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ABSTRACT 
 

 

In recent years, a significant amount of research has been directed towards the 

development of prognostic methodologies to forecast the future health state of an 

engineering system assisting condition based maintenance. These prognostic methods, 

having furthered the maintenance practices for mechanical systems, have yet to be 

applied to historic masonry structures, many of which stand in an aged and degraded 

state. Implementation of prognostic methodologies to historic masonry structures can 

advance the planning of successful conservation and restoration efforts, ultimately 

prolonging the life of these heritage structures. This thesis presents a review of prognostic 

concepts and techniques available in the literature as applied to various engineering 

disciplines, and evaluates the well-established prognostic techniques for their 

applicability to historic masonry structures. Challenges of adapting the existing 

prognostic techniques to historic masonry are discussed, and the future direction in 

research, development, and application of prognostic methods to masonry structures is 

highlighted. 

One particular prognostic technique, known as support vector regression, has had 

successful applications due to its ability to compromise between fitting accuracy and 

generalizability (i.e. flatness) in the training of prediction models. Optimal tradeoff 

between these two aspects depends on the amount of extraneous noise in the 

measurements, which in civil engineering applications, is typically caused by loading 

conditions unaccounted for in the development of the prediction model. Such extraneous 

loading, often variable with time affects the optimal tradeoff. This thesis presents an 
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approach for optimally weighing fitting accuracy and flatness of a support vector 

regression model in an iterative manner as new measurements become available. The 

proposed approach is demonstrated in prognostic evaluation of the structural condition of 

a historic masonry coastal fortification, Fort Sumter located in Charleston, SC. A finite 

element model is used to simulate responses of a casemate within the fort considering 

differential settlement of supports. Within the case study, the adaptive optimal weighting 

approach proved to have increased prediction accuracy over the non-weighted option. 
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CHAPTER ONE 

 

INTRODUCTION 
 

 

1.1. Motivation and Background  

Prognostic techniques, in the context of structural health management of 

engineering systems, aim to forecast the future performance of a system to aid in 

maintenance decisions. Such forecasts are achieved by building a prediction model based 

on measurements collected from the system over a certain period of time. Motivated by 

the recent success of prognostic techniques as applied to mechanical systems, this thesis 

examines the applicability of prognosis in evaluating the future structural integrity of 

historic masonry structures. Many historic unreinforced masonry monuments stand in a 

structurally degraded state due to accumulated effects of aging, which makes timely 

maintenance of these structures even more crucial compared to newer construction. 

Successful implementation of prognostic techniques for historic masonry has potential to 

aid in planning of such timely maintenance programs and thus in prolonging the 

remaining life of these culturally and historically important monuments.  

In monitoring long-term structural performance, however, nondestructive 

measurements are often corrupted by extraneous noise caused by the response of the 

structure to short-term loads and effects that are not of primary concern in the prognostic 

evaluation. For instance, if prognostic evaluations are conducted by exploiting the 

measured displacements to evaluate long term settlement of the foundation, then 

deformations caused by short term loads, for instance wind, would induce what is 

referred to herein as noise. Such noise convolutes the relevancy of the measured 



 2 

responses for long-term prognostic evaluation, and thus, negatively affects the prognostic 

predictions. Consequences of such errors may result in unconservative (or overly 

conservative) predictions of the remaining useful life of a structure, thereby reducing the 

value of the prognostic evaluations. Only if the prognostic techniques are matured to 

become insensitive to such unavoidable noise present in measurements, will this useful 

technology begin to gain practical application in the civil engineering community, and in 

particular, for maintenance planning of masonry heritage structures. 

This thesis addresses precisely the problem of developing a prediction model that 

is robust to non-stationary extraneous noise for prognostic evaluation of long-term 

structural health of existing structures.  

1.2. Summary of Main Contributions  

This thesis contributes to the structural health assessment of historic masonry 

structures by both examining the appropriateness of prognostic techniques for the 

aforementioned application and improving upon an existing prognostic technique.  

The types of damage suitable for such a framework must occur gradually and 

must be detectable through non-destructive evaluation tools available for masonry 

construction. One type of damage that is common to masonry construction and is 

amenable to be implemented in a prognostic framework is structural damage induced by 

long term, gradual settlement of foundation, which is the focus of this study. However, 

many other forms of structural degradation caused by thermal loads and overloading, for 

example, are also identified as suitable for prognosis.  
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Inspection techniques for monitoring these damages must be able to globally 

assess the effect of these damages on the structural integrity of the system. Measurements 

of structural response, such as vibrations and strains, are viable response features for use 

in prognosis provided that their sensitivity to damage is confirmed a priori. These 

damage sensitive measurements can be utilized to form a prediction model in order to 

forecast future responses of the structure.  

Among the available techniques for prognostic evaluation, Support Vector 

Regression (SVR) shows particular potential for applicability to historic masonry 

structures as it is capable of handling the nonlinear responses of masonry assemblies due 

to the complexity of their materials and geometry. Although SVR has an inherent 

capability to achieve a compromise between fitting accuracy and complexity of a model, 

the established literature lacks a clear definition for the optimality of this trade-off. In this 

study, this optimality condition is identified to be dependent on the noise level present in 

the measurements. This thesis contributes to the body of knowledge by proposing an 

approach for selecting the optimal trade-off between fitting accuracy and complexity of 

the trained SVR model in an adaptive manner. The proposed approach, referred to as 

adaptively weighted Support Vector Regression, focuses on achieving optimal prediction 

accuracy (instead of fitting accuracy) such that the amount of flatness in the model best 

accounts for noise. The procedure is repeated in an iterative manner as new data become 

available, thus updating the optimal trade-off.  

The performance of this approach is demonstrated on simulated settlement data 

obtained from a finite element model of a historic masonry coastal fortification, Fort 
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Sumter located in Charleston, SC. The findings presented in this study reveal that the 

proposed approach is superior in the accuracy of the prognostic evaluation compared to 

the other approaches that primarily focus on improving the fitting accuracy.  

1.3. Organization of the Thesis 

Chapter Two of this thesis presents a review of not only the established literature 

on prognostic evaluation but also the available inspection techniques for masonry 

construction with an objective to relate these two disassociated areas of knowledge, thus 

laying the foundation for prognostic evaluation of historic masonry. The findings 

obtained in Chapter Two are submitted to the Journal of Cultural Heritage and are 

currently under review. 

Subsequently, Chapter Three of this thesis presents the proposed adaptively 

weighted SVR approach. In this chapter, theoretical background for SVR as well as the 

algorithmic development for adaptive weighting are presented. Furthermore, the 

application of this proposed approach is demonstrated on the settlement induced damage 

of a coastal fortification, Fort Sumter in Charleston. The findings obtained in Chapter 

Three will be submitted to the Journal of Performance of Constructed Facilities. 
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CHAPTER TWO 

 

A REVIEW ON PROGNOSTIC EVALUATION OF HISTORIC MASONRY 

STRUCTURES: PRESENT CHALLENGES AND FUTURE DIRECTION 

 

 

2.1. Introduction 

In the context of structural health management of engineering systems, prognosis 

is defined as the estimation of a system’s remaining useful life (RUL) to aid in 

maintenance decisions [1]. In essence, RUL is the remaining time in which the system is 

usable before corrective action is required. The RUL depends on the rate of degradation 

of a system, which in turn depends on the system’s initial design and construction, 

operational and environmental conditions, and current state of disrepair. All of these 

qualities that must be considered in prognostic evaluation are imprecisely known and 

thus, uncertainties are inevitably introduced to the prognostic evaluations. Therefore, a 

prognostic technique should not only provide an estimation of the RUL, but also specify 

the confidence level associated with such predictions [2].  

Prognostic evaluation consists of four main stages: monitoring, diagnostics, 

prediction, and maintenance [1]. The first step entails monitoring user selected, damage-

sensitive features of a system (e.g. vibration modes frequencies, modal parameters, peak 

values, etc.) obtained from the system through a series of sensors or onsite inspections 

beginning at time t0 [3]. In the diagnostic phase, these features, monitored continuously or 

intermittently, are then pre-processed to assess the current health state or performance of 

the system. When repeated successively, diagnosis supplies information that can be used 

to train statistical models that can forecast the system’s future health state. The remaining 
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time prior to the point at which the predicted health state intersects the corresponding 

user-defined failure threshold at the system’s end of life, tEoL, defines the remaining 

useful life (RUL) of the system (see Figure 2.1). This failure threshold is a conservative 

limit on damage level, beyond which the system is inadequate for its intended use. 

Therefore, tEoL does not necessarily signify complete system failure. In the final step, 

based upon the estimated RUL, maintenance actions are scheduled for time tm to extend 

the RUL of the system (see Figure 2.1) [1], [4]. 

 

Figure 2.1. Estimation of the RUL. 

There are three significant technological and financial advantages in using 

prognostic evaluation for determining the well-being of historic masonry monuments: (i) 

ensuring structural safety, (ii) reducing unnecessary maintenance, and (iii) preventing 

secondary damage. These advantages are due to the ability of establishing condition-

based maintenance, in which the predicted condition of the system determines when 

maintenance is required, unlike time-based maintenance, which predetermines the 

maintenance schedule based on time-steps in the system’s life, regardless of the system’s 
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health state [5]. The prognostic evaluation has been widely applied across many fields 

including medicine [6], weather and climate [7], nuclear energy [8], finance [9], 

economics [10], automotive [11], aerospace [12], and electronics [13]. However, 

prognostics have yet to be applied to masonry heritage structures. 

In this chapter, prognostic concepts available in the literature are evaluated for 

their potential applicability to masonry structures. The limitations and challenges of using 

prognostic techniques for masonry are discussed. Finally, necessary future advancements 

for prognostic evaluation to be a practical solution for historic masonry monuments are 

identified. The organization of the chapter begins with a discussion in Section 2.2 of 

crucial factors contributing to the degradation of masonry that are amenable for 

incorporation into a prognostic framework using appropriate inspection methods. In 

Sections 2.3 and 2.4, common prognostic approaches are introduced and various 

established prognostic techniques are reviewed. An overview of the challenges faced as 

well as the future direction in the application of prognostic techniques to masonry follows 

in Section 2.5. Finally, concluding remarks are provided in Section 6. 

2.2. Masonry Degradation and Inspection 

This section details the types and sources of degradation of masonry structures 

along with inspection techniques suitable for prognostic evaluation.  

2.2.1 Masonry Degradation Suitable for Prognosis  

Prognosis is limited to predictable loads and environmental conditions and is 

challenged when the system responds to conditions that alter the rate of RUL depletion 
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[2]. Therefore, prognosis is unable to predict performance degradation resulting from 

uncontrollable events such as earthquakes or abrupt support settlements. Hence, for a 

form of structural degradation in masonry construction to be amenable for prognostic 

evaluation, it should be gradual.  

The types of damage prevalent in historic masonry structures can be classified 

into two main categories, material degradations and structural degradations. Material 

degradation is essentially a durability problem that originates from a wide range of local 

physical, chemical, or biological processes that attack the composition of the material. If 

widespread or progressing in a compounding manner, material degradation can lead to 

structural degradations reducing the system’s structural performance [14].   

Historic masonry monuments are exposed to many environmental impacts such as 

wind, weather, water, ice, and temperature variations that can cause erosion, cracking, 

loss of material, and other defects [14]. Moisture is a key factor in many of these 

processes causing damage from weathering, ice formation, capillary flow, and biological 

effects such as mold growth. Water is also a significant cause of chemical degradation as 

it acts as an agent that carries potentially hazardous particles to components of the 

masonry and is easily involved in any chemical reactions that cause degradation [15].  

Fluctuations of ambient temperature are also a significant cause of material 

degradations (Figure 2.2). In the summer months, increased exposure to direct sunlight 

elevates daytime surface temperatures, which can drop up to 50°C to air temperature at 

night. In winter, low temperatures of the stone surfaces can result in significant tensile 

stresses in the materials. These temperature variations cause strains in the stones, mortar, 
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and bond region due to the mutual deformation restraint, causing cracks in the masonry 

assembly [16]. 

 

Figure 2.2. Deformation of natural stones in historical masonry as a result of thermal 

elongation [16]. 

Structural degradation is a reduction in resistance properties, such as load carrying 

capacity of structural elements [17]. Processes such as foundation movement, thermal 

loads, and overloading as well as accumulated effects of material degradation can cause 

time-dependent structural degradations, which can take the form of cracks, inelastic 

hinges, and other structural discontinuities and present a safety issue that must be 

counteracted with condition-based maintenance [14]. 

Foundation movement is a particularly common problem for historic masonry 

structures due to the heaviness of the construction, coupled with inadequate bearing 

capacities of deteriorating soil conditions [18]. As masonry is primarily designed to carry 

loads in compression, the tensile stresses resulting from differential support settlement 

cause cracks, which in severe cases, can lead to structural discontinuities and inelastic 

internal hinges [19].  
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2.2.2 Masonry Inspection Suitable for Prognosis 

For an inspection technique of historic masonry to be suitable within a prognostic 

framework, it should (i) be automated, (ii) provide quantitative, objective information, 

(iii) implement non-destructive analysis, (iv) assess the global condition of the structure, 

and (v) present an indication of the system’s structural integrity. Manual inspection 

techniques, although frequently used, are not only laborious, but in some cases are 

limited to being qualitative and subjective [14]. Furthermore, manual inspection cannot 

practically obtain the continuous monitoring necessary to effectively track the structural 

condition of the monument. Therefore, quantitative, objective techniques suitable for 

automation are desired for prognostic application.  

Often, conventional masonry inspection techniques are semi-invasive involving 

either drilling coupons or cutting slots [20]. Therefore, non-destructive techniques that 

facilitate the monitoring of unaltered historic masonry structures without inflicting any 

additional harm on cultural heritage are preferable. On the other hand, many existing 

non-destructive techniques such as the acoustic impact method [21], the impact-echo 

method [22], and the ultrasonic wave propagation method [23] are localized, requiring a 

priori knowledge of and access to the damage location. In practical applications, 

however, the presence and/or vicinity of structural degradation is unknown. Contrarily, 

inspection techniques that encompass the effects of the structural degradation on the 

structure as a whole can eliminate the need for preliminary knowledge regarding 

structural damage and degradation.  Such techniques typically monitor global properties 

of the structure [24]. 
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Furthermore, masonry inspection techniques that supply direct information on the 

structural health are preferable. For instance, the masonry moisture content, although 

identifiable using radar and thermography tests [25] [26], yields little information 

regarding the potential degradation in the structural integrity. Material deterioration due 

to moisture, which results in structural degradation, requires time to progress, during 

which moisture content can fluctuate making it difficult to directly link the moisture 

content to structural health. Likewise, direct measurements of other damage causing 

features, masonry temperature and degree of settlement for example, often do not 

explicitly indicate the extent of damage and overall structural performance of the 

masonry structure.  

Dynamic or vibration testing employs sensors attached to a structure to measure 

the structure’s vibration responses. These methods most commonly measure modal 

parameters (e.g. frequencies, mode shapes, and modal damping) which are functions of 

the structural properties (e.g. mass, stiffness, and damping) such that changes in the 

structural properties are indicated by changes in the modal parameters [27] [28]. When 

sensors are advantageously located to collect vibration data identifying the parameters of 

interest, this inspection method is valuable for monitoring historic masonry structures 

within a prognostic process [18] [3]. However, there remains a need to directly link the 

vibration response measurements to the remaining load carrying capacity of the masonry 

monument, which is the main property of concern in prognostic evaluation [29].  
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2.3. Prognostic Approaches 

The choice of prognostic approach is determined by factors including data 

availability, dominant failure or degradation mode of interest, knowledge of the system at 

hand, modeling capabilities, accuracies required, and importance of the application. 

Prognostic methods can be classified into two main approaches: model-based and data-

driven. The model-based approach exploits mathematical models for system 

representation and prediction, while data-driven assessment draws on previous 

measurements of the healthy system to estimate the future damage state [30]. 

Model-based prognostics are based on the assumption that an accurate numerical 

model can be developed to predict the system response. Consistency checks between the 

measurements of the real system and outputs of the numerical model produce residuals 

for detecting irregularities. The principle assumption is that the residuals are large in the 

presence of damage and small in the existence of normal disruptions, noise, and modeling 

errors. Statistical techniques (e.g. minimization of total cost per unit time) or, more 

commonly, utilization of prior knowledge or engineering judgment is employed to define 

the threshold, beyond which the system is considered to be significantly damaged [31]. 

The main advantage of the model-based approach using a physics-based model is its 

ability to incorporate a physical understanding of the system in monitoring. Since 

variations in response features are related to the model parameters, deviations in the 

model parameters resulting from either structural degradation or damage can be back-

calculated by exploiting the measured changes in response features from the healthy 

system to the current system. Therefore, model-based methods can establish a functional 
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mapping between the physical parameters and the selected prognostic features. Also, 

model-based approaches can predict the response of a system under new loading 

conditions and system configurations [30]. Thus, model-based approaches can 

significantly outperform data-driven approaches [31].  

The data-driven prognostic approach, also referred to as the data mining approach 

in the prognostic literature, is based upon previous system data that is a collection of 

measurements over time from sensors of damage indicators [32]. Features are extracted 

from the previous measurements and analyzed for trends during the system’s lifetime. 

The assumption is that the statistical parameters of data are relatively identical unless 

malfunctioning occurs in the system. RUL predictions can then be extrapolated from the 

data-driven model. The strength of data-driven methods lies in the transformation of 

high-dimensional noisy data into lower dimensional ‘information’ for diagnostic and 

prognostic decisions. However, these methods have the inherent disadvantages of 

untoward reliance upon the quantity and quality of the system operational data for 

efficacy. In other words, data-driven methods perform poorly when the engineer wishes 

to either classify the nature of the change or if the structure is overly complex [33]. Also, 

data-driven prognostics require historical data to train the model, but often there is 

insufficient historical or operational data to obtain health estimates and determine trend 

thresholds used for RUL predictions [34] [19]. 
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2.4. Prognostic Algorithms 

While by no means is an exhaustive compilation of all prognostic algorithms 

provided, this section presents a brief description of widely implemented prognostic 

approaches. 

A form of model-based prognostic evaluation, the physics of failure approach, 

assumes that the dominant failure modes (i.e. types of failure) and mechanisms (i.e. 

processes leading to failure) of a system at a particular life-cycle loading condition can be 

identified and used to develop physics-based damage models of expected system 

operating conditions [35]. However, this approach, conceived for systems in which life-

cycle loading and failure mechanisms are known and multiple replicates of the system are 

available, is not suitable for inimitable historic masonry structures [36].  

Data-driven approaches use supervised learning methods, namely machine 

learning, to recognize patterns in input-output training data and utilize the defined 

patterns to predict outputs given new input data [37]. Machine learning methods include 

for instance support vector machines, autoregressive moving average models, neural 

networks and grey prediction models. The support vector machine is reported to 

outperform both the autoregressive moving average model and the recurrent neural 

network in the accuracy of RUL predictions [38]. Support vector regression is noted to 

offer high accuracy, provide good generalization, and handle very high non-linearity, all 

of which are essential for prognostic schemes applicable to masonry structures [39] [40]. 

The grey prediction model is reported to achieve similar accuracy to autoregressive 
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moving average models while requiring less data [41] [42] and yielding conservative 

results [43].  

Machine learning methods, such as support vector machines and grey prediction 

models, have great potential and appear to provide a feasible approach to prognostic 

evaluation of historic masonry. Model-based prognostics implemented in combination 

with data-driven approaches may however be the most ideal prognostic approach to 

historic masonry when sufficient data about the structure is available to support the 

development of the damage model.  

2.5. Challenges and Future Direction in Prognostics as Applied to Historic 

Masonry Construction 

The presence of uncertainties is a major issue in the prognostic health monitoring 

of historic masonry construction. In model-based approaches, uncertainties arise from 

assumptions made during model creation. Masonry construction tends to be very complex 

and behaves non-linearly because of the properties of its multiple components (i.e. 

brick/stone, mortar, grout, and accessory materials) and even more so when accumulated 

degradation and damage is present. These properties must be acknowledged to accurately 

model a masonry structure and assess its damage state [44]. Uncertainties in model input 

data are caused by variability in material properties, construction inconsistency, and the 

often necessary estimation of the initial state of the system. In data-driven approaches, 

uncertainties inevitably exist in measurements due to the inability to accurately detect the 

global structural response, the dependency of the measured structural response to input 

force levels, and the nonlinearity introduced by existing structural damage (i.e. opening 
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and closing of existing cracks) during non-destructive evaluation as well as the loss of 

information in data reduction. Within either prognostic approach, the accuracy of the 

prognostic method is affected by how well these relevant uncertainties are addressed [2]. 

Limitations in budget make it impracticable to fully detect every form of damage 

in a historic masonry structure. Non-destructive or semi-invasive inspection techniques, 

which are required for the analysis of historic masonries, are unable to provide equivalent 

knowledge of the strength and performance of a structure obtained from destructive 

testing [45] [29]. Therefore, research should carefully determine appropriate response 

features monitorable using non-destructive techniques.  

Selected response features must be sensitive to the damage types of interest. 

However, sensitivity of these features to damage depends on each unique structure as 

well as the type and severity of damage present. As no one particular response feature is 

sensitive to all damage types, collection and assimilation of multiple response features 

would increase the likelihood of encompassing various damages attributing to the overall 

health state. Furthermore, past research has shown that the sensitivity of response features 

may vary with damage level [46]; thus future studies should evaluate the sensitivity of 

response features for variable damage levels.  

Additionally, response features that are insensitive to extraneous noise due to 

natural variability in environmental and/or operational conditions are desireable. Many 

response features, especially those that are indicative of the dynamic behavior of the 

structure, are influenced by operational or environmental conditions, such as wind, 

temperature, and excitation level. Although it is a customary practice to incorporate 
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measured temperature and wind in the diagnostic processes applied to civil infrastructure 

systems, for historic masonry structures the effect of moisture absorbtion on the 

structure’s stiffness and mass and consequently its dynamic response must also be 

considered [47]. 

Monitored features must provide a global assessment of the structural system 

instead of indicating localized behavior. The difficulty of exciting the structure uniformly 

through controlled excitation devices makes obtaining global vibration responses 

challenging. Because of the flexibility of masonry structural joints, the behavior of 

connections between structural components relies on frictional and mechanical properties 

of the material and thus tends to be load dependent. Practical difficulties such as optimal 

sensor and excitation placement [46] for identification of the global response must also 

be resolved.  

An alternative to global assessment is distributed prognostics. Because historic 

masonry structures are often large in size and complex in behavior, it may be cost and 

time effective to analyze different parts of the system separately. A decomposition of the 

prediction can be developed into local predictions in order to attain a completely 

distributed prognostics process using several sub-models of the whole model. Separate 

predictions can be estimated according to the results of each component [48].  

Information provided by the selected response features must be straightforwardly 

linked to the structural integrity of the historic masonry structure. As the relationship 

between structural health quantities, such as remaining load carrying capacity, and 

commonly implemented response features in diagnostic evaluations of civil infrastructure 
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systems is currently unknown, future research establishing this link between features and 

structural integrity is imperative.  

Hence, not only must the most appropriate damage sensitive features for 

monitoring historic masonry be determined, but these features must be interpreted to 

gauge structural stability and overall performance of the structure. Measuring these 

features through a continuous structural health monitoring process, could increase the 

availability of data collection for more accurate RUL predictions, providing advanced 

warning of unfavorable structural conditions. 

2.6. Conclusion 

In this chapter, several masonry degradation schemes and inspection methods 

were elucidated for their applicability to be used in a prognostics process. General 

concepts in prognostics were emphasized in the Introduction prior to a subsequent 

literature review of existing prognostic techniques. Model-based and data-driven 

prognostic approaches were also presented coupled with a discussion of specific 

methodologies that may be adaptable to masonry structures. Depending on data 

availability and prior knowledge of the structure, an appropriate approach should be 

selected for predicting the RUL of the particular historical masonry structure. Finally, 

challenges and future work in employing prognostic techniques to masonry were 

discussed. 
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CHAPTER THREE 

 

ADAPTIVELY WEIGHTED SUPPORT VECTOR REGRESSION: 

PROGNOSTIC APPLICATION TO A HISTORIC MASONRY  

COASTAL FORTIFICATION 

 

 

3.1. Introduction 

In recent years, a significant amount of research has been directed towards the 

development of prognostic methodologies to forecast the future health state of an 

engineering system assisting condition based maintenance. However, applications of 

these potentially useful and informative techniques to historic masonry structures are 

rare, if any. Developing prognostic methodologies for deteriorating historic masonry 

monuments and infrastructure affords the possibility of ensuring structural safety, 

reducing maintenance costs, and preventing secondary damage of such cultural heritage. 

Among available prognostic models, Support Vector Regression (SVR) shows a 

distinct potential for application to historic masonry construction as it offers high 

accuracy, provides good generalization, and handles nonlinearity (Müller et al. 1997; 

Samanta and Nataraj 2008; Haydock and Atamturktur 2013). The predictive performance 

of SVR however, relies on the complexity of the model determined by the tradeoff 

between fitting accuracy and flatness. The dual objective of SVR then seeks to find the 

flattest possible model while simultaneously minimizing fitting error (Smola and 

Schölkopf 2004). The theory of SVR recognizes that more complex models may have 

greater fitting accuracy but are less generalizable to other datasets of similar underlying 

processes (Myung 2000). The optimal weight, defining the relative importance of flatness 

to fitting accuracy, however is dependent upon the noise resulting from extraneous 
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loading conditions, such as live, wind, or temperature loads that are time-variant. It must 

be noted that such extraneous loading conditions are different than causal effects of long 

term deterioration. Therefore, it becomes important to adjust the weight as new 

measurements become available to obtain a model complex enough to provide a close fit 

to data but simple enough to predict global trends well.  

The article begins with a review of established literature on prognostic evaluation 

in Section 3.2. Main concepts and governing equations for SVR are given in Section 3.3 

followed by a discussion on the adaptively weighted SVR approach. Section 3.4 then 

presents the historic masonry case study structure and applies the adaptively weighted 

SVR to improve forecasting accuracy in the prognostic evaluation. A discussion of the 

results as well as a summary of the contributions of this study concludes the chapter in 

Sections 3.5 and 3.6. 

3.2. Background on Prognostic Evaluation of Historic Masonry 

Prognosis, in the context of structural health management of engineering systems, 

is the estimation of a system’s remaining useful life, beyond which, corrective action is 

required (Saxena et al. 2009). Prognostic techniques are suitable for forecasting gradual 

degradation processes as opposed to damages caused by sudden unpredictable events. 

Thus, prognosis is an acausal problem, meaning that it requires knowledge of future 

loading and operating conditions to make accurate predictions. As future conditions are 

typically unknown and uncontrollable, conjectures of expected future loading 

environments must be made based on the history of the structure (Saxena et al. 2010).  
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The main objective in the implementation of prognostic techniques therefore is to 

enable educated planning of maintenance of the evaluated system (EI-Tawil et al., 2011). 

Such improvement in the management of engineering systems has been made possible by 

prognostic evaluation in many fields; however, prognostic evaluation of masonry heritage 

structures is in its infancy. With prognostic techniques fully developed and successfully 

applied to historic masonry monuments, timely condition-based maintenance and 

restoration efforts can be planned and the life of such heritage structures can be 

prolonged.  

Masonry construction is prone to experience gradual degradations affecting 

structural integrity in two forms: material degradations resulting mainly from 

environmental impacts, and structural degradations resulting mainly due to applied loads 

or movement of supports (Haydock and Atamturktur 2013).  Of the latter, differential 

support settlements are common in masonry structures due to the heavy weight of the 

construction and are particularly detrimental to the integrity of the structure due to the 

low tensile capacity of unreinforced masonry.  

Non-destructive inspection techniques with potential to be automated that provide 

an indication of the global (rather than local) structural integrity are desired for 

prognostic evaluation of historic masonry structures. Particularly, vibration responses that 

monitor damage sensitive features supply a viable solution to providing a diagnostic 

assessment of the structure. 
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3.3. Methodology 

This section briefly discusses the theory behind support vector machines for 

regression (SVR) and introduces an approach for adaptively weighting the flatness to 

fitting accuracy in training SVR models to improve prediction accuracy.  

3.3.1 Support Vector Regression 

Motivated by results of the statistical learning theory (Vapnik 1998), Support 

Vector Machine (SVM) is a learning algorithm based on the structural risk-minimization 

principle, which finds a balance between model complexity and fitting error (Xu et al. 

2012).  In contrast to other machine learning approaches, such as neural networks, that 

are prone to overfitting the data and having poor generalization capabilities, SVM can 

allow a predetermined degree of flatness in the model to avoid overfitting (Burges 1998; 

Xu et al. 2012). Furthermore, most SVMs solve a quadratic programming problem, which 

finds the optimal solution and assures that the obtained solution is the unique global 

solution  

Originally created for cluster analysis of datasets belonging to separate classes or 

categories, SVM seeks to maximize the margin around the linear hyperplane dividing the 

linearly separable classes (Schölkopf et al. 1995; Xu et al. 2012). In cases where a linear 

hyperplane (i.e. model) is inappropriate for adequately separating data, a nonlinear model 

must be obtained by mapping the original data into a new high dimensional feature space 

through the use of kernels. With the use of kernel functions, the SVM operations are 

performed in the input space rather than the higher dimensional feature space, thereby 

reducing the computational demands of high dimensional problems (Gunn, 1998). 
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SVMs were extended to solve regression problems for model estimation with the 

addition of an appropriate cost function called the loss function (Vapnik 1998). Several 

types of loss functions have been offered (e.g. quadratic, ε-insensitive, Huber, etc.); thus, 

the user must select the loss function that best suits the problem (Smola and Schölkopf 

2004).  

The basic principles of SVM for regression, known as Support Vector Regression 

(SVR), can be illustrated for a training dataset       nn yxyxyx ,,,,,, 2211   of size n. 

Although more complex kernel functions are available and will be mentioned later, this 

discussion begins by using a linear kernel function (i.e. linear hyperplane) for simplicity. 

The linear kernel function, )(xf , can be used to solve the following regression problem, 

bxf  xw,)(  
nn R,R w  b                   (1) 

where w  is the coefficient and b  is the constant offset known as bias. The model given 

in Eq. (1) is trained using a subset of the training dataset that constitutes the decision 

boundaries or margin bounds as shown in Figure 3.1 (Schölkopf et al. 1995). This subset 

of data points is referred to as the support vectors. The complexity of the model depends 

on the number of support vectors by which it is represented and is independent of the 

dimensionality of the input space (i.e. size of input data) (Smola and Schölkopf 2004; 

Drucker et al. 1997). Generally, seeking a small  in Eq. (1) decreases the percentage of 

data points utilized as support vectors thus, reducing model complexity and increasing 

model flatness (Smola and Schölkopf 2004).  
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Figure 3.1. Support vectors and margin bounds. 

The regression model is determined by the convex optimization problem: 
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generalizes well preventing the model from fitting to noise, also known as overfitting. As 

a result, the model sensitivity to noise is reduced.  

The loss function used in this study is the quadratic loss function, however other 

loss functions, such as ɛ-insensitive or Huber (Gunn 1998) are also available. The 

quadratic loss function can be written as follows: 

    
2

( ) ( ) ,quadL f x y f x y               (3) 

To measure the error between the observed and estimated outputs for a given input, Eq. 

(3) uses the conventional least squares error criterion as shown in Figure 3.2.  

  

Figure 3.2. Quadratic loss function for a linear SVR. 

The solution to Eq. (2) in the quadratic loss function formulation is given by, 
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By exploiting Karush-Kuhn-Tucker conditions, 

,0*, ii   li ,,1 ,             (5) 

the optimization problem can be simplified as, 
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The regression model is given by Eq. (1) where 
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In Eqs. (4, 6 and 8), the dot product, 
ji xx , , can be replaced by a kernel function 

to map the linear SVR formulation to solve a nonlinear problem, a process widely known 

as nonlinear mapping (Gunn 1998). Various kernel functions, such as polynomial, spline 

and radial basis functions are available for nonlinear mapping. Due to their flexibility and 

consistency of fitting and predicting with minimal residual error in comparison to other 

kernels, splines are a common kernel function of choice in SVR modeling (Gunn 1998; 

Mammen 1997; Rajasekaran et al. 2008); thus, the remainder of the chapter will focus on 

the spline kernel. 

3.3.2 Adaptively Weighted Support Vector Regression 

The trade-off between fitting accuracy and flatness of an SVR greatly affects the 

predictive performance of the prognostic evaluation. This principle is evident in Figure 

3.3: models that are too simple, as shown by λ=2 on the left in Figure 3.3, may neither be 

able to fit the available data nor be able to generalize the trends well. Models that are too 
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complex on the other hand may accurately fit the available data, as shown by λ→0 on the 

left in Figure 3.3, but may not be able to generalize the trends well. Therefore, there is an 

optimal degree of flatness, as shown by λ=0.01 on the right in Figure 3.3 that finds a 

more suitable compromise between fitting error and flatness.  

Time

P
er

fo
rm

an
ce

 

 

Lambda0

Lambda=2

Training data

Prediction data

 Time

P
er

fo
rm

an
ce

 

 

Lambda = 0.01

Training data

Prediction data

      

Figure 3.3. Trade-off between flatness and goodness of fit varying from (left) more 

extreme λ values to (right) more compromising λ value. 

This optimal flatness depends on the extraneous noise present in the 

measurement. In measuring the structural responses of a system as in the case of the 

present study, extraneous noise may be incurred in the measurements due to the 

responses of the structure to sources other than those that cause long term degradation. 

For example, in using vibration measurements to monitor damage within a historic 

masonry structure caused by long term, gradual settlement of the foundation, wind and 

other external short term loading effects can influence the response of the structure, 

consequently adding noise to the data. Thus, the optimal λ is that which generalizes 

global trends in the presence of noise. 

The dependency of optimal flatness to noise levels is demonstrated in Figure 3.4. 

In noise-free datasets, λ→0 (i.e. giving zero weight to flatness) may provide a suitable 

model as shown in Figure 3.4 (a). As noise increases, however, a larger λ is required, 
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meaning that more weight is given to flatness than fitting accuracy, to achieve a similar 

trend as presented in Figures 3.4 (b) and (c). Therefore, λ must be correctly determined 

for a given dataset to ensure reliable predictions of the future health state of the system. 
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Figure 3.4. Magnitude of λ required to fit a given trend as noise is added. 

Cross-validation has been used for selecting the λ by utilizing hold-out 

experiments; however, this technique focuses solely on fitting accuracy (in an 

interpolative manner) rather than prediction accuracy (in an extrapolative manner) (Stone 

1974; Jaakkola and Haussler 1999; Smola and Schölkopf 2004). Because a prognostic 

evaluation requires accurate extrapolative projections of the future health of the structure, 

the focus in this chapter is to improve the forecasting accuracy of the model rather than 

its closeness of fit to available data. Hence, the optimal λ is selected by that which 

predicts with the least error a predetermined number of most recent measurements that 

are not used in training the SVR model. As the global trends and noise levels may change 

over time, a constant λ may not be the best approach to applying flatness. Here, the 

proposed method adaptively selects λ and thus that is referred to as adaptively weighted 

SVR.  

The basic steps of this adaptively weighted prognostic approach can be 

demonstrated on an initial dataset of n points. In Figure 3.5, the dataset is divided into 

(a) (b) (c) 
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three parts: the preliminary training set consisting of the first m points, the hold-out set 

consisting of the following h points, and the forecasting set consisting of the next f 

points. During the preliminary stage, optimal λ is selected. For this, multiple candidate λ 

values (ten λ values for each multiple of 10 from 10
-15

 to 10
5
) are tested in their ability to 

predict the hold-out set of h points from m to n, where n = m + h. The resulting L1 norm 

prediction error of the hold-out set is summed for each model trained by a different 

candidate λ, and, by comparison, the candidate λ producing the model with the least 

prediction error over the hold-out set is chosen as the optimal λ. During the forecasting 

stage, this optimal λ is then used to train a refined model using the total dataset that was 

used in the preliminary stage (i.e. up to n) to predict the forecasting set (i.e. from n to p). 

The adaptively weighted approach then repeats this process as additional measurements 

become available by adding these new data points to the training set and updating λ 

accordingly. The detailed steps of this process are shown in Algorithm 1.  

   

Figure 3.5. Dataset divisions for preliminary and forecasting stages of adaptively 

weighted SVR. 
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Table 3.1. Pseudocode for adaptively weighted SVR. 

Algorithm 1. Basic structure of adaptively weighted SVR 

Begin 

Input SVR parameters 

 X = independent variable 

 Y = dependent variable 

 h = number of hold-out  points  

 f = number of forecasting points 

 P = total number of iterations 

 m = index of final point in preliminary training set 

 n = index of final point in hold-out set 

 p = index of final point in forecasting set 

For i = 1 to P  

For λ = 10
-15

 to 10
5 

 Train a support vector regression model (see Gunn 1998) using preliminary 

training set, X1 to Xm, and forecast the hold-out set, Xm to Xn 

 Compute the L1 norm residual error of the predicted hold-out set by 

comparison to the corresponding subset of Y 

End 

 Choose optimal λ as that which gave the least prediction error of the hold-

out set 

 Train a support vector regression model using training set, X1 to Xn, and 

predict the forecasting set, Xn to Xp,  where Xp = X(n+ f) 

 Compute the residual error of the predicted forecasting set 

 Define new input parameters:  

 X
i+1

m =  X
i
n  

 X
i+1

n = X
i
p  

End 

End 

3.4. Case Study 

Coastal fortifications built as defense mechanisms in protecting important 

seaports and harbors, were once the cornerstone of national defense in the United States 

(McGovern and Smith 2006). Today, these coastal fortifications, many of which are over 

150 years old, are considered structures of national heritage. Over their lifetime, these 

structures are subject to harsh coastal environmental and operational conditions leading 



 36 

to material and structural degradations. To successfully preserve these important historic 

edifices for future generations, timely maintenance is imperative. Prognostic evaluation 

can assure such timely maintenance campaigns.  

Fort Sumter, in Charleston, South Carolina, where the first shots of the American 

Civil War were fired in 1861 (National Park Service 1984) is one such historically 

important fort that is in need of accurate structural assessment and prognostic evaluation. 

There is evidence that differential settlement of the foundation has been occurring at Fort 

Sumter leading to extensive cracks throughout the masonry casemates. Thus, this section 

demonstrates the weighted SVR prognostic technique as applied to one of the casemates 

of Fort Sumter considering gradual settlement of foundations. 

3.4.1 Case Study Structure: Fort Sumter National Monument 

The construction of the pentagonal-shaped clay masonry fort began in 1829 on a 

man-made island. In the years of the Civil War, Fort Sumter witnessed several battles that 

severely damaged the structure (National Park Service 1984). After several rounds of 

demolition and reconstruction, Fort Sumter was declared a national monument in 1948. 

The fort has since been maintained by the National Park Service and is currently 

accessible to visitors (see Figure 3.6).   

 

Figure 3.6. Current aerial view of Fort Sumter (Courtesy: National Park Service). 



 37 

3.4.2 Finite Element Model Development  

The FE model of the single casemate used in this study as shown in Figure 3.7 is 

developed in Ansys 13.0 by incorporating data from on-site inspections and evaluations 

discussed in detail in (Atamturktur et al. 2013). Laboratory tests are conducted on core 

samples of the masonry and a masonry prism specimen from fallen debris in order to 

obtain the material properties. 3D laser scanning is performed to obtain the precise as-is 

geometry of the casemate with which the FE model geometry is constructed while 

preserving key geometrical features such as any permanent deformation, material 

deterioration, tilting of the walls. The FE model is developed using SOLID65 elements 

that are specialized for modeling concrete-like brittle materials (Özen 2006; Mahini et al. 

2007). The SOLID65 element uses a smeared crack analogy to account for deformations 

due to cracking and crushing of the material. The linear material properties of the model 

are calibrated to experimentally obtained modal parameters (i.e. first two natural 

frequencies and mode shapes).  

 

Figure 3.7. FE model of Fort Sumter casemate used in case study (refer to  

Atamturktur et al. 2013).  
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Because the barrel vaulted casemates are built adjacent to but detached from the 

scarp wall, the scarp wall and the casemate are two independent structural entities. 

Therefore, contact elements that allow sliding and separation (but do not allow 

penetration) of two adjacent components are used to model this interface. A dynamic 

hammer impact test was used to calibrate the friction coefficient accounting for the 

friction and cohesion (if any) at the interface to represent this possible sliding action in 

the FE model. To take into consideration the lateral interaction with the adjacent 

casemates, adjacent casemates are represented using substructuring techniques. To keep 

the size of the model to a manageable level, the foundations of the casemate are idealized 

as a series of linear springs having finite stiffness. Details of the model development 

process are provided in Atamturktur et al. (2013). 

3.4.3 Simulations of Support Settlement 

The FE model used to simulate support settlement is shown in Figure 3.8, where 

the casemate of interest is the center casemate with the adjacent casemates modeled as 

substructures. The ground below the casemates can be visualized as a rectangular plane 

as shown on the left of Figure 3.8. By tilting this rectangular plane in the direction 

perpendicular to the external wall as shown in Figure 3.8 (right), the settlement 

configuration is simulated. This configuration representing settlement of the external wall 

is used to obtain the structural response data for application of the proposed prognostic 

technique. 
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Figure 3.8. Initial model configuration on level surface (left) and settlement configuration 

(right). 

In the simulations, the ground plane of the casemate is gradually settled with a 

maximum displacement (Δ) under the scarp wall of from 2.5 mm to 100 mm at 

increments of 2.5 mm. The first principal strain at the two control point locations, Point 1 

and Point 2, shown in Figure 3.9 are monitored during these settlement simulations. As 

shown in Figure 3.9, Point 1 is located at the base of the pier, and Point 2 is located at the 

springing of the arch. The resulting first principal strains at the two control points 

obtained from the simulated settlement are plotted in Figure 3.10 with randomly 

generated non-stationary noise added.  

 

Figure 3.9. Locations Point 1 and Point 2 of monitored strains during settlement (circled). 
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Figure 3.10. Settlement induced strains obtained from FE model of Point 1 (left) and 

Point 2 (right) with added noise. 

3.4.4 Prognostic Evaluation using Weighted SVR  

The algorithm presented in the methodology section is deployed on the simulated 

dataset shown in the previous section. 15 data points simulating the strain response of the 

casemate under settlement up to 40 mm are assumed to be available for the prognostic 

evaluation. To determine the initial λ value, the first ten of these data points are used in 

the preliminary training set (up to 27.5 mm settlement) and the next five data points are 

used as the hold-out set (from 27.5 mm to 40 mm settlement) (refer back to Figure 3.5). 

Multiple candidate λ values between 10
-15

 and 10
5
 are tested to find the optimal λ that 

yields the minimal error in predicting the hold-out set. With the identified optimal λ, a 

refined SVR model is trained and is executed to forecast the next five data points (from 

40 mm to 52.5 mm settlement). This process is repeated as new measurement data 

become available, and the optimal λ is updated during each iteration. In this case study, a 

total of five iterations are completed to reach 100 mm settlement, thus the optimal λ is 

updated four times after it is initially determined in the first trial. The predicted response, 
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prediction error, and adaptively refined optimal λ obtained as a result of this analysis are 

displayed in Figure 3.11 for Point 1 and Figure 3.12 for Point 2 (note that results shown 

after the vertical dashed line in Figures 3.11 and 3.12 (a) and (b) are the compiled results 

of the five forecasting iterations). For comparison, the predicted response and prediction 

error of an SVR model trained using a constant λ of λ→0, which gives all weight to 

fitting error and none to flatness, are also included in the figures. 
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Figure 3.11. Comparison of adaptively weighted SVR to non-weighted SVR using Point 

1 data with increasing noise: (a) predicted response, (b) prediction error, and (c) λ value 

used for prediction model. 
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Figure 3.12. Comparison of adaptively weighted SVR to non-weighted SVR using Point 

2 data with increasing noise: (a) predicted response, (b) prediction error, and (c) λ value 

used for prediction model. 

(a) (b) (c) 

(b) (c) (a) 



 42 

As evidenced in Figures 3.11 and 3.12, the adaptively weighted SVR predicts the 

settlement induced strains with less than half as much error as the non-weighted approach 

(see Table 3.2). It must be noted that the noise added to the simulated data is non-

stationary in nature. Therefore, the distinct advantage of the adaptive approach is its 

ability to recover the optimal λ as noise fluctuations occur over time, as is the case in 

practical in situ monitoring applications. 

Table 3.2. Total prediction error for adaptively weighted SVR and non-weighted SVR. 

SVR Approach Point 1  Point 2 

Adaptively weighted 0.0719 0.0057 

Non-weighted 0.1898 0.0178 

3.5. Conclusion 

Although SVR is known for its superior prognostic abilities, the performance of 

this machine learning technique is reliant on the selection of an appropriate regularization 

parameter, λ, determining the tradeoff between fitting accuracy and model complexity 

(i.e. flatness). The optimal tradeoff is greatly affected by the presence of time-variant 

extraneous noise within measurements, which is common during in situ monitoring 

applications. Therefore, an ideal process for selecting optimal λ is one in which the model 

sensitivity to noise is decreased.  

Within this chapter, an adaptive weighting approach for SVR is developed, which 

first determines the optimal λ based on forecasting accuracy, and then uses this optimal λ 

to develop a refined model for future predictions. As additional data becomes available in 

time, the optimal λ is updated allowing the new model to be adjusted for fluctuations in 
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noise intensity. Thus, the most suitable model complexity for a given dataset is selected 

for each set of predictions. In testing the performance of this approach on the simulated 

settlement response of a historic masonry coastal fortification, the adaptively weighted 

SVR shows greatly increased forecasting accuracy over the non-weighted approach.  

The developed adaptively weighted SVR has potential to be incorporated in a 

structural health monitoring process to ultimately assist in preserving the cultural heritage 

by predicting its future structural integrity. However, future direction in research should 

focus on determination of appropriate damage sensitive features and corresponding 

monitoring techniques for prognosis of historic masonry structures. Furthermore, a failure 

threshold indicating the structure’s end of life must also be defined. Such a threshold can 

only be defined by developing a link between nondestructive measurements and the 

remaining load carrying capacity of the masonry monument as suggested in Atamturktur 

et al. (2012), which is the primary attribute of concern in prognostic evaluation. 
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CHAPTER FOUR 

 

CONCLUSIONS 

 

 

This thesis has first examined the necessary considerations in applying prognostic 

methodologies to forecast the future health state of historic masonry monuments. An 

evaluation of common masonry degradation schemes and the capabilities of existing 

prognostic frameworks suggests that forms of degradation appropriate for prognosis of 

historic masonry must be gradual in nature. One example of such degradation, which is 

studied in this thesis, is settlement induced damage resulting from differential support 

settlement. Such foundation settlement is common in masonry structures due to the 

heaviness of masonry materials. Periodic inspection techniques assessing these damages, 

to be applicable to prognosis, must provide quantitative measurements, be as sensitive as 

possible to the damage of interest, and reflect the global (rather than local) behavior of 

the structure eliminating the need for a priori knowledge of damage location. To be 

incorporated in a monitoring process, these inspection techniques must be conducted in 

an automated manner. However, these in situ measurements are often susceptible to 

detecting the responses of the structure to extraneous load conditions other than the 

primary loads of interest, thus corrupting the measurements with noise. Therefore, the 

prognostic technique chosen should attempt to eliminate the effect of this noise on 

predictions.  

A prognostic technique known as Support Vector Regression (SVR) is 

particularly suitable for in situ prognostic evaluation of masonry not only because of its 

ability to handle nonlinearity in measurements, but because of its ability to avoid 
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overfitting to noise when training a prediction model. In SVR, the introduction of flatness 

in the prediction model decreases the model sensitivity to noise, thereby making the 

model more generalizable.  In this thesis, SVR, which traditionally trains a prediction 

model with a predetermined constant degree of model complexity (or flatness), is 

enhanced to determine the optimal complexity of the model and allow the optimal 

complexity to be updated over time. In contrast to existing approaches that focus on 

improving the fitting accuracy, the approach proposed herein calculates the optimal 

complexity of the model based on forecasting accuracy. The adaptive selection of optimal 

flatness also increases the model robustness to variations in noise levels that might occur 

over time. When implemented in prognostic evaluation of a historic masonry coastal 

fortification, Fort Sumter, the adaptively weighted approach outperformed the non-

weighted approach in forecasting accuracy. 

As the application of this adaptively weighted Support Vector Regression 

technique for prognostic evaluation of Fort Sumter is among first efforts in applying 

prognostics to historic masonry, future research is necessary to further the potential of 

such prognostic evaluations. In this thesis, simulated strain measurements are exploited 

for development of the prediction model. In the future, studies should be conducted to 

determine the most sensitive features to the damage type of interest for implementation in 

a prognostic framework. Moreover, a link between these non-destructively measured 

features and the remaining load carrying capacity of the structure, an aspect that can be 

measured only through destructive measurements, should also be identified. This link is 

necessary to develop a failure threshold defining the level of damage at which the 
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structure reaches the end of its remaining useful life. With such information, timely 

maintenance campaigns can be planned. These important aspects, left out of the scope of 

this thesis, are essential for the future success of prognostic evaluation as applied to 

masonry construction.  

With the prognostic methodologies for application to historic masonry structures 

matured, prognostic evaluation of the remaining structural integrity of masonry 

monuments and infrastructure can be implemented in a structural health monitoring 

process to provide early detection of damage and enable effective maintenance strategies 

of such cultural heritage. 
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