplied to the requirements, the 

similarity metric between the requirements is found through a semantic comparison of the 

requirements.  

Accuracy of the semantic interpretation is measured against the knowledge of 6 

raters. The background of each rater is provided in Table 4-5. 

Table 4-5: Education level of raters used in the semantic interpretation study. 

ID Engineering Design Requirements Linguistics 

Rater 1 Undergraduate Graduate Graduate 

Rater 2 Graduate Graduate Undergraduate 

Rater 3 Graduate Graduate Undergraduate 

Rater 4 Graduate Graduate Graduate 

Rater 5 Graduate Graduate Undergraduate 

Rater 6 Graduate Graduate Undergraduate 

Each rater was provided a list of the significant terms mapped to the semantic 

ontology. Each significant term was paired with the definition provided by the semantic 

ontology. Using the definition of the term, each rater individually asserted whether the 

term was correctly or incorrectly mapped to the semantic ontology. A sample of this 

process is shown in Table 4-6. 
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Table 4-6: Sample of semantic validation process showing method for raters 

assessing terms. 

Requirement Term Definition Rater 1 Rater 2 … 

1 burrs 
seed vessel having hooks or 

prickles 
Incorrect Correct … 

2 pedal 
a lever that is operated with the 

foot 
Correct Correct … 

2 noises 
electrical or acoustic activity that 

can disturb communication 
Correct Correct … 

3 sound 
the subjective sensation of 

hearing something 
Correct Correct … 

… … … … …  

The raters were provided information about the pedal module and provided the original 

requirements document. The original requirements document was provided so that the 

raters could identify the context in which the term was used. The results of the study are 

shown in Figure 4-8. 

 

Figure 4-8: Percent of the terms mapped correctly based on the number of raters 

needed to agree to consider a term correctly mapped. 

Figure 4-8 shows accuracy based on the constraint of number of raters that must 

agree. For instance, the third bar in Figure 4-8 shows 91% mapping accuracy when at 

least three raters agree that the term is mapped correctly. Figure 4-8 also shows what 
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percent of the terms were incorrect based on the constraint of number of raters. The 

notable outcomes of this validation are presented in Table 4-7. 

Table 4-7: Results of semantic validation. 

Statistic Value 

Number of Raters 6 

Number of Terms 35 

6 Raters Agree Correct 74% (26/35) 

≥4 Raters Agree Correct (majority) 89% (31/35) 

6 Raters Agree Incorrect 3% (1/35) 

The results of the semantic validation show that the worst case accuracy of the 

semantic mapping is 74%. This percent means that every rater agreed that the term was 

correctly mapped to the semantic ontology for 74% of the terms. Over half the raters 

agreed that a term was correctly mapped for 89% of the terms. In only one instance (3%) 

did every rater believed that the term was incorrectly mapped to the ontology. With this 

validation, the effective accuracy of the semantic mapping can be considered between 74-

89%.  

4.5 Test Case 3: Manual to Syntax Comparison 

As discussed in Section 2.5, many existing methods for gaining conceptual 

understanding of requirements are based upon syntax and string matching methods alone. 

This test case serves a representation of the capabilities of syntax and string matching 

methods to form relationships between requirements. In particular, the Syntax Analyzer 

results are compared the results obtained from the manual study in Section 4.2. 
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The results of both the Syntax Analyzer and the manual study are binary DSMs 

that state either the requirements are related or are not related to one another. The manual 

study DSM is provided in Section 4.2. The Syntax Analyzer DSM is provided in Figure 

4-9. 

 

Figure 4-9: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) found via the Syntax Analyzer. 

Cohen’s Kappa is used to relate and compare these DSM’s to one another. The 

resulting kappa value is: 

K = 0.26 

This kappa value represents a fair agreement between the syntactic conceptual 

model and the manual model. Analysis of the other requirement analyzers provides 

further insight into the meaning of this kappa value. 
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4.6 Test Case 4: Manual to Component LSA Comparison 

This test case compares the performance of the Component LSA Analyzer to the 

manually obtained results from Section 4.2. Similar to Test Case 3 described in Section 

4.5, the resulting DSMs from both analyses are compared using Cohen’s Kappa. Unlike 

the Syntax Analyzer, the Component LSA Analyzer is not on a binary scale. The values 

of the component LSA DSM vary from -1.00 to 1.00, where less than 0.00 indicates no 

relationship and 1.00 indicates an identical relationship. The results of the Component 

LSA Analyzer must be on a binary scale in order to use Cohen’s Kappa. 

To enable the comparison, a set of semantic threshold values are implemented 

creating new DSMs that are on binary scales. These semantic threshold values are the 

sensitivity of the tool to semantic meaning. For example, at a high semantic threshold 

(low sensitivity) the terms must be nearly synonymous in order to be able to assert that 

any two requirements are related. Below the threshold value, the new DSM cells are 

assigned a value of zero, indicating no relationship between the requirements. Above or 

equal to the threshold value, new DSM cells are assigned a value of one, indicating a 

relationship between the requirements. 10 threshold values are used for this test case. 

Using the 10 new DSMs obtained from assigning threshold values to the original DSM, 

each DSM can be compared to the manually obtained DSM from Section 4.2. The 

Cohen’s Kappa values are obtained using the method described in Section 4.5. The 

resulting Kappa values at each cutoff value are shown in Table 4-8.  
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Table 4-8: Cohen’s Kappa values comparing the Component LSA Analyzer to 

manually obtained results. 

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Kappa Value 0.25 0.25 0.26 0.26 0.28 0.33 0.33 0.36 0.43 0.48 

Table 4-8 shows that the highest agreement between the Component LSA 

Analyzer model and the manually obtained model is at a threshold value of 1.0. Figure 

4-10 shows the DSM obtained at this threshold. 

 

Figure 4-10: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) found via the Component LSA Analyzer at a 

semantic threshold value of 1.0. 

4.7 Test Case 5: Manual to Semantics Comparison 

This test case compares the performance of the Semantic Analyzer to the 

manually obtained results from Section 4.2. The method for comparison is identical to the 

method used for Test Case 4 described in Section 4.6. The DSM values from the 

Semantic Analyzer vary from 0.00 to 1.00, where 0.00 indicates no relationship and 1.00 

indicates an identical or synonymous relationship. The semantic threshold values applied 
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to the Semantic DSM are the same as those used in Test Case 4. Table 4-9 shows the 

results of the comparison between the Semantic Analyzer and the manually obtained 

values. 

Table 4-9: Cohen’s Kappa values comparing the Semantic Analyzer to the manually 

obtained results. 

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Kappa Value 0.30 0.30 0.30 0.30 0.30 0.43 0.29 0.30 0.30 0.30 

Table 4-9 shows that the highest agreement between the Semantic Analyzer model 

and the manually obtained model is at a threshold value of 0.6. Figure 4-11 shows the 

DSM obtained at this threshold. 

 

Figure 4-11: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) found via the Semantic Analyzer at a semantic 

threshold value of 0.6. 
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4.8 Test Case 6: Manual to LSA Comparison 

This test case compares the performance of the LSA Analyzer to the manually 

obtained results from Section 4.2. Similar to Test Case 4 and 5, the comparison method 

uses Cohen’s Kappa to compare the converted LSA DSMs to the manually obtained 

results. The values of the LSA DSM vary from -1.00 to 1.00, where less than 0.00 

indicates no relationship and 1.00 indicates an identical relationship. The kappa values 

comparing the LSA Analyzer to the manual results are shown in Table 4-10. 

Table 4-10: Cohen’s Kappa values comparing the LSA Analyzer to the manually 

obtained results. 

Cutoff Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Kappa Value 0.16 0.24 0.27 0.33 0.36 0.35 0.41 0.43 0.39 0.35 

Table 4-10 shows that the highest agreement between the LSA Analyzer model 

and the manually obtained model is at a threshold value of 0.8. Figure 4-12 shows the 

DSM obtained at this threshold. 
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Figure 4-12: DSM of accelerator pedal module requirements showing relationships 

between requirements (grey boxes) found via the LSA Analyzer at a semantic 

threshold value of 0.8. 

4.9 Requirement Analyzer Comparison 

From the collected data in the test cases, the requirement analyzers can be 

compared to one another. In the test cases, all requirement analyzers were compared to 

the collaborative manually obtained results. Figure 4-13 shows all of the Cohen’s Kappa 

values collected from the test cases. The manual line represents the highest agreement 

(0.61) between an individual engineer and the collaborative manually obtained results. 

The syntax line represents the agreement between the Syntax Analyzer and the manual 

collaborative results. These are used as a frame of reference for the requirement analyzers 

that used semantics.  
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Figure 4-13: Cohen’s Kappa values of each analyzer by semantic threshold value.  

Higher Cohen’s Kappa values show that the conceptual model for that analyzer 

better represents the manual model. Figure 4-13 shows that no analysis performs better 

than the manually-formed relationships. These results suggest that the semantics added 

by the requirement analyzers cannot capture all of the context and concepts that an 

engineer uses to relate requirements. The analyzers that use LSA to relate requirements 

(LSA Analyzer and Component LSA Analyzer) may be limited by the context that is used 

to relate requirements. The context that LSA uses to relate requirements is limited to how 

terms within the document are related to one another. Expanding the scope of the LSA to 

include some corpus data could improve the results. Also, Semantic Analyzer is limited 
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by the ability of the semantic ontology to relate requirements. While the semantic 

mapping is at least 74% accurate, the relations within the ontology are based upon expert 

knowledge in linguistics. If the relations within the ontology are not ideal, this factor 

could add to the discrepancy between manual findings and computational results. As 

semantic analysis tools improve, the abilities of semantic requirement analyzers should 

also improve.  

While the results show that the semantic analysis methods do not fully agree with 

manually-found concepts, the data does show that all analyzers employing a semantic 

interpretation perform better than syntactic and string matching methods alone. This is 

evident in Figure 4-13 as all semantic requirement analyzers outperform the Syntax 

Analyzer at a threshold value above 0.5. At low thresholds (high sensitivity), 

requirements that are only slightly related are related to one another. At this high 

sensitivity, syntactic methods alone can outperform semantic methods. Figure 4-13 shows 

that at a threshold of 0.1, the syntax analyzer outperforms both the LSA and Component 

LSA Analyzer. However, when semantics are added to a requirement analysis, this data 

shows that there is an increased ability to differentiate between requirements. At a 

threshold of 0.9, every analyzer that employs semantics outperforms the Syntax Analyzer. 

This finding supports the hypothesis that semantics increase the computational abilities of 

forming requirement relationships beyond string matching and syntax alone.  

The Semantic Analyzer performs better than the Syntax Analyzer at every 

threshold. This finding shows that employing semantics in a requirement analysis can be 

beneficial no matter the sensitivity to semantics. Even when mildly related requirements 
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are found via semantics, they have the capability to outperform syntactic methods alone. 

The data also shows that the Semantic Analyzer has a specific threshold range where it 

has optimum performance—where the agreement between the Semantic Analyzer and 

manual analysis is highest. Figure 4-13 shows that the Semantic Analyzer has a 

substantially higher agreement with manually obtained concepts at a threshold of 0.6. If a 

requirement analysis could be trained to find these areas of optimum performance, 

requirement analysis methods could provide much more valuable results to designers. 

The Component LSA Analyzer improves as the threshold increases. It 

outperforms the Syntactic Analyzer at a threshold of 0.5. This shows that if only the 

requirements that are highly semantically related to one another are observed, the 

relationships between requirements are more significant. This finding is also generally 

true for the LSA Analyzer. The LSA Analyzer outperforms the Syntactic Analyzer at a 

threshold of 0.3. From these results, one can conclude that a latent analysis to find 

relationships between requirements is more beneficial when only requirements that are 

very similar are considered related to one another. The Semantic Analysis did not use 

LSA to relate requirements, but to relate terms. The semantic ontology was used to relate 

requirements. This may be the reason that the trend in Figure 4-13 for the Semantic 

Analyzer is different than those using LSA to relate requirements. 

This research seeks to build upon other research in the requirement analysis field. 

In particular, the research in the area of requirement change propagation prediction uses a 

DSM model of relationships between requirements [12, 13]. This method employs 

syntactic and string matching methods to automatically find relationships between 
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requirements. The research of this thesis shows that the relationships found can be 

improved using semantics. Also, selection of keywords is performed manually in current 

research. This research has shown that LSA is a viable option for finding those keywords. 

While, adding semantics to requirement analysis has not matched the conceptual 

understanding of engineers, it has shown a proof of concept and promise for further 

research. The subsequent sections detail the reasoning for the discrepancies between the 

requirement analyzers and the manual analysis methods. 

4.9.1 Manual to Syntax Analyzer Results Comparison 

From Figure 4-13, it is shown that manual methods have an agreement of 0.61, 

while the Syntactic Analyzer agrees with the manual analysis with a kappa value of 0.27. 

The manual agreement of 0.61 represents the highest agreement between an individual 

engineer from Test Case 1 and the manual collaborative study. The kappa values show 

that the Syntax Analyzer results do not agree with the manual collaborative study as well 

as an individual engineer agrees. This discrepancy can be attributed to the inability of 

string comparison and syntactic methods alone to capture complex relationships between 

requirements. 

The Syntax Analyzer finds the subject and direct object of a requirement and 

pairwise compares them to the same elements in the other requirement statements. Any 

string match draws a relationship between the requirements. For instance, requirement 7 

states: 

Pedal angle generated by the actuating force must be limited. 

Requirement 8 states: 
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Pedal angle should be in the range of 16 degrees (+/- 0.5 degrees). 

In this instance, the subject angle is the same in both requirements and the requirements 

are related by the Syntax Analyzer. The manual collaborative study results and all of the 

individual engineers agree that requirements 7 and 8 are related.  

However, sometimes string matching relates two requirements that the engineers 

study did not find. For example, requirement 3 states: 

Accelerator pedal module should not make noticeable sound when 

knocked. 

Requirement 5 states: 

Accelerator pedal module must use external voltage supply. 

The Syntax Analyzer relates these two requirements because the subjects are string 

matched. However, this disagrees with the results of the collaborative study.  

The Syntax Analyzer can also miss relationships due to only using explicit 

syntactic information. For instance, requirement 14 states: 

Slope response on the pedal (i.e. spring stiffness) must be within 0.8 N per 

degrees and 1.1 N per degrees. 

Requirement 21 states: 

The ascending force should be 30 percent (+6 N / -3 N) of the descending 

force. 

In these requirements, neither the subjects nor direct objects are sting matches. However, 

the manual analysis related these requirements because of the knowledge of forces. This 
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example and the previous example are attributed to the ability of engineers to use implicit 

knowledge in addition to the explicit syntactic information in a requirement statement. 

4.9.2 Manual to LSA and Component LSA Results Comparison 

At a semantic threshold of 0.6 both the LSA Analyzer and Component LSA 

Analyzer have higher kappa values than the Syntax Analyzer. The LSA Analyzer agrees 

with the collaborative study with a kappa value of 0.35, and the Component LSA 

Analyzer agrees with the collaborative study with a kappa value of 0.33. As previously 

stated, the Syntactic Analyzer has an agreement of 0.26. The increase in agreement in 

analyzer using LSA is due to the implicit information added by LSA. For instance 

requirement 9 states: 

The sensor must be redundant with respect to output voltage. 

Requirement 11 states: 

The requirements refer to an electrical wiring output. 

The Syntax Analyzer did not relate these two requirements that the collaborative study 

related because neither the subject nor direct object string matched. However, LSA looks 

at all terms in the requirement and weights them based on a normalization scheme. Using 

this information, the LSA Analyzer found the relationship between these two 

requirements. 

Using LSA also improved the agreement to the manual analysis by not identifying 

incorrect relationships that the Syntax Analyzer identified. For instance, requirement 3 

states: 
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Accelerator pedal module should not make noticeable sound when 

knocked. 

Requirement 17 states: 

Accelerator pedal module must not send a signal to the electronic control 

unit against the driver’s wishes. 

Neither the LSA nor Component LSA Analyzers identified the relationship between these 

requirements. This result agrees with the manual analysis. However, the Syntax Analyzer 

identified this relationship because the requirements’ subjects string match. 

4.9.3 Manual to Semantic Analyzer Comparison 

At the 0.6 semantic threshold, the Semantic Analyzer had the highest agreement 

to the manual analysis of all the requirement analyzers. The kappa value between the 

Semantic Analyzer and the collaborative study is 0.43. The Semantic Analyzer maps the 

subject and direct object in a requirement statement to a semantic ontology. The ontology 

path length is then used to derive a relationship value between the requirements. As with 

LSA, the Semantic Analyzer minimizes the number of identified relationships that 

disagree with the collaborative study. For example, requirement 4 states: 

Accelerator pedal module must fit the rest of the car. 

Requirement 12 states:  

If pedal breaks, the pedal must not be operational. 

The Syntax Analyzer asserted the relationship between these two requirements where the 

collaborative results did not. Further, the Semantic Analyzer has shown greater 

improvement over the LSA and Component LSA Analyzers at the 0.6 threshold as both of 
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these analyzers asserted a relationship between requirements 4 and 12. The minimization 

of false positives shows the most increase in agreement between the manual analyses and 

requirement analyzers.  

4.10 Chapter Conclusions 

This chapter details a set of test cases to show the findings of the three 

requirement analyzers employing semantics. The BMW accelerator pedal module 

requirements were evaluated by the analyzers and the results were compared. Test Case 2 

shows that the semantic mapping within the Semantic Analyzer has at least 74% 

accuracy. Test Cases 3-6 show that the analyzers that implement semantics agree more 

with manually found concepts than the Syntax Analyzer. Further investigation shows that 

the semantic requirement analyzers agree more with the manual results because of the 

ability to minimize the number of false positive relationships. A semantic analysis 

increases the computational ability to filter requirement relationships because of the 

increase in implicit knowledge. Further, the LSA Analyzer was able to discover 

relationships found by the manual analysis that the Syntax Analyzer did not. This shows 

that semantics can find implicit relationships not able to be captured by syntax and string 

matching alone. Figure 4-14 shows the completed chapters (grey chevrons) and 

upcoming chapters (white chevrons) along with their respective deliverables.  
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Figure 4-14: Overview of thesis chapters showing chapters 1-4 completed (grey 

chevrons).  
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 

This thesis presents the development and application of semantics in requirement 

analysis. Current research has identified opportunities to implement semantics in 

requirement analyzers to extend the existing requirement analysis methods. The 

contributions of these analyzers are organized into three research objectives. This chapter 

identifies how these objectives are met by this research. Through completion of the 

research objectives the contributions of the analyzers to requirement analysis research is 

realized. Further, the broader impact of a semantic requirement analysis is discussed and 

possible ways to extend the analyzers and this research are analyzed. 

5.1 Fulfillment of Research Objectives 

5.1.1 RO 1: Supplementing Requirements with Semantics 

Section 3.2.5.2 demonstrates that a computational method for applying semantic 

meaning has been realized. The Semantic Analyzer achieves this by mapping requirement 

terms to a semantic ontology. Significant terms are first identified by the analyzer. These 

significant terms represent terms that provide the requirement statement with meaning. 

Using LSA to identify the context of a requirements document, the significant terms in a 

Chapter Objectives: 

1. Summarize the research presented in this thesis. 

2. Describe the broader impact of applying semantics to requirement analysis. 

3. Identify areas of future work for this research. 
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requirement are mapped to a semantic ontology [14]. In this way, semantic meaning is 

supplied to each requirement. For instance, requirement 2 states: 

Accelerator pedal module may not radiate disturbing mechanical noises 

(airborne sounds or mechanical vibrations). 

The Semantic Analyzer identifies pedal and noises as the significant terms in the 

requirement statement. These terms are mapped to the semantic ontology. The semantic 

ontology provides a definition of each mapped term. The definitions for pedal states: 

A lever that is operated with the foot. 

All six raters identified that this mapping was correct based upon the definition provided. 

This meaning of pedal was mapped to automatically using insight into the context of the 

requirement terms from LSA. This helped select the definition above as opposed to 

another meaning of pedal in the semantic ontology such as: 

A sustained bass note. 

Similarly, the definition for noises states: 

Electrical or acoustic activity that can disturb communication. 

As with pedal this meaning was automatically mapped to by the Semantic Analyzer. It 

was chosen over other meanings in the ontology such as: 

A loud outcry of protest or complaint. 

As validated by Test Case 1 in Section 4.4, the method of supplying semantics to the 

requirements list has been demonstrated by this research to be at least 74% accurate.  



99 

 

5.1.2 RO 2: Forming Semantic Relationships 

The requirement analyzers create conceptual models that relate requirements to 

one another. While the Syntax Analyzer uses only string matching and syntax to draw 

relationships between requirements, the other three requirement analyzers implement 

semantics. In the LSA Analyzer and the Component LSA Analyzer, the reduced-term 

document matrix is used to create requirement vectors. These vectors are then related 

using cosine similarity. For example, on a sample of five requirements from the 

accelerator pedal module requirements document, five requirement vectors are obtained 

via the reduced term-document matrix shown in Figure 5-1. Figure 5-1 has two of the 

column vectors highlighted in boxes. 

 

Figure 5-1: Sample rank-reduced term-document matrix on five requirements 

highlighting column vectors R1 and R2. 
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Performing the cosine similarity between vectors R1 and R2 in Figure 5-1, yields the 

relationship value between the two requirements. Requirement 1 is: 

If pedal breaks, the pedal must not be operational. 

Requirement 2 is: 

Accelerator pedal module must mount to car. 

In this case, the cosine similarity value between these two requirements is 0.97. The 

cosine similarity values are on a scale from -1.00 to 1.00 where 0.00 and less is no 

relationship and 1.00 is identical. While 0.97 seems intuitively high for these 

requirements, LSA is based upon the given context. With a sample of 5 requirements, the 

context is not complete and the given example serves only as a way to demonstrate the 

method.  

The Semantic Analyzer maps to a semantic ontology then relates the requirements 

based upon the connections within the ontology. For instance, requirement 11 states: 

The requirements refer to an electrical wiring output. 

Requirement 13 states:  

If pedal breaks, the pedal must not be operational. 

Identifying the significant terms in these requirement statements yields requirements in 

requirement 11 and pedal in requirement 13. Traversing the ontology provides a 

similarity value on a scale from 0.00 to 1.00 where 0.00 is no relationship and 1.00 is 

synonymy. In this instance, the obtained value between pedal and requirements is 0.11. 
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These connections consider semantic relationships such as synonymy, hypernymy, 

hyponymy, and meronymy. The output conceptual models from these analyses are n × n 

DSMs, where n is the number of requirements. The values in the DSM identify the 

strength of relation between requirements in a requirements document. The value of these 

conceptual models to requirement analysis and engineering design are evaluated by RO 

3.  

5.1.3 RO 3: Value of Linguistic Semantics to Design 

Chapter Four seeks to understand the application of supplying semantics to a 

requirements document. The requirement analyzers developed in Chapter Three are each 

applied to a requirements document for a BMW accelerator pedal module to find the 

relationships between requirements. In addition, three engineers were asked to 

individually draw relationships between requirements. Further, a study was conducted 

where a group of three engineers collaboratively drew relationships between the 

requirements. 

To judge the ability of the requirement analyzers, all results are compared to the 

manual collaborative study. The comparisons are performed in Test Case 1 (Section 4.3) 

and Test Cases 3-6 (Sections 4.5-4.8). The ability of each requirement analysis is 

quantified by the level of agreement between the manual collaborative study and each 

analyzer. The level of agreement was measured using Cohen’s Kappa. Test Case 1 

showed that conceptual models between engineers moderately agree as the highest kappa 

value between an individual engineer and the collaborative study was 0.61. Test Cases 3-

6 showed that none of the analyzers perform as well as the manually obtained results. 
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However, when comparing the analyzers that implement semantics against the Syntax 

Analyzer, the semantic analyzers agree more with manually found concepts.  

Further statistical analysis of the requirement analyzers provides reasoning for 

how the analyzers performed against the manual analysis. Table 5-1 shows the statistical 

analysis of all analyzers at 0.6 semantic threshold. 

Table 5-1: Statistical analysis results at 0.6 semantic threshold. Cohen’s Kappa value 

is in relation to the manual collaborative study results. 

Analyzer 
True 

Positives 

True 

Negatives 

False 

Positives 

False 

Negatives 

Cohen’s 

Kappa 

Syntax 18 181 54 23 .26 

LSA 11 211 24 30 .35 

Component 

LSA 
18 190 45 23 .33 

Semantic 9 226 9 32 .43 

In certain instances, all analyzers identified relationships between requirements 

that agreed with the collaborative study. This corresponds to the overlap of true positive 

throughout all analyzers. For instance, requirement 12 states: 

If pedal breaks, the pedal must not be operational. 

Requirement 16 states: 

If pedal breaks, the pedal must be recognizable as broken. 

All four analyzers from Table 5-1 identified the relationship between these two 

requirements. Identification of this relationship is straightforward because of the strong 

text similarity and string matched subjects. For the two LSA analyzers, LSA creates 
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vectors based on the importance of terms in a statement—and importance of latent terms 

that should be in a statement. Therefore, if two requirements have a large portion of 

similar text, they are more likely to be related as with requirements 12 and 16. The 

semantic analyzer captures the term pedal in each requirement and maps it to the 

ontology where the ontology realizes the identical terms are direct synonyms. 

The LSA Analyzer, which evaluates the whole requirement statement, is able to 

identify relationships that engineers identified but the Syntax Analyzer did not identify. 

For instance, requirement 9 states: 

The sensor must be redundant with respect to the output voltage. 

Requirement 11 states: 

 The requirements refer to an electrical wiring output. 

The manual collaborative study related these two requirements where the Syntax 

Analyzer did not but the LSA Analyzer did. The use of LSA on the entire requirement 

allowed for a computational selection of the significant terms of the requirement 

statement as opposed to the Syntax Analyzer where the subject and direct object were 

pre-selected as significant terms. This allowed for the LSA Analyzer to compare the 

terms output in both requirements. Also the LSA Analyzer compared other terms such as 

sensor, electrical, wiring, and voltage, which often appear in the same statement and 

therefore are latently related. Similarly, requirements 7 and 18 were related by the LSA 

Analyzer. Requirement 7 states: 

Pedal angle generated by the actuating force must be limited. 
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Requirement 18 states: 

Pedal must not exhibit “stick slip effect” (instability in the force angle – 

response behavior). 

The Syntax Analyzer did not draw the relationship between requirements 7 and 18, where 

the LSA Analyzer and manual study did. Again, LSA enabled the analyzer to select the 

significant terms such as force and angle where the Syntax Analyzer selected pedal. This 

selection of terms, plus the ability to weight the terms’ importance and find the latent 

significance of terms in a requirement resulted in the relating of these two requirements. 

Another reason for the increase in agreement between the results of the semantic 

analyzers and manual analysis is the minimization of the false positives between a 

semantic analyzer and the manual analysis. For instance, while the Syntax Analyzer 

identified the most true positives (18) at a semantic threshold of 0.6, it had the most false 

positive relationships (54). This means that 54 relationships were found between 

requirements by the Syntax Analyzer that the manual analysis did not. Conversely, the 

Semantic Analyzer, which agreed most with the manual results, only had nine false 

positives. 

Table 5-1 shows that the Component LSA Analyzer matches or outperforms the 

Syntax Analyzer in every category. It has as many true positives and false negatives as 

the Syntax Analyzer while improving in true negatives and false positives. This is evident 

in the improved agreement between the Component LSA Analyzer as seen in the Cohen’s 

Kappa value as compared to the Syntax Analyzer.  
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These results show that enhancing requirement analysis with semantics improves 

the computational ability to differentiate between related requirements and unrelated 

requirements. For instance, requirements 2 and 17 of the BMW accelerator pedal module 

are related by the Syntax Analyzer but not by any of the analyzers that use semantics. 

Requirement 2 reads: 

Accelerator pedal module may not radiate disturbing mechanical noises 

(airborne sounds or mechanical vibrations).  

Requirement 17 reads: 

Accelerator pedal module must not send a signal to the electronic control 

unit against the driver’s wishes. 

The Syntax Analyzer identifies that the subjects of both requirements, pedal, are string 

matched and therefore related. However, the semantic analysis shows that while the two 

requirements share the same subject, the remaining terms are not semantically related and 

therefore there is no relationship between the requirements. By implementing semantics, 

computational methods can better filter requirement relationships that string matching 

methods identify that are not identified by engineers.  

The analyzers in this research are applied to requirement analyses that draw 

relationships between requirements. Research in the field of change propagation in 

requirements uses a formal model that relates requirements to one another [12, 13]. The 

goal of the change propagation tool is to predict what other requirements will change if a 

requirement is changed. The current method uses string matching and syntax to draw 

relationships. This research has shown that using semantics can create relationships that 

agree more with manually found relationships. Implementation of semantics in the 
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change propagation tool could further the capabilities of this tool. Further, the keywords 

to use for drawing relationships are performed manually. Implementing a method such as 

LSA enables this method to be automated.  

5.2 Broader Impact of Semantics in Requirement Analysis 

This research extends the computational support available for engineering design. 

By improving requirement analysis, the requirements document can be refined earlier. 

This refinement adds value to the design by saving effort and money that would be 

needed if the design was refined later in the process. Computational support is beneficial 

as it seeks to not only improve the results of requirement analysis, but also increase the 

efficiency of the design process. By automating a tedious process, designers can 

accomplish the task quicker and/or while performing another task in parallel. 

5.3 Future Work 

5.3.1 Integration of Analyzer with Existing Tools 

The requirement analyzers have been shown to apply linguistic semantics to 

requirements and find implicit relationships between requirements that cannot be found 

by string matching or syntactic methods. Most existing requirement analysis tools do not 

employ a semantic analysis, and therefore cannot find these relationships [12, 9, 19, 13]. 

The next phase of for a semantic requirement analysis is to integrate it with an existing 

tool. Then, validation of a specific tool can be performed to show that the semantic 

analysis has improved the results of tool. The following research question summarizes 

the areas of future work identified for integration of the tool: 
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How can the semantic requirement analysis tool be integrated with an 

existing requirement analysis tool to improve the results? 

5.3.2 Implementing Machine-Learning Techniques 

While the semantic requirement analysis tool has been largely-automated, there 

are parameters that must be hard-coded into the analysis that could change between 

requirement documents. For instance, the performed LSA has to define a rank value to 

which the term-document matrix is reduced. Parameters such as this dimension value can 

be input into a vector along with defining parameters of the requirements document. This 

vector can then be used to optimize the analysis for each requirements document using 

machine-learning techniques such as classifiers or neural nets. This area of future work 

would allow for further automation and adaptability of the tool. The research question for 

this future work is: 

How can machine-learning techniques improve a semantic interpretation 

of a requirements document? 

5.3.3 Further Validation of Tool 

The application of semantics to requirement terms has been shown by this 

research to be at least 74% accurate. However, validation on requirements documents of 

different sizes, designs, formats, and phases in the design process should be considered. 

Hypotheses about these results can be drawn based on the implemented method of 

applying semantics and the performed validation. The semantic analysis relies on the 

context provided by the requirements document. As long as the full context of the design 

is represented in the requirements document, the accuracy of the tool should not change 

significantly. This means that different size, designs, and formats should not significantly 
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affect the accuracy. However, as the requirements document is refined over the phases of 

the design process, more information is known about the design. This may indicate that 

the accuracy could be better on a later revision of a requirements document. The research 

question for this area of future work is: 

How does the variation across requirements documents affect the ability of 

the tool to provide reliable results? 
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5.4 Appendix A: Analyzer Scripts 

This appendix contains the primary scripts for each of the requirement analyzers 

as well as all of the functions used. The coding is written in Python. The scripts and 

functions are delimited by file. 

1. Semantic Analyzer 

# main.py 

 

# By: Alex Lash 

# Created: 2/14/13 

# Last modified: 2/22/13 

 

# Executable that takes text-based dependency parses and creates DSM 

# conceptual models. 

 

from deptree_text_to_obj import * 

from requirement import Requirement 

from stopword_remove import * 

from lsa import * 

from latent_analysis import * 

from ontology_analysis import * 

from semantic_mapping import * 

from compare import * 

 

def main(): 

 

    # Open file of requirements. 

    # Either raw NL (slower) or tagged requirement statements (faster).  

 

    deptree_str_lst = open_file().split('\n\n') 

 

    deptree_lst = [] 

 

    for deptree_str in deptree_str_lst: 

         

        deptree = deptree_str_to_obj(deptree_str) 

 

        deptree_lst.append(deptree) 

 

    print deptree_lst 

 

    nouns_lst_by_req = [] 

##    verbs_lst_by_req = [] 

    tokens_lst_by_req = [] 

 

    # Get artifacts and functions 

    for deptree in deptree_lst: 

 

        nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj']) 

##        verbs_lst = deptree.verbs(gram_rel = ['dobj']) 

        tokens_lst = deptree.tokens(numtags=False) 
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        nouns_lst = list(set(nouns_lst)) 

##        verbs_lst = list(set(verbs_lst)) 

         

        nouns_lst_by_req.append(nouns_lst) 

##        verbs_lst_by_req.append(verbs_lst) 

        tokens_lst_by_req.append(tokens_lst) 

 

    # Remove stopwords 

    nouns_lst_by_req = remove_stops(nouns_lst_by_req) 

 

##    verbs_lst_by_req = remove_stops(verbs_lst_by_req) 

 

    print("\nAll requirements extracted.") 

 

    # Run LSA on requirements. 

    print("\nRun LSA...") 

 

    dim_cutoff_val = int(raw_input("\nLSA dimension cutoff value (0 - # reqs): 

")) 

     

    print("\n     Running LSA on nouns...") 

 

    n_td_mat,nouns = lsa(nouns_lst_by_req, csv=True, normalize=False, 

s_cutoff=dim_cutoff_val) 

 

    print("\n     Complete.") 

 

##    print("\n     Running LSA on verbs...") 

 

##    v_td_mat,verbs = lsa(verbs_lst_by_req, csv=False, normalize=False, 

s_cutoff=dim_cutoff_val) 

 

##    print("\n     Complete.") 

 

    print("\n     Running general LSA...") 

 

    td_mat,tokens = lsa(tokens_lst_by_req, csv=False, log_entropy=True, 

s_cutoff=dim_cutoff_val) 

 

    print("\n     Complete.") 

 

    print("\nLSA complete.") 

 

    print 

    print nouns 

##    print 

##    print verbs 

 

    # Get latent keywords. 

    print("\nFinding latent word relationships...") 

 

    sim_cutoff_val = float(raw_input("\nSimilarity cutoff value (0 - 1): ")) 

 

    print("\n    Finding similar nouns in requirements document...") 

 

    n_latent_dict = latent_keywords(td_mat,tokens,sim_val = sim_cutoff_val) 

 

    noun_dict = modify_dict(n_latent_dict,nouns) 

 

    print "noun_dict" 
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    print noun_dict 

 

    print("\n    Similar nouns in requirements document found.") 

 

##    print("\n    Finding similar verbs in requirements document...") 

 

##    v_latent_dict = latent_keywords(td_mat,tokens,sim_val = sim_cutoff_val) 

 

##    verb_dict = modify_dict(v_latent_dict,verbs) 

 

##    print("\n    Similar verbs in requirements document found.") 

 

    print("\nLatent relationships found.") 

 

    # Get ontological keywords. 

    print("\nFinding possible definitions for words...") 

 

    def_cutoff_val = int(raw_input("\nMax number of definitions per word (1 - 

100): ")) 

 

    print("\n     Finding possible artifacts...") 

 

    artifact_dict = synset_keywords(nouns,count_max=def_cutoff_val,p_of_s='n') 

 

    print 

    print artifact_dict 

 

    print("\n     Possible artifacts found.") 

 

##    print("\n     Finding possible functions...") 

 

##    function_dict = 

synset_keywords(verbs,count_max=def_cutoff_val,p_of_s='v') 

 

##    print("\n     Possible functions found.") 

 

    print("\nDefinitions found...") 

 

    # Map nouns to artifacts. 

    print("\nPerforming semantic analysis...") 

 

    print("\n     Defining each noun term (mapping to an artifact)...") 

 

    n_semantic_dict = define_terms(noun_dict,artifact_dict,pos='n') 

 

    print 

    print n_semantic_dict 

 

    print("\n     Noun terms defined.") 

 

##    print("\n     Defining each verb term (mapping to a function)...") 

 

##    v_semantic_dict = define_terms(verb_dict,function_dict,pos='v') 

 

##    print("\n     Verb terms defined.")     

 

    print("\n     Relating noun terms to requirements...") 

 

    n_semantic_lst_by_req = mapping(nouns_lst_by_req,n_semantic_dict) 
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    print 

    print nouns_lst_by_req 

 

    print("\n     Noun terms related to requirements.") 

 

##    print("\n     Relating verb terms to requirements...") 

 

##    v_semantic_lst_by_req = mapping(verbs_lst_by_req,v_semantic_dict) 

 

##    print("\n     Verb terms related to requirements.") 

 

    print 

    print n_semantic_lst_by_req 

 

    for lst in n_semantic_lst_by_req: 

 

        print 

 

        for i in lst: 

 

            try: 

                print i.definition 

 

            except: 

                print i 

 

    print("\nSemantic analysis complete.") 

 

    # Pairwise compare requirements 

    print("\nCreating DSM and outfiles for visualization...") 

 

    n_dsm = ontology_dsm(n_semantic_lst_by_req,name="n_sem") 

 

##    v_dsm = ontology_dsm(v_semantic_lst_by_req,name="v") 

 

    print"\nFiles written." 

     

# ------------------------------------------------------------------------ 

 

def tag_check(): 

 

    print('Is the input file pretagged?') 

    print('     (1) Yes') 

    print('     (2) No') 

 

    while True: 

 

        response = raw_input() 

 

        if response == '1' or response.lower() == 'yes': 

 

            return True 

 

        if response == '2' or response.lower() == 'no': 

 

            return False 

 

        print('Not a valid response\nType (1) Yes or (2) No.')    

 

# ------------------------------------------------------------------------ 
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def open_file(): 

 

    while True: 

         

        fname = raw_input("File Name: ") 

         

        try: 

             

            infile = open(fname,'r') 

             

            break 

         

        except: 

             

            print('File not found. Try again. ctrl-C to exit.\n') 

 

    f = infile.read() 

 

    infile.close() 

 

    return f     

 

# ------------------------------------------------------------------------ 

 

if __name__ == "__main__": 

    main() 

 

2. LSA & Component LSA Analyzers 

# lsa_only.py 

 

# By: Alex Lash 

# Created: 2/14/13 

# Last modified: 2/22/13 

 

# Executable that takes text-based dependency parses and creates DSM 

# conceptual models. 

 

from deptree_text_to_obj import * 

from requirement import Requirement 

from stopword_remove import * 

from lsa import * 

from compare import * 

 

def main(): 

 

    # Open file of requirements. 

    # Either raw NL (slower) or tagged requirement statements (faster).  

 

    deptree_str_lst = open_file().split('\n\n') 

 

    deptree_lst = [] 

 

    for deptree_str in deptree_str_lst: 

         

        deptree = deptree_str_to_obj(deptree_str) 
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        deptree_lst.append(deptree) 

 

    print deptree_lst 

 

    nouns_lst_by_req = [] 

##    verbs_lst_by_req = [] 

    tokens_lst_by_req = [] 

 

    # Get artifacts and functions 

    for deptree in deptree_lst: 

 

        nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj']) 

##        verbs_lst = deptree.verbs(gram_rel = ['dobj']) 

        tokens_lst = deptree.tokens(numtags=False) 

 

        nouns_lst = list(set(nouns_lst)) 

##        verbs_lst = list(set(verbs_lst)) 

         

        nouns_lst_by_req.append(nouns_lst) 

##        verbs_lst_by_req.append(verbs_lst) 

        tokens_lst_by_req.append(tokens_lst) 

 

    # Remove stopwords 

    nouns_lst_by_req = remove_stops(nouns_lst_by_req) 

 

##    verbs_lst_by_req = remove_stops(verbs_lst_by_req) 

 

    print("\nAll requirements extracted.") 

 

    # Run LSA on requirements. 

    print("\nRun LSA...") 

 

    dim_cutoff_val = int(raw_input("\nLSA dimension cutoff value (0 - # reqs): 

")) 

     

    print("\n     Running LSA on nouns...") 

 

    n_td_mat,nouns = lsa(nouns_lst_by_req, csv=False, normalize=False, 

s_cutoff=dim_cutoff_val) 

 

    print("\n     Complete.") 

 

    print("\n     Running LSA on verbs...") 

 

##    v_td_mat,verbs = lsa(verbs_lst_by_req, csv=False, normalize=False, 

s_cutoff=dim_cutoff_val) 

 

    print("\n     Complete.") 

 

    print("\n     Running general LSA...") 

 

    td_mat,tokens = lsa(tokens_lst_by_req, csv=True, log_entropy=True, 

s_cutoff=dim_cutoff_val) 

 

    print("\n     Complete.") 

 

    print("\nLSA complete.") 

 

    print 

    print nouns 
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##    print 

##    print verbs 

 

    # Pairwise compare requirements 

    print("\nCreating DSM and outfiles for visualization...") 

 

    dsm = lsa_dsm(n_td_mat,name="n_lsa") 

    dsm_too = lsa_dsm(td_mat,name="all_lsa") 

 

    print"\nFiles written." 

 

     

     

# ------------------------------------------------------------------------ 

 

def tag_check(): 

 

    print('Is the input file pretagged?') 

    print('     (1) Yes') 

    print('     (2) No') 

 

    while True: 

 

        response = raw_input() 

 

        if response == '1' or response.lower() == 'yes': 

 

            return True 

 

        if response == '2' or response.lower() == 'no': 

 

            return False 

 

        print('Not a valid response\nType (1) Yes or (2) No.')    

 

# ------------------------------------------------------------------------ 

 

def open_file(): 

 

    while True: 

         

        fname = raw_input("File Name: ") 

         

        try: 

             

            infile = open(fname,'r') 

             

            break 

         

        except: 

             

            print('File not found. Try again. ctrl-C to exit.\n') 

 

    f = infile.read() 

 

    infile.close() 

 

    return f     

 

# ------------------------------------------------------------------------ 
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if __name__ == "__main__": 

    main() 

3. Syntax Analyzer 

# string_matching.py 

 

# By: Alex Lash 

# Created: 2/14/13 

# Last modified: 2/22/13 

 

# Executable that takes text-based dependency parses and creates DSM 

# conceptual models. 

 

from deptree_text_to_obj import * 

from requirement import Requirement 

from stopword_remove import * 

##from lsa import * 

##from latent_analysis import * 

##from ontology_analysis import * 

##from semantic_mapping import * 

from compare import * 

 

def main(): 

 

    # Open file of requirements. 

    # Either raw NL (slower) or tagged requirement statements (faster).  

 

    deptree_str_lst = open_file().split('\n\n') 

 

    deptree_lst = [] 

 

    for deptree_str in deptree_str_lst: 

         

        deptree = deptree_str_to_obj(deptree_str) 

 

        deptree_lst.append(deptree) 

 

    print deptree_lst 

 

    nouns_lst_by_req = [] 

##    verbs_lst_by_req = [] 

##    tokens_lst_by_req = [] 

 

    # Get artifacts and functions 

    for deptree in deptree_lst: 

 

        nouns_lst = deptree.nouns(gram_rel = ['nsubjpass','nsubj','dobj']) 

##        verbs_lst = deptree.verbs(gram_rel = ['dobj']) 

##        tokens_lst = deptree.tokens(numtags=False) 

 

        nouns_lst = list(set(nouns_lst)) 

##        verbs_lst = list(set(verbs_lst)) 

         

        nouns_lst_by_req.append(nouns_lst) 

##        verbs_lst_by_req.append(verbs_lst) 

##        tokens_lst_by_req.append(tokens_lst) 
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    # Remove stopwords 

    nouns_lst_by_req = remove_stops(nouns_lst_by_req) 

 

##    verbs_lst_by_req = remove_stops(verbs_lst_by_req) 

 

    print("\nAll requirements extracted.") 

 

    # Pairwise compare requirements 

    print("\nCreating DSM and outfiles for visualization...") 

 

    n_dsm = string_dsm(nouns_lst_by_req,name="n_str") 

 

##    v_dsm = string_dsm(verbs_lst_by_req,name="v") 

 

    print"\nFiles written." 

     

# ------------------------------------------------------------------------ 

 

def tag_check(): 

 

    print('Is the input file pretagged?') 

    print('     (1) Yes') 

    print('     (2) No') 

 

    while True: 

 

        response = raw_input() 

 

        if response == '1' or response.lower() == 'yes': 

 

            return True 

 

        if response == '2' or response.lower() == 'no': 

 

            return False 

 

        print('Not a valid response\nType (1) Yes or (2) No.')    

 

# ------------------------------------------------------------------------ 

 

def open_file(): 

 

    while True: 

         

        fname = raw_input("File Name: ") 

         

        try: 

             

            infile = open(fname,'r') 

             

            break 

         

        except: 

             

            print('File not found. Try again. ctrl-C to exit.\n') 

 

    f = infile.read() 

 

    infile.close() 
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    return f     

 

# ------------------------------------------------------------------------ 

 

if __name__ == "__main__": 

    main() 

 

4. Dependency and Dependency Tree Classes 

# dependency.py 

# Set of classes for dependency trees in Python. 

 

from copy import deepcopy 

 

class Dependency: 

 

    def __init__(self,token,gram_rel,dep_token): 

 

        """Create a dependency object consisting of a token, a grammatical 

relation 

        , and a dependent token.""" 

 

        # Create token 

        self.token = token 

 

        # Creat grammatical relation 

        self.gram_rel = gram_rel 

 

        # Relate to a dependent token 

        self.dep_token = dep_token 

 

    def token(self): 

 

        """Finds the token of the dependency.""" 

 

        return self.token 

 

    def gram_rel(self): 

 

        """Returns the grammatical relation of the dependency.""" 

 

        return self.gram_rel 

 

    def dep_token(self): 

 

        """Returns the dependent token of the dependency.""" 

 

        return self.dep_token 

 

    def obj(self): 

 

        """Builds an image of the dependency object for viewing, comparing, 

etc.""" 

 

        return (self.token,self.gram_rel,self.dep_token) 

 

# ------------------------------------------------------------------------   
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class DependencyTree: 

     

    def __init__(self): 

 

        """Create empty dependency tree.""" 

 

        self.dep_list = [] 

 

    def insert(self,token,gram_rel,dep_token): 

 

        """Add a dependency object to the tree.""" 

 

        # Create dependency object using Dependency class 

        dep_obj = Dependency(token,gram_rel,dep_token) 

 

        # If dependency not already in tree add the dependency to the tree. 

        if not self.__in(dep_obj,self.dep_list): 

            self.dep_list.append(dep_obj) 

 

        # Otherwise, state that the dependency already exists. 

        else: 

            print ('Dependency object:  {obj}\nalready exists in tree. Object 

not added.\n'.format(obj=dep_obj.obj())) 

 

    def __search(self, token=[], gram_rel=[], dep_token=[]): 

 

        """Input a list of tokens, grammatical relations, and/or dependant 

tokens 

        as search parameters. Returns a list of dependency objects matching 

        parameters.""" 

 

        # Create a blank list that will have searched data added to be 

returned. 

        return_list = [] 

 

 

        # Traverse tree to find dependencies that match searched criteria. 

        for dep_item in self.dep_list: 

            if (dep_item.token[0] in token or not token) and (dep_item.gram_rel 

in gram_rel or not gram_rel) and (dep_item.dep_token[0] in dep_token or not 

dep_token): 

                return_list.append(dep_item) 

 

        return return_list 

 

    def verbs(self, gram_rel = 

['subj','csubj','nsubjpass','nsubj','obj','dobj','iobj','agent']): 

 

        """Find significant verbs from the dependency tree. Defaults are verbs 

of subjects 

        and objects""" 

 

        # Traverse dependency tree and find verbs. Default is root verb. 

        dep_list = self.__search([],gram_rel,[]) 

 

        verb_list = [] 

 

        # From the found dependencies pull out the verbs and put into a new 

list to return. 

        for dep in dep_list: 
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            verb_list.append(dep.token[0]) 

 

        return verb_list 

 

    def nouns(self, gram_rel = 

['subj','csubj','nsubjpass','nsubj','obj','dobj','iobj','nn']):  

 

        """Find significant nouns from the dependency tree. Default are 

subjects 

        and objects.""" 

 

        # Traverse dependency tree and find nouns. Defaults are objects and 

subject. 

        dep_list = self.__search([],gram_rel,[]) 

 

        noun_list = [] 

 

        # From the found dependencies pull out the nouns and put into a new 

list to return. 

        for dep in dep_list: 

            noun_list.append(dep.dep_token[0]) 

 

        return noun_list 

 

    def tokens(self,numtags=True): 

 

        """Return a list of all the tokens in the dependency tree as a list of 

tuples.""" 

 

        # Traverse tree to return all dependencies. 

        dep_list = self.__search() 

 

        token_list = [] 

 

        # Create a list of all the tokens (including dependent tokens). 

        for dep in dep_list: 

            token_list.append(dep.dep_token) 

            token_list.append(dep.token) 

 

        # Delete duplicates due to dependencies having multiple grammatical 

relations 

        # and/or being both a token and a dependent token in different 

dependencies. 

        token_list = list(set(token_list)) 

 

        # Remove tree root because it is an implied token. 

        token_list.remove(('root',0)) 

 

        word_lst = [] 

        if not numtags: 

            for token in token_list: 

                word_lst.append(token[0]) 

 

            token_list = word_lst 

 

        return token_list 

             

    def __in(self,dep_obj,dep_lst): 

 

        """Modified in function to correctly find if a dependency object is in 
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        a list of dependency objects.""" 

 

        for dep_item in dep_lst: 

            if dep_item.obj() == dep_obj.obj(): 

                return True 

 

        return False 

5. Dependency Syntax Conversion Functions 

# Convert a string  

# Function that takes a string dependency tree parse and converts it to a 

# Python object. 

# Input a string dependency tree parse having dependences delimited with 

# '\n' --> Output a dependency tree object. 

 

# Main function: 'deptree_str_to_obj' 

# Could suppress functions 'word_str_to_tup' and 'dep_str_to_lst' but left 

# available for possible utility. 

 

from dependency import * 

 

def word_str_to_tup(word_str): 

 

    """Reformats the string 'Word-#' as the tuple (word,#)""" 

 

    rev_word_lst = word_str[::-1].split('-',1)[::-1] 

 

    word_lst = [] 

    for word in rev_word_lst: 

        word_lst.append(word[::-1]) 

 

##    print word_lst 

 

    word_lst[1] = int(word_lst[1]) 

 

    word_lst[0] = word_lst[0].lower() 

     

    word_tup = tuple(word_lst) 

 

    return word_tup 

 

def dep_str_to_lst(dep_str): 

 

    """Refomats the string 'dep(word-#, dep_word-#)' 

    as ['dep', ('word', '#'), ('dep_word', '#')]""" 

 

    # Replace all delimiting characters with ',' and remove whitespace. 

    dep_str = dep_str.replace('(',',') 

    dep_str = dep_str.replace(')','') 

    dep_str = dep_str.replace(' ','') 

 

    # Split along delimiter ','. 

    dep_as_lst = dep_str.split(',') 

 

    # Use function 'word_str_to_tup' to reformat the two tokens in the 

    # dependency list as tuples. 

    for i in range(2): 

        word_str = dep_as_lst.pop(1) 
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        word_tup = word_str_to_tup(word_str) 

        dep_as_lst.append(word_tup) 

     

    return dep_as_lst 

 

def deptree_str_to_obj(deptree_str): 

 

    """Converts a string dependency tree from Stanford Parser output to 

    a DependencyTree object.""" 

 

    # Split dependencies along delimiter '\n'. 

    deptree_lst = deptree_str.split('\n') 

 

    # Create an empty DependencyTree object to be populated with Dependency 

    # objects. 

    deptree_obj = DependencyTree() 

 

    # Populate dependency tree with dependencies 

    for dep_str in deptree_lst: 

 

        dep_as_lst = dep_str_to_lst(dep_str) 

        deptree_obj.insert(dep_as_lst[1],dep_as_lst[0],dep_as_lst[2]) 

 

    return deptree_obj 

6. Stopword Removal Function 

# stopword_remove.py 

 

# By: Alex Lash 

# Created: 2/22/13 

# Last modified: 2/22/13 

 

from nltk.corpus import stopwords 

from latent_analysis import alpha 

 

# ------------------------------------------------------------------------ 

 

def remove_stops(word_lst_by_req): 

 

    stops = set(stopwords.words('english')) 

 

    keep_lst_by_req = [] 

 

    for word_lst in word_lst_by_req: 

 

        keep_lst = [word for word in word_lst if word not in stops] 

 

        final_keep_lst = [] 

 

        for term in keep_lst: 

 

            last_char_ascii = ord(term[-1]) 

 

            if len(term)>1 and alpha(last_char_ascii): 

 

                final_keep_lst.append(term) 

 

        keep_lst_by_req.append(final_keep_lst) 
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    return keep_lst_by_req 

 

7. Latent Semantic Analysis Functions 

# lsa.py 

 

# By: Alex Lash 

# Created: 1/31/13 

# Last modified: 2/19/13 

 

# Set of functions that runs latent semantic analysis on a set of documents and 

# provides a matrix of the completed LSA as output. 

# Input a list of lists containing the tokenized documents/requirements --> 

# outputs a list of numpy arrays that is a SVD document by word matrix. 

 

from numpy import * 

from math import * 

 

## ----------------------------------------------------------------------- 

 

def tf(lst_of_docs,csv=False): 

 

    # Preallocate dictionaries to store values for calculations 

 

    # Pre-allocate dictionary to store global frequency 

    gf = {} # term <Type = str> : collection count <Type = int> 

 

    # Pre-allocate dictionary to store term frequency for each term per 

document 

    tf = {} # term <Type = str> : count per doc <Type = list of ints> 

 

    num_docs = 0 

 

    # Create gf 

    for doc in lst_of_docs: 

         

        for word in doc: 

             

            try: 

                gf[word] += 1 

                 

            except: 

                gf[word] = 1 

                 

        num_docs += 1 

 

    # Create tf 

    for term in gf: 

         

        count_lst = [] 

         

        for doc in lst_of_docs: 

            count_lst.append(doc.count(term)) 

             

        tf[term] = count_lst 

 

    # Create Term-Document Matrix 
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    # Pre-allocate term-document matrix 

    td_mat = [] 

 

    # Add column headers to matrix, i.e. document numbers 

    doc_header_row = [''] 

     

    for i in range(num_docs): 

        doc_header_row.append("R{doc_num}".format(doc_num = i+1)) 

 

    # Place header row with column headers into term-document matrix 

    td_mat.append(doc_header_row) 

 

    # Populate term-document matrix 

    for term in tf: 

 

        # Add row header, i.e. term 

        term_row = [term] 

 

        # Populate matrix with log-entropy tf-idf values 

        for freq in tf[term]: 

            term_row.append(freq) 

 

        td_mat.append(term_row) 

 

    if csv: 

        to_csv(td_mat, fname="tf.csv") 

 

    return td_mat 

 

 

## ----------------------------------------------------------------------- 

 

def tfidf(lst_of_docs,csv=False): 

    """Function that runs TF-IDF on a set of documents and provides matrix of 

    the completed TF-IDF as output. Uses the TF-IDF model as shown on 

    wikipedia under the LSI. Input a list of lists containing the 

    tokenized documents/requirements --> outputs a list of lists that is 

    the term-document matrix.""" 

 

    # Preallocate dictionaries to store values for calculations 

 

    # Pre-allocate dictionary to store global frequency 

    gf = {} # term <Type = str> : collection count <Type = int> 

 

    # Pre-allocate dictionary to store term frequency for each term per 

document 

    tf = {} # term <Type = str> : count per doc <Type = list of ints> 

 

    # Pre-allocate dictionary to store log values for each term per document 

    L_ij = {} # term <Type = str> : log value per doc <Type = list of floats> 

 

    # Pre-allocate dictionary to store the number of documents in which each 

term appears 

    df = {} # term <Type = str> : sum value per doc <Type = list of floats> 

 

    # Pre-allocate dictionary to store entropy global weight values for each 

term per document 

    g_i = {} # term <Type = str> : entropy value <Type = float> 
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    num_docs = 0 

 

    # Create gf 

    for doc in lst_of_docs: 

         

        for word in doc: 

             

            try: 

                gf[word] += 1 

                 

            except: 

                gf[word] = 1 

                 

        num_docs += 1 

 

    # Create tf 

    for term in gf: 

         

        count_lst = [] 

         

        for doc in lst_of_docs: 

            count_lst.append(doc.count(term)) 

             

        tf[term] = count_lst 

 

    # Create L_ij 

    for term in tf: 

         

        log_lst = [] 

         

        for val in tf[term]: 

            log_lst.append(log10(val+1)) 

             

        L_ij[term] = log_lst 

 

    # Create df 

    for term in tf: 

         

        dfi = 0 

         

        for i in range(len(tf[term])): 

             

            if tf[term][i] > 0: 

                dfi += 1 

 

        df[term] = dfi 

 

    # Create g_i 

    for term in gf: 

        g_i[term] = log2(float(num_docs)/(1+df[term])) 

 

    return createMat(num_docs,L_ij,g_i,csv) 

 

## ----------------------------------------------------------------------- 

 

def logent(lst_of_docs,csv=False): 

 

    """Function that runs TF-IDF on a set of documents and provides matrix of 

    the completed TF-IDF as output. Uses the log-entropy model as shown on 

    wikipedia under the LSI. Input a list of lists containing the 
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    tokenized documents/requirements --> outputs a list of lists that is 

    the term-document matrix.""" 

 

    # Preallocate dictionaries to store values for calculations 

 

    # Pre-allocate dictionary to store global frequency 

    gf = {} # term <Type = str> : collection count <Type = int> 

 

    # Pre-allocate dictionary to store term frequency for each term per 

document 

    tf = {} # term <Type = str> : count per doc <Type = list of ints> 

 

    # Pre-allocate dictionary to store log values for each term per document 

    L_ij = {} # term <Type = str> : log value per doc <Type = list of floats> 

 

    # Pre-allocate dictionary to store probability values for each term per 

document 

    p_ij = {} # term <Type = str> : tf/gf per doc <Type = list of floats> 

 

    # Pre-allocate dictionary to store entropy global weight values for each 

term per document 

    g_i = {} # term <Type = str> : entropy value <Type = float> 

 

    num_docs = 0 

 

    # Create gf 

    for doc in lst_of_docs: 

         

        for word in doc: 

             

            try: 

                gf[word] += 1 

                 

            except: 

                gf[word] = 1 

                 

        num_docs += 1 

 

    # Create tf 

    for term in gf: 

         

        count_lst = [] 

         

        for doc in lst_of_docs: 

            count_lst.append(doc.count(term)) 

             

        tf[term] = count_lst 

 

    # Create L_ij 

    for term in tf: 

         

        log_lst = [] 

         

        for val in tf[term]: 

            log_lst.append(log10(val+1)) 

             

        L_ij[term] = log_lst 

 

    # Create p_ij 

    for term in tf: 
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        p_lst = [] 

         

        for val in tf[term]: 

            p_lst.append(float(val)/gf[term]) 

             

        p_ij[term] = p_lst 

 

    # Create g_i 

    for term in p_ij: 

         

        summ = 1 

         

        for val in p_ij[term]: 

             

            if val != 0: 

                summ += ((val*log10(val))/log(num_docs)) 

 

        g_i[term] = summ 

 

    return createMat(num_docs,L_ij,g_i,csv) 

 

## ----------------------------------------------------------------------- 

 

def createMat(num_docs,L_ij,g_i,csv): 

 

    # Create Term-Document Matrix 

 

    # Pre-allocate term-document matrix 

    td_mat = [] 

 

    # Add column headers to matrix, i.e. document numbers 

    doc_header_row = [''] 

     

    for i in range(num_docs): 

        doc_header_row.append("R{doc_num}".format(doc_num = i+1)) 

 

    # Place header row with column headers into term-document matrix 

    td_mat.append(doc_header_row) 

 

    # Populate term-document matrix 

    for term in L_ij: 

 

        # Add row header, i.e. term 

        term_row = [term] 

 

        # Populate matrix with log-entropy tf-idf values 

        for freq in L_ij[term]: 

            term_row.append(g_i[term]*freq) 

 

        td_mat.append(term_row) 

 

    if csv: 

        to_csv(td_mat) 

 

    return td_mat 

 

## ----------------------------------------------------------------------- 

 

def to_csv(mat, fname = "tf_idf.csv"): 
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    outfile = open(fname, 'w') 

 

    for row in mat: 

         

        for item in row: 

            outfile.write("{0};".format(item)) 

             

        outfile.write("\n") 

 

    outfile.close() 

 

## ----------------------------------------------------------------------- 

 

def 

lsa(lst_of_docs,csv=False,normalize=True,log_entropy=False,s_cutoff=999999): 

 

    # Run TF-IDF 

 

    if normalize: 

 

        if log_entropy: 

            td_mat = logent(lst_of_docs,csv) 

 

        else: 

            td_mat = tfidf(lst_of_docs,csv) 

         

    else: 

        td_mat = tf(lst_of_docs,csv) 

 

 

    col_headers = td_mat.pop(0) 

 

    row_headers = [] 

     

    for row in td_mat: 

        row_headers.append(row.pop(0)) 

 

    td_array = array(td_mat) 

 

    u,s,vT = linalg.svd(td_array,full_matrices=False) 

 

    td_red = rank_reduce(u,s,vT,s_cutoff) 

 

    if csv: 

 

        lsa = td_red.tolist() 

 

        num_docs = len(lsa[0]) 

 

        # Pre-allocate term-document matrix 

        lsa_mat = [] 

 

        # Add column headers to matrix, i.e. document numbers 

        lsa_mat.append(col_headers) 

 

        # Populate term-document matrix 

        j=0 

        for term in row_headers: 
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            # Add row header, i.e. term 

            term_row = [term] 

 

            # Populate matrix with lsa matrix values 

            for row_val in lsa[j]: 

                term_row.append(row_val) 

 

            lsa_mat.append(term_row) 

 

            j+=1 

 

##        print lsa_mat 

 

        to_csv(lsa_mat,fname="lsa.csv") 

 

    return (td_red,row_headers) 

 

## ----------------------------------------------------------------------- 

 

def rank_reduce(u,s,vT,s_cutoff=99999999): 

 

    if s_cutoff <= 0: 

        s_cutoff = 1 

 

    red_s = [] 

 

    cut_count = 0 

 

    for s_val in s: 

 

        if cut_count >= s_cutoff: 

            break 

 

        red_s.append(s_val) 

 

        cut_count += 1 

 

    red_dim = len(red_s) 

 

    red_s = diag(red_s) 

 

    red_u = u[:,:red_dim] 

 

    red_vT = vT[:red_dim,:] 

 

    return red_u.dot(red_s).dot(red_vT) 

 

8. Latent Analysis Functions 

# latent_analysis.py 

 

# By: Alex Lash 

# Created: 1/31/13 

# Last modified: 2/4/13 

 

from numpy import * 

from math import * 

from requirement import * 
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from nltk.corpus import stopwords 

 

 

def cos_sim(u,v): 

 

    return u.dot(v) / (sqrt(u.dot(u)) * sqrt(v.dot(v))) 

 

# ------------------------------------------------------------------------ 

 

def dsm(red_td_mat): 

 

    num_words = len(red_td_mat) 

 

    dsm = zeros((num_words,num_words)) 

 

    i = 0 

    j = 0 

 

    for row in red_td_mat: 

 

        for other_row in red_td_mat: 

 

            dsm[i,j] = cos_sim(row,other_row) 

 

            j += 1 

 

        i += 1 

        j = 0 

 

    return dsm 

 

# ------------------------------------------------------------------------ 

 

def latent_keywords(red_td_mat, tokens, sim_val = .9): 

 

    sim_mat = dsm(red_td_mat) 

 

    i = 0 

 

    keyword_dict = {} 

 

    for token in tokens: 

 

        row = sim_mat[i].tolist() 

 

        keywords = [] 

 

        j = 0 

 

        for cos_sim in row: 

 

            if cos_sim >= sim_val and token != tokens[j]: 

 

                keywords.append(tokens[j]) 

 

            j += 1 

 

        keyword_dict[token] = keywords 

 

        i += 1 
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    return keyword_dict 

 

# ------------------------------------------------------------------------ 

 

def modify_dict(dictionary,words_to_keep): 

 

    stops = set(stopwords.words('english')) 

 

    for term in dictionary: 

 

        definition = dictionary[term] 

 

        dictionary[term] = [word for word in definition if word not in stops] 

 

    keep_dict = {} 

 

    for word in words_to_keep: 

 

        last_char_ascii = ord(word[-1]) 

 

        if len(word)>1 and alpha(last_char_ascii): 

             

            keep_dict[word] = dictionary[word] 

 

    for term in keep_dict: 

 

        definition = keep_dict[term] 

 

        keep_items = [] 

 

        for item in definition: 

 

            last_char_ascii = ord(item[-1]) 

 

            if len(item)>1 and alpha(last_char_ascii): 

 

                keep_items.append(item) 

 

        keep_dict[term] = keep_items 

 

    return keep_dict 

 

# ------------------------------------------------------------------------ 

 

def alpha(ascii_code): 

 

    if 65 <= ascii_code <= 90: 

        return True 

 

    if 97 <= ascii_code <= 122: 

        return True 

 

    return False 

     

9. Latent Analysis Functions 

# latent_analysis.py 
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# By: Alex Lash 

# Created: 1/31/13 

# Last modified: 2/4/13 

 

from numpy import * 

from math import * 

from requirement import * 

from nltk.corpus import stopwords 

 

 

def cos_sim(u,v): 

 

    return u.dot(v) / (sqrt(u.dot(u)) * sqrt(v.dot(v))) 

 

# ------------------------------------------------------------------------ 

 

def dsm(red_td_mat): 

 

    num_words = len(red_td_mat) 

 

    dsm = zeros((num_words,num_words)) 

 

    i = 0 

    j = 0 

 

    for row in red_td_mat: 

 

        for other_row in red_td_mat: 

 

            dsm[i,j] = cos_sim(row,other_row) 

 

            j += 1 

 

        i += 1 

        j = 0 

 

    return dsm 

 

# ------------------------------------------------------------------------ 

 

def latent_keywords(red_td_mat, tokens, sim_val = .9): 

 

    sim_mat = dsm(red_td_mat) 

 

    i = 0 

 

    keyword_dict = {} 

 

    for token in tokens: 

 

        row = sim_mat[i].tolist() 

 

        keywords = [] 

 

        j = 0 

 

        for cos_sim in row: 

 

            if cos_sim >= sim_val and token != tokens[j]: 
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                keywords.append(tokens[j]) 

 

            j += 1 

 

        keyword_dict[token] = keywords 

 

        i += 1 

     

    return keyword_dict 

 

# ------------------------------------------------------------------------ 

 

def modify_dict(dictionary,words_to_keep): 

 

    stops = set(stopwords.words('english')) 

 

    for term in dictionary: 

 

        definition = dictionary[term] 

 

        dictionary[term] = [word for word in definition if word not in stops] 

 

    keep_dict = {} 

 

    for word in words_to_keep: 

 

        last_char_ascii = ord(word[-1]) 

 

        if len(word)>1 and alpha(last_char_ascii): 

             

            keep_dict[word] = dictionary[word] 

 

    for term in keep_dict: 

 

        definition = keep_dict[term] 

 

        keep_items = [] 

 

        for item in definition: 

 

            last_char_ascii = ord(item[-1]) 

 

            if len(item)>1 and alpha(last_char_ascii): 

 

                keep_items.append(item) 

 

        keep_dict[term] = keep_items 

 

    return keep_dict 

 

# ------------------------------------------------------------------------ 

 

def alpha(ascii_code): 

 

    if 65 <= ascii_code <= 90: 

        return True 

 

    if 97 <= ascii_code <= 122: 

        return True 
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    return False 

     

10. Ontology Analysis Functions 

# ontology_analysis.py 

 

# By: Alex Lash 

# Created: 1/31/13 

# Last modified: 2/4/13 

 

from nltk.corpus import wordnet 

from requirement import Requirement 

 

def synset_keywords(tokens,count_max=999999,p_of_s='n'): 

 

    keyword_dict = {} 

 

    for token in tokens: 

 

        synset_list = [] 

 

        synsets = wordnet.synsets(token, pos=p_of_s) 

 

        count = 0 

 

        for synset in synsets: 

 

            if count >= count_max: 

                break 

 

            # Get synonym (lemma) keywords for a synset 

            lems = [lemma.name for lemma in synset.lemmas] 

 

            keywords = [] 

 

            for lem in lems: 

 

                split_lems = lem.split('_') 

 

                for split_lem in split_lems: 

                    keywords.append(split_lem) 

                 

##            # Get definition keywords for a synset 

##            definition = synset.definition 

## 

##            def_obj = Requirement(definition) 

## 

##            if p_of_s == 'v': 

##                def_toks = def_obj.vbs(w_tags = False) 

##                 

##            else: 

##                def_toks = def_obj.nns(w_tags = False) 

## 

##            keywords = keywords + def_toks 

## 

##            # Get example keywords for a synset 

##            examples = synset.examples 
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## 

##            for example in examples: 

## 

##                ex_obj = Requirement(example) 

## 

##                if p_of_s == 'v': 

##                    ex_tokens = ex_obj.vbs(w_tags = False) 

## 

##                else: 

##                    ex_tokens = ex_obj.nns(w_tags = False) 

##                 

##                keywords = keywords + ex_tokens 

 

            synset_list.append(keywords) 

 

            count += 1 

 

        keyword_dict[token] = synset_list 

 

        print 

        print keyword_dict[token] 

 

    return keyword_dict 

 

11. Semantic Mapping Functions 

# semantic_mapping.py 

 

# By: Alex Lash 

# Created: 2/14/13 

# Last modified: 2/14/13 

 

from nltk.corpus import wordnet 

 

def define_terms(keyword_dict, definition_dict,pos='n'): 

 

    semantic_dict = {} 

 

    for word in keyword_dict: 

 

        keywords = keyword_dict[word] 

 

        if keywords == []: 

 

            max_index = 0 

 

        else: 

 

            possible_defs = definition_dict[word] 

 

            if possible_defs == []: 

 

                max_index = 0 

 

            else: 

 

                sim_val_lst = [] 
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                for definition in possible_defs: 

 

                    sim_val = max_word_sim(keywords,definition,pos) 

 

                    sim_val_lst.append(sim_val) 

 

                max_index = sim_val_lst.index(max(sim_val_lst)) 

 

        try: 

            semantic_dict[word] = wordnet.synsets(word,pos)[max_index] 

 

        except IndexError: 

            semantic_dict[word] = None 

 

    return semantic_dict 

 

# ------------------------------------------------------------------------ 

 

def max_word_sim(text,other_text,pos='n'): 

 

    sim_val_lst = [] 

 

    for word in text: 

 

        try: 

            synset = wordnet.synsets(word,pos)[0] 

 

        except IndexError: 

            synset = word 

             

        for other_word in other_text: 

 

            try: 

                other_synset = wordnet.synsets(other_word,pos)[0] 

 

            except IndexError: 

                other_synset = other_word 

                 

            if type(synset) == type(other_synset): 

 

                if synset == other_synset: 

                    sim_val_lst.append(1.0) 

                     

                elif type(synset) != str: 

 

                    wup_sim = synset.wup_similarity(other_synset) 

 

                    sim_val_lst.append(wup_sim) 

 

                else: 

                    sim_val_lst.append(0.0) 

 

            else: 

                sim_val_lst.append(0.0) 

 

    max_sim = max(sim_val_lst) 

 

    return max_sim 

 

# ------------------------------------------------------------------------ 
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def mapping(word_lst_by_req,dictionary): 

 

    semantic_lst_by_req = [] 

 

    for word_lst in word_lst_by_req: 

 

        semantic_lst = [] 

 

        for word in word_lst: 

 

            if type(dictionary[word]) == type(None): 

                semantic_lst.append(word) 

 

            else: 

                semantic_lst.append(dictionary[word]) 

 

        semantic_lst_by_req.append(semantic_lst) 

 

    return semantic_lst_by_req 

 

12. Compare Requirements Functions 

# compare.py 

 

# By: Alex Lash 

# Created: 2/14/13 

# Last modified: 2/19/13 

 

from numpy import * 

from math import * 

from latent_analysis import cos_sim 

from nltk.corpus import wordnet 

 

# ------------------------------------------------------------------------ 

 

def semantic_sim_sum(term_lst,other_term_lst,term_cutoff=.5): 

 

    sim_val_lst = [] 

 

    for term in term_lst: 

 

        for other_term in other_term_lst: 

 

            if type(term) == str or type(other_term) == str: 

 

                if type(term) == type(other_term): 

 

                    if term == other_term: 

                        sim_val_lst.append(1.0) 

 

                    else: 

                        sim_val_lst.append(0.0) 

 

                else: 

                    sim_val_lst.append(0.0) 

 

            else: 
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                wup_sim = term.wup_similarity(other_term) 

 

                if type(wup_sim) == type(None): 

 

                    wup_sim = 0.0 

 

                sim_val_lst.append(wup_sim) 

 

    sum_sim = 0 

     

    for val in sim_val_lst: 

 

        if val >= term_cutoff: 

            sum_sim += val 

 

        else: 

            sum_sim -= val 

 

##    sum_sim = sum(sum_lst) 

 

    return sum_sim 

 

# ------------------------------------------------------------------------ 

 

def ontology_dsm(term_lst_by_req,to_file=True,node_edge=False,name=""): 

 

    dsm = [] 

 

    for term_lst in term_lst_by_req: 

 

        dsm_row = [] 

 

        for other_term_lst in term_lst_by_req: 

 

            if term_lst == [] or other_term_lst == []: 

                sim_val = 0.0 

 

            else: 

                sim_val = semantic_sim_sum(term_lst,other_term_lst) 

 

            dsm_row.append(sim_val) 

 

        append_row = [] 

         

        for val in dsm_row: 

 

            if val >= .8: 

                append_row.append(val) 

 

            else: 

                append_row.append(0.0) 

 

        dsm.append(append_row) 

 

    if to_file: 

        dsm_file(dsm,name) 

 

    if node_edge: 
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        node_file(dsm,name) 

 

        edge_file(dsm,name)        

 

    return array(dsm)         

 

# ------------------------------------------------------------------------ 

 

def max_semantic_sim(term_lst,other_term_lst): 

 

    sim_val_lst = [] 

 

    for term in term_lst: 

 

        for other_term in other_term_lst: 

 

            if type(term) == str or type(other_term) == str: 

 

                if type(term) == type(other_term): 

 

                    if term == other_term: 

                        sim_val_lst.append(1.0) 

 

                    else: 

                        sim_val_lst.append(0.0) 

 

                else: 

                    sim_val_lst.append(0.0) 

 

            else: 

 

                wup_sim = term.wup_similarity(other_term) 

 

                if type(wup_sim) == type(None): 

 

                    wup_sim = 0.0 

 

                sim_val_lst.append(wup_sim) 

 

    max_sim = max(sim_val_lst) 

 

    return max_sim 

 

# ------------------------------------------------------------------------ 

 

def semantic_cos_sim(term_lst,other_term_lst): 

 

    words = term_lst + other_term_lst 

 

    words = list(set(words)) 

 

    term_vector = [] 

    other_term_vector = [] 

 

    for word in words: 

         

        if __in(word,term_lst): 

            term_vector.append(1.0)           

 

        else: 
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            sim_val = max_semantic_sim(term_lst,[word]) 

 

            term_vector.append(sim_val) 

 

        if __in(word,other_term_lst): 

            other_term_vector.append(1.0) 

 

        else: 

             

            sim_val = max_semantic_sim(other_term_lst,[word]) 

 

            other_term_vector.append(sim_val) 

 

    similarity = cos_sim(array(term_vector),array(other_term_vector)) 

 

    return similarity 

 

# ------------------------------------------------------------------------ 

 

def __in(item,lst): 

 

    try: 

        return item in lst 

 

    except AttributeError: 

        return False 

 

# ------------------------------------------------------------------------ 

 

def string_dsm(term_lst_by_req,to_file=True,node_edge=False,name=""): 

 

    dsm = [] 

 

    for term_lst in term_lst_by_req: 

 

        dsm_row = [] 

 

        for other_term_lst in term_lst_by_req: 

 

            if term_lst == [] or other_term_lst == []: 

                sim_val = 0.0 

 

            else: 

                sim_val = semantic_sim_sum(term_lst,other_term_lst) 

 

            dsm_row.append(sim_val) 

 

        append_row = [] 

         

        for val in dsm_row: 

 

            if val >= .8: 

                append_row.append(val) 

 

            else: 

                append_row.append(0.0) 

 

        dsm.append(append_row) 
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    if to_file: 

        dsm_file(dsm,name) 

 

    if node_edge: 

 

        node_file(dsm,name) 

 

        edge_file(dsm,name)        

 

    return array(dsm)   

 

# ------------------------------------------------------------------------ 

 

def lsa_dsm(td_mat, to_file=True, node_edge=False, name=""): 

 

    dt_mat = td_mat.T 

 

    dsm = [] 

 

    for doc_row in dt_mat: 

 

        dsm_row = [] 

 

        for other_doc_row in dt_mat: 

 

            sim_val = cos_sim(doc_row,other_doc_row) 

 

            dsm_row.append(sim_val) 

 

        dsm.append(dsm_row) 

 

    if to_file: 

        dsm_file(dsm,name) 

 

    if node_edge: 

 

        node_file(dsm,name) 

 

        edge_file(dsm,name)        

 

    return array(dsm) 

 

# ------------------------------------------------------------------------ 

 

def node_file(dsm, name): 

 

    fname = name + "_nodes.csv" 

 

    outfile = open(fname, 'w') 

 

    outfile.write("Id;Label") 

 

    num_reqs = len(dsm[0]) 

 

    for i in range(num_reqs): 

 

        outfile.write("\n{0};R{0}".format(i+1)) 

 

    outfile.close() 
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# ------------------------------------------------------------------------ 

 

def edge_file(dsm, name): 

 

    fname = name + "_edges.csv" 

 

    outfile = open(fname, 'w') 

 

    outfile.write("Source;Target;Type;Weight") 

 

    num_reqs = len(dsm[0])     

 

    i = 0 

 

    for dsm_row in dsm: 

 

        for j in range(i+1): 

 

            

outfile.write("\n{0};{1};Undirected;{2}".format(i+1,j+1,dsm_row[j])) 

 

        i += 1 

 

    outfile.close()          

 

# ------------------------------------------------------------------------ 

 

def dsm_file(dsm, name): 

 

    fname = name + "_dsm.csv" 

 

    outfile = open(fname, 'w') 

 

    outfile.write("DSM") 

     

    num_reqs = len(dsm[0]) 

 

    for i in range(num_reqs): 

 

        outfile.write(";R{0}".format(i+1)) 

 

    outfile.write("\n") 

 

    j = 1 

 

    for row in dsm: 

 

        outfile.write("R{0}".format(j)) 

 

        j += 1 

         

        for item in row: 

            outfile.write(";{0}".format(item)) 

             

        outfile.write("\n") 

 

    outfile.close() 
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13. Requirement Class 

# requirement.py 

 

# By: Alex Lash 

# Created: 1/31/13 

# Last modified: 2/19/13 

 

# Tag requirements and extract nouns and verbs. 

 

from nltk.corpus import treebank 

from nltk.tokenize import TreebankWordTokenizer 

import pickle 

 

## ----------------------------------------------------------------------- 

 

class Requirement: 

    """[state methods here.]""" 

 

 

 

    def __init__(self, req, pretagged=False, trained=True): 

 

        if pretagged: 

 

            tag_word_lst = req.split(' ') 

 

            tagged_req = [] 

 

            for tag_word in tag_word_lst: 

 

                tag_tuple = self.__to_tuple(tag_word) 

 

                tagged_req.append(tag_tuple) 

 

            self.tagged_req = tagged_req 

 

        else:     

 

            self.NL_req = req 

 

            if not trained: 

                self.__train_tagger() 

 

            f = open('tagger.pickle', 'r') 

 

            tagger = pickle.load(f) 

 

            tokenizer = TreebankWordTokenizer() 

             

            tokenized_req = tokenizer.tokenize(self.NL_req) 

                 

            self.tagged_req = tagger.tag(tokenized_req) 

 

        self.nouns = self.__get_nouns() 

 

        self.verbs = self.__get_verbs() 
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    def __to_tuple(self, word_str): 

 

        """Reformats the string 'Word/tag' as the tuple (word,tag)""" 

 

        rev_word_lst = word_str[::-1].split('/',1)[::-1] 

 

        word_lst = [] 

         

        for word in rev_word_lst: 

            word_lst.append(word[::-1]) 

 

        word_lst[0] = word_lst[0].lower() 

         

        word_tup = tuple(word_lst) 

 

        return word_tup 

 

         

 

    def __train_tagger(self): 

         

        from nltk.tag.sequential import ClassifierBasedPOSTagger 

        from nltk.tag import DefaultTagger 

         

        train_sents = treebank.tagged_sents() 

 

        default = DefaultTagger('NN') 

 

        tagger = ClassifierBasedPOSTagger(train=train_sents, backoff = default, 

cutoff_prob = 0.3) 

 

        f = open('tagger.pickle', 'w') 

 

        pickle.dump(tagger, f) 

 

        f.close() 

 

        print "Tagger trained..." 

 

         

 

    def tag_req(self, as_tuples = True): 

 

        tagged_req = self.tagged_req 

 

        req_wo_punct = [] 

 

        while tagged_req != []: 

 

            token = tagged_req.pop(0) 

             

            last_char_ascii = ord(token[0][-1]) 

 

            if self.__alpha(last_char_ascii): 

 

                req_wo_punct.append(token) 

 

        if not as_tuples: 

            req_wo_punct = self.__delimit(req_wo_punct) 
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        return req_wo_punct 

 

 

 

    def __delimit(self,tagged_req, delimiter="/"): 

 

        delimited_tagged_req = [] 

 

        for tag_tuple in tagged_req: 

 

            tag_str = self.__join(tag_tuple) 

 

            delimited_tagged_req.append(tag_str) 

 

        return delimited_tagged_req 

 

                 

 

    def __join(self, tup, char = '/'): 

 

        return tup[0] + char + tup[1] 

 

           

 

    def __extractor(self, tag_list): 

 

        extracted_words = [word for word in self.tagged_req if (word[1] in 

tag_list)] 

 

        return extracted_words 

 

 

     

    def nns(self, as_tuples = True, w_tags = True): 

 

        if not w_tags: 

 

            noun_lst = [] 

 

            for tag_tup in self.nouns: 

 

                noun_lst.append(tag_tup[0]) 

 

            return noun_lst 

 

        if not as_tuples and w_tags: 

            return self.__delimit(self.nouns) 

 

        return self.nouns 

 

         

 

    def __get_nouns(self): 

 

        nouns_lst = self.__extractor(['NN','NNS','NNP','NNPS']) 

 

        req_nouns = [] 

 

        while nouns_lst != []: 
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            noun = nouns_lst.pop(0) 

             

            last_char_ascii = ord(noun[0][-1]) 

 

            if self.__alpha(last_char_ascii): 

 

                req_nouns.append(noun) 

 

        return req_nouns 

 

 

 

    def __alpha(self, ascii_code): 

 

        if 65 <= ascii_code <= 90: 

            return True 

 

        if 97 <= ascii_code <= 122: 

            return True 

 

        return False 

 

 

     

    def vbs(self, as_tuples = True, w_tags = True): 

 

        if not w_tags: 

 

            verb_lst = [] 

 

            for tag_tup in self.verbs: 

 

                verb_lst.append(tag_tup[0]) 

 

            return verb_lst 

 

        if not as_tuples and w_tags: 

            return self.__delimit(self.verbs) 

 

        return self.verbs 

 

         

 

    def __get_verbs(self): 

 

        verbs_lst = self.__extractor(['MD','VB','VBD','VBG','VBN','VBP','VBZ']) 

 

        req_verbs = [] 

 

        while verbs_lst != []: 

 

            verb = verbs_lst.pop(0) 

             

            last_char_ascii = ord(verb[0][-1]) 

 

            if self.__alpha(last_char_ascii): 

 

                req_verbs.append(verb) 
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        return req_verbs 
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5.5 Appendix B: Accelerator Pedal Module Requirements 

This appendix contains the full list of BMW accelerator pedal module 

requirements. 

1. Surfaces and edges that may be touched during assembly or use may not exhibit sharp 

burrs. 

2. Accelerator pedal module may not radiate disturbing mechanical noises (airborne 

sounds or mechanical vibrations). 

3. Accelerator pedal module should not make noticeable sound when knocked. 

4. Accelerator pedal module must fit the rest of the car. 

5. Accelerator pedal module must use external voltage supply. 

6. Each measuring channel is to be operated from its own voltage supply. 

7. Pedal angle generated by the actuating force must be limited. 

8. Pedal angle should be in the range of 16 degrees (+/- 0.5 degrees). 

9. The sensor must be redundant with respect to output voltage. 

10. The requirements of the output signals of the driving pedal module must be 

maintained at all operating temperatures and over the entire life span of the driving 

pedal module. 

11. The requirements refer to an electrical wiring output.  

12. If pedal breaks, the pedal must not be operational. 

13. Pedal must not stick (by sticking or hooking). 

14. Slope of response on the pedal (i.e., spring stiffness) must be within 0.8 N per degrees 

and 1.1 N per degrees. 

15. Response force must be linear and within 2 N of the response line from required 5 

from 0.5 degrees to 13.5 degrees. 

16. If pedal breaks, the pedal must be recognizable as broken. 

17. Accelerator pedal module must not send a signal to the electronic control unit against 

the driver’s wishes. 
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18. Pedal must not exhibit “stick slip effect” (instability in the force angle – response 

behavior). 

19. Pedal must self-return. 

20. Force angle must exhibit clear hysteresis from 0 degrees to 16 degrees. 

21. The ascending force should be 30 percent (+6 N / -3 N) of the descending force. 

22. Accelerator pedal module must mount to car. 

23. Re-entry point should be scheduled within first 0.50 pedal angle. 

24. Accelerator pedal module must maintain full functional ability over its expected life 

(5000 hours, from -40 C to 80 C). 
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5.6 Appendix C: Requirement Analysis Conceptual Models 

This appendix contains all the conceptual models for every requirement analyzer 

and manual analysis. 

14. Syntax Analyzer DSM 
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15. LSA Analyzer DSM 
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16. Component LSA Analyzer DSM 
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17. Semantic Analyzer DSM 
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18. Individual Engineer 1 DSM 
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19. Individual Engineer 2 DSM 
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20. Individual Engineer 3 DSM 
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21. Manual Collaborative Study DSM 
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