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ABSTRACT 

 

 

Sustainable forest management requires accurate information about site index (SI, 

tree height at a base age). The objectives of this study were to compare site indices from 

field inventory data (2008-2009), Soil Survey Geographic Database (SSURGO), and 

Light Detection and Ranging (LiDAR, 2008), and to determine the uncertainty in the site 

indices from the southern part of the Clemson Experimental Forest.  When LiDAR 

derived analysis were used to compare to SSURGO there were statistical differences for 

site indices for all of the tree species in this study: loblolly pine (Pinus taeda), scarlet oak 

(Quercus coccinea), shortleaf pine (Pinus echinata), white oak (Quercus alba), and 

yellow poplar (Liriodendron tulipifera). LiDAR has the potential to provide reliable and 

rapid estimates of site index variability within the soil map units.  Loblolly pine and 

shortleaf pine had the greatest statistical differences with the LiDAR derived site indices 

being much larger than the SSURGO values. The results of this study indicate that a 

larger sample size for LiDAR is a better option to decrease variation, and that the map 

unit level may be the best option.   

 

Keywords and abbreviations: basal area factor (BAF), Clemson Experimental Forest 

(CEF), climate change, diameter at breast height (DBH), forest inventory, Light 

Detection and Ranging (LiDAR), loblolly pine, site index (SI), soil inventory, Soil 

Survey Geographic Database (SSURGO) 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Statement of the Problem 

Soil quality is the most important factor in assessing forest productivity and forest 

management decisions (Hamilton, 2007). Concerns about the effects of global climate 

change have triggered intensive research over recent decades on the impacts of land use 

on biomass production in forest ecosystems (Poudel et al., 2011). The temperature 

increase in higher latitudes associated with global warming may stimulate forest 

production due to longer growing season and more favorable conditions for 

photosynthesis (Bergh et al., 2003; Poudel et al., 2011). Several studies predicted higher 

forest productivity (by 10-30% in the next 100 years), reduced length of rotation periods 

by 5-10 years, and increased carbon stocks (Pussinen et al., 2002; Kirilenko and Sedjo, 

2007; Eggers et al., 2008; Subedi et al., 2009). Current research on climate change over 

the continental United States using a moisture index (Grundstein, 2009) showed that the 

southeastern part of the country has been getting wetter, and cooler. The question, then, is 

how do these combined changes affect forest productivity and site index in the 

Southeastern U.S.?     

 

Literature Review 

Site index (SI) is defined as the total height to which dominant trees of a given 

species will grow on a given site at some index age, usually 50 years in the Southeast 

(Hamilton, 2007).  Site index is commonly used to evaluate site productivity and is 
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provided through the SSURGO (Soil Survey Staff, 2013).  The site index can be 

determined by two methods: 1) from the site index curves using accurate age and height 

measurements or 2) from the tables in the soil survey (Baker and Langdon, 2012). For 

example, site index for loblolly pine at age 50 can vary from 60 to 120 feet depending on 

soil and other site characteristics. Site index curves were developed in various time 

periods ranging from early 1920’s to late 1980’s (National Register of Site Index, 2013). 

Site index does not provide the measure of uncertainty due to soil, site, and climate 

variability. 

South Carolina has diverse soil coverage. Seven of twelve soil orders occur in 

South Carolina: Histosols, Entisols, Inceptisols, Mollisols, Alfisols, Spodosols, and 

Ultisols. Lynchburg is a state soil of South Carolina (it belongs to the order of Ultisols) 

because it is a prime farmland and has a high site index for loblolly pine. Approximately 

four hundred soil series (of 21,000 soil series) occur in South Carolina. In the 

Southeastern U.S., soils in the Piedmont physiographic province are severely eroded and 

contain low quantities of soil C as a result of agricultural activity prior to 1940 (Dunn and 

Holladay, 1977; Richter et al., 1999). Conversion of degraded croplands to forests likely 

has increased terrestrial carbon stocks (Richter et al., 1999), although the magnitude of 

this increase and the impact of forest management on it are unclear because of the lack of 

long-term data and the high variability in existing soil and plant data. Impacts of land use 

and climate on site index are poorly understood. A previous study in the Pacific 

Northwest indicates LiDAR derived site indices correlate well with field site indices 

(Gatziolis, 2007).  
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Research Questions 

 How reliable is the site index provided by SSURGO? 

 Are site indices developed in the 1920’s valid today? 

 What are the ways to incorporate variability and uncertainty in the site index? 

 Does climate change affect the site index in the SE of the United States? 

 Can advanced techniques (e.g. SSURGO etc.) be used to evaluate and update 

site index in the SSURGO as needed? 

 

Research Objectives 

 Compare site indices from SSURGO to the most recent forest inventory cruise 

data; 

 Compare site indices from SSURGO to LiDAR derived site indices; 

 Conduct statistical analysis for any trends and to determine the uncertainty in 

the site indices. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

Study Area 

The location for this study is the southern part, Anderson County (Figure 1) of the 

Clemson University Experimental Forest (CEF) in Clemson, SC (N 34° 41’ 55.7”, W 82° 

52’ 45.7”) (Griffith et al., 2002).  The CEF lies in the upper Piedmont region at the base 

of the foothills. The climate is generally mild and has four distinct seasons with annual 

precipitation averaging 54.01 inches with annual temperatures ranging from an average 

minimum temperature of 29.80°F in January to an average maximum annual temperature 

of 90.6°F in July (IDcide 2013). The CEF is divided into 15 divisions, which are sub-

divided by compartment and then broken down to stand level.  In total, the forest has 

more than 2,000 stands and 41 of them were used in this study (Tables 15-19). The entire 

forest is an intensively managed multi-use forest with research areas, natural areas, 

timber production areas, and wildlife managed areas. The cover type ranges from 

hardwood coves, upland hardwoods, mixed hardwood and pine, natural pines, to pine 

plantations (Forest inventory 2008-2009). The data for the study area were limited to the 

forest area in Anderson County. Attention was given to points that had field forest 

inventory (2008-2009), SSURGO, and LiDAR data (Table 1). 

 

 

 



 

5 

 

History of Ownership and Management 

The CEF was previously eroded farm land before Clemson College began 

supervision of the lands in 1939 under an agreement with the federal government (Dunn 

and Holladay, 1977). In 1946 a forester, Norbert Goebel, was hired to manage the 

forestlands (Dunn and Holladay, 1977). Silvicultural practices (planting, thinning and 

harvests) to improve the timber production, wildlife habitat and water quality were 

initiated. In 1954, the project was deeded to Clemson College, due to the efforts of U.S. 

Senators Charlie Daniel, Strom Thurmond, State Senator Edgar Brown and Dr. George 

H. Aull (Dunn and Holladay, 1977).   

 

Forest Inventory 

 The cruise data were gathered from the forest inventory in 2008-2009 according 

to field forest specification for the CEF (Table 2). It was inventoried as point-level data 

measured in cubic feet. The point location was determined by a resource grade GPS and 

previous point locations on the forest. Each point was measured on a tree level basis. At 

each point trees were tallied using a BAF (basal area factor) = 10 prism. For each tally 

tree species, diameter at breast height (DBH) (1 inch class), type of product, 

merchantable height, total height, the percent defect, and any comments about the tree 

were recorded. The trees were measured with a diameter tape and mechanical clinometer. 

Height measurements were obtained to the nearest foot and diameter DBH to the nearest 

1-inch class (Table 2). The contractor provided the tree data for volume determinations. 

The points are numbered and correspond to a GPS location. Stand information was also 
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available for the entire Clemson Experimental Forest as GIS and Excel spreadsheets. The 

amount of volume harvested for each stand and the date the stand was cut was also 

available. This allowed for any points to be nullified if stands were harvested after the 

2008 LiDAR data were flown, or before the 2011 LiDAR data were flown. 

Soil Inventory and Site Index from SSURGO 

Soil Survey Geographic Database (SSURGO) tabular and spatial complete data 

were downloaded from http://soils.usda.gov/survey/geography/ssurgo/ for Anderson 

County, South Carolina. Site index is listed for various tree species at base age 25 or 50. 

The field inventory data were collected at base age 50. Therefore, this base age was used 

throughout the analysis. The forest inventory GIS data were used to spatially compare the 

SSURGO data to the study area (Figure 2). First, all the stands in the study area within 

Anderson County were selected using a county outline from ArcGIS and exported the file 

into NAD83 UTM Zone 17N meters. A “select by location” using the county outline as 

the source layer and selected the stands that are within the source layer was performed. 

The selection was then exported as a new layer. The spatial SSURGO map unit data layer 

was joined to the component key table by the map unit key in both attribute tables. Then 

the soil map unit table was joined to the forest productivity component table by the 

component key. The ACCESS database associated with the SSURGO data were then 

used and a report for site index was created and exported as an excel file. The Excel file 

was then edited to create one row for each map unit. The excel file was then exported to 

the project geodatabase as a single table and joined by the map unit symbol to the spatial 
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SSURGO data. Each Map unit symbol contained its own site indices for various tree 

species and was compared to the inventory data and LiDAR derived measurements. 

 

Point to Plot Conversion 

In order to be able to compare LiDAR to field data the point data (collected with a basal 

area factor (BAF) = 10 ft
2
/ac prism) had to be converted to fixed radius plot data. The 

first step was to calculate the basal area (BA) for each inventoried tree. This was found 

using equation (1): 

             (1) 

where  is calculated in (ft
2
/tree) and represents the per tree basal area for the 

point; and  (in) is the 1-inch diameter at base height (DBH) class for each tree 

on the point. Once  was calculated, the tree factor for each individual tree 

could be calculated. The equation for this calculation is: 

                           (2) 

where  is calculated in (Number of trees/ac) and represents the tree factor for each tree, 

 (ft
2
/ac) is the BAF represented by the prism, and is measured in (ft

2
/tree). 

Once  was calculated for each tree, the total number of trees per acre for the entire point 

was calculated. This was found using the equation: 

                  (3) 
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where  is calculated in (trees/ac) and represents the total number of trees per acre on 

a particular point, and  is measured in (trees/ac). The next step was to calculate the total 

basal area per acre for the point. This was found calculated using the equation: 

            (4) 

where  represents the basal area per acre for the entire plot in (number of trees*ft
2
/ac), 

and  (ft
2
/ac) is the BAF of the prism used. With the  calculated, the mean basal area 

for the mean tree on the plot was then calculated using the equation below: 

                (5) 

where  represents the basal area for the mean tree of a particular point in 

(ft
2
/tree), and  is measured in (number of trees*ft

2
/ac), and  is measured in 

(number of trees/ac). After the basal area for the mean tree, calculate the DBH for the 

mean tree in the equation below: 

               (6) 

where  represents the DBH for the mean tree of the point in (in), and  is 

measured in (ft
2
/tree). The mean DBH was then used to calculate the radius for the plot in 

the equation below: 

                (7) 
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Where  represents the mean radius of the plot equivalent for each individual point 

centered at the location of the variable radius plot in (ft), and  is measured in 

inches. The  (ft) is then used to get the area represented by each plot in the equation 

below: 

                (8) 

where   represents the average area of the plot for the average tree on the point in 

(ft
2
), and is measured in (ft). All of the point-to-plot conversions were done in 

Excel.  

 

Remote Sensing Data 

Two LiDAR datasets flown over Anderson County, SC in 2007 and 2011 were 

used in this study and were collected by the South Carolina LiDAR Consortium. The first 

dataset (2007) was obtained from the South Carolina Department of Natural Resources, 

and is single return data with nominal point spacing of approximately 1.4m and was 

processed using Terrascan software.  The second LiDAR dataset (2011) was obtained 

from Anderson County, SC Assessors office and had a nominal point spacing of 1.4m.  

This data were collected by Towill Inc. using an Optech Orion M-200 LiDAR system.  

The data were originally collected as waveform data and discrete pulses were extracted 

and provided in the dataset as up to 4 discrete returns per LiDAR pulse.  Data were 

processed with Terrascan as well as the Terrasolid software suite. 
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Site Index Inventory by LiDAR 

Newly flown, multi-return, LiDAR data are available for Pickens (5/2012), 

Anderson (8/2012) and Oconee counties (8/2012).  

Anderson County LiDAR data from 2008 are already available (Figure 3).  

Tree locations, heights and crown diameters were extracted from the LiDAR data using 

the TIFFS software package version 8.0 beta (Globalidar).  This software uses the raw 

LAS files and tiles the raw data and filters out ground and non-ground returns. The 

filtered data are then used to derive a digital elevation model and canopy height model, 

which it subsequently uses to identify tree locations using watershed analysis techniques 

within Matlab based on individual tree crown structures (Chen, 2007). 

The point-to-plot conversion radii were put into an Excel file and exported as a 

dbase file and added to ArcMap. The forest inventory spatial data were also added to 

ArcMap. Stands in Anderson County were added if they contained relevant information 

for determining LiDAR site index.  The CEF points file are points corresponding with the 

stand data of the stands that they are in. The attribute table was joined to the Excel file 

based on the recognized number for the points in the CEF data and the point number in 

the dbase file with only matching records being kept. The new attribute table was 

exported to create a new shapefile. A buffer was then applied to create a polygon file 

with the plot radii from the point shapefile’s radius (m) as the buffering distance. 

LiDAR tree locations (points) were then added to ArcMap and extracted where 

only those trees contained inside the plots were kept. The tree locations are points that 

contain information on individual tree heights. Once the trees were extracted the next 



 

11 

 

thing was to create an excel spreadsheet summarizing the LiDAR heights in each point 

and corresponding the age of the trees on the point to plot conversion and the SI species 

with the stand data. The summary sheet was then used to choose the proper SI species 

curves (Figures 4-8) to derive site indices for each point. Upland oaks (Figure 6) site 

index curves were used for scarlet oak. 

 The tallest tree on each point and the stand age were used to derive an SI from 

the SI Curves (interpolated/extrapolated between two curves) and added to the Excel 

sheet. The assumption of tree selection is that the tallest tree(s) will be the same specie as 

the SI specie of the stand from the CEF data. The mean and standard deviation on each 

LiDAR (2008) point were summarized by map unit and SI species. The procedures were 

repeated for the LiDAR (2011) dataset with the stand ages adjusted to the proper age. An 

observation was defined as a single point. The total number of points for a particular 

specie that were grouped together by matching criteria by map unit, stand number, or a 

combination of the two defined the sample size for the particular criteria.  

After the plot data were summarized they were then summarized for entire map 

units in a similar manner. Stands were selected by their SI species from the point 

summary Excel file and exported as a new file. SSURGO soils map units were extracted 

by SI species from the point summary excel file. Each map unit within a stand was 

exported as an individual shapefile. Both LiDAR (2008) and LiDAR (2011) tree data 

were extracted by each individual map unit layer within a stand. Any stand that had trees 

from multiple files were selected and then merged together and exported as one file to 

properly select the correct amount of trees from each file. The sample from each stand 
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was calculated as the tallest 5% of all trees, or the tallest 20, whichever was greatest. The 

stand age was then gathered in the same manner by the corresponding stand identification 

number. The height was then converted to a SI the same way as the plot data. This data 

was then added to its own excel file summarized by mean SI and standard deviation for 

each species in three ways: each stand number as its own occurrence in a map unit, each 

map unit within a stand, and by each map unit. 

 

Statistical Analysis 

The statistical analysis proceeded in three stages. The first stage was to calculate 

means and standard deviations of site indices of each species broken down by soil map 

unit for both plot level and soil map unit level and further break the map unit level data 

down by stand. The second stage was to compare the means to the SSURGO standard 

using a series of t-tests. The third stage was to convert R
2
-values to t-values and compare 

using a series of t-tests. The reason for using the t-test is that it provided a direct test of 

the hypothesis that the mean value was different from the SSURGO in whichever 

direction that occurs. All calculations were performed in Excel.
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CHAPTER THREE 

RESULTS AND DISCUSSION 

 

Soil Evaluation 

 Sixteen soil map units (soil order: Ultisols) were identified (Table 3). Map units 

CdB and CdC had the highest SI for loblolly pine (83 ft, base age 50). The lowest SI for 

loblolly pine was HwC2 (71 ft, base age 50). CdD had the highest SI for scarlet oak (81 

ft, base age 50). The lowest SI for scarlet oak were map units MaC and MaE both had the 

lowest SI for scarlet oak (75 ft, base age 50). Map unit PaE had the highest site index for 

shortleaf pine (70 ft, base age 50). The lowest SI for shortleaf pine was map unit CcC2 

(55 ft, base age 50). Map units MaD and MaE had the same SI for white oak (75 ft, base 

age 50). Map unit MaE had the highest SI for yellow poplar (96 ft, base age 50). The 

lowest SI for yellow poplar was map unit PaE (90 ft, base age 50). 

 

Forest Inventory vs. SSURGO 

 Loblolly pine and shortleaf pine species were the only SI species at the forest 

inventory level that significantly differed from the SSURGO site indices. Ten out of the 

thirty one map unit and specie combinations were statistically different than the 

SSURGO site indices with 8 being higher. All the loblolly pine map units that were 

different were higher, and shortleaf pine was split with 2 being higher and 2 being lower 

(Tables 4A and 4B). 
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LiDAR Derived Plot Level vs. SSURGO 

Almost half of the plot level LiDAR derived site indices were statistically different than 

the SSURGO SI (28 out of 57 total observations). The majority of the 2008 LiDAR plot 

map unit derived site indices were statistically different than the SSURGO site indices 

(16 out of 31 total observations) and occurred in each soil series. Ten out of the sixteen 

map unit symbols’ species combinations LiDAR derived site indices were statistically 

lower than the SSURGO site indices occurring in all five species. The six map unit 

symbols that were higher occurred in loblolly pine (5 map unit symbols) and shortleaf 

pine (1 map unit symbol).   

The 2011 LiDAR derived plot site indices were statistically different than the 

SSURGO site indices for all five species. The majority of the derived site indices that 

were statistically higher occurred mainly in loblolly pine species. Two shortleaf pine map 

unit symbol site indices were statistically lower with none being higher (Tables 4A and 

4B) which was different than 2008. The high variability associated with using plot data 

can be seen in Figure 9. The variability could be caused from the small sample sizes in 

the plot data. Another contributing factor on the graph is all the species and all the map 

units are represented on the graph together. 

 

LiDAR Derived Map Unit Level vs SSURGO 

The majority of the standard deviations of the map unit level data were lower than the 

plot level data (Tables 4A and 4B). With the higher variability and small sample sizes in 
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the plot level data it was necessary to take another approach and to use map unit level 

data which had greater sample sizes. The majority of the map unit level LiDAR derived 

mean site indices for the map unit symbols (2008, 2011, and 2008 and 2011 combined) 

were statistically higher than the SSURGO site indices and occurred in all five species 

across each soil series (Tables 4A and 4B). When looking at Tables 4A and 4B there 

were 6 combinations where LiDAR derived mean site indices were statistically lower 

than the SSURGO site indices. These occurred in loblolly pine (CbC and HaB), scarlet 

oak (MaE), and yellow poplar (CdC).  

The site indices by map units were further broken down by stand within a map 

unit for further analysis. When loblolly SI was broken down by stand within a map unit 

the majority of the derived mean site indices are statistically higher than the SSURGO 

site indices except for map units CbC, CdC, HaB, and MaC (Tables 5A and 5B). This 

was different than what was summarized from Tables 4A and 4B, that CbC and HaB 

were the only two map units where the LiDAR derived mean site indices were 

statistically lower than SSURGO site indices.  

Scarlet oak did not pick up any more map unit symbols that had observations 

indicating a statistically lower mean SI than when the map units were broken down into 

stands (Tables 6A and 6B). On the summary tables (Tables 4A and 4B) shortleaf pine did 

not have any map unit symbols with statistically lower LiDAR derived mean site indices 

than SSURGO site indices, but when broken down by stand within a map unit 4 map unit 

symbol LiDAR derived site indices (CbB, CbC, CdC, and CdD) were significantly lower 

than SSURGO site indices (Tables 7A and 7B).  
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Tables 4A, 4B, 8A, and 8B show white oak did not have any map unit symbols 

indicating that LiDAR derived mean site indices were statistically lower than SSURGO 

site indices. Yellow poplar map unit symbols broke down into stands indicated that one 

other LiDAR derived map unit symbol’s SI was statistically lower than the SSURGO 

(CdD). Tables 10-14 (A and B for each) are intermediate tables showing where the 

numbers for Tables 4A and 4B came from. Each table is a single species. 

Figure 10 shows the high variability in the relationship between SSURGO and forest 

inventory site indices. The variability is likely present due to the graph showing all 

species and all map units combined where site index is based on one tree species for one 

map unit where tree species have different growth patterns. Another possible contributing 

factor is that both are reported as one single number without a standard deviation.  

There are a couple trends present. One trend is that LiDAR derived maximum heights 

(2008) are significantly higher than the forest inventory measured maximum heights. The 

model equation shows that in 2008 the LiDAR and forest inventory heights correlate well 

(Figure 11). Another trend is LiDAR derived maximum heights (2011) are significantly 

higher than the LiDAR derived maximum heights (2008) indicating growth has occurred 

(Figure 12). Tables 5B, 7B, and 9B show that some stands had negative growth and 

indicate a stand has had one of the following or combination of the following occur: the 

stand has been harvested, trees were lost to some sort of event, an overestimation of 

LiDAR derived tree heights in 2008, or an underestimation of LiDAR derived tree 

heights in 2011 has occurred. A contributing factor to the variability is more than likely 

the different growth patterns of each species (Figures 9-12).
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CHAPTER FOUR 

CONCLUSIONS 

 

The objectives of this research were to compare site indices from SSURGO to the 

most recent forest inventory cruise data, compare site indices from SSURGO to LiDAR 

derived site indices, and conduct statistical analysis for any trends and to determine the 

uncertainty in the site indices. Site index is supposed to be static and not change. Tables 

4A and 4B show the only two species that had a difference were loblolly and shortleaf 

pine. However, when LiDAR derived analysis was used to compare to SSURGO there 

were differences.  There were statistical differences for site indices for all of the tree 

species in this study: loblolly pine, scarlet oak, shortleaf pine, white oak, and yellow 

poplar. This raises the question what methods can produce reliable and rapid estimates of 

site index? 

LiDAR has the potential to provide reliable and rapid estimates of site index 

variability within the soil map unit (Tables 4A and 4B) unlike the field forest inventory 

data which provides limited and expensive data. Newly available free LiDAR data sets 

provide an opportunity to evaluate variability across thousands of soil map units and tree 

species combinations.  Through the LiDAR analysis all the tree species had statistically 

different site indices than that recorded in SSURGO. The only way to accurately and 

cheaply answer  the question if environmental and anthropogenic changes affect the site 

index in the SE of the United States is to determine tree heights and the associated 
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variability across large spatial areas (with numerous soil map units and forest 

characteristics).  

The only way to update and evaluate the site index is to have sufficient forest data 

which is possible through LiDAR analysis. Advanced genetics, different silvicultural 

practices, recent droughts, warmer temperatures, and other anthropogenic and 

environmental changes may be having an effect on SI. Even though SI is static, this study 

indicates there are statistical differences in SI from the LiDAR data which means that 

through environmental and anthropogenic changes, SI may be changing and more 

research is needed to understand the effects of these changes.  The results of this study 

indicate that a larger sample size for LiDAR is a better option to decrease variation, and 

that the map unit level may be the best option.  

There are some errors that arise using LiDAR. Ground sampling errors can occur due 

to dense closed canopy forests. Underestimation of tree height can also occur due to tree 

lean or when LiDAR returns capture the wrong tree apex. These errors are usually small 

(Gatziolis, 2007). 
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Figure 1. Map of the part of the Clemson Experimental Forest. 
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Figure 2. Process of extracting soil data for the southern part (Anderson County) of the 

Clemson Experimental Forest.
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Figure 3. Clemson Experimental Forest, South Forest, Anderson County LiDAR tree 

returns(2008).
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Figure 4. Loblolly pine Site Index classes for coastal and piedmont areas of the 

Southeastern U.S. (adapted from Coile & Schumacher, 1953).
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Figure 5. Shortleaf pine Site Index classes in natural range (adapted from  

Coile & Schumacher, 1953). 
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Figure 6. Upland oaks Site Index classes in oak-hickory forests (adapted from 

Olson, 1959). 

 



 

25 

 

 

 

Figure 7. White oaks Site Index lasses in the Southeastern U.S. (Olson 1959).
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Figure 8. Yellow polar Site Index classes for coastal and Piedmont areas, in  

natural range outside mountain areas (Beck, 1962). 
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Table 1. Spatial data sources and descriptions used in this study. 

 

Data layer
a)

 Source  Resolution/scale 

 

 

 Imagery  

LiDAR data from Anderson county, 

SC 

SC Department of Natural 

Resources, 2013 

1:24000 scale 

 

Soil 

Soil map of Anderson county, SC Soil Survey Staff, 2013 Varies from 1:12000 

to 1:63360 scale 

   

Forest 

Clemson Experimental Forest (SC) 

forest inventory field data 

Cox, 2013 1:7920 scale 

 
a)

All data layers projected to Universal Transverse Mercator Zone 17 North (UTM Zone 

17 N), North American Datum (NAD) 1983. 
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Table 2.  Field forest inventory specifications for Clemson Experimental Forest. 

________________________________________________________________________ 

Basal Factor 10 prism points to be taken in approximately 273 stands on the Clemson 

Experimental Forest for a total of approximately 2000 points.  

 

Stand Maps and x, y coordinate locations for point locations in each stand to be sampled will 

be provided. The inventory contractor will be required to navigate to the x, y coordinate 

location to within 30 feet of the given position, place a flag with the point number at the point 

center and collect inventory data as described below.  

 

Data required on each point will include:  

1. DATE AND CREW  

2. STAND ID.  

3. POINT NUMBER  

4. LATITUDE AND LONGITUDE of POINT  

5. COVERTYPE (general covertype represented by point, from list)  

6. TOPOGRAPHIC POSITION of POINT (bottom, cove, lower middle, upper, ridge)  

7. REPRODUCTION on point. (# stems < 0.6 inch DBH. on .001 acre (3.7 ft. radius) 

circular plot by species group (pine, oak, yellow poplar, other).  

 

The following information must be recorded for each tree determined to be in on the BAF 10 

sampling point.  

 

8. TREE NUMBER for each tree tallied on point.  

9. SPECIES of each tree tallied. A species list with corresponding species code will be 

provided.  

10. DBH of all sample trees 2 inch and greater DBH in point sample. Borderline trees must 

be measured for distance and diameter to determine if they are in the sample. Tree diameters 

must be recorded within +/- 1 inch of dbh.  

11. PRODUCT, the highest value produce for each tree. (pulpwood, CNS, pole, sawtimber, 

veneer)  

12. MERCHANTABLE HEIGHT in feet, of each merchantable size tree tallied to reflect 

the product assigned. (top minimum diameter by product table will be provided)  

13. TOTAL HEIGHT in feet of each tree.  

14. PERCENT DEFECT, for adjustment of merchantable volume estimated for each tree 

using a table provided.  

 

Trees shall be tallied beginning from North and proceeding clockwise around the point. Each 

tally tree must be marked with a spot of paint, ink or durable crayon facing the point center. 

 

The data collected must be provided at a minimum in DBF 4 (.dbf) database IV format, and 

delivered as stands are completed. 

________________________________________________________________________ 
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Figure 9. A plot of the LiDAR derived site index (2008) against SSURGO 

site index (various dates) of 302 plots. 
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Figure 10. A plot of the SSURGO site index (2008) against Inventory  

measured site index (2008) of 302 plots. 



 
 

Figure 11. A plot of the LiDAR derived maximum height (2008) against Inventory 

(2007-2008) measured maximum height of 302 plots. 
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Figure 12. A plot of the LiDAR derived maximum height (2011) against LiDAR 

derived maximum height (2008) of 258 plots. 
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Table 15. Summary statistics for Figures 11 and 12. 

 
Figure R

2
 n t-test t-value  

α = 0.05  

t-value  

α  = 0.01 

p-value 

11 0.39 302 13.84930607 1.645 2.326 <.0001 

12 0.64 258 21.33333333 1.645 2.326 <.0001 
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