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Abstract

Wireless communications is part of everyday life. As it is incorporated into new products

and services, it brings additional security risks and requirements. A thorough understanding of

wireless protocols is necessary for network administrators and manufacturers. Though most wireless

protocols have strict standards, many parts of the hardware implementation may deviate from the

standard and be proprietary. In these situations reverse engineering must be conducted to fully

understand the strengths and vulnerabilities of the communication medium.

New 4G broadband wireless access protocols, including IEEE 802.16e and WiMAX, offer

higher data rates and wider coverage than earlier 3G technologies. Many security vulnerabilities,

including various Denial of Service (DoS) attacks, have been discovered in 3G protocols and the orig-

inal IEEE 802.16 standard. Many of these vulnerabilities and new security flaws exist in the revised

standard IEEE 802.16e. Most of the vulnerabilities already discovered allow for DoS attacks to be

carried out on WiMAX networks. This study examines and analyzes a new DoS attack on IEEE

802.16e standard. We investigate how system parameters for the WiMAX Bandwidth Contention

Resolution (BCR) process affect network vulnerability to DoS attacks. As this investigation devel-

oped and transitioned into analyzing hardware implementations, reverse engineering was needed to

locate and modify the BCR system parameters.

Controlling the BCR system parameters in hardware is not a normal task. The protocol

allows only the BS to set the system parameters. The BS gives one setting of the BCR system

parameters to all WiMAX clients on the network and everyone is suppose to follow these settings.

Our study looks at what happens if a set of users, attackers, do not follow the BS’s settings and

set their BCR system parameters independently. We hypothesize and analyze different techniques

to do this in hardware with the goal being to replicate previous software simulations that looked at

this behavior.
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This document details our approaches to reverse engineer IEEE 802.16e and WiMAX. Ad-

ditionally, we look at network security analysis and how to design experiments to reduce time and

cost. Factorial experiment design and ANOVA analysis is the solution. In using these approaches,

one can test multiple factors in parallel, producing robust, repeatable and statistically significant

results. By treating all other parameters as noise when testing first order effects, second and third

order effects can be analyzed with less significance. The details of this type of experimental design

is given along with NS-2 simulations and hardware experiments that analyze the BCR system pa-

rameters. This purpose of this paper is to serve as guide for reverse engineering network protocols

and conducting network experiments.

As wireless communication and network security become ubiquitous, the methods and tech-

niques detailed in this study become increasingly important. This document can serve as a guide

to reduce time and effort when reverse engineering other communication protocols and conducting

network experiments.
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Chapter 1

Introduction

This thesis documents our hardware investigation of the Bandwidth Contention Resolution

(BCR) system parameters and their effect on the average throughput of other client WiMAX nodes

when attackers maliciously set their own parameters. This includes documentation of reverse en-

gineering IEEE 802.16e and WiMAX on a Linux machine. The following chapters document the

steps we took. We hope that the details presented here can guide others doing similar wireless

and network protocol investigations. The work began as an effort to conduct hardware experiments

replicating the software work completed by Deng in [7] with hopes of verifying the results and/or

providing an analysis of the differences between software simulations, specifically NS-2, and actual

WiMAX hardware. The software simulations analyzed the ability of these parameters to be used

as a Denial of Service attack on WiMAX client nodes. Over time, as the project evolved, the focus

became a study of reverse engineering the hardware WiMAX protocol implementation.

Experimentation with hardware has proved challenging because a user is not supposed to

change the system parameters and therefore the protocol does not allow for it. The BS is the entity

that sets and controls the BCR system parameters. We have investigated various methods to modify

the system parameters in hardware and this paper describes the steps taken in hopes of aiding others

doing similar network research. Before presenting the details of these methods, an understanding of

the importance of wireless communication protocols and wireless security will help one comprehend

the motivation and significance of this work. The remainder of this section summarizes wireless

communication, including its evolution to broadband wireless access and WiMAX, previous work

conducted in network and WiMAX DoS attacks, and IEEE 802.16 security vulnerabilities.
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1.1 Wireless Communication and Security

The idea of wireless communications, first formulated by Maxwell, was established at the end

of the nineteenth century [35]. Analog microwave radios have been in use for many decades providing

services such as television and mobile radios and, for the same amount of time, hobbyist have enjoyed

the communication provided by HAM radios. But two technologies made wireless communications

known by every household, cordless and cellular phones. Both of these were originally designed

for low-data rates and high latency tolerance for voice. Unlike cordless phones, cellular technology

needed to evolve to handle higher data rates and multiple uses. Cell phones, originally used only for

voice, became a resource to connect to the web and access data available there. The need for faster

and more reliable wireless protocols became apparent as users accessed increasing volumes of data,

especially video streaming, online. Network bandwidth had to increase to satisfy user demand.

Today wireless communication is ubiquitous, provided by cell phones, computers, game

consoles, and appliances. Bluetooth emerged as a leading protocol for short range, low data rate

personal communications. IEEE 802.11 and WiFi, Wireless Fidelity Alliance, is used for local area

networks with higher data rates that connect multiple devices within a building. Broadband wireless

access (BWA) protocols cover large areas, typically a 5 mile radius, providing high data rates. BWA

hird generation, 3G, technologies include GSM, UMTS, W-CDMA and are used currently in most

smart phone applications. WiMAX, Worldwide Interoperability for Microwave Access, and LTE,

long-term evolution, have emerged as competing 4G, fourth generation, technologies.

Wireless protocols operate on open channels since they are carried through air medium.

This implies that anyone having means to receive and/or transmit at a specific frequency has access

to the wireless channel. It is critical for security measures to be embedded into wireless protocols to

protect the traffic confidentiality and integrity and prevent attacks [35]. Each wireless protocol has

unique security issues. Though all are susceptible to man-in-the-middle and denial of service (DoS)

attacks. WiMAX uses the Media Access Control layer (MAC) to implement and handle security.

The MAC layer and security of WiMAX is discussed in following sections.

With the growing popularity of WiMAX and 4G technologies, our work originated from an

interest in the security related issues of the WiMAX protocol. Many vulnerabilities of IEEE 802.16e

had previously been investigated but there is little documentation about vulnerabilities in the system

parameters of the Bandwidth Contention Resolution (BCR) process, a process commonly used in

2



WiMAX networks. A new question was proposed as to how these system parameters could be used

to carry out a DoS attack. Deng conducted work in [2] using the NS-2 simulator to investigate this

issue.

1.2 DoS and DDoS

Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks have

been used for a long time to block network resources. The large scale DDoS that caught the

publics attention was in February 2000 and included attacks on major websites such as Yahoo!,

Amazon, CNN.com, etc. The first reported large-scale DDoS attack using the Internet occurred at

the University of Michigan in August 1999 and similar attacks had been targeting Internet Relay

Chat (IRC) networks for many years prior [14]. At this time there was already a myriad of different

DoS attacks that leverage weaknesses of common Internet protocols. Now with wireless networking

protocols, there are only more DoS attacks that can be used to cripple a network. Most DoS

and DDoS attacks comprise remote machines to use for attacks making it difficult to trace the

attacker [27]. Though it is challenging to determine who initiates attacks, it is fairly easy to manually

detect traditional DoS attacks using traffic capturing and/or monitoring. Clever DoS attacks are

not only untraceable but are also arduous to detect.

A DoS attack is an attempt by a malicious user to prevent users of a service from being

able to use or access resources. Common DoS attacks goals include [27]:

• Flooding a network, thereby preventing legitimate network traffic,

• Disrupting connections between two machines, thereby preventing access to a service,

• Preventing a specific individual from accessing a service,

• And disrupting service to a specific system or person.

DoS attacks can be broadly dividing into software and flooding attacks [21]. For wireless

networks a third type is jamming. Flooding overwhelms the network and/or specific machines

with traffic making services and/or transmission unusable. Common flooding attacks include User

Datagram Protocol (UDP) flood, synchronization (SYN) flood, and smurf. In a UDP flood, return

3



addresses of UDP packets are spoofed to connect one machines UDP character generator to another

machines UDP echo [14]. The SYN flood is for Transport Control Protocol (TCP) traffic. It spoofs

the return addresses of SYN packets to a non-existing address and sends a number of these SYN

packets to the target machine. The target machines transmission queue will be full of synchronization

acknowledgment (SYN-ACK) packets destined for a machine that is not on the network and will

end up waiting for an acknowledge (ACK) response that will never come. Lastly, a smurf attack

leverages Internet Control Message Protocol (ICMP) by broadcasting ICMP ping requests with a

spoofed return address of the target machine [14].

Unlike flooding which requires multiple malformed packets, software DoS attacks typically

require only a few packets. Software attacks exploit bugs in the operating systems or applications.

Many of these vulnerabilities and attacks can be found my searching MITREs Common Vulnerability

and Exploit (CVE) database. Well known attacks include the ping of death and land attack [21]. In

the first, the operating system crashes when a very large ICMP echo packet is received. The latter

attack sends a single SYN packet with spoofed addresses of the target machine for both the source

and destination fields corrupting the protocol stack.

Wireless networks are susceptible to flooding and software attacks. Additionally, each wire-

less protocol has unique communications that can be exploited for flooding and/or software DoS

attacks on that specific protocol. For example, in IEEE 802.11 an attacker can spoof the MAC

address in de-authentication and deassociation packets to disconnect target machines. In IEEE

802.16 range request message can be spoofed with the target machines MAC address requesting the

lowest quality downlink burst profile. One more DoS attack that can be carried out on wireless

networks is jamming. This technique transmits electromagnetic energy in frequency bands used by

the wireless equipment to interfere with the wireless communications. There are various types of

jammers including constant, deceptive, random, reactive, and intelligent [37].

Deng and Brooks investigated a new DDoS attack for WiMAX networks in [7] that manip-

ulates the Bandwidth Contention Resolution parameters. This type of attack would appear random

and would not result in sudden, drastic performance degradation making it hard to detect and dif-

ferentiate from network noise. This study is a hardware extension of the work in [7] and is still

investigating the possibility of using the parameters to carry out a DDoS attack. Next we will look

at the security vulnerabilities of IEEE 802.16e and WiMAX including DoS vulnerabilities.
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1.3 Previous Work

Many security flaws apparent in the original standard and additional security for support

of mobility has been addressed by the privacy sublayer of IEEE 802.16e. This includes enhanced

security, mobility management, and improved support for fast handovers. Issues still remain that

leave the protocol vulnerable to Denial of Service (DoS) attacks hat can negatively affect network

availability. Known security vulnerabilities include unprotected network entry initially, unencrypted

management communications, no authentication on certain management frames, and sharing of

keying materials in multicast and broadcast messages [31]. Numerous papers present, analyze, and

simulate these vulnerabilities [1, 18, 26,31,43].

Naseer, Yoner, and Ahmed present an overview of security vulnerabilities found in IEEE

802.16e that can lead to DoS attacks in [31]. Some of the vulnerabilities stem from unprotected

management communications and messages, including the:

• Ranging request (RNG-REQ),

• Ranging response (RNG-RSP),

• Fast Power Control (FPC), and

• Reset Command (RES-CMD).

Ranging occurs when subscriber station (SS) begins to acquire timing offset and power

adjustment information from the BS to properly setup transmission. The RNG-REQ is the first

message sent by the SS upon entering the network and is periodically sent afterwards to continue to

keep transmission in alignment. A SSs also can use this message to inform the BS of their preferred

downlink burst profile. RNG-REQ messages are neither encrypted nor verified, because they are

sent before a Security Associate (SA), which would allow for encrypted traffic, is established. An

attacker could intercept this message and send one requesting the least effective downlink burst

profile.

Similarly, the RNG-RSP from the BS is not encrypted or authenticated. In this message

the BS can set the SS of transmission power, change the uplink and/or downlink channel, terminate

communications and re-initialization the MAC. A SS will accept any properly formatted RNG-RSP

and change according to the details of the message. A malicious user could send a decoy RNG-

RSP to set a SSs transmission power either very low [1] or high creating a water torture DoS attack

5



both having negative consequence SS. Lastly, they could change the downlink and/or uplink channel

to different frequency range disturbing and breaking communications until the SS rescans to find

correct frequency [31]. A DoS attack exploiting the RNG-RSP message is simulated using ns-2

network simulator in [1].

Other management messages of concern are the Fast Power Control (FPC), Mobile Neighbor

Advertisement (MOB NBRADV FPC), and Mobile Association Reply (MOB ASC-REP). The FPC

can be used similarly to the RNG-RSP message. Both the MOB NBRADV FPC and MOB ASC-

REP messages can be used maliciously in networks that support handovers. Additionally, the

authors in [31] introduce a new vulnerability related to Reset-Command (RES-CMD) message that

forces a SS to re-initialize its MAC state machine. The purpose of doing this would be to reset

a non-responsive or malfunctioning SS. Though this message is authenticated there are ways an

attacker can cause a RES-CMD to be sent, temporarily disconnecting a SS from the network, and

making it vulnerable to REG-REQ, REG-RSP attacks. An attacker that is part of network can

receive UL-MAPS and then transmit during the given slots of other SS causing the transmission to

be unintelligible. If they continue, the BS will assume that the victim is malfunctioning and will

issue RES-CMD [31].

As seen in [20], authentication request messages can be used for DoS attacks by sending

many request to the BS causing it to overload and become unable to serve other SS requests. Use

of long keys further increases the computational load for authorization verification. The BS will

not be able to defer between legitimate and illegitimate users till after processing the authentication

request. Scrambling attacks, jamming only specific WiMAX connections and not the entire frequency

spectrum, are another DoS attack that is a threat to all connection-based wireless protocols including

WiMAX [4]. This type of attack may go unnoticed if carried out appropriately and is analyzed in

[4] along with the solution of Dynamic CID Jumping Scheme (DCJS) proposed to defend against

such an attack. Additionally, research in [1] examines whether vulnerabilities of IEEE 802.11 that

enable DoS attacks (replay attack, MAC address spoofing, de-authentication, etc.) exist in the

IEEE 802.16 standard. This study concludes that WiMAX is more robust but previously mention

vulnerabilities unique to IEEE 802.16e still enable DoS.

Deng and Brooks proposed a novel DoS attack on WiMAX networks that manipulates the

Bandwidth Contention Resolution (BCR) parameters. BCR is a process used in the Best Effort

(BE) and Extended non-Real Time Polling Service (En-RTS) QoS classes to mitigate and handle
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transmission contentions. In [7], the attack is presented and analyzed using software simulations on

the NS-2 simulator. ANOVA analysis is applied to results to quantify the effect of the parameters

on average throughput and packet-loss. Our current work is an extension of this study, which will be

described further in Section 2.3.3. The original motivation was to analyze the possibility of using the

BCR system parameters to conduct a DoS and determine the system parameter settings that most

significantly affect a WiMAX client’s vulnerability to such an attack. Some conclusions about these

settings will be presented in Section 2.3.3 but due to difficulties with hardware experimentation we

cannot make full conclusions to the best settings of the investigated system parameters.

Security is one clear reason for understanding the details of a communication protocol, but

there are other important reasons as well. Knowing when and where bottlenecks occur, where data

may be lost, and/or events that can cause network and/or resources to lock up can help eliminate

many potential issues early on. A deep understanding of a network protocol and how it interacts

with the hardware and equipment that use it provides great quality assurance. If you are to use a

specific manufacturers wireless equipment, knowing this information will allow you to assure your

own products and services. Unfortunately, many manufacturers make this information proprietary

and/or obfusicated, leaving one with only the option of reverse engineering to gain this level of

comprehension. Due to a lack of information about WiMAX’s Bandwidth Contention Resolution

system parameters handling by the WiMAX devices used in our hardware testbeds, this study has

become a task of reverse engineering WiMAX hardware in search of these parameters.

1.4 Organization

The content of this thesis is outlined as follows. Chapter 1 describes the motivation behind

the work by exploring the history, issues and challenges of wireless communication and WiMAX.

Following Chapter 1, Chapter 2 introduces information necessary to understand this study and the

methods analyzed for controlling the BCR system parameters in hardware. This includes details of

WiMAX and the IEEE 802.16e protocol, and most importantly a detailed explanation of the BCR

process of IEEE 802.16e. Additionally, an introduction to our previous NS-2 software simulations

is presented providing more insight to the hardware phase of research that is detailed in this docu-

ment. Lastly, an overview of the hardware resources and facilities used for our hardware WiMAX

experimentation is given.
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Chapter 3 presents a deeper analysis of the hardware testbeds used for WiMAX experimen-

tation. This analysis also looks at the effect of two BCR system parameters on SS’s throughput.

Simulations were conducted in indoor and outdoor WiMAX environments. The results of these

experiments is presented and a comparison is made between the two testbeds and previous soft-

ware simulations. Following this chapter, the techniques investigated for modifying the BCR system

parameters are presented.

Chapters 4, 5, and 6 outline our methods for conducting hardware experiments that

replicate the NS-2 simulations. They look at how one might be able to control the system parameters

separately from the BS. Many of the details and techniques used to reverse engineer WiMAX in

search of the BCR system parameters are presented. We hope that these details will guide others

carrying out WiMAX research and will provide a process for reverse engineering network protocols

in hardware.

Chapter 4 examines Intel’s Centrino Advanced + Wireless 6250 device and the open source

drivers and software that are included with this device. Modifications made to the code for our

study are presented here.

Chapter 5 looks at the Linux file system and memory. An abundant amount of information

about WiMAX is stored within the file system and the memory in Linux. Are techniques for delving

into and investigating this information in hopes of finding the BCR system parameters is presented.

Finally, Chapter 6 looks at the live WiMAX traffic captures that were made in hardware

experimentation. This includes Ethernet traffic carried via WiMAX and a WiMAX management

protocol that is used between the BS and ASN-GW. The later protocol is known as R6+ protocol

and is a NEC proprietary version of the R6 protocol. We searched for the system parameters within

the traffic captured and by doing so learned more about how Linux interfaces with WiMAX and the

R6+ protocol. The purpose and results of the traffic captures is presented in this Chapter.

Lastly, in Chapter 7, a summary of our techniques is given with conclusions about what

has been learned by this investigation. Other work that has been motivated by this study is briefly

looked at as well, Section 7.2. Future work made possible by this study is presented last in Section

7.3.
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Chapter 2

Background

The IEEE 802.16e standard andWorldwide Interoperability for Microwave Access (WiMAX)

profiles include a broad range of technical specifications and procedures for handling various situa-

tions. The scope of the Background will be to present a brief overview of the IEEE 802.16e standard

and WiMAX, highlight specific details of the IEEE 802.16e standard that we have attempted to

leverage as a means to conduct our hardware experiments such as the MAC management messages

that carry the BCR system parameters. As an example of the breadth of the IEEE 802.16e pro-

tocol, many important topics such as handovers, power management, bandwidth conservation, and

adaptive antenna system will not be addressed throughout this study because they have no relation

to the BCR system parameters. The security aspects of the MAC layer are presented here despite

having no effect on the BCR process because it aids in understanding the previous WiMAX security

research presented in Chapter 1.

Following the MAC layer information, we discuss the details of the BCR process. Originally,

in [7] we propose that the BCR system parameters could be used to conduct a DoS attack on other

WiMAX client SSs by not playing fair and following the designated system parameter settings. To

understand why we hypothesized that these parameters could be used for a DoS attack, an in-depth

understanding of the BCR system process is required and presented. Lastly, the past software

simulations conducted in [7] is summarized and an overview is given of the hardware resource that

are used for this investigation. The work in [7] was the catalyst for the current hardware phase of

our study and a discussion of this work emphasizes our motivation for this study.

This chapter is structured as follows: we begin by covering the basic of the IEEE 802.16e
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standard and WiMAX including the physical characteristics, the differences between the two, and

the service oriented focus of QoS. Following the overview, detailed discussion of the MAC layer is

given. Additional focus on the UCD, UL-MAP and TLV encoding is presented as subsections of the

MAC layer. Next, the previous software simulations are illustrated. The experimental design and

analysis used in both the previous software simulations and the hardware experiments, presented

in Chapter 3, are explained in the beginning of Section 2.3 followed by the actual simulations. To

conclude, the hardware resources used for this study are detailed. The GENI network and the

ORBIT facilitie,s including the software and hardware elements that compose the ORBIT testbeds,

are expounded.

2.1 WiMAX Overview

In broadband wireless access (BWA) there is a base station (BS) that controls access to a

network for multiple subscriber stations (SS). Bandwidth is granted to SS by the BS using allocation

schemes. Two-way communications is supported between SS and the BS. Communications are

separated into a downlink channel, data sent from base station to subscriber station, and an uplink

channel, data sent from subscriber station to base station. BWA uses point-to-multipoint or mesh

access. The actual wireless broadband protocol used determines the technical requirements such as

frequency, bandwidth, and operating range. WiMAX and IEEE 802.16e is a BWA solution that

supports bandwidth rates up to 70 MBps and coverage radius of 5 miles on average. The original

IEEE 802.16 standard was released in October 2001 and only supported line-of sight operations. It

was later ratified in 802.16a, January 2003, and 802.16-2004, October 2004, to include non-line-of-

sight frequencies, 2-11 GHz [25]. The standard was modified again in December 2005, 802.16e, to

support mobility.

IEEE 802.16e-2005 standard operates in the 2-66 GHz frequency range. The use of scalable

orthogonal frequency division multiple-access (SOFDMA) allows for scalable channel bandwidth

from 1.25 to 20 MHz [36] and tolerance to multi-path fading. This multiplexing technique is based

on orthogonal frequency division multiple-access (OFDMA) where bandwidth is subdivided into

multiple frequency sub-carriers and allows for multiple access by multiplexing data streams from

multiple users onto downlink and uplink sub-channels [8]. Figure 2.1 [8] shows the structure of an

OFDMA frame including the use of symbols and sub-channels. The standard supports Time Division
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Duplexing (TDD) and full and half-duplex Frequency Division Duplexing (FDD) and frame sizes

between 2.5 and 20 ms. It also uses different modulation schemes to adapt to channel conditions,

including binary phase shift keying (BPSK), quaternary PSK (QPSK), 16-quadrature amplitude

modulation (QAM), and 64-QAM [32].

Figure 2.1: OFDMA Frame structure with sub-channels and symbols [8]

The WiMAX forum, which includes Airspan, Alcatel, Alvarion, Fujitsu, Intel, OFDM Fo-

rum, Proxim, and Siemens [36], was formed to determine an industry standard to promote equipment

interoperability. The WiMAX forum serves the same purpose for the IEEE 802.16 standard as the

Wireless Fidelity Alliance (Wi-Fi) does for IEEE 802.11. The industry standard includes specific

profiles based on IEEE 802.16. For point-to-point and point-to-multipoint systems, Release-1 Mobile

WiMAX profiles cover 5, 7, 8.75, and 10 MHz channel bandwidths for licensed worldwide spectrum

allocations in the 2.3 GHz, 2.5 GHz, 3.3 GHz and 3.5 GHz frequency bands. The only frame size

and duplexing currently supported in WiMAX profiles is 5 ms and TDD [8].

Additionally, IEEE 802.16e supports five quality-of-service (QoS) classes: Unsolicited Grant

Service (UGS), real-time Polling Service (rtPS), non-real-time Polling Service (nrtPS), Best Effort

(BE), and extended real-time Polling Service (ertPS) [26]. QoS is used to flexibly support simulta-

neous use of a diverse set of IP services [9]. All classes other than UGS use the bandwidth request
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procedure via the uplink channel for SSs to request access to the network. Contentions, data col-

lisions on the network, are a problem in the uplink channel during bandwidth requests and are

not an issue in the downlink channel [25]. There are two mechanism used in WiMAX to handle

request contentions: centralized polling and contention-based random access [32]. The service class

determines whether contention-based or polling is used. Our work focuses on the contention-based

bandwidth request process known as Bandwidth Contention Resolution used in both BE and nrtPS

QoS classes.

The BE class is used by most Internet applications [26] and other application that require

no minimum data rate to properly function. Fore example, when the network is congested, BE nodes

typically cannot transmit packets until conditions improve. In BE, SS transmission requests may

be made via the BCR process or unicast polling. Though the standard does not mandate the BS to

provide unicast request opportunities [35]. The other QoS class, nrtPS, is best suited for variable

sized, delay tolerant data that requires a minimum data rate for functionality. The use of periodic

unicast request polling at interval of 1s or less provides the minimum data rate. Additionally, nrtPS

nodes can use the BCR process to request transmission. This class suits applications such as File

Transfer Protocl (FTP). Our work in finding and analyzing the BCR system parameters in hardware

is important for applications that use both these QoS classes.

2.1.1 MAC Layer

IEEE 802.16 uses the Open Systems Interconnection, OSI, layer model, Figure 2.2. The

protocol defines only the two lowest layers [35]:

• Physical link, layer 1 and

• Data link, layer 2.

The Media Access Control (MAC) layer of IEEE 802.16 is the core of the data link layer and

establishes and manages connections between the BS and SSs. This layer is connection-oriented,

all services map to connections that are assigned unique connection IDs (CIDs) [35]. The MAC

layer allows for dynamic resource allocation allowing the connection to adapt based on data or

transport needs. It is based on the DOCSIS standard and capable of supporting various types of

data simultaneously [8]. This layer can be subdivided into three sublayers: Convergence Sublayer

(CS), Common Part Sublayer (CPS), and the Security Sublayer.
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Figure 2.2: IEEE 802.16 and the OSI Model

The convergence sublayer interfaces with upper layers of the OSI model and prepares in-

formation for MAC layer handling when transmitting data and strips remaining MAC layer in-

formation when receiving. Essentially it accepts traffic from other networking protocols such as

Asynchronous Transfer Mode (ATM), IEEE 802.3 (Ethernet), Internet protocol (IP), point-to-point

protocol (PPP), etc. [35]. Separate parts of the CS handle ATM and packet-based traffic. In between

the physical layer and CS MAC layer, lays the CPS.

The CPS is the heart of the MAC standard. In this sublayer, bandwidth allocation, connec-

tion establishment, and maintenance of the connection is handled. This includes scheduling, QoS

management, resource radio management (RRM), and frame construction. There are many defined

MAC management messages that allow the CPS to communicate with SS. Most of these messages

were defined in the IEEE 802.16-2004 standard [16] with a few additional messages for handling

mobility defined later in the IEEE-802.16-e standard. A list of these management messages can be

found in Appendix A.

During initialization, the CPS establishs three types of management connections between

the BS and SS prior to any data connections [39]. These connections include the basic, primary

management, and secondary management connections. The basic connection is not encrypted and

is for delay sensitive MAC management messages. The primary connection is also for MAC man-

agement messages but handles messages that are time tolerant. Lastly, the secondary management

connection uses IP datagrams and carries standard-based messages, DHCP, TFTP, SNMP, etc. Ad-

ditionally, there are specific CIDs for initial ranging, broadcast and multicast messages [39]. The
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initial ranging CID is 0x0000 and broadcast CID is 0xFFFF, all other CIDs are assigned in between

these two special case CIDs. Our work is particularly concerned with the broadcast connection,

0xFFFF, because the BCR system parameters are broadcast to SSs. The following section will

detail the broadcast message that carries them.

The security sublayer is a critical element of the MAC. This layer is an improvement from

the MAC security sublayer of 802.11 [25] with many added security features to protect the integrity

of the SS and the network addressing flaws in the previous wireless standard. The security for mobile

WiMAX networks as described in [8] requires the following:

• Strong mutual device authentication,

• All commonly deployed authentication mechanisms based on consistent and extensible authen-

tication framework,

• Data integrity, replay protections, confidentiality and non-repudiation with applicable key

lengths,

• Use of MS initiated security measures such as VPNs, and

• Standard secure IP address management.

To meet the above requirement, this sublayer can be divided into two main components:

data encapsulation and key management [35]. Data encapsulation is used to secure data packets

as they travel over the network. This component includes multiple encryption and authentication

algorithms and rules for applying them to data payloads. Key management implements Privacy Key

Management (PKM) protocol to safely exchange keys for authentication and, additionally, control

of access to certain services. The IEEE 802.16e security specifications have been improved from

IEEE 802-16-2004 to better secure WiMAX and address further security issues of mobile nodes. For

example, the 2004 standard used PKMv.1, which uses one-way authentication, only authenticating

the SSs. IEEE 802.16e improved security by using PKMv.2, which supports mutual authentication

using certificates to authenticate both SS and BS. Also, as part of the IEEE 802.16 standard, security

associations (SA) are defined and used. An SA is the set of information that is shared between the

BS and SS to support secure communications. The SA can be shared between the BS and a single

SS or between the BS and multiple SSs. The SA establishes the Cryptographic Suite (the type of
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encryption, authentication, TEK exchange) that will be used. A summary of the various security

protocols implemented in IEEE 802.16 and 802.16e is presented in Figure 2.3.

Figure 2.3: IEEE 802.16 and 802.16e security protocol block diagram

Lastly, the physical layer specifies the configuration and operation for the physical medium.

This includes signal type, modulation and demodulation, transmission power, etc [35]. Many of

these requirements are detailed in Section 2.1. The physical layer is one option that would allow

us to change the BCR system parameters, if the correct equipment and facilities were available.

This requires constructing and transmitting a spoofed UCD message with the correct BSID and the

desired system parameters. We do not have the ability to use such resources for this study. Instead

we are looking at MAC management messages and man-in-the-middle attacks on the messages. This

will be described in Section 6.3.

2.1.2 Uplink: UCD and UL-MAP

The MAC messages that are particularly important to our work are the uplink map, UL-

MAP, and uplink channel descriptor, UCD. These two management messages carry a variety of

information for SSs, including system parameters, transmission request opportunities, and trans-

mission grants. The BS transmits them in the downlink subframes periodically [35]. As pictured

in Figure 2.4, the UL-MAP follows either the downlink map (DL-MAP), if one exists, or the frame

control header (FCH). If the UCD message exists in the subframe, it will follow the UL-MAP pre-
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ceded by a DCD, if there is one. These messages are included with the first downlink burst following

the FCH.

Figure 2.4: WiMAX downlink channel

The UL-MAP tells each SS when they can transmit and when transmission request oppor-

tunities are available. UL-MAP’s contain the following:

• Uplink Channel ID, identifier of the uplink channel that message refers to,

• UCD Count, is equal to value of Configuration Change Count of UCD (UCD describes the

uplink burst profiles for the specific UL-MAP),

• Allocation Start Time, effective start time of uplink allocation specified in UL-MAP, and

• Map Information Elements (IEs), contents dependent on PHY specification but defines uplink

bandwidth allocation.

For the Map IEs, each uplink bandwidth allocation starts at the given offset relative to

allocation start time and is specified in physical slot (PS) units [16]. The PS is dependent on the

physical layer. The Uplink Interval Usage Code (UIUC) indicates the burst profile that should

be used for each allocation. The UIUCs are defined in the UCD messages. The UCD Count

parameter assures that the correct UCD message is used to translate the UIUC into burst profiles.

A visualization of UL-MAP message can be seen in Figure 2.5.

As seen in the UL-MAP, the UCD defines the characteristics of an uplink physical channel

with the UIUC. The maximum allowed period for UCD transmission is 10 s [16]. This message

carries system parameters used in contention resolution for SSs as well as uplink burst profiles. The

following parameters must be included in the UCD:
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Figure 2.5: UL-MAP IE construction

• Configuration Change Count: incremented each time the values of channel descriptor change.

Allows for SS to quickly determine whether or not to process rest of descriptor. [16]

• Ranging Backoff Start: initial backoff window size for initial ranging, expressed as power of 2.

Can be set between 0-15. Most significant bits (MSB) not used.

• Ranging Backoff End: final backoff window size for initial ranging, expressed as power of 2.

Can be set between 0-15. MSB not used.

• Request Backoff Start: initial backoff window size for bandwidth requests for contention reso-

lution, expressed as power of 2. Can be set between 0-15. MSB not used.

• Request Backoff End: final backoff window size for bandwidth requests for contention resolu-

tion, expressed as power of 2. Can be set between 0-15. MSB not used. [16]

• Contention-based reservation timeout: time that SS waits to see transmission grant before

sending another transmission request

• Bandwidth request opportunity size: size in PS of physical burst an SS may use to transmit

Ranging Request message in contention ranging request

Additionally, for this study the ranging process in not examined. This leaves four important

parameters defined in the UCD message for our study: request backoff end, request backoff start,

contention-based reservation timeout, and bandwidth request opportunity size. All four of these

parameters are used in the Bandwidth Contention Resolution.

The UCD also defines the profiles of the UIUC. These definitions are TLV encoded. This

type of encoding will be covered in Section 2.1.3. There are 20 available modulation and coding

schemes for uplink burst profiles [35]. The format of the UCD message is pictured in Figure 2.6.

Figure 2.6: UCD message construction
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Another important aspect of the UL-MAP and UCD message is they are needed to keep

a SS locked on to a specific uplink channel. An SS is considered to have valid uplink parameters

as long as it continues to successfully receive the UL-MAP and UCD messages. If at least one of

these is not received within 50s, the SS will not use that uplink channel. The standard specifies the

time limit by equation 2.1. The UCD maximum interval is 10s leading to a maximum time limit for

receiving a UL-MAP or UCD of 50 seconds.

[max time interval ULMAP or UCD] = 5 ∗ [UCD Interval Maximum] (2.1)

We will see later why this information is important. Section 7.3 describes a technique for

possibly temporary manipulating the BCR system parameters by taking advantage of this time

interval.

2.1.3 TLV

MAC messages in IEEE 802.16e use type, length, value (TLV) encoding. This encoding

scheme is a way of storing data to facilitate quick parsing and is a type of Basic Encoding Rules (BER)

that is defined by the International Telecommunication Unions Telecommunication Standardization

Sector (ITU-T) X.690 standard [23] for Abstract Syntax Notation One (ASN.1) encoding. For each

parameter encoded as TLV, the first byte identifies the parameter type, the following byte(s) are

indicative of the total length in bytes of the value field, and the last are the parameter value [19].

The size of the Length field follows the definite form of the X.690 standard [16]. The definite

form defines the length of the Length field as 1 byte if the Value field is less than 127 bytes. The

MSB of the single byte is set to 0 and the seven least significant bits (LSB) indicate total length

in bytes of Value field. On the other hand, if the length of Value field is more than 127 bytes, the

Length field is one byte larger than the needed bytes to indicate the correct length. The MSB of

the first byte is set to 1 with the remaining LSB specifying the remaining number of bytes of the

Length field. The remaining bytes denote the total length in bytes of the Value Field.

The parameter type indicates the encoding rules that are used. IEEE 802.16 uses the

same type for various messages, but within the message unique TLV types are used. The system

parameters encoded within these messages are different and the system knows which it is currently

handling, therefore it can determine the explicit encoding used. For parameters that are TLV
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encoded and are referenced by multiple message types, a globally unique TLV type is used to

guarantee uniqueness. Examples of such parameters are transmit power, service flow descriptors,

and security information.

TLV encoding is commonly used for physical layer specification in IEEE-802.16 MAC man-

agement messages. These types of encoding begin at type 150 and go up. Non physical layer

encodings begin at type 1. This scheme is used in the UCD message to encode the UCID burst pro-

files and the Radio Resource Management (RRM) messages. Additionally, it is used for configuration

parameters such as software update, hardware version, DHCP, etc., and other MAC management

messages but the UCD and RRM messages are the only TLV encodings relevant to this research.

In the UCD message, contention-based reservation timeout, bandwidth request opportunity

size, ranging request opportunity size and frequency is encoded along with burst profile information,

ranging information, and bandwidth request codes. The BCR system parameters are TLV types 24

for contention-based reservation timeout, bandwidth request opportunity size and ranging request

opportunity size, respectively. Frequency is encoded as TLV type 5. Types 150 -172 are used to

encode OFDMA settings. For the burst profiles of OFDMA, encoding types 150 - 152 are used again.

The code type and modulation are type 150 and the Value field from 0 - 25 represents twenty-six

different modulation schemes with 26-255 being reserved. This encoding can be found in Section 11

of the IEEE 802.16-2004 standard [16].

IEEE 802.16e defined new TLV encodings in addition to encoding defined in IEEE 802.16-

2004. New types include RRM messages and Full UCD Setting. More information about these two

encoding types can be found in Table 2.1 and 2.2 [10]. Further detail of Full UCD Setting encoding

can be found in [17].

The UCD message alone, separate from the RRM message, contains TLV encoded parame-

ters as well. It was originally hypothesized that we may need to search and/or decode the encoded

information to determine with certainty that they encapsulate the BCR system parameters, and

this is the purpose of presenting the information in this section. Upon further investigation using

the techniques detailed in Chapters 4, 5, and 6, we did not find any indication of the BCR system

parameters that required further analysis of items such as TLV encoded parameters.
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Table 2.1: IEEE 802.16e new TLV type, RRM BS Info

RRM BS INFO

Type 159

Length Variable

Value Compound

Description Contains a description of BS parameters which are not related to a specific MS.

Elements (Sub-TLVs)

TLV Name BS ID

Available Radio Resource DL

Total slots DL

Available Radio Resource UL

Total slots UL

Radio Resource Fluctuation

DCD/UCD Configuration Change Count

DCD Setting

UCD Setting

Full DCD Setting

Full UCD Setting

Use This TLV
RRM Spare Capacity Rpt, RRM Neighbor BS Resource Status Update, RRM Radio Config Update Rpt.

Table 2.2: IEEE 802.16e new TLV type, Full UCD Setting

FULL UCD SETTING

Type 73

Length Variable

Value Compound

Description

This is an IEEE802.16e-2005 defined TLV. The UCD settings is a TLV value that

encapsulates a UCD message (excluding the generic MAC header and CRC)

that may be transmitted in the advertised BS downlink channel. This

information is intended to enable fast synchronization of the MS with the

advertised BS downlink.

Parent TLV(s) RRM BS Info
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2.2 Bandwidth Contention Resolution

All of our work revolves around the Bandwidth Contention Resolution (BCR) process and

the system parameters used to control the execution of this process. The work in [7] used the NS-2

simulator to analyze the effects on average throughput and packet-loss rate when a set of attacker

SS’s do not follow the BS’s settings of the BCR system parameters. Our study desires to take the

analysis one step further and conduct the same experiments in hardware. This is a challenging

task since the protocol and hardware implementations do not directly allow for such behavior. An

explanation of the BCR process will clarify two things: why manipulating the system parameters

could adversely affect other users on the network and why the BS controls the values of them.

In the Bandwidth Contention Resolution process, a SS has system parameters that are set

periodically by a broadcast message from the BS known as the Uplink Channel Descriptor (UCD).

These parameters are initially acquired during SS initialization as the second step after finding a

downlink channel and synchronizing with the BS [16]. The steps during initialization are carried

out in the following order:

1. Scan for downlink channel and synchronize with BS,

2. Obtain transmit parameters from UCD message,

3. Perform ranging,

4. Negotiate capabilities,

5. Authorization and key exchange,

6. Registration,

7. IP connectivity,

8. Time of day,

9. Operational parameters, and

10. Set up connection.

The UCD defines characteristics of the uplink channel and burst profiles. The BS tracks

multiple aspects of the network including number of users and channel conditions. The BS selects
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uplink characteristics and burst profiles that provide the best and/or needed performance required

by each SS. The BS also modifies these parameters as network conditions vary to maintain the

performance. Some of the parameters included in UCD and set by the BS are request backoff start,

request backoff end, ranging backoff start, ranging backoff end, contention-based reservation timeout

and bandwidth request opportunity size. When a SS needs bandwidth allocation it must request

it from the BS, and these previous parameters control the binary truncated exponential backoff

algorithms used in Bandwidth Contention Resolution. This process handles the issue of two SS

transmitting information at the same time and/or SS transmitted data not being received by the

BS. It is a means of handling the potential collisions on the network.

In BCR, when a SS has data they want to transmit they randomly choose a number in the

range of [0, backoff start -1] and defers a number of contention request transmission opportunities

equal to the randomly selected value before transmitting their request. The contention request

transmission opportunities are defined in the UL-MAP, uplink map, which also defines bandwidth

allocation for SSs. The UL-MAP, like the UCD message, is sent by the BS periodically to all SSs.

After sending a request, the SS checks each UL-MAP message for a pre-defined time period that is

determined by contention-based reservation timeout parameter to check if transmission was granted.

If no data grant is seen, the SS will increase backoff start by one, doubling the range for the randomly

selected variable [19] and repeat the process. This continues until backoff start equals backoff end,

at which the protocol data unit (PDU) is dropped and the process restarts with the next PDU [39].

There are two situations that can ultimately stop the bandwidth contention process. First,

transmission opportunity is granted. Second, the number of retries executed by the SS is equal to

request retry. If transmission opportunity is not granted before one of these scenarios occur, the

request is considered denied and the data is dropped. With an understanding how each system

parameter affects the contention process, hopefully it is clear how they can be manipulated to limit

transmission opportunities of other SS. For example, if one was to set backoff start very low, say 1,

then they will always be able to send there transmission request in the first or second contention

request transmission opportunity. If this SS continued to send requests in could limit the ability of

other SS to transmit there requests. Next we will look at software simulations that actual analyzed

this particular system parameters as well as others and discuss the results.
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2.3 NS-2 Software Simulations

Deng and Brooks conducted software simulations that analyzed the BCR system parameter

effects on SS average throughput and packet-loss in [7]. These simulations were conducted with

the network simulator, NS-2, of the Information Sciences Institute. The NS-2 is a discrete event

simulator targeted at networking research with support for TCP, routing, and multicast protocols

over wired and wireless networks [22]. Under the guidance of Brooks, this study has attempted to

replicate these simulations in hardware. The following section will summarize the NS-2 simulations

and results while explaining the experimental design and analysis used. This design and analysis is

also used for the hardware experiments detailed in Section 3.4.

2.3.1 Factorial Experimental Design

Factorial experimental design is a technique that produces substantial, reliable information

from the a minimal set of data and minimum number of test trials. Data for all combination of factors

is collected. This produces robust results and significant information about individual parameters

and parameter interactions. With this method, the tests for any one factor setting contains values

collected for all settings of other factors, allowing higher certainty that obtained results are due only

to specific factor settings rather than other varying factors that are treated as noise. This provides

significant information about the parameter and higher certainty of effects it produces. Furthermore,

the ability to analyze the effect of parameter interaction on a result is beneficial as well.

The operating characteristic curves of type II error probability [30] are used to determine

when to reject and accept a null hypotheses. The characteristic curves model the extent to which the

null hypothesis is false for a statistical test of a fixed sample size. For this study, the null hypothesis

is a parameter’s settings have equally no effect on the result. The alternative hypothesis is that at

least one of the settings does have an effect on the result. Statistical tests are used to quantify and

validate the hypothesis as we will see in Section 2.3.2.

We construct our experimental design so that the null hypothesis should be rejected with

probability of 95% producing a significance level, α, of 5%, if the difference in average throughput

of all SSs between two values of a parameter is as great as 5000. We assume standard deviation of

throughput for all SSs is 2000 bps. We require, a confidence of 99% or greater, equivalently a type

II error, β, less than 1%.
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In experimental design, determining the correct number of replications is critical. Using

number of factors, X, levels for each factor, Y, the desired β, and Chart V. Operating Characteristic

Curves for Fixed Effects Model Analysis of Variance [30] one can find ϕ. With standard deviation

and maximum difference between parameter values, the following equation, 2.3.1, can be used to

determine number of replications, n, to assure β.

ϕ2 =
n(Y (X − 1))(50002)

XY (20002)
(2.2)

2.3.2 ANOVA Analysis

Analysis of variance (ANOVA) [42] was used on simulation results to isolate which param-

eters and/or parameter combinations affect SS throughput and vulnerability to DoS most signifi-

cantly. Multiple factor ANOVA analyzed the 1st, 2nd and 3rd order parameter effects on network

performance. First order effects quantify how much an individual parameter alters the outcome,

and second and third order effects quantify additional influence of interactions of two and three

parameters respectively.

To understand ANOVA, allow response Y to be affected by two parameters A and B. A has

a treatments and B has b. Two-way ANOVA compares the effects of treatments of each parameter

and the parameter interaction. It tests the equality of treatments of A, different a’s, equality of

treatments of B, different b’s, and whether A and B interact, by finding the sum of squares (SoS),

mean square (MS), and applying the F-test to calculate F0, the F statistic. The variable F0 follows

an F-distribution and the questions is if it follows the same F-distribution as the entire data set.

The F-test finds the distribution variance of one specific parameter, in this case A, B, or interaction

of A and B. This variance is then compared to the distribution of variance for the entire data set to

determine if they are the equivalent. If they are, than the parameter’s settings are not significant on

data. One can consider F0 is the probability that a random process could produce a value at least

as extreme as the observed value.

To determine whether or not to reject the null hypothesis one first finds Fα, the value for the

desired significance level from the F-distribution that fits the entire sample set. This F-distribution

that is appropriate is different depending on whether we are analyzing first, second, or third order
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interactions. Next, F0 is calculated based on the the variance for the specific parameter’s subset of

data. If F0 is greater than Fα that parameter is significant. A correlation to F0 is the p-value. The

p-value is the probability that an F statistic is greater than F0, P (F > F0). If the p-value is less

than α than the parameters is significant.

To more intuitively quantify the amount of variance seen R-SQUARE is used. R-SQUARE

is commonly used in data analysis and interpreted as percent of variance in data explained by a

parameter, X [30]. Factor X can be a parameter or parameter interaction. The equation for R-

SQUARE is presented in 2.3.2. For R-SQUARE, normal distribution of error is assumed. The

experimental design confounds readings from multiple factors so when a parameter significantly

affects the result, it is likely that the values for other factors do not follow normal distribution. This

may lower the significance of the test [30], but the F-test, which we use to determine whether or not

a parameter is significant initially, is robust to the normality assumption and only slightly affected.

R2 =
SoSX

SoStotal
(2.3)

Two-way ANOVA is used to analyze average throughput for each SS overall replications.

For first order interactions, the null hypothesis can be summarized as the average throughput for SSs

for different treatments of a parameter are equal. For second and third order interactions, the null

hypothesis is that no parameter interaction exists. We still use the same criteria earlier stated to

determine whether to reject or accept the null hypothesis. The hypothesis being rejected indicates

specific treatment of the parameter has significant affect on throughput or parameter interaction

occurs, the alternative hypothesis. Using these statistical tests, an abundant amount of information

about the effect of parameters is derived from the data.

2.3.3 Software Simulations

Unlike past work in WiMAX security vulnerabilities, [1,26,31,43], this research investigates

how DoS attacks can be conducted using WiMAX system parameter settings. The parameters exam-

ined are bw backoff start, bw request retry, and frame duration. Additionally, one other parameter

is considered: attacker to user ratio (number of attacker/user). The Bandwidth Contention Resolu-

tion process, as explained in Section 2.2, uses bw backoff start, bw backoff end, and bw request retry
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to determine the delay an SS waits in between transmission requests and the number of times that

an SS will transmit bandwidth requests before dropping data. If an attacker station ignores the BS

mandated setting for these values they can potentially give themselves priority for sending trans-

mission requests which results in more granted opportunities to transmit data. This can adversely

affect regular user SS by limiting their opportunities to either transmit their bandwidth requests

and/or data.

Software simulations were conducted using the NS-2 simulator [22] by Deng [7] to examine

the effect of setting each of these parameters on client and attacker SSs to a low, medium, and high

value. Please see Table 1 for parameter settings, the settings that begin with dos refer to attacker

SSs where as settings that begin with bw refer to client SSs. The NS-2 simulator was configured to

imitate a WiMAX network that has a single BS, centrally located, and 100 SSs, which include both

client SSs and attacker SSs, placed along a 150 meter radius of the BS. Connected through a wired

interface to the BS is a sink node that acts as a receiver for all traffic. The bandwidth was set to

10 MHz and each SS used a UDP constant bit rate traffic generator to send 1492 B packets to the

sink node at intervals of 0.5 s. The system was configured in such a way to avoid packet dropping.

Table 2.3: Software simulation parameters

Parameter Treatment 1 Treatment 2 Treatment 3

frame duration (s) 0.004 0.01 0.02

number of attacker/user 20/80 50/50 80/20

dos backoff start 1 3 5

dos request retry 2 6 10

bw backoff start 1 3 5

bw request retry 2 6 10

Seven replications of each parameter setting combination were conducted for a total of 5103

experiments. Throughput and packet-loss measurements were collected for each replication, and

ANOVA [42], analysis of variance, was used to determine how these parameters and the parameter

interactions affected throughput. The results of these simulations and further explanation of the

ANOVA analysis can be found in [7]. Figure 2.7 is a visual representation of the results. In this

image, we see that 31% of the variance in throughput is caused by frame duration, followed by 22%

from the client SSs request retry. Lastly, the client SSs backoff start is responsible for over 5% of

26



variance and taking the combination of these three parameters and their interactions accounts for

86% of the variance in average throughput.

Figure 2.7: Piechart of ns-2 results for average throughput

ANOVA analysis indicates that frame duration and bw request retry and their combination

affect throughput most dramatically. The affects of other parameters are minor in comparison.

Other conclusions that can be made include:

• Throughput decreases drastically when frame duration is set to a value of 2 ms.

• Throughput increases drastically when bw request retry is increased from 2 to 6.

• The ratio of attackers to users does not significantly affect the impact of DoS attacks.

Additionally, one last point to highlight is that it is the client SS’s settings of request retry

and backoff start that contributes greatly to the variance seen in average throughput. This suggest

that the client’s settings of the system parameters is what matters most in decreasing the vulner-

ability to an attack that manipulates the BCR system parameters. The analysis indicates that a

high level setting of bw request retry provides the best throughput. The other two client settings,

frame duration and bw backoff start both should be set to low values to provide robustness to a

DoS attack of this type. The best settings for these are not surprising and are easily explained by

the BCR process. The high setting of bw request retry allows a SS to complete multiple attempts

to transmit providing more robustness if there is disturbances on the network. The low setting of

bw backoff start produces a shorter wait time for sending the a transmission request, and ultimately
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if the request fails, produces a shorter time till the next attempt. Lastly, a small frame duration

allows more packets to be sent producing a better probability for some of the packets to get through.

2.4 GENI and ORBIT

GENI, global environment for network innovation, is a virtual laboratory for at-scale net-

working experimentation supported by the National Science Foundation. The backbone network is

constructed of National Lambda Rail (NLR) [34] and Internet2 [24] links creating a high capacity

backbone to support multiple GRE tunnels for experimentation. The main object of this virtual

laboratory is to allow researchers to explore future Internet technology. Many other applications

have become possibly with such a large-scale network for experimentation such as wireless, sensor

networks, and security research.

ORBIT, open-access research testbed for next-generation wireless networks [45], is one en-

tity of the GENI network. ORBIT is ran by Rutger University’s WINLAB and provides eleven

different software-defined radio testbeds. The resources are remotely accessible, completely con-

figurable, support experimental scalability and reproducibility, and extensive measurement. There

are two integral parts that allow this, the ORBIT management framework (OMF) [40] and ORBIT

measurement library (OML) [44]. Both of these services are stored on a single server known as the

OMF/OML server. OMF includes software and hardware that allows an experimenter to write an

experiment in a high-level language and then translate it to control the resources to carry out the

experiment. OMF handles the translation and control of execution of the experiment.

2.4.1 OMF and OML

The basic OMF framework includes the following software and hardware:

• Support servers, repositories,

• Collection server (CS),

• Disk-loading service,

• Node handler,

• Node agent,
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• Experiment controller service, and

• Chasis manager (CM)/ Aggregate manager service.

Figure 2.8: ORBIT Management Framework [33]

A block diagram of the ORBIT framework can be seen in Figure 2.8 [33]. Support servers

compromise servers for web services and experimentation and data storage. The latter servers are

called repositories in the ORBIT system. Predefined applications such as traffic generators and

traffic receivers, i.e. ORBIT traffic generator (OTG) and ORBIT traffic receiver (OTR), have

been developed and are stored in the repository for experimenter use. The collection server stores

measurement data using an SQLite database. The node handler and node agent work together to

control the experiment via the Experiment Controller Service. The disk-loading service enables quick

re-imaging of hard disks on individual nodes [40]. The node agent is on the end nodes and the node

handler, stored on the server, sends experiment scripts to each node via multicast messages. Lastly,

experiment controller service and the aggregate manager services are stored on the OMF/OML

server. The experiment controller, as mentioned before, coordinates the node handler and node

agent. The CM has a dedicated Ethernet connection to each node that allows it to monitor status

of hardware and remotely reset and power on and off each node.

OML enables measurements to be easily integrated into the user experiment scripts. It

is a distributed client-server software framework that enables real-time collection of data from the
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various applications being executed during an experiment [45]. The library defines data structures

and functions for making and handling measurements in XML data reduced (XDR) format. This

includes transmitting and receiving and encoding and decoding measurements [44]. OML offers

measurement metrics and various filters that can be applied to these metrics. Metrics include rssi,

throughput, pkt size, xmit rate, sender ip to name a few. Example of filters would be average, sum,

etc.

Additional hardware and software for testbeds include virtual machines and Linux 2.6.35

kernel nodes. The KVM virtual machines and the virtual machine aggregate manager are stored on

the VM server. Lastly, to complete the wireless system for WiMAX enabled beds there is a NEC

base station transceiver system, consisting of an indoor and outdoor unit, and base station servers.

The servers store software that enable integration and functionality of the entire WiMAX system and

manage multiple remote access, operation, and configuration of the network. This includes CLICK,

a software defined router, the ASN-GW Controller, and the WiMAX RF aggregate manager that

are stored on the base station server.

The Linux nodes are custom built system that include a 1 GHz VIA C3 processor that

has 512 MB of RAM, a 20 GB hard disk, two 100BaseT Ethernet ports - one for control and one

for experiment, two wireless mini-PCI 802.11a/b/g interfaces, and an integrated chassis manager

that works with the CM for remote monitoring of hardware. WiMAX enabled nodes include Intel

Centrino Advanced + Wireless 6250 USB devices. The user has root access to the Linux nodes and

they can be configured with whatever modules and software an experimenter desires as long as it is

supported by the hardware. The virtual machine image can be saved and stored on the repository

for imaging of nodes in future.

The NEC base station is proprietary but user configurable. The BCR system parameters

are just one of many parameters an experimenter can set to dictate BS behavior. Changing these

parameters on the BS, changes the parameter on all SS. The configuration that is passed to the BS,

it the same configuration that the BS will pass to every SS on the network via MAC management

messages. Though this is useful for a WiMAX experimenter, it does not allow for any malicious ac-

tivity to simulated. Therefore, we still needed to find a way to set the system parameters on attacker

nodes separate from the BS settings of system parameter. An exhaustive list of the experimenter

configurable BS parameters can be found at:
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http://wimax.orbit-lab.org/wiki/WiMAX/17/00Wireless#WirelessControlServices

The parameters that are important to this study our listed in Table 2.4 with explanation of

their importance. The remaining sections will detail experiments and investigations that have been

conducted using the ORBIT resources.

Table 2.4: ORBIT base station parameters used

PARAMETER DESCRIPTION DEFAULT

reqbackoffstart
Initial backoff window size for contention bandwidth requests, expressed as a

power of 2. This is encoded in the UCD message in the MAC layer. [0..15] 3

reqbackoffend
Final backoff window size for contention bandwidth requests, expressed as a

power of 2. This is encoded in the UCD message in the MAC layer. [0..15] 15

dcducdinterv Time interval between UCD and DCD mesages (units: frames) [10..4000] 200

odunoisefloor Outdoor unit noise floor [0..100] 40

2.5 Summary

This chapter summarized the details of the IEEE 802.16e standard and WiMAX protocol.

Coverage of the MAC layer, with specific focus on the UCD and UL-MAP messages, and TLV

encoding was presented. The information in these sections communicate the importance of our study

of WiMAX security and the protocol intricacies that will be used in finding and understanding the

BCR system parameters. The security of the MAC layer was briefly explained to provide further

context to the previous Section 1.3, past work in WiMAX security. Next, an exhaustive look at the

BCR system parameters was given to help understand the hypothesis that system parameters have

potential to be used as a DoS attacks and why modifying them in hardware has been a tedious job.

Additionally, the original work, that was the catalyst for this study, was presented and

explained followed by an overview of the hardware, software, and facilities used for the hardware im-

plementation. This information, as well as Section 2.1.2, serve as an introduction to the experiments

discussed in the next chapter, Chapter 3, and will allow one to fully comprehend the methods we

have used in our search for the BCR system parameters in hardware. These methods are presented

in the remaining Chapters 4, 5, and 6.
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Chapter 3

ORBIT Testbeds

As eluded to in Chapter 2 and Section 2.3, WiMAX hardware experiments were a natural

progression after software simulations. There were multiple motivations for hardware experimenta-

tion. First, carrying out the same experiments on real hardware would provide a good comparison to

software and hopefully validate the software results. Second, it would provide analysis of the reliabil-

ity of a popular software network simulator, the NS-2. Additionally, all the reasons for investigating

the BCR parameters in [7] were motivation for carrying out hardware experiments. Being able to

replicate attacker behavior in hardware proved to be hard. While we applied various techniques to

find a method that would allow us to mimic their actions, we analyzed the effect of BCR system

parameters when no malicious activity is simulated.

This chapter presents these hardware experiments which were conducted on the ORBIT

resources. We begin by introducing the experimental setup in the following section. Next, we look

at the two testbed environments, indoor and outdoor, that were used for these in Section 3.2 and

3.3 respectively. To conclude this chapter, the actual analysis of the experimental data of these two

environments is presented in Section 3.4 and the differences seen in results is explained.

3.1 Introduction

A few changes were required for hardware experimentation though. We no longer consider

frame duration because it is fixed at 5 ms due to restrictions of WiMAX certified equipment. Sec-

ondly, the NEC BS does not provide request retry as a configurable parameter. Backoff end is used
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instead because, as explained in Section 2.2, both request retry and backoff end determine when

packets are dropped. Additionally, for these experiments no malicious activity was simulated. In-

stead all WiMAX nodes use the same BCR system parameters. The parameters settings used for

these experiments can be seen in Table 3.1.

Table 3.1: Indoor vs outdoor experiment parameter settings

Parameter Treatment 1 Treatment 2 Treatment 3

frame duration (s) 0.005 0.005 0.005

dos backoff start 1 3 5

dos backoff end 2 6 10

WiMAX enabled resources at Rutgers University’s WINLAB facilities are being used to

conduct hardware experiments. The resources are part of ORBIT [40], which is part of larger

infrastructure of the GENI network. ORBIT has two NEC WiMAX BSs that we are using for

our experiments. The SSs at ORBIT consist of laptops running Linux Kernel 2.6.35 with ntel R⃝

Centrino R⃝ Advanced + Wireless 6250 devices providing WiMAX service. Experiments consists of

one BS, eight or more traffic generating SSs, and one sink node directly connected to the BS that

acts as a receiver for all traffic generated by SSs. The traffic generating nodes use Constant Bit Rate

(CBR) generators, to transmit 1024 B UDP packets every 0.5 s. The OTG and OTR were used as

the transmitters and receiver. For each experiment, traffic is generated for 120s and OML [44] is

used to collect measurements of the incoming traffic at the receiving node.

3.2 Indoor Testbed

ORBIT provides an indoor BS and an outdoor BS. The indoor BS and its corresponding

WiMAX network have most environmental conditions controlled. The indoor BS, eight nodes that

can be configured to be a WiMAX network and an Ethernet sink node, are enclosed in a Faraday

Cage preventing outside interference from other wireless communication. Coaxial connections and

tunable attenuators imitate the air medium between the BS and SSs. The attenuators can be used to

simulate fading or varying signal strengths if desired, but no attenuation is used in our experiments.

The indoor testbed, with all attenuation set to zero, produces a fairly equal receive signal strength,

within +/- 2 dB, at each SS.
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Figure 3.1: ORBIT’s indoor WiMAX testbed, Sandbox 4 [45]

3.3 Outdoor Testbed

The outdoor BS and testbed consists of forty plus SSs deployed at various locations through-

out Rutgers University’s Busch Campus, Piscataway, New Jersey. The testbed includes both fix

subscriber stations and mobile stations (MS). This testbed resembles a real WiMAX network with

SSs at various locations and distances from the BS and experiencing a wide range of receive sig-

nal strength. Transmission paths are vulnerable to environmental factors and there is an increased

amount of traffic compared to the indoor testbed. For consistency, we use the same eight WiMAX

nodes and sink node in our experiments; the WiMAX nodes include node1-1 through node1-8 and

sink node is node 4-1.

3.4 Indoor vs Outdoor

The following quantitative and qualitative analysis of the indoor and outdoor testbeds is

based on the data that we have collected on both testbeds. The end of the previous section describes

the parameters of this data. Data has been collected and analyzed for 26 experiments on each

testbed. Table 3.4 presents the average throughput and packet-loss rate for all nodes involved in the

experiments for the outdoor and indoor testbeds. Refer to Appendix C for detailed results of each
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Figure 3.2: ORBIT’s outdoor WiMAX testbed, Sandbox Outdoor

experiment run.

As expected, the data indicates that the indoor testbed achieves higher throughput for the

receiving node and has a lower dropped packet rate. The indoor testbed produces a fairly consistent

throughput for each SS with the average throughput for all eight nodes of 2031.2086 B/s and a range

of 11.4872 B/s. The average throughput for outdoor was only 14.325 B/s lower than indoor, but

the throughput range was much larger, 131.9 B/s.

Significant performance differences between nodes of the outdoor testbed are evident. For

example, node 7 performed worst with an average throughput of 1919.895 B/s in comparison to node

3s average of 2051.572 B/s. Reasons for this include increased traffic activity from other parts of

network and varying receive signal strength (RSSI) at each SS. The largest recorded range of RSSI

for the outdoor nodes used in our experiments is 19 dB, -65 to -46 dBm. The results seen in the

outdoor environment, large throughput range and varying node performance, can be accounted for

by the environment factors that the outdoor testbed experiences that the indoor testbed does not.

The nodes that performed worse likely are further away from the BS operating with a lower receive

signal strength and/or experience such things as multipath fading.

Performance fluctuation can also be seen between groups of experimental runs. ORBITs

network testbeds are still under development and are constantly undergoing modifications to produce

better network performance and results. Implications of this will be discussed further in the following
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Table 3.2: Average throughput and packet-loss

Testbed Node Avg. Throughput (B/s) Avg. Packet Loss (B/s)

IN
D
O
O
R

Node 1 2038.153823 15.42564103

Node 2 2035.856393 17.39487179

Node 3 2031.910245 21.00512821

Node 4 2030.59743 18.70769231

Node 5 2030.605125 18.05128205

Node 6 2028.964095 19.69230769

Node 7 2026.994868 21.66153846

Node 8 2026.666663 21.98974359

Receiver 16271.83728 161.4769231

O
U
T
D
O
O
R

Node 1 2020.079463 67.65714286

Node 2 2034.856374 40.22857143

Node 3 2051.571781 4.594871795

Node 4 2048 2.438095238

Node 5 2016.164103 59.12380952

Node 6 2047.015385 1.219047619

Node 7 1919.67179 237.1047619

Node 8 1997.784612 91.42857143

Receiver 16111.26115 504.6857143
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section.

The ANOVA analysis presented in Table 3.4, 3.4, 3.5, and 3.6 highlight the significant dif-

ferences that are expected between an outdoor, real WiMAX network, and indoor, an ideal network,

environments. In these tables, X1 and X2 represent bw backoff start and bw backoff end, respec-

tively, SS is the sum of squares, DF is degrees of freedom and MS is mean square. F0 is the mean

square of the specific parameter divided by the mean square of error. In this test, the null hypothesis

is different levels of each parameter or parameter combination affect the throughput or packet-loss

rate equally, meaning that the value/s of the specific parameter or parameter combination does not

significantly affect the measured quantity. A confidence of 95% is used for our analysis, α equals

0.05, and determines when to accept or reject the null hypothesis.

Table 3.3: ANOVA table for average throughput, indoor

SOURCE SS DF MS F0 Fα Prob>F0 R-SQUARE

Backoff start, X1 72.7 2 36.37 0.07 3.5915 0.9315 0.0046898

Backoff end, X2 204.8 2 102.42 0.2 3.5915 0.82 0.013207

X1*X2 6536.4 4 1634.1 3.2 2.6547 0.0393 0.42145

Error 8673.5 17 510.2

Total 15509.2 25

Table 3.4: ANOVA table for average packet-loss rate, indoor

SOURCE SS DF MS F0 Fα Prob>F0 R-SQUARE

X1 131.2 2 65.6 0.14 3.5915 0.8671 0.0098891

X2 160.8 2 80.38 0.18 3.5915 0.84 0.012116

X1*X2 5237.9 4 1309.47 2.87 2.6547 0.0551 0.39479

Error 7757.4 17 456.32

Total 13267.6 25

If F0 is more than Fα, than the null hypothesis is rejected and that parameter or combination

of parameters does have significant affect on the quantity measured, this is known as the F-test.

Similarly, if the probability that an F is greater than F0 (Prob > F0), also known as the p-value,
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Table 3.5: ANOVA table for average throughput, outdoor

SOURCE SS DF MS F0 Fα Prob>F0 R SQUARE

Backoff start, X1 94.1 2 47.06 0.2 3.5915 0.9798 0.0020603

Backoff end, X2 1798.8 2 899.4 0.39 3.5915 0.6824 0.039373

X1*X2 4872.6 4 1218.16 0.53 2.6547 0.7158 0.10666

Error 39115.1 17 2300.89

Total 45685.9 25

Table 3.6: ANOVA table for average packet-loss rate, outdoor

SOURCE SS DF MS F0 Fα Prob>F0 R SQUARE

X1 99.4 2 49.69 0.02 3.5915 0.9785 0.0021924

X2 1785.8 2 892.91 0.39 3.5915 0.6824 0.039395

X1*X2 4792.2 4 1198.05 0.52 2.6547 0.7193 0.10571

Error 38842.8 17 2284.87

Total 45331.5 25

is less than α, the null hypothesis should be rejected as well. The R-Square value is defined as the

percent of variance explained by a parameter or combination of parameters.

When comparing F0, Fα, and R-Square, one can conclude that bw backoff start and bw backoff end

and their combination does not have any significant affect on throughput or packet-loss rate in the

outdoor environment. Interestingly, the second-order effect of combining these parameters does have

a significant affect in the indoor environment. Neither parameter alone will affect throughput or

packet-loss rate, but the combination of the parameters can be significant in ideal WiMAX network

but none are significant in real WiMAX networks. These results can be visualized in Figure 3.3.

The R-SQUARE values for both indoor and outdoor are plotted in this figure. Despite this, it is

crucial to note that according to ANOVA analysis the outdoor results are not significant.

These results also show the importance of real hardware network testbeds like ORBIT and

GENI for system testing. According to our results, the environmental issues play a significant role

in determining the affects of system parameters. When environmental conditions are modeled the

significance of certain parameters change. For complete system testing, this is essential to know.
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Figure 3.3: Piechart of indoor and outdoor test results

Many software simulators only allow replication of ideal networks and they are not able to mimic

conditions of multipath fading and other environmental factors. With such software simulators, it

is very critical to consider hardware experimentation as well to fully understand the effects.

3.5 Summary

This chapter presents in detail the WiMAX network environments of Rutgers University’s

ORBIT testbeds. These are the testbeds used for all of our hardware experiments and investigation

into the BCR system parameters in hardware. Additionally, an analysis of the indoor and outdoor

environments, testbeds SB4 and outdoor, was presented. The analysis did not simulate malicious

activity. Instead it looked at the effect of different settings of two BCR system parameters, back-

off start and backoff end. The individual parameter settings had no significant affect on the average

throughput of the SSs, but the interaction of these two parameters did affect throughput in the in-

door environment only. This magnifies an interesting difference between indoor and outdoor network

testing.

The indoor testbed is controlled to produce almost ideal network conditions and this is

similar to the ideal conditions that software network simulators create. The outdoor testbed is a
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real WiMAX network. The varying results we see between these two environments exemplifies the

importance of hardware and real network testing. Vulnerabilities present in one environment may

not exist in another. It is always important to know how protocols will act under real scenarios.

Understanding the effects on real networks, allow administrators to focus on the true vulnerabilities

for their networks rather than theoretical flaws that may have no effects.

As mentioned earlier, this analysis did not simulate attackers and the end of goal of this

study is to simulate both client and attacker nodes. The reason for not simulating the attackers was

due to an ongoing investigation of how to do this on hardware. It requires being able to modify the

BCR system parameters separately from the BS. The next three following chapters will present the

methods we applied on the ORBIT resources in an attempt to find and manage the BCR system

parameters. The methods have been separated into three categories: Linux, Intel, and Protocols.

Each will be discussed in separate chapters.
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Chapter 4

Intel Centrino Advanced +

Wireless 6250

The hardware experiment investigation began with the ORBIT resources. The ORBIT BS

allowed us to set the BCR system parameters to whatever values we desired. Though we could

control the value of the parameters by modifying them on the BS, all SS’s followed this one set of

values. We learned that simulating attackers that use a different set of BCR system parameters

than the BS set requires additional work. This work includes modify the parameters after the BS

sets them. The ORBIT nodes discussed in Section 2.4 use Intel R⃝ Centrino R⃝ Advanced + Wireless

6250 USB devices for WiMAX services. We first analyzed the software provided with the device

that enables operation of the WiMAX hardware. We were looking to determine if the BCR system

parameters could be found and modified in the software.

The Intel devices include the following software on the nodes:

• Driver source code, wimax-1.5.1,

• Firmware, i2400m-fw-usb-1.5.sbcf, and

• Utility tools, wimax-tools-1.4.4.

The driver source code package has an open source license providing freedom to make

modifications if needed to control the BCR system parameters in our case. The firmware is a

binary file that is not provided under an open license. The utility tools provide simple functions for
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checking the WiMAX services. It is the driver package that was investigated in our work. Each Intel

module will be discussed in detail in the Section 4.2. Following this, the techniques used to search

and modifying the module and source code in search of the BCR system parameters is presented

in Section 4.3. The two techniques include manipulation of the Intel source code and information

gathering from the debug configurable parameters for the Intel device. We hoped to find the BCR

system parameters and/or verify the settings of these parameters through these two options. If we

could not control the system parameter by these means, at least being able to verify them on the SS

nodes would allow us to determine if other methods of modifying the parameters were successful.

Before delving into the two techniques in Section 4.3, we will first provide an overview of the Intel

device and modules in the following Introduction section and Section 4.2.

4.1 Introduction

The driver source code package creates 3 loadable modules when compiled and installed into

a kernel. These modules can be divided into two parts, a WiMAX kernel stack and driver for Intel

i2400m. The driver is further modularized into a bus generic and bus specific driver. The following

WiMAX modules, i2400m, i2400m-usb, and wimax serve the following purposes respectively: bus

generic driver, bus specific driver, and WiMAX kernel stack [28]. These modules are dependent on

iwlagn module, a driver commonly installed in the Linux kernel for Wi-Fi applications.

One must make sure that drivers are loaded into the kernel before being able to use WiMAX.

Most system avoid wasting kernel memory by not keeping drivers in core when not in use and

support for automatic loading and unloading of modules [41]. A useful function for loading modules

is modprobe, a user-space helper function. It finds and loads other modules that the current

module is dependent on to function. For example running the following command will load not only

i2400m usb, but also i2400m and wimax :

modprobe i2400m usb

As a side note, one could configure /etc/moudles.conf for a particular module to automat-

ically set module options upon loading, executing commands before and/or after loading, assigning

an alias name, etc. For example, the alias could be set to wmx and/or debug levels of i2400m could

be set to high when loading modules. The following section will discuss debug level of each module

further and the purpose of each driver. The last two sections in this chapter examine two techniques
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used for finding the BCR system parameters and information related to them. Both techniques are

dependent on the WiMAX drivers and source code.

4.2 Driver Modules

The module i2400m forms the driver core and this part of the driver can additionally be

divided into two parts, OS-glue and hardware-glue [28]. The OS part interfaces with the Linux

operating system. The hardware part interfaces with the device according to the bus-specific driver.

This type of modularity allows easy adaption of hardware module for various operating systems.

There are multiple debug parameters for this module. The debug level is user configurable

with 0 being the lowest and 8 being the highest level. We created an image for the ORBIT testbed

that had all debug levels set high. While trying to understand how and where the system parameters

are handled, it was useful to have as much information as possible. The higher the debug levels

are the more information about WiMAX’s operation is logged. The following debug parameters are

included with the i2400m module:

• dl tx, transmit,

• dl rx, receive,

• dl rfkill,

• dl netdev, network device,

• dl fw, firmware,

• dl debugfs, file system,

• dl driver, the actual driver, and

• dl control, the MAC management control.

These can be found within the Linux file system at:

/sys/kernel/debug/wimax:wmx0/i2400m

They can be read using the cat command and set by executing:

echo [0-8] > /sys/kernel/debug/wimax:wmx0/i2400m/[debug filename]
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Debug information is logged to two separate log files. One is specifically for WiMAX, while

the other is a kernel log and contains information about various kernel operations as they execute.

The two log files with directory path included are:

• /var/log/wimax/system log

• /var/kern.log

This module also stores transmit and receive statistics. There are six statistics kept for each

receive and transmit. They include total packets, minimum packets in the received/transmit buffer,

maximum packets in the received/transmit packet, total received/transmit buffers, accumulated

receive/transmit buffer size, minimum receive/transmit size (bytes), and maximum receive/transmit

size (bytes). These statistics can be viewed by reading the following file:

/sys/kernel/debug/wimax:wmx0/i2400m [rx/tx ] stats

The i2400m module has two additional debug configurable parameters. These are reset and

trace msg from user. All can be set by writing to the file associated with the parameter name. The

variable reset will perform a device reset. A warm, cold, and bus reset are possible by writing 0, 1,

or 2 relatively. Parameter trace msg from user creates a trace of messages originating in user space

to the trace pipe that i2400m module creates.

Configurable operational parameters for this module can be found at:

/sys/module/i2400m/parameters

These parameters include rx reorder disabled, passive mode, power save disabled, and

idle mode disabled. These parameters are defined in the IEEE 802.16e standard. The option

rx reorder disabled if set, would no longer allow the driver to reorder receive packets that are received

out of order resulting in an increase of corrupted data. With passive mode enabled, the driver will

no longer be responsible for device setup. Instead, setup must be done via user space and caution

must be taken to properly setup device. The power save mode allows a mobile SS to negotiate

periods of absence from the BS to save power. At these periods, the SS is unable to communicate

via the uplink or downlink channel. Lastly, idle mode allows a mobile SS with no data to transmit to

shutdown all active communications and only periodically become available for downlink traffic [35].

This state can be requested by either the SS or the BS. The default configuration disables all of the
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parameters and this can be verified by making sure a ’0’ is wrote to each parameter file. To enable

these, one must write a 1 to the file by issuing the following commands on the node:

echo 1 > /sys/module/i2400m/[parameter name]

We have been interested with the last two operational parameters power save disabled and

idle mode disabled for reason that will be explained in Section 7.3.

An important feature of the universal serial bus (USB) is that it is just a communication

channel between a device and the host. It does not require standardized meaning or structure in

the data to function [41]. The i2400m-usb module defines and handles this communication. It also

has it own debug parameters that specifically look at the USB communication interface. These

parameters included:

• dl tx,

• dl rx,

• dl notify,

• dl fw, and

• dl usb.

The i2400m-usb debug parameters can be found at that the following location:

/sys/kernel/debug/wimax:wmx0/i2400m-usb

The WiMAX stack provides common WiMAX control for current and future devices. The

kernels handling of network device is protocol independent [41] and therefore requires a module that

is common. This is a generic layer that provides uniform API to control different WiMAX devices

including a user space management stack. The stack works by embedding a struct wimax dev in

the machine’s control structures and uses the generic netlink to send API calls to userspace [29].

The netlink commands are basic and include sending operation messages to and from kernel to user

space, killing and reseting operations, reporting a status change, and requesting current state. This

module, similar to i2400 and i2400m, has various debug parameters. These included:

• wimax dl stack,
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• wimax dl op rfkill,

• wimax dl op reset, and

• wimax op msg.

These can be found at the following location:

/sys/kernel/debug/wimax:wmx0

Both debug parameters for i2400m-usb and wimax can be read and set in the same fashion

as indicated for i2400m parameters. The only difference is the path directory.

4.3 Methods

Two methods for investigating the BCR system used the Intel R⃝ Centrino R⃝ Advanced +

Wireless 6250 software. The first technique looked at and modified the source code.The second

relied on setting the debug levels and analyzing the log files to see if the system parameters could

be found.

4.3.1 Wimax-1.5.1

The wimax-1.5.1 package is a hierarchy of files written in C-language. They include source

and header files. These file comprise the necessary code for integrating the WiMAX hardware and

firmware of the Intel device with the Linux machine. Some of the hierarchy along with important

directories, for our work, is depicted in Figure 4.1. We searched these files looking for parameter

variables that may include the BCR system parameters.

Understanding how the Linux kernel handles network devices is useful when attempting

to reverse engineer the source code. First, initialization of net devices is completed by defining a

structure known as the net device sturct [35]. This struct contains numerous parameters some of

which are visible and some that are not. Rmem start, rmem end, mem start, mem end, some of

the parameters within the net device, represent the beginning and end memory addresses of shared

memory used by the device. If receive and transmit use different memory addresses, rmem is for

receive and mem is for transmit. Other interesting parameters that could be significant for security
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Figure 4.1: Directory hierarchy of Intel’s wimax-1.5.1 source code

related work include tx queue length (max number of frames that can queued on the device transmit

queue), broadcast[] and dev addr[] hardware device address (MAC address).

There are also fundamental functions for operation of network devices such as open, stop,

set mac address, hard start xmit, etc. The last function, hard start xmit, initiates transmission of

a packet that is contained in a socket buffer [35]. Interaction between network drivers and the

kernel occur one network packet at a time. A socket is a Unix abstraction to represent a network

connection. Input/output buffers of any socket are a list of sk buff structures. This buffer structure

host network data throughput. Interrupts are used to handle receiving data. Other fundamental

functions work in coordination with the function to build proper headers for transmitting packets.

When analyzing the source code, exhaustive searches were run on all files for keywords and

parts of words such as parameters, params, sk buff, UCD, ULMAP, etc. The source files containing

these words are returned by the search. The variables and functions that were returned by these

searches were further investigated in the context of the source code to see if they possibly could

contain the BCR system parameters or information related to them. Some the parameters found

that were promising and their associated files are listed in Table 4.1. The last column of this table

indicates what these structures and/or functions define and handle according to the source code.

When there was a lack of or ambiguous information in the source code about suspected

variables and/or functions, another method was used to gain more insight. Source files were modified

to log parameters of interest using a function defined in the source code itself. The function used is
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Table 4.1: Source code parameters investigated for BCR system parameters

PARAMETER SOURCE FILE INFORMATION CONTAINED

Infrastack/OSDependent/Linux/L4Generated/DmGroupsHeaders.h,

Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs Desc.h,

SF AND QOS FLOW MNGMT Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs.c Harq and non-harq, UIUC (1-10 modulation and coding)

Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs Desc.h,

AggregatedBWRInfo, Infrastack/OSDependent/Linux/L4Generated/L2DmMonitorGroups.h,

IncrementalBWRInfo Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs.c r2, numberOfBWRs

Infrastack/OSAgnostic/WiMax/Agents/NDnS/L4 db/NDnSAgent DB Common.c,

subscriptionParams t Infrastack/OSAgnostic/WiMax/Agents/NDnS/L4 db/NDnSAgent DB if.h subscriber informatin and eap info

home nsps, capl, rapl, name, server ID, channel plan, polling

nwParams t Infrastack/OSAgnostic/WiMAX/Agents/NDnS/L4 db/NDnSAgent DB.c interval, polling attempts, contention retries

nw Params t − > channel plan Infrastack/OSAgnostic/WiMAX/Agents/NDnS/L4 db/NDnSAgent DB common.c bw, duplex mode, ftt, channel size

Infrastack/OSAgnostic/WiMax/Wrappers/NDnS/wmxSDK Nds Internals.h,

wmx ConnectParams Infrastack/OSAgnostic/WiMax/Wrappers/NDnS/wmxSDK Nds 3.c nsp ID, connection type, home NSP, user credentials

traffic priority, sf ID, max sustained traffic rate, max traffic

Infrastack/OSDependent/Linux/L4Generated/DmGroupsHeaders.h, burst, tolerated jitter, max latency, UG interval, min

qosParams Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs.c resevered traffic rate, cid, sf scheduling type

Infrastack/OSAgnostic/WiMax/Agents/NDnS/Source/NDnSAgent L4P.c,

Infrastack/OSDependent/Linux/L4Generated/L4Common.h,

ChannelInfoArray (channel plan) Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4Structs.c preamble, frequency, bw, channel id, fft

pointer to OMA Paramerters: manufacture, model , fwVer,

pWimaxParams Infrastack/OSAgnostic/WiMax/Agents/NDnS/Source/NDnSAgent Monitor.c: hwVer, mac

Infrastack/OSDependent/Linux/L4Generated/DmGroupsHeaders.h,

Infrastack/OSDependent/Linux/L4Generated/L2DmMonitorGroups.h, channel quality indicators: MIMOReportFlag, CQI

CQIParams Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs.c measurements

MSChapParams Infrastack/OSAgnostic/WiMax/Wrappers/NDnS/wmxSDK Nds 3.c nsp ID, password, username

Infrastack/OSDependent/Linux/L4Generated/L3L4DmStructs.c,

DcdUcdTimeout Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs Desc.h ms in frame

Infrastack/OSDependanet/Linux/L4Generated/L1DmMonitorGroups.h,

NormalULMap Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs Desc.h CRC Error, HCS errors

IdleParameter*,

PreInitConfiguration,

PLIParameters*, Infrastack/OSAgnostic/Product/AppSrvInfra/DeviceConfiguration.c Arq, harq, packet formatting information

Open mobile alliance device management parametrs: radio

Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs Desc.h, module, terminal equipment, mac address, manufacture, hw

OMA WimaxParams Infrastack/OSDependent/Linux/L4Generated/L4BufMan L3L4DmStructs.c version, operator name, fw version,

linkLossParams Infrastack/OSAgnostic/WiMax/Agents/NDnS/L4 db/NDnSAgent DB Save.c stored nsp and network parameters for reconnecting
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osallog(char* ch, int flush). The definition of this function is:

void osallog(char *ch, int flush)

{

static FILE *log = 0;

if (log == 0) {

log = fopen(OSALTRACE_FILE, "at");

if (!log)

log = fopen(OSALTRACE_FILE, "wt");

if (!log) {

syslog(LOG_ERR, "wimaxd[osal] - can not open logfile (%s) for writing.\n",

OSALTRACE_FILE);

// release the lock if get any errors

pthread_mutex_unlock(&g_mutex);

return; // bail out if we can’t log

}

}

// write into file

fprintf(log, ch);

// put extra to log next line to build

//fprintf(log,"\n");

if (flush == 1)

fflush(log);

#ifdef OSAL_CONSOLE

printf(ch);

#endif

// release the lock once done with log

pthread_mutex_unlock(&g_mutex);

// fclose(log);

}

This function was called where the parameters were accessed in the source code. For exam-
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ple, the following code:

char tmpBuffer[100];

sprintf(tmpBuffer, "nwParams_t Address: %d\nnwParams polling interval=%d, polling

attempt=%d\nsubscriptionParams Address: %d", nwParams_t, (*nwParams_t).pollingInterval,

(*nwParams_t).pollingAttempt, subscriptionParams);

osallog(tmpBuffer, 1);

was added to the file:

Infrastack/OSAgnostic/WiMAX/Agents/NDnS/L4 db/NDnSAgent DB.c

after nwParams was defined. After modifiying the source code, the software package had to be

reinstalled on the Linux node for the change to take effect. To reinstall the WiMAX software the

following commands must be entered in the order listed below:

1. cd wimax-1.5.1

2. ./configure –prefix=/usr –with-linux=/usr –with-libwimaxll=/usr –sysconfdir=/etc -localstatedir=/var

–enable-instrument

3. make

4. make install

After the source code was modified, the value of polling attempt and polling interval, both

defined in nwParams, and the memory addresses of nwParams and subscriptionParams are printed

to the log file when called in source code. The logging of these parameters can be seen in Figure 4.2.

Varying the BCR system parameters and comparing the log files for different parameters settings,

indicated no change in the nwParams variable. Since there was a change in the BCR system param-

eters but no change in the variable under investigation, we were able to determine that the system

parameters were not stored within the variable. This method of comparison was used repetitively

for different methods and is described in more detail in the following Subsection 4.3.2.
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Figure 4.2: Log file from modified source code

4.3.2 Debug

Figure 4.3 shows the process that was used to wean information about the system parameters

from the log information. First, the system parameters, backoff start and backoff end, had to be set.

The default parameters were always used to begin, backoff start set to 3 and backoff end set to 15.

Next, nodes were configured and, specifically, the debug levels were verified and set on the nodes.

The debug image that was created could be used and loaded onto the nodes. But when interested

in what information a specific debug level would give, one needs to set only this debug level. When

nodes and debug levels are configured, the nodes are connected to the WiMAX network, traffic is

passed and received, and then the nodes are disconnected from the network. After this the system

parameters are modified one at a time and the process is restarted. At least two nodes are used

so that traffic can be passed. Stepping through this process allows the log files to log information

during all WiMAX processes that would be executed during an experiment: connection, passing

traffic, and disconnection.

For each cycle a separate log files is saved so that comparisons can be made. To keep log files

from becoming full of other information while setting up for the next run and to separate between

each cycle. The tail command issued on the log files was used to write logged information to a

separate file. An example of this command is:

tail f [log filename] >> [new filename]

At least two runs and the corresponding log files, each with different system parameter

values, were used to do comparisons. The log files contain a variety of information including the

data packets sent to device from user space and received from the BS. We were looking for packets

in the log that had bytes change along with the change in the system parameters. In this way, we
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Figure 4.3: Flow chart of process used to find BCR system parameters

were attempting to find the UCD message and the system parameters setting set by the BS in this

MAC management message. Specifically, data packets of the same size were analyzed to see if at

least one or two bytes vary indicating the system parameter change. The network configuration used

in our experimentation was always the same allowing us to assume that the UCD message size at

the various stages of connection would be constant throughout experiments.

Changing the system parameters in a controlled fashion aids in the ability to use this

technique for finding them. For example, first changing only one system parameter, backoff start,

by a value of one and keeping backoff end the same allows us to look for one small change in the

logged data. Typically, we would then set backoff start back to default and decrease backoff end.

This method was used throughout our entire investigation for the BCR system parameters.

There was an overwhelming amount of information logged when the following debug levels

were set to a maximum value for all modules:

• dl rx,
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• dl tx,

• dl control,

• dl driver,

• dl usb, and

• dl fw.

With use of the i2400m.h header file located in the following directory /include/linux/wimax,

we were able to isolate logged information from the time the first successful connection command

was sent until the disconnect command was sent. Within this time interval, investigation of packets

labeled rx cntl were compared and two potential packets were found that may carry the BCR system

parameters. Further investigation is required to confidently determine that these logged messages

store the system parameters.

Setting a minimum number of debug parameters will make future analysis easier. We

determined that the important debug values for potentially gaining information about the system

parameters backoff start and backoff end include dl rx and dl control. The other debug parameters

set for our logs provided no insight to the parameters. Additionally, the use of both dl rx and

dl control provided redundant information about the the received packets.

4.4 Summary

Intel R⃝ Centrino R⃝ Advanced + Wireless 6250 USB device is reviewed in this Chapter. Pre-

sented in two sections are the techniques we used to gain information about how the WiMAX device

and Linux drivers provided for the device handle the BCR system parameters. The debug param-

eters, Section4.3.2, and the wimax-1.5.1 source code, Section 4.3.1 provide abundant information

about how this WiMAX device works. Though we have reason to believe the system parameters can

be verified via the log files. Soon we will see in Chapter 6, are study suggests that the BCR system

parameters of interest are managed by the firmware only. It appears they are only passed to the SS

node as information packets for debug logs and not MAC control messages. This result continued

our search for a means to modify the BCR system parameters which leads us to Chapter 5.
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Chapter 5

Linux

After searching the source of the Intel R⃝ Centrino R⃝ Advanced + Wireless 6250 USB devices

and not finding a variable or function that directly handled the BCR system parameters, we next

looked to the Linux systems running on the SS nodes. The Linux system interacts and manages

the peripheral devices that are installed on the SS nodes. For this reasons, we hypothesized that

the BCR system parameters may be passed by the WiMAX device to the Linux operating system

and stored there. Though are search of the source code did not uncover the system parameters, it

was plausible that a communication function had been overlooked that passed the parameters to

the Linux system. With this in mind, we dug into the Linux file system and memory in hopes of

discovering the BCR system parameters.

The ORBIT nodes run Linux kernel 2.6.35. Linux is a free, open-source operating system

that is written and built in C programming language. Open-source software gives users the luxury

of seeing how the system is implemented and the freedom to change the code if needed or desired.

When granted root-access to a Linux kernel, such as researchers are on ORBIT nodes, one can change

and modify the operating system in any way. The open-source platform and root privileges allowed

flexibility in the techniques we applied to investigate the BCR system parameters on Linux. This

freedom was needed because the WiMAX protocol does not allow you to override the BS mandated

system parameters. If the BCR system parameters were found, unauthorized modifications would

have to be made to them. Modification would allow attackers to have a different setting than the

client SS’s that continue to appropriately follow the BS’s settings.

As seen in Chapter 4, we were able to modify the open-source drivers developed for Linux
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systems. In this Section we look at two more methods used to locate the BCR system parameters

and understand how they are handled and accessed. The first, leverages the information stored

within the Linux file system, Section 5.1. Special emphasis was given to the /proc directory and is

explained in Subsection 5.1.1. The second method, uses GDB, a common Linux debugging tool, to

hunt for the parameters within the memory of the Linux node, Section 5.2.

5.1 File System

On a UNIX or Linux system, everything is a file; if something is not a file, it is a process [15].

This statement is true but can be misleading if ones definition of a file does not include unordinary

files such as directories, special files, links, sockets, and named pipes. After drivers, file systems are

the most important class of modules in a Linux system [41]. The typical Linux files system structure

can be seen in Figure 5.1.

Figure 5.1: Linux file system hierarchy

The /proc file system is created by software and used by the kernel to export information to

the world. Each file relates to a kernel function that generates file contents in /proc. Many command

line functions simple read /proc files. For example, the command lsmod gets the information from

/proc/modules and displays it in a user-friendly format. Device drivers export information via

/proc [41]. Clearly the file system is read from, but it can also be written too. Most /proc files are

intended to be read-only but forced memory overwriting can provide a means around this. If the

BCR system parameters were found in the /proc directory, we could use this technique to overwrite

them and set them to whatever parameter settings we choose.

Drivers and modules get classified into classes in Linux. Three common classes include char
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devices (accessed as stream of bytes similar to file), block devices (sends data in randomly accessible

fixed size data blocks similar to a disk), and network interfaces. The last type encompasses devices

that can exchange data with other hosts [41]. Unfortunately, network interfaces do not easily map

to file system such as char and block devices. Instead of having input and output assigned to a file

within the /dev directory, they are assigned unique names. The name for WiMAX device is wmx.

Information gets stored as files under the interface name.

Within the Linux file system is various WiMAX related files. Some are configuration files,

other log files, but we are attempt to find out if the system parameters of BCR are stored somewhere

within the file system. The Linux file system is displayed as a tree in Figure 5.2. The promising

parent directories include:

• /proc - interface to kernel data structures,

• /var - system writes to files within during operation,

• /sys - exports kernel device information to user space,

• /usr - secondary hierarchy for user data, and

• /etc - configuration files for Linux system.

Each of these directories stores information related to WiMAX and network devices. Chap-

ter 4 looked at the log files contained within the /var directory and the WiMAX configurable

operational parameters that are stored in /sys directory. Also in the /var directory are WiMAX

database and definitions files and /etc directory contains a WiMAX configuration file. The file

name and path directories are:

• /var/lib/wimax/WiMAX DB.bin,

• /var/lib/wimax/ WiMAX Def.bin, and

• /etc/wimax/config.xml.

The backoff start and backoff end system parameters were not found in any of these WiMAX

files. The /usr directory contains WiMAX security information such as keys and certificates, but

again, does not contain the system parameters leaving only the /proc directory, which the next

section will look at in great detail.
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Figure 5.2: Linux directory path of WiMAX related files

5.1.1 Proc

As mentioned earlier, the /proc directory contains an abundant amount of information

about the Linux operating system. It contains information about registered resources with

/proc/ioports and /proc/iomem [41]. Memory assignments are saved within the /proc direc-

tory, and each running process has its own directory there. Another useful and important part of

information that is stored here is the kernel symbol table.

At load time, any unresolved symbols used in a module are linked to the kernel symbol table.

The addresses of global kernel items such as functions and variables are stored in this table. This

allows drivers to be implemented in a modularized fashion. For example, the three Intel WiMAX

drivers are modularized and stacked on top of each other. The i2400m is dependent on i2400m-

usb and wimax. We see the symbols again in the memory dumps that look for the BCR system

parameters in the next section.

Scripts were used to write the contents of files from this directory to a text file that was

later compared for different system parameter configuration. We were looking for a specific file

that changed to reflect system parameter changes. The thought was that controlling the system

parameters could be accomplished by overwriting this specific file. Entries within the /proc directory

included:

• /proc/sys/net/ipv4/conf/wmx0/[filename]

• /proc/sys/net/ipv4/[filename]
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• proc/i2400m usb*

• proc/i2400m-rx*

• proc/i2400m-tx*

• proc/iwalgn*

The files with the ’*’ at the end are process identification numbers (PIDs). These numbers

change each time that the WiMAX service is started. The bash script uses grep to search the

output of the command ps aux, which returns process information, to find the iwlagn and i2400m

processes. The text output from the script can be seen in Figure 5.3. There was no entry found

within /proc that corresponded to the system parameters backoff start and backoffend. The three

WiMAX related process were always found to be asleep and not active. It is possible that more

information is stored in these entries when the processes are active. A different script or code would

need to be developed to log the file entries within the process directories when the process becomes

active. Our script only logged the information when the the process were asleep.

Figure 5.3: Text output from script that logged /proc directory information

5.2 Memory

The memory of Linux operating systems can be separated into virtual and physical memory.

The virtual memory system allows for more addressing than physical memory would allow. Virtual

memory is the address space and physical memory is actually present on the machine. Kernel and

user space work with virtual addresses that are mapped to physical memory [2]. Page tables define
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the exact memory mapping. Additionally, every peripheral device is controlled by writing and read-

ing to and from the devices registers. A device typically has several registers and they are accessed

at consecutive addresses in the memory or the I/O address space [41]. The memory address space

of the Intel WiMAX modules can be determined in a couple of ways. The command lsmod gives

the size of the modules and /sys/module/[module name]/sections stores the memory offset.

Both pieces of information can be found by reading the contents of /proc/modules, Figure 5.4.

Given the total size and the memory offset it possible to dump the memory of the address space

with proper software tools.

Figure 5.4: Contents of /proc/modules with WiMAX module information

GDB, the GNU project debugger, is a powerful interactive debugger used typically to trace

a programs execution and execute one line at a time [15]. Beyond simple execution, GDB can be

used to accomplish more complex tasks, such as reversing the execution, examining stack memory

and symbols, and accessing memory of executing program. A feature of interest for our work is the

ability to load the running Kernel in GDB. This allows one to examine the virtual memory used by

the WiMAX drivers. The debugger is invoked as though the kernel were an application. All that

must be provided to GDB to accomplish this, is the file name of the uncompressed kernel image and

the core file [41]. An example of how to start GDB with the kernel as an application is:

gdb /usr/src/linux/vmlinux /proc/kcore
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The /proc/kcore file represents the kernel executable in the format of a core file; it is a

huge file that represents all kernel address space and all physical memory. GDB optimizes access

by caching the core file information. GDB should be restarted to keep the core file cache up-to-date

or it must be flushed. We used GDB to look at and write the memory of the Intel 6250 WiMAX

drivers to binary files. Each time we ran an experiment and dumped the memory looking for the

BCR system parameters, we restarted GDB. In this way the cache was update with each experiment

run.

Linux loads the Intel 6250 drivers as three separate modules: wimax, i2400m, andi2400m-

usb. Each time the system is restarted and/or modules are installed, they are loaded into a different

part of memory. Though the start and end addresses differ, the memory structure and layout for

each module remains similar, Figure 5.5. Each module is loaded into memory based on dependence,

for example i2400m usb is dependent on i2400m, therefore i2400m is loaded first into memory and

assigned a lower memory address.

Figure 5.5: Example of memory stack of WiMAX modules

Memory dumps were made while the nodes were connected to the WiMAX network and

passing traffic. The file comparison command cmp, which allows for binary comparison, was used

to determine if the memory dumps for differnet BCR system parameter configuration showed any

differences. Again, the files compared were the same indicating that the system parameters were

not stored with the memory assigned to the WiMAX modules.

60



5.3 Summary

The Linux file system and memory was explained in this chapter. The various WiMAX files

in the Linux file system that were dissected in search of the BCR system parameters are discussed.

Also conveyed are the details of how we searched both the /proc directory and the Linux kernel

memory for the BCR system parameters, backoff start and backoff end. Besides the log files discussed

in Chapter 4, no information about the system parameters was found within the Linux file system

or memory. This conclusion provides us no means to control the system parameters in hardware

and again suggests that the system parameters may never leave the firmware on the WiMAX device.

These results are not entirely unexpected because the IEEE 802.16e standard requires all SS to

follow the BS’s settings of the system parameters. Since one is not suppose to deviate from these

settings, there is no direct, easy way to set the system parameters independently on the nodes and

finding a way to do so in hardware is onerous task. Next, Chapter 6 will describe one last technique

that we have exercised in hopes of finding a means to modify the system parameters.
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Chapter 6

Reversing Protocols

This chapter presents one additional technique we used for collecting information about

the BCR system parameters; traffic captures. Early on this method was applied to the WiMAX

interface on the Linux nodes in ORBIT to hopefully capture the control and management messages,

including the two MAC management messages of interest, the UCD and UL-MAP messages. There

was some surprise to the lack of traffic captured on this interface, which led to further investigation

of the Intel device, Chapter 4, and the Linux network stack, Chapter 5. The traffic seen suggest

that only the firmware handles the BCR system parameters.

The captures at this interface are further discussed in Section 6.2. After fully considering the

methods presented in the previous Chapters 4 and 5, we began to consider the possibility of man-

in-the-middle attacks to manipulate the BCR system parameters. Following conversations with the

ORBIT administrators, we determined that there was a wired interface between the BS and ASN-

GW that would allow for man-in-the-middle attacks with support from the ORBIT administrators.

The traffic captures and analysis of this interface is presented in Section 6.3. Before taking a more

in-depth look at these traffic captures, Section 6.1 will provide more details of the resources use for

traffic captures and the motivation.

6.1 Introduction

Network traffic captures can provide a myriad of information about how network protocols

work including management and security, as well as end-user information, such as content being
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communicated and devices. This technique of sniffing traffic is used by many types: malicious

users to steal and monitor user information, developers to debug communications, and educators

to teach people about communication protocols. There is many tools to complete traffic captures;

tcpdump, Wireshark, and Tshark are just a few. All use the pcap application programming interface

to manage traffic captures which in Linux systems is known as the libpcap library. Tshark [12] is a

command-line interface tool that is offered in addition to Wireshark [13]. Due to the command-line

interface of the ORBIT nodes, Tshark is used to complete network traffic captures.

Our desire to complete network traffic captures on the ORBIT testbeds was first initiated

by a wanting to better understand how WiMAX management messages are handled on Linux nodes.

It later turned into an investigation of whether or not man-in-the-middle attacks could be used

to control the BCR system parameters. For these reasons traffic captures were completed on two

different interfaces within the WiMAX network. The following two sections detail the captures of

these two interfaces and the information that was gleaned.

6.2 Ethernet

WiMAX traffic was captured at the wmx0 interface on the Linux nodes. The wmx0

interface is the network device interface assigned to the WiMAX hardware. After turning on the

WiMAX radios on the nodes and configuring the IP addresses for these interfaces, the traffic captures

began. Traffic was collected while the nodes connected to the WiMAX BS, each node pinged all

other nodes on the network and was pinged by other nodes, and then when it disconnected from

the BS. These steps are depicted in the flow chart in Figure 6.1. During all of this of time, the only

packets that were collected at the wmx0 interface were the ping requests and replies on the network.

On the outdoor testbed there was also miscellaneous broadcast messages and ARP requests from

other devices on the network.

Figure 6.2 shows the details of a Internet Control Message Protocol (ICMP) ping reply that

was carried over the WiMAX network. All WiMAX protocol headers have been stripped before

receiving the packet at the wmx0 interface. For this reason we do not see the BS identification

number (BSID) anywhere in the packet, 44:51:DB:00:00:00. Four protocols are encapsulated at this

interface: Ethernet, IP, ICMP, and the payload. The MAC addresses for the source and destination

in the Ethernet header are identical and belong to the WiMAX interface, MAC address of the Intel

63



Figure 6.1: Flow chart of traffic capturing process on the wmx0 interface

6250 WiMAX device. After the Ethernet header, is the IP header which contains the IP address

of node 1 and node 2, 10.41.14.1 and 10.41.14.2 respectively. The ICMP and payload information

follows the IP header.

Figure 6.2: Ping reply captured on the wmx0 interface
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The limited packets seen at the wmx0 interface indicates that none of the WiMAX MAC

management messages are transferred to the Linux network device structure. Information about

these messages may be encapsulated and sent via other communication to the kernel log. Due to

the lack of control and management messages available on the nodes, we decided to look for another

interface point. A point that was wired allowing for the possibility of a man-in-the-middle attack.

6.3 R6+ Protocol

One Ethernet connection in the ORBIT WiMAX network is between the Access Service

Network Gateway (ASN-GW) and the BS. This provides one wired connection within the wireless

network that could be used for a possible man-in-the-middle attack. The Access Service Network

(ASN) and the ASN-GW handle and manage a plethora of important WiMAX management func-

tions. The ASN is defined as a complete set of network functions needed to provide radio access

to a WiMAX subscriber [9]. The ASN can include multiple network elements, one or more BS and

ASN-GW [6]. Some of the required functions of the ASN are WiMAX Layer-2 (L2) connectivity with

WiMAX mobile stations, transfer of authentication, authorization, and accounting (AAA) messages,

authorization and session accounting for subscriber sessions, network discovery and selection of the

WiMAX subscribers preferred network service provider (NSP), relay functionality for establishing

Layer-3 (L3) connectivity with a WiMAX mobile station including IP address allocation, and Radio

Resource Management (RRM). The ASN-GW is the logical entity that performs the control-plane

functions including the RRM, radio resource and Quality of Service (QoS) management at user

authentication.

Radio Resource Management refers to measurement, exchange, and control of radio resource-

related indicators in a wireless network. This refers to the techniques and communication used to

measure, estimate, and set radio resources. The RRM would be used to implement proprietary

algorithms for radio resource allocation [9]. RRM is not always required because BS can implement

many of the services initially, though it is required for handovers to support mobile stations. RRM

messages are sent over what are referred to as reference points. Each reference point communicates

between two varying end points. The reference point 6, R6, consists of the set of control and Bearer

Plane protocols for communication between the BS and the ASN-GW. The Control Plane includes

protocols for data path establishment, modification, and release control in accordance with the
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mobile station events. The NEC BS uses a proprietary R6 protocol referred to as R6+.

An R6 protocol message of interest is the RRM Spare Capacity Report. This message in-

cludes the RRM BS Info which contains the Full UCD Setting [10]. Table 2.1 and 2.2 in Section 2.1.3

provides more detail about these messages. The RRM Spare Capacity Report is sent by the BS to

ASN-GW to indicate its available radio resources [11]. We hypothesized that when configuring the

BCR system parameters for the BS, they may get stored on the ASN-GW and passed between the

ASN-GW and the BS. If this was true, it would allow for a possible man-in-the-middle attack to

modify the packets that passed the BCR system parameters.

Through collaboration with the ORBIT management team we captured traffic on the Eth-

ernet link between the ASN-GW and BS. Originally we followed the capturing process indicated in

Figure 6.1. After review of this traffic, we were not able to find the system parameters backoff start

and backoff end. With further thought, we captured the traffic again using the process depicted in

Figure 6.3 in case these system parameters were passed between the ASN-GW and BS directly after

a user set them. A small number of the packets captured between the ASN-GW and BS can be seen

in Figure 6.4. After comparing the packets captured for various configurations of backoff start and

backoff end we determined that they are not passed between the ASN-GW and BS.

Another R6 protocol message that was investigated was the Path Reg Req and Path Reg Rsp.

These messages are used to request and establish the R6 data path between the ASN-GW and BS.

The details of Path Reg Rsp can be seen in Figure 6.5. Similar to the ping reply seen in Section 6.2,

the first information seen in the packet is the Ethernet destination and source MAC addresses fol-

lowed by the IP address information. Following the IP information is the WiMAX ASN control

path information. There is a variety of information TLV encoded in this part of the packet. We see

the BSID near the beginning of this part of the packet. The TLV encodings do not follow the R6

standard due to the proprietary R6+ protocol being used.

6.4 Summary

Network traffic captures are common tool for reverse engineering communication protocols

and gathering information. In this chapter, the traffic captured at two very diverse WiMAX related

interfaces are discussed. These two interfaces are the wmx0 interface, acts as the network device

interface for the Linux OS, and the Ethernet interface between the WiMAX BS and ASN-GW.
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Figure 6.3: Flow chart of traffic capturing process on the R6+ interface between the ASN-GW and
BS

Figure 6.4: Traffic capture on the R6+ interface between the ASN-GW and BS

The protocol used on the latter interface connection is a proprietary protocol, R6+, that differenti-

ates from the standard control protocol, R6, for management communication between the BS and

ASN-GW. Two packets, a ping reply and PATH REG RSP, are parsed and the various protocol

encapsulation is revealed. Unfortunately, we were not able to capture MAC management messages

at the wmx0 interface providing more evidence that these control and management messages along

with the BCR system parameters are handled and isolated in the firmware on the WiMAX devices.

Additionally, the few R6 protocol messages that may have contained the system parameters were
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Figure 6.5: Path Reg Rsp message details

not discovered in the R6+ protocol used in this test environment. The following chapter will draw

conclusion about this study and present the current status of this work.
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Chapter 7

Conclusion

7.1 Summary

Wireless technologies are now a common part of everyday communications. From past

wireless protocols and wireless security research, we are aware that there are numerous security

flaws apparent in wireless protocols and many of these flaws enable DoS attacks on the protocol.

One novice DoS attack is presented in this study. Additionally, network and wireless security research

is often conducted via software simulations and the results are applied to actual real-life, hardware

networks without further investigation. Many times hardware experimentation does not produce

the same results as software. We have found that stringent network and wireless security research

usually requires two things: reverse engineering and hardware experimentation.

Our proposed DoS attack manipulates the Bandwidth Contention Resolution system param-

eters of the IEEE 802.16e protocol. Our study of this attack has resulted in reverse engineering the

WiMAX protocol implemented in hardware and analysis of hardware WiMAX environments. This

paper documents this process and can be used as a starting point for conducting similar investigation

of wireless and network protocols. Also, details of the IEEE 802.16e standard and protocol, previous

WiMAX security research, and NS-2 software simulations of the BCR system parameters affects on

throughput and packet-loss are presented and discussed in this document. The initial purpose of this

study was to replicate the NS-2 software simulations. Hardware experiments that manipulate the

BCR system parameters has proven to be more challenging than the software simulations. Despite

the obstacles we have faced in attempting hardware experiments, a myriad of informative informa-
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tion related to WiMAX, Linux, and different wireless network environments have been discovered

through this study.

Chapter 3 analyzed the indoor and outdoor WiMAX testbed environments of ORBIT. The

results of this analysis suggest the importance of software simulations and hardware experimentation

in network security testing. The indoor environment supports ideal conditions such as many software

simulations do. Our study suggests there can be dramatic differences in the results of studies carried

out in this environment compared to actual outdoor wireless networks. Chapter 4 and 5 present

a variety of configurable and managed parameters that could be used in future WiMAX security

research.

Finally, Chapter 6 looked at a WiMAX control protocol not commonly known, R6 protocol,

and the WiMAX interface of the Linux operating system. This last chapter highlighted a different

aspect of wireless networks that many of us do not consider and, in doing so, raised awareness

of another piece of the network that is potentially vulnerable to attack. It also provided a better

understanding as to how the Linux’s network interface for WiMAX interacts with the actual WiMAX

device. Though we hoped otherwise, the Linux WiMAX interface is basically an Ethernet interface.

It does not handle any of the WiMAX layer messages.

Despite that we were unable to carry out our original goal of manipulating the BCR system

parameters, this investigation has served to be very beneficial, and will hopefully provide guidance

and aid to other conducting WiMAX and other network protocol hardware experiments . Unfortu-

nately we are unable to draw firm conclusions about the BCR system parameters settings. Software

simulations suggest that the client SS’s settings of the parameters is critical for decreasing vulner-

ability to BCR system parameter DoS attack. Section 2.3.3 recommends setting levels for some of

the system parameters to provide robustness to this type of DoS attack. The hardware experiments

suggest that these settings may not be as critical in real networks. Without replicating attackers in

our hardware experiments, we can not conclude for sure that this statement is true. Before bring-

ing the document to a close, we will look at other work related to this study in Section 7.2 and,

finally, work still needed to be completed for this investigation and possibly work that this study

has discovered in Section 7.3.
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7.2 NetKarma

It is always a pleasure to have ones work inspire work by others. The work presented in this

study has already served to promote and further other research. A project initially began to capture

and aid GENI research collaborated with us during our study because of our GENI experiments.

NetKarma is a project of Indiana Universitys Data to Insight Center. The purpose is to capture

and visualize provenance of GENI experiments.

The ns-2 software simulations from [7] was one of the first GENI related experiments

visualized using this tool. We collaborated with the researchers at Indiana University to aid in

this effort by helping them to understand the ns-2 simulations and data and what were the most

important measurements. NetKarma captures not only provenance of packet movement, but also

infers critical provenance regarding packets that were dropped, and by doing so is able to convey

information about DDoS attacks through visualization that was done earlier through ANOVA [38].

This was accomplished by using an NS-2 extension that generates an XML and trace file. The two

files are input to NetKarma and Cytoscape [5] is used to visualize this data.

Figure 7.1 [3] visualizes the packet-loss for a specific parameter configuration that varies

bw request retry. Each line that is seen in the visualization connects from the BS, at the origin,

out to either a client or attacker node. Attacker nodes are the red lines and client nodes are

yellow. Each row of figures represents a different value of bw request retry. The left most column

represents the nodes that experience packet loss in red. Int the middle column, the size of the nodes

is proportionate to the number of packets dropped. So the red nodes seen in the left column have

the largest radius in the middle column. On the other hand, the right most column the size of the

nodes are proportionate to the number of packets transmitted and successfully received.Table 7.1

summarize the parameter configuration for this visualization. The results of the visualization agree

with the conclusions drawn by Deng [7]. The number of packets dropped significantly decreases

when bw request retry is increased from 2 to 6.

Table 7.1: Experiment runs from ns-2 simulations used by NetKarma for Figure 7.1

Run ID Frame Duration # of Attackers/Clients Dos backoff start Dos request retry Bw backoff start Bw request retry

406 0.01 80/20 1 2 1 2

407 0.01 80/20 1 2 1 6

408 0.01 80/20 1 2 1 10
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Figure 7.1: NetKarma visualization of bw request retry from software simulations

7.3 Future Work

There is a variety of current and future work related to this study. We are still pursuing

some options for possibly controlling the BCR system parameters in ORBIT’s WiMAX testbeds.

The first option takes advantage of the indoor testbed and the UCD, UL-MAP interval. It would

involve setting the BCR system parameters twice and using the indoor testbed attenuators to fade

the path of specific nodes after the first set of system parameters. This would ideally allow for one set

of nodes to use the first set of parameters and a second set of nodes to use the second configuration

of system parameters. If possible, the fade on the first set of nodes would be removed bringing all

nodes back to operating state on the network, and there would be a maximum of 10 seconds before

the next UCD message would reset all system parameters to the same setting. This small interval
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would allow for short experiments to be run. There are some logistics that currently have led us to

doubt the plausibility of this technique. The biggest concern is that ORBIT’s BS must be reset to

take new BCR system parameter settings. Further investigation as to whether or not there is a way

to set them on-the-fly is required.

The second option we may look at involves the BS to ASN-GW connection again. ORBIT,

as well as Clemson University, now has an Airspan BS installed. The Airspan uses the standard R6

protocol for communication between the BS and ASN-GW. This opens new possibilities for a man-

in-the-middle attack on this link. Also worth noting, is the manipulation of BCR system parameters

can be accomplished on the physical layer if the right equipment was available. Packet construction

is simple enough and the needed equipment would include Digital RF generator and wave generator

at the appropriate frequencies. Unfortunately, this type of equipment was not available for this

study.

Additionally, this study has opened many avenues for new future work. Due to the reverse

engineering of WiMAX in Linux and the Intel R⃝ Centrino R⃝ Advanced + Wireless 6250 USB devices,

there is now a clear understanding of the parameters that are handled outside of the firmware and

by Linux operating system. Manipulation of these parameters would provide for interesting wireless

security experiments and research. For example, manipulation of the QoS parameters could likely

have negative effects on other SS on a network. Hopefully, this study will aid others in WiMAX

hardware research and serve as informative resource about IEEE 802.16e, WiMAX, and reverse

engineering network protocols.
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Appendix A MAC Layer Management Messages

MAC MANAGEMENT TYPE MESSAGE NAME DESCRIPTION CONNECTION

0 UCD Uplink Channel Descriptor Broadcast

1 DCD Downlink Channel Descriptor Broadcast

2 DL MAP Downlink Access Definition Broadcast

3 UL MAP Uplink Access Definition Broadcast

4 RNG REQ Ranging Request Broadcast

5 RNG RSP Ranging Response Basic/Initial Ranging

6 REG-REQ Registration Request Basic/Initial Ranging

7 REG-RSP Registration Response Primary

8 reserved Primary

9 PKM-REQ Privacy Key Management Request Primary

10 PKM-RSP Privacy Key Management Response Primary

11 DSA-REQ Dynamic Service Addition Request Primary

12 DSA-RSP Dynamic Service Addition Response Primary

13 DSA-ACK Dynamic Service Addition Acknowledge Primary

14 DSC-REQ Dynamic Service Change Request Primary

15 DSC-RSP Dynamic Service Change Response Primary

16 DSC-ACK Dynamic Service Change Acknowledge Primary

17 DSD-REQ Dynamic Service Deletion Request Primary

18 DSD-RSP Dynamic Service Deletion Response Primary

19 reserved Primary

20 reserved Primary

21 MCA-REQ Multicast Assignment Request Primary

22 MCA-RSP Multicast Assignment Response Primary

23 DBPC-REQ Downlink Burst Profile Change Request Basic

24 DBPC-RSP Downlink Burst Profile Change Response Basic

25 RES-CMD Reset Command Basic

26 SBC-REQ SS Basic Capability Request Basic

27 SBC-RSP SS Basic Capability Response Basic

28 CLK-CMP SS network Clock Comparison Broadcast

29 DREG-CMD De/Re-register Command Basic

30 DSX-RVE DSx Received Message Primary
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MAC MANAGEMENT TYPE MESSAGE NAME DESCRIPTION CONNECTION

31 TFTP-CPLT Configuration File TFTP Complete Message Primary

32 TFTP RSP Configuration File TFTP Complete Response Primary

33 ARQ-Feedback Standalone ARQ Feedback Basic

34 ARQ-Discard ARQ Discard message Basic

35 ARQ-Reset ARQ Reset message Basic

36 REP-REQ Channel measurement Report Request Basic

37 REP-RSP Channel measurement Report Response Basic

38 FPC Fast Power Control Broadcast

39 MSH-NCFG Mesh Network Configuration Broadcast

40 MSH-NENT Mesh Network Entry Basic

41 MSH-DSCH Mesh Distributes Schedule Broadcast

42 MSH CSCH Mesh Centralized Schedule Broadcast

43 MSH CSCF Mesh Centralized Schedule Configuration Broadcast

44 AAS FBCK REQ AAS Feedback Request Basic

45 AAS FBCK RSP AAS Reedback Response Basic

46 AAS Beam Select AAS Beam Select message Basic

47 AAS BEAM REQ AAS Beam Request message Basic

48 AAS BEAM RSP AAS Beam Response message Basic

49 DREG REQ SS De-registration Request message Basic

50 MOB SLP REQ Mobile Sleep Request Basic

51 MOB SLP RSP Mobile Sleep Response Basic

52 MOB TRF IND Mobile Traffic Indication Broadcast

53 MOB NBR ADV Mobile Neighbor Advertisement Broadcast/Primary

54 MOB SCN REQ Mobile Scanning intevbal allocation Request Basic

55 MOB SCN RSP Mobile Scanning intevbal allocation Response Basic

56 MOB BSHO REQ BS Handover Request Basic

57 MOB MSHO REQ MS Handover Request Basic

58 MOB BSHO RSP BS Handover Response Basic

59 MOB HO IND Handover Indication Basic

60 MOB SCN REP Mobile Scanning result Report Primary

61 MOB PAG ADV BS broadcast Paging Broadcast

62 MBS MAP MBS Map Multibroadcast

63 PMC REQ Power control Mode Change Request Basic

64 PMC RSP Power control Mode Change Response Basic

65 PRC-LT-CTRL Set-up/tear-down of Long-Term MIMO precoding Basic

66 MOB ASC-REP Association result Report Primary

67-255 Reserved
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Appendix B ORBIT Outdoor and Indoor Experiment Data

OUTDOOR

AVERAGE THROUGHPUT SYS. PARAMETER

RUN NODE 1-1 NODE 1-2 NODE 1-3 NODE 1-4 NODE 1-5 NODE 1-6 NODE 1-7 NODE 1-8 SINK BACKOFF S BACKOFF E

1 1655.46667 1766.4 2048 2048 2048 2048 1962.66667 1954.13333 15513.6 3 2

2 1817.6 2048 2048 2048 2048 2048 1211.7333 2005.3333 15146.6667 1 10

3 2048 2030.9333 2048 2048 2048 2048 2030.9333 2048 16332.8 3 2

4 1877.3333 1979.73333 2048 2048 2048 2048 1783.46667 2048 15872 1 6

5 2056.3333 2056.3333 2056.3333 2048 2048 2039.46667 1902.93333 1928.53333 16102.4 1 10

6 2048 1996.8 2056.3333 2048 2048 2048 1459.2 2005.3333 15675.73 5 6

7 2039.46667 2005.3333 2056.3333 2048 2048 2048 1979.73333 1740.8 15948.8 5 2

8 2048 2048 2056.3333 2048 1681.06667 2048 2039.46667 1971.2 15914.67 1 6

9 2056.3333 2056.3333 2056.3333 2048 1638.4 2048 1911.46667 1954.1333 15744 3 10

10 2056.3333 2048 2048 2048 1996.8 2048 1945.6 1962.66667 16136.53 5 6

11 2022.4 2056.5333 2048 2048 2048 2048 1954.1333 2048 16264.53 3 2

12 2030.9333 2048 2048 2048 2048 2048 1979.73333 2048 16298.67 1 10

13 2030.9333 2030.933 2048 2048 2048 2048 1211.7333 2048 15496.53 5 10

14 2056.533 2056.5333 2056.5333 2048 2048 2039.46667 1979.73333 1629.86667 15880.53 3 6

15 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16375.4667 5 10

16 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16375.4667 5 6

17 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2039.46667 16375.4667 3 10

18 2056.5333 2056.5333 2048 2048 2048 2048 2039.46667 2048 16366.9333 1 2

19 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 5 2

20 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 1 6

21 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2048 16375.4667 5 10

22 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2039.46667 16384 5 2

23 2056.5333 2056.5333 2056.5333 2048 2048 2048 2039.46667 2039.46667 16384 1 2

24 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16401.0667 3 6

25 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 3 10

26 2056.5333 2056.5333 2056.5333 2048 2048 2039.46667 2048 2048 16375.4667 3 6

AVG: 2020.08 2034.86 2051.57 2048 2016.16 2047.02 1919.67 1997.78 16111.3
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OUTDOOR

PACKET LOSS SYS. PARAMETER

RUN NODE 1-1 NODE 1-2 NODE 1-3 NODE 1-4 NODE 1-5 NODE 1-6 NODE 1-7 NODE 1-8 SINK BACKOFF S BACKOFF E

1 401.066667 290.133333 0 0 0 85.3333333 93.8666667 878.933333 3 2

2 238.933333 8.53333333 8.53333333 0 0 0 836.266667 42.6666667 1126.4 1 10

3 8.53333333 25.6 0 0 0 0 17.0666667 0 59.7333333 3 2

4 179.2 76.8 8.53333333 0 0 0 264.533333 0 529.066667 1 6

5 0 0 8.53333333 8.53333333 0 8.53333333 145.066667 119.466667 281.6 1 10

6 8.53333333 59.7333333 0 0 0 0 588.8 42.6666667 708.266667 5 6

7 17.0666667 51.2 0 8.53333333 0 0 68.2666667 307.2 452.266667 5 2

8 8.53333333 8.53333333 0 8.53333333 366.933333 0 8.53333333 76.8 477.866667 1 6

9 0 0 0 0 409.6 0 136.533333 93.8666667 640 3 10

10 0 8.53333333 0 8.53333333 51.2 0 102.4 85.3333333 264.533333 5 6

11 34.1333333 0 8.53333333 0 0 0 93.8666667 0 136.533333 3 2

12 25.6 8.53333333 8.53333333 0 0 0 68.2666667 0 110.933333 1 10

13 25.6 25.6 8.53333333 0 0 0 836.266667 0 896 5 10

14 0 0 8.53333333 0 0 8.53333333 68.2666667 418.133333 503.466667 3 6

15 0 0 8.53333333 0 0 0 0 0 8.53333333 5 10

16 0 0 8.53333333 0 0 0 0 0 8.53333333 5 6

17 0 0 0 8.53333333 0 0 0 8.53333333 17.0666667 3 10

18 0 0 8.53333333 0 0 0 8.53333333 0 17.0666667 1 2

19 0 0 8.53333333 0 0 0 0 0 8.53333333 5 2

20 0 0 8.53333333 0 0 0 0 0 8.53333333 1 6

21 0 0 0 0 0 0 0 8.53333333 8.53333333 5 10

22 0 0 0 0 0 0 0 8.53333333 8.53333333 5 2

23 0 0 0 0 0 0 17.0666667 8.53333333 25.6 1 2

24 0 0 8.53333333 0 0 0 0 0 8.53333333 3 6

25 0 0 8.53333333 0 0 0 0 0 8.53333333 3 10

26 0 0 0 0 0 8.53333333 0 0 8.53333333 3 6

AVG: 67.6571 40.2286 4.59487 2.4381 59.1238 1.21905 237.105 91.4286 504.686
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INDOOR

AVERAGE THROUGHPUT SYS. PARAMETER

RUN NODE 1-1 NODE 1-2 NODE 1-3 NODE 1-4 NODE 1-5 NODE 1-6 NODE 1-7 NODE 1-8 SINK BACKOFF S BACKOFF E

1 2013.86667 2013.86667 2005.3333 2005.3333 2005.3333 2005.3333 1996.8 1996.8 16088.9492 3 2

2 2056.5333 2048 2048 2048 2048 2048 2048 2048 16384 1 10

3 2013.86667 2005.3333 2013.86667 2005.3333 2013.86667 2005.3333 1996.8 1996.8 16106.3051 3 2

4 1996.8 2005.3333 1988.26667 1996.8 1996.8 1988.26667 1971.2 1971.2 15958.7797 1 6

5 2005.3333 1988.26667 1979.73333 1988.26667 1988.26667 1988.26667 1971.2 1971.2 15941.4237 1 10

6 2013.86667 2005.3333 2005.3333 1996.8 2013.86667 2005.3333 1996.8 1996.8 16088.9492 5 6

7 2056.53333 2056.53333 2048 2048 2039.46667 2048 2048 2048 16653.0169 1 6

8 2056.5333 2048 2048 2048 2048 2039.46667 2039.46667 2039.46667 16401.3556 5 2

9 2065.06667 2065.06667 2056.3333 2056.3333 2048 2048 2048 2039.46667 16375.322 3 10

10 2005.3333 1988.26667 1996.8 1996.8 2005.3333 1996.8 1996.8 1996.8 16036.8814 5 6

11 2005.3333 1996.8 1996.8 2005.3333 1996.8 1996.8 1996.8 1996.8 16054.2374 3 2

12 2005.3333 2005.3333 2005.3333 2005.3333 2005.3333 2005.3333 2005.3333 2005.3333 16097.6271 1 10

13 2005.3333 2013.8667 2013.8667 2005.3333 2013.8667 2005.3333 2005.3333 2005.3333 16114.9831 5 10

14 2013.867 2013.8667 2005.3333 2013.8667 2005.3333 2005.3333 2005.3333 2005.3333 16132.339 3 6

15 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 5 10

16 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2048 16401.0667 5 6

17 2056.5333 2056.5333 2056.5333 2048 2039.46667 2048 2048 2048 16375.4667 3 10

18 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 1 2

19 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 5 2

20 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16401.0667 1 6

21 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2048 16384 5 10

22 2056.5333 2056.5333 2048 2048 2048 2039.46667 2048 2048 16375.4667 5 2

23 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16392.5333 1 2

24 2056.5333 2056.5333 2048 2048 2048 2048 2048 2048 16384 3 6

25 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2048 16384 3 10

26 2056.5333 2056.5333 2056.5333 2048 2048 2048 2048 2048 16384 3 6

AVG: 2038.15 2035.86 2031.91 2030.6 2030.61 2028.96 2026.99 2026.67 16271.8
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INDOOR

PACKET LOSS SYS. PARAMETER

RUN NODE 1-1 NODE 1-2 NODE 1-3 NODE 1-4 NODE 1-5 NODE 1-6 NODE 1-7 NODE 1-8 SINK BACKOFF S BACKOFF E

1 72.81778 34.1333333 42.6666667 42.6666667 42.6666667 42.6666667 51.2 51.2 341.333333 3 2

2 0 8.53333333 0 0 0 0 0 0 8.53333333 1 10

3 34.1333333 42.6666667 34.1333333 42.6666667 34.1333333 42.6666667 51.2 51.2 332.8 3 2

4 51.2 42.6666667 59.7333333 51.2 51.2 59.7333333 76.8 76.8 469.333333 1 6

5 42.6666667 59.7333333 68.2666667 59.7333333 59.7333333 59.7333333 76.8 76.8 503.466667 1 10

6 34.1333333 42.6666667 42.6666667 51.2 34.1333333 42.6666667 51.2 51.2 349.866667 5 6

7 0 0 8.53333333 0 8.53333333 0 0 0 17.0666667 1 6

8 0 0 0 0 0 8.53333333 8.53333333 8.53333333 221.866667 5 2

9 0 0 8.53333333 8.53333333 17.0666667 17.0666667 17.0666667 25.6 93.8666667 3 10

10 42.6666667 59.7333333 51.2 51.2 42.6666667 51.2 51.2 51.2 401.066667 5 6

11 42.6666667 51.2 51.2 42.6666667 51.2 51.2 51.2 51.2 392.533333 3 2

12 42.6666667 42.6666667 42.6666667 42.6666667 42.6666667 42.6666667 42.6666667 42.6666667 341.333333 1 10

13 42.6666667 34.1333333 34.1333333 42.6666667 34.1333333 42.6666667 42.6666667 42.6666667 315.733333 5 10

14 34.1333333 34.1333333 42.6666667 34.1333333 42.6666667 42.6666667 42.6666667 42.6666667 315.733333 3 6

15 0 0 8.53333333 0 0 0 0 0 8.53333333 5 10

16 0 0 0 0 0 0 0 0 0 5 6

17 0 0 0 8.53333333 8.53333333 0 0 0 17.0666667 3 10

18 0 0 8.53333333 0 0 0 0 0 8.53333333 1 2

19 0 0 8.53333333 0 0 0 0 0 8.53333333 5 2

20 0 0 8.53333333 0 0 0 0 0 8.53333333 1 6

21 0 0 0 0 0 0 0 0 0 5 10

22 0 0 8.53333333 0 0 8.53333333 0 0 17.0666667 5 2

23 0 0 8.53333333 0 0 0 0 0 8.53333333 1 2

24 0 0 8.53333333 0 0 0 0 0 8.53333333 3 6

25 0 0 0 0 0 0 0 0 0 3 10

26 0 0 0 8.53333333 0 0 0 0 8.53333333 3 6

AVG: 16.9135 17.3949 21.0051 18.7077 18.0513 19.6923 21.6615 21.9897 161.477
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