
Clemson University
TigerPrints

All Theses Theses

5-2013

Longitudinally Graded Optical Fibers
Alexander Evert
Clemson University, alex.g.evert@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Materials Science and Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Evert, Alexander, "Longitudinally Graded Optical Fibers" (2013). All Theses. 1585.
https://tigerprints.clemson.edu/all_theses/1585

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1585?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Longitudinally Graded Optical Fibers

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Materials Science and Engineering

by

Alexander George Evert

May 2013

Accepted by:

Dr. John Ballato, Committee Chair

Dr. Phil Brown

Dr. Liang Dong



Abstract

Described herein, for the first time to the best of our knowledge, are opti-

cal fibers possessing significant compositional gradations along their length due to

longitudinal control of the core glass composition. More specifically, MCVD-derived

germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55

weight percent GeO2 per meter. These gradients are about 1900 times greater than

previously reported for fibers possessing longitudinal changes in composition. The

refractive index difference is shown to change by about 0.001, representing a nu-

merical aperture change of about 10 %, over a fiber length of less than 20 m. The

lowest attenuation measured from the present longitudinally-graded fiber (LGF) was

82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic

process-induced factors and could be reduced with further optimization. The stimu-

lated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase

in the spectral width, and thus reduction in Brillouin gain, relative to a standard

commercial single mode fiber, over a fiber length of only 17 m.

Fibers with longitudinally uniform (i.e., not gradient) refractive index profiles

but differing chemical compositions among various core layers were also fabricated

to determine acoustic effects of the core slug method. The refractive index of the

resulting preform varies by about ± 0.00013 from the average. Upon core drilling,

it was found that the core slugs had been drilled off-center from the parent preform,
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resulting in semi-circular core cross sections that were unable to guide light. As

a result, optical analysis could not be conducted. Chemical composition data was

obtained, however, and is described herein.

A third fiber produced was actively doped with ytterbium (Yb3+) and fab-

ricated similarly to the previous fibers. The preforms were doped via the solution

doping method with a solution of 0.015 M Yb3+ derived from ytterbium chloride hex-

ahydrate and 0.30 M Al3+ derived from aluminum chloride hexahydrate. The doped

preform was engineered to have two core layers of differing chemical composition,

resulting in both a gradient refractive index profile as well as a gradient acoustic pro-

file. While exhibiting higher loss than the original LGF, the Yb3+-doped fiber showed

slightly better SBS suppression with preliminary calculations showing at least 6 dB

reduction in Brillouin gain.

Lastly, reported here is a straight-forward and flexible method to fabricate

silica optical fibers of circular cladding cross-section and rectilinear cores whose as-

pect ratio and refractive index profile changes with position along the fiber in a de-

terministic way. Specifically, a modification to the process developed to produce

longitudinally-graded optical fibers, was employed. Herein reported are MCVD-

derived germanosilicate fibers with rectangular cores where the aspect ratio changes

by nearly 200 % and the average refractive index changed by about 5 %. Fiber losses

were measured to be about 50 dB/km. Such rectangular core fibers are useful for a

variety of telecommunication and biomedical applications and the dimensional and

optical chirp provides a deterministic way to control further the modal properties

of the fiber. Possible applications of longitudinally graded optical fibers and future

improvements are also discussed.

The methods employed are very straight-forward and technically simple, pro-

viding for a wide variety of longitudinal refractive index and acoustic velocity profiles,
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as well as core shapes, that could be especially valuable for SBS suppression in high

energy laser systems. Next generation analogs, with longitudinally-graded composi-

tional profiles that are very reasonable to fabricate, are shown computationally to be

more effective at suppressing SBS than present alternatives, such as externally-applied

temperature or strain gradients.
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Chapter 1

Introduction

Light has been used as a medium for communication for as long as civilization

has existed. From the smoke signals of pre-history to semaphore flags used for ship-

to-ship communication, most of these methods have been crude, range limited, unable

to carry much information at any given time, and dependent upon line-of-sight.

Two limiting factors have historically prevented the widespread use of optically

based communications networks. The first being the lack of a loss material and the

second being the lack of a light source powerful enough for the long distances involved.

Low loss optical fiber became feasible after a new method of producing glass—the

first in several millennia— was developed by Corning Incorporated in which liquid

chemicals were reacted with oxygen in the presence of heat to form glass [4]. After

the invention of the laser in the 1960s as a practical light source, the development

of optical fiber communications systems became feasible. Subsequent improvements

in both technologies over the ensuing years allowed for the vast network of fiber

that forms the backbone of the internet, cellular phones, and myriad other modern

communications methods to come to fruition.

While optical fiber has many advantages over other communication methods,
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including increased bandwidth capability, and low loss and cost per meter when com-

pared to copper [5], it also has some disadvantages. Optically, if silica is contaminated

with water during processing, a strong hydroxyl absorption peak, as shown in figure

1.1. As a result, any water contamination can be extremely poisonous to the propa-

gating signal (water levels with today’s fabrication techniques are down to the parts

per billion level or lower [6]). Other notable impurities include transition metals in

various valence states. (Fe2+ gives the green-blue color found in older or decorative

glass) [7]. Therefore, the purity of the glass and precursor chemicals during manufac-

ture must be kept very high, adding to capital costs. Standard optical fibers are also

limited by the amount of input power they can accept. Higher input power levels can

result in such deleterious effects such as four-wave mixing (FWM), the combination

of multiple wavelength channels interfering, producing new waves at the sum and dif-

ference beat frequencies, thereby robbing the initial signal of power. Finally, whereas

copper wire can merely be welded to subsequent sections when extra length is needed,

silica fibers must be perfectly lined up when fused to prevent core misalignment that

would otherwise result in the signal being unable to propagate. This necessitates

the use of expensive high-precision equipment and more time-consuming installation

procedures.

An issue with fiber utilization that is related more to its application rather than

production is that of fiber-to-the-home (FTTH) installations for internet networks.

Until recently, it has been economically unfeasible for telecommunications companies

to lay fiber lines to individual households. Indeed, for most United States citizens

not living in large cities, FTTH is still economically untenable due to our relatively

low national population density. Instead, the copper coaxial cables that have been

used for cable television for decades are used to transmit data from households to

local or neighborhood nodes where the signal is then transferred to optical fiber.
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Figure 1.1: Loss in silica optical fiber. The dashed line represents the loss intrinsic to
silica. The solid line shows hydroxyl absorption peaks at ∼ 1.37µm and ∼ 1.23µm.
From [1]

However, with more households subscribing to high-speed internet services and the

higher bandwidth requirements associated therewith (and hence, higher subscription

costs for providers), FTTH becomes more economically palatable [8].

Despite the drawbacks, optical fiber has proliferated throughout the world.

The vast majority of fiber is silica based, with a core doped with several weight

percent germania which serves to increase the refractive index of the fiber core. The

core is surrounded by a lower index cladding, usually pure silica but sometimes doped

with chemicals that depress refractive index, such as fluorine. Refractive behavior is

governed by Snell’s Law, which states that the angle of refraction, θt, is proportional

to the sine of the angle of incidence, θi. Put mathematically, Snell’s Law is

nisin(θi) = ntsin(θt) (1.1)

where ni and nt are the refractive indecies of the core and cladding, respec-

tively. The increased refractive index in the core allows light to be guided through
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the fiber through a phenomenon called total internal reflection (TIR) as opposed to

being scattered. TIR occurs only when the input light strikes the surface of the fiber

within a given cone. The minimum angle from face of the fiber in which the light

will refract and guide through the fiber is known as the critical angle, θc. The critical

angle is the angle at which incident light will transmit along the surface of the fiber.

At this angle of incidence, θt will be 90◦. Rearranging equation (1.1) and plugging in

90◦ for θt gives

sin(θc)(ni/nt) = sin(90) = 1 (1.2)

θc = arcsin(nt/ni) (1.3)

θc is dependent upon the numerical aperture of the fiber (which in turn is

dependent on the difference in refractive index between core and cladding) and is

given by

NA = (n2
1 − n2

2)1/2 (1.4)

While the majority of optical fiber is fabricated to have a consistent refractive

index profile along its length, methods have been devised to modify the refractive in-

dex of an optical fiber at points along its length either permanently (e.g., by modifying

fiber diameter during the draw or by tapering [9]) or transiently (e.g., using temper-

ature [10] or strain [11]). Such perturbations influence the modal or propagation

characteristics of the optical (or acoustic) field in the fiber and, consequently, have

been used to control nonlinearities [12], including chromatic dispersion and soliton

propagation [9], and suppress stimulated Brillouin scattering (SBS) [13] and four-
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wave mixing (FWM) [14], to name just a few applications. For completeness, it is

worth noting that the benefits to suppressing Brillouin oscillations in fibers using

compositional gradients had been conjectured over 30 years ago [15].

Fibers possessing longitudinal changes in composition previously have been re-

alized [16], [17] using vapor-axial deposition (VAD). However, since the composition

was changed along the length of the entire preform, the resultant longitudinal com-

positional gradient in the drawn fiber was very low, just 0.4% over 28 km of length.

While such a length is acceptable for long-haul telecommunication applications, many

other applications for optical fibers exist, such as high energy lasers, where shorter

lengths of fibers possessing higher longitudinal gradients are of interest.

In this thesis, a straight-forward method is developed in order to control-

lably shape the compositional profile of the core along a short length of optical fiber,

presently on the order of 100 m, but conceivably a meter or less depending on the

gradient. By controlling the properties of the fiber along its length through the core

glass composition, rather than dimension, strain, or temperature, a new family of

property-enhanced optical fibers are realized.

1.1 Non-linear Optical Effects (NLOEs)

Most everyday interactions of light with optical systems can be described by

the classical electromagnetic theory. Transmittance and reflectance (as observed in

windows and mirrors, respectively) and refraction (prisms, corrective lenses, the bent

straw in a glass of water) can be described by equations that depend only on the

wavelength of light and its velocity in a given medium [18]. Both reflection and

refraction can be described with simple geometry. The law of reflection states that

reflected light will remain in the plane of the incident light, and the angle of reflection,
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θr, is equal to the angle of incidence, θi. The law of refraction, as described previously,

governs the transmittance of light through two media of differing refractive indecies.

As with reflection, refracted light stays within the same plane as the incident

light [18]. However, higher power and more coherent light sources, such as those found

in lasers, can cause the optical properties of the material through which the light is

propagating to become a function of the light’s electric field intensity. These nonlinear

effects, as they are known, arise due to the inability of electric dipoles in the optical

medium to respond linearly to the light alternating electric field (
−→
E -field). Valence

band electrons drive electric polarization as the atomic nulei and inner-core electrons

are too massive and tightly bound, respectively, to respond to the alternating
−→
E -field

of visible light (roughly 1014 - 1015 Hz). Specifically, silica is transparent in the visible

spectrum but absorbs ultraviolet light due to electronic transitions and infrared light

due to vibrational (multi-phonon) absorption [19].

When a given materially-dependent threshold of intensity is reached, the linear

proportionality of polarization to the electric field begins to fail and nonlinear effects

become noticeable. In such a case when two or more light waves interfere, the principle

of superposition no longer holds, meaning the net displacement is no longer equal to

the sum of the displacements of the individual waves, and nonlinear equations must be

utilized to describe the light’s behavior [18]. In order to properly describe nonlinear

behavior, classical (linear) electromagnetic theory must be extended to accommodate

the observed responses.

The polarization,
−→
P , of a medium due to the presence of an electric field is

generally written as

−→
P = ε0 · χ ·

−→
E (1.5)
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where χ is the susceptibility and ε0 is the permittivity of vacuum (ε0 = 8.854 ·

10−12 C2/N·m2). The nonlinear susceptibility dominates considerations in nonlinear

optics and constitutes the material response to an applied electromagnetic field. When

the variations from linearity are small, the susceptibility in nonlinear media can be

modeled as

χ = χ1 + χ2E + χ3E
2 + · · ·+ χnE

n−1 (1.6)

which, when substituted into 1.5 yields

P = ε0(χ1E + χ2E
2 + χ3E

3 + · · ·+ χnE
n) (1.7)

It should be noted that Equation 1.7 describes polarization strength. In linear

optics, the χ1E term dominates. It is third order effects (χ3E
3) in which stimulated

Brillouin scattering and other effects described herein occur [18].

Second order nonlinear effects result from polarization being proportional to

the square of the electric field. Because there is little to no contribution of second

order effects in isotropic materials or materials containing a crystallographic center

of symmetry (center of inversion), they are not found in standard optical fiber [18].

Nonetheless, there are several second order NLOEs, such as parametric amplification

and frequency mixing [20].

Numerous third order non-linear optical effects (NLOEs) are associated with

silica-based optical fiber, including the aforementioned FWM, and SBS (to be dis-

cussed in detail later). Other effects include Stimulated Raman Scattering (SRS),

Self- and Cross-Phase Modulation (SPM and XPM, respectively), soliton formation,

and modulation instability (MI) [21], [22]. Stimulated Raman scattering is similar to

SBS, but occurs at higher input light power levels and results in much larger frequency

7



downshifts in the scattered light (on the order of 10 THz at 1550 nm) as well as a

wider bandwidth. Self-phase modulation occurs when high level coupled output light

modulates its own phase and either broadens or compresses (depending on the sign

of the chromatic dispersion) the transmitted signal. Thus, the leading edge of the

signal shifts to long wavelengths and the trailing edge shifts to shorter wavelengths.

Cross-phase modulation broadens the signal spectrum when optical intensity changes

due to interactions between adjacent channels, resulting in interference between chan-

nels. XPM can be minimized by ensuring enough physical spacing between channels.

Modulation instability breaks continuous wave signals into a modulated structure.

MI can be viewed as a particular case of FWM where two incident photons are con-

verted into two photons of different frequencies. Finally, solitons are pulses that do

not change shape (broadening due to dispersive effects), as they traverse the fiber

due to a balance between dispersion and nonlinearities. Solitons result in high signal

degradation but can be avoided by operating below the zero-dispersion wavelength

[23]. The lack of signal broadening is very desirable in optical fiber, as this means

that consecutive signals can be sent in more rapid succession without fear that the

signals will mix into a single undefined signal on the receiving end of the fiber.

All NLOEs can be classified into two general categories: scattering effects

(e.g., SBS and SRS) and effects related to the Kerr Effect—the change of the refractive

index of a material as a function of the intensity of an electric field [21]. The Kerr effect

gives rise to several of the secondary effects mentioned previously, such as self-phase

modulation, cross-phase modulation, four wave mixing, and modulation instability

[12]. The change in reactive index arising from Kerr effects can be expressed by

n(I) = n0 + n2I (1.8)
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where n0 is the linear refractive index and n2 includes the nonlinear effects

induced by polarization. Because intensity (I ) is proportional to the square of the

electric field (i.e., I = E2(ω)/2), The Kerr Effect has a quadratic dependence with

the electric field [20]. The Kerr effect can be advantageously exploited for optical

parametric-amplification frequency conversion [24], optical phase conjugation [25],

and pulse compression and regeneration [26].

Non-linear optical effects begin appearing at higher signal powers and/or

longer transmission distances. But unless efforts are made during fabrication to

achieve phase matching, processes resulting in the generation of new frequencies are

not efficient in optical fiber. Thus, the most important NLOEs in optical fiber arise

from nonlinear refraction [1]. When one considers that long distance fiber optic com-

munication systems must cover hundreds of miles with as few amplifiers as possible in

order to minimize cost, the temptation is to compensate by increasing input power.

However, as noted, with higher input power comes a greater likelihood of encounter-

ing NLOEs, thus potentially negating any added benefit of increasing input power

levels. The lowest power threshold effect, stimulated Brillouin scattering, the causes

of SBS, and a novel method of SBS suppression will be the leading subject of this

thesis.

1.2 SBS Causes, Effects, and Suppression

Brillouin scattering is named after Leon Brillouin, the French physicist who

predicted its existence in 1922 [27], although stimulated Brillouin scattering was not

observed until 1964 [28]. Simply, Brillouin scattering results from incident light scat-

tering by acoustic waves. In spontaneous Brillouin scattering, an incident light wave

(the signal being propagated down the fiber) is transformed into a phonon and a
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scattered light wave (Stokes wave) via Bragg diffraction due to slight changes in re-

fractive index caused by minute temperature differences along the length of the fiber

[2]. Spontaneous Brillouin scattering is weak and usually ignored. The process is

considered to be spontaneous because the scattering takes place under conditions

such that the optical properties of the material are unaffected by the incident electric

field of the light. SBS is of interest because it has the lowest threshold power of the

previously described NLOEs. For a 10 km fiber the SBS threshold can be around 10

mW when a continuous wave laser is used as the light source [29].

Stimulated Brillouin scattering is caused by electrostriction, a phenomenon

by which dielectrics (polarizable electric insulators) change their dimensions in the

presence of an electric field [30]. In the case of optical fibers, electrostriction results

from the electric field of the propagating light and generates a moving acoustic wave

in the fiber. This acoustic wave creates a moving variation in the density of the

glass along the fiber length, thereby periodically modulating the refractive index.

This refractive index grating scatters light through Bragg diffraction, a phenomenon

in which light of specific wavelengths is reflected while others continue propagating

normally. Because the gratings are moving at the speed of sound for the material,

the diffracted light is Doppler-shifted to a lower frequency and now propagating in

the backward direction compared to the input light [2]. Typically, the Brillouin

frequency shift is around 10 GHz for silica when the incident light is at a wavelength

of about 1550 nm [31], a standard wavelength for commercial telecommunications.

The backscattered light further interacts with subsequent input light, creating a beat,

shown in figure 1.2, of moving acoustic waves and interference patterns.

The threshold for SBS generation (G) is defined by

G = gIL(0)L (1.9)
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where g is the SBS gain factor, IL(0) is the the intensity of the incident laser

light, and L is the length of the fiber (or other optical medium). For SBS to occur,

G will typically be on the order of 25 [32].

The magnitude of frequency shift depends on the scattering angle, but given

the small core area and long lengths of optical fiber, only the θ = 0◦ and θ = 180◦.

At these angles, the shift is at a maximum and the frequency shift is given by the

equation:

νB =
2nVA
λp

(1.10)

where λp, n, and VA are the pump wavelength, refractive index of the core,

and sound velocity of the material, respectively [33]. The speed of sound through a

material is dependent on the material’s density, ρ, and modulus of elasticity, E0, and

can be determined by:

VA =

√
E0

ρ
(1.11)

The combination of the diffracted light and forward propagating acoustic wave

means the original forward propagating input signal must be limited in its power. If

the SBS threshold is reached, significant attenuation of the propagating signal will

occur. This thesis will describe a new method of SBS reduction that is especially

applicable over shorter distances (< 1 km).

The SBS threshold can generally be increased in two ways [13]:

1. Broadening the line width of the laser by phase or frequency modulation

2. Broadening the Brillouin-gain bandwidth by varying the frequency of the acous-

tic wave along the fiber.
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Figure 1.2: Depiction of the various acoustic and optical waves associated with spon-
taneous (top) and stimulated (bottom) Brillouin scattering. From [2].
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Method number two can be implemented by varying the core radius, chem-

ical composition, temperature, or by introducing a physical strain on the fiber, as

previously cited.

Due to the long lengths and small cross sections of optical fiber, the forward

Brillouin scattering is negligibly weak, so the Stokes wave propagates in the back-

ward direction to the input wave. This backward propagating wave interferes with

the oncoming signal wave, adding energy to the acoustic waves and increasing the

likelihood of additional scattering through Bragg diffraction [2]. The frequencies and

wave vectors of the pump and scattered light, as well as the acoustic fields are given

by:

ΩB = ωp − ωS,−→q =
−→
kp −

−→
kS (1.12)

where ωp,S and kp,S are the optical (angular) frequencies and wave vectors

of the pump and Stokes fields, respectively. The Brillouin frequency, ΩB, and wave

vector of the acoustic field, q, are related by

ΩB = |−→q | · νA ≈ 2νA · |
−→
kp | · sin(θ/2) (1.13)

where νA is the speed of sound in the medium and θ is the angle between

the pump and Stokes fields [31]. Again, due to the geometry of optical fibers, i.e.,

small core diameters and long lengths, the scattered light propagates forward and

backward, i.e., θ = 0 and π.

The interaction of the forward and backward light waves results in amplifi-

cation of the sound wave at the expense of the forward propagating optical wave.

When the power of the input pump reaches a given threshold level, the process be-

comes stimulated, resulting in the process becoming strongly dependent on pump
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power and the conversion from input to backscattered light becoming very efficient.

The specific amount of energy to initiate SBS is dependent upon the material com-

position [16], [17], core radius [34] temperature [10], or strain induced on the fiber

[35]. The threshold for SBS for a continuous wave light source can be approximated

by [36], [37]:

Pth = 21
KAeff
g0Leff

· νB − νL
∆νInt

(1.14)

where K is the polarization factor, Aeff is the effective area of the fiber core,

and νp and νB are the pump light line width and Brillouin bandwidth, respectively.

g0 is the the Brillouin gain coefficient, and Leff is the effective fiber length as defined

by:

Leff =
1− e−αL

α
(1.15)

where α is the fiber attenuation coefficient and L is the fiber length [36].

The SBS threshold (SBST) is generally defined by a fraction, µ, of the output

(backscattered) Stokes power compared to the maximum signal power. The spe-

cific value of µ is not critical, however, due to the exponential dependence of Stokes

power on input pump power. More important is the realization that Stokes power

rapidly increases and approaches the input power so higher order Stokes waves can

be generated [2].

SBS is not always considered to be a deleterious effect. Indeed, many appli-

cations take advantage of SBS for efficient narrowband amplification, provided the

Stokes wave is seeded from the rear (non-input) end of the fiber. Brillouin fiber am-

plifiers (BFAs) have found use in microwave photonics systems [38], shape-adjustable

narrowband optical fiber [39], millimeter wave signals [40], and tunable slow-light
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delay buffers [41].

1.3 Non-circular Fiber Cores

There has been remarkable growth in the design of optical fibers as greater

demands are placed on their performance. Single mode fibers for telecommunications

gave way to dispersion-compensating fibers [42]. Conventional core size and numer-

ical aperture designs for optical amplifiers gave way to large mode area designs for

high energy lasers [43], [44]. Simple core/clad geometries continue to give way to

microstructured and photonic bandgap configurations where the modal properties of

the light as well as light/matter interactions such as SBS [45], [46] can be controlled

to a great degree through fiber design. However, with complexity generally comes

difficulty in manufacturability, hence yield and cost.

Recently, a versatile and straight-forward method was reported for the fabrica-

tion of optical fibers possessing longitudinally-graded compositions; hence longitudinally-

graded optical and/or acoustic properties [47], [3]. Here, a variant of the longitudinally-

graded optical fiber (LGF) fabrication process is employed in order to realize cores

of rectilinear cross-section (i.e. rectilinear core fiber, or RCF), including those with

a dimensional chirp of core width with constant fiber diameter. Conceptually, to

create an LGF, a silica-based preform is fabricated using chemical vapor deposition

methods (e.g., MCVD, OVD, VAD) and is referred-to here as the parent perform.

A rod of glass is core-drilled out through the side of this parent preform. This rod,

or slug, is then sleeved into a fluorosilicate cladding tube, consolidated, and drawn

into fiber. If the radial refractive index profile (for example) of the mother preform

is non-uniform, this is transformed into a longitudinal profile in this manner in the

final fiber, creating the LGF. In order to create an RCF, the side-core-drill diameter
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is larger than the core diameter of the original parent preform such that the resultant

slug contains regions of the silica glass cladding around the core. When sleeved into

the (fluorinated silica) cladding tube and viewed from the longitudinal perspective,

this results in a rectangular core as is shown schematically in figure 2.1 [a-c]. In con-

trast to the fabrication of RCFs, optimal LGF gradients occur where the diameter of

the side-core-drill is equal to or smaller than the core diameter of the parent perform,

or even taken from a plane-stratified bulk material. This gives rise to greater homo-

geneity and maximizes the gradient across the whole final fiber core. In the case of an

RCF a compositional gradient can be achieved (if an LGF parent preform is used) or

the composition can be uniform (if a conventional preform is used). This versatility

therein provides an extra tool in the toolbox of the fiber designer.

In the case where a refractive index (or other) gradient is desired, the parent

perform will likely have a core that is radially-graded. Referring to figure 2.1, the

wide rectilinear axis of the final core corresponds to the longitudinal axis in the

parent perform, and therefore the refractive index distribution along (or parallel to)

this axis would be uniform. However, the narrow rectilinear axis of the final fiber

corresponds to a chord across the parent perform core, perpendicular to the core-drill

axis, which is graded. Therefore, the narrow axis of the rectilinear core of an LGF

will also be graded, but will be symmetric with its refractive index peaking in the

center. Similarly, the outer edges of the narrow rectilinear axis will also have slightly

lower longitudinal gradients than the central region. This results from the fact that

the central region longitudinal gradient (of the final fiber) subtends the core diameter

chord parallel to the core-drill axis, while those of the outer edges subtend smaller

chords parallel to the core-drill axis. In the limit such a chord, decreasing in size

approaching the edge of the fiber mother perform core, would have a diminishing

longitudinal gradient. All of these issues are considerations in the design of an LGF
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RGF.

Whether or not the core has an index or acoustic gradient, as permitted us-

ing the LGF process, such rectilinear core optical fibers have been modeled elec-

tromagnetically [48], [49] and could be useful for a variety of applications including

polarization-maintaining fibers [50], self-filtering of signals in telecommunication [51],

mode conversion [52], biomedical imaging [53], and single-mode ultra-large core area

fibers for high energy lasers [54]. Such fibers also could potentially facilitate efficient

coupling to broad stripe laser diodes. Fibers with non-circular cores have been fabri-

cated previously using pressure-assisted approaches [55] and applying heating profiles

around the preform causing it to deposit soot and collapse non-uniformly [56]. Non-

circular fibers are also commercially-available [57]. However, the added value of this

work lies in the realization of chirped non-circular fibers whose core dimension deter-

ministically changes along the fibers length and, therefore, enhances design flexibility

to core geometry.

Fibers with circular cores are by far the most commonly produced due to

their ease of fabrication and isotropic cross-sectional areas. However, it is possible

(and in some cases desirable) to fabricate fiber cores with non-circular cross sections.

Cores with rectangular [58], [59], square [60], elliptical [61] and double elliptical [62],

[63] cross sections have been produced. D-shaped fibers, which have a circular core

but the cladding is cut to a flat face on one side to within a few microns of the

core-clad interface so that an appreciable optical field exists outside the fiber, have

also been produced [64]. Such irregularly shaped cores can help to overcome some

issues with conventional single-mode fibers, specifically the tendency in circular core

fibers to depolarize light in very short distances, usually just a few centimeters [63].

Additionally, circular core fibers are limited in their high power applications due to

stimulated Raman scattering and thermal lensing [58].
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Rectangular (and square) cores allow for more efficient transfer of heat away

from the core by increasing cross-sectional area of the core/cladding interface along

the fiber length. For an object of a given area, a circular cross section will give the

shortest perimeter and, correspondingly, the smallest surface area of a 3D projection

of that cross section. (By way of example, a circle with an area of π will have a

perimeter of 2π or ∼ 6.28, whereas a square with an area of π will have an perimeter of

4
√
π or ∼ 7.09). This smaller surface area on a circular cylinder corresponds to lower

surface energy and therefore a more stable shape. The high temperatures involved

with drawing optical fiber allow the glass to more easily flow and therefore seek

the more thermodynamically stable circular shape. Thus, the corners of square and

rectangular core fibers will generally be rounded, the degree of which depends on the

set point temperature, the time spent at said temperature, and the specific material

used. Nonetheless, methods have been devised to preserve the desired shapes to a

great extent. So called flat fibers have been developed using an MCVD technique that

utilizes a square preform tube and omits collapse of the tube on the lathe. Instead,

the preform is kept under vacuum during drawing, resulting in both a rectangular core

and fiber [59]. Another method uses the more common cylindrical preform tubes but

a high-temperature ceramic cylinder (such as zirconia) with various patterns cut into

it shields parts of the tube as the burner traverses. The shielding results in uneven

heating of the tube around its inner circumference, which in turn gives an uneven soot

profile that results in non-circular core geometries [56]. Crystalline silicon square cores

have also been made by melting silicon (crystalline) rods inside a square silica (glass)

cladding tube. The lower melting point of crystalline silica allows the semiconducting

metal to take the shape of the cladding tube while being drawn, although during

cooling, the differing melting points and coefficients of thermal expansion can result

in core/clad interface separation [65].
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Square and rectangular cores are primarily useful in applications such as di-

rectional filters and couplers [66] as well as in laser etching applications, such as

solar panel fabrication [67] where the Gaussian intensity distribution can result in

over-penetration near the center (i.e., highest intensity) of the laser’s path and cause

damage to underlying layers not intended to be etched at a given point. This prob-

lem is mitigated with square core fiber lasers due to the more homogenous power

distribution across the core area.

D-shaped fibers can be used in optical sensors, polarizers, fiber couplers, and

tunable fiber components [68]. They are often used in hostile environments due to

silica’s extreme resistance to high temperature and chemical attack. This, combined

with with fiber’s high bandwidth (which results in higher resolution data), makes

such sensors attractive over traditional electronic sensors [69]. Because part of the

field is transmitted outside the fiber, the strength of the field is dependent on the

environment. This characteristic can be useful in chemical sensors that detect the

presence of chemicals, such as methane, by absorption of specific wavelengths [70].

Elliptical core fibers are highly birefringent (refractive index is dependent on

polarization), which lends its use to sensors to measure physical parameters such

a temperature, pressure, and elongation [71]. Elliptical core fibers can propagate

two fundamental modes that correspond to the major and minor axes of the ellipse.

Double elliptical core fibers have been investigated for use as photonics band gap

fibers and surface plasmonic waveguides [64], [62]
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Chapter 2

Fiber Design and Analysis

In this chapter, a straight-forward method is detailed that allows for control-

lably shaping the compositional profile of the glass core along a short length (presently

about 10 - 20 m, but conceivably a meter or less depending on the gradient) of optical

fiber. By controlling the properties of the fiber along its length through the core glass

composition—rather than dimension, strain, or temperature—a series of other use-

ful opportunities present themselves including longitudinally-graded rare-earth doped

fibers or fibers that possess a uniform refractive index but gradient acoustic velocity.

An appendix is provided following the conclusion of chapter 4 to discuss more subtle

considerations such as the influence of longitudinal-gradients on numerical aperture

and fiber attenuation.

A depiction of the general process developed is shown in figure 2.1 and follows

the scheme described by Rice, et al. [47]. Conceptually, a radial refractive index

profile is generated in a silica preform using conventional chemical vapor deposition

methods [72]. This radial profile is transformed into a longitudinal profile by core-

drilling a rod through the side of the preform. This rod, which contains a portion of

the core as well as two end sections of the cladding glass (figure 2.1[b]), is then sleeved
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Figure 2.1: Idealized representation of the process employed. (a) Conventional GeO2-
doped SiO2 preform fabricated with specific radial refractive index profile using a
chemical vapor deposition process; (b) a rod is core-drilled out through the side of
the preform such that radial gradient of the preform becomes a longitudinal gradient
in the rod; (c) rod from (b) is sleeved into a lower refractive index inner cladding
tube such that a index-guiding core/clad geometry is achieved; (d) preform from (c)
is drawn into fiber such that longitudinal refractive index profile is now present in the
optical fiber. Also shown in (d) are the idealized longitudinal refractive index and
compositional profiles of the fiber; which are correlated and are defined by the initial
radial profile of the preform in (a). The vertical green dotted lines in (d) are guides
to the eye.
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Figure 2.2: Illustration (a) showing the workup with the core pictured in the middle,
sleeved inside fluorinated silica (orange, which is then sleeved inside pure silica (outer
gray). The actual preform prior to draw is shown in (b). The core is plainly visible
in the middle of the consolidated preform, the result of tool markings from the core
drilling process.

inside a lower refractive index tube, now acting as the preform, for the subsequent

drawing of the longitudinally-graded optical fiber (LGF). An illustration showing

assembled preform as well as a photograph of the actual preform just prior to drawing

are shown in figure 2.2.

More specifically, a doped SiO2 preform was fabricated using an SG Controls

modified chemical vapor deposition (MCVD) lathe (Clemson University). The pre-

form was fabricated from a pure silica tube that was about 450 mm in length and had

an inner and outer diameter of 17 and 21 mm, respectively. The core region consisted

of four deposition layers. The first three were doped with germanium from a GeCl4
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vapor source. The GeCl4 flow rate was increased by 2 standard cubic centimeters per

minute (sccm) per layer from about 30 sccm for the first layer to about 34 sccm for

the third layer. A constant flow of SiCl4 at about 60 sccm was maintained through-

out the first three layers. The fourth layer was co-doped with GeCl4 at about 100

sccm and SiF4 at about 70 sccm. The use of fluorine-doping in this last core layer

was to investigate whether an additional dopant could measurably influence either

the longitudinal optical or the acoustic properties of the resultant fiber. During the

preform collapse stage, a low flow of SiF4 was maintained in order to lessen fluorine

losses. For completeness, note that the fluorine is too light of an element to be mea-

sured using the energy dispersive x-ray spectroscopy analytical methods described

below. Accordingly, the fluorine is not discussed with respect to the chemistry of

the core but could influence both the optical and acoustic behavior. However, since

the fluorine level is fairly low, based on the SiF4 flow rates, its impact on the perfor-

mance of these proof-of-concept fibers is not expected to be large compared to that

of the GeO2 doping. The radial refractive index of the resulting preform was pro-

filed using a Photon Kinetics PK2600 preform analyzer at 10 mm increments. The

refractive index profile at the location of the core slug used for drawing is shown

in figure 2.3. Scans started at a position of 50 mm and ended at 260 mm as mea-

sured from the preform tip. Rods comprising the 1.7 mm diameter core then were

transversely-drilled through the full diameter of the preform (Ceramare, Piscataway,

NJ; later cores drilled at Cidra Precision, Wallingford, CT) at the same locations as

index profiled on the PK2600. Surface finish of the initial core slugs was subsequently

marginally improved (Great Lakes Glasswerks, Painesville, OH) however the surface

quality was still relatively poor upon drawing. Later core slugs showed yet better

surface finish without subsequent attempts at polishing.

One of the side-core-drilled slugs (figure 2.4) was sleeved into a fluorinated
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Figure 2.3: Refractive index profile of the core used to draw the initial longitudinally
gradient fiber.
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Figure 2.4: Core slug from initial preform. Note that the core does not extend across
the entire diameter of the slug.
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silica cladding tube (either Fluosil or F320, as will be discussed in greater detail

below), which then were sleeved inside a 10 mm inner diameter by 26 mm outer

diameter F300 silica tube (Hereaus, Buford, GA). The fluorinated silica inner cladding

tube provides a lower refractive index relative to the longitudinally-graded core slug,

in both doped and un-doped regions, to enable light-guiding in the resultant fiber.

The outer pure silica cladding tube, though not necessary in theory, was employed

since fluorinated silica tubes with the desired core/clad ratio were not available. Pure

silica rods, whose diameter matched well the inner diameter of the fluorinated silica

inner cladding tube, were placed above and below the doped-SiO2 core slug in order to

make the entire fiber waveguiding and to more easily identify the regions of interest.

The end faces of the silica rods and core slugs were polished with 30 µm and 5 µm grit

polishing pads. In order to prevent motion and sagging of the individual pieces of glass

comprising the preform during fiber fabrication, the entire billet was consolidated at

about 2300◦C on the lathe under a vacuum of roughly 1.5 inches of mercury.

As noted above, the side-core-drilled slugs were sleeved inside either a Fluosil

or F320 (Hereaus, Buford, GA) cladding tube to enable waveguiding. Both Fluosil

and F320 can be made with a range of fluorine doping levels and, concomitantly, re-

fractive indices. For those employed here, the Fluosil and F320 inner cladding tubes

had refractive indices that were 0.0058 and 0.001 below that of silica, respectively.

Two otherwise identical preforms were constructed, one from each type of fluorinated

silicate (Fluosil and F320) glass in order to control the numerical aperture and de-

termine to what extent this influenced the fabrication and performance of the fiber.

The fully-consolidated preforms, of 25.7 mm (containing the Fluosil) and 27.06 mm

(containing the F320) total diameter, were drawn on a Heathway optical fiber draw

tower (Clemson University) at a temperature of about 1950◦C to a 125 µm diame-

ter fiber. The fibers were coated with a standard single coating (Desolite 3471-3-14,
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DSM Desotech Inc., Elgin, IL) to a final outer diameter of about 235 µm. The total

length of fiber drawn was nearly 1700 m, which was done to ensure that the entire

longitudinally-graded core region was drawn. It was found that after consolidation,

the Fluosil preform had developed small bubbles around the core, the result of fluorine

outgassing from the glass. As a result, the fiber was unable to guide light; however, it

was still usable in terms of determining germania content along its length, which was

the primary goal at this stage. The preform using F320 as cladding glass consolidated

without any such flaws. As such, all subsequent preforms were manufactured using

F320 cladding in a silica tube.

Electron microscopy of selected preform and fiber samples was performed us-

ing a Hitachi S-3400 scanning electron microscope (SEM) operating at 20 kV under

variable pressure and a working distance of about 10 mm. Elemental analysis was

conducted using a Hitachi TM-3000 tabletop electron microscope operating at 15 kV.

Chemical composition of the initial LGF was determined by Energy dispersive

X-ray spectroscopy (EDX or EDS), an analytical method that uses X-rays or high-

energy electrons to excite electrons to higher energy levels. Upon returning to the

ground state, the electrons emit X-rays that are characteristic to their respective

elements. Fiber samples were first subjected to approximately 30 EDX point scans

(scans which give the chemical composition at a selected point). Placement of the

points ensured the center of the fiber and surrounding areas were scanned. Point

scans were set to collect data for 35 seconds per data point. After all point scans

for a sample were completed, a map scan of the entire surface of the cross-sectional

area of the fiber was allowed to run for approximately 15 minutes. Fiber samples

were taken in 10 m increments. On subsequent draws samples were taken in 20 m

increments in order to decrease the time required to find the region of interest. When

the doped core was found (i.e., germania was detected) an additional 5-7 point scans
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Figure 2.5: Refractive index profile of the as-made MCVD preform at the position
where the core slug was side-drilled out (dashed red line) and the average germania
[GeO2] concentration in the core measured at a variety of positions along the length
of the as-drawn fiber (solid blue line; specific data points shown as diamonds). Note
that the germanium content along the length of fiber follows the refractive index
of the as-made preform. The circles and arrows denote the corresponding ordinate
and abscissa for each curve. Also provided, in the shaded areas, are examples of
length-wise GeO2 gradients in the as-drawn fibers of about 0.55 and 0.25 weight %
GeO2/meter.
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were conducted on the core. The data shown here represents the maximum germania

content measured.

A comparison of the refractive index of the original core and the longitudinal

change in germania content is shown in figure 2.5. Spectral attenuation measurements

were conducted on the fiber drawn using F320 cladding using a cut-back method on

a Photon Kinetics PK2500 (Beaverton, OR) over a range from 850 nm to 1700 nm in

approximately 5 nm steps. The refractive index profile at arbitrary position along the

length of the fiber was measured at 980 nm by Interfiber Analysis Inc. using a spatially

resolved Fourier transform technique [73] in which the fiber is placed transversely in

the sample arm of a Mach-Zehnder interference microscope and a translating wedge

is used to introduce a known phase shift between the two interferometer arms. The

uncertainty in the measured refractive index value is no greater than ±1×10−4 based

on comparisons with NPL reference fiber. However, for most situations, i.e., conven-

tional core sizes and index differences relative to silica, ±1 × 10−4 is a conservative

upper bound with ±2× 10−5 more likely [74].

The experimental apparatus used to measure the Brillouin gain spectrum

(BGS) is a heterodyne system [75] similar to that described in [76]. In short, the

system launches a narrow-linewidth signal at 1534 nm through a circulator and into

the fiber being tested for which a measurement of the BGS is desired. The Stokes

signal generated in the test fiber passes back through the circulator and is analyzed

with a heterodyne receiver. A characteristic signature from the circulator fiber is

typically observed in the measured spectra. The system utilized for these experi-

ments has been slightly modified over figure 2 of [31] for improved sensitivity. In this

case, specifically, a fiber Bragg grating-based tunable band-pass filter was inserted

after the final fiber amplifier stage, and was centered at the testing wavelength. One

additional fiber amplifier stage was used to boost the signal level before launch into
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the photo-receiver. As a control, a standard single mode fiber (SMF-28TM , Corning

Incorporated) was used. SMF-28TM has approximately a silica core doped with about

4 mole percent GeO2 (∼6.7 weight percent GeO2), yielding a core index difference

with respect to the cladding of about 5×10−3, and a core diameter of about 8.2 µm.

2.1 Longitudinally Uniform Refractive Index Pre-

form

As explained in Chapter 1, one method of suppressing SBS is by varying the

acoustic profile of the fiber. In this step, two core layers with significantly differing

chemical compositions were deposited. The preform used was approximately 475 mm

long with an inner diameter of 19 mm and an outer diameter of 25 mm. The larger

preform tube was used to allow for a greater mass of soot to deposit during production

and consequently, a larger core resulting after collapse. Fabrication was performed in

a similar manner as previously described with two alterations. First, the number of

core layers was reduced to two to decrease core complexity and more easily determine

the properties of the two cores. The first (outer) layer was comprised of silica and

germania with the respective precursor gases SiCl4 and GeCl4 flowing at 40 sccm

and 80 sccm. Seven deposit passes were done for this layer to increase soot and, by

extension, core thickness. The inner core layer had a higher germania content that

was balanced with fluorine for index depression. The precursor gases in the inner

core were flowing at 90 sccm (SiCl4), 100 sccm (GeCl4), and 30 sccm (SiF4). The

refractive index profile for the resulting preform at various locations si shown in figure

2.6. The second alteration from the previous preform was a step added to the process

for solution doping prior to consolidation of the outer core layer.
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Figure 2.6: Refractive index profile of the longitudinally uniform refractive index
core preform as measured at various locations along its length. The refractive index
changes by approximately -0.0002 from the outside to the beginning of the central
dip.

Rods of about 2 mm diameter (smaller diameter than the core slugs drilled

from the original preform) were core-drilled through the full diameter of the preform

(Ceramare, Piscataway, NJ) and sleeved inside a F320 fluorinated silica cladding tube

The consolidated preform was drawn under the same parameters as the previous

preform.

An attempt was made to dope the outer core layer with ytterbium, but after

the perform was completed, it was found that the solution used was too weak and thus

usable amounts of ytterbium were not incorporated into the glass. During the drying
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Figure 2.7: Photograph of a representative core slug drilled from the flat-index core
preform.

steps, it was found that fluorine had been flowing through the tube and may have

been incorporated into the soot, influencing the refractive index of the outer core as it

had not yet been sintered. Regardless, because the two layers had distinct, different

chemical compositions regarding silica and germania and because the refractive index

profile was flat across the entire core width, it was decided to continue work with the

resultant preform.

After fabrication, the preform was core-drilled (Cidra Precision Services, Walling-

ford, CT). The resulting slugs were 2 mm in diameter and approximately 12 mm in

length. While showing improved surface quality when compared to the previous core
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slugs (figure 2.7), the surface was still not pristine. When looked at down their

length, it became evident that the cores were not perfectly circular, the result of the

slugs being drilled off-center from the preform. Thus, semi-circular core shapes were

produced during subsequent draws.

2.2 Ytterbium Doped Preform

The final preforms produced were doped with Yb3+ (sourced from 99.9999%

purity YbCl3 ·6H2O) to produce active fiber. The substrate tube used was approx-

imately 450 mm in length with an inner diameter of 19 mm and an outer diameter

of 25 mm. This preform was engineered to have two core layers of varying chemical

composition. The outer core was produced by a single pass using SiCl4 GeCl4 flow

rates of about 400 sccm and 80 sccm, respectively. The inner core layer was deposited

in five passes of lower gas flows. SiCl4, GeCl4, and SiF4 were run at rates of 88 sccm,

100 sccm, and 25 sccm, respectively. The addition of fluorine was meant to coun-

teract the increased proportion of GeCl4 compared to SiCl4. A solution doping step

was conducted after the deposition (but prior to consolidation) of the first core layer.

The second (inner) core layer was not doped. Additionally, the outer layer was made

thicker to ensure that a larger proportion of the core contained Yb3+. The solution

used was made with 0.015M YbCl3 and 0.30M AlCl3·6H2O for a total volume of 250

ml. The solution was co-doped with aluminum to increase the solubility and pre-

vent ion clustering of the rare earth, without which decreased nonlinearity by cross

relaxation would have resulted [77], [78].

Doping followed standard solution doping technique [79], [80], [81]: during

preform production, after soot deposition but prior to consolidation, the preform

was removed from the lathe and the solution was slowly pumped into the preform
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with a peristaltic tube pump. Once the soot was completely saturated in solution, the

preform was left to soak for one hour, after which time the solution was slowly drained

from the preform. The preform was allowed to dry overnight in a low flow (∼ 5 l/min)

nitrogen atmosphere before being returned to the lathe and further dried under an

atmosphere of oxygen, helium, and chlorine, with the oxy-hydrogen burner at a low

temperature. The soot was then consolidated and preform production finished as

per usual MCVD operation. Before collapse, a second soot layer was deposited with

fluorine to counteract higher levels of germainia. Due to the presence of aluminum and

ytterbium ions, the refractive index of the outer layer was elevated beyond what would

be expected from germania alone. Time constraints prevented further optimization

of the design to produce a preform with an invariant refractive index profile across

the two core layers. The refractive index profile of the final preform can be seen in

figure 2.8.

While other methods of incorporating rare earths into fiber preforms have been

reported [82], [82], [83], solution doping remains standard due to its versatility and

ease. Numerous rare earth ions have been used in fiber fabrication, including erbium

[84], praseodymium [85], neodymium [86], and ytterbium [87]. Erbium is the most

commonly used active fiber dopant because it emits at wavelengths commonly used in

telecommunications [88] and has high quantum efficiency up to ∼ 7 wt%, the upper

limit of erbium incorporation before ion clustering becomes unavoidable [89]. For

this thesis, ytterbium was chosen as the dopant due to a wide variety of beneficial

optical properties beyond communications. Historically, ytterbium has been used

primarily in lasers [90], but more recently have found applications as fiber amplifiers

[91]. The benefits of ytterbium when compared to erbium include broad absorption

and emission bands (∼ 975 nm - ∼ 1200 nm), high output power and conversion

efficiency, long lifetimes (on the order of 1 ms), and a simple energy diagram; the
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ground state 2F7/2 and excited state 2F5/2, separated by about 10,000 cm−1, are the

only energy levels associated with ytterbium pumping. [92], [93], [94].
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Figure 2.8: Refractive index profile of the longitudinally uniform refractive index
core preform as measured at various locations in 10 mm increments along its length.
The outer and inner core layers can clearly be distinguished by the varying refractive
indecies.
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Chapter 3

Results and Discussion

3.1 Optical Properties

The correlation between the radial refractive index profile from the original

preform and the average germania concentration along the length of the longitudinally-

varying optical fiber is shown in figure 2.5. There are several different longitudinal

gradients in this particular fiber as a function of length. Emphasized in figure 2.6 are

two such gradients where the measured GeO2 content changes by 5.46 % or 2.45 %

over a 10 meter length yielding gradients of 0.546 %/m and 0.245 %/m, respectively.

These values are higher by a factor of about 1900 times the gradients achieved in [17]

by virtue of the fact that the compositional gradient is built into a smaller region of

the preform and not the entire rod.

There are several points of interest in figure 2.5. The central dip in the index

profile of the original preform results from burn-out of the germania and fluorine.

The use of fluorine during the collapse of the original preform leads to the negative

index values, relative to pure silica, that are observed. Additionally, while the GeO2

level in this fiber is higher than that in SMF-28TM (∼ 8.4 versus 6.7 weight percent),
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the fluorine co-doping yields an index difference that is essentially equivalent (+0.005

relative to pure silica).

Figure 3.1 provides the refractive index profiles, relative to silica and measured

at 970 nm, at two different locations over an arbitrarily chosen 20 m length of the LGF.

As can be seen, the index difference changes by about 0.001, representing a numerical

aperture change of 0.013 (∼ 13%), over a distance of only 16.6 m, verifying that the

fiber indeed possesses a gradient in refractive index along its length. The numerical

aperture, NA, governs the modal properties of the fiber. For the fibers developed

in this work, minimum NA is defined by the fluorinated silica inner cladding and

the pure silica ends of the side-core-drilled slug. Accordingly, the NA is 0.054 for

these pure silica core lengths of fibers drawn using the F320 inner cladding tube. The

maximum NA then would be defined by the fluorinated silica inner cladding relative to

the refractive index associated with the maximum germanium content portion of the

longitudinally-varying optical fiber. Accordingly, for this specific fiber, the maximal

change in numerical aperture is 0.067 (0.120 maximum versus 0.054 minimum).

The lowest loss of the LGF was 82 dB/km at a wavelength of 1550 nm (fig-

ure 3.2). Thus, there would be less than 1 dB of loss over a 10 m segment where

the germania gradient is greatest. A very large hydroxyl ion absorption peak was

observed at 1380 nm indicating water contamination, likely due to the wet-cutting

and grinding of the core-drilled slugs that then were re-sleeved into the fluorinated

cladding tube. Regardless of source at this proof-of-concept level, the measured losses

are dominated by extrinsic factors since the spectral attenuation of the as-prepared

(prior-to-side-core drilling) original preform had a minimum value of about 23 dB/km

at a wavelength of 1550 nm.

Since material composition influences both the optical and acoustic properties

of the fiber, Brillouin gain spectra (BGS) were measured from both ends of the same
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Figure 3.1: Refractive index profiles at 0.3 and 16.9 m positions along a 20 m length
of the longitudinally-graded optical fibers. Profiles were taken at a wavelength of 970
nm.
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Figure 3.2: Spectral attenuation of the longitudinally-graded optical fiber and the
as-made original MCVD preform. The minimum loss of the longitudinally-graded
fiber was about 82 dB/km, whereas for the original preform, the minimum loss was
about 23 dB/km.
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Figure 3.3: Stimulated Brillouin scattering spectrum of the longitudinally-graded
fiber, interrogated from both ends (arbitrarily A and B), and a conventional single
mode fiber (Corning SMF- 28TM) measured at a wavelength of 1534nm.

length of the LGF (ends arbitrarily designated as A and B) and compared to that from

a conventional (Corning SMF-28TM) optical fiber. The results are shown in figure

3.3. The LGF spectra are normalized roughly to the highest-frequency peak, with

reasoning to be discussed later. The multiple peaks observed in the LGF are believed

to be modes of the acoustic waveguide and the peak near 11 GHz is a contribution

by the measurement apparatus.

Due to the background loss at the test wavelength (∼ 80 dB/km), there is

slightly less pump power to drive Brillouin scattering from the fiber end opposite (far-

end) the optical launch end (near-end). The back-scattered Stokes signal from the
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far-end also experiences more total loss than the signal scattered from the near-end.

Thus, the Stokes signal from the far-end contributes less to the measured spectrum

than that from the near-end, which can be used to explain the observed differences in

the Side A and Side B measurements. Looking just at the L01 mode (∼ 10.71 GHz),

since there is relatively more signal at lower frequencies for Side A than Side B, it can

be concluded that Side A has more GeO2 than Side B. The structure in the spectrum

probably results from a non-linear length-wise change in germania content in the test

segment.

The measured spectral width (FWHM) of the SMF-28TM fiber is about 29

MHz. In contrast, the spectral width (FWHM) of the LGF is approximately 80

MHz, representing a broadening by about 50 MHz, or increase of about 4.4 dB. In

order to compare the Brillouin gain coefficients, the acousto-optic overlap integral

(i.e., the relative strength of higher-order acoustic modes, or HOAMs) must be taken

into account. There is only one weak HOAM (L02) observed for the SMF-28TM ,

whereas there is a significant presence of HOAMs in the LGF. Coarsely integrating the

spectra such that the total integrated Brillouin gain is conserved [95], not including

the contribution by the apparatus, the LGF has a Brillouin gain coefficient about

6.7 dB below that of the standard commercial single-mode longitudinally-invariant

optical fiber. Additional detail, including a notional design for 10 dB SBS suppression,

is provided in appendix A.

The presence of these modes is most likely due to perturbations from core

circularity arising from the core-drilling process, and not from an intrinsic refractive-

index dip usually associated with Ge-doped fibers. As noted above, the results on

these initial fibers should be considered, at best, proof of concept. As with any nascent

effort, much work remains towards achieving higher performance and complexity. The

purpose of this section is to offer recommendations as to next steps, as well as potential
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applications that could gain benefit from the findings of this work.

Even though a 20 m length of the LGF would only impose an added loss of <

2 dB, further reduction in attenuation is warranted. The measured losses in the LGF

(figure 3.2), with respect to the as-fabricated initial preform, likely result principally

from the core-drilling and rod/tube stacking process. That said, the subsequent

polishing of the core-drilled slugs was minimal and as such any improvement in surface

quality, and therefore loss reduction, would be minimal. It is worth noting that a

wide variety of specialty optical fibers used today employ core-drilling and stacking

processes (e.g., boron stress rods in polarization-maintaining fibers, rod/tube stacking

in photonic crystal, and microstructured optical fiber), and so these general processes

are amenable to higher quality, lower loss fiber.

Additionally, it should be possible to both increase the gradient and change its

longitudinal shape, both by enhanced doping and preform design. The present fiber

exhibits a maximum germania gradient of 0.546%/m. Given the generalized process,

higher doping levels within smaller core size initial preforms, sleeved inside narrower

wall-thickness cladding tubes, would be effective in enhancing the gradient. Very high

germania-content fibers have been fabricated using similar MCVD processes [96], and

so significant opportunities exist for greater doping levels, hence greater longitudinal

gradients (i.e., shorter LGF lengths). Additionally, multiple side-core-drilled slugs

can be sequentially stacked atop one another in the secondary preform to permit one

draw to yield multiple LGF sections. Further, if scaled to preform dimensions typical

of commercial preforms (> 300 mm [97]), then the same process would yield nearly

1 km of LGF.
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3.2 Longitudinally Uniform Index Core

The longitudinally uniform index fiber, once drawn, resulted in ∼ 90 m of

doped core. The maximum change in refractive index of the parent preform is ap-

proximately 0.0051, relative to silica. The change in chemical composition along the

length of the fiber is shown in figure 3.4 and compared to the refractive index profile of

the parent preform. The outer core layer has a slightly lower germania content. than

the inner core; approximately 3.5 wt.% germania in the outer core layer compared to

4.1 wt.% germania in the inner core. The maximum germania content change along

the fiber length is 0.228 wt.%/m and the fiber shows a maximum numerical aperture

of 0.128. Between the two core layers germania content changes by 0.6 wt.%, or 0.003

wt.%/m. As with the original preform, the central dip in the refractive index profile

is the result of fluorine incorporation and germania burnout during collapse.

A small section of the parent preform was cut and mounted for traditional

drawing (i.e., invariant refractive index and composition along the fiber length). Spec-

tral attenuation measurements were taken, the results of which can be seen in figure

3.5. The fiber shows a large absorption peak near 1375 nm indicating hydroxyl con-

tamination, most likely from incomplete drying after a solution doping attempt. The

fiber does show decreased loss compared to the initial LGF fiber, with a minimum

loss of about 3.5 dB/km at 1525 nm.

The core drilling for this preform (Cidra Precision, Wallingford, CT), resulted

in core slugs that were 2 mm in diameter and approximately 12-15 mm in length. The

reduced diameter compared to the initial LGF core slugs was intentional, with the

aim of ensuring the core of the parent preform took up the entire diameter of the core

slug. The reduced diameter necessitated a change to the design of the LGF preform

assembly. Namely, more layers of cladding glass (figure 3.6) were required to achieve
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Figure 3.4: Refractive index profile of the as-made longitudinally uniform index pre-
form at various locations (solid lines) and the average germanium [Ge] concentration
in the core measured at a variety of positions along the length of the as-drawn fiber
(red squares).
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Figure 3.5: Spectral attenuation profile of the traditionally drawn RI-invariant pre-
form.
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Figure 3.6: Image showing the increased number of layers of cladding glass required
for the RI-invariant LGF preform. The same structure was used for the subsequent
Yb3+ LGF preform.

the outer diameter required for single mode propagation. Other than this change

in the number of cladding layers, the assembly and consolidation of the invariant-RI

LGF remained the same as previously described. Unfortunately, the core slugs were

drilled off-center from the centerline of the preform, resulting in semi-circular cores

(figure 3.7). Due to their shape light was unable to guide and as a result, we were

unable to conduct SBS and spectral attenuation measurements of the RI-invariant

LGF.
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Figure 3.7: SEM micrograph of the core of the RI-invariant LGF showing the semi-
circular shape of the core.
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3.3 Ytterbium-doped fiber

The final preform was produced similarly to the RI-invariant preform in that

there were two core layers of differing chemical compositions. While the intent was

to again produce the same refractive index across the two layers, the addition of

rare earth and aluminum ions increased the refractive index of the outer core and

time constraints prevented altering the recipe to achieve an invariant refractive index

between the two core layers. The refractive index profile and chemical composition

data can be seen in figure 3.8. Again, the concentration of germania is shown to

change along the length of the fiber and between the two core layers. The numerical

aperture of the resulting fiber was 0.176, as measured from the peak refractive index

and the germania content has a maximum longitudinally change of 0.15 wt%/m. The

diameter of the core of the parent preform was 2.4 mm to ensure the entire diameter

of the core was included in the core slug. Upon returning from core drilling, it was

found that the core slugs were drilled over the center of the preform and did indeed

contain doped core material along the entire diameter.

Attenuation in the fiber drawn from this preform was high in both the tra-

ditionally drawn fiber and the LGF (figure 3.9). The lowest loss measured in the

traditionally drawn Yb3+ fiber was 88.4 dB/km at 1645 nm, while the lowest loss in

the LGF fiber was 192 dB/km at 910 nm. The attenuation in the traditionally drawn

fiber at 1550 nm was 121 dB/km, approximately 33 % higher than the initial LGF.

The Yb3+-doped LGF fiber showed 1494 dB/km loss at 1550 nm.

Both the traditionally drawn fiber and LGF fiber showed large levels of loss

although the hydroxyl absorption peaks are not as intense (relative to the peak loss)

as in previous fibers. Even though the preform core fully occupied the core slug, upon

drawing it was found that although the cores were rounder than had previously been
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Figure 3.8: Refractive index profile of the parent Yb-doped preform and [Ge] content
along the length of the resulting LGF.

50



Figure 3.9: Spectral attenuation of a section of the Yb-doped fiber drawn traditionally
(red) compared to a 20 m Yb3+-doped LGF section (blue).
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Figure 3.10: SEM micrograph showing the core at 465 m from the end of fiber col-
lection.

seen, the core cross sections were not perfectly round (figure 3.10).

The Yb3+ LGF showed SBS suppression at least as good as the original LGF

(figure 3.11). Due to high loss, single measurements could not be taken of the entire

fiber, however measurements from both ends of the fiber characterizing different por-

tions suggest that the Yb3+ LGF reduces Brillouin gain by at least 6 dB and as much

as 8 dB. Full characterization of this fiber is still ongoing.
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Figure 3.11: SBS spectrum of the Yb-doped fiber.
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3.4 Rectilinear Core

Figure 2.4 provides a photograph of the actual side-core-drilled slug employed

where the round core from the mother preform is clearly observed in the center

surrounded by the extra cladding glass. Figure 3.12 shows a representative SEM

micrograph of the resultant fiber cross-section with rectangular core. This approach

yields fibers that possesses a dimensional change in core diameter and aspect ratio; a

schematic of this is shown in figure 3.13. Given the circular cross-section of the initial

MCVD-derived core within the side-drilled slug, the variation in the rectilinear core

width, w, with distance drawn into the core, x, goes as 2·(1 − x2)1/2; see figure 3.13

[d-e].

Figure 3.14 shows the measured refractive index profiles, taken at orthogonal

directions about the cross-section, located seven meters apart at an arbitrary position

along the drawn fiber. The aspect ratio of the core would be determined by the

maximum aspect ratio of the slug that is side-drilled out of the initial preform and

conceivably could take on a range of geometries. In the particular profiles shown in

figure 3.14, the ratio between the full-width at half-maximum (FWHM) diameter of

the major and minor dimensions are about 40 % [figure 3.14(a)] and 60 % (figure

3.6[b)], respectively. Further, as expected, based on the figure 3.13[c] schematics,

one rectangular dimension does not change with position (figure 3.14[c]) while one

does ([figure 3.14(d)]. Additionally, the average refractive index values change by

about 5 % in both cases over the 7 m analyzed here proving that the fiber is both

dimensionally- and optically-chirped with position along the fiber.

In order to further detail the change in core dimension with longitudinal fiber

position, figure 3.15 provides several scanning electron micrographs of said core along

a longer length of fiber (∼100 m). In each image, the level of magnification is the
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Figure 3.12: A representative SEM micrograph of the rectilinear core optical fiber.
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Figure 3.13: A representative SEM micrograph of the rectilinear core optical fiber.
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Figure 3.14: Refractive index profiles along major and minor dimensions at selected
positions along an arbitrary-chosen 10 meter section of the rectilinear core optical
fiber: (a) relative position 0.3 m and (b) 7.3 m. Comparison of the refractive index
profiles between the two locations (0.3 m and 7.3 m) of the (c) major axis and (d)
minor axis.
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Relative position
along fiber (m)

Major axis
dimension
(µm)

Minor axis
dimension
(µm)

Aspect Ratio

0 11.35 4.63 2.45
15 11.14 4.66 2.39
80 12.54 3.34 3.75
85 12.15 2.87 4.23
90 7.82 1.7 4.60

Table 3.1: Compilation of measured core dimensions along the length of the chirped
rectilinear fiber.

same and clearly observed are the classic mirror, mist, and hackle fracture regions

from the cleave providing evidence for good strength and a high quality core/clad

interface. Also observed is that the core dimensions change while the outer fiber

diameter does not. So while the figure 3.14 refractive index profiles verify the LGF

nature of these fibers over a short length scale, the figure 3.15 images further validate

their overall chirped RCF (and slight LGF) nature. Table 1 compiles the major

and minor axes dimensions and computed aspect ratio, which is seen to change from

about 2.4 to 4.6; a change of about 190 %. Figure 3.15(d) compares the measured

(and normalized) minor axis core sizes (Table 1) with position along the fiber with

the 2·(1-x2)1/2 dependence noted above and shown graphically in figure 3.13(e). As is

observed, the measured and expected normalized values are in very good agreement.

For completeness, and practical consideration, the attenuation of the rectilin-

ear core fiber was measured and is shown in Figure 3.16. Clearly further improvements

are needed to reduce the absorption due to hydroxyl (OH) species at about 1380 nm.

At that wavelength, the losses in the rectilinear fiber are essentially equivalent to

those in the original LGF. That said the measured losses away from the extrinsic OH

band are about 50 dB/km.

Interestingly, this approach yields fibers that possesses a uni-dimensional change
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Figure 3.15: (a-c) Scanning electron micrographs of the rectilinear fiber at arbitrary
positions along the fibers length. (d) Comparison between measured (and normalized)
core size with position along the fiber and the expected dependence described in
Figures 2(d) and 2(e).
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Figure 3.16: Measured attenuation spectrum for a 16 meter length sample of the
rectilinear core optical fiber. Also included is the loss spectrum from the original
longitudinally-graded optical fiber [3].
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in core diameter while all other dimensional attributes remain constant (i.e., the as-

pect ratio of the rectilinear core changes with length along the fiber). Given the

circular cross-section of the initial MCVD-derived core within the side-drilled slug,

the variation in the rectilinear core width, w, with distance drawn into the core, x,

goes as 2·(1-x2)1/2.
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Chapter 4

Conclusions

4.1 Experimental Conclusions

A new and versatile method for fabricating optical fibers with a longitudinal

composition gradient was developed. MCVD-derived germanosilicate fibers were fab-

ricated with a gradient of up to about 0.55 weight % GeO2 per meter and refractive in-

dex difference of about 0.001 over lengths of less than 20 m. The spectral attenuation

was 82 dB/km at a wavelength of 1550 nm, which resulted from extrinsic factors and

should be diminished with continued optimization. The MCVD-derived germanosili-

cate LGFs exhibited a Brillouin spectral width broadened by about 3 MHz/m relative

to industry standard fibers, though broadening as large as 52 MHz/m is possible with

further reduction in fiber attenuation. These gradients enable the possibility of large-

scale SBS suppression relative to conventional fibers in fiber lengths <10 m, suitable

for fiber laser applications. The measured BGS exhibited a 4.4 dB broadening, rela-

tive to a standard single-mode fiber, over a 17 m length of fiber. More generally, these

novel LGFs show significant promise for SBS suppression in high energy laser systems

as well as a range of other novel applications including constant diameter tapers and
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constant grating period chirped Bragg gratings. The process has also been extended

to actively doped fiber preforms, ytterbium being the active dopant of choice for the

work presented here.

A simple approach to the fabrication of circular outer diameter, silica-based op-

tical fibers possessing rectilinear cores is also shown. The full-width at half-maximum

(FWHM) diameter of the larger dimension of the rectangular core was shown to

change by 20% over a length of 7 meters. Such rectangular core fibers can be useful

for a variety of telecommunication and biomedical applications. Further, the chirp

in rectangular dimensions provides for in-situ control of the modal properties of the

fiber without resorting to additional external processes such as tapering.

4.2 Theoretical Applications

4.2.1 Potential suppression of four wave mixing

Since the longitudinal refractive index of a fiber core can be controlled by

this novel fabrication technique, the efficiency of processes such as four wave mixing

(FWM) may be significantly impacted. In high power fiber amplifier arrays where

multiple signal frequencies are simultaneously operating, FWM has been observed to

yield a parasitic degradation of mutual amplifier coherence. This has been a partic-

ularly significant issue for passively phase-locked fiber amplifier arrays [105], which

has been partially mitigated by a counter-pumping strategy. The strong longitudinal

gradients in refractive index, and expected changes in modal propagation constants,

demonstrated in this work can greatly reduce the coherence length for processes like

FWM that are strongly impacted by phase-matching of the interacting waves. While a

complete analysis of this relatively complex phenomenon has not yet been conducted,
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large longitudinal phase-mismatch should be possible for narrowly-spaced optical fre-

quencies in high power amplifiers employing longitudinally-index-graded fibers. The

extensive treatments of FWM suppression in telecom fibers can be adapted for mod-

eling high power fiber amplifiers [106].

4.2.2 Constant diameter optical fiber tapers

Optical fibers whose dimensions have been modified by means of a taper-

ing process are useful for modifying or otherwise controlling numerical aperture and

dispersion and have been used for supercontinuum generation among other all-fiber

devices [107], [108], [109], [110], [111]. Typically, the fiber is heated locally while also

being strained such that a region of the fiber is drawn down in size. This dimensional

reduction, most notably on core size, influences the numerical aperture and disper-

sion characteristics of the guided modes. However, while clearly useful, the process

inevitably requires great care in order to achieve the desired dimensional reduction,

including the shape of the tapered region [112], forces removal of the polymeric coat-

ings that provide mechanical protection to the fiber, and generally lessens the effective

strength of the fiber.

The longitudinally-graded optical fibers could serve many of the roles of ta-

pered fibers while maintaining a constant diameter. At a given wavelength the nor-

malized frequency or V-value of the waveguide is defined in terms of the numerical

aperture and the core size. In conventional optical fibers, the numerical aperture is

independent of position along the fiber length and, as such, the only practical way to

control the modal characteristics are to modify the core size; i.e., taper the fiber. In

the LGFs, the numerical aperture can be tailored as a function of length along the

fiber and, as such, the modal characteristics of the fiber can be influenced without
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changing the core size. Interestingly, changes to dispersion are analogous to gain and

loss to solitons [113] and so these LGFs might be useful for pulse shaping in the non-

linear regime. Of course, one could do both employ a tapered longitudinally-graded

optical fiber for added effects.

In the proof-of-concept case treated in the work, the longitudinally-graded op-

tical fiber was shown in figure 3.1 to exhibit an index difference of 0.001, representing

a 0.012746 change in numerical aperture, over a distance of 16.6 m. Placed in the con-

text of tapering without tapering this would have the equivalent impact of a reduction

in core size by about 10% if a conventional single mode fiber (e.g., SMF-28TM) was

tapered in a usual manner. Typically, though, conventional fiber tapers are shorter

than 16 m, as noted above, it is reasonable to fabricate longitudinally-graded opti-

cal fibers with steeper gradients (i.e., greater index differences over shorter lengths)

thereby reducing the requisite fiber length.

4.2.3 Chirped fiber Bragg gratings (without the chirp)

Fiber Bragg gratings (FBGs) are useful in-fiber devices [114] that reflect wave-

lengths, λ, that meet the Bragg condition of λ = 2·n·Λ, where Λ is the grating period

and n is the effective index of the optical mode. Chirped fiber Bragg gratings (CF-

BGs), which have been employed for dispersion compensation [115], exhibit grating

periods that change along the fiber length, z; i.e., Λ = Λ(z). The LGFs treated here,

where n = n(z), adds an extra degree-of-freedom in designing chirped fiber Bragg

gratings. For example, a CFBG can be produced using a LGF where Λ is constant,

which generally is a simpler proposition from a manufacturing perspective.

In another example, typical CFBGs are a few tens-of-centimeters long which

sets delays to be be between 10-100 ps. With an longitudinal refractive index gradient
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and constant Λ, manufacturing CFBGs on the order of meters becomes feasible. This

longer fiber length increases the amount of dispersion or delay that can be imparted

on a signal to about a nanosecond.

4.2.4 Reduced insertion loss jumpers between dissimilar fibers

Longitudinally-index graded optical fibers could be used to lessen insertion

losses between connecting fibers of differing refractive index. Index differences in-

evitably lead to Fresnel reflections which can lead to reduced transmission as well as

ghosting of signals in communication systems. Fresnel reflections at normal incidence

can be greatly reduced (possibly negated) through use of a modified quintic refractive

index gradient [116], [117]. A preform possessing the requisite radial graded struc-

ture could be fabricated using present chemical vapor deposition methods since most

state-of-the-art systems are recipe-driven with software that controls gas flow rates

to achieve a desired index profile. Said index profile could be converted into a quintic

longitudinal index gradient by the generalized process described in this work.

4.2.5 Graded-rare-earth-doped optical fibers

Rare-earth (RE) doped fibers are typically designed to have a constant longi-

tudinal doping profile, though having control over the longitudinal RE doping level

can have substantial benefits with respect to pumping efficiency, extraction efficiency

and the impact of nonlinear effects such as SBS and FWM. Using the longitudi-

nal gradient technology described herein, longitudinally-graded RE doping can be

achieved assuming, as is often the case, that the RE doping of the original preform is

radially-graded along with the concentrations of other species in the core. The benefit

of gradient doping for the rectilinear case described above has not been analyzed yet,
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but improvements in mode selectivity and polarized operation may be feasible.

4.3 Future Work

Future work should primarily focus on methods to improve surface quality of

the drilled core slugs in order to reduce attenuation. It is thought that the rough

surface (pits and scratches caused by the drill bit) is a primary cause of the relatively

high loss in the resulting fiber due to scattering. Polishing the surfaces of the core

slugs, either by chemical etching or flame or mechanical polishing, would help to

reduce such losses. Difficulties arise though the in the inherent small dimensions of

the core slugs, especially with regards to flame and mechanical polishing. Likewise,

work should be done to decrease water contamination, and thus hydroxyl absorption.

It is believed that water vapor from the oxy-hydrogen torch used in consolidation of

the LGF preforms is easily introduced into the glass by via the numerous layers of

cladding glass, especially in the second two experiments due to the higher number of

cladding glass layers. Reducing the number of cladding layers, reducing the clearance

between each layer, and/or increasing the thickness of the glass (especially near the

core slugs) could help reduce hydroxyl absorption.

Additionally, investigating methods to more quickly identify the region of in-

terest in a long length of fiber should be explored. The current method of cutting

back and analyzing individual sections of fiber one at a time is too time consuming

to lend itself to commercial settings. The incorporation of fluorescent nanoparticles

into the soot (smiler to the solution doping process for rare earth elements) is one

such possible solution to the location problem.

A third area of future work involves tailoring the size of the core to fit specific

applications where either longer or shorter index gradients than described in this
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thesis are desired. Larger cores can be realized from preforms fabricated via alternate

production methods such as vapor axial deposition and outside vapor deposition.

These methods tend to allow the formation of larger core areas when compared to

MCVD due to the ability to start with a larger seed (core) rod. Core slugs resulting

from these processes could be drilled to larger dimensions, resulting in longer lengths

of LGFs upon drawing.

Standardizing the core size to correspond to standard single- and multi-mode

fiber core fibers should also be completed to ensure compatibility with current fiber

systems. This will also allow the LGFs to be characterized with other common

testing apparatuses such as optical time delay reflectometry (OTDR), a common tool

in both calculating loss in fibers prior to sale and for finding faults (especially breaks)

in long lengths of installed fiber. Unlike regular fibers which show a linear decrease in

returned signal, LGFs will show a curved return signal due to the varying refractive

index and the way by which OTDRs measure signal.

Finally, drilling the cores from angles other than normal to the parent preform

should be considered. Given a standard step-index pre from this would result in a

fiber with minimal change in refractive index along the length, but significant changes

in the shape of the core (figure 4.1). Upon entering the doped region of the core, one

would encounter a semi-circular core cross section. As the diameter of the core fully

reaches that of the core slug the cross sectional area would transition to fully circular.

Finally, as the doped region is exited a semi-circular cross section would again appear

but as a mirror image of the cross section encountered on the other end. As an

extension, if a graded index were the source of the core slugs, a similar change in

cross sectional area would result, as well as a longitudinal gradient in refractive index

(figure 4.2).
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Figure 4.1: Schematic of angled core drilling. The core slugs are drilled from the
parent preform at an angle other than normal (a). The resulting fiber (b) will have a
generally invariant refractive index profile and longitudinally changing cross sectional
area (c). Figure 4.1(c) corresponds with points 1-3 in figure 4.2(b) from left to right.
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Figure 4.2: Schematic of angled core drilling with graded index parent preform. Fig-
ure 4.2(b) corresponds with points 1-3 from left to right.
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Appendix A Stimulated Brillouin Scattering Math-

ematical Model, written by Dr. Pe-

ter Dragic, UIUC

By way of comparison and potential enhancements with respect to SBS sup-

pression, as is important for high power fiber lasers, the Brillouin gain spectrum (BGS)

for a uniform optical fiber is expressed as a Lorentzian function of the frequency ν by

gB(ν) = gB0 ·
1

1 + ( ν−ν0
∆νB/2

)2
(1)

where ν0 is the central frequency and ∆νB is the Brillouin spectral width

(FWHM). The central frequency is determined from a combination of the Bragg con-

dition and the acoustic velocity, Va, via ν0 = 2nmVa/λ0 with λ0 being the vacuum

optical wavelength and nm the effective modal index. In equation 1, gB0 is the peak

Brillouin gain coefficient, which is a function of Va, ∆νB, n, mass density, and the

photoelastic constant [118]. For LGFs, the central frequency becomes a function of

distance; i.e., ν0 → ν0(z). For fibers with a lengthwise-uniform refractive index differ-

ence, this means that Va → V a(z) due to the compositional variation. In addition to

the acoustic velocity, since ∆νB is proportional to the square of the central frequency

[1], and the central frequency is a function of distance, ∆νB is also a function of po-

sition along the fiber, z. Hence, gB0 also is a function of z courtesy of its dependence

on Va and ∆νB.

The ideal configuration, given a maximum end-to-end dopant contrast, is a

linear dependence of central frequency with distance along the fiber, z, such that,

ν0 → ν0 - Cz, where C is a constant. In this case, the Brillouin spectrum is spread

uniformly across all available acoustic frequencies, thereby minimizing the Brillouin
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gain. In order to compute the measured BGS from such a structure, assume, to first

order, that only the central frequency is z-dependent (i.e., the z-dependence of the

other parameters is negligible), and that the fiber is optically lossless. Then, with

the assumption that equation 1 represents the local BGS in the LGF, integration is

performed in order to obtain for the measured BGS that:

gLV FB (ν) =
∆νB
2LC

(ArcTan[2
(ν − ν0) + CL

∆νB
]− ArcTan[2

(ν − ν0)

∆νB
]) (2)

Next, assume a starting central frequency (i.e., at one end) of 11 GHz and a

spectral width of 30 MHz to approximately match the measured characteristics of the

SMF-28TM fiber. The fiber length, L, is assumed to be 20 m, which is approximately

the length of the LGF with highest gradient. Equation 2 has been normalized so that

the total integrated Brillouin gain (with respect to ν) is conserved between uniform

and LGFs [95] and that the maximum Brillouin gain in a uniform fiber is unity.

Finally, a value for C must be assumed. For small [Ge] (< 10 weight percent

GeO2), the acoustic velocity is known to decrease by about 0.4% per weight percent

of GeO2 when added to silica [119]. In more recent data than [120], the addition of

F to silica was taken to decrease the acoustic velocity by 2.7% per weight percent of

F [121]. From these references, the refractive index dependencies on concentration

are +0.79x10−3 /weight percent and -4.77x10−3 /weight percent for GeO2 and F,

respectively. Further, assume that these linear coefficients hold up to 10% GeO2

and that the fiber is desired to possess a core-cladding index difference of about

5x10-3, which is similar to standard SMF-28TM . At the two fiber ends, the dopant

concentrations become [GeO2, F] = [6.33, 0] and [10.0, 0.61] weight percent (if the

maximum GeO2 content is limited to 10 weight percent), which is quite reasonable to
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Figure 3: Simulated comparison of the Brillouin gain spectrum (BGS) for
a longitudinally-graded optical fiber (solid blue curve) and a conventional
longitudinally-uniform (dotted red curve) optical fiber utilizing the coefficients noted
in the text. Length-wise dependence of Brillouin spectral width, ∆νB, and peak
Brillouin gain coefficient, gB0, has been neglected.

fabricate. This gives rise to acoustic velocities of 5819 m/s and 5558 m/s, respectively,

assuming that the acoustic velocity of pure silica is 5970 m/s [119]. Utilizing a modal

index of 1.446 and an optical wavelength of 1534 nm, C = 24.6 MHz/m for the

assumed L = 20 m.

Figure 3 shows a plot of equation 2, calculated using the coefficients determined

above, compared with the simulated BGS of a length-wise uniform fiber with [GeO2,

F] = [6.33, 0] weight percent. The spectrum of the LGF is about 15 times wider than

that of the uniform fiber (∼ 500 MHz), and the gain coefficient is decreased by about

10 dB for a very reasonable doping gradient. By comparison, applying a length-wise
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thermal gradient to the fiber may also offer similar performance since ν0 → ν0 + CT

where T is the local fiber temperature (N.B., heating the fiber increases the Stokes

frequency). A typical value of C for lightly-doped fibers is about 1.2 MHz/K near

1550 nm [29] and is known to decrease with increasing GeO2 content, thus requiring a

400K thermal gradient to achieve the same broadening as in the LGF example. This

thermal gradient is unreasonable for state-of-the-art polymeric buffer coatings and is

costly and difficult to implement. Similarly, an applied strain gives rise to ν0 → ν0

+ Cε, where ε is the elongation of the fiber (in percent, %). C” is approximately 500

MHz/% [29], and thus an applied fiber elongation of 1% is required. Although this is

not entirely unreasonable, long-term strain of this magnitude can lead to early fiber

failure, and mechanical systems designed to implement such a strain can be complex,

bulky, and unstable (drift) over long periods of time.

While the ideal configuration is that of a linear gradient of acoustic frequencies

along the fiber length, the distribution in a real fiber may depart somewhat from

linear. For example, the gradients identified in figure 2.5 in the main text appear to

have a sigmoidal departure from linear, due to dopant diffusion processes during the

manufacture of the initial preform. In this case, the slopes of the central frequencies

(MHz/m) near the fiber ends are less than that of a simple line connecting the two

points. This causes a local enhancement of the Brillouin gain relative to a linearly

gradient fiber.

To illustrate this point, we model this diffusion process using the sigmoid

function

ν0(z) =
A

1 + exp[(B − z)/D]
(3)

where A, B, and D are arbitrary constants. Figure 4 shows a plot of the
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Figure 4: Two sigmoid central frequency gradients (black and blue) plotted with the
simple linear gradient of the first example (red).

resulting lengthwise central frequency distributions for two different sets of sigmoid

constants, along with a purely linear gradient. Inserting equation 3 into equation 1

and integrating over the fiber length as with the linear case leads to an analytical

expression for the Brillouin gain coefficient. Due to the size of this equation, however,

it is not provided here.

Rather, plots of the Brillouin spectra corresponding to the distributions of

figure 4 are provided in figure 5, It becomes very clear that a strong departure from

a linear distribution of central frequencies leads to an enhancement in the Brillouin

gain in the spectral regions corresponding to the lower slopes in the spatial dopant

distributions. In the case of the example in figure 4, there is a nearly 50% increase in

the peak of the Brillouin gain coefficient, with the strongest SBS interaction occurring

in the first several meters of fiber. Interestingly, the asymmetry seen in the example
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Figure 5: Brillouin gain spectra corresponding to the lengthwise central frequency
distributions provided in figure 4.

distributions of figure 4 are clearly manifested as asymmetries in the corresponding

Brillouin spectra.
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