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ABSTRACT 
 

Evaluating the human gait cycle with inertial measurement units (IMU) may 

prove beneficial for applications such as diagnoses of musculoskeletal diseases and 

assessment of rehabilitation regimes.  An IMU system is potentially applicable for 

diagnosing and assessing rehabilitation outcomes for a variety of neuromuscular diseases 

since it is small, portable, and less expensive than a camera system. IMUs directly 

measure angular velocity, whereas position data from a camera system must be processed 

twice to obtain this information. The purpose of this research is to determine repeatability 

of IMU angular velocity data, and agreement between angular velocity data from an IMU 

system and a camera system during normal gait. From this data, the feasibility of using 

IMU systems in clinical or rehabilitative settings for obtaining reliable angular velocity 

data will be determined.  

Lower limb motion data was collected simultaneously from six XSens MTx IMUs 

(XSens Technologies, Enschede, The Netherlands) and an 8-camera Qualisys Motion 

Capture system (Pro-Reflex, 240 Hz system).  Each IMU consists of three orthogonal 

accelerometers, gyroscopes, and magnetometers. Data from 4 subjects (3 males, 2 

females) were collected after an initialization technique before each trial to reduce effects 

of electro-magnetic interference with the IMUs. Knee joint angular velocities (Gx, Gy, 

Gz) corresponding to appropriate knee joint angles (flexion/extension, 

adduction/abduction, and internal/external rotations) from both systems were used in this 

analysis. Coefficients of variation (COV) were calculated for both IMU and camera data 

to determine variability of data from both systems. Knee joint Average angular velocities 
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from both systems for each subject and limb were plotted together to visually evaluate 

correlation between data sets.  F-test analyses were performed on linear models of the 

data to determine areas of co-linearity within the gait cycle, and at different intervals of 

angular velocities. 

The IMUs had lower COV’s than the camera system, likely due to the fact that the 

IMUs directly measure angular velocity, and camera system derives angular velocity 

from position data. However, these differences were not statistically different, likely due 

to variability within trials for individual subjects. Linearity between camera system and 

IMU angular velocity was visually observed only about the flexion/extension axis  during 

segments of the gait cycle occurring from 0-4% (heel strike) and 65-100% (swing phase) 

of the gait cycle. Comparisons about the adduction/abduction and internal/external axes 

showed evidence of linearity for lower angular velocities. Linear regression statistics 

showed that the only correlational trend between the two systems was around 8-12% of 

the gait cycle for all three rotational axes. This may be due to drift of the IMU data. 

Although the camera system is the “gold standard” in motion analysis, IMUs may be 

used for applications in which angular velocity for a flexion-extension movement at low 

joint angles is being evaluated. Future studies will include a larger sample population, 

and evaluate specific movements within human gait that affect drift of the IMUs. In 

addition, other IMU system designs could be evaluated for clinical use, and other 

algorithms that further reduce the effects of drift should be implemented.   
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CHAPTER 1 - INTRODUCTION 

 

Background  

 The ability to quantitatively measure gait kinematics for a variety of purposes 

spanning from rehabilitation to evaluating osteoarthritis progression is crucial for patient 

outcomes. Motion capture systems have the ability to define spatio-temporal, kinematic, 

and kinetic parameters which is advantageous for quantifying patient outcomes 

throughout recovery, or over the lifetime of a disease that affects their gait.  

Human Gait 

 Human gait, or locomotion, is how people walk, and can be normal or abnormal. 

The physical activity of walking involves not only the musculoskeletal system, but also 

the central nervous system and peripheral nervous system (Sadeghi et al. 2000, Vaughan, 

Davis & O'connor 1992). For a walking event to occur, there are a sequence of events 

that occur starting at the central nervous system. First, the central nervous system center 

that controls locomotion must be registered and activated to send a signal; then a gait 

signal is sent to the peripheral nervous system. The muscles contract and forces and 

moments are generated across the synovial joints. Skeletal segments regulate the joint 

moments and forces, the segments move, and finally ground reaction forces are generated 

from moving (Vaughan, Davis & O'connor 1992).   

 A gait cycle is broken into two main phases, swing and stance. Stance phase 

accounts for approximately 60% of the gait cycle while swing phase accounts for 40% 

(Vaughan, Davis & O'connor 1992, DeLisa 1998).   



2 

 

 

 

 
Figure 1.0: A Normal Human Gait Cycle (DeLisa 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Normal Human Gait Cycle 

 

A complete gait cycle is defined as the sequence of motion that occurs from heel 

strike to heel strike of the same foot. Figure 1.0 (DeLisa 1998) shows a breakdown of the 

specific phases of the gait cycle and the stance and swing phases can be further broken 

down. The stance phase can be divided into single and double limb support, while the 

swing phase consists of initial swing, midswing, and terminal swing. The muscles of the 

leg including the quadriceps, gastrocnemius, soleus, gluteus, and others aid in helping act 

as shock absorbers, stabilizers, accelerators, and for general control of the feet and legs 

(Vaughan, Davis & O'connor 1992, DeLisa 1998). It is important to note that when there 

is pathology affecting locomotion, the time spent in each of swing and stance phase may 

change. For example, a patient who has osteoarthritis in their left hip will spent almost 
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80% of their time in the stance phase for their unaffected limb, allowing for them to rely 

on that limb and likely reduce their pain (Vaughan, Davis & O'connor 1992). 

The body acts in a sinusoidal motion with respect to the center of mass (COM), 

this is located midway between hip joints, and anterior to the second sacral vertebra. The 

body’s COM has both vertical and lateral displacement, which both average about 5 cm. 

The body moves in a relatively low energy state with normal gait patterns, however, 

pathology can affect the vertical and lateral displacements of the COM, and in turn 

increase the energy expenditure of locomotion. The observation of COM displacement is 

referred to as the smoothness of gait, and is a visual clinical observation used in 

diagnosing or evaluating patients (DeLisa 1998).  

Gait Analysis 

 Gait analysis is a commonly used tool in many clinical and rehabilitation settings. 

Research surrounding gait analysis has been going on since the 19
th

 century, and it’s 

widespread use concerning biomechanics and bioengineering began with the 

commercialization of video camera systems (Tao et al. 2012).This type of analysis can 

provide valuable kinetic, kinematic, and EMG data that is useful in treating a variety of 

disorders or evaluating rehabilitation progress. Kinematics of joints describes the 

movements of joints and their various components. Kinetic data focuses on the forces and 

moments around the joints, and often kinematic data is used in conjunction with kinetic 

data. EMG data provides information about muscle activity and activation (Tao et al. 

2012, Aminian et al. 2004). Kinematic data (joint angles, velocities, and accelerations) is 

able to provide a great deal of insight into gait abnormalities (Jasiewicz et al. 2006). 
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Camera Based Gait Analysis Systems 

 Considered the gold standard for human motion analysis, optoelectric 

stereophotogrammetric measurements from optical (camera) gait analysis systems are 

currently used in gait laboratories. Their reliability, protocols, and joint convention are 

known and have been widely adopted in clinical settings (Benedetti et al. 1998). These 

optical motion analysis systems use sets of cameras, passive or active markers, and 

software to calculate joint kinematics and spatio-temporal parameters. When paired with 

a force plate, gait kinetics can be obtained from this type of system (Tong, Granat 1999). 

Six cameras are needed for a typical gait analysis data collection in order to obtain 3D 

kinematics. The markers on the subject are registered through the cameras as points in 

space, and through mathematical procedures are integrated to obtain angles, 

displacement, velocity, and acceleration (Churchill, Halligan & Wade 2002). These 

systems have been readily used in multiple applications including biomechanics, gait 

analysis, rehab, and sports science (Qualisys Motion Capture). Two popular systems that 

are used for gait and rehabilitation include the Qualisys Motion Capture System and the 

Vicon Motion Capture System.  

 While these optical motion analysis systems are well-established and reliable, 

they are not without limitations. Camera-based systems require a dedicated lab space 

(only used for this application), expensive equipment, lengthy patient setup times, and 

lengthy data processing times. Subjects are restricted to a walking confined area in the 

laboratory, and therefore the system can only capture a small amount of continuous data 

(Tao et al. 2012, Tong, Granat 1999). In addition to these issues, a gait laboratory 
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requires specially trained personnel to apply the markers (Aminian et al. 2004).  The 

markers can also be obscured from sight while a study is being conducted, resulting in 

incomplete data (Mayagoitia, Nene & Veltink 2002). Soft tissue artifacts pose an issue 

for this technology. Due to this issue, camera based gait systems have a limitation in 

measuring internal/external and varus/valgus rotations as precisely as flexion/extension 

rotations of the knee. Measurements can be improved by using intracortical pins that 

connect directly to the bone, but this invasive procedure is obviously not conducive to the 

patient (Sadeghi et al. 2000). In addition, optional motion analysis systems do not directly 

measure joint angles or joint angular velocities. 3D optical tracking systems use various 

calibration techniques, whether it be with a wand with reflective markers attached or the 

patients standing with the markers in place, to orient the markers in a reference frame and 

identify specific anatomical landmarks including feet, knees, and hips (Churchill, 

Halligan & Wade 2002, Windolf, Götzen & Morlock 2008). A mathematical procedure 

takes the views of the markers from several cameras and integrates them into 3D position 

data within space. From this data, joint angles can be calculated from subtracting position 

data, and joint angular velocities can be obtained by differentiating joint angles. There is 

no standardized calibration or reference frame; however most optical motion systems use 

the right hand rule for 3D joint analysis (Churchill, Halligan & Wade 2002, Soutas-Little 

1998). Considering the calibration technique and numerous mathematical steps taken to 

obtain angular velocity, error could be acquired during this process. 

 Costs of setting up and running a gait laboratory with an optical motion analysis 

are high; additionally, costs to the patient are high both in terms of money and time. The 
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total time for a patient for gait analysis is around 2 hours, and costs about $2000, of 

which approximately $500 is reimbursed (Simon 2004). On average, a gait laboratory 

requires 70 therapist hours, 120 technician hours, and 25 clerical hours per month. 

Hospitals do not typically have the budget to allow for gait laboratories, and if they do, 

the laboratory typically focuses on only one gait disorder, such as cerebral palsy, leaving 

victims of stroke or Parkinson’s with less effective clinical measurements and 

observation techniques (Churchill, Halligan & Wade 2002).  

 In 1999, the NIH stated that future research studies concerning gait analysis 

needed to be focused on efficacy, outcomes, and cost-effectiveness of these procedures 

(Simon 2004). There is a push to take gait analysis out of the laboratory, and into 

environments that allow more varied motions. Motor performance as measured in the 

laboratory setting may not accurately reflect actual functionality seen in normal life 

(Favre et al. 2008). An example is stair climbing, which has been proven to be a more 

critical pre-clinical assessment than walking for fall risk in geriatric patients. Stair 

climbing cannot be performed inside a confined laboratory space. It would be 

advantageous to have a more cost-effective, less bulky, and more adaptable technology 

that can be worn for long periods of time for data collection (Bamberg et al. 2008, 

Bergmann, Mayagoitia & Smith 2009). There are all unmet needs that the “gold 

standard” optical motion analysis systems will not be able to satisfy. 

MEMS Based Motion Tracking: Inertial Measurement Units 

 In order to mitigate many of the problems seen with optical motion analysis 

systems, alternative solutions have arisen for use in 3D motion analysis within the last 20 
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years (Tao et al. 2012). Advances in MEMS (microelectromechanical systems) have 

allowed for light, low cost, and low power body mounted sensors to be used in human 

gait analysis and biomechanics research. These systems allow data collection outside of 

conventional gait laboratory spaces, which satisfies the need for an ambulatory motion 

analysis system (Favre et al. 2009). MEMS sensors may include accelerometers, 

gyroscopes, and/or magnetometers (Gouwanda, Senanayake 2008). Accelerometers are 

able to capture linear velocity and acceleration, gyroscopes capture angular velocity and 

acceleration, and magnetometers allow for a relative reference frame obtained by 

magnetic north to indicate the ground reference for all of the axes to use (Caruso 2000). 

However, the use of magnetometers inside is limited due to their interaction with ferrous 

metals that are typically present in indoor laboratories, which can affect the data 

(Roetenberg 2006). Extensive testing has shown that any small amount of 

electromagnetic interference will significantly affect the orientation of the sensors, and 

EMI does not necessarily affect all of the sensors equally (Swanson 1994). 

 An IMU is defined as a tri-axial accelerometer and gyroscope. These IMUs are 

able to measure linear and angular motions in 3D space without external references. 

Figure 2 shows an IMU from the XSens MTX system that is currently used on today’s 

market (University of Brighton 2013). Within this system, Euler angles are used to define 

the angles of rotation around the x, y, and z axes that correspond to roll, pitch, and yaw.  
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Figure 2: XSens MTX IMU with Reference Coordinates 

(http://www.brighton.ac.uk/sohp/research/resources/xse

ns.php) 

 

 

 

 

 

 

 

The sensor defines a global orientation by using rotational matrices of these three angles 

(Hutchison, 2011).   

Performing gait analysis with systems such as this allows for portable, cost 

effective, convention, and efficient method of assisting patients. These wearable sensors 

can be attached to any part of the body including the feet, waist, arms, and leg. Data is 

typically collected, and sent wirelessly to a portable computer, or to a data logging device 

(Tong, Granat 1999).  

 Although this technology has enormous potential, there are still some issues that 

need to be optimized such as the reliability of algorithms used to minimize or eliminate 

drift, and the stability of the sensor signals (Tao et al. 2012, Mayagoitia, Nene & Veltink 

2002, Favre et al. 2009, Gouwanda, Senanayake 2008, Yang et al. 2012, Arai et al. 2011, 

Arai et al. 2008). Typically, drift is addressed by using an initialization technique and 

various fusion algorithms. However, when integrating angular velocity with respect to the 

reference frame, an offset of one axis, will give rise to large errors in another axis 

(Gouwanda, Senanayake 2008).  Numerous studies have been done to reduce variability 
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of IMU outputs, and prove their effectiveness independently (Bamberg et al. 2008, 

Bergmann, Mayagoitia & Smith 2009, Georgoulis et al. 2003). However, IMUs are 

currently an underutilized technology due to the lack of evidence of their accuracy. It is 

apparent that the issues of repeatability and validity in comparison to the current gold 

standard optical motion analysis system need to be addressed, and these two systems 

need to be used simultaneously to further evaluate the IMUs reliability and accuracy 

(Yang et al. 2012, Cloete, Scheffer 2008).  

Joint Angular Velocity  

 The gyroscope component of the IMU system measures the angular rate, or 

angular velocity. Joint angular velocity in the sagittal plane is defined as the rate of 

flexion and extension of a joint, and can therefore be affected by muscle activation and 

force generation (Granata, Abel & Damiano 2000). The angular velocity of a joint is the 

relative angular velocity (rate of rotation) of the proximal body segment subtracted from 

the relative angular velocity of the distal body segment. In terms of the knee, the equation 

below is used. 

                    

Joint angular velocity has components in three directions: flexion/extension, 

abduction/adduction (varus/valgus), and internal/external. It is simply a measurement of 

how fast the joint is moving in its respective plane (Soutas-Little 1998).  

 Angular velocity can be used to calculate joint power, which is defined as the 

product of the moment and the angular velocity (Soutas-Little 1998). Muscle power has a 
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high correlation to overall muscle function, and can affect overall functional activities 

such as walking, standing and sitting from a chair, and walking up stairs (Arai et al. 

2008). Joint angular velocities, especially for hips, knees and ankles, can provide 

valuable insight to the diagnosis and progression of mobility-related disease, and can be 

used in the geriatric community as a signal of muscle functionality.  

Clinical Applications 

 To date, gait analysis has proved to hold its greatest value in the clinic regarding 

patients with central nervous system (CNS) disorders, in particular children with cerebral 

palsy who exhibit spastic gait (van den Noort, Josien C et al. 2012). Spastic gait is known 

as the occurrence of a heightened stretch response of the muscles, meaning that they 

don’t want to stretch, and the legs move in a stiff manner (Damiano et al. 2006).  

Children who exhibit spasticity have lower angular velocity measurements around their 

ankles, knees, and hips due to a lowered stretch response threshold. Spastic and stiff knee 

gait both affect foot clearance during swing phase by limiting maximum knee flexion 

achieved (Damiano et al. 2006). For patients with gait disorders originating 

neurologically, gait analysis laboratories often serve to prescribe treatment and assess 

disease after surgical intervention, as well as observing long term degenerative disorders 

(Simon 2004).   

Parkinson’s Disease 

 Parkinson’s disease (PD) can be a debilitating disease that affects gait pattern and 

balance, and both of these factors increase the risk of falling (Mera et al. 2012). 
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Unfortunately, there are no objective tests to confirm early stage PD; these diagnoses rely 

on the judgment of skilled clinicians observing movements and gait patterns. This 

diagnostic method is highly subjective, and leaves the patient’s wellbeing up to 

experience, rather than quantifiable data (Tien et al. 2010).  

As the disease progresses, deep brain stimulation can be used to relieve typical 

symptoms such as resting tremor, rigidity, and Bradykinesia, which is defined as the 

slowness of movement (Mera et al. 2012). Gait and balance disturbances are also 

manifested during disease progression, and this is difficult to manage with deep brain 

stimulation, and as the disease progresses. There is currently no standardized protocol on 

how deep brain stimulation affects gait and balance, which are the two main complaints 

from patients. The Unified Parkinson’s Disease Rating Scale (UPDRS) is a standard 

rating scale for PD, and can determine the risk between fallers and non-fallers. Although 

these methods are reliable, there is bias that is introduced by the clinicians. Quantitative 

kinematic data from IMUs may provide more detailed reports of gait and balance, and 

angular velocity would allow for better characterization of limb rotation (Mera et al. 

2012). 

Stroke 

 Stroke affects approximately 15 million people a year, and 5 million people of 

that population are permanently disabled (Yang et al. 2012). Regaining community-based 

mobility is a major rehabilitation goal for many stroke patients (Arai et al. 2011). 

Typically, self-selected walking speed tests are good indicators of general mobility and 

function after a stroke and during rehabilitation regimes (Yang et al. 2012).  
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Figure 3: GAITRite mat along with data outcomes seen on a computer screen after a patient 

has successfully completed an analysis. (http://www.gaitrite.com/geriatrics.html) 

 

 

Instrumented walkways like GAITRite (seen in Figure 3) are commonly used to identify 

temporal gait parameters, including gait speed, swing and stance of the paretic limb as 

well as spatial parameters such as stride length and velocity. The GAITRite system, 

which is a pressure-sensitive walkway, has been validated against optical motion capture 

systems and force plates (Greene et al. 2012). Although these systems are useful and 

comparable to other methods for obtaining spatio-temporal data, they are costly and take 

up a valuable space in a clinic or laboratory. IMUs can be used during post-stroke 

rehabilitation for the detection of gait parameters such as walking speed, and to evaluate  
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gait symmetry (Yang et al. 2012). Recently, two fusion algorithms have been proposed 

for use with gyroscopes mounted on the shank to obtain temporal gait parameters. The 

sensor system was validated against the GAITRite system at three walking speeds 

(Greene et al. 2012). 

In addition to spatio-temporal outcomes, kinematic outcomes for gait are also 

important measures of post-stroke rehabilitation. One way that angular velocity outcomes 

could be utilized in the clinic is for assessing gait symmetry. Temporal parameters that 

are needed to evaluate gait symmetry and gait phases are typically determined from toe-

off (TO) and heel-strike (HS) events. The overall temporal symmetry ratio for gait is 

defined as the ratio between the paretic swing-stance ratio and the non-paretic swing-

stance ratio (Yang et al. 2012). Excellent correlation between shank angular velocity in 

the sagittal plane and at heel strike and toe off events has been found, although there have 

been problems in the algorithm at walking speeds less than 6.0m/s that require 

modification (Yang et al. 2012).  

Figure 3 shows angular velocity curves that correspond to gait events important in 

rehabilitation (Yang et al. 2012).   
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Figure 4: Gait Events that are affected by Neuromuscular Pathologies. Comparing Paretic and Non 

Paretic Leg (Yang et al. 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Another diagnostic and rehabilitative measure for evaluating stroke victims is 

looking at muscle power. Muscle power can affect every day activities such as sitting and 

standing from a chair or walking up stairs; and decreasing muscle power can also be 

related to the geriatric population by risk of falling. Power is measured as the torque 

times the angular velocity, and therefore angular velocity can play a part in evaluating 
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muscle power. In particular, using angular velocity as an outcome measure after power 

training is commonly done in post-stroke rehabilitation regimes (Arai et al. 2011). It has 

been concluded that ankle angular velocities relate directly to muscle function that affects 

mobility in post-stroke patients, and also that angular velocity of the knee extensor had a 

strong relationship with a geriatric population’s belief in their own physical state (Arai et 

al. 2011, Arai et al. 2008).  When dealing with the geriatric population, it is not only 

important to improve their clinical outcomes, but to also improve their general sense of 

well-being.  

Spinal Cord Injury 

 Spinal cord injury patients often experience spastic gait, similar to cerebral palsy 

patients. Typically, only injury level has been evaluated for treatment and rehabilitation 

measures, but spastic gait, which affects angular velocity, also needs to be an indicator of 

treatment for spinal cord injury patients (Krawetz, Nance 1996). Krawetz claims that 

kinematic data, including angular velocity, of the knees and ankles varies depending on 

whether the patient suffered a thoracic or lumbar injury, and this type of quantitative data 

can help establish rehabilitation plans as well as track progress.  

 Similar to stroke victims, heel strike and toe off are used to assess rehabilitation 

outcomes and gait symmetry in spinal cord injury victims. In addition to pressure mats 

such as the GAITRite, footswitches and force plates are used to identify gait events.  

Both of these technologies have shortcomings. Footswitches are prone to breaking, and 

force plates limit the overall area in which the data can be collected (Jasiewicz et al. 

2006). Jasiewicz et al. conducted a study to validate that foot linear accelerations, as well 
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as foot and shank sagittal plane angular velocities, could correctly identify the events of 

foot initial contact (IC or toe-off) and foot end contact (EC or heel strike).  The study 

showed that both foot linear accelerations and shank sagittal plane angular velocity were 

able to appropriately identify IC and EC in both control patients and American Spinal 

Injury Association (ASIA) D grade spinal cord injury patients (Jasiewicz et al. 2006).  

Cerebral Palsy 

 Cerebral palsy, which is a central nervous system disorder, causes gait 

abnormalities, such as spastic gait, and most commonly affects children. To date, gait 

analysis has proven most valuable in clinical settings for this disorder and gait 

abnormality (Simon 2004).  Multiple studies have shown the relation of joint angular 

velocity to cerebral palsy, and the overall reduction of this kinematic parameter as 

compared to normal patients. 

 Clinical evaluation looks particularly at joint movements in the sagittal plane, 

corresponding to flexion and extension motion. Granata et al. showed that for analysis of 

patients with CP exhibiting spastic gait, joint angular velocity data was a better 

determinant than joint angle data for comparing gait patterns between a control and CP 

population (Granata, Abel & Damiano 2000). Piazza et al. correlated knee angular 

velocity to knee muscle activity for further understanding of the swing phase of gait since 

a lack of flexion and extension can cause falls or trips (Piazza, Delp 1996). Damiano et 

al. concluded that children with cerebral palsy had slower peak knee angular velocities 

and less total forward movement for a complete gait cycle than normal children 

(Damiano et al. 2006).  
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 Studies by Piazza et al. and Granta et al. used a VICON motion capture system, 

and Damiano et al. used isokinetic equipment to obtain angular velocity data. It is 

apparent that there is a strong correction between angular velocity and spastic gait 

hallmark events seen in CP, as well as other neuromuscular disorders. Using an 

ambulatory system for evaluating people with CP would not only significantly reduce 

cost, but also allow for patients’ movement to be analyzed in a variety of setting outside 

the gait laboratory, such as in their own homes. 

Summary of the Literature 

 With the emergence of ambulatory, lightweight and cost effective motion analysis 

technology such as IMUs, there is a plethora of opportunities to adopt these technologies 

into a clinical environment. While cerebral palsy treatments and interventions are 

established, there is always room for improvement in the data collection process to 

minimize time and cost. It is also apparent that there is fundamental need for diagnostic 

and quantitative measurement techniques for other central nervous system disorders. 

 Despite advantages over optical motion capture systems, motion analysis results 

with IMUs have yet to be adopted by clinicians. Many studies have shown great promise 

for the use of IMUs with rehabilitation and diagnostics. By working to improve 

algorithms, reduce drift, and establish validity and reliability of IMU systems in direct 

comparison to commonly used camera systems, these technologies can be incorporated 

into rehabilitation and physical assessment regimes allowing for quantitative data to 

establish appropriate treatment.  
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Research Objectives 

 The purpose of this study is to evaluate angular velocity measurements during 

normal human motion as measured simultaneously by IMU and camera-based systems. In 

particular, this study evaluated the precision and accuracy of both individual systems. It 

is hypothesized that the IMU system will have higher precision for angular velocity 

considering angular velocity is directly measured by gyroscopes, whereas the camera 

system has to process position data to obtain angular velocity, introducing errors due to 

data processing.  

Accuracy of the IMU system with respect to the “gold standard” camera system 

will be evaluated as well. It is hypothesized that the camera system and inertial sensors 

will have more correlation at lower angular velocities. In a robot arm validation study, the 

inertial sensors proved to be repeatable for measurements of angular displacement 

(analogous to joint angle) for limited angular rates and differences between the two 

systems was seen at the beginning of swing phase (Hutchison 2011). In a patient study 

done by Hutchison, highest agreement between an IMU and camera based system 

measurements for knee angles occurred during flexion/extension knee joint motions, with 

less agreement for varus/valgus and internal/external rotations. Lag in angle 

measurements were seen at higher angular rates, particularly at the beginning of swing 

phase (Hutchison 2011). 
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CHAPTER II – COMPARISON OF ACCURACY AND PRECISION 

BETWEEN CAMERA AND IMU SYSTEMS 

 

Materials and Methods 

 Data Collection 

 Four normal subjects (1 female and 3 males) were included in this study, and ten 

walking trials were conducted for each. Data was collected simultaneously with the 

Qualisys Pro-Reflex 240 Hz eight camera system (Qualisys Motion Capture Systems, 

Gothenburg, Sweden) and the XSens MTx 

system (XSens Technologies, Enschede, 

The Netherlands) for all subjects. Data was 

collected using Labiew software with a 

customized Labview program (National 

Instruments, Austin, TX). The XSens 

sensors use an algorithm based on an 

Extended Kalman Filter (EKF) that predicts 

future values of angular displacements 

based on the previous readings (Hutchison, 

2011). The EKF helps guard against the 

effects of body motion and temporary 

magnetic disturbances (Sabatini 2006). 

Sensors were placed on thigh, shank, and foot segments. Thigh and shank sensors 

 

Figure 5: Initialization positions to minimize drift 

associated with yaw (IE) and align object axes. 

Projected horizontal component (left) and vertical 

position (right). (Adapted from Hutchison, 2011) 
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allowed for knee motion to be assessed, which shank and foot sensors allowed for ankle 

motion to be assessed. The sensors on the shank were placed superficial to the IT band; 

the sensors on the shin were placed superficially to the mid-shaft of the tibia; and the 

sensors on the feet were placed superficial to 2
nd

 and 3
rd

 tarsometatarsal joints 

(Hutchison, 2011). 

For this study, due to the magnetometer being disabled to minimize EMI 

interference, an initialization technique was used to orient the x and y axes. This 

technique was used to minimize drift within the measurements throughout the data 

collection process. Figure 5.0 shows an example of the initialization technique, which 

was established by Hutchison (2011). The initialization technique is a two-step procedure 

adopted by Favre et al. (2008). One leg is first initialized with all body parts vertical and 

facing forward to allow for a +x axis alignment. During this step, accelerometer and 

rotation matrices were stored for each sensor. Next, the specific leg was abducted so that 

the thigh and shank sensors were oriented with the +y axes, allowing for a component 

pointing upwards. During this step, accelerometer data for each sensor was stored. This 

initialization technique allows for sensor-to-object and object-to-ground reference 

rotational matrices to be established for data collection (Hutchison, 2011).  

Data Analysis 

 Angular and angular velocity data of knee movements were collected, processed, 

and normalized. All data analysis was completed using Excel spread sheets and 

arithmetic functions. The movements selected for analysis in this study were knee 

flexion/extension (FE), varus/valgus (VV), and internal/external (IE) rotations. Angular 
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velocities Gx, Gy, and Gz were obtained along the axes in the 3-D coordinate system 

corresponding to the three angular motions, respectively.  Sensor data to be normalized 

were extracted from shank data which was taken relative to the thigh coordinate system. 

The third gait cycle within each walking trial was selected for analysis to represent 

walking with no acceleration, excluding data for incomplete gait cycles, and the 

flexion/extension graph was used to find instances of heel strike.  Once one full gait cycle 

was obtained, data was normalized to 101 points, representing 0 to 100 percent of a gait 

cycle.  Camera data was obtained similarly, by identifying the third gait cycle and 

normalizing the data to 101 points. For each subject and limb, all trials were averaged to 

find average knee angles and angular velocities.   

Data Comparison 

 Coefficients of variations (COV), linear correlation graphs, and linear regression 

analyses were used to evaluate the procession and well as accuracy for the two systems.  

 The COV, or also known as the relative standard deviation, was used to evaluate 

variability within each system. This measurement shows the variability in relation to the 

mean population. COV’s closer to zero are ideal, which is indicative of a low standard 

deviation, and thus less variability within the data. 

     
 

   
 

 The COV’s were calculated by taking the standard deviation of all trials of a subject’s 

right or left leg, and dividing that value by the average. The COV for each data point was 

calculated and the absolute value was taken. The COV’s were then averaged over all 101 
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data points to obtain an average COV for one subject’s limb. Each trial for each subject’s 

limb was evaluated in the same manner. Data points with a 0 average were excluded. A 

two-tailed, paired t-test was performed in Excel to evaluate if the COVs between the two 

systems were statistically different.  

 Linear correlation graphs were plotted to evaluate the accuracy of the IMU system 

in comparison to the camera system, with the assumption that the camera system data set 

is correct. Ideally the plot would be a straight line with a slope of 1 and would intersect at 

zero, indicating perfect alignment of the data points between both systems. Average 

angular velocities for each limb of each subject were plotted with camera data on the x-

axis, and IMU data on the y-axis. Areas of linearity were visually indicated, and further 

statistical tests were performed to assess what percentages of the gait cycle exhibited co-

linear portions (i.e. data agreement). 

F-test analyses were run on linear regression models in Statistical Analysis 

Software (SAS) to statistically determine areas of co-linearity within the 101 points of the 

gait cycle, and at different intervals of angular velocities. All subject data were analyzed 

as a single data set, treating each trial as independent. The first linear regression analysis 

included the averages of the camera and sensor data for all subjects. A Bonferroni 

correction of 100 was used for this analysis, as there were approximately 100 data points 

per trial. This adjustment involved dividing the P value at which significance was 

detected (0.05) by 100, to avoid the chance of  type 1 errors, or incorrectly rejecting the 

null hypothesis that the data from the two systems are statistically equivalent (Napierala, 

2012.). The new P value for this analysis for rejecting the null hypothesis was P > 
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Table 1: Coefficients of Variation (COV) for angular velocities of the knee averaged over multiple 

trials for each subject and limb. Average COV values for sensor and camera systems in each plane 

of motion shown in bottom row. 

Subject Gx_S Gx_C Gy_S Gy_C Gz_S Gz_C

1 Left 0.3538 2.2861 7.3434 3.6019 3.8340 2.9194

1 Right 0.9708 1.0470 1.2225 2.0552 5.7477 8.7607

2 Left 0.5851 0.4163 3.6110 1.8144 1.9900 7.7443

2 Right 1.1112 0.4678 4.4662 7.2550 2.6733 2.9244

3 Left 0.8443 0.4595 3.2037 3.2861 2.1271 9.1901

3 Right 0.1799 0.0683 0.7645 2.2640 5.1287 1.3502

4 Left 0.0966 0.5587 2.1839 3.8526 1.9860 2.0378

4 Right 2.1493 8.3028 1.6896 12.1414 1.6825 1.5462

Average COV Values 0.7864 1.7008 3.0606 4.5338 3.1462 4.5591

0.0005. The second linear regression analysis looked for co-linearity of angular velocity 

measurements between the camera and IMU systems at 5   ⁄  intervals, ranging from -200 

 
 ⁄  to 200  ⁄  with a P value of 0.05. 

Results  

Coefficient of Variation 

Table 1 shows the average COV values between all four subjects in the study.  

 

 

 

 

 

 

 

 

COV values for knee angular velocity measurements around the axes of 

flexion/extension rotation (Gx), internal/external rotation (Gy), and varus/valgus rotation 

(Gz) were compared for the camera (C) system and the IMU sensor (S) system for each 

subject and trial. Although COV values for the sensor system were lower than those for 

the camera system, t-test results showed that they were not significantly different at a 

significance level of 0.05.  
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The average of all trials, as well as standard deviations for Subject 3 and are 

shown in Figures 6 a-c. This subject was chosen to show areas of agreement within the 

two systems.  
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Figure 6c: Camera vs. Sensor - Gz 
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Figure 6: Comparison of camera system and IMU system of knee angular velocity of 

Subject 3 for 1 gait cycle. Gx (top), Gy (middle), Gz (bottom) 
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Average sensor angular velocities were plotted against average camera angular velocities 

for each subject and trial to evaluate areas of linear correlation for each rotational axis. 

Subject 3 linear correlation graphs are shown in Figures 7 a-c. 
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Figure 7a: Correlation Between Camera and Sensor - Gx 
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Figure 7b: Correlation Between Camera and Sensor - Gy 
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Figure 7c: Correlation Between Camera and Sensor - Gz 

Figure 7: Evaluation of linear correlation between camera and sensor systems for 

Subject 3 for 1 gait cycle. Gx (top), Gy (middle), Gz (bottom). Data points 

represent points within gait cycle and are shown to evaluate clustered area. 
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Gx Gy Gz

0.08-0.12 0.06 0.06-0.17

0.08-0.11 0.19-0.20

0.14-0.17 0.24-0.25

0.24 0.31-0.39

0.32-0.40 0.41

0.65 0.52-0.61

0.86 0.67-0.74

0.99-1.00

Linear Regression Analyses 

 

 

 

 

 

 

 

 

Table 2 shows the portions of the gait cycle that are significantly not different for the 

linear correlation between the camera and IMU system. Figure 8 is a visual representation 

of the areas within the gait cycle in which the two systems are co-linear. The plot is a 

typical flexion-extension knee joint angle curve.  

 

 

 

 

 

 

 

 

Table 2: Percentages of Gait Cycle In 

which co-linearity occurred 
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Figure 8: A Visual Representation of co-linearity between camera and sensor systems plotted 

against a typical knee flexion-extension angle curve 
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Table 3 and Figure 9 show the ranges of angular velocities in which angular velocity 

measurements of the camera and IMU system linearly correlated. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3: Ranges and points of angular velocities at which camera and sensor angular velocities are co-linear 

Gx Gy Gz 

-200 -195 -190 -200 -195 

-175 -170 -175 -185 -175 

-160 -110 -145 -145 

-100 -30 -135 -95 -85 

100 110 -40 -55 

130 175 0 -45 

180 200 85 90 -25 

    105 5 

  

 

130 185 20 

  

 

145 35 

  

 

155 50 

  

 

165 170 75 80 

  

 

185 110 115 

  

 

200 130 

  

   

140 150 

  

   

160 165 

  

   

180 

        190 200 

-200 -150 -100 -50 0 50 100 150 200

Angular Velocities (°/sec) 

Gx

Gy

Gz

Figure 9: Ranges and points of angular velocities at which camera and sensor angular 

velocities are co-linear 
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Discussion 

Table 1 shows that the lowest overall COV values occurred for both camera and 

sensor angular velocities around the flexion-extension plane of motion (sagittal). 

Hutchison found the highest agreement with knee angles between camera and IMU 

systems in the sagittal plane for normal gait trials (Hutchison, 2011). It was hypothesized 

that the COV’s for angular velocity would be lowest in the sagittal plane. The COVs for 

the sensor were lower than COV values for the camera for every plane of motion. This 

was to be expected, and can be attributed to the fact that the sensor gyroscopes directly 

measure angular velocity, whereas the camera system has to integrate position data twice 

to obtain the same output. As hypothesized, the sensor system is more repeatable, and 

less variable within its own system. However, no statistically significant difference was 

seen between the two systems for their values of COVs. Some of the significance that 

may have been detected within the study could have been masked due to the variability 

between trials for each subject. The lack of statistical significance is also likely tied to the 

lack of accuracy in quantitative measurements between the two systems.  

Linear correlation graphs, seen in Figures 6 a-c show the sensor angular velocities 

plotted versus the camera angular velocities. An ideal plot would have a slope of 1, and 

intersect at zero. The only graph that has portions resembling this pattern is Figure 6a, 

which portrays angular velocity around the x-axis (flexion-extension). The other axes 

showed small areas of co-linearity, but were hard to distinguish with the naked eye. There 

were also clusters of data points that may or may not have been co-linear; this indicated a 

need for statistical analysis of the co-linearity of the data. 
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Table 2 shows at what percent of the gait cycle the camera and sensor data are co-

linear. The null hypothesis for this data was that the slope was 1 and had an intercept of 

zero. The P-value was set to 0.0005 using the Bonferroni correction, and all values below 

this were rejected. In agreement with visually observing linear correlation graphs, the 

data was co-linear from 8-12% of the gait cycle for Gx. There were short, intermittent 

occurrences of co-linearity for Gy and Gz, but there was no trend seen among the data 

except for co-linearity at approximately 8-12% of the data for all three angular velocities. 

Figure 8 is a visual representation of areas within the gait cycle in which the two systems 

are co-linear over a typical flexion-extension knee joint angle graph. 

Since a distinct pattern among the data was not seen with the linear regression 

analysis between camera and sensor evaluated against the gait cycle, co-linearity between 

data sets was evaluated at 5   ⁄  intervals of angular velocity values, with the assumption 

there would be greater co-linearity at lower angular velocities. Figure 9 and Table 3 

shows the ranges of angular velocity at which the camera and sensor data were co-linear. 

Again, there was no distinct pattern in these results, and the areas of co-linearity were not 

seen at low angular velocities, as hypothesized.  
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CHAPTER III – CONCLUSIONS AND FUTURE CONSIDERATIONS 

 
 The results of this study show promise for the continued study of IMU systems. 

The data analysis for this study showed that the IMU system measurements of joint 

angular velocities are repeatable. There were limitations in this study that should be 

addressed and considered for future studies.  The study population used in this study was 

small, only having four subject to evaluate. The data comparison was against two 

separate systems that do not obtain data in the same manner, nor are they comparable in 

set up or calibration/initialization technique; in other words, they are both models of 

motion, not direct measurements. Each system will have error due to the fact that the 

markers and sensors are not directly attached to the bone. Soft tissue artifacts are a known 

issue with camera based motion capture systems (Sadeghi et al. 2000), and this is likely 

also the case with IMU systems.  

 The literature has shown that IMUs hold great promise for use in clinical 

laboratory settings, as well as many other applications. However, drift is an issue with 

IMU data collection, and is addressed in the literature surrounding this technology and 

studies conducted using IMUs using specialized software, initialization techniques, and 

algorithms (Tao et al. 2012, Mayagoitia, Nene & Veltink 2002, Favre et al. 2009, 

Gouwanda, Senanayake 2008, Roetenberg 2006, Swanson 1994, Arai et al. 2011, Arai et 

al. 2008). Drift was most likely a source of error in this study, but can be alleviated with 

incorporating more effective algorithms and initialization techniques.  

 For future studies and consideration for using this technology in clinical 

applications, there are many studies that can be conducted. First, a power study should be 
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conducted in order to evaluate the appropriate sample size to be used, as well as 

identifying the minimum angular velocity difference between the two systems to be 

statistically significant. Knowing that human gait is not the same for everyone, one future 

study could evaluate specific motions in which motion capture systems correlate, by 

having subject repeat a statistically relevant number of walking trials and evaluating heel 

strike, toe off, and the beginning of swing phase for agreement. Another study set up to 

evaluate specific motions could have subjects flex and extend their knees and ankles 

while being stationary. Other sensors should also be evaluated for use in human motion 

analysis. There are other IMU sensor systems such as the Memsense Wireless 

(http://memsense.com/products/wireless), that have smaller geometric dimensions, which 

would leave the sensor with a lower profile against the skin, and would likely be less 

prone to drift and soft tissue artifacts. To address the lack of statistical significance 

between the two systems’ COVs, a robot arm validation study should be completed with 

simultaneous data collection with a sensor and camera system. In this study, variability 

was introduced by the subjects, and the robot arm would eliminate that variability. Newer 

algorithms should also be incorporated into any future studies, which would likely reduce 

the effects of drift. 

 Overall, this study along with many others shows the feasibility for IMUs as a 

tool in clinical, laboratory, and rehabilitative environments. By improving the 

technologies used to assess patient outcomes and rehabilitation progress, it is hoped that 

overall patient well-being can be improved. Using low-cost, lightweight, and easy to use 

systems will not only help clinicians, but also patients. Improvements to various filters or 
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algorithms, as well as more refined initialization techniques to reduce the effects of soft 

tissue artifacts and drift may all help with the implementation of IMUs in the clinical 

environment as a replacement to the conventionally used camera-based systems for 

specific medical conditions.   
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Figure 10: Comparison of camera system and IMU system of knee angular velocity for walking gait of 

4 subjects. 
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Appendix A: Camera vs. Sensor Data 
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Figure 11: Linear correlation between camera system and IMU system of knee angular velocity for 

walking gait of 4 subjects. 

Appendix B: Linear Correlation Graphs 
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